

L[B

TERMS AND CONDITIONS OF SALE AND LICENSE OF TANDY COMPUTER EQUIPMENT AND
SOFTWARE PURCHASED FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL
STORES AND RADIO SHACK FRANCHISEES OR DEALERS AT THEIR AUTHORIZED LOCATIONS

USA LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A, CUSTOMER assumes full responsibility that this computer hardware purchased (the “Equipment”), and any
copies of software included with the Equipment or licensed separately (the '‘Software’’) meets the specifications,
capacity, capabilities, versatility, and other requirements of CUSTOMER.

B. CUSTOMER assumes full responsibility for the condition and eftectiveness of the operating environment in which
the Equipment and Software are to function, and for its installation.

LIMITED WARRANTIES AND CONDITIONS OF SALE
For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon
purchase of the Equipment. RADIO SHACK warrants to the original CUSTOMER that the Equipment and the
medium upon which the Software is stored is free from manufacturing defects. This warranty is only applicable
to purchases of Tandy Equipment by the original customer from Radio Shack company-owned cumputer
centers, retail stores, and Radio Shack franchisaes and dealers at thair autherized locations. The warranty is
void if the Equipment or Software has been subjected to improper or abnormal use. If a manufacturing defect is
discovered during the stated warranty period, the defective Equipment must be returned to a Radio Shack
Computer Center, a Radio Shack retail store, a participating Radio Shack franchisee or a pamcmatm% Radio Shack
dealer for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S soie and
exclusive remedy in the event of a defect is limited to the correction ot the defect by repair, replacement, or
refund of the purchase price, at RADIO SHACK'S election and sole expense. RADIQ SHACK has no obligation to
re Iace or repair expendable items.

B. 0 SHACK makes no warranty as to the desxgn capability, capacny or suitability for use of the Software,
exce t as ’growded in this paragraph. Software is licensed on an “'AS IS” basis, without warranty. The ongmal
CUSTOMER'S exclusive remedy, in the event ot a Software manufacturing defect is its repair or replacement
within thirty (30) calendar days of the date of the Radio Shack sales document received upon license of the
Software. Tyhe defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
a participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any
warranties of any nature on behalf of RADIO SHACK.

D. EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, AND ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPUSE 1S LIMITED IN ITS DURATION
TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH HEREIN.

E. Some states do not aflow limitations on how long an implied warranty lasts, so the above limitation(s) may not
apply to CUSTOMER.

LIMITATION OF LIABILITY
EXCEPT AS PROVIOED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER
OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSEO OR
ALLEGEO TO BE CAUSED DIRECTLY OR INDIRECTLY BY “EQUIPMENT’ GR “SOFTWARE” SOLD, LEASED,
LICENSED OR FURNISHED BY RAOIO SHACK, INCLUDING, BUT NOT LIMITED TQ, ANY INTERRUPTION OF
SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CUNSEDUENTIAL DAMAGES RESULTING FROM

THE USE OR OPERATION OF THE “EQUIPMENT" OR *SOFTWAR N NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
ANY BREACH OF THIS WARRANTY OR (N ANY MANNER ARISING OUT OF OR CONRECTED WITH THE SALE,
LEASE, LICENSE, USE OR ANTICIPATED USE OF THE “EQUIPMENT" OR “*SOFTWARE.”

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK’S LIABILITY HEREUNOER FOR
DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR
THE PARTICULAR “‘EQUIPMENT" OR ‘‘SOFTWARE" INVOLVED.

B. RAf?lO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or
Software.

C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought
more than two ? dyears after the cause of action has accrued or more than four (4) years after the date of the
Radio Shack sales document for the Equipment or Software, whichever first occurs.

0. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above
limitation(s} or exclusion(s) may not apply to CUSTOMER.

SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the TANDY Software on one computer,

subject to the following provisions:

A. Except as otherwise provided in this Software License, applicable copyright Jaws shall apply to the Software.

B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to
CUSTOMER, but not title to the Software.

C. CUSTOMER may use Software on a multiuser or network system only if either, the Software is expressly labeled
to be for use on a multiuser or network system, or one copy of this software is purchased for each node or
terminal on which Sottware is to be used simultaneously.

D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer
antfitwas is specifically provided in this Software License. Customer is expressly prohibited from disassembling the
Software.

E. CUSTOMER is permitted to make additional copies of the Software omly for backup or archival purposes or if
additional copies are required in the operation of one computer with the Software, but only to the extent the
Software allows a backup copy to be made. However, for TRSDOS Software, CUSTOMER is permitted to make a
limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER ma¥t resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one
copy of the Software for each one sold or distributed. The provisions ot this Software License shall also be
applicable to third parties receiving copies of the Software from CUSTOMER

G. All copyright notices shall be retained on all copies of the Software.

APPLICABILITY OF WARRANTY

A, The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a
sale of the Equipment and/or Software License ta CUSTOMER o(to a transaction whereby Radio Shack sells or
conveys such Equipment to a third party for lease to CUSTOMER

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author,
owner and or licensor of the Software and any manufacturer of the Equipment sold by Radio Shack.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specitic legal rights, and the original CUSTOMER may

have other rights which vary from state to state. 4/87

0S-9
Level Two

Operating
System

08S-9 Level Two Operating System (software):
© 1986, Microware Systems Corporation
Licensed to Tandy Corporation.
All Rights Reserved.

All portions of this software are copyrighted and are the
proprietary and trade secret information of Tandy
Corporation and/or its licensor. Use, reproduction or
publication of any portion of this material without the
prior written authorization by Tandy Corporation is
strictly prohibited.

0S-9 Level Two Operating System (manual):
© 1986, Tandy Corporation.
All Rights Reserved.

Reproduction or use of any portion of this manual, without
express written permission from Tandy Corporation and/or
its licensor, is prohibited. While reasonable efforts have
been made in the preparation of this manual to assure its
accuracy, Tandy Corporation assumes no liability
resulting from any errors in or omissions from this
manual, or from the use of the information contained
herein.

Tandy is a registered trademark of Tandy Corporation.
0S-9 is a trademark of Microware Systems Corporation.

BASIC09 is a trademark of Microware Systems
Corporation and Motorola, Inc.

1098765432

Getting Started
With
0S-9

About This Manual

Using Your OS-9 Handbook

If you feel that starting a new computer operating system is a
“scary business,” relax. This handbook is designed to put you at
ease when using OS-9. It is divided into two parts—each part has
a different purpose.

What is in Part 1

“Part 1” of this handbook is designed to show you, step by step,
how to set up and use your computer with OS-9. Follow the steps
as they are described, and OS-9 is your obedient servant. The few
instructions in “Part 1” are all that many OS-9 users ever need.

What is in Part 2

“Part 2” is for the more adventurous. OS-9 has an extensive rep-
ertoire of commands and functions to create and manage data and
to make use of peripherals (devices you can connect to your com-
puter, such as disk drives and printers). If you want to learn more
about the operating system, and if you like to explore, “Part 2” is
for you. You learn other useful OS-9 commands that prepare you
to make use of all the functions and commands described in
0S-9 Commands.

Contents

Part 1 / What You Need to Know About OS-9

Chapter 1 What is an Operating System? 1-1
Instructing Your Operating System 1-1
Using Application Programs and Computer

Languages,
Using Peripherals -
Why Use OS-97 i,
How Much Do You Need to Know About OS-9?

Chapter 2 How to Start and Exit Your System ...
Booting OS-9 -
Rebooting OS-9 i il
Exiting OS-9
Upper- and Lowercase Characters
0S-9 Error Messagesc.ouun.

Chapter 3 What You Need to Know to Use

R WwWwN = vk Wl

RODO DO DO DO DD 1= 1= b

Floppy Drives 3-1
Write Protection for Diskettes 3-2
Disk Drive Names 3-2
Making Copies of Diskettes 3-3
Formatting With One Disk Drive 3-3
Formatting With Two Disk Drives 3-4
Using the Backup Command 3-5
Making Copies With One Disk Drive 3-5
Making Copies With Two Disk Drives 3-7

Part 2 / Organization, Commands, and Keys
Chapter 4 Files and Directories 4-1
About Files 4-1
About Directories 4-1
Multiple Directories 4-4
About File and Directory Names 4-4
Examples of Filenames 4-4
About Pathlists 4-5
Anonymous Directory Names 4-6

About Device Names 4-6

Chapter 5 Commands and Keys 5-1

Typing Commands 5-1
Editing Commands 5-1
Command Parameters 5-2
Using Options ..., 5-2
Using Commands 5-3
Accessing Commands 5-4
Commands from Disk 5-5
Changing the Execution Directory 5-6
Changing the Data Directory 5-7
Changing System Diskettes 5-7
Video Display and Keyboard Functions 5-8
Special Keys il 5-8
Chapter 6 OS9Toolkit 6-1
Viewing Directories 6-1
Creating Directories 6-1
Deleting Directories 6-2
Displaying Current Directories 6-2
CopyingFiles i, 6-3
Deleting Files 6-4
RenamingFiles 6-4
Looking Inside Files 6-5
Loading Command Modules into Memory 6-5
Listing the Command Modules in Memory 6-5
Deleting Modules from Memory 6-6
Using Other Commands 6-6
Chapter 7 Customizing Your System 7-1
Creating a New System Diskette 7-1
Monitor Typeso, 7-8
Using Windowscciiiiniienann, 7-9
Establishing a Window 7-9
Changing Window Colors 7-11
Eliminating a Window 7-12
Using Startup to Establish a Window 7-13

Index

Part 1

What You Need to Know
About OS-9

Chapter 1

What is an Operating System?

08-9 is a disk Operating System (that’s what OS stands for). An
operating system is a group of programs acting as a message
center and an interpreter. Using your instructions, an operating
system manages the computer’s working circuits.

In fact, thinking of OS-9 as your computer manager is helpful.
The boss (that’s you) gives orders. OS-9 (the manager) sees they
get done.

To operate OS-9 you need at least one floppy disk drive attached
to your computer. OS-9 is originally configured to recognize two
floppy disk drives. Later, this handbook describes how to let OS-9
know if you have more than two floppy disk drives, or if you have
other hardware (printers, modems, hard disks, and so on) you
want it to recognize.

Instructing Your Operating System

You give your commands to OS-9 by typing them. Because OS-9
does exactly (and only) what you tell it, your entries must be pre-
cise and have perfect syntax (spelling and form). You must also be
sure to give 0OS-9 every detail it needs to perform a task.

For instance, if you told your office manager to, “Make a phone
call,” what can the manager do? Obviously, not much that is
helpful to you. The manager must know who to call, the phone
number, and what to say. OS-9 is the same. It must have all the
details before it can carry out your commands properly.

To show you how to instruct your operating system, the hand-
book asks you to type characters, words, and lines on your key-
board. When you do, you are issuing commands to 0S-9.
Technically, a command is only one word that describes the action
you want OS-9 to perform. A command line is a command with all
of its qualifiers.

In this manual, command lines usually contain words in boxes,
such as (ENTER]. These indicate keys that you press.

The manual also asks you to press key sequences. For instance,
when asked to press (€], hold down the key marked CTRL,
and while holding down [CTRL), press (T).

1-1

Getting Started With OS-9

Characters that are not in boxes are typed individually. For
instance, if you are asked to type the command line format /dg
(ENTER), press each key individually ((F] (0] (R] (M] O«
(ENTER)).

If you make a mistake while typing, use to move back to the
error. Then retype that portion of the line.

Using Application Programs and
Computer Languages

A computer application is a program designed to accomplish spe-
cific tasks. There are application programs to help you write let-
ters or documents (word processors), keep a mailing list (data
managers), and keep financial records (accounting packages).
There are also programs to help you study for a test, play a game,
play music, draw a picture, and much more.

Such application programs usually require that you use 0S-9 to
start your computer. A few application programs let you start
directly from the application diskette. Different programs can
require different procedures, and you should check your applica-
tion program’s documentation for specific instructions.

Application programs have special screen displays and menus to
instruct you, or that require you to perform a particular action,
such as press a key. When you are operating from an application
program, that program passes your instructions to 0S-9. 0S-9
manages the computer’s operations in the background, and its
functions are invisible to you.

You can also use computer languages to write your own applica-
tion programs. BASIC is a language. If you read the Color
Computer Disk System manual, you already know a bit about it.
There are languages you can purchase to use with OS-9 to cre-
ate programs, such as assembly language, Pascal, C, and
BASIC-09.

Like application programs, each language has its own startup
method. The manuals that come with the languages tell you how
to get them running on your Color Computer 3.

1-2

What is an Operating System? / 1

Using Peripherals

0S-9 lets you control much more than your computer’s opera-
tions. It also gives you control over other hardware devices such as
disk drives, a printer, modems, windows, other terminals, and so
on.

Each device has a “System Name,” an abbreviation preceded by a
slash (/). OS-9 can only recognize a device if you type its name
exactly as shown below. See Chapter 7, “Customizing Your
System” for information on how to tell OS-9 what devices you
want it to handle.

System
Name Description
/P A printer connected through your computer’s RS-

232 port. The RS-232 port is a serial port, and
you must have a printer with a serial connection,
such as the Radio Shack® DMP 430.

/T1 A data terminal or another computer acting as a
terminal, connected through the RS-232 port of
your computer. If you are using another computer
as a terminal, it must run a terminal program
that makes it perform as a terminal.

/T2 Another data terminal or another computer act-
ing as a terminal, connected to an optional RS-
232 communications pak in a Multi-Pak Inter-
face. If you are using another computer as a ter-
minal, it must run a terminal program that
makes it perform as a terminal.

/T3 Another data terminal or another computer act-
ing as a terminal, connected to the optional RS-
232 communications pak in a Multi-Pak
Interface. If you are using another computer as a
terminal, it must run a terminal program that
makes it perform as a terminal.

/M1 A modem using an optional 300-baud modem pak
in the optional Multi-Pak Interface. A modem
allows you to communicate with other computers
either directly or over phone lines.

1-3

Getting Started With OS-9

System

Name Description

/M2 Another modem using an optional 300-baud
modem pak in the optional Multi-Pak Interface.

/DO A floppy disk drive.

/D1 Another floppy disk drive

/W, /W1, Windows that you can establish on your OS-9

/W2, /W3 system. You use to page among windows

/W4, /W5 you create. See “Using Windows” in Chapter 7

/W6, /W17 and 0S-9 Windowing System Owner’s Manual for

information on creating windows.

Why Use 0S-9?

You now know that OS-9 is an operating system for your Color
Computer. You might also have heard that, in the world of com-
puter operating systems, 0S-9 is a leader. Perhaps that is why you
bought it. OS-9 stands out for several reasons. Some of its strong
points are:

File managing capabilities.

Multi-user features. With OS-9, more than one person can
use the same computer at the same time.

Multi-tasking. OS-9 can handle several jobs at the same
time.

Window functions that let you divide your display screens
into sections in which you can have one or more opera-
tions running, all at the same time.

Input/Output capabilities. OS-9 can communicate with
TVs and monitors, disk drives, printers, and other
computers.

A sophisticated repertoire of commands.

Sophisticated programming languages.

If you are not familiar with such terms as files, multi-user, multi-
tasking, and commands, don’t worry. The handbook explains these
terms and more.

1-4

What is an Operating System? / 1

Programmers like OS-9 because of its powerful features. It lets
them show off all of their skills. As a result, another 0OS-9 fea-
ture is the wide range of excellent programs that you can use
with the system.

How Much Do You Need to Know
About 0S-9?

You might wonder how much you really need to know to use OS-9.
The answer varies with your needs, and with the application
programs you intend to use.

However, regardless of how you intend to use your computer, there
are some 0OS-9 procedures you must know. For instance, you must
know how to load OS-9, how to prepare diskettes to store data,
and how to make copies of data or entire diskettes. This part of
your handbook makes these jobs easy.

Regardless of how careful you are, there are times when things go
wrong. When this happens, OS-9 displays an error message on the
screen. This part of the manual also helps you to understand
error messages and what to do about them.

1-5

Chapter 2

How to Start and Exit Your
System

Starting your computer and initializing an operating system is
called booting. In a sense, the computer is pulling itself up by its
bootstraps.

To run 0OS-9, Level 11, you must have a Color Computer 3 with at
least one floppy disk drive. Your OS-9 system diskette includes
modules to support the following Color Computer hardware:

Up to 512K RAM
A Keyboard

An Alphanumeric Video Display

A Color Graphics Display

Floppy Disk Drives (one or two)

Joysticks (one or two)
A Serial Printer
An RS-232C Communications Port

If you connect a Multi-Pak Interface to your computer, and use
the CONFIG utility from your BASIC09/CONFIG diskette (see
Chapter 7), OS-9 can support the following devices:

® As many as two external RS-232 communications cards
® As many as two modem paks
® As many as two additional floppy disk drives

Note: The Multi-Pak Interface has four cartridge slots.

A floppy disk controller must be in Slot 4. You can put
modem paks, or RS-232 paks in Slots 1, 2, or 3.

2-1

Getting Started With OS-9

Booting OS-9

Use the instructions in the Color Computer Disk System manual
to turn on your computer system. After you do, the video screen
displays a copyright message followed by the letters, oK. This is
Disk Extended Color BASIC’s way of telling you that it is ready
to get to work. It is waiting for your commands.

To load OS-9, follow these steps:
1. Insert the OS-9 System Master diskette into Drive 0.
2. At the 0K prompt, type:

DOS

08S-9 starts. If the DOS command returns a syntax error (SN?
ERROR), be sure you entered the command correctly. If DOS
still returns the error, check to make sure you have installed
your disk cartridge properly.

3. After OS-9 displays its startup message, this prompt appears:

yy/mm/dd hh:mm:ss
Time?

4. Type the year, month, date, hours, minutes, and seconds in
the format requested; then press (ENTER]. For instance, if the
date and time is September 3, 1986, 1:22 p.m., type:

86/09/03 13:22 (ENTER)

Note that the time is entered in 24-hour notation and that the
seconds (:SS) are optional.

You can bypass this time and date prompt by only pressing
(enter). However, if you do, OS-9 cannot provide the correct
date when you create and save data on disk. Also, it cannot
provide the correct date and time for application programs
that require them.

After you enter the date and time, the OS-9 prompt appears
and OS-9 is now in control and ready to accept a command.

You should always keep the OS-9 System diskette in Drive 0
(/D0) while running OS-9 unless you have a hard disk con-
taining your system files. An OS-9 System diskette is a
backup copy of the OS-9 System Master diskette. The instruc-
tions for making copies are in the next chapter.

2.2

How to Start and Exit Your System / 2

Rebooting OS-9

If you need to reboot OS-9 after the initial startup, press your
computer’s reset button (located at the right rear of the com-
puter). Pressing the reset button one time causes the OS-9 boot
message to reappear. The system then loads as it did originally.
Be sure the System Master diskette is in Drive /D0 when you
reboot.

Pressing the reset button twice returns the computer to Disk
BASIC.

Exiting OS-9

In the same manner that you use 0S-9 to start operations, you
should use OS-9 to exit or close operations. For instance, if you are
in the middle of a process, it is unwise to suddenly turn off your
computer. Doing so can destroy files or garble disks.

You can usually terminate an operation by pressing or
(E). In some instances, you must let an operation complete
its function before you can regain control of OS-9. If you are using
an application program, that program’s manual tells you how to
exit the program to the OS-9 command level.

You should always be at the OS-9 command level to turn off your
computer. Then follow these steps:

1. Be sure the O0S-9 system prompt and cursor are displayed.

Note: You can turn off the OS-9 cursor. If you or an
application program has done so, the cursor does not dis-
play at the command level.

2. Take out any floppy diskettes from the disk drives, put them
back in their protective envelopes, and store them in a safe
place.

3. Turn off all the equipment attached to your computer such as
a printer or disk drive(s); then turn off your TV or monitor.
Last of all, turn off your computer and Multi-Pak Interface (if
you have one). If you plug your equipment into a power strip,
you can use the power strip switch to turn off all equipment at
one time.

2-3

Getting Started With OS-9

Upper- and Lowercase Characters

0S-9 can display both upper- and lowercase letters. However, you
can tell it you want to use only uppercase. To do this, type:

imode upc [ENTER

If you do this, you cannot type lowercase letters, and the system
displays all uppercase letters. To switch back to both uppercase
and lowercase, type:

tmode -upc [ENTER

Even when you are in the upper-/lowercase mode, you can switch
to typing all uppercase by pressing (0]. Everything you type
is now uppercase, but the computer can display both upper- and
lowercase. Press (0) to switch back to upper-/lowercase.

If you want to type only one uppercase letter, hold down
while you press that letter.

It does not matter to OS-9 whether you type in uppercase or low-
ercase letters, or any combination of upper- and lowercase let-
ters. For instance, instead of typing TMODE UPC, you can type
tmode upc or Tmode UPC.

0S-9 Error Messages

Everyone makes a mistake now and then when typing com-
mands. If you type something the operating system doesn’t rec-
ognize, or if you ask it to do something it cannot do, it displays an
error message. This message is a number that refers to the type
of problem that OS-9 has encountered. For instance, if you type
XX XX (which is nonsense to 0S-9), the system displays:

ERROR #216

If you don’t know the meaning of the system error number you
have two options: (1) you can look up the reference in OS-9
Commands under Appendix A, “Error Codes” or, (2) you can
type:

ERROR 216 (ENTER)

Either method shows you that Error #216 means “Path Name
Not Found.” OS-9 thought you wanted it to execute a command
but it could not find one named xxxx.

24

How to Start and Exit Your System / 2

Other 0OS-9 error messages tell you if you have used all of a disk’s
storage space, if the computer’s memory is full, if you try to cre-
ate two files with the same name, and so on.

2-5

Chapter 3

What You Need to Know
To Use Floppy Drives

Floppy diskettes require careful handling. You might already be
familiar with how to take care of diskettes from reading your
Color Computer Disk System manual. If not, or as a reminder,
review the following points:

Always make copies of important diskettes. The price of a
diskette is small compared to the time it can take to
replace destroyed data.

Copy data you are working with regularly. If you experi-
ence a power failure while using your computer, the data
on any diskettes you have in a drive can be destroyed.
Other accidents can happen as well.

Always keep the protective paper or cardboard envelope on
your diskette when it is not in use.

Your drive accesses a diskette through the oblong slot in
the diskette’s jacket. Never touch the diskette through
this hole. The oil from even the cleanest hand can destroy
data, making the diskette useless.

Do not bend diskettes.

Store diskettes away from excessive heat, dust, and any
magnetic source. Even components in disk drives, video
displays, TVs, and electric motors can garble the data on
diskettes.

If you must write on a diskette label after placing it on
the diskette, use only a soft felt pen.

Do not switch your computer, disk drive(s), or Multi-Pak
interface on or off while you have a diskette in a disk
drive.

3-1

Getting Started With 0S-9

Write Protection for Diskettes

/ Write-Protect Notch

-——— Tab

Most diskettes have a square notch cut from one corner. This is a
write protect notch. If you place a special adhesive tab (supplied
with diskettes) over both sides of this notch, your computer can no
longer write (store) data on it. This feature protects diskettes from
inadvertent destruction of data.

Removing the tab again lets you write data onto the diskette.

Disk Drive Names

0S5-9 has its own method of referring to your disk drives. What
your Color Computer Disk System manual calls Drive 0, OS-9 calls
Drive /DO. This is your first drive if you have more than one
floppy disk drive connected to your system. Subsequent drives are
named /D1, /D2, and so on.

If you have a hard disk attached to your system, OS-9 refers to it
as Drive /HO. A second hard disk drive is named /H1.

3-2

What You Need to Know To Use Floppy Drives / 3

Making Copies of Diskettes

Before you can store information on a diskette, you must format it.
Formatting is the process of magnetically arranging a disk’s sur-
face so that OS-9 can store and locate information. The following
steps tell you how to format a diskette. Format at least two
diskettes at this time to use in making backups (copies) of your
two OS-9 system diskettes. If you have other important diskettes
to backup, format as many diskettes as you require.

Formatting With One Disk Drive

1. If you have not already done so, place a write-protect tab on
your System Master diskette. Then, turn on and boot your
computer as described in Chapter 2.

2. With the OS-9 System Master diskette in your drive, type:
load format [ENTER).

3. Select a diskette that does not contain data or that contains
data you do not want to keep. Make sure it does not have a foil
tab covering the write-protect notch. Put it in your disk drive
(Drive /D0) in place of your OS-9 System Master diskette and
type:

format /d@
The following prompt appears:

COLOR COMPUTER FORMATTER
Formatting drive /d@

y (yes) or n (no)

Ready?

4. Press to begin formatting. OS-9 asks you for a Disk Name:.
Type any name, using a maximum of 32 characters. For
example, you can type s to name the diskette “s.”

Next OS-9 verifies that the diskette is formatted properly. The
screen shows each track number in hexadecimal notation dur-
ing verification. A track is a concentric ring around the
diskette on which information is stored.

3-3

Getting Started With OS-9

5. When formatting is complete, OS-9 shows you the Number of
good sectors. This number depends on the type of disk drive
you are using. For a 35 track, single-sided drive, the number
should be $000276 (hexadecimal 276 sectors). The OS-9 prompt
and cursor reappear. Remove the newly formatted diskette from
the drive, and store it in a safe place until you are ready to use
it.

Format as many diskettes as you need by following Steps 3

through 5.

Formatting With Two Disk Drives

1. If your computer is off, turn it on, and boot OS-9 as outlined in
Chapter 2.

2. At the system prompt (059:), type format /d1 (ENTER]. The
screen shows:

COLOR COMPUTER FDRMATTER
Formattiing drive /d1

y (yes) or n (no)

Ready?

3. Insert a blank disk, or one which does not contain data you
want to keep, into Drive /D1, and close the latch. Be sure the
diskette does not have a foil tab covering the write-protect
notch. Press (Y].

4. 0OS-9 formats the diskette; then asks you for a Disk Name:.
Type any name, using a maximum of 32 characters. For
example, you can type s to name the diskette “s.”

Next OS-9 verifies that the diskette is formatted properly. The
screen shows each track number in hexadecimal notation dur-
ing verification. A track is a concentric ring around the
diskette on which information is stored.

5. When formatting finishes, OS-9 shows you the Number of
good sectors. This number depends on the type of disk drive
you are using. For a 35-track, single-sided drive, the number
should be $000276 (hexadecimal 276 sectors). The OS-9 prompt
and cursor reappear. Remove the newly formatted diskette from
the drive, and store it in a safe place until you are ready to use
it.

34

What You Need to Know To Use Floppy Drives / 3

Format as many diskettes as you need by following the same
procedure.

Using the Backup Command

BACKUP is one 0S-9 command that you can expect to use fre-
quently. It is the command you use to make copies of your
diskettes. We strongly recommend that you now use the fol-
lowing instructions to make copies of your 0S-9 system
diskettes. You can only copy diskettes that are created in the
same type of disk drive you are using. Your OS-9 system diskettes
are 35 track, single sided.

BACKUP uses two terms you need to understand. They are source
and destination. A source diskette is the diskette that contains the
program, file or data that you want to backup. The destination
diskette is the blank formatted diskette you prepared to receive
the copied data.

Note: Some application programs you buy do not let you
make copies of their diskettes. Check the program manual
for information on protecting the data on these diskettes.

Making Copies With One Disk Drive

1. If your computer is off, turn it on, and boot OS-9 as outlined
at the beginning of Chapter 2.

2. At the system prompt (059:), type:

backup /d8 #32K

This tells OS-9 to make a backup of the diskette in Drive /DO.
The screen displays the following prompt:

Ready to backup from /d@ to /d@
?:

3. Leave the System Master diskette in Drive /DO to make a
backup of it. To back up one of your other diskettes, for exam-
ple the BASIC09/CONFIG diskette, remove the System Master
diskette and replace it with the diskette you want to copy.

4, Press (Y) when you are ready to continue. The screen displays:

Ready Destination, hit a key:

3-5

Getting Started With OS-9

5. Replace the source diskette with the destination diskette. Then,
press the space bar to continue BACKUP.

When you back up one diskette to another, any data previ-
ously existing on the destination diskette is overwritten
(destroyed). OS-9 gives you a chance to make sure you have
inserted the proper destination diskette by displaying the
message:

DISK NAME
is being scratched
Ok ?:

“Scratched” means that OS-9 is going to replace any data on
the diskette with new data from the source diskette. BACKUP
also gives the destination diskette the same name as the source
diskette—the destination becomes a duplicate of the source.

6. Press to keep going. The screen asks you to:
Ready Source, hit a key:

7. Remove the formatted diskette from Drive /DO, and replace it
with the source diskette that contains the data you want to
copy. Press the space bar.

In a moment, a prompt asks you to:
Ready Destination, hit a key:

8. Remove the source diskette and replace it with the destination
diskette. Press the space bar.

9. Continue switching diskettes as the screen instructs you until
you see:

Sectors copied: $0276
Verify pass

Followed in a moment by:

Sectors verified: $0276
0S9:

3-6

What You Need to Know To Use Floppy Drives / 3

The diskette now in your drive, the destination diskette, is a
duplicate of the source diskette. If you copied the System Master
or the BASICO09/CONFIG diskette, store it in a safe place, and
use the copy as your working diskette. Reserve the original
diskette for making future backups.

Note: For computers with 512K of memory, OS-9 can
backup a diskette faster if you replace #32K in Step 2 with
#56K.

Making Copies With Two Disk Drives

1.

If your computer is off, turn it on, and boot OS-9 as outlined
at the beginning of Chapter 2.

. At the system prompt (059:), type:

backup /d8 /d1 #32K
This tells OS-9 to make a backup of the diskette in Drive /DQ.
The screen displays the following prompt:

Ready to backup from /d@ to /d1
?:

. Leave the System Master diskette in Drive /D0 to make a

backup of it. To back up one of your other diskettes, for exam-
ple the BASIC09/CONFIG diskette, remove the System Master
diskette and replace it with the diskette you want to copy.

. Press when you are ready to continue.

When you back up one diskette to another, the process over-
writes or destroys any data previously existing on the destina-
tion diskette. OS-9 gives you a chance to make sure you have
inserted the proper destination diskette by displaying the
message:

DISK NAME
is being scratched
Ok 7:

“Scratched” means that OS-9 replaces any data on the des-
tination diskette with new data from the source diskette.
As well, BACKUP gives the destination diskette the same
name as the source diskette—the destination becomes an
exact duplicate of the source.

3-7

Getting Started With 0S-9

6. Press [Y] to keep going.
Copying continues. When the procedure ends, you see:

Sectors copied: $8276
Verify pass

Followed in a moment by:

Sectors verified: $8276
0S9:

The diskette in Drive /D1 is now a duplicate of the source
diskette. If you copied the System Master or the BASIC09/
CONFIG diskette, store it in a safe place, and use the copy as
your working diskette. Reserve the original diskette for making
future backups.

Note: For computers with 512K of memory, OS-9 can backup
a diskette faster if you replace #32K in Step 2 with #56K.

3-8

Part 2

Organization, Commands,
and Keys

Chapter 4

Files and Directories

Before you can use OS-9 extensively, you need to know how the
system organizes and stores data on disk. The information in this
section is true for both floppy diskettes and hard disks. However,
because of the greater storage capacity of a hard disk, it is of
particular importance to hard disk users.

About Files

Consider the information stored on disks to be of two basic types,
programs and data. A program is code that causes your com-
puter to execute a task. Data is information that a program uses
or that a program creates.

All the information that OS-9 stores on disks, whether program or
data, is stored in units called files. Whenever a program creates
a file, OS-9 defines a portion of your disk to store it. It keeps the
location of the file in a special list (called a directory), also located
on the disk, so that it knows where to find your program or data
the next time you want it.

About Directories

A directory is a storage space for filenames, other directory
names, or both.

After you format a disk, it contains one directory called the
ROOT directory. However, a disk can have many directories. For
instance, besides the ROQT directory, your System Master
diskette contains the CMDS and SYS directories. The ROOT and
CMDS directories are especially important to you.

When you boot OS-9, you automatically begin operation from
these two directories. The ROOT directory becomes your current
data directory and the CMDS directory becomes your current
execution directory.

Whenever you ask OS-9 to store a file on a diskette, it automati-
cally stores it in the current data directory (the ROOT direc-
tory), unless you tell it otherwise. If you ask 0S-9 to execute a
command or program, it automatically looks for that command or
program in the execution directory (the CMDS directory), unless
you tell it otherwise.

4-1

Getting Started With OS-9

Every OS-9 directory can also contain other directories, called
subdirectories. For instance, SYS, and CMDS are established as
subdirectories of the ROOT directory. Put in chart form, your
ROOT directory with its subdirectories looks like this:

\Li ROOT DIRECTORY ﬂ

CMDS SYS

Figure 4.1

But there are also files in the ROOT directory, OS9Boot and
Startup are two. The full ROOT directory might look like this:

ROOT DIRECTORY
OSQBoot
Startup

CMDS

Figure 4.2

You can create another subdirectory of the ROOT directory if you
want. For instance, if you created a directory named FAMILY, the
chart of the ROOT directory looks like this:

ROOT DIRECTORY

0S9Boot
Startup

CMDS FAMILY SYS

Figure 4.3

4-2

Files and Directories | 4

After you create the FAMILY directory, you can also create other
directories in it. Suppose you create two subdirectories named
PLEASURE and WORK. The chart organization is as follows:

ROOT DIRECTORY

0S9Boot
Startup
CMDS FAMILY SYS
Vo i
PLEASURE WORK
Figure 4.4

The directories you create also can hold files. If you created three
files each in the PLEASURE and WORK directories, the chart
might look like this:

ROOT DIRECTORY

0S9Boot
Startup
CMDS \P_ FAMILY W/ SYS
PLEASURE WORK
mom mom
dad dad
joe joe
Figure 4.5

You can continue to create files and subdirectories in any or all of
your disk’s directories until you fill the disk’s storage space.

4-3

Getting Started With OS-9

Multiple Directories

There is nothing wrong with storing all your files in the ROOT
directory. Doing so makes it easy to access them because they are
always in your data directory.

However, creating multiple directories makes it easy to keep your
data organized when you have many files, or if more than one
person is using the same disk. Such a multiple-directory organi-
zation is especially helpful when using hard disks, which can
store hundreds of individual files.

Also, when you have multiple directories, you can store files hav-
ing the same name in different directories without conflict, such
as in the PLEASURE and the WORK directories of Figure 4.5.

About File and Directory Names

The file and directory names shown so far consist only of letters
of the alphabet, but you can use other characters and symbols in
a file or directory name as long as each name begins with a let-
ter. The following is a complete list of acceptable characters:

® Uppercase letters: (A-Z)

® Lowercase letters: (a-z)

® Decimal digits: (0-9)

® The underscore character () and the period (.)

You can include as many as 29 characters in a file or directory
name.

Examples of Filenames

The following are samples of filenames that OS-9 can recognize:

mydata samfile

mydatal Dollar_gifts
records.srt help.file

XXX.xx file#1.txt
progl.bas program.sourcecode
prog2.bas program.opcode

Files and Directories / 4

Examples of invalid filenames are:

hisxhers because * is not a valid character for
names

DATA because the name does not begin with
a letter

COST+INT because + is not a valid character for
names

100_dollar_gifts ...because names cannot begin with a
digit

About Pathlists

Because you can organize OS-9 disks into multiple levels, you
need a way to tell the system where to find directories and files.
The directions you give are called pathlists.

A pathlist is exactly what its name implies—a path (or route) to
the device, directory, or file you want to access. For instance, if
you are in the ROOT directory (see Figure 4.5) and want to look
at the contents of a file in the WORK directory, you must tell
0S-9 how to get there. The pathlist from the ROOT directory to
the Dad file is family/work/dad. OS-9 expects you to separate
the junctions of pathlists with slashes. To look at the contents of
Dad, you type:

list family/work/dad

Because you are accessing a file on the current disk, you do not
need to specify a drive name. Because every disk contains a
ROOT directory, and all other directories and files branch from it,
ROOT is always implied in a pathlist. If Figure 4.5 represented
the diskette in Drive /D1, the pathname to the Dad file would be
/d1/family/work/dad.

Depending on the location of the directory or file you want to
access, a full pathlist need not contain any more than the name
of a drive, the name of a directory, or the name of a file. For
instance, the complete pathlist from the ROOT directory of Fig-
ure 4.5 to the Startup file is startup. To look at the contents of
Startup, type:

list startup

4-5

Getting Started With OS-9

Anonymous Directory Names

To save time, or if you do not know a full pathlist, you can refer
to the current directory, or to a higher-level directory, using an
anonymous name, or name substitute, as follows:

® One period (.) refers to the current directory

® Two periods (..) refer to the parent of the current direc-
tory (the next highest-level directory).

® Three periods (...) refer to the directory two levels up, and
S0 on.

You can use an anonymous directory name in place of a pathlist
or as the first name in a pathlist. Some examples are:

dir .. lists names in the current data direc-
tory’s parent directory.

del ../temp (ENTER] deletes the file called Temp from the
current data directory’'s parent
directory.

Anonymous names can refer to either execution or data directo-
ries, depending on the context in which you use them.

About Device Names

In the same manner that OS-9 has names for its commands, it
also has names for its devices. These names are abbreviations of
actual device names. For instance, instead of typing Disk Drive 0
to refer to your first disk drive, you only need to type /D@. To
refer to your printer, type /P. OS-9 windows are named /W
through /W7.

All of OS-9’s device names are preceded by a slash—this is how
0S-9 can tell you are referring to a device rather than a direc-
tory or file. When you purchase your System Master diskette, OS-
9 is configured to recognize two disk drives, a printer, and one
terminal port. For information on how to configure your system to
recognize other devices, see Chapter 7.

4-6

Chapter 5

Commands and Keys

You already put OS-9 to work with commands such as FORMAT
and BACKUP. In these cases the manual told you exactly what to
do to accomplish a very specific task. If you want to strike out on
your own, you should know some additional background
information.

Typing Commands

As explained earlier, some OS-9 files are programs. You tell OS-9
to execute these programs by typing the program (file) name and
pressing [ENTER]. You are then issuing a command to OS-9. That’s
all a command is, the name of a program for the system to exe-
cute. The following are some rules about commands:

® You can enter a command whenever the screen displays
the system prompt (059:).

® A command consists of one word, the command name. A
command line consists of one or more command names
and their associated parameters and modifiers. Parame-
ters and modifiers are special information you include
with a command that provide necessary data for the com-
mand to operate, or that affect the command’s operation.

® A command line can have a maximum of 198 characters
including any combination of upper- or lowercase letters.
To execute a command, press (ENTER). For example, to clear
the screen, type:

display @c

Editing Commands

08S-9 is very particular about the commands you type. If you
make any mistake, OS-9 either does not understand (and tells you
so with an error message) or does the wrong thing.

If you see that you made a mistake before you press [ENTER), you
have two choices: (1) use or to move the cursor to the
mistake, and retype that portion of the line, or (2) press
or to erase the line you are typing, and start over.

Getting Started With OS-9

Command Parameters

You can follow a command name with one or more parameters
that give OS-9 more specific instructions. For example, in the
command line:

list filef

LIST is the name of the command that displays the contents of a
text file. Filel, the specified parameter, is the name of the file
that you want displayed.

Note: In a command line, always use spaces to separate
parameters from their command, and from each other.
Parameters cannot contain spaces. Chapter 6 discusses
parameters for each OS-9 command.

Some commands have more than one parameter. For instance,
COPY requires two parameters: the name of the file being cop-
ied, and the name of the new file you want COPY to create. If you
want to copy a file called Startup, and call the copy Newstartup,
your command line reads:

COPY, the command
name.

The name of the file
to copy

The name of the copy

cause the command
line to execute.

\L— You press (ENTER] to

/ \
copy startup newstartup

Using Options

Command lines can also contain another type of parameter, called
an option. An option changes the way a command performs. For
instance, the command DIR, without parameters, shows the name
of all files in the current data directory.

5-2

Commands and Keys / §

However, if you add the E option as a parameter to the com-
mand, like this:

dir e [ENTER

the output includes not only the names of the files, but also com-
plete statistics about each file—the date and time created, size,
security codes, and so forth.

To display complete information about each file in SYS, type:
dir sys e

Using Commands

As described in Part 1, OS-9 acts in much the same manner as
an office manager. It looks after the operation of your computer
and equipment. Because OS-9 is only a manager, it expects you
to make the necessary decisions.

For example, suppose you have an important file named Hotstuff
that you want to copy. Before giving it to your office manager
(08-9), you must make executive decisions, such as:

® Do you want the copy on disk, paper, or the computer
screen?

® If you want the copy on disk, which disk?

® If you want the copy on the same disk, what name do you
want to give the second copy so OS-9 is not confused?

® If you want the copy on the computer screen, do you want
the display to pause when it fills the screen?

You make the decisions, OS-9 manages the job. For instance, if
your decision is to copy Hotstuff from one diskette to another,
you might type the following command line:

copy /d@/hotstuff /d1/hotcopy

5-3

Getting Started With OS-9

This is how OS-9 sees your command:

The name of the
command

The disk drive
containing the file to be
copied

The name of the file to
copy

The disk drive that is to
receive the new file

\Lﬁ The name of the copy

/ Vv
copy /d@/hotstuff /di1/hotcopy

This command line tells OS-9 to copy a file named Hotstuff from
your floppy disk Drive /D0 to a second floppy Drive /D1. The file
copy is given the new name, Hotcopy.

You only need to know the name of the file you want to copy, on
which disk it is located, and the disk on which you want the new
copy. OS-9 manages the operation for you.

Accessing Commands

0S-9 has two ways to access commands. Some commands reside
on a disk. When you type the command name and press (ENTER],
08-9 must look on the disk, load the program into the comput-
er’s memory, and then execute it.

Other commands are loaded into your computer’s memory at
startup, or you can load them into memory later. When you call
a command that is in memory, it is executed immediately. There
is no delay while OS-9 finds it on disk.

5-4

Commands and Keys / 6

Commands from Disk

When you give OS-9 a command that it cannot find in memory, it
looks for the command in the current execution directory. If it
cannot find it there, it checks the current data directory. If it still
cannot find it, the system issues Error Message #216, Path Name
Not Found. If the command you want executed is in a directory
other than the current directory, you must tell OS-9 where to find
it. Remember, when initialized, OS-9 sets the CMDS directory of
the system disk to be the execution directory.

For instance, suppose you booted your system using a diskette
configured like the example we used in Chapter 4:

ROOQOT DIRECTORY

0S9Boot
Startup
CMDS FAMILY ?/ SYS
PLEASURE WORK
mom mom
dad dad
joe joe

5-5

Getting Started With OS-9

When the system starts, the ROOT directory is the data direc-
tory, and the CMDS directory is the execution directory. Now,
suppose you had a program named Expenses in the family
directory:

ROOT DIRECTORY

/

0S9Boot
Startup
CMDS £ AI\\LIILY SYS
\ ; expenses T/
PLEASURE WORK
mom mom
dad dad
joe joe

(Remember that a program and a command are really the same
thing.)

You can now access (use) the expenses program in two ways. One
way is to specify a pathlist from the ROOT directory to execute
Expenses, such as:

/d@/family/expenses

Another way is to change the execution directory.

Changing the Execution Directory
To change the execution directory to the FAMILY directory, type:
chx /d8/family

Or specify a pathlist relative to the current execution directory,
such as:

chx ../family

To execute the Expenses program, you now only need to type

expenses [ENTER|.

5-6

Commands and Keys / 5

However, after you change the execution directory, to use a com-
mand in the COMMANDS directory, you must tell OS-9 where to
find it. For example, to format a new diskette in Drive /D1, type:

/d@/cmds/format /d1

Changing the Data Directory

Suppose that the Expenses program keeps track of work and
pleasure expenses for Mom, Dad, and Joe. Unless you tell OS-9
otherwise, it looks for data files in the current data directory, the
ROOQT directory. To tell OS-9 to lock for data files in the PLEA-
SURE directory, type:

chd family/pleasure

The slash between FAMILY and PLEASURE tells the system that
PLEASURE is a branch of FAMILY. Subordinate directories and
files are always separated from their parent in this way.

Now, when Expenses needs data, it knows to look in the PLEA-
SURE directory.

Changing System Diskettes

Although it is preferable to leave the system diskette in place
while the system is running, particularly with multiuser sys-
tems, there might be times when you need to use another
diskette. Only remove the current diskette when the screen dis-
plays the OS-9 prompt, followed by the cursor. If you do remove
the system diskette and begin to use another one, use the CHD
and CHX commands to tell OS-9 where you want to be located on
the new diskette. (For directions, see Chapters 2 and 6.) Those
commands set both directory pointers, data and execution, for the
new diskette.

While using a program or command, do not remove a diskette and
insert another unless the program or command asks you to. You
can lose data, or entire files, if you do.

5-7

Getting Started With OS-9

Video Display and Keyboard Functions

0S-9 has many features that expand the capability of the Color
Computer’s video display and keyboard.

® The video display has upper-/lowercase, screen pause,

graphics functions, and 80 column displays if you have a
monitor connected.

® The key provides an alternate key function. Holding

down while pressing another key sets the high order
bit of the character pressed. That is, it adds 128 to the
normal ASCII value produced by that key. Holding down
while pressing any other key produces a graphics
character on the standard VDG screen. If you are using
windows, lets you produce international characters.
(See 0S-9 Windowing System Owner’s Manual for more
information).

® The keyboard has an auto-repeat function. Holding down

a key causes the character to repeat until you release the
key. This function operates properly only when the disk
drives are not in use by a program.

® You can deal with the video display and keyboard together

as though they are a file. You can receive input from the
keyboard and send output to the video screen using the
device name /TERM.

Special Keys

The following keys and key sequences have special significance

to 0S-9.

ALT Produces graphic characters on a stan-
dard VDG screen or international
characters with windows. Press
char (where char is a keyboard charac-
ter).

A control key.

or Stops the current program execution.

or Moves the cursor to the left one space.

(CTRLJ(H)

5-8

Commands and Keys | 5

ERS)
e
)

or

(erE)*
B ey

HF)Jor

Generates an underscore character.
Generates a left brace ({).
Generates a right brace (}).
Generates a tilde (7).

Generates a backslash (\).

Performs an ESCAPE function, and
sends an end-of-file message to a pro-
gram receiving keyboard input. To be

recognized, must be the
first thing typed on a line.

Performs a CONTROL C function by
interrupting the video display of a pro-
gram. The program runs as a back-
ground task.

Selects the next video window.
Selects the previous video window.

* You must have established windows
for this function key to have any
effect. See “Using Windows” in
Chapter 7.

Toggles the keyboard mouse on and off.
The keyboard mouse uses the arrow
keys and the two function keys (F1
and F2) to simulate an external
mouse. When keyboard mouse is on,
the normal functions for the arrow and
function keys is suspended.

Deletes the current line.

Activates or deactivates the shift lock
function.

Generates a vertical bar (|).
Generates an up arrow ().

Generates a left bracket ([).

5-9

Getting Started With OS-9

(cTRL)8]

(cTRL D)

Generates a right bracket (]).

Redisplays the last line you typed and
positions the cursor at the end of the
line, but does not process the line.
Press to process the line, or edit
the line by backspacing. If you edit,

press again to display the
edited line.

Redisplays the current command line.

Temporarily halts video output. Press
any key to resume output.

Performs a carriage return or executes
the current command line.

5-10

Chapter 6

08S-9 Toolkit

You now know about a number of OS-9 commands that can help
you set up and use your computer system. There are many more
commands available. This chapter contains information about a
few of the most helpful commands. Becoming acquainted with
these makes it easy for you to use other commands and func-
tions. OS-9 Commands contains more information and a com-
plete reference to all OS-9 commands (including those you have
already discussed).

Viewing Directories

To look at your disk directories use the DIR command. For exam-
ple, to view the contents of the current data directory, type:

dir (ENTER)

If your data directory contains more filenames than can display
on the screen at one time, the display pauses. Press the space bar
to cause additional files to scroll onto the screen.

You can also view your execution directory in a similar manner.
This time you must include the command option, x. Type:

dir x [ENTER

If you want to look at a directory on a disk drive other than the
current drive, specify a complete path for OS-9 to follow, includ-
ing the disk drive name. For example:

dir /d@/FAMILY/WORK

Creating Directories

Before you can store data in a directory other than the ROOT
directory, you must create that directory with MAKDIR. For
instance, to create a FAMILY directory on your Drive /D0
diskette, type:

makdir /d@/FAMILY

6-1

Getting Started With OS-9

Deleting Directories

You can also delete directories you create. When you delete a
directory you also delete any files or subdirectories it con-
tains; so use this command with caution. To delete a direc-
tory, follow these steps.

1. Use DIR to view the contents of the target directory and any of
its subdirectories.

2. Copy any files you want to keep into a directory outside of the
directory you want to delete.

3. Type:
deldir dirname |ENTER

where dirname is the name of the directory you want to delete.
The screen shows:

Deleting directory file.
List directory, delete directory, or quit ?
l/d/q)

4. You now have three options:

a. To again confirm the contents of the directory before you

delete it, press (1) (ENTER].
b. To initiate the deletion process, press (d) (ENTER).

c¢. To quit the process and leave the directory intact, press [q)

(ETER).

If you try to delete directories other than the ones you create,
0S-9 might display Error #214, No Permission (you do not own
the directory or have write permission for it). For information on
handling such directories, see the ATTR command in OS-9
Commands.

Displaying Current Directories

There are times when you need to know the names of your cur-
rent data and execution directories. The PWD and PXD com-
mands make this possible. To determine your current data
directory, type:

pwd

0S-9 Toolkit | 6

The command displays the path from the ROOT directory to the
current data directory. For instance, if your current data direc-
tory is PLEASURE (see Figure 4.5 in Chapter 4) the display is:

/D@/FAMILY/PLEASURE

To discover your current execution directory, type:

pxd
The screen might display:

/DB /CMDS

A standard convention of OS-9 is to capitalize directory names. If
you follow this convention when creating directories, you can
always tell which files are directories at a glance.

Copying Files

COPY, like BACKUP, provides file security. If something hap-
pens to one file, you can use a copy. Also, you might want to copy
a command or program to use in more than one directory, or you
might want to use the same data on more than one computer.

Suppose you are in the PLEASURE directory of a diskette confi-
gured as in Figure 4.5. Your execution directory is the FAMILY
directory, where you are using the Expenses program. Because
the FAMILY directory does not contain any OS-9 commands, you
have to change the execution directories whenever you want to use
them.

You can make your work easier by copying the Expenses pro-
gram to the CMDS directory. To do this, first make the CMDS
directory your data directory by typing:

chd /d®/CMDS
Then copy the Expenses file to the CMDS directory by typing:
copy /d8/FAMILY/expenses expenses [ENTER]

Now, Expenses is in the CMDS directory, and you do not need to
change the execution directory to FAMILY to use it.

6-3

Getting Started With OS-9

Likewise, if the ROOT directory is your data directory, and you
want to copy the Mom file from the WORK directory to the ROOT
directory, type:

copy family/work/mom mom

You can copy any file between directories and between disks. To
do so, you must provide the COPY command with a pathlist for
the location of the original file and for the destination of its copy.

Deleting Files

You can delete files in any directory using the DEL command,
such as:

del myfile

You can delete a file in the current execution directory by using
the —x parameter. For instance, to delete Myprogram from the
current execution directory, type:

del -x myprogram

If the file you want to delete is in a directory other than the cur-
rent data directory or the current execution directory, you must
specify the full pathlist to the file. For instance, suppose you are
in the ROOT directory of a diskette configured as Figure 4.5. To
delete the Joe file in the WORK directory, type:

del family/work/joe

If the file you want to delete is on a drive other than your cur-
rent drive, include the drive name in your pathlist, such as:

del /d1/family/work/joe

If you attempt to delete a file you did not create, OS-9 might dis-
play Error #214, No Permission. For information on deleting such
files see the ATTR command in 0S-9 Commands.

Renaming Files

0S-9 lets you change the names of files. Suppose Joe leaves home,
and you now want to keep track of expenses for Sue. To change
the name of the Joe file to Sue, type:

rename family/pleasure/joe sue [ENTER

6-4

0S-9 Toolkit / 6

Looking Inside Files

LIST is a command that lets you examine files that consist of text
characters. For instance, to view the Dad file from the WORK
directory, you might type:

list family/work/dad

The contents of the file appears on the screen.

If you use LIST to display a file that is not a text file, it pro-
duces a meaningless display.

Loading Command Modules into Memory

When using 0S-9, you might notice that some commands begin
execution immediately, while others require access to the disk
drive before they execute. The OS-9 commands you need most
often load into memory at startup, so they are available for
immediate use. If you plan to frequently use a command that is
not in memory, you can load it.

For instance, the DSAVE command lets you copy an entire direc-
tory from one disk to another. To place the DSAVE module into
your computer’s memory, first be sure your execution directory is
the CMDS directory, then type:

load dsave [ENTER

Now you can use DSAVE as many times as you want, without
waiting for OS-9 to find it on disk.

Listing the Command Modules in Memory

At startup, OS-9 loads into memory the commands you use most
often. If you are not sure whether a command already resides in
memory, you can check using the MDIR command. To display a
directory of the modules in your computer’s memory, type:

mdir [ENTER

A list of all the modules in your computer’s memory appear on
the screen. The names you see are of modules 0S-9 uses to boot
and handle system operations and the commands it loads into
memory when you boot the system.

6-5

Getting Started With OS-9

Deleting Modules from Memory

After you load a module into memory, you can also delete it. The
process is called unlinking. To delete the DSAVE command from
memory, type:

unlink DSAVE (ENTER)

Some modules might require unlinking more than once, depend-
ing on the number of times they were linked.

Do not attempt to unlink modules that you did not install in
memory with the LOAD command.

Using Other Commands

0S-9 has nearly 50 commands and functions. This chapter has
mentioned only a few. Not only are there other commands avail-
able through OS-9, several of the commands presented here have
additional options.

The guidelines you learned in this handbook provide the back-
ground you need to make use of OS-9’s many other capabilities.

By referring to OS-9 Commands you can learn how to create
files, create procedure files to accomplish complicated tasks, send
information to your printer, transfer data between devices, exe-
cute more than one task at the same time, and much more.

6-6

Chapter 7

Customizing Your System

Your OS-9 operating system is originally configured in a certain
way. For instance, it is set up to recognize two floppy disk drives,
but no hard drives. It is set up to recognize a printer or one extra
terminal. It does not recognize a modem. It assumes that you only
want 32 characters across your computer’s display screen. It pro-
vides all of the OS-9 commands.

Using the CONFIG utility from the BASIC09/CONFIG diskette
that came with your OS-9 package, you can create system
diskettes that match the computer system you have. Before pro-
ceeding further, be sure you have a working copy of the BASIC09/
CONFIG diskette and a blank, formatted diskette. You can use
the instructions in “Making Copies of Diskettes” in Chapter 3 to
create a working copy of the BASIC09/CONFIG diskette and to
create a blank, formatted diskette.

Creating a New System Diskette

To create a new system diskette make sure you have a newly
formatted diskette on hand, then follow these steps:

1. Take out the System Master diskette, and replace it with the
BASIC09/CONFIG diskette. Type:

chx /d@/cmds | ENTER
chd /d@ [ENTER
config [ENTER

The first question the screen asks is:

HOW MANY DRIVES DO YOU HAVE:
1 -~ ONE DRIVE ONLY
2 - TWO OR MORE DRIVES
SELECTION [1,2]

2. If you're using a single-drive system, press [1). If you have
more than one drive, press [2).

If you indicated that you have two or more drives, CONFIG
prompts:

ENTER NAME OF SOURCE DISK:

7-1

Getting Started With OS-9

and
ENTER NAME OF DEST. DISK:

Type the appropriate drive name (/D0, /D1, etc.) at each
prompt.

3. 0S-9 informs you that it is:

BUILDING DESCRIPTOR LIST
PLEASE WAIT

0S-9 is putting together a list of the various devices you
might want to use with your computer. When it finishes, it
shows you the list:

CONFIG
ARROWS - UP/DOWN/MORE/BACK
S - SEL/UNSEL H - HELP D - DONE
ITEM SEL

T1

T2

T3

M1

me

PIPE

D@_35S X
D1_35S

D2_35S

7-2

Customizing Your System | 7

To view the rest of this menu, press (=]. Now the screen
shows:

CONFIG
ARROWS - UP/DOWN/MORE/BACK
S - SEL/UNSEL H - HELP D - DONE
ITEM SEL
- D3_35S
DDD@_35S
D@_408D
D1_48D
D2_46D
DDD@_4@D
D1_86D
D2_8@8D

4. You can choose the various devices you plan to use with your
computer from this list. To choose a device, use or to
move to the device. The - shows the device you've chosen.
Then, press (for Select) to display an X in the SEL
(“Selected”) column. Pressing (5] again cancels the selection.

You can move back and forth between the first and second
screens by pressing either (from the first screen) or
(from the second screen). Here's a short description of each
device listed on this screen. To display helpful information
about a device, position the - on its line in the list, and press
for Help. Then, press the space bar to make the help
information disappear. The devices on this screen are:

P A printer that connects to the RS-232 serial port
on your computer.
T1 A terminal using the standard RS-232 port (in

addition to your main computer display).

T2 A terminal using the optional RS-232 commu-
nications pak in Slot 1 of the Multi-pak Inter-
face. T2 supports a full baud rate range. Use T2
in addition to your main computer display alone,
or in addition to your main computer display and
a “T1” type terminal.

Getting Started With OS-9

T3

M1

M2

PIPE

D0_355

D1_355

D2_35S5

D3_358

DDD0_355

D0_40D

D1_40D

D2_40D

DDDO0_40D

D1_80D

D2_80D

Another terminal using the optional RS-232
communications pak in Slot 2 of the Multi-pak
Interface.

A modem using an optional 300 baud modem
pak.

A modem using an optional 300 baud modem
pak.

Lets you use the PIPE utility in OS-9 (a utility
that takes the information a program puts out
and uses it as input data in another command).

Floppy Disk Drive /DO, single sided, 35 tracks.
Floppy Disk Drive /D1, single sided, 35 tracks.
Floppy Disk Drive /D2, single sided, 35 tracks.
Floppy Disk Drive /D3, single sided, 35 tracks.

Default Disk Drive /DD using Drive /D0, single
sided, 35 tracks. Select one default drive — the
drive where you keep your system diskette.

Floppy Disk Drive /D0, double sided, 40
cylinders.

Floppy Disk Drive /D1, double sided, 40
cylinders.

Floppy Disk Drive /D2, double sided, 40
cylinders.

Default Disk Drive /DD using Drive /D0, double
sided, 40 cylinders. Select one default drive —
the drive where you keep your system diskette.

Floppy Disk Drive /D1, double sided, 80
cylinders.

Floppy Disk Drive /D2, double sided, 80
cylinders.

7-4

Customizing Your System /| 7

You must select a “D0” device as your first disk drive—use
D1, D2, and D3 devices for additional floppy disk drives. Select
the drive that matches the drives you have on your system. If
you are not sure, check with your supplier. To use extra ter-
minals and modems, you must connect them via a Multi-Pak
Interface.

. As you finish choosing among the devices on the first screen,
press to display another screen of devices:

. When you finish selecting devices, press (D) for Done. The
screen asks:

ARE YOU SURE (Y/N) 7

. Now’s your chance to change your mind. Press (] if you want
to reselect your devices. If you're sure about the devices you
selected, press [Y).

The next part of the CONFIG process appears on the screen:
CONFIG

SELECT TERM DESCRIPTOR

1 - TERM_VDG
2 - TERM_WIN

H - HELP
SELECTION (1,21

. These are Color Computer terminal 1/O subroutine modules
you can use. For a 32 character display, select 1 (TERM_
VDG@G). In order to have 0S-9 windows and an 80 column dis-
play, select 2 (TERM_WIN).

Note: You can use TERM.WIN with a TV rather than
a monitor but it is difficult, if not impossible, to see
characters on an 80-column window. When you later
create text windows, select 40-column displays.

7-5

Getting Started With OS-9

10.

If you select 2 (Term_Win), CONFIG presents you with
another menu of choices. This time, the display looks like
this:

CONFIG
ARROWS - UP/DOWN/MORE/BACK
S - SEL/UNSEL H - HELP D - DONE
ITEM SEL

W1 X
We
W3
W4
WS
We
W7

This list represents the pre-established windows you can
open for use with OS-9. The next section in this chapter tells
you how to open and use windows. For now, if you expect to
open windows in which you can run mulitple tasks, select
these items for your new diskette. (See “Using Windows”
later in this Chapter.)

. After you select the modules you want to use, press (D). As it

did when you selected devices, the screen asks ARE YOU
SURE (Y/N) ? Press if you're finished. Or, press (N) to
keep working on this screen.

0S-9 creates a file called Bootlist in Drive /D0’s ROOT
directory, using the information you've provided so far. It lets
you know what it’s up to by displaying:

BUILDING BOOT LIST
PLEASE WAIT

Then, the screen asks:

SELECT CLOCK MODULE:
1 - 60 HZ (AMERICAN POWER)
2 - 58 HZ (EUROPEAN POWER)

SELECTION [1,21

Press if you live in the United States, Canada, or any
other country that uses 60Hz electrical power. If you live in
a country that uses 50Hz electrical power, press (2.

Customizing Your System | 7

11.

12.

CONFIG is ready to begin creating your customized System
Master diskette. If you have one drive, the screen tells you
that the DESTINATION diskette is your blank, formatted
diskette and that your SOURCE diskette is the BASIC09/
CONFIG diskette. Place your formatted diskette in the drive,
and press (¢). You'll swap between the formatted diskette
and the BASIC09/CONFIG diskette several times.

If you have a two-drive system, place a formatted diskette in
Drive /D1, and press the space bar. The screen tells you that
08-9 is:

GENERATING NEW BOOT
PLEASE WAIT

Following the boot file generation, a menu lets you select the
commands you want to include on your system diskette. You
have the following choices: none; the full set of commands; or
a set consisting of commands you choose individually. The
menu looks like this:

CONFIG

DO YOU WISH TO ADD
[(N10 COMMANDS, STOP NOW
[FluLL COMMAND SET
CIINDIVIDUALLY SELECT
(H] RECEIVE HELP
SELECTION [N,F,I,H]

Most people like to choose the individual commands they
want to use. For the time being, press (F) to include the full
set. Later, you can create another custom diskette that has
only the commands you need.

7-7

Getting Started With OS-9

13. Do one of the following:

14.

a.

If you have one drive, the screen asks you to place your
formatted diskette in Drive /D0. Do so, and press the
space bar. Next, you’ll place your “uncustomized” backup
of the System Master diskette in Drive /D0. Swap the two
diskettes as the screen asks you to. When the CONFIG
program finishes, the 05S9: message reappears. You now
have a brand new, customized copy of the System Master
diskette.

. If you have more than one drive, the screen asks you to

place your system diskette in Drive /D0. CONFIG contin-
ues and in a few minutes, finishes its work. The 0S9:
message reappears, and you have a customized copy of the
System Master diskette in Drive /D1.

Label the diskette so that you can distinguish between your
working copy of the System Master diskette and the custom

copy.

Monitor Types

08-9 lets you set your system for different monitor types. The
monitor options are for a RGB color monitor, a composite color
monitor or TV, or a monochrome monitor or TV. To set your sys-
tem for a particular monitor type, enter one of the following com-
mands, or add it to your system Startup file:

Monitor Type Command
RGB montype r
Composite montype ¢
Monochrome montype m

Therefore, to set your system for a composite monitor, type:

montype c [ENTER

To save typing the command each time you start OS-9, put it in
the Startup file in the ROOT directory of your system diskette.

If your system disk does not have an existing Startup file:

Create one by typing:

build startup
montype r
ENTER

7-8

Customizing Your System / 7

If your system disk already has a Startup file:
First rename the Startup file by typing:

rename startup oldstart

Then create a file that contains the new command, such as:

build newstart [ENTER
montype r [ENTER
ENTER

Now combine the two files into a new Startup file:

merge oldstart newstart > startup (ENTER]

Use DEL to delete oldstart, newstart, or both, or leave them on
your disk for future use.

Using Windows

If the window descriptors (W, W1, W2, W3, W4, W5, W6, WT7)
and the graphics interface and driver, Grflnt and GrfDrv, are in
memory, 0S-9 lets you set up windows on your display screen.

Note: GrfIlnt and the window descriptors must be loaded as
part of the boot operation. Your System Master diskette does
this.

Once you have initialized windows, you can then move among
them, initiating different tasks in each. You can even have differ-
ent processes showing on different portions of your display screen
at the same time.

Another advantage of using windows is that you can choose win-
dows that give you displays of 40 or 80 columns across the screen,
rather than only 32. However, unless you have a monitor con-
nected to your computer, rather than a television, you might be
unable to read the screen.

Establishing a Window

You can establish one or more windows after booting OS-9, or you
can include the window creation process in OS-9’s Startup file.
Startup is a file containing commands you want your system to
execute during startup.

7-9

Getting Started With OS-9

To establish a window from the OS-9 prompt, type:

iniz wnumber |ENTER
shell i1i=/wnumber& [ENTER

In this example, number represents the window number to ini-
tialize. After you type these commands, you can select the win-
dow by pressing (CLEAR). To return to the original screen, press

CLEAR] again.

The default values for the window descriptors /W1 through /W7
are:

Window Text size ~ Window’s physical size

device name in columns Starts at: Size:
/W1 40 0,0 27,11
/W2 40 28,0 12,11
/W3 40 0,12 40,12
/W4 80 0,0 60,11
/W5 80 60,0 19,11
/W6 80 80,0 80,12
/W7 80 0,0 80,24

Note: To initialize Windows /W2 and /W3, you must
be operating from Window /W1. To create Windows

/W5 and /W6, you must be operating from Window
/W4,

The “Starts at” column, indicates the position on the screen of the
top left corner of the window. On the screen grid, coordinates 0,0
are located at the top left corner.

The “Size:” column indicates the number of characters across each
window and the number of character lines in each window.

Therefore, Window 1 displays 40 column text, begins in the top
left corner of the screen, extends right for 27 characters and down
for 11 lines. Window 5 displays 80 column text, begins at the top
of the screen, 60 columns from the left, extends 19 columns to the
right and 11 lines down.

Note that the coordinates for each window are based on the text
size of the screen. Therefore, Window 1 (based on 40 column text)
ends at column 27, while Window 5 (based on 80 column text)
begins at column 60.

7-10

Customizing Your System | 7

Using the information in the previous chart, you can now estab-
lish any, or all, of the seven windows.

Note: You cannot establish all of the windows unless your
computer has 512 kilobytes of memory.

For instance, to set up a full screen, 80-column window, type:

shell i=/w7&
After a short pause, the screen displays a message, such as:

4004

This means that OS-9 has opened a path to your new window and
started a shell on the window with the process identification of 04.
To move to the window, press (CLEAR). Your 32-column screen van-
ishes and you are now in Window 7. You can type commands or
run programs from here in the same manner as before.

To set up three windows on the same screen, type these com-
mands, then use (EEAR] to move among the windows:

iniz wl w2 w3 [ENTER]
shell i=/w1& (ENTER]
shell i=/w2& [ENTER]
shell i=/w34 (ENTER]

If you want, and your computer has enough memory, you can run
different processes in all of the windows.

Changing Window Colors

Perhaps you don’t like the color of the screen in one or more of
your windows. You can change it using the display command. The
following charts show you all of the colors available for the screen
background, text, and border.

7-11

Getting Started With OS-9

Background Code = 33
Text Code = 32
Border Code = 34

Color Codes

Codes Color

00 or 08 White
01 or 09 Blue

02 or OA Black
03 or 0B Green
04 or 0C Red

05 or 0D Yellow
06 or OE Magenta
07 or OF Cyan

To change a color, type DISPLAY 1b, followed by the background,
text, border, or foreground code followed by a color code. Then,

press (ENTER).

For instance, if you are in Window 7, you can change the back-
ground color to red, by typing:

display 1b 33 84

Change the text color to black by typing:
display 1b 32 @2

To put a white border around the screen, type:
display 1b 34 @8

You can also type all the codes on one line, like this;
display 1b 33 84 1b 32 82 1b 34 890

Pick the colors you want for each window, and change them
using DISPLAY. ‘

Eliminating a Window

In the command to establish windows (shell i=/wnumber&), “i”
tells SHELL that the process being created is immortal. This
means that you can only terminate it from the window in which
it resides.

7-12

Customizing Your System | 7

To kill a window in which you have established a shell, press
until the window you want appears on the screen. Type:

ex (ENTER]

Now press to move to another window in which a shell is
running. Then use DEINIZ to deinitialize that window. For
instance, if the window you want to eliminate is Window 1, type:

deiniz w1 |ENTER

Using Startup To Establish A Window

If you intend to use a window whenever you start O0S-9, for
instance if you want to use an 80 column screen, put the appro-
priate commands in the Startup file. This file must be located in
the ROOT directory of your system disk.

If your system diskette already has a Startup file:

First rename the existing Startup file, such as:

rename startup oldstart

Then put your new commands into a temporary file. To initialize
window Number 7 (80 columns, full screen) with white text on a
black background, type:

build tempstart

iniz w7 [ENTER

shell i=/w7& (ENTER]
display 1b 32 @88 1b 33 02 1b 34 @82 8c > /w7

Now combine your new commands with the original Startup file
by typing:

merge oldstart tempstart > startup (ENTER)

You can remove the Tempstart file by typing del tempstart
(ENTER), or you can leave it in your ROOT directory for future use.

7-13

Getting Started With OS-9

If Startup does not already exist:
Create it by typing:

build startup [ENTER)

iniz w7 (ENTER)

display 1b 32 86 1b 33 82 1b 34 82 #c > /w7 (ENTER)
shell i=/w7& [ENTER)

Now, after you boot OS-9, press to operate in an 80-
column, black and white screen.

7-14

Index

adding commands 7-7
ALT 5-8
anonymous directory names 4-6
application 1-2
diskette 1-2
programs 1-2, 3-5
arrow keys 1-2, 5-8, 5-9
ASCIl value 5-8
auto-repeat, keyboard 5-8

backslash character 5-9
backup 3-5
diskettes 3-3
files 6-3
BASIC09/CONFIG diskette 3-5, 3-7
bit, high order 5-8
booting 0S-9 2-2
brace 5-9
bracket character 5-9, 5-10
BUILD 7-8, 7-13

care of diskettes 3-1
carriage return 5-10
changing

directories 5-6

the system diskette 5-7
character

ASCII 5-8

backslash 5-9

brace 5-9

tilde 5-9

underscore 5-9

up arrow 5-9

valid 4-5

vertical bar 5-9
clock module 7-6
CMDS directory 4-1, 5-5
colors, window 7-11, 7-12
command 1-1, 6-1

accessing 5-4

adding 7-7

editing 5-1

loading 6-5

line, 1-1, 1-2, 5-1

using spaces 5-2

mistakes 5-1

modules, listing 6-5
option 5-2
parameters 5-2
process, 5-10
typing 5-1
communications pak 1-3
composite monitor 7-8
computer, turning off 2-3, 3-1
CONFIG 7-1
configuring your system 7-1
contents of directories 6-1
control key 5-8
CONTROL-C 5-9
copies
with one drive 3-5
with two drives 3-7
COPY 5-2, 5-4
copying
diskettes 3-3, 3-5
files 6-3
CTRL-BREAK 5-9
CTRL-C 1-1
CTRL-H 5-1
CTRL-X 5-1
current execution directory 5-5
cursor, move 5-8
customizing your system 7-1

data 4-1
directory, changing 5-7
files 4-1
terminal 1-3
types 4-1
storing 4-1
date 2-2
DEINIZ 7-13
deleting
lines 5-9
directory files 6-2
files 6-4
memory modules 6-6
descriptors, window 7-10
destination diskette 3-6
device names 4-6, 7-3
DIR 5-2

Getting Started With OS-9

directory 4-1
changing 5-6
changing the data 5-7
CMDS 4-1
contents 6-2
creating 6-1
current execution 5-5
deleting 6-2
display 6-2
finding 4-5
multiple 4-4
pathlist 4-5
ROOT 4-1, 4-5
SYS 4-2
viewing 6-1
directory names 4-4
anonymous 4-6
displaying 6-2
disk drive 1-4
names 3-2,
disk name 3-3, 4-6
diskette
backup 3-5
copying 3-3
formatting 3-3, 3-4
handling 3-1
removing 5-7
track 3-3
BASIC09/CONFIG 3-5
changing the system 5-7
destination 3-6
source 3-6
system 7-1.
write protect 3-2
DISPLAY 7-12
display
directory 6-2
directory names 6-2
file 5-2
video 5-8
drive names 3-2
DSAVE 6-5
duplicate diskette 3-8, 3-7

editing commands 5-1
end-of-file 5-9

entering commands 5-1
error message 1-5, 2-4
ESCAPE function 5-9
examples of filenames 4-4

execution directory 5-5
exit 0S-9 2-3
extended DIR 5-3

files 4-1
copying 6-3
deleting 6-4
display 5-2
finding 4-5
names 4-4
pathlist 4-5
renaming 6-4
Startup 7-8
viewing 6-5
filename
examples 4-4
legal characters 4-4
finding 4-5
directories 4-5
formatting
diskette 3-3, 3-4
with two drives 3-4

graphics
characters 5-8
interface 7-9

halt video output 5-10
handling diskettes 3-1
hard disk name 3-2
hardware 1-3

high order bit 5-8

initialize diskette 3-3, 3-4
INIZ 7-10

interface, graphics 7-9
international characters 5-8

key, control 5-8
keyboard
mouse 5-9
auto-repeat 5-8
keys, arrow 5-8, 5-9
kill a window 7-13

languages 1-2

last line, redisplay 5-10

left brace 5-9

left bracket 5-9

legal characters, filenames 4-4

2

Index

length, command line 5-1
line

command 5-1

delete 5-9

redisplay 5-10
listing command modules 6-5
loading commands 6-5
lowercase letters 2-4, 5-1, 5-8

memory modules 6-5
deleting 6-6
menus 1-2
messages, error 2-4
mistakes, command 5-1
modem 1-3, 1-4
modifier 5-1
module, clock 7-6
modules
in memory 6-5
window 7-6
monitor 5-8, 7-8
monochrome 7-8
mouse, keyboard 5-9
move cursor 5-8
multi-pak interface 1-3, 2-1
multi-tasking 1-4
multi-user 1-4
multiple directories 4-4

names
anonymous 4-6
device 4-6
directory 4-4
disk drive 3-2
file 4-4
hard disk 3-2
of devices 7-3

one drive copies 3-5
operating system 1-1
option, command 5-2
0S-9, starting 2-1
output, halt video 5-10

parameter 5-1
command 5-2
pathlist 4-5, 4-6
periods, anonymous names 4-6
peripherals 1-3
process command 5-10

program 4-1
application 3-5
execution, stopping 5-8
files 4-1
name 5-1

protect diskettes 3-2

quit 0S-9 2-3

rebooting OS-9 2-3
redisplay
current line 5-10
last line 5-10
removing
diskettes 5-7
windows 7-12
renaming files 6-4
reset button 2-3
RGB monitor 7-8
right brace 5-9
ROOT directory 4-1, 4-2, 4-5
route to files 4-5
RS-232 1-3, 2-1

scratched 3-6, 3-7
screen, VDG 5-8
sector 3-4
select window 5-9
serial port 1-3
SHELL 7-11
shift lock 5-9
size of windows 7-10
slash
in device names 4-6
in pathlist 4-5, 5-7
SN error 2-2
source diskette 3-6
spaces in a command line 5-2
special keys 5-8
starting
0S-9 2-1
your computer 2-1
Startup 7-8
file 7-13
stopping program execution 5-8
storing
data 4-1
diskettes 3-1
subdirectory 4-2
substitute names 4-6

Getting Started With OS-9

syntax error 2-2

SYS directory 4-2

system
customizing 7-1
devices 7-3
diskette 7-1
name 1-3

TERM 5-8
TERM_VDG 7-5
TERM_WIN 7-5
terminal 1-3
text file 5-2
tilde 5-9
time 2-2
track 3-3, 3-4
turning off your computer 3-1
two drive
copies 3-7
formatting 3-4
types
of data 4-1
of monitors 7-8

underscore character 5-9

up arrow 5-9
uppercase 2-4, 5-1, 5-8

valid character 4-4, 4-5
VDG screen 5-8
vertical bar 5-9
video
display 5-8
output, halt 5-10
window, select 5-9
viewing files 6-5

window 1-4, 7-9
40-column 7-5
80-column 7-5
colors 7-11, 7-12
descriptors 7-10
eliminating 7-12
establishing 7-9
modules 7-6
names 4-6
path 7-11
size 7-10
establish 7-13

write protect 3-2, 3-3

0S-9
Commands
Reference

0S-9% Level Two Operating System
©1983, 1986 Microware Systems Corporation.
Licensed to Tandy Corporation.
All Rights Reserved.

0S-9 Commands:
©1986 Tandy Corporation
and Microware Systems Corporation.
All Rights Reserved.

Reproduction or use, without express written permission
from Tandy Corporation or Microware Systems
Corporation, of any portion of this manual is prohibited.
While reasonable efforts have been taken in preparation of
this manual to assure its accuracy, neither Tandy
Corporation nor Microware Systems Corporation assumes
any liability resulting from any errors in or omissions
from this manual, or from the use of the information
contained herein.

Contents

Chapter 1 Introduction 1-1
TheKernel i 1-1
The Input/Output Manager 1-2

Device Drivers 1-2
Device Descriptors oot 1-2
The Shell i i 1-3
Going On ... 1-3

Chapter 2 The OS-9 File System 2-1
Input/Output Paths i il 2-1
Disk Directoriescciiiiiiiiiiiiiiia 2-2

Subdirectories i 2-3
DiskFiles ..o 2-3
SeCtors ... 2-4
TextFiles 2-5
Random-Access Data Files 2-6
Procedure Files o, 2-6
Executable Program Module Files 2-7
Miscellaneous File Use 2-8
The File Security System 2-8
Examining and Changing File Attributes 2-9
Record Lockoutl 2-11
Device Names ..., 2-12

Chapter 3 Advanced Features of the Shell 3-1
More About Command Line Processing 3-1
Command Modifierscoiiin... 3-3

Execution Modifiers e 3-3
Alternate Memory Size Modifier 3-3
I/O Redirection Modifiers 3-4
Command Separatorscco.... 3-5
Sequential Execution Using the

Semicolon 3-6
Concurrent Execution Using the

Ampersand 3-6
Combining Sequential and Concurrent

Executions i o, 3-7
Using Pipes: the Exclamation Mark 3-7
Raw Disk Input/Output 3-8

Command Groupingcviiieinn.... 39

Shell Procedure Files 3-10
Built-in Shell Commands and Options 3-11
Running Compiled Intermediate Code Programs 3-12

Chapter 4 Multiprogramming and Memory

Management, 4-1
Processor Time Allocation and Timeslicing 4-1
Process States i 4-2
Creation of Processesccoviiiiniiinnn.. 4-3
Basic Memory Management Functions 4-5

Loading Program Modules Into Memory 4-6

Deleting Modules From Memory 4-7

Loading Multiple Programs 4-8
Chapter 5 Useful System Information

and Functions 5-1
File Managers, Device Drivers, and Descriptors 5-1
The Sys Directorycciiiiiiininreinnnn. 5-2
The Startup File 5-3
The CMDS Directorycoiiiiiiiieiiiannnn. 5-3
Making New System Diskettes 5-3
Technical Information for the RS-232 Port 5-4

Chapter 6 System Command Descriptions 6-1
Organization of Entries 6-1
Command Syntax Notations 6-1
Command Summaryc.ouvinieeinnrinnaann 6-3
Chapter 7 Macro Text Editor 7-1
OVerVIEW . ..ottt e 7-1
TextBuffers i, 7-1
EditPointers i 7-1
Entering Commands Lo T2
Control Keys 0ottt 7-2
Command Parameters 7-3
Numeric Parameters 7-3

String Parameters 7-4

Syntax Notation iiviiniiiinn. 7-4
Getting Started 7-4

Edit Commandsottt 7-6
Displaying Text, 7-6
Manipulating the Edit Pointer 7-7

Inserting and Deleting Lines 7-10

Searching and Substituting 7-13

Miscellaneous Commands 7-14

Manipulating Multiple Buffers 7-17

Text File Operations 7-18

Conditionals and Command Series Repetition 7-21

Edit Macrosccciiiiiiiiii e 7-25

MacroHeaders 7-25

Using Macroscoo i, 7-26

Macro Commandscooviiiiiiin. 7-28

Sample Session 1 i 7-32

Sample Session 2 it 7-38

Sample Session 3 7-40

Sample Session 4 ...t 7-45

Sample Session 5 i 7-49

Edit Quick Reference Summary 7-55

EditCommands i, 7-55

PseudoMacros i, 7-57

Editor Error Messagescoviiiinniiniinnnnn. 7-59
Appendices

A OS9ErrorCodescoiiviiiiiiinnnn.. A-1

Device Driver Exrorsccccviiionn. A-5

B Color Computer 2 Compatibility B-1

AlphaMode Display B-3

Using Alpha Mode Controls with Windows B-3

Alpha Mode Command Codes B-4

Graphics Mode Displaycccviii... B-6

Graphics Mode Selection Codes B-6

Graphics Mode Control Commands B-7

Display Control Codes Summary B-9

C O0S-9KeyboardCodes C-1

D O0S8-9 Keyboard Control Functions D-1

Index

Chapter 1

Introduction

Getting Started With OS-9 contains the information you must
know to use the system. However, the handbook reveals only a
small part of OS-9’s capabilities. To learn about all of its fea-
tures, you need to know more about how OS-9 works. This intro-
duction provides such basic background information.

The Kernel

At the center of the OS-9 system is a module (program) called a
kernel. (See the following illustration.) The kernel provides basic
system services, such as multitasking and memory management.
It links other system modules and serves as the system adminis-
trator, supervisor, and resource manager.

Figure 1
Term is your keyboard and video.
T1 and T2 are additional terminals.
P is a printer.
M1, M2, and M3 are modems.

1-1

0S-9 Commands Reference

The Input/Output Manager

Although the kernel manages 0S-9, it does not directly process
the input and output of data among the other modules and your
computer hardware (printers, disk drives, terminals, and so on).
Instead the kernel passes this responsibility to the input/output
manager, [OMAN.

IOMAN has three submanagers: a character file manager, a pipe
file manager, and a disk file manager. The responsibilities of
these managers are as follows:

The Character Handles the transfer of data between OS-9

File Manager and character devices (devices that operate
on a character-by-character basis, such as
terminals, printers, or modems). The
sequential character file manager (SCF) can
handle any number or type of such devices.

The Pipe File Handles communication between processes
Manager or tasks. Pipes let you use the output of one
process as the input of another process.

The Disk File This Random Block File Manager (RBF)

Manager handles the transfer of data to and from
block-oriented, random access devices, such
as a disk drive system.

Device Drivers

CC3IO, PIPER, and CC3DISK are device drivers. These files con-
tain code that transforms standard data into a form acceptable
to a particular device, whether it is a terminal, printer, modem,
disk drive, any other device, or another file. PIPES transfers
data between processes.

Device Descriptors

Term, T1, P, M1, DO, and so on, are device descriptors. These
files describe the devices connected to the system. They contain
device initialization data as well as code that directs OS-9 to the
physical addresses of the ports to which devices are connected.

1-2

Introduction / 1

The Shell

The kernel, in conjunction with IOMAN and its associated man-
agers and modules, make up the OS-9 operating system. These
modules handle all of the system’s functions. However, OS-9
needs directions before it can accomplish useful tasks.

Directions to the system have two sources: commands and appli-
cations or computer language programs.

Before commands are useful to the kernel, the shell must inter-
pret them. It analyzes commands and converts them into code
that the kernel can understand.

Some application programs and computer languages also use the
shell’s functions. Others can access the kernel directly and do not
need to go through the shell.

Going On

Chapters 2 through 5 contain detailed information on the opera-
tion of the OS-9 system illustrated in Figure 1. These chapters
more fully describe the composition of files and directories. They
tell about advanced features of commands and of the shell and
contain information on multiprogramming and memory
management.

Chapter 6 contains descriptions of the OS-9 commands. Chapter
7 tells you how to use 0OS-9’s Macro Text Editor.

1-3

Chapter 2

The O0S-9 File System

Input and output refer to the data your computer system
receives and the data that it sends. OS-9 can receive (input)
data from a keyboard, disk files, modems, and other terminals. It
can send (output) data to all of these devices—except the key-
board—and to a video display.

0S-9 receives and sends data in the same format, regardless of
whether the destination is a file or a device. It overcomes the dif-
ferences in the devices by defining a standard for them and using
device drivers to make each device conform to the standard. The
result: a much simpler and more versatile input/output system.

Input/Output Paths

The base of 0S-9’s unified I/O system is an organization of
paths. Input/output paths are, in effect, software links between
files. (Remember, OS-9 thinks of all devices as files.)

Individual device drivers process data so that it conforms to the
hardware requirements of the device involved. Data transfer is in
streams of 8-bit bytes that can be either bidirectional (read/
write) or unidirectional (read only or write only), depending on
the device, how you establish the path, or both. A byte is a unit
of computer data. (A byte may contain the code for one alphabet
character.) A bit is a binary digit and has a value of either 0 or
1.

