Buyer's Guide To Music Software

COMPUTE \$3.00 May 1987 Issue 84 Vol. 9, No. 5 $\$ 4.25$ Canada 02193 ๔ iss 0:94.357x

The Leading Magazine Of Home, Educational, And Recreational Computing

own cust

Synthesis

Transform your 64 intio a powerful, multifeatured musical synthesizer
 Fosily create and eorn Fh-pen a

7

sitx viru operaterstior
zanto Basio

 Hapes text for
commobore 12 ec

There are two things almost everyone has in common. An active imag. ination. And a tough time putting it on paper.

But now we present our Graphics Scrapbook ${ }^{m}$ series. A huge collection of pictures that enable you to easily bring your creative inspirations to The Print Shop,'

PrintMaster ${ }^{m \times}$ or Create a Calendar.

On each disk there are over 100 unique pictures. For example, in our School

Over a hundred eye-catching pictures on every disk.

Scrapbook, teachers and students will find everything from cheerleading to finals. In the Sports Scrapbook, dozens of sports, mascots

and trophies. In the Off the Wall Scrapbook, well, just expect the unexpected. And plenty more Scrapbooks are coming. So even if you can't draw a straight line, it's okay. As long as you make a straight one to the offer below.
Apple \& Compatibles
C64/128, IBM \& compatibles.

Introducing Create A Calendar.

Our simple, powerful tool that lets you
Time flies.
might as well In mixicinit design daily, weekly, monthly or yearly calendars. In moments.

Among numerous features, it includes graphics, borders and fonts for just about every occasion. Or use your own pictures from the Graphics Scrapbooks or Print Shop compatible graphics disks.
What's more, it lets you write multiple lines of text on every date. To make it easy to keep track of everything
you're supposed to do. And everything you've done. So this year, go ahead and make your own calendars.

There couldn't be a nicer way to pass the time. EDYX

USE OUR PREVIEW DISK TO DRAW YOUR OWN CONCLUSION. Send your name, address, phone number, computer type, and a check or money order for $\$ 1.50$ to Calendarl Scrapbook Preview, P.O. Box 8020, Redwood City, CA 94063. Canadian orders add 50 c postage. 6-8 weeks delivery. Expires 8/30/87. Valid only in cont. U.S. and Canada.

We'll pay you to take the most exciting classes anywhere.

You'll learn electronics, avionics, aircraft maintenance, health care sciences, management or logistics-the Air Force will train you in one of more than 200 technical specialties America needs today.

You'll get hands-on experience with the latest equipment, and we'll pay 75% of your tuition for off-duty college courses, to get you even further.

Whatever your goals, the Air Force will equip you with the skills to get where you want to be.

If you're looking seriously into your future, Aim High to a future in the Air Force. Visit your Air Force recruiter today or call toll-free 1-800-423-USAF (in California 1-800-232-USAF).

 With Indoor Sports, you can play darts without putting holes in your walls, ice an opponent in air hockey, become a ping-pong pro, and pick up some spares without venturing into an alley.

As a Harrier jump-jet ace in High Roller, you'll be doing barrel rolls toward designated targets without waking the
 neighbors.

Bop'n Wrestle puts you in the ring with 10 of the biggest, baddest bruisers ever to perfect the turnbuckle fly.

Prepare to take evasive action with Infiltrator. Foil your foes from your 'copter's cockpit and then convert to covert ground action behind enemy lines. In Balance of Power, you are the President. And the burden of global responsibility seems so real you may wonder why you don't have Secret Service protection.

What do you have to lose? For much less than the cost of a night on the town, Mindscape makes home sweet home a more exciting place to be.

픈

[^0]
COMPUTE!
 MAY 1987
 VOLUME 9
 NUMBER 5
 ISSUE 84

COMPUTE! Publications,Inc.

Part of ABC Consumer Magazines, Inc.
One of the ABC Publishing Companies
ABC Publishing, President, Robert G. Burton
1330 Avenue of the Americas, New York, New York 10019

COMPUTEI The Journal for Progressive Computing (USPS: 537250) is published monthly by COMPUTE! Publications, Inc., 825 7th Ave., New York, NY 10019 USA. Phone: (212) 265-8360. Editorial Offices are located at 324 West Wendover Avenue, Greensboro, NC 27408. Domestic Subscriptions: 12 issues, $\$ 24$. POSTMASTER: Send address changes to: COMPUTEI Magazine, P.O. Box 10955, Des Moines, IA 50950 . Second class postage paid at Greensboro, NC 27403 and additional mailing offices. Entire contents copyright © 1987 by COMPUTE! Publications, Inc. All rights reserved, ISSN 0194-357X.

Apple has announced two new Macintosh computers. Their impressive specifications will further strengthen the already impressive Macintosh line: More than one million Macs have been sold and are currently selling at the formidable rate of over 50,000 units a month. What's more, these machines establish new performance standards which foreshadow the consumer computer of tomorrow.

The older machines, the Macintosh 512e and Macintosh Plus, should continue to sell well to home, educational, and business buyers, their traditional markets. The new machines are expected to open new markets for Apple: advanced graphics workstations, memory- or speed-intensive business applications, scientific research, artifical intelligence studies, and other applications not ordinarily associated with "personal" computers. In fact, these new computers diverge in several ways from the traditional Macintosh line as well as from the traditions of home and personal computing.

The Macintosh SE (for System Expansion) is the long-awaited, open-architecture Mac which allows the attachment of third-party peripherals through one expansion slot. The SE also permits the addition of a variety of keyboards because it includes the Apple II-style interface. Although quite similar to the Macintosh Plus, the SE features greater speeds with some software, permits add-ons, and Apple expects it to compete effectively against the PC AT and AT clones. Two important improvements over the Mac Plus derive from adjustments to the ROM routines and system software as well as a significant increase in hard disk communications.

The Macintosh II is higher-end and is targeted to compete with 80386-class machines and the DEC

VAX. It diverges from the Macintosh line in several important respects. Featuring an optional color display with as many as 256 simultaneous colors, this machine makes extraordinary graphics possible since it has a total of 16.8 million different colors available.

The Macintosh II is not an integrated package: The computer itself is in a box similar to the IBM PC's; the video is separate. There are six internal expansion slots. The computer can address more than four gigabytes of memory (limited to two gigabytes of internal RAM). The high-capacity, full 32-bit 68020 processor operates at 16 MHz , twice as fast as the Macintosh Plus.

To further beef up the power of the Mac II, Apple offers a 68881 math coprocessor chip which can improve the speed of floating-point calculations as much as 200 times. Also, the data-transfer rate has been increased to over one million bytes per second.

COMPUTE! columnist and longtime Apple-watcher David Thornburg thinks the Macintosh II represents, in effect, a first step in an entirely new direction for Apple. "Rather than look at the personal computer market and move upward, it seems that Apple looked at the serious workstation market (populated by companies like Sun, Symbolics, Apollo, and others) and brought high performance within the price range of small businesses and university research labs."

The Mac II, Thornburg says, would be quite a bargain for, to take one example, researchers working in artificial intelligence. "For well under $\$ 10,000$, one can get the Macintosh II with a 40-megabyte hard disk, lots of RAM, and a splendid version of LISP-all this would compete quite handily with systems costing five times as much."

What makes these develop-
ments intriguing and even predictive for personal computer users is that we've been here before. Recall the LISA. It was priced beyond most home and educational computer users' budgets and marketed to a similar list of high-end users. But soon after LISA's introduction, the personal computer market was treated to the original Macintosh, with the major design improvements of the LISA intact.

With Apple's announcement of these advanced Macintoshes, and the other high-performance machines coming out of Commodore, Atari, and the IBM world, we can confidently expect to see consumer computers in the next few years which will challenge the capabilities of minicomputers. And all these avant-garde machines seem to have a commonality of design and features, as if the trends of the past several years were now converging and leading to the ideal home computer: extraordinarily impressive graphics resolution, high-quality color, massive memory, open architecture, sophisticated sound capability, and ultra-high speed.

Of course we can always look even farther down the road; no one would mind seeing a consumer version of the massive, state-of-the-art Cray mainframe on a chip. But for the forseeable future, who will be dissatisfied with machines which match the capabilities of all but the most sophisticated commercial graphics workstations?

Richard Mansfield
Editorial Director

Outstanding Artistic Instructive books from COMPUTE!

You'll find expert information, useful applications, intriguing games, graphics, colorful art, music, programming guides, and more in these new Atari ST-specific books. Beginning to advanced ST users will benefit from the applications and tutorials in each book. And as always, the books are written in COMPUTE!'s clear, understandable style.

Abstract

COMPUTE!'s ST Applications Brian Flynn and John J. Flynn $\$ 16.95$ ISBN 0-87455-067-X An excellent assortment of games and applications for business and home, written in BASIC, COMPUTEI's ST Applications is an instant library of programs that every ST owner will want to have. All programs have been fully tested and are ready to type in and use on the Atari 520 or 1040 ST. There is also an optional disk available for $\$ 15.95$ which includes the programs in the book.

COMPUTE!'s ST Artist

Selby Bateman and Lee Noel, Jr. $\$ 18.95$

ISBN 0-87455-070-X
A step-by-step guide to creating dazzling graphics and art on the Atari ST personal computer. Using NEOchrome and DEGAS*, this book shows you how to get the most out of these excellent painting and drawing programs. Tips and techniques provide you with the most efficient ways of creating graphics and demonstrate how to produce colorful art. Examples illustrate each step and show off all the visual power of the Atari ST and its graphics software. Information is included on the newest versions of NEOchrome and DEGAS Elite. There is an optional companion disk available for $\$ 15.95$ which includes artwork from the book.

COMPUTE!'s ST Applications Guide: Programming in C
Simon Field, Kathleen Mandis, and Dave Myers $\$ 19.95$

ISBN 0-87455-078-5
COMPUTEI's ST Applications Guide: Programming in C is your complete tutorial to designing and writing effective ST application programs. Practical examples show you how to use GEM routines to develop professional-looking applications of your own. Explore topics such as disk files, menus, icons, the mouse, sliders, dialog boxes, programming desk accessories, music, and much more. For intermediate to advanced C programmers.

The Elementary Atari ST
William B. Sanders
$\$ 18.95$
ISBN 0-87455-024-6
A clear, easy-to-use guide to the Atari ST, this book takes you through everything from connecting your computer, loading programs, and creating graphics and music, to writing your own programs.

- A product of Batteries Included.

Order your Atari ST book today. Call toll-free 800-346-6767 (in NY 212-887-8525), or write COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.

NC residents add 5 percent sales tax and NY residents add 8.25 percent sales tax. Shipping and handling: $\$ 2.00$ U.S. and surface mail: $\$ 5.00$ airmail.

Please allow 4-6 weeks for delivery.

Founder/Editorial Consultant
Editorial Director Managing Editor Associate Publisher

Editor, COMPUTE!
\& COMPUTEI'S GAZETTE
Assistant Editor, COMPUTE! Production Director
Editor, COMPUTE!'s Atari ST Disk \& Magazine Technical Editor Assistant Technical Editors Assistant Editor, COMPUTE!'s

Atari ST Disk \& Magazine
Assistant Editor, COMPUTEI's GAZETTE
Assistant Features Editor Programming Supervisor Editorial Programmers

Copy Editors
Editorial Assistant Submissions Reviewer Programming Assistants Executive Assistant Administrative Assistants

Associate Editors
Contributing Editor
COMPUTE!'s Book Division
Editor

Assistant Editor
Director of National Sales

Production Manager
Art \& Design Director
Design
Mechanical Art Supervisor
Artists
Typesetting
Illustrator
Director of Advertising
Sales
Associate Advertising
Director
Production Coordinator

Customer Service Manager-Diane Lonoo
Dealer Sales Supervisor
Jose Cruz
Individual Order Supervisor Cassandra Green Receptionist

Anita Armfield
Warehouse Manager
John Williams
James A. Casella, President
Richard Mansfield, Vice President, Editorial Director
Richard J. Marino, Vice President, Advertising Sales
Christopher M. Savine, Vice President, Finance \& Planning
1987 Editorial Board
Richard Mansfield
Kathleen Martinek
Selby Bateman
Lance Elko
Tom R. Halfhil
Stephen Levy
Robert Lock, Founder and Editorial Consultant

Coming In Future Issues

Laser Chess: An exciting, innovative game for the Apple II, Commodore 64, IBM PC, Atari, and Amiga
64 RAMdisk
Atari NoDOS
Full Screen Editor for Apple II
RAM Test for Commodore 128
Fast Fractal Landscapes for IBM PC

Using Amiga Disk-Based Fonts

Subscription Orders
 \& Inquiries

COMPUTE

P.O. Box 10954

Des Moines, IA 50340
TOLL FREE
Subscription Order Line
800-247-5470
In IA 800-532-1272
COMPUTE! Subscription Rates (12 Issue Year):

Advertising Sales

212-315-1665

2. Southeast \& Foreign

Harry Blair
919-275-9809

3. Midwest \&

Southwest
Jerry Thompson
312-726-6047 (Chicago)
713-731-2605 (Texas)
303-595-9299 (Colorado) 415-348-8222 (California)
Lucille Dennis
415-348-8222

Director of Advertising Sales:
Peter Johnsmeyer
Associate Advertising Director:
Bernard J. Theobald, Jr.
COMPUTE! Sales Office 212-315-1665
Address all advertising materials to: Kathleen Hanlon
Advertising Production Coordinator COMPUTEI Magazine
324 West Wendover Avenue Suite 200
Greensboro, NC 27408

COMPUTE! Publications, Inc. publishes
COMPUTEI
COMPUTEI's Gazette
COMPUTEI's Gazette Disk
COMPUTEI'S
Apple Appllcations Special
COMPUTEI's
Atari ST DIsk \& Magazine

Editorial offices:
324 West Wendover Avenue Suite 200 Greensboro, NC 27408 USA

Corporate offices:

Customer Service:
Hours: 825 7th Avenue
New York. NY 10019 212-265-8360 800-346-6767 (In NY 212-887-8525) 9:30 A.M.-4:30 P.M. Monday-Friday

The COMPUTEI subscriber list is made available to carefully screened organizations with a product or service which may be of interest to our readers. If you prefer not to receive such maliings, please send an exact copy of your subscription label to: COMPUTEI P.O. Box 10955. Des Moines, IA 50950. Include a note indicating your preference to receive only your subscription.

Authors of manuscripts warrant that all materials submitted to COMPUTEI are original materials with full ownership rights resident in said authors. By submitting articles to COMPUTEI, authors acknowledge that such materials, upon rights resident in said authors. By submitting articles to COMPUTEl, authors acknowedge that such materials, upon acceptance for publication, become the exclusive property of COMPUEE! Publications, Inc. No portion of this magazine may be reproduced in any form without written permission from the publisher. Entire contents copyright
© 1987 . COMPUTEI Publications, Inc. Rights to programs developed and submitted by authors are explained in our author contract. Unsolicited materials not accepted for publication in COMPUTEI will be returned if author provides author contract. Unsolicited materials not accepted for publication in COMPUTEI will be returned if author provides
a self-addressed. stamped envelope. Programs (on tape or disk) must accompany each submission. Printed listings a self-addressed. stamped envelope. Programs (ion tape or disk) must accompany each submission. Printed listings
are optional, but helpful. Articles should be furnished as typed copy (upper-and lowercase, please) with double are optional, but helpful. Articles should be furnished as typed copy (upper- and lowercase. please) with double
spacing. Each page of your article should bear the title of the article, date and name of the author. COMPUTEI sssumes no liability for errors in articles or advertisements. Opinions expressed by authors are not necessarily those of COMPUTEI.
PEI. CBM, VIC-20 and Commodore 64 are trademarks of Commodore
Business Machines, Inc. and/or Commodore Electronics Limited
Apple. Apple ll, and Apple lles are trademarks of Apple Computer Company
IBM PC and PCir are trademarks of International Business Machines inc IBM PC and PCjir are trademarks of International Business Machines, Inc.

ATARI is a trademark of Atari, Inc
TI-.99/4A is a trademark of Texas instruments, Inc Radio Shack Color Computer is a trademark of Tandy, Inc.

Available NOW from COMPUTE! Books

The complete guide to using Microsoft Works

Mastering Microsoft Works is available now from your local

computer or book store.

You can also order directly from COMPUTE! by calling toll-free 800-346-6767 (in New York 212-887-8525) or by writing COMPUTE! Books, P.O. Box 5038, F.D.R.

Station, New York, NY 10150.

Mastering Microsoft Works

Sharon Zardetto Aker
$\$ 17.95$
ISBN 0-87455-042-4 287 pages
Microsoft Works offers a system of four integrated modules for home and business Macintosh users. This comprehensive guide and tutorial shows how to use Works efficiently and easily. Works includes a word processor, database, spreadsheet, telecommunications, and graphics, and this book describes how to master Works-from creating form letters with the word processor to tax forms with the spreadsheet. Integrating the modules is explained and illustrated. More than a tutorial, more than just a reference, Mastering Microsoft Works is the complete guide to this state-of-the-art software.

If you have any questions, comments, or suggestions you would like to see addressed in this column, write to "Readers' Feedback," COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Due to the volume of mail we receive, we regret that we cannot provide personal answers to technical questions.

Proofreader For Tandy 1000

I recently purchased a Tandy 1000 IBMcompatible computer and subscribed to your magazine. After numerous attempts, I have been unable to make the "IBM PC/PCjr Proofreader" program work on my computer. I would like to know if there is something in this program that keeps it from working on my computer and, if so, will I have the same problem if I try to enter other IBM programs from your magazine?

Billy Bolden
At COMPUTE! we make every effort to insure that our IBM PC/PCjr programs will also work on the dozens of IBMcompatible models now available. Since we don't have one of each different model available for testing purposes, we can't guarantee that every program will work on every model. Nevertheless, we have found few documented cases where our programs wouldn't work because of machine incompatibility. Most problems occur on systems which lack some required hardware. For example, programs which require a color/graphics adapter card (or equivalent hardware) will not work on a system that has only a monochrome adapter card.

The "Proofreader" is, for the most part, a "plain vanilla" BASIC program, using no fancy programming tricks. The only exception is in line 160, which uses the dynamic-keyboard technique to insure that LINE INPUT gets the entire program line. While it's possible that your computer is incompatible with this program, a much more likely source of your problem is a typing error.

Check every line of the program carefully against the magazine listing, even those lines you believe you typed correctly. Even experienced programmers make typing mistakes, and a single typing error can have drastic effects, depending on where it occurs in the program.

You also should make sure that the computer is in Caps Lock mode (so that all letters appear in uppercase) except when the listing shows that you should be typing a lowercase letter. This is important because the Proofreader is sensitive to the case of characters. These three lines, for instance, generate three different checksums when typed in with the Proofreader. The checksums are shown in front of each line.
HN 10 print "hi there"
NN 10 PRINT "HI THERE"

FN 10 PRINT "Hi there"

In COMPUTE! listings for the IBM PC/PCjr and compatibles, BASIC keywords such as PRINT and IF are always in uppercase. Lowercase letters usually don't appear except after REM and DATA statements, or, as shown in the example, as part of a string enclosed in quotation marks.

We don't have access to an original Tandy 1000, but we do have one of the new Tandy 1000EX models. After receiving your letter, we tested the IBM PC/PCjr Proofreader program on our Tandy 1000EX to confirm that it works correctly. The program works the same on a Tandy 1000EX as it does on an IBM PC/PCjr. The Proofreader has also worked on all the other IBM-compatible models we have tested.

Sending Printer Escape Codes In Amiga BASIC

Here is some information that will be useful to any Amiga owner who wishes to use special printer effects (double strike, compressed characters, and so on) from Amiga BASIC. I have had no difficulty printing Amiga screen dumps on my Epson MX-80. However, when I tried to send printer escape codes from Amiga BASIC, they had no effect. This occurred both when I tried to send the control codes with LPRINT and when I used PRINT\# to send output to a file I had previously opened to LPT1:, the printer device. In these circumstances, it appears that all printer output is filtered according to the printer selected in Preferences. The solution is to open a printer file using the PAR: device for a parallel printer or the SER: device for a serial printer. If you then use PRINT\#
to outpuit CHRS(27) followed by the appropriate control codes, your printer will behave as it should.

Charles Heckel
Thank you for the information. Although the Amiga BASIC manual doesn't mention PAR: or SER:, both device names are understood by AmigaDOS, the disk operating system which BASIC uses for input/ output operations.

Upgrading To An Apple lles

I am very impressed by what I have read about the Apple IIGs. Do you have any information on how to upgrade a IIe to IIGs specifications? I understand that the 65 C 816 microprocessor is available to individuals at a reasonable price, and I would like to purchase one and put it all together.

Mike Mendoza
When Apple premiered the IIGS, they also announced that IIe models could be upgraded to IIGs level. Although they offered only complete IIGS systems at first, upgrades should become available sometime in 1987 for around $\$ 500$.

About upgrading it yourself: The 65C816 chip can't simply replace a IIe's 6502 or 65C02 processor. Its pinouts-the signals which are present on each of the chip's leg-like connecting pins-are different enough from earlier models that they aren't interchangeable. Another new chip, the 65C802, is pin-compatible-you just plug it in, and it runs. It has the same new machine language instructions as the 65C816, but like the older chips, it can only directly access 64 K of memory. Although we haven't tried doing it, putting a 65C802 in an Apple IIe sounds like an interesting idea. It would be totally compatible with existing Apple II software, but it wouldn't be much like a IIGs.