0S-9 does not require the data it manages to have any special
format or meaning. The meaning of the data is determined by
the programs that use it.

Some of the advantages of such a unified I/O system are:

® Programs operate correctly regardless of the I/O devices
selected.

® Programs are highly portable from one computer to
another, even when the computers have different types of
I/O devices.

® You can redirect I/O to alternate files or devices when
you run a program, without having to alter the program.

2-1

0S-9 Commands Reference

® You can easily create and install new or special device
driver routines.

Disk Directories

A directory is a storage place for other directories and files. It
contains the information about the directories and files assigned
to it so that OS-9 can easily find and access the data they
contain.

Each disk has its own directory system. For example, a typical
system diskette, diagrammed partially and simply, might look
like this:

DO (Drive /DO)

!

/D0 ROOT Directory

v v v

SYS Startup CMDS

l

Errmsg

VooV v vy

copy list dir del format

The ROOT directory of /DO—the ROOT from which the rest of
the disk’s file system grows—contains a file called Startup and
two directories, SYS and CMDS.

SYS and CMDS, in turn, contain files: SYS contains Errmsg,
and CMDS contains Copy, List, Dir, Del, and Format. All these
files and directories, and many more, come built into the OS-9
system.

0S-9 organizes each directory area into 32-byte records. The
first 29 bytes contain filename characters. The first byte of the
name has its sign bit (the leftmost or most significant bit) set.
When you delete a file, it is not immediately destroyed. Rather,
the deletion process sets the first character position of the record
to zero, and OS-9 no longer recognizes the record. Although the
file contents still exist, they are no longer accessible to you or
0S-9. Subsequent file creations overwrite deleted records.

2-2

The OS-9 File System | 2

The last three bytes of a record make up a 24-bit binary number
that is the logical sector number pointing to the file descriptor
record. Logical sectors are numbered with reference to the
sequence of their use, rather than their physical location on a
disk. See “Disk Files” for more information on disk organization.

You create directories using the MAKDIR command and can
identify them by the D (directory) attribute. (See “Examining
and Changing File Attributes”.) MAKDIR initializes each direc-
tory with two entries having the names “.” and “..”. These
entries contain the logical sector numbers of the directory and
its parent directory, respectively.

You cannot use the COPY and LIST commands (as described in
Getting Started With OS-9) with directories. Instead, use DSAVE
and DIR.

You cannot delete directories directly. You must first empty a
directory of files, convert it into a standard file, and then delete
it. However, the DELDIR command performs all these functions
automatically.

Subdirectories

A subdirectory is a directory residing in another directory.
Actually, all directories you create are subdirectories, since all
directories branch from the ROOT directory. However, because
the system automatically creates the ROOT directory when you
format a disk, this manual does not consider directories residing
in the ROOT directory to be subdirectories.

Subdirectories can contain files and other subdirectories. In
effect, OS-9 catalogues files and directories in much the same
way that you might put files pertaining to a particular subject
in a file cabinet drawer. With OS-9, you can have as many direc-
tory levels as your disk storage space permits.

Disk Files

A disk file is a logical block of data. (Logical means that
although the data might not actually exist in a contiguous block,
08S-9 treats it as though it does.) A file can contain a program,
text, a command, a computer language, or any other form of
code. Every time you ask OS-9 to store data on a disk, you must
specify a filename for that block of data. Both you and the sys-
tem must then use the filename to access the data.

2-3

0S-9 Commands Reference

The system stores all files as an ordered sequence of 8-bit bytes.
The file can be any size from 0 bytes to the maximum capacity
of the storage device and can be expanded or shortened as
desired.

When OS-9 creates or opens a file, it establishes a file pointer for
it. OS-9 addresses bytes within the file in the same manner it
addresses memory, and the file pointer holds the address of the
next byte to write or read. 0S-9’s read and write functions
always update the pointer as the system transfers data.

This pointer function lets assembly-language programmers and
high-level language programmers reposition the file pointer. To
expand a file, write past the previous end of the file. Reading up
to the last byte of a file causes the next read request to return
an end-of-file status.

0S-9’s file system also uses a universal organization for all /O
devices. This feature means that application programs can treat
each hardware device similarly. The following section gives basic
information about the physical file structure used by OS-9. (For
more information, see the OS-9 Level Two Technical Reference
manual.)

Sectors

The data contained in a file is stored in one or more sectors {disk
storage units). These file sectors have both a logical and a physi-
cal arrangement. The logical arrangement numbers the sectors
in sequence. The physical arrangement can be in any order
based on the actual location of a sector on a disk’s surface. For
instance, Logical Sector 1 might be located at Physical Sector
10, and Logical Sector 2 might be located at Physical Sector 19.

Each sector contains 256 data bytes. The first sector of every file
(Logical Sector Number 0 or LSN 0) is called the file descriptor.
It contains the logical and physical description of the file. The
disk driver module links sector numbers to physical track/sector
numbers on a disk.

A sector is the smallest physical unit of a file that OS-9 can
allocate for storage. On the Color Computer, a sector is also the
smallest file unit. (To increase efficiency on some larger-capacity
disk systems, OS-9 uses uniform-sized groups of sectors, called
clusters, as the smallest allocatable unit. A cluster is always an
integral power of two—2, 4, 8, and so on.)

24

The OS-9 File System / 2

0O8S-9 uses one or more sectors of each disk as a bitmap (usually
starting at LSN 1) in which each data bit corresponds to one
cluster on the disk. The system sets and clears bits to indicate
which clusters it is using, which clusters are defective, and
which clusters are free for allocation. The Color Computer
default floppy disk system uses this format:

® Double-density recording on one side

35 tracks per diskette
® 18 sectors per track
® One sector per cluster

Each 08S-9 file has a directory entry that includes the filename
and the logical sector number of the file’s file descriptor sector.
The file descriptor sector contains a complete description of its
file, including:

® Attributes
e Owner
® Date and time created

® Size

Segment list (description of data sector blocks)

Unless the file size is 0, the file uses one or more sectors/clusters
to store data. The system groups data sectors into one or more
adjacent blocks called segments.

Text Files

Text files contain variable-length lines of ASCII characters. A
carriage return (ASCII code 0D hexadecimal or 13 decimal) ter-
minates each line. Text files contain such data as program
source code, procedure files, messages, and documentation.

Programs usually read text files sequentially. Almost all high-
level languages (such as BASIC09) support text files.

Use LIST to examine the content of text files.

2-5

0S-9 Commands Reference

Random-Access Data Files

Random-access files consist of sequences of records, with each
record the same length. A program can find any record’s begin-
ning address by multiplying the record number by the number of
bytes used for each record. This feature allows direct access of
any record.

Usually, high-level languages let you subdivide records into
fields. Each field can have a fixed length and use. For example,
the first field of a record can be 25 text characters in length, the
next field can be two bytes in length and used to hold 16-bit
binary numbers, and so on.

0S-9 does not directly process records. It only provides the basic
file functions used by high-level languages to create and handle
random-access files.

Programmers use high-level languages like BASIC09, Pascal,
and C to create random-access data files. For instance, in
BASIC09 and Pascal, GET, PUT, and SEEK functions operate
on random-access files.

Procedure Files

Procedure files are disk files that contain commands. You can
use them to execute a series of commands by typing and enter-
ing a single command name.

Your System Master diskette contains one procedure file named
Startup. You can create your own procedure files using the
BUILD command, copying input from the keyboard to a file, or
by using a text editor program. For instance, suppose you have
three disk drives, /D0, /D1, and /HO. You could create three very
simple procedures to allow you to look at the directories of these
disks by typing and entering a simple two-character command.

To create a procedure file to look at the directory of /D1, type:

build p1
display ZC
dir /d1
display ZA

2-6

The OS-9 File System / 2

The first line creates a file named P1 (print directory for Drive
/D1). When you press (ENTER), a question mark appears on the
screen telling you that OS-9 is waiting for input. Type the rest
of the lines. Finally, press at the beginning of a line to
tell OS-9 that the input is complete. OS-9 closes the file.

Now, to see the contents of Drive /D1, type p1 (ENTER). The com-
mand display 8C clears the video screen. The command
display @A causes the cursor to drop down one line on the
screen.

Use your imagination. Almost anything you can do from the key-
board, you can do with a procedure file. However, remember that
0S-9 looks only in the current data directory for a procedure
file, unless you provide a full pathlist to the procedure. Also,
0S-9 must be able to find any command in the current execution
directory that is part of a procedure file. If the current execution
directory does not contain the commands you need, change it,
either from the keyboard or as part of your procedure file.

Executable Program Module Files

0S-9 program modules are executable program code, generated
by an assembler or compiled by a high-level language. A file can
contain one or more program modules.

Each module has a standard format that includes the object code
(the executable portion of the module), a module header that
describes the type and size of the module, and a CRC (Cyclic
Redundancy Checksum) value. The system stores program mod-
ules in files in the same structure in which they load into mem-
ory. Because OS-9 programs are position-independent, they do
not require specific memory addresses for loading.

For OS-9 to load program module(s) from a file, the file execute
attribute must be set, and each module must have a valid mod-
ule header and CRC value. If you or the system alters a program
module in any way (either as a file or in memory), its CRC
check value becomes incorrect, and 0S-9 cannot load the module.

If a file contains two or more modules, OS-9 treats them as a
group and assigns contiguous memory locations for them.

0S-9 Commands Reference

Using LIST on program files or any other files that contain
binary data, causes a jumbled display of random characters and
an error message.

Miscellaneous File Use

0S-9’s basic file functions are so versatile that you can devise
almost unlimited numbers of special-purpose file formats for
particular applications that require formats not discussed here
(text, random-access, and so on).

The File Security System

Each file and directory has properties called ownership and attri-
butes that determine who can access the file and how they can
use it.

0S-9 automatically stores the user number associated with the
creation of a file. The system considers the owner of the number
to be the owner of the file.

Security functions are based on access attributes. There are
eight attributes, each of which can be turned off or on indepen-
dently. When the D (directory) attribute is on for a file, that file
is a directory. (Only MAKDIR can set the D attribute for a file.)
When the S (single-user) attribute is on, only one program or
user can access the file at a time.

The OS-9 File System | 2

The other six attributes control whether the file can be read
from, written to, or executed by either the owner or the public
(all other users.) When on, these six attributes function as

follows:

Owner read
permission

Owner write
permission

Owner execute
permission

The owner can read from the file. Use this
permission to prevent binary files from
being used as text files.

The owner can write to the file or delete it.
Use this permission to protect important
files from accidental deletion or
modification.

The owner can load the file into memory
and execute it. To be loaded, the file must

contain one or more valid 0S-9 memory
modules.

Public read
permission

Anyone can read and copy the file.

Public write
permission

Anyone can write to or delete the file.

Public execute
permission

Anyone can execute the file.

For example, if a file has all permissions on except write permit
to public and read permit to public, the owner has unrestricted
access to the file. Other users can execute it but cannot read,
copy, delete, or alter it.

Examining and Changing File Attributes

You can use the DIR command, with the E (entire) option, to
examine the security permissions of all files in a particular
directory. An example of output using DIR E on the current data
directory is:

Directory of 10:20:44
Owner Last modified Attributes Sector Bytecount Name
§ 86/87/31 1436 ----r-wr A 6567 0S9Boot
@ 86/87/31 1437 d-ewrewr 7 568 CMDS
[86/87/31 1442 d-ewrewr 1B8 88 SYS
8 8c/87/31 1489 ------ wr 1Bd 55 startup

29

0S-9 Commands Reference

The Attributes column shows which attributes are on by listing
one or more of the following codes.

d s e w r

> owner read
> owner write

owner execute

L—> public read

> public write

> public execute

—> single-user

—> directory
For example, the first file shows:

-=--r-wr

This means that (1) The file is not a directory. (2) It is share-
able. (3) The public cannot execute it or (4) write to it, but can
(5) read it. (6) The owner cannot execute the file, but can (7)
write to it, and (8) can read it.

To examine the attributes of a particular file, use ATTR. Typing
ATTR followed by a filename shows you the file’s current attri-
butes, for example:

attr file2 [ENTER]

A possible screen display is:
“TTwWrTwr

To change a file’s attributes use ATTR and a filename, followed
by a list of one or more attribute abbreviations. However, you
must own a file before you can change its attributes.

2-10

The OS-9 File System / 2

The following command enables public write and public read per-
missions and removes the execute permission for both the owner
and the public:

attr file2 pw pr -e -pe (ENTER)

Note: In order to protect data stored in directories, the D
attribute behaves somewhat differently from the other attri-
butes. You cannot use ATTR to turn on the D attribute—
only MAKDIR can do that—and you can use ATTR to turn
off D only if the directory is empty.

Record Lockout

When two or more processes use the same file simultaneously,
they might attempt to update the file at the same time, causing
unpredictable results. When you open a file in the update mode,
0S-9 eliminates the problem of simultaneous use by locking the
sections of the file. The lock covers any disk sectors containing
the bytes last read by each process accessing the file. If one pro-
cess attempts to access a locked portion of a file, OS-9 puts the
process to sleep until the locked area is free.

0S-9 moves the lock and frees the area when it reads from or
writes to another area. The system removes a lock on a file when
the process associated with the lock closes its path to the file. A
process can have only one lock on a file, but it can have locks on
more than one file.

You can lock an entire file by activating its single user bit. (See
the earlier section “Examining and Changing File Attributes.”)
When the single user bit is on, only one process can open a path
to the file at a time. Attempts by other processes to access the
file result in an error.

2-11

0S-9 Commands Reference

Device Names

Each physical I/0O device supported by OS-9 has a unique name.
The following list describes some of the device names supported
by the system. Your system diskette already contains several of
these devices. You can define others to use with CONFIG.

D0_35S Floppy Disk Drive /DO, single sided, 35

cylinders.

D1_35S Floppy Disk Drive /D1, single sided, 35
cylinders.

D2_35S8 Floppy Disk Drive /D2, single sided, 35
cylinders.

D3_35S Floppy Disk Drive /D3, single sided, 35
cylinders.

DDDO0_35S Default Disk Drive /D0, single sided, 35
cylinders.

D0_40D Floppy Disk Drive /D0, double sided, 40
cylinders.

D1_40D Floppy Disk Drive /D1, double sided, 40
cylinders.

D2_40D Floppy Disk Drive /D2, double sided, 40
cylinders.

DDD0_40D Default Disk Drive /D0, double sided, 40
cylinders.

D1_80D Floppy Disk Drive /D1, double sided, 80
cylinders.

D2_80D Floppy Disk Drive /D2, double sided, 80
cylinders.

P a printer using the RS-232 serial port

TERM your computer keyboard and video display

T1 a terminal port using the standard RS-232
port

T2 a terminal using the optional RS-232
communications pak

T3 a terminal using the optional RS-232
communications pak

M1 a modem using an optional 300 baud modem
pak

M2 a modem using an optional 300 baud modem
pak

w a generic window descriptor

w1 window device Number 1

2-12

The OS-9 File System / 2

w2
W3
W4
W5
W6
W7

window device Number 2
window device Number 3
window device Number 4
window device Number 5
window device Number 6
window device Number 7

Although 0S-9 and your computer can access all these devices,
your original diskette does not configure it to do so. For informa-
tion on configuring your system, see Chapter 7 of Getting
Started With OS-9.

Because device names are at the root of the file system, you can
use them only as the first part of a pathlist. Always precede the
name of a device with a slash.

When you refer to a non-disk device, for example a terminal or
printer, use only the device name. /P, for instance, is the full
allowable pathlist for a printer.

Note: An /O device name is actually the name of an 0S-9
device descriptor that you precede with a slash (/). OS-9
automatically loads device descriptors during the OS-9 boot
sequence. You can add or delete other device descriptors
while the system is running or add device descriptors to the
bootfile using CONFIG.

2-13

Chapter 3

Advanced Features of the Shell

This chapter discusses the advanced capabilities of the shell. In
addition to basic command line processing, the shell facilitates:

e Input/output redirection, including filters
® Memory allocation

e Multitasking (concurrent execution)

e Procedure file execution

® Built-in commands

You can use these advanced capabilities in many combinations.
Following are several examples. Study the basic rules, use your
imagination, and explore.

More About Command Line Processing

The shell is a program that reads and processes command lines,
one at a time, from the computer’s input device (usually your
keyboard). It parses (scans) each line to identify and process any
of the following parts that might be present:

® A program, procedure file, or built-in command
® Parameters to be passed to the program
e Execution modifiers to be processed by the shell

For some commands, only the keyword (the program, procedure
file, or command name) must be present. Other commands have
required or optional parameters. As well, a command line can
include modifiers that influence the operation of the command.
0S-9 features that affect command execution are:

Execution Let you increase the amount of random access

Modifiers memory (RAM) available for a command. Also
lets you redirect input to a process, output from
a process, or both.

Command Let you enter more than one command on a line,

Separators perform concurrent execution of commands, or
connect the input or output of one command to
another command.

3-1

0S-9 Commands Reference

Command Lets you group all the commands that you want
Grouping affected by command modifiers or separators.

Note: The next section, “Command Modifiers,” provides
details on these features.

Once the shell identifies the keyword, it processes any modifiers.
It then assumes the remaining text consists of parameters,
which it passes to the program being called.

When the shell receives a built-in command, it immediately exe-
cutes it. If it receives a command that is not built in, it searches
for the appropriate program and then runs it as a new process.
The keyword must be the first entry in any line.

While the program is running, the shell deactivates itself. At the
termination of the program, the shell reactivates and accepts the
next input. This cycle continues until the shell detects an end-of-
file in the input path. It then terminates its own execution. You
can input an end of file from the keyboard by pressing

(SHIFT J(BREAK).

Following is a sample shell command line that calls the
assembler.,

In this example:

ASM is the keyword.

sourcefile, 1, and -o are the
parameters passed to
ASM.

>/P is a modifier that
redirects the output (the
listing) to the system’s
printer.

#12k is a modifier that
asks the system to assign
12K bytes of memory
instead of a smaller default
\V amount

\
o IR

asm sourcefile 1 -o >/p #12k

3-2

Advanced Features of the Shell / 3

Command Modifiers

Add command modifiers to a command line to change the way in
which the command functions. Modifiers let you tailor OS-9 com-
mands to your specifications. Type them in a command line after
the keyword and either before or after other parameters you
might be using.

The shell processes command modifiers before it executes a pro-
gram. If it detects an error in any of the modifiers, it stops exe-
cution and reports the error.

The shell strips command modifiers from the part(s) of the com-
mand line passed to the program as parameters. Therefore, you
cannot use the characters reserved as modifiers (# ;! < > &)
inside other parameters.

Execution Modifiers

Execution modifiers alter the amount of memory commands have
available, or they redirect command input or output.

Alternate Memory Size Modifier. When the shell invokes a
command program, it allocates the minimum amount of working
RAM (random access memory) specified in the program’s module
header.

Note: All executable programs include a module header
which holds the program’s name, size, memory require-
ments, and other information. For information on viewing
the contents of a module header, see the IDENT command.

You might want to increase a command’s default memory size.
You can assign memory either in 256-byte pages or in 1024-byte
increments. To add memory in pages, use the modifier #n, where
n is the number of pages. To add memory in 1024-byte incre-
ments, use the modifier #nK, where n is the number of 1024-
byte increments.

The following two examples have identical results:

copy #8 filet file2 (8 x 256 = 2048 bytes)
copy #2K filel file?2 (2 x 1024 = 2048 bytes)

3-3

0S8-9 Commands Reference

I/0 Redirection Modifiers. Input/output redirection modifiers
reroute a program’s I/O from the standard path to alternate files
or devices.

One of 0S-9’s advantages is that its programs use standard I/O
paths rather than individual, specific file, or device names. You
can easily redirect the /O to any file or device without altering
the program itself.

Programs that normally receive input from a terminal or send
output to a terminal use one or more of these three standard I/O
paths:

e Standard input path—Routes data from the terminal’s
keyboard to programs. The standard input path is Path
Number 0.

Use the less-than symbol (<) to redirect data to this
path.

e Standard output path—Routes data from programs to
the terminal’s display. The standard output path is Path
Number 1.

Use the greater-than symbol (>) to redirect data from
this path.

® Standard error output path—Routes routine status
messages (prompts and errors) to the terminal’s display.
(The name error output path is somewhat misleading,
since many kinds of messages in addition to error mes-
sages travel the path.) The standard error path is Path
Number 2.

Use two greater-than symbols (>>) to redirect data
from this path.

When you use a redirection modifier in a command line, follow it
immediately with a pathlist for the substitute device. For exam-
ple, you can use LIST to redirect the contents of a file called
Correspondence from the terminal to the printer, by typing:

list correspondence >/p [ENTER

The shell automatically creates, opens, and closes files referenced
by redirection modifiers as needed. The system immediately
restores normal I/O paths at the completion of any com-
mand using redirection modifiers.

3-4

Advanced Features of the Shell / 3

In the next example, the shell redirects DIR’s output—a list of
files in the MEMOS directory—to the file /D1/Savelisting:

dir /d@/memos >»/d1/savelisting [ENTER

You can now view the contents of Savelisting by typing:

list /d1/savelisting

0S-9 displays the file contents in a format similar to a directory
listing.

Directory of /d@/memos
CMDS SYS startup
0S9Boot

You can use one or more redirection modifiers before the pro-
gram’s parameters, after the program’s parameters, or both.
However, use each modifier only once in a command.

The following example shows how you can use all of the redirec-
tion modifiers together to start BASIC09 on a device window and
redirect all input and output to it:

basicB@9 <>>>/w1 [ENTER

When you redirect multiple paths, you must use the redirection
symbols in the proper order as shown here:

Legal Illegal
<> /wl >< (fwl
<>> /wl >>< fwl
>>> /wl >>< /fwl

Command Separators. You can include more than one com-
mand on a command line by using command separators. Com-
mand separators cause multiple commands to execute either
sequentially or concurrently, depending on the separator you
use.

Sequential execution means that one program must complete its
function and terminate before the shell lets the next program
execute. Concurrent execution means that two or more programs
begin execution and run simultaneously.

3-5

0S-9 Commands Reference

Sequential Execution Using the Semicolon. Using a semi-
colon between commands on one line causes them to execute
sequentially. For instance:

copy myfile /d1/newfile; dir)/p

This command causes the shell to: (1) execute the COPY com-
mand, (2) enter a waiting state until COPY terminates, then
awake, and (3) execute DIR.

If an error occurs in any program, the shell does not execute
subsequent commands, regardless of the state of the SHELL
command’s X (stop on error) option.

Here are two more examples of commands using the semicolon:

copy oldfile newfile; del oldfile; list newfile

dir /d1/myfile; list temp >/p; del ternp

Commands separated by semicolons are in fact separate and
equal child processes of the shell.

Note: When one process creates another process, 0S-9 calls
the creator the parent process and the created process the
child process. The child can become a parent by creating
yet another process.

Concurrent Execution Using the Ampersand. You can use
the ampersand (&) to cause multiple commands to run at the
same time. Each command you specify runs as a separate child
process of the shell. That is, for each process, the shell creates a
separate shell to handle the operation. When the process is com-
plete, the child shell terminates, or dies.

While more than one process is running, 0OS-9 divides execution
time equally among the processes.

The number of programs that can run at the same time varies.
It depends on the amount of free memory in the system and the
memory requirements of the programs being executed.

An example of a simple command line using the & separator is:

dir >/p& [ENTER

Advanced Features of the Shell / 3

The shell begins to run DIR, sending output to the printer. At
the same time it displays both the number of the forked process
(DIR) and a new prompt, like this:

4087
0S9:

To fork a process means to create a process as a branch of
another process—a subroutine.

After using the ampersand to fork a background process, you
can then enter another command, which the shell executes while
output from your original command continues to go to the
printer. This means you don’t waste time waiting for OS-9 to fin-
ish a task. At times, the keyboard might not seem to respond to
your typing, because characters do not appear on the screen.
However, OS-9 stores the characters in the keyboard buffer and
displays them as soon as the shell can accept input again.

If you have several processes running simultaneously and want
information about them, use the PROCS command.

Combining Sequential and Concurrent Executions. You can,
if you want, use both the concurrent and sequential command
separators in one command line. For example:

dir >/p& list filelé copy filel file2; del temp

Because the & modifier joins the DIR, LIST, and COPY com-
mands, these commands run concurrently. But, because a semi-
colon precedes the DEL command, DEL does not run until the
other commands terminate.

Using Pipes: The Exclamation Mark. You can use the excla-
mation mark (!) to construct pipelines for OS-9 commands. Pipe-
lines consist of two or more concurrently executing programs
with standard input paths, and standard output paths or both,
connected to each other with pipes.

Pipes are the primary means of transferring data from process
to process. They are vital to interprocess communications. Pipes
are first-in, first-out buffers, or holding areas for data.

3-7

0S-9 Commands Reference

The shell automatically buffers and synchronizes I/O transfers
using pipes. A single pipe can direct data to several destinations
or readers, and can receive data from several sources, or writers
on a first-come, first-serve basis. An end-of-file occurs if a pro-
gram attempts to read from a pipe when writers are not avail-
able to send data. Conversely, a write error occurs if a program
attempts to write to a pipe when readers are not available.

Pipelines are created by the shell when it processes an input line
with one or more pipe separators (!). For each pipe separator, the
shell directs the standard output of the program on the left of
the pipe separator to the standard input of the program on the
right of the separator. The shell creates an individual pipe for
each pipe separator in the command line. For example:

update <master_file ! sort ! write_report

>/p (ETER)

This command redirects input from a path called Master_file to
a file named Update. The output of Update becomes the input for
the program Sort. The output of Sort, in turn, becomes the input
for the program Write_report. Finally, the command redirects
output from Write_report to the printer. The shell executes all
programs in a pipeline concurrently. The pipes synchronize the
programs so the output of one never gets ahead of the input
request of the next program. This synchronization means that
data cannot flow through a pipeline any faster than the slowest
program can process it.

Raw Disk Input/Output. OS-9 has a special pathlist function
to perform raw physical input/output operations on a disk. The
pathlist consists of the device name, immediately followed by the
“@” character.

This command causes OS-9 to treat the entire diskette in Drive
/DO as one logical file. The operation reads each byte of each sec-
tor, without regard to actual file structure. Commands such as
DIR, ATTR, and MFREE use this feature to access sectors of
disks that are not part of file data areas, such as header sectors.

Warning: When using this raw access, use extreme cau-
tion. Because you can write on any sector, you can easily
damage file or directory structures and lose data. Using @
defeats any file security and record locking systems.

3-8

Advanced Features of the Shell / 3

To convert a byte address to a logical sector number when using
@, multiply the sector number by 256. Conversely, the logical
sector number of a byte address is the byte address, modulo 256.

Command Grouping

You can enclose sections of command lines in parentheses to per-
mit modifiers and separators to affect an entire set of programs.
The shell processes the material in the parentheses by recur-
sively calling itself to execute the enclosed command list.

For example, if you want to send directory listings of the ROOT
directory of Drive /D0 and then the ROOT directory of Drive /D1
to the printer, you can type either:

dir /d@ >/p; dir /d1)/p

or:

C(dir /d@; dir /d1) >/p [ENTER]

The results are identical except that the system keeps the printer
continuously in the second example. In the first example, another
user could steal the printer between DIR commands.

You can group commands to cause programs to execute both
sequentially and concurrently with respect to the shell that ini-
tiated them. For instance:

(del filet; del file2; del file3)&

Here, the shell does the overall deleting process concurrently
with whatever else you tell it to do, because you're using &.
However, the shell deletes the three specified files sequentially
because you’re using semicolons within the parentheses.

Suppose you have a program named Makeuppercase that con-
verts lowercase characters to uppercase and a program named
Transmit that sends data to another computer, you can use a
command line like this:

(dir cmds; dir sys) ! makeuppercase ! transmit

The shell processes the output of the first DIR command and
then the second. It sends all the DIR output to Makeuppercase,
and Transmit sends all the output to another computer.

0S-9 Commands Reference

Shell Procedure Files

The shell is a re-entrant program. This means it can be simulta-
neously executed by more than one process. Like most other OS-
9 programs, the shell uses standard I/O paths for routine input
and output.

0S-9’s shell offers you a special feature, a time and effort saver
called a procedure file. A procedure file is a related group of
commands, and when you run the file, you execute all the
commands.

Other names for procedure file processing are batch and back-
ground processing. A procedure file becomes new input for the
shell. By running a procedure file, you're using the shell to cre-
ate a new shell, a subshell that accepts and carries out the com-
mands in the procedure file.

Note: If you plan to use the same command sequences
repeatedly, create a procedure file to do the job by using
BUILD.

When you enter any command line, the shell looks for the speci-
fied program in memory or in the execution directory. If it can-
not find the program there, it searches the data directory for a
file with the specified name. If it finds the file, the shell auto-
matically interprets it as a procedure file, and creates the sub-
shell, which executes the commands listed in the procedure file.

Procedure files can also let the computer execute a lengthy
series of programs while it is unattended, or even while it is run-
ning other programs.

There are two ways to run a procedure file. For instance, to exe-
cute a procedure file called Mailsequence, type either:

shell mailsequence (ENTER

or

mailsequence [ENTER

Both commands do the same thing: create a subshell to run the
commands you’ve built into your Mailsequence procedure file.

To run a procedure file in a concurrent mode, use the ampersand
(&) modifier. As long as memory is available, you can run any
number of files concurrently.

3-10

Advanced Features of the Shell | 3

You can even build procedure files to sequentially or concurrently
execute other procedure files.

Note: If you use procedure files to run programs you don’t
intend to monitor closely, you can redirect standard output
and standard error output to another file. Later you can
review the file’s contents. Qutput redirection eliminates the
annoying output of shell messages on your terminal at ran-
dom times.

Built-in Shell Commands and Options

The shell has a number of built-in commands and options.
Whenever you use one of these functions, the shell executes it
without loading it or creating a new process to execute it.

You can execute built-in functions alone, use them at the begin-
ning of a command line, or use them following any program sep-
arator. You can separate adjacent built-in commands by spaces
or commas.

The built-in commands and their functions are:

CHD pathlist Changes the data directory to the directory
specified by the pathlist.

CHX pathlist Changes the execution directory to the direc-
tory specified by the pathlist.

EX modname Directly executes the module named. This
function deletes the shell process so that it
ceases to exist and executes the new module in
its place. Use EX to replace the executing
shell with the program specified by modname.
You can also use EX without a module name
to eliminate the current shell, for example, a
shell you initialized in a window (see below).

i=devname Makes a shell an immortal shell. This means
that when the shell ends, due to an EQF, OS-9
restarts it. Each time the shell restarts, it has
the same data and execution directories. To
kill an immortal shell, use EX to “chain” to a
null process, such as:

e x (ERTER]

3-11

0S-9 Commands Reference

* text

kill procID

setpr proclID
number
x

-X

P

Waits for any process to terminate.

Allows you to make a comment. The shell does
not process text following the asterisk. Use
this function to label operations in a procedure
file.

Stops the specified process.

Changes the specified process’s priority
number.

Causes the shell to cease operation whenever
an error occurs (a system default).

Causes the shell to continue operation when
an error occurs. Use this function in procedure
files to enable the shell to continue to other
commands if one command process fails
because of a system error.

Turns the shell prompt and messages on (a
system default).

Inhibits the shell prompt and messages. Use
this option in procedure files to disable screen
display. Be sure to turn the prompt and mes-
sage function back on afterward.

Makes the shell copy all input lines to output.
Use this function with a procedure file to
cause command lines to display as they
execute.

Sets the system so that it does not copy input
lines to output (a system default).

Running Compiled Intermediate
Code Programs
Before the shell executes a program, it checks the program mod-

ule’s language type. If it is not 6809 machine language, the shell
calls the appropriate run-time system for that module.

3-12

Advanced Features of the Shell / 3

For instance, if you have BASIC09 on your OS-9 system and
want to run a BASIC09 I-code module called Adventure, you can

type:
basic#9 adventure
or:

adventure

or:

runb adventure [ENTER

In the last example, the shell uses the RUNB module to inter-
pret the Adventure I-code module.

3-13

Chapter 4

Multiprogramming and
Memory Management

One of 0S-9’s most valuable capabilities is multiprogramming—
sometimes called timesharing or multitasking. This feature lets
your computer run more than one process at the same time.
Multiprogramming can be a time saving advantage in many sit-
uations. For example, you can edit one program while the system
prints another. Or you can use your Color Computer to control a
household alarm system, lighting, and heating and at the same
time use it for routine work or entertainment.

0S-9 uses multiprogramming regularly for internal functions.
You can use it by putting an ampersand at the end of a com-
mand line. Doing this causes the shell to run your command as
a background, or concurrent, task.

To run several processes simultaneously, OS-9 must coordinate
its input/output system and CPU time and allocate its memory
as needed. This chapter gives you some basic information about
how OS-9 manages its resources to optimize system efficiency
and make efficient multiprogramming a reality.

Processor Time Allocation
and Timeslicing

CPU time is the most precious resource of a computer. If the
CPU is busy with one task it cannot perform another. For exam-
ple, many processes must wait for you to enter information from
the terminal. While the process is waiting, your computer’s CPU
must also wait. Your computer is limited by your typing speed.

On many systems there is no way around such a bottle neck.
However, OS-9 is more efficient. It assigns CPU time to pro-
cesses only as they need it.

To do this, OS-9 uses timeslicing. Timeslicing, as described in
the following paragraphs, lets all active processes share CPU
time.

A real-time clock interrupts the Color Computer’s CPU 60 times
each second. The interruption points are called ticks, and the
spaces between ticks are called timeslices.

4-1

0S-9 Commands Reference

08S-9 allocates timeslices to each process. At any tick it can sus-
pend execution of one process and begin execution of another.
This starting and stopping of processes does not affect their
execution.

How often OS-9 gives a process timeslices depends on the pro-
cess’s priority relative to the priority of other active processes.
You can access priority using a decimal number from 0 through
255, where 255 is the highest priority.

0S-9 automatically gives the shell a priority of 128. Because
child processes inherit their parents’ priorities, the shell’s child
processes also have priorities of 128. You can find a process’s
priority with the PROCS command, and can change it using the
SETPR command.

You cannot compute the exact percentage of CPU time assigned
to any particular process, because there are some dynamic vari-
ables involved, such as the time the process spends waiting for
I/O devices. But you can approximate the percentage by dividing
the process’s priority by the sum of the priority of all active
processes:

process’s CPU share = priority of the process

sum of the priorities
of all active processes.

Note: Timeslicing happens so quickly that it looks as if all
processes execute simultaneously and continuously. If, how-
ever, the computer becomes overloaded with processing, you
might notice a delay in response to input from the termi-
nal. Or, you might notice that a procedure program takes
longer than usual to run.

Process States

The CPU time allocation system automatically assigns each pro-
cess one of three states that describes its current status. Process
states are important for coordinating process execution. A pro-
cess can have only one state at any instant, although state
changes can be frequent. The states are:

® Active—Applies to processes currently able to work—
that is, those not waiting for input or for anything else.
These are the only processes assigned CPU time.

4-2

Multiprogramming and Memory Management | 4

® Waiting—Applies to processes that the system suspends
until another process terminates. This state allows coor-
dination of sequential process execution. The shell, for
example, is in the waiting state during the execution of a
command it has initiated.

® Sleeping—Applies to a process suspending itself for a
specified time, or until receipt of a signal. (Signals are
internal messages that coordinate concurrent processes.)
This is the typical state of processes waiting for input/
output operations.

The shell does not assign CPU time to sleeping or wait-
ing processes. It waits until they become active. The
PROCS command gives information about process states.

Creation of Processes

If a parent process creates more than one child process, the chil-
dren are called siblings with respect to each other. If you exam-
ine the parent/child relationship of all processes in the system, a
hierarchical lineage becomes evident. In fact, this hierarchy
resembles a family tree. (The family concept makes it easy to
describe relationships between processes.) OS-9 literature uses
the family concept extensively in describing O0S-9’s multipro-
gramming functions.)

0S-9’s fork function automatically performs the sequence of oper-
ations required to create a new process and initially allocate
resources to it.

If for any reason, fork cannot perform any part of the sequence,
the system stops and fork sends its parent an error code. The
most frequent reason for failure is the unavailability of required
resources (especially memory), or the inability of the system to
find the specified program.

A process can create many processes, subject only to the availa-
bility of unassigned memory. When the parent issues a fork
request to OS-9, it must specify certain information:

® A primary module—The name of the program to be
executed by the new process. The program can already
be present in memory, or OS-9 can load it from a disk
file with the same name.

4-3

0S-9 Commands Reference

e Parameters—Data to be passed to and used by the new

process. OS-9 copies this data to part of the child pro-
cess’s memory area. (Parameters frequently pass file-
names, initialization values, and other information.)

The new process inherits some of its parent’s properties,
including:

® A user number—For use by the file security system to

identify all processes belonging to a specific user. (This
is not the same as the process ID, which identifies a pro-
cess.) 0S-9 obtains this number from the system pass-
word file when a user logs on. The system manager is
always User 0.

Standard input and output paths—The three paths:
input, output, and error, used for routine input and out-
put. Most paths can be shared simultaneously by two or
more processes.

Current directories—The data directory and the execu-
tion directory.

® Process priority.

As part of the fork operation, OS-9 automatically assigns:

® A process ID, a number in the range 1 to 255 that iden-

tifies the process. Each process has a unique number.

Enough memory to support the new process. In OS-9, all
processes share a memory address. OS-9 allocates a data
area for the process’s parameters and variables and a
stack for each process’s use. It needs a second memory
area in which to load the process if it does not reside in
memory.

4-4

Multiprogramming and Memory Management | 4

In summary, each new process has:
® A primary module
® Parameters
® A user number

Standard I/O paths

Current directories

A priority
An ID number

Memory

Basic Memory Management Functions

Memory management is an important OS-9 function. 0S-9 auto-
matically allocates all system memory to itself and to processes,
and also keeps track of the logical contents of memory (the pro-
gram modules that are resident in memory at any given time).
The result is that you seldom need to bother with the actual
memory addresses of programs or data.

The operating system and each process have individual address
spaces. Each address space has the potential to contain up to 64
kilobytes of RAM memory. Using memory management unit
(MMU) hardware, OS-9 moves memory into and out of each
address space as required for system operations.

Although each unit is subject to the 64K maximum program
size, you can run several processes simultaneously and utilize
more than 64K overall. The system logically assigns RAM mem-
ory in 256-byte pages, but the MMU’s hardware block size is
8K. Each of these physical blocks has an extended address that
is called a block number. For example, the 8K physical block
residing at address $3C000 to $3DFFF is Block Number $3C.

Within an address space, OS-9 assigns memory from higher
addresses downward for program modules and from lower
addresses upward for data areas. The following chart shows this
organization:

4-5

0S-9 Commands Reference

highest address

program modules
(RAM or ROM)

unused space
(RAM or empty)

data areas
(RAM)

lowest address

Loading Program Modules into Memory

When performing a fork operation, OS-9 first attempts to locate
the requested program module by searching the module direc-
tory, which has the address of every module present in memory.
The 6809 instruction set supports a type of program called re-
entrant code, which means that processes can share the code of a
program simultaneously.

Since almost all 0S-9 family software is re-entrant, the system
can make the most efficient use of memory. For example, suppose
that OS-9 receives a request (from a process) to run BASIC09
(which requires 22 kilobytes of memory), but has already loaded
it into memory for another process. Because the software is re-
entrant, OS-9 does not have to load it again and use another
22K of memory. Instead the new process shares the original
BASIC09 by including the location of the BASIC09 module in its
memory map.

0S-9 automatically keeps track of how many processes are using
each program module, and deletes the module when all processes
using it terminate.

If the requested program does not yet reside in memory, OS-9
uses its name as a pathlist (filename) and attempts to load the
program from disk.

4-6

Multiprogramming and Memory Management | 4

Every program module has a module header describing the pro-
gram and its memory requirements. OS-9 uses the header to
determine how much memory the process needs for variable stor-
age. The module header includes other information about its pro-
gram, and is an essential part of the OS-9 machine language
operation.

You can also place commands or programs into memory using
the LOAD command. Doing so makes the program available to
08-9 at any time, without having to be loaded from disk. A pro-
gram is physically loaded into memory only if it does not already
reside there.

LOAD causes 0S-9 to copy the requested module from a file into
memory, verifying the CRC (Cyclic Redundancy Check). If the
module is not already in the module directory, OS-9 adds it.

If the program module is already in memory, the load process
still begins in the same way. But, when OS-9 attempts to add
the module to the module directory and notices that the module
is already there, it merely increments the known module’s link
count (the number of processes using the module).

When 0S-9 loads multiple modules in a single file, it associates
them logically in the memory management system. You cannot
deallocate any of the group modules until all modules have zero
link counts. Similarly, linking to one module within a group
causes all other modules in the group to be mapped into the pro-
cess’s address space.

Deleting Modules From Memory

UNLINK is the opposite of LOAD. It decreases a program mod-
ule’s link count by one. When the count becomes zero (presum-
ing that the module is no longer used by any process), OS-9
deletes the module, deallocates its memory, and removes its
name from the module directory.

Warning: Never use the UNLINK command on a program
or a module not previously installed using LOAD. Unlink-
ing a module you did not LOAD (or LINK) might perma-
nently delete it when the program terminates. The shell
automatically unlinks programs loaded by fork.

4-7

0S-9 Commands Reference

Suppose you plan to use the COPY command ten times in a row.
Normally, the shell must load COPY each time you enter the
command. But if you load the COPY module into memory and
then enter your string of commands, you don’t have to wait for
the system to load and unload COPY repeatedly. When you fin-
ish using COPY, use UNLINK to unlock the module from mem-
ory. The sequence looks like this:

load copy [ENTER]
copy filel filela [EN

copy file2 file2a [ENTE
copy file3 file3a [ENTE
copy filed4 fileda [ENTE
copy file5 fileSa
copy fileb fileba
copy file7 file7a [ENTE
copy file8 file8a [ENTE
copy file9 file9a [ENTE
copy file18 filel0a [EN

unlink copy

It is important to use UNLINK when you no longer need the
program. Otherwise, the program continues to occupy memory
that might be used for other purposes.

m m
5
m

=

Z||=

myim(m|(m m
Z||=
Sl= 5
mj|m

|| =|| =] =||=||=|{=|{| ==

=3
m
-

Warning: Be careful not to unlink modules that are in use,
because 0S-9 deallocates the memory used by the module
and destroys its contents. All programs using the unlinked
module crash.

Loading Multiple Programs

Because all OS-9 program modules are position-independent, you
can have more than one program in memory at the same time.
Since position-independent code (PIC) programs don’t have to be
loaded into specific, predetermined memory addresses to work
correctly, you can load them at different memory addresses at
different times.

PIC programs require special types of machine language
instructions that few computers have. The ability of the 6809
microprocessor to use PIC programs is a powerful feature and
one of the greatest aids toward multiprogramming. You can load

any number of program modules until available system memory
is full.

4-8

Multiprogramming and Memory Management / 4

08-9 automatically loads each program module at non-overlap-
ping addresses. (Most operating systems write over the previous
program’s memory when loading a new program.) 0S-9’s tech-
nique means that you do not need to be concerned with absolute
memory addresses.

49

Chapter 5

Useful System Information
and Functions

The OS-9 system must load many parts of the operating system
during startup and system operation. Therefore, on a floppy disk
system, you must keep the system diskette in Drive /DO.

Two files used during the system startup operation, OS9Boot
and Startup, must remain in the system diskette’s ROOT direc-
tory. Other files on the system diskette are organized into two
directories: CMDS (commands) and SYS (other system files). You
can also create other files and directories on the system diskette.
0S-9 always creates the initial data directory, or ROOT direc-
tory, when you format a diskette.

File Managers, Device Drivers, and
Descriptors

The bootstrap (instructions that initialize 0S-9) loads a file
called OS9Boot into RAM memory at startup. This file contains
file managers, device drivers and descriptors, and any other mod-

ules that permanently reside in memory. For instance, the
0OS9Boot file might contain these modules:

0S9p2 0S-9 Kernel

INIT System Initialization Table

IOMan 0S-9 input/output manager

RBF Random block (disk) file manager

SCF Sequential character (terminal) file manager
PipeMan Pipeline file manager

Piper Pipeline driver

Pipe Pipeline device descriptor

. CC310 Keyboard/video graphics device driver
VDGINT 32x16 screen subroutines
GRFINT Windowing subroutines
PRINTER Printer device driver
SIO RS-232 serial port device driver
CC3Disk Disk driver
DO, D1 Disk device descriptor
TERM Terminal device descriptor

T1 RS-232 serial port device descriptor
P Printer (serial) device descriptor
P1 Printer (serial) device descriptor

5-1

0S-9 Commands Reference

Clock Real-time clock module

CC3GO System startup process

W - W7 Window device descriptors W, W1, W2, W3,
W4, W5, W6, W7

0S-9 stores the modules loaded during the system startup with
a minimum of fragmentation. To include additional modules, cre-
ate new bootstrap files using the OS9GEN command or the
CONFIG program supplied with OS-9. You cannot unlink a mod-
ule loaded as part of the bootstrap.

After booting, when the system switches the boot block into its
own address space, any non-system files included in the boot-
strap decrease the memory available in the system mode. It is
best to place optional modules in a separate file and load them
as part of the system startup procedure. One example is the
shell. Never include the shell as part of a system boot file in
08S-9 Level Two systems.

The Sys Directory

The OS-9 SYS directory contains a number of important files:
® Errmsg is the error message file.
® Helpmsg contains syntax and usage information.

e Stdfonts contains the standard software fonts for use on
graphic windows.

® Stdpats__2, Stdpats__4, and Stdpats__16 contain screen
background and fill patterns for 2, 4, and 16 color graph-
ics screens, respectively.

® Stdptrs contains graphic pointer images for use with a
mouse.

These files, and the SYS directory itself, are not required to boot
0S-9, but you do need them if you plan to use the ERROR or
HELP commands, or if you intend to use text, or mouse pointers
on graphic windows. You can also add other system-wide files of
a similar nature.

5-2

Useful System Information and Functions / 5

The Startup File

The Startup file (/D0/startup) is a shell procedure file that OS-9
automatically processes as part of the system boot. You can
include any legal shell command line in the Startup file. Many
people include SETIME to start the system clock. If this file is
not present, the system starts correctly, but the system time is
not accurate.

The CMDS Directory

The directory /DO/CMDS is the system-wide command directory
normally shared by all users as their working execution direc-
tory. The shell resides in the CMDS directory. The system start-
up process CC3go makes CMDS the initial execution directory.
You can add your own programs to the CMDS directory and have
them execute in the same manner as the original system
commands.

Making New System Diskettes

Getting Started With OS-9 told you how to create new system
diskettes using the CONFIG utility. There are other ways to cre-
ate system diskettes and either add or subtract capabilities. The
following information provides guidelines on how to do this. For
more detailed instructions see the descriptions of the CONFIG,
OS9GEN, and COBBLER commands in this manual.

Before starting any of the following procedures, you need a
blank, formatted diskette on which to place your system files.
Then, choose one of the following methods to update your
system:

® Use the OS9GEN command to add modules to the exist-
ing OS9Boot file.

® Use CONFIG to select the modules you want to include
in the OS9Boot file.

5-3

0S-9 Commands Reference

If you choose to use CONFIG, the utility creates a complete sys-
tem during the process. If you use OS9GEN, follow these steps:

1. Create the OS9Boot file using OS9GEN.
2. Create or copy the Startup file.

3. Copy the CMDS and SYS directories and the files they
contain.

You can perform these steps manually or do them automatically
by using one of these methods:

® Creating and using a shell procedure file

® Using a shell procedure file generated by DSAVE

Technical Information for the RS-232 Port

You can operate the RS-232 port or the printer at all standard
baud rates from 110 baud to 19200 baud. (The default rate is
9600 baud for /t2, and 600 baud for /p.) The default format used
is 8 data bits, no parity, and 1 stop bit.

Use the XMODE command to set the port’s baud rate, parity,
word length, stop bits, end-of-line delay, auto line feed, and so
forth. To examine the printer’s current settings, type:

xmode /p [ENTER

Then, if you want to make changes, use XMODE with informa-
tion from the following chart. Select the parameter you want
from the left column of each chart, and then select the corre-
sponding number from the “Value to Use” column and write it
down. After you select the proper value from each chart, add
them together to obtain a final value for XMODE. All values
must be hexadecimal.

5-4

Useful System Information and Functions / 5

Stop Bits Word Length Baud Rate
Number of Value Word Value Bits Per Value
Stop Bits to Use Length |to Use Second to Use
1 Stop Bit 0 7 Bits 20 110 BPS 0

300 BPS 1

2 Stop Bits 80 8 Bits 0 600 BPS 2
1200 BPS 3

2400 BPS 4

4800 BPS 5

9600 BPS 6

19200 BPS 7

For instance, to set the printer parameters to one stop bit, a
word length of seven bits, and a baud rate of 600, select 0 from
the Stop Bits chart, 20 from the Word Length chart, and 2 from
the Baud Rate chart. Add the values together:

0+ 20 +2 =22

The command to set the printer port for this configuration is:

xmode /p baud=22 (ENTER]

When you use XMODE to set baud, parity, and stop bit values,
you are actually setting the bits of a special byte to certain val-
ues. 0S-9 uses these values to determine how to handle subse-
quent input/output operations. A bit is a binary digit and can be
either 1 or 0. A byte consists of eight bits and can represent a
value between 0 and 255.

The following chart shows the bits that control baud rate, word
length, and stop bits for input/output operations on a specified
device.

5-5

0S-9 Commands Reference

Bit 7

6 5
P

4 3 210

1 Baud rate

Reserved
Word length
Stop bits

If the stop bit value = 0, stop bits = 1

If the stop bit value = 1, stop bits = 2

If the word length value = 00, word length = 8 bits

If the word length value = 01, word length = 7 bits

If the baud rate value = 0, baud rate = 110

If the baud rate value = 1, baud rate = 300

If the baud rate value = 2, baud rate = 600

If the baud rate value = 3, baud rate = 1200

If the baud rate value = 4, baud rate = 2400

If the baud rate value = 5, baud rate = 4800

If the baud rate value = 6, baud rate = 9600

If the baud rate value = 7, baud rate = 19200

(/t2 ACIAPAK only)
If the baud rate value = 7, baud rate = 32000

(/t1 SIO only)

Use XMODE TYPE=value to set parity, MDM (modem) kill, and
the not ready delay. Value is a hexadecimal value you calculate

from the following chart:

Parity MDM Kill Not Ready Delay

Type of Value Kill Value Not Ready Value
Parity to Use Switch |to Use Delay to Use
None 0 On 10 0 seconds 0
Mark A0 Off 0 1 second 1
Space E0 2 seconds 2
Even 60 3 seconds 3
Odd 20 v \
\ \/
\ \/
\/
15 seconds F

5-6

Useful System Information and Functions / 5

Select a value from each chart, and add them together to get a
final TYPE value. For instance, to select even parity, MDM kill
off, and a not ready delay of 10 seconds, select these values and
add them:

60 + 0 + A = 6A
To set the new values, type:

xmode /p type=6a

The following chart shows the bits that control parity, the
modem Kkill switch, and the not ready delay.

Bit 765 43210

J 1

L > Not ready delay
(printer only)

MDM kill switch (ACIAPAK/
MODPAK devices)

L—> Parity

If the parity value is 000, then parity = none
If the parity value is 101, then parity = MARK, no check
If the parity value is 111, then parity = SPACE, no check

If the MDM kill switch value is 0, then DCD loss = no kill
If the MDM kill switch value is 1, then DCD loss = kill

The value of the not ready delay bits equals the number of
seconds delay.

For more information on setting other parameters, such as the
end-of-line delay (null count), see the XMODE command refer-
ence in Chapter 6.

5-7

Chapter 6

System Command Descriptions

This chapter contains alphabetical descriptions of the commands
supplied with OS-9. Ordinarily, you call the commands from the
shell, but you can also call them from most other programs in
the 0S-9 family—including BASIC09 and the Macro Text Editor.

Warning: Do not attempt to use OS-9 Level One commands
with the OS-9 Level Two system or to use Level Two com-
mands with the Level One system.

Organization of Entries
Each command entry includes:
® The name of the command

® A syntax line, which shows you the format and spelling
to use when you type the command

® A brief definition of what the command does

e Information about any options available with the
command

® Notes about the command and how to use it

e One or more examples of command use

Command Syntax Notations

0S-9 requires that you enter the various parts of a command in
the correct order and in the correct format. An example of the
proper syntax follows the command name.

The syntax line always begins with the name of the command.
Occasionally, that’s all you need (except for pressing (ENTER)). But
other commands either require, or can accept, parameters (vari-
ables that give instructions to 0S-9).

Some syntaxes include variables (shown in italics) that you
replace with specific parameters. For instance, the BUILD com-
mand syntax is:

build filename (ENTER)

6-1

0S-9 Commands Reference

BUILD is the command name. You type it exactly as shown.
However, filename is a variable. Replace it with the actual name
you want to give to the file you are creating. If you want to cre-
ate a file named Myfile, type:

build myfile [ENTER
Pressing (ENTER) executes the command.
Common variables are:

arglist arglist (argument list) is similar to paramlist,
but it includes command names as well as
command parameters.

devname device name (/P, /TERM, /M1)

commandname command name

dirname directory name

filename file name

hex a hexadecimal number

hhimm/ss hour/minutes/seconds

modname name of a memory module

n a decimal number

number a numeric value

opts options

paramlist a list of parameters

pathlist a complete path to a directory or file

permission file permission abbreviations

proclD process ID number

text a string of characters

tickcount a numeric value representing system clock
ticks

value a numeric value

yy/mm/dd year/month/day

Systemm Command Descriptions | 6

[] Brackets indicate that the material within them is optional
and not necessary for the execution of the command.

. An ellipsis indicates that you can repeat the material imme-
diately preceding the ellipsis. For instance, [filename][...] means
that you can specify more than one filename to the command.
Following is the syntax for the DISPLAY command:

display hex [...]

This means you can include more than one hex number with
DISPLAY, such as:

display 54 48 49 53 20 49 53 20 41 28 53 45 43
52 45 54 20 4D 45 53 53 41 47 45 (ENTER)

Command syntaxes do not include the shell’s built-in options (for
instance I/O redirection) because the shell filters out its options
before it passes the command line to the program being called.

Command Summary
This section describes the format and use of OS-9 commands.

The following list is a summary of these commands:

ATTR Changes a file’s attributes

BACKUP.. ... Makes a copy of a diskette

BUILD....... Builds a text file

CHD......... Changes the working data directory

CHX Changes the working execution directory

CMP......... Compares files

COBBLER ... Makes an OS9Boot file

CONFIG Creates a system diskette to your specifications

COPY........ Copies data

DATE Displays the system date and (optionally) the
time

DCHECK Checks a disk file structure

DEINIZ Deinitializes a device previously initialized with
INIZ

DEL Deletes a file or files

DELDIR Deletes a directory’s files, then deletes the
directory

DIR.......... Displays the names of all files in a directory

DISPLAY..... Displays the characters represented by hexadeci-
mal values

DSAVE....... Generates a procedure file to copy files

6-3

0S-9 Commands Reference

ECHO Echoes text to the screen

EDIT Calls the 0OS-9 Macro Text Editor

ERROR Displays a description of the last error code

EX........... Causes the shell process to execute another
process

FORMAT Prepares a disk for data storage

FREE........ Displays the amount of free space on a disk

HELP........ Displays the syntax and use of commands

IDENT Displays 0S-9 module identification

INIZ Initializes and attaches devices

KILL Terminates a process

LINK Links a module into memory

LIST Lists the contents of disk data files

LOAD........ Loads a module into memory

MAKDIR Creates a directory

MDIR........ Displays the names of the modules in memory

MERGE...... Copies and combines files

MFREE...... Displays a list of free RAM

MODPATCH . . Makes changes to a module in memory
MONTYPE ... Establishes the type of monitor in use

OS9GEN Builds and links a bootstrap file

PROCS Displays the names of the current processes

PWD......... Displays the name of the current data directory

PXD......... Displays the name of the current execution
directory

RENAME Changes the name of a file or directory

SETIME Activates and sets the system clock

SETPR....... Sets a process’s priority

SHELL Creates a child shell to process one or more
commands

TMODE Changes the terminal’s operating mode

TUNEPORT Adjusts the loop delay for the baud rate of /P or
/T1 devices

UNLINK Unlinks memory modules

WCREATE . .. Creates a window

XMODE Displays or changes a device’s initialization
parameters

6-4

System Command Descriptions / 6

ATTR

Syntax: attr filename [permission]

Function: Lets you examine or change a file’s security
permissions.

Parameters:
filename The name of the file you want to examine or
change.
permission One or more of the following attribute options.
Options:

The file permission abbreviations you can use are:

-d Changes a file directory file to not a non-directory
file.

S Specifies that the file is not single-user and can serve
only one user at a time.

r Specifies that only the owner can read the file.

w Specifies that only the owner can write to (change)
the file.

e Specifies that only the owner can execute the file.

pr Specifies that the public (anyone) can read the file.
pw Specifies that the public (anyone) can write to the file.
pe Specifies that the public (anyone) can execute the file.

-a Tells ATTR not to display the attributes. Use this
option when you wish to change attributes without
displaying them.

6-5

0S-9 Commands Reference

Notes:
e To use ATTR, type the command name followed by the

name of the file you want to change. Next, type a list of the
permissions to turn on or off. Turn a permission on by typ-
ing its abbreviation or off by typing its abbreviation pre-
ceded by a minus sign. ATTR has no effect on permissions
you do not name.

If you do not specify any permissions, ATTR displays the
file’s current attributes.

You cannot change the attributes of a file you don’t own.
User 0 can change the attributes of any file in the system.

Use ATTR to change a directory into a file after deleting
all the directory’s files. You cannot change a file to a direc-
tory with ATTR. (See MAKDIR.)

Examples:

® To remove public read and write permission from a file

named Myfile, type:
attr myfile -pr -pw [ENTER]

® To give read, write, and execute permission to everyone for

the file Myfile, type:
attr myfile r w e pr pw pe [ENTER]

® To display the current permissions of a file named Datalog,

type:

attr datalog

System Command Descriptions / 6

BACKUP

Syntax: backup [optslldevnamellldevnameZ2]

Function: Copies all data from one disk to another.

Parameters:

devnamel
devname?2

opts

Options:

#nK

Notes:

The drive containing the disk files you want to
back up.

The drive containing the disk to which you
want to transfer the files.

One or more of the following options.

Cancels the backup if a read error occurs.

Lets you backup a diskette using only one
drive.

Tells BACKUP not to verify the data written
to the destination diskette.

Increases to n the amount of memory that
BACKUP can use. Increasing the amount of
memory assigned to BACKUP speeds the pro-
cedure. n can be either in pages of 256 bytes
or in kilobytes (1024 bytes). Include K to indi-
cate kilobytes.

® BACKUP performs a sector by sector copy, ignoring file
structures. In all cases, the devices specified must have the

same format

(size, density, and so forth) and the destina-

tion disk must not have defective sectors.

0§-9 Commands Reference

o If you omit both device names, the system assumes you are

copying from /D0 to /D1. If you omit only the second device
name, 0S-9 performs a single-drive backup on the specified
drive.

The following demonstrates a complete backup of /DO to
/D1. In the example, the diskette in Drive /D1 is a format-
ted diskette with the name MYDISK. Scratched, which
appears in one of the following messages, means erased.
You type:

backup (ENTER)

The screen display and your input are:

Ready to backup from /d® to /d1 ?:
MYDISK
is being scratched
o0K?: (¥)
Sectors copied: $8276
Verify pass
Sectors verified: $8276

Following is an example of a single-drive back up. BACKUP
reads a portion of the source diskette (the diskette you are
copying) into memory. It then prompts you to remove the
source diskette and put the destination diskette (the
diskette receiving the copy) into the drive.

After BACKUP writes to the destination diskette, remove
the destination diskette and put the source diskette back
into the drive. Continue swapping as prompted until
BACKUP copies the entire diskette.

Giving BACKUP as much memory as possible means you
have to make fewer diskette exchanges. If enough free mem-
ory is available, you can assign up to 56 kilobytes for the
backup operation. An Error 207 means that your computer
does not have the specified amount of memory free. To
assign 32 kilobytes to backup, type:

backup /d@ #32k

6-8

System Command Descriptions / 6

The screen display and your responses are as follows:

Ready to backup from /d@ to d@ ?:

Ready Destination, hit a key:
MYDISK

is being scratched

0K?:

Ready Source, hit a key:
Ready Destination, hit a key:
Ready Source, hit a key:
Ready Destination, hit a key:

|
v

Ready Destination, hit a key:
Sectors copied: $0276

Verify pass
Sectors verified: $0276

In this procedure, the dollar symbol (8) indicates hexadeci-
mal numbers. BACKUP copied 276 hexadecimal (or 630
decimal) sectors.

Examples:
® To back up the diskette in Drive /D2 to the diskette in
Drive /D3, type:

backup /d2 /d3

® To back up from Drive /DO to Drive /D1, without verifica-
tion, type:

backup -v (ENTER

6-9

0S-9 Commands Reference

BUILD

Syntax: build filename

Function: Builds a text file by copying input from the stan-
dard input device (the keyboard) into the file specified by
filename.

Parameters:

filename The name of the file you are creating.

Notes:

® BUILD creates a file, naming it filename. It then displays a
question mark (?) and waits for you to type a line. When
you type a line and press (ENTER), BUILD writes the line to
the disk.

® When you finish entering the lines for the new file, press
(ENTER], without any preceding text, to close the file and ter-
minate the operation.

o The following example demonstrates how to build a text file
named Newfile:

build newfile (ENTER

? THE POWERS OF THE 0S-9 (ENTER)
? OPERATING SYSTEM ARE TRULY (ENTER)

? FANTASTIC.
?

® To view the newly created file, type:

list newfile [ENTER

System Command Descriptions / 6

The screen displays:

THE POWERS OF THE 0S-9
OPERATING SYSTEM ARE TRULY
FANTASTIC.

Examples:

® To create a new file called Small_file and put into it what-
ever you type at the keyboard, type:

build small_file
e To direct whatever you type to the printer, type:

build /p [ENTER)

® You can use BUILD to transfer, or redirect, data from one
file to another. Instead of the keyboard, this example uses a
file named Mytext file for the input device. The output
device is Terminal 1.

build <mytext /t1

6-11

0S-9 Commands Reference

CHD
CHX

Syntax: chd pathlist
chx pathlist

Function: CHD changes the current working (data) directory,
and CHX changes the current execution directory.

Parameters:
pathlist Specifies the directory for the current working
or execution directory.
Notes:

® CHD and CHX do not appear in the CMDS directory
because they are built into the shell.

Examples:

® To change the current working (data) directory to the PRO-
GRAMS data directory located on the diskette in Drive
/D1, type:

chd /d1/programs [ENTER

® To change the execution directory to the parent directory of
the current execution directory, type:

chx .. (ENTER)

® To change the execution directory to TEXT_PROGRAMS,
a subdirectory of BINARY_FILES, type:

chx binary_files/text_programs

6-12

System Command Descriptions / 6

e To return the execution directory and the data directory
back to the default directories, type:

chx /d8/cmds; chd /d@ [ENTER)
Or, if you are using a hard disk, type:

chx /h8/cmds; chd /h@ (ENTER]

6-13

0S-9 Commands Reference

CMP

Syntax: cmp filenamel filename2

Function: Opens two files and compares the binary values of
corresponding data bytes in the files. If CMP encounters any
differences in the file, it displays the file offset (address) and
the values of the bytes from each file.

Parameters:

filenamel are the files to compare.
filename2

Notes:

® The comparison ends when CMP encounters an end-of-file
marker in either file. CMP then displays a summary of the

number of bytes compared and the number of differences
found.

Examples:

e To compare two files named Red and Blue, type:

cmp red blue
Following is a sample screen display:

Differences

byte #1 #2
00000013 00 01
00080022 B8 B1
00800024 9B AB
0000002B 3B 36
p0BEPP2C 6D 65

Bytes compared: ppOOBGB2D
Bytes different: 00000005

6-14

System Command Descriptions / 6

® To compare two files that are identical, such as Redl and
Red2, type:

cmp red! red?2
The screen display might be:

Differences
None

Bytes compared: 0066082D
Bytes different: 000000040

6-15

0S-9 Commands Reference

COBBLER

Syntax: cobbler devname

Function: Creates the OS9Boot file required on any 0S-9 boot

diskette.
Parameters:
devname The disk drive containing the diskette on
which you want to create a new OS9Boot file.
Notes:
® COBBLER creates the new OS9Boot file with the same

modules loaded during the most recent bootstrap. (To add
modules to the bootstrap file, use OS9GEN.) COBBLER
also writes the OS-9 kernel on Track 34 and excludes these
sectors from the diskette allocation map. If any files are
present on these sectors, COBBLER displays an error
message.

The new boot file must be contiguous on the diskette. For
this reason, you should use COBBLER only with a newly
formatted diskette. If you use COBBLER on a diskette that
does not have a storage block large enough to hold the boot
file, COBBLER destroys the old boot file, and OS-9 cannot
boot from that diskette.

To change device attributes permanently, use XMODE
before using COBBLER.

Examples:

To save the attributes of the current device on the system
diskette, type:

cobbler /d0

6-16

System Command Descriptions / 6

If you use COBBLER on a diskette that is not newly format-
ted, the screen displays:

WARNING - FILEC(S) OR KERNEL
PRESENT ON TRACK 34 - THIS
TRACK NOT REWRITTEN

6-17

0S-9 Commands Reference

CONFIG

Syntax: config

Function: Lets you create a system diskette that includes only
the device drivers and commands you select. CONFIG auto-
matically adjusts its screen display for either 32- or 80-column
display.

Notes:

When executed, CONFIG displays menus of all I/O options
and system commands. You select only those options and
commands you want to include on a new system diskette.

Creating such a system diskette lets you make the most
efficient use of computer memory and system diskette
storage.

The CONFIG utility is on the BASIC09/CONFIG diskette.
Copy this diskette, using the OS-9 BACKUP command.
Make the copy your working diskette. Keep the original in
a safe place to use for future backups. After you boot your
system, you can put the working copy of the BASIC09/
CONFIG diskette in drive /d0. Then, type these commands:

chx /dB/cmdss chd /d@/modules [ENTER

CONFIG does not require initial parameters. You establish
parameters during the operation of the command. Be sure
the execution directory is /D0/CMDS before executing
CONFIG.

You could save time by using BACKUP to create a system
disk, using CONFIG to create a new boot file, and then
deleting unwanted commands. However, this process causes
fragmentation of diskette space and results in slower disk
access. CONFIG causes no fragmentation.

6-18

System Command Descriptions / 6

® The MODULES directory of the BASIC09/CONFIG diskette
contains all the device drivers and device descriptors sup-
ported by OS-9. The filename extension describes the type
of file, as noted in the following table:

Extension Module Type

dd Device Descriptor module
.dr Device Driver module
o Input/Output subroutine module
Jhp Help file
.dw Window Device Descriptor module
dt Terminal Device Descriptor module
.mn File Manager module

Examples:

The following steps take you through the complete CONFIG
process:

1. With the BOOT/CONFIG diskette in the current drive,
type:

conf g (ETER]

2. CONFIG asks whether you want to use one or two disk
drives. Press (1) for single- or (2) for two-drive operation.

If you specify one drive, continue with Step 3.

If you specify two drives, a display asks you to:
ENTER NAME OF SOURCE DISK:

Type /dé

A display now asks you to:

ENTER NAME OF DEST. DISK:

Type /d1

3. After a pause to build a descriptor list, the program dis-
plays a list of the various devices from the MODULES
directory. Use and (¥] to move to a device. To include
the device on the system diskette, press (5) once. CONFIG
displays an X by the selected device. To exclude a selected
device, press (5] again to erase the X.

6-19

0S-9 Commands Reference

A special help command provides information about each
device. To display information about the current device (the
device indicated by the arrow (=), press (H).

The list of devices might require more than one screen. Use
to move ahead page by page and to move back.

The devices you can select and their descriptions are listed
in Chapter 2 under the section “Device Names.”

You must select a “D0” device as your first disk drive.
Select from the list of D devices for other floppy disk drives.
Select P to use a printer with OS-9, T1 to use a terminal,
M1 to use a modem, and so on.

. After selecting the devices you desire, press (D). The screen

displays, ARE YOU SURE CY/N) ? If you are satisfied with
your selections, press (Y]. If you want to make changes,

press (N].

. To use your computer keyboard and video display, you must

select either TERM_VDG or TERM_WIN. You use
TERM_VDG for a 32-column display. For a TERM window

that enables you to select character displays up to 80-col-
umns, select TERM_WIN.

. CONFIG builds a boot list from the selected devices and

their associated drivers and managers in the MODULES
directory of the current drive. It next displays two clock
options:

1 - 66HZ (AMERICAN POWER)
2 - 58HZ (EUROPEAN POWER)

. If you live in the United States, Canada, or any other coun-

try with 60hz electrical power, press (7). If you live in a
country with 50hz power, press (2).

If you have a single disk drive, a screen prompt asks you to
swap diskettes and press (C]. When asked for the SOURCE
diskette, insert the BASIC09/CONFIG diskette. When
asked for the DESTINATION diskette, insert the diskette
that is to be your new OS-9 system diskette.

If you have more than one drive, a screen prompt asks you
to insert a blank formatted diskette (the DESTINATION
diskette) in the destination drive. The rest of the boot file
creation is automatic.

6-20

System Command Descriptions / 6

8. After creating the boot file, CONFIG displays a menu of the
commands you can include on your system diskette. You
have the following choices:

[NJo Commands, Stop Now — Do not add any commands

[Flull Command Set — Add all OS-9 commands
from the current CMDS
directory

[Ilndividually Select — Select commands one by
one

[H] Receive Help — Get help on the command
set

Press (N) if you want to transfer a new boot file to a
diskette on which you have previously copied the OS-9 sys-
tem. If you have only one disk drive, this procedure is
quicker than using the CONFIG utility to complete the
entire system transfer, because it requires fewer disk
swaps.

Press to make an exact copy of the CMDS directory on
your source diskette with a new boot file.

Press (1) to individually select commands to copy on the
new diskette. The (1) option displays a menu similar to the
device selection screen. Press to select or exclude com-
mands, and use the arrow keys to move among the com-
mands in the menu. CONFIG selects files marked with an
X for inclusion on the new system diskette. If a command
does not have an X beside it, CONFIG excludes it from the
new system diskette.

9. If you have a multi-drive system, a prompt appears asking
you to insert your OS-9 system diskette in the destination
drive. Press the space bar. The process finishes the CON-
FIG operation, and returns to OS-9.

If you have a single-drive system, you swap diskettes dur-
ing the final process. This time, the SOURCE diskette is
the OS-9 System diskette. The DESTINATION diskette is
the system diskette you are creating. The number of swaps
depends on the number of options you select.

Note: When using CONFIG you do not have to use
your system diskette as the source diskette to install
the commands. The program can use any diskette
that contains a CMDS directory.

6-21

0S-9 Commands Reference

COPY

Syntax: copy pathlistl pathlist2 [opts]

Function: Copies data from one file or device to another file or
device.

Parameters:
pathlistl The name of the existing file or device from
which you want to copy.
pathlist2 The name of the device or file to receive the
copy. If you are copying data to a file, the file
must not already exist.
Options:
-S Causes COPY to perform a single-drive copy

operation. pathlist2 must be a full pathlist if
you use -s. In a single-drive procedure, COPY
reads a portion of the source disk into memory
and then asks you to exchange the source and
the destination diskette and press (¢). COPY
might ask you to exchange diskettes several
times before it completes duplicating the
entire file.

#n[K] Allows the use of more memory for the COPY
procedure. If you specify K, n represents the
amount of memory you want to use, in units of
1024 bytes. If you do not specify K, n repre-
sents the number of 256-byte memory pages.
Using this option can increase speed and
reduce the number of diskette swaps required
for single-drive copies.

6-22

System Command Descriptions / 6

Notes:

® If pathlist2 is a disk file, COPY automatically creates it. Data

can be of any type, and COPY does not modify the file in any
way.

COPY does not add important codes (for example, line feeds).
Use LIST instead of COPY when sending a text file to a ter-
minal or printer.

Following is an example of the screen display and your
responses for COPY using a single drive:

copy /d@/cat /d@/animals/cat -s #32k
Ready DESTINATION, hit C to continue:
Ready SOURCE, hit C to continue:

Ready DESTINATION, hit C to continue:

A

A

This example assigns 32 kilobytes of memory for COPY to
use. If enough free memory is available, you can specify up
to 56 kilobytes. Copy continues asking you to swap the
source and destination diskettes until the transfer is
complete.

Examples:

o To copy Filel to File2 using 15K of memory, type:

copy filel file2 #15k

® To copy the News file on the diskette in Drive /D1 to a new

file named Messages on the diskette in Drive /D0, type:

copy /d1/joe/news /dB/peter/messages

6-23

0S-9 Commands Reference

DATE

Syntax: date [t]

Function: Displays the current date.

Options:
t Causes the time to appear with the date.

Notes:

® Following is an example of how to use SETIME to set a new
date and time for the system and how to use DATE to
check system date and time:

setime
A possible screen display and your responses follows:

yy/mm/dd hh.mm.ss
Time? 86/08/22 14.19.00

date (ENTER]
August 22, 1986

date t

August 22, 1986 14.26.20

Examples:

® To display the system date and time, type:

date 1
® To direct the DATE command’s output to the printer, type:

date t >/p

6-24

System Command Descriptions | 6

DCHECK

Syntax: dcheck [-opts] devhame

Function: Checks a disk’s file structure.

Parameters:
devname
opts

Options:

-8

-b

P
-w =pathlist
-m

-0

Notes:

The disk drive to check.

One or more of the following options.

Counts the number of directories and files and
displays the results. This option causes
DCHECK to check only the file descriptors for
accuracy.

Suppresses listing of unused clusters (clusters
allocated but not in the file structure).

Prints pathlists for questionable clusters.
Specifies a path to a directory for work files.
Saves allocation map work files.

Prints DCHECK’s valid options.

® Sometimes the system allocates sectors on a disk that are
not actually associated with a file or with the disk’s free
space. This situation can happen if you remove a disk from
a drive while files are open. You can use DCHECK to
detect this condition, as well as check the general integrity
of directory/file links.

6-25

0S-9 Commands Reference

After verifying and printing some vital file structure
parameters, DCHECK follows pointers down the disk’s file
system tree to all directories and files on the disk. As it
does so, it verifies the integrity of the file descriptor sec-
tors, reports any discrepancies in the directory/file links,
and builds a sector allocation map from the segment list
associated with each file. If any file descriptor sectors
(FDS) describe a segment with a cluster not within the file
structure of the disk, DCHECK displays a message like
this:

#** Bad FD segment ($Sxxxxxx-$yyyyyy) for file:
(pathlist)

This message indicates that a segment starting at sector
xxxxxx and ending at sector yyyyyy is not on the disk. If
any of the file descriptor sectors are bad, the entire FD
might be defective. DCHECK does not update the alloca-
tion map for corrupt FDS.

While building the allocation map, DCHECK also ensures
that each disk cluster appears once and only once in the file
structure. If it discovers duplication, DCHECK displays a
message like this:

Cluster $xxxxxx was previously allocated

This message indicates that DCHECK has found cluster
xxxxxx more than once in the file structure. DCHECK
reprints the message each time a cluster appears in more
than one file.

Then, DCHECK compares the newly created allocation map
with the allocation map stored on the disk and reports any
differences with messages like these:

Cluster $xxxxxx in allocation map but not in file
structure

Cluster $xxxxxx in file structure but not in
allocation map

The first message indicates that sector number xxxxxx
(hexadecimal) is not part of the file system, but the disk’s
allocation map has assigned it. FORMAT might exclude
some sectors from the allocation map because they are
defective.

6-26

System Command Descriptions /| 6

The second message indicates that the cluster starting at
sector xxxxxx is part of the file structure, but the disk’s
allocation map has not assigned it. Later operations might
allocate this cluster, overwriting the contents of the cluster
with data from the newly allocated file. (Clusters that
DCHECK previously allocated can have this problem.)

¢ DCHECK builds its disk allocation map in a file called
pathlistt DCHECKpp0, where pathlist is specified by the -w
option and pp is the process number in hexadecimal. Each
bit in this bitmap file corresponds to a cluster of sectors on
the disk. If you use the -p option, DCHECK creates a sec-
ond bitmap file (pathlist2/DCHECKppl) that has a bit set
for each cluster DCHECK finds as “previously allocated” or
“in file structure but not in allocation map.” DCHECK
then makes another pass through the directory structure to
determine the pathlists for these questionable clusters. You
can save the bitmap work files by specifying the -m option
on the command line.

® For best results, DCHECK should have exclusive access to
the disk being checked. Otherwise, the command might be
fooled by a change in the disk allocation map while
DCHECK is building a bitmap file. DCHECK cannot pro-
cess disks with more than 39 levels of directories.

® -p causes DCHECK to make a second pass through the file
structure and print pathlists for clusters that are not in the
allocation map but are allocated or existing in a file
structure.

-w tells DCHECK where to place its allocation map work
file(s). The specified pathlist must be a full pathlist for a
directory. (DCHECK uses directory /DO if you do not spec-
ify -w.) If you doubt the structure integrity of the diskette
being checked, do not place the allocation map work files on
that diskette.

Examples:

® The following two examples demonstrate DCHECK
sessions:

dcheck /d2

6-27

0S-9 Commands Reference

A sample screen display might be:

Volume - ‘My system disk’ on device /d2
$009A bytes in allocation map

1 sector per cluster

$000276 total sectors on media

Sector $000002 is start of Root directory
FD

$0010 sectors used for id, allocation map
and Root directory

Building allocation map work file...
Checking allocation map file...

‘My system disk’ file structure is intact

1 directory
2 files

dcheck -mpw=/d2 /d#@

A sample screen display might be:

Volume - ‘System diskette’ on device /d@
$0046 bytes in allocation map

1 sector per cluster

$00022A total sectors on media

Sector $0PPPP2 is start of Root directory
FD

$0010 sectors used for id, allocation map
and Root directory

Building allocation map work file...

Cluster #00040 was previously allocated

*++ Bad FD segment ($111111-$23A6F0) for
file: /DB/TEXT/junky.file

Checking allocation map file...

Cluster $00P0038 in file structure but not
in allocation map

Cluster $P00P3B in file structure but not
in allocation map

Cluster $00P1B9 in allocation map but not
in file structure

Cluster $00P1BB in allocation map but not
in file structure

6-28

System Command Descriptions / 6

Pathlists for questionable clusters:
Cluster $000038 in path: /d@/0S9boot
Cluster $00003B in path: /d@/0S9boot
Cluster $000040 in path: /d@/0S9%boot
Cluster $000040 in path: /d@/test/
double.file

1 previously allocated clusters found

2 clusters in file structure but not 1in
allocation map

2 clusters in allocation map but not in
file structure

1 bad file descriplior sector

‘System diskette’ file structure is not
intact

5 directories

25 files

6-29

0S-9 Commands Reference

DEINIZ

Syntax: deiniz devname |...]

Function: Deinitializes and detaches a device.

Parameter:
devname The name of one or more devices you want to
deinitialize.
Notes:

e Use DEINIZ with INIZ. For example, you can use INIZ to
initialize a window, then redirect information to the win-
dow. View the information by pressing until it
appears. When you no longer need the window, use DEINIZ
to remove the window and return its memory to the
system.

® DEINIZ performs an OS-9 I$Detach call for all specified
devices.

Example:

To deinitialize the /w1l (Window 1) device after it has been ini-
tialized, type:

deiniz w1 [ENTER

6-30

System Command Descriptions | 6

DEL

Syntax: del [-x] filename [...]

Function: Deletes the file(s) specified.

Parameter:
filename The name of the file to delete. Include as many
filenames as you want.
Option:
-X Causes DEL to assume the file is in the cur-
rent execution directory.
Notes:

® You can delete only files for which you have write
permission.

You can delete a directory in two ways: (1) Delete all the
files in the directory, change it to a non-directory file using
ATTR, then use DEL to remove the directory, or (2) Use the
DELDIR command.

® The following example shows what appears on the screen
when you display a directory, delete one of the directory’s
files, then display the directory again:

dir /d1

directory of /dl 14.29.46
myfile newfile

del newfile [ENTER
dir /d1

directory of /d1 14.30.37
myfile

6-31

0S-9 Commands Reference

Examples:

® To delete files named Text_program and Test_program,
type:

del text__program testi_program

® To delete a file on a drive other than the current working
drive, use a complete pathlist, such as:

del /d1/number_five

® To delete a file named Cmds.subdir in the current execu-
tion directory, type:

del -x cmds.subdir

6-32

System Command Descriptions / 6

DELDIR

Syntax: deldir dirname

Function: Deletes all subdirectories and files in a directory;
then, deletes the directory itself.

Parameter:
dirname The pathlist to the directory you want to
delete.
Notes:

o DELDIR is a convenient alternative to individually deleting
all the files and subdirectories from a directory before
deleting the directory itself.

® When DELDIR runs, it displays a prompt after the com-
mand line:

deldir oldfiles (ENTER)
Deleting direciory file.

List directory, delete directory, or quit ?
(l/d/q)

Pressing causes a DIR E command to run so you can
see the directory files before DELDIR removes them.

Pressing (D] starts the deletion process.
Pressing (@] cancels the command.

® The directory to be deleted might include other directories,
which in turn might include other directories, and so forth.
In this case, DELDIR begins with the lower directories and
works its way upward.

You must have write permission to delete any files and
directories in this substructure. If not, DELDIR terminates
when it encounters the first file for which you don’t have
write permission.

6-33

0S-9 Commands Reference

e DELDIR automatically calls DIR and ATTR. Therefore,
these files must reside in the current execution directory.

6-34

System Command Descriptions | 6

DIR

Syntax: dir [optslldirname or pathlist]

Function: Displays a formatted list of filenames in a directory.
The output format adjusts itself for 80- or 32-column displays.

Parameters:
dirname The name of the directory you want to view.
pathlist The pathlist to the directory you want to view.
opts Either or both of the following options.
Options:

If you don’t specify any parameters, DIR shows the current
data directory.

X Displays the current execution directory.

e Displays the entire description for each file:
size, address, owner, permissions, date and
time of last modification.

Examples:

® To display the current data directory, type:
dir
e To display the current execution directory, type:

dir x [ENTER]

® To display the entire description of all files in the current
execution directory, type:

dir x e [ENTER

6-35

0S-9 Commands Reference

® To display the parent of the current data directory, type:

dir ..
e To display a directory named NEWSTUFF, type:

dir newstuff [ENTER

e Following is a sample 80-column DIR display using the e
option:

dir e
The screen might display:
Directory of . 16:58:12

Owner Last modified Atiributes Sector Bytecount Name

2F 85/85/28 1631 ------ wr A 3f6C 0S9Boot
§ 85/85/20 1345 d-ewrewr 48 640 CMDS
§ 85/85/20 1350 d-ewrewr 177 Ag SYS
§ 85/85/28 1351 ----r-wr 192 £ startup
§ 85/85/20 1351 d-ewrewr 194 Ed DEFS

® Tollowing is an 80-column DIR display using no options:

dir
The screen might display:

Directory of . 16:50:37
0S9Boot CMDS SYS startup
DEFS

6-36

System Command Descriptions | 6

® Following is a 32-column DIR display using the e option:
dir e {ENTER]

Directory of . 16:52:04
Modified on Owner Name
Attr Sector Size
85/65/20 1643 2F 0S9Boot
------ wr A 3A6C
85/05/28 1345] cMDS
d-ewrewr 48 640
85/05/28 1350) SYS
d-ewrewr 177 Ad
85/685/28 1351 /) startup
----r-wr 192 E
85/685/280 1351) DEFS
d-ewrewr 194 EQ

® Following is a 32-column DIR display using no options:

dir (ENTER]

Directory of . 16:52:29
0S9Boot CMDS SYS
startup DEFS

6-37

0S-9 Commands Reference

DISPLAY

Syntax: display hex...]

Function: Reads one or more hexadecimal numbers (you type
as parameters), converts them to ASCII characters, and
writes them to the standard output (normally the screen).

Parameters:

hex A list of one or more hexadecimal numbers.

Notes:

® Use DISPLAY to send special characters (such as cursor
and screen control codes) to terminals and other 1I/O
devices.

® Ivllowing is an example of a command and the resulting
output. ABCDEF are ASCII characters corresponding to
hex 41 42 43 44 45 46.

display 41 42 43 44 45 46 [ENTER)
ABCDEF

Examples:

® To reroute a form feed (hex 0C) to the printer, type:

display @C >/p
® To ring the bell through the video speaker, type:

display 087

6-38

System Command Descriptions | 6

DSAVE

Syntax: dsave [optslldevname]ldirname] > pathlist

Function: Copies or backs up all files in one or more

directories.

Parameters:

devname

dirname

pathlist
opts

Options:

-sinteger

The drive on which the source directory exists.
If you do not specify devname DSAVE assumes
Drive /DO.

The name of the destination directory. Use
CHD to make the current directory the direc-
tory to receive the copies.

A command procedure file in which DSAVE
stores its output.

One or more of the following options.

Makes the destination or target diskette a sys-
tem diskette by copying the source diskette’s
0OS9Boot file, if present.

Indents for directory levels.

Tells DSAVE not to process directories below
the current level.

Tells DSAVE not to include MAKDIR com-
mands in the procedure file it creates.

Sets memory for the copy parameter to integer
kilobytes.

Verifies copies by forking to CMP after copying
each file.

6-39

0S-9 Commands Reference

Notes:

DSAVE does not directly affect the system. Instead, it gen-
erates a procedure file that you execute later to do the
work.

When you run DSAVE, it creates a procedure file (a file of
commands). You then execute the newly created file by typ-
ing its pathlist. The procedure contains all the commands
to create and change directories as needed in order to copy
the specified directory. DSAVE copies the files in the cur-
rent data directory. It also copies the current data direc-
tory subdirectories, unless you specify the -1 option.

To use DSAVE, first change the data directory to the direc-
tory you wish to copy. Execute DSAVE by specifying the
drive from which to copy and then redirecting output to a
file to receive the copy commands. Be sure to name a file
that does not already exist.

When DSAVE completes the procedure, use CHD to change
to the data directory to receive the copied files. Then, exe-
cute the procedure file.

If DSAVE encounters a directory file, it automatically
includes MAKDIR and CHD commands in the output
before generating COPY commands for files in the subdirec-
tory. The procedure file exactly replicates all levels of the
file system from the current data directory downward.

If the current data directory is the ROOT directory of the
disk, DSAVE creates a procedure file that backs up the
entire disk file by file. This is useful when you need to copy
a number of files from either disks formatted differently or
from floppy diskettes to a hard disk.

Examples:

In the following series of commands, CHD positions you in
the ROOT directory of /D2, the directory to be copied.
Then, DSAVE makes the procedure file Makecopy. Using
CHD /D1 causes the copy to go in the /D1 ROOT directory.
The final command executes the procedure file.

6-40

System Command Descriptions | 6

chd /d2 (ENTER)

dsave /d2 >/d@/makecopy (ENTER]
chd /d1

/d8/makecaopy {ENTER)

® The following command copies all files from /DO to /D1. It
pipes the procedure file output of DSAVE into a shell for
immediate execution.

dsave /d@ /d1 ! shell [ENTER]

® The following command lets you view the output generated
by a DSAVE command. It uses 48 kilobytes of memory and
indents directories. Because output goes to the screen, this
command does not create a procedure file to copy any files:

dsave -s48 -1i [ENTER

® This command operates in the same manner as the pre-
vious command. However, because it specifies a procedure
file pathlist, it stores the generated commands in a proce-
dure file rather than displaying them on the screen:

dsave -s548 -1 > copyfile (ENTER]

6-41

0S-9 Commands Reference

ECHO

Syntax: echo text

Function: Echoes text to the screen.

Parameters:

text The character or characters you type.

Notes:

® Use ECHO to generate messages in shell procedure files or
to send an initialization character sequence to a terminal.

The text should not include punctuation characters used by
the shell.

® The following example prints the message LISTING ERROR
MESSAGES to the screen and lists the file SYS/errmsg to the
printer as a background task.

echo LISTING ERROR MESSAGES; list sys/
errmsg >/p&

Examples:

o To display a message on the screen, type:

echo This text is echoing (ENTER)
® To echo text to the console, type:

echo >/term »*WARNING DATA ON DISK WILL BE
LOST [ENTER)

® The following combines the ECHO and LIST commands to
echo the entered text to the printer and to direct the con-
tents of the Trans file to the printer.

echo >/p LISTING OF TRANSACTION; list trans
>/ps (ENTER)

6-42

System Command Descriptions / 6

ERROR

Syntax: error errnumber |[...]

Function: Displays the text error message that corresponds
with the specified 0S-9 error number.

Parameters:

errnumber Is an OS-9 error code in the range 1-255.

Notes:

® ERROR opens the Errmsg file in the SYS directory and
reads through the file for an error code that matches the
specified number. It then displays the text that corresponds
to the error code.

® The Errmsg file contains descriptions of the standard 0S-9
errors. The order of the file is arranged to provide quick
access to operation system error descriptions.

Example:
® To display a description of the 0S-9 error Numbers 215 and
216, type:
error 215 216
The screen displays:

215 - Bad Path Name
216 - Path Name Not Found

6-43

0S-9 Commands Reference

EX

Syntax: ex filename

Function: Starts a process by chaining from the current shell
to the new process. Chaining means that execution control is
turned over to the new process.

Parameters:
filename The name of the program or module you want
to execute.
Notes:
® Because EX is a built in Shell command, it does not appear

in the CMDS directory.

Using EX causes the shell from which you are operating to
terminate. If the new process also terminates and you do
not have another shell running on another terminal or win-
dow, OS-9 is left without any processes, and you must
reboot your computer and OS-9.

If a shell is running on another window or device, you can
restart a new shell from that window or device. For
instance, if you use EX to initialize BASIC09 from /TERM
then exit BASIC09, /TERM is dead and cannot accept key-
board input. However, if you also have a shell operating in
a window, you can type the following from that window:

shell i=/term& [ENTER

This reinitializes a shell on /TERM. It can now accept key-
board input and OS-9 commands.

Use EX to save memory when the shell is not needed, for
instance when using BASIC09.

6-44

System Command Descriptions / 6

® If you use EX on a command line with other commands, it
must be the last command. Any commands following EX
are not processed.

Example:

e To run BASIC09 without a resident shell, type:
ex basic@9

6-45

0S-9 Commands Reference

FORMAT

Syntax: format devname [name] [opts]

Function: Establishes and verifies an initial file structure on
a floppy diskette or a hard disk. You must format all disks
before you can use them on an OS-9 system.

Parameters:

devname The drive name of the disk you want to
format.

name The name you want to assign the newly for-
matted disk. Enclose the disk name in double
quotation marks.

opts One or more of the following options.

Options:

1 Writes system format information only, does
not physically format disk.

r Causes the format to proceed automatically,
without issuing prompts.

1 Formats single-sided. Use with single-sided
drives or single-sided diskettes in double-sided
drives.

2 Causes a double-sided format. Use with
double-sided drives and double-sided diskettes.

‘cylinders’ The number of cylinders (in decimal) that you
want formatted.

:interleave: The number of the sector interleave value (in

decimal).

6-46

System Command Descriptions / 6

Notes:

® Be sure the disk you want to format is NOT write-
protected. Otherwise, FORMAT generates error code #242
(write protect), and the system returns to the OS-9 prompt
without formatting the diskette.

® If you are formatting a hard disk, first type:
tmode -pause

This command turns off the screen pause function. Other-
wise, the process stops whenever the sector verification pro-
cess fills the display screen. If you forget to turn off the
screen pause, press the space bar whenever the screen fills.
Execution then continues.

When formatting finishes, type:
tmode pause

This re-establishes the screen pause function.
® The formatting process works this way:

1. FORMAT physically initializes a disk and divides
its surface into sectors.

2. FORMAT reads back and verifies each sector. If a
sector fails to verify after several attempts, FOR-
MAT excludes it from the initial free space on the
diskette. As verification proceeds, the process dis-
plays track numbers.

3. FORMAT writes the disk allocation map, ROOT
directory, and identification sector to the first few
sectors of Track 0. These sectors must not be
defective.

® FORMAT asks for a disk volume name, which can be up to
32 characters long and can include spaces or punctuation.
(Later, you can use the FREE command to display the
name.)

6-47

0S-9 Commands Reference

® For step-by-step instructions on formatting, refer to Getting
Started With OS-9.

Examples:

e To format a diskette in Drive /D1, type:

format /d1

® To format a diskette in Drive /D1 with the name Test Disk
and without prompts, type:

format /d1 r '"test disk" (ENTER]
® To format hard Disk /HO, type:

imode -pause [ENTER
format /h@ [ENTER
tmode pause [ENTER

® To format a double-sided diskette in Drive /D2 with 27 cyl-
inders and the name Database, type:

format /d1 2 "database'" ‘27’

6-48

System Command Descriptions / 6

FREE

Syntax: free [devhame]

Function: Displays the number of unused sectors (256-byte
storage areas) on a disk drive. These sectors are available for
new files or for expanding existing files.

Parameters:
devname The disk drive for which you want to display
the number of free sectors.
Notes:

® The device name you specify must be a disk drive. FREE
also displays the disk’s name, creation date, and cluster
size. If you don’t specify a drive, FREE selects the drive
that contains the current data directory.

® The cluster size for the Color Computer is one sector.
Examples:

e To display the number of free sectors on the current disk,
type:

free [ENTER
The screen is similar to this:

“COLOR COMPUTER DISK’’ created on: 83/85/28
Capacity: 638 sectors (1-sector clusters)
15 Free sectors, largest block 12 sectors

e To display the number of free sectors on the diskette in
Drive /D1, type:

free /di

6-49

0S-9 Commands Reference

A sample screen display is:

"“DATA DISK" created on: 83/86/16
Capacity: 638 sectors (1-sector clusters)
445 Free sectors, largest block 442 sectiors

6-50

System Command Descriptions / 6

HELP

Syntax: help [command name] [-?]

Function: Displays the use and syntaxes of OS-9 commands.

Parameters:
command The command(s) for which you want help.
name Include as many command names as you want.
-? Gives a list of help topics.

Notes:

® HELP uses a file named Helpmsg, which is located in the
SYS directory on your system diskette.

Examples:

® To obtain help for the BACKUP command, type:
help backup

The screen displays:

Syntax: backup [(ells]l-v]ldevlidev]
Usage: Copies all data from one device to
another

o [f you try to obtain help for a non-existent command, HELP
displays an error message. For instance, if you type:

help me (ENTER)

me: no help available

® You can also obtain help for the HELP command. To do so,
type:

help help (ENTER)

The screen displays:

Syntax: Help [subjectl(-?]
Usage: Give on-line help to users

Will prompt if no subjects given
Opts: -7 give list of help topics

6-51

0S-9 Commands Reference

IDENT

Syntax: ident filename [opts]

Function: Displays header information for memory modules.

Parameters:

filename

opts
Options:

-m

-v

-X

Notes:

The name of the file or module for which you
want to view identification information.

One or more of the following options.

Causes IDENT to assume that filename is a
module in memory

Tells IDENT not to verify module cyclic redun-
dancy check

Causes IDENT to assume that filename is in
the execution directory

Displays the following module information on a
single line: the edition byte (first byte after
module name), the type/language byte, the
module CRC and the module name. A period
(.) indicates that the CRC verifies. A question
mark (?) indicates that the CRC does not
verify.

o IDENT displays the module size, CRC bytes (with verifica-
tion), and—for program and device driver modules—the exe-
cution offset and the permanent storage requirement bytes.

6-52

System Command Descriptions / 6

o IDENT displays and interprets the type/language and
attribute revision bytes. IDENT displays the byte immedi-
ately following the module name because most Microware®-
supplied modules set this byte to indicate the module
edition.

e IDENT displays all modules contained in a disk file.
Examples:

® To display header information for a file named Ident that
resides in computer memory, type:

ident -m ident
The screen might display:

Header for: IDENT

Module size:$06E7 #1767
Module CRC: $540BB2 (Good)

Hdr parity: $C9

Exec. off: $6230 #573
Data Size: $899C #2460
Edition: $07 #7

Ty/La At/Rv:$11 $81
Prog mod, 68689 obj, re-en, R/D

In the example, Hdr parity = header parity; Exec. off =
execution offset; Data size = permanent storage require-
ments; Edition = first byte after module name; Ty/La At/
Rv = type/language attribute/revision; and Prog mod,
6809 obj, re-en = module type, language, attribute.

® To display header information for the OS9Boot file,type:
ident /D@/0S9boot -s

6-53

0S-9 Commands Reference

The display might include:

17
67
12
27
6
82
82
82
11
14
1
3
83
83
83
83
83
83
83
83
83
11
82
12
83
4
2
80
9
3

$Co
$Co
$C1
$D1
$E1
$F1
$F1
$F1
$D1
$EN1
$C1
$C1
$F1
$F1
$F1
$F1
$F1
$F1
$F1
$F1
$F1
$E1
$F1
$E1
$F1
$D1
$E1
$F1
$C1
$11

$F2922F
$pB2322
$2E9EDB
$B66G5E3
$455580
$FC1918
$9F 4218
$EGB118
$10A3FA
$8524F1
$B53D94
$792B7E
$ABSAES
$7AB2DB
$C3E38A
$948878
$36016B
$0AE2B6
$123B9A
$1CF164
$B71DF5
$C8F073
$9EG55D
$CC3EA4
$FE3BAE
$ADG718
$5B2B56
$CCOBAF
$BE93F 4
$CA1F99

Since the -s

0ssgp2
Init
I10Man
RBF
CC3Disk
D@

D1

DD

SCF
CC310
VDGInt
Grflnt
TERM

W

W1

W2

W3

W4

W5

We

W7
ACIAPAK
T2
PRINTER
P
PipeMan
Piper
Pipe
Clock
CC3Go

option appears in the command line, IDENT

displays each module’s information on a single line. In the

first line of the output, for instance, 17

(first byte after name)
$A366DC = CRC value, .
module name.

edition byte
, $C0 = type/language byte,

= OK CRC check, and OS9p2 =

6-54

System Command Descriptions / 6

INIZ

Syntax: iniz devname [...]
Function: Initializes the specified device driver.

Parameters:

devname The name of one or more devices to initialize.

Notes:

® You can use INIZ in the Startup file or at the system start-
up to initialize devices and allocate their static storage at
the top of memory to reduce memory fragmentation.

® INIZ attaches the specified device to 0S-9, places the device
address in a new device table entry, allocates the memory
needed by the device driver, and calls the device driver ini-
tialization routine. INIZ does not reinitialize a device that
you or the system previously installed.

o If you change the printer (/p) to a non-shareable device (a
device that is not re-entrant), do not initialize it with INIZ.

Examples:

e To initialize the /P (printer) and /T2 (terminal 2) devices,
type:

iniz p 12 (ENTER]

6-55

0S-9 Commands Reference

KILL

Syntax: kill procID

Function: Terminates the process specified by prociD.

Parameters:
proclD The ID number of the process to kill.
Notes:
® Unless you are the Super User (User Number 0), you can

only terminate a process that has your user number. (Use
PROCS to obtain the process ID numbers.) The Super User
can terminate any process.

® If a process is waiting for I/O, you cannot cancel it until the
current I/O operation terminates. Therefore, if you KILL a
process and PROCS shows it still exists, it is probably wait-
ing to receive a line of data from a terminal.

® Because KILL is a built-in shell command, it does not
appear in the CMDS directory.

Examples:
® To KILL the process with the ID number 5, type:
kill &5
® The following commands: (1) use PROCS to determine that

the ID number of the process to be killed is 3, (2) termi-
nate process 3, and (3) use PROCS to confirm that KILL
has cancelled the process.

6-56

System Command Descriptions / 6

procs [ENTER

User Mem Stack
Id Pld Number Pty Age Sts Signl Siz Ptr Primary Module

2 1 § 128 128 $84 [} 3 $78B2 Shell
3 5 § 128 128 $840 [} 2 $74AC Tsmon
4 5 § 128 128 ¢80 [} & $85F3 Procs
5 0 g 128 129 ¢80 [} 3 $6FE2 Shell
kil 3 (ENTER)
aracs
User Mem Stack

Id PId Number Pty Age Sts Signl Siz Ptr Primary Module
2 1 f 128 128 ¢80 [} 3 $78B2 Shell
3 5 § 128 128 ¢80 [} & $05F3 Procs
0 B 128 129 $80 0 3 $6FE2 Shell

6-57

0S-9 Commands Reference

LINK

Syntax: link modname
Function: Locks a previously loaded module into memory.

Parameters:

modname The name of the memory module to link.

Notes:

® If the module is not already in memory, you must use
LOAD prior to using LINK. The link count of the module
increases by one each time the system [links it. Use
UNLINK to unlock the module when you no longer need it.

Examples:

® To lock the Edit module into memory, type:
link edit

6-58

System Command Descriptions / 6

LIST

Syntax: list filename [...]

Function: Lists the contents of a text file or files.

Parameters:
filename The name of the file you want to list. Include
as many filenames on one line as you want, up
to the maximum line length of 199 characters.
Notes:

® LIST copies text lines from a file to the standard output
path. The program terminates upon reaching the end-of-file
of the last input path. If you specify more than one file,
LIST copies the files in the order in which you list them.

® Use LIST to examine or print text files.

® Do not LIST executable files. Doing so can cause your sys-
tem to lock or crash. To view executable files, use DUMP.

Examples:

o To list the contents of the Startup file to the printer, type:
list /d@/startup >/pé&

The ampersand makes the printing job a concurrently exe-
cuted task.

® To list three files to the screen, type:

list /d1/userS5/document /d@/myfile /d@/
bob/text [ENTER

® To copy everything you type at the keyboard to the printer,
type:

list /term >/p [ENTER]

6-59

0S-9 Commands Reference

To go back to the standard output path (the video display)
press (CTAL)(BREAC).

® The following commands create a file called Animals, con-
sisting of six entries. LIST, with the filename Animals as a
parameter, displays the contents of the new file.

build animals
? cat (ENTER)

dog (EVTER]
elephant
bird

fish [ENTER]

list animals [ENTER

The screen displays:

ORI SR RRIC ISR

cat

cow

dog
elephant
bird
fish

6-60

System Command Descriptions / 6

LOAD

Syntax: load pathlist
Function: Loads a module (program) from a file into memory.

Parameters:

pathlist Specifies the module to load.

Notes:

® LOAD opens the path you specify, then loads into memory
one or more modules from it. The process adds the names of
the new modules to the module directory. If LOAD finds
that a specified module has the same name and type as a
module already in memory, it keeps the module with the
highest revision level.

® If the pathlist for LOAD does not include a drive name,
LOAD uses the current execution directory. To LOAD a
module from a directory other than the current execution
directory, specify a full pathlist, beginning with a drive
name if applicable.

Examples:

@ In the following example, MDIR displays the names of mod-
ules currently resident in memory. Then, LOAD loads the
Edit module into memory. MDIR again lists memory mod-
ules, and this time shows that Edit is successfully added to
memory.

mdir {ENTER

6-61

0S-9 Commands Reference

The screen display is similar to the following:

Module Directory

REL Boot
I0OMan RBF

DD SCF
TERM W

W4 WS

T2 PRINTER
Pipe Clock
Shell Copy
Dir Display
List Load
Procs Rename

Basic@9 GrfDrv

load edit [ENTER
mdir [ENTER

The screen displays:

Module Directory
REL Boot
I0Man RBF
DD SCF
TERM W
W4 W5
T2 PRINTER
Pipe Clock
Shell Copy
Dir Display
List Load
Procs Rename

Basic@9 GrfDrv

at 12:49:52

0S9p1
CC3Disk
CC310
W1

We

P
CC3Go
Date
Echo
MDir
Setime

at 12:51:

0S9p1
CC3Disk
CC31I0
W1

We

P
CC3Go
Date
Echo
MDir
Setime
Edit

0S9p2
D@
VDGInt
W2

W7
PipeMan
CC3HDisk
Delniz
Iniz
Merge
Tmode

12

DS9p2
D@
VDGInt
W2

W7
PipeMan
CC3HDisk
Delniz
Iniz
Merge
Tmode

Init
D1
Grfint
W3
ACIAPAK
Piper
HO

Del
Link
Mfree
Unlink

Init
D1
Grflnt
W3
ACIAPAK
Piper
HO

Del
Link
Mfree
Unlink

6-62

System Command Descriptions / 6

MAKDIR

Syntax: makdir pathlist or dirname

Function: Creates a directory according to the pathlist given.
You must have write permission for the parent directory of the
directory you are creating.

Parameters:
pathlist The path to the directory you want to create.
dirname The name of the directory you want to create.
Notes:

® When MAKDIR initializes the new directory, the directory
contains only the “.” and “..” files.

® MAKDIR enables all permissions for the directory it
creates.

e To follow OS-9 convention, capitalize all directory names.

Examples:

® To create a directory on Drive /D1, use the directory’s full
pathlist from the root, such as:

makdir /d1/STEVE/PROJECT (ENTER

® To create a directory called DATAFILES within the current
data directory, type:

makdir DATAFILES (ENTER)

® To create a directory called SAVEFILES in the parent of
the current directory, type:

makdir ../SAVEFILES

6-63

0S-9 Commands Reference

MDIR

Syntax: mdir [e]

Function: Displays the names of modules currently in mem-
ory. MDIR automatically adjusts its output for 32- or 80-
column displays.

Options:

e Causes a full listing of the extended physical
address (block number and offset within the
block), size, type, revision level, re-entrant
attribute, user count, and name of each mod-
ule. MDIR shows numbers in hexadecimal.
The display adjusts for 80 or 32 columns.

Notes:

® Many of the modules displayed by MDIR are OS-9 system
modules and are not executable as programs. Always
check the module type code before running a module
with which you are not familiar.

Examples:

® Because MDIR adjusts to either 32 or 80 columns, the fol-
lowing command produces a full module listing in either
format:

mdir e
The 80-column display of MDIR e is:

Module Directory at #3:83:53

Block Offset Size Typ Rev Attr Use Module Name

6-64

System Command Descriptions / 6

3F

«w
al

D OO OO ODH OO A DO —» ~> —» -2 > 2 —» 2 2 2 2 2 2 2 > 2 —» % 2 —» —» 2 —» —» 2 —» —2 —a —» _a

£30
10880
200
EA1
ECF
1862
2A8D
2F 83
2F33
2F63
2F93
3549
48DA
4DC1
59B3
59F8
5A3A
5A7D
5ACR
5Be3
5B46
5B89
SBCC
5CeF
SFC4
60083
617D
61B9
63D2
63FA
6428
6594

SF2
8CE
9CB
Ad1
AEG
£4B
ECF
EF1
F5B
F87
FDo
FFA

100
EDI
CA1
2k
993
122B
476
30
30
30
5Be
B91
CE7
BF2
45
42
43
43
43
43
43
43
43
3BS
3F
174
3C
219
28
26
174
1RA
SF2
2DC
FD
76
AS
365
84
22
6A
2C
4F
24
2F1

. s s a2 2+ M s a s s a —a A % e —a s A & s s 3 A A a2 o3 a A s a s a2 O 0D —

e T T R T B I 2 e e B A T A e e T e B B e B B B2 e B B e B 1

S 033333 333 O3 3 O3 3 .

[o2]
w

OO0 00U e s e e e e o 0 - - O oSN

_,; Em E m W W W m W W — NN

Boot
059p1
05s9p2
Init
I0Man
RBF
CC3Disk
D@

D1

DD

SCF
cc3io
VDGInt
Grflnt
TERM

W

W1

W2

W3

W4

WS

W6

W7
ACIAPAK
T2
PRINTER
P
PipeMan
Piper
Pipe
Clock
CC30Go
Shell
Copy
Date
Delniz
Del

Dir
Display
Echo
Iniz
Link
List
Load
MDir

6-65

0S-9 Commands Reference

[s PR DIRCe DIREs DI IR « D I o D]

12EB
1383
183E
1857
1974
1A8C
108D

68
1EB
319
1D
118
301

2D

"
11
1
11
11
"
"

!
1
1
1
1
1
1

I T T e T T]

® The 32-column display of MDIR is:

Module Directory at 03:06:49

Blk Ofst Size Ty Rv At

3F
3F
3F

D@6

E30
1000

200

EA1

ECF
1862
2A8D
2F03
2F33
2F63
2F93
3549
40DA
4DC1
59B3
S9F8
SA3A
SA7D
SACH
SB#3
S5B46
5SB89
SBCC
SCoF
SFC4
6003
617D
61B9
63D2
63FA
6420

12A
1D0
ED9
CA1
2E
993
122B
476
30
30
30
SB6
B91
CE?7
BF2
45
42
43
43
43
43
43
43
43
3BS
3F
17A
3C
219
28
26
174

C1
C1
co
Cco
co
C1
D1
E1
F1
F1
F1
D1
E1
C1
C1
F1
F1
F1
F1
F1
F1
F1
F1
F1
E1
F1
E1
F1
D1
E1
F1
C1

1
1
8
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

r

S 3333333333333 3 O3F 333’333 OO O3S

U

C

Merge
Mfree
Procs
Rename
Setime
Tmode
Unlink

L A]

Name

REL
Boot
0S9p1
0S9p2
Init
I0Man
RBF
CC3Disk
D@

D1

DD

SCF
CC31I0
VDGInt
Grflnt
TERM

W

W1

W2

W3

W4

WS

We

W7
ACIAPAK
T2
PRINTER
P

12 PipeMan
12 Piper
12 Pipe

1 Clock

Do ITrueasesaeaaaaem - ="0haaaddhhhe - 2 am 2

6-66

System Command Descriptions / 6

(o) I I o Do IR o IR DR DI DI DI DI DI Do DI D I o DI n D I 0 D R DI o D R

6594

5F2
8CE
9CB
A41
AEG
E4B
ECF
EF1
FSB
F87
FDe
FFA
12EB
1353
153E
1857
1974
1A8C
1D8D

1AA
SF2
2DC
FD
76
AS
365
84
22
6A
2¢C
4F
24
2F 1
68
1EB
319
11D
118
301
2D

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

4 2 & 2 3% a2 A A A A A A 2 2 A A — — 2 2 _a

77T 33 FY3333OFY Y OYFYOTFY OSSO OTYOTYOTY -

[~~~ T~ T~ T~ T~ T~ .~ I~ T~ I~ I~ I~ I~ T T~ T~ T %]

CC36Go
Shell
Copy
Date
DEIniz
Del
Dir
Display
Echo
Iniz
Link
List
Load
MDir
Merge
Mfree
Procs
Rename
Setime
Tmode
Unlink

6-67

0OS-9 Commands Reference

MERGE

Syntax: merge [filenamel][...]

Function: Copies files to the standard output path. By redi-
recting the output of the MERGE command, you can combine
several files into one file, or direct several files to the printer.

Parameters:

filename Specifies the files to combine.
Notes:

o Use MERGE to combine several files into a single output
file. It copies data in the order in which you type the
filenames.

e MERGE does not output line editing characters (such as
the automatic line feed).

® You normally use MERGE with the standard output redi-
rected to a file or device.

® You can use MERGE to append or copy any type or mix-
ture of files to another device.

Examples:

® To merge four files into a new file called Combined.file, and
send the results to the new file instead of to the video dis-

play, type:

merge filel file2 file3 file4 >combined.file

® To merge two files, and send the output to the printer, type:

merge compile.list asm.list >/P (ENTER)

6-68

System Command Descriptions / 6

MFREE

Syntax: mfree

Function: Displays a list of memory areas not presently in use
and, therefore, available for assignment.

Notes:

e MFREE displays the block number, physical (extended)
beginning and ending addresses, and the size of each con-
tiguous area of unassigned RAM. It gives the size in num-
ber of blocks and in kilobytes. The block size is 8 kilobytes
per block. Free memory for user data areas does not need to
be contiguous because the MMU can map scattered free
blocks to be logically contiguous.

Examples:

® Type this command:
mfree
The screen shows a display similar to this:

Blk Begin End Blks Size

10 12000 10FFF 1 8K
18 18000 1DFFF 3 24K
20 20000 3FFFF 16 128K

Total 29 160

6-69

0S-9 Commands Reference

MODPATCH

Syntax: modpatch [options] filename [options]

Function: modifies modules residing in memory. MODPATCH
reads a patchfile and executes the commands in the patchfile
to change the contents of one or more modules.

Parameters:
filename The name of a file containing instructions for
MODPATCH
options One of the following options that change MOD-
PATCH’s function
Options:
-8 Silent mode, does not display patchfile com-
mand lines as they are executed.
-w Does not display warnings, if any
-C Compares only, does not change the module

6-70

System Command Descriptions / 6

Notes:

® Before using MODPATCH, you must create a patchfile to
supply the data to control MODPATCH’s operation. This file
contains single-letter commands and the appropriate mod-
ule addresses. The commands are:

1 modulename

¢ offset origval rewval

Link to the module specified
by modulename.

Change the byte at the offset
address specified by offset from
the value specified by origval
to the new value specified by
newval. If the original value
does not match origval, MOD-
PATCH displays a message.

Verify the module—update the
modules CRC. If you plan to
save the patched module to a
file that the system can load,
you must use this command.

Mask IRQ’s. Turns off inter-
rupt requests (for patching
service routines).

Unmask IRQ’s. Turns on inter-
rupt requests (for patching
service routines).

® You can use the BUILD command or any word processing

program to create patchfiles.

® Module byte addresses begin at 0. MODPATCH changes
values pointed to by an offset address (offset from 0) rather
than an absolute memory address.

6-71

0S-9 Commands Reference

To view the contents of a memory module, use SAVE and
DUMP to copy the module to a file and display its contents.
Also use SAVE to copy the patched module to a disk file.

Changing a memory module might not produce an immedi-
ate effect. You have to duplicate the initialization procedure
for that module. This means, if the module loads during
bootup, you have to create a new boot file that includes the
changed module, then reboot using the new boot file.

To use the patched module in future system boots, use
SAVE to store the module in the MODULES directory of
your system disk. You can then use OS9GEN to create a
new system disk using the patched module. If you are
using the patched module to replace another module,
rename the original module and then give the patched
module the original name.

If you patch a module that is loaded during the system
boot, you can use COBBLER to make a new system boot
that uses the patched module.

Examples:

The following example shows the commands, the screen prompts,
and the entries you make to patch the standard 40-column term
window descriptor to be an 80-column screen rather than the
standard 40-column screen:

0S9:build termpatch (ENTER)
? 1 term (ENTER]

? ¢ 002c 28 50 [ENTER]

? ¢ 0030 01 02

? v (ETER)

7 [ENTER]

0S9: modpatch termpatch

6-72

System Command Descriptions / 6

To change the size, columns, and colors of Device Window W1,
create the following procedure file and name it W180:

w1

0030 01 02
002c 1b 50
002d 0b 18

0O 0 0 —

If the W1 module is not already in memory, load it from the
MODULES directory of your system disk. Then, before initializ-
ing W1, run MODPATCH:

modpatch w180
Next, Initialize W1:

iniz wil
shell i=/wl&

Press to display the new window with 80 columns, 24
lines, and a white background.

6-73

0S-9 Commands Reference

MONTYPE

Syntax: montype type

Function: Sets your system for the type of monitor you are
using

Parameters:
Parameters:
type A single letter indicating the monitor type:
¢ for composite monitors or color televisions
r for RGB monitors
m for monochrome monitors or black and
white televisions
Notes:

o Different types of color monitors display colors differently.
For the best results, set your system to the type of monitor
you are using.

® If you are using a monochrome monitor or black and white
television, you can obtain a sharper image by setting your
monitor type to monochrome.

® Include the MONTYPE command in your system’s Startup
file to automatically boot in the proper monitor mode.

e If you do not use MONTYPE, the system defaults to ¢ (com-
posite monitor).

Example:

To set your system for an RGB monitor, type:

montype r [ENTER

6-74

System Command Descriptions / 6

To add a MONTYPE command to your existing Startup file, first
use BUILD to create the new command. For example:

build temp [ENTER
montype r
ENTER

Next, append the file to Startup. Type:
merge startup temp > startup.new (ENTER)
Delete the temp file:

del temp [ENTER

To enable the system to use Startup.new when booting, rename
the original Startup file:

rename Startup Startup.old
Then rename Startup.new:

rename Startup.new Startup

6-75

0S-9 Commands Reference

OS9GEN

Syntax: os9gen devname [opts]

Function: Creates and links the required OS9Boot file to a
diskette making it a bootable diskette.

Parameters:

devname

opts
Options:

-8

#n[K]

Notes:

The disk drive containing the diskette to
receive the new boot file.

One or more of the following options.

Causes OS9GEN to use only one drive to gen-
erate the boot file. In a single-drive operation,
OS9GEN reads the modules from the source
diskette and asks you to exchange diskettes
and press as it reads and copies the
modules.

reserves n kilobytes of memory for use by the
OS9GEN command. By setting aside as much
memory as possible, you can increase the
speed of OS9GEN and, on single-drive sys-
tems, reduce the number of diskette swaps. If
you type K after #n, the memory specified by
n is in kilobytes (1024 bytes), otherwise n is
in 256-byte pages.

® 0OS9Boot files can only exist on contiguous sectors. There-
fore, use OS9GEN only with newly formatted diskettes. If
OS9Boot is fragmented, the system warns you not to use
the diskette to bootstrap OS-9.

6-76

System Command Descriptions / 6

® OS9GEN creates a working file called Tempboot on the
device specified by devname. Next, it reads filenames (path-
lists) either from the keyboard (the standard input path) or
redirected from a file. If you enter names manually,
OS9GEN does not display a prompt. Type each filename
and press (ENTER]. After typing the last filename and press-

ing (ENTER], press [ENTER) again, or press (CTRL](BREAK] to com-
plete the list.

OS9GEN opens each file and copies it to Tempboot. The
process repeats until it reaches a blank line or an end-of-
file marker. All of the modules listed in Chapter 5 are not
required in a boot file. These modules must be included in
a boot File:
0S9p2, Init, IOMan, RBF, SCF, CC310, VDGInt (or
GrflInt), CC3Disk, DO, TERM, Clock, CC3GO.

® You must have RENAME in the current execution directory
or in memory for OS9GEN to work properly.

® With all input files copied to Tempboot, OS9GEN deletes
the OS9Boot file, if it exists. It renames Tempboot as
089Boot, and writes the file’s starting address and size in
the diskette’s Identification Sector (LSN 0) for use by the
0OS-9 bootstrap firmware. OS-9 writes its kernel on diskette
Track 34. If there is not room for the kernel, an error mes-
sage appears, and the operation terminates.

e If you have only one drive, you can generate a new boot file
more easily using the CONFIG utility. CONFIG is
designed to make custom system diskettes using either sin-
gle- or multiple-drives.

Examples:

® The following commands manually install a boot file on
device /D1 that is an exact copy of the OS9Boot file on
device /DO. The first command line runs OS9GEN, the sec-
ond enters the name of the file to install, and the third
enters an end-of-file marker.

os9gen /d1
/d@/0s9boot

6-77

0S-9 Commands Reference

The following commands let you manually install a boot file
on device /D1 that is a copy of the OS9Boot file on device
/DO and the modules stored in the files /D0/Tape.driver and
/D2/Video.driver. Line 1 executes OS9GEN. Line 2 enters
the main boot filename. Lines 3 and 4 enter the names of
the two additional files, and Line 5 enters an end-of-file
marker.

osS9gen /d1
/d@/0s3boot
/d@/tape.driver
/d2/video.driver

The following commands generate a new boot file on Drive
/D1 that includes all the old boot file modules. Line 1 uses
BUILD to create a file called Bootlist. The next three lines
enter the names of the three files into Bootlist. Line 5 ter-
minates BUILD, and Line 6 runs OS9GEN with input
redirected from the new Bootlist file.

build /d@/bootlist

? /d@/0s9boot [ENTER)

? /d@/tape.driver (ENTER]

? /d@/video.driver (ENTER)

?

os9gen /d1</d@/bootlist (ENTER)

To install a custom boot file on a single-drive system, build
a Bootlist to drive the OS9GEN program. You need a direc-
tory that contains the required file managers, device driv-
ers, descriptors, and other files for the boot file. For
example, to make a new boot file containing only the
/TERM, /D0, /D1, and /P devices, first build a Bootlist such
as:

6-78

System Command Descriptions / 6

build /d@/bootlist
term_vdg.dt
p.dd (ENTER)
d@_35s.dd [ENTER)
d1_35s.dd (ENTER]
059p2 [ENTER)

Init

10Man (ENTER]

RBF .mn (ENTER)
CC3Disk.dr
SCF.mn (ENTER]
CC310.dr
vdgint.io
printer.dr

clock.e@hz [ENTER

cc3go [ENTER

Then use OS9GEN to create the new boot file on a separate
diskette by typing:

os9gen /d@ -s #25K </dB/bootlist (ENTER)

This command causes OS9GEN to use only one drive, 256K
of buffer space, and the filenames previously stored in the
Bootlist file.

You can expand this basic bootlist file to include other stan-
dard OS-9 modules such as window device descriptors, other
disk drivers, descriptors, and terminal or modem
descriptors.

All of the standard bootlist modules are contained in the
MODULES directory on the BASIC09/CONFIG diskette.

6-79

0S8-9 Commands Reference

PROCS

Syntax: procs [e]

Function: Displays a list of the processes running on the sys-
tem. PROCS automatically adjusts its output for 32-or 80-
column displays.

Options:
e Causes PROCS to display the processes of all
users.
Notes:

® Normally PROCS lists only processes having the user's ID.
The list is a snapshot taken at the instant PROCS exe-
cutes. Processes switch states rapidly, usually many times
per second.

® PROCS shows the user and process ID numbers, priority,
state (process status), memory size (in 256 byte pages), pri-
mary program module, and standard input path.

® PROCS adjusts its output for 80 or 32 columns.
Examples:

® Because PROCS automatically adjusts for either 32- or 80-
column displays, the following command can produce either
format:

procs e |ENTER

6-80

System Command Descriptions | 6

Following is a possible 32-column display of PROCS:

ser# Pty
StPtr

Age Sta
Primary

Id PId U
Sigl Mem
1
/) 3
6
/) 16
2
') 6
[
') 3
2
/) 3

Following is a possible 80-column display of PROCS:

User

Id Pld Number

$6FB2
P 128
$68E2

128 $80
Shell
128 $848
Basic@9
128 $848
Procs
128 $80
Shell
129 ¢80
Shell

Mem Stack

Pty Age Sts Signl Siz Ptr Primary Module

128 128 ¢80
128 128 ¢80
128 128 ¢80
128 129 ¢8¢
128 129 $88
128 128 8¢

3 §78B2 Shell
16 $74B2 Basic9
3 $72E2 Shell
3 $6FB2 Shell
3 $68E2 Shell
6 $05F3 Procs

6-81

0S-9 Commands Reference

PWD
PXD

Syntax: pwd
pxd

Function: PWD shows the path from the ROOT directory to
the current data directory. PXD shows the path from the
ROOQOT directory to the current execution directory.

Notes:

® (OS-9 keeps a current data directory and current execution
directory for each process. Use PWD and PXD to show
where your current data and execution directories are
located on the disk or disks you are using.

Examples:
® The following example uses a full pathlist. CHD changes

the current data directory to the MANUALS directory.
chd /d1/steve/textfiles/manuals

To display the full path to the data directory, type:
pwd

The screen displays the data directory path:
/D1/STEVE/TEXTFILES/MANUALS

® The following commands cause the current data directory
to move up one level in the directory hierarchy and then
display the data directory.

chd .. (ENTER)
pwd (ENTER)

/D1/STEVE/TEXTFILES

6-82

System Command Descriptions / 6

® The following commands change the current data directory
to the parent directory and then display the current data
directory.

chd ..
pwd [ENTER

/D1/STEVE

® The following command displays the current execution
directory, CMDS.

pxd (ENTER]

/D@ /CMDS

6-83

0S-9 Commands Reference

RENAME

Syntax: rename pathlist filename

Function: Gives the specified file or directory a new name.

Parameters:
pathlist The current name of the file or directory.
filename The new name.

Notes:

® You must have write permission for the file.

Examples:

e To change a file’s name from Blue to Purple, type:

rename blue purple
® To rename a file in the USER9 directory of Drive /D3, type:

rename /d3/user9/test temp [ENTER

o In the following example, DIR displays the names of the
files in the current data directory. RENAME changes the
filename Animals to Mammals. Another DIR command
shows that RENAME has performed properly.

dir
The screen displays:

Directory of . 16:22:53
myfile animals

rename animals mammals [ENTER
dir [ENTER

6-84

System Command Descriptions / 6

The screen now shows:

Directory of . 16:23:22
myfile mammals

6-85

0S-9 Commands Reference

SETIME

Syntax: setime [yy/mm/dd hh:mml]:ssl]]

Function: Sets the system date and time, and activates the
real time clock.

Parameters:
yy The year in a two-digit format (86 for 1986).
mm The month in a one or two-digit format (01 or
1 for January, 12 for December).
dd The day of the month in a one- or two-digit
format, such as 21.
hh The hour in a one- or two-digit, 24-hour for-
mat (15 for 3 p.m.).
mm Minutes in a one- or two-digit format, such as
03, 5, or 55.
ss Seconds in a one- or two-digit format, such as
04, 5, or 25.
Options:

Specifying seconds in the new time entry is optional.

Notes:
® You can include the date and time parameters. If you do
not, SETIME asks you for them.

® Numbers are one- or two- decimal digits using the space,
colon, semicolon, or slash as delimiters.

® The CC3go module starts the clock on system startup, so
multitasking is possible without use of the SETIME utility.

6-86

System Command Descriptions / 6

¢ If you do not set the date and time when booting 0S-9, the
system cannot accurately update the “Last modified” date
and time for files.

Examples:

® To set the date and time to August 15, 1986, 3:45 p.m.,
type:

setime 86,08,15,15,45 [ENTER)

® To set the same date using a slightly different but equally
acceptable format, type:

setime 86/#8/15 15/45/88

6-87

0S-9 Commands Reference

SETPR

Syntax: setpr procID number

Function: Changes the CPU priority of a process. The priority
of a process determines the CPU time allotted to it under
multi-tasking conditions.

Parameters:
proclD The number of the process for which you want
to change the priority.
number The new priority number.
Notes:

® The process priority number is a decimal number in the
range 1 (lowest priority) to 255. If you need information
about the process ID number and current priority, use
PROCS.

® You can use SETPR only on processes that have your user
number.

o SETPR does not appear in the CMDS directory because it
is built into the shell.

® A Super User (User 0) can set any process priorities.

Examples:

® To set or change the priority of Process 8 to 250, type:
setpr 8 258

6-88

System Command Descriptions / 6

® In the following commands PROCS displays process ID
numbers and other information. Then, SETPR sets Process
3 to a priority of 255. The final command confirms the
change.

procs [ENTER

Following is a sample screen display:

User Mem Stack
Id PId Number Pty Age Sts Signl Siz Ptr Primary Module
B 128128 480 B 3 $78E2 Shell
0 128128480 0 16 $74B2 Basich9
0 128128480 @ 6 $05F3 Procs
0 128128 ¢80 0 3 $6FB2 Shell
0 128129 ¢80 0 3 $68E2 Shell

setpr 3 255 [ENTER
procs | ENTER

User Mem Stack
Id PId Number Pty Age Sts Signl Siz Ptr Primary Module
128 128 ¢80 ? 3 $78B2 Shell
255 128 ¢80 § 16 $74B2 Basicl9
128 128 ¢80 § 3 $72£2 Shell
128 129 $80 [} 3 $6FB2 Shell
128 129 $80 0 3 $6BE2 Shell
128 128 $8¢ # & $85F3 Procs

6-89

0S-9 Commands Reference

SHELL

Syntax: shell arglist

Function: The shell is 0S-9’s command interpreter program. It
reads data from its standard input path, processes it and
sends the output to its standard output path, and sends error
messages (and some prompts) via the standard error output.
Any or all of these paths may be redirected. It interprets the
data as a sequence of commands. The function of the shell is
to initiate and control execution of other OS-9 programs.

Parameters:

arglist The commands, parameters, and options given

SHELL in a command line.

Notes:

The shell reads and interprets one text line at a time from
the standard input path until it reaches an end-of-file
marker. At that time it terminates itself.

When another program calls the shell, a special case occurs
in which the shell takes the argument list as its first line
of input. If this command line consists of built-in com-
mands only, the shell reads and processes more lines. Oth-
erwise, control returns to the calling program after the
shell processes the single command line.

When operating from the shell, you do not need to specify
the SHELL command to execute a program, a command, or
a built-in shell function. Using SHELL before a command
causes the existing shell to fork an additional shell, which
then forks the specified process, such as:

shell dir e

Issuing a command without SHELL causes the existing
shell to fork the specified process, such as:

dir e [ENTER

6-90

System Command Descriptions / 6

The following two commands also have identical effects:

shell x [ENTER
x | ENTER

® The shell command separators are:

&
!

Sequential execution separator
Concurrent execution separator
Pipeline separator

end-of-line (sequential execution separator)

® The Shell command modifiers are:

<
>

>>
<>

<>>

>>>

Redirect standard input

Redirect standard output

Redirect standard error output

Redirects standard input and standard output

Redirects standard input and standard error
output

Redirects standard output and standard error
output

<>>> Redirects standard input, standard output and

standard error output

#n Set the process memory size in pages

#nK Set the program memory size in 1 kilobyte units.
® The following built-in Shell command parameters tell 0S-9

to:
chd pathlist Change the data directory
kill proelD Send the termination signal to
process
setpr proelD Change the specified process
number priority

6-91

0S-9 Commands Reference

chx pathlist Change the execution directory

1 =devicename Create an immortal process

w Wait for any process to die

p Turn on prompting

-p Turn off prompting

t Echo input lines to standard output
-t Not echo input lines

X Not terminate on an error

X Terminate on error

* Not process the following text

® See Chapter 3 for more information on the operation of the
shell.

6-92

System Command Descriptions / 6

TMODE

Syntax: tmode [pathnum] [paramlist] [...]

Function: Displays or changes the initialization parameters of
the terminal. TMODE automatically adjusts its output for 32-
or 80-column displays.

Common uses include changing baud rates and control key

definitions.

Parameters:

pathnum

paramlist
Options:

upc

-upc
bsb

-bsb

bsl

One of the standard path numbers:

.0 = standard input path
.1 = standard output path
.2 = standard error output path

One of the following options.

Displays uppercase characters only. Lowercase
characters automatically convert to uppercase.

Displays both upper- and lowercase characters.

Causes a backspace to erase characters. Back-
space characters echo as a backspace-space-
backspace sequence. This setting is the system
default.

Causes backspace not to erase. Only a single
backspace echoes.

Enables backspace over a line. Deletes lines by
sending backspace-space-backspace sequences
to erase a line (for video terminals). This set-
ting is the system default.

6-93

0S-9 Commands Reference

-bsl

echo

-echo
If

null=n

pause

-pause

pag=n

bsp=h
del=+h

eor=~h

eof=h

Disables backspace over a line. To delete a line,
TMODE prints a new line sequence (for hard-
copy terminals).

Input characters echo on the terminal. This
setting is the system default.

Turns off the echo default.

Turns on the auto line feed function. Line
feeds automatically echo to the terminal on
input and output carriage returns. The auto
line feed setting is the system default.

Turns off the auto line feed default.

Sets the null count—the number of null ($00)
characters transmitted after carriage returns

for the return delay. The value n is in decimal.
The default is 0.

Turns on the screen pause. This setting sus-
pends output when the screen fills. See the
pag parameter for a definition of screen size.
Resume output by pressing the space bar. This
setting is the system default.

Turns off the screen pause mode.

Sets the length of the video display page to n
(decimal) lines. This setting affects the pause
mode.

Sets the backspace character for input. The
value £ is in hexadecimal. The default is 08.

Sets the delete line character for input. The
value % is in hexadecimal. The default is 18.

Sets the end-of-record (carriage return) char-
acter for input. This setting requires a value
in hexadecimal. The default is 0D.

Sets the end-of-file character for input. The
value A is in hexadecimal. The default is 1B.

6-94

System Command Descriptions / 6

reprint=~h

dup=~

psc=nh

abort=~h

quit=~h

bse=h

bell=#

type=h

Sets the reprint line character. The value £ is
in hexadecimal.

Sets the character to duplicate the last input
line. The value % is in hexadecimal. The
default is 01.

Sets the pause character. The value of the
character is in hexadecimal. The default is 17.

Sets the terminate character (normally CON-
TROL C). The value of the character is in
hexadecimal.

Sets the quit character (normally CONTROL
E). The value of the character is in
hexadecimal.

Sets the backspace character for output. The
value £ is in hexadecimal. The default is 08.

Sets the bell (alert) character for output. The
value A is in hexadecimal. The default is 07.
For external devices, use type for ACIA (asyn-
chronous communications interface adapter)
initialization values (hexadecimal). The
default is 00. Bits 5-7 set either MARK,
SPACE, or no parity on all devices. Codes for
these are:

000 = no parity

101 = MARK parity transmitted, no
checking

111 = SPACE parity transmitted, no
checking

011 = even parity (available only with
the external ACIA pak and Mod-
pak devices)

001 = odd parity (available only with
the external ACIA pak and Mod-
pak devices)

6-95

0S-9 Commands Reference

xon=~h

xoff=h

baud=~h

Bit 4 selects auto-answer modem support fea-
tures.

1 =on
0 = off

See “Technical Information for the RS232
Port” in Chapter 5 for more information.

For TERM-VDG, the type byte has a different
use:

Bit 0 specifies a machine with true low-
ercase capability. Set Bit 0 to turn on
true lowercase.

For TERM-WIN, use a value of 80 to specify a
window device.

Sets the character to be used as a signal for
resuming transmission of data after an xoff
signal is received. Default is 0 (not active).

Sets the character to be used for stopping data
transmission. Default is 0 (not active).

Sets the baud rate, word length, and stop bits
for a software-controllable interface. The codes
for the baud rate are:

0=110 3=1200 .6= 9600
1=300 4=2400 7=19200 (ACIAPAK only)
2=600 5=4800 7=32000 (SIO only)

Bits 0-3 determine the baud rate.
Bit 4 is reserved for future use.
Bits 5-6 determine the word length:

00 = 8 bits
01 = 7 bits
Bit 7 determines the number of stop bits:
0 = 1 stop bit
1 = 2 stop bits

See “Technical Information for the RS232
Port” in Chapter 5 for further information.

6-96

System Command Descriptions / 6

Notes:

You can specify any number of parameters from the options
list, separating them by spaces or commas. If you don’t
specify parameters, TMODE displays the current values of
the available options.

You can use a period and a number to specify the pathnum-
ber on which to read or set options. If you don’t specify a
path, TMODE affects the standard input path.

TMODE works only if a path to the file/device is open. Use
XMODE to alter device descriptors and set device initial
operating parameters.

TMODE can also alter the baud rate, word length, stop
bits, and parity for devices already initialized.

If you use TMODE in a procedure file, you must specify one
of the standard output paths (.1 or .2). This procedure is
necessary, because the command redirects the SHELL’s
standard input path to come from a disk file. (You can use
TMODE only on SCFMAN-type devices.) For example, to
set lines per page for standard output, use this line:

TMODE .1 pag=24

Examples:

The following command line sets the terminal to display
upper- and lowercase, sets the null count to 4, and turns on
the screen pause function.

tmode -upc 1f null=4 pause (ENTER]

The next command sets the screen page length (number of
lines) to 24, turns on the screen pause function and the
backspace-over-line function, and sets the backspace charac-
ter value to 8 and turns off the echo default.

tmode pag=24 pause bsl -echo bsp=8 (ENTER]

6-97

0S-9 Commands Reference

TUNEPORT

Syntax: tuneport [device] [-s = valuel]

Function: Lets you test and set delay loop values for the cur-
rent baud rate and select the best value for your printer or

terminal.
Parameters:
device The device you want to test, either your
printer (/p) or terminal (/t1).
value A new delay loop value.
Options:
8= Sets a new delay loop value.
Examples:

The following command provides a test operation for your
printer.

tuneport /p

After a short delay, TUNEPORT displays the current baud
rate and sends data to the printer to see if it is working
properly. The program then displays the current delay value
and asks for a new value. Enter a decimal delay value and
press (ENTER). Again, TUNEPORT sends data to the printer
as a test. Continue this process until you find the best
value. When you are satisfied, press instead of enter-
ing a value at the prompt. A closing message displays your
new value.

Use the same process to set a new delay loop value for the
/T1 terminal.

6-98

System Command Descriptions / 6

® The following command line sets the delay loop value for
your printer to 255.

tuneport /p -s=255

Use such a command on future system boots to set the opti-
mum delay value determined with the TUNEPORT test
function. Then, using OS9GEN or COBBLER, generate a
new boot file for your system diskette. You can also use the
-s option with TUNEPORT in your system Startup file to
set the value.

6-99

0S-9 Commands Reference

UNLINK

Syntax: unlink modname [...]

Function: Tells OS-9 that the named memory module(s) is no
longer needed by the user.

Parameters:

modname One or more modules you want to unlink.
Options:

In one command line, you can specify as many modules as you
want to unlink.

Notes:

® Whether OS-9 destroys the modules and reassigns their
memory depends on whether the module is in use by other
processes. Each process using a module increases its link-
count by one. Each UNLINK you issue decreases its link-
count by 1. When the link-count reaches 0, OS-9 deallo-
cates the module.

® You should unlink modules whenever possible to make most
efficient use of available memory resources. Modules you
have loaded and linked might need to be unlinked twice to
remove them from memory.

6-100

System Command Descriptions / 6

® Warning: Never attempt to unlink a module you didn’t load
or link, and never unlink a module that is in use by pro-
grams (displayed by the PROCS command).

Examples:

® To unlink three modules named Pgm1, Pgm5, and Pgm99,

type:

unlink pgm1 pgm5 pgm99 [ENTER)

® In the following command sequence, MDIR first displays
the modules in memory. The next command unlinks the
edit module. The output of the final command (MDIR)
shows that UNLINK is successful—Edit no longer appears

on the list.
mdir [ENTER

A possible screen display is:

Module Directory at 80:81:08

REL Boot
[0Man RBF

DD SCF
TERM W

W4 WS

T2 PRINTER
Pipe Clock
Shell Copy
Dir Display
List Load
Procs Rename

Basich9 GrfDrv

unlink edit [ENTER
mdir [ENTER

0S9p1
CC3Disk
Cc310
W1

We

P
CC36Go
Date
Echo
MDir
Setime
Edit

0S9p2
D@
VDGInt
W2

W7
PipeMan
CC3HDisk
DEIniz
Iniz
Merge
Tmode

Init
D1
Grflnt
W3
ACIAPAK
Piper
H

Del
Link
Mfree
Unlink

6-101

0S-9 Commands Reference

The new screen display is:

Module Directory at 808:83:15

REL Boot 0S9p! 0S9p2 Init
[0Man RBF CC3Disk D@ D1

DD SCF Cc3Io VDGInt Grflnt
TERM W W1 W2 W3

W4 WS W6 W7 ACIAPAK
T2 PRINTER P PipeMan Piper
Pipe Clock CC3Go CC3HDisk H@
Shell Copy Date Delniz Del
Dir Display Echo Iniz Link
List Load MDir Merge Mfree
Procs Rename Setime Tmode Unlink

Basic#9 GrfDrv

6-102

System Command Descriptions / 6

WCREATE

Syntax: wcreate /wpath [-s=typel xpos ypos xsize
ysize foreground background [border]

Function: Initializes and creates a window.

Parameters:

/wpath The window device name of the window you
are creating (W, W1, W2 W3, and so on).

xpos The x co-ordinate (in decimal) for the starting
position of the upper left corner of the screen.

yDpOs The y co-ordinate (in decimal) for the starting
position of the upper left corner of the screen.

xsize The horizontal size of the screen in columns; 1
to 80 (in decimal) for screen types 2, 5, and 7,
and 1 to 40 (decimal) for screen types 1, 6,
and 8.

ysize The vertical size of the screen in lines, in the
range 1 to 24 (in decimal).

foreground The window foreground color.

background The window background color.

border An optional window border color. The default
is black.
Options:
-s=type The screen type, chosen from the following
list:

Type Description

1= 40-column hardware text screen
2 = 80-column hardware text screen
5= 640 x 192 two-color screen
6 = 320 x 192 four-color screen

6-103

0S-9 Commands Reference

7
8

If you use the -s=type option, you must spec-
ify a border color in the command line. The -s
option is only used to create a window on a
new screen. When creating additional windows
on the currently displayed screen, omit the -s
and border color options.

-z Directs WCREATE to accept input from the
standard input (redirected from a file).

640 x 192 four-color screen
320 x 192 sixteen-color screen

-? Produces a help message for the command.
Exémples:

® To create a full screen, 80-column text window on /wl,
type:
wcreate /w1l -s5=2 0 0 80 24 7 4 1
® To create two windows (/w2 and /w3) on a 640 x 192 graph-
ics screen in which /w2 is the upper left of the display and

/w3 is the right half of the display, first use build to create
an input file:

build wfile

? /w2 -5=07 0 0 4¢ 12 7 4 1 [ENTER)
? /w3 40 @ 40 24 4 7 [ENTER)

? (ENTER)

Then, create the windows using Wfile as input:

wcreate -z < wfile |ENTER

6-104

System Command Descriptions / 6

® You can use the -z option to create windows in your system
startup file. For example, the following startup file sets up
several windows, along with the usual SETIME.

* lock the shell in memory and set the time
link shell
setime < /1

* create the new windows

wcreate -z

* set up an 88-column full window for /wi
/wil -s=2 0 0 88 24 7 4 1

* set up a 40 column full window for /w2
/w2 -s=1 0 0 480 24 7 4 1

* set up /w3 and /w4 as halves of a

*648 x 192 display

/w3 -s=7 0 0 40 24 7 4 1

/w4 48 6 40 24 4 7

* the following blank line terminates input
* from wcreate

* get the graphics fonts loaded
merge sys/stdfonts > /wil

Now, when the system boots, it has four windows defined,
besides TERM. As shown, you can use an asterisk as the
first character on a line in order to allow comments in the

file.

6-105

0S-9 Commands Reference

XMODE

Syntax: xmode devname [paramlist]

Function: Displays or changes the initialization parameters of
any SCF-type device such as the video display, printer,
RS-232 port, and others. XMODE automatically adjusts its
output for 32- or 80-column displays.

Common uses include changing baud rates and control key
definitions.

Parameters:
pathnum The device name to change, such as /term,
/w', 1t2, and so on.
paramlist One of the following options.
Options:
upc Displays uppercase characters only. Lowercase
characters automatically convert to uppercase.
-upc Displays both upper- and lowercase characters.
bsb Causes a backspace to erase characters. Back-
space characters echo as a backspace-space-
backspace sequence. This setting is the system
default.
-bsb Causes backspace not to erase. Only a single
backspace echoes.
bsl Enables backspace over a line. Deletes lines by
sending backspace-space-backspace sequences
to erase a line (for video terminals). This set-
ting is the system default.
-bsl Disables backspace over a line. To delete a line,

you must print a new line sequence (for hard-
copy terminals).

6-106

System Command Descriptions / 6

echo

-echo
If

null=n

pause

-pause

pag=n

bsp=~h
del=h

eor=h

eof=H
reprint=~h

dup=~h

Input characters echo on the terminal. This
setting is the system default.

Turns off the echo default.

Turns on the auto line feed function. Line
feeds automatically echo to the terminal on
input, and they output carriage returns. The
auto line feed setting is the system default.

Turns off the auto line feed default.

Sets the null count—the number of null ($00)
characters transmitted after carriage returns

for the return delay. The value n is in decimal.
The default is 0.

Turns on the screen pause. This setting sus-
pends output when the screen fills. See the
pag parameter for a definition of screen size.
Resume output by pressing the space bar. This
setting is the system default.

Turns off the screen pause mode.

Sets the length of the video display page to n
(decimal) lines. This setting affects the pause
mode.

Sets the backspace character for input. The
value % is in hexadecimal. The default is 08.

Sets the delete line character for input. The
value h is in hexadecimal. The default is 18.

Sets the end-of-record (carriage return) char-
acter for input. This setting requires a value
in hexadecimal. The default is 0D.

Sets the end-of-file character for input. The
value A is in hexadecimal. The default is 1B.

Sets the reprint line character. The value & is
in hexadecimal.

Sets the character to duplicate the last input
line. The value 4 is in hexadecimal. The
default is 01.

6-107

0S-9 Commands Reference

psc=h

abort=nh

quit=~h

bse=h
bell=A

type=~h

Sets the pause character. The value of the
character is in hexadecimal. The default is 17.

Sets the terminate character (normally CON-
TROL C). The value of the character is in
hexadecimal.

Sets the quit character (normally CONTROL
E). The value of the character is in
hexadecimal.

Sets the backspace character for output. The
value A is in hexadecimal. The default is 08.

Sets the bell (alert) character for output. The
value A is in hexadecimal. The default is 07.

For external devices, use type for ACIA (asyn-
chronous communications interface adapter)
initialization values (hexadecimal). The
default is 00. Bits 5-7 set either MARK,
SPACE, or no parity on all devices. Codes for
these are:

000 = no parity

101 = MARK parity transmitted, no
checking

111 = SPACE parity transmitted, no
checking

011 = even parity (available only with
the external ACIA pak and Mod-
pak devices)

001 = odd parity (available only with

the external ACIA pak and Mod-
pak devices)

Bit 4 selects auto-answer modem support fea-
tures.

1 =on
0 = off

See “Technical Information for the RS232
Port” in Chapter 5 for more information.

6-108

System Command Descriptions / 6

baud=~h

xon=~h

xoff=h

For TERM-VDG, the type byte has a different
use:

Bit 0 specifies a machine with true low-
ercase capability. Set Bit 0 to turn on
true lowercase.

For TERM-WIN, use a value of 80 to specify a
window device.

Sets the baud rate, word length, and stop bits
for a software-controllable interface. The codes
for the baud rate are:

0=110 3=1200 6= 9600

1=300 4=2400 7=19200 (ACIAPAK
only)

3=600 5=4800 7=32000 (SIO only)

Bits 0-3 determine the baud rate
Bit 4 is reserved for future use
Bits 5-6 determine the word length:

00 = 8 bits
01 = 7 bits

Bit 7 determines the number of stop bits:
0 = 1 stop bit

1 = 2 stop bits.

See “Technical Information for the RS232
Port” in Chapter 5 for further information.

Sets the character to be used as a signal for
resuming transmission of data after an xoff
signal is received. Default is 0 (not active).

Sets the character to be used for stopping data
transmission. Default is 0 (not active).

6-109

OS-9 Commands Reference

Notes:

XMODE is similar to TMODE, but there are differences.
TMODE operates only on open paths, so its effect is tempo-
rary. XMODE updates the device descriptor. Its change per-
sists as long as the computer is running, even if you or the
system repeatedly open and close the paths to the device.

If you use XMODE to change parameters and the COB-
BLER program to make a new system diskette or to re-
make the boot tracks on the current system diskette, the
process permanently changes the parameters on the new
system diskette.

XMODE requires that you specify a device name. If you do
not specify parameters, XMODE displays the present value
for each parameter. You can use any number of parameters,
separating them with spaces or commas.

Examples:

The following command sets the term (video) for upper- and
lowercase, the null count to 4, the backspace character
value to 1F hexadecimal, and turns on the screen pause
function.

xmode /term -upc null=4 bse=1F pause [ENTER]

6-110

Chapter 7

Macro Text Editor

Overview

The 0S-9 Macro Text Editor is a powerful, easy-to-learn text-
preparation system. Use it to prepare text for letters and docu-
ments or text to be used by other OS-9 programs, such as the
assembler and high-level languages. The text editor includes the
following features:

® Compact size

e (Capability of having multiple read and write files open
at the same time

® All 0S-9 commands usable inside the text editor
® Adjustable workspace size

® Repeatable command sequences

e Edit macros (special utility functions)

® Multiple text buffers

® Powerful commands

The Macro Text Editor is about 5 kilobytes in size and requires
at least 2K bytes of free RAM to run.

Text Buffers

As you enter text, the editor places it in a temporary storage
area called a text buffer. A text buffer acts as a scratch pad for
saving text that you can manipulate with various edit com-
mands. The Macro Text Editor can use multiple text buffers, one
at a time.

A buffer in use is called the edit buffer. Edit also has another
default buffer called the secondary buffer. As well, you can create
additional buffers up to the capacity of your computer’s memory.

Edit Pointers

The Macro Text Editor has an edit pointer that identifies your
position in the buffer, in a manner similar to holding your place
in a book with your finger.

7-1

0S-9 Commands Reference

The pointer is invisible to you, but Edit commands can reposi-
tion it and display the text to which it points. Each buffer has its
own edit pointer, and you can move from buffer to buffer without
losing your place in any of them.

Entering Commands

The Macro Text Editor is interactive. This means you and the
editor carry on a two-way conversation. You issue a command,
and the editor carries out the command and displays the result.
When you are through making changes, you can save your
edited file, then press (0] to quit editing.

When the editor displays E: on the screen, it is waiting for you
to type a command. You type a line that includes one or more
commands, then press (ENTER]. Edit carries out the commands and
again displays E:.

If you enter more than one command on a line, separate the
commands with a space. If, however, a space is the first charac-
ter on a line, the editor considers the space to be an insert com-
mand and not a separator.

Correct a typing error by backspacing over it or by deleting the
entire line. Note, you cannot correct a line after pressing [ENTER].

Control Keys

You can use the same special control keys with Edit that you
use with OS-9. See Appendix D for a complete listing of these
keys. Following is a list of some of the control keys that are espe-
cially useful with Edit:

Control Key(s) Function

Repeats the previous input line.

Terminates the editor and returns to com-
mand entry mode.

(o) Displays the current input on the next line.

Backspaces and erases the previous

or character.

7-2

Macro Text Editor /| 7

Control Key(s)

Function

UG

(70) (%] or

Interrupts the editor and returns to com-
mand entry mode.

Temporarily halts the data output to your
terminal so that you can read the screen
before the data scrolls off. Output resumes
when you press any other key.

Deletes the line.

Terminates the editor, and returns to com-
mand entry mode.

Command Parameters

There are two types of edit parameters, “numeric” and “string.”

Numeric Parameters. Numeric parameters specify an amount,
such as the number of times to repeat a command or the number
of lines affected by a command. If you do not specify a numeric
parameter, the editor uses the default value of one. Specify all
other numeric parameters in one of the following ways.

® Enter a positive decimal integer in the range 0 to
65,535, For example:

0
10

5250
65532

31

® Enter an asterisk (*) as a shorthand for all (all the way
to the beginning, all the way to the end, all of the lines,
and so on). To the editor, an asterisk means infinity. Use
the asterisk to specify all remaining lines, all charac-
ters, or repeat forever.

® Use a numeric variable. (See “Parameter Passing” later
in this chapter.)

7-3

0S-9 Commands Reference

String Parameters. String parameters specify a single charac-
ter, group of characters, word, or phrase. Specify string parame-
ters in either of the following ways.

® Enclose the group of characters with delimiters (two
matching characters). You can use any characters, but
they must match. If one string immediately follows
another, separate the two with a single delimiter that
matches the others. For example:

“"string of characters"
/STRING/

my name is Larry
“"first string"second string"
/string 1/ string 2/

® Use a string variable. (See “Using Macros” later in this
chapter.)

Syntax Notation

Syntax descriptions indicate what to enter and the order in
which to do it. The command name is first; type it exactly as
shown. Follow the command name with the correct parameters.
Enter each as it is described in the section on parameters.

The syntax descriptions for each command use the following
notations:

n = numeric parameter

str = string parameter

- = space character. When you see J, press the space bar.
text = one or more characters terminated by pressing

Getting Started
From the OS-9 prompt, start Edit by typing:

edit [ENTER

Enter a command when the screen shows E:.

You can quit Edit at any time by pressing (@) (ENTER]. The Q com-
mand terminates the editor and returns you to the 0S-9 Shell,
which responds with the 059: prompt.

Macro Text Editor /| 7

Following is a list of ways you can start the editor, including the
effect of each. The examples call a file that already exists oldfile.
They call a file to be created newfile.

EDIT

EDIT newtfile

EDIT oldfile

EDIT oldfile
newfile

0S-9 loads the editor and starts it. The com-
mand does not establish an initial read or
write files, but you can perform text file opera-
tions by opening files after the editor is
started.

0S-9 loads the editor and starts it, creating
the file called newfile. Newfile is the initial
write file. There is no initial read file. How-
ever, you can open files to read later.

0S-9 loads the editor and starts it. The initial
read file is oldfile. The editor creates a file
called SCRATCH as the initial write file.
When you end the edit session, OS-9 deletes
oldfile and renames SCRATCH to oldfile. This
gives the appearance of oldfile being updated.

Note: The two 0S-9 utilities DEL and
RENAME must be present on your system if
you wish to start the editor in this manner.

08-9 loads the editor and starts it. The initial
read file is oldfile. The editor creates newfile—
the initial write file. The terms oldfile and
newfile refer to any properly constructed OS-9
pathlist.

7-5

0S-9 Commands Reference

Edit Commands

Displaying Text

Ln

Lists (displays) the next n lines, starting at
the current position of the edit pointer. The
edit pointer position does not change.

! (ETER)

displays the current line. If the edit pointer is
not at the beginning of the line, only the por-
tion of the line to the right of the edit pointer
shows on the screen.

13 (EWTER)

displays the current line and the next two
lines.

1+ (ENTER)

displays all text from the current position of
the edit pointer to the end of the buffer.

The L command displays text regardless of
which verify mode is in effect.

Displays the n lines that precede the edit
pointer. The position of the edit pointer does
not change. For example:

x (EVTER)

displays any text on the current line that pre-
cedes the edit pointer. If the edit pointer is at
the beginning of the line, the command dis-
plays nothing.

x3 [ENTER)

displays the two preceding lines and any text
on the current line that precedes the edit
pointer.

The X command displays text regardless of
which verify mode is in effect.

7-6

Macro Text Editor /| 7

Manipulating the Edit Pointer

(CTRL] (7] or (4]

on an external
terminal

Moves the edit pointer to the beginning (first
character) of the text buffer. The screen shows
the up arrow when you hold down and
press (7). For example,

moves the edit pointer to the beginning of the
buffer.

Moves the edit pointer to the end (last charac-
ter) of the buffer. For example,

/ (EER)

moves the edit pointer past the end of the
buffer.

Moves the edit pointer to the beginning of the
next line and displays it. Use this command to
go through text one line at a time. You can
look at each line, correct any mistakes, and
then move to the next line.

7-7

0S-9 Commands Reference

-n

Moves the edit pointer either to the end of the
line or forward n lines and displays the line.
Entering a value of zero moves the edit pointer
to the end of the current line. For example:

+0 (ENTER)

Entering a value other than zero moves the
pointer forward n lines and displays the line.
For example,

+ (BT

moves the pointer to the next line and displays
the line. This command performs the same

function as [ENTER]).
+19 (ENTER

moves the pointer ahead 10 lines and displays
the line.

+
moves the edit pointer to the end of the buffer.

Moves the edit pointer either to the beginning
of the line or backward n lines. For example:

-0 (ENTER)

moves the edit pointer to the beginning of the
line and displays the line. Entering a value
other than zero moves the edit pointer back n
lines. For example,

- (ENTER]

moves the edit pointer back one line and dis-
plays the line.

-5 (ENTER]

moves the edit pointer back five lines and dis-
plays the line.

-+ [ENTER]

moves the edit pointer to the beginning (top)
of the buffer and displays the first line.

7-8

Macro Text Editor / 7

>n

<

Moves the edit pointer to the right n charac-
ters. Use this command to move the edit
pointer to some position in the line other than
the first character. For example,

> (ETER)

moves the edit pointer to the right one
character.

>25 [ENTER

moves the edit pointer to the right 25
characters.

>
moves the edit pointer to the end of the buffer.

Moves the edit pointer to the left n characters.
Use this command to move the edit pointer to
some position in a line other than the first
character. For example:

< (ENTER]

moves the edit pointer to the left one
character.

<10 (ENTER]

moves the edit pointer to the left 10
characters.

< (ENTER]

moves the edit pointer to the beginning of the
buffer.

7-9

0S-9 Commands Reference

Inserting and Deleting Lines

Jtext

In str

Preceding text lines with a space inserts the
text as a new line ahead of the edit pointer.
The position of the edit pointer does not
change. For example,

JInsert this line [ENTER

inserts the line.

“Line one [ENTER
CLine two |ENTER
OLine three [ENTER

inserts three lines.

Inserts a line of n copies of the specified string
immediately before the position of the edit
pointer. The position of the edit pointer does
not change. For example,

14@/+/ |ENTER

inserts a line containing 40 asterisks. You can
also use the “I” command to insert a line con-
taining a single copy of the string. This func-
tion is important when you want to use a
macro to insert lines, since the space bar can-
not be used within a macro. For example,

i"Line to insert' [ENTER

inserts the line.

7-10

Macro Text Editor | 7

Dn

Deletes (removes) n lines from the edit buffer,
starting with the current line. This command
displays the lines to be deleted. For example:

d (ETER)

deletes the current line, regardless of the posi-
tion of the edit pointer, and displays it.

44 [ETER)

deletes the current line and the next three
lines.

4+ (ENTER)

deletes everything from the current line to the
end of the buffer.

Kills (deletes) n characters, starting at the
current position of the edit pointer. This com-
mand displays all deleted characters. For
example,

¢ (ENTER)

deletes the character at the edit pointer.

4 (ETER)

deletes the character at the current position of
the edit pointer and the next three characters.

o+ (ETER)

deletes everything from the current position of
the edit pointer to the end of the buffer.

0S-9 Commands Reference

En str

Extends n lines by adding a string to the end
of each line. £ extends a line, displays it, and
then moves the pointer past it. For example,

e/this is a comment/ [ENTER

adds the string “this is a comment” to the end
of the current line and moves the edit pointer
to the next line.

e3/xx | ENTER

adds the string xx to the end of the current
line and the next two lines. It moves the
pointer past these lines.

Unextends (deletes) the remainder of a line
from the current position of the pointer. Use U
to remove extensions, such as comments, from
a line. For example,

u (ENTER]

deletes all the characters from the current
position of the pointer up to the end of the cur-
rent line.

For some practice in using the commands that display text,
manipulate the edit pointer, and insert and delete lines, turn to
Sample Session 1 in this chapter.

7-12

Macro Text Editor /| 7

Searching and Substituting

Sn string

Cn stringl
string2

Searches for the next n occurrences of string.
When Edit finds an occurrence, it displays the
line and moves the edit pointer to the line. If
Edit does not find the string or if all the
occurrences have been found, the edit pointer
does not move. For example,

s/my string/

searches for the next occurrence of “my
string”.

s3"strung out' [ENTER

searches for the next three occurrences of
“strung out”.

s*/seek and find/

searches for all occurrences of “seek and find”
between the edit pointer and the end of the
text.

Changes the next n occurrences of stringl to
string2. When Edit finds stringl, it moves the
edit pointer past it and changes stringl to
string2, then it displays the updated line. If it
does not find stringl it displays “NOT
FOUND.” If all the occurrences have been
found, the edit pointer does not move. For
example,

c/this/that/

changes the next occurrence of ‘““this” to
“that”.

c2/in/out/
changes the next two occurrences of “in” to
“Out”_

c*!seek and find!sought and

found! [ENTER

changes all occurrences of “seek and find”
that are between the edit pointer and the end
of text to “sought and found”.

7-13

0OS-9 Commands Reference

Sets the SEARCH/CHANGE anchor to Col-
umn 7n. To find a string that begins in a spe-
cific column, set the anchor to the column
position before using the search command to
find it. If you do not include a value for n, Edit
assumes Column 1. For example:

a (ENTER]

finds a string only if it begins in Column 1.

a20

finds a string only if it begins in Column 20.
If you use the A command to set the anchor,
this setting remains in effect only for the cur-
rent command line. After Edit executes the
command, the anchor automatically returns to
its normal value of zero.

For some practice in using the commands that search and substi-
tute, turn to Sample Session 2 in this chapter.

Miscellaneous Commands

Tn

Tabs (moves) the edit pointer to Column n of
the current line. If n exceeds the line length,
this command extends the line with spaces.
For example,

t (ENTER)

moves the edit pointer to Column 1 of the cur-
rent line.

5 (TR

moves the edit pointer to Column 5 of the cur-
rent line.

7-14

Macro Text Editor /| 7

.SHELL
command
line

Lets you use any OS-9 command from within
the editor. The remainder of the command line
following .SHELL passes to the OS-9 Shell for
execution. For example,

.shell dir /d1

calls the OS-9 Shell to display the directory of
D1.

.shell basic09
starts BASICO09.

.shell edit oldfile newfile (ENTER]

restarts the editor.

Adjusts the amount of memory available for
buffers and macros. If the workspace is full
and the editor does not allow you to enter
more text, increase the workspace size. If you
need only a small amount of the available
workspace, decrease the workspace size so that
other OS-9 programs can use the memory. For
example,

m5000
sets the workspace size to 5000 bytes.

m10000
sets the workspace size to 10000 bytes.

Before leaving Edit, you can increase the
workspace. This decreases the time the editor
takes to copy the input file to the output file,
because the editor can read and write more
data at one time. Edit changes memory in
256-byte pages. For the M command to have
any effect, a new workspace size must differ
from the current size by at least 256 bytes.
The M command does not let you deallocate
any workspace that Edit needs for buffers or
macros.

7-15

0S-9 Commands Reference

.SIZE

Vmode

Displays the size of the workspace and the
amount that has been used. For example:

.51ze

521 15328

521 is the amount of workspace Edit uses for
buffers and macros. 15328 is the amount of
available memory.

Ends editing and returns to the OS-9 Shell. If
you specified files when you started, Edit
writes the text in Buffer 1 to the initial write
file (specified when you start Edit). Next it
copies the remainder of the initial input file
(specified when you start Edit) to the initial
write file. The editor then terminates, and
control returns to the OS-9 Shell.

Turns the verify mode on or off. Edit always
starts with the verify mode on. Therefore, the
editor displays the results of all the commands
for which verify is appropriate. If you do not
want to see the results of commands, turn off
the verify mode by specifying 0 (zero) for
mode. To turn verify back on, specify any non-
zero number. For example,

v0 (G

turns off the verify mode.

v2 (EiTER)

turns on the verify mode.

v13 [ENTER]

turns on the verify mode.

If the verify mode is on when you switch to a
macro, it remains on. If you turn off verify
while in the macro, it is restored when you
return to the editor.

7-16

Macro Text Editor / 7

Manipulating Multiple Buffers

.DIR Displays the directory of the editor’s buffers
and macros. For example:

BUFFERS:

$ @ (secondary buffer)

* 1 (primary buffer)
5 (another buffer)

MACROS::

MYMACRO
LIST
COPY

Bn Makes buffer n the primary buffer. When you
switch from one buffer to another, the old one
becomes the secondary buffer, and the new one
becomes the primary buffer. For example,

bS (ETER)

makes Buffer 5 the primary buffer. If Buffer 5
does not exist, Edit creates it.

Pn Puts (moves) n lines into the secondary buffer.
This command removes the lines from the pri-
mary buffer, starting at the position of the
edit pointer, and inserts them into the second-
ary buffer before the current position of the
edit pointer. It displays the text that is moved.
For example,

p (ENTER]

moves one line to the secondary buffer.

pS (ENTER)

moves five lines to the secondary buffer.

p+ (EVTER)

moves all lines that are between the current
position of the edit pointer and the end of text
to the secondary buffer.

0S-9 Commands Reference

Gn Gets (moves) n lines from the secondary
buffer. This command takes the lines from the
top of the secondary buffer and inserts them
into the primary buffer before the current
position of the edit pointer. Edit then displays
the moved lines. When used with the P com-
mand, G moves text from one place to another.
For example,

g (ENTER]

gets one line from the secondary buffer.

g5 [ENTER)

gets five lines from the secondary buffer.

g+ (ENTER)

gets all lines from the secondary buffer.

For some practice in using miscellaneous commands and the
commands that manipulate multiple buffers, turn to Sample Ses-
sion 3 in this chapter.

Text File Operations

This section of the manual describes the group of commands
related to reading and writing OS-9 text files.

NEW Gets new text. Use .NEW when editing a file
that is too large to fit into the editor’s work-
space. NEW writes out all lines that precede
the current line, then appends an equal
amount of new text to the end of the buffer.

.NEW always writes text to the initial output
file (created when you start the editor) and
always reads text from the initial input file
(specified when you start the editor).

If you have finished editing the text currently
in the buffer, you can “flush” this text and fill
the buffer with new text by moving the edit
pointer to the bottom of the buffer and then
using the .NEW command. For example:

/ . new | ENTER

7-18

Macro Text Editor / 7

READ str

If you wish to retain part of the text that is
already in the buffer, move the edit pointer to
the first line you wish to retain and then type
.new. This command “flushes” all lines that
precede the edit pointer. It then tries to read
in new text that is the same size as the por-
tion flushed out.

Prepares an 0S-9 text file for reading. str
specifies the pathlist. For example.

.read "myfile" [ENTER

closes the current input file and opens
“myfile” for reading.

You can specify an empty pathlist. For
example,

.read "' [ENTER

closes the current input file and restores the
initial input file (specified when you start the
editor) for reading.

An open file remains attached to the primary
buffer until you close the file. You can have
more than one input file open at any time by
using the .READ command to open them in
different buffers.

To read these files, switch to the proper buffer,
and then use the R command to read from
that buffer’s input file. To close a file, you
must be in the same buffer where the file was
opened.

7-19

0S-9 Commands Reference

WRITE str

Opens a new file for writing. The string speci-
fies the pathlist for the file you wish to create.
For example,

.write "newfile' [ENTER

closes the current write file and creates one
called “newfile”. You can specify an empty
pathlist. For example:

.write ' [ENTER

closes the current write file and restores the
initial write file (specified when you start the
editor).

.WRITE attaches a new write file to the pri-
mary buffer that remains attached until you
close the file. You can have more than one
write file open by using .WRITE to open them
in different buffers. To write these files, switch
to the proper buffer. To close a file, you must
be in the same buffer where the file was
opened.

Reads (gets) n lines of text from the buffer’s
input file. It displays the lines and inserts
them before the current position of the edit
pointer. For example,

- (ENTER)

reads one line from the input file.

r 1@ [ENTER

reads 10 lines from the input file.
r
reads the remaining lines from the input file.

If a file contains no more text, the screen
shows the *END OF FILE+ message.

7-20

Macro Text Editor /| 7

Wn Writes n lines to the output file, starting with
the current line. It displays all lines that are
deleted from the buffer. For example,

w (EVTER)

writes the current line to the output file.

e

writes the current line and the next four lines
to the output file.

wx [ENTER]

writes all lines from the current line to the
end of the buffer to the output file.

For some practice in using the commands that read and write
08-9 text files, turn to Sample Session 4 in this chapter.

Conditionals and Command Series Repetition

When a command cannot be executed, the editor sets an internal
flag, and the screen shows *FAIL*. For example, if you try to
read from a file that has no more text, the editor sets the fail
flag. A set fail flag means that the editor cannot execute any
more commands until Edit encounters one of the following:

® The end of a command line typed from the keyboard.

® The end of the current loop. Any loops that are more
deeply nested are skipped. (See the repeat command.)

® A colon () command. Since loops nested deeper than the
current level are skipped, any occurrences of : that are
in a more deeply nested loop are also skipped.

7-21

0S-9 Commands Reference

Following are the commands and conditions that set the fail flag:

< Trying to move the edit pointer beyond the
beginning of the edit buffer.

> Trying to move the edit pointer beyond the +
end of the buffer.

S,C Not finding a string that was searched for.

G No text left in the secondary buffer.

R No text left in the read file.

P,w No text left in the primary buffer.

If you specify an asterisk for the repeat count on these com-
mands, Edit does not set the fail flag, because an asterisk usu-
ally means continue until there is nothing more to do. The
following commands explicitly set the fail flag if some condition
is not true.

.EOF Tests for end-of-file. .EOF succeeds if there is
no more text to read from a file. Otherwise, it
sets the fail flag.

.NEOF Tests for not end-of-file. .NEOF succeeds if
there is text to read from the file. Otherwise,
it sets the fail flag.

.EOB Tests for end-of-buffer. .EOB succeeds if the
edit pointer is at the end of the buffer. Other-
wise, it sets the fail flag.

.NEOB Tests for not end-of-buffer. NEOB succeeds if
the edit pointer is not at the end of the buffer.
Otherwise, it sets the fail flag.

.EOL Tests for end-of-line. This test succeeds if the
edit pointer is at the end of the line. Other-
wise, it sets the fail flag.

.NEOL Tests for not end-of-line. .NEOL succeeds if
the edit pointer is not at the end of the line.
Otherwise, it sets the fail flag.

ZERO n Tests for zero value. .ZERO succeeds if n
equals zero. Otherwise, it sets the fail flag.

7-22

Macro Text Editor /| 7

STAR n

.STR str

.NSTR str

[commands]n

Tests for star (asterisk). .STAR succeeds if n
equals 65,535 (“*”). Otherwise, it sets the fail
flag.

Tests for string match. .STR succeeds if the
characters at the current position of the edit
pointer match the string. Otherwise, it sets
the fail flag.

Tests for string mismatch. .NSTR succeeds if
the characters at the current position of the
edit pointer do not match the string. Other-
wise, it sets the fail flag.

Exits and succeeds. This is an unconditional
exit from the innermost loop or macro. The
fail flag clears after the exit.

Exits and fails. This is an unconditional exit
from the innermost loop or macro. The fail
flag sets after the exit.

Repeats the commands n times. Left and right
brackets form a loop that repeats the enclosed
commands n times. (The loop must be
repeated at least once.) If you enter the loop
command from the keyboard, it must all be on
one line. If it is part of a macro, however, it
can span several command lines. For example,

(11 S (B

repeats the L command five times.

Note: This is not the same as L5, which executes the L
command only once and has 5 as its parameter.

(+1r*

Displays lines starting with the next line up
to the end of the buffer and moves the edit
pointer to the end of the buffer.