Many third-party hardware makers offer plug-in cards for the Apple IIe which contain a 65C816, often along with more memory. These acielerator cards can include quite a bit of RAM, far beyond the IIe's 64 K or 128 K , as well as a high-speed clock for more processing power. Some of these cards can run eight-bit Apple II software faster than a IIGS in emulation mode. For users who only want more speed and storage for IIe applications like
-rom impossible dungeons and splitsecond snares, the Bard and his party emerge. The Sceptre, so long forgotten, gleams with power like an exploding sun. Even Phenglei Kai, the ancient archmage, bows his head in awe.
"I smell serpents!" Slipfinger squeals, stealing away like the thief he is. Two archdragons slither out of the ground, their eyes burning with the relentless fury of treasure lost.

Protected behind the flame lizards, beyond the reach of normal weapons, a cackling wizard begins the eerie chants of a death spell. A spell that can finish the Bard and his party.

The time has come to battle-test the magic of the Destiny Wand - and reveal the awesome powers of The Destiny Knightr"

You get a new class of magic user - the Archmage. With 8 powerful spells like Heal All, Fanskar's Night Lance, and the awesome Mangar's Mallot.

There are over 100 monsters, like this Kner Drone. Many animated. All dangerous.

25 scrolling dungeon levels. All in color. All 3-D. Including 7 different Snares of Death, a new kind of real-time puzzle.

The Bard's Tale II

The Destiny Knight
from

ELECTRONIC ARTs ${ }^{*}$

HOW TO GET IT: Visit your retailer, or call $800-245-4525$ (in CA call $800-562-1112$) for VISA or Mastercard orders. To buy by mail, send a check, money order, or VISA or Mastercard information to Electronic Arts, P.O. Box 7530, San Mateo, CA 94403 . The price is $\$ 39.95$ for the Commodore 64 version, and $\$ 49.95$ for the Apple version. Add $\$ 5$ for shipping and handling ($\$ 7$ Canadian). Allow $1-4$ weeks for delivery. The Bard's Tale II and Electronic Arts are registered trademarks of Electronic Arts. Ultima is a registered trademark of Richard Garriott. Commodore is a trademark of Commodore Electronics Ltd. Wizardry is a trademark of SirTech Software, Inc. For a copy of our complete catalog, send $50 ¢$ and a stamped, self-addressed envelope to Electronic Arts Catalog, 1820 Gateway Drive, San Mateo, CA 94404.

When you want to talk computers.

HOME COMPUTERS.

Atari 1040 Color System $\$ 879$

Includes: 1040ST, 1 mb RAM with $31 / 2$ "' drive built-in, 192K ROM with TOS, Basic, Logo, ST language, power supply and color monitor.

Commodore Computers

Commodore-64C 64K Computer189.00
Commodore-64C System w/1802C539.00
Commodore-128 128K Computer259.00
Commodore-128 System...........759.00
Amiga 500 \& 2000.........................call
Commodore Peripherals
1660 Commodore Modem...........59.99
1670 Commodore Modem...........99.99
1541C Disk Drive........................ 189.00
1571 Disk Drive......................... 239.00
1802 Color Monitor....................199.00
1902 Color Monitor.................... 299.00
Amiga 1010 3½" Ext. Drive...... 219.00
Amiga 1020 5¼" Ext. Drive...... 189.00
Amiga 1080 RGB Monitor......... 269.00
C128 512K Expansion Board..... 179.00
PPI Parallel Printer Interface.......34.99
Xetec S/Graphix 8K.....................69.99
Micro R\&D MW350...................... 44.99

MS/DOS SYSTEMS.

PC-TOO 20 Meg XT-Compatible

$\$ 999$
AT\&T 6300....................from $\$ 1299.00$
Compaq...........................from 1699.00
Cordata.............................from 899.00
IBM-XT............................from 1099.00
IBM-AT.............................from 2699.00
Leading Edge......................from 999.00
NEC Multispeed................from 1499.00
Panasonic Business Partnerfrom 799.00
Toshiba 1100 Plus...........from 1749.00

MULTIFUNGTION CARDS.

AST
Six Pak Plus PC/XT................. $\$ 169.00$
Six Pak Premium PC/XT.............249.00
Advantage-AT 128K.................... 339.00

Everex

EV-221 Evergraphics Mono......... 139.00
EV-640 Edge Card.....................259.00

Hercules

Color Card................................. 159.00
Graphics Card Plus....................209.00
Fifth Generation
Logical Connection 256K............. 329.00
IDEAssociates
IDE-5251 Local Emulator............. 579.00 Intel
1110 PC Above Board................ 279.00
Inboard 386K OK...........................Call
NEC
GB-1 EGA................................ 409.00
Quadram
Quad Ega + Graphics Adapter....299.00
Silver Quadboard........................ 129.00
Expanded Quadboard................119.00
VIDEO 7
EGA Video Deluxe..................... 389.00
Zuckerboard
Color Card w/Parallel.................... 89.99
Monochrome Card w/Parallel......... 99.99
576K Memory Card.
.59 .99

DRIVES.

Allied Technology
 Apple Half-Heights..................... $\$ 109.00$
 Controller Card..............................39.99

CMS
Drive Plus 20MB Internal Card.... 399.00

Everex

Stream 20 20MB Tape-Backup.... 669.00 Genie Technology
210 H 10+10 subsystem.......... 1749.00 Indus
Atari GT Disk Drive..................... 189.00
Commodore GT Disk Drive......... 189.00 lomega
A210H 10 + 10 Bernoulli Box..... 1899.00
A2२OH $20+20$ Bernoulli Box..... 2499.00 Irwin
110 D 10MB Tape backup.......... 319.00
Mountain Computer
Drive Card 20MB Internal Card... 499.00
A220 $20+20$ Subsystem........... 2199.00

Racore Jr.
 Expansion Chassis

Seagate

ST-225 w/Controller...................... 399.00
Toshiba
Half-Height 360K internal...............89.99

DISKETIES.

Maxell

MD-1 SS/DD 51/4"........................ $\$ 8.99$
MD-2 DS/DD 5¼"........................ 10.99
MD-2HD Hi-Density 5¼"...............21.99
MF-1 SS/DD 3½"......................... 12.99
MF-2 DS/DD 3½"......................... 21.49
CS-500 20Mb Streamer Tape........ 11.99
CS-600 60Mb Streamer Tape........13.49
Sony
MD1 SS/DD 514"........................... 7.99
MD2 DS/DD 51/4"............................ 9.49
MD-2HD Hi-Density 51/4"............... 20.49
MFD-1 SS/DD 3½"....................... 12.99
MFD-2 DS/DD 3½".......................19.99

When you want to talk price.

MONITORS.

Amdek 410 12"
 TTL Monitor

Amdek
Video 310A Amber TTL........... $\$ 149.00$
Color 722 RGB, CGA/EGA........ 479.00
Magnavox
8CM515 RGB Monitor-80.......... 289.00
7BM623 PC Monitor-80 Amber....99.99
8CM873 14" Multimode............ 549.00
Mitsubishi
XC 1409C 14" RGB.................319.00 NEC
12" TTL Green or Amber.......... 109.00
JC-1401P3A Multi-Sync............. 579.00
Princeton Graphics
MAX-12 12" Amber TTL........... 169.00
HX-12 12" Color RGB............... 429.00
HX-12E 12"RGB/EGA............... 499.00
Quadram
8460 Quadchrome Enhanced....439.00
Taxan
Model 124 12"' Amber............... 119.00

MODEMS.
Anchor
6480 C64/128 1200 Baud........... $\$ 119.00$
Omega 80 Amiga................19.00
VM520 ST520/1040 1200 Baud... 139.00
Expressi PC-1200 Half Card...... 149.00
Everex
Evercom 1200 Baud Internal....... 119.00
Hayes
Smartmodem 300 External.......... 139.00
Smartmodem 1200B Internal.....359.00
Smartmodem 2400B Internal..... 539.00
Practical Peripherals
Practical Modem PC-1200........... 139.00
Quadram
Quadmodem II 1200 Baud.......... 299.00
Supra
MPR-1064 AD/AA C64..................69.99
1200AT 1200 Baud Atari.......... 149.00
U.S. Robotics
2400 Baud Internal..................... 189.00

PRINTERS.

Canon

LBP-8A1 Laser, 8 Page/Min..... $\$ 1899.00$ Citizen
MSP-10 160 cps, 80-Column.......319.00
Premier 3535 cps Daisywheel.... 499.00

C.Itoh

8510-SP 180 cps , 80-Column..........Call
310-SEP Epson/IBM 80-Column.......Call
Cordata
The Desktop Printshop Laser..... 2199.00

Epson

LX-86 120 cps , Dot Matrix.......... 199.00
FX-86E 240 cps, 80-Column............Call
FX-286E 240 cps , 132-Column........Call
EX-800 300 cps , 80 -Column........ 449.00
LQ-800 180 cps , 24-Wire Printhead..Call Hewlett Packard
Thinkjet
399.00

Juki

630040 cps Daisywheel............. 659.00
610010 cps Daisywheel............. 389.00
5510C Color Dot Matrix............... 349.00

NEC

Pinwriter 66024 Wire.................. 489.00
Pinwriter 76024 Wire.................. 689.00

Okidata

ML-182 120 cps , 80-Column........239.00
ML-192 + 200 cps , 80-Column....369.00
ML-193 + 200 cps , 132-Column.......Call
ML-292 200 cps , 80-Column............Call

Panasonic

KX-1080i 120 cps, 80-Column...... 219.00
KX-1091i 180 cps , 80-Column...... 299.00
KX-1592 180 cps , 132-Column..... 439.00

Star NX-10

120 cps Dot Matrix $\$ 209$

Star Micronics

NX-10C 120 cps , C64 Interface.219.00
NX-15 120 cps, 132-Column...... 369.00
Texas Instrument
TI-855 150 cps, 80-Column........ 599.00 Toshiba
P321 216 cps, 24-Pin Printhead479.00
P341 216 cps, 24-Pin Printhead589.00

SOFTWARE.

FOR AMIGA

Aegis Development

Animator \& Images................... $\$ 99.99$
Commodore
Textcraft/Graphcraft......................59.99
Electronic Arts
Deluxe Paint. . 64.99
Microillusions
Dynamic CAD...........................359.00
Micro Systems
Scribble Word Processor .79 .99
Sublogic
Flight Simulator II.........................37.99

The Print Shop For IBm $\$ \mathbf{3 9}^{99}$
For Commodore \& Atari $\$ \mathbf{2 9}^{99}$ FOR ATARI ST
Access
Leader Board Golf....................... 27.99
Batteries Included
D.E.G.A.S. Elite........................... 59.99

Microprose
Silent Service...............................29.99
Paradox
Wanderer 3D...............................29.99
Sublogic
Flight Simulator II........................37.99
Timeworks
Swiftcalc...................................... 54.99
FOR IBM
Ashton-Tate
d-Base III + 429.00
5th Generation
Fastback Utility............................ 89.99
IMSI
Optimouse w/Dr. Halo..................99.99
Lotus
Lotus 1-2-3................................. 329.00
MicroPro
Professional 4.0 w/GL................ 239.00
Microstuf
Crosstalk XVI................................89.99
P.F.S.

First Choice...............................119.00
Satellite Systems
Word Perfect 4.2........................ 209.00

In the U.S.A. and in Canada

Call toll-free: 1-800-233-8950.

Outside the U.S.A. call 717-327-9575 Telex 5106017898
Educational, Governmental and Corporate Organizations call toll-free 1-800-221-4283
CMO. 477 East Third Street, Dept. A205, Williamsport, PA 17701

ALL MAJOR CREDIT CARDS ACCEPTED.

POLICY: Add 3\% (minimum \$7.00) shipping and handling. Larger shipments may require additional charges. Personal and company checks require 3 weeks to clear. For faster delivery use your credit card or send cashier's check or bank money order. Pennsylvania residents add 6% sales tax. All prices are U.S.A prices and are subject to change and all items are subject to availability. Defective software will be replaced with the same item only. Hardware will be replaced or repaired at our discretion within the terms and limits of the manufacturer's warranty. We cannot guarantee compatibility. All sales are final and returned shipments are subject to a restocking fee.

Appleworks, this option is worth considering.

But a IIgs has a lot more than a new processor and more RAM. The new video and sound circuitry are only available from Apple. They are also the only source for the ToolBox software built into each IIGS, supporting Macintosh-like windows and menus. Since most commercial developers plan to use all these new features, the only foreseeable way to make your IIe into a true IIgs is through your Apple dealer. And, for this operation, upgrade isn't exactly the right word. All the IIe's electronic innards are replaced with a new main circuit board. The only parts that are kept are the cabinet, power supply, and keyboard. Your old interface cards will still work, though.) But when enough new IIGs software has arrived, this procedure could be a very effective means for entering the 16 -bit world.

Quiet Disk Format For Commodore 128

The excellent short program written by Martin Filbeau for the Commodore 64 ('Readers' Feedback," December 1986) does indeed prevent the 1541 disk drive's head from rattling when you format a disk. But that program doesn't work on the Commodore 128 in 128 mode. Here is a modified version of the program that works in 128 mode with either a 40 -column or 80 -column monitor.
 G..."

```
DD 250 PRINT#1,"U3:";DNAMS","D
    ID$
MC 260 GOTO 120
QD 27\varnothing PRINT"{4 DOWN}PRESS ANY
        KEY TO CONTINUE"
```

HK 280 PRINT
JE 290 POKE 2ø8, \varnothing
AJ $30 \emptyset$ WAIT 2ø8,1
PK $31 \varnothing$ RETURN
EC $32 \emptyset$ DATA $169,78,141, \varnothing, 2,169$,48,141,1,2,169,11,141, 42,2
CD 330 DATA $32,238,193,169,1,1$ 33,81,76,13,238

Carlos Vidales

Thanks for the modification. Because of the length of this program, we've added checksums for our "Automatic Proofreader" program. If you're unfamiliar with the Proofreader, see "COMPUTE!'s Guide to Typing In Programs" elsewhere in this issue.

DOS 3.3 CATALOG From Applesoft

I am using an Apple IIc and would like to know how to read a DOS 3.3 catalog into a BASIC array. Can you show me how to do it and explain how it works? Steven Pinckney
DOS 3.3, unlike ProDOS, provides no easy way to do this. However, it can be done. The following code adapts part of "Jacket Lister," a program that appeared in the September 1986 issue of COMPUTE!:
$2 \varnothing$ DIM TB\$(144), WS(1øøø)
8 FOR I $=768$ TO 779: READ A : POKE I, A: NEXT
$9 \varnothing C=\emptyset: P 1=W S(\emptyset)-W S(\emptyset)+$ PEEK (131):P2 = WS (Ø) $-W$ $S(\varnothing)+$ PEEK (132)
$10 \emptyset$ POKE 769, P1: POKE 770, P2
110 POKE 54, Ø: POKE 55,3: POK E 56, 11: POKE 57,3: CALL $10 \square 2$
$12 \oint$ PRINT CHR\$ (4);"CATALOG"
125 PRINT
$13 \emptyset$ POKE 768, 173: POKE 769,P1 : POKE 77ø,P2
140 POKE 54,11: POKE 55,3: PO KE 56, D: POKE 57,3: CALL 1002
15ø FOR I $=\emptyset$ TO 4: INPUT A\$: NEXT
$16 \varnothing$ INPUT $T B \$(C)$: IF $T B \$(C)=$ "" THEN $17 \emptyset$
$165 \mathrm{C}=\mathrm{C}+1:$ GOTO 160
179 POKE 54,240: POKE 55,253: POKE 56,27: POKE 57,253: CALL 1øの2
$19 \emptyset$ DATA $141, \emptyset, 64,238,1,3,2 \emptyset 8$, 3
$20 \emptyset$ DATA $238,2,3,96$
The program starts by dimensioning two arrays, TB\$ and WS. TB\$ is a table of strings to hold the directory entries. WS is just a big block of storage to be used as workspace. Line 80 sets up a short machine language routine which will be used for trapping input and output. The next line uses a trick to find out the address
where an array variable is stored. Most versions of BASIC have a function called VARPTR to do this, but Applesoft doesn't. P1 gets the eight low bits of the address, and $P 2$ gets the eight high bits.

In line 100, the address of the workspace is stored in the machine language routine. Line 110 hooks up this routine to intercept all input and output operations, then tells DOS about the new I/O routines with the CALL 1002 statement. (Otherwise, DOS would be completely disconnected.) As it's hooked up at this point, the ML routine will store all output in the workspace and disregard requests for input.

Lines 120 and 125 perform the CATALOG operation, printing all the information into the workspace. In the next line, the ML routine is modified slightly to function as an input routine, and the workspace pointer is reset to the start of the WS array. Then the I/O hooks are changed so that input operations will read from the workspace, while output requests will be ignored.

After line 150 skips four header lines, lines 160 and 165 read each catalog entry into the TB\$ array. Variable C keeps count of the number of files found. Finally, line 170 resets the I/O hooks to the normal values for a 40-column display, and the program ends.

Phantom Opcodes On The 6502

I have a question about 6502 assembly language. I know that every machine language command is contained in one byte, which may be followed by one or two additional bytes. For example, the byte value for the LDA immediate instruction is 169 (\$A9). Some of the possible byte values, however, are not assigned to an instruction. A machine language monitor prints ??? when you try to disassemble one of these instructions. What do these instructions do when the computer executes them? I have heard that they give the combined effect of two other instructions.

Gergely Viczian
Not all of the 256 possible one-byte values are defined as valid machine language instructions for the 6502/6510/8502 microprocessor. The remaining values are officially undefined, meaning that the designers of the processor do not intend them to be used as instructions at all. Many machine language monitors flag such values with ??? to indicate that the byte value could not be interpreted as a valid opcode.

If you've been trying to learn machine language by disassembling other people's programs, you may see many places where it appears on the surface that an undefined opcode has been used.

IS GeTting The Answer To SOFTWARE PROBLEMS A Bigger Problem Than THE PROBLEM?

Don't stay on hold when there's help online from CompuServe Software Forums.

The new upgraded . version of your software locks up. And every time you reboot, you get stuck in the same place in the program.

You've chucked the manual, because you've done exactly what it tells you to do six times already. So you call the software company.

Now you spend half a day beating your head against a brick wall of busy signals, ranting at recorded messages, hanging around on hold. And you still don't get the solution to your problem.

Meanwhile, progress is stopped and your profits are dribbling away. But wait. There's help...

Several prominent, progressive software publishers recognize this problem, and
 working with CompuServe, have developed a solutionCompuServe Software Forums.

Now you can go online with experts from the companies that produced your software and get
prompt, written answers to your specific problems. You can even talk with software

frequently publish software reviews. And you can find help for many other software products in our other computer-related forums for IBM^{*}, Tandy, Atari, Apple, Commodore, TI^{\circledR} and others.

The last thing you need when you've got a software problem is a bigger problem

Aldus, Ashton-Tate, Autodesk, Borland International, Creative Solutions, ${ }^{*}$ Digital Research, Living Videotext, Lotus ${ }^{8}$ Inc., Microsoft, ${ }^{8}$, MicroPro, Misosys Inc. and Software Publishing ${ }^{*}$ all have CompuServe Software Forums.
And we keep adding more.

CompuServe's large subscriber base also puts you in touch with thousands of other, often more experienced, users of the same software. You'll find they can give you lots of creative ways to get the most out of your software.

And software forums are the best way to learn about product updates, new product announcements, new ways to expand the uses of your software, and offer free uploads of your own programs.

Our online electronic magazines
getting answers.
So, from now
on, get
prompt,
informed
answers on
CompuServe Software Forums.
To buy your CompuServe Subscription Kit, see your nearest computer dealer. Suggested retail
price is $\$ 39.95$.

To order direct or for more information, call 800-848-8199
(in Ohio, 614-457-0802).

If you're already a CompuServe subscriber, just type
GO SOFTWARE at any ! prompt.

CompuServe

Information Services, P.O. Box 20212 5000 Arlington Centre Blvd., Columbus, OH 43220

Instruction	Abs	Abs, X	Abs, Y	Zer	Zer, X	Zer, Y	(Ind, X)	(Ind), Y	Imm
ASO (ASL,ORA)	0F	1F	1B	07	17		03	13	0B
RLA (ROL,AND)	2F	3F	3B	27	37		23	33	2B
LSE (LSR,EOR)	4 F	5F	5B	47	57		43	53	
RRA (ROR,ADC)	6F	7F	7B	67	77		63	73	
AXS (STX,STA)	8F			87		97	83		
LAX (LDX,LDA)	AF		BF	A7	B7		A3	B3	
DCM (DEC,CMP)	CF	DF	DB	C7	D7		C3	D3	
INS (INC,SBC)	EF	FF	FB	E7	F7		E3	F3	
ALR (LSR,EOR)									4B
ARR (ROR,ADC)									7 B
OAL (TAX,LDA)									AB
SAX (DEX,CMP)									CB
NOP	1A, 3A, 5A, 7A, DA, FA								
SKB	80, 82, C2, E2, 04, 14, 34, 44, 54, 64, 74, D4, F4								
SKW	0C, 1C, 3C, 5C, 7C, DC, FC								

ASO ASL then ORA the result with the accumulator
RLA ROL then AND the result with the accumulator
LSE LSR then EOR the result with the accumulator
RRA ROR then ADC the result from the accumulator
AXS Store the result of A AND X
LAX LDA and LDX with the same data
DCM DEC memory and CMP the result with the accumulator
INS INC memory then SBC the result with the accumulator
ALR AND the accumulator with data and LSR the result
ARR AND the accumulator with data and ROR the result
OAL ORA the accumulator with \#\$EE, AND the result with data, then TAX
SAX SBC data from A AND X and store result in X
NOP No operation
SKB Skip byte (that is, branch of +1)
SKW Skip word of two bytes (that is, branch of +2)

However, you should be aware that-in the vast majority of cases-when you see ??? in a section of disassembled code, you are not looking at a undefined opcode. It's much more likely that you've tried to disassemble a section of memory that doesn't contain machine language, but rather contains data tables, message text, jump vectors, or the like. Since it's only coincidental that the values of these types of data will fall in the range of valid opcodes, most bytes in such areas will show as ???. Undefined opcodes are very rarely used. If you disassemble the entire 16K of BASIC and Kernal ROM in a Commodore 64, you'll find many places where the data disassembles as ???, but none of these is truly an undefined opcode.

Some of the undefined opcodessometimes called quasi-opcodes-simply lock up the computer. The computer locks up completely when you attempt to execute any byte ending with $\$ 3, \$ 7, \$ B$, or $\$ F$, and most byte values ending with $\$ 2$.

Other undefined opcodes cause the processor to perform a meaningful task. Some of these simply replicate a standard instruction: For example, there "are six byte values $(\$ 1 A, \$ 3 A, \$ 5 A, \$ 7 A, \$ D A$, and SFA) that duplicate the NOP (No OPeration) opcode. Others, such as SKB (SKip a Byte) and SKW (SKip a Word) do jobs that are not done by any standard
instruction. The remaining quasi-opcodes generally combine the effects of two siundard instructions. For example, the quasiop LAX loads both the A and X registers with the same value, just as if you had performed LDA and LDX in sequence with the same value.

Quasi-opcodes have few practical uses. You might save a byte here or there by performing two jobs with one instruction, but most quasi-ops perform pretty obscure functions, and since ordinary monitors and assemblers don't allow for them, it's difficult to write or even disassemble programs containing such codes. Because quasi-ops show up as ??? in an ordinary monitor, they have been used occasionally as a concealment device in copy-protected commercial programs. But for ordinary programming, they are probably more trouble than they're worth. The table above lists all the usable quasiopcodes, taken from Programming the Commodore 64, by Raeto West (COMPUTE! Books). The codes shown in boldface type are thought to be the most reliable.

De Re Atari Lives

I just read a letter in the February 1987 installment of this column referring to the availability of the Atari reference
book De Re Atari. Your readers may be interested to know that a large supply of these books is available for $\$ 10$ per copy from this computer dealer.
B \& C Computervisions
3283 Kifer Rd.
Santa Clara, CA 95051
They also stock many other hard-tofind Atari publications and products.
M. J. White

Thank you for this information.

BUMPing In BASIC 7.0

I am writing a game for my Commodore 128 and I have run across a problem with the BUMP(2) function. From what I can determine, the BUMP values to signal sprite collisions should be as follows:

Sprite	Bump Value
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128

I am getting other numbers such as $12,18,36$, and 63 . What do those numbers mean?

Jamie Chulada

The mysterious numbers indicate that two or more sprites are colliding. The BUMP function reads the contents of the 128's sprite-collision registers and returns it to BASIC. BUMP(1) reports sprite-to-sprite collisions-the same as performing PEEK(53278) on the Commodore 64-and BUMP(2) reports sprite-to-foreground collisions-the same as PEEK(53279). Each bit of the collision register is assigned to one of the computer's eight sprites. When sprite 0 is involved in a collision, bit 0-the lowest bit of the collision register-is set to 1 . When sprite 1 is involved in a collision, bit 1 is set to 1 , and so forth. The second column of numbers that you list indicates the decimal values for each bit position in the collision register.

BUMP returns the sum of all the bits in the sprite-collision register. Thus, the number 12 indicates that sprites 2 and 3 are touching one another. Sprite 2's bit value is 4, and sprite 3's bit value is 8 . When you add those two bit values together, you get 12. Similarly, the number 18 indicates that sprites 1 and 4 are colliding $(2+16=18)$.

The BUMP value tells you which sprites are currently involved in some collision. But if more than two sprites are on the screen, it won't necessarily tell you which sprite is touching a given sprite or foreground object. For instance, the value

The way computer football should be.

Other football games put you in the grandstands, looking down on the action. Now see what it's like from the player's perspective-looking out of your helmet at an angry linebacker headed straight for you, and no blockers in sight.
With GFL Championship Football, ${ }^{\text {rM }}$ you've got the first football simulation that actually takes you down on the field, taking the hits and making the plays. And it's more than just a pretty pictureyou really get the feel of playing football.
No other football simulation gives you so many features:

- In-the-helmet perspective puts you at ground

level on the playing field.
- Scrolling-screen animation moves you up and down the playing field.
- Realistic sound effects let you hear everything from the quarterback calling the signals to the sound of your own footsteps.
- Team selection screens allow you to set the playing style of your team and that of your opponent.
Whether you're taking on bone-crunching action against a friend, or going up against any of the 27 computer-controlled teams in the GFL, this is the one that puts you where the action is!

Available now for the Commodore 64/128,
IBM PC and Tandy 1000, Apple II, Amiga, Atari ST and 100% compatible computers.

Amiga screen

Commodore 64-128 screen

Commodore 64-128 screen

Commodore 64-128 screen

COMMODORE APPLE

*99 ADDITIONAL FOR MONITOR

PRINTER

SEIKOSHA

NEAR LETTER •100 CPS DRAFT
QUALITY -20 CPS NEAR •COMMODORE READY

DISKETTES

PRO-TECH-TRONICS
6860 Shingle Creek Parkway \#201 Minneapolis. MN 55430

DELIVERY

1-800-345-5080

63 indicates that sprites $0-5(1+2+4+8+16+32$ $=63$) are touching other sprites or foreground objects. But this result does not mean that each of those sprites is involved in the same collision as the others. For all you know, sprites 0 and 1 may have collided on one part of the screen, and sprites 2-5 may be involved in a three-way collision elsewhere.

In other words, BUMP(2) tells you that a given sprite has collided with some foreground object, but does not indicate which foreground object it is touching. If that information is important, you must compare the horizontal and vertical screen positions of every sprite on the screen.

BASIC Page Flipping On The ST

I am programming in ST BASIC, and I would like to know how to flip from one screen to another.

> R. W. Sharples

Page flipping-switching from one display screen to an-other-is quite simple in a language like C , but it's not practical in ST BASIC. The first problem has to do with memory allocation. An ST screen requires 32,000 bytes, and it must begin at an address that's evenly divisible by 256. In order to use an alternate screen, you must reserve 32,000 bytes of memory at a location divisible by 256 . This ordinarily would be done with GEMDOS routines, but ST BASIC provides no means to call a GEMDOS routine. If you attempt to use an unprotected memory area, you run the risk that output to the new screen will interfere with BASIC, or that BASIC's operations will corrupt the screen.

Assuming that you could surmount the memory problem, you also would have difficulty flipping from one screen to the next. Page flipping is done by calling an XBIOS routine, but ST BASIC also lacks any method for calling XBIOS routines. Furthermore, switching to a new screen requires that you pass to the system a 32-bit address representing the location of the new screen. Since the largest variable in ST BASIC is only 16 bits long, you have no practical way to tell the system where your alternate screen begins.

The recently introduced GFA BASIC language permits access to GEMDOS and XBIOS routines, and it also has a built-in command that can flip screens without resorting to system calls. The SWAP command exchanges the values of two variables in GFA BASIC. If you previously have reserved a screen space named SCREEN2, this statement is all it takes to flip from the old screen to the new one:
SWAP screen1, screen2

GET UPTO2OO FUN-FILED PROGRAMS EACH YEARwhen you sisberabie now to courPute

Subscribe to COMPUTE! today through this special introductory money-saving offer, and you'll be getting a lot more than just another computer magazine. That's because each issue of COMPUTE! comes complete with up to 20 all-new, action-packed programs.

Subscribe now and you can depend on a steady supply of high quality, fun-filled programs like Hickory Dickory Dock, Switchbox, TurboDisk, Home Financial Calculator, Turbo Tape, SpeedScript, SpeedCalc, and hundreds of other educational, home finance, and game programs the entire family can use all year long.

The superb programs you'll find in each issue are worth much, much more than the low subscription price.

And there's more to COMPUTE! than just exciting new programs. Month after month, COMPUTE!'s superb articles deliver the latest inside word on everything from languages to interfaces...from programming to disk drives.

Whether you're a novice or an experienced user, COMPUTE! is the magazine for you. So subscribe today. Return the enclosed card or call 1-800-247-5470 (in lowa, 1-800-532-1272).

Do it now.

Selby Bateman, Features Editor

Digital technology and computers are changing the ground rules of music. Sounds are being produced that have never before been heard. Many professional musicians are altering the business of commercial music by composing and performing in ways previously unthinkable. And nonmusicians can now create and play music with the help of smart computer programs that teach, guide, and accompany.

Pick up many of the latest records, tapes, and compact discs on the market and you're in for a surprise. In addition to the traditional credits given to those who play guitar or piano or drums, you'll increasingly find credit being given for programming, digital mastering, and other computer-related processes.

You may be in for a similar surprise at your next concert. One or two musicians can now play a bank of computer-controlled instruments that sound like an entire orchestra. Drum machines, sequencers, sound samplers, digital pianos, and synthesizers cover the stage-all hooked into one another and connected to one or more computers.

Musicians as varied as Frank Zappa, Philip Glass, Wendy Carlos, Jan Hammer, Vangelis, Steve Winwood, Pat Metheny, Peter Gabriel, and many others are experimenting with a variety of new-tech musical styles and machines as they explore the cutting edge of digital technology. More fundamental changes are occurring today in the ways we create, play, and listen to music than in any previous era. And those alterations are raising eyebrows, expectations, and problems.

For most computer users, however, the most direct effect of the changing musical landscape may be in the dozens of new and sophisticated music software packages that have been emerging over the past
couple of years. Computers with more memory and power are providing a much richer environment for software developers, and this translates into some of the most accessible and flexible music programs ever developed.

The MIDI March

Each of these subject areas-sound generation, commercial production, and amateur access-is based on the revolution in music caused by the introduction of MIDI in 1982.

MIDI-the Musical Instrument Digital Interface-is a standard set of electronic specifications for interconnecting electronic musical instruments, and that includes computers. MIDI is both a hardware standard and a software standard, the basics of which were agreed upon by a number of the leading companies in the electronic music business, such as Yamaha, Sequential Circuits, Korg, E-Mu Systems, Roland, and others. The fact that these companies were able to agree on the standards back in 1982 has meant that all electronic music development could move forward much faster.

How important is MIDI? David Kusek, president of Passport Designs, a leading music software company, claims that MIDI is turning musical instruments into computer peripherals. "It's making it possible for a much larger group of people to make music," he adds. "MIDI is changing the nature of music learning and production."

The basics of MIDI are easy to understand. Let's say you have a personal computer, a synthesizer, a drum machine, and a sequencer. Before MIDI, it would have been virtually impossible to connect the four machines in any mutually productive combination. But through MIDI, you physically connect the four with cables and communicate
via a common set of transmission signals that travel from machine to machine.

MIDI itself is an open-ended set of specifications, designating a minimum group of standards that all companies can follow. At the hardware, or machine, level, MIDI is really quite simple. MIDI ports can be MIDI IN, MIDI OUT, or MIDI THRU. MIDI IN ports receive the digital data, MIDI OUT ports send the data, and MIDI THRU ports pass along the data. The plugs, jacks, and cables used by MIDI must be the same. The cable is the common shielded, twistedpair type, and the ports are the standard five-pin DIN variety.

There are 16 separate MIDI channels that can be set to send, carry, or receive data from different instruments. In the newest instruments, individual voices can be assigned to different channels. They operate in much the same way that television channels do, but the sending and receiving options are much more flexible and interactive with MIDI channels. There are also a variety of modes for sending and receiving information. As you can see, at its most basic level, MIDI is very simple; at higher levels, with many machines interconnected and different channels carrying different voices, the results can become both complex and powerful.

The New Professional Environment

For most computer users and amateur musicians, however, there's no real need to become a technical wizard to exploit the promise of MIDI. Some new computers, like the Atari ST, come with MIDI ports already installed. And MIDI interfaces for personal computers are getting much cheaper and more versatile.

For professional musicians, there's every reason to explore the

The computer becomes your musical accompanist and teacher with Instant Music, from Electronic Arts.
many uses of MIDI. The results among musicians who have already become proficient with computeraided, MIDI-controlled composition and performance have been remarkable. Most dramatic, perhaps, are the works of composers such as Jan Hammer, who every week single-handedly scores an hour-long episode of the television program "Miami Vice" from the computer-controlled recording studio in his home. In a similar fashion, the composer Vangelis created, by himself, the entire award-winning score for the movie Chariots of Fire, composing and producing all of the music.

Frank Zappa-who has, in the past, delighted in writing musical compositions too difficult for musicians to play-now has digital music machines that can do the job quite easily. "I use synthesizers for three things," says Zappa. "For generating sounds that never existed before, for performing music which human beings would have difficulty playing, and to get rid of some of the drudgery of composition.'

While professional musicians may be more experienced in composing and performing music, their goals are not unlike those of nonmusicians who want to make music. And thanks to a new breed of music software, amateurs today can do more and sound better than ever before.

Improving Hardware

Making music on a computer has come a long way in a very short time. Before computer manufacturers put music chips in their computers, some adventurous computer users made sound by actually programming their computers to tell their printers to tap out meager rhythmic patterns. The first soundproducing computers used simple tone generators with oscillators that

could affect pitch and volume, and not much more.

For several years, the Atari eight-bit computers' four-voice sound chip was the best that could be had on a personal computer. But then came the Commodore 64's amazing SID (Sound Interface Device) chip which-five years lateris still a remarkable sound processor.

But the greatest leap has been in the advances in sound-generation capabilities that have come with the latest generation of computers. Add to that the vastly expanded power that these computers have because of their 512 K and even one-megabyte memories, and the musical landscape looks even broader.

The Amiga's four-voice stereo sound output, with independently programmable volume level and sound-sampling rates, is only now beginning to be effectively tapped. And the Apple IIGs computer goes even further in sound generation with the amazing Ensoniq Q chip that has 15 separate, two-oscillator voices and a built-in analog-todigital converter. It will take a while before software developers exhaust the musical power of the Amiga and Apple IIGS computers.

At the same time, both the Macintosh and the Atari ST computers arè attracting professional and amateur musicians alike to their powerful and yet easy-to-use environments. During the past couple of years, software developers have produced quite an array of music-composition programs for the Macintosh, and the same situation seems likely for the ST. In fact,

Atari engineers realized that the potential for musical applications of the ST was so great that they designed MIDI IN and MIDI OUT ports on the back of the STs when they were first built. So, instead of needing a MIDI interface to connect between the computer and MIDI instruments, the ST is already set for MIDI use.

More Memory, More Music

There has developed a very large library of music software for eightbit machines like the Commodore 64 and the Apple II-series computers. And many professional musicians first began tinkering with digital music, MIDI, and computers on one of these eight-bit machines.

But despite the flexibility of these computers, the pros soon found themselves reaching the limit of memory on the 64 K machines. It's possible to get about 6000 notes into memory at one time on a Commodore 64. And if you want to process those notes in any advanced ways-say, by pitch bending or using a modulation wheel on a MIDI-equipped synthesizer-the memory is used even faster.

The new-generation computers, with 512 K or as much as one megabyte of memory, can handle virtually all of the notes and processing that even the most demanding composer can throw at them. Software companies have not been slow to realize this potential. Activision, Aegis Development, Cherry Lane Technologies, Dr. T's Music Software, Electronic Arts (EA), Hybrid Arts, MidiSoft, Passport Designs, Sonus, and Southworth

Music Systems are but a few of the companies that have produced a number of music software programs for both professionals and amateurs. (See accompanying music buyer's guide.)

There are almost as many kinds of music software available today as there are packages. But most of them fall into one of three broad categories: educational programs aimed at systematic teaching, training, and/or practice of musical knowledge and skills; entertainment software aimed at unleashing the creative and playful aspects of music creation and performance while also allowing some level of serious productivity; and MIDI-related programs that serve as controllers for you to use with your computer and one or more MIDIequipped musical instruments.

Many of the educational programs have proven to be a boon to music instruction in school settings as well as in the home. But it's the latter two categories-the creative programs and the MIDI pro-grams-that seem to be capturing the fancy of most amateur and professional musicians. In addition, an increasing number of the newest music-creativity programs are being developed with MIDI compatibility already built in.

The range of options and features that are a part of most MIDI programs-sequencers, editors, controllers-is remarkable. Passport Designs' new Midisoft Studio for the ST, for example, is a complete multitrack recording studio and sequencer that features realtime recording, playback, overdub, rewind, and fast forward. It has 32 polyphonic tracks which are independently controlled, and a capacity for more than 80,000 notes per song. In addition, there is full track editing for combining, moving, copying, and erasing any combination of the 32 tracks. In other words, you can change virtually any musical parameter you can think of in just about any manner.

For computer users who aren't interested in using their machines with electronic synthesizers, drum machines, digital pianos, and the

Activision's The Music Studio is an entertaining creativity program which also has a full set of music-composition tools.
like, there are plenty of software programs that use just the computer to compose and perform music. Among the best-known and the most complete of these programs for both 8 -bit and new 16 -bit computers are Activision's The Music Studio and Electronic Arts' Music Construction Set (and the new Deluxe Music Construction Set).

The Music Studio, for example, is something of a musical tool kit that has an impressive array of features, but is also accessible to beginners. The program offers full composing capabilities, as do many programs, but there are also tools for creating your own instruments and sound effects, and a "paintbox" feature for free-form musical experimentation. Activision also offers MIDI capability on the ST, Amiga, Tandy 1000, and Commodore 64 versions.

In a similar fashion, Music Construction Set and the new deluxe version offer free-form composition tools and user-definable sounds. The emphasis in both programs is to give the beginner plenty to play around with and to enjoy, without having to know too much at the start. As the level of knowledge and skill goes up, the programs have built-in tools that are quite sophisticated.

Your Computer Accompanist

A most interesting offshoot from these composition and entertainment programs are software packages that actually become accompanists to your creative and performance efforts. This is the logical next step, and one that promises to bring even more non-
musicians into the computer-music fold.

One of the newest and best examples of this breed of helpful music software is Electronic Arts' Instant Music, a program that won't let you make a mistake-unless you want to. The software does this by keeping you in the right key and rhythm no matter what you're playing. You can even "Mousejam" along with the program-using the mouse to control one instrument as several other instruments play a composition. No matter where you move the mouse on the musical staff, you're in key and in rhythm and always following the melody. The computer becomes your musical partner. For a nonmusician, the experience is both fascinating and educational.

Instant Music, and a few programs like it, provide that one extra step that can help a beginner really get excited about creating music. "Instant Music is a result of what we learned from Music Construction Set," says EA producer Stewart Bonn. "Although we had freed a person from having to play a keyboard in order to play music, we hadn't necessarily taught them where to place the notes. And, unfortunately, music composition is composed of a lot of rules that not a lot of people understand.
"Instant Music lets the computer take care of all those rules," he says. "It's as though you had the computer holding your hand and guiding you.

It's clear that the digital-music invasion is just underway. And computers will remain in the forefront of this amazing musical transformation. The digital music machines and computers that you can buy today for less than a thousand dollars can produce far more sophisticated results than musicians could have achieved 20 years ago in a firstrate recording studio. And much of that power comes from MIDI.

Says one music-software developer, "The real power is with the consumer. MIDI will allow the marginal musician perfect performances, if he's willing to use it."©

TEST DNE ONE FOR YOURSELR

In their day, they ruled over three quarters of the earth's surface.

During WWII, they viciously brought Britain to her knees. And Japan to the ground

These were the silent killers: Tench. Gato. U-Boat.

And now, they return. In this, the most realistic, all-encompassing simula-

TAKE OUR PREVIEW DISK FOR A SPIN. Drop this coupon in the mail with your check or money order, and we'll gladly send you to the South Pacific to have it out with an enemy fleet.
Mail to Sub Battle Preview, P.O. Box 8020, Redwood City, CA 94063.

And the contents of a vital target book, among other things.

Your arsenal will include deck and antiaircraft guns. Torpedoes. And mines.

But even all that may not be enough.

Because besides the risk of bumping a depth charge or facing a killer Destroyer, you'll still have to contend with the gunfire of enemy aircraft.

No simulation has
tion ever created for the personal computer.

You will command one of six types of American subs or German Kriegsmarine U-Boats, during any year from 1939 to 1945. You'll perform one of over

60 missions. Or you'll engage in the most difficult task of all: To make it through the entire war. Each vessel is completely unique and painstakingly authen tic, so you'll have a lot to learn: Navigation. Weather. Radar.

The No. I battery. Sea guard radar stub. The ship's heart.

The 360° periscopes. authenticity, gut-wrenching action or historical accuracy of this one.
The first release of our new Masters Collection. And a challenge of unbelievable depth.
Apple II \& compatibles, Apple IIGS,
Atari ST, C64/128, IBM \&
compatibles, Macintosh.