This command repeats until the operation
reaches the end of the buffer. Then, when the
command tries to move the edit pointer past
the end of the buffer, Edit sets the fail flag,
terminates the loop, then clears the fail flag.

7-23

0S-9 Commands Reference

: commands

Executes the commands following the colon
based on the state of the fail flag. For
example:

FAIL FLAG CLEAR Skips all commands
that follow the colon ()
up to the end of the cur-
rent loop or macro.

FAIL FLAG SET Clears the fail flag, and
executes the commands
that follow the colon (:).

Below is a command line that deletes all lines
that do not begin with the letter A.

(CTRL)J(7J [.neob [.str"A™ + : d 1
)« ()

[*) moves the edit pointer to the beginning of
the buffer. The outer loop tests for the end of
the buffer and terminates the loop when it is
reached.

The inner loop tests for A at the beginning of
the line. If there is an A, the + command is
executed. Otherwise, it executes the D
command.

Below is a command that searches the current
line for “find it”. If the command finds the
text, it displays the line. Otherwise, the com-
mand line fails and the screen shows
* FAIL =.

[.eol vB -6 v .f : .str"™find i1t"™

-8 .s : [>1 1+ [ENTER]

.EOL V0 -0 V F tests to determine if the edit
pointer is at the end of the line. If it is, Edit
turns off the verify mode to prevent -0 from
displaying the line. Then it turns verify back
on, and .F ends the loop.

7-24

Macro Text Editor / 7

If the edit pointer is not at the end of the line,
the .STR command searches for “find it” at the
current position of the edit pointer. If it is at
the end of the line, Edit executes the -0 .S
commands. This execution moves the edit
pointer back to the beginning of the line, dis-
plays the line, and terminates the loop. Other-
wise, the > command moves the edit pointer
to the next position in the line.

The brackets prevent the command from fail-
ing and terminating the main loop if the end
of the buffer is reached.

Edit Macros

Edit macros are commands you create to perform a specialized
or complex task. For example, you can replace a frequently used
series of commands with a single macro. First, save the series in
a macro. Then each time you need it, type a period followed by
the macro’s name and parameters. The editor responds as if you
had typed the series of commands.

Macros consist of two main parts, the header and the body. The
header gives the macro a name and describes the type and order
of its parameters. The body consists of any number of ordinary
commands. (Except for a space character and (ENTER), you can use
any command in a macro).

Note: Macros cannot create new macros.

To create a macro, first define it with the .MAC command. Then
enter the header and body in the same manner as you enter text
into an edit buffer. When you are satisfied with the macro, close
its definition by pressing (@) (ENTER]. This command returns you
to the normal edit mode.

Macro Headers. A macro header must be the first line in each
macro. It consists of a name, and a “variable list” that describes
the macro’s parameters, if there are any. The name consists of
any number of consecutive letters and underline characters. Fol-
lowing are possible macro names:

del_all

trim_spaces

LIST

CHANGE_X _TO_Y

7-25

0S-9 Commands Reference

Although you can make a macro name any length, it is better to
keep it short, because you must spell it the same way each time
you use it. You can use upper- and lowercase letters or a
mixture.

Using Macros. Like other commands, you can give parameters
to macros so that they are able to work with different strings
and with different numbers of items. Macros are unable to use
parameters directly. Instead, Edit passes the parameters on to
the commands that make up the macro.

To pass the macro’s parameters to these commands, use the
variable list in the macro header to tell each command which of
the macro’s parameters to use. Each variable in the variable list
represents the value of the macro parameter in its corresponding
position. Use the corresponding variable wherever the parame-
ter’s value is needed.

The two types of variables are numeric and string. A numeric
variable is a variable name preceded by the # character. A
string variable is a variable name preceded by a $ character.
Variable names, like macro names, are composed of any number
of consecutive letters and underline characters. Examples of
numeric variables are:

#N
#ABC
#LONG_NUMBER_VARIABLE

Examples of string variables are:

3A

$B
$STR
$STR_A

$lower_case_variable_name

The function of the edit macro below is the same as that of the S
command, to search for the next n occurrences of a string.

7-26

Macro Text Editor /| 7

The first line of the macro is the macro header. It assigns the
macro’s name as SRCH. It also specifies that the macro needs
one numeric parameter (#N) and one string parameter (3STR).
The entire body of the macro is the second line. This example
passes both of the macro’s parameters to the S command, which
does the actual searching.

SRCH #N $STR
S #N $STR

Here is an example of how to execute this macro:

.SRCH 15 "string"

In the next example, the order of the parameter is reversed.
Therefore, when executing the macro, use the reverse order. The
macro structure is:

SRCH $STR #N
S #N $STR

Specify the parameters for the “S” command in the proper order
since it is only the “SRCH” macro that is changed. The following
example shows how to execute this macro. The order of the
parameters corresponds directly to the order of the variables in
the variable list.

.SRCH "string" 15

7-27

0S-9 Commands Reference

Macro Commands

Although macro editing has the same functions as text editing,
the macro mode also includes some special commands. The
macro commands you can use are as follows:

! text

.Jmacro name

MAC str

Places comments inside a macro. Ignores the
remainder of the line following the ! command.
This command lets you include, as part of a
macro, a short description of what it does.
Comments can help you remember the func-
tion of a macro. For example:

1
<">! Move the pointer to the top of the

buffer.
1*! Display all lines of text.
!

In this example there are four comments. Two
are empty, and two describe the commands
that precede them.

Executes the macro specified by the name fol-
lowing the period (.). For example:

.mymacro [ENTER]

.list @ (ENTER)

.trim " " (ENTER)

.merge "™ file_a " file b b" [ENTER]

Creates a new macro or opens the definition of
an existing one so that it can be edited. To
create a new macro, specify an empty string.
For example,

.mac"" [ENTER

creates a new macro and puts you into the
macro mode.

7-28

Macro Text Editor | 7

.SAVE strl
str2

SEARCH n
str

The screen shows M: instead of E: when the
editor is in the macro mode. To edit a macro
that already exists, specify the macro’s name.
For example,

.mac "mymacro"
opens the macro “MYMACRO?” for editing.

When a macro is open, edit it, or enter its def-
inition with the same commands you use in a
text buffer. After you edit the macro, press (@]
to close its definition and return to the
edit mode. The first line of the macro must
begin with a name that is not already used in
order to close the definition and return to
Edit.

Saves macros on an OS-9 file. Strl specifies a
list of macros to be saved. Separate the macro
names with spaces. S¢tr2 specifies the pathlist
for the file on which you want to save the
macros. For example:

.save "mymacro'myfile' [ENTER

saves the macro “MYMACRO” on the file
“MYFILE”.

.save "maca macb macc"mfile' [ENTER

saves the macros “MACA,” “MACB,” and
“MACC” on the file “MFILE”.

Searches the text file buffer for the specified
string. When a match is found, it stops and
displays that line. The n option permits a
search for the nth occurrence of a string
match. This command is the same as S n str.

7-29

0S-9 Commands Reference

LOAD str

.DEL str

.DIR

.CHANGE n
strl str2

Loads macros from an 0S-9 file. As each
macro loads, Edit verifies that no other macro
already exists with the same name. If one
does, the macro with the duplicate name does
not load, and Edit skips to the next macro on
the file. Edit displays the names of all macros
it loads. For example,

.load "macrofile" [ENTER

loads the macros in the file called
MACROFILE.

.load "myfile"
loads the macros in the file called MYFILE.

Deletes the macro specified by the string. For
example,

.del "mymacro"
deletes the macro called MYMACRO.

.del "list"
deletes the macro called LIST.

Displays the current edit buffer area. All edit
buffers and macros currently in memory are
displayed.

Changes the occurrence of strl to str2. The n
option permits n occurrences of strl to be
changed to str2.

7-30

Macro Text Editor /| 7

Q Ends a macro edit session and returns you to
the normal edit mode. For example:

Search_and_Delete #N $STR

'This example MACRO 1is used to
check

'the string at the beginning of
lan #N number of lines. If the
!'string matches, il will delete
tthat line from the text buffer
Ifile.

!

INDTE: The way the editor
!'processes a MACRO causes it to
!see any parameters in the outer
'loop first. Thus, the #N
!parametier is processed before
'the STR parameter.

1

[(~1 'Mave to start of

ledit buffer
(!'start of outer loop
.neob ttest for buffer end
['start of inner loop
.nstr $str 'test for not string
Imatch
+ 'go to next line if

I'no match
'if flag clear skip
Inext command

D tdelete line if flag
Iset

] 'end of inner locp

1#N 'end of outer loop

I End of Macro

For practice in using macro commands, turn to Sample Session 5
in this chapter.

7-31

0S-9 Commands Reference

Sample Session 1
Clear the buffer by deleting its contents.

You Type: CTRL D+ (ENTER
Screen Shows: AD+

Insert three lines into the buffer. Begin each line with a space,
which is the command for inserting text.
You Type: MY FIRST LINE
TMY SECOND LINE

CMY THIRD LINE (ENTER]
Screen Shows: MY FIRST LINE

MY SECOND LINE
MY THIRD LINE

Move the edit pointer to the top of the text. The editor always
considers the first character you type a command.

Note: always shows " on the screen. Typing -+ also
moves the edit pointer to the beginning of a buffer.

You Type:
N

Screen Shows:

List (display) the first line you inserted into the buffer.
You Type: L

Screen Shows: L
MY FIRST LINE

Display the first two lines you inserted into the buffer.
You Type: L2

Screen Shows: L2
MY FIRST LINE
MY SECOND LINE

Move to the next line and display it.

You Type:

Screen Shows: MY SECOND LINE
Move to the next line and display it.

You Type:

Screen Shows: MY THIRD LINE

7-32

Macro Text Editor | 7

Using L, display text beginning at the position of the edit
pointer.
You Type: L
Screen Shows: L
MY THIRD LINE

Insert a line into the buffer.

Note: In the next sample you see that the insert comes
before the current position of the edit pointer.

You Type: CINSERT A LINE (ENTER]
Screen Shows: INSERT A LINE

The following command line consists of more than one command.
moves the edit pointer to the top of the text. L dis-
plays the text, and the asterisk (») following L indicates that text
is displayed through to the end of the buffer.
You Type: (CTRL)(7 L * (ENTER]
Screen Shows: AL
MY FIRST LINE
MY SECOND LINE
INSERT A LINE
MY THIRD LINE

Show the position of the edit pointer.
You Type: L
Screen Shows: L
MY FIRST LINE

Move the edit pointer forward two lines and display the lines.

You Type: +2

Screen Shows: +2
INSERT A LINE

Display all lines from the edit pointer to the end of the buffer.
You Type: L*

Screen Shows: L
INSERT A LINE
MY THIRD LINE

Move the edit pointer to the end of the buffer.
You Type: /

Screen Shows: /

Determine if the edit pointer is at the end of text. Since the
screen shows no more lines, the edit pointer is at the end-of-text.

You Type: L*

Screen Shows: L

7-33

0S-9 Commands Reference

Insert two more lines.

You Type: OF IFTH LINE
JLAST LINE
Screen Shows: FIFTH LINE
LAST LINE

Move the edit pointer back one line, and display the line.

You Type: -2
-2

Screen Shows:

FIFTH LINE
Move the edit pointer back two lines, and display the line.
You Type: -3
Screen Shows: -3

MY SECOND LINE

Move the edit pointer three characters to the right and display
the remainder of the line.

Note: You must put spaces between commands.
You Type: >3 L
Screen Shows: >3 L
SECOND LINE

Display the characters that precede the edit pointer on the cur-
rent line.

You Type: X
Screen Shows: X
MY
Move the edit pointer to the end of the current line.
You Type: +0
Screen Shows: +0

Determine if the edit pointer is at the end of the line. It is, since
the screen shows no lines.

You Type: L

Screen Shows: L

Display the characters that precede the edit pointer on the cur-
rent line.
You Type: X
Screen Shows: X
MY SECOND LINE

7-34

Macro Text Editor | 7

Move the edit pointer back to the beginning of the current line.

You Type: -8
-2

Screen Shows:
MY SECOND LINE

Determine if the edit pointer is at the beginning of the line.
Since the screen shows no lines, the pointer is at the beginning.

You Type: X

Screen Shows: X

Go to the beginning of the text.
You Type:

Screen Shows:

Insert a line of 14 asterisks.

You Type: [14"en
Screen Shows: [14% s

AR

Insert an empty line.

You Type: [un
Screen Shows: [
Move to the top of the text, and display all lines in the buffer.
You Type: (CTRL)(7]L » (ENTER)
Screen Shows: AL

2R K JE 0 R

MY FIRST LINE
MY SECOND LINE
INSERT A LINE
MY THIRD LINE

FIFTH LINE
LAST LINE
Move the edit pointer forward two lines.
You Type: +2
Screen Shows: +2

MY FIRST LINE

Extend the line with XXX.
You Type: E" XXX"

Screen Shows: E* XXX"™
MY FIRST LINE XXX

Display the current line.

7-35

0S-9 Commands Reference

Note: The previous E command moved the edit pointer to
the next line.
You Type: L
Screen Shows: L
MY SECOND LINE

Extend three lines with YYY.
You Type: E3"JYYy"
Screen Shows: E3" Yyy®"
MY SECOND LINE YYY
INSERT A LINE YYY
MY THIRD LINE YVYY

Move back 2 lines.
You Type: -2
Screen Shows: -2
INSERT A LINE YYY

Move the edit pointer to the end of the line and then move the
edit pointer back four characters. Display the current line, start-
ing at the edit pointer.

You Type: 0 <4 L
Screen Shows: +0 <4 L
YYY

Truncate the line at the current position of the edit pointer. This
command removes the YYY extension.

You Type: v

Screen Shows: u
INSERT A LINE

Go to the top of the text and display the contents of the buffer.

You Type: e
Screen Shows: AL

IE R EREEREEERRERERES.]

MY FIRST LINE XXX
MY SECOND LINE YYY
INSERT A LINE

MY THIRD LINE YYY
FIFTH LINE

LAST LINE

7-36

Macro Text Editor | 7

Delete the current line and the next line.

You Type: D2
Screen Shows: D2

R KK KK R KKK KR KR

Move the edit pointer forward two lines.

You Type: +2

Screen Shows: +2
INSERT A LINE

Delete this line.
You Type: D

Screen Shows: D
INSERT A LINE

Display the current line.

You Type: L

Screen Shows: L
MY THIRD LINE YYY

Move the edit pointer to the right three characters and display
the text.
You Type: >3 L
Screen Shows: >3 L
THIRD LINE YYY

Kill (delete) the 11 characters that constitute THIRD LINE.

You Type: K11
Screen Shows: K11
THIRD LINE
Go to the beginning of the line and display it.
You Type: -0
Screen Shows: -0
MY YYY

Concatenate (combine) two lines. Move the edit pointer to the
end of the line; delete the character at the end of the line; move
the edit pointer back to the beginning of the lines. Display the
line.
You Type: 0 K -@
Screen Shows: @ K -8
MY YYYFIFTH LINE

Separate the two lines by inserting an end-of-line character.

You Type: >6 1/ /
Screen Shows: >6 1/ /
MY YYY

7-37

0S-9 Commands Reference

Note: The end of line character is inserted before the current
position of the edit pointer.

You Type: L
Screen Shows: L
FIFTH LINE

Sample Session 2
Clear the buffer by deleting its contents.

You Type: Ds
Insert lines.
You Type: JONE TWO THREE 1.8

JONE

TCTWO

TOTHREE

JONE TWO THREE 2.9
CONE

COTWD

COCTHREE

ZONE TWO THREE 3.8
Screen Shows: ONE TWO THREE 1.9

ONE
TWO
THREE
ONE TWD THREE 2.0
ONE
TWO
THREE
ONE TWO THREE 3.0

Go to the top of the text, and display all lines in the buffer.
You Type: L
Screen Shows: ALx

ONE TWD THREE 1.8
ONE
TWO
THREE
ONE TWO THREE 2.9
ONE
TWO
THREE
ONE TWO THREE 3.0

7-38

Macro Text Editor | 7

Search for the next occurrence of TWO.
You Type: S "TWO"
Secreen Shows: S"TWO"
ONE TWO THREE 1.0

Search for all occurrences of TWO that are between the edit
pointer and the end of the buffer.
You Type: S+/TWO/
Screen Shows: S+/TWO/
ONE TWO THREE 1.0
TWO
ONE TWO THREE 2.0
TWO
ONE TWO THREE 3.0

Go to the top of the buffer, and change the first occurrence of
THREE to ONE.

You Type: C/THREE/QONE/
Screen Shows: A C/THREE/ONE/

ONE TWO ONE 1.0

Move the edit pointer to the top of the buffer. Set the anchor to
Column 2, and then use the search command to find each occur-
rence of TWO that begins in Column 2. Skip all other
occurrences.

You Type: A2 S«/TWO/
Screen Shows: A A2 S«/TWO/

TWO

TWO

Move the edit pointer to the top of the buffer. Set the anchor to
Column 1, and change each occurrence of ONE that begins in
that column to XXX,

Note: ONE in Line 1 is not changed, since it does not begin
in Column 1.
You Type: AC*/0ONE/XXX/ (ENTER)
Screen Shows: " AC*/ONE/XXX/
XXX TWO ONE 1.8
XXX
XXX TWO THREE 2.0
XXX
XXX TWO THREE 3.0

7-39

0S-9 Commands Reference

Go to the top of the buffer, and display the text.
You Type: (CTRLJ(7)L * [ENTER
Screen Shows: L+

XXX TWO ONE 1.0
XXX
TWO
THREE
XXX TWO THREE 2.0
XXX
TWO
THREE
XXX TWO THREE 3.0

Change the remaining ONE to XXX.

Note: The anchor is no longer set. It is reset to zero after
each command is executed.
You Type: C/ONE/ XXX/ (ENTER]
Screen Shows: C/ONE/XXX/
XXX TWO XXX 1.0

Move to the beginning of the current line.
You Type: -0
Screen Shows: -0
XXX TWO XXX 1.0

Change three occurrences of XXX to ZZZ.
You Type: C3/XXX/222/
Screen Shows: C3/XXX/222/
22Z TWO XXX 1.8
222 TWO 22Z 1.8
227

Sample Session 3

Clear the buffer by deleting its contents:
You Type: D+

7-40

Macro Text Editor / 7

Display the directory of buffers and macros. The dollar sign ($)
identifies the secondary buffer as Buffer 0. The asterisk (*) iden-
tifies the primary buffer as Buffer 1. Edit has no macros defined.
This is the initial environment when you start Edit.

You Type: .DIR
Screen Shows: .DIR
BUFFERS:
$)
* 1
MACROS::

Insert some lines into Buffer 1 so that later you can identify it.

You Type: OBUFFER ONE 1.0
OBUFFER ONE 2.8 (ENTER)
JBUFFER ONE 3.8
JBUFFER ONE 4.0

Screen Shows: BUFFER ONE 1.8
BUFFER ONE 2.0
BUFFER ONE 3.0
BUFFER ONE 4.0

Display the text in Buffer 1.

You Type: CTRL)(7] L [ENTER

Screen Shows: AL»
BUFFER ONE 1.0
BUFFER ONE 2.8
BUFFER ONE 3.0
BUFFER ONE 4.0

Make Buffer 0 the primary buffer. Buffer 1 becomes the second-
ary buffer.

You Type: B
Screen Shows: B2
Display the directory of buffers and macros.

Note: The symbols identifying the buffers are now reversed.

You Type: .DIR
Screen Shows: .DIR

BUFFERS:
$ 1
* 0

MACROS::

7-41

0S-9 Commands Reference

Insert some lines into Buffer 0.
You Type: OBUFFER ZERO
OBUFFER ZERO
OBUFFER ZERO
CBUFFER ZERO
Screen Shows: BUFFER ZERO
BUFFER ZERO
BUFFER ZERO
BUFFER ZERO

Display the text in Buffer 0.

You Type: L.
Screen Shows: AL w

BUFFER ZERO
BUFFER ZERO
BUFFER ZERO
BUFFER ZERO

Switch to Buffer 1.
You Type: B
B

Screen Shows:

Display the text in Buffer 1.

You Type: L+
Screen Shows: AL
BUFFER ONE 1.
BUFFER ONE 2.
BUFFER ONE 3.
BUFFER ONE 4.
Move the edit pointer to Line 3 in this buffer.
You Type: +2
Screen Shows: +2

BUFFER ONE 3.

Switch to Buffer 0.

You Type: BO

Screen Shows: B
Display the text in Buffer 0.

You Type: L+

Screen Shows: L«

BUFFER ZERO
BUFFER ZERO
BUFFER ZERO
BUFFER ZERO

2am s

AWM

aEaEE

AWM -

aEaaEm s

aEaEEm s

7-42

Macro Text Editor /| 7

Move the edit pointer to Line 2 in this buffer.
You Type: +

Screen Shows: +
BUFFER ZERDO 2.0

Switch to Buffer 1.
You Type: B

Screen Shows: B

Display the text in Buffer 1 from the current position of the edit
pointer.

Note: The position of the edit pointer has not changed since
you switched to Buffer 0.
You Type: L+
Screen Shows: L*
BUFFER ONE 3.0
BUFFER ONE 4.0

Switch to Buffer 0.
You Type: BO

Screen Shows: B@

Display the text in Buffer 0 from the current position of the edit
pointer.

Note: The position of the edit pointer has not changed since
you switched to Buffer 1.

You Type: L«

Screen Shows: L
BUFFER ZERO 2.0
BUFFER ZERO 3.0

BUFFER ZERO 4.0

Delete the contents of Buffer 0.
You Type: D

Screen Shows: AD»

BUFFER ZERD
BUFFER ZERD
BUFFER ZERO
BUFFER ZERO 4.

w n -
S SIS]

Make Buffer 1 the primary buffer and Buffer 0 the secondary
buffer.

You Type: B

Screen Shows: B

7-43

0S-9 Commands Reference

Move two lines from the primary buffer (Buffer 1) into the sec-
ondary buffer (Buffer 0).

You Type: P2
Screen Shows: Ap2

BUFFER ONE 1.8
BUFFER ONE 2.8

Switch to Buffer 0, and show that the lines were moved to it.

You Type: BB(CTRL)(7]L * [ENTER
Screen Shows: BOAL+

BUFFER ONE 1.0
BUFFER ONE 2.8

Switch to Buffer 1. Go to the bottom of the buffer, and get the
text out of the secondary buffer.

You Type: B/G*
Screen Shows: B/G*
BUFFER ONE 1.0
BUFFER ONE 2.0

Show the contents of the buffer.

Note: The order of the lines is changed as a result of mov-
ing the text.

You Type: e
Screen Shows: AL

BUFFER ONE 3.
BUFFER ONE 4.
BUFFER ONE 1.
BUFFER ONE 2.

[T R R

Move two lines into the secondary buffer.
You Type: P2
Screen Shows: P2
BUFFER ONE 3.8
BUFFER ONE 4.8

Move to the bottom of the buffer, and get the lines back out of
the secondary buffer.
You Type: /G*
Screen Shows: /G
BUFFER ONE 3.8
BUFFER ONE 4.0

7-44

Macro Text Editor / 7

Show that the order of the lines is restored.
You Type: (CTRLJ(7JL
L*

Screen Shows:

BUFFER ONE 1.0
BUFFER ONE 2.0
BUFFER ONE 3.0
BUFFER ONE 4.8
Sample Session 4
Clear the buffer by deleting its contents:
You Type: (CTRLJ(7JD*
Enter some lines of text.
You Type: JLINE ONE

JSECOND LINE OF TEXT (ENTER)
JTHIRD LINE OF TEXT (ENTER)
JFOURTH LINE
OFIFTH LINE

CLAST LINE
Screen Shows: LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE

FIFTH LINE
LAST LINE
Open the file Oldfile for writing.
You Type: JWRITE"oldfile" (ENTER)
Screen Shows: .WRITE"oldfile"
Write all lines to the file.
You Type: [CTRLITu
Screen Shows: A
L INE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE

FIFTH LINE

LAST LINE

*END OF TEXT»

Close the file.

You Type: LWRITE//
Screen Shows: WRITE/Z/

7-45

0S-9 Commands Reference

Verify that the buffer is empty.

You Type: [CROTL »
Screen Shows: AL

Open the file Oldfile for reading.
You Type: .READ"oldfile" [ENTER]
Screen Shows: .READ"oldfile"

Create a new file called Newfile for writing.
You Type: .WRITE"newfile"
Screen Shows: WRITE"newfile"

Read four lines from the input file. The screen shows the lines as
they are read in.

You Type: R4
Screen Shows: R4
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE

Read all the remaining text from the file. The screen shows the
lines. When there is no more text, the screen shows the *+END OF
FILE* message.

You Type: R+
Screen Shows: R+
FIFTH LINE
LAST LINE

+END OF FILE#+

Go to the top of the buffer, and display the text to make sure it
is inserted into the buffer.

You Type: CTRL(7]L + {ENTER)
Screen Shows: AL
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FOURTH LINE

FIFTH LINE

LAST LINE

7-46

Macro Text Editor | 7

Write three lines to the output file, and display the lines.

You Type: W3
Screen Shows: W3
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT

Move to the next line and display it.

You Type: +
Screen Shows: +
FIFTH LINE

Show that when writing lines, the editor starts at the current
line and not at the top of the buffer.

You Type: W
Screen Shows: W
FIFTH LINE

Go to the top of the buffer, and display the text to be sure that
the lines were written to the output file.

You Type: [CTRL](7)L * (ENTER)
Screen Shows: AL
FOURTH LINE
LAST LINE
Clear the buffer.
You Type: [CTRL](7)D* (ENTER)
Screen Shows: ADx
FOURTH LINE
LAST LINE

Switch to Buffer 2. Open the input file Oldfile, and read two
lines from it.

You Type: B2 .READ"oldfile'" R2 [ENTER)
Screen Shows: B2 .READ"oldfile" R2
LINE ONE

SECOND LINE OF TEXT

Switch to Buffer 1. Open the input file Oldfile and read one line
of text.

You Type: B .READ"oldfile" R [ENTER]
Screen Shows: B .READ"oldfile"™ R
LINE ONE

7-47

0S-9 Commands Reference

Switch to Buffer 2, and read one line.

Note: Your place in the file was not lost.

You Type: B2 R

Screen Shows: B2 R
THIRD LINE OF TEXT

Switch to Buffer 1, and read one line of text.

Note: Your place in the file was not lost.

You Type: B R

Screen Shows: B R
SECOND LINE OF TEXT

Switch to Buffer 2, and delete its contents.

You Type: B2 (CTRL)(7)D+ (ENTER
Screen Shows: B2 ~Dx
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT

Insert some extra lines into the buffer.

You Type: ZEXTRA LINE ONE [ENTER)
OEXTRA LINE TWO [ENTER)
Screen Shows: EXTRA LINE ONE

EXTRA LINE TWO

Try to write B2 buffer to file. It fails because you have not
opened a file in this buffer.

You Type: (ETRD T+
Screen Shows: A

+FILE CLOSED+
Close the file for Buffer 1, and return to Buffer 2.

You Type: B .WRITE// B2 [ENTER]
Screen Shows: B .WRITE// B2
Open the old “write” file for reading, and then read it back in.
You Type: .READ"newfile"™ R+
Screen Shows: .READ"newfile" R+
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FIFTH LINE

*END OF FILE~«

7-48

Macro Text Editor / 7

Display the contents of the buffer.

Note: It read the file into the beginning of the buffer, since
that was the position of the edit pointer.

You Type: (CTRL)(7)L * (ENTER)
Screen Shows: ALx
LINE ONE

SECOND LINE OF TEXT
THIRD LINE OF TEXT
FIFTH LINE

EXTRA LINE ONE
EXTRA LINE TWO

Sample Session 5

Delete all text from the edit buffer.
You Type: (CTRL)(7)D+ (ENTER]

Insert three lines.
You Type: CLINE ONE
JLINE TWO
JLINE THREE

Screen Shows: LINE ONE
LINE TWO
LINE THREE
Create a new macro using an empty string.
You Type: .MAC//
Screen Shows: M

Display the contents of the macro mode, which is now open.

Note: The E prompt is now M.

You Type: (CTRL](73L # (ENTER)
Screen Shows: AL
Define the macro.
You Type: CFIND
ZSHTWO"
Screen Shows: FIND
S"TWO"
Display the contents of the macro.
You Type: (CTRL](7jL * (ENTER)
Screen Shows: AL
FIND
S"TWO"

7-49

0S-9 Commands Reference

Close the macro’s definition.

You Type: Q
Screen Shows: E:

Display the directory of buffers and macros.
You Type: .DIR
Screen Shows: .DIR

BUFFERS:
$ [/
* 1
MACROS:
FIND
Display the contents of the edit buffer.
You Type: (RO »
Screen Shows: oL
LINE ONE
LINE TWO
LINE THREE

Use the FIND macro to find the string TWO.
You Type: .FIND
Screen Shows: .FIND

LINE TWO

Reopen the definition of the FIND macro.
You Type: .MAC/F IND/
Screen Shows: .MAC/F IND/

M:

Show that the macro is still intact.

You Type: (eTRO)7]L =
Screen Shows: ALs

FIND

S"TO"

Add the numeric parameter and the string parameter to the
macro’s header.
You Type: C/FIND/FIND #N $STR/ (ENTER)
Screen Shows: C/FIND/FIND #N $STR/
FIND #N $STR

Move to the second line of the macro.

You Type: + [ENTER
Screen Shows: +
SHTWO"

7-50

Macro Text Editor | 7

Give the macro’s parameters to the S command. Now the FIND
macro will perform the same function as the S command.

You Type: C/"TWO"™/ #N $STR/
Screen Shows: C/"TWO"™/ #N $STR
S #N $STR

Close the macro’s definition.

You Type: Q
E:

Screen Shows:

Display the contents of the edit buffer.

You Type: (CTRL](7)L * (ENTER]
Screen Shows: ALs
LINE ONE
LINE TWO
LINE THREE
Use the FIND macro to find the next two occurrences of LINE.
You Type: .FIND 2 /LINE/ [ENTER]
Screen Shows: .FIND 2 /LINE/
LINE ONE
LINE TWO
Create a new macro.
You Type: .MAC//
Screen Shows: .MAC//
M:

Define the macro FIND_LINE, which performs the same func-
tion as the S command except that it returns the edit pointer to
the head of the line after finding the last occurrence of STR.

You Type: JFIND_LINE #N $STR
Screen Shows: FIND_LINE #N $STR
You Type: JS #N $STR
Screen Shows: S #N $STR
Turn off the verify mode.
You Type: ave
Screen Shows: ve
Move the edit pointer to the first character of the current line.
You Type: -e
Screen Shows: -0

7-51

0S-9 Commands Reference

Close the macro’s definition.

You Type: Q
Screen Shows: Q
E:
Display the contents of the edit buffer.
You Type: (CTRL)(7]L * (ENTER]
Screen Shows: ALx
LINE ONE
LINE TWO
LINE THREE
Use the FIND_LINE macro to search for the string TWO.
You Type: L.FIND_LINE/TWO/
Screen Shows: LFIND_LINE/TWO/
LINE TWO

Show that the FIND_LINE macro left the edit pointer at the
head of the line.

You Type: L
Screen Shows: L
LINE TWO
Create a new macro.
You Type: .MAC//
Screen Shows: .MAC//
M:

7-52

Macro Text Editor / 7

Use the exclamation point (!) command to comment itself. Type
the following:

T CONVERT_TO__LINES #N

J ' This is a comment

7 ()

J Y This macro converts the next n

0 ! space characters to new line

(J ! characters.

(Jve ! Turn verify mode off

0 !'to prevent intermediate results

il ! from being displayed.

J 1 (ENTER]

Jr ! Begin loop

[.SEARCH/ / !Search for the space character.

gz ! Insert empty line (new line character).
0 - ! Back up one line,

acs 71 ! Delete the next space character.

gL+ ! Show line, move past it.

J1 N LEnd of loop. Repeat #N times. (ENTER]

Close the macro’s definition.

You Type: Q
Q

Screen Shows:

E:
Display the contents of the edit buffer.
You Type: (CTRL)(7JL * (ENTER)
Screen Shows: ALx
LINE ONE
LINE TWO
LINE THREE

Convert all space characters to new line characters.

Note: The loop stops when the C command in the macro
cannot find a space to delete.

You Type: .CONVERT_TO_LINES =
Screen Shows: .CONVERT_TO_LINES =

LINE

LINE

LINE

7-53

0S-9 Commands Reference

Display the contents of the edit buffer.
You Type: (CTRL)7)L*
Screen Shows: AL»
LINE
ONE
LINE
TWO
LINE
THREE

7-54

Macro Text Editor / 7

Edit Quick Reference Summary

EDIT

EDIT newtfile

EDIT oldfile

EDIT oldfile
newtfile

0S-9 loads the editor and starts it without
creating any read or write files. Perform text-
file operations by opening files after the editor
1s running.

0S-9 loads the editor and starts it. If newfile
does not exist, Edit creates it and makes it the
initial write file. Although this command does
not create an initial read file, you can open
read files after starting Edit.

0S-9 loads the editor and starts it, making
the initial read file oldfile. The editor creates
a new file called SCRATCH as the initial
write file. When the edit session is complete,
Edit deletes oldfile and renames SCRATCH to
oldfile.

08S-9 loads the editor and starts it. The initial
read file is oldfile. The editor creates a file
called newfile as the initial write file.

Edit Commands

.MACRO

ENTER
+n
-n

+0

Executes the macro specified by the name fol-
lowing the period (.).

Places comments inside a macro, and ignores
the remainder of the command line.

Inserts a line before the current position of the
edit pointer.

Moves the edit pointer to the next line, and
displays it.

Moves the edit pointer forward n lines and dis-
plays the line.

Moves the edit pointer backward n lines and
displays the line.

Moves the edit pointer to the last character of
the line.

7-55

0S-9 Commands Reference

or _ for

external
terminals

/

[commands] n

A0

Bn
Cn strl str2
Dn

En str

Ln

Moves the edit pointer to the first character of
the current line and displays it.

Moves the edit pointer forward n characters.
Moves the edit pointer backward r characters.

Moves the edit pointer to the beginning of the
text.

Moves the edit pointer to the end of the text.

Repeats the sequence of commands between
the two brackets n times.

Skips to the end of the innermost loop or
macro if the fail flag is not on.

Sets the SEARCH/CHANGE anchor to Col-
umn n, restricting searches and changes to
those strings starting in Column n. This com-
mand remains in effect for the current com-
mand line.

Returns the anchor to the normal mode of
searching so that strings are found regardless
of the column in which they start.

Makes buffer n the primary buffer.
Changes the next n occurrences of strl to str2.
Deletes n lines.

Extends (adds the string to the end of) the
next n lines.

Gets n lines from the secondary buffer, start-
ing from the top. Inserts the lines before the
current position in the primary buffer.

Inserts a line containing n copies of the string
before the current position of the edit pointer.

Kills n characters starting at the current
position of the edit pointer.

Lists (displays) the next n lines, starting at
the current position of the edit pointer.

7-56

Macro Text Editor / 7

Sn str

Tn

Changes workspace (memory) size to n bytes.

Puts (moves) n lines from the position of the
edit pointer in the primary buffer to the posi-
tion of the edit pointer in the secondary buffer.

Quits editing (and terminates editor). If you
specified a file(s) when you entered Edit,
Buffer 1 is written to the output file. The
remainder of the input file is copied to the out-
put file. All files are closed.

Reads n lines from the buffer’s input file.

Searches for the next n occurrences of the
string.

Tabs to Column n of the present line. If n is
greater than the line length, Edit extends the
line with space.

Unextends (truncates) a line at the current
position of the edit pointer.

Turns the verify mode on or off.
Writes n lines to the buffer’s output file.

Displays n lines that precede the edit position.
The current line is counted as the first line.

Pseudo Macros

.CHANGE n
strl str2

.DEL str
.DIR
.EOB
.EOF
.EOL

.F

.LOAD str

Changes n occurrences of strl to str2.

Deletes the macro specified by str.

Displays the directory of buffers and macros.
Tests for the end of the buffer.

Tests for the end of the file.

Tests for the end of the line.

Exits the innermost loop or macro and sets the
fail flag.

Loads macros from the path specified in the
string.

7-57

0S-9 Commands Reference

MAC str

.NEOB
NEOF
.NEOL
.NEW

NSTR str

.READ str

S

SEARCH n
str

SAVE strl
str2

SHELL
command line

SIZE

.STAR n
STR str

WRITE str

ZERO n
[
]

Opens the macro specified by the string for
definition. If you give an empty string, Edit
creates a new macro.

Tests for not end of buffer.
Tests for not end of file.
Tests for not end of line.

Writes all lines up to the current line to the
initial output file, and then attempts to read
an equal amount of text from the initial input
file. The text read-in is appended to the end of
the edit buffer.

Tests to see if string does not match the char-
acters at the current position of the edit
pointer.

Opens an OS-9 text file for reading, using
string as the pathlist.

Exits the innermost loop or macro and suc-
ceeds (clears the fail flag).

Searches for n occurrences of str.

Saves the macros specified in strl on the file
specified by the pathlist in s#r2.

Calls OS-9 shell to execute the command line.

Displays the size of memory used and the
amount of memory available in the workspace.

Tests to see if n equals asterisk (infinity).

Tests to see if string matches the characters at
the current position of the edit pointer.

Opens an OS-9 text for writing, using str as a
pathlist.

Tests n to see if it is zero.
Starts at a macro loop; press (CTRL](8).
Ends at a macro loop; press [CTRL](3).

7-58

Macro Text Editor /| 7

(]

Moves edit pointer to beginning of buffer;

press (CTRL(T).

Editor Error Messages

BAD MACRO
NAME

BAD
NUMBER

BAD VAR
NAME

BRACKET
MISMATCH

BREAK

DUPL
MACRO

END OF
FILE

*FILE
CLOSED*

MACRO IS
OPEN

MISSING
DELIM

NOT FOUND

You did not begin the first line in a macro
with a legal name. You can close the definition
of a macro after you give it a legal name.

You have entered an illegal numeric parame-
ter, probably a number greater than 65,535.

You have specified an illegal variable name,
omitted the variable name, or included a $ or
character in the commands parameter list.

You have not entered brackets in pairs or the
brackets are nested too deeply.

You pressed or E to interrupt the edi-
tor. After printing the error message, the edi-
tor returns to command entry mode.

You attempted to close a macro definition with
an existing macro name. Rename the macro
before trying to close its definition.

You are at the end of the edit buffer.

You tried to write to a file that is not open.
Either specify a write file when starting the
editor from OS-9, or open an output file using
the .WRITE pseudo macro.

You must close the macro definition before
using the command.

The editor could not find a matching delimiter
to complete the string you specified. You must
put the entire string on one line.

The editor cannot find the specified string or
macro.

7-59

0S-9 Commands Reference

UNDEFINED
VAR

WHAT ??

WORKSPACE
FULL

You used a variable that is not specified in the
macro’s definition parameter list. A variable
parameter can be used only in the macro in
which it is declared.

The editor does not recognize a command. You
typed a command that does not exist or mis-
spelled a name.

The buffer did not have room for the text you
want to insert. Increase the workspace, or
remove some text.

7-60

Appendix A

0S-9 Error Codes

The following table shows OS-9 error codes in hexadecimal and
decimal. Error codes other than those listed are generated by
programming languages or user programs.

0S-9 Error Codes

Code
HEX DEC Code Meaning

$01 001 UNCONDITIONAL ABORT. An error occurred
from which OS-9 cannot recover. All processes
are terminated.

$02 002 KEYBOARD ABORT. You pressed to

terminate the current operation.

$03 003 KEYBOARD INTERRUPT. You pressed
either to cause the current opera-

tion to function as a background task with no
video display or to cause the current task to
terminate.

$B7 183 ILLEGAL WINDOW TYPE. You tried to
define a text type window for graphics or used
illegal parameters.

$B8 184 WINDOW ALREADY DEFINED. You tried to
create a window that is already established.

$B9 185 FONT NOT FOUND. You tried to use a win-
dow font that does not exist.

$BA 186 STACK OVERFLOW. Your process (or pro-
cesses) requires more stack space than is
available on the system.

$BB 187 ILLEGAL ARGUMENT. You have used an
argument with a command that is
inappropriate.

$BD 189 ILLEGAL COORDINATES. You have given
coordinates to a graphics command which are
outside the screen boundaries.

A-1

0S-9 Commands Reference

Code Meaning

Code
HEX DEC
$BE 190
$BF 191
$CO 192
$C1 193
$C2 194
$C3 195
$C4 196
$C8 200
$C9 201
$CA 202
$CB 203
$CC 204

INTERNAL INTEGRITY CHECK. System
modules or data are changed and no longer
reliable.

BUFFER SIZE IS TOO SMALL. The data you
assigned to a buffer is larger than the buffer.

ILLEGAL COMMAND. You have issued a
command in a form unacceptable to 0S-9.

SCREEN OR WINDOW TABLE IS FULL. You
do not have enough room in the system win-
dow table to keep track of any more windows
or screens.

BAD/UNDEFINED BUFFER NUMBER. You
have specified an illegal or undefined buffer
number.

ILLEGAL WINDOW DEFINITION. You have
tried to give a window illegal parameters.

WINDOW UNDEFINED. You have tried to
access a window that you have not yet defined.

PATH TABLE FULL. OS-9 cannot open the
file because the system path table is full.

ILLEGAL PATH NUMBER. The path number
is too large, or you specified a non-existent
path.

INTERRUPT POLLING TABLE FULL. Your
system cannot handle an interrupt request,
because the polling table does not have room
for more entries.

ILLEGAL MODE. The specified device cannot
perform the indicated input or output function.

DEVICE TABLE FULL. The device table does
not have enough room for another device.

A-2

0S-9 Error Codes / A

Code Meaning

Code
HEX DEC
$CD 205
$CE 206
$CF 207
$D0 208
$D1 209
$D2 210
$D3 211
$D4 212
$D5 213
$D6 214
$D7 215
$D8 216

ILLEGAL MODULE HEADER. 0S-9 cannot
load the specified module because its sync
code, header parity, or cyclic redundancy code
is incorrect.

MODULE DIRECTORY FULL. The module
directory does not have enough room for
another module entry.

MEMORY FULL. Process address space is full
or your computer does not have sufficient mem-
ory to perform the specified task.

ILLEGAL SERVICE REQUEST. The current
program has issued a system call containing
an illegal code number.

MODULE BUSY. Another process is already
using a non-shareable module.

BOUNDARY ERROR. 0S-9 has received a
memory allocation or deallocation request that
is not on a page boundary.

END OF FILE. A read operation has encoun-
tered an end-of-file character and has
terminated.

RETURNING NON-ALLOCATED MEMORY.
The current operation has attempted to deallo-
cate memory not previously assigned.

NON-EXISTING SEGMENT. The file struc-
ture of the specified device is damaged.

NO PERMISSION. The attributes of the speci-
fied.file or device do not permit the requested
access.

BAD PATH NAME. The specified pathlist con-
tains a syntax error, for instance an illegal
character.

PATH NAME NOT FOUND. The system can-
not find the specified pathlist.

A3

0S-9 Commands Reference

Code Meaning

Code
HEX DEC
$D9 217
$DA 218
$DB 219
$DC 220
$DD 221
$DF 223
$EO0 224
$E2 226
$E3 227
$E4 228
$E5 229
$E6 230
$E7 231

SEGMENT LIST FULL. The specified file is
too fragmented for further expansion.

FILE ALREADY EXISTS. The specified file-
name already exists in the specified directory.

ILLEGAL BLOCK ADDRESS. The file struc-
ture of the specified device is damaged.

PHONE HANGUP - DATA CARRIER
DETECT LOST. The data carrier detect is lost
on the RS-232 port.

MODULE NOT FOUND. The system received
a request to link a module that is not in the
specified directory.

SUICIDE ATTEMPT. The current operation
has attempted to return to the memory loca-
tion of the stack.

ILLEGAL PROCESS NUMBER. The specified
process does not exist.

NO CHILDREN. The system has issued a
wait service request but the current process
has no dependent process to execute.

ILLEGAL SWI CODE. The system received a
software interrupt code that is less than 1 or
greater than 3.

PROCESS ABORTED. The system received a
signal Code 2 to terminate the current
process.

PROCESS TABLE FULL. A fork request can-
not execute because the process table has no
room for more entries.

ILLEGAL PARAMETER AREA. A fork call
has passed incorrect high and low bounds.

KNOWN MODULE. The specified module is
for internal use only.

A4

0OS-9 Error Codes | A

Code Meaning

Code
HEX DEC
$E8 232
$E9 233
$EA 234
$EB 235
S$EC 236
$ED 237
SEE 238
S$EF 239

INCORRECT MODULE CRC. The cyclic
redundancy code for the module being
accessed is bad.

SIGNAL ERROR. The receiving process has a
previous, unprocessed signal pending.

NON-EXISTENT MODULE. The system can-
not locate the specified module.

BAD NAME. The specified device, file, or mod-
ule name is illegal.

BAD MODULE HEADER. The specified mod-
ule header parity is incorrect.

RAM FULL. No free system random access
memory is available: the system address space
is full, or there is no physical memory avail-
able when requested by the operating system
in the system state.

UNKNOWN PROCESS ID. The specified pro-

cess ID number is incorrect.

NO TASK NUMBER AVAILABLE. All avail-
able task numbers are in use.

Device Driver Errors

I/O device drivers generate the following error codes. In most
cases, the codes are hardware-dependent. Consult your device
manual for more details.

Code
HEX DEC Code Meaning
$FO0 240 UNIT ERROR. The specified device unit
doesn’t exist.
$F1 241 SECTOR ERROR. The specified sector number
is out of range.
$F2 242 WRITE PROTECT. The specified device is

write-protected.

A-5

0S-9 Commands Reference

Code Meaning

Code
HEX DEC
$F3 243
$F4 244
$F5 245
$F6 246
$F7 247
$F8 248
$F9 249
$FA 250
$FB 251
$FC 252
$FD 253

CRC ERROR. A cyclic redundancy code error
occurred on a read or write verify.

READ ERROR. A data transfer error occurred
during a disk read operation, or there is a
SCF (terminal) input buffer overrun.

WRITE ERROR. An error occurred during a
write operation.

NOT READY. The device specified has a not
ready status.

SEEK ERROR. The system attempted a seek
operation on a non-existent sector.

MEDIA FULL. The specified media has insuf-
ficient free space for the operation.

WRONG TYPE. An attempt is made to read
incompatible media (for instance an attempt to
read double-side disk on single-side drive).

DEVICE BUSY. A non-shareable device is in
use.

DISK ID CHANGE. You changed diskettes
when one or more files are open.

RECORD IS LOCKED-OUT. Another process
is accessing the requested record.

NON-SHARABLE FILE BUSY. Another pro-
cess is accessing the requested file.

A-6

Appendix B

Color Computer 2 Compatibility

Color Computer 3 0S-9 Level Two provides compatibility with
the Color Computer 2 and 0S-9 Level One by letting you use the
video display in the Alphanumeric mode (including Semigraphic
box graphics) and in the Graphics mode. To control the display,
it has many built-in functions that you activate using ASCII
control characters. Any program written in a language using
standard output statements (such as PUT in BASIC) can use
these functions. Color Computer BASIC09 has a Graphics Inter-
face Module that can automatically generate most of these codes
using BASIC09 RUN statements.

The Color Computer’s display system uses a separate memory
area for each Display mode. Therefore, operations on the Alpha
display do not affect the Graphics display and vice-versa. You can
select either display with software control. (See Getting Started
With Extended Color BASIC for more detailed information.)

The system interprets 8-bit characters sent to the display
according to their numerical values, as shown in this chart:

Character Mode/Function

Range

(Hex)

00 - OE Alpha—Cursor and screen control.

OF - 1D Graphics—Drawing and screen control.

1B Alpha, Graphics—Changing Palette colors.
Alpha mode:

1B 31 2h change cursor color
1B 31 ¢ h change foreground color
1B 31 d h change background color

where h is a hex number from 0 to 3F (0 to
63 decimal) which determines the color.

B-1

OS-9 Commands Reference

Character Mode/Function

Range
(Hex)
Graphics mode:
1B31prh changes foreground/
background color
where pr is a palette register # (0 - F,
hex)
where h is a hex number from 0 to 3F (0
to 63 decimal) which determines the
color.
20-5F Alpha—Uppercase characters.
60 - 7F Alpha—Lowercase characters.
80 - FF Alpha—Semigraphic patterns.

The device driver CC3IO calls a subroutine module named
VDGInt to handle all text and graphics for the Color Com-
puter 2 compatibility mode.

B-2

Color Computer 2 Compatibility / B

Alpha Mode Display

The Alpha mode is the standard operational mode. Use it to dis-
play alphanumeric characters and semigraphic box graphics. Use
it also to simulate the operation of a typical computer terminal
with functions for scrolling, cursor positioning, clearing the
screen, deleting lines, and so on.

The Alpha mode assumes that each 8-bit code the system sends
to the display is an ASCII character. If the high-order bit of the
code is clear, the system displays the appropriate alphanumeric
character. If the high-order bit is set, OS-9 generates a Semi-
graphic 6 graphics box. See Getting Started With Extended Color
BASIC for an explanation of semigraphic functions.

The standard 32-column Alpha mode display is handled by the
I/0 subroutine module VDGInt. CC3I0O calls this module
(included in the standard boot file) to process all text and semi-
graphic output.

The following chart provides codes for screen display and cursor
control. You can use the functions from the 0S-9 system prompt
by typing DISPLAY, followed by the appropriate codes. For
instance, to clear the screen, type:

display #@c

To position the cursor at column 16, Line 5 and display the word
HELLQO, type:

display @2 30 25 48 45 4c 4c 4f [ENTER)

You can also use the following codes in a language, such as
BASIC09. To do so, use decimal numbers with the CHR$ func-
tion, such as:

print chr$(@2);chr$(48);chr$(37);chrs$(72)
;chr$(69);chr$(76);chr$(76);chr$(79)
Using Alpha Mode Controls with Windows

The control functions in the following chart also function prop-
erly under the high resolution windowing systems. References to
“screen” are also references to windows.

B-3

0S-9 Commands Reference

Alpha Mode Command Codes

Hex

Code

Decimal
Control Control
Code

Name/Function

$01

$02

$03

$04

01

02

03

04

HOME—Returns the cursor to the upper left
corner of the screen.

CURSOR XY—Moves the cursor to character
X of line Y. To arrive at the values for X and
Y, add 20 hexadecimal to the location where
you want to place the cursor. For example, to
position the cursor at Character 5 of Line 10
(hexadecimal A), do these calculations:

5
+ 20
= 25 hexadecimal

0A
+ 20
= 2A hexadecimal

The two coordinates are $25 and $2A.

ERASE LINE—Erases all characters on the
line occupied by the cursor.

CLEAR TO END OF LINE—Erases all
characters from the cursor position to the
end of the line.

B-4

Color Computer 2 Compatibility / B

Hex Decimal

Control Control

Code Code Name/Function

$05 05 CURSOR ON-OFF—Allows alteration of the
cursor based on the value of the next
character. Codes are as follow:

Default

Hex Dec Char Function Color
$20 32 space Cursor OFF
$21 33 ! Cursor ON Blue
$22 34 “ Cursor ON Black
$23 35 # Cursor ON
‘$24 36 $ Cursor ON
$25 37 % Cursor ON
$26 38 & Cursor ON
$27 39 ¢ Cursor ON
$28 40 (Cursor ON
$29 41) Cursor ON
$2A 42 * Cursor ON

$06 06 CURSOR RIGHT—Moves the cursor to the
right one character position.

$07 07 BELL—Sounds a bell (beep) through monitor
speaker.

$08 08 CURSOR LEFT—Moves the cursor to the left
one character position.

$09 09 CURSOR UP—Moves the cursor up one line.

$0A 10 CURSOR DOWN (linefeed)—Moves the
cursor down one line.

$0C 12 CLEAR SCREEN—Erases the entire screen,
and homes the cursor (positions it at the
upper left corner of the screen).

$0D 13 RETURN—Returns the cursor to the
leftmost character on the line.

S0E 14 DISPLAY ALPHA-—Switches the screen from

Graphic mode to Alphanumeric mode.

B-5

0S-9 Commands Reference

Graphics Mode Display

Use the Graphics mode to display high-resolution 2- or 4-color
VDG graphics. The Graphics mode includes commands to set
color, plot and erase individual points, draw and erase lines,
position the graphics cursor, and draw circles.

You must execute the display graphics command before using
any other Graphics mode command. This command displays the
graphics screen and sets a display format and color.

The first time you enter the display graphics command, OS-9
allocates a 6144-byte display memory. There must be at least
that much contiguous free memory available. (You can use
MFREE to check free memory.) The system retains the display
memory until you give the end graphics command, even if the
program that initiated the Graphics mode finishes. Always use
the end graphics command to release the display memory when
you no longer need the Graphics mode.

Graphics mode supports two basic formats. The 2-color format
has 256 horizontal by 192 vertical points (G6R mode). The 4-
color format has 128 horizontal by 192 vertical points (G6C
mode). Either mode provides both color sets. Regardless of the
resolution of the selected format, all Graphics mode commands
use a 256 by 192 point coordinate system. The X and Y coordi-
nates are always positive numbers. Point 0,0 is the lower left cor-
ner of screen.

Many commands use an invisible graphics cursor to reduce the
output required to generate graphics. You can explicitly set this
cursor to any point by using the set graphics cursor command.
You can also use any other commands that include x,y coordi-
nates (such as set point) to move the graphics cursor to the speci-
fied position.

Any graphics function that draws on the graphics screen
requires that the VDGInt module is loaded into memory during
the system boot.

Graphics Mode Selection Codes

Code Format
00 256 x 192 two-color graphics
01 128 x 192 four-color graphics

B-6

Color Computer 2 Compatibility /| B

Color Set and Foreground Color Selection Codes

2-Color Format l 4-Color Format
Char Back- Fore- Back- Fore-
ground ground ground ground
00 Black Black Green Green
Color 01 Black Green Green Yellow
Set 0 02 Green Blue
03 Green Red
04 Black Black Buff Buff
Color 05 Black Buff Buff Cyan
Set 1 06 Buff Magenta
07 Buff Orange
08 Black Black
Color 09 Black Dark Green
Set 2 10 Black Med. Green
11 Black Light Green
12 Black Black
Color 13 Black Green
Set 3 14 Black Red
15 Black Buff

Graphics Mode Control Commands

Hex Decimal
Control Control

Name/Function

Code Code
$OF 15
$10 16

DISPLAY GRAPHICS—Switches the screen
to the Graphics mode. Use this command
before any other graphics commands. The
first time you use it, the system assigns a 6-
kilobyte display buffer for graphics. If 6K of
contiguous memory isn’t available, OS-9 dis-
plays an error. Follow the display graphics
command with two characters specifying the
Graphics mode and color/color set,
respectively.

PRESET SCREEN-—Presets the entire
screen to the color code passed by the next
character.

B-7

0S-9 Commands Reference

Hex
Control
Code

Decimal
Control
Code

Name/Function

$11

312

$13

$14

$15

$16

$17

$18

17

18

19

20

21

22

23

24

SET COLOR—Sets the foreground color (and
color set) to the color specified by the next
character but does not change the Graphics
mode.

END GRAPHICS—Disables the Graphics
mode, returns the 6K byte graphics memory
area to OS-9 for other use, and switches to
Alpha mode.

ERASE GRAPHICS—Erases all points by
setting them to the background color, and
positions the graphics cursor at the desired
position.

HOME GRAPHICS CURSOR—Moves the
graphics cursor to coordinates 0,0 (the lower
left corner).

SET GRAPHICS CURSOR—Moves the
graphics cursor to the given x,y coordinates.
For x and y, the system uses the binary
value of the two characters that immediately
follow.

DRAW LINE—Draws a line in the fore-
ground color from the graphics cursor posi-
tion to the given x,y coordinates. For x and y,
the system uses the binary value of the two
characters that immediately follow. The
graphics cursor moves to the end of the line.

ERASE LINE—Operates the same as the
draw line function, except that OS-9 draws
the line in the background color, thus erasing
the line.

SET POINT—Sets the pixel at point x,y to
the foreground color. For x and y, the system
uses the binary values of the two characters
that immediately follow. The graphics cursor
moves to the point set.

B-8

Color Computer 2 Compatibility / B

Hex Decimal

Control Control

Code Code Name/Function

$19 25 ERASE POINT—Operates the same as the
set point function, except that OS-9 draws the
point in the background color, thus erasing
the point.

$1A 26 DRAW CIRCLE—Draws a circle in the fore-
ground color using the graphics cursor as the
center point and using the the binary value
of the next character as the radius.

$1C 28 ERASE CIRCLE—Operates the same as the
draw circle function, except that OS-9 draws
the circle in the background color, thus eras-
ing the circle. ‘

$1D 29 FLOOD FILL—paints with the foreground

color, starting at the graphics cursor position
and extending over adjacent pixels having the
same color as the pixel under the graphics
cursor.

Note: When you call FILL the first time, it requests alloca-
tion of a 512-byte stack for the fill routine. The system does
not return this memory until you terminate graphics with
the end graphics command.

Note: The chart uses hexadecimal codes for compatibility
with the OS-9 DISPLAY command.

Display Control Codes Summary

1st Byte

Dec Hex 2nd Byte 3rd Byte Function

00
01
02
03

00
01
02
03

Null
Home alpha cursor

Column+32 Row+32 Position alpha cursor

Erase line

B-9

0S-9 Commands Reference

1st Byte
Dec Hex 2nd Byte 3rd Byte

Function

04 04

05 05 Cursor Code
06 06

07 07

08 08

09 09

10 O0A

11 OB

12 0C

13 0D

14 OE

15 OF Mode Color Code

16 10 Color Code
17 11 Color Code

18 12
19 13
20 14

21 15 X Coord Y Coord
22 16 X Coord Y Coord
23 17 X Coord Y Coord
24 18 X Coord Y Coord

25 19 X Coord Y Coord
26 1A Radius
28 1C Radius

Erase to End of line
Alter Cursor

Move cursor right
Sound terminal bell
Move cursor left

Move cursor up

Move cursor down
Erase to End of Screen
Clear screen

Carriage return
Select Alpha mode
Select Graphics mode
Preset screen

Select color

Quit Graphics mode
Erase screen

Home Graphics cursor

Move graphics cursor
Draw line to x/y
Erase line to x/y

Set point at x/y

Clear point at x/y
Draw circle
Erase circle
Flood Fill

Appendix C

0S-9 Keyboard Codes

Key Definitions With Hexadecimal Values

NORM SHFT CTRL NORM SHFT CTRL NORM SHFT CTRL
0 30 0 30 -- @ 40 60 NULOO |p 70 P 50 DLE 10
131 ! 21 | 7C |a 61 A 41 SOH 01 |[q 71 Q 51 DC1 11
2 32 “ 22 00 [b 62 B 42 STX 02 |r 72 R 52 DC2 12
3 33 # 23 © 7E |c 63 C 43 ETX 03 |s 73 S 53 DC3 13
4 34 $ 24 00 |d 64 D 44 EOT 04 |t 74 T 54 DC4 14
5 35 % 25 00 (e 65 E 45 EMDO5 |u 75 U 55 NAK15
6 36 & 26 00 |[f 66 F 46 ACKO06 |v 76 V 56 SYN 16
7 31 27 “ BE |(g 67 G 47 BEL 07 |w 77 W 57 ETB 17
8 38 (28 [5B |h 68 H 48 BSP 08 |(x 78 X 58 CAN 18
9 39) 29] 5D |i 69 I 49 HT 09 |y 79 Y 59 EM 19
1 3A * 2A 00 |j 6A J 4A LF O0A |z 7A Z 5A SUMI1A
; 3B + 2B 00 [k 6B K 4B VT 0B
, 2C < 38C { 7B |1 6C L 4C FF oC
- 2D = 3D 5F |lm 6D M 4D DR 0D
. 2E > 3E } 7D in 6E N 4E CO OE
/ 2F ? 8F \ 5C lo 6F O 4F CI OF
Function Keys
NORM SHFT CTRL

BREAK 05 03 1B

ENTER 0D 0D 0D

SPACE 20 20 20

-« 08 18 10

- 09 19 11

v 0A 1A 12

4 0C 1C 13

C-1

Appendix D

0S-9 Keyboard Control

Functions

Key Definitions for Special Functions and Characters

Key
Combination Control Function or Character
ALT Alternate key—Sets the high order bit on a
character. Press char.

Use as a control key.

or Stops the program currently executing.

s Generates an underscore ().

) Generates a left brace ({).

O Generates a right brace (}).

A Generates a reverse slash (\).

Generates an end-of-file (EOF). This
sequence is the same as pressing on a
standard terminal.

or Generates a backspace.

or Deletes the entire current line.

or Interrupts the video display of a running

program. This sequence reactivates the
shell and then runs the program as a back-
ground task.

Upper-/lowercase shift lock function.

Generates a vertical bar (|) in reverse video.

Generates a tilde (*) character.

Generates an up arrow or caret (°).

Generates a left bracket (D).

(cTRO)(9) Generates a right bracket ().

0S-9 Commands Reference

Comi(i?ation Control Function or Character
Repeats the previous command line.
[cTRL)D) Redisplays the command line.

Temporarily halts output to the screen.
Press any key to resume output.

Enable/Disable Keyboard mouse.

Change screens.

Change screens in reverse order.

Index

ACIAPAK 5-6, 5-7, 6-96
active state 4-2
address 2-4

memory 4-5
allocate memory for devices

6-55

alpha mode B-3

select B-10
alphanumeric mode B-1
ampersand separator 3-6
append files 6-68
application program 1-3
arglist 6-2
ASCII 2-5

control characters B-1

convert 6-38
ASM 3-2
asterisk, editor 7-3
ATTR 2-10, 6-5
attribute 2-5, 2-8, 2-10, 6-5
auto-answer modem 6-96,

6-108

background
color B-7
process 3-7
task 4-1
screen 5-2
backspace 6-93
character
6-107
editor 7-2
over line 6-93, 6-106
BACKUP 5-4, 6-7
backup a directory 6-39
BASIC09 2-5, 2-6, 3-13, B-1
baud rate 5-4, 5-5, 5-6, 6-96,
6-98, 6-109
begin a window 6-103
bell
character 6-95, 6-108
sound B-10

6-94, 6-106,

bit 2-1
stop 5-5, 5-6
user 2-11
bitmap 2-5
block
number 4-5
devices 1-2
bootstrap 5-1
file 5-2
box graphics B-3
brackets 6-3
buffer 3-7, 7-2
edit 7-1
secondary 7-1
text 7-1
BUILD 2-6, 3-10, 6-10, 6-71,
6-75
built-in commands 3-1, 3-11
byte 2-1

carriage return B-10
CC3Disk 5-1
CC3Go 5-2
CC3I0 5-1,B-2
chaining programs 6-44
change
attributes 2-10, 2-11
directory 6-12, 6-91,
6-84
file name 6-84
priority 3-12, 6-88
system parameters 6-93
character
ASCII 2-5
delete 6-107
devices 1-2
backspace 6-94, 6-106,
6-107
bell 6-95, 6-108
delete line 6-94, 6-107
dup 6-95, 6-107
end-of-file 6-94, 6-107

0S-9 Commands Reference

character (cont’d)
end-of-record 6-94,
6-107
lowercase B-1
pause 6-95, 6-108
quit 6-95, 6-108
reprint 6-95, 6-107
terminate 6-95, 6-108
uppercase B-2
CHD 3-11, 6-12
check disk structure 6-25
child process 3-6, 4-2
CHX 3-11, 6-12
circle
draw B-9
erase B-9, B-10
clear
screen B-5
to end-of-line B-4
clock 5-2
cluster 2-4, 2-5
CMDS directory 5-1, 5-3, 5-4
CMP 6-14
COBBLER 6-16, 6-72
code
alpha mode control B-4
cursor B-5
object 2-7
position-independent 4-8
re-entrant 4-6
color
background B-7
foreground B-7, B-8
select B-10
set, graphics B-7
combine files 6-68
command
grouping 3-2, 3-9
help 6-51
interpreter 6-90
line 3-1, 3-2
parameters, editor 7-3
separator 3-1, 3-5
summary, editor 7-55

command codes
alpha mode B-4
graphics B-7
commandname 6-2
commands
ASM 3-2
ATTR 2-10, 2-11, 6-5
BACKUP 6-7
BUILD 2-6, 3-10, 6-10,
6-71, 6-75
built-in 3-11
CHD 3-11, 6-12
CHX 3-11, 6-12
CMP 6-14
COBBLER 6-16, 6-72
CONFIG 5-2, 5-3, 5-4,
6-18
COPY 2-3, 3-6, 4-8, 6-22
DATE 6-24
DCHECK 6-25
DEINIZ 6-30
DEL 6-31
DELDIR 2-3, 6-33
DIR 2-6, 2-9, 6-35
DISPLAY 6-38
DSAVE 6-39
DUMP 2-8, 6-72
ECHO 6-42
edit macro 7-28
editor 7-2
ERROR 5-2, 6-43
EX 3-11, 6-44
FORMAT 6-46
FREE 6-49
GET 2-6
HELP 6-51
i 3-11
IDENT 3-3, 6-52
INIZ 6-55
KILL 3-12, 6-56
LINK 6-58
LIST 2-3, 2-5, 2-8, 3-4,
6-59
LOAD 4-7, 6-61

Index

commands (cont’d)
MAKDIR 2-3, 2-11,
6-63
MDIR 6-64
MERGE 6-68
MFREE 6-69
MODPATCH 6-70
MONTYPE 6-74
0S9GEN 5-2, 5-3, 6-76
p 3-12
PROCS 3-7, 4-2, 6-80
PUT 2-6
PWD 6-82
PXD 6-82
RENAME 6-84
RUNB 3-13
SEEK 2-6
SETIME 5-3, 6-86
SETPR 3-12, 6-88
SHELL 3-6, 6-90
t 3-12
TMODE 6-93
TUNEPORT 6-98
UNLINK 4-7, 4-8,
6-100
w 3-12
WCREATE 6-103
x 3-12
XMODE 5-4, 5-5, 5-7,
6-106
comment, in a program 3-12
compare files 6-14
concurrent
execution 3-5, 6-91
mode 3-10
process 3-9
task 4-1
CONFIG 5-2, 5-3, 5-4, 6-18
control
characters, ASCII B-1
keys, editor 7-2
convert to ASCII 6-38
COPY 2-3, 3-6, 4-8, 6-22

copy
a directory 6-39
diskettes 6-7
CPU 4-1
priority 6-88
CRC 2-7,6-71
create
a directory 6-63
afile 6-10
OS9Boot 6-16, 6-76
process 3-6
system diskette 5-3, 5-4,
6-16, 6-18, 6-76
current
directory 4-4, 6-12
processes 6-80
cursor
on/off B-5
codes B-5
control B-1, B-4
graphics B-6, B-8
home B-4
move B-5, B-10
cyclic redundancy checksum
2-7

data format 2-1
data output, halt 7-3
ddta
redirect 3-4
input/output 1-2
passing 4-4
process 2-1
sending 2-1
transfer 2-1
DATE 6-24
date 2-5
set 6-86
day 6-2
DCHECK 6-25
deallocate a device 6-30
DEINIZ 6-30
DEL 6-31
delay, not ready 5-6
DELDIR 2-3, 6-33

0S-9 Commands Reference

delete
a character 6-107
a directory 6-33
aline 7-3

a memory module 4-7,

6-100
files 6-31
line character 6-94,
6-107
lines, editor 7-10
descriptor
device 1-2
file 2-3
detach a device 6-30
device

allocate memory 6-55

block-oriented 1-2
character 1-2
deallocate 6-30
descriptor 1-2, 5-1
driver 1-2, 2-1, 5-1
driver initialization
6-55
name 2-12,2-13
window 2-12 - 2-13
devname 6-2
DIR 2-6, 2-9, 6-35
directory 2-2, 2-3
attribute 2-8
change 6-12, 6-91
change name 6-84
CMDS 5-1, 5-3, 5-4
copy 6-39
create 6-63
current 4-4, 6-12
delete 6-33
list 6-35
module 4-6
ownership 2-8
SYS 5-1, 5-4
view 6-82
working 6-12
dirname 6-2
disable echo 6-94, 6-107

disk
cluster 2-4
file 2-3,2-4
/O 3-8
initialization 6-46
names 2-12
ownership 2-8
sector 2-4
structure, check 6-25
raw /O 3-8
unused sectors 6-49
diskette
copy 6-7
density 2-5
tracks 2-5
system 2-2
DISPLAY 6-38
display
a directory 6-35
current processes 6-80
date and time 6-24
error message 6-43
execution directory 6-82
file contents 6-59
free memory 6-69
graphics B-7
help 6-51
memory module names
6-64
messages 6-42
on next line 7-2
text, editor 7-6
unused disk sectors 6-49
working directory 6-82
double density 2-5
draw
a circle B-9
aline B-8, B-10
drivers, device 1-2
DSAVE 6-39
DUMP 2-8, 6-72
dup character 6-95, 6-107
duplicate
last line 6-95
line 6-107

Index

ECHO 6-42
echo 6-92
enable/disable 6-94,
6-107
edit
buffer 7-1
commands, EDIT 7-5
pointer 7-1, 7-2, 7-7
EDIT, editor 7-5
editor 7-1
backspace 7-2
command summary
7-55
command syntax 7-4
commands 7-2
control keys 7-2
delete lines 7-10
error messages 7-59
getting started 7-4
insert lines 7-10
interrupt 7-3
numeric parameters 7-3
quick reference 7-55
searching 7-13
substituting 7-13
terminate 7-2
text file operations 7-18
using the asterisk 7-3
ellipsis 6-3
enable echo 6-94, 6-101
end graphics B-8
end-of-file
terminate 7-2
character 6-94, 6-101
end-of-line
clearing B-4
erase B-10
end-of-record character 6-94,
6-107
erase
a circle B-9, B-10
a line B-10
graphics B-8
line B-4, B-8, B-9
point B-9

erase (cont’d)
to end-of-line B-10
Errmsg 5-2
ERROR 5-2, 6-43
error 3-12, 6-92
message file 5-2
messages, editor 7-59
output 6-91
path 3-4
establish a directory 6-63
EX 3-11, 6-44
exclamation mark separator
3-8
execute
a program 6-90
permission 2-9, 2-10
execution
concurrent 3-5, 6-91
modifier 3-1, 3-3
sequential 3-5, 3-6, 6-91

fields 2-6

file 2-2-2-4
attribute 2-8
change name 6-84
compare 6-14

copy 6-22
create 6-10
delete 6-31

descriptor 2-3
descriptor sector 2-5
display contents 6-59
load in memory 6-61
merge 6-68
manager 5-1
OS9Boot 5-4
ownership 2-8
pointer 2-4
procedure 2-6, 3-10,
3-11
random access 2-6
security 2-8
single-user 2-8
size 2-5

0S-9 Commands Reference

file (cont’d)

Startup 2-6, 5-1, 5-3,

5-4

text 2-5
filename 2-3, 6-2
fill portion of screen B-9
flood fill B-9, B-10
floppy disk names 2-12
fonts 5-2
foreground color B-7, B-8
fork 3-7, 4-6

request 4-3
FORMAT 6-46
FREE 6-49

generate messages 6-42
GET 2-6
getting started, editor 7-4
graphic window fonts 5-2
graphics B-1
color set B-7
command codes B-7
cursor B-6, B-8
mode, select B-10
end B-8
erase B-8
medium resolution B-6
VDG B-6
group 2-7
grouping, commands 3-9

halt data output 7-3
hardware 1-2
header
information 6-52
module 2-7, 3-3, 4-7
HELP 6-51
hex 6-2
hexadecimal code display
6-38
home
alpha cursor B-9
cursor B-4
hours 6-2

I-code 3-13
10
paths 3-4
transfers 3-8
raw 3-8
ID, process 4-4
IDENT 3-3, 6-52
images, pointer 5-2
immortal
process 6-91
shell 3-11
INIT 5-1
initialize
a disk 6-46
a window 6-103
INIZ 6-55
input 2-1
lines 3-12
path 3-4
redirect 6-91
standard 4-4
insert lines, editor 7-10
interpreter, commands 6-90
interprocess communication
3-7
interrupt editor 7-3
IOMAN 1-2,1-3, 5-1

kernel 1-1,1-2

keyboard 1-1

keyword 3-1 - 3-3

KILL 6-56

kill 3-12
a directory 6-33, 6-33
files 6-31

length
of video page 6-94
word 5-5, 5-6, 6-96,

6-109

line
backspace 6-93, 6-106
delete, editor 7-3
draw B-8, B-10
duplicate 6-95

Index

line (cont’d)
duplication 6-107
erase B-4, B-8, B-9,
B-10
syntax 6-1
linefeed 6-94, 6-107
lines, command 3-1
LINK 6-58
LIST 2-3, 2-5, 2-8, 3-4, 6-59
list
a directory 6-35
current processes 6-80
memory module names
6-64
segment 2-5
with program files 2-8
LOAD 4-7, 4-7, 6-61
lock a module 6-58
lockout 2-11
logical sector 2-3, 2-4
lowercase 6-93, 6-106
characters B-2

machine language 3-12
macro text editor 7-1
macros, edit 7-25
MAKDIR 2-11, 2-3, 6-63
management, memory 4-5
manager
pipe 1-2
random block 1-2
mark space 6-95, 6-108
MDIR 6-64
MDM kill 5-6, 5-7
medium resolution graphics
B-6
memory
address 4-5
allocation 3-1
display free 6-69
load a file into 6-61
management 1-1, 4-5
size modifier 3-3
memory modules
lock 6-58

memory modules (cont’d)
unlink 6-100
deleting 4-7
display names
MERGE 6-68
messages with ECHO 6-42
messages, error 6-43
MFREE 6-69
minutes 6-2
MMU 4-5
mode, alpha B-3
mode
alphanumeric B-1
concurrent 3-10
semigraphic B-1
modem 1-1, 5-6, 5-7
auto-answer 6-108
name 2-12
modifier 3-1 - 3-3
execution 3-1, 3-3
memory size 3-3
redirection 3-5
modname 6-2
MODPAK 5-7
MODPATCH 6-70, 6-71, 6-72,
6-73
module 1-3
deleting memory 4-7
directory 4-6
header 2-7, 3-3, 4-7
header information 6-52
loading 4-7
lock in memory 6-58
primary 4-3
program 2-7
unlink 4-8
month 6-2
MONTYPE 6-74, 6-75
move cursor B-4, B-5, B-10
multiprogramming 4-1
multitasking 1-1

6-64

name
device 2-12, 2-13
modem 2-12

0S-9 Commands Reference

name (cont’d)

printer 2-12

program 3-3

terminal 2-12
next line, display 7-2
not ready delay 5-6
notations, syntax 6-1
null count 6-94, 6-107
number

priority 3-12

user 2-8,4-4
numeric parameters, editor

7-3

object code 2-7
operating system 1-3
opts 6-2
0S9Boot 5-1, 5-4
create 6-16, 6-76
0S9Gen 5-2, 5-3, 6-72
OS9p2 5-1
output 2-1
error 6-91
path 3-4, 4-4
redirect 3-11, 6-91
owner 2-5,2-8

, 6-76

b

page length, video 6-107
pages 3-3
paint B-9
parameter 3-1, 4-4
change system 6-93
command editor 7-3
paramlist 6-2
parent process 4-2
parity 5-6, 5-7, 6-95, 6-108
passing data 4-4
pathlist 6-2
paths 2-1
'O 3-4
output 4-4
standard 3-4, 6-93
patterns, semigraphic B-2

pause 6-94
character 6-95, 6-108
screen 6-107
permission 6-2
execute 2-9, 2-10
read 2-9, 2-10
write 2-9, 2-10
physical sector 2-4
PIC 4-8
pipe 1-2, 3-7, 5-
pipelines 3-7, 3-
PIPEMAN
Piper 5-1
point
erase B-9
set B-8, B-10
pointer
edit 7-1,7-2
editor 7-7
file 24
images 5-2
port 1-2
port, RS-232 5-4, 6-109
position alpha cursor B-9
position-independent 2-7
code 4-8
prepare a disk 6-46
preset screen B-7
previous line repeat 7-2
primary module 4-3
PRINTER 5-1
printer 1-1, 1-2
name 2-12
test 6-98
priority
number 3-12
change 6-88
process 4-2, 4-4
procedure file 2-6, 3-10, 3-11
process
background 3-7
chaining 6-44
child 3-6
create 3-6
current 6-80

1
7, 3-8
5-1

Index

process (cont’d)
data 2-1
fork 3-7
ID 44
memory size 6-91
priority 4-2, 4-4
properties 4-4
sibling 4-3
state 4-2
terminate 6-56
time sharing 4-1
processor time 4-1
procID 6-2
PROCS 3-7, 4-2, 6-80
program
application 1-3
chaining 6-44
comments in 3-12
execution 6-90
modules 2-7
name 3-3
size 3-3
prompt 3-12
prompting 6-92
properties, process 4-4
public 2-9, 2-10
PUT 2-6
PWD 6-82
PXD 6-82

quick reference, editor 7-55
quit character 6-95, 6-108

RAM 4-5
random access 1-2
files 2-6
random block file manager
1-2
rate, baud 5-4, 5-5, 5-6, 6-96,
6-98, 6-109
raw /O 3-8
RBF 5-1
read 2-1, 2-11, 2-4
permission 2-10, 2-9
readers 3-8

record 2-2, 2-6

lockout 2-11
redirect

data 3-4

input 6-91

output 6-91
redirection 3-1

modifiers 3-4, 3-5

output 3-11

symbols 3-5
re-entrant code 4-6
remove

directory 6-33

files 6-31

memory module 6-100
RENAME 6-84
repeat previous line 7-2
reprint character 6-95, 6-107
reserved characters 3-3
ROOT 2-2, 2-3
route data 3-4
RS-232 5-1, 5-4, 6-96, 6-109
run-time module 3-12
RUNB 3-13

SAVE 6-72

SCF 5-1

screen
alpha B-5
background 5-2
clear B-5
control B-1
pause 6-94, 6-107
preset B-7

scroll pause 6-94, 6-107

searching, editor 7-13

secondary buffer 7-1

seconds 6-2

sector 2-4
copy 6-7
displayed unused 6-49
file descriptor 2-5
logical 2-3

0S-9 Commands Reference

security
file 2-8
permission 6-5
SEEK 2-6
segment list 2-5
select
alpha mode
color B-10
graphics mode
semicolon, sequential
execution 3-6
semigraphic
mode B-1
patterns B-2
sending data 2-1
separator 3-1
ampersand 3-6
command 3-5
exclamation mark 3-8
sequential execution 3-5, 3-6,
6-91
set a window 6-103
set a point B-8, B-10
set priority 3-12
SETIME 5-3, 6-86
SETPR 6-88
share time 4-1
shell 1-3, 3-1-3-3, 3-8, 6-3
SHELL 3-6, 6-90
show
a directory 6-35
error message 6-43
execution directory 6-82
file contents 6-59
free memory 6-69
header information 6-52
memory module
names 6-64
working directory 6-82
sibling processes 4-3
sign bit 2-2
simultaneous execution 3-5
single-user file 2-8
SIO 5-1

B-10
B-10

size
file 2-5
process memory 6-91
program 3-3

slash in device names 2-13
sleeping 4-3
software fonts 5-2
sound bell B-10
standard input 4-4, 6-93
standard paths 3-4, 6-93
start a window 6-103
Startup 2-2, 2-6, 5-1, 5-3,
5-4, 6-75
state 4-2, 4-2
Stdfonts 5-2
Stdpats 5-2
Stdptrs 5-2
stop bit 5-5, 5-6
string parameters, editor 7-4
subdirectory 2-3
delete 6-33
submanager 1-2
subshell 3-10
substituting, editor 7-13
summary, commands 6-3, 6-4
super user 6-56
switch screen B-5
symbols, redirection 3-5
syntax 6-1
SYS directory 5-1, 5-4
system
administrator 1-1
date 6-86
disk create 5-3, 5-4
parameters 6-93
priority 6-88
time 6-86
system diskette 2-2
create 6-16, 6-18, 6-76

task, background 4-1
term 1-1

TERM 5-1
TERM-VDG 6-96
TERM-WIN 6-109

10

Index

terminal name 2-12
terminals 1-2

terminate
a character 6-95, 6-108
a process 6-56

the editor 7-2
on error 6-92
test delay loop 6-98
text 6-2, B-2
buffers 7-1
display, editor 7-6
editing 7-1
file operations, editor
7-18
files 2-5
tick 4-1, 4-2
tickcount 6-2
time 2-5, 6-24
sharing, process 4-1
CPU 4-1
processor 4-1
set 6-86
timeslice 4-1, 4-2
TMODE 6-93
tracks 2-5
transfer, 'O 3-8
transferring data 3-7
TUNEPORT 6-98
turn on
cursor B-5
echo 6-92
prompting 6-92
type 5-7
ACIA 6-96, 6-108
of window 6-103
value 5-7

UNLINK 4-7, 4-8, 6-100
unused disk sectors 6-49
update mode 2-11
uppercase 6-93, 6-106
characters B-2

user
bit 2-11
number 2-8, 4-4

value 6-2
type b5-7
variable 6-1
VDG graphics B-6
video 1-1
page length 6-94, 6-107
view
current processes 6-80
error messages 6-43
working directory 6-82

waiting state 4-3
WCREATE 6-103
window 5-2
alpha mode controls B-3
descriptor 2-12
initialization 6-103
type 6-103
word length 5-5, 5-6, 6-96,
6-109
working directory 6-12
write 2-1, 2-4, 2-11
permission 2-9, 2-10

XMODE 5-4, 5-5, 6-106

year 6-2

11

0S-9
Technical
Reference

Contents

Chapter 1 System Organization 1-1
I/O System Modules, 1-1
Color Computer OS-9 Modules 1-2
Kernel, Clock Module, and INIT 1-2
Input/Qutput Modules oot 1-3

T/OManageroviintei i 1-3
File Managersc.covuiiiiiiinneennnann 1-3
Device Drivers 1-3
Device Descriptors 1-4
Shell ... e 1-4

Chapter 2 TheKernel 2-1
System Initialization 2-1
System Call Processing 2-4

0S9Defs and Symbolic Names 2-4
Types of System Calls 2-4
Memory Managementcin.., 2-5
Memory Use ..., 2-5
Color Computer OS-9 Typical Memory Map 2-7
Memory Management Hardware 2-7
Multiprogramming 0., 2-12
ProcessCreation 2-12
ProcessStates 2-13
Execution Scheduling 2-14
Signals ... i 2-15
Interrupt Processing 2-16
Logical Interrupt Polling System 2-17
Virtual Interrupt Processing 2-19

Chapter 3 Memory Modules 3-1
Module Typesc.ccviiiiiiiii i 3-1
Module Format i 3-1

Module Headero, 3-2
Module Body 3-2
CRCValue i 3-2
Module Headers: Standard Information 3-3
SyncBytes 3-3
Module Size 3-3
Offset to Module Name 3-3
Type/Language Byte 34
Attributes/Revision Level Byte 34

Header Check 0., 3-5

0S-9 Technical Reference

Module Headers: Type-Dependent Information 3-5
Executable Memory Module Format 3-6
Chapter 4 0S-9’s Unified Input/Output System 4-1
/O System Modulesciiiiiiiiina.t. 4-1
The /O Managercciiiiiiiiiiinnnnnain 4-2
File Managers 4-3
File Manager Structure 4-3
Create, Openc.cciieiiiieinniiin .. 4-4
Makdir 4-4
ChgDir ... 4-4
Deletec 4-5
Seek ..o 4-5
Read 4-5
Write ... 4-6
Readlm 4-6
WriteLn 4-6
GetStat, PutStat 4-6
Close ... 4-7
Interfacing with Device Drivers 4.7
Device Driver Modules 4-8
Device Driver Module Format 4-10
0OS-9 Interaction With Devices 4-11
Suspend State (Level Two Only) 4-13
Device Descriptor Modules 4-15
Path Descriptors, 4-18
Chapter 5 Random Block File Manager 5-1
Logical and Physical Disk Organization 5-1
Identification Sector (LSN 0) 5-2
Disk Allocation Map Sector (LSN 1) 5-3
ROOT Directory00 iiiiiiiiniann... 5-3

File Descriptor Sector 5-3
Directories ... 5-5
The RBF Manager Definitions of the Path Descriptor ..5-5
RBF-Type Device Descriptor Modules 5-8
RBF Record Locking 5-10
Record Locking and Unlocking 5-11
Non-Shareable Files 5-12
End-of-File Lockt 5-12
Deadlock Detection 5-13
RBF-Type Device Driver Modules 5-13
The RBF Device Memory Area Definitions 5-13

RBF Device Driver Subroutines 5-16

Contents

Chapter 6 Sequential Character File Manager 6-1
SCF Line Editing Functions 6-1
Read and Write 6-1

Read Line and Write Line 6-2

SCF Definitions of the Path Descriptor 6-2
SCF-Type Device Descriptor Modules 6-6
SCF-Type Device Driver Modules 6-9

SCF Device Driver Subroutines 6-10

Chapter 7 The Pipe File Manager (PIPEMAN) 7-1
Chapter 8 System Calls 8-1
Calling Procedure 8-1

VO SystemCallso, 8-2
System Call Descriptionscovuiiieee.. .. 8-2
User Mode System Calls Quick Reference 8-3
System Mode Calls Quick Reference 8-5
User System Calls 8-7

I/O User System Callso... o 8-44
Privileged System Mode Calls 8-66

Get Status System Calls 8-112

Set Status System Calls 8-130
Appendices A-1l
A Memory Module Diagrams A-1

B Standard Floppy Disk Format B-1

C SystemErrorCodes C-1

Index

Chapter 1

System Organization

0S-9 is composed of a group of modules, each of which has a spe-
cific function. The following illustration shows the major mod-
ules. Actual module names are capitalized.