Independent gentrator
Salt water tank, for
\& diesel engines. trimming and compensating.

$$
5^{\prime \prime} 25 \mathrm{cal} \text { gun. }
$$

Officer's quarters. Water purification.

Electronic Music Terms

Amplitude-loudness.

Analog sound-recordings on ordinary tape recorders or vinyl records. The sound waves on these media replicate the waves which will hit the air when the tape player or record player is turned on. You can see them if you look closely at an LP: little fluctuations in the grooves which are an analogy of the sound therein contained.
Bandwidth-the amount of fidelity. The distance between the lowest and highest frequencies possible in a given instrument or device.
Digital sound-recordings on compact disc or digital tape. The sound waves bumping against a microphone are translated into numbers (digits) which are then stored. Sound information stored in this fashion is far less susceptible to the dust, warpage, and other kinds of decay which have plagued analog storage media since their invention in the nineteenth century. More importantly, the numbers can be easily processed at virtually no cost. If you want to add echo, just copy the pitch numbers, adjust the timing numbers, and reduce the loudness numbers associated with the copy. All this is a software event in the digital domain: Nothing physical has to happen, just some math. Contrast that to the expensive electronics required to send analog music through a device that has to somehow physically control the necessary repetitions and relationships.
Dynamics-variations in amplitude.
Envelope-how the sound builds and dies away. Broken into four fundamental phases-attack, decay, sustain, and release-the envelope of a sound is the variation in its amplitude over time.

The ear is very sensitive to variations in the loudness of a

sound, and the envelope is one of the most important ways that we distinguish different musical instruments. Some instruments have similar waveforms (pitch relationships) but are easily told apart because one abruptly goes silent while the other slowly fades.
Fidelity-how well a recorded or synthesized sound matches the original. For instance, a two-inch speaker will always be low fidelity no matter how good a signal you feed into it. It's just too small; few musical instruments have two-inch openings through which their sounds normally pass. Forcing the big boom of a bass drum through a two-inch opening is a doomed endeavor: The sound waves are just too large to fit through, and such a speaker is politely described as "lacking in bass." Attach larger speakers to the system, though, and you'll get higher fidelity.
Filtering-selectively removing elements of a sound. When you turn down the treble control on your stereo set, you are filtering out some of the high-frequency content of the music. It sounds less bright because you are invoking a variable filter which eliminates a portion of the sound.
Low-pass filter-a device which allows the low-frequency content of a sound to pass through, but blocks the high-frequency content. In digital recording, there are effects beyond the range of human
hearing which nevertheless can distort the sample and which require low-pass filtering. Such filtering is also used to eliminate hiss or other high-frequency noise.
Noise-disorganized sound. Noise can come from the 60 -cycle-persecond hum of ordinary electrical current if electronic equipment isn't properly grounded, from the hiss caused by imperfections in recording tape, or from other sources such as inadequately shielded computer circuitry. Whatever its source, noise is a constant problem in the creation of music and its high-fidelity reproduction. Tape hiss might well be the exact same sound as a brushed cymbal, but the cymbal is brushed with the music, on the beat, while the tape noise is random. Orchestration-the choice of instruments. Deciding, for example, that you want your melody played by a clarinet and not by an oboe is orchestration.
Oscillator-an electronic device which vibrates, causing electrical signals to take on waveforms. Useful in generating sound.
Pitch-how high or low a sound is.
Polyphonic-more than one sound at a time. A soloist singing a melody without accompaniment is monophonic. But when you add a guitar, a drum, and other musicians, you get polyphony. An important aspect of a musical instrument is the number of sounds it can make simultaneously. A drum is normally monophonic, but a set of drums can be played polyphonically.
Reverb-complicated clusters of echoes which add fullness and naturalness to a sound and which are caused by reflections of sound waves off the walls of a room. Differences in reverberation are what you hear when you can distinguish the sounds made by the same piano

New books from COMPUTE!

> COMPUTE! Books is bringing you a brand new line up of books for your Commodore 64 and 128. These recent releases offer you everything from programming hints to exciting games, from educational to home and business applications.

Pascal for Beginners

$\$ 14.95$
0-87455-068-8
Book/disk combination for the Commodore 64 \$29.95

ISBN 0-87455-069-6
This introductory text to standard Pascal on any computer is an ideal tutorial for anyone who wants to learn this powerful computer language. It includes everything you need, including an introductory Pascal interpreter* for the Commodore 64 and 128 in 64 mode, ready to type in and use. Written in plain English and offering numerous program examples, it gently and clearly explains standard Pascal and structured programming. Latter sections include discussions of advanced topics such as files and dynamic data storage. There is also an optional disk available for $\$ 12.95$ for the Commodore 64 which includes most of the programs in the book. 688BDSK.
-The Commodore 64 Pascal interpreter is not full-featured, but still a powerful implementation of Pascal which suits the needs of most beginners.

COMPUTE!'s Music System
for the Commodore 64 and 128
Book/disk combination only
\$24.95
ISBN 0-87455-074-2
Sidplayer, the feature-packed, popular music player and editor program, is now more versatile and more impressive than before. Enhanced Sidplayer for the Commodore 128 and 64 includes two new versions-one for the Commodore 128 running in 128 mode and another for the Commodore 64. Take advantage of every feature the SID chip (the sound chip in the 128 and 64) has to offer. Just like the original, Enhanced Sidplayer is easy to learn and use, with many powerful new features. The accompanying disk contains the editor, player programs (including a Singalong program), utilities, and sample music that you can enjoy immediately or change. The new Sidplayer plays any songs created by the original Sidplayer for the Commodore 64.

User's Guide to GEOS: geoPaint and geoWrite $\$ 18.95$
 ISBN 0-87455-080-7

Learn the ins and outs of GEOS, the new icon-based operating system for the new Commodore 64C and the 64, with this step-by-step guide. Everything from creating simple letters with geoWrite and pictures with geoPaint to merging text and graphics and using desk accessories is clearly and concisely explained.

COMPUTE!'s Second Book of the Commodore 128 $\$ 16.95$
 ISBN 0-87455-077-7

The editors at COMPUTE! Publications have collected some of the best games, programs, and tutorials for the Commodore 128 (in 128 mode) from COMPUTEI magazine and COMPUTEI's Gazette. Like COMPUTEI's First Book of the Commodore 128, this book offers a variety of programs and articles for every 128 user. Each program has been fully tested and is ready to type in and use on the Commodore 128 running in 128 mode. There is also a disk available for $\$ 12.95$ which includes the programs in the book. 777BDSK.

Mapping the Commodore 64, Revised

 $\$ 16.95$ISBN 0-87455-082-3
An update of the bestselling memory map and programming guide. It's a necessity for intermediate and advanced programmers. This definitive sourcebook has been expanded and now covers the new icon-based GEOS (Graphics Environment Operating System) with clear descriptions of how to make it work for you. For BASIC and machine language programmers of both the Commodore 64 and 64 C .

Look for COMPUTE! Books at your local computer or book store. Or, to order directly from COMPUTE!, call toll free 1-800-346-6767 (in NY 212-887-8525) or write COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.

Please include shipping and handling: $\$ 2.00$ per book in U.S. and surface mail; $\$ 5.00$ airmail.
NC residents add 5 percent sales tax and NY residents add 8.25 percent sales tax.
Please allow 4-6 weeks for delivery.

- IBM - COMMODORE —EPSON —— NL•180 SPFCIFICATICNS

Print Buffer

8 K bytes utility buffer Printing Direction Text Mode - Bi-directional Graphic Mode - Uni-directional Interface
Centronics type parallel (8-bit)
Paper
Plain paper, Roll paper, Single sheet
Fanfold, Multipart paper: max. 3 sheets (original plus 2 copies)
Character Fonts
Pica, Elite, Italics, Condensed

Printing Method
Impact dot matrix
Printing Speed
160-180 CPS at standard character printing
Printing Characters
Standard 9×9 dot matrix
NLQ 12×18 dot matrix (33 cps)
Character size: $2.12 \times 2.8 \mathrm{~mm}$ (standard)
Character sets: Full ASCII character set (96)
32 International characters

INTERFACES

Atari $\$ 39.95$ Apple $\$ 49.95$ Commodore $\$ 29.95$

Add $\$ 10.00$ for shipping, handling, and insurance. Illinois residents please add $61 / 2 \%$ sales tax. Add 20.00 for CANADA, PUERTO RICO, HAWAII, ALASKA, APO-FPO orders. All orders must be in U.S. Dollars. WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA. Enclose Cashier Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail. Prices \& Availability subject to change without notice.
VISA - MASTER CARD - C.O.D.
C.O.D. on phone orders only.

COMPUTER DIRECT
22292 N. Pepper Rd. , Barrington, Illinois 60010 Call (312) 382-5050 or 382-5244 to Order We Love Our Customers

Ink Ribbon Cartridge
Ribbon Life: 3 million characters/cartridge
Physical Dimensions
Size: $15^{\prime \prime} \times 12^{\prime \prime} \times 5$ "
Weight: 12.7 lbs.
Maximum Number of Characters

Standard:	10 cpi	80 cpl
Standard enlarged:	5 cpi	40 cpl
Elite:	12 cpi	96 cpl
Elite enlarged:	6 cpi	48 cpl
Condensed:	17 cpi	132 cpl
Condensed enlarged:	8.5 cpi	66 cpl
Condensed elite:	20 cpi	160 cpl

BM \$49.95 Laser \$19.95 compules over $1 B M \odot \times T$ toster than the 1 BMO

Look at all you get for only $\mathbf{\$ 5}^{\mathbf{5}} \mathbf{5 9} 9^{00}$

The complete system

10 MHz Super Turbo XT Computer

* 512 K Memory
* Single floppy disk drive
* Parallel printer port
* Serial printer port
* Mouse/joystick port
* RGB color graphics port
* Hercules compatible monochrome port

MS DOS 3.2 \& GW Basic
12' 'Hi-Res 35 MHz Green Screen Monitor
(TTL \& EGA compatible)
Monitor interface cable
Big Blue Printer
RS 232 IBM to Big Blue cable
2 rolls of paper
Word First • Word Processor
Data First • Data Base
Calc First • Spreadsheet

List Price
s $1295^{\circ 0}$
s9995
5129^{95}
559^{95}
$\$ 59^{95}$
\$5995
59995
$\$ 79^{95}$
\$19900
${ }^{5} 249^{\circ 0}$
${ }^{5} 24^{95}$
${ }^{5} 199^{\circ 0}$
${ }^{5} 19^{95}$
519^{95}
59900
\$9900
\$9900

Sale Price
${ }^{3} 499^{\circ 0}$
No extra cost
\$9900
*9900
${ }^{8} 19^{95}$
${ }^{3} 39^{95}$
${ }^{29} 95$
${ }^{5} 5^{95}$
:39.5
39^{95}
${ }^{5} 3995$ reports, calculations, business projections...the list can go on and on. With the addition of some of the thousands of software programs available for IBM® you can increase the capabilities of your system even further. A terrific home improvement, business enhancer, entertainment center \& educational aid!

Save over \$27500 off sale prices!

${ }^{8} 892^{65}$

22292 N. Pepper Rd., Barrington, Illinois 60010
Call (312) 382-5050 or 382-5244
to Order We Love Our Customers

played in a small room or played in Carnegie Hall. Reverb is often added artificially in recording studios to make music sound more real and more pleasing to the ear.
Ring Modulation-a special way of superimposing filtering on a sound which results in the exotic, constantly shifting timbre characteristic of bells and gongs.
Sampling-making a brief digital recording of a sound or musical instrument. Although we're all familiar with analog recording using tape recorders, the quality of digital recording can be much greater; and the resulting sound, captured in RAM memory instead of tape, is far easier to work with. For example, if you sampled the sound of a pencil hitting a cup, you could then play the sound back at different pitches, as if you had 88 cups sitting inside a piano, 1 for each key. Or you could modify the sound in a variety of ways (echo, play it in reverse, and so forth), which is quite easy to do when the sound resides in computer RAM memory, but difficult, if not impossible, when it's on tape. Sampling, however, does use up RAM memory very quickly. A few seconds of sampled sound can require thousands of bytes of storage space.
Sampling Rate-how often, per second, the sound waves hitting a microphone are measured and transformed into numbers. All things being equal, the higher the sampling rate, the more the resulting sample will resemble the original.
Sonic-pertaining to sound.
Sync-using one oscillator to control another to produce such effects as tremolo (where the pitch rapidly rises and falls, almost like yodeling) or vibrato (where the amplitude rises and falls).

Synthesis-creating artificial sounds from scratch. Using the elements of sound (waveforms and envelopes), it is possible to build very close approximations of acoustic instruments or to invent entirely new sounds.

Sound is vibration. It's a disturbance of the air that forms wavelike patterns which strike the ear. And there are two fundamental elements to sound: pitch and amplitude. Pitch is how high or low the sound is on the musical scale and is a direct result of how many vibrations per second are occurring. A high pitch is caused by frequent vibrations; a low pitch by fewer vibrations. The amplitude is how loud the sound is.

Synthesists can use electronics and computers to create waveforms and control amplitude in complex ways. They can superimpose, invert, filter, and otherwise manipulate them into sounds that are designed rather than natural. Modern music is becoming increasingly reliant on synthesis in the same way and for the same reasons that modern manufacturing increasingly relies on synthetic materials: The product is often less expensive, more reliable, and, sometimes, cannot be found in nature.
Transpose-applied to digital sampling, this means to move a sound up or down in pitch. A drum transposed up three octaves could sound like a bird chirp-a shorter and higher-pitched sound. Transposing a sampled sound so far from its normal range is called the Mickey Mouse effect because the sound begins to take on an odd, hollow quality. For this reason, several different samples of instruments with wide pitch ranges (such as the guitar) need to be made. The piano, one of the most difficult instruments to
sample, requires many samples across its range. The waveforms of the low notes and high notes on a piano are so distinct that they seem to derive from different instruments altogether.
Voicing-adding character to a sound. Changing the voicing of an organ can make it sound like reed or wind instruments, for example. Waveforms-The sometimes intricate shapes of the sound waves characteristic of different sounds. The sine wave (shown below), the simplest waveform, sounds like a flute.

A sine wave
If you start to deform the waves, like this:

A modified sine wave
you'll start hearing a more raspy sound. Enough deformation, and you can end up with what sounds like a trumpet. Manipulating waveforms, in combination with control over a sound's envelope, can produce the sound of any instrument. The unique quality of an instrument's sound, its particular waveform, is called its timbre.

Everything for the Amiga. From BASIC beginner's guides to advanced programming handbooks, COMPUTE! offers you information-packed tutorials, reference guides, programming examples, ready-to-enter applications, and games to help you develop your computing skills on Commodore's Amiga.

COMPUTE!'s AmigaDOS

Reference Guide
Arlan R. Levitan and Sheldon Leemon A comprehensive tutorial and reference guide to the powerful AmigaDOS-the operating system underlying the Workbench and Intuition-this book offers information useful to every Amiga owner. It defines and illustrates all DOS commands, and shows you how to create file directories, access peripherals, run batch file programs, and avoid "disk shuffle." The screen- and line-oriented text editors are explained in detail. Numerous examples and techniques explain how to use AmigaDOS to make operating your Amiga both convenient and efficient.
\$16.95 ISBN 0-87455-047-5

Elementary Amiga BASIC

C. Regena

Here's your introduction to the new and powerful BASIC on the Amiga personal computer. The Amiga's impressive graphics, animation, and sound can be unlocked with the right commands, and BASIC is the place to start. Complete descriptions of Amiga BASIC's commands, syntax, and organization take you from the beginner level to a full-fledged programmer. Plus, the book offers you ready-to-type-in programs and subroutines while showing you how to write your own programs. There is a disk available which includes the programs in the book, $\$ 12.95$. This title is also available as a book/disk combination for $\$ 29.95$ (057-2).
\$14.95 ISBN 0-87455-041-6

COMPUTEI's Amiga
Programmer's Guide

Edited

Your tutorial and reference manual to AmigaDOS, BASIC, Intuition, and other important software tools which accompany the new Amiga, COMPUTE!'s Amiga Programmer's Guide is a clear and thorough guide to the inner workings of this fascinating newgeneration computer. The great speed of its 68000 microprocessor, coupled with the versatility of the Amiga-specific graphics and sound, makes the Amiga one of the most powerful computers available today.
This book is the key to accessing the Amiga's speed and power.
\$17.95 ISBN 0-87455-028-9

Advanced Amiga BASIC

Tom R. Halfhill and Charles Brannon
This guide to applications programming on Commodore's new Amiga contains everything an intermediate programmer requires to begin creating sophisticated software on this powerful machine, including several ready-to-type-in programs. Clear, yet comprehensive documentation and examples cover advanced BASIC commands, designing graphic applications, generating sound and music, using the Amiga's built-in speech synthesizer, creating a user interface, and programming the computer's peripherals. There is a disk available which includes the programs in the book, $\$ 15.95$. (June release)
\$17.95 ISBN 0-87455-045-9

Look for these books at your local book or computer store. Or order directly from COMPUTE!.
 Call toll-free 1-800-346-6767 (in NY 212-887-8525).

COMPUTEI's Beginners Guide to the Amiga

Dan McNeill

Written in a lively and entertaining style, this book teaches you everything a beginner needs to know to get started quickly with the Amiga from Commodore. You will learn about setting up the system, all the most popular types of software, and details about the hardware. \$16.95 ISBN 0-87455-025-4

Inside Amiga Graphics

Sheldon Leemon
The Amiga, Commodore's powerful new computer, is an extraordinarily impressive graphics machine. Easy to use, the Amiga can produce color graphics and excellent animation You'll find thorough descriptions of the computer's abilities and the hardware required to create a complete graphics system. Software, too, is central to the Amiga's power, and complete tutorials show you how to get the most from the machine. (June release) \$17.95 ISBN 0-87455-040-8

COMPUTEI's Kids and the Amiga

Edward H. Carlson

The latest in this bestselling series written by Edward Carlson, COMPUTE!'s Kids and the Amiga, will acquaint you with BASIC. Over 30 sections-all with instructor notes, lessons. assignments, and lively illustrations-entertain and amuse you as you learn to program your new computer. Clear writing and concise examples make it easy for anyone-children and adults alike-to painlessly learn BASIC. (May release)
S14.95 ISBN 0-87455-048-3
Please allow 4-6 weeks for delivery after your order is recelved.

A Buyer's Guide To Music Software

The programs listed here are only some of the hundreds of music software packages available for personal computers. This buyer's guide is not meant to be exhaustive, but does give you some idea of what's available and which companies are producing music software. A number of the companies mentioned here have a variety of other music programs available. The following guide does not attempt to include the professional programs priced significantly above the general consumer level. Note that prices and machine availability change frequently.

Product	Price	Publisher/ Vendor	System	Description
Adams' Music Disk Version 6.0	\$39.95	Adams' Soft	Apple II, IIe, IIc	Elementary music-learning program with colorful graphics. Most useful for elementary-school teachers.
Advanced Music System	\$79.95	Firebird	Commodore $64 / 128$	A music program allowing creation of full compositions with MIDI capability. Suitable for the professional musician as well as beginners.
Aegis Sonix	\$79.95	Aegis Development	Amiga	Create any type of music by combining multiple instruments and sounds with this professional music-composition program. An expanded version of a program originally called Musicraft.
Bank Street Musicwriter	\$49.95	Mindscape	Apple II + , IIe, IIc; Atari eight-bit; Commodore 64; IBM PCjr	Composing comes to life as you arrange music on the screen. It's as easy to learn as arranging words in word processing.
Basic Chords	\$39.95-\$99.95	Electronic Courseware	Apple II + , IIe, IIc; Commodore 64/128; IBM PC, PCjr; Tandy 1000	Computer plays a basic chord or its inversion, which the user must then identify.
Basic Guitar 1	\$50	Digital Concept Systems	Apple II, II + , IIe	Two-disk set of sound and graphics to teach chords to beginning guitarists.
Basic Piano Theory Software	\$29.95	Alfred Publishing	Apple II + , IIe, IIc; Commodore 64/128	Creative graphics and animation in game formats reinforce concepts taught in Alfred's Basic Piano Theory.
Beatles Classics	\$29.95	DJ Software	Commodore 64/128	Strum-along-song disk comes with 15 songs, from "Hey Jude" to "Hard Day's Night."
Camus	\$50	Conduit	Apple II; IBM PC	Set of exercises that train the ear to perceive musical notation.
Chord Power for Guitar	\$39.95	Newarts	Commodore 64	Displays over 10,000 guitar chords with sound at user's request.
Chord Primer	\$49.95	Dynacomp	IBM PC, PCjr	Program capabilities range from a built-in library of over 600 chords to a set of automated lessons on music theory for guitar.
Chords	\$79	Wenger Computer Software	Apple II, II + , IIe	Intermediate or advanced music students drill and practice chord identification for ear training.
Christmas Classics	\$9.95	Free Spirit Software	Commodore 64/128	"Joy to the World," "Deck the Halls," "Twelve Days of Christmas," and "Jingle Bells" are among the over 40 songs included.
Christmas, Volume 3	\$15	Great Wave Software	Mac, Mac Plus	Collection of Christmas songs.
Classical Selection, Volume 5	\$15	Great Wave Software	Mac, Mac Plus	Collection of favorite classical music.
Clef Notes	\$39.95	Electronic Courseware	Apple II + , IIe, IIc; Commodore 64/128; IBM PC, PCjr; Tandy 1000	Drill-and-practice in identifying notes as they're placed on the treble, alto, tenor, and bass clefs.
Coco Notes	\$12.95	CBS Interactive Learning	Atari eight-bit; Commodore 64	Players try to catch notes, create melodies, and fish for tunes. Teaches sound discrimination, musical patterns, and composition. For ages 6 and up.
$\begin{aligned} & \text { Computer } \\ & \text { Song/Album/Music- } \\ & \text { Video Hits } \end{aligned}$	\$15.95	Sight \& Sound Music Software	Commodore 64	Listen to hits of favorite artists while controlling computergenerated instrument sounds and special effects.
COMPUTE!'s Music System for the Commodore 128 \& 64	\$24.95	COMPUTE! Publications	Commodore $64 / 128$	Enter, edit, and play the most sophisticated music possible on the Commodore 128 and 64 with Enhanced Sidplayer.
ConcertWare + MIDI	\$139.95	Great Wave Software	Mac, Mac Plus	Control any MIDI-compatible electronic keyboard, synthesizer, or drum machine. Record voices as you enter them monophonically on an electronic keyboard.
```ConcertWare+, Version 3```	\$69.95	Great Wave Software	Mac, Mac Plus	Create, edit, print, and play music files; create new instrument sounds, as well. Some music and instruments included.
Deluxe Music Construction Set, Version 2.0	\$99.95	Electronic Arts	Mac, Mac Plus; Amiga	Improved and redesigned to take full advantage of these powerful computers. Enter notes directly on the staff with the mouse or from onscreen keyboard.

# ReRun to your dealer to check out this GREAT SOFTWARE 


#### Abstract

"...everything a good compiler should be...easy to use...efficient...offers a good range of optional features...excellent documentation...inexpensive." Tom Benford, Commodore Magazine


Give your
BASIC programs a boost!

## Basic Compiler

Now anyone can speed up their BASIC programs by 3 to 35 times! Basic-64 and Basic-128 easily converts your programs into fast machine language or speedcode (takes up less space yet protects your programs from prying eyes) or a mixture of both. You can even compile programs written with extentions-Simon's Basic, VICTREE, BASIC 4.0, VideoBasic and others. When the compiler finds an error, it just doesn't stop, but continues to find any other errors as well. Supports overlays and has many other options. 128 version works in FAST mode and allows you to use all 128 K of memory. If your program walks or crawls, give it the speed to RUN!
for C-64 \$39.95
for C-128 \$59.95

## Super C

$C$ is one of today's most popular languages. It's easy to transport C source code from one computer to another. With Super C you can develop software or just learn C on your Commodore. Super C is easy to use and takes full advantage of this versatile language. Produces 6502 machine code and is many times faster than BASIC. Includes full-screen editor (search, replace and block

operations), compiler, linker and handbook. Combine up to seven modules with the linker. Besides the standard I/O library, a graphic library (plot points, lines, fill) and a math library (sin, cos, tan, log, arctan, more) are included. Whether you want to learn C , or program in a serious $C$ environment for your Commodore, Super C is the one to buy. for C-64 \$59.95
for C-128 \$59.95

## PPM

Personal Portfolio Manager is the most comprehensive stock market portfolio management system available for the 64 or 128-For investors who need to manage stock portfolios, obtain up-to-the-minute quotes and news and perform selected analysis. Allows multiple portfolios for special intrests (high tech, low risk, income, etc.) and monitored individually. And the versatile report generator lets you produce any kind of report to analyze a portfolio or stock. You can even update your portfolio automatically using Dow Jones or Warner Computer Systems and your modem.
for C-64 \$39.95
for C-128 $\$ 59.95$

"...Personal Portfolio Manager will help you make the most of your money." Jim Grubbs, RUN Magazine
"...a customized data base with advanced telecommunications features and a relatively sophisticated report generator. This combination is hard to beat on any microcomputer. Ted Salamone, Commodore Magazine

## ... and SUPER BOOKS!



Anatomy of the C-64 Insider's guide to ' 64 internals. Graphics, sound, I/O, kernal, memory maps, and much more. Complete commented ROM listings. 300pp $\$ 19.95$


Anatomy of the 1541 Drive Best handoook on this drive, explains all. Filled with many examples programs, utilities Fully commented 154 ROM listings.


Tricks \& Tps for the C-64 Collection of easy-to-use techniques: advanced graphics improved data input, CP/M, enhanced BASIC, data hand ling and more. 275pp $\$ 19.95$


GEOS Tricks and Tlps Collection of helpful techniques for all GEOS users. Includes source for a font editor and a machine lang uage monitor.

##  <br> INTERNALS <br>  <br> C-128 INTERNALS

 Important C-128 information. Covers graphic chips, MMU, I/O, 80 column graphics and fully commented ROM listings, more. 500pp $\$ 19.95$

Essential reference. Interna drive functions. Explains various disk and file formats. Fully-commented ROM listings. 450pp $\$ 19.95$



C-128 PEEKS \& POKES Dozens of programming quick-hitters. techniques on the operating system, stacks zero page, pointers, and BASIC. $240 p p$ \$16.95


C-128 BASIC7.0 Internals Get all the inside info on BASIC 7.0. This exhaustive handbook is complete with fully commented BASIC 7.0 ROM listings. $\$ 24.95$

Call now for the name of your nearest dealer. Or order direct with your credit card by calling $616 / 241-5510$. Add $\$ 4.00$ per
order for $S \& H$. Foreign add $\$ 12.00$ per item. Other books and software also available. Call or write for your free catalog.
Dealers inquires welcome- 2000 nationwide.

## P.O. Box 7219

Grand Rapids, Ml 49510 Telex 709-101 • Fax 616/241-5021
Phone 616/241-5510

Product	Price	Publisher/ Vendor	System	Description
Ear Challenger Game	\$39.95	Wenger Computer Software	Apple II, II + , IIe	An aural/visual game designed to increase tonal memory of a series of pitches. Seven levels of difficulty. For elementary, intermediate, and advanced students.
Early Music for Musicworks	\$15	Recreations Software	Mac, Mac Plus	More than 60 music files of early music of many different styles, sounds, and moods.
Early Music Skills	\$39.95	Electronic Courseware	Apple II+, IIe, IIc; Commodore 64/128; IBM PC; Tandy 1000	Note-recognition tutorial and drill for beginning music students. A MIDI version is available.
Early Music, Volume 4	\$15	Great Wave Software	Mac, Mac Plus	Collection of music from the Renaissance period.
Ear Teacher	\$79	Wenger Computer Software	Apple II, II + , IIe	Provides complete record keeping for students using the Intervals, Tunings, Chords, and Melodic games music programs.
Easy Guitar	\$29.95	DJ Software	Commodore 64	Guitar instruction.
Elvis Classics	\$29.95	DJ Software	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	Strum-along-song disk with 15 songs. Includes "Teddy Bear," "Hound Dog," "Love Me Tender," and more.
Euphony Jr.	\$19.95	TCO Software	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \\ & \hline \end{aligned}$	A collection of three hours of classical music for your listening enjoyment.
Euphony ${ }^{+}$	\$29.95	TCO Software	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	Create, edit, and play music in three voices. Print out your music scores.
FB01 Design	\$139.95	Sonus	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	A double-banked MIDI librarian and editor for use with the Yamaha FB01 FM sound generator.
Find That Tune	\$39.95	Electronic Courseware	Apple II, II + , IIe, IIc, IIgs; Commodore 64/128	Aural/visual program with two difficulty levels.
GlassTracks	\$69.95-\$85	Sonus	Apple II + , IIe, Macintosh; Commodore 64; Atari 520/1040ST	A multifunctional MIDI recording studio.
Guitar Master 1.0	\$49.95	Mastersoft	Commodore 64	A comprehensive program of instruction designed for students, amateurs, and professional guitarists.
Guitar Tutor, Volume 1	\$49.95	Nappo Software	Mac, Mac Plus	Teaches beginning guitarists the correct finger positions of basic chords.
Guitar Wizard	\$29.95-34.95	Baudville	Apple II+, IIe, IIc, IIgs, Mac; Atari eight-bit, ST; Commodore 64/128, Amiga; IBM PC, XT, AT	Learn and analyze scales, chords, and tunings for all types of fretted string instruments. Clear graphic displays of the fretboard, notes, intervals, and finger positions.
Halftime Battling Bands	\$12.95	CBS Interactive Learning	Atari eight-bit; Commodore 64	Children choreograph and stage their own Be-Bop Bowl halftime show. Trip up the opposing band while creating your own marching tunes and band formations.
Hey Diddle Diddle	\$20.95-\$26.95	Spinnaker Software	Apple II, II + , IIe, IIc; Atari eight-bit; Commodore 64; IBM PC	Collection of 30 classic nursery rhymes featuring brilliant color graphics and lively music.
Imagination: Music	\$34.95	Wiley Professional Software	Apple II, II +, IIe	Music is both heard and seen; each song can be repeated, edited further, or saved for future listening.
Incredible Musical Keyboard	\$29.95	Sight \& Sound Music Software	Commodore 64	Transforms the Commodore 64 into a musical instrument complete with black and white keys.
Instant Keyboard Fun IMIDI	\$39.95	Electronic Courseware	Apple II + , IIe; Commodore 64/128	Twenty-six songs the user plays on a synthesizer keyboard.
Instant Music	\$49.95	Electronic Arts	Amiga	The Amiga accompanies you with the sound of three instruments while you create music using a mouse; a music composition and creativity program.
It's Only Rock'n'Roll	\$29.95	Electronic Arts	Amiga	The first in a series of library disks for use with EA's Deluxe Music Construction Set, Deluxe Video, and Instant Music.
Kawasaki Rhythm Rocker	\$26.95	Sight \& Sound Music Software	Commodore 64	Combines color graphics with electronic instrument sounds and preprogrammed bass rhythms. Features a multitrack recording capability.
Kawasaki Synthesizer	\$29.95	Sight \& Sound Music Software	Commodore 64	Two-disk package that transforms the Commodore 64 into a programmable synthesizer and sound processor.
Keyboard Chords-MIDI	\$79.95	Electronic Courseware	Apple II + , IIe; Commodore 64/128; IBM PC; Tandy 1000, 1200	Tutorial on major, minor, diminished, and augmented chords; a chord spelling drill; and a keyboard drill.
Learning Guitar Overnight	\$39.95	Chipware	Commodore 64	Introduction to the joy of playing a guitar. Learn to strum songs in less than an hour.
Listen	\$69	Imaja	Mac, Mac Plus	Interactive music program providing melodic and harmonic ear training.
Listen!	\$39.95	Electronic Courseware	Apple II + , IIe, IIc; Commodore 64; IBM PC, PCjr; Tandy 1000,1200	Three lessons designed to help increase the ability to perceive and identify intervals, basic chords, and seventh chords.
Magic Piano	\$49.95	Edusoft	Apple II, II + , IIe, IIc	A music-learning system for any teacher who wishes to introduce music in the classroom. Transforms computer keys into piano keys.




Lyco Computer Marketing \& Consultants
Since 1981

Lyco Computer is one of the oldest and most established computer suppliers in America. Because we are dedicated to satisfying every customer, we have earned our reputation as the best in the business. And, our six years of experience in mail-order computer sales is your assurance of knowledgeable service and quality merchandise.
We fill $95 \%$ of all orders every month. Here's how: $\bullet$ lowest prices anywhere $\bullet$ multimillion $\$$ factory fresh inventory $\bullet$ courteous, knowledgeable sales staff $\bullet 24$-hour shipping on in-stock items.
Plus: $\bullet$ free shipping in U.S. on prepaid cash orders $\bullet$ no deposit on C.O.D. orders • no sales tax outside PA • full manufacturers' warranties apply $\bullet$ air freight, UPS Blue/Red shipping available. Call Lyco Computer. See for yourself why so many customers keep coming back to Lyco for the best prices, the most complete inventory, and our fast and courteous service.
To order, call toll-free:
1-800-233-8760
In Penna.: 1-717-494-1030
Customer Service:
1-717-494-1670
Or write:
Lyco Computer, Inc.
P.O. Box 5088

Jersey Shore, PA 17740


Risk-Free Policy: - prices show 4\% cash discount; add $4 \%$ for credit cards - APO, FPO, international: add \$5 plus 3\% for priority mail - 4-week clearance required on personal checks - compatibility not guaranteed - return authorization required $\bullet$ we check for credit card theft

Price and availability subject to change without notice.


## Vickie Blaker

Customer Service Department Manager
"Our Customer Service Department is one example of how much Lyco Computer cares about your satisfaction. Everyday we talk to people from all over the world, and our goal with each person who calls is to be as helpful, efficient, and courteous as possible. We're ready to find the answers -- from questions about the status of an order, to warranties, to product availability and price -- or guide you to someone who can. And we're always here to help you. . .before, during, and after your purchase."



Product	Price	Publisher/ Vendor	System	Description
Making Music on Micros	\$69.95	Random House Software	Apple II, II+	Learn BASIC programming and music theory at the same time.
Master Composer	\$39.95	Access Software	Commodore 64	Takes full advantage of the sound chip to produce all types of music, from simple melodies to intricate compositions.