I/0 System Modules

0S-9 KERNEL
T (0S9P1, 0S9P2) Clack

Input Qutput Manager

{IOMAN)
F | |
— 1
Disk File Pipe File Char. File
Manager Manager Manager Printer $10
(RBF) (Pipeman} {SCF)
— [
I) . | g 2 —l
Ram CC3Disk CC3Haisk Pipe ACIAPak ModPak CC310
Ram Disk Disk Disk Driver Driver Driver
Orniver Driver Driver {Piper)
B e
RBF Device Descriptors Pipe Descr. SCF Device Descriptors
L S A n
Vdgint Grfint Windint
CC3ID CC3i0 CC310
Interface Interface Interface
] |
Term_Vdg
Desc GrfDrv

Term_Win
Desc

0S-9 COMPONENT MODULE ORGANIZATION

OS-9 Technical Reference

Color Computer OS-9 Modules
IOMAN Input/output management

INIT System initialization table

CLOCK Software routine time management
RBF Random block file management

SCF Sequential character file management

PIPEMAN Pipe file management
CC3DISK Color Computer disk driver
CC3I0 Color Computer input/output driver

The VDGINT (video display generator) provides both interface
functions and low-level routines for Color Computer 2 VDG
compatibility.

The GRFINT interface provides high-level graphics code interpre-
tation and interface functions.

The WINDINT interface contains all the functions of GRFINT,
along with additional support for Multiview functions. If you are
using Multiview, exclude GRFINT from the system.

Both WINDINT and GRFINT use the low-level driver GRFDRV
to perform the actual drawing on bitmap screens.

Term_ VDG uses CC3I0 and VDGINT. TERM_WIN and all
window descriptors (W, W1, W2, and so on) use CC3I0, WIN-
DINT, GRFINT, and GRFDRV modules.

Kernel, Clock Module, and INIT

The system’s first level contains the kernel, clock module, and
INIT.

The kernel provides basic system services, such as multitasking
and memory management. It links all other OS-9 modules into
the system.

The clock module is a software handler for the real-time clock
hardware.

INIT is an initialization table used by the kernel during system
startup. This table loads initial tasks and specifies initial table
sizes and initial system device names. It is loaded into RAM
(random access memory) by the OS-9 bootstrap module Boot.
Boot also loads the OS9P2 and INIT modules during system
startup.

1-2

System Organization / 1

There are two ways to run boot:

® Using the DOS command with Color Disk BASIC, Ver-
sion 1.1, or later.

® Pressing the reset button after OS-9 is running.

Input/Output Modules

The remaining modules make up the 0S-9 I/O system. They are
defined briefly here and are discussed in detail in Chapter 4.

I/O Manager

The system’s second level (the level below the kernel) contains
the input/output manager, IOMAN. The I/O manager provides
common processing for all input/output operations. It is required
for performing any input/output supported by 0S-9.

File Managers

The system’s third level contains the file managers. File man-
agers perform I/O request processing for similar classes of I/O
devices. There are three file managers:

RBF manager The random block file manager processes
all disk I/O operations.

SCF manager The sequential character file manager han-
dles all non-disk I/O operations that operate
one character at a time. These operations
include terminal and printer 1/O.

PIPEMAN The pipe file manager handles pipes. Pipes
are memory buffers that act as files. Pipes
are used for data transfers between
processes.

Device Drivers

The system’s fourth level contains the device drivers. Device
drivers handle basic I/O functions for specific I/O controller hard-
ware. You can use pre-written drivers, or you can write your
own.

1-3

OS-9 Technical Reference

Device Descriptors

The system’s fifth level contains the device descriptors. Device
descriptors are small tables that define the logical name, device
driver, and file manager for each I/O port. They also contain port
initialization and port address information. Device descriptors
require only one copy of each I/O controller driver used.

Shell

The shell is the command interpreter. It is a program and not a
part of the operating system. The shell is fully described in the
0S-9 Commands manual.

1-4

Chapter 2
The Kernel

The kernel is the core of OS-9. The kernel supervises the system
and manages system resources. Half of the kernel (called
OS9P1) resides in the boot module. The other half of the kernel
(called OS9P2) is loaded into RAM with the other OS-9 modules.

The kernel’s main functions are:
® System initialization after reset
® Service request processing
® Memory management
® Multiprogramming management
® Interrupt processing

I/0O functions are not included in the list because the kernel does
not directly process them. Instead, it passes I/O system calls to
the I/O Manager for processing.

System Initialization

After a hardware reset, the kernel initializes the system. This
involves:

1. Locating modules loaded in memory from the OS-9 Boot file.
2. Determining the amount of available RAM.

3. Loading any required modules that were not loaded from the
0S-9 Boot file.

0S-9 Level Two cannot install new system calls using the 0S-9
Level One system call F$SSvc. F$SSvc does not work with a
Level Two user program because of the separation of system and
user address space.

0S-9 Technical Reference

OS9P3 can be used to tailor the system to fit specific needs. The
following listing is an example of how to use the OS9P3 module.

Microware 0S-9 Assembler 2.1 11/18/83 1o:06:01 Page 081

05-9 Level TWO V1.2, part 2 - 08-3 Systen Symbol Definitions

0001
paae2
peaes

paan
poot2
00013
20014
0015
VLR
pont7
0018
N9
#8029
0a3e
a3t
a3
2033

a4
ea42
0043
044
0845
0046
pea47
f0a48
4849
aeese
peast
aees2
00053
00054
00055
20856
57
po0ss
20859
fidet

I R R R R R R R R R R R R R R N E R R R R R}

*

+ Module Header

(Il Type sl Sysin+Objet

pest Revs set Refnt+

poge 87CDAASE n0d 059End,J53Name, Type,Revs,Caic,256

000D 4F533970 (SOName fcs “DS9p3"

pp12 M feb ¢ edition number
use defsfiie

g2 level ecu 2
opt ¢
opt f

R R R R R R R R R R R A R R R R R]

*

+ Routine Cold

¥

¥

ge13 31800004 Cold leay SveTbl,per get service routine
pe17 1e3r3e 059 F8SSve imstall new service
VAL IE] ris

IR R R R R N R R R R R R R R R R

* Service Routines Initizlization Table

2025 FSSAYHL equ $25 sel up new cali
* fdd this to the user os9cefs file

2-2

The Kernel | 2

doget B SveTbl equ ¢

bege2 eptB 25 feb F45AYH!
00063 OMC aept fdb SayHi-+-2
dooes edE 80 feb 980

Microware 95-9 Assembler 2.1 11/18/83 16:06:01 Page 042
05-3 Level TWD vi.2, part 2 - 05-3 System Symbol Definitions

10058 *

peee9 #Service call Say Hello to user

06678 ¥

0071 *Input: U = Registers pir

§ea72 [R$X,u = Message ptr (if B send default)
pee73 ¥ Max message lenglh = 4I bytes.

00874 s

gears Qutputs Message sent to standard error path of user,
pea7s £

6ea77 +Data: D.Proc

10878 +

108738

peese 6e1F AL4d SayHi lex R$X,u gel mess, address
poes1 ge2t 2619 hne SayHi6 bra if not default
peese @23 109esd ldy D.Proc cet proc descr ptr
§0083 020 LE24 ldu PSSPy get caller’s stack
p0e84 gez8 330808 leau -40,u reon fer message
peess 028 9end lda D.SysTsk systen’s task nun
p6e8e 0820 626 ldb PSTASK,y calier’s lask mum
§0087 082F 1@8EpG28 ldy ¥4 sel byte count
ppess 9833 3@800M12 leax Helio,pcr cdestiration pir
poes9 037 103F38 158 F$Move mess into user Tmem
§e90 0e3” 3004 ieax Qo

f00%1 003C 108EQ028 SayHio ldy #40 ge: max byle count
60092 0948 DESD ldu [.Prac get proc desc ptr
10693 Q242 pGC832 lda PSPATH+2,u patn num of stderr
p0g94 45 14380 059 I$driton write mess line
§0p9s g4 39 ris

168%

00897 0049 486S6CaC Kelie fee "Hello there user."

§0038 pESA 0D feb $)

10899

§o1ée 0SB S104Bo enad rodu.e CRC

(AN

2-3

0S-9 Technical Reference

§0192 945k 759End equ '
80183
80104 ead

10600 error(s)

28008 warning(s)

$005E 00094 program bytes generated
$0000 00000 data byles allocated
$2884 10372 bytes used for symbols

System Call Processing

System calls are used to communicate between 0S-9 and assem-
bly-language programs for such functions as memory allocation
and process creation. In addition to I/O and memory manage-
ment functions, system calls have other functions. These include
interprocess control and timekeeping.

System calls use the SWI2 instruction followed by a constant
byte representing the code. You usually pass parameters for sys-
tem calls in the 6809 registers.

OS9Defs and Symbolic Names

A system-wide assembly-language equate file, called OS9Defs,
defines symbolic names for all system calls. This file is included
when assembling hand-written or compiler-generated code. The
0S-9 assembler has a built-in macro to generate system calls,
For example:

0S9 [$Read
is recognized and assembled as equivalent to:

SWI2
FCB I$Read

The OS-9 assembly macro 0OS9 generates an SWI2 function. The
label I$Read is the label for the code $89.

Types of System Calls

System calls are divided into two categories, 1/0 calls and func-
tion calls.

2-4

The Kernel / 2

I/O calls perform various input/output functions. The kernel
passes calls of this type to the I/O manager for processing. The
symbolic names for [/O calls begin with I$. For example, the
Read system call is called I$Read.

Function calls perform memory management, multi-program-
ming, and other functions. Most are processed by the kernel. The
symbolic names for function calls begin with F3$. For example,
the Link function call is called F$Link.

The function calls include user calls and privileged system mode
calls. (See Chapter 8, “System Calls”, for more information.)

Memory Management

Memory management is an important operating system function.
Using memory modules, OS-9 manages the logical contents of
memory and the physical assignment of memory to programs.

All programs that are loaded must be in the memory module for-
mat. This format allows OS-9 to maintain a module directory of
all the programs in memory. The directory contains information
about each module, including its name and address and the
number of processes using it. The number of processes using a
module is called the module’s link count.

When a module’s link count is zero, OS-9 deallocates its part of
memory and removes its name from the module directory.

Memory modules are the foundation of 0S-9’s modular software
environment. Advantages of memory management are:

e Automatic runtime linking of programs to libraries of
utility modules

® Automatic sharing of re-entrant programs

® Replacement of small sections of large programs into
memory for update or correction

Memory Use

0S-9 reserves some space at the top and bottom of RAM for its
own use. The amount depends on the sizes of system tables that
are specified in the INIT module.

2-5

0S-9 Technical Reference

0S-9 pools all other RAM into a free memory space. As the sys-
tem allocates or deallocates memory, it dynamically takes it
from or returns it to this pool. RAM does not need to be contig-
uous because the memory management unit can dynamically
rearrange memory addresses.

The basic unit of memory allocation is the 256-byte page. OS-9
always allocates memory in whole numbers of pages.

The data structure that OS-9 Level Two uses to keep track of
memory allocation is a 256-byte bit map. Each bit in this table
is associated with a specific page of memory. A cleared bit indi-
cates that the page is free and available for assignment. A set
bit indicates that the page is in use (that no RAM is free at that
address). 0OS-9 Level Two always allocates memory in 8192-byte
increments. This is the smallest memory block that the memory
management hardware supports.

0S-9 automatically allocates memory when any of the following
occurs:

® Program modules are loaded into RAM
® Processes are created

® Processes execute system calls to request additional
RAM

® (S-9 needs I/O buffers or larger tables

0S-9 also has inverse functions to deallocate memory allocated
to program modules, new processes, buffers, and tables.

In general, memory for program modules and buffers is allocated
from high addresses downward. Memory for process data areas is
allocated from low addresses upward.

Following, is a memory map of a typical system. Actual memory
sizes and addresses can vary depending on the exact system
configuration.

2-6

The Kernel | 2

Color Computer OS-9 Typical Memory Map

<« $7FFFF
/O Device Addresses
<« $7FF00
Reserved I/0 Devices
<« $7FE80
Reserved Common Memory
<« $7FE00
0S-9 Kernel
<« varies
Bottom of Memory
in a 128K System
<« $60000
Bottom of Memory
in a 512K System
<« $00000

Figure 2.1

Note: The high two pages of every logical address space
contain the defined areas I/O Device Addresses, Reserved
I/0 Devices, and Reserved Common Memory.

Memory Management Hardware

The 8-bit CPU in the Color Computer 3 can directly address only
64 kilobytes of memory using its 16 address lines (A0-A15). The
Color Computer 3’s Memory Management Unit (MMU) extends
the addressing capability of the computer by increasing the
address lines to 19 (A0-A18). This lets the computer address up
to 512 kilobytes of memory ($0-$7FFFF).

The 512K address space is called the physical address space. The
physical address space is subdivided into 8K blocks. The six high
order address bits (A13-A18) define a block number.

2.7

0OS-9 Technical Reference

0S-9 creates a logical address space of up to 64K for each task
by using the FORK system call. Even though the memory
within a logical address space appears to be contiguous, it might
not be—the MMU translates the physical addresses to access
available memory. Address spaces can also contain blocks of
memory that are common to more than one map.

The MMU consists of a multiplexer and a 16 by 6-bit RAM
array. Each of the 6-bit elements in this array is an MMU task
register. The computer uses these task registers to determine
the proper 8-kilobyte memory segment to address.

The MMU task registers are loaded with addressing data by the
CPU. This data indicates the actual location of each 8-kilobyte
segment of the current system memory. The task registers are
divided into two sets consisting of eight registers each. Whether
the task register select bit (TR bit) is set or reset, determines
which of the two sets is to be used.

The relation between the data in the task register and the gen-
erated addresses is as follows:

Bit D5 | D4 | D3 | D2 | D1 | DO

Corresponding
Memory Address | A18 | A17 | A16 | Al5 | Al4 | A13

Figure 2.2

When the CPU accesses any memory outside the [/O and control
range (XFF00=XFFFF), the CPU address lines (A13-A15) and
the TR bit determine what segment of memory to address. This
is done through the multiplexer when SELECT is low. (See the
following table.)

When the CPU writes data to the MMU, A0-A3 determine the
location of the MMU register to receive the incoming data when
SELECT is high. The following diagram illustrates the operation
of the Color Computer 3’s memory management:

The Kernel / 2

D0-D5
CPU data
RAM
A13-A15
Din
TR bit
Multiplexer D out | A13-A18
A0-A3 > > RAO-RA3
WE
SELECT | I
~N
|7
Figure 2.3

The system uses the data from the MMU registers to determine
the block of memory to be accessed, according to the following
table:

TR MMU
Bit Al5 Al14 A13 AddressRange Address
0 0 0 o0 X0000-X1FFF FFAO
0 0 0 1 X2000-X3FFF FFA1
0 0 1 0 X4000-X5FFF FFA2
0 0 1 1 X6000-X7FFF FFA3
0 1 0 0 X8000-X9FFF FFA4
0 1 0 1 XAO000-XBFFF FFA5
0 1 1 0 XC000-XDFFF FFA6
0 1 1 1 XE000-XFFFF FFA7
1 0 0 O X0000-X1FFF FFAS8
1 0 0 1 X2000-X3FFF FFA9
1 0 1 0 X4000-X5FFF FFAA
1 0 1 1 X6000-X7FFF FFAB
1 1 0 0 X8000-X9FFF FFAC
1 1 0 1 XA000-XBFFF FFAD
1 1 1 0 XC000-XDFFF FFAE
1 1 1 1 XE000-XFFFF FFAF
Figure 2.4

29

0S-9 Technical Reference

The translation of physical address to 8K-blocks is as follows:

Range Block _ Range pjpex
From To Number From To Number
00000 O1FFF 00 40000 41FFF 20
02000 O3FFF 01 42000 43FFF 21
04000 O5FFF 02 44000 45FFF 22
06000 O7FFF 03 46000 47FFF 23
08000 O09FFF 04 48000 49FFF 24
0A000 OBFFF 05 4A000 4BFFF 25
0C000 ODFFF 06 4C000 4DFFF 26
0E000 OFFFF 07 4E000 4FFFF 27
10000 11FFF 08 50000 51FFF 28
12000 13FFF 09 52000 53FFF 29
14000 15FFF 0A 54000 55FFF 2A
16000 17FFF 0B 56000 57FFF 2B
18000 19FFF 0C 58000 59FFF 2C
1A000 1BFFF 0D 5A000 5BFFF 2D
1C000 1DFFF OE 5C000 5DFFF 2E
1E000 1FFFF OF 5E000 5FFFF 2F
20000 21FFF 10 60000 61FFF 30
22000 23FFF 11 62000 63FFF 31
24000 25FFF 12 64000 65FFF 32
26000 27FFF 13 66000 67FFF 33
28000 29FFF 14 68000 69FFF 34
2A000 2BFFF 15 6A000 6BFFF 35
2C000 2DFFF 16 6C000 6DFFF 36
2E000 2FFFF 17 6E000 6FFFF 37
30000 31FFF 18 70000 71FFF 38
32000 33FFF 19 72000 73FFF 39
34000 35FFF 1A 74000 75FFF 3A
36000 37FFF 1B 76000 77FFF 3B
38000 39FFF 1C 78000 79FFF 3C
3A000 3BFFF 1D 7A000 7BFFF 3D
3C000 3DFFF 1E 7C000 7DFFF 3E
3E000 3FFFF 1F 7E000 7FFFF 3F

Figure 2.5

2-10

The Kernel | 2

In order for the MMU to function, the TR bit at $FF90 must be
cleared and the MMU must be enabled. However, before doing
this, the address data for each memory segment must be loaded
into the designated set of task registers. For example, to select a
standard 64K map in the top range of the Color Computer 3’s
512K RAM, with the TR bit set to 0, the following values must
be preloaded into the MMU’s registers:

MMU

Location Data Data Address

Address (Hex) (Bin) Range
FFAQ 38 111000 70000-71FFF
FFA1 39 111001 72000-73FFF
FFA2 3A 111010 74000-75FFF
FFA3 3B 111011 76000-77FFF
FFrA4 3C 111100 78000-79FFF
FFA5 3D 111101 7A000-7BFFF
FFA6 3E 111110 7C000-7DFFF
FFAT7 3F 111111 7E000-7FFFF

Figure 2.6

Although this table shows MMU data in the range $38 to 3F,
any data between $0 and $3F can be loaded into the MMU reg-
isters to select memory addresses in the range 0 to $7FFFF, as
illustrated by Figure 2.5.

Normally, the blocks containing I/O devices are kept in the sys-
tem map, but not in the user maps. This is appropriate for time-
sharing applications, but not for process control. To directly
access I/O devices, use the F$MspBlk system call. This call
takes a starting block number and block count, and maps them
into unallocated spaces of the process’s address space. The sys-
tem call returns the logical address at which the blocks were
inserted.

For example, suppose a display screen in your system is allo-
cated at extended addresses $7A000-$7DFFF (blocks 3D and
3E). The following system call maps them into your address
space:

ldb #2 number of blocks

ldx #3D starting block number

0s9 F$MapBlk call MapBlk

stu [0Ports save address where mapped

2-11

0S-9 Technical Reference

On return, the U register contains the starting address at which
the blocks were switched. For example, suppose that the call
returned $4000. To access extended address $7A020, write to
$4020.

Other system calls that copy data to or from one task’s map to
another are available, such as F$STABX and F$Move. Some of
these calls are system mode privileged. You can unprotect them
by changing the appropriate bit in the corresponding entry of
the system service request table and then making a new system
boot with the patched table.

Multiprogramming

0S-9 is a multiprogramming operating system. This means that
several independent programs called processes can be executed at
the same time. By issuing the appropriate system call to OS-9,
each process can have access to any system resource.

Multiprogramming functions use a hardware real-time clock.
The clock generates interrupts 60 times per second, or one every
16.67 milliseconds. These interrupts are called ticks.

Processes that are not waiting for some event are called active
processes. OS-9 runs active processes for a specific system-
assigned period called a time slice. The number of time slices
per minute during which a process is allowed to execute depends
on a process’s priority relative to all other active processes.
Many OS-9 system calls are available to create, terminate, and
control processes.

Process Creation

A process is created when an existing process executes a Fork
system call (F$Fork). This call’s main argument is the name of
the program module that the new process is to execute first (the
primary module).

Finding the Module. 0S-9 first attempts to find the module in
the module directory. If it does not find the module, OS-9 usu-
ally attempts to load into memory a mass-storage file in the exe-
cution directory, with the requested module name as a filename.

2-12

The Kernel / 2

Assigning a Process Descriptor. Once 0S-9 finds the module,
it assigns the process a data structure called a process descrip-
tor. This is a 64-byte package that contains information about
the process, its state (see the following section “Process States”),
memory allocations, priority, queue pointers, and so on. OS-9
automatically initializes and maintains the process descriptor.
The process itself cannot access the descriptor; it has no need to
do so.

Allocate RAM. The next step is to allocate RAM for the pro-
cess. The primary module’s header contains a storage size. 0S-9
uses this size unless the Fork system call requests a larger area.
0S-9 then attempts to allocate a memory area of the specified
size from the free memory space. The memory space does not
need to be contiguous.

Proceed or Terminate. If OS-9 can perform all of the previous
steps, it adds the new process to the active process queue for exe-
cution scheduling. If it cannot, it terminates the creation; the
process that originated the Fork is informed of the error.

Assign Process ID and User ID. OS-9 assigns the new process
a unique number called a process ID. Other processes can com-
municate with the process by referring to its ID in various sys-
tem calls.

The process also has a user ID, which is used to identify all pro-
cesses and files belonging to a particular user. The user ID is
inherited from the parent process.

Process Termination. A process terminates when it executes
an Exit system call (F$Exit) or when it receives a fatal signal.
The termination closes any open paths, deallocates memory used
by the process, and unlinks its primary module.

Process States
At any instant a process can be in one of three states:
e Active—The process is ready for execution.

e Waiting—The process is suspended until a child process
terminates or until it receives a signal. A child process
is a process that is started (execution is begun by)
another process—a parent process.

2-13

0S-9 Technical Reference

® Sleeping—The process is suspended for a specific period
of time or until it receives a signal.

Each state has its own queue, a linked list of descriptors of pro-
cesses in that state. To change a process’s state, move its
descriptor to another queue.

The Active State. Each active process is given a time slice for
execution, according to its priority. The scheduler in the kernel
ensures that all active processes, even those of low priority, get
some CPU time.

The Wait State. This state is entered when a process executes a
Wait system call (F$Wait). The process remains suspended until
one of its child processes terminates or until it receives a signal.
(See the “Signals” section later in this chapter.)

The Sleeping State. This state is entered when a process exe-
cutes a Sleep system call (F$Sleep), which specifies the number
of ticks for which the process is to remain suspended. The pro-
cess remains asleep until the specified time has elapsed or until
it receives a wakeup signal.

Execution Scheduling

The OS-9 scheduler uses an algorithm that ensures that all
active processes get some execution time.

All active processes are members of the active process queue,
which is kept sorted by process age. Age is the number of process
switches that have occurred since the process’s last time slice.
When a process is moved to the active process queue from
another queue, its age is set according to its priority—the higher
the priority, the higher the age.

Whenever a new process becomes active, the ages of all other
active processes increase by one time slice count. When the exe-
cuting process’s time slice has elapsed, the scheduler selects the
next process to be executed (the one with the next highest age,
the first one in the queue). At this time, the ages of all other
active processes increase by one. Ages never go beyond 255.

A new active process that was terminated while in the system
state is an exception. This process is given high priority because
it is usually executing critical routines that affect shared system
resources.

2-14

The Kernel / 2

When there are no active processes, the kernel handles the next
interrupt and then executes a CWAL1 instruction. This procedure
decreases interrupt latency time (the time it takes the system to
process an interrupt).

Signals

A signal is an asynchronous control mechanism used for inter-
process communication and control. It behaves like a software
interrupt. It can cause a process to suspend a program, execute
a specific routine, and then return to the interrupted program.

Signals can be sent from one process to another process by the
Send system call (F$Send). Or, they can be sent from 0S-9 ser-
vice routines to a process.

A signal can convey status information in the form of a 1-byte
numeric value. Some signal codes (values) are predefined, but
you can define most. The signal codes are:

0

Kill (terminates the process, is non-
interceptable)

1 = Wakeup (wakes up a sleeping process)
2 = Keyboard terminate

3 = Keyboard interrupt

4 = Window change

128-255 User defined

When a signal is sent to a process, the signal is saved in the
process descriptor. If the process is in the sleeping or waiting
state, it is changed to the active state. When the process gets its
next time slice, the signal is processed.

What happens next depends on whether or not the process has
set up a signal intercept trap (signal service routine) by execut-
ing an Intercept system call (F$lcpt).

If the process has set up a signal intercept trap, the process
resumes execution at the address given in the Intercept call. The
signal code passes to this routine. Terminate the routine with
an RTI instruction to resume normal execution of the process.

0S-9 Technical Reference

Note: A wakeup signal activates a sleeping process. It sets
a flag but ignores the call to branch to the intercept
routine.

If it has not set up a signal intercept trap, the process is termi-
nated immediately. It is also terminated if the signal code is
zero. If the process is in the system mode, OS-9 defers the termi-
nation. The process dies upon return to the user state.

A process can have a signal pending (usually because the pro-
cess has not been assigned a time slice since receiving the sig-
nal). If it does, and another process tries to send it another
signal, the new signal is terminated, and the Send system call
returns an error. To give the destination process time to process
the pending signal, the sender needs to execute a Sleep system
call for a few ticks before trying to send the signal again.

Interrupt Processing

Interrupt processing is another important function of the kernel.
0S-9 sends each hardware interrupt to a specific address. This
address, in turn, specifies the address of the device service rou-
tine to be executed. This is called vectoring the interrupt. The
address that points to the routine is called the vector. It has the
same name as the interrupt.

The SWI, SWI2, and SWI3 vectors point to routines that read
the corresponding pseudo vector from the process’s descriptor
and dispatch to it. This is why the Set SWI system call
(F$SSWI) is local to a process; it only changes a pseudo vector in
the process descriptor.

Hardware Vector

Table
Vector Address
SWI3 $FFF2
SWI2 $FFF4
FIRQ $FFF6
IRQ $FFF8
SWI $FFFA
NMI $FFFC

RESTART S$FFFE

2-16

The Kernel / 2

FIRQ Interrupt. The system uses the FIRQ interrupt. The
FIRQ vector is not available to you. The FIRQ vector is reserved
for future use. Only one FIRQ generating device can be in the
system at a time.

Logical Interrupt Polling System

Because most 0S-9 I/O devices use IRQ interrupts, 0S-9
includes a sophisticated polling system. The IRQ polling system
automatically identifies the source of the interrupt, and then exe-
cutes its associated user- or system-defined service routine.

IRQ Interrupt. Most OS-9 I/O devices generate IRQ interrupts.
The IRQ vector points to the real-time clock and the keyboard
scanner routines. These routines, in turn, jump to a special IRQ
polling system that determines the source of the interrupt. The
polling system is discussed in the next section, “Logical Inter-
rupt Polling System.”

NMI Interrupt. The system uses the NMI interrupt. The NMI
vector, which points to the disk driver interrupt service routine,
is not available to you.

The Polling Table. The information required for IRQ polling is
maintained in a data structure called the IRQ polling table. The
table has a 9-byte entry for each device that might generate an
IRQ interrupt. The table size is permanent and is defined by an
initialization constant in the INIT module. Each entry in the
polling table is given a number from O (lowest priority) to 255
(highest priority). In this way, the more important devices (those
that have a higher interrupt frequency) can be polled before the
less important ones.

Each entry has six variables:

Polling Address Points to the status register of the device.
The register must have a bit or bits that
indicate if it is the source of an interrupt.

Flip Byte Selects whether the bits in the device status
register indicate active when set or active
when cleared. If a bit in the flip byte is set,
it indicates that the task is active whenever
the corresponding bit in the status register
is clear.

2-17

OS-9 Technical Reference

Mask Byte Selects one or more interrupt request flag
bits within the device status register. The
bits identify the active task or device.

Service Points to the interrupt service routine for
Routine Address the device. You supply this address.

Static Points to the permanent storage area
Storage Address required by the device service routine. You
supply this address.

Priority Sets the order in which the devices are
polled (a number from 0 to 255).

Polling the Entries. When an IRQ interrupt occurs, OS-9
enters the polling system via the corresponding RAM interrupt
vector. It starts polling the devices in order of priority. OS-9
loads the status register address of each entry into Accumulator
A, using the device address from the table.

08-9 performs an exclusive-OR operation using the flip byte, fol-
lowed by a logical-AND operation using the mask byte. If the
result is non-zero, OS-9 assumes that the device is the source of
the interrupt.

0S-9 reads the device memory address and service routine
address from the table, and performs the interrupt service
routine.

Note: If you are writing your own device driver, terminate
the interrupt service routine with an RTS instruction, not
an RTI instruction.

Adding Entries to the Table. You can make entries to the IRQ
(interrupt request) polling table by using the Set IRQ system
call (F$IRQ). Set IRQ is a privileged system call, OS-9 can exe-
cute it only in the system mode. 0S-9 is in system mode when-
ever it is running a device driver.

Note: The code for the interrupt polling system is located
in the I/O Manager module. The OS9P1 and OS9P2 mod-
ules contain the physical interrupt processing routines.

2-18

The Kernel / 2

Virtual Interrupt Processing

A virtual IRQ, or VIRQ, is useful with devices in Multi-Pak
expansion slots. Because of the absence of an IRQ line from the
Multi-Pak interface, these devices cannot initiate physical inter-
rupts. VIRQ enables these devices to act as if they were inter-
rupt driven. Use VIRQ only with device driver and pseudo device
driver modules. VIRQ is handled in the Clock module, which
handles the VIRQ polling table and installs the F$VIRQ system
call. Since the F$VIRQ system call is dependent on clock initial-
ization, the CC3GO module forces the clock to start.

The virtual interrupt is set up so that a device can be inter-
rupted at a given number of clock ticks. The interrupt can occur
one time, or can be repeated as long as the device is used.

The F$VIRQ system call installs VIRQ in a table. This call
requires specification of a 5-byte packet for use in the VIRQ
table. This packet contains:

® Bytes for an actual counter
® A reset value for the counter

e A status byte that indicates whether a virtual interrupt
has occurred and whether the VIRQ is to be re-installed
in the table after being issued

F$VIRQ also specifies an initial tick count for the interrupt.
The actual call is summarized here and is described in detail in
Chapter 8.

Call: 0S9 F$VIRQ
Input: (Y) = address of 5-byte packet
(X) = 0 to delete entry, 1 to install entry

(D) = initial count value

Output: none
(CC) carry set on error
(IS) appropriate error code

The 5-byte packet is defined as follows:

Name Offset Function

Vi.Cnt %0 Actual counter

Vi.Rst $2 Reset value for counter
Vi.Stat $4 Status byte

2-19

0S-9 Technical Reference

Two of the bits in the status byte are used. These are:

Bit 0 - set if VIRQ occurs
Bit 7 - set if a count reset is required

When making an FS$VIRQ call, the packet might require initial-
ization with a reset value. Bit 7 of the status byte must be
either set or cleared to signify a reset of the counter or a one-
time VIRQ call. The reset value does not need to be the same as
the initial counter value. When OS-9 processes the call, it writes
the packet address into the VIRQ table.

At each clock tick, OS-9 scans the VIRQ table and subtracts one
from each timer value. When a timer count reaches zero, OS-9
performs the following actions:

1. Sets Bit 0 in the status byte. This specifies a Virtual IRQ.
2. Checks Bit 7 of the status byte for a count reset request.

3. If bit 7 is set, resets the count using the reset value. If bit 7
is reset, deletes the packet address from the VIRQ table.

When a counter reaches zero and makes a virtual interrupt
request, OS-9 runs the standard interrupt polling routine and
services the interrupt. Because of this, you must install entries
on both the VIRQ and DIRQ polling tables whenever you are
using a VIRQ.

Unless the device has an actual physical interrupt, install the
device on the IRQ polling table via the FSIRQ system call before
placing it on the VIRQ table.

If the device has a physical interrupt, use the interrupt’s hard-
ware register address as the polling address for the F$IRQ call.
After setting the polling address, set the flip and mask bytes for
the device, and make the F$IRQ call.

If the device is totally VIRQ-driven, and has no interrupts, use
the status byte from the VIRQ packet as the status byte. Use a
mask byte of %00000001, defined as VilFlag in the defs file.
Use a flip byte value of 0. The following examples show how to
set up both types of VIRQ calls. The first example is taken from
an ACIA-type driver that has a physical interrupt found in a
status register, but that cannot be accessed by the processor if
used in the Multi-Pak. The second example is for a device with
no physical interrupt handling, all interrupts are handled
through the VIRQ.

2-20

The Kernel | 2

+ VIRQ Example #1 - Device Driver possessing real IRQ's

+ Copyright 1985,1386 oy Microware Sysiems
+ Corporation. Reproduced Under License

use defsfile

+ actual mask byte for hardware interrupt
IRGReq set 16040000 Interrupt Request

+ offsel 1o the actual hardware status register
Status equ 1

+ VIRQ countdown value
VIRACNT equ 1 do the VIRQ on every tick

(2R R RS X EEEEER R R)
+ Static storage offsets

+

org V.5Cf room for scf variables

VIRGBUF rmb 5 buffer for fake interrupt from clock

MEM equ . Total static storage requirement

IER22 SRR]

+ Module Header
mod MEND,NAM,DRIVR+0BJCT ,REENT+1,ENT MEM
fcb UPDAT.

feb Edition Current Revision
12 R R R R R R R R R R R E R R R R R)

* Driver entry jump table

ENT lbra INIT

lbra READ

lbra WRITE

lbra GETSTA

2-21

0S-9 Technical Reference

lbra PUTSTA
bra TRMNAT

+ Actual mask information for F$IRQ call for the
+ hardware interrupt MASK fcb @ nmo flip bits

+ fcb [ROReg Irq polling mask

+ fcb 18 (higher) priority

IEERZZS RS RERRS

+ Init

+ Initialize the device

+ Includes setting up the IRQ and VIRQ entries

+

INIT

+ Install IRQ polling Table Entry first
+ Use the hardware status register and the hardware
+ mask

ldd V.PORT,U get port address in D

add #Status point to hardware status byte

leax MASK,P(R get the hardware interrupt mask

leay MIRQ,PCR address of interrupt service routine
053 F$IRQ Add to IRG polling table

bes INITS error - return it

+ Install VIRQ in Clock Module second
¥

leay VIRQBUF,U get the 5 byte VIRG buffer pointer

lda #$80 get reset flag for repeated VIRQ's

sta Vi.Stat,y put it into buffer

ldd #VIRGCNT get count for number of ticks for the VIRQ
std Vi.Rst,y put in initial resel value

ldx #1 put onto table

053 FEVIRA make the service request

bes INITS Error - return it

INIT9 ris

READ

2-22

The Kernel / 2

WRITE
GETSTA
PUTSTA

FEERRFER IR RES

¥ Subroutine TRMNAT

+ Terminate device, including removal from tables
¥

TRMNAT

+ remove from VIRQ table first

ldx #8 remove from VIRQ table

leay VIRQBUF,U get address

059 F$VIRQ remove modem from VIRQ table
¢ next remove from IRQ table

ldx #8

059 F$IRG remove modem from polling thl
ris

FEEFFFFEFFFFFRRERER Y

+ MIRG

* process [nterrupt
*

MDIRG

¢ actual interrupt service routine

rts

emad Module Cre
MEND equ +

+ VIRG Example #2 - Device Driver without hardware interrupts

ERERRREER R R R EEY

STATIC STORAGE DEFINITION

+

2-23

0S-9 Technical Reference

VIRQBF rmb S buffer for VIRQ
DMEM equ .

IR R R R AR SRR RR]

+ Module Header

+

maod DEND,DNAM,DRIVR+0BJCT,REENT+REV,DENT,DMEM
fcb UPDAT. mode byte

fcb 3 EDITION BYTE

* Driver entry table

DENT lbra INIT initialize
lbra READ
lbra WRITE

lbra GETSTAT get status
lbra SETSTAT set status
lbra TERM terminate

+ Mask information packet for F$IRQ call

+ NOTE: uses the virtual interrupt flag, Vi.IFlag, for
* the maskbyte

*

DMSK fcb 8 no flip bits

feb Vi.IFlag polling mask for VIRG

fcb 18 priority

LR R R ERRERESERREE)

* INITIALTZE STORAGE AND CONTROLLER
* Includes setting up the [RQ and VIRQ table entries

INIT

* set up IRG table entry first

* NOTE: uses the status register of the VIRQ buffer faor
* the interrupt status register since no hardware status
* register is available

leay VIRGBF+Vi,Stat,U get address of status byte

2-24

The Kernel / 2

tfr y,d put it into D reg

leay DIRQ,PCR get address of interrupt routine
leax DMSK,PCR get VIRQ mask info

059 F$IRG install onto table

bcs INIT9 exit on error

+ now set up the VIRQ table entry

leay VIRQGBF,U point to the 5S-byte packet

lda #$80 get the reset flag to repeat VIRQ's

sta Vi.Stat,y save it in the buffer

idd #VIRGCNT get the VIRQ counter value

std Vi.Rst,y save it in the reset area of buffer
ldx #1 code to install the VIRQ

059 F$VIRQ install on the table

bcs INIT9 exit on error

INITY ris

READ
WRITE
GETSTAT
PUTSTAT

[E XX EEEEEEEENENEEE RS ER]

¢ TERM - terminate the device and remove entries from
+ tables

TERM

+ remove from VIRQ table first

ldx #8 get zero to remove from table
leay VIRQGBF,U get address of packet
059 F$VIRQ
+ then remove from [RQ table

ldx #8 get zero to remove from table
059 F$IRQ

ris

IR R R R R R N R R R R R R RN R R R

2-25

OS-9 Technical Reference

DIRG - interrupt service routine

¢ NOTE: The service routine must be sure to reset the
* status byte of the VIRA packet so that the interrupt
¢ looks as if it is cleared.
DIRG

lda VIRGBF+Vi.Stat,U get status byte

anda #$FF-Vi.IFlag mask off interrupt bit
sta VIRQBF+Vi.Stat,U put it back

rts

EMOD
DEND equ *

END

2-26

Chapter 3

Memory Modules

In Chapter 2, you learned that OS-9 is based on the concept that
memory is modular. This means that each program is considered
to be an individually named object.

You also learned that each program loaded into memory must be
in the module format. This format lets OS-9 manage the logical
contents of memory, as well as the physical contents. Module
types and formats are discussed in detail in this chapter.

Module Types

There are several types of modules. Each has a different use and
function. These are the main requirements of a module:

® It cannot modify itself.

® It must be position-independent so that OS-9 can load or
relocate it wherever space is available. In this respect,
the module format is the OS-9 equivalent of load records
used in older operating systems.

A module need not be a complete program or even 6809 machine
language. It can contain BASIC09 I-code, constants, single sub-
routines, and subroutine packages.

Module Format

Each module has three parts: a module header, a module body,
and a cyclic-redundancy-check value (CRC value).

3-1

0S-9 Technical Reference

Module Header

Program
or
Constants

CRC Value

Figure 3.1

Module Header

At the beginning of the module (the lowest address) is the mod-
ule header. Its form depends upon the module’s use.

The header contains information about the module and its use.
This information includes the following:

® Size

® Type (machine code, BASIC09 compiled code, and so on)
Attributes (executable, re-entrant, and so on)

® Data storage memory requirements

® Execution starting address

Usually, you do not need to write routines to generate the mod-
ules and headers. All 0S-9 programming languages automati-
cally create modules and headers.

Module Body

The module body contains the program or constants. It usually
is pure code. The module name string is included in this area.
Figure 3.2 provides the offset values for calculating the location
of a module’s name. (See “Offset to Module Name”.)

CRC Value

The last three bytes of the module are the Cyclic Redundancy
Check (CRC) value. The CRC value is used to verify the integ-
rity of a module.

3-2

Memory Modules / 3

When the system first loads the module into memory, it per-
forms a 25-bit CRC over the entire module, from the first byte of
the module header to the byte immediately before the CRC. The
CRC polynomial used is $800FE3.

As with the header, you usually don’t need to write routines to
generate the CRC value. Most OS-9 programs do this
automatically.

Module Headers: Standard Information

The first nine bytes of all module headers are defined as follows:

Relative
Address Use
$00,%01 Sync bytes ($87,$CD)
$02,%$03 Module size
$04,$05 Offset to module name
$06 Module type/Language
$07 Attributes/Revision level
$08 Header check

Figure 3.2

Sync Bytes

The sync bytes specify the location of the module. (The first sync
byte is the start of the module.) These two bytes are constant.

Module Size

The module size specifies the size of the module in bytes
(includes CRC).

Offset to Module Name

The offset to module name specifies the address of the module
name string relative to the start of the module. The name string
can be located anywhere in the module. It consists of a string of
ASCII characters with the most significant bit set on the last
character.

3-3

0S-9 Technical Reference

Type/Language Byte

The type/language byte specifies the type and language of the
module.

The four most significant bits of this byte indicate the type.
Eight types are pre-defined. Some of these are for OS-9’s inter-
nal use only. The type codes are given here (0 is not a legal type
code):

Code Module Type Name
$1x Program module Prgrm
$2x Subroutine module Sbrtn
$3x Multi-module (for future use) Multi
$4x Data module Data
$5x-$Bx User-definable module

$Cx 08-9 system module Systm
$Dx 0S-9 file manager module FiMgr
$Ex 0S-9 device driver module Drivr
$Fx 0S-9 device descriptor module Devic

Figure 3.3

The four least significant bits of Byte 6 indicate the language
{(denoted by x in the previous Figure). The language codes are
given here:

Code Language

$x0 Data (non-executable)

$x1 6809 object code

$x2 BASICO09 I-code

$x3 PASCAL P-code

$x4-$xF Reserved for future use
Figure 3.4

By checking the language type, high-level language runtime
systems can verify that a module is the correct type before
attempting execution. BASIC09, for example, can run either I-
code or 6809 machine language procedures arbitrarily by check-
ing the language type code.

Attributes/Revision Level Byte

The attributes/revision level byte defines the attributes and revi-
sion level of the module.

3-4

Memory Modules / 3

The four most significant bits of this byte are reserved for mod-
ule attributes. Currently, only Bit 7 is defined. When set, it indi-
cates the module is re-entrant and, therefore, shareable.

The four least significant bits of this byte are a revision level in
the range 0 to 15. If two or more modules have the same name,
type, language, and so on, OS-9 keeps in the module directory
only the module having the highest revision level. Therefore, you
can replace or patch a ROM module, simply by loading a new,
equivalent module that has a higher revision level.

Note: A previously linked module cannot be replaced until
its link count goes to zero.

Header Check

The header check byte contains the one’s complement of the
Exclusive-OR of the previous eight bytes.

Module Headers: Type-Dependent
Information

More information usually follows the first nine bytes of a module
header. The layout and meaning vary, depending on the module
type.

Module types $Cx-$Fx (system module, file manager module,
device driver module, and device descriptor module) are used
only by 0S-9. Their formats are given later in the manual.

Module types $1x through $Bx have a general-purpose executa-
ble format. This format is often used in programs called by
F8Fork or F$Chain. Here is the format used by these module

types:

3-5

OS-9 Technical Reference

Executable Memory Module Format

Relative Check
Address Use Range
$00

— Sync Bytes ($87,8CD) —
$01
$02

— Module Size (bytes) —
$03
$04

— Module Name Offset — header
$05 parity
$06 Type Language
$07 Attributes Revision module
$08 Header Parity Check CRC
$09

— Execution Offset —
$0A
$0B

I — Permanent Storage Size = —
$0C
$0D (Additional optional header

extensions)
Module Body
object code, constants,
and so on
CRC Check Value

Figure 3.5

3-6

Memory Modules /| 3

As you can see from the preceding chart, the executable memory
has four extra bytes in its header. They are:

$09,$0A Execution offset
$0B,$0C Permanent storage size

Execution Offset. The program or subroutine’s offset starting
address, relative to the first byte of the sync code. A module that
has multiple entry points (such as cold start and warm start)
might have a branch table starting at this address.

Permanent Storage Size. The minimum number of bytes of
data storage required to run. Fork and Chain use this number
to allocate a process’s data area.

If the module is not directly executed by a Fork or Chain system
call (for instance a subroutine package), this entry is not used by
0S-9. It is commonly used to specify the maximum stack size
required by re-entrant subroutine modules. The calling program
can check this value to determine if the subroutine has enough
stack space.

When OS-9 starts after a single system reset, it searches the
entire memory space for ROM modules. It finds them by looking
for the module header sync code ($87,$CD).

When OS-9 detects the header sync code, it checks to see if the
header is correct. If it is, the system obtains the module size
from the header and performs a 24-bit CRC over the entire mod-
ule. If the CRC matches, OS-9 considers the module to be valid
and enters it into the module directory. All ROM modules that
are present in the system at startup are automatically included
in the system module directory.

After the module search, OS-9 links to the component modules it
found. This is the secret to OS-9’s ability to adapt to almost any
6809 computer. It automatically locates its required and optional
component modules and rebuilds the system each time it is
started.

3-7

Chapter 4

0S-9’s Unified
Input/Output System

Chapter 1 mentioned that OS-9 has a unified I/O system, con-
sisting of all modules except those on the kernel level. This chap-
ter discusses the I/O modules in detail.

I/0 System Modules

0S-9 KERNEL
T (0S9P1, 0S9P2) | Clock

I

Input/Output Manager

(IOMAN)
[T l 1
—
Disk File Pipe File Char. File
Manager Manager Manager Printer $10
(RBF) (Pipeman) (SCF)
— [[
L L -l | — L 1
Ram CC3Disk CC3Hdisk Pipe ACIAPak ModPak CC3lo
Ram Disk Disk Disk Driver Driver Driver
Driver Driver Driver (Piper)
o] [o0 o0 @i @i
RBF Device Descriptors Pipe Descr. SCF Device Descr\ptors
—1
Vdgint Grfint WindInt
CC3l0 CCalo CC310
Interface Interface Interface
| [T
Term_Vdg
Desc GrfDrv

Term_Win wllwillwe
Desc

0S-9 COMPONENT MODULE ORGANIZATION

0S-9 Technical Reference

The VDG Interface performs both interface and low level routines
for VDG Color Computer 2 compatible modes and has limited
support for high res screen allocation.

The Grflnt Interface provides the standard code interpretations
and interface functions.

The WindInt Interface, available in the Multi-view package, con-
tains all the functionality of GrfInt, along with additional sup-
port features. If you use WindInt, do not include Grfint.

Both WindInt and GrfInt use the low-level driver GrfDrv to per-
form drawing on the bit-map screens.

Term__ VDG uses CC3I0/VdgInt while Term win and all win-
dow descriptors use CC3I0/(WindInt/GrfInt)/GrfDrv modules.

The I/O system provides system-wide, hardware-independent 1/0
services for user programs and OS-9 itself. All I/O system calls
are received by the kernel and passed to the I/O manager for
processing.

The I/O manager performs some processing, such as the alloca-
tion of data structures for the I/O path. Then, it calls the file
managers and device drivers to do most of the work. Additional
file manager, device driver, and device descriptor modules can be
loaded into memory from files and used while the system is
running.

The I/0 Manager

The I/O manager provides the first level of service of I/O system
calls. It routes data on I/O process paths to and from the appro-
priate file managers and device drivers.

The I/O Manager also maintains two important internal OS-9
data structures—the device table and the path table. Never mod-
ify the I/O manager.

When a path is opened, the I/O manager tries to link to a mem-
ory module that has the device name given or implied in the
pathlist. This module is the device descriptor. It contains the
names of the device driver and file manager for the device. The
I’O manager saves the names so later system calls can be routed
to these modules.

4-2

0S8-9’s Unified Input/Output System / 4

File Managers

0S-9 can have any number of file manager modules. Each of
these modules processes the raw data stream to or from a class
of device drivers that have similar operational characteristics. It
removes as many unique characteristics as possible from 1/0O
operations. Thus, it assures that similar devices conform to the
0S-9 standard I/O and file structure.

The file manager also is responsible for mass storage allocation
and directory processing, if these are applicable to the class of
devices it serves.

File managers usually buffer the data stream and issue requests
to the kernel for dynamic allocation of buffer memory. They can
also monitor and process the data stream, for example, adding
line-feed characters after carriage-return characters.

The file managers are re-entrant. The three standard OS-9 file
managers are:

® Random block file manager: The RBF manager supports
random-access, block-structured devices such as disk sys-
tems and bubble memories. (Chapter 5 discusses the
RBF manager in detail.)

® Sequential Character File Manager: The SCF manager
supports single-character-oriented devices, such as CRTs
or hardcopy terminals, printers, and modems. (Chapter 6
discusses SCF in detail.)

e Pipe File Manager (PIPEMAN): The pipe manager sup-
ports interprocess communication via pipes.

File Manager Structure

Every file manager must have a branch table in exactly the fol-
lowing format. Routines that are not used by the file manager
must branch to an error routine, that sets the carry and loads
Register B with an appropriate error code before returning. Rou-
tines returning without error must ensure that the carry bit is
clear.

0S-9 Technical Reference

*+ All routines are entered with:
* (Y) = Path Descriptor pointer
+ (U) Caller’s register stack pointer

EntryPt equ =+
lbra Create
lbra Open
lbra MakDir
lbra ChgDir
lbra Delete
lbra Seek
lbra Read
lbra Write
lbra ReadLn
lbra Writeln
lbra GetStat
lbra PutStat
lbra Close

Create, Open

Create and Open handle file creating and opening for devices.
Typically, the process involves allocating any required buffers,
initializing path descriptor variables, and establishing the path
name. If the file manager controls multi-file devices (RBF),

directory searching is performed to find or create the specified
file.

Makdir

Makdir creates a directory file on multi-file devices. Makdir is
neither preceded by a Create nor followed by a Close. File man-
agers that are incapable of supporting directories need to return
carry set with an appropriate error code in Register B.

ChgDir

On multi-file devices, ChgDir searches for a directory file. If
ChgDir finds the directory, it saves the address of the directory
(up to four bytes) in the caller’s process descriptor. The descrip-
tor is located at P$DIO +2 (for a data directory) or P$DIO +8
(for an execution directory).

0S8-9’s Unified Input/Output System / 4

In the case of the RBF manager, the address of the directory’s
file descriptor is saved. Open/Create begins searching in the cur-
rent directory when the caller’s pathlist does not begin with a
slash (/). File managers that do not support directories should
return the carry set and an appropriate error code in Register
B.

Delete

Multi-file device managers handle file delete requests by initiat-
ing a directory search that is similar to Open. Once a device
manager finds the file, it removes the file from the directory.
Any media in use by the file are returned to unused status. In
the case of the RBF manager, space is returned for system use
and is marked as available in the free cluster bit map on the
disk. File managers that do not support multi- file devices
return an error.

Seek

File managers that support random access devices use Seek to
position file pointers of an already open path to the byte speci-
fied. Typically, the positioning is a logical movement. No error is
produced at the time of the seek if the position is beyond the
current “end of file”.

Normally, file managers that do not support random access
ignore Seek. However, an SCF-type manager can use Seek to
perform cursor positioning.

Read

Read returns the number of bytes requested to the user’s data
buffer. Make sure Read returns an EOF error if there is no data
available. Read must be capable of copying pure binary data, and
generally performs no editing on the data. Generally, the file
manager calls the device driver to actually read the data into
the buffer. Then, the file manager copies the data from the buffer
into the user’s data area to keep file managers device-
independent.

OS-9 Technical Reference

Write

The Write request, like Read, must be capable of recording pure
binary data without alteration. The routines for Read and Write
are almost identical with the exception that Write uses the
device driver’s output routine instead of the input routine. The
RBF manager and similar random access devices that use fixed-
length records (sectors) must often preread a sector before writ-
ing it, unless they are writing the entire sector. In 0S-9, writing
past the end of file on a device expands the file with new data.

ReadLn

ReadLn differs from Read in two respects. First, ReadLn termi-
nates when the first end-of-line (carriage return) is encountered.
ReadLn performs any input editing that is appropriate for the
device. In the case of SCF, editing involves handling functions
such as backspace, line deletion, and the removal of the high-
order bit from characters.

WriteLn

WriteLn is the counterpart of ReadLn. It calls the device driver
to transfer data up to and including the first (if any) carriage
return encountered. Appropriate output editing can also be per-
formed. For example, SCF outputs a line feed, a carriage return
character, and nulls (if appropriate for the device). It also pauses
at the end of a screen page.

GetStat, PutStat

The GetStat (get status) and PutStat (put status) system calls
are wildcard calls designed to provide a method of accessing fea-
tures of a device (or file manager) that are not generally device
independent. The file manager can perform specific functions
such as setting the size of a file to a given value. Pass unknown
status calls to the driver to provide further means of device inde-
pendence. For example, a PutStat call to format a disk track
might behave differently on different types of disk controllers.

0S8-9’s Unified Input/Output System | 4

Close

Close is responsible for ensuring that any output to a device is
completed. (If necessary, Close writes out the last buffer.) It
releases any buffer space allocated in an Open or Create. Close
does not execute the device driver’s terminate routine, but can
do specific end-of-file processing if you want it to, such as writ-
ing end-of-file records on disks, or form feeds on printers.

Interfacing with Device Drivers

Strictly speaking, device drivers must conform to the general for-
mat presented in this manual. The I/O Manager is slightly dif-
ferent because it only uses the Init and Terminate entry points.
Other entry points need only be compatible with the file man-
ager for which the driver is written. For example, the Read entry
point of an SCF driver is expected to return one byte from the
device. The Read entry point of an RBF driver, on the other
hand, expects Read to return an entire sector.

The following code is part of an SCF file manager. The code
shows how a file manager might call a driver.

4.7

0S-9 Technical Reference

IE R R R R SR EREREEESE,

» J0EXEC

* Execute Device’s Read/Write Routine

*

* Passed: (A) = Output character (write)

* (X) = Device Table entry ptr

* (Y) = Path Descriptor pointer

* (U) = Offset of routine (D$Read,

DsWrite)
Input char (read)
Error code, CC set if error

* Returns: C(A)
* (B)
Destroys B,CC

*

IQEXEC pshs a,x,y,u save registers

ldu V$STAT,x get static storage for driver
ldx V$DRIV,x get driver module address

ldd M$EXEC,x and offset of execution entries
addd 5,s offset by read/write

leax d,x absolute entry address

lda ,s+ restore char (for write)

jsr 0,x execuie driver read/write

puls x,y,u,pc return (A)=char, (B)=error

emod Module CRC
Size equ * size of sequential file manager

Device Driver Modules

The device driver modules are subroutine packages that perform
basic, low-level I/O transfers to or from a specific type of I/O
device hardware controller. These modules are re-entrant. So,
one copy of the module can concurrently run several devices that
use identical I/O controllers.

Device driver modules use a standard module header, in which
the module type is specified as code $Ex (device driver). The exe-
cution offset address in the module header points to a branch
table that has a minimum of six 3-byte entries.

Each entry is typically an LBRA to the corresponding subrou-
tine. The file managers call specific routines in the device driver
through this table, passing a pointer to a path descriptor and
passing the hardware control register address in the 6809 regis-
ters. The branch table looks like this:

4-8

0S-9’s Unified Input/Output System / 4

Code Meaning

+ $00 Device initialization routine
+$03 Read from device

+ $06 Write to device

+$09 Get device status

+$0C Set device status

+ $0F Device termination routine

(For a complete description of the parameters passed to these
subroutines, see the “Device Driver Subroutines” sections in
Chapters 5 and 6.)

4-9

0S-9 Technical Reference

Device Driver Module Format

Relative Check
Address Use Range
$00

— Sync Bytes (387,$CD) _
$01
$02

- Module Size (bytes) —
$03
$04

— Module Name Offset — Header
$05 Parity
306 Type Language
$07 Attributes Revision Module
$08 Header Parity Check CRC
$09

- Execution Offset —
$0A
$0B

—— Permanent Storage Size —l
$0C
$0D Mode Byte

— Module Body ——1

— CRC Check Value —

$0D Mode Byte - (D S PE PW PRE WR)

4-10

OS-9’s Unified Input/Output System | 4

0S-9 Interaction With Devices

Device drivers often must wait for hardware to complete a task
or for a user to enter data. Such a wait situation occurs if an
SCF device driver receives a Read but there is no data is avail-
able, or if it receives a Write and no buffer space is available.
0S-9 drivers that encounter this situation should suspend the
current process (via F$Sleep). In this way the driver allows other
processes to continue using CPU time.

The most efficient way for a driver to awaken itself and resume
processing data is by using interrupt requests (IRQs). It is possi-
ble for the driver to sleep for a number of system clock ticks and
then check the device or buffer for a ready signal. The drawbacks
to this technique are:

® It requires the system clock to always remain active.

e It might require a large number of ticks (perhaps 20) for
the device to become ready. Such a case leaves you with
a dilemma. If you make the program sleep for two ticks,
the system wastes CPU time while checking for device
ready. If the driver sleeps 20 ticks, it does not have a
good response time.

An interrupt system allows the hardware to report to the CPU
and the device drivers when the device is finished with an opera-
tion. Using interrupts to its advantage, a device driver can set
up interrupt handling to occur when a character is sent or
received or when a disk operation is complete. There is a built-in
polling facility for pausing and awakening processes. Here is a
technique for handling interrupts in a device driver:

1. Use the Init routine to place the driver interrupt service call
(IRQSVC) routine in the IRQ polling sequence via an F$IRQ
system call:

ldd V.Port,u get address to poll
leax IRQPOLL,pcr point to IRQ packet
leay IRQSVC,pcr point to IRQ routine
0S9 F$IRQ add dev to poll sequence
becs Error abnormal exit if error

2. Ensure that driver programs waiting for their hardware, call
the sleep routine. The sleep routine copies V.Busy to
V.Wake. Then, it goes to sleep for some period of time.

4-11

0S-9 Technical Reference

When the driver program wakes up, have it check to see
whether it was awakened by an interrupt or by a signal sent
from some other process.

Usually, the driver performs this check by reading the
V.Wake storage byte. The V.Busy byte is maintained by the
file manager to be used as the process ID of the process
using the driver. When V.Busy is copied into V.Wake, then
V.Wake becomes a flag byte and an information byte. A non-
zero Wake byte indicates that there is a process awaiting an
interrupt. The value in the Wake byte indicates the process
to be awakened by sending a wakeup signal as shown in the
following code:

lda V.Busy,u get proc 1D

sta V.Wake,u arrange for wakeup

andcc #"IntMasks prep for interrupts

Sleep50 ldx #0 or any other tick time

(if signal test)

0S9 F$Sleep await an IRQ

ldx D.Proc get proc desc ptr if
signal test

ldb P$Signal,x is signal present?
(if signal test)

bne SigTest bra if so i1f signal
test

tst V.Wake,u IRQ occur?

bne SleepS0 bra if not

Note that the code labeled “if signal test” is only necessary
if the driver wishes to return to the caller if a signal is sent
without waiting for the device to finish. Also note that IRQs
and FIRQs must be masked between the time a command is
given to the device and the moving of V.Busy and V.Wake. If
they are not masked, it is possible for the device IRQ to
occur and the IRQSVC routine to become confused as to
whether it is sending a wakeup signal or not.

4-12

0S-9’s Unified Input/Output System | 4

4. When the device issues an interrupt, OS-9 calls the routine
at the address given in F$IRQ with the interrupts masked.
Make the routine as short as possible, and have it return
with an RTS instruction. IRQSVC can verify that an inter-
rupt has occurred for the device. It needs to clear the inter-
rupt to retrieve any data in the device. Then the V.Wake
byte communicates with the main driver module. If V.Wake
is non-zero, clear it to indicate a true device interrupt and
use its contents as the process ID for an F$Send system call.
The F$Send call sends a wakeup signal to the process. Here
is an example:

ldx V.Port,u get device address
tst ?7 is it real interrupt from device?
bne IRQSVC90 bra to error if not
lda Data,x get data from device
sta 0,y
lda V.Wake,u
beg IRQSVC80 bra if none
clr V.Wake,u clear it as flag to main
routine
ldb #S¢$Wake,u get wakeup signal
0S9 F$Send send signal to driver
IRQSVC8B0 clrb clear carry bit (all is well)
rts
IRQSVCO0 comb set carry bit (is an IRQ call)
rts

Suspend State (Level Two only)

The Suspend State allows the elimination of the F$Send system
call during interrupt handling. Because the process is already in
the active queue, it need not be moved from one queue to
another. The device driver IRQSVC routine can now wake up the
suspended main driver by clearing the process status byte sus-
pend bit in the process state. Following are sample routines for
the Sleep and IRQSVC calls:

lda D.Proc get process ptr
sta V.Wake,u prep for re-awakening

enable device to IRQ, give command, etc.
bra Cmd50 enter suspend loop

Cmd30 ldx D.Proc get ptr to process desc

4-13

OS-9 Technical Reference

lda P$State,x getl state flag
ora #Suspend put proc in suspend state
sta P$State,x save it in proc desc
andcc #”IntMasks unmask interrupts
ldx #1 give up time slice
0S9 F$Sleep suspend (in active queue)
Cmd50 orcc #IntMasks mask interrupts while
changing state
ldx D.Proc get proc desc addr (if signal
test)
lda P$Signal,x get signal (if signal test)
beq SigProc bra if signal to be handled
lda V.Wake,u true interrupt?
bne Cmd30 bra if not
andcc #”IntMasks assure interrupts unmasked

Note that D.Proc is a pointer to the process descriptor of the cur-
rent process. Process descriptors are always allocated on 256-
byte page boundaries. Thus, having the high order byte of the
address is adequate to locate the descriptor. D.Proc is put in
V.Wake as a dual value. In one instance, it is a flag byte indi-
cating that a process is indeed suspended. In the other instance,
it is a pointer to the process descriptor which enables the
IRQSVC routine to clear the suspend bit. It is necessary to have
the interrupts masked from the time the device is enabled until
the suspend bit has been set. Making the interrupts ensure that
the IRQSVC routine does not think it has cleared the suspend
bit before it is even set. If this happens, when the bit is set the
process might go into permanent suspension. The IRQSVC rou-
tine sample follows:

ldy V.Port,u get dev addr

tst V.Wake,u is process awaiting
IRQ?

beq IRQGSVCER no exit

clear device interrupt
exit if IRQ not from this device

lda V.Wake,u get process ptr

clrb

stb V.Wake,u clear proc waiting flag
tfr d,x get process descriptor ptr
lda P$State,x get state flag

anda # Suspend clear suspend state
sta P$State,x save it

4-14

0S-9’s Unified Input/Output System | 4

clrb clear carry bit
ris

IRQSVCER comb set carry bit
rts

Device Descriptor Modules

Device descriptor modules are small, non-executable modules.
Each one provides information that associates a specific I/O
device with its logical name, hardware controller address(es),
device driver, file manager name, and initialization parameters.

Unlike the device drivers and file managers, which operate on
classes of devices, each device descriptor tailors its functions to a
specific device. Each device must have a device descriptor.

Device descriptor modules use a standard module header, in
which the module type is specified as code $Fx (device descrip-
tor). The name of the module is the name by which the system
and user know the device (the device name given in pathlists).

The rest of the device descriptor header consists of the informa-
tion in the following chart:

Relative

Address(es) Use

$09,$0A The relative address of the file manager
name string address

$0B,$0C The relative address of the device driver
name string

$0D Mode/Capabilities: D S PE PW PR E W R
(directory, single user, public execute, pub-
lic write, public read, execute, write, read)

$0E,$0F,$10 The absolute physical (24-bit) address of the
device controller

$11 The number of bytes (n bytes) in the ini-
tialization table

$12,812+n Initialization table

When OS-9 opens a path to the device, the system copies the ini-
tialization table into the option section (PD.OPT) of the path
descriptor. (See “Path Descriptors” in this chapter.)

4-15

OS-9 Technical Reference

The values in this table can be used to define the operating
parameters that are alterable by the Get Status and Set Status
system calls (I$GetStt and I$SetStt). For example, parameters
that are used when initializing terminals define which control
characters are to be used for functions such as backspace and
delete.

The initialization table can be a maximum of 32 bytes long. If
the table is fewer than 32 bytes long, OS-9 sets the remaining
values in the path descriptor to 0.

You might wish to add devices to your system. If a similar device
driver already exists, all you need to do is add the new hardware
and load another device descriptor. Device descriptors can be in
the boot module or they can be loaded into RAM from mass-stor-
age files while the system is running.

The following diagram illustrates the device descriptor format:

4-16

0S-9’s Unified Input/Output System | 4

Relative
Address

$00

$01
$02

$03
$04
$05
$06
$07

$08
$09

$0A
$0B

$0D
$0E

$0F
$10

$11
$12,812+n

Device Descriptor Format

Check
Use Range
Sync Bytes ($87,$CD) —
Module Size (bytes) —
Offset to Module Name — header
parity
F$ (Type) $1 (Lang)
Attributes Revision
module
Header Parity Check CRC

Offset to File Manager —
Name String

Offset to Device Driver —]
Name String

Mode Byte

Device Controller —
Absolute Physical Addr.
(24 bit)]

Initialization Table Size

(Initialization Table)

(Name Strings, and so on)

CRC Check Value

4-17

0S-9 Technical Reference

Path Descriptors

Every open path is represented by a data structure called a path
descriptor (PD). The PD contains the information the file man-
agers and device drivers require to perform /O functions.

PDs are 64 bytes long and are dynamically allocated and deallo-
cated by the I/O manager as paths are opened and closed.

They are internal data structures, that are not normally refer-
enced from user or applications programs. The description of PDs
is presented here mainly for those programmers who need to
write custom file managers, device drivers, or other extensions to

08S-9.

PDs have three sections. The first section, which is ten bytes
long, is the same for all file managers and device drivers. The
information in the first section is shown in the following chart.

Path Descriptor: Standard Information

Relative Size
Name Address (Bytes) Use

PD.PD $00 1 Path number

PD.MOD $01 1 Access mode: 1 = read, 2 =
write, 3 = update

PD.CNT $02 1 Number of open paths using
this PD

PD.DEV $03 2 Address of the associated
device table entry

PD.CPR $05 1 Current process ID

PD.RGS $06 2 Address of the caller’s regis-
ter stack

PD.BUF $08 2 Address of the 256-byte
data buffer (if used)

PD.FST $0A 22 Defined by the file manager

PD.OPT $20 32 Reserved for the Getstat/

Setstat options

PD.FST is 22-byte storage reserved for and defined by each type
of file manager for file pointers, permanent variables, and so on.

4-18

0S8-9’s Unified Input/Output System | 4

PD.OPT is a 32-byte option area used for file or device operat-
ing parameters that are dynamically alterable. When the path is
opened, the I/O manager initializes these variables by copying
the initialization table that is in the device descriptor module.
User programs can change the values later, using the Get Status
and Set Status system calls.

PD.FST and PD.OPT are defined for the file manager in the
assembly-language equate file (SCFDefs for the SCF manager or
RBFDefs for the RBF manager).

4-19

Chapter 5
Random Block File Manager

The random block file manager (RBF manager) supports disk
storage. It is a re-entrant subroutine package called by the 1/O
manager for I/O system calls to random-access devices. It main-
tains the logical and physical file structures.

During normal operation, the RBF manager requests allocation
and deallocation of 256-byte data buffers. Usually, one buffer is
required for each open file. When physical I/O functions are nec-
essary, the RBF manager directly calls the subroutines in the
associated device drivers. All data transfers are performed using
256-byte data blocks (pages).

The RBF manager does not deal directly with physical addresses
such as tracks and cylinders. Instead, it passes to the device
drivers address parameters, using a standard address called a
logical sector number, or LSN. LSNs are integers from 0 to n-1,
where n is the maximum number of sectors on the media. The
driver translates the logical sector number to actual cylinder/
track/sector values.

Because the RBF manager supports many devices that have dif-
ferent performance and storage capacities, it is highly parame-
ter-driven. The physical parameters it uses are stored on the
media itself.

On disk systems, the parameters are written on the first few
sectors of Track 0. The device drivers also use the information,
particularly the physical parameters stored on Sector 0. These
parameters are written by the FORMAT program that initial-
izes and tests the disk.

Logical and Physical Disk Organization

All disks used by OS-9 store basic identification, file structure,
and storage allocation information on these first few sectors.

LSN 0 is the identification sector. LSN 1 is the disk allocation
map sector. LSN 2 marks the beginning of the disk’s ROOT
directory. The following section tells more about LSN 0 and LSN
1.

5-1

0S-9 Technical Reference

Identification Sector (LSN 0)

LSN 0 contains a description of the physical and logical charac-
teristics of the disk. These characteristics are set by the FOR-
MAT command program when the disk is initialized.

The following table gives the OS-9 mnemonic name, byte
address, size, and description of each value stored in this LSN 0.

Relative Size

Name Address (Bytes) Use

DD.TOT $00 3 Number of sectors on disk

DD.TKS $03 1 Track size (in sectors)

DD.MAP $04 2 Number of bytes in the alloca-
tion bit map

DD.BIT $06 2 Number of sectors per cluster

DD.DIR $08 3 Starting sector of the ROOT
directory

DD.OWN $0B 2 Owner’s user number

DD.ATT $0D 1 Disk attributes

DD.DSK $0E 2 Disk identification (for internal
use)

DD.FMT $10 1 Disk format, density, number
of sides

DD.SPT $11 2 Number of sectors per track

DD.RES $13 2 Reserved for future use

DD.BT $15 3 Starting sector of the boot-
strap file

DD.BSZ $18 2 Size of the bootstrap file (in
bytes)

DD.DAT $1A 5 Time of creation (Y:M:D:H:M)

DD.NAM $1F 32 Volume name in which the last

character has the most signifi-
cant bit set

DD.OPT $3F Path descriptor options

5-2

Random Block File Manager / 5

Disk Allocation Map Sector (LSN 1)

LSN 1 contains the disk allocation map, which is created by
FORMAT. This map shows which sectors are allocated to the
files and which are free for future use.

Each bit in the allocation map represents a sector or cluster of
sectors on the disk. If the bit is set, the sector is considered to be
in use, defective, or non-existent. If the bit is cleared, the corre-
sponding cluster is available. The allocation map usually starts
at LSN1. The number of sectors it requires varies according to
how many bits are needed for the map. DD.MAP specifies the
actual number of bytes used in the map.

Multiple sector allocation maps allow the number of sectors/clus-
ter to be as small as possible for high volume media.

The FORMAT utility bases the size of the allocation map on the
size and number of sectors per cluster.

The DD.MAP value in LSN 0 specifies the number of bytes (in
LSN 1) that are used in the map.

Each bit on the disk allocation map corresponds to one sector
cluster on the disk. The DD.BIT value in LSN 0 specifies the
number of sectors per cluster. The number is an integral power
of 2 (1, 2, 4, 8, 16, and so on).

If a cluster is available, the corresponding bit is cleared. If it is
allocated, non-existent, or physically defective, the corresponding
bit is set.

ROOT Directory

This file is the parent directory of all other files and directories
on the disk. It is the directory accessed using the physical device
name (such as /D1). Usually, it immediately follows the Alloca-
tion Map. The location of the ROOT directory file descriptor is
specified in DD.DIR. The ROOT directory contains an entry for
each file that resides in the directory, including other
directories.

File Descriptor Sector

The first sector of every file is the file descriptor. It contains the
logical and physical description of the file.

5-3

0S-9 Technical Reference

The following table describes the contents of the file descriptor.

Relative Size

Name Address (Bytes) Use

FD.ATT $00 1 File attributes: D S PE PW PR
E W R (see next chart)

FD.OWN $01 2 Owner’s user ID

FD.DAT $03 5 Date last modified: (Y M D H
M)

FD.LNK $08 1 Link count

FD.S1Z $09 4 File size (number of bytes)

FD.CREAT $0D 3 Date created (Y M D)

FD.SEG $10 240 Segment list (see next chart)

FD.ATT. (The attribute byte) contains the file permission bits.
When set the bits indicate the following:

Bit 7 Directory

Bit 6 Single user
Bit 5 Public execute
Bit 4 Public write
Bit 3 Public read
Bit 2 Execute

Bit 1 Write

Bit 0 Read

FD.SEG (the segment list) consists of a maximum of 48 5-byte
entries that have the size and address of each file block in logical
order. Each entry has the block’s 3-byte LSN and 2-byte size (in
sectors). The entry following the last segment is zero.

After creation, a file has no data segments allocated to it until
the first write. (Write operations past the current end-of-file
cause sectors to be added to the file. The first write is always
past the end-of-file.)

If the file has no segments, it is given an initial segment. Usu-
ally, this segment has the number of sectors specified by the
minimum allocation entry in the device descriptor. If, however,
the number of sectors requested is more than the minimum, the
initial segment has the requested number.

Random Block File Manager | 5

Later expansions of the file usually are also made in minimum
allocation increments. Whenever possible, OS-9 expands the last
segment, instead of adding a segment. When the file is closed,
0S-9 truncates unused sectors in the last segment.

08S-9 tries to minimize the number of storage segments used in
a file. In fact, many files have only one segment. In such cases,
no extra Read operations are needed to randomly access any byte
in the file.

If a file is repeatedly closed, opened, and expanded, it can
become fragmented so that it has many segments. You can avoid
this fragmentation by writing a byte at the highest address you
want to be used on a file. Do this before writing any other data.

Directories

Disk directories are files that have the D attribute set. A direc-
tory contains an integral number of entries, each of which can
hold the name and LSN of a file or another directory.

Each directory entry contains 29 bytes for the filename, followed
by the three bytes for the LSN of the file’s descriptor sector. The
filename is left-justified in the field, with the most significant bit
of the last character set. Unused entries have a zero byte in the
first filename character position.

Every disk has a master directory called the ROOT directory.
The DD.DIR value in LSN 0 (identification sector) specifies the
starting sector of the ROOT directory.

The RBF Manager Definitions of the Path
Descriptor

As stated earlier in this chapter, the PD.FST section of the path
descriptor is reserved for and defined by the file manager. The
following table describes the use of this section by the RBF man-

ager. For your convenience, it also includes the other sections of
the PD.

5-5

OS-9 Technical Reference

Relative Size

Name Address (Bytes) Use
Universal Section (Same for all file managers and device drivers)
PD.PD $00 1 Path number
PD.MOD $01 1 Access mode
1 = read,
2 = write,
3 = update
PD.CNT $02 1 Number of open images (paths
using this PD)
PD.DEV $03 2 Address of the associated
device table entry
PD.CPR $05 1 Current process ID
PD.RGS $06 2 Address of the caller’s 6809
register stack
PD.BUF $08 2 Address of the 256-byte data

buffer (if used)

Relative Size

Name Address (Bytes) Use
The RBF manager Path Descriptor Definitions (PD.FST Section)
PD.SMF $0A 1 State flag:
Bit 0 =current buffer is
altered
Bit 1 = current sector is in
the buffer
Bit 2 = descriptor sector is
in the buffer
PD.CP $0B 4 Current logical file position
(byte address)
PD.SIZ $OF 4 File size
PD.SBL $13 3 Segment beginning logical sec-
tor number (LSN)
PD.SBP $16 3 Segment beginning physical

sector number (PSN)

5-6

Random Block File Manager | 5

Relative Size

Name Address (Bytes) Use

PD.SSZ $19 3 Segment size

PD.DSK $1C 2 Disk ID (for internal use only)

PD.DTB $1E 2 Address of drive table
Relative Size

Name Address (Bytes) Use

The RBF manager Option Section Definitions (PD.OPT Section)

(Copied from the device descriptor)

PD.DTP $20 1 Device class:
0 = SCF
1 = RBF
2 = PIPE
3 = SBF
PD.DRV $21 1 Drive number (0..n)
PD.STP $22 1 Step rate
PD.TYP $23 1 Device type
PD.DNS $24 1 Density capability
PD.CYL $25 2 Number of cylinders (tracks)
PD.SID $27 1 Number of sides (surfaces)
PD.VFY $28 1 0 = verify disk writes
PD.SCT $29 2 Default number of sectors per
track
PD.T0S $2B 2 Default number of sectors per
track (Track 0)
PD.ILV $2D 1 Sector interleave factor
PD.SAS $2E 1 Segment allocation size
PD.TFM $2F 1 DMA transfer mode
PD.EXTEN $30 2 Path extension for record
locking
PD.STOFF $32 1 Sector/track offsets

5-7

0S-9 Technical Reference

Relative Size

Name Address (Bytes) Use
(Not copied from the device descriptor):
PD.ATT $33 1 File attributes

(DSPEPWPREWR)
File descriptor PSN
Directory file descriptor PSN

PD.FD $34
PD.DFD $37
PD.DCP $3A
PS.DVT $3E

File’s directory entry pointer

Address of the device table
entry

N A~ W W

Any values not determined by this table default to zero.

RBF-Type Device Descriptor Modules

This section describes the use of the initialization table con-
tained in the device descriptor modules for RBF-type devices.
The following values are those the [/O manager copies from the
device descriptor to the path descriptor.

5-8

Random Block File Manager / 5

Relative Size

Name Address (Bytes) Use
$0-$11 Standard device descriptor
module header
IT.DTP $12 1 Device type:
0 = SCF
1 = RBF
2 = PIPE
3 = SBF
IT.DRV $13 1 Drive number
IT.STP $14 1 Step rate
IT.TYP $15 1 Device type (see RBF path
descriptor)
IT.DNS $16 1 Media density:

Always 1 (double)
(see following information)

IT.CYL $17 2 Number of cylinders (tracks)

IT.SID $19 1 Number of sides

IT.VFY $1A 1 0 = Verify disk writes
1 = no verify

IT.SCT $1B 2 Default number of sectors per
track

IT.TOS $1D 2 Default number of sectors per
track (Track 0)

IT.ILV $1F 1 Sector interleave factor

IT.SAS $20 1 Minimum size of segment allo-

cation (number of sectors to be
allocated at one time)

IT.DRV is used to associate a 1-byte integer with each drive
that a controller handles. Number the drives for each controller
as 0 to n-1, where n is the maximum number of drives the con-
troller can handle.

5-9

0S-9 Technical Reference

IT.TYP specifies the device type (all types).
Bit 0 — 0 = 5-inch floppy diskette

Bit 5 — 0 = Non-Color Computer format
1 = Color Computer format

Bit 6 — 0 = Standard OS-9 format
1 = Non-standard format

Bit 7 — 0 = Floppy diskette
1 = Hard disk

IT.DNS specifies the density capabilities (floppy diskette only).

Bit 0 — 0 = Single-bit density (FM)
1 = Double-bit density (MFM)
Bit 1 — U = Single-track density (5-inch, 48 tracks per
inch)
1 = Double-track density (56-inch, 96 tracks per
inch)

IT.SAS specifies the minimum number of sectors allowed at one
time.

RBF Record Locking

Record locking is a general term that refers to methods designed
to preserve the integrity of files that can be accessed by more
than one user or process. The 0S-9 implementation of record
locking is designed to be as invisible as possible. This means
that existing programs do not have to be rewritten to take
advantage of record locking facilities. You can usually write new
programs without special concern for multi-user activity.

Record locking involves detecting and preventing conflicts during
record access. Whenever a process modifies a record, the system
locks out other procedures from accessing the file. It defers
access to other procedures until it is safe for them to write to the
record. The system does not lock records during reads; so, multi-
ple processes can read the record at the same time.

5-10

Random Block File Manager | 5

Record Locking and Unlocking

To detect conflicts, OS-9 must recognize when a record is being
updated. The RBF manager provides true record locking on a
byte basis. A typical record update sequence is:

0S9 [$Read program reads record
RECORD IS LOCKED

program updates record

0SS I$Seek reposition to record
0S9 Is$Write record is rewritten
RECORD IS RELEASED

When a file is opened in update mode, any read causes locking
of the record being accessed. This happens because the RBF
manager cannot determine in advance if the record is to be
updated. The record stays locked out until the next read, write,
or close.

However, when a file is opened in the read or execute modes, the
system does not lock accessed records because the records cannot
be updated in these two modes.

A subtle but important problem exists for programs that interro-
gate a data base and occasionally update its data. If you neglect
to release a record after accessing it, the record might be locked
up indefinitely. This problem is characteristic of record locking
systems and you can avoid it with careful programming.

Only one portion of a file can be locked out at a time. If an
application requires more than one record to be locked out, open
multiple paths to the same file and lock the record accessed by
each path. RBF notices that the same process owns both paths
and keeps them from locking each other out.

5-11

0S-9 Technical Reference

Non-Shareable Files

Sometimes (although rarely), you must create a file that can
never be accessed by more than one user at a time. To lock the
file, you set the single-user (s) bit in the file’s attribute byte. You
can do this by using the proper option when the file is created,
or later using the OS-9 ATTR command. Once the single-user
bit is set, only one user can open the file at a time. If other users
attempt to open the file, Error 253 is returned. Note however,
that non-shareable means only one path can be opened to a file
at one time. Do not allow two processes to concurrently access a
non-shareable file through the same path.

More commonly, you need to declare a file as single-user only
during the execution of a specific program. You can do this by
opening the file with the single-user bit set. For example, sup-
pose a process is sorting a file. With the file’s single-user bit set,
08S-9 treats the file exactly as though it had a single-user attrib-
ute. If another process attempts to open the file, OS-9 returns
Error 253.

You can duplicate non-shareable paths by using the I$Dup sys-
tem call. This means that it can be inherited, and therefore
accessible to more than one process at a time. Single-user means
that the file can be opened only once.

End-of-File Lock

A special case of record locking occurs when a user reads or
writes data at the end of a file, creating an EOF Lock. An EOF
Lock keeps the end of the file locked cut until a process performs
a READ or WRITE that is not at the end of the file. It prevents
problems that might otherwise occur when two users want to
simultaneously extend a file. The EOF Lock is the only case in
which a WRITE call automatically causes portions of a file to be
locked out. An interesting and useful side effect of the EOF Lock
function occurs if a program creates a file for sequential output.
As soon as the program creates the file, EOF Lock is set and no
other process can pass the writer in processing the file. For
example, if an assembler redirects a listing to a disk file, and a
spooler utility tries to print a line from the file before it is writ-
ten, record locking makes the spooler wait and stay at least one
step behind the assembler.

5-12

Random Block File Manager / 5

Deadlock Detection

A deadly embrace, or deadlock, typically occurs when two pro-
cesses attempt to gain control of two or more disk areas at the
same time. If each process gets one area (locking out the other
process), both processes become permanently stuck. Each waits
for a segment that can never become free. This situation is not
restricted to any particular record locking scheme or operating
system.

When a deadly embrace occurs, RBF returns a deadlock error
(Error 254) to the process that caused OS-9 to detect the dead-
lock. To avoid deadlocks, make sure that processes always access
records of shared files in the same sequence.

When a deadlock error occurs, it is not sufficient for a program
to retry the operation that caused the error. If all processes use
this strategy, none can ever succeed. For any process to proceed,
at least one must cancel operation to release its control over a
requesting segment.

RBF-Type Device Driver Modules

An RBF-type device driver module contains a package of subrou-
tines that perform sector-oriented I/O to or from a specific hard-
ware controller. Such a module is usually re-entrant. Because of
this, one copy of one device driver module can simultaneously
run several devices that use identical I/O controllers.

The I/O manager allocates a permanent memory area for each
device driver. The size of the memory area is given in the device
driver module header. The I/O manager and the RBF manager
use some of this area. The device driver can use the rest in any
manner. This area is used as follows:

The RBF Device Memory Area Definitions

Relative Size

Name Address (Bytes) Use

V.PAGE $00 1 Port extended address bits
A20-Al6

V.PORT $01 2 Device base address (defined

by the I/O manager)

5-13

0S-9 Technical Reference

Relative Size

Name Address (Bytes) Use

V.LPRC $03 1 ID of the last active process
(not used by RBF device
drivers)

V.BUSY $04 1 ID of the current process using

driver (defined by RBF)
0 = no current process

V.WAKE $05 1 ID of the process waiting for
I/O completion (defined by the
device driver)

V.USER $06 0 Beginning of file manager spe-
cific storage
V.NDRV $06 1 Maximum number of drives

the controller can use (defined
by the device driver)

$07 8 Reserved
DRVBEG $OF 0 Beginning of the drive tables
TABLES $OF DRVMEN*N Space for number of tables
reserved (n)
FREE 0 Beginning of space available
for driver

These values are defined in files in the DEFS directory on the
Development Package disk.

TABLES. This area contains one table for each drive that the
controller handles. (The RBF manager assumes that there are as
many tables as indicated by V.NDRV.) Some time after the
driver Init routine is called, the RBF manager issues a request
for the driver to read LSN 0 from a drive table by copying the
first part of LSN 0 (up to DD.SIZ) into the table. Following is
the format of each drive table:

5-14

Random Block File Manager / 5

Relative Size

Name Address (Bytes) Use

DD.TOT $00 3 Number of sectors.

DD.TKS $03 1 Track size (in sectors).

DD.MAP $04 2 Number of bytes in the alloca-
tion bit map.

DD.BIT $06 2 Number of sectors per bit
(cluster size).

DD.DIR $08 3 Address (LSN) of the ROOT
directory.

DD.OWN $0B 2 Owner’s user number.

DD.ATT $0D 1 Disk access attributes
(DSPEPWPRE WR).

DD.DSK $0E 2 Disk ID (a pseudo-random
number used to detect diskette
swaps).

DD.FMT $10 1 Media format.

DD.SPT $11 2 Number of sectors per track.

(Track 0 can use a different
value specified by IT.TOS in
the device descriptor.)

DD.RES $13 2 Reserved for future use.

DD.SIZ $15 0 Minimum size of device
descriptor.

V.TRAK $15 2 Number of the current track

(the track that the head is on,
and the track updated by the
driver).

V.BMB $17 1 Bit-map use flag:
0 = Bit map is not in use.
(Disk driver routines
must not alter V.BMB.)

V.FILEHD $18 2 Open file list for this drive.

5-15

0S-9 Technical Reference

Relative Size

Name Address (Bytes) Use

V.DISKID $1A 2 Disk ID.

V.BMAPSZ $1C 1 Size of bitmap.

V.MAPSCT $1D 1 Lowest reasonable bitmap
sector.

V.RESBIT $1E 1 Reserved bitmap sector.

V.SCTKOF $1F 1 Sector/track byte.

V.SCOFST $20 1 Sector offset split from
V.SCTKOF.

V.TKOFST $21 1 Track offset split from

. V.SCTKOF.
RESERVED $22 4 Reserved for future use.
DRVMEN' $26 Size of each drive table.

The format attributes (DD.FMT) are these:

Bit BO = Number of sides
0 = Single-sided
1 = Double-sided

Bit B1 = Density
Single-density
1 = Double-density

o
I

Bit B2 = Track density
0 = Single (48 tracks per inch)
1 = Double (96 tracks per inch)

RBF Device Driver Subroutines

Like all device driver modules, RBF device drivers use a stan-
dard executable memory module format.

The execution offset address in the module header points to a
branch table that has six 3-byte entries. Each entry is typically
a long branch (LBRA) to the corresponding subroutine. The
branch table is defined as follows:

5-16

Random Block File Manager / 5

ENTRY LBRA
LBRA
LBRA
LBRA
LBRA
LBRA

INIT
READ
WRITE
GETSTA
SETSTA
TERM

Initialize drive
Read sector
Write sector

Get status

Set status
Terminate device

Ensure that each subroutine exists with the C bit of the condi-
tion code register cleared if no error occurred. If an error occurs,
set the C bit and return an appropriate error code Register B.

The rest of this chapter describes the RBF device driver subrou-
tines and their entry and exit conditions.

5-17

0S-9 Technical Reference

Init Initializes a device and the device’s memory

area.

Entry Conditions:

Y
U

= address of the device descriptor
= address of the device memory area

Exit Conditions:

CC = carry set on error

B

= error code (if any)

Additional Information:

If you want OS-9 to verify disk writes, use the Request
Memory system call (F§SRqMem) to allocate a 256-byte
buffer area in which a sector can be read back and verified
after a write.

You must initialize the device memory area. For floppy
diskette controllers, initialization typically consists of:

1. Initializing V.NDRV to the number of drives with which
the controller works

2. Initializing DD.TOT (in the drive table) to a non-zero
value so that Sector 0 can be read or written

3. Initializing V.TRAK to $FF so that the first seek finds
Track 0

4. Placing the IRQ service routine on the IRQ polling list,
using the Set IRQ system call (F$IRQ)

5. Initializing the device control registers (enabling inter-
rupts if necessary)

Prior to being called, the device memory area is cleared (set
to zero), except for V.PAGE and V.PORT. (These areas con-
tain the 24- bit device address.) Ensure the driver initial-
izes each drive table appropriately for the type of diskette
that the driver expects to be used on the corresponding
drive.

5-18

Random Block File Manager | 5

Read Readsa 256-byte sector from a disk and

places it in a 256-byte sector buffer.

Entry Conditions:

B
X
Y
U

= MSB of the disk’s LSN

LSB of the disk’s LSN

address of the path descriptor

= address of the device memory area

Exit Conditions:

CC
B

= carry set on error
= error code (if any)

Additional Information:

® The following is a typical routine for using Read:

1.

Get the sector buffer address from PD.BUF in the path
descriptor.

. Get the drive number from PD.DRV in the path

descriptor.

. Compute the physical disk address from the logical sec-

tor number.

4. Initiate the Read operation.

. Copy V.BUSY to V.WAKE. The driver goes to sleep and

waits for the I/O to complete. (The IRQ service routine is
responsible for sending a wakeup signal.) After awaken-
ing, the driver tests V.WAKE to see if it is clear. If it
isn’t clear, the driver goes back to sleep.

® Whenever you read LSN 0, you must copy the first part of
this sector into the proper drive table. (Get the drive num-
ber from PD.DRV in the path descriptor.) The number of
bytes to copy is in DD.SIZ. Use the drive number (PD.DRV)
to compute the offset for the corresponding drive table as
follows:

5-19

0S-9 Technical Reference

LDA PD.DRV,Y
LDB #DRVMEN

MUL
LEAX DRVBEG,U

LEAX D,X

Get the drive number
Get the size of a
drive table

Get the address of
the first table
Compute the address
of the table

5-20

Random Block File Manager | 5

Write writes a 256-byte sector buffer to a disk.

Entry Conditions:

B
X
Y
U

= MSB of the disk LSN

LSB of the disk LSN

address of the path descriptor

= address of the device memory area

Exit Conditions:

CC = carry set on error

B

= error code

Additional Information:

1.

Following is a typical routine for using Write:

Get the sector buffer address from PD.BUF in the path
descriptor.

. Get the drive number from PD.DRV in the path descriptor.

3. Compute the physical disk address from the logical sector

number.

. Initiate the Write operation.

5. Copy V.BUSY to V.WAKE. The driver then goes to sleep

and waits for the I/O to complete. (The IRQ service routine
sends the wakeup signal.) After awakening, the driver tests
V.WAKE to see if it is clear. If it is not, the driver goes
back to sleep. If the disk controller cannot be interrupt-dri-
ven, it is necessary to perform a programmed I/O transfer.

. If PF.VFY in the path descriptor is equal to zero, read the

sector back in and verify that it is written correctly. Verifi-
cation usually does not involve a comparison of all of the
data bytes.

If disk writes are to be verified, the Init routine must
request the buffer in which to place the sector when it is
read back. Do not copy LSN O into the drive table when
reading it back for verification.

5-21

0S-9 Technical Reference

® Use the drive number (PD.DRV) to compute the offset to
the corresponding drive table as shown for the Read
routine.

5-22

Random Block File Manager / 5

Getstats and Setstats

Reads or changes device’s operating parameters.

Entry Conditions:

U = address of the device memory area
Y = address of the path descriptor
A = status code

Exit Conditions:

B = error code (if any)
CC = carry set on error

Additional Information:

® Get/set the device’s operating parameters (status) as speci-
fied for the Get Status and Set Status system calls. Getsta
and Setsta are wild card calls.

® It might be necessary to examine or change the register
stack that contains the values of the 6809 register at the
time of the call. The address of the register stack is in
PD.RGS, which is located in the path descriptor. You can
use the following offsets to access any value in the register

stack:
Relative

Reg. Addr. Size 6809 Reg.

R3$CC $00 1 Condition Code Reg.
R$D $01 2 Register D

R$A $01 1 Register A

R$B $02. 1 Register B

- R$DP $03 1 Register DP

R$X $04 2 Register X

R$Y $06 2 Register Y

R$U $08 2 Register U

R$PC $0A 2 Program Counter

e Register D overlays Registers A and B.

5-23

0S-9 Technical Reference

Term Terminate a device.

Entry Conditions:
U = address of the device memory area

Exit Conditions:
CC = carry set on error
B = error code (if any)
Additional Information:

® This routine is called when a device is no longer in use in
the system (when the link count of its device descriptor
module becomes zero).

® Following is a typical routine for using Term:
1. Wait until any pending I/O is completed.
2. Disable the device interrupts.
3. Remove the device from the IRQ polling list.
4

. If the Init routine reserved a 256-byte buffer for verify-
ing disk writes, return the memory with the Return
Sysmem system call (F$SRtMem).

5-24

Random Block File Manager | 5

IRQ Service Routine

Services device interrupts.

Additional Information:

® The IRQ Service routine sends a wakeup signal to the pro-
cess indicated by the process ID in V.WAKE when the I/O
is complete. It then clears V.WAKE as a flag to indicate to
the main program that the IRQ has indeed occurred.

® When the IRQ service routine finishes servicing an inter-
rupt it must clear the carry and exit with an RTS
instruction.

® Although this routine is not included in the device driver
module branch table and is not called directly by the RBF
manager, it is a key routine in interrupt-driven drivers. Its
function is to:

1. Service the device interrupts (receive data from device or
send data to it). The IRQ service routine puts its data
into and get its data from buffers that are defined in the
device memory area.

2. Wake up a process that is waiting for I/O to be com-
pleted. To do this, the routine checks to see if there is a
process ID in V.WAKE (if the bit is non-zero); if so, it
sends a wakeup signal to that process.

3. If the device is ready to send more data, and the output
buffer is empty, disable the device’s ready to transmit
interrupts.

5-25

0S-9 Technical Reference

Boot (Bootstrap Module)

Loads the boot file into RAM.

Entry Conditions:

None

Exit Conditions:

D = size of the boot file (in bytes)

X = address at which the boot file was loaded into memory
CC = carry set on error

B = error code (if any)

Additional Information:

The Boot module is not part of the disk driver. It is a sepa-
rate module that is stored on the boot track of the system
disk with OS9P1 and REL.

The bootstrap module contains one subroutine that loads
the bootstrap file and related information into memory. It
uses the standard executable module format with a module
type of $C. The execution offset in the module header con-
tains the offset to the entry point of this subroutine.

The module gets the starting sector number and size of the
0S9Boot file from LSN 0. OS-9 allocates a memory area
large enough for the Boot file. Then, it loads the Boot file
into this memory area.

Following is a typical routine for using Boot:

1. Read LSN 0 from the disk into a buffer area. The Boot
module must pick its own buffer area. LSN 0 contains
the values for DD.BT (the 24-bit LSN of the bootstrap
file), and DD.BSZ (the size of the bootstrap file in bytes).

2. Get the 24-bit LSN of the bootstrap file from DD.BT.

3. Get the size of the bootstrap file from DD.BSZ. The Boot
module is contained in one logically contiguous block
beginning at the logical sector specified in DD.BT and
extending for DD.BSZ/256 + 1 sectors.

5-26

Random Block File Manager | 5

. Use the OS-9 Request Sysmem system call (F$SRqMem)
to request the memory area in which the Boot file is
loaded.

5. Read the Boot file into this memory area.

6. Return the size of the Boot file and its location. Boot file

is loaded.

5-27

Chapter 6

Sequential Character
File Manager

The Sequential Character File Manager (SCF) supports devices
that operate on a character-by-character basis. These include
terminals, printers, and modems.

SCF is a re-entrant subroutine package. The I/O manager calls
the SCF manager for I/O system handling of sequential, charac-
ter-oriented devices. The SCF manager includes the extensive I/O
editing functions typical of line-oriented operation, such as:

® backspace

® line delete

® line repeat

® auto line feed

@ screen pause

® return delay padding

The SCF-type device driver modules are CC310, PRINTER, and
RS-232. They run the video display, printer, and serial ports
respectively. See the OS-9 Commands manual for additional
Color Computer I/O devices.

SCF Line Editing Functions

The SCF manager supports two sets of read and write functions.
I$Read and I$Write pass data with no modification. I$ReadLin
and I$WritLn provide full line editing of device functions.

Read and Write

The Read and Write system calls to SCF-type devices correspond
to the BASIC09 GET and PUT statements. While they perform
little modification to the data they pass, they do filter out key-
board interrupt, keyboard terminate, and pause character. (Edit-
ing is disabled if the corresponding character in the path
descriptor contains a zero.)

6-1

0S-9 Technical Reference

Carriage returns are not followed by line feeds or nulls automat-
ically, and the high order bits are passed as sent/received.

Read Line and Write Line

The Read Line and Write Line system calls to SCF-type devices
correspond to the BASIC09 INPUT, PRINT, READ, and WRITE
statements. They provide full line editing of all functions enabled
for a particular device.

The system initializes I$ReadLln and I$WritLn functions when
you first use a particular device. (OS-9 copies the option table
from the device descriptor table associated with the specific
device.)

Later, you can alter the calls—either from assembly-language
programs (using the Get Status system call), or from the key-
board (using the TMODE command). All bytes transferred by
Readln and Writln have the high order bit cleared.

SCF Definitions of the Path Descriptor

The PD.FST and PD.OPT sections of the path descriptor are
reserved for and used by the SCF file manager.

The following table describes the SCF manager’s use of PD.FST
and PD.OPT. For your convenience, the table also includes the
other sections of the PD.

The PD.OPT section contains the values that determine the line
editing functions. It contains many device operating parameters
that can be read or written by the Set Status or Get Status sys-
tem call. Any values not set by this table default to zero.

Note: You can disable most of the editing functions by set-
ting the corresponding control character in the path
descriptor to zero. You can use the Set Status system call
or the TMODE command to do this. Or, you can go a step
further by setting the corresponding control character value
in the device descriptor module to zero.

To determine the default settings for a specific device, you can
inspect the device descriptor.

6-2

Sequential Character File Manager / 6

Relative Size

Name Address (Bytes) Use
Universal Section (Same for all file managers)
PD.PD $00 1 Path number
PD.MOD $01 1 Access mode:
1 = read
2 = write
3 = update
PD.CNT $02 1 Number of open images (paths
using this PD)
PD.DEV $03 2 Address of the associated
device table entry
PD.CPR $05 1 Current process ID
PD.RGS $06 2 Address of the caller’s 6809
register stack
PD.BUF $08 2 Address of the 256-byte data

buffer (if used)

Relative Size

Name Address (Bytes) Use
SCF Path Descriptor Definitions (PD.FST Section)
PD.DV2 $0A 2 Device table address of the sec-
ond (echo) device
PD.RAW $0C 1 Edit flag:
0 = raw mode
1 = edit mode
PD.MAX $0D 2 Read Line maximum character
count
PD.MIN $0F 1 Devices are mine if cleared
PD.STS $10 2 Status routine module address
PD.STM $12 2 Reserved for status routine

6-3

0S-9 Technical Reference

Relative Size Use
Name Address (Bytes)

SCF Option Section Definition (PD.OPT Section)

(Copied from the device descriptor)

PD.DTP $20 1 Device class:
0 = SCF
1 = RBF
2 = PIPE
3 = SBF
PD.UPC $21 1 Case:
0 = upper and lower
1 = upper only
PD.BSO $22 1 Backspace:

0 = backspace
1 = backspace, space and

backspace
PD.DLO $23 1 Delete:
0 = backspace over line
1 = carriage return, line
feed
PD.EKO $24 1 Echo:
0 = no echo
PD.ALF $25 1 Auto line feed:
0 = no auto line feed
PD.NUL $26 1 End-of-line null count:
n = number of nulls ($00)

sent after each carriage
return or carriage return
and line feed (n = $00-$FF)

PD.PAU $27 1 End of page pause:

0 = no pause
PD.PAG $28 1 Number of lines per page
PD.BSP $29 1 Backspace character
PD.DEL $2A 1 Delete-line character

6-4

Sequential Character File Manager /| 6

Relative Size

Name Address (Bytes) Use
SCF Option Section Definition continued (PD.OPT Section)
PD.EOR $2B 1 End-of-record character (End-

of-line character) Read only.
Normally set to $0D:

0 = Terminate read-line
only at the end of the
file

PD.EOF $2C 1 End-of-file character (read
only)

PD.RPR $2D 1 Reprint-line character

PD.DUP $2E 1 Duplicate-last-line character

PD.PSC $2F 1 Pause character

PD.INT 330 1 Keyboard-interrupt character

PD.QUT $31 1 Keyboard-terminate character

PD.BSE 332 1 Backspace-echo character

PD.OVF %33 1 Line-overflow character (bell
(eTRU)E)

PD.PAR $34 1 Device-initialization value
(parity)

PD.BAU %35 1 Software setable baud rate

PD.D2P %36 2 Offset to second device name
string

PP.XON %38 1 ACIA XON char

PD.XOFF $39 1 ACIA XOFF char

PD.ERR $3A 1 Most recent I/O error status

PD.TBL 3$3B 2 Copy of device table address

PD.PLP $3D 2 Path descriptor list pointer

PD.PST $3F 1 Current path status

6-5

0S-9 Technical Reference

PD.EOF specifies the end-of-file character. If this is the first
and only character that is input to the SCF device, SCF returns
an end-of-file error on Read or Readln.

PD.PSC specifies the pause character, which suspends output to
the device before the next end-of-record character. The pause
character also deletes any type-ahead input for Readln.

PD.INT specifies the keyboard-interrupt character. When the
character is received, the system sends a keyboard terminate
signal to the last user of a path. The character also terminates
the current I/O request (if any) with an error identical to the
keyboard interrupt signal code.

PD.QUT specifies the keyboard-terminate character. When this
character is received, the system sends a keyboard terminate
signal to the last user of a path. The system also cancels the
current I/O request (if any) by sending error code identical to the
keyboard interrupt signal code.

PD.PAR specifies the parity information for external serial
devices.

PD.BAU specifies baud rate, word length and stop bit informa-
tion for serial devices.

PD.XON contains either the character used to enable transmis-
sion of characters or a null character that disables the use of
XON.

PD.XOFF contains either the character used to disable trans-

mission of characters or a null character that disables the use of
XOFF.

SCF-Type Device Descriptor Modules

The following chart shows how the initialization table in the
device descriptors is used for SCF-type devices. The values are
those the I/O manager copies from the device descriptor to the
path descriptor.

An SCF editing function is turned off if its corresponding value
is set to zero. For example, if IT.EOF is set to zero, there is no
end-of-file character.

Sequential Character File Manager | 6

Relative Size

Name Address (Bytes) Use
(header) $00- Standard device descriptor
11 module header
IT.DVC $12 1 Device class:
0 = SCF
1 = RBF
2 = PIPE
3 = SBF
IT.UPC $13 1 Case:
0 = upper- and lowercase
1 = uppercase only

IT.BSO $14 1 Backspace:
0 = backspace
1 = backspace, then space
and backspace

IT.DLO $15 1 Delete:
0 = backspace over line
1 = carriage return

IT.EKO $16 1 Echo:

0 = echo off
IT.ALF $17 1 Auto line feed:

0 = auto line feed disabled
IT.NUL $18 1 End-of-line null count
IT.PAU $19 1 Pause:

0 = end-of-page pause

disabled

IT.PAG $1A 1 Number of lines per page
IT.BSP $1B 1 Backspace character
IT.DEL $1C 1 Delete-line character
IT.EOR $1D 1 End-of-record character
IT.EOF $1E 1 End-of-file character
IT.RPR $1F 1 Reprint-line character

6-7

0OS-9 Technical Reference

Relative Size

Name Address (Bytes) Use

IT.DUP $20 1 Duplicate-last-line character

IT.PSC $21 1 Pause character

IT.INT $22 1 Interrupt character

IT.QUT $23 1 Quit character

IT.BSE $24 1 Backspace echo character

IT.OVF $25 1 Line-overflow character (bell)

IT.PAR $26 1 Initialization value—used to
initialize a device control reg-
ister when a path is opened to
it (parity)

IT.BAU $27 1 Baud rate

IT.D2P $28 2 Attached device name string
offset

IT.XON $2A 1 X-ON character

IT.XOFF $2B 1 X-OFF character

IT.COL $2C 1 Number of columns for display

IT.ROW $2D 1 Number of rows for display

IT.WND $2E 1 Window number

IT.VAL $2F 1 Data in rest of descriptor is
valid

IT.STY $30 1 Window type

IT.CPX $31 1 X cursor position

IT.CPY $32 1 Y cursor position

IT.FGC 333 1 Foreground color

IT.BGC 334 1 Background color

IT.BDC $35 1 Border color

6-8

Sequential Character File Manager | 6

SCF-Type Device Driver Modules

An SCF-type device driver module contains a package of subrou-
tines that perform raw (unformatted) data I/O transfers to or
from a specific hardware controller. Such a module is usually re-
entrant so that one copy of the module can simultaneously run
several devices that use identical I/O controllers. The
I/O manager allocates a permanent memory area for each con-
troller sharing the driver.

The size of the memory area is defined in the device driver mod-
ule header. The I/O manager and SCF use some of the memory
area. The device driver can use the rest in any way (typically as
variables and buffers). Typically, the driver uses the area as
follows:

Relative Size

Name Address (Bytes) Use

V.PAGE $00 1 Port extended 24 bit address

V.PORT $01 2 Device base address (defined
by the I/O manager)

V.LPRC $03 1 ID of the last active process

V.BUSY $04 1 ID of the active process

(defined by RBF):
0 = no active process

V.WAKE $05 1 ID of the process to reawaken
after the device completes /0
(defined by the device driver):

0 = no waiting process

V.USER $06 0 Beginning of file manager
specific storage
V.TYPE $06 1 Device type or parity
V.LINE $07 1 Lines left until the end of the
page
V.PAUS $08 1 Pause request:
0 = no pause requested
V.DEV2 $09 2 Attached device memory area
V.INTR $0B 1 Interrupt character

6-9

0S-9 Technical Reference

Relative Size

Name Address (Bytes) Use

V.QUIT $0C 1 Quit character

V.PCHR $0D 1 Pause character

V.ERR $0E 1 Error accumulator

V.XON $OF 1 XON character

V.XOFF $10 1 XOFF character

V.KANJI $11 1 Reserved

V.KBUF $12 2 Reserved

V.MODADR $14 2 Reserved

V.PDLHD $16 2 Path descriptor list header

V.RSV $18 5 Reserved

V.SCF $1D 0 End pf SCF memory
requirements

FREE $1D 0 Free for the device driver to
use

V.LPRC contains the process ID of the last process to use the
device. The IRQ service routine sends this process the proper sig-
nal if it receives a quit character or an interrupt character.
V.LPRC is defined by SCF.

V.BUSY contains the process ID of the process that is using the
device. (If the device is not being used, V.BUSY contains a zero.)
The process ID is used by SCF to prevent more than one process
from using the device at the same time. V.BUSY is defined by
SCF.

SCF Device Driver Subroutines

Like all device drivers, SCF device drivers use a standard exe-
cutable memory module format.

The execution offset address in the module header points to a
branch table that has six 3-byte entries. Each entry is typically
an LBRA to the corresponding subroutine. The branch table is
defined as follows:

6-10

Sequential Character File Manager | 6

ENTRY LBRA INIT Initialize driver
LBRA READ Read character
LBRA WRITE Write character
LBRA GETSTA Get status
LBRA SETSTA Set status
LBRA TERM Terminate device

If no error occurs, each subroutine exits with the C bit in the
Condition Code Register cleared. If an error occurred, each sub-
routine sets the C bit and returns an appropriate error code in
Register B.

The rest of this chapter describes these subroutines and their
entry and exit conditions.

6-11

0S-9 Technical Reference

Init mitializes device control registers, and
enables interrupts if necessary.

Entry Conditions:

Y = address of the device descriptor

U = address of the device memory area
Exit Conditions:

CC = carry set on error

B = error code (if any)
Additional Information:

® Prior to being called, the device memory area is cleared (set
to zero), except for V.PAGE and V.PORT. (V.PAGE and
V.PORT contain the device address.) There is no need to
initialize the part of the memory area used by the I/O
manager and SCF.

® Follow these steps to use Init:
1. Initialize the device memory area.

2. Place the IRQ service routine on the IRQ polling list,
using the Set IRQ system call (F$IRQ).

3. [Initialize the device control registers.

6-12

Sequential Character File Manager / 6

Read Reads the next character from the input
buffer.

Entry Conditions:

Y = address of the path descriptor
U = address of the device memory area

Exit Conditions:

A = character read
CC = carry set on error
B = error code (if any)

Additional Information:
® This is a step by step description of a Read operation:
1. Read gets the next character from the input buffer.

2. If no data is ready, Read copies its process ID from
V.BUSY into V.WAKE. It then uses the Sleep system
call to put itself to sleep.

3. Later, when Read receives data, the IRQ service rou-
tine leaves the data in a buffer. Then, the routine
checks V.WAKE to see if any process is waiting for the
device to complete I/O. If so, the IRQ service routine
sends a wakeup signal to the waiting process.

® Data buffers are not automatically allocated. If a buffer is
used, it defines it in the device memory area.

6-13

OS-9 Technical Reference

Write sends a character (places a data byte in
an output buffer) and enables the device
output interrupts.

Entry Conditions:

A = character to write
Y = address of the path descriptor
U = address of the device memory area

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

® If the data buffer is full, Write copies its process ID from
V.BUSY into V.WAKE. Write then puts itself to sleep.

Later, when the IRQ service routine transmits a character
and makes room for more data, it checks V.WAKE to see if
there is a process waiting for the device to complete I/O. If
there is, the routine sends a wakeup signal to that process.

® Write must ensure that the IRQ service routine that starts
it begins to place data in the buffer. After an interrupt is
generated, the IRQ service routine continues to transmit
data until the data buffer is empty. Then, it disables the
device’s ready-to-transmit interrupts.

® Data buffers are not allocated automatically. If a buffer is
used, define it in the device memory area.

6-14

Sequential Character File Manager | 6

Getsta and Setsta

Gets/sets device operating parameters (status) as
specified for the Get Status and Set Status system
calls. Getsta and Setsta are wildcard calls.

Entry Conditions:

A = depends on the function code
Y = address of the path descriptor
U = address of the device memory area

Other registers depend on the function code.

Exit Conditions:

B = error code (if any)
CC = carry set on error
Other registers depend on the function code

Additional Information:

® Any codes not defined by the I/O manager or SCF are
passed to the device driver.

® You might need to examine or change the register stack
that contains the values of the 6809 registers at the time of
the call. The address of the register stack can be found in
PD.RGS, which is located in the path descriptor.

® You can use the following offsets to access any value in the
register packet:

Relative Size
Name Address (Bytes) 6809 Register
R$CC $00 1 Condition Codes Register
R$D $01 0 Register D
R3SA $01 1 Register A
R3$B $02 1 Register B
R$DP $03 1 Register DP
R$X $04 2 Register X
R$Y $06 2 Register Y
R$U $08 2 Register U
R$PC $0A 2 Program Counter

The function code is retrieved from the R$B on the user stack.

6-15

0S-9 Technical Reference

Term Terminates a device. Term is called when a
device is no longer in use (when the link
count of the device descriptor module
becomes zero).

Entry Conditions:

U = pointer to the device memory area

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:
® To use Term:

1. Wait until the IRQ service routine empties the output
buffer.

2. Disable the device interrupts.
3. Remove the device from the IRQ polling list.

® When Term closes the last path to a device, OS-9 returns
to the memory pool the memory that the device used. If the
device has been attached to the system using the I$Attach
system call, OS-9 does not return the static storage for the
driver until an I$Detach call is made to the device. Mod-
ules contained in the Boot file are never terminated, even if
their link counts reach 0.

6-16

Sequential Character File Manager / 6

IRQ Service Routine

Receives device interrupts. When I/O is complete, the
routine sends a wakeup signal to the process identi-
fied by the process ID in V.WAKE. The routine also
clears V.WAKE as a flag to indicate to the main pro-
gram that the IRQ has occurred.

Additional Information:

® The IRQ Service Routine is not included in device driver
branch tables, and is not called directly by SCF. However, it
is a key routine in device drivers.

® When the IRQ Service routine finishes servicing an inter-
rupt, the routine must clear the carry and exit with an
RTS instruction.

® Here is a typical sequence of events that the IRQ Service
Routine performs:

1.

Service the device interrupts (receive data from the
device or send data to it). Ensure this routine puts its
data into and get its data from buffers that are defined
in the device memory area.

Wake up any process that is waiting for I/O to complete.
To do this, the routine checks to see if there is a pro-
cess ID in V.WAKE (a value other than zero); if so, it
sends a wakeup signal to that process.

If the device is ready to send more data, and the output
buffer is empty, disable the device’s ready-to-transmit
interrupts.

If a pause character is received, set V.PAUS in the
attached device storage area to a value other than zero.
The address of the attached device memory area is in
V.DEV2.

V.PAUS in the attached device storage area to non-zero
value. The address of the attached device memory area
is in V.DEV2,

If a keyboard terminate or interrupt character is
received, signal the process in V.LPRC (last known
process) if any.

6-17

Chapter 7

The Pipe File Manager
(PIPEMAN)

The Pipe file manager handles control of processes that use
paths to pipes. Pipes allow concurrently executing processes to
send each other data by using the output of one process (the
writer) as input to a second process (the reader). The reader gets
input from the standard input. The exclamation point (!) opera-
tor specifies that the input or output is from or to a pipe. The
Pipe file manager allocates a 256-byte block and a path descrip-
tor for data transfer. The Pipe file manager also determines
which process has control of the pipe. The Pipe file manager has
the standard file manager branch table at its entry point:

PipeEnt lbra Create
Ibra Open
lbra MakDir
lbra ChgDir
lbra Delete
lbra Seek
Ibra PRead
lbra PWrite
Ibra PRdLn
Ibra PWrLn
lbra Getstat
Ibra Putstat
Ibra Close

You cannot use MakDir, ChgDir, Delete, and Seek with pipes. If
you try to do so, the system returns ESUNKSVC (unknown ser-
vice request). Getstat and Putstat are also no-action service rou-
tines. They return without error.

Create and Open perform the same functions. They set up the
256-byte data exchange buffer, and save several addresses in the
path descriptor.

The Close request checks to see if any process is reading or writ-
ing through the pipe. If not, OS-9 returns the buffer.

PRead, PWrite, PRdLn, and PWrLn read data from the buffer
and write data to it.

7-1

OS-9 Technical Reference

The ! operator tells the Shell that processes wish to communicate
through a pipe. For example:

procl ! proc2

In this example, shell forks Procl with the standard output path
to a pipe, and forks Proc2 with the Standard input path from a

pipe.
Shell can also handle a series of processes using pipes. Example:

proct ! proc2 ! proc3 ! proc4 (ENTER)

The following outline shows how to set up pipes between
processes:

Open /pipe save path in variable x
Dup path #1 save stdout in variable y
Dup x make path available
Fork proct put pipe in stdout
(Dup uses lowest available)
Close #1 make path available
Dup vy restore stdout
Close y make path available
Dup path #0 save stdin in Y
Close #0 make path available
Dup x putl pipe in stdin
Fork 2 fork process 2
Close #0 make path available
Dup y restore stdin
Close x no longer needed
Close vy no longer needed

The Pipe File Manager (PIPEMAN) | 7

Example: The following example shows how an application can
initiate another process with the stdin and stdout routed

through a pipe.

Open /pipel save
Open /pipe2 save
Dup @ save
Dup 1 save
Close @ make
Close 1 make
Dup a make
Dup b make

Fork new process

Close @ make
Close 1 make
Dup x
Dup y

Return asb

in variable a
in variable b

path
path
stdin in variable x
stdout in variable y
path available

path available

pipel stdin

pipe2 stdout

path available
path available

restore stdin
restore stdout
return pipe path numbers to caller

7-3

Chapter 8

System Calls

System calls are used to communicate between the OS-9 operat-
ing system and assembly-language programs. There are two
major types of calls—I/O calls and function calls.

Function calls include user mode calls and system mode calls.

Each system call has a mnemonic name. Names of I/O calls start
with I$. For example, the Change Directory call is I$ChgDir.
Names of function calls start with F$. For example, the Allocate
Bits call is F$AllBit. The names are defined in the assembler-
input conditions equate file called OS9Defs.

System mode calls are privileged. You can execute them only
while OS-9 is in the system state (when it is processing another
system call, executing a file manager or device driver, and so
on).

System mode calls are included in this manual primarily for pro-
grammers writing device drivers and other system-level
applications.

Calling Procedure

To execute any system calls, you need to use an SWI2
instruction:

1. Load the 6809 registers with any appropriate parameters.

2. Execute an SWI2 instruction, followed immediately by a con-
stant byte, which is the request code. In the references in
this chapter, the first line is the system call name (for exam-
ple Close Path) and the second line contains the call’s mne-
monic name (for example I$Close), the software interrupt
Code 2 (103F), and the call’s request code (for example, 8F)
in hexadecimal.

3. After OS-9 processes the call, it returns any parameters in
the 6809 registers. If an error occurs, the C bit of the condi-
tion code register is set, and Register B contains the appro-
priate error code. This feature permits a BCS or BCC
instruction immediately following the system call to branch
either if there is an error or if no error occurs.

8-1

0S-9 Technical Reference

As an example, here is the Close system call:

LDA PATHNUM

SWI2
FCB $8F
BCS ERROR

You can use the assembler’'s OS9 directive to simplify the call, as
follows.

LDA PATHNUM
0S89 IsClose
BCS ERROR

The ASM assembler allows any combination of upper- or lower-
case letters. The RMA assembler, included in the 0S-9 Level
Two Development Pak, is case sensitive. The names in this man-
ual have been spelled with upper and lower case letters, match-
ing the defs for RMA.

I/O System Calls

08S-9’s 1/O calls are easier to use than many other systems’ I/O
calls. This is because the calling program does not have to allo-
cate and set up file control blocks, sector buffers, and so on.

Instead, OS-9 returns a 1-byte path number whenever a process
opens a path to a file or device. Until the path is closed, you can
use this path number in later I/O requests to identify the file or
device.

In addition, OS-9 allocates and maintains its own data struc-
tures; so, you need not deal with them.

System Call Descriptions

The rest of this chapter consists of the system call descriptions.
At the top of each description is the system call name, followed
by its mnemonic name, the SWI2 code and the request code.
Next are the call’s entry and exit conditions, followed by addi-
tional information about the code where appropriate.

In the system call descriptions, registers not specified as entry
or exit conditions are not altered. Strings passed as parameters
are normally terminated with a space character and end-of-line
character, or with Bit 7 of the last character set.

8-2

System Calls / 8

If an error occurs on a system call, the C bit of Register CC is
set, and Register B contains the error code. If no error occurs,
the C bit is clear, and Register B contains a value of zero.

User Mode System Calls Quick Reference

Following is a summary of the User Mode System Calls refer-
enced in this chapter:

F$AlIBit
F$Chain
F$CmpNam
F$CpyMem
F$CRC
F$DelBit
F$Exit
F$Fork
F$GBIkMp
F$GModDr
F$GPrDsc
F$lcpt
F$ID
F$Link
F$Load
F$Mem
F$NMLink

F$NMLoad

F$Perr
F$PrsNam
F$SchBit

Sets bits in an allocation bit map
Chains a process to a new module
Compares two names

Copies external memory

Generates a cyclic redundancy check
Deallocates bits in an allocation bit map
Terminates a process

Starts a new process

Gets a copy of a system block map
Gets a copy of a module directory
Gets a copy of a process descriptor
Sets a signal intercept trap

Returns a process ID

Links to a memory module

Loads a module from mass storage
Changes a process’s data area size

Links to a module; does not map the mod-
ule into the user’s address space

Loads a module but does not map it into the
user’s address space

Prints an error message
Parses a pathlist name

Searches a bit map

8-3

0S-9 Technical Reference

F$Send
F$Sleep
F$SPrior
F$SSWI
F$STime
F$SUser
F3$Time
F$UnLink
F$UnLoad
F$Wait
I$Attach
I$Chgdir
I$Close
I$Create
I$Delete
I$DeletX
I$Detach
I$Dup
I$GetStt
I$MakDir
I$Open
I$Read
I$ReadLn
I$Seek
I$SetStt
I$Write
I$WritLn

Sends a signal to a process
Suspends a process

Sets a process’s priority

Sets a software interrupt vector
Sets the system time

Sets the user ID number
Returns the current time
Unlinks a module

Unlinks a module by name
Waits for a signal

Attaches an 1/O device

Changes a working directory
Closes a path

Creates a new file

Deletes a file

Deletes a file from the execution directory
Detaches an I/O device
Duplicates a path

Gets a device’s status

Creates a directory file

Opens a path to an existing file
Reads data from a device

Reads a line of data from a device
Positions a file pointer

Sets a device's status

Writes data to a device

Writes a data line to a device

8-4

System Calls / 8

System Mode Calls Quick Reference

Following is a summary of the System Mode Calls referenced in

this chapter:
F$Alarm
F$All64

F$SAIITHRAM

F$AllImg
F$AllPrc
F$AIIRAM
F$AllTsk
F$AProc
F$Boot
F$BtMem
F$CIrBlk
F$DATLog

F$Dellmg
F$DelPrc
F$DelRAM
F$DelTsk
F$ELink

F$FModul
F$Find64
F$FreeHB
F$FreelLB
F$GCMDir
F$GProcP

Sets up an alarm

Allocates a 64-byte memory block
Allocates high RAM

Allocates image RAM blocks
Allocates a process descriptor
Allocates RAM blocks

Allocates a process task number
Enters active process queue
Performs a system bootstrap
Performs a memory request bootstrap
Clears the specified block of memory

Converts a DAT block offset to a logical
address

Deallocates image RAM blocks
Deallocates a process descriptor
Deallocates RAM blocks
Deallocates a process task number

Links modules using a module directory
entry

Finds a module directory entry
Finds a 64-byte memory block
Gets a free high block

Gets a free low block

Compacts module directory entries

Gets a process’s pointer

8-5

0OS-9 Technical Reference

F$IODel
F$I0Qu
F$IRQ
F$LDABX
FSLDAXY

F$LDDDXY

F$MapBIk
F$Move
F$NProc
F$RelTsk
F$ResTsk
F$Ret64
F$SetImg
F$SetTsk
F$SLink

F$SRqMem

F$SRtMem
F$SSve
F$STABX
F$VIRQ

F$VModul

Deletes an I/O module

Puts an entry into an I/O queue
Makes an entry into IRQ polling table
Loads Register A from 0,X in Task B
Loads A[X,[Y]]

Loads DID+X,[Y]]

Maps the specified block

Moves data to a different address space
Starts the next process

Releases a task number

Reserves a task number

Returns a 64-byte memory block

Sets a process DAT image

Sets a process’s task DAT registers
Performs a system link

Performs a system memory request
Performs a system memory return
Installs a function request

Stores Register A at 0,x in Task B

Makes an entry in a virtual IRQ polling
table

Validates a module

8-6

User System Calls / 8

User System Calls

Allocate BitS Sets bi.ts in an
0S9 FS$AlIBit 103F 13 allocation bit map

Entry Conditions:

D = number of the first bit to set
X = starting address of the allocation bit map
Y = number of bits to set

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® Bit numbers range from O to n-1, where n is the number of
bits in the allocation bit map.

® Warning: Do not issue the Allocate Bits call with Register
Y set to 0 (a bit count of 0).

8-7

0S-9 Technical Reference

Chain Loads and executes a
0S9 F$Chain 103F 05 new primary module

without creating a new
process

Entry Conditions:

A
B

X
Y

U

= languageltype code

= size of the data area (in pages); must be at least one
page

= address of the module name or filename

= parameter area size (in bytes); defaults to zero if not
specified

= starting address of the parameter area

Error OQutput:

CC = carry set on error

B

= error code (if any)

Additional Information:

Chain loads and executes a new primary module, but does
not create a new process. A Chain system call is similar to
a Fork followed by an Exit, but it has less processing over-
head. Chain resets the calling process program and data
memory areas and begins executing a new primary module.
It does not affect open paths. This is a user mode system
call.

Warning: Make sure that the hardware stack pointer (Reg-
ister SP) is located in the direct page before Chain exe-
cutes. Otherwise the system might crash or return a
suicide attempt error. This precaution also prevents a sui-
cide in the event that the new module requires a smaller
data area than that in use. Allow approximately 200 bytes
of stack space for execution of the Chain system call.

Chain performs the following steps:

1. It causes OS-9 to unlink the process’s old primary
module.

8-8

User System Calls / 8

D
PC
CC

0S-9 parses the name string of the new process’s pri-
mary module (the program that is to be executed first).
Then, it causes OS-9 to search the system module
directory to see if a module with the same name, type,
and language is already in memory.

If the module is in memory, it links to it. If the module
is not in memory, it uses the name string as the path-
list of a file to load into memory. Then, it links to the
first module in this file. (Several modules can be loaded
from a single file.)

It reconfigures the data memory area to the size speci-
fied in the new primary module’s header.

It intercepts and erases any pending signals.

The following diagram shows how Chain sets up the
data memory area and registers for the new module.

+ Y (highest address)
Parameter Area

« XSSP

Data Area

Direct Page

<« U,DP (lowest address)

= parameter area size
= module entry point absolute address
= F=0, =0, others are undefined

Registers Y and U (the top-of-memory and bottom-of-memory
pointers, respectively) always have values at page boundaries. If
the parent process does not specify a size for the parameter area,
the size (Register D) defaults to zero. The data area must be at
least one page long.

(For more information, see the Fork system call.)

8-9

OS-9 Technical Reference

Compare Names
0S9 F$CmpNam 103F 11

Entry Conditions:

B = length of stringl
X = address of stringl
Y = address of string2

Exit Conditions:

Compares two strings
for a match

CC = carry clear if the strings match

Additional Information:

® The Compare Names call compares two strings and indi-
cates whether they match. Use this call with the Parse
Name system call. The second string must have the most
significant bit (Bit 7) of the last character set.

8-10

User System Calls / 8

COpy External Reads external memory
into the user’s buffer

Memory for inspection

0S9 F$CpyMem

103F 1B

Entry Conditions:

= DAT image pointer

offset in block to begin copy
byte count

caller’s destination buffer

I

el g vl

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

® You can view any system memory through the use of the
Copy External Memory call. The call assumes X is the
address of the 64K space described by the DAT image
given.

® If you pass the entire DAT image of a process, place a value
in the X Register that equals the address in the process
space. If you pass a partial DAT image (the upper half),
then place a value in Register X that equals the offset from
the beginning of the DAT image ($8000).

® The support module for this call is OS9p2.

0S-9 Technical Reference

CRC Calculates the CRC of
0S9 F$CRC 103F 17 a module

Entry Conditions:

X
Y
U

= starting byte address
number of bytes
address of the 3-byte CRC accumulator

Exit Conditions:
Updates the CRC accumulator.

Additional Information:

The CRC call calculates the CRC (cyclic redundancy count)
for use by compilers, assemblers, or other module
generators.

The calculation begins at the starting byte address and con-
tinues over the specified number of bytes.

You need not cover an entire module in one call, since the
CRC can be accumulated over several calls. The CRC accu-
mulator can be any 3-byte memory area. You must initial-
ize it to $FFFFFF before the first CRC call.

When checking an existing module CRC, the calculation
should be performed on the entire module (including the
module CRC). The CRC accumulator will contain the CRC
constant bytes if the module CRC is correct.

If the CRC of a new module is to be generated, the CRC is
accumulated over the module (excluding CRC). The accu-
mulated CRC is complemented then stored in the correct
position in the module.

Be sure to initialize the CRC accumulator only once for
each module checked by CRC.

8-12

User System Calls / 8

Deallocate Bits Clears allocation map
0S9 F$DelBit 103F 14 bits

Entry Conditions:

D = number of the first bit to set
X = starting address of the allocation bit map
Y = number of bits to set

Exit Conditions: None

Additional Information:

® The Deallocate Bits call clears bits in the allocation bit
map pointed to by Register X. Bit numbers are in the
range O to n-1, where n is the number of bits in the alloca-
tion bit map.

® Warning: Do not call Deallocate Bits with Register Y set
to 0 (a bit count of 0).

8-13

0S-9 Technical Reference

EXit Terminates the calling
0S9 F$Exit 103F 06 process

Entry Conditions:

B

= status code to return to the parent

Exit Conditions:

The process is terminated.

Additional Information:

The Exit system call is the only way a process can termi-
nate itself. Exit deallocates the process’s data memory
area, and unlinks the process’s primary module. It also
closes all open paths automatically.

The Wait system call always returns to the parent the sta-
tus code passed by the child in its Exit call. Therefore, if
the parent executes a Wait and receives the status code, it
knows the child has died. This is a user mode system call.

Exit unlinks only the primary module. Unlink any module
that is loaded or linked to by the process before calling
Exit.

8-14

User System Calls / 8

Fork Creates a child process
0S9 F$Fork 103F 03

Entry Conditions:

A = language/type code

B = size of the optional data area (in pages)

X = address of the module name or filename (See the follow-
ing example.)

Y = size of the parameter area (in pages); defaults to zero if
not specified

U = starting address of the parameter area; must be at
least one page

Exit Conditions:

X = address of the last byte of the name + 1 (See the fol-
lowing example.)
A = new process I0 number

Error Output:
B = error code (if any)
CC = carry set on error

Additional Information:

¢ Fork creates a new process, a child of the calling process.
Fork also sets up the child process’s memory and 6809 reg-
isters and standard I/O paths.

® Before the Fork call:
[T[E[s]|T]s$0D]
4
X

8-15

0S-9 Technical Reference

® After the Fork call:
[T|E|S|T]3$0D]

4
X

® This is the sequence of Fork’s operations:

1.

2a.

0S-9 parses the name string of the new process’s pri-
mary module (the program that OS-9 executes first).
Then, it searches the system module directory to see if
the program already is in memory.

The next step depends on whether or not the program is
already in memory. If the program is in memory, OS-9
links the module to the process and executes it.

. If the program is not in memory, OS-9 uses the name

as the pathlist of the file that is to be loaded into mem-
ory. Then, the first module in this file is linked to and
executed. (Several modules can be loaded from one file.)

0S-9 uses the primary module’s header to determine
the initial size of the process’s data area. It then tries
to allocate a contiguous RAM area of that size. (This
area includes the parameter passing area, which is cop-
ied from the parent process’s data area.)

The new process’s data memory area and registers are
set up as shown in the following diagram. OS-9 uses
the execution offset given in the module header to set
the program counter to the module’s entry point.

« Y
Parameter Area

<« X,SP (highest address)

Data Area

Direct Page

U,DP (lowest address)

8-16

User System Calls | 8

D = size of the parameter area
PC = module entry point absolute address
CC =F=0,1=0, other condition code flags are undefined

Registers Y and U (the top-of-memory pointer and bottom-
of-memory pointer, respectively) always have values at page
boundaries.

As stated earlier, if the parent does not specify the size of
the parameter area, the size defaults to zero. The minimum
overall data area size is one page.

When the shell processes a command line, it passes a
string in the parameter area. This string is a copy of the
parameter part of the command line. To simplify string-
oriented processing, the shell also inserts an end-of-line
character at the end of the parameter string.

Register X points to the start byte of the parameter string.
If the command line includes the optional memory size
specification (#n or #nK), the shell passes that size as the
requested memory size when executing the Fork.

If any of the preceding operations is unsuccessful, the Fork
is terminated and OS-9 returns an error to the caller.

The child and parent processes execute at the same time
unless the parent executes a Wait system call immediately
after the Fork. In this case, the parent waits until the child
dies before it resumes execution.

Be careful when recursively calling a program that uses
the Fork system call. Another child can be created with
each new execution. This continues until the process table
becomes full.

Do not fork a process with a memory size of 0.

8-17

0S-9 Technical Reference

Get System Gets a copy of the
BlO Ck Map system block map
0S9 F$GBIkMp 103F 19

Entry Conditions:
X = pointer to the 1024 -byte buffer

Exit Conditions:

D = number of bytes per block ($2000) (MMU block size
dependent)
Y = system memory block map size

Error Output:
CC = carry set on error
B = error code (if any)

Additional Information:

® The Get System Block Map call copies the system’s memory
block map into the user’s buffer for inspection. The OS-9
MFREE command uses this call to find out how much free
memory exists.

® The support module for this call is OS9p2.

8-18

User System Calls / 8

Get Module Gets a copy of the
Director system module
y directory

F$GModDr 103F 1A

Entry Conditions:

X = pointer to the 2048-byte buffer
Y = end of copied module directory
U = start address of system module directory

Error OQutput:
CC = carry set on error
B = error code (if any)

Additional Information:

® The Get Module Directory call copies the system’s module
directory into the user’s buffer for inspection. The 0S-9
MDIR command uses this call to read the module
directory.

@ The support module for this call is OS9p2.

8-19

0S-9 Technical Reference

Get Process Gets a copy of the
. process’s process
Descriptor Besorintor

F$GPrDsc 103F 18

Entry Conditions:

A = requested process ID

X = pointer to a 512-byte buffer
Error Output:

CcC
B

carry set on error
error code (if any)

(Il

Additional Information:

® The Get Process Descriptor call copies a process descriptor
into the calling process’s buffer for inspection. The data in
the process descriptor cannot be changed. The 0S-9 PROCS
command uses this call to get information about each exist-
ing process.

® The support module for this call is OS9p2.

8-20

User System Calls / 8

Intercept Sets a signal intercept
0S9 F$lcpt 103F 09 trap

Entry Conditions:

X
U

address of the intercept routine
starting address of the routine’s memory area

Exit Conditions:

Signals sent to the process cause the intercept routine to be
called instead of the process being killed.

Additional Information:

® Intercept tells 0OS-9 to set a signal intercept trap. Then,
whenever the process receives a signal, 0S-9 executes the
process’s intercept routine.

e Store the address of the signal handler routine in Register
X and the base address of the routine’s storage area in
Register U.

® Once the signal trap is set, 0S-9 can execute the intercept
routine at any time because a signal can occur at any
time.

e Terminate the intercept routine with an RTI instruction.

e If a process has not used the Intercept system call to set a
signal trap, the process terminates if it receives a signal.

e This is the order in which F$lIept operates:

1. When the process receives a signal, OS-9 sets Registers
U and B as follows:

U = starting address of the intercept routine’s
memory area
B = signal code (process’s termination status)

Note: The value of Register DP cannot be the
same as it was when the Intercept call was
made.

2. After setting the registers, OS-9 transfers execution to
the intercept routine.

8-21

OS-9 Technical Reference

Get ID

OS9 F$ID 103F 0C

Entry Conditions:

None

Exit Conditions:

A = process ID
Y = user ID

Additional Information:

Return’s a caller’s
process ID and user 1D

® The process ID is a byte value in the range 1 to 255. OS-9
assigns each process a unique process ID.

® The user ID is an integer from 0 to 65535. It is defined in
the system password file, and is used by the file security
system and a few other functions. Several processes can

have the same user 1D.

® On a single user system (such as the Color Computer 3),
the user ID is inherited from CC3go, which forks the initial

shell.

8-22

User System Calls / 8

Link Links to a memory

. module that has the
0S9 F$Link 103F 00 specified name,

language, and type

Entry Conditions:

A = typellanguage byte
X = address of the module name (See the following
example.)

Exit Conditions:

A = typellanguage code

B = attributes / revision level (if no error)

X = address of the last byte of the module name + 1 (See
the following example.)

Y = module entry point absolute address

U = module header absolute address

Error Output:

CC = C bit set if error encountered

Additional Information:

® The module’s link count increases by one whenever Link
references its name. Incrementing in this manner keeps
track of how many processes are using the module.

¢ If the module requested is not shareable (not re-entrant),
only one process can link to it at a time.

e Before the Link call:
[T[E|s|T]soD]

4
X

e After the Link call:
[T[E[s[T]soD]

4
X

8-23

0S-9 Technical Reference

® This is the order in which the Link call operates:

1. 0OS-9 searches the module directory for a module that
has the specified name, language, and type.

2. If OS-9 finds the module, the address of the module’s
header is returned in Register U, and the absolute
address of the module’s execution entry point is
returned in Register Y. (This, and other information is
contained in the module header.)

® If OS-9 doesn’t find the module—or if the type/language
codes in the entry and exit conditions don’t match—OS-9
returns one of the following errors:

+ Module not found
* Module busy (not shareable and in use)
+ Incorrect or defective module header

8-24

User System Calls / 8

Load Loads a module or
0S9 F$Load 103F 01 modules from a file

Entry Conditions:

A = language/type code; 0 = any language/type
X = address of the pathlist (filename) (See the following
example.)

Exit Conditions:

A = language/type code

B = attributes / revision level (if no error)

X = address of the last byte of the pathlist (filename) + 1
(See the following example.)

Y = primary module entry point address

U = address of the module header

Error Output:

CC = carry set if error encountered

Additional Information:

® The Load call loads one or more modules from the file spec-
ified by a complete pathlist or from the working execution
directory (if an incomplete pathlist is given).

® The file must have the execute access mode bit set. It also
must contain one or more with proper module headers.

® 0S-9 adds all modules loaded to the system module direc-
tory. It links the first module read. The exit conditions
apply only to the first module loaded.

® Before the Load call:
L/ [plof/]afclc][r[s[r[c]|V][soD]

X

8-25

0S-9 Technical Reference

After the Load call:
[/[pJoj/fajclc|T[s[r[C[V]s$0D|

4
X

® Possible errors:

« Module directory full

* Memory full

+ Errors that occur on the Open, Read, Close, and Link
system calls

8-26

User System Calls / 8

Memory Changes process’s data
0S9 F$Mem area size
103F 07

Entry Conditions:
D = size of the new memory area (in bytes);
0 = return current size and upper bound
Exit Conditions:
Y = address of the new memory area upper bound
D = actual size of the new memory (in bytes)
Error Output:

CC
B

carry set on error
error code (if any)

Additional Information:

® The memory call expands or contracts the process’s data
memory area to the specified size. Or, if you specify zero as
the new size, the call returns the current size and upper
boundaries of data memory.

e (0S-9 rounds off the size to the next page boundary. In allo-
cating additional memory, OS-9 continues upward from the
previous highest address. In deallocating unneeded mem-
ory, it continues downward from that address.

8-27

OS-9 Technical Reference

Link to a module Links to a module;
. does not map the
?O%S;?I;$1NML1nk module into the user’s
address space

Entry Conditions:

A = type/llanguage byte

X = address of the module name
Exit Conditions:

A

typel/language code

B module revision

X = address of the last byte of the module name+1; any
Y

trailing blanks are skipped
= storage requirement for the module

Error Output:

CC = carry set on error
B = error code if any

Additional Information:

® Although this call is similar to F$Link, it does not map
the specified module into the user’s address space but does
return the memory requirement for the module. A calling
process can use this memory requirement information to
fork a program with a maximum amount of space.
F$NMLink can therefore fork larger programs than can be
forked by F$Link.

8-28

User System Calls / 8

Load a module Loads one or more

modules from a file but

?(%%I;%NMLoad does not map the
module into the user’s
address space

Entry Conditions:

A = typellanguage byte
X = address of the pathlist

Exit Conditions:

A = type/language code

B = module revision

X = address of the last byte of the pathlist+1
Y = storage requirement for the module

Error Output:

CC = carry set on error
B = error code if any

Additional Information:

® If you do not provide a full pathlist for this call, it attempts
to load from a file in the current execution directory.

® Although this call is similar to F$Load, it does not map
the specified module into the user’s address space but does
return the memory requirement for the module. A calling
process can use this memory requirement information to
fork a program with a maximum amount of space.
F$NMLoad can therefore fork larger programs than can be
forked by F$Load.

8-29

OS-9 Technical Reference

Print Error Writes an error
0S9 F$Perr 103F OF message to a specified
path

Entry Conditions:

B = error code

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® Print Error writes an error message to the standard error
path for the specified process. By default, OS-9 shows:

ERROR #decimal number

® The error reporting routine is vectored. Using the Set SVC
system call, you can replace it with a more elaborate
reporting module.

8-30

User System Calls / 8

Parse Name Scans an input string
0S9 F$PrsNam 103F 10 for a valid OS-9 name

Entry Conditions:
X = address of the pathlist (See the following example.)

Exit Conditions:

X = address of the optional slash + 1

Y = address of the last character of the name +1
A = trailing byte (delimiter character)

B = length of the name

Error Output:
CC = carry set

B = error code
Y = address of the first non-delimiter character in the
string

Additional Information:

® Parses, or scans, the input text string for a legal OS-9
name. It terminates the name with any character that is
not a legal name character.

® Parse Name is useful for processing pathlist arguments
passed to new processes.

® Because Parse Name processes only one name, you might
need several calls to process a pathlist that has more than
one name. As you can see from the following example,
Parse Name finishes with Register Y in position for the
next parse.

o If Register Y was at the end of a pathlist, Parse Name
returns a bad name error. It then moves the pointer in Reg-
ister Y past any space characters so that it can parse the
next pathlist in a command line.

8-31

OS-9 Technical Reference

® Before the Parse Name call:
ipfof/[p[aly [R]O[L]L]b]b]b]
4
X
After the Parse Name call:

L/IDIOI/lPI&YJg_T;)lLLL\bIHH

X Y

8-32

User System Calls / 8

Search Bits Searches a specified

0S9 F$SchBit 103F 12 memory allocation bit
map for a free memory
block of a specified
size

Entry Conditions:

= starting bit number

= starting address of the map
bit count (free bit block size)
ending address of the map

C=XO
o

Error Output:
CC = C bit set

Exit Conditions:

D = starting bit number
Y = bit count

Additional Information:

® The Search Bit call searches the specified allocation bit
map for a free block (cleared bits) of the required length.
The search starts at the starting bit number. If no block of
the specified size exists, the call returns with the carry set,
starting bit number, and size of the largest block.

8-33

0S-9 Technical Reference

Send Sends a signal to a
0S9 F$Send 103F 08 specified process

Entry Conditions:

A
B

destination’s process 1D
signal code

I

Error Output:

CC

B

carry set on error
error code (if any)

Additional Information:

The signal code is a single byte value in the range 0
through 255.

If the destination process is sleeping or waiting, OS-9 acti-
vates the process so that the process can process the signal.

If a signal trap is set up, F$Send executes the signal pro-
cessing routine (Intercept). If none was set up, the signal
terminates the destination process, and the signal code
becomes the exit status. (See the Wait system call.) An
exception is the wakeup signal; that signal does not cause
the signal intercept routine to be executed.

Signal codes are defined as follows:

0 = System terminate
(cannot be intercepted)
1 = Wake up the process
2 = Keyboard terminate
3 Keyboard interrupt
128-255 = User defined

If you try to send a signal to a process that has a signal
pending, OS-9 cancels the current Send call, and returns
an error. Issue a Sleep call for a few ticks; then, try again.

The Sleep call saves CPU time. See the Intercept, Wait,
and Sleep system calls for more information.

8-34

User System Calls / 8

Sleep Temporarily turns off
0S9 F$Sleep 103F 0A the calling process

Entry Conditions:

X

= One of the following:
sleep time (in ticks)
0 (sleep indefinitely)
1 (sleep for the remainder of
the current time slice)

Exit Conditions:

X

= sleep time minus the number of ticks that the process
was asleep

Error Output:

CC = carry set on error

B

= error code (if any)

Additional Information:

If Register X contains 0, OS-9 turns the process off until it
receives a signal. Putting a process to sleep is a good way
to wait for a signal or interrupt without wasting CPU time.

If Register X contains 1, OS-9 turns the process off for the
remainder of the process’s current time slice. It inserts the
process into the active process queue immediately. The pro-
cess resumes execution when it reaches the front of the
queue.

If Register X contains an integer in the range 2-255, OS-9
turns off the process for the specified number of ticks, n. It
inserts the process into the active process queue after n-I
ticks. The process resumes execution when it reaches the
front of the queue. If the process receives a signal, it awak-
ens before the time has elapsed.

When you select processes among multiple windows, you
might need to set sleep for two ticks.

8-35

0S-9 Technical Reference

Set Priority Changes the priority
0S9 F$SPrior 103F 0D of a process

Entry Conditions:

A = process ID
B = priority
0 = lowest
255 = highest

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® Set Priority changes the process’s priority to the priority
specified. A process can change another process’s priority
only if it has the same user ID.

8-36

User System Calls | 8

Set SWI Sets the SWI2 and
0S9 F$SSWI 103F OE SWI3 vectors

Entry Conditions:

A = SWI type code

X = address of the user software interrupt routine
Exit Conditions:

CC = carry set on error

B = error code (if any)
Additional Information:

® Sets the interrupt vectors for SWI, SWI2 and SWI3
instructions.

® Each process has its own local vectors. Each Set SWI call
sets one type of vector according to the code number passed
in Register A:

1 = SWI
2 = SWI2
3 = SWI3

® When OS-9 creates a process, it initializes all three vectors
with the address of the OS-9 service call processor.

® Warning: Microware-supplied software uses SWI2 to call
0S-9. If you reset this vector, these programs cannot work.
If you change all three vectors, you cannot call OS-9 at all.

8-37

0S-9 Technical Reference

Set Time Sets the system time
0S9 F$STime 103F 16 and date

Entry Conditions:
X = relative address of the time packet

Error Output:

CC = C bit set
B = error code

Additional Information:

® Set Time sets the current system date and time and starts
the system real-time clock. The date and time are passed
in a time packet as follows.

Relative
Address Value
0 year
1 month
2 day
3 hours
4 minutes
5 seconds

Then, the call makes a link system call to find the clock. If
the link is successful, OS-9 calls the clock initialization.
The clock initialization:

1. Sets up hardware dependent functions

2. Sets up the F$Time system call via F$SSvc

8-38

User System Calls / 8

Set User ID Changes the current

Numb er user ID without
checking for errors or

F$SUser 103F 1C checking the ID

number of the caller

Entry Conditions:

Y = desired user ID number

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® The support module for this call is OS9pl.

8-39

OS-9 Technical Reference

Time Gets the system date
0S9 F$Time 103F 15 and time

Entry Conditions:

X = address of the area in which to store the date and time
packet

Exit Conditions:
X = date and time

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® The Time call returns the current system date and time in
the form of a 6-byte packet (in binary). OS-9 copies the
packet to the address passed in Register X.

® The packet looks like this:

Relative
Address Value
0 year
1 month
2 day
3 hours
4 minutes
5 seconds

® Time is a part of the clock module and it does not exist if
no previous call to F$Time has been made.

8-40

User System Calls / 8

Unlink Unlinks (removes

. from memory) a
0S9 F$UnLink 103F 02 module that is not

in use and that has
a link count of 0

Entry Conditions:
U = address of the module header

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® Unlink unlinks a module from the current process’s
address space, decreases its link count by one and, if the
link count becomes zero, returns the memory where the
module was located to the system for use by other
processes.

® You cannot unlink system modules or device drivers that
are in use.

® Unlink operates in the following order:

1. Unlink tells OS-9 that the calling process no longer
needs the module.

2. 08-9 decreases the module’s link count by one.

3. When the resulting link count is zero, OS-9 destroys
the module.

If any other process is using the module, the module’s
link count cannot fall to zero. Therefore, OS-9 does not
destroy the module.

e If you pass a bad address, Unlink cannot find a module in
the module directory and does not return an error.

8-41

0S-9 Technical Reference

Unlink
A Module
By Name

F$UnLoad 103F 1D

Entry Conditions:

A
X

module type

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

pointer to module name

Decrements a specified
module’s link count,
and removes the
module from memory if
the resulting link count
is zero

® This system call differs from Unlink in that it uses a
pointer to the module name, instead of the address of the

module header.

® The support module for this call is OS9p2.

8-42

User System Calls / 8

Wait Temporarily turns off a
0S9 F$Wait 103F 04 calling process

Entry Conditions: None

Exit Conditions:

A
B

= deceased child process’s 1D
= deceased child process’s exit status code (if no error)

Error Output:

CC = carry set on error

B

= error code if any

Additional Information:

The Wait call turns off the calling process until a child pro-
cess dies, either by executing an Exit system call, or by
receiving a signal. The Wait call helps you save system
time.

08S-9 returns the child’s process’s ID and exit status to the
parent. If the child died because of a signal, the exit status
byte (Register B) contains the signal code.

If the caller has several children, OS-9 activates the caller
when the first one dies. Therefore, you need to use one Wait
system call to detect the termination of each child.

0S-9 immediately reactivates the caller if a child dies
before the Wait call. If the caller has no children, Wait
returns an error. (See the Exit system call for more
information.)

If the Wait call returns with the carry bit set, the Wait
function was not successful. If the carry bit is cleared, Wait
functioned normally and any error that occurred in the
child process is returned in Register B.

8-43

OS-9 Technical Reference

I/O User System Calls

Attach Attaches a device to

the system or verifies
089 I$Attach 103F 80 device attachment

Entry Conditions:

A = access mode
X = address of the device name string

Exit Conditions:

X = updated past device name
U = address of the device table entry

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

® Attach does not reserve the device. It only prepares the
device for later use by any process.

® (OS-9 installs most devices automatically on startup. There-
fore, you need to use Attach only when installing a device
dynamically or when verifying the existence of a device. You
need not use the Attach system call to perform routine I/O.

® The access mode parameter specifies the read and/or write
operations to be allowed. These are:

Use any special device capabilities
Read only

Write only

Update (read and write)

[an

0
1
2
3

8-44

I/O User System Calls / 8

® Attach operates in this sequence:

1.

2a.

0S-9 searches the system module to see if memory con-
tains a device descriptor that has the same name as the
device.

0S-9’s next operation depends on whether or not the
device is already attached. If OS-9 finds the descriptor
and if the device is not already attached, OS-9 links the
device’s file manager and device driver. It then places
the address of the manager and the driver in a new
device table entry. OS-9 then allocates any memory
needed by the device driver, and calls the driver’s ini-
tialization routine which initializes the hardware.

. If OS-9 finds the descriptor, and if the device is already

attached, OS-9 verifies the attachment.

8-45

0S-9 Technical Reference

Change Directory changes the working

. directory of a process
089 I3Chgdir 103F 86 to a directory specified
by a pathlist

Entry Conditions:
A = access mode
X = address of the pathlist

Exit Conditions:
X = updated past pathlist

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® If the access mode is read, write, or update, OS-9 changes
the current data directory. If the access mode is execute,
0S-9 changes the current execution directory.

® The calling process must have read access to the directory
specified (public read if the directory is not owned by the
calling process).

® The access modes are:

= Read

= Write

= Update (read and write)
= Execute

B GO DN

8-46

IO User System Calls | 8

Close Path Terminates an I/O path
0S89 1$Close 103F 8F

Entry Conditions:

A

= path number

Error Qutput:

CC = carry set on error

B

= error code (if any)

Additional Information:

Close Path terminates the I/O path to the file or device
specified by path number. Until you use another Open,
Dup, or Create system call for that path, you can no longer
perform I/O to the file or device.

If you close a path to a single-user device, the device
becomes available to other requesting processes. 0S-9 de-
allocates internally managed buffers and descriptors.

The Exit system call automatically closes all open paths.
Therefore, you might not need to use the Close Path system
call to close some paths.

Do not close a standard I/O path unless you want to change
the file or device to which it corresponds.

Close Path performs an implied I$Detach call. If it causes
the device link count to become 0, the device termination
routine is executed. See I$Detach for additional
information.

8-47

0S-9 Technical Reference

Create File Creates and opens a
0S9 I$Create 103F 83 disk file
Entry Conditions:

A = access mode (write or update)

B = file attributes

X = address of the pathlist; (See the following example.)
Exit Conditions:

A = path number

X = address of the last byte of the pathlist + 1; skips any

trailing blanks (See the following example.)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® (0S-9 parses the pathlist and enters the new filename in the
specified directory. If you do not specify a directory, OS-9
enters the new filename in the the working directory.

® 0S-9 gives the file the attributes passed in Register B,
which has bits defined as follows:

Bit Definition

Read

Write
Execute
Public read
Public write
Public execute
Shareable file

® The access mode parameter passed in Register A must have
the write bit set if any data is to be written. These access
codes are defined as follows: 2 = write; 3 = update. The
mode «ffects the file only until the file is closed.

DU W RO

8-48

I/O User System Calls / 8

You can reopen the file in any access mode allowed by the
file attributes. (See the Open system call.)

Files opened for write can allow faster data transfer than
those opened for update because update sometimes needs to
pre-read sectors.

If the execﬁte bit (Bit 2) is set, the file is created in the
working execution directory instead of the working data
directory.

Create File causes an implicit I$Attach call. If the device
has not previously been attached, the device’s initialization
routine is called.

Later I/O calls use the path number to identify the file,
until the file is closed.

0S-9 does not allocate data storage for a file at creation.
Instead, it allocates the storage either automatically when
you first issue a write or explicitly by the Setstat
subroutine.

If the filename already exists in the directory, an error
occurs. If the call specifies a non-multiple file device (such
as a printer or terminal), Create behaves the same as
Open.

You cannot use Create to make directories. (See the Make
Directory system call for instructions on how to do make
directories.)

Before the Create File call:
[/[pJo]/[w]o]R]K]$0D]

4
X

After the Create File call:
[/IpJo]/[w]o]R]K][$0D]

4
X

8-49

OS-9 Technical Reference

Delete File Deletes a specified disk
0S9 I$Delete 103F 87 file

Entry Conditions:
X = address of the pathlist (See the following example.)

Exit Conditions:
X = address of the last byte of the pathlist + 1; any trail-
ing blanks are skipped (See the following example.)
Error Output:
B = error code (if any)

CC = carry set on error

Additional Information:

® The Delete File call deletes the disk file specified by the
pathlist. The file must have write permission attributes
(public write, if the calling process is not the owner). An
attempt to delete a device results in an error. The caller
must have non-shareable write access to the file or an error
results.

Example:
Before the Delete File call:

L Ipjol/[wlo[R|K[b|b[b[M]|E[M|O]S0D]
X

After the Delete File call:
l/IDlol/|w]o|R[K[B|B|B|M|E[M|O]$0D|

4
X

8-50

I/O User System Calls / 8

Delete AF ile Deletes a file from the

current data or current
0S9 I$DeletX 103F 90 execution directory

Entry Conditions:

A = access mode
X = address of the pathlist

Exit Conditions:

X = address of the last byte of the pathlist+ 1; any trailing
blanks are skipped

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® The Delete A File call removes the disk file specified by the
selected pathlist. This function is similar to I$Delete except
that it accepts an access mode byte. If the access mode is
execute, the call selects the current execution directory.
Otherwise, it selects the current data directory.

o If a complete pathlist is provided (the pathlist begins with
a slash (/), the access mode the call ignores the access
mode.

® Only use this call to delete a file. If you attempt to use
I$DeletX to delete a device, the system returns an error.

8-51

0S-9 Technical Reference

Detach Device Removes a device

from the system
0S9 I$Detach 103F 81 device table

Entry Conditions:
U = address of the device table entry

Exit Conditions:

CC = carry set on error
B = error code (if any)

Additional Information:

® The Detach Device call removes a device from both the sys-
tem and the system device table, assuming the device is not
being used by another process. You must use this call to
detach devices attached using the Attach system call.
Attach and Detach are both used mainly by the I0 man-
ager. SCF also uses Attach and Detach to set up its second
device (echo device).

e This is the sequence of the operation of Detach Device:

1. Detach Device calls the device driver’s termination rou-
tine. Then, OS-9 deallocates any memory assigned to
the driver.

2. 08-9 unlinks the associated device driver and file man-
ager modules.

3. 0OS-9 then removes the driver, as long as no other mod-
ule is using that driver.

8-52

I/O User System Calls / 8

Duplicate Path Returns a synonymous
0S9 I$Dup 103F 82 path number

Entry Conditions:

A = old path number (number of path to duplicate)

Exit Conditions:

A = new path number (if no error)

Error Output:

B = error code (if error encountered)
CC = carry set on error

Additional Information:

® The Duplicate Path returns another, synonymous path
number for the file or device specified by the old path
number.

® The shell uses the Duplicate Path call when it redirects
1/0.

® System calls can use either path number (old or new) to
operate on the same file or device.

® Make sure that no more than one process is performing I/O
on any one path at the same time. Concurrent I/O on the
same path can cause unpredictable results with RBF files.

® The I$Dup call always uses the lowest available path num-
ber. This lets you manipulate standard I/O paths to contain
any desired paths.

8-53

0S-9 Technical Reference

Get Status Returns the status of a
0S9 I$GetStt 103F 8D file or device

Entry Conditions:

A = path number

B = function code
Error Qutput:

CC = carry set on error

B = error code (if any)
Additional Information:

® The Status is a wildcard call. Use it to handle device
parameters that:

+ Are not the same for all devices
» Are highly hardware-dependent
* Must be user-changeable

® The exact operation of the Get Status system call depends
on the device driver and file manager associated with the
path. A typical use is to determine a terminal’s parameters
for such functions as backspace character and echo on/off.
The Get Status call is commonly used with the Set Status
call.

® The Get Status function codes that are currently defined
are listed in the “Get Status System Calls” section.

8-54

I/0 User System Calls / 8

Make Directory creates and initializes
0S9 I$MakDir 103F 85 a directory

Entry Conditions:

B = directory attributes
X = address of the pathlist

Exit Conditions:

X = address of the last byte of the pathlist +1; Make Direc-
tory skips trailing blanks.

Error Qutput:

B = error code (if any)
CC = carry set on error

Additional Information:

® The Make Directory call creates and initializes a directory
as specified by the pathlist. The directory contains only two
entries, one for itself (.) and one for its parent directory (..)

® (0S-9 makes the calling process the owner of the directory.

® Because the Make Directory call does not open the direc-
tory, it does not return a path number.

® The new directory automatically has its directory bit set in
the access permission attributes. The remaining attributes
are specified by the byte passed in Register B. The bits are
defined as follows:

Bit Definition

Read

Write
Execute
Public read
Public write
Public execute
Single-user
Don’t care

SN0k WNHO

8-55

0S-9 Technical Reference

® Before the Make Directory call:
[/ [plol/[N|E[W[D[I[R] s0D |

4
X

After the Make Directory call:
L/ [Dlol/[N|E[W[D[I[R] 0D |

4
X

8-56

I/O User System Calls / 8

Open Path Opens a path to an
existing file or device

0S9 I$Open 103F 84 as specified by the
pathlist

Entry Conditions:

A = access mode (D SPE PWPRE WR)
X = address of the pathlist (See the following example.)

Exit Conditions:

A = path number
X = address of the last byte of the pathlist + 1

Error OQutput:

B = error code (if any)
CC = carry set on error

Additional Information:
e 0OS-9 searches for the file in one of the following:

« The directory specified by the pathlist if the pathlist
begins with a slash.

» The working data directory, if the pathlist does not
begin with a slash.

» The working execution directory, if the pathlist does not
begin with a slash and if the execution bit is set in the
access mode.

® OS-9 returns a path number for later system calls to use to
identify the file.

® The access mode parameter lets you specify which read
and/or write operations are to be permitted. When set, each
access mode bit enables one of the following: Write, Read,
Read and Write, Update, Directory 1/O.

® The access mode must conform to the access permission
attributes associated with the file or device. (See the Cre-
ate system call.) Only the owner can access a file unless
the appropriate public permission bits are set.

8-57

0S-9 Technical Reference

@ The update mode might be slightly slower than the others
because it might require pre-reading of sectors for random
access of bytes within sectors.

e Several processes (users) can open files at the same time.
Each device has an attribute that specifies whether or not
it is shareable.

e Before the Open Path call:
[/ [pfof/falclc[T[s|P[a]Y[s0D]

4
X

After the Open Path call:
[/IpJol/]alc]c[T]|s[P[a[Y][soD]

4
X

e If the single-user bit is set, the file is opened for single-user
access regardless of the settings of the file’s permission
bits.

e You must open directory files for read or write if the diree-
tory bit (Bit 7) is set in the access mode.

® Open Path always uses the lowest path number available
for the process.

8-58

IO User System Calls / 8

Read Reads n bytes from a
0S9 I$Read 103F 89 specified path

Entry Conditions:

A
Y
X

= path number
= number of bytes to read
= address in which to store the data

Exit Conditions:

Y

= number of bytes read

Error Output:

B

= error code (if any)

CC = carry set on error

Additional Information:

The Read call reads the specified number of bytes from the
specified path. It returns the data exactly as read from the
file/device, without additional processing or editing. The
path must be opened in the read or update mode.

If there is not enough data in the specified file to satisfy
the read request, the call reads fewer bytes than requested
but an end-of-file error is not returned. After all data in a
file is read, the next I$Read call returns an end-of-file
error.

If the specified file is open for update, the record read is
locked out on RBF-type devices.

The keyboard terminate, keyboard interrupt, and end-of-file
characters are filtered out of the Entry Conditions data on
SCF-type devices unless the corresponding entries in the
path descriptor have been set to zero. You might want to
modify the device descriptor so that these values are ini-
tialized to zero when the path is opened.

8-59

0S-9 Technical Reference

® The call reads the number of bytes requested unless Read
encounters any of the following:

* An end-of-file character
» An end-of-record character (SCF only)

* An error

8-60

I/0 User System Calls / 8

Read Line With Reads a text line with
Editing cditing
0S9 I$ReadLn 103F 8B

Entry Conditions:

A
X
Y

= path number
= address at which to store data
= maximum number of bytes to read

Exit Conditions:

Y

= number of bytes read

Error Output:

B

= error code (if any)

CC = carry set on error

Additional Information:

Read Line is similar to Read. The difference is that Read
Line reads the input file or device until it encounters a car-
riage return character or until it reaches the maximum
byte count specified, whichever comes first. The Read Line
also automatically activates line editing on character ori-
ented devices, such as terminals and printers. The line
editing refers to auto line feed, null padding at the end of
the line, backspacing, line deleting, and so on.

SCF requires that the last byte entered be an end-of-record
character (usually a carriage return). If more data is
entered than the maximum specified, Read Line does not
accept it and a PD.OVF character (usually a bell) is
echoed.

After one Read Line call reads all data in a file, the next
Read Line call generates an end-of-file error.

(For more information about line editing, see “SCF Line
Editing Functions” in Chapter 6.)

8-61

0S-9 Technical Reference

Seek Repositions a file
0S9 I$Seek 103F 88 pointer

Entry Conditions:

A
X
U

= path number
= MS 16 bits of the desired file position
= LS 16 bits of the desired file position

Error OQutput:

CC = carry set on error

B

= error code (if any)

Additional Information:

The Seek Call repositions the path’s logical file pointer, the
32-bit address of the next byte in the file to be read from or
written to.

You can perform a seek to any value, regardless of the file’s
size. Later writes automatically expand the file to the
required size (if possible). Later reads, however, return an
end-of-file condition. Note that a seek to Address 0 is the
same as a rewind operation.

OS-9 usually ignores seeks to non-random access devices,
and returns without error.

On RBF devices, seeking to a new disk sector causes the
internal disk buffer to be rewritten to disk if it has been
modified. Seek does not change the state of record locking.

8-62

I/O User System Calls / 8

Set Status Sets the status of a file
0S9 I$SetStt 103F SE or device

Entry Conditions:

A = path number
B = function code
Other registers depend on the function code.

Error Output:

B = error code (if any)
CC = carry set on error
Other registers depend on the function code.

Additional Information:

® Set Status is a wildcard call. Use it to handle device
parameters that:

» Are not the same for all devices
» Are highly hardware-dependent
* Must be user-changeable

® The exact operation of the Set Status system call depends
on the device driver and file manager associated with the
path. A typical use is to set a terminal’s parameters for
such functions as backspace character and echo on/off. The
Set Status call is commonly used with the Get Status call.

® The Set Status function codes that are currently defined
are listed in the “Set Status System Calls” section.

8-63

0S-9 Technical Reference

Write Writes to a file or
0S9 I$Write 103F SA device

Entry Conditions:

A = path number
X = starting address of data to write
Y = number of bytes to write

Exit Conditions:

Y = number of bytes written

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

® The Write system call writes to the file or device associated
with the path number specified.

® Before using Write, be sure the path is opened or created
in the Write or Update access mode. OS-9 writes data to
the file or device without processing or editing the data.
0S-9 automatically expands the file if you write data past
the present end-of-file.

8-64

I/0 User System Calls / 8

Write Line Writes to a file or
. device until it
0S89 I$WritLn 103F 8C encounters a carriage
return

Entry Conditions:

A = path number
X = address of the data to write
Y = maximum number of bytes to write

Exit Conditions:

Y = number of bytes written

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

® Writes to the file or device that is associated with the path
number specified.

® Write Line is similar to Write. The difference is that Write
Line writes data until it encounters a carriage return char-
acter. It also activates line editing for character-oriented
devices, such as terminals and printers. The line editing
refers to auto line feed, null padding at the end of the line,
backspacing, line deleting, and so on.

® Before using Write Line, be sure the path is opened or cre-
ated in the write or update access mode.

® (For more information about line editing, see “SCF Line
Editing Functions” in Chapter 6.)

8-65

0OS-9 Technical Reference

Privileged System Mode Calls

Set an alarm Sets an alarm to ring
0S9 F$Alarm 103F 1E the bell at a specified
ime
Entry Conditions:
X = relative address of time packet

Error Output:

CC = carry set on error

B = appropriate error code
Additional Information:

® When the system reaches the specified alarm time, it rings
the bell for 15 seconds.

® The time packet is identical to the packet used in the
F8STime call. See F$§STime for additional information on
the format of the packet.

® All alarms begin at the start of a minute and any seconds
in the packet are ignored.

® The system is limited to one alarm at a time.

8-66

Privileged System Mode Calls / 8

Allocate 64 Dynamically allocates

0S9 F$All64 103F 30 64-byte blocks of
memory

Entry Conditions:

X = base address of the page table; 0 = the page table has
not been allocated

Exit Conditions:

A block number
X base address of the page table
Y = address of the block

o

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® The Allocate 64 system call allocates the 64-byte blocks of
memory by splitting pages (256-byte sections) into four
sections.

® 0S-9 uses the first 64 bytes of the base page as a page
table. This table contains the page number (most signifi-
cant byte of the address) of all pages in the memory struc-
ture. If Register X passes a value of zero, the call allocates
a new base page and the first 64-byte memory block.

® Whenever a new page is needed, a Request System Memory
system call (F8SRqMem) executes automatically.

® The first byte of each block contains the block number.
Routines that use the Allocate 64 call should not alter this
byte.

8-67

0S-9 Technical Reference

® The following diagram shows how seven blocks might be

allocated:

Base Page —»

Any Memory Page

Any Memory Page

X
Page Table Block 4
(64 bytes)
(64 bytes)
X X
Block 1 Block 5
(64 bytes) (64 bytes)
X X
Block 2 Block 6
(64 bytes) (64 bytes)
X X
Block 3 Block 7
(64 bytes) (64 bytes)

8-68

Privileged System Mode Calls / 8

Allocate High Allocate system
R AM memory from high

physical memory
0S9 F$AIHRam 103F 53

Entry Conditions:
B = number of blocks

Error Output:

CC = carry set on error
B = appropriate error code

Additional Information:

® This call searches for the desired number of contiguous free
RAM blocks, starting its search at the top of memory.
F$AllHRam is similar to F$AIIRAM except F$AIIRAM
begins its search at the bottom of memory.

® Screen allocation routines use this call to provide a better
chance of finding the necessary memory for a screen.

8-69

OS-9 Technical Reference

Allocate Image Allocates RAM
blocks for process
0S9 F$Alllmg 103F 3A DAT image

Entry Conditions:

A = starting block number
B = number of blocks
X = process descriptor pointer

Exit Conditions:
CC = carry set on error
B = error code (if any)
Additional Information:

e Use the Allocate Image system call to allocate a data area
for a process. The blocks that Allocate Image defines might
not be contiguous.

e The support module for this system call is OS9pl.

8-70

Privileged System Mode Calls / 8

Allocate Process Allocates and

: initializes a 512-byte
Descrlptor process descriptor
0S89 F$AllPrc 103F 4B

Entry Conditions: None

Exit Conditions:

U = process descriptor pointer

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

® The process descriptor table houses the address of the
descriptor. Initialization of the process descriptor consists
of clearing the first 256 bytes of the descriptor, setting up
the state as a system state, and marking as unallocated as
much of the DAT image as the system allows—typically,
60-64 kilobytes.

® The support module for this system call is OS9p2. The call
also branches to the F§SRqMem call.

8-71

0S-9 Technical Reference

Allocate RAM

0S9 FSAIIRAM 103F 39

Entry Conditions:
B = number of blocks

Exit Conditions:
CC = C bit set on error

B = appropriate error code

Additional Information:

Searches the
memory block map
for the desired
number of

contiguous free
RAM blocks

® The support module for this system call is OS9pl.

8-72

Privileged System Mode Calls / 8

AllOcate Process Determines whether

0S-9 has assigned a
TaSk Number task number to the
0S9 F$AllTsk 103F 3F specified process

Entry Conditions:
X = process descriptor pointer

Error Output:
CC = C bit set

B = appropriate error code

Additional Information:

® If the process does not have a task number, OS-9 allocates
a task number and copies the DAT image into the DAT
hardware.

® The support module for this call is OS9pl. Allocate Process
Task number also branches to F$ResTsk and F$SetTsk.