Melodian ConcertMaster	\$59.95	Melodian Systems	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	Combines the capabilities of a music synthesizer, recording studio, and video display. ConcertMaster creates an environment for experimenting and learning about music.
Melodian Keyboard with ConcertMaster	\$159	Melodian Systems	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	This unique system is a major advance in the teaching, learning, and enjoyment of music.
Melodian RhythmMaster	\$59.95	Melodian Systems	Commodore $64 / 128$	RhythmMaster helps develop perfect timing through the use of color-coded video-displayed notes.
Melodian ScoreMaster	\$59.95	Melodian Systems	Commodore $64 / 128$	Program your music and print it out in music notation which other musicians can read and play. Any music recorded with ConcertMaster can be printed.
Melodic Games	\$79	Wenger Computer Software	Apple II, II + , IIe	Drill-and-practice memory dictation for ear training.
MIDI/4+	\$129.95	Passport Designs	Apple II, II + , IIe; Commodore 64	Four-channel multitrack composing and recording tool for MIDI.
MIDI/8 ${ }^{+}$	\$169.95	Passport Designs	Apple IIe; Commodore 64/128	Eight-channel multitrack recording software that turns your computer and MIDI keyboard into a professional recording studio.
MIDI Jazz Improvisation	\$79.00	Electronic Courseware	Apple II +, IIe, IIc	Provides instrumental and vocal students with play-along material to learn jazz improvisation using original tunes.
Midimac: Patch Librarian-Casio CZ	\$75	Opcode Systems	Mac, Mac Plus	Made for the Casio CZ synthesizer with several banks of patches to store thousands of sounds with MIDI capabilities.
MIDI Processor	\$149.95	Sonus	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \\ & \hline \end{aligned}$	A processing program for use with the Super Sequencer or Studio $I$ sequencers.
MIDI Recording Studio	\$39	Dr. T's Music Software	Atari ST	A MIDI recording program for those just beginning to work with MIDI, with a stripped-down version of parts of the Dr. T Keyboard Controlled Sequencer.
MIDIsoft Studio	\$99	Passport Designs	Atari ST	A multitrack recording studio that works with the ST and any MIDI-equipped instrument.
MIDI Tech 64	\$99.95	Sonus	Commodore $64 / 128$	A full-featured monitor/system-exclusive librarian program.
MIDI Voice Librarian	\$69.95	Passport Designs	Apple II + , IIe, IIc; Commodore $64 / 128$	Over 100 great new sounds for MIDI keyboard. Load up to four banks of 32 sounds at any moment.
Musical Computer I and II, Version 1.0	\$34.95	Computer Applications Tomorrow	Apple II+; Atari eight-bit; Commodore 64	Teaches music fundamentals. Covers note reading, sharps and flats, tempo definitions, and more.
Music Box I	\$59.00	Wenger Computer Software	Apple II, II + , IIe, IIc; Commodore 64	Four programs designed to aid students in learning and remembering music symbols.
Music by Matrix	\$29.95	Dynacomp	Commodore 64	Audiovisual aid to help the student understand chords and scales in terms of the intervals involved.
The Music Class	\$39-49 each	Wenger Music Software	Apple II, II + , IIe, IIc, IIcs	A five-part music-instruction series, including Fundamentals, Rhythm, Ear Training, Music Symbols, and Note Reading.
Music Concepts, Version $1.0$	\$59.95	Ventura Educational Systems	Apple II, II + , IIe, IIc	Introduce the concepts of music theory, the history of music as we know it, and even the science of sound.
Music Construction Set	\$34.95-\$69.95	Electronic Arts	Apple II, II + , IIe, IIc, IIcs; Atari eight-bit; Commodore 64/128; IBM PC, PCjr, PC XT	A computer music program that everyone can enjoy. Doesn't require years of piano lessons or learning computer codes.
Music Editor	\$20	Affordable Software	IBM PC	Compose songs with as many as 500 notes per song.
Music Logo	\$99.95	Terrapin	Apple II, II + , IIe, IIc	Explores musical structure and extends the user's musical understanding and appreciation.
Music Made Easy	\$29.95	Alfred Publishing	Apple II + , IIe; Commodore 64	Teaches the basics of music in a step-by-step course. Lessons are reinforced with drills and quizzes.
Music Magic	\$30	Dayline Software	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	Play your favorite songs and/or compose your own music.
Musicman	\$29.95	Zephyr Services	Apple II, II + , IIe; IBM PC, XT, PCjr	Try your hand at composing music right on the screen with standard musical methods. Save compositions on disk or play some of the sample music provided.
Music of the Masters: I, II, III, and IV	\$9.95	Free Spirit Software	Commodore $64 / 128$	Collections of works by major classical composers. Instrument simulations include violin, piano, harpsichord, flute, and guitar.
Music of the Masters V	\$9.95	Free Spirit Software	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	Approximately one hour of popular themes from the bestknown classical works, using various instrument simulations.
Music Processor	\$24.95	Sight \& Sound Music Software	Commodore 64	Create, edit, play, and compose your own musical arrangements.
Music Program	\$19.95	Micro Demon	TRS-80 Model 100	Turns any Model 100 into a musical instrument by modifying the sound routine.
Music: Rhythm	\$29	MECC	Commodore $64 / 128$	Stimulating practice on rhythmic fundamentals. For beginningto advanced-level music students.


Product	Price	Publisher/ Vendor	System	Description
Music: Rhythm and Pitch	\$29	MECC	Atari eight-bit; Commodore 64	Three disks which can be used singly or in a combination to provide practice at successive levels of difficulty.
Music: Scales and Chords	\$29	MECC	Atari eight-bit; Commodore 64/128	Music theory and drill-and-practice.
Music Shop	\$149.95	Passport Designs	Commodore $64 / 128$	Compose, edit, print, and play back with a joystick, easy-to-use pull-down menus, and your MIDI keyboard.
Music Studio	\$34.95-\$59.95	Activision	Atari eight-bit, ST; Commodore 64/128; Amiga; IBM PCjr; Tandy 1000; Apple IIcs	Music, lyrical composition, and audio synthesis program that lets you orchestrate, mix, create sounds, and even invent new sounds.
Music System	\$39.95	Firebird	Commodore $64 / 128$	A multitracking sound system. Use your Commodore keyboard to enter and correct music with the cassette-recorder-style multitracking functions.
MusicWorks	\$49.95	Hayden Software	Mac	Provides all the tools needed for anyone to create and edit music, from simple melodies to fully orchestrated symphonies. Music can be composed on a standard musical staff or on a player-piano grid.
Notable Phantom	\$19.95	Designware	Apple II +, IIe, IIc; Commodore 64; IBM PC, PCjr	Learn to play a keyboard instrument and to read music, with the help of funny ghosts, spiders, and The Notable Phantom.
Notes	\$19.95	Comput-Ability	Apple II + , IIe, IIc	Develop speed and accuracy in identifying each musical note by its letter name. For ages 6 and up.
The Orchestrator	\$49.95	Intersect Software	Atari ST	A music composition and entertainment system for both the experienced and beginning musician. MIDI compatible.
Party Songs	\$15.95	John Henry Software	Commodore 64/128	A sing-along software program with old-time favorites.
Patch LibrarianYamaha DX21/27/100	\$75	Opcode Systems	Macintosh, Macintosh Plus	Use Mac disks to store thousands of sound patches for the Yamaha DX synthesizer. Takes the place of expensive RAM cartridges. Makes using inconvenient cassette-tape storage of sounds obsolete.
Personal Musician	\$29.95	Creative Software/ Activision	IBM PC, PCjr	Experiment with computer-generated musical tones as you learn to read music and write your own original songs.
Player Piano	\$19.95	Dynacomp	Atari	Turn your Atari into a player piano.
Rock ' ${ }^{\prime}$ ' Rhythm	\$26.95	Spinnaker Software	Atari eight-bit; Commodore 64/128	Expand and develop your music skills by taking charge of your own recording studio.
RX Librarian	\$49.95	Sonus	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	A MIDI librarian that works with the Yamaha RX11 and RX21 drum machines.
Song Painter	\$59.95	Rubicon Publishing	Mac, Mac Plus, Mac XL	Turns the Mac into a four-voice synthesizer that lets you create your own music with no knowledge of musical notation.
Songwriter	\$19.95	Mindscape	Apple II + , IIe, IIc; Atari eight-bit; IBM PC, XT, PCjr	Colorful graphics combined with editing functions for over 28 different songs. Connector cable is included to hook up to stereo.
Sound Development System	\$29.95	Dynacomp	Commodore 64	Create and place sound effects and music within your own BASIC or machine language programs.
Soundscape Pro MIDI Studio	\$149	Mimetics	Amiga	A MIDI recording studio consisting of several interrelated MIDI modules.
Sound Tracks	\$49	MECC	Apple II, II + , IIe, IIC	Turn your computer into a musical keyboard with this package. For ages 5-12.
Staff Master	\$45	Micro Learningware	Apple II, IIe, IIc	Three programs for the beginning music student. Excellent graphics. For grade-level 4 and up.
Stickybear Music, Version 1.0	\$39.95	Weekly Reader Family Software	Apple II, II + , IIe, IIc, IIcs	Compose a piece of music, play it, change the tempo, or go back and change notes or sections.
Strum-Along Songs	\$69.95	DJ Software	$\begin{aligned} & \text { Commodore } \\ & 64 / 128 \end{aligned}$	Play and sing your favorite songs on your guitar or keyboard accompanied by your own backup band. Each disk includes 15 easy-to-play songs.
Studiomac, Version 1.3	\$125	Creative Solutions	Mac	Create music and play it out over a Casio CZ101 synthesizer.
SYNTHY-64	\$17.95	Abacus Software	Commodore 64	A music and sound synthesizer that can duplicate a piano, banjo, flute, drum, or almost any other instrument. You can also make special-effects sounds in an endless variety of combinations.
Terpsichore	\$49.95	Great Wave Software	Macintosh, Macintosh Plus	Music for exclusive use with ConcertWare + and ConcertWare + MIDI on the Macintosh.
3001 Sound Odyssey	\$26.95	Sight \& Sound Music Software	Commodore 64	An educational odyssey that explores the basics of electronic music synthesis and the construction of sound effects.
12-Bar Tunesmith	\$39.95	Electronic Courseware	Apple II + , IIe, IIc; Commodore 64/128; IBM PC, PCjr; Tandy 1000, 1200, 3000	Helps the young compose and play simple melodies using bargraph notation. Choose from four different pitch durations and hear tunes played at varying tempos.
Xylophone/Square Puzzle	\$8.95	Kidware	Commodore $64 / 128$, TI	Play any of nine songs or program your own.

The data for this guide was supplied by MENU-The International Database Corporation. For further evaluative information, or to insure that your product is included in the database, contact MENU, 1520 South College Avenue, Fort Collins, Colorado 80524. The toll-free number is 1-800-THE-MENU.

# Rememory 

Charles Harbert

How good is your memory? This program lets you test your memory against the computer or a friend. The original version is written for the Commodore 64. We have added new translations for the Amiga, IBM PC/PCjr, Apple II series, and Atari 400, 800, XL, and XE. The Commodore and Atari versions require at least one joystick. The IBM PC/PCjr version requires BASICA and a color/graphics card for the PC and Cartridge BASIC for the PCjr. The Apple II version works on any Apple II-series computer, under DOS 3.3 or ProDOS.
"Rememory" is a game that will push your powers of concentration and memorization to the limit. Type in the program listed for your computer and save it. Read the general instructions and refer to the specific notes for your computer before you begin to play.

## Playing Rememory

Rememory is played on a grid containing 54 boxes arranged in a $9 \times 7$ matrix. Each box contains a graphics shape, and there are many matching shapes within the grid. The object of the game is to find all of the matches in the playing grid by selecting any two boxes at a time.

The graphics cursor (mouse pointer in the Amiga version) indicates your current postion on the game screen. Move the cursor to the box you wish to select using the joystick, mouse, or cursor controls, depending on which computer you are using. When you select the box, the computer displays the shape which it contains.

A turn consists of two selec-
tions. After you select both boxes, the computer displays both of them briefly. If the two shapes you selected are identical, you have scored one match, and those shapes remain visible on the board. If the shapes do not match, the computer erases them, and it is your job to remember where those shapes were found. The computer scrambles the shapes at the beginning of each game, so you won't know where a given shape is found until you uncover it.

Rememory can be played with one or two players. When you play alone, the object is to match all the shapes in the fewest number of turns. For a two-player game, the goal is to score more matches than your opponent. You get an extra turn every time you succeed in making a match. If you set a time limit for each move (for instance, 20 or 30 seconds), Rememory can be a fast-paced, exciting two-player game.

When you run the program, it asks how many players will play the game. Enter the number of players, 1 or 2 . Then the program asks how many matches will be required to finish the game. If you enter the maximum number, 27, you will have to match every pair of shapes in the grid to finish. If you choose a lower number, the game ends when you achieve the designated number of matches. The right side of the screen displays the current score.

## Commodore 64 Version

This version of Rememory (Program 1) can be played with one or two joysticks. If you are using only one joystick, plug it into port 2.

"Rememory" for the Commodore 64, a challenging memory game. This version uses custom machine language subroutines to speed up its graphics.


The Amiga version of "Rememory" uises a 32-color palette and color cycling to enhance the game's visual appeal and difficulty.


The Apple II version of "Rememory" is played with the keyboard and runs with either DOS 3.3 or ProDOS.

"Rememory" for the IBM PC/PCjr.


A custom display list is used to achieve the graphics effects in "Rememory" for the Atari 400, 800, XL, and XE.

## Amiga Version

The Amiga game (Program 2) is played with the mouse. Move the mouse pointer to the desired box and press the left mouse button to select it. In the two-player game, the colors of the window border change to indicate whose turn it is. To add to the interest and difficulty, this program uses color cycling to change the colors of the graphics shapes.

## IBM PC/PCjr Version

This version of Rememory (Program 3) requires BASICA and a color/graphics card for the PC, and it requires Cartridge BASIC for the PCjr. Move the cursor with the cursor keys and press Enter to select a box. For a two-player game, the scores are displayed on a red or green background. The cursor changes color to indicate whose turn it is.

## Apple II Version

Rememory for the Apple II (Program 4) runs on any Apple II-series computer under either DOS 3.3 or ProDOS. This program is played with the keyboard. Press the I, J, K, and M keys to move the cursor up, left, right, and down, respectively. Press the space bar to select a box. In the two player game, the asterisk
(*) indicates whose turn it is.

## Atari 400, 800, XL, And XE Version

The Atari version of Rememory (Program 5) can be played with one or two joysticks. If you use only one joystick, it should be plugged into port 1.

For instructions on entering these programs, please refer to "COMPUTE!'s Guide to Typing In Programs" elsewhere in this issue

## Program 1: Commodore 64 Rememory

AP $10 \mathrm{RO}=-2: \mathrm{CO}=2$
BD 20 DIM $\operatorname{SYM}(27,12): \operatorname{DIM} \operatorname{BT}(25$ , 4Ø): DIM MAT 53,16 )
JG $3 \varnothing$ POKE 252, $0:$ POKE 253, $0:$ RE STORE
KC $4 \emptyset$ POKE 5328ø,14:POKE 53281 , 14
$\mathrm{BQ} 5 \emptyset \mathrm{MA}=\varnothing: \mathrm{S}(\varnothing)=1 \varnothing \emptyset \emptyset: \mathrm{S}(1)=1 \varnothing \varnothing \emptyset$ $: C(\emptyset)=\varnothing: C(1)=\varnothing$
FH 6ø GOSUBl290:GOSUB450:GOSUB 750 : GOSUB1ø8ø : GOSUB184ø: GOSUB610: GOTO32ø
BH 70 IFMA=NMTHEN GOTO14Ø
AX 80 GOSUB158ø:LET Bl=BX:GOSU B15ø0
DP 90 GOSUB158ø:LET B2=BX:IF B l=B2 THEN GOTO9ø
SJ 1øø GOSUB15øø
KJ $11 \varnothing$ IF $\operatorname{MAT}(B 1, \varnothing)=\operatorname{MAT}(B 2, \varnothing)$ \{SPACE\} THEN GOTO21Ø
HK 120 GOSUB141ø:LET BX=Bl:GOS UB141ø:LET BX=B2
MQ 130 GOTO26ø
KH $14 \varnothing$ PRINT "\{HOME $\}$ \{RVS \}\{WHT\} \{8 DOWN $\}\{6$ RIGHT $\}$ PRESS \{SPACE\}ANY KEY TO CONTI NUE"
FB $15 \emptyset$ FOR $A=\varnothing T O 1 \varnothing: G E T$ B\$:NEXT
CE 160 GET AS:IF AS=""THENGOTO $16 \emptyset$
PC $17 \varnothing$ INPUT "\{2 DOWN $\}$ \{RVS \} \{9 RIGHT\}PLAY AGAIN(Y O R N) "; Z
BP $18 \emptyset \operatorname{IF} \operatorname{MID}(Z \$, 1,1)=" N "$ THE N GOTO2øø
RA 190 GOTO3ø
MB $2 \emptyset \emptyset$ END
GP $210 \operatorname{LET} \operatorname{MAT}(B 1,1)=99: \operatorname{LET} M A$ $T(B 2,1)=99$
CF 220 LET $C(U P)=C(U P)+1: L E T M$ $A=M A+1$
MP $23 \emptyset$ LET $S(U P)=S(U P)+1$
AX 240 IF PL=2THENGOTO $31 \emptyset$
DE 250 GOTO27Ø
GK 260 LET $S(U P)=S(U P)+1$
FR 270 IF PL=1 THEN GOTO31 $\varnothing$
ED 280 IF UP $=\varnothing$ THEN GOTO3øø
CM 290 LET UP=ø: GOTO31 $\varnothing$
RP $3 \emptyset \emptyset$ LET UP=1
SG $31 \varnothing$ POKE 1ø24+4ø*3+39,96:PO KE1Ø24+4б*12+39,96
FF $32 \emptyset$ IF UP $=\varnothing$ THEN POKE1Ø24+4 Ø* $3+39,42$
PA 33Ø IF UP=1THEN POKE 1ø24+4 Ø* $12+39,42$
PA $34 \varnothing$ POKE 251,UP:IF JS=1 THE N POKE 251, Ø
PP 350 PRINT" $\{$ HOME $\}\{3$ DOWN $\}$ \{38 RIGHT\}1"
QB 360 PRINT"\{38 RIGHT\}UP": LET S\$=STRS (S (Ø))
GP 370 PRINT" $\{37$ RIGHT $\}$ "; RIGHT \$(S\$,3)
AM 380 LET $C \$=\operatorname{STRS}(C(\varnothing))$

CE 385 PRINT"\{38 RIGHT\}";RIGHT $\$(C \$, 2)$
AS $39 \emptyset$ IF PL=1 THEN GOTO7ø
GA 4øø PRINT"\{HOME \} \{12 DOWN\} \{38 RIGHT\}2"
MH $41 \varnothing$ PRINT" $\{38$ RIGHT $\} U P "$
DX 420 LET $\mathrm{S} \$=\mathrm{STR}(\mathrm{S}(1)):$ PRINT
"\{37 RIGHT\}"; RIGHT\$(S\$, 3)

SS $43 \emptyset$ LET $C \$=S T R \$(C(1))$
PP 435 PRINT"\{38 RIGHT\}";RIGHT $\$(C \$, 2)$
KB $44 \emptyset$ GOTO7Ø
GS $45 \emptyset$ FOR R=ØTO 24
GX $46 \emptyset$ FOR $\mathrm{C}=\emptyset \mathrm{TO} 39$
XS $47 \emptyset$ LET $\operatorname{BT}(R, C)=88$
FB 480 NEXT C
BK $49 \emptyset$ NEXT R
BF 5øø LET T=øø
CK 510 FOR R=ØTO $2 \emptyset$ STEP 4
KM $52 \emptyset$ FOR $\mathrm{C}=\emptyset \mathrm{TO} 32$ STEP4
GS $530 \mathrm{BT}(\mathrm{R}+1, \mathrm{C}+1)=\mathrm{T}: \mathrm{BT}(\mathrm{R}+1, \mathrm{C}+$ 2) $=T$

EQ $540 \mathrm{BT}(\mathrm{R}+1, \mathrm{C}+3)=\mathrm{T}: \mathrm{BT}(\mathrm{R}+2, \mathrm{C}+$ 1) $=T$

GJ $55 \emptyset \mathrm{BT}(\mathrm{R}+2, \mathrm{C}+2)=\mathrm{T}: \mathrm{BT}(\mathrm{R}+2, \mathrm{C}+$ 3) $=T$

MK $56 \emptyset \mathrm{BT}(\mathrm{R}+3, \mathrm{C}+1)=\mathrm{T}: \mathrm{BT}(\mathrm{R}+3, \mathrm{C}+$ 2) $=T$

JH $57 \emptyset \mathrm{BT}(\mathrm{R}+3, \mathrm{C}+3)=\mathrm{T}: \mathrm{T}=\mathrm{T}+1$
CH 58 の NEXT C
XA 590 NEXT R
HP $6 \emptyset \emptyset$ RETURN
HE $61 \emptyset$ REM DRAW BOARD
QA 620 PRINT "\{CLR\}": C= $\emptyset: X=224$
AJ 63ø FOR V=øTO24STEP4:GOSUB6 60: NEXT
JS 640 FOR H=ØTO36STEP4:GOSUB7 10:NEXT
PX 650 RETURN
RM 660 FOR H=ØTO36
FS 670 POKE $1 \emptyset 24+40 * V+H, X$
MA $68 \emptyset$ POKE $55296+4 \emptyset * V+H, C$
MB 690 NEXT H
RA 700 RETURN
DA 710 FOR V= 1 TO 24
DK $72 \emptyset$ POKE1Ø24+4の*V+H,X:POKE5 $5296+4 \emptyset * V+H, C$
KM 730 NEXT V
RF 740 RETURN
RR 750 REM INIT SYM TABLE
HG 760 FORX $=$ ØTO26
KF 770 FOR $Y=\emptyset T O 11$
DC 780 READ $\operatorname{SYM}(X, Y): N E X T$ Y
BX 790 NEXT X
CK 8øØ RETURN
FD $81 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, 96,96,96,193$ ,193,193,96,96,96
SF $82 \emptyset$ DATA $\emptyset, 2, \varnothing, 96,96,96,96$, 90, 96, 96, 96,96
QE $83 \emptyset$ DATA $\emptyset, 2, \emptyset, 12 \emptyset, 12 \emptyset, 12 \emptyset$, $120,120,12 \sigma, 120,120,12 \sigma$
CX 840 DATA $0,2,0,96,224,96,22$ 4, 224, 224,96,224,96
PA $85 \emptyset$ DATA $\varnothing, 2, \varnothing, 23 \varnothing, 23 \varnothing, 23 \varnothing$, $230,230,230,230,23 \varnothing, 23 \emptyset$
RQ $86 \emptyset$ DATA $\emptyset, 15, \varnothing, 233,96,223$, 96, 87,96,95,96,105
AM $87 \emptyset$ DATA $\emptyset, 9, \emptyset, 224,223,96,9$ 5,224,223,96,95,224
ME 88 DATA $\varnothing, \emptyset, \emptyset, 231,2 \emptyset 5,2 \emptyset 5$, $206,206,206,229,205,229$
JH $89 \emptyset$ DATA $\varnothing, 1, \varnothing, 85,67,73,74$, 67,73,74,67,75
KG 9øø DATA Ø,6, $0,214,214,214$, 214, 214, 214, 214, 214, 214
GA $91 \emptyset$ DATA $\varnothing, 3, \varnothing, 96,96,96,79$, $80,96,8 \emptyset, 122,112$
MP $92 \emptyset$ DATA $\emptyset, 11,0,127,127,127$ ,127,127,127,127,127,12 7

DH 930 DATA $\varnothing, 1, \varnothing, 224,224,224$, 224, 224, 224, 224, 224, 224

XJ $94 \emptyset$ DATA $\varnothing, 9, \varnothing, 112,67,11 \varnothing, 9$ 3,224,93,109,67,125
AF 95Ø DATA $\varnothing, 6, \varnothing, 78,77,1 \varnothing \emptyset, 1 \emptyset$ Ø, 78, 77,78,77,1øø
PG 960 DATA $0,6,0,85,114,73,1 \varnothing$ 7,86,115,74,113,75
KC $97 \emptyset$ DATA $\varnothing, 2, \varnothing, 224,224,224$, 224, 224, 224, 224, 224, 224
RB $98 \emptyset$ DATA $\varnothing, 9, \varnothing, 11 \varnothing, \varnothing, 112,1 \varnothing$ 9,91,125,85,113,75
RB $99 \emptyset$ DATA $\varnothing, 4, \varnothing, 224,224,224$, 224, 224, 224, 224, 224, 224
SG 1øøø DATA $\varnothing, 7, \varnothing, 91,91,91,91$ ,91,91,91,91,91
DM 1010 DATA $0,7,0,75,73,74,85$ , 91, 73, 73, 74, 85
HJ $102 \emptyset$ DATA $\varnothing, 11, \varnothing, 96,81,96,8$ $5,91,75,74,113,73$
DM $103 \emptyset$ DATA $\varnothing, 15, \varnothing, 95,224,224$ ,96,95,224,96,96,95
GA 1040 DATA $0,13, \emptyset, 85,96,73,9$ 6,91,96,74,96,75
KG $105 \emptyset$ DATA $\varnothing, 9, \varnothing, 77,96,78,96$ , 86,96,78,96,77
ED 1060 DATA $\varnothing, 9, \varnothing, 96,96,96,79$ $, 80,96,76,122,96$
DR 1ø7Ø DATA Ø, 9, $0,96,96,96,85$ ,73,96,74,75,96
QG $1 \varnothing 8 \emptyset$ REM INIT MAT TABLE
PE 1090 FOR $X=\varnothing$ TO53: $\operatorname{MAT}(X, 4)=\varnothing$ : NEXT
HC lløø FOR X=ØTO26
AF 1110 FOR $Y=\emptyset T O 1$
DG $112 \emptyset$ LET R9=INT (RND ( $\varnothing) * 54$ )
HF 1130 IF R9< 0 OR R9>53 THEN \{SPACE $\}$ GOTO112ø
CD 1140 IF $\operatorname{MAT}(R 9,4)=9$ THEN GO TO112の
CM 1150 LET MAT (R9, Ø) $=\mathrm{X}: \operatorname{MAT}(\mathrm{R} 9$ $, 1)=\varnothing: \operatorname{LET} \operatorname{MAT}(R 9,4)=9$
GR $1160 \operatorname{MAT}(R 9,2)=\varnothing \emptyset: \operatorname{MAT}(R 9,3)$ $=\operatorname{SYM}(X, 1)$
JR 1170 FOR E=3 TO 11
DG $1180 \operatorname{MAT}(R 9, E+2)=\operatorname{SYM}(X, E)$
QC 1190 NEXT E
DX $120 \emptyset$ NEXT Y
HX 1210 NEXT X
BJ $1220 \mathrm{~K}=1: \mathrm{K} 2=1: \mathrm{A}=\varnothing: \mathrm{B}=8$
QS 1230 FOR W=ØTO5
GE $124 \emptyset$ FOR $X=A T O B$
QD $1250 \operatorname{MAT}(X, 14)=K: \operatorname{MAT}(X, 15)=$ K2:K2=K2+4:NEXT X
BJ $1260 \mathrm{~K}=\mathrm{K}+4: \mathrm{K} 2=1$
GS $1270 \mathrm{~A}=\mathrm{A}+9: \mathrm{B}=\mathrm{B}+9:$ NEXT W
CA 1280 RETURN
DS 1290 REM INPUT OPTIONS
XA $130 \varnothing$ LET JS=1
XD 1310 PRINT"\{CLR\}"
ED $132 \emptyset$ INPUT "\{BLK\}ONE OR TWO PLAYER GAME";PL
BQ 1330 IF $\mathrm{PL}\langle>1$ AND $\mathrm{PL}<>2$ THE N1310
HB 1340 IF $\mathrm{PL}=2$ THEN INPUT" \{CLR\} \{DOWN\} ENTER NO. O F JOYSTICKS(1 OR 2)";J S
QE 1350 IF JS <>1 AND JS <>2 THE N134の
FC 1360 INPUT"ENTER NO. OF MAT CHES (1-27)";NM:NM=INT (NM) : IFNM < IORNM > 27 THEN $137 \varnothing$
BJ 1370 IFNM<1ORNM>27THENPRINT " \{HOME \} \{DOWN \} ": GOTO136 Ø
EA $138 \emptyset$ PRINT" $\{C L R\}\{1 \emptyset$ DOWN\} \{6 RIGHT\}PLEASE STANDB Y FOR 45 SECONDS"
GR 1390 LET UP=ø
SG $140 \emptyset$ RETURN
BD 1410 REM BLANK OUT BOX
XB 1420 POKE 6,6

CX 1430 X=MAT $(B X, 14)$ : POKE 252 X
GJ 1440 X=MAT $(B X, 15):$ POKE 253, X
CA $1450 \quad \mathrm{Y}=96$
ME 1460 FOR X=49414 TO 49422: P OKE X,Y:NEXT
JF 1470 SYS49674
GX 1480 RETURN
QR 1490 X=MAT $(B X, 3)$ : POKE 6, X
DQ 15øø $X=\operatorname{MAT}(B X, 3): \operatorname{POKE} 6, X$
SM 1510 X=MAT $(B X, 14):$ POKE 252 X
DH 1520 X=MAT $(B X, 15):$ POKE 253, X
AJ $1530 \mathrm{Y}=5$
RX 1540 FOR X=49414 TO 49422
XK 1550 Q=MAT(BX,Y):POKE X,Q:Y =Y+1:NEXT
BJ 1560 SYS49674
MC 1570 RETURN
HK 158 SYS 49426: RO= $\operatorname{PEEK}(252)$ : CO=PEEK (253)
DX 1590 IF $B T(R O, C O)=88$ THEN $G$ OTO1580
XD $1600 \mathrm{BX}=\mathrm{BT}(\mathrm{RO}, \mathrm{CO})$
FJ 1610 IF $\operatorname{MAT}(B X, 1)=99$ THEN $G$ OTO1580
HH 1620 RETURN
ES $163 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 1 \varnothing 2,1$ Ø2,1ø2,1ø2,1ø2,1ø2,1ø2 $, 1 \varnothing 2,102, \varnothing, \varnothing, \varnothing, 76,122$
JA 1640 DATA $193,24,166,251,18$ 9, Ø, 220, 74,176,5,198,2 $52,76,7 \emptyset, 193,24,74$
XK 1650 DATA $176,5,230,252,76$, $70,193,24,74,176,5,198$ ,253,76,7Ø,193,24,74
AA 1660 DATA $176,5,230,253,76$, $70,193,24,74,176,211,3$ 2,251,193,96,169,36
XH $167 \emptyset$ DATA $197,253,208,4,162$ , 0,134,253,169,25,197, $252,208,4,162,0,134$
HQ 1680 DATA $252,24,169,0,1 \emptyset 1$, 253,16,4,162,35,134,25 3,24,169, 0,1ø1, 252
QD 1690 DATA $16,4,162,24,134,2$ $52,173,5,193,2 \varnothing 1,0,240$ ,3,32,251,193,169,1
DB 17øø DATA $141,5,193,24,166$, $252,164,253,142,1,193$, $140,2,193,32,240,255$
SM 1710 DATA $32,165,193,32,207$ ,193,169,113,32,210,25 $5,162,48,160,255,136$
SB $172 \emptyset$ DATA $2 ø 8,253,2 \emptyset 2,2 \emptyset 8,2$ 48,76,21,193,165,252,1 $62,1,134,250,10,10$
PQ 1730 DATA $101,252,10,10,38$, $250,10,38,250,101,253$, $133,249,169,0,101,250$
JA 1740 DATA $133,250,174,0,193$ , 224,99, 240, 7,16Ø, Ø, 17 7,249,141,4,193,96
HM 1750 DATA $162,54,134,248,16$ $5,252,133,247,10,10,10$ $1,247,10,10,38,248$
JS $176 \emptyset$ DATA $10,38,248,101,253$ ,133,247,169,0,101,248 , 133, 248, 174, ø, 193
QC 177ø DATA 224,99,24ø,7,160, Ø, 177,247,141,3,193,96 ,173,4,193,160, 0,145
KS $178 \emptyset$ DATA $249,16 \emptyset, \varnothing, 173,3,1$ 93,145,247,96,162,99,1 $42,0,193,162, \varnothing, 142$
SE $179 \emptyset$ DATA $5,193,32,165,193$, $166,250,134,3,166,249$, $134,2,32,207,193,166$
SF $18 \emptyset \emptyset$ DATA $248,134,5,166,247$ ,134,4,162, 0,142, 0, 193
,162,3,142,15,193,162
EA 1810 DATA $\varnothing, 160,0,189,6,193$ ,145,2,165,6,145,4,200 , 232,192,3,208,241
MH $182 \emptyset$ DATA $24,169,40,101,2,1$ 33,2,169,0,101,3,133,3 ,24,169,40,101,4,133
RS 1830 DATA $4,169,0,101,5,133$ $, 5,2 \emptyset 6,15,193,160, \varnothing, 2 \varnothing$ $4,15,193,208,203,96$
SR 1840 FOR X=49408TO49771:REA D A:POKE X,A:NEXT
DE 1850 RETURN

## Program 2: Amiga Rememory

DEFINT $\mathrm{a}-\mathrm{z}$ :DEFSNG $\mathrm{r}, \mathrm{g}, \mathrm{b}, \mathrm{mx}:$ RANDO MIZE TIMER: SCREEN $1,320,2 \emptyset 0,5,14$ WINDOW $3, " \mathrm{l},(0, \varnothing)-(311,186), 16,1$ :WINDOW OUTPUT 34
DIM bn (5, 8) , cb(26), r(11), b(11), d $f(7), \operatorname{aLt}(7), \operatorname{hor}(7), \operatorname{ver}(7), \operatorname{sL}(7)$, $\mathrm{rn}(7), \mathrm{ck}(7) \&$
RESTORE PaletteData:FOR $i=\varnothing$ TO 1
5: READ $r, g, b:$ PALETTE $i, r, g, b: N E X$ T4
FOR $i=20$ TO 21:READ $r, g, b:$ PALETT E i, r,g,b:NEXT 4
FOR $i=\emptyset$ TO 5: READ $r(i), b(i):$ PALE TTE $i+22, r(i), \varnothing, b(i): N E X T \&$
FOR $i=\emptyset$ TO $5: r(11-i)=b(i): b(11-i$ ) $=r(i)$ : NEXT 4
PaletteData:
DATA $\varnothing, \varnothing, \varnothing, .5, .5, .5, .5, .5, .5, .6$, 0,04
DATA $\varnothing, .6, \varnothing, .6, .6, \varnothing, .6,0, .6, \varnothing, .6$ , . 64
DATA $0,0, .6, .9, .9, .9, .9, \varnothing, 0,0, .9$ , 04
DATA $\varnothing, \varnothing, .9, .9, .9, \varnothing, .9,0, .9, .5,$. 5, .54
DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing 4$
DATA $.6, \varnothing, .8, \varnothing, 1, \varnothing, .8, \varnothing, .6, \varnothing, .5$ . 34
FOR $i=\varnothing$ TO 26:READ cb(i):NEXT 4
DATA $9,4,13,15,3, \varnothing, 9,6,12,9,4,2 \varnothing$ ,13, $0,0,0,22,12,9,13,15,15,9,8,9$ ,3,104
eS=SPACES (3):ON TIMER(1) GOSUB C ycLe 4
FOR $i=\varnothing$ TO 74
$\mathrm{d} f(\mathrm{i})=\&$ HFFFF: $\operatorname{ver}(\mathrm{i})=\& H A A A A: r n(i)$ $=$ RND* \& HFFFF 4
IF (i AND 1) THEN hor (i)=\&HFFFF: $a L t(i)=\& H A A A A$ ELSE $a L t(i)=\& H 5555$ 4
IF (i AND 4) THEN $\mathrm{ck}(i)=\& H F \emptyset F \emptyset \mathrm{E}$ LSE ck(i)=\&HFøF
NEXT4
FOR $i=\emptyset$ TO $3:$ READ $s L(i): s L(i+4)=$ sL(i): NEXT4
DATA \& H3 333, \&H6666, \&hcccc , \&H9999
4
Start: 4
COLOR 2, $\varnothing$ :CLS:GOSUB InPLayers: LO CATE 13,9:GOSUB InMatches 4
GOSUB RandBoard:mf= $0: t s=\varnothing: F O R$ i= $\emptyset$ TO 1:tr(i)= $\varnothing: \mathrm{sc}(\mathrm{i})=\varnothing: \mathrm{NEXT}^{4}$
GOSUB DrawBoard:pL= $\varnothing: m=1: s w=\varnothing: T I$ MER ON 4
WHILE ts $<\mathrm{nm} \leqslant$
IF np THEN PALETTE $1, .6 *(1-\mathrm{pL})$, 6*pL, ø4
GOSUB SelectBox:GOSUB ShowPic:rl =ro:cl=co:GOSUB SelectBox:GOSUB ShowPic
IF $b n(r l, c l)=b n(r o c o)$ THEN $\angle$ $\mathrm{sc}(\mathrm{pL})=\mathrm{sc}(\mathrm{pL})+1: \mathrm{ts}=\mathrm{ts}+1: \mathrm{m}=04$ ELSE 4
FOR $i=1$ TO 4øøø:NEXT:GOSUB HideP ic
END IF 4
$\operatorname{tr}(\mathrm{pL})=\mathrm{tr}(\mathrm{pL})+1$ :GOSUB UpdateScor e:IF m THEN pL=pL XOR np 4
m=14

## WEND4

COLOR 15, ø:LOCATE 9,10:PRINT "An other game $(y / n)$ ?"4
EndLp: $\mathrm{k} \$=$ UCASE $\$($ INKEY $): I F \mathrm{k} \$="$ Y" THEN Start 4
IF $\mathrm{k} \$=$ "N" THEN TIMER OFF: SCREEN CLOSE 1:WINDOW CLOSE 3:END ELSE EndLp 4
4
SelectBox:4
WHILE MOUSE ( $\varnothing$ ) $=\varnothing$ : WEND: $\mathrm{px}=$ MOUSE ( 1 ): py=MOUSE(2):WHILE MOUSE( $\varnothing$ ) <> $\varnothing$ : WEND 4
IF POINT(px,py) <>2 THEN SelectBO $x$
$p x=p x$ AND \&HFFED: $p y=p y$ AND \&HFFE $\varnothing: r o=\operatorname{INT}(p y / 32): c o=\operatorname{INT}(p x / 32): p y$ =py+8
RETURN4
4
ShowPic: 4
$\mathrm{n}=\mathrm{bn}(\mathrm{ro}, \mathrm{co})$ : COLOR , cb(n) : GOSUB H ides
ON n+1 GOTO $1,1,1,2,3,4,5,6,7,8$, $9,16,11,12,13,14,15,16,17,18,19$, 20,21,22,23,24,14
LOCATE CY, cx:PRINT STR\$(bn(ro,co )) 4
1 RETURN 4
2 COLOR Ø:LOCATE CY $+1, \mathrm{cx}+1:$ PRINT CHRS (214): PAINT(px+12, py +12 ): RET URN4
3 COLOR 13:as=CHRS(191)+CHRS(63) :LOCATE cy,cx:PRINT a\$CHRS(191) LOCATE cy $+1, \mathrm{cx}:$ PRINT CHR $\$(63) \mathrm{a}$ : LOCATE cy $+2, \mathrm{cx}:$ PRINT aSCHRS(191) ; :RETURN
4 PATTERN ,sL:FOR $i=\varnothing$ TO 7:COLOR i+74
LINE(px+2*i, py+2*i)-(px+23-2*i,p $\left.\mathrm{y}+23-\mathrm{2}^{\star} \mathrm{i}\right)$, , bf:NEXT:PATTERN, $\mathrm{df}: \mathrm{R}$ ETURN
5 COLOR 10:AREA(px+2,py+12):AREA $\operatorname{STEP}(10,-1 \varnothing): \operatorname{AREA} \operatorname{STEP}(10,10)<$
AREA $\operatorname{STEP}(-10,10)$ : AREA $\operatorname{STEP}(-10$, $-1(0)$ : PATTERN , hor:AREAFILL:PATTE RN ,df:RETURN 4
6 COLOR 14:GOSUB Triangle:AREAFI LL: RETURN 4
7 COLOR 13:CIRCLE(px+19,py+5),2: PAINT $(p x+2 \sigma, p y+5) 4$
PATTERN, sL: GOSUB Triangle:AREAF ILL: PATTERN , $\mathrm{df}:$ RETURN 4
8 COLOR , 3:LOCATE cy, cx+1:PRINT
SPACES(1):LOCATE CY+1, cx:PRINT e \$4
LOCATE CY $+2, \mathrm{cx}+1$ : PRINT SPACE\$(1) ;: RETURN
9 FOR i=ø TO 2:FOR j=ø TO 2:COLO R $2 \varnothing+((i+j)$ AND 1): $x=p x+5 * i+7: y=$ py +5 * $j+74$
CIRCLE( $\mathrm{x}, \mathrm{y}$ ), 2: NEXT j,i:RETURN4
10 COLOR 21:GOSUB BOX:PATTERN, a Lt:AREAFILL: PATTERN , df:RETURN 4 11 COLOR 6:GOSUB BOX:PATTERN, sL : AREAFILL: PATTERN , df:RETURN 4 12 COLOR 14:PATTERN, hor: $\mathrm{x}=\mathrm{px}+4$ : $\mathrm{y}=\mathrm{py}+4$ : GOSUB Diamond:AREAFILL 4 $\mathrm{x}=\mathrm{px}: \mathrm{y}=\mathrm{py}+12$ : GOSUB Diamond:AREAF ILL4
$\mathrm{x}=\mathrm{px}+12: \mathrm{y}=\mathrm{py}+16$ :GOSUB Diamond:AR EAFILL:PATTERN ,df:RETURN 4
13 FOR i=ø TO 11:COLOR (i MOD 6) $+22: \operatorname{LINE}(p x, p y+2 * i)-(p x+23, p y+23$ $-2^{*}$ i) : NEXT ${ }^{4}$
RETURN 4
14 FOR i=ø TO 11:COLOR (i MOD 6) $+22: \operatorname{LINE}(p x, p y)-(p x+2 * i, p y+23-2 *$ i) 4

LINE $(p x+23, p y+23)-(p x+2 * i, p y+23-$ 2*i): NEXT: RETURN 4
15 COLOR 24:GOSUB BOX:PATTERN, a Lt:AREAFILL:COLOR , Ø4