8-73

OS-9 Technical Reference

Insert Process Inserts a process into
0S9 F$AProc 103F 2C the queue for execution

Entry Conditions:
X = address of the process descriptor

Error Output:

CC
B

carry set on error
error code (if any)

Additional Information:

® The Insert Process system call inserts a process into the
active process queue so that OS-9 can schedule the process
for execution.

® (0S-9 sorts all processes in the queue by process age (the
count of how many process switches have occurred since the
process’s last time slice). When a process is moved to the
active process queue, OS-9 sets its age according to its
priority—the higher the priority, the higher the age.

An exception is a newly active process that was deactivated
while in the system state. OS-9 gives such a process higher
priority because the process usually is executing critical
routines that affect shared system resources.

8-74

Privileged System Mode Calls / 8

Bootstrap System Links either the

module named Boot
0S9 F$Boot 103F 35 or the module

specified in the INIT
module

Entry Conditions: None

Error Output:

CC = C bit set on error
B = appropriate error code

Additional Information:

® When it calls the linked module, Boot expects to receive a
pointer giving it the location and size of an area in which
to search for the new module.

® The support module for this call is OS9pl. Bootstrap Sys-
tem also branches to the F$Link and F$VModul system
calls.

8-75

OS-9 Technical Reference

Bootstrap Allocates the
requested memory

Memory RequeSt (rounded to the

0S9 F$BtMem 103F 36 nearest block) as
contiguous memory
in the system’s
address space

Entry Conditions:
D = byte count requested

Exit Conditions:
D = byte count granted
U = pointer to memory allocated
Error OQutput:
CC = C bit set on error
B = appropriate error code
Additional Information:
® This call is identical to F$SRqMem.
® The Bootstrap Memory Request support module is OS9p1.

8-76

Privileged System Mode Calls / 8

Clear Specified Marks blocks in the
Block process DAT image as

unallocated
0S89 F$CIrBlk 103F 50

Entry Conditions:

B = number of blocks
U = address of first block

Exit Conditions: None

Additional Information:

o After Clear Specified Block deallocates blocks, the blocks
are free for the process to use for other data or program
areas. If the block address passed to Clear Specified Block
is invalid or if the call attempts to clear the stack area, it
returns ESIBA.

® The support module for the call is OS9p2.

8-77

0S-9 Technical Reference

DAT to Logical
Address

0S9 F$DATLog 103F 44

Entry Conditions:
B = DAT image offset
X = block offset

Exit Conditions:
X = logical address

Error Output:
CC = C bit set on error

B = appropriate error code

Additional Information:

Converts a DAT image
clock number and
block offset to its
equivalent logical
address

e Following is a sample conversion:

2000 - 2FFF

1000 - 1FFF

0 - FFF

Input:

B=2
X = 30329

Output: X = $2329

® The support module for this call is OS9p1.

8-78

Privileged System Mode Calls / 8

Deallocate Image Deallocates image
RAM BlOCkS RAM blocks

0OS9 F$Dellmg 103F 3B

Entry Conditions:

A = number of starting block
B = block count
X = process descriptor pointer

Error Output:

CC = C bit set on error

B = appropriate error code
Additional Information:

® This system call deallocates memory from a process’s
address space. It frees the RAM for system use and frees
the DAT image for the process. Its main use is to let the
system clean up after a process death.

o The support module for this call is OS9p2.

8-79

0S-9 Technical Reference

Deallocate Returns a process
Process descriptor’s memory to

. a free memory pool
Descriptor
0S9 F$DelPrc 103F 4C

Entry Conditions:
A = process ID

Error Output:

CC = C bit set on error

B = appropriate error code
Additional Information:

® Use this call to clear the system scratch memory and stack
area associated with the process.

® The support module for this call is OS9p2.

8-80

Privileged System Mode Calls / 8

Deallocate RAM Clears a block’s RAM
blocks In Use flag in the

system memory block
0S9 F$DelRAM 103F 51 map

Entry Conditions:
B = number of blocks
X = starting block number

Exit Conditions: None

Additional Information:

® The Deallocate RAM Blocks call assumes the blocks being
deallocated are not associated with any DAT image.

® The support module for this call is OS9p2.

8-81

0S-9 Technical Reference

Deallocate Task Releases the task

Number number that the
process specified by

0S9 F$DelTsk 103F 40 the passed descriptor
pointer

Entry Conditions:

X = process descriptor pointer

Error Output:
CC = C bit set on error
B = appropriate error code
Additional Information:
® The support module for this call is OS9pl.

8-82

Privileged System Mode Calls / 8

Link Using Performs a link using a
1 pointer to a module
11?]’10 ttiule Directory oot o s o
ntry

OS9 F$ELink 103F 4D

Entry Conditions:

B = module type

X = pointer to module directory entry
Exit Conditions:

U = module header address

Y = module entry point
Error Output:

CC = C bit set on error

B = appropriate error code
Additional Information:

® This call differs from Link in that you supply a pointer to
the module directory entry rather than a pointer to a mod-
ule name.

® The support module for this call is OS9p1.

8-83

0S-9 Technical Reference

Find Module Returns a pointer to
Dire ctory Entry the module directory

0S9 F$FModul 103F 4E

entry

Entry Conditions:

A
X
Y

= module type
= pointer to the name string
= DAT image pointer (for name)

Exit Conditions:

A
B
X

U

module type

module revision number

updated name string; (if Register A contains 0 on
entry)

= module directory entry pointer

Error Output:
CC = C bit set on error

B

= appropriate error code

Additional Information:

The Find Module Directory Entry call returns a pointer to
the module directory entry for the first module that has a
name and type matching the specified name and type. If
you pass a module type of zero, the system call finds any
module.

The support module for this call is OS9p1.

8-84

Privileged System Mode Calls / 8

Find 64 Returns the address
0S9 F$Find64 103F 2F ﬁ{; £4-byte memory

Entry Conditions:

A = block number

X = address of the block
Exit Conditions:

Y = address of the block

CC = carry set if block not allowed or not in use
Additional Information:

® 0S-9 uses Find 64 to find path descriptors when given
their block number. The block number can be any positive
integer.

8-85

0S-9 Technical Reference

Get Free High Searches the DAT
image for the

BIOCk highest set of

0S9 F$FreeHB 103F 3E contiguous free

blocks of the
specified size
Entry Conditions:
B = block count
Y = DAT image pointer
Exit Conditions:

A = starting block number

Error Qutput:

CC = C bit set on error

B = appropriate error code
Additional Information:

® The Get Free High Block call returns the block number of
the beginning memory address of the free blocks.

¢ The support module for this system call is OS9pl.

8-86

Privileged System Mode Calls / 8

Get Free Low Searches the DAT
image for the lowest set

B]‘OCk of contiguous free

0S9 F$FreeLLB 103F 3D blocks of the specified
size

Entry Conditions:

B = block count

Y = DAT image pointer
Exit Conditions:

A = starting block number

Error Output:

CC = C bit set on error

B = appropriate error code
Additional Information:

® The Get Free Low Block call returns the block number of
the beginning memory address of the free blocks.

e The support module for this system call is OS9pl.

8-87

0S-9 Technical Reference

Compact Module Compacts the entries in
Dire CtOI'y the module directory
089 F$GCMDir 103F 52

Entry Conditions: None
Exit Conditions: None

Additional Information:

® This function is only for internal OS-9 system use. You
should never call it from a program.

8-88

Privileged System Mode Calls /| 8

Get Process Gets a pointer to a
Pointer process
F$GProcP 103F 37

Entry Conditions:
A = process ID

Exit Conditions:

B = pointer to process descriptor (if no error)

Error Output:

CC = carry set on error
B = error code (If an error occurs (E$BPrcID))

Additional Information:

® The Get Process Pointer call translates a process ID num-
ber to the address of its process descriptor in the system
address space. Process descriptors exist only in the system
task address space. Because of this, the address returned
only refers to system address space.

® The support module for this call is OS9p2.

8-89

0S-9 Technical Reference

I/ O Delete Delet_es an I/Q module
0S9 F$IODel 103F 33 that is not being used

Entry Conditions:
X = address of an I'O module

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® The I/O Delete deletes the specified I/O module from the
system, if the module is not in use. This system call is
used mainly by the /O MANAGER, and can be of limited
or no use for other applications.

® This is the order in which I/O Delete operates:

1. Register X passes the address of a device descriptor
module, device driver module, or file manager module.

2. 0S-9 searches the device table for the address.

3. If OS-9 finds the address, it checks the module’s use
count. If the count is zero, the module is not being
used; OS-9 deletes it. If the count is not zero, the mod-
ule is being used; OS-9 returns an error.

® J/O Delete returns information to the Unlink system call
after determining whether a device is busy.

8-90

Privileged System Mode Calls / 8

I/0 Queue Inserts the calling

process into another
0S9 F$I0Qu 103F 2B process’s I/O queue,

and puts the calling
process to sleep

Entry Conditions:

A = process number

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® The I/O Queue call links the calling process into the I/O
queue of the specified process and performs an untimed
sleep. The I0 Manager and the file managers are primary
and extensive users of I/O Queue.

® Routines associated with the specified process send a wake-
up signal to the calling process.

8-91

OS-9 Technical Reference

Set IRQ Adds a device to or

0S9 F$SIRQ 103F 2A removes it from the

polling table

Entry Conditions:

D
X

Y
U

= address of the device status register
= 0 (to remove a device) or the address of a packet (to
add a device)
® the address at X is the flip byte
® the address at X+ 1 is the mask byte
® the address at X +2 is the priority byte
= address of the device IRQ service routine
= address of the service routine’s memory area

Error Output:

CC = carry set on error

B

= error code (if any)

Additional Information:

Set IRQ is used mainly by device driver routines. (See
“Interrupt Processing” in Chapter 2 for a complete discus-
sion of the interrupt polling system.)

Packet Definitions:

The Flip Byte. Determines whether the bits in the device
status register indicate active when set or active when
cleared. If a bit in the flip byte is set, it indicates that the
task is active whenever the corresponding bit in the status
register is clear (and vice versa).

The Mask Byte. Selects one or more bits within the device
status register that are interrupt request flag(s). One or
more set bits identify which task or device is active.

The Priority Byte. Contains the device priority number (0
= lowest priority, 255 = highest priority).

8-92

Privileged System Mode Calls / 8

Load A From Loads A from 0,X in

F$LDABX 103F 49

Entry Conditions:
B = task number
X = pointer to data
Exit Conditions:
A = byte at 0,X in task address space

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® The value in Register X is an offset value from the begin-
ning address of the Task module. The Load A From Task B
call returns one byte from this logical address. Use this
system call to get one byte from the current process’s mem-
ory in a system state routine.

8-93

0S-9 Technical Reference

Get One Byte Loads A from [X, [Y]]
FSLDAXY 103F 46

Entry Conditions:

X
Y

= block offset
= DAT image pointer

Exit Conditions:

A

= contents of byte at DAT image (Y) offset by X

Error Output:

CC = carry set on error

B

= error code (if any)

Additional Information:

The Get One Byte system call gets the contents of one byte
in the specified memory block. The block is specified by the
DAT image in (Y), offset by (X). The call assumes that the
DAT image pointer is to the actual block desired, and that
X is only an offset within the DAT block. The value in Reg-
ister X must be less than the size of the DAT block. OS-9
does not check to see if X is out of range.

8-94

Privileged System Mode Calls / 8

Get Two Bytes Loads D from
F$LDDDXY 103F 48 [D+X],[Y]

Entry Conditions:

D = Offset to the offset within the DAT image
X = Offset within the DAT image
Y = DAT image pointer

Exit Conditions:
D = contents of two bytes at [D+X,Y]

Error Qutput:

CC = carry set on error
B = error code (if any)

Additional Information:

® Get Two Bytes loads two bytes from the address space
described by the DAT image pointer. If the DAT image
pointer is to the entire DAT, then make D+ X equal to the
process address for data. If the DAT image is not the entire
image (64K), then you must adjust D+ X relative to the
beginning of the DAT image. Using D+ X lets you keep a
local pointer within a block, and also lets you point to an
offset within the DAT image that points to a specified block
number.

8-95

0S-9 Technical Reference

Map Specific Maps the specified
block(s) into

BlOCk unallocated blocks of

F$MapBlk 103F 4F process space

Entry Conditions:
X = starting block number
B = number of blocks
Exit Conditions:
U = address of first block

Error Output:

B = error code (if any)
CC = carry set on error

Additional Information:

® The system maps blocks from the top down. It maps new
blocks into the highest available addresses in the address
space. See Clear Specified Block for information on
unmapping.

8-96

Privileged System Mode Calls / 8

Move Data Moves data bytes from
one address space to
F$Move 103F 38 another

Entry Conditions:

A = source task number

B = destination task number
X = source pointer

Y = byte count

U = destination pointer

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® You can use the Move Data system call to move data bytes
from one address space to another, usually from system to
user, or vice versa.

@ The support module for this call is OS9p1.

8-97

0S-9 Technical Reference

Next Process Executes the next

process in the active
0S9 F$NProc 103F 2D process queue

Entry Conditions: None

Exit Conditions:

Control does not return to caller.

Additional Information:

® The Next Process system call takes the next process out of
the active process queue and initiates its execution. If the
queue contains no process, OS-9 waits for an interrupt, and
then checks the queue again.

® The process calling Next Process must already be in one of
the three process queues. If it is not, it becomes unknown
to the system even though the process descriptor still exists
and can be displayed by a PROCS command.

8-98

Privileged System Mode Calls / 8

Release A Task Releases a specified

DAT task number from
F$RelTsk 103F 43 use by a process,
making the task’s DAT
hardware available for
use by another task

Entry Conditions:

B = task number

Error Qutput:
CC = carry set on error
B = error code (if any)
Additional Information:
e The support module for this call OS9p1.

8-99

0S-9 Technical Reference

Reserve Task Reserves a DAT task
Number number

F$ResTsk 103F 42
Entry Conditions: none

Exit Conditions:

B = task number (if no error)

Error Output:

CC = carry set on error

B = error code if an error occurs
Additional Information:

® The Reserve Task Number call finds a free DAT task num-
ber, reserves it, and returns the task number to the caller.
The caller often then assigns the task number to a process.

® The support module for this call is OS9p1.

8-100

Privileged System Mode Calls / 8

Return 64 Deallocates a 64-byte
0S9 F$Ret64 103F 31 block of memory

Entry Conditions:

A = block number

X = address of the base page
Error Output:

CC = carry set on error

B = error code (if any)
Additional Information:

® See the Allocate 64 system call for more information.

8-101

0S-9 Technical Reference

Set Process DAT Copies all or part of

the DAT image into a
Image process descriptor
F$SetImg 103F 3C

Entry Condition:

A = starting image block number
B = block count

X = process descriptor pointer

U = new image pointer

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® While copying part or all of the DAT image, this system
call also sets an image change flag in the process descrip-
tor. This flag guarantees that as a process returns from
the system call. The call updates the hardware to match
the new process DAT image.

® The support module for this call is OS9pl.

8-102

Privileged System Mode Calls / 8

Set Process Task writes to the hardware
DAT Registers DAT registers

F$SetTsk 103F 41

Entry Conditions:

X = pointer to process descriptor

Error OQutput:
CC = carry set on error
B = error code (if any)
Additional Information:

® This system call sets the process task hardware DAT regis-
ters, and clears the image change flag in the process
descriptor. It also writes to DAT RAM the process’s seg-
ment address information.

® The support module for this call is OS9p1.

8-103

0S-9 Technical Reference

System Link Adds a module from
. outside the current
F$SLink 103F 34 address space into the
current address space

Entry Conditions:

A = module type
X = module name string pointer
Y = name string DAT image pointer

Exit Conditions:

A = module type

B = module revision (if no error)
X = updated name string pointer
Y = module entry point

U = module pointer

Error Output:

CC = carry set on error

B = error code (If an error occurs)
Additional Information:

e The I/O System uses the System Link call to link into the
current process’s address space those modules specified by a
device name in a user call. User calls such as Create File
and Open Path use this System Link.

® The support module for this call is OS9p1.

8-104

Privileged System Mode Calls / 8

Request System Allocates a block of
memory of the

Memory specified size from the

0S9 F$SRqMem 103F 28 top of available RAM

Entry Conditions:
D = byte count

Exit Conditions:
U = starting address of the memory area
D = new memory size
Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:

® The Request System Memory call rounds the size request
to the next page boundary.

e This call allocates memory only for system address space.

8-105

0S-9 Technical Reference

Return System Deallocates a block of
Memory contiguous pages
0S9 F$SRtMem 103F 29

Entry Conditions:

U = starting address of memory to return; must point to an
even page boundary
D = number of bytes to return

Error Output:
CC = carry set on error
B = error code (if any)
Additional Information:
® Register U must point to an even page boundary.

® This call deallocates memory for system address space only.

8-106

Privileged System Mode Calls / 8

Set SVC Adds or replaces a

0S9 F$SSve 103F 32 system call

Entry Conditions:
Y = address of the system call
initialization table
Error Output:
CC = C bit set
B = error code
Additional Information:

® Set SVC adds or replaces a system call, which you have
written, to OS-9’s user and system mode system call tables.

® Register Y passes the address of a table, which contains the
function codes and offsets, to the corresponding system call
handler routines. This table has the following format:

Relative Use

Address
$00

Function Code <« First entry
$01 __ Offset From Byte 3
$02 To Function Handler
$03 Function Code <« Second entry
$04 __ Offset From Byte 6
$05 To Function Handler

More Entries <+ More entries

$80 <« End-of-table mark

8-107

0S-9 Technical Reference

® If the most significant bit of the function code is set, OS-9
updates the system table.

If the most significant bit of the function code is not set,
0OS-9 updates the system and user tables.

® The function request codes are in the range $29-$34. IO
calls are in the range $80-$90

® To use a privileged system call, you must be executing a
program that resides in the system map and that executes
in the system state.

® The system call handler routine must process the system
call and return from the subroutine with an RTS
instruction.

® The handler routine might alter all CPU registers (except
Register SP).

® Register U passes the address of the register stack to the
system call handler as shown in the following diagram:

Relative Name
Address
U> | CC $00 R$CC
$01 R$D
A $01 R$A
B $02 R$B
DP $03 R$DP
X $04 R$X
Y $06 R$Y
U $08 R$U
PC $0A R$PC

Codes $70-37F are reserved for user definition.

8-108

Privileged System Mode Calls / 8

Store A Byte Stores A at 0,X in
Ir A Task Task B

F$STABX 103F 4A

Entry Conditions:

A = byte to store
B = destination task number
X = logical destination address

Error Output:
CC = carry set on error
B = error code (if any)

Additional Information:

® This system call is similar to the assembly language
instruction “STA 0,X”. The difference is that in the system
call, X refers to an address in the given task’s address
space, instead of the current address space.

® The support module for this system call is OS9p1.

8-109

0S-9 Technical Reference

Install virtual Installs a virtual
Iinterrupt interrupt handler
p routine

0S9 F$VIRQ 103F 27

Entry Conditions:

D = initial count value
X =0 to delete entry

1 to install entry
Y = address of 5-byte packet

Error Output:

CC = carry set on error

B = appropriate error code
Additional Information:

e Install VIRQ for use with devices in the Multi-Pak Expan-
sion Interface. This call is explained in detail in Chapter 2.

8-110

Privileged System Mode Calls / 8

Validate Module checks the module

header parity and CRC
0S9 F$VModul 103F 2E bytes of a module

Entry Conditions:
D = DAT image pointer
X = new module block offset
Exit Conditions:
U = address of the module directory entry

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® If the values of the specified module are valid, OS-9
searches the module directory for a module with the same
name. If one exists, OS-9 keeps in memory the module that
has the higher revision level. If both modules have the save
revision level, OS-9 retains the module in memory.

8-111

0S-9 Technical Reference

Get Status System Calls

You use the Get Status system calls with the RBF manager sub-
routine GETSTA. The OS-9 Level Two system reserves function
Codes 7-127 for use by Microware. You can define Codes 128-255
and their parameter-passing conventions for your own use. (See
the sections on device drivers in Chapters 4, 5, and 6.)

The Get Status routine passes the register stack and the speci-
fied function code to the device driver.

Following are the Get Status functions and their codes.

SS.OPT

(Function code $00). Reads the option section of the path
descriptor, and copies it into the 32-byte area pointed to by Reg-
ister X

Entry Conditions:

A = path number
B =3%00
X = address to receive status packet

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® Use SS.OPT to determine the current settings for editing
functions, such as echo and auto line feed.

8-112

System Calls / 8

SS.RDY

(Function code $01). Tests for data available on SCF-supported
devices

Entry Conditions:

A = path number
B =801

Exit Conditions:

If the device is ready:
CC = carry clear
B = $00

If the device is not ready:
CC = carry set
B = $F6 (E$SRNDY)

Error Qutput:

CC = carry set
B = error code

SS.SI1Z

(Function code $02). Gets the current file size on a RBF-sup-
ported devices only

Entry Conditions:

A = path number
B = $02
Exit Conditions:
X = most significant 16 bits of the current file size
U = least significant 16 bits of the current file size

Error Output:

CC = carry set on error
B = error code (if any)

8-113

0S-9 Technical Reference

SS.POS

(Function code $05). Gets the current file position (RBF-sup-
ported devices only)

Entry Conditions:

A = path number
B = $05
Exit Conditions:
X most significant 16 bits of the current file position

U
Error Output:

least significant 16 bits of the current file position

CC = carry set on error
B = error code (if any)
SS.EOF

(Function code $06). Tests for the end of the file (EOF)
Entry Conditions:

A = path number
B = $06

Exit Conditions:

If there is no EOF:

CC = carry clear
B =%00

If there is an EOF:
CC = carry set
B = $D3 (ESEOF)

Error Qutput:

CC = carry set
B = error code

8-114

System Calls / 8

SS.DevNm
(Function Code $0E). Returns a device name
Entry Conditions:

A = path number
B = $%0E
X = address of 32-byte buffer for name

Exit Conditions:
X = address of buffer, name moved to buffer

SS.DSTAT
(Function code $12). Returns the display status
Entry Conditions:

A = path number
B =312

Exit Conditions:

A = color code of the pixel at the cursor address
X = address of the graphics display memory
Y = graphics cursor address; X = MSB, Y = LSB

Additional Information:

® This function is supported only with the VDGINT module
and deals with VDG-compatible graphics screens. See
SS.AAGBT for information regarding Level Two operation.

8-115

0S-9 Technical Reference

SS.JOY
(Function code $13). Returns the joystick values

Entry Conditions:

A = path number
B =813
X = joystick number

0 = (right joystick)
1 = (left joystick)

Exit Conditions:

A = fire button down

0 = none

1 = Button 1

2 = Button 2

3 = Button 1 and Button 2
X = selected joystick x value (0-63)
Y = selected joystick y value (0-63)

Note: Under Level 1, the following values are returned by
this call:

A = fire button status

$FF = fire button is on

$00 = fire button is off

8-116

System Calls / 8

SS.AlfaS

(Function code $1C). Returns VDG alpha screen memory
information

Entry Conditions:

A = path number
B =31C

Exit Conditions:

A = caps lock status
$00 = lower case
$FF = upper case

memory address of the buffer
memory address of the cursor

X
Y

Additional Information:

® SS.AlfaS maps the screen into the user address space. The
call requires a full block of memory for screen mapping.
This call is only for use with VDG text screens handled by
VDGINT.

® The support module for this call is VDGINT.

® Warning: Use extreme care when poking the screen, since
other system variables reside in screen memory. Do not
change any addresses outside of the screen.

8-117

0S-9 Technical Reference

SS.Cursr

(Function code $25). Returns VDG alpha screen cursor
information

Entry Conditions:

A = path number
B =825
Exit Conditions:
A = character code of the character at the current cursor
address
X = cursor X position (column)
Y = cursor Y position (row)

Additional Information:

® SS.Cursr returns the character at the current cursor posi-
tion. It also returns the X-Y address of the cursor relative
to the current device’s window or screen. SS.Cursr works
only with text screens.

® The support module for this call is VDGINT.

8-118

System Calls / 8

SS.ScSiz
(Function code $26). Returns the window or screen size

Entry Conditions:

A = path number
B =826
Exit Conditions:
X = number of columns on screen/window
Y = number of rows on screen/window

Additional Information:

® Use this call to determine the size of an output screen. The
values returned depend on the device in use:

For non-CCIO devices, the call returns the values follow-
ing the XON/XOFF bytes in the device descriptor.

For CCIO devices, the call returns the size of the window
or screen in use by the specified device.

For window devices. the call returns the size of the cur-
rent working area of the window.

® The support modules for this call are VDGINT, Grflnt, and
WindInt.

8-119

0S-9 Technical Reference

SS.KySns
(Function code $27). Returns key down status

Entry Conditions:

A
B

= path number

= $27

Exit Conditions:

A

= keyboard scan information

Additional Information:

® Accumulator A returns with a bit pattern representing
eight keys. With each keyboard scan, OS9 updates this bit
pattern. A set bit (1) indicates that a key was pressed since
the last scan. A clear bit (0) indicates that a key was not
pressed. Definitions for the bits are as follows:

Bit Key

0

or
or

(#] (up arrow)
(down arrow)
(left arrow)
(right arrow)
Space Bar

IO W

The bits can be masked with the following equates:

SHIFTBIT equ %00000001
CNTRLBIT equ %00000010
ALTERBIT equ 9%00000100
UPBIT equ %00001000
DOWNBIT equ %00010000
LEFTBIT equ %00100000
RIGHTBIT equ %01000000
SPACEBIT equ %10000000

® The support module for this call is CC3IO.

8-120

System Calls / 8

SS.ComSt

(Function code $28). Return serial port coufiguration
information

Entry Conditions:

A = path number
B =828

Exit Conditions:

Y = high byte: parity
low byte: baud rate
(See the Setstat call SS.ComSt for values)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® The SCF manager uses this call when performing an
SS.0pt Getstat on an SCF-type device. User calls to
SS.ComSt do not update the path descriptor. Use the
SS.OPT Getstat call for most applications, because it auto-
matically updates the path descriptor.

8-121

OS-9 Technical Reference

SS.MnSel

(Function code $87). Requests that the high-level menu handler
take control of menu selection

Entry Conditions:

A = path number
B =887
Exit Conditions:
A = menu ID (if valid selection)
0 (if invalid selection)
B = item number of menu (if valid selection)
Error Output:
CC = carry set on error
B = error code (if invalid selection)
Additional Information:
® After detecting a valid mouse click (when the mouse is
pointing to a control area on a window), a process needs to
call SS.MnSel. This call tells the enhanced window inter-
face to handle any menu selection being made. If accumula-
tor A returns with 0, then no selection has been made. The
calling process needs to test and handle other returned
values.
® A condition where Register A returns a valid menu ID
number and Register B returns O signals the selection of a
menu with no items. The application can now take over and
do a special graphics pull down of its own. The menu title
remains highlighted until the application calls the
SS.UMBar SetStat to update the menu bar.
® The support module for this call is WindInt.

8-122

System Calls / 8

SS.Mouse
(Function code $89). Gets mouse status

Entry Conditions:

A = path number
B =889
X = data storage area address
Y = mouse port select:
0 = automatic selection
1 = right side
2 = left side
Exit Conditions:
X = data storage area address
Error Qutput:
CC = carry set on error
B = error code (if any)

8-123

0S-9 Technical Reference

Additional Information:

SS.Mouse returns information on the current mouse and its
fire button. The following list defines the 32-byte data
packet that SS.Mouse creates:

Pt.Valid rmb 1 Is returned info valid? (0 =no,
1 =yes)
Pt.Actv rmb 1 Active side (0 = off, 1 = right, 2 =
left)
Pt.ToTm rmb 1 Timeout initial value
Pt.TTTo rmb 1 Time until timeout
rmb 2 RESERVED
Pt.TSSt rmb 2 Time since counter start
Pt.CBSA rmb 1 Current button state (Button A)
Pt.CBSB rmb 1 Current button state (Button B)
Pt.CCtA rmb 1 Click count (Button A)
Pt.CCtB rmb 1 Click count (Button B)
Pt. TTSA rmb 1 Time this state counter (Button A)
Pt. TTSB rmb 1 Time this state counter (Button B)
Pt. TLSA rmb 1 Time last state counter (Button A)
Pt. TLSB rmb 1 Time last state counter (Button B)
rmb 2 RESERVED
Pt.BDX rmb 2 Button down frozen Actual X
Pt.BDY rmb 2 Button down frozen Actual Y
Pt.Stat rmb 1 Window pointer type location
Pt.Res rmb 1 Resolution (0-640 by 0=10/1=1)
Pt.AcX rmb 2 Actual X value
Pt.AcY rmb 2 Actual Y value
Pt WRX rmb 2 Window relative X
Pt.WRY rmb 2 Window relative Y
Pt.Siz equ . Packet size 32 bytes
SPt.SRX rmb 2 System use, screen relative X
SPt.SRY rmb 2 System use, screen relative Y
SPt.Siz equ . Size of packet for system use

Button Information:

Pt.Valid. The valid byte gives the caller an indication of
whether the information contained in the returned packet
is accurate. The information returned by this call is only
valid if the process is running on the current interactive
window. If the process is on a non-interactive window, the
byte is zero and the process can ignore the information
returned.

8-124

System Calls / 8

Pt.Actv. This byte shows which port is selected for use by
all mouse functions. The default value is Right (1). You can
change this value with the SS.GIP Setstat call.

Pt.ToTm. This is the initial value used by Pt.TTTo.

Pt.TTTo. This is the count down value (as of the instant
the Getstat call is made). This value starts at the value
contained in the Pt. ToTm and counts down to zero at a rate
of 60 counts per second. The system maintains all counters
until this value reaches 0, at which point it sets all
counters and states to 0. The mouse scan routine changes
into a quiet mode which requires less overhead than when
the mouse is active. The timeout begins when both buttons
are in the up (open) state. The timer is reinitialized to the
value in Pt. ToTm when either button goes down (closed).

Pt.TSSt. This counter is constantly increasing, beginning
when either button is pressed while the mouse is in the
quiet state. All counts are a number of ticks (60 per sec-
ond). The timer counts to $FFFF, then stays at that value
if additional ticks occur.

Pt.CBSA. These flag bytes indicate the state of the button
Pt.CBSB. at the last system clock tick. A value of 0 indi-
-cates that the button is up (open). A value other than zero
indicates that the bufton is down (closed). Button A is
available on all Tandy joysticks and mice. Button B is only
available for products that have two buttons.

The system scans the mouse buttons each time it scans the
keyboard.

Pt.CCtA. This is the number of clicks that have occurred
Pt.CCtB. since the mouse went into an active state. A
click is defined as pressing (closing) the button, then releas-
ing (opening) the button. The system counts the clicks as
the button is released.

Pt.TTSA. This counter is the number of ticks that have
Pt.TTSB. occurred during the current state, as defined by
Pt.CBSx. This counter starts at one (counts the tick when
the state changes) and increases by one for each tick that
occurs while the button remains in the same state (open or
closed).

8-125

0S-9 Technical Reference

Pt. TLSA. This counter is the number of ticks that have
Pt.TLSB. occurred during the time that a button is in a
state opposite of the current state. Using this count and
the TTSA/TTSB count, you can determine how a button
was in the previous state, even if the system returns the
packet after the state has changed. Use these counters,
along with the state and click count values, to define any
type of click, drag, or hold convention you want.

Reserved. Two packet bytes are reserved for future expan-
sion of the returned data.

Position Information:

Pt.BDX. These values are copies of the Pt. AcX and Pt.AcY
Pt.BDY. values when either of the buttons change from an
open state to a closed state.

Pt.Stat. This byte contains information about the area of
the screen on which the mouse is positioned. Pt.Valid must
be a value other than 0 for this information to be accurate.
If Pt.Valid is 0, this value is also 0 and not accurate. Three
types of areas are currently defined:

0 = content region or current working area of the
window

1 = control region (for use by Multi-View)

2 = off window, or on an area of the screen that is not

part of the window

Pt.Res. This value is the current resolution for the mouse.
The mouse must always return coordinates in the range of
0-639 for the X axis and 0-191 for the Y axis. If the system
is so configured, you can use the high-resolution mouse
adapter which provides a 1 to 1 ratio with these values plus
1. If the adapter is not in use, the resolution is a ratio of 1
to 10 on the X axis and 1 to 3 on the Y axis. The keyboard
mouse provides a resolution of 1 to 1. The values in Pt.Res
are:

0

1

low res (x:10, y:3)
high res (x,y:1)

Pt.AcX. The values read from the mouse returned in the
Pt.AcY. resolution as described under Pt.Res.

8-126

System Calls / 8

Pt.WRX. The values read from the mouse minus the
Pt.WRY. starting coordinates of the current window’s
working area. These values return the coordinates in num-
bers relative to the type of screen. For example, the X axis
is in the range 0-639 for high-resolution screens and 0-319
for low resolution screens. You can divide the window rela-
tive values by 8 to obtain absolute character positions.
These values are most helpful when working in non-scaled
modes.

The support modules for this call are CC3I0, Grflnt, and
WindInt.

SS.Palet
(Function code $91). Gets palette information
Entry Conditions:

A = path number
B =891
X = pointer to the 16-byte palette information buffer

Exit Conditions:
X = pointer to the 16-byte palette information buffer

Additional Information:

e SS.Palet reads the contents of the 16 screen palette regis-

ters, and stores them in a 16-byte buffer. When you make
the call, be sure the X register points to the desired buffer
location. The pointer is retained on exit. The palette values
returned are specific to the screen on which the call is
made.

The support modules for this call are VDGINT, GrfInt, and
WindInt.

8-127

0S-9 Technical Reference

SS.ScTyp

(Function code $93). Returns the type of a screen to a calling
program,

Entry Conditions:

A = path
B =%93
Exit Conditions:

A = screen type code
1 = 40 x 24 text screen
2 = 80 x 24 text screen
3 = not used
4 = not used
5 = 640 x 192, 2-color graphics screen
6 = 320 x 192, 4-color graphics screen
7 = 640 x 192, 4-color graphics screen
8 = 320 x 192, 16-color graphics screen

Additional Information:

® Support modules for this system call are GrfInt and
WindInt.

8-128

System Calls / 8

SS.FBRgs

(Function code $96). Returns the foreground, background and
border palette registers for a window.

Entry Conditions:

A = path number

B =896
Exit Conditions:

A = foreground palette register number

B = background palette register number (if carry clear)

X = least significant byte of border palette register number
Error Output:

B = error code if any

CC = carry set on error

Additional Information:

® Support modules for SS.FBRgs are GrfInt and WindInt.

SS.DFPal

(Function code $97). Returns the default palette register
settings.

Entry Conditions:

A = path number

B =897

X = pointer to 16-byte data space
Exit Conditions:

X = default palette data moved to user space
Error Output:

B = error code, if any

CC = carry set on error

8-129

OS-9 Technical Reference

Additional Information:

® You can use SS.DFPal to find the values of the default pal-
ette registers that are used when a new screen is allocated
by GrfInt or WindInt. The corresponding SetStat can alter
the default registers. This GetStat/SetStat pair is for sys-
tem configuration utilities and should not be used by gen-
eral applications.

Set Status System Calls

Use the Set Status system calls with the RBF manager subrou-
tine SETSTA. The OS-9 Level Two system reserves function
Codes 7-127 for use by Microware. You can define Codes 200-255
and their parameter-passing conventions for your own use. (See
the sections on device drivers in Chapters 4, 5, and 6.)

Following are the Set Status functions and their codes.

SS.OPT

(Function code $00). Writes the option section of the path
descriptor

Entry Conditions:

A = path number
B =800
X = address of the status packet

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® SS.OPT writes the option section of the path descriptor
from the 32-byte status packet pointed to by Register X.
Use this system call to set the device operating parameters,
such as echo and line feed.

8-130

System Calls / 8

SS.SI1Z

(Function code $02). Changes the size of a file for RBF-type
devices

Entry Conditions:

A = path number
B = $02
X = most significant 16 bits of the desired file size

U
Error Output:

least significant 16 bits of the desired file size

CC = carry set on error
B = error code (if any)

SS.RESET

(Function code $03). Restores the disk drive head to Track 0 in
preparation for formatting and error recovery (use only with
RBF-type devices)

Entry Conditions:

A = path number
B =3%03
Error Output:
CC = carry set on error
B = error code (if any)

8-131

OS-9 Technical Reference

SS.WTRK

(Function code $04). Formats (writes) a track on a disk (RBF-
type devices only)

Entry Conditions:

A = path number

B =304

U = track number (least significant 8 bits)
X = address of the track buffer
Y

= side/density
Bit BO = side
0 = Side 0
1 = Side 1
Bit B1 = density
0 = single
1 = double
Error Output:
CC = carry set on error
B = error code (if any)

Additional Information:

® For hard disks or floppy disks that have a “format entire
diskette command,” SS.WTRK formats the entire disk only
when the track number is zero.

8-132

System Calls / 8

SS.SQD

(Function code $0C). Starts the shutdown procedure for a hard
disk that has sequence-down requirements prior to removal of
power. (Use only with RBF-type devices.)

Entry Conditions:

A = path number
B =30C

Exit Conditions: None

SS.KySns
(Function code $27). Turns the key sense function on and off

Entry Conditions:

A = path number
B =327
X = key sense switch value

0 = normal key operation

1 = key sense operation
Error Output:
CC = carry set on error
B = error code (if any)

Additional Information:

® When SS.KySns switches the keyboard to key sense mode,
the CC3I0 module suspends transmission of keyboard char-
acters to the SCF manager and the user. While the com-
puter is in key sense mode, the only way to detect key press
is with SS.KySns.

® The support module for this call is CC3IO.

8-133

0S-9 Technical Reference

SS.ComSt

(Function code $28). Used by the SCF manager to configure a
serial port

Entry Conditions:

A = path number
B =828
Y = high byte: parity

low byte: baud rate
Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

Baud Configuration. The high order byte of Y determines the
baud rate, the word length, and number of stop bits. The byte is
configured as follows:

PD.BAU l7|6|_|5l4|3|2l1|o|

Baud rate
Reserved
Word length
Stop bits
Stop bits:
0=1
1=2
Word length:
00 = 8 bit
01 = 7 bit
Baud rate:
0000 = 110
0001 = 300
0010 = 600
0011 = 1200
0100 = 2400
0101 = 4800
0110 = 9600
0111 = 19200
1xxx = undefined

8-134

System Calls / 8

e Parity Configuration. The low order byte of Y determines
parity. The byte is configured as follows:

PD.BAU !7L|6!?!a|1|3|2!1|'o|
l—Specialuse

Parity
Parity:
xx0 = none
001 = odd (ACIAPAK and MODPAK only)
011 = even (ACIAPAK and MODPAK only)
101 = transmit: mark
receive: ignore
111 = transmit: space

receive: ignore

® The SCF manager uses SS.ComSt to inform a driver that
serial port configuration information has been changed in
the path descriptor. After calling SS.ComSt, a user routine
must call the SS.OPT SetStat to correctly update the path
descriptor.

® This call is for the use of the SCF manager. Use SS.OPT
for changing baud, stop bit, and parity values.

SS.Close

(Function code $2A). Informs a device driver that a path is
closed.

Additional Information:

This call is used internally by 0S-9’s SCF file manager and is
not available for user programs. It can be used only by device
drivers and file managers.

8-135

OS-9 Technical Reference

SS.AAGBf
(Function code $80). Reserves an additional graphics buffer
Entry Conditions:

A = path number
B =880

Exit Conditions:

X = buffer address
Y = buffer number (1-2)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® SS AAGBf allocates an additional 8K graphics buffer. The
first buffer (Buffer 0) must be allocated by using the DIS-
PLAY GRAPHICS command. To use the DISPLAY GRAPH-
ICS command, send control code $0F to the standard
terminal driver. SS.AAGBf can allocate up to two addi-

tional buffers (Buffers 1 and 2), one at a time.

¢ After calling SS.AAGB{, Register X contains the address of

the new buffer. Register Y contains the buffer number.

® To deallocate all graphics buffers, use the END GRAPHICS

control code.

® When SS.AAGBf allocates a buffer, it also maps the buffer
into the application’s address space. Each buffer uses 8K of
the available memory in the application’s address space.
Also, if SS.DStat is called, Buffer 0 is also mapped into the
application’s address space. Allocation of all three buffers

reduces the application’s free memory by 24K.
® The support module for this call is VDGINT.

8-136

System Calls / 8

SS.SLGBf
(Function code $81). Selects a graphics buffer

Entry Conditions:

A = path number

B =881

X =800 select buffer for use

$01-$FF select buffer for use and display

Y = buffer number (0-2)
Exit Conditions:

X = unchanged from entry

Y = unchanged from entry
Error Output:

CC = carry set on error

B = error code (if any)

Additional Information:

Use DISPLAY GRAPHICS to allocate the first graphics
buffer. Use SS.AAGBf to allocate the second and third
graphics buffers.

Save each return address when writing directly to a screen.
It is not necessary to save return addresses when using
operating system graphics commands.

SS.SLGBf does not update hardware information until the
next vertical retrace (60Hz rate). Programs that use
SS.AAGBYf to change current draw buffers need to wait long
enough to ensure that 0S-9 has moved the current buffer to
the screen.

The screen shows the buffer only if the buffer is selected as
the interactive device. If the device does not possess the
keyboard, OS-9 stores the information until the device is
selected as the interactive device. When the device is
selected as the interactive device, the display shows the
selected device’s screen.

The support module for this call is VDGINT.

8-137

0S-9 Technical Reference

SS.MpGPB

(Function code $84). Maps the Get/Put buffer into a user
address space

Entry Conditions:

A = path number
B =¢%84
X = high byte: buffer group number
low byte: buffer number
Y = action to take
1
0

map buffer
unmap buffer

Exit Conditions:
X = address of the mapped buffer

Y = number of bytes in buffer
Error Output:

CC = carry set on error

B = error code (if any)

Additional Information:
® The support modules for this call are GrfInt and WindInt.

® SS.MpGPB maps a Get/Put buffer inte the user address
space. You can then save the buffer to disk or directly mod-
ify the pixel data contained in the buffer. Use extreme care
when modifying the buffer so that you do not write outside
of the buffer data area.

8-138

System Calls / 8

SS.WnSet
(Function code $86). Set up a high level window handler
Entry Conditions:

A = path number
B =886
X = window data pointer (if Y =WT.FSWin or WT.Win)
Y = window type code
Error OQutput:
CC = carry set on error
B = error code (if any)

Additional Information:

® The C language data structures for windowing are defined
in the wind.h file in the DEFS directory of the system disk.

® The support module for this call is WindInt.

SS.SBar
(Function code $88). Puts a scroll block at a specified position

Entry Conditions:

A = path number
B =888
X horizontal position of scroll block

Y vertical position of scroll block

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

e WT.FSWin-type windows have areas at the bottom and
right sides to indicate their relative positions within a
larger area. These areas are called scroll bars. SS.SBar
gives an application the ability to maintain relative posi-
tion markers within the scroll bars. The markers indicate

8-139

OS-9 Technical Reference

the location of the current screen within a larger screen.
Calling SS.SBar, updates both scroll markers.

e The support module for this call is WindInt.

SS.Mouse

(Function code $89). Sets the sample rate and button timeout
for a mouse

Entry Conditions:

A = path number
B =889
X = mouse sample rate and timeout

most significant byte = mouse sample rate
least significant byte = mouse timeout

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® SS. Mouse allows the application to define the mouse
parameters. The sample rate is the number of clock ticks
between the actual readings of the mouse status.

® The support module for the call is CC3I0.

8-140

System Calls / 8

SS.MsSig

(Function code $8A). Sends a signal to a process when the
mouse button is pressed

Entry Conditions:

A = path number

B =88A

X = user defined signal code (low byte only)
Error Qutput:

CC = carry set on error

B = error code (if any)

Additional Information:

SS.MsSig sends the process a signal the next time a mouse
button changes state (from open to closed). Once SS.MsSig
sends the signal, the process must repeat the Setstat each
time that it needs to set up the signal.

Processes using SS.MsSig should have an intercept routine
to trap the signal. By intercepting the signal, other pro-
cesses can be notified when the change occurs. Therefore,
the other processes do not need to continually poll the
mouse.

The SS.Relea Setstat clears the pending signal request, if
desired. It also clears any pending signal from SS.SSig.
Because of this, if you want to clear only one signal, you
must reset the other signal after calling SS.MsSig.

The support module for this call is CC3IO.

8-141

0S-9 Technical Reference

SS.AScrn

(Function code $8B). Allocates and maps a high-resolution
screen into an application address space

Entry Conditions:

A = path number
B =$8B
X = screen type
0 = 640 x 192 x 2 colors (16K)
1 = 320 x 192 x 4 colors (16K)
2 = 160 x 192 x 16 colors (16K)
3 = 640 x 192 x 4 colors (32K)
4 = 320 x 192 x 16 colors (32K)
Exit Conditions:
X = application address space of screen
Y = screen number (1-3)
Error Output:
CC = carry set on error
B = error code (if any)

Additional Information:

SS.AScrn is particularly useful in systems with minimal
memory when you want to allocate a high resolution graph-
ics screen with all screen updating handled by a process.

This call uses VDGInt (GRFINT is not required).

All screens are allocated in multiples of 8K blocks. You can
allocate a maximum of three buffers at one time. To select
between buffers, use the SS.DScrn Setstat call.

Screen memory is allocated but not cleared. The application
using the screen must do this.

Screens must be allocated from a VDG-type device—a
standard 32-column text screen must be available for the
device.

The support module for this call is VDGINT.

8-142

System Calls / 8

SS.DScrn

(Function code $8C). Causes VDGINT to display a screen that
was allocated by SS.AScrn

Entry Conditions:

A = path number

B = $8C

Y = screen number (1-3)
Error Output:

CC = carry set on error

B = error code (if any)

Additional Information:

® 5SS DScrn shows the requested screen if the requested
screen is the current interactive device.

® The support module for this call is VDGINT.

8-143

0S-9 Technical Reference

SS.FScrn

(Function code $8D). Frees the memory of a screen allocated
by SS.AScrn

Entry Conditions:

A = path number
B = $8D
Y = screen number (1-3)

Error Output:

CC = carry set on error
B = error code (if any)

Additional Information:

® Do not attempt to free a screen that is currently on the
display.

® SS.FScrn returns the screen memory to the system and
removes it from an application’s address space.

® The support module for this call is VDGINT.

8-144

System Calls | 8

SS.PScrn
(Function code $8E). Converts a screen to a different type

Entry Conditions:

A = path number

B =$8E

X = new screen type
0 = 640 x 192 x 2 colors (16K)
1 = 320 x 192 x 4 colors (16K)
2 = 160 x 192 x 16 colors (16K)
3 = 640 x 192 x 4 colors (32K)
4 = 320 x 192 x 16 colors (32K)

Y = screen number

Error Output:
CC = carry set on error
B = error code (if any)

Additional Information:

® SS.PScrn changes a screen allocated by SS.AScrn to a new
screen type. You can change a 32K screen to either a 32K
screen, or a 16K screen. You can change a 16K screen only
to another 16K screen type. SS.PScrn updates the current
display screen at the next clock interrupt.

® However, if you change a 32K screen to a 16K screen, 0S-9
does not reclaim the extra 16K of memory. This means
that you can later change the 16K screen back to a 32K
screen.

® The support module for this call is VDGINT.

8-145

0S-9 Technical Reference

SS.Montr
(Function code $92). Sets the monitor type
Entry Conditions:

A = path number
B =392
X = monitor type
= color composite
1 = analog RGB
2 = monochrome composite

Error Qutput:

CC = carry set on error
B = error code (if any)

Additional Information:

® SS.Montr loads the hardware palette registers with the
codes for the default color set for three types of monitors.
The system default initializes the palette for a composite

color monitor.

® The monochrome mode removes color information from the

signals sent to a monitor.

® When a composite monitor is in use, a conversion table
maps colors from RGB color numbers. In RGB and mono-
chrome modes, the system uses the RGB color numbers

directly.

® The support modules for this call are VDGINT and GrfDrv.

8-146

System Calls / 8

SS.GIP

(Function code $94). Sets the system wide mouse and key
repeat parameters

Entry Conditions:

A = path number
B =894
X = mouse resolution; in the most significant byte

0 = low resolution mouse
1 = optional high resolution adapter
mouse port location; in the least significant byte
1 = right port
2 = left port
Y = key repeat start constant; in the most significant byte
= key repeat delay; in the least significant byte
00XX = no repeat
FFFF = unchanged

Il

Error Output:

CC
B

Additional Information:

carry set if error
error code, if any

® Because this function affects system-wide settings, it is
best to use it from system configuration utilities and not
from general application program.

® The support module for this call is CC3I0.

8-147

0S-9 Technical Reference

SS.UMBAR

(Function code $95). Requests the high level menu manager to
update the menu bar.

Entry Conditions:

A = path number
B =895
Exit Conditions:
CC = carry set on error
B = error code (if any)

Additional Information:

® An application can call SS.UMBar when it needs to redraw
menu bar information, such as when it enables or disables
menus, or when it completes a window pull down and needs
to restore the menu.

® The support module for this call is WindInt.

8-148

System Calls / 8

SS.DFPal
(Function code $97). Sets the default palette register values
Entry Conditions:

A = path number
B = $97
X = pointer to 16 bytes of palette data

Exit Conditions:

X = unchanged, bytes moved to system defaults
CC = carry set on error
B = error code (if any)

Additional Information:

® Use SS.DFPal to alter the system-wide palette register
defaults. The system uses these defaults when it allocates a
new screen using the DWSet command.

® Because this function affects system wide settings, it is
best to use it from system configuration utilities, not gen-
eral application programs.

8-149

0S-9 Technical Reference

SS.Tone

(Function code $98). Creates a sound through the terminal
output device.

Entry Conditions:

A = path number

B =898

X = duration and amplitude of the tone
LSB = duration in ticks (60-sec) in the range 0-255
MSB = amplitude of tone in the range 0-63

Y = relative frequency counter (0=Ilow, 4095 =high)

Exit Conditions:

These are the same as the entry conditions. There are no
error conditions.

Additional Information:

® This call produces a programmed IO tone through the
speaker of the monitor used by the terminal device. You can
make the call on any valid path open to term or to a win-
dow device.

® The system does not mask interrupts during the time the
tone is being produced.

® The frequency of the tone is a relative number ranging
from O for a low frequency to 4095 for a high frequency.
The widest variation of tones occurs at the high range of
the scale.

8-150

Appendix A

Memory Module Diagrams

Executable Memory Module Format

Relative Check
Address Use Range
$00

| Sync Bytes ($87,5CD) = —
$01
$02

— Module Size (bytes) —
$03
304

— Module Name Offset — header
305 paﬁity
306 Type Language
$07 Attributes Revision

module

$08 Header Parity Check CRC
$09

— Execution Offset —
$0A
$0B

—— Permanent Storage Size = —
$0C
$0D (Additional optional header

extensions located here)
Module Body
object code, constants,
and so on
- CRC Check Value]

A-l

OS-9 Technical Reference

Device Descriptor Format

Relative
Address

$00
$01

$02
$03

$04

$05
$06
$07
$08
$09
$0A
$0B

$0D
$0E

$OF

$10
$11
$12,$12+n

Check
Use Range
Sync Bytes ($87,$CD)
Module Size (bytes)
Offset to Module Name header
parity
$F (Type) $1 (Lang)
Attributes Revision
Module
Header Parity Check CRC

Offset to File Manager
Name String

Offset to Device Driver
Name String

Mode Byte

Device Controller
Absolute Physical Addr.

(24 bit)

Initialization Table Size

(Initialization Table)

(Name Strings, and so on)

CRC Check Value

A-2

Memory Module Diagrams | Appendix A

INIT Module Format

Relative Check
Address Use Range
$00

— Sync Bytes ($87,$CD) —
$01
$02 .

— Module Size (bytes) —
$03
$04

— Module Name Offset — header
$05 parity
$06 $F (Type) $1 (Lang)
$07 Attributes Revision

Module

$08 Header Parity Check CRC
$09 e

— Forced Limit of Top —
$0A | of Free RAM |
$0B
$0C #IRQ Polling Table Entries
$0D #Device Table Entries
$0E

— Offset to Startup —
$0F Module Name String
$10

— Offset to Default Mass —
$11 Storage Device Name String
$12

e Offset to Bootstrap —
$13 Module Name String
$14-n Name Strings

CRC Check Value

A-3

Appendix B
Standard Floppy Disk Format

Color Computer 3

Physical Track Format Pattern
Bytes Value

Format (Dec) (Hex)
Header pattern 32 4E
(once per track) 12 00
3 F5
1 FC
32 4E
Sector pattern 12 00
(repeated 18 times) 3 F5

track number (0-34)
1 side number (0-1)
1 sector number (1-18)
1 sector length code (1)
2 CRC
22 4E
12 00
3 F5
1 FB
256 data area
2 CRC
24 41E

Trailer pattern N 4E (fill to index mark)
(once per track)

B-1

Appendix C

System Error Codes

The error codes are shown in both hexadecimal and decimal. The
error codes listed include OS-9 system error codes, BASIC error
codes, and standard windowing system error codes.

Code Code Meaning
HEX DEC

$01 001 UNCONDITIONAL ABORT — An error occurred
from which OS-9 cannot recover. All processes
are terminated.

$02 002 KEYBOARD ABORT — You pressed to

terminate the current operation.

$03 003 KEYBOARD INTERRUPT — You pressed

either to cause the current operation
to function as a background task with no video

display or to cause the current task to terminate.

$B7 183 ILLEGAL WINDOW TYPE — You tried to
define a text type window for graphics or used
illegal parameters.

$B8 184 WINDOW ALREADY DEFINED — You tried to
create a window that is already established.

$B9 185 FONT NOT FOUND — You tried to use a win-
dow font that does not exist.

$BA 186 STACK OVERFLOW — Your process (or pro-
cesses) requires more stack space than is avail-
able on the system.

$BB 187 ILLEGAL ARGUMENT — You have used an
argument with a command that is inappropriate.

$BD 189 ILLEGAL COORDINATES — You have given
coordinates to a graphics command which are
outside the screen boundaries.

$BE 190 INTERNAL INTEGRITY CHECK — System
modules or data are changed and no longer
reliable.

$BF 191 BUFFER SIZE IS TOO SMALL — The data you
assigned to a buffer is larger than the buffer.

C-1

OS-9 Technical Reference

Code
HEX DEC
$CO 192
$C1 193
$C2 194
$C3 195
$C4 196
$C8 200
$C9 201
$CA 202
$CB 203
$CC 204
$CD 205
$CE 206

Code Meaning

ILLEGAL COMMAND — You have issued a
command in a form unacceptable to OS-9.

SCREEN OR WINDOW TABLE IS FULL — You
do not have enough room in the system window
table to keep track of any more windows or
screens.

BAD/UNDEFINED BUFFER NUMBER — You
have specified an illegal or undefined buffer
number.

ILLEGAL WINDOW DEFINITION — You have
tried to give a window illegal parameters.

WINDOW UNDEFINED — You have tried to
access a window that you have not yet defined.

PATH TABLE FULL — 0S-9 cannot open the
file, because the system path table is full.

ILLEGAL PATH NUMBER — The path number
is too large, or you specified a non-existent path.

INTERRUPT POLLING TABLE FULL — Your
system cannot handle an interrupt request,
because the polling table does not have room for
more entries.

ILLEGAL MODE — The specified device cannot
perform the indicated input or output function.

DEVICE TABLE FULL — The device table does
not have enough room for another device.

ILLEGAL MODULE HEADER — 0S-9 cannot
load the specified module because its sync code,
header parity, or Cyclic Redundancy Code is
incorrect.

MODULE DIRECTORY FULL — The module
directory does not have enough room for another
module entry.

C-2

System Error Codes |/ C

Code
HEX DEC
$CF 207
$D0 208
$D1 209
$D2 210
$D3 211
$D4 212
$D5 213
$D6 214
$D7 215
$D8 216
$D9 217
$DA 218
$DB 219

Code Meaning

MEMORY FULL — Process address space is full
or your computer does not have sufficient memory
to perform the specified task.

ILLEGAL SERVICE REQUEST — The current
program has issued a system call containing an
illegal code number.

MODULE BUSY — Another process is already
using a non-shareable module.

BOUNDARY ERROR — 0OS-9 has received a
memory allocation or deallocation request that is
not on a page boundary.

END OF FILE — A read operation has encoun-
tered an end-of-file character and has
terminated.

RETURNING NON-ALLOCATED MEMORY —
The current operation has attempted to deallo-
cate memory not previously assigned.

NON-EXISTING SEGMENT — The file struc-
ture of the specified device is damaged.

NO PERMISSION — The attributes of the speci-
fied file or device do not permit the requested
access.

BAD PATH NAME — The specified pathlist con-
tains a syntax error, for instance an illegal
character.

PATH NAME NOT FOUND — The system can-
not find the specified pathlist.

SEGMENT LIST FULL — The specified file is
too fragmented for further expansion.

FILE ALREADY EXISTS — The specified file-
name already exists in the specified directory.

ILLEGAL BLOCK ADDRESS — The file struc-
ture of the specified device is damaged.

C-3

0S-9 Technical Reference

Code
HEX DEC
$DC 220
$DD 221
$DF 223
$EO 224
$E2 226
$E3 227
$E4 228
$E5H 229
$E6 230
$SE7 231
$E8 232
$E9 233
$EA 234

Code Meaning

PHONE HANGUP-DATA CARRIER DETECT
LOST — The data carrier detect is lost on the
RS-232 port.

MODULE NOT FOUND — The system received
a request to link a module that is not in the
specified directory.

SUICIDE ATTEMPT — The current operation
has attempted to return to the memory location
of the stack.

ILLEGAL PROCESS NUMBER — The specified
process does not exist.

NO CHILDREN — The system has issued a wait
service request but the current process has no
dependent process to execute.

ILLEGAL SWI CODE — The system received a
software interrupt code that is less than 1 or
greater than 3.

PROCESS ABORTED — The system received a
signal Code 2 to terminate the current process.

PROCESS TABLE FULL — A fork request can-
not execute because the process table has no
room for more entries.

ILLEGAL PARAMETER AREA — A fork call
has passed incorrect high and low bounds.

KNOWN MODULE — The specified module is
for internal use only.

INCORRECT MODULE CRC — The CRC for the
module being accessed is bad.

SIGNAL ERROR — The receiving process has a
previous, unprocessed signal pending.

NON-EXISTENT MODULE — The system can-
not locate the specified module.

C-4

System Error Codes /| C

Code
HEX DEC
$EB 235
$EC 236
$ED 237
$EE 238
$EF 239

Code Meaning

BAD NAME — The specified device, file, or mod-
ule name is illegal.

BAD MODULE HEADER — The specified mod-
ule header parity is incorrect.

RAM FULL — No free system random access
memory is available: the system address space is
full, or there is no physical memory available
when requested by the operating system in the
system state.

UNKNOWN PROCESS ID — The specified pro-

cess ID number is incorrect.

NO TASK NUMBER AVAILABLE — All avail-
able task numbers are in use.

Device Driver Errors

I/O device drivers generate the following error codes. In most
cases, the codes are hardware-dependent. Consult your device
manual for more details.

Code
HEX DEC
$FO 240
$F1 241
$F2 242
$F3 243
$F4 244

Code Meaning

UNIT ERROR — The specified device unit
doesn’t exist.

SECTOR ERROR — The specified sector number
is out of range.

WRITE PROTECT — The specified device is
write-protected.

CRC ERROR — A Cyclic Redundancy Code error
occurred on a read or write verify.

READ ERROR — A data transfer error occurred
during a disk read operation, or there is a SCF
(terminal) input buffer overrun.

C-5

0S-9 Technical Reference

Code
HEX DEC
$F5 245
$F6 246
$F7 247
$F8 248
$F9 249
$FA 250
$FB 2561
$FC 252
$FD 253
$FE 254

Code Meaning

WRITE ERROR — An error occurred during a
write operation.

NOT READY — The device specified has a not
ready status.

SEEK ERROR — The system attempted a seek
operation on a non-existent sector.

MEDIA FULL — The specified media has insuf-
ficient free space for the operation.

WRONG TYPE — An attempt is made to read
incompatible media (for instance an attempt to
read double-side disk on single-side drive).

DEVICE BUSY — A non-shareable device is in
use.

DISK ID CHANGE — You changed diskettes
when one or more files are open.

RECORD IS LOCKED-OUT — Another process
is accessing the requested record.

NON-SHAREABLE FILE BUSY — Another pro-
cess is accessing the requested file.

I/O DEADLOCK ERROR — Two processes have
attempted to gain control of the same disk area
at the same time.

C-6

Index

ACIAPAK 8-135

active process 2-12 - 2-13
queue 2-14, 8-98
state 2-13 - 2-14

address
find 64K block 8-85
lines 2-7

polling 2-17
space, add module 8-104
age, process 2-14
alarm, set 8-66
allocate
high RAM 8-69
image 8-70
memory 8-76
memory blocks
8-68
process descriptor 8-71
process task number
8-73
RAM 8-72
allocation
bit map 8-7
map sector 5-1
of memory 2-5 - 2-7
polling 2-17
allocation map

8-67 -

clear 8-13

disk 5-3
alpha screen

cursor 8-118

memory 8-117
ASM assembler 8-2
assembler, RMA 8-2
attach a device 8-44 - 8-45
attribute

byte 5-5,

file 5-12

background color, get 8-129
bell, set alarm 8-66
bit map 2-5

allocation 8-7

bit map (cont’d.)
search memory
allocation 8-33
block
allocate system
memory 8-105
deallocate system
memory 8-106
map into process
space 8-96
number 2-7
scroll 8-139
block map, system 8-18
boot
file, load 5-26
module, link 8-75
booting OS-9 1-3
bootstrap
memory request 8-76
system 8-75
border color, get 8-129
buffer
map (Get/Put) 8-138
reserve graphics 8-136
button
state, mouse 8-124 -
8-125, 8-126
timeout, mouse 8-140
byte
attribute 5-5
deallocate 64-byte
block 8-101
get from memory
block 8-94
get two bytes 8-95
read from path 8-59 -
8-60
store in task 8-109

calling process
insert in /O queue 8-91
terminate 8-14
turn off 8-35, 8-43
CC3DISK 1-2

OS-9 Technical Reference

CC3GO module 2-19

CC3I0 1-2,6-1
chain 8-8 - 8-9
change

device operating
parameters 5-23
directory 8-46
character
read SCF input 6-13
write, SCF 6-14
ChgDir 4-4
child process 2-13
create 8-15 - 8-17
clear specified block 8-77
click 8-126
CLOCK 1-2
clock
module 1-2, 2-19
real-time 2-12, 2-17
close
file 4-7
path 8-47, 8-135
codes
signal 2-15
system error C-1
command interpreter 1-4
communication,
interprocess 2-15
compact module directory
8-88
compare strings 8-10
compatibility with Level
One 2-1

concurrent execution 7-1-7-3

copy external memory 8-11
count, link 2-5
counter start, mouse 8-124
CPU 2-7
time 4-11
CRC
calculate 8-12
validate module 8-111
value 3-1 - 3-3
create
directory 8-55 - 8-56

create (cont’d.)

file 8-48 - 8-49
current

data directory 8-51

execution directory 8-51
cursor positioning 4-5
cyclic redundancy check 3-1 -

3-3

DAT
hardware 8-99
registers 8-103
to logical address 8-78
data
available, SCF test
8-113
directory 8-51
stream 4-3
transfer, pipes 7-1 - 7-3
move in memory 8-97
DAT image 8-70
conversion 8-78
copy into process
descriptor 8-102
deallocate block 8-77
high block 8-86
low block 8-87
pointer 8-95
DAT task number
release §8-99
reserve 8-100
date
get system 8-40
set 8-38
deadlock 5-13
deadly embrace 5-13
deallocate
image RAM blocks 8-79
map bits 8-13
process descriptor 8-80
RAM blocks 8-81
task number 8-82
default palette registers
8-129, 8-149
delete file 8-50 - 8-51

Index

descriptions, system call 8-2
descriptor
get process 8-20
path 4-18
pointer 8-82
process 2-13
detach device 8-52
device
add or remove from
polling table 8-92
attach 8-44 - 8-45
attachment, verify
- 8-45
controller 5-15
control registers,
initialize 6-12
control registers, SCF
6-12
descriptor 1-4, 4-2, 4-17,
A-2
detach 8-52
modules 5-15
modules, RBF 5-8 - 5-10
modules, SCF 6-6 - 6-8
name, get 8-115
open path to 8-57 - 8-58
operating parameters,
RBF 5-23
operating parameters,
SCF 6-15
status 2-17 - 2-18, 8-63
status, get 8-54
table 4-2, 8-52
terminate, RBF 5-24
terminate, SCF 6-16
write to 8-64 - 8-65
device driver 1-3, 4-11
close path 8-135
modules 4-8
name 5-15

8-44

SCF 6-9 -6-17

SCF subroutines 6-10 -
6-17

subroutines, RBF 5-16 -
5-27

device driver modules,
RBF 5-13 - 5-17
device interrupt 5-25
SCF 6-17
directory
attribute byte 5-5
change 8-46
disk 5-5
entry, module 8-83
get module 8-19
make 8-55 - 8-56
module 2-12, 8-88
disk
directories 5-5
sector read 5-19, 5-21
disk allocation map 5-3
sector 5-1
diskette format B-1
display
screen 8-143
status, get 8-115
drag 8-126
drive head, restore 8-131
duplicate path 8-53

editing, line 6-1, 8-61
end-of-file, test for 8-114
equate file 2-4
equivalent logical address
8-78
error
codes, system C-1-C-6
message, write 8-30
print 8-30
exclamation point, pipes 7-1 -
7-3
execute
mode 5-11
system calls 8-1 - 8-2
execution
directory 8-51
offset, module 3-7
exit calling process 8-14
external memory, read 8-11

0S-9 Technical Reference

fatal signal 2-13
file
attribute byte 5-12
closing 4-7
create 4-4, 5-12, 8-48 -
8-49
deadlock 5-13
delete 4-5, 8-50 - 8-51
descriptor 5-3 - 5-4
execute mode 5-11
get pointer position
8-114
line reading/writing 4-6
load module 8-29
locking 5-12
non-shareable 5-12
opening 4-4
open path 8-57 - 8-58
permission bits 5-4
pipe 7-1-7-3
pointer 4-5, 8-62
position, RBF 8-114
read 5-1, 4-5
sharing 5-12
size, get 8-114
status, get 8-54, 8-114
update mode 5-11
write line to 8-64 - 8-65
writing 4-6
file manager 1-3
modules 4-3
name 5-15
find
64-byte block 8-85
module directory
entry 8-84
fire button 8-123 - 8-127
FIRQ 4-12
interrupt 2-17
flag, RAM In Use 8-81
flip byte 2-17
floppy diskette format B-1
foreground color, get 8-129
FORK 2-8
fork, child process 8-15 - 8-17

FORMAT 5-2
format
device descriptor 4-17,
A-2
INIT module A-3
memory module 3-6 -
3-7, A-1
of device driver
modules 4-10
track 8-132
function
calls 2-4 - 2-5, 8-1
key sense 8-133

get
a byte 8-94
free high block 8-86
free low block 8-87
ID 8-22
process pointer 8-89
status 8-54
Status system calls
8-112 - 8-130
system time 8-40
Get/Put buffer, map 8-138
GETSTA 8-112
SCF 6-15
GetStat 4-6
Getstats 5-23
graphics buffer
reserve 8-136
select 8-137
graphics interface 1-2
GRFINT 1-2

handler routine, virtual
interrupt 8-110

hard disk shutdown 8-133

hardware
controller, SCF 6-9
DAT registers 8-103
vector 2-16

header
module 3-1 - 3-2
parity 8-111

Index

header (cont’d.)
pattern, floppy
diskette B-1
high block, memory search
8-86
high-level
menu handler . 8-122
menu manager 8-148
window handler 8-139
high-resolution
mouse adapter 8-126
screen, allocate 8-142
hold, button 8-126
/0
calls 2-4 - 2-5, 8-1
device accessing 2-11
module, delete 8-90
path, close 8-47
queue, insert calling
process 8-91
I/O system 1-3-1-4
calls 2-1, 8-2
system modules
1-4, 4-1
transfers 4-8
ID
return caller’s
process 8-22
set user 8-39
identification sector 5-1
image, allocate 8-70
INIT 1-2,5-18
INIT module 2-17
format A-3
link 8-75
Init, SFC 6-12
initialization table, SCF
device 6-6 - 6-8
initialize device memory 5-18
input buffer, read SCF
character 6-13
insert process 8-74
install virtual interrupt
8-110
intercept, set signal 8-21

1-1-

interface
graphics
VDG 4-2
Windint 4-2
interprocess
communication 2-15
interrupt
device 5-25
enable, SCF 6-12
FIRQ 2-17
processing 2-1
IOMAN 1-2
IRQ 4-12
add/remove device from
polling table 8-92
interrupt 2-17
polling 2-17
polling table 2-18
service routine 5-25
IRQSVC routine 4-13
IRQSV 4-11

1-2

joystick value, get 8-116

kernel 1-2
key
repeat parameters,
set 8-147
sense function 8-133
status, get 8-120
keyboard scan 2-17

language byte 3-4
line
editing 6-1, 8-61
reads 4-6, 8-61
writes 4-6, 8-65
link
to memory module 8-23
- 8-24, 8-28
using module directory
entry 8-83
link count 2-5
decrease 8-42

OS-9 Technical Reference

load
boot file 5-26
byte from memory
block 8-94
from task offset 8-93
module 8-25 - 8-26, 8-29
two bytes 8-95
lock, end-of-lock 5-12

locking
files 5-12
record 5-10-5-11
logical

address space 2-6, 2-8
gsector number 5-1
LSN 5-2,5-5

macro 2-4
MAKDIR 4-4
make directory 8-55 - 8-56
manager
file 1-3
random block 1-3
sequential file 1-3
map
block 8-96
search allocation 8-33
mask byte 2-18
memory
allocate 8-76
allocate blocks 8-67 -
8-68
allocate high RAM 8-69
change process data
size 8-27
deallocate 2-5
find low block 8-87
free screen 8-144
map 2-6
module format 3-6 - 3-7,
A-1
module, link 8-23 - 8-24
move data 8-97
page 2-5
pool 8-80
request, bootstrap 8-76

memory (cont’d.)
segment 2-8
memory allocation 2-5 - 2-7
memory block 2-7
find 64K 8-85
get byte 8-94
get high 8-86
map 8-81
map, search 8-72
memory management 2-1, 2-5
-2-12
unit 2-7 - 2-8
menu
manager, update
request 8-148
selection 8-122
message, write error 8-30
MMU registers 2-8
mnemonic name, LSN 5-2
MODPAK 8-135
module
add into address
space 8-104
body 3-1-3-2
clock 2-19
CRC calculate 8-12
decrease link count 8-42
delete I/O module 8-90
device descriptor 5-15
device driver 4-8
file manager 4-3
finding 2-12
format 3-1 - 3-3
link 8-28
link count, decrease
8-42
linking 1-2
load 8-25 - 8-26, 8-29
load and execute
primary 8-8 - 8-9
name 3-3
RBF-type device
drivers 5-13 - 5-17
SCF device descriptor
6-6 - 6-8

Index

module (cont’d.)
types 3-1, 3-5
unlink 8-41
validate 8-111
module directory 2-5, 2-12
compact 8-88
entry, link using 8-83
find 8-84
get 8-19
pointer 8-84
module header 3-1 - 3-3, 5-15
SCF device driver 6-9
monitor, set type 8-146
mouse
button state 8-125
button timeout 8-140
click 8-122
coordinates 8-127
countdown 8-125
countup 8-125
parameters, set 8-147
port 8-125
resolution 8-126
screen position 8-126
send signal to process 8-
141
status, get 8-123
timeout 8-124
window working area
8-127
move data 8-97
multiplexer 2-8
multiprogramming 2-12 -
2-16
management 2-1
multitasking 1-2

name parse 8-31 - 8-32
names, compare 8-10
next process 8-98

NMI interrupt 2-17
non-shareable file 5-12
number, path 8-53

open

file 8-48 - 8-49

path 8-57 - 8-58
operation of memory

management 2-8 - 2-12

08-9

Level One

compatibility 2-1

modules 1-2

scheduler 2-14 - 2-15
OS9P3 2-1

module 2-2

packet size 8-124
palette, get information 8-127
palette register 8-129
set default 8-149
settings 8-129
parameters, mouse and key
repeat 8-147
parent
directory 5-3
process 2-13
parity 8-135
parse name 8-31 - 8-32
path
close 8-47, 8-135
duplicate 8-53
open 8-57 - 8-58
read bytes 8-59 - 8-60
table 4-2
path descriptor 4-18, 5-5 -
5-8

read option section
8-112
SCF 6-2 - 6-6
write option section
8-130
permanent storage size,
module 3-7
physical address space 2-7
pipe file manager 4-3
PIPEMAN 1-2 - 1-3,4-3
pipes 4-3,7-1-7-3

0S-9 Technical Reference

process descriptor 2-13 -
2-14, 8-102
deallocate 8-80
descriptor, allocate 8-71
get 8-20
pointer §8-82
processes
active 2-12
data size, change 8-27
process ID 2-13
return caller’s
pseudo vector 2-16
PutStat 4-6

8-22

RAM 2-5-2-7
allocate 8-69, 8-72
allocate blocks 8-70
allocation 2-13
blocks, deallocate 8-81
blocks, deallocate
image 8-79
interrupt vector 2-18
random
access 5-1
block file manager 1-3,
4-3
RBF
change file size 8-131
format track 8-132
get file size 8-114
manager 4-3
tables 5-14 - 5-17
read
bytes 8-59 - 8-60
device operating
parameters 5-23
disk sector 5-19
external memory 8-11
input character, SCF
6-13
line 6-2, 8-61
mode 5-11
system call 6-1
real-time clock 2-12, 2-17
record locking 5-10

reference
System Mode calls
8-6
User Mode system
calls 8-3-8-4
registers
DAT 8-103
MMU 2-8
release a task 8-99
request system memory
8-105
reserved memory 2-5 - 2-7
reserve task number 8-100
return
64 bytes 8-101
system memory 8-106
RMA assembler 8-2
ROOT directory 5-3, 5-5
RTS instruction 2-18

8-5 -

SCF
configure serial port
8-134 - 8-135
data available test
8-113
device control
registers
Getsta 6-15
manager 4-3
path descriptor 6-2 - 6-6
terminate device 6-16
scheduler, 0S-9 2-14 - 2-15
screen
allocate high-
resolution 8-142
convert type 8-145
display 8-143
free memory 8-144
mouse position 8-126
palette 8-127
size, get 8-119
type 8-128, 8-142, 8-145
scroll block, install 8-139
search bits 8-33

6-12

Index

sector 5-3
pattern, floppy
diskette B-1
seek, file pointer 8-62
segment, memory 2-8
select graphics buffer 8-137
send signal 8-34
sequential character
file manager 1-3, 4-3
/0 6-1
serial port configuration
8-121
service
request processing 2-1
routine, IRQ 5-25
set
alarm 8-66
date 8-38
IRQ 8-92
priority 8-36
process DAT image
8-102
process task DAT
registers 8-103
status 8-63
SVC 8-107 - 8-108
SWI 8-37
time 8-38
user ID 8-39
Setstats 5-23
Set Status system calls 8-130
- 8-150
shareable bit 3-5
sharing, file 5-12
shell 1-4
shutdown hard disk 8-133
signal 2-15 - 2-16
codes 2-15
fatal 2-13
from mouse to
process 8-141
intercept trap 2-15 -
2-16
intercept, set 8-21
send to process 8-34

single-user

attribute 5-12

bit, files 5-12
size

of screen 8-119

of window 8-119
sleep

calling process 8-35
sleeping process 2-14, 2-16
slices, time 2-12
sound, create 8-150
speaker, create sound 8-150
state

active 2-13

of button 8-126

sleeping 2-14

suspend 4-13

waiting 2-13
static storage address 2-18
status

display 8-115

get, SCF 6-15

get mouse 8-123 - 8-127

of key 8-120

register 2-17

set, SCF 6-15
status, get 8-54
status, set 8-63
store byte in a task 8-109
string, scan input 8-31 - 8-32
strings, compare 8-10
subroutines

RBF device driver 5-16 -

5-27
SCF device drivers 6-10
- 6-17

suspend

bit 4-13 - 4-14

state 4-13
SWI, set 8-37
SWI2 instruction 2-4
symbolic names 2-4
sync byte 3-3
synonymous path number,

return 8-53

OS-9 Technical Reference

system
block map, get 8-18
boot 1-3
bootstrap 8-75
date, get 8-40
device, attach 8-44
error codes C-1-C-6
initialization 2-1
link 8-104

mode call reference 8-5 -

8-6
time, get 8-40
system call
add 8-107 - 8-108
descriptions 8-2, 2-4
execution 8-1 - 8-2
get status 8-112 - 8-130
mnemonics names 8-1
User Mode reference 8-3
-84
system memory
allocate high RAM 8-69
block map 8-81
deallocate 8-106
module directory, get
8-19
request 8-105
system modules 1-1-1-4

table
device 8-52
IRQ polling 2-18
RBF 5-14 - 5-17
SCF device descriptor
6-6 - 6-8
VIRQ 2-20
task
" map 2-12
offset, load from 8-93
register 2-8
release 8-99
store byte 8-109
task number 8-73
DAT 8-100
deallocate 8-82

terminal, create sound 8-150
terminate
a device 5-24
calling process 8-14
SCF device 6-16
ticks 4-11
time
CPU 4-11
get system 8-40
set 8-38
sharing 2-11
slice 2-16, 2-12
timeout, mouse 8-124
track
format 8-132
restore drive head 8-131
trailer pattern, floppy
diskette B-1
trap, signal intercept 2-15 -
2-16
type
convert screen 8-145
of screen 8-128
set monitor 8-146
window screen 8-142

unlink module 8-41 - 8-42
update mode 5-11
user calls 2-5
user ID 2-13
set 8-39
User Mode system calls
reference 8-3 - 8-4

validate module 8-111
VDG 1-2
alpha screen cursor
8-118
alpha screen memory
8-117
interface 4-2
vector
pseudo 2-16
set SWI 8-37
vectoring 2-16

10

Index

verify device attachment
8-44 - 8-45
video display generator 1-2
VIRQ 2-19 - 2-20
polling table 2-19 - 2-20
virtual interrupt, install
8-110

wait
calling process 8-43
state 2-13 - 2-14
waiting process 2-13
wildcard 4-6
WINDINT 1-2
Windint interface 4-2
window
descriptors 1-2
high-level handler 8-139
pointer location 8-124
screen, type 8-142
size, get 8-119
type 8-145
working area, mouse
8-127

working directory, change
8-46
write
character to SCF
output 6-14
disk sector 5-21
path descriptor 8-130 -
8-131
to file or device 8-64
write line 8-65
line system call 6-2

11

Windows

0S-9
Windowing
System

Contents

Chapter 1 Types of OS-9 Windows 1-1
Device Windowsciiiiiiiiiiinnan. 1-1
Overlay Windowsciiiiiinnnnennnnn.. 1-2
Opening a Device Window 1-2
Opening an Overlay Window 1-4

Chapter 2 Overview of Commands and Parameters2-1
Parameterscoiiiiiiiiiiii i 2-1

Chapter 3 General Commands 3-1
Background Colorccoiiiiiiiiiennn. 3-2
BoldSwitch i 3-3
BorderColor i 3-4
Change Working Areaccovviiiiiiiiiinnnn. 3-5
DefaultColor i, 3-6
Define GET/PUT Buffer 3-7
Device WindowEnd 3-10
Device Window Protect Switch 3-11
Device Window Setccoiiiiiiiiiiin.... 3-12
Foreground Color 3-14
Select Font it 3-15
Graphics Cursor Set0l 3-17
GetBlock 3-18
GET/PUT Buffer Load 3-19
Kill GET/PUT Buffercccivian ... 3-20
LogicSet ... i i . 3-21
Overlay Window End 3-23
Overlay Window Set 3-24
ChangePaletteccoiiiiiiiiiiiiiiiinas 3-26
Proportional Switch e 3-28
PatternSet 3-29
PutBlock ... 3-32
Scale Switchcoviiiiiii i e 3-33
Window Selectot 3-34
Transparent Character Switch 3-35

Chapter 4 Drawing Commands 4-1
Draw Arc e 4-2
Draw Bar i e 4-3

Draw Box 4-4

Relative Draw Box 4-4
Draw Circle 4-5
Draw Ellipse ..., 4-6
Flood Fill i 4-7
Draw Line 4-8
Relative Draw Line i, 4-8
Draw Lineand Movecoiiiiiiniinennnn. 4-9
Relative Draw Lineand Move 4-9
Draw Point i 4-10
Relative Draw Point 4-10
Put Graphics Cursorcccoviiiiiennn, 4-11
Set Draw Pointer, 4-12
Relative Set Draw Pointer 4-12
Chapter 5 Text Commands 5-1

Index

Chapter 1

Types of 0OS-9 Windows

Unlike many operating systems, OS-9 has a built-in windows
program. This driver, the Windowing System, lets you lay one or
more smaller screen displays, called windows, on your screen
display.

With these windows, you can perform several tasks at the same
time. For example, suppose you are writing a business letter
using a word processor in one window. You can go to a spread-
sheet program in another window, get a price quote you need,
return to the word processor, and include the price in the letter.

The Windowing System allows as many windows as your com-
puter’s memory can support, with a maximum of 32 at one time.

In 0S-9, there are two types of windows: device and overlay.

Device Windows

A device window is one that can run a program or utility. This
is the type of window you would use in the word processor/
spreadsheet example given above. Each device window acts as an
individual terminal.

The device windows are designated as devices /wl - /w7. You
open a device window as you do any other OS-9 device. You tell
0S-9 the window’s parameters—including whether the window is
for text or graphics. If you want to run a process in the window,
you can start an execution environment, such as a shell, on the
window. (See “Opening a Device Window,” later in this chapter,
and the DWSet command in Chapter 3.)

Note: If you want only to send output to the device win-
dow—without running a process in the window—do not
start a shell on the window.

Device windows cannot overlay each other, and their boundaries
cannot overlap.

1-1

0S-9 Windowing System

Overlay Windows

An overlay window is a window that you open on top of a device
window. (You can place overlay windows over other overlay win-
dows, but there must always be a device window at the bottom of
the stack.) The purpose of overlay windows is to display com-
puter dialog. You cannot fork a shell to an overlay window; how-
ever, you can run a shell in an overlay window. Overlay windows
assume the screen type of the device windows they overlay.

Opening a Device Window

To open a device window, follow these steps:

1.

If you want to allocate memory for the window, use OS-9’s
iniz command. Type:

iniz /wnumber [ENTER

where number is the number of the device window you wish
to open (1-7). If you do not specify number, OS-9 uses the
next available device window number.

If you do not use the iniz command, memory is allocated
dynamically (as needed) to the window.

Next, you send an escape sequence to OS-9 that tells it the
window’s parameters. These parameters include the screen
type, size, and colors. For example:

wcreate /w -s=2 20 18 40 10 01 00 00 [ENTER]
or

display 1b 28 082 14 06a 28 0a 01 08 00 /w

sends the escape sequence for the next available window to
the DWSet command. The wereate command lets you use
decimal numbers, while the display command requires
hexadecimal numbers.

1-2

Types of OS-9 Windows / 1

If you wish to send an escape sequence to a specific win-
dow, route the command to that device. For example:

wcreate /w2 -5=2 208 10 49 10 91 00 66 (ENTER)

sends the escape sequence to device /w2. The functions of
the codes, as used in the wereate command, are as follows:

2 sets a screen type of 80 x 24 (text only).

20 starts the window at character/column 20.
10 starts the window at line/row 10.

40 sets a window size of 40 characters.

10 sets a window size of 10 lines.

01 sets the foreground color to blue.
00 sets the background color to white.
00 sets the border to white.

If you do not send escape sequences, OS-9 uses default
descriptors for the windows. The defaults are:

Size

Window Screen Type Starting Position (columns,
Number (chars./line) (horiz., vert.) rows)
1 40 (text) 0,0 27,11
2 40 (text) 28,0 12,11
3 40 (text) 0,12 40,12
4 80 (text) 0,0 60,11
5 80 (text) 60,0 19,11
6 80 (text) 80,0 80,12
7 80 (text) 0,0 80,24

3. Use 0S-9’s shell command to fork a shell to the window.
Type:

shell i=/wnumber &

where number is the number used in the iniz or wcreate
command. The i= parameter creates an immortal shell.
Creating an immortal shell protects the window and its
shell from being destroyed if you accidentally exit the shell
using (CTRL){BREAK]. If you omit the i= parameter, the shell
is forked to the next available device window.

You now have a window that can run its own tasks. Information
displayed in that window is automatically scaled to the window’s
size.

1-3

0S-9 Windowing System

Opening an Overlay Window

To open an overlay window, use the Overlay Window Set func-
tion. (See OWSet in Chapter 3, “General Commands.”)

1-4

Chapter 2

Overview of Commands and
Parameters

The windowing commands are divided among three chapters,
based on their functions.

Chapter 3 describes the general commands. These commands let
you create windows and buffers, access buffers, set switches, and
maintain the window environment.

Chapter 4 describes the drawing commands. Besides letting you
draw all kinds of images (circles, ellipses, arcs, and boxes, to
name a few), these commands also enable you to color areas or to
fill them with patterns.