LOCATE CY $+1, \mathrm{cx}+1$ : PRINT SPACES(1) :PATTERN ,df:RETURN 4

16 COLOR 20:x=px+8:y=py+12:GOSUB Diamond: AREAFILL: $\mathrm{x}=\mathrm{x}+44$
$\operatorname{CIRCLE}(\mathrm{x}, \mathrm{y}), 2,21: \operatorname{PAINT}(\mathrm{x}, \mathrm{y}), 21,2$ 1:RETURN
17 COLOR 12:GOSUB Triangle:PATTE RN , ver:AREAFILL:PATTERN ,hor:CO LOR 9,124
$\operatorname{AREA}(p x, p y): \operatorname{AREA} \operatorname{STEP}(23, \varnothing): \operatorname{AREA}$ $\operatorname{STEP}(\varnothing, 23)$ : AREA $\operatorname{STEP}(-23,-23) 4$ AREAFILL:PATTERN ,df:RETURN
18 PATTERN, rn: PAINT(px,py), 22, $\theta$ :PATTERN ,df:RETURN
19 PATTERN ,ck:PAINT(px,py), $\varnothing, \varnothing$ : PATTERN , df:RETURN 4
$2 \varnothing$ COLOR 15, $\varnothing: \operatorname{LINE}(p x, p y+7)-(p x+$ 23, Py+7), 04
LOCATE CY +1, cx:PRINT CHR $\$(240) \mathrm{CH}$ R\$ ( 245 ) CHR $\$(240)$ : RETURN
21 FOR i=1 TO 11:LINE (px,py+i*2) $-(p x+23, p y), 104$
LINE (px,py+23)-(px+23,py+i*2), 12 :NEXT:RETURN 4
22 FOR $i=4$ TO $20: \operatorname{LINE}(p x, p y+i)-($ px+23, py+i),(i MOD 4)+28:NEXT:RE TURN 4
23 COLOR Ø: $\operatorname{LINE}(p x, p y+17)-(p x+6$, py+9):LINE -STEP(6,2):LINE -STEP $(6,6) 4$
LINE $-\operatorname{STEP}(5, \varnothing): \operatorname{PAINT}(p x, p y), \varnothing, \varnothing$ $: \operatorname{LINE}(p x, p y+16)-(p x+6, p y+8), 284$
LINE $-\operatorname{STEP}(6,2), 29:$ LINE $-\operatorname{STEP}(6$,
6),30:LINE $-\operatorname{STEP}(5, \varnothing), 31:$ RETURN 4
$24 \operatorname{LINE}(p x, p y+8)-(p x+23, p y+16), \varnothing$
: PAINT(px, py+23), 5, $0:$ RETURN4
Triangle: 4
$\operatorname{AREA}(p x, p y): \operatorname{AREA} \operatorname{STEP}(23,23): \operatorname{ARE}$ $\operatorname{A} \operatorname{STEP}(-23, \varnothing): \operatorname{AREA} \operatorname{STEP}(\varnothing,-23): R$ ETURN 4

Diamond:
$\operatorname{AREA}(x, y): \operatorname{AREA} \operatorname{STEP}(4,-4): \operatorname{AREA} S$ $\operatorname{TEP}(4,4): \operatorname{AREA} \operatorname{STEP}(-4,4): \operatorname{AREA} \operatorname{ST}$ $\operatorname{EP}(-4,-4) 4$
RETURN4
Box:4
$\operatorname{AREA}(p x, p y): \operatorname{AREA} \operatorname{STEP}(23, \varnothing): \operatorname{AREA}$ $\operatorname{STEP}(\varnothing, 23): \operatorname{AREA} \operatorname{STEP}(-23, \varnothing)<$
AREA $\operatorname{STEP}(\varnothing,-23)$ : RETURN 4
4
HidePic:
COLOR, 2 : GOSUB Hide: $\mathrm{ro}=\mathrm{rl}$ : $\mathrm{co}=\mathrm{cl}$ : GOSUB Hide: RETURN 4
Hide: cx=4*co+l:cy=4*ro+24
FOR $i=\emptyset$ TO 2:LOCATE CY+i,cx:PRIN T e\$;:NEXT:RETURN
:
UpdateScore: 4
COLOR Ø, pL+3: pr=8*pL-4*np+13:LOC ATE pr, $37: s \$=\operatorname{STR} \$(\operatorname{tr}(\mathrm{pL})) 4$
PRINT RIGHT\$("øø"+RIGHT\$(s\$,LEN( s\$)-1), 3)
LOCATE pr $+2,37: \mathrm{s} \$=\operatorname{STR} \$(\mathrm{sc}(\mathrm{pL}))<$ PRINT RIGHT\$("øø"+RIGHT\$(s\$,LEN( s $\$()-1), 3$ )
RETURN
DrawBoard: 4
CLS: COLOR , $2:$ FOR $i=\emptyset$ TO 234
IF (i AND 3) <>め THEN
FOR $j=\varnothing$ TO 8:PRINT e $\$$ SPC(1); :NEX T4
END IF
IF $\mathrm{i}<23$ THEN PRINT 4
NEXT4
FOR $\mathrm{PL}=\varnothing$ TO np:COLOR $\varnothing, \mathrm{pL}+3:$ FOR
$j=\varnothing$ TO 6:LOCATE $8^{*} \mathrm{pL}-4 * \mathrm{np}+1 \varnothing+\mathrm{j}, 3$ 74
PRINT es:NEXT:LOCATE 8*pL-4*np+1 1,37: PRINT STRS(pL+1): GOSUB Upda teScore:NEXT 4
RETURN 4
RandBoard: 4
$\mathrm{i}=\varnothing$ :FOR $\mathrm{j}=\varnothing$ TO 4 STEP 2:FOR $\mathrm{k}=\varnothing$

T0 $8: b n(j, k)=i: b n(j+1, k)=i: i=i+1$ :NEXT k,j4
FOR j=ø TO 5:FOR $k=\emptyset$ TO 8:sj=INT (RND*5):sk=INT(RND*9)
$\mathrm{t}=\mathrm{bn}(\mathrm{sj}, \mathrm{sk}): \mathrm{bn}(\mathrm{sj}, \mathrm{sk})=\mathrm{bn}(\mathrm{j}, \mathrm{k}): \mathrm{bn}$ ( $\mathrm{j}, \mathrm{k}$ ) $=\mathrm{t}:$ NEXT $\mathrm{k}, \mathrm{j} \mathrm{j}$
RETURN4
4
InPLayers: 4
LOCATE 11,9:PRINT "Number of pla yers (1/2)?"4
GetKey:k\$=INKEY\$:IF k\$="" OR (k\$ <>"1" AND k\$<>"2") THEN GetKey $\mathrm{np}=\operatorname{VAL}(\mathrm{k} \$)-14$
RETURN 4
$\stackrel{4}{4}$
InMatches: 4
INPUT "Number of matches (1-27)? ", s\$4
$\mathrm{nm}=\mathrm{VAL}(\mathrm{s} \$): \mathrm{IF} \mathrm{nm}<1$ OR nm> 27 THEN $\mathrm{nm}=274$
RETURN4
4
Cycle: 4
nsw=sw XOR 1:PALETTE 2 $\varnothing, \varnothing, \mathrm{sw}^{\star} .9$, $\emptyset:$ PALETTE $21, \varnothing$, nsw*.9, $\varnothing 4$
$\mathrm{sw}=(\mathrm{sw}+1)$ MOD $2: \mathrm{cc}=(\mathrm{cc}+1)$ MOD 12 4
FOR cn=28 TO 31:PALETTE cn,1,1,1 : NEXT: PALETTE ( cc MOD 4) $+28, \varnothing, \varnothing$, 14
FOR $\mathrm{cn}=\varnothing$ TO 5:ck=(cc+cn) MOD 12: PALETTE $\mathrm{c}+22, \mathrm{r}(\mathrm{ck}), \varnothing, \mathrm{b}(\mathrm{ck}):$ NEXT RETURN 4

## Program 3: IBM PC/PCjr Rememory

BM 10 KEY OFF: DEF SEG= $\varnothing$ : DEFINT A -Z:POKE 1ø47, PEEK (1ø47) OR 64: RANDOMIZE TIMER
GA $2 \varnothing$ SCREEN $\varnothing, 1:$ WIDTH 4ø:LOCATE ,, $\varnothing$ : COLDR 8, $\varnothing, \varnothing: C L S$
FM $3 \emptyset \operatorname{DIM} \operatorname{CF}(26), \operatorname{CB}(26), \operatorname{PS\$ }(26,2$ ), $\operatorname{BN}(5,8): G O S U B$ 15øø: GOSUB 4øøø: LOCATE 13,9:GOSUB 45 øø
DA $4 \varnothing$ GOSUB 3øøø: RO= $\varnothing$ : $\mathrm{CD}=\varnothing: \mathrm{PX}=1$ : PY=1:MF=ø:TS=ø:FOR $I=\varnothing$ TO 1: TR(I) $=\varnothing$ : SC (I) $=\varnothing$ : NEXT: GOS UB 1øøø: $\mathrm{PL}=\varnothing$
tJ 45 WHILE TS<NM
KN $5 \varnothing$ GOSUB 2øøø: IF $B N(R O, C O)=27$ THEN 59 ELSE GOSUB 12øø:R $1=\mathrm{RD}$ : $\mathrm{C} 1=\mathrm{CO}$
$006 \emptyset$ GOSUB 2øøø: IF (BN(RO,CO) $=2$ 7) OR ( $\mathrm{R} 1=\mathrm{RO}$ ) AND ( $\mathrm{C} 1=\mathrm{CO}$ ) ) THEN $6 \varnothing$ ELSE GOSUB $12 ø \varnothing$
JK $7 \varnothing$ IF BN(R1, C1) $=\mathrm{BN}(\mathrm{RO}, \mathrm{CO})$ THE $\mathrm{N} \operatorname{SC}(\mathrm{PL})=\mathrm{SC}(\mathrm{PL})+1: \mathrm{TS}=\mathrm{TS}+1$ : $B N(R O, C O)=27: B N(R 1, C 1)=27$ ELSE FOR $I=1$ TO 2øøø: NEXT: GOSUB 1100
DL $8 \varnothing$ TR $(P L)=T R(P L)+1$ :GOSUB $1 \varnothing 7 \varnothing$ : IF BN(RO,CO) <27 THEN PL=P L XOR NP
8090 WEND
BA $1 \varnothing \varnothing$ COLOR 7, Ø: LOCATE 9,1ø:PRI NT "Another game ( $Y / N$ )?"
HB $11 \varnothing \mathrm{~K} \$=\mathrm{INKEY} \Phi: I F \mathrm{~K} \$=$ "Y" THEN CLS: LOCATE 13,7:GOSUB 45ø ø:COLOR 8: GOTO 4ø
NH 120 IF K $\$=" N "$ THEN CLS: END EL SE $11 \varnothing$
NE 10øø E\$=STRING $\$(3,219)$
MG 1010 FOR $\mathrm{I}=\varnothing$ TO 23: LOCATE , 2
MA $1 \varnothing 2 \varnothing$ IF (I AND 3 ) < $>\varnothing$ THEN FOR $J=\varnothing$ TO 8:PRINT E\$SPC(1) ;: NEXT
641030 IF I<23 THEN PRINT
$011 ø 4 \varnothing$ NEXT
EB 1 1 $5 \varnothing$ FOR PL=ø TO NP:COLOR $\emptyset, P$ L*2+2:FOR J=ø TO 6:LOCAT E 8*PL-4*NP+10+J,38: PP $^{-}$

T SPACE $\$$（3）：NEXT：LOCATE 8＊PL－4＊NP＋11，38：PRINT ST R\＄（PL＋1）：GOSUB 1ø7ø：NEXT
JN $106 \emptyset$ RETURN
I8 $197 \emptyset$ COLOR $\emptyset, P L * 2+2$ ：PR＝8＊PL－4 ＊NP＋13：LOCATE PR，38： $5 \$=5$ TR\＄（TR（PL））：PRINT RIGHT\＄ （＂øø＂＋RIGHT\＄（S\＄，LEN（S\＄）－ 1），3）
PC 1 ø8 $\emptyset$ LOCATE PR＋2，38： $5 \$=S T R \$(5$ C（PL））：PRINT RIGHTक（＂øø＂ ＋RIGHT\＄（S\＄，LEN（S\＄）－1）， 3 ）
J6 109ø RETURN
os 1100 COLOR 8：GOSUB 115ø：R1＝RO ：C1＝CO：GOSUB 1159：RETURN
if $115 \emptyset \mathrm{X}=4 * \mathrm{C} 1+2$ ： $\mathrm{Y}=4 * \mathrm{R} 1+2$ ：LOCATE Y，X：PRINT E\＄DL\＄E\＄DL\＄E\＄； ：RETURN
JE $12 \emptyset \emptyset$ LOCATE $\mathrm{PY}+1, \mathrm{PX}+1: \mathrm{N}=\mathrm{BN}(\mathrm{RO}$ ， CO$): \operatorname{COLOR} C F(N), C B(N): P$ RINT PS\＄（N，ø）DL\＄PS\＄（N，1） DL\＄PS $\$(\mathrm{~N}, 2)$ ；：RETURN
FB 150 D DL $\$=$ CHR $\$(31)+\operatorname{STRING} \$(3,2$ 9）
ML $151 \varnothing$ FOR $I=\emptyset$ TO 26
aM $152 \emptyset$ READ CF（I），CB（I）：FOR $J=\emptyset$ TO 2：READ Tø，T1，T2：PS\＄（ $I, J)=C H R \$(T \varnothing)+C H R \$(T 1)+C$ HR\＄（T2）：NEXT J，I
JO 1530 RETURN
CP $18 \emptyset \emptyset$ DATA $6,1,168,63,168,63,1$ $68,63,168,63,168$
PO $18 \boxed{ } 1$ DATA $7,5,2 \emptyset 1,2 \emptyset 2,187,211$ ，21ø，21ø，218，2ø8，215
NH 1810 DATA $14,4,32,32,32,32,15$ ，32，32，32，32
OH 1815 DATA $9,2,15,15,15,15,178$ ，15，15，15， 15
IN $182 \emptyset$ DATA 4，7，244，244，159，245 ，179，244，159，245，245
DP 1825 DATA 8，2，177，176，177，176 ，177，176，177，176，177
PF $183 \emptyset$ DATA 8，Ø，223，223，223，6，6 ，6，22ø，22ø，22ø
QN 1835 DATA $13,1,32,32,32,157,3$ 2，157，32，157， 32
GF $184 \emptyset$ DATA $\emptyset, 7,176,176,176,176$ ，176，176，176，176，176
GK 1845 DATA $10,2,32,4,32,4,32,4$ ，32，4， 32
NI $185 \emptyset$ DATA $4,7,32,219,32,219,2$ 19，219，32，219，32
OH 1855 DATA $7,3,178,178,178,178$ ，178，178，178，178，178
JF $186 \emptyset$ DATA $\varnothing, 6,206,206,206,206$ ，2ø6，2ø6，2ø6，2ø6，2ø6
on 1865 DATA $\emptyset, 4,32,32,32,32,32$ ， 32，32，32， 32
NE $187 \emptyset$ DATA $14, \varnothing, 219,219,219,21$ 9，219，219，219，219，219
DF 1875 DATA $3,1,247,247,247,247$ ，247，247，247，247，247
MM $188 \emptyset$ DATA 12，4，222，186，221， 24 Ø，24ø，24ø，222，186， 221
QP 1885 DATA $4, \varnothing, 32,95,32,248,32$ ，248，92，236，47
ML $189 \emptyset$ DATA $8,5,248,248,248,248$ ，248，248，248，248，248
NL 1895 DATA $\varnothing, 2,32,32,32,32,32$ ， 32，32，32， 32
FB $19 ø \emptyset$ DATA $12,5,177,177,177,17$ $7,177,177,177,177,177$
M0 $19 \varnothing 5$ DATA 4，7，248，249，248，250 ，249，248，25ø，249，25ø
LF 1910 DATA $15,7,32,32,237,32,2$ 37，32，237，32， 32
BK 1915 DATA 12，1，184，64，213， 192 ，197，217，214，193，183
FG 1926 DATA $13,4,232,32,232,32$ ， 32，32，232，32， 232
D！ 1925 DATA $1,7,14,32,32,32,32$ ， 32，32，251， 32
BC $193 \emptyset$ DATA $1 \varnothing, 1,188,32,2 \varnothing \varnothing, 32$ ，

234，32，187，32，2ø1
FH $2 ø \emptyset \emptyset$ GOSUB 25øø
ID 2965 K\＄＝RIGHT\＄（INKEY\＄，1）：IF K \＄＝＂＂THEN $2 ø \varnothing 5$ ELSE K＝AS C（K\＄）
FH $2 ø 1 \varnothing$
IF $K=13$ THEN LOCATE PY，$P$ X：PRINT SPACE\＄（5）；：LOCAT E PY＋4，PX：PRINT SPACE ${ }^{(5}$ ）；：RETURN
AE $2 ø 2 \varnothing$ IF $K=72$ THEN IF RO＞ø THE N RO＝RO－1：GOSUB 25øø
QN $203 \emptyset$ IF $K=8 \emptyset$ THEN IF RO＜S THE N RO＝RO＋1：GOSUB 25øø
PH $2 \varnothing 4 \varnothing$ IF $K=75$ THEN IF CO $>\varnothing$ THE N CO＝CO－1：GOSUB 25øø
$6 A 2 ø 5 \emptyset$ IF $K=77$ THEN IF CO＜8 THE N CO＝CO＋1：GOSUB 25øø
NK $2 \boxed{60}$ GOTO 2065
FL 25 gø $X=4 * C O+1: Y=4 * R O+1: C O L O R$ PL＊2＋2，
EO $251 \varnothing$ LOCATE PY，PX：PRINT SPACE $\$(5)$ ；：LOCATE PY＋4，PX：PRI NT SPACE（5）；
KL $252 \varnothing$ LOCATE Y，X：PRINT CHR\＄（21 8）SPC（3）CHR（ 191 ）；：LOCAT E $Y+4, X:$ PRINT CHR $\$(192) S$ PC（3）CHR\＄（217）；
LE $253 \varnothing \mathrm{PX}=\mathrm{X}: \mathrm{PY}=\mathrm{Y}$
JC 2540 RETURN
IE 3 Øøø I＝ø：FOR $J=\varnothing$ TO 4 STEP 2： FOR K＝ø TO 8： $\mathrm{BN}(\mathrm{J}, \mathrm{K})=\mathrm{I}: \mathrm{B}$ $\mathrm{N}(\mathrm{J}+1, \mathrm{~K})=\mathrm{I}: \mathrm{I}=\mathrm{I}+1:$ NEXT K ， J
DG 3ø1ø FOR J＝ø TO 5：FOR K＝ø TO 8：SJ＝INT（RND＊S）：SK＝INT（R ND＊9）
$M A 3 \emptyset 2 \varnothing T=B N(S J, S K): B N(S J, S K)=B N$ $(\mathrm{J}, \mathrm{K}): \operatorname{BN}(\mathrm{J}, \mathrm{K})=\mathrm{T}:$ NEXT K，J
I6 3030 RETURN
BF 4øøø LOCATE 11，9：PRINT＂Numbe r of players（1／2）？＂
KD $4 \varnothing 1 \varnothing$ K $\$=I N K E Y \$$ ：IF K $\$="$＂OR（ $K$ \＄＜＞＂1＂AND K\＄＜＞＂2＂）THEN 4ø1ø
HJ $4 \varnothing 2 \varnothing \mathrm{NP}=\mathrm{VAL}(\mathrm{K} \$)-1$
IH 4030 RETURN
MD $45 ø \varnothing$ INPUT＂Number of matches （1－27）？＂，S\＄
EH $451 \varnothing$ NM $=$ VAL（S $\$$ ）：IF NM＜1 OR NM ＞27 THEN NM＝27
jO $452 \emptyset$ RETURN

## Program 4：Apple II Rememory

Q9 20 HOME ：GOSUB 4øøø：UTAB 13 ：HTAB 5：GOSUB 45øø
5230 DIM PS $\$(26,2)$ ，BN $(5,8)$ ：GOS UB 15øø：GOSUB 1 øøøø
DC $4 \varnothing$ GOSUB 3øøø：RO $=\varnothing: C O=\varnothing: P$ $X=1: P Y=1: M F=\emptyset: T S=\varnothing$ ：FOR I＝$\varnothing$ TO 1：TR（I）$=\varnothing$ $: S C(I)=\varnothing$ ：NEXT ：GOSUB 1 øøø：PL $=\varnothing$ ：GOSUB 1095
1950 GOSUB 2øøø：IF BN（RO，CO）$=$ 27 THEN 5ø
5355 GOSUB 1200：R1 $=\mathrm{RO}: \mathrm{C} 1=\mathrm{CO}$
$866 \varnothing$ GOSUB 2øø日：IF（BN（RO，CO）
$=27)$ OR（ $(R 1=R Z)$ AND（ $C$ 1 ＝CO））THEN $6 \varnothing$
1865 GOSUB 1200
EJ $7 \varnothing$ IF $B N(R 1, C 1)=B N(R O, C Q) T$ HEN SC $(P L)=S C(P L)+1: T S$ $=T S+1: B N(R O, C O)=27: B$ $N($ R1，C1）$=27:$ GOTO 8ø
D7 75 FOR I＝ 1 TO 1øø日：NEXT ： GOSUB $11 ø \varnothing$
$408 \emptyset \operatorname{TR}(P L)=T R(P L)+1:$ GOSUB 1ø7ø：IF BN（RO，CO）＜ 27 T HEN PL $=N P-P L$
6190 IF TS＜NM THEN GOSUB 1095 ：GOTO 5ø
DD 1 øø VTAB 8：HTAB 8：PRINT＂AN

OTHER GAME（Y OR $N$ ）？＂；
EA 110 GET K $\$$ ：IF K $=$＂Y＂THEN UTAB 12：HTAB 4：gosub 45 Ф日：HGR2 ：GOTO 4ø
A4 120 IF K\＄$=$＂N＂THEN HOME ：E ND
91130 GOTO 110
951 øøø HDME ：E\＄＝＂＂：FOR I＝$\varnothing$ TO 2：E\＄＝E\＄＋CHR $\$$（ 32 ）：NEXT
A6 $101 \varnothing \mathrm{~K}=\varnothing:$ FOR I $=\varnothing$ TO 23： HTAB 2：IF K $=4$ THEN K ＝$\varnothing$
881 1 $2 \varnothing$ IF K＜＞ 3 THEN FOR J $=$ $\varnothing$ TO 8：INVERSE ：PRINT E\＄；：NORMAL ：PRINT SPC（ 1）；：NEXT
EF 1030 IF I＜ 23 THEN PRINT
$611040 \mathrm{~K}=\mathrm{K}+1$ ：NEXT
B6 1 ø5 $\operatorname{FOR} \mathrm{PL}=\varnothing$ TO NP：INVERS E ：FOR J＝ø TO 6：VTAB 8＊PL－4＊NP＋ $9+\mathrm{J}$ ：HTAB 38：PRINT E\＄：NEX T ：VTAB B＊PL－ 4 ＊NP $+1 \varnothing:$ HTAB 39：PRINT ST R $\$(\mathrm{PL}+1$ ）：GOSUB 1ø7ø： NEXT
E9 $106 \emptyset$ RETURN
Ab $107 \varnothing$ INVERSE ：PR $=8 * P L-4$ ＊NP＋12：UTAB PR：HTA B 38：S\＄＝STR\＄（TR（PL））： PRINT RIGHT\＄（＂øø＂＋S\＄ ，3）
801 1ø8 VTAB PR＋2：HTAB 38： $5 \$$ $=$ STR\＄（SC（PL））：PRINT R IGHT\＄（＂øø＂＋S\＄，3）
8J $1 \varnothing 9 \varnothing$ NORMAL ：RETURN
D8 1095 INVERSE ：VTAB 8＊NP＊ （1－PL）－4＊NP＋1ø： HTAB 38：PRINT CHR\＄（32） $: \mathrm{PR}=8 * \mathrm{PL}-4 * N P+$ 1ø：UTAB PR：HTAB 38：PR INT CHR\＄（1ø5）：NORMAL ： RETURN
0F 1100 INVERSE ：GOSUB 115ø：R1 $=$ RO：C1＝CO：GOSUB $115 \emptyset$ ：NORMAL ：RETURN
3C $1150 \mathrm{X}=4$＊C1 $+2: \mathrm{Y}=4 * \mathrm{R}$ $1+1:$ VTAB $Y:$ HTAB $X: P$ RINT E\＄：HTAB X：PRINT E \＄：HTAB X：PRINT E\＄；：RE TURN
8B 1200 FOR $\mathrm{J}=\varnothing$ TO 2：VTAB PY ＋J：HTAB PX＋1：PRINT PS\＄（BN（RO，CO），J）；：NEXT ：RETURN
EB 15øø FOR I＝$\varnothing$ TO 26：FOR J＝ ๑ TO 2
$38151 \varnothing \operatorname{PS} \$(\mathrm{I}, \mathrm{J})=\operatorname{STR} \$(\mathrm{I}):$ NEX T J，I
F3 1529 FOR I $=\varnothing$ TO 26：FOR J＝ g TO 2
F5 $153 \varnothing$ READ Tø，T1，T2：PS $\$(\mathrm{I}, \mathrm{J})=$ CHR\＄（TD）＋CHR\＄（Ti）＋ CHR\＄（T2）：NEXT J，I
EB 154ø RETURN
$25189 \varnothing$ DATA $35,35,35,35,35,35,3$ 5，35， 35
$31181 \varnothing$ DATA $58,63,58,63,58,63,5$ 8，63，58
711820 DATA $64,64,43,64,43,32,4$ 3，32，32
D5 1830 DATA $32,44,64,42,32,44,6$ 4，42， 32
A4 184ø DATA $33,32,34,32,35,32,3$ 4，32，33
$84185 \emptyset$ DATA $47,46,46,47,46,46,4$ 6，47，47
4E 1869 DATA $36,38,37,32,39,36,3$ 9，36， 39
17 187ø DATA 64，91，64，92，91，92，6 4，91，64
48 188ø DATA 61，61，61，61，61，61，6 1，61，61
47 189ø DATA 91，91，91，91，91，91，9

1，91，91
9F 19øø DATA $92,91,92,64,64,64,9$ 1，92，91
$4819 \varnothing 5$ DATA 45，32，42，32，94，32， 4 4，32，43
6E 1910 DATA $39,32,37,32,93,32,3$ 8，32， 36
821915 DATA 36，37，38，39，59，37，3 7，38， 39
$32192 \emptyset$ DATA 46，46，46，46，46，46， 4 6，46，46
EA 1925 DATA 94，93，94，94，93，94，9 4，93，94
A1 1936 DATA $91,92,91,91,92,91,9$ 1，92，91
EA 1935 DATA 92，91，92，92，91，92，9 2，91，92
30 194ø DATA 95，95，95，95，95，95，9 5，95，95
5D 1945 DATA 32，32，32，96，96，96，3 2，32， 32
45 195ø DATA 97，97，97，97，97，97，9 7，97，97
EE 1955 DATA 98，33，33，34，34，34，9 9，33， 99
E4 196ø DATA 34，33，1øø，1øø，34， 33 ，34，33，1øø
2F 1965 DATA $32,96,32,39,59,36,3$ 8，59， 37
F4 1976 DATA $32,39,37,32,38,36,3$ 2，32， 32
111975 DATA 1ø1，1ø2，1ø1，1ø1，1ø2 ， $1 \varnothing 1,1 \varnothing 1,1 \varnothing 2,1 \varnothing 1$
70 198ø DATA 1ø3，1ø4，1ø3，1ø3， 194 ，1ø3，1ø3，194，1ø3
42 2øøø GOSUB $25 ø \emptyset$
7E 2ø1ø GET K\＄：IF K $\$=$ CHR $\$(32$ ）THEN VTAB PY：HTAB PX： PRINT CHR\＄（32）；：HTAB PX＋4：PRINT CHR\＄（32）： VTAB PY＋2：HTAB PX：P RINT CHR $\$$（32）；：HTAB PX $+4:$ PRINT CHR\＄（32）：R ETURN
29 2ø2ø IF K $=$＂I＂THEN IF RO＞ $\emptyset$ THEN RO $=$ RO－1：GOS UB 2500
BC 2030 IF $K \$=$＂M＂THEN IF RO＜ 5 THEN RO $=$ RO $+1:$ GOS UB $250 \varnothing$
DA 2040 IF K\＄＝＂J＂THEN IF CO＞ $\square$ THEN CO $=\mathrm{CO}-1$ ：GOS UB $25 \varnothing \varnothing$
C2 2650 IF K\＄$=$＂K＂THEN IF CO＜ 8 THEN CO $=\mathrm{CO}+1$ ：GOS UB $25 \varnothing \varnothing$
$68206 \emptyset$ GOTO $2 \varnothing 1 \varnothing$
$8625 ø 0 \mathrm{X}=4 * \mathrm{CO}+1: \mathrm{Y}=4 * \mathrm{R}$ $0+1$
9F $251 \varnothing$ VTAB PY：HTAB PX：PRINT CHR\＄（32）；：HTAB PX