Chapter 5 describes the text commands. Use these commands to
manipulate the text cursor and the text attributes. Text com-
mands operate on hardware text screens (Screen Types 1 and 2)
and graphics windows if a font is selected.

Each command description lists the command’s name, code, and
parameters. To call a Windowing System command using OS-9’s
display command, type display, followed by the command code
and the values you want to supply for the parameters.

Parameters

The following is a complete list of the parameter abbreviations
used in Chapters 3, 4, and 5. All parameters represent a single
byte of information.

Parameter Description

HBX high order byte of x value

LBX low order byte of x value

HBY high order byte of y value

LBX low order byte of v value

HBXo high order byte of x-offset value (relative)
LBXo low order byte of x-offset value (relative)
HBYo high order byte of y-offset value (relative)
LBYo low order byte of y-offset value (relative)
HBR high order byte of radius

LBR low order byte of radius

2-1

0S-9 Windowing System

Parameter Description

HBL high order byte of length

LBL low order byte of length

HSX high order byte of size in x direction

LSX low order byte of size in x direction

HSY high order byte of size in y direction

LSY low order byte of size in y direction

HBRx high order byte of radius in x direction

LBRx low order byte of radius in x direction

GRP GETI/PUT buffer group number (1-254)

BFN GET/PUT buffer number (1-255)

LCN logic code number

PRN palette register number (0-15, wraps mod 15)

CTN color table number (0-63, wraps mod 64)

FNM font number

CPX character position x (0-xmax)

CPY character position y (0-ymax)

STY screen type

SVS save switch (0 =nosave, 1 =save area under
overlay)

SZX size in x (columns)

SZY size in y (rows)

XDR dimension ratio x used with YDR as YDR/
XDR

YDR dimension ratio y

BSW binary switch (0 =off, 1=o0n)

2-2

Chapter 3

General Commands

The general commands let you set up and customize windows.
They also let you set up and access image buffers and select
colors for the screen.

3-1

0S-9 Windowing System

BColor Background Color

Function: Lets you choose a color palette register to use as the
background color. See the Palette command for setting up the
actual colors.

Code: 1B 33

Parameters: PRN

3-2

General Commands / 3

BoldSw Bold switch

Function: Enables or disables boldfacing for text on graphics
screens. If boldface is on, the screen displays subsequent char-
acters in bold. If boldface is off, the screen displays subsequent
characters in the regular font.

Code: 1B 3D

Parameters: BSW

BSW = switch
00 = off (Default)
01 = on

Notes:
® You can use BoldSw with any font.

® Boldface is not supported on hardware text screens (Screen
Types 1 and 2).

3-3

0S-9 Windowing System

Border Border Color

Function: Lets you change the palette register used for the
screen border. See the Palette command for setting up the
actual colors.

Code: 1B 34
Parameters: PRN

Notes:

¢ You set the border by selecting a palette register to use for
the border register. When the actual color is changed in the
palette register selected by the command, the color of the
screen border changes to the new color. In general, the bor-
der register usually matches the background palette
register.

3-4

General Commands / 3

CWArea Change Working Area

Function: Lets you alter the working area of the window. Nor-
mally, the system uses this call for high-level windowing, but
you can use it to restrict output to a smaller area of the win-
dow.

Code: 1B 25
Parameters: CPX CPY SZX SZY
Notes:

® You cannot change a window’s working area to be larger
than the predefined area of the window as set by DWSet or
OWSet.

® All drawing and window updating commands are done on
the current working area of a window. The working area
defaults to the entire size of the window. Scaling, when in
use, is also performed relative to the current working area
of a window. The CWArea command allows users to restrict
the working area of a window to smaller than the full win-
dow size. Functions which might be done by opening a non-
saved overlay window to draw or clear an image and then
closing the overlay can be accomplished by using this com-
mand to shorten execution time where an actual overlay
window is not needed.

3-5

0S-9 Windowing System

DefColr pefault Color

Function: Sets the palette registers back to their default val-
ues. The actual values of the palette registers depend on the

type of monitor you are using. (See montype in 0S-9 Leuvel
Two Commands.)

Code: 1B 30
Parameters: None

Notes:

® The default color definitions apply only to high-resolution
graphics and text displays.

® The system sets the palette registers to a proper compati-
bility mode when switching to screens using the older VDG
emulation modes. See the table below:

Window System

Color Modes VDG-Compatible Modes

Palette Color P# Color P# Color
00 & 08 White 00 Green 08 Black
01 & 09 Blue 01 Yellow 09 Green
02 & 10 Black 02 Blue 0A Black
03 & 11 Green 03 Red OB Buff
04 & 12 Red 04 Buff 0C Black
05 & 13 Yellow 05 Cyan 0D Green
06 & 14 Magenta 06 Magenta OE Black
07 & 15 Cyan 07 Orange OF Orange

® The SetStat call lets you change the default color palette
definition when using the windowing system. Default colors
in the VDG-Compatible Mode cannot be changed. See the
0S-9 Level Two Technical Reference manual for information
on SetStat.

® The system’s default colors are used whenever you create a
new window.

3-6

General Commands / 3

DfnGPBuf pefine GET/PUT Buffer

Function: Lets you define the size of the GET/PUT buffers for
the system. Once you allocate a GET/PUT buffer, it remains
allocated until you use the KilBuf command to delete it.

0S-9 allocates memory for GET/PUT buffers in 8K blocks that
are then divided into the different GET/PUT buffers. Buffers
are divided into buffer groups. Therefore, all commands deal-
ing with GET/PUT buffers must specify both a group number
and a buffer number within that group.

Code: 1B 29
Parameters: GRP BFN HBL LBL

Technical:

The buffer usage map is as follows:

Group Buffer
Number Number' Use
0 1-255 Internal use only (returns errors)
1-199 1-255 General use by applications?
200 - 254 1-255 Reserved (Microware use only)?
255 1-255 Internal use only (returns errors)

! Buffer Number 0 is invalid and cannot be used.

2 The application program should request its user ID via
the GetID system call to use as its group number for
buffer allocation.

3 The standard group numbers are defined as follows:

Note: The names, buffer groups, and buffer numbers are
defined in the assembly definition file. The decimal num-
ber you use to call these are in parentheses next to the
name. For example, to select the Arrow pointer,
Grp_Ptr and Ptr_Arr, you use 202,1 as the group/buffer
number.

3-7

0S-9 Windowing System

Grp__Fnt(200) = font group for system fonts
Fnt_S8x8(1) = standard 8x8 font
Fnt_S6x8(2) = standard 6x8 font
Fnt_G8x8(3) = standard graphics font

The standard fonts are in the file SYS/
StdFonts.

Grp_Clip(201) = clipboarding group (for Multiview)

Grp_Ptr(202) = graphics cursor (pointer) group
Ptr_Arr(1) = arrow pointer (hp=0,0)
Ptr_Pen(2) = pencil pointer (hp=0,0)
Ptr_LCH(3) = large cross hair pointer

(hp=17,7)
Ptr_SIp(4) = sleep indicator (hourglass)
Ptr_111(5) = illegal indicator

Ptr_Txt(6) = text pointer (hp=3,3)
Ptr_SCH(7) = small cross hair pointer
(hp=3,3)

hp = hit point, the coordinates
of the actual point on the
object at which the cursor
should be centered.

The standard pointers are in the file SYS/
StdPtrs.

Grp_Pat2(203) =two color patterns

Grp_Pat4(204) =four color patterns

Grp_Pat6(205) = sixteen color patterns
Pat_Dot(1) = dot pattern
Pat_Vrt(2) = vertical line pattern
Pat_Hrz(3) = horizontal line pattern
Pat_ XHtc(4) = cross hatch pattern
Pat_LSnt(5) = left slanted lines
Pat__RSnt(6) = right slanted lines
Pat_SDot(7) = small dot pattern
Pat_BDot(8) = large dot pattern

Each pattern is found within each of the
pattern groups.

Standard patterns are in the files
SYS/StdPats_ 2, SYS/StdPats_4, and
SYS/StdPats__16.

3-8

General Commands / 3

All files have GPLoad commands imbedded in file, along with
the data. To load fonts, pointers, or patterns, simply merge them
to any window device: For example:

merge SYS/Stdfonts

sends the standard font to standard output which may be redi-
rected to another device if the current output device is not a win-
dow device (such as when term is a VDG screen).

You only need to load fonts once for the entire system. Once a
Get/Put buffer is loaded, it is available to all devices and pro-
cesses in the system.

3-9

0S-9 Windowing System

DWEnd Device Window End

Function: Ends a current device window. DWEnd closes the
display window. If the window was the last device window on
the screen, DWEnd also deallocates the memory used by the
window. If the window is an interactive window, OS-9 auto-
matically switches you to a new device window, if one is
available.

Code: 1B 24
Parameters: None

Notes:

® DWEnd is only needed for windows that have been attached
via the iniz utility or the I$Attach system call. Non-
attached windows have an implied DWEnd command that is
executed when you close the path.

3-10

General Commands / 3

DWPI'OtSW Device Window Protect Switch

Function: Disables and enables device window protection. By
default, device windows are protected so that you cannot over-
lay them with other device windows. This type of protection
helps avoid the possibility of destroying the contents of either
or both windows.

Code: 1B 36

Parameters: BSW

BSW = switch
00 = off
01 = on (Default)

Notes:

® We recommend that you not turn off device window protec-
tion. If you do, however, use extreme discretion because you
might destroy the contents of the windows. OS-9 does not
return an error if you request that a new window be placed
over an area of the screen which is already in use by an
unprotected window.

3-11

0S-9 Windowing System

DWSet Device Window Set

Function: Lets you define a window’s size and location on the
physical screen. Use DWSet after opening a path to a device

window.
Code: 1B 20
Parameters: STY CPX CPY SZX SZY PRN1 PRN2 PRN3
PRN1 = Foreground
PRN2 = Background
PRN3 = Border (if STY =2 1)
Notes:
® The iniz and display commands open paths to the device

window.

When using DWSet in a program, you must first open the
device.

Output to a new window is ignored until OS-9 receives a
DWSet command, unless defaults are present in the device
descriptor (/fwl-/w7). If defaults are present in the device
descriptors, 0S-9 automatically executes DWSet, using
those defaults.

When 0S-9 receives the DWSet, it allocates memory for the
window, and clears the window to the current background
color. If the standard font is already in memory, OS-9
assigns it as the default font. If the standard font is not in
memory, you must execute a font set (Font) command after
loading the fonts to produce text output on a graphics
window.

Use the Screen Type code (STY) to define the resolution
and color mode of the new screen. If the screen type code is
zero, OS-9 opens the window on the process’s currently
selected screen. If the code is 01, OS-9 opens the window on
the currently displayed screen. If the code is non-zero, OS-9
allocates a new screen for the window. The following
describes the acceptable screen types:

3-12

General Commands | 3

Code Screen Size Colors Memory Type
FF Current Displayed Screen!

00 Process’s Current Screen

01 40 x 24 8&8 2000 Text

02 80 x 24 8&8 4000 Text

05 640 x 192 2 16000 Graphics
06 320 x 192 4 16000 Graphics
07 640 x 192 4 32000 Graphics
08 320 x 192 16 32000 Graphics

1 Use the Current Displayed Screen option only in proce-
dure files to display several windows on the same physical
screen. All programs should operate on that process’s cur-
rent screen.

The location of the window on the physical screen is deter-
mined by the diagonal line defined by:

(CPX,CPY) and (CPX +SZX, CPY +SZY)

The foreground, background, and border register numbers
(PRN1, PRN2, and PRN3) define the palette registers used
for the foreground and background colors. See the Palette
command in this chapter for more information.

When an implicit or explicit DWSet command is done on a
window, the window automatically clears to the background
color.

All windows on the screen must be of the same type (either
text or graphics).

Values in the palette register affect all windows on the
screen. However, you can choose which register to use for
foreground and background for each window. That is, OS-9
maintains palette registers and border register numbers for
the entire screen and foreground and background register
numbers for each individual window.

08S-9 deallocates memory for a screen when you terminate
the last window on that screen.

3-13

0S5 -9 Windowing System

FColor Foreground Color

Function: Lets you select a color palette register for the fore-
ground color. See the Palette command for setting the actual
colors.

Code: 1B 32

Parameters: PRN

3-14

General Commands / 3

Font Select Font

Function: Lets you select/change the current font. Before you
can use this command, the font must be loaded into the speci-
fied GET/PUT group and buffer (using GPLoad). See the
GPLoad command for information on loading font buffers.

Code: 1B 3A
Parameters: GRP BFN

Notes:

® You can select proportional spacing for the font by using
PropSw.

e All font data is a 2-color bit map of the font.

e Each character in the font data consists of 8 bytes of data.
The first byte defines the top scan line, the second byte
defines the second scan line, and so on. The high-order bit
of each byte defines the first pixel of the scan line, the next
bit defines the next pixel, and so on. For example, the letter
“A” would be represented like this:

Byte Pixel Representation
10 . . . #. . .
280 . . #. #.

4 . e

44
Tc
44
44
00

Note that 6x8 fonts ignore the last 2 bits per byte.

'y

CHHHHHR
T HFIHHHH

® The fonts are ordered with characters in the following
ranges:

$00-31F International characters (see mapping below)
$20-87F Standard ASCII characters

3-15

0S-9 Windowing System

International characters or any characters in the font below
character $20 (hex) are printed according to the following

table:
Character position Charl or Char2
in font

$00 $C1 $E1
$01 $C2 $E2
$02 3C3 $E3
$03 $C4 $E4
$04 $C5 3E5
$05 3C6 $E6
$06 $C7 $E7
$07 $C8 $E8
$08 $C9 $E9
$09 $CA $EA
$0A $CB $EB
$0B $CC $EC
$0C $CD $ED
$0D $CE $EE
$0E $CF $EF
$0F $D0 $FO0
$10 $D1 $F1
$11 $D2 $F2
$12 $D3 $F3
$13 $D4 $F4
$14 $D5 $F5
$15 $D6 $F6
$16 $D7 $F7
$17 $D8 $F8
$18 $D9 $F9
$19 $DA $FA
$1A $AA $BA
$1B $AB $BB
$1C $AC $BC
$1D $AD $BD
$1E $AE $BE
$1F $AF $BF

3-16

General Commands / 3

GCSet Graphics Cursor Set

Function: Creates a GET/PUT buffer for defining the graphics
cursor that the system displays. You must use GCSet to dis-
play a graphic cursor.

Code: 1B 39
Parameters: GRP BFN
Notes:
® To turn off the graphics cursor specify GRP as 00.

® A system standard buffer or a user-defined buffer can be
used for the graphics cursor.

3-17

0S-9 Windowing System

GetBIlKk Get Block

Function: Saves an area of the screen to a GET/PUT buffer.
Once the block is saved, you can put it back in its original
location or in another on the screen, using the PutBlk
command.

Code: 1B 2C
Parameters: GRP BFN HBX LBX HBY LBY HSX LSX HSY
LSY

HBX/LBX = x-location of block (upper left corner)
HBY/LBX = y-location of block

HSX/LSX = x-dimension of block

HSY/LSY = y-dimension of block

Notes:

® The GET/PUT buffer maintains information on the size of
the block stored in the buffer so that the PutBlk command
works more automatically.

e If the GET/PUT buffer is not already defined, GetBlk cre-
ates it. If the buffer is defined, the data must be equal to or
smaller than the original size of the buffer.

3-18

General Commands / 3

GPLoad GET/PUT Buffer Load

Function: Preloads GET/PUT buffers with images that you
can move to the screen later, using PutBlk.

If the GET/PUT buffer is not already created, GPLoad creates
it.

If the buffer was previously created, the size of the passed
data must be equal to or smaller than the original size of the

buffer. Otherwise, GPLoad truncates the data to the size of
the buffer.

Code: 1B 2B

Parameters: GRP BFN STY HSX LSX HSY LSY HBL LBL
(Data...)
STY = format

HSX/LSX = x-dimension of stored block
HSY/LSY = y-dimension of stored block
HBL/LBL = number of bytes in data

Notes:
o Buffers are maintained in a linked list system.

® Buffers to be used most should be allocated last to mini-
mize the search time in finding the buffers.

® When loading a Font GET/PUT Buffer, the parameters are

as follows:
GRP BFN STY HSX LSX HSY LSY HBL LBL
(Data...)
GRP = 254
STY =5

HSX/LSX = x-dimension size of Font 6 or 8
HSY/LSY = y-dimension size of Font 8

HBL/LBL size of font data (not including this
header information)

See the Font command for more information on font data.

3-19

0S-9 Windowing System

KilBuf kil GET/PUT Buffer

Function: Deallocates the buffer specified by the group and
buffer number. To deallocate the entire group of buffers, set
the buffer number to 0.

Code: 1B 2A
Parameters: GRP BFN
Notes:

¢ KilBuf returns memory used by the buffer to a free list.
When an entire block of memory has been put on the free
list, the block is returned to the system.

3-20

General Commands / 3

LSet Logic Set

Function: Lets you create special effects by specifying the
type of logic used when storing data, which represents an
image, to memory. The specified logic code is used by all draw
commands until you either choose a new logic or turn off the
logic operation. To turn off the logic function, set the logic code
to 00.

Code: 1B 2F

Parameters: LCN

LCN = logic code number
00 = No logic code; store new data on

screen
01 = AND new data with data on
screen
02 = OR new data with data on screen
03 = XOR new data with data on screen
Notes:
® The following tables summarize logic operations in bit
manipulations:
AND First Second Result
Operand Operand
1 1 1
1 0 0
0 1 0
0 0 0
OR First Second Result
Operand Operand
1 1 1
1 0 1
0 1 1
0 0 0

3-21

0S-9 Windowing System

XOR First Second Result
Operand Operand
1 1 0
1 0 1
0 1 1
0 0 0

e Data items are represented as palette register numbers in
memory. Since logic is performed on the palette register
number and not the colors in the registers, you should
choose colors for palette registers carefully so that you
obtain the desired results. You may want to choose the
colors for the palette registers so that LSet appears to and,
or, and xor the colors rather than the register numbers. For

example:
Palette # Color Alternative Order
0 White Black
1 Blue Blue
2 Black Green
3 Green White

3-22

General Commands / 3

OWEnd overlay Window End

Function: Ends a current overlay window. OWEnd closes the
overlay window and deallocates memory used by the window.
If you opened the window with a save switch value of hexadec-
imal 01, 0S-9 restores the area under the window. If you did
not, OS-9 does not restore the area and any further output is
sent to the next lower overlay window or to the device window,
if no overlay window exists.

Code: 1B 23

Parameters: None

3-23

0S-9 Windowing System

OWSet Overlay Window Set

Function: Use OWSet to create an overlay window on an exist-
ing device window. OS-9 reconfigures current device window
paths to use a new area of the screen as the current logical
device window.

Code: 1B 22

Parameters: SVS CPX CPY SZX SZY PRN1 PRN2

SVS = save switch
00 = Do not save area overlayed
01 = Save area overlayed and restore at
close
PRN1 = background palette register
PRN2 = foreground palette register

Notes:

e If you set SVS to zero, any writes to the new overlay win-
dow destroy the area under the window. You might want to
set SVS to zero if your system is already using most of its
available memory. You might also set SVS to zero whenever
it takes relatively little time to redraw the area under the
overlay window once it is closed.

® If you have ample memory, specify SVS as 1. Doing this
causes the system to save the area under the new overlay
window. The system restores the area when you terminate
the new overlay window. (See OWEnd.)

® The size of the overlay window is specified in standard
characters. Use the same resolution (number of characters)
as the device window that will reside beneath the overlay
window. Have your program determine the original size of
the device window at startup (using the SS.ScSiz GETSTAT
call), if the device window does not cover the entire screen.
See the OS-9 Level Two Technical Reference manual for
information on the SS.Sc¢Siz GETSTAT call.

3-24

General Commands / 3

® Overlay windows can be created on top of other overlay
windows; however, you can only write to the top most win-
dow. Overlay windows are “stacked” on top of each other
logically. To get back down to a given overlay, you must
close (OWEnd) any overlay windows that reside on top of
the desired overlay window.

® Stacked overlay windows do not need to reside directly on
top of underlying overlay windows. However, all overlay
windows must reside within the boundaries of the underly-
ing device window.

3-25

0S-9 Windowing System

Palette Change Palette

Function: Lets you change the color associated with each of
the 16 palette registers.

Code: 1B 31

Parameters: PRN CTN

Notes:

® Changing a palette register value causes all areas of the
screen using that palette register to change to the new
color. In addition, if the border is set to that palette regis-
ter, the border color also changes. See the Border command
for more information.

® Colors are made up by setting the red, green,; and blue bits
in the color byte which is inserted in the palette register.
The bits are laid out as follows:

Bit Color
0 Blue low
1 Green low
2 Red low
3 Blue high
4 Green high
5 Red high
6 unused
7 unused

By using six bits for color (2 each for red, green and blue)
there is a possibility of 64 from which to choose. Some of
the colors are defined as shown:

White
Black
Standard Blue

Standard Green :

Standard Red

00111111 = $3F (all color bits set)
00000000 = $00 (no color bits set)
00001001 = $09 (both blue bits set)

00010010 = $12 (both green bits set)
00100100 = $24 (both red bits set)

3-26

General Commands / 3

" Note: These colors are for RGB monitors. The composite
monitors use a different color coding and do not directly
match pure RGB colors. To get composite color from the
RGB colors, the system uses conversion tables. The colors
were assigned to match the RGB colors as close as possible.
There are, however, a wider range of composite colors, so
the colors without direct matches were assigned to the clos-
est possible match. The white, black, standard green, and
standard orange are the same in both RGB and composite.

3-27

OS-9 Windowing System

PI‘Op Sw Proportional Switch

Function: Enables and disables the automatic proportional
spacing of characters. Normally, characters are not proportion-

ally spaced.

Code: 1B 3F
Parameters: BSW
BSW = switch
00 = off (Default)
01 = on

Notes:

® Any standard software font used in a graphics screen can
be proportionally spaced.

® Proportional spacing is not supported on hardware text
screens.

3-28

General Commands / 3

PSet Pattern Set

Function: Selects a preloaded GET/PUT buffer as a pattern
RAM array. This pattern is used with all draw commands
until you either change the pattern or turn it off by passing a
parameter of 00 as GRP (Group Number).

Code: 1B 2E
Parameters: GRP BFN
Notes:

® The pattern array is a 32 x 8 pixel representation of graph-
ics memory. The color mode defines the number of bits per
pixel and pixels per byte. So, be sure to take the current
color mode into consideration when creating a pattern
array.

® The GET/PUT buffer can be of any size, but only the num-
ber of bytes as described by the following table are used:

Color
Mode Size of Pattern Array
2 4 bytes x 8 = 32 bytes (1 bit per pixel)
4 8 bytes x 8 = 64 bytes (2 bits per
pixel)
16 16 bytes x 8 = 128 bytes (4 bits per
pixel)

o The buffer must contain at least the number of bytes
required by the current color mode. If the buffer is larger
than required, the extra bytes are ignored.

® To turn off patterning, set GRP to 00.

3-29

0S-9 Windowing System

The following example creates a two color pattern of vertical
lines. A two color pattern is made up of 1’'s and 0’s. The
diagram below shows the bit set pattern (note that one
pixel is equal to one bit):

10101010101010101010101010101010
10101010101010101010101010101010
10101010101010101010101010101010
10101010101010101010101010101010
10101010101010101010101010101010
10101010101010101010101010101010
10101010101010101010101010101010
10101010101010101010101010101010

When the binary for the 2x8 pixel data is compressed into
byte data, notice that each row consists of 4 bytes of data.
The pattern now looks like this:

$55 $55 $55 $55
$55 $55 $55 $55
$55 $55 $55 $55
355 $55 $55 $55 $55 = 01010101
$55 $55 $55 $55
$55 $55 $55 $55
$55 $55 $55 $55
$55 $55 $55 $55

To load the pattern in the system, use the GPLoad com-
mand. To load this particular pattern into Group 2 and
Buffer 1, the command would be:

display 1b 2b 82 1 00 28 #0 98 8% 28 55 55 ...5§
’ |
32 times
number of bytes (32)
y size of pattern (8)
X size of pattern (32)
buffer number

group number
GPLoad code

3-30

General Commands / 3

® When making a pattern using 4 colors, a pixel is made up
of two bits instead of one. This means that the pattern con-
sists of 64 bytes instead of 32. The diagram below shows
the bit set pattern for the same vertical pattern using 4
colors:

1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100
1100110011001100110011001100110011001100110011001100110011001100

When the binary for the 4x8 pixel data is compressed into
byte data, notice that each row consists of 8 bytes of data.
The pattern now looks like this:

$CC $CC $CC $CC $CC $CC $CC $CC
$CC $CC $CC $CC $CC $CC $CC $CC
$CC $CC $CC $CC $CC $CC $CC $CC
$CC $CC $CC $CC 3CC $CC 3CC $CC $CC=1100
$CC $CC $CC $CC 3$CC $CC $CC $CC
$CC $CC $CC $CC $CC $CC $CC $CC
$CC $CC $CC $CC $CC $CC $CC $CC
$CC $CC $CC $CC $CC $CC $CC $CC

To load the pattern in the system, use the GPLoad com-
mand as described for the 2 color example but specify $40
(64) bytes instead of $20 (32).

® When making a pattern using 16 colors, a pixel is made up
of four bits instead of one. This means that the pattern con-
sists of 128 bytes. Each line in the bit pattern would look
like this:

11110000...{repeat pattern for 16 total sets}...11110000

When the binary for the 8x8 pixel data is compressed into
byte data, the pattern is a series of $FO.

To load the pattern in the system, use the GPLoad com-
mand and specify $80 (128) bytes as the size.

3-31

0S-9 Windowing System

PutBlk put Block

Function: Moves a GET/PUT buffer, previously copied from the
screen or loaded with GPLoad, to an area of the screen.

Code: 1B 2D

Parameters: GRP BFN HBX LBX HBY LBY

HBX/LBX = x-location of block
(upper left corner)
HBY/LBY = y-location of block

Notes:

® The dimensions of the block were saved in the GET/PUT
buffer when you created it. OS-9 uses these dimensions
when restoring the buffer.

® The screen type conversion is automatically handled by the
PutBlk routine in the driver.

o GET/PUT buffers cannot be scaled. The image will be
clipped if it does not fit within the window.

3-32

General Commands / 3

Scale SW Scale Switch

Function: Disables and enables automatic scaling. Normally,
automatic scaling is enabled. When scaling is enabled, coordi-
nates refer to a relative location in a window that is propor-
tionate to the size of the window. When scaling is disabled,
coordinates passed to a command will be the actual coordi-
nates for that type of screen relative to the origin of the
window.

Code: 1B 35
Parameters: BSW
BSW = switch
00 = off
01 = on (Default)

Notes:

® A useful application of disabled scaling is the arrangement
of references between a figure and text.

® All coordinates are relative to the window’s origin (0,0).
The valid range for the coordinates:

Scaling enabled:
y = 0-191
x = 0-639
Scaling disabled:
y = 0-sizeof y - 1
X = 0-size of x - 1

3-33

0S-9 Windowing System

Select Window Select

Function: Causes the current process’s window to become the
active (display) window. You can select a different window by
using the form:

display 1B 21 >/wnumber

where number is the desired window number. If the process
that executes the select is running on the current interactive
(input/display) window, the selected window becomes the
interactive window, and the other window becomes passive.

Code: 1B 21

Parameters: None

Notes:

The keyboard is attached to the process’s selected window
through the use of the key. This lets you input data
from the keyboard to different windows by using the
key to select the window.

All display windows that occupy the same screen are also
displayed.

The device window which owns the keyboard is the current
interactive window. The interactive window is always the
window being displayed. Only one process may receive
input from the keyboard at a time. Many processes may be
changing the output information on their own windows;
however, you can only see the information that is displayed
on the interactive window and any other window on the
same screen as the interactive window.

3-34

General Commands | 3

TCharSw Transparent Character Switch

Function: Defines the character mode to be used when putting
characters on the graphics screens.

In the default mode (transparent off), the system uses block
characters that draw the entire foreground and background for
that cell.

When in transparent mode, the only pixels that are changed
are the ones where the character actually has pixels set in its
font. When transparent mode is off, all pixels in the character
block are set: foreground or font pixels in the foreground color
and others in the background color.

Code: 1B 3C
Parameters: BSW
BSW = switch
00 = off (Default)
01 = on

3-35

Chapter 4

Drawing Commands

All drawing commands relate to an invisible point of reference
on the screen called the draw pointer. Originally, the draw
pointer is at position 0,0. You can change the position by using
the SetDPtr and RSetDPtr commands described in this chapter.
In addition, some draw commands automatically update the
draw pointer. For example, the LineM command draws a line
from the current draw pointer position to the specified end coor-
dinates and moves the draw pointer to those end coordinates.
The Line command draws a line but does not move the pointer.

Also, note that all draw commands are affected by the pattern
and logic commands described in Chapter 3.

Do not confuse the draw pointer with the graphics cursor. The
graphics cursor is the graphic representation of the mouse/joy-
stick position on the screen.

In this chapter, commands that use relative coordinates (offsets)
are listed with their counterparts that use absolute coordinates.
For example, RSetDPtr is listed under SetDPtr.

0S-9 Windowing System

AI'C3P Draw Arc

Function: Draws an arc with its midpoint at the current draw
pointer position. You specify the curve by both the X and Y
dimensions, as you do an ellipse. In this way, you can draw
either elliptical or circular arcs. The arc is clipped by a line
defined by the (X01,Y01) - (X02,Y02) coordinates. These coor-
dinates are signed 16 bit values and are relative to the center
of the ellipse. The draw pointer remains in its original
position.

Code: 1B 52

Parameters: HBRx LBRx HBRy LBRy HX01 LX01 HYO01
LY01 HX02 LX02 HY02 LY02

Notes:

® The resulting arc depends on the order in which you specify
the line coordinates. Arc3P first draws the line from Point
1 to Point 2 and then draws the ellipse in a clockwise
direction.

® The coordinates of the screen are as follows:

Y

+Y

4-2

Drawing Commands / 4

Bar Draw Bar

Function: Draws and fills a rectangle that is defined by the
diagonal line from the current draw pointer position to the
specified position. The box is drawn in the current foreground
color. The draw pointer returns to its original location.

Code: 1B 4A
Parameters: HBX LBX HBY LBY

RBar Relative Draw Bar

Function: Draws and fills a rectangle that is defined by the
diagonal line from the current draw pointer position to the
point specified by the offsets. The box is drawn in the current
foreground color. The draw pointer returns to its original loca-
tion. This is a relative command.

Code: 1B 4B
Parameters: HBXo LBXo HBYo LBYo

4-3

0S-9 Windowing System

BOX Draw Box

Function: Draws a rectangle that is defined by the diagonal
line from the current draw pointer position to the specified
position. The box is drawn in the current foreground color.
The draw pointer returns to its original location.

Code: 1B 48
Parameters: HBX LBX HBY LBY

RBOX Relative Draw Box

Function: Draws a rectangle that is defined by the diagonal
line from the current draw pointer position to the point speci-
fied by the offsets. The box is drawn in the current foreground
color. The draw pointer returns to its original location. This is
a relative command.

Code: 1B 49
Parameters: HBXo LBXo HBYo LBYo

4-4

Drawing Commands / 4

Circle Draw Circle

Function: Draws a circle of the specified radius with the cen-
ter of the circle at the current draw pointer position. The cir-
cle is drawn in the current foreground color. The draw pointer
remains in its original location.

Code: 1B 50
Parameters: HBR LBR

4-5

0S5-9 Windowing System

Ellipse Draw Ellipse

Function: Draws an ellipse with its center at the current draw
pointer position. The X value specifies the horizontal radius,
and the Y value specifies the vertical radius. The ellipse is
drawn in the current foreground color. The draw pointer
remains in its original location. This is a relative command.

Code: 1B 51
Parameters: HBRx LBRx HBRy LBRy

4-6

Drawing Commands / 4

FFill rood Fint

Function: Fills the area where the background is the same
color as the draw pointer. Filling starts at the current draw
pointer position, using the current foreground color. The draw
pointer returns to its original location. This is a relative
command.

Code: 1B 4F

Parameters: None

4-7

0S8-9 Windowing System

Line Draw Line

Function: Draws a line from the current draw pointer position
to the specified point, using the current foreground color. The
draw pointer returns to its original location.

Code: 1B 44
Parameters: HBX LBX HBY LBY

RLine Relative Draw Line

Function: Draws a line from the current draw pointer position
to the point specified by the x,y offsets, using the current fore-
ground color. The draw pointer returns to its original location.
This is a relative command.

Code: 1B 45
Parameters: HBXo LBXo HBYo LBYo

4-8

Drawing Commands / 4

LineM Draw Line and Move

Function: Draws a line from the current draw pointer position
to the specified point, using the current foreground color. The
draw pointer stays at the new location.

Code: 1B 46
Parameters: HBX LBX HBY LBY

RLineM Relative Draw Line and Move

Function: Draws a line from the current draw pointer position
to the point specified by the offsets, using the current fore-
ground color. The draw pointer stays at the new location. This
is a relative command.

Code: 1B 47
Parameters: HBXo LBXo HBYo LBYo

4-9

0S-9 Windowing System

Point Draw Point

Function: Draws a pixel at the specified coordinates, using
the current foreground color.

Code: 1B 42
Parameters: HBX LLBX HBY LBY

RPoint Relative Draw Point

Function: Draws a pixel at the location specified by the off-
sets, using the current foreground color. This is a relative
command.

Code: 1B 43
Parameters: HBXo LBXo HBYo LBYo

4-10

Drawing Commands / 4

PutGC put Graphics Cursor

Function: Puts and displays the graphics cursor at the speci-
fied location. The coordinates passed to this command are not
window-relative. The horizontal range is 0 to 639. The vertical
range is 0 to 191. The default position is 0,0.

This command is useful for applications running under GrfInt
so that you can display a graphics cursor under WindInt even
if you don’t want mouse control of the cursor.

Code: 1B 4E
Parameters: HBX LBX HBY LBY

4-11

0S-9 Windowing System

SetDPtr Set Draw Pointer

Function: Sets the draw pointer to the specified coordinates.
The new draw pointer position is used as the beginning point
in the next draw command if other coordinates are not
specified.

Code: 1B 40
Parameters: HBX LBX HBY LBY

RSetDP tr Relative Set Draw Pointer

Function: Sets the draw pointer to the point specified by the
offsets. The new draw pointer position is used as the begin-
ning point in the next draw command if other coordinates are
not specified. This is a relative command.

Code: 1B 41
Parameters: HBXo LBXo HBYo LBYo

4-12

Chapter 5

Text Commands

The text commands let you control the cursor’s position and
movement and also the way text prints on the display. These
commands can be used on either text or graphics windows.

The text commands are:

Code Description

01 Homes the cursor.

02xy Positions cursor to x,y. Specify coordinates as
{(x+$20) and (y+ $20).

03 Erases the current line.

04 Erases from the current character to the end of
the line.

05 20 Turns off the cursor.

05 21 Turns on the cursor.

06 Moves the cursor right one character.

07 Rings the bell.

08 Moves the cursor left one character.

09 Moves the cursor up one line.

0A Moves the cursor down one line.

0B Erases from the current character to the end of
the screen.

0C Erases the entire screen and homes the cursor.

0D Sends a carriage return.

1F 20 Turns on reverse video.

1F 21 Turns off reverse video.

1F 22 Turns on underlining.

1F 23 Turns off underlining.

1F 24 Turns on blinking.!

5-1

0S-9 Windowing System

Code Description

1F 25 Turns off blinking.!

1F 30 Inserts a line at the current cursor position.
1F 31 Deletes the current line.

1B 3C BSW See TCharSw in Chapter 3.2

1B 3D BSW See BoldSw in Chapter 3.2

1B 3F BSW See PropSw in Chapter 3.2

! Blink is not supported for text on graphics screens.

2 These characteristics are supported for text on graphics

screens only.

5-2

Index

active window 3-34
AND 3-21

arc, draw 4-2
ARC3P 4-2

background color 3-2, 3-13
BAR 4-3
bar, draw 4-3
bar, relative draw 4-3
BCOLOR 3-2
bell, ring 5-1
blinking 5-1, 5-2
off 5-2
on 5-1
boldface 3-3, 5-2
BOLDSW 3-3, 5-2
BORDER 3-4, 3-26
border color 3-4, 3-13, 3-26
BOX 44
box, draw 4-4
box, relative draw 4-4
buffer, kill 3-20
buffer, load 3-19
buffers 3-7, 3-19
buffers
close 3-20
define 3-7
font 3-19
get/put 3-19
get/put 3-7
patterns 3-29
save 3-18
group numbers 3-7
kill 3-20
load 3-19
logic 3-21
pattern 3-29
16-color 3-31
2-color 3-30
4-color 3-31
pattern array 3-29
pattern size 3-29
put 3-32
block 3-32

buffers (cont'd)
screen type 3-32
size 3-32
save 3-18

carriage return 5-1
change font 3-15
character
erase 5-1
transparent 3-35
CIRCLE 4-5
circle, draw 4-5
close buffer 3-20
close overlay window 3-23
close, window 3-10, 3-23
color 3-26
background 3-2, 3-13
border 3-4, 3-13, 3-26
composite 3-27
default 3-6
foreground 3-13, 3-14,
3-26
graphics 3-6
high-resolution 3-6
palette 3-26
RGB 3-26
VDG-emulation 3-6
command parameters 2-1
commands
drawing 2-1, 4-1
general 2-1, 3-1
text 2-1, 5-1
composite colors 3-27
create windows
device 1-2
overlay 1-4
current window 3-13, 3-34
cursor 3-17
home 5-1
graphics 3-17
put 4-11
move 5-1
off 5-1
on 5-1

0S-9 Windowing System

cursor (cont’d)
position 5-1
set 3-17

CWAREA 3-5

default color 3-6
default windows 1-3
DEFCOLR 3-6
define buffers 3-7

define device windows 3-12

delete line 5-2

device descriptors 1-1, 3-12

device windows 1-1

background color 3-13

border color 3-13
color

background 3-13

border 3-13
foreground 3-13

define 3-12

end 3-10

foreground color 3-13

keyboard 3-34

location 3-13

process window 3-13

protect 3-11

select 3-34

set 3-12
DFNGPBUF 3-7
DISPLAY 1-2, 2-1, 3-12
draw pointer 4-1

relative set 4-12

set 4-12
draw

arc 4-2

bar 4-3

bar, relative 4-3

box 4-4

box, relative 4-4

circle 4-5

ellipse 4-6

fill 4-7

flood fill 4-7

line 4-8

line and move 4-9

draw (cont’d)
line and move,
relative 4-9
line, relative 4-8
point 4-10
point, relative 4-10
pointer 4-1
drawing commands 4-1
DWEND 3-10
DWPROTSW 3-11
DWSET 1-1, 1-2, 3-12

ELLIPSE 4-6

ellipse, draw 4-6

end overlay window 3-23
end window 3-10, 3-23
erase character 5-1

erase line 5-1, 5-2

erase screen 5-1

erase to end of screen 5-1
escape sequence 1-2

FCOLOR 3-14

FFILL 4-7

fill, draw 4-7

flood fill, draw 4-7

FONT 3-15

font 3-12, 3-15, 3-19
bit map 3-15
boldface 3-3, 5-2
change 3-15
current 3-15
data 3-15
load 3-19
order 3-15

proportional 3-15, 3-28,

5-2
font bit map 3-15
font data 3-15
font load 3-19
font order 3-15
foreground color 3-13, 3-14,
3-26

GCSET 3-17

Index

general commands
get/put buffers
close 3-20
define 3-7
font 3-19
group numbers 3-7
kill 3-20
load 3-19
logic 3-21
patterns 3-29
put 3-32
save 3-18
GETBLK 3-18
GPLOAD 3-9, 3-15, 3-19, 3-
32
graphic patterns 3-29
graphics
boldface 3-3
colors 3-6
cursor 3-17, 4-11
put 4-11
set 3-17
font, proportional 3-28
transparent 3-35
group numbers 3-7, 3-8
Grp_Clip 3-8
Grp—_Fnt 3-8
Grp__Pat2 3-8
Grp_—_Pat4 3-8
Grp_Pat6 3-8
Grp—Ptr 3-8

2-1, 3-1

high-resolution, colors 3-6
home cursor 5-1

ISATTACH 3-10
immortal shell 1-3
INIZ 1-2, 3-10, 3-12
insert line 5-2
interactive window 3-34

KILBUF 3-20
kill buffer 3-20

LINE 4-8
line
delete 5-2
draw 4-8
erase b5-1, 5-2
insert 5-2
relative draw 4-8
line and move, draw 4-9
line and move, relative draw
4-9
LINEM 4-1,4-9
load get/put 3-19
load font 3-15, 3-19
location, window 3-13
logic operations 3-21, 4-1
logic set 3-21
LSET 3-21

memory 1-1, 3-12
MONTYPE 3-6
move cursor 5-1

open windows

device 1-2
overlay 1-4
OR 3-21

overlay window 1-1, 1-2, 3-23,
3-24

overlay window
end 3-23
no-save 3-24
save 3-24
select 3-34
set 3-24
size 3-24
stacked 3-25

OWEND 3-23

OWSET 1-4, 3-24

PALETTE 3-26

palette colors 3-26

parameters, command 2-1

pattern 3-29, 4-1
16-color 3-31
2-color 3-30

0S-9 Windowing System

pattern (cont’'d)
4-color 3-31
array 3-29
size 3-29
POINT 4-10
point, draw 4-10
point, relative draw 4-10
pointer, draw 4-1
position cursor 5-1
process window 3-13
proportional characters
5-2
proportional font 3-28
PROPSW 3-28, 5-2
protect device windows
PSET 3-29
put block 3-32
put buffer 3-32
screen type 3-32
size 3-32
put graphics cursor 4-11
PUTBLK 3-18, 3-19, 3-32
PUTGC 4-11

3-28,

3-11

RBAR 4-3

RBOX 4-4

reverse video 5-1
RGB colors 3-26
ring bell 5-1
RLINE 4-8
RLINEM 4-9
RPOINT 4-10
RSETDPTR 4-1, 4-12

save, get/put 3-18

save window 3-18
SCALESW 3-33

scaling 3-33

scaling, automatic 3-33
scaling coordinates 3-33
screen type 3-12

screen, erase 5-1
SELECT 3-34

select window 3-34

set
device window 3-12
draw pointer 4-12
draw pointer, relative
4-12
overlay window 3-24
SETDPTR 4-1, 4-12
SETSTAT 3-6
SHELL 1-3
shell, fork 1-3
stacked overlay windows 3-25

TCHARSW 3-35, 5-2
text commands 5-1
text
boldface 3-3, 5-2
proportional 3-28, 5-2
transparent character 3-35,
5-2

underline
off 5-1
on 5-1

video, reverse 5-1

WCREATE 1-2
windows 1-1
background color 3-2,
3-13
boldface 3-3, 5-2
border color 3-4, 3-13,
3-26
buffers 3-7, 3-19
kill 3-20
load 3-19
patterns 3-29
put 3-32
close 3-10, 3-23
color 3-26
background 3-2,
3-13
border 3-4, 3-13,
3-26
composite 3-27

Index

windows (cont’d)

default 3-6
foreground 3-13,
3-14, 3-26
RGB 3-26
current 3-13
cursor 3-17
default 1-3
default color 3-6
device 1-1
define 3-12
end 3-10
opening 1-2
protect 3-11
select 3-34
set 3-12
device descriptors 1-1,
3-12
end 3-10
fonts 3-15, 3-19
foreground color 3-13,
3-14, 3-26
graphics cursor 3-17,
4-11
interactive 3-34
keyboard 3-34
location 3-13
logic operations 3-21
maximum 1-1

windows (cont'd)

memory 1-1, 3-12
overlay 1-1, 1-2, 3-23,
3-24
end 3-23
no-save 3-24
opening 1-4
save 3-24
select 3-34
set 3-24
size 3-24
stacked 3-25
process window 3-13
process 3-13
protect 3-11
put buffer 3-32
save 3-18
scaling 3-33
screen type 3-12
select 3-34
size 3-5
transparent mode 3-35,
5-2
type 1-1
work area 3-5

work area 3-5

XOR 3-21

0S-9
Glossary

08S-9 Glossary

active processes. Operations that the system is currently
executing.

active state. An operating or working condition. A procedure
in an active state is processing data and not waiting for another
procedure to end.

address. A number that identifies a location in your comput-
er's memory.

age. A count of the number of switches (process changes) the
system has made since a process’s last time slice.

anonymous directory. A directory referenced by its hierarchi-
cal position using the period (.) character. One period refers to
the current directory. Two periods refer to the parent of the cur-
rent directory, and so on.

application program. A process or group of processes
designed to accomplish specific tasks, such as word processing,
data management, game playing, and so on.

argument. Data you supply to a process or command for it to
evaluate.

array. Data arranged so that each item is located by its row
and column position. Single-dimensioned arrays have one or more
rows and one column. Multi-dimensioned arrays have one or
more rows and two or more columns.

ASCII code. American Standard Code for Information Inter-
change. A method of defining alphabetic and numeric characters

and other symbols by giving each a unique value. For instance,
the ASCII value for A is 65, and the ASCII value for B is 66.

assembler. A program that produces machine code from source
code (code from a low-level computer language).

assembly language. A system for coding computer instruc-
tions to perform tasks. You can use assembly language code to
directly manipulate data within a computer; therefore, assembly
language needs less interpretation than higher level languages
like BASIC or Pascal.

attribute. See file attribute.

1-1

0S-9 Glossary

background processing. Executing one or more procedures
and at the same time continuing to operate in 0OS-9 or in
another procedure.

backup. An identical copy of the contents of one disk on
another disk.

base. The lowest value allowed in a function or operation. For
instance, BASIC09 allows a base value of 1 for array structures
unless you indicate otherwise.

batch file. See procedure file.

baud. Bits-per-second. A unit for measuring the speed of data
flow between devices.

binary. A numbering system using only two digits, 0 and 1. In
this system, shifting the position of a digit to the left raises the
value of the digit by the power of 2. For instance, 1 is the binary
equivalent of 1, 10 = 2, 100 = 4, 1000 = 16, and so on.

bit. The smallest unit of a computer’s memory. Eight bits form
a byte. Each bit can have a value of either 0 or 1.

bit map. A storage area of 256 bytes. Each bit represents one
page (256 bytes) of your computer’s memory. If a bit is set
(equals 1) then its associated memory page is allocated. If a bit
is reset (equals 0) then its associated memory page is free.

block. A group of data, often comprising 256 bytes.

block-oriented device. A device that receives data, sends
data, or both, in groups of 256 bytes.

Boolean logic. A binary type of algebra developed by George
Boole.

Boolean data type. A type of variable that can have only two
values, True or False. Boolean data types usually store the
results of comparisons, such as: is A greater than B (A>B), does
Y equal X (Y=X), and so on.

boot. The process of loading and initializing OS-9.

bootfile. A disk file containing modules to be loaded during an
0S-9 boot.

bootlist. A disk file containing a list of module names to be
used by OS9Gen to create a bootfile.

1-2

0S-9 Glossary

bootstrap module. A program that contains the code neces-
sary to initialize OS-9.

border. An area around a screen or window that defines the
boundaries of the screen or window.

branch. To leave one routine and begin execution of another
routine within a program or procedure.

breakpoints. Locations in a program or procedure at which
you want execution to pause.

buffer. A temporary storage area through which OS-9 trans-
fers data.

byte. A unit of computer memory storage that contains a value
in the range 0-255.

byte data type. A numeric type of variable that can contain
unsigned eight-bit integer data (in the range 0-255 decimal).

call. (1) To transfer execution to another routine, then return
to the calling procedure with obtained values intact and avail-
able for use by the calling routine. (2) A built-in 0S-9 routine
that performs a system function.

CC3Disk. The floppy diskette driver module.
CC3I0. The system input/output driver.

chaining. A process of calling and turning over system control
to a new procedure.

checksum. A value calculated from the contents of a file or
module that the system can later use to verify whether the con-
tents of the file or module are uncorrupted.

child or child process. A process begun from another (par-
ent) process.

close. The process of deallocating the path to a device or file.

cluster. A group of sectors. In OS-9 for the Color Computer, a
cluster consists of only one sector.

code. Numeric data that can be used by a computer to perform
a task.

command. The name of an OS-9 program or function.

1-3

0S-9 Glossary

command line. One or more commands with all their parame-
ters, options, and modifiers.

command modifiers. Data or values appended to a command
that change the way the command functions.

command options. Data that you can include in a command
line to specify the way the command functions.

command parameters. Data or values appended to a com-
mand that define or customize the command.

command separator. A semicolon. You can use a semicolon to
separate several commands on the same command line.

compile. To create machine language code (object code) from a
program written with a computer language. Also to translate
high level code (from a high level language such as BASIC) into
low level code (code that is like machine language).

complement. A value that is derived by subtracting a number
from a constant. For example, the 10s complement of 4 is 6. In
binary, a value is complemented by changing all the 1 digits to 0
and all the 0 digits to 1, then adding 1 to the least significant
(rightmost) digit.

complex data structure. A group of data that contains two or
more types of data structures. See data structure.

constant. A value or block of data that is fixed (does not
change during the run of a program or procedure).

CPU. Central Processing Unit. An integrated circuit (chip)
that controls the operation of a computer.

current directory. The directory in which OS-9 looks for data
files or stores data files unless you specify otherwise.

current line. When editing, the line on which the editing cur-
sor or pointer is located.

cursor (text). A colored box that shows where the next charac-
ter is to appear on the screen. A text cursor appears on both text
and graphics windows or screens.

cyclic redundancy check (CRC). A value the system calcu-
lates from the data stored in a module. The system calculates a
new value each time it attempts to load the module. If the calcu-
lated value does not match the CRC value contained in the mod-
ule, the system cannot load the module.

1-4

0S-9 Glossary

cylinder. A disk track that includes both sides of a disk. See
also track.

DAT. Dynamic address translation. The memory management
system used by OS-9 Level Two.

data directory. The directory in which OS-9 automatically
saves files unless you specify otherwise.

data structure. A unit of data, organized for access.

data type. A method for representing data, such as character
(ASCII value), integer (whole number), or real (floating point
number).

deadlock. See deadly embrace.

deadly embrace. A situation in which two processes attempt
to gain control of the same disk areas at the same time.

debug. To find and correct program errors.

decompile. To translate machine language code into a com-
puter language code.

delimiter. A character that divides items. For instance, in
08S-9, the semicolon is a delimiter that divides two commands on
the same line.

descriptor. See device descriptors.

device. A data source, destination, or both. OS-9 devices can
exist in your computer’s memory (such as a window or a RAM

disk), or they can be external equipment (such as a printer or
disk drive).

device descriptors. Small tables that define a device, its
name, its driver, and its file manager. Device descriptors also
contain port initialization data and port address information.

device drivers. Modules that handle basic input/output func-
tions for specific devices. Each device you use with your computer
must have its own driver to interpret the code you send it.

device name. A unique system word for a device. The name for
disk Drive 0 is /DO, the name for Window 1 is /W1, and so on.

device table. See device descriptor.

0S-9 Glossary

device window. An 0S-9 device from which you can run a
program or utility. Access device windows in the same manner
as you do other devices. Each device window has its own input
and output buffers. Refer to windows using device names (/W fol-
lowed by a number), such as /W1, /W2, /W3, and so on.

directory. A file in which OS-9 stores a list of other files,
including their names, locations on the disk, attributes, and so
on.

disk allocation map. Logical Sector Number 1 on a disk. The
data in LSN1 indicates which sectors are allocated to files and
which sectors are free.

double click. To press and release the mouse button twice in
quick succession when the pointer is over the desired location.

drag. To hold down the mouse button and move the mouse to a
new position before releasing the button.

draw pointer. An indicator that determines where the next
graphics draw command will begin unless you specify otherwise.

driver. See device driver.

dump. To write the contents of a video screen, a memory loca-
tion or a file to another terminal, memory location, or file.

echo. To cause data being sent to one device to go to another
device, as well.

edit. To change the data or values in a file or in your comput-
er’'s memory.

edit buffer. An alternate workspace for the 0OS-9 Macro
Editor.

edit macro. A series of commands you can execute with only a
single command.

edit pointer. An indicator that determines where the next edit
command is to operate unless you specify otherwise.

editor. A program that provides special commands to aid you
in changing the contents of a file.

error code. A code that 0S-9 displays when it cannot under-
stand what you want it to do or when your computer or a periph-
eral malfunctions. Use the displayed code number to look up a
description of the error.

1-6

0S-9 Glossary

error path. The route through which OS-9 sends error codes
and other information to display on the screen. The error path is
designated as Path Number 2.

error trap. A routine in a procedure that checks for an error
and provides an alternate action (other than terminating execu-
tion and displaying a system error message).

executable file. A program file that you can run by typing
and entering its filename.

execute. To start a procedure, program, or command (cause it
to run).

execution directory. The disk directory that contains your
system’s command files.

execution modifiers. See command modifiers.

execution offset. The location in a program or subroutine at
which execution begins, calculated from the beginning of the
module.

expressions. Data items joined by arithmetic operators. See
also operator.

expression stack. A memory location in which BASIC09
stores temporary results while it evaluates an expression.

file. (1) A block of information your computer uses for a partic-
ular function or program. A file can contain an operating sys-
tem, a language, an application program, or text. (2) A collection
of associated records, such as information about each book in a
library.

file attribute. Data that identifies a file, for instance its size,
security status, language type, and so on.

file locking. Protecting a file to ensure that one process does
not change it while another process is using it.

file pointer. An indicator that determines where in a file the
next read or write operation is to occur unless you or the system
indicates otherwise.

file security. A set of attributes that determines who can use
a file and in what manner.

filename. A set of characters that uniquely identifies and
locates a block of data stored on a disk.

0S-9 Glossary

filter. To alter data in some manner as it passes between two
devices or between two memory locations.

flag. A symbol or value that indicates when a certain condition
exists in a procedure,.

font. A character set. A group of alphabetic and numeric char-
acters and other symbols of a particular style and shape.

foreground. (1) An OS-9 task that takes priority over other
concurrently running tasks. (2) Characters or designs on a
screen or window.

fork. The process of initializing one procedure from another
procedure.

format. To magnetically organize a diskette so that the com-
puter can use it to store data.

function. In BASIC09, an operation that BASIC performs on
data. A function always returns (produces) a value of some type.

Get/Put buffer. A buffer in which you or the system can store
fonts, screen patterns, graphic displays, overlay windows, and
other recallable data. The system allocates Get/Put buffers in 8-
kilobyte blocks.

getstat. An OS-9 routine that gets (returns) the state or status
of a specific system operation.

global variable. A variable that is available to all procedures
and routines in a program.

graphics. An arrangement of elements (lines, dots, and so on)
on your computer’s screen.

graphics cursor. An indicator (either visible or invisible) that
determines where the next graphic function is to occur on the
screen unless you or a program specifies otherwise. In applica-
tions, you often move the graphics cursor using a mouse.

graphics pointer. See graphics cursor.

graphics screen. A screen in which all pixels are represented
by bits in a memory map. You create images on the screen by
manipulating the bits using special OS-9 or computer language
commands.

0S-9 Glossary

graphics window. A window created on a graphics screen.
You can display both graphics (drawn images) and text on a
graphics window. The text generated on a graphics window/
screen uses software fonts that you or the system must load into
memory.

group. An organization of related data or files. For instance,
08-9’s graphics buffers are organized into groups that you refer-
ence by number.

hardware. The physical parts of your computer, including its
disk drives, keyboard, integrated circuits (chips), and so on.

header. Data located at the beginning of a file or module to
identify its type, size, verification values, and so on.

hexadecimal. A number system to a base of 16 (using 16 dig-
its). Hexadecimal digits are 0, 1, 2, 3,4, 5,6, 7, 8,9, A, B, C, D,
E, and F. Shifting a hexadecimal digit one place to the left
causes its value to be multiplied by 16.

high order bit. The most significant or leftmost bit in a byte.
If the high order bit is 0, it represents a value of 0. If the high
order bit is 1, it represents a value of 128.

I/O. Input/Output.

identification sector. Logical Sector Number 0 on a disk.
LSNO contains a description of the physical and logical organiza-
tion of a disk.

immortal shell. An OS-9 shell that does not die on receiving
an EOF signal (such as when you press [CTRL)(BREAK)).

integer data type. A type of variable that can store whole
numbers in the range -32768 to 32767.

interactive window. A window that is getting input from the
keyboard. This window is currently on the displayed screen.

interface. To link devices or modules together in order to
transfer data.

internal integrity check. A system of internal values that
08S-9 can use to make certain that its system modules and func-
tions are accurate.

IOMAN. The input/output manager that provides common pro-
cessing for all input/output operations.

19

0S-9 Glossary

IRQ. Interrupt request. A signal that causes the execution of
one process to halt and the execution of another process to begin.
The system retains the values of the first process so that it can
later continue its execution.

kernel. 0S-9 software that supervises the 0S-9 system and
provides basic system services, such as multitasking and memory
management, and that links all system modules.

key sequence. Two or more keys you press at the same time to
produce a specific function.

keyboard mouse. An OS-9 function that lets you use the key-
board arrow keys instead of an external mouse device. Press

to toggle the keyboard mouse on and off.
keyword. A command name.

kill. Terminate the execution of a process.
kilobyte. 1024 bytes.

link. To make a module available to a process.

link count. The number of processes using a module. When a
module’s link count reaches 0, OS-9 deallocates the module.

load. To transfer data from an external device into your com-
puter’s memory.

local variable. A variable that can be used by only the proce-
dure or routine in which it resides.

locked. See file locking.
lockout. See file locking.

log in. To initiate the necessary procedure to operate OS-9
from a separate terminal (type in a user name and password).

logical address. An offset address. An address that is num-
bered from the beginning of a block rather than from the begin-
ning of memory, a module, or other storage area.

logical sectors. Sectors that OS-9 or a program references in
numeric order, regardless of their actual physical location on a
disk.

loop. A sequence of BASIC09 commands that execute repeat-
edly a specified number of times or until a specific condition
occurs to terminate the execution.

1-10

0S-9 Glossary

macro. A series of commands you can execute with only a sin-
gle command name.

map. See memory map.

mask. A pattern of bits that you use in combination with a
logical operator to change specified data selectively — reversing
certain bits without affecting the others.

megabyte. One million bytes.

memory. The portion of your computer that stores data and
values.

memory management. Assigning and mapping memory to
keep track of modules (processes and data) and their uses.

memory map. A chart depicting the use of your computer’s
memory by the operating system.

menu. A screen display from which you select an action for
your computer.

microprocessor. An integrated circuit (chip) that controls the
basic operation of your computer.

mode. A particular function of a program or system.

modem. Modulator/demodulator. A device to prepare signals
for transmission through telephone lines and to reverse the pro-
cess after transmission.

modifier. See command modifier.

module. An 0OS-9 program or block of data residing in your
computer’s memory.

module body. A module’s code (program or data), including
the module name.

module directory. A table in your computer’s memory that
lists all the modules residing in memory.

module header. Code that resides at the beginning of all mod-
ules and that contains information about the module, including
size, type, attributes, storage requirements, and its execution
starting address.

monitor. The video display device connected to your computer.

1-11

0S-9 Glossary

mouse. A device you use to control a pointer on the display
screen. In application programs, you can often use a mouse to
indicate functions you want to initiate.

multi-programming. A method of computer operation in
which the system allocates slices of execution time to more than
one process in order to execute them concurrently.

multi-tasking. Executing more than one process at the same
time.

multi-user. A system that lets more than one person access its
functions at the same time.

nesting. Incorporating one structure into another structure of
the same type. Both procedures then retain their individual
identities.

non-shareable file. A file or module that can be used by only
one procedure or user at one time,

null string. A string variable that does not contain a value
(has a length of 0 characters).

object code. Machine language instructions.

offset. The difference between a location and a beginning loca-
tion. For instance, you can tell some BASIC09 graphics functions
to begin operation at a location that is offset from the current
draw pointer position.

operand. A value that is used or manipulated during an oper-
ation or during the execution of an instruction.

operating system. A set of associated programs that carry
out your commands.

operator. A symbol or word that signifies some action to be
performed on specified data.

options. See command options.

output path. The route through which the system sends data
from one device to another.

overflow. A condition in which a storage space is not large
enough to contain the data sent to it.

overlay. A condition in which programs or modules in a com-
puter’s memory are replaced with other data.

1-12

0S-9 Glossary

overlay window. A window opened or placed on top of a device
window.

overwrite. To replace data with other data.

owner. An entity that has control over a file, module, or
process.

pack. To compile a BASIC09 procedure. See compile.

padding. Adding spaces to a string or unit of data to make it
a specific length.

page. In your computer’s memory, a block of 256 bytes.
paint. To fill all or a portion of the screen with a color.

palette. A register that contains a numeric code representing a
color or shade.

parameters. See command parameters.

parent or parent process. A process that forks (starts)
another process (a child process).

parity. A system in which all binary numbers of a code are
converted to either even-bit numbers (an even number of 1s) or
odd-bit numbers (an odd number of 1s).

parse. To search through a list or sequence of data.
Pascal. A high-level computer language.

pass by value. When BASIC09 passes a value from one proce-
dure to another by evaluating a constant or expression and plac-
ing the result in temporary storage to be accessed by the second
procedure.

pass by reference. When BASIC09 passes a variable from one
procedure to another by providing the second procedure with the
address of the variable’s storage.

passive window. Any window that is not receiving input from
the keyboard. A process can be running on a passive window
provided that the process is getting its input from a source other
than the keyboard.

1-13

0S-9 Glossary

pathlist. The route from one position in a disk’s directory to
another directory or file.

peripherals. Devices connected to your computer, such as
printers, disk drives, and so on.

permission. The attributes of a file or module that determine
who can use the file or module and in what manner.

physical sectors. The actual arrangement of sectors on a
disk’s surface, regardless of any internal organization by 0S-9.

pipe. A function in which the output of one process becomes
the input of another process.

pipeline. A series of commands, each of which passes the
results of its operations to the next command in the series.

PIPEMAN. The pipe file manager. Pipes are memory buffers
acting as files to transfer data between processes.

pixel. The smallest area of a display screen that can be manip-
ulated (turned off or on).

pointer. An indicator that determines a location in memory, in
a file, or on the screen.

port. A junction between devices through which data flows. An
electrical connection between your computer and a peripheral.

position independent module. A module that need not be
loaded at any certain location in memory.

procedure. A program or routine your computer can execute.

procedure file. A file containing one or more OS-9 commands.
You can execute a procedure file in the same manner as you exe-
cute OS-9 commands or programs.

process. A computer program or a routine that performs a
specific task as part of a computer program.

process descriptor. A block of data that includes information
about a process, its state, memory allocations, priority, queue
pointers, and so on.

process ID. A unique number the system gives each process it
executes.

1-14

0S-9 Glossary

process priority. A value you or the system gives to a process
that determines the amount of CPU (execution) time it is to
receive in a multi-tasking environment.

process state. The condition of a process in regard to its exe-
cution. A process can be active (executing), waiting (awaiting its
turn for processing), or sleeping (inactive until it receives a sig-
nal to awaken).

program. Code that causes your computer to perform some
function or a series of functions.

program modules. Executable code. Modules you can run to
perform a function or series of functions.

public. Any user of a program or module other than the owner.
See owner.

purge. Delete. Usually refers to removing all, or a selected
group, of files from a directory.

RAM. Random access memory. Computer memory you can
write to (change) and read from.

RAM disk. A portion of your computer’s memory that OS-9
can use for data storage and retrieval in the same manner as it
uses an external disk drive. However, be certain you copy RAM
disk data to a floppy diskette or hard disk before you exit OS-9
or turn off your computer. If you do not, the data is lost.

random access. Reading (accessing) information in a block of
data without first having to read any preceding data.

raw data. Unformatted information that is passed to a device
exactly as it exists.

RBF. The random block file manager that processes all disk
input/output.

re-entrant programs. Programs or modules that can be used
by more than one process at the same time.

read. The process of transferring data from a device into the
computer’s memory.

read permission. System permission to read (withdraw data
from) a file.

1-15

0S-9 Glossary

real data type. A type of variable that can store floating point
numbers in the range =1 x 10=%

record. A collection of related data items that a program or
process considers to be a unit for the purpose of processing. A
subdivision of a file, such as all information about a single item
in an inventory file.

record locking. Protecting a portion of a file to ensure that
one process does not change it while another process is using it.

recursive procedure or routine. A procedure or routine that
repeatedly executes itself (that contains a statement causing it
to run itself one or more times).

register. A location within a computer’s memory (often in the
CPU) for storing values during arithmetic, logic, or transfer
operations.

remarks. Text contained in a program that describes the pro-
gram itself and that is not to be executed.

ROM. Read only memory. Computer memory containing con-
stant values that the computer can read but cannot change.

ROOT directory. The parent directory of all files and directo-
ries on a disk. The ROOT directory is created by FORMAT.

run. To execute, or to cause a program or procedure to start.
runtime. The duration of a program’s execution.

SCF. The sequential character file manager that handles non-
disk input/output operations to devices such as printers and
terminals.

scratched. Destroyed. When you copy one file over another file,
or the contents of one disk onto another disk, any data existing
in the second file or on the second disk is scratched.

sector. A division of a disk track. Disk tracks are organized
into several sectors.

seek. To position a file pointer at a specific byte location in a
file.

semigraphics. Graphics (designs on the display screen) using
ASCII graphic characters.

1-16

0S-9 Glossary

sequential access. The process of reading data in order, one
character at a time.

sequential execution. Executing a series of commands or pro-
cesses, one after the other.

sequential file. A file consisting of records of various lengths
that must be accessed one after the other, starting at the first
record.

serial. Refers to transmissions in which data leaves or arrives
at a location or device, with data units following one after the
other in space or time.

Setstat. An OS-9 routine that sets (changes) the state or sta-
tus of a specific system operation.

shell. The command interpreter.

sibling. One of two or more processes executed by the same
parent process.

sign bit. The leftmost bit of a binary number that serves as an
indicator to show whether the number is positive or negative.
Normally, a value of 0 indicates positive, and a 1 indicates
negative.

signal. An interrupt from the system or another process that
changes a procedure’s or a device’s state. For example, signals
set an active process to a waiting state, awaken an inactive or
sleeping process, or change the display window.

single step. A procedure in the Debug mode that lets you exe-
cute one procedure statement and (optionally) view the results.

single-user file. A file that only one person can access at a
time.

single-user module. A program that only one person can use
at a time.

sleeping state. A situation where you or the system suspends
a process for a specified time or until you or the system sends it
a wakeup signal.

source code. Program code produced using a computer lan-
guage. Before it can control a computer, source code must be
translated into machine language, either by a compiler or a
translator program. See also compiler.

1-17

0S-9 Glossary

stack. A storage area in your computer’s memory in which
data can be placed or recovered in sequence, from one end only.

standard error path. The route through which your computer
sends error codes and other messages to the screen.

standard input path. The route through which you can send
data to your computer (usually the keyboard).

standard output path. The route your computer uses to send
data to the screen.

start up. To turn on your computer and initialize OS-9.

stop bits. One or two bits that a terminal program sends after
each unit of data to indicate that the transmission of the unit is
complete.

string. A group of alphanumeric characters.

string data type. A type of variable that can contain one or
more ASCII values (values representing alphanumeric characters
or other symbols). String data types can be any length, up to the
capacity of your computer’s memory.

structured programming. Building a program out of a series
of procedures, each of which performs a specific task but com-
bines with its associated procedures as one program.

subdirectory. A directory that resides within another (parent)
directory.

subroutine. An operation that performs a specific task as part
of a larger operation.

super user. The system user who has control of the entire sys-
tem and access to all system files and modules. User Number 0.

symbolic debugging. An error correcting system that lets you
pause program execution and view the current values of vari-
ables, using their program names.

syntax. The rules for forming legal instructions for your
computer.

system. (1) A group of files and programs that provide you
with control over your computer. (2) Your computer with all its
attached devices.

1-18

0S-9 Glossary

system call. Built-in OS-9 routines that perform particular
functions, such as accessing disk files, printing data on the
screen, and so on.

table. A storage area in memory or on disk containing ordered
data to be used by a process or function.

task. A unit of work performed by your computer.

terminal. A computer or an electronic device, with a screen
and keyboard, connected to your Color Computer 3. You can
access OS-9 functions from a terminal in the same manner as
you can access them from your Color Computer 3 keyboard.

text files. Files containing printable characters, or the code
representing such characters.

text screen. A Type 1 or 2 screen. Text screens use hardware
generation of characters (fonts are not definable) and are often
referred to as hardware screens or windows. Text screens cannot
display graphics. Text operations occur faster in text windows/
screens than on graphic windows/screens.

text window. Any window created on a hardware text screen.

time slice. The period of time between system clock ticks. A
tick occurs every 1/60th of a second.

timesharing. A situation in which more than one person uses
the same operating system.

token. In the BASIC language, a numeric value that represents
a keyword.

trace. To display each procedure statement as it executes and
view its results.

tracks. Magnetically created concentric circles created on a
disk for the storage of data. Tracks are established when you for-
mat a disk.

transparent characters. Characters that display over screen
images without erasing any of the area surrounding the
characters.

unlink. To remove a module (program) from your computer’s
memory.

update mode. The condition of a file when it is open for both
reading and writing.

0S-9 Glossary

user ID. A number that identifies the operator to which a pro-
cess belongs.

user number. See user ID.

utility. A short program that performs a frequently required
task, usually for the maintenance of your computer system or
files.

variable. A unit of storage with no fixed value. You define a
variable and locate it in your computer’s memory using a vari-
able name.

VDG. Video Display Graphics.
vector. A graphics line or portion of a line.
verify. To check data for accuracy.

wait state. A situation in which a process remains suspended
until one of its child processes terminates or until it receives a
wakeup signal from the system.

wake up. To continue the execution of a process that has been
suspended.

wild card. A symbol that represents or takes the place of one
or more other characters or symboals.

WINDINT. Window interface.

window. All or a portion of your video screen with specific for-
mats (columns, lines, size, colors, and so on) and type (graphics,
text, or both). An area of a screen in which you can run a pro-
cess or which can receive input.

word length. The number of bits to transmit as one unit.

workspace. A portion of your computer’s memory that
BASIC09 establishes for the storage and manipulation of
procedures.

write. To transfer data from the computer’s memory to a
device.

write permit. System permission to change the data in a file.

write protect. A method of protecting a diskette so that your
computer cannot change the data on it.

1-20

; RADIO SHACK _
- A Division of Tandy Corperation
- Fort Worth, Texas 76102

- 8/87.SWCG " iB74lBOtQ Printed in U'S:A.

	Getting Started with OS-9
	About This Manual
	Contents
	Part 1 - What You Need to Know About OS-9
	Chapter 1 - What is an Operating System?
	Instructing Your Operating System
	Using Application Programs and Computer Languages
	Using Peripherals
	Why Use OS-9?
	How Much Do You Need to Know About OS-9?

	Chapter 2 - How to Start and Exit Your System
	Booting OS-9
	Rebooting OS-9
	Exiting OS-9
	Upper- and Lowercase Characters
	OS-9 Error Messages

	Chapter 3 - What You Need to Know To Use Floppy Drives
	Write Protection for Diskettes
	Disk Drive Names
	Making Copies of Diskettes
	Formatting With One Disk Drive
	Formatting With Two Disk Drives

	Using the Backup Command
	Making Copies With One Disk Drive
	Making Copies With Two Disk Drives

	Part 2 - Organization, Commands, and Keys
	Chapter 4 - Files and Directories
	About Files
	About Directories
	Multiple Directories
	About File and Directory Names
	Examples of Filenames
	About Pathlists
	Anonymous Directory Names
	About Device Names

	Chapter 5 - Commands and Keys
	Typing Commands
	Editing Commands
	Command Parameters
	Using Options

	Using Commands
	Accessing Commands
	Commands from Disk
	Changing the Execution Directory
	Changing the Data Directory
	Changing System Diskettes
	Video Display and Keyboard Functions
	Special Keys

	Chapter 6 - OS-9 Toolkit
	Viewing Directories
	Creating Directories
	Deleting Directories
	Displaying Current Directories
	Copying Files
	Deleting Files
	Renaming Files
	Looking Inside Files
	Loading Command Modules into Memory
	Listing the Command Modules in Memory
	Deleting Modules from Memory
	Using Other Commands

	Chapter 7 - Customizing Your System
	Creating a New System Diskette
	Monitor Types
	Using Windows
	Establishing a Window
	Changing Window Colors
	Eliminating a Window
	Using Startup To Establish A Window

	Index

	OS-9 Commands Reference
	Contents
	Chapter 1 - Introduction
	The Kernel
	The Input/Output Manager
	Device Drivers
	Device Descriptors

	The Shell
	Going On

	Chapter 2 - The OS-9 File System
	Input/Output Paths
	Disk Directories
	Subdirectories

	Disk Files
	Sectors
	Text Files
	Random-Access Data Files
	Procedure Files
	Executable Program Module Files
	Miscellaneous File USe
	The File Security System
	Examining and Changing File Attributes
	Record Lockout

	Device Names

	Chapter 3 - Advanced Features of the Shell
	More About Command Line Processing
	Command Modifiers
	Execution Modifiers
	Alternate Memory Size Modifier
	I/O Redirection Modifiers
	Command Separators
	Sequential Execution Using the Semicolon
	Concurrent Execution Using the Ampersand
	Combining Sequential and Concurrent Executions
	Using Pipes: The Exclamation Mark
	Raw Disk Input/Output

	Command Grouping
	Shell Procedure Files
	Built-in Shell Commands and Options
	Running Compiled Intermediate Code Programs

	Chapter 4 - Multiprogramming and Memory Management
	Processor Time Allocation and Timesciling
	Process States
	Creation of Processes
	Basic Memory Management Functions
	Loading Program Modules into Memory
	Deleting Modules from Memory
	Loading Multiple Programs

	Chapter 5 - Useful System Information and Functions
	File Managers, Device Drivers, and Descriptors
	The Sys Directory
	The Startup File
	The CMDS Directory
	Making New System Diskettes
	Technical Information for the RS-232 Port

	Chapter 6 - System Command Descriptions
	Organization of Entries
	Command Syntax Notations

	Command Summary
	ATTR
	BACKUP
	BUILD
	CHD
	CHX
	CMP
	COBBLER
	CONFIG
	COPY
	DATE
	DCHECK
	DEINIZ
	DEL
	DELDIR
	DIR
	DISPLAY
	DSAVE
	ECHO
	ERROR
	EX
	FORMAT
	FREE
	HELP
	IDENT
	INIZ
	KILL
	LINK
	LIST
	LOAD
	MAKDIR
	MDIR
	MERGE
	MFREE
	MODPATCH
	MONTYPE
	OS9GEN
	PROCS
	PWD
	PXD
	RENAME
	SETIME
	SETPR
	SHELL
	TMODE
	TUNEPORT
	UNLINK
	WCREATE
	XMODE

	Chapter 7 - Macro Text Editor
	Overview
	Text Buffers
	Edit Pointers
	Entering Commands
	Control Keys
	Command Parameters
	Numeric Parameters
	String Paramaters

	Syntax Notation

	Getting Started
	Edit Commands
	Displaying Text
	Manipulating the Edit Pointer
	Inserting and Deleting Lines
	Searching and Substituting
	Miscellaneous Commands
	Manipulating Multiple Buffers
	Text File Operations
	Conditionals and Command Series Repetition

	Edit Macros
	Macro Headers
	Using Macros
	Macro Commands
	Sample Session 1
	Sample Session 2
	Sample Session 3
	Sample Session 4
	Sample Session 5

	Edit Quick Reference Summary
	Editor Error Messages

	Appendix A - OS-9 Error Codes
	OS-9 Error Codes
	Device Driver Errors

	Appendix B - Color Computer 2 Compatibility
	Alpha Mode Display
	Using Alpha Mode Controls with Windows

	Graphics Mode Display
	Graphics Mode Selection Codes
	Graphics Mode Control Commands

	Display Control Codes Summary

	Appendix C - OS-9 Keyboard Codes
	Appendix D - OS-9 Keyboard Control Functions
	Index

	OS-9 Technical Reference
	Contents
	Chapter 1 - System Organization
	I/O System Modules
	Color Computer OS-9 Modules
	Kernel, Clock Module, and INIT
	Input/Output Modules
	I/O Manager
	File Managers
	Device Drivers
	Device Descriptors
	Shell

	Chapter 2 - The Kernel
	System Initialization
	System Call Processing
	OS9Defs and Symbolic Names
	Types of System Calls

	Memory Management
	Memory Use
	Color Computer OS-9 Typical Memory Map
	Memory Management Hardware

	Multiprogramming
	Process Creation
	Finding the Module
	Assigning a Process Descriptor
	Allocate RAM
	Proceed or Terminate
	Assign Process ID and User ID
	Process Termination

	Process States
	The Active State
	The Wait State
	The Sleeping State

	Execution Scheduling
	Signals

	Interrupt Processing
	FIRQ Interrupt
	Logical Interrupt Polling System
	IRQ Interrupt
	NMI Interrupt
	The Polling Table
	Polling the Entries
	Adding Entries to the Table

	Virtual Interrupt Processing

	Chapter 3 - Memory Modules
	Module Types
	Module Format
	Module Header
	Module Body
	CRC Value

	Module Headers: Standard Information
	Sync Bytes
	Module Size
	Offset to Module Name
	Type/Language Byte
	Attributes/Revision Level Byte
	Header Check

	Module Headers: Type-Dependent Information
	Executable Memory Module Format
	Execution Offset
	Permanent Storage Size

	Chapter 4 - OS-9's Unified Input/Output System
	I/O System Modules
	The I/O Manager
	File Managers
	File Manager Structure
	Create, Open
	Makdir
	ChgDir
	Delete
	Seek
	Read
	Write
	ReadLn
	WriteLn
	Getstat, PutStat
	Close

	Interfacing with Device Drivers

	Device Driver Modules
	Device Driver Module Format

	OS-9 Interaction With Devices
	Suspend State (Level Two only)
	Device Descriptor Modules

	Path Descriptors

	Chapter 5 - Random Block File Manager
	Logical and Physical Disk Organization
	Identification Sector (LSN 0)
	Disk Allocation Map (LSN 1)
	ROOT Directory
	File Descriptor Sector

	Directories

	The RBF Manager Definitions of the Path Descriptor
	RBF-Type Device Descriptor Modules
	RBF Record Locking
	Record Locking and Unlocking
	Non-Shareable Files
	End-of-File Lock
	Deadlock Detection

	RBF-Type Device Driver Modules
	RBF Device Driver Subroutines
	Init
	Read
	Write
	Getstats and Setstats
	Term
	IRQ Service Routine
	Boot (Bootstrap Module)

	Chapter 6 - Sequential Character File Manager
	SCF Line Editing Functions
	Read and Write
	Read Line and Write Line

	SCF Definitions of the Path Descriptor
	SCF-Type Device Descriptor Modules
	SCF-Type Device Driver Modules
	SCF Device Driver Subroutines
	Init
	Read
	Write
	Getsta and Setsta
	Term
	IRQ Service Routine

	Chapter 7 - The Pipe File Manager (PIPEMAN)
	Chapter 8 - System Calls
	Calling Procedure
	I/O System Calls
	System Call Descriptions
	User Mode System Calls Quick Reference
	System Mode Calls Quick Reference
	User System Calls
	Allocate Bits
	F$AllBit

	Chain
	F$Chain

	Compare Names
	F$CmpNam

	Copy External Memory
	F$CpyMem

	CRC
	F$CRC

	Deallocate Bits
	F$DelBit

	Exit
	F$Exit

	Fork
	F$Fork

	Get System Block Map
	F$GBlkMp

	Get Module Directory
	F$GModDr

	Get Process Descriptor
	F$GPrDsc

	Intercept
	F$Icpt

	Get ID
	F$ID

	Link
	F$Link

	Load
	F$Load

	Memory
	F$Mem

	Link to a Module
	F$NMLink

	Load a module
	F$NMLoad

	Print Error
	F$Perr

	Parse Name
	F$PrsNam

	Search Bits
	F$SchBit

	Send
	F$Send

	Sleep
	F$Sleep

	Set Priority
	F$SPrior

	Set SWI
	F$SSWI

	Set Time
	F$STime

	Set User ID Number
	F$SUser

	Time
	F$Time

	Unlink
	F$UnLink

	Unlink A Module By Name
	F$UnLoad

	Wait
	F$Wait

	I/O User System Calls
	Attach
	I$Attach

	Change Directory
	I$Chgdir

	Close Path
	I$Close

	Create File
	I$Create

	Delete File
	I$Delete

	Delete A File
	I$DeletX

	Detach Device
	I$Detach

	Duplicate Path
	I$Dup

	Get Status
	I$GetStt

	Make Directory
	I$MakDir

	Open Path
	I$Open

	Read
	I$Read

	Read Line With Editing
	I$ReadLn

	Seek
	I$Seek

	Set Status
	I$SetStt

	Write
	I$Write

	Write Line
	I$WritLn

	Priveleged System Mode Calls
	Set an Alarm
	F$Alarm

	Allocate 64
	F$All64

	Allocate High RAM
	F$AlHRam

	Allocate Image
	F$AllImg

	Allocate Process Descriptor
	F$AllPrc

	Allocate RAM
	F$AllRAM

	Allocate Process Task Number
	F$AllTsk

	Insert Process
	F$AProc

	Bootstrap System
	F$Boot

	Bootstrap Memory Request
	F$BtMem

	Clear Specified Block
	F$ClrBlk

	DAT to Logical Address
	F$DATLog

	Deallocate Image RAM Blocks
	F$DelImg

	Deallocate Process Descriptor
	F$DelPrc

	Deallocate RAM blocks
	F$DelRAM

	Deallocate Task Number
	F$DelTsk

	Link Using Module Directory Entry
	F$ELink

	Find Module Directory Entry
	F$FModul

	Find 64
	F$Find64

	Get Free High Block
	F$FreeHB

	Get Free Low Block
	F$FreeLB

	Compact Module Directory
	F$GCMDir

	Get Process Pointer
	F$GProcP

	I/O Delete
	F$IODel

	I/O Queue
	F$IOQu

	Set IRQ
	F$IRQ

	Load A From Task B
	F$LDABX

	Get One Byte
	F$LDAXY

	Get Two Bytes
	F$LDDDXY

	Map Specific Block
	F$MapBlk

	Move Data
	F$Move

	Next Process
	F$NProc

	Release A Task
	F$RelTsk

	Reserve Task Number
	F$ResTsk

	Return 64
	F$Ret64

	Set Process DAT Image
	F$SetImg

	Set Process Task DAT Registers
	F$SetTsk

	System Link
	F$SLink

	Request System Memory
	F$SRqMem

	Return System Memory
	F$SRtMem

	Set SVC
	F$SSvc

	Store A Byte In A Task
	F$STABX

	Install virtual interrupt
	F$VIRQ

	Validate Module
	F$VModul

	Get Status System Calls
	SS.OPT
	SS.RDY
	SS.SIZ
	SS.POS
	SS.EOF
	SS.DevNm
	SS.DSTAT
	SS.JOY
	SS.AlfaS
	SS.Cursr
	SS.ScSiz
	SS.KySns
	SS.ComSt
	SS.MnSel
	SS.Mouse
	SS.Palet
	SS.ScTyp
	SS.FBRgs
	SS.DFPal

	Set Status System Calls
	SS.OPT
	SS.SIZ
	SS.RESET
	SS.WTRK
	SS.SQD
	SS.KySns
	SS.ComSt
	SS.Close
	SS.AAGBf
	SS.SLGBf
	SS.MpGPB
	SS.WnSet
	SS.SBar
	SS.Mouse
	SS.MsSig
	SS.AScrn
	SS.DScrn
	SS.FScrn
	SS.PScrn
	SS.Montr
	SS.GIP
	SS.UMBAR
	SS.DFPal
	SS.Tone

	Appendix A - Memory Module Diagrams
	Executable Memory Module Format
	Device Descriptor Format
	INIT Module Format

	Appendix B - Standard Floppy Disk Format
	Appendix C - System Error Codes
	Device Driver Errors

	Index

	OS-9 Windowing System
	Contents
	Chapter 1 - Types of OS-9 Windows
	Device Windows
	Overlay Windows
	Opening a Device Window
	Opening an Overlay Window

	Chapter 2 - Overview of Commands and Parameters
	Parameters

	Chapter 3 - General Commands
	BColor
	BoldSw
	Border
	CWArea
	DefColr
	DfnGPBuf
	DWEnd
	DWProtSw
	DWSet
	FColor
	Font
	GCSet
	GetBlk
	GPLoad
	KilBuf
	LSet
	OWEnd
	OWSet
	Palette
	PropSw
	PSet
	PutBlk
	ScaleSw
	Select
	TCharSw

	Chapter 4 - Drawing Commands
	Arc3P
	Bar
	RBar
	Box
	RBox
	Circle
	Ellipse
	FFill
	Line
	RLine
	LineM
	RLineM
	Point
	RPoint
	PutGC
	SetDPtr
	RSetDPtr

	Chapter 5 - Text Commands
	Index

	OS-9 Glossary

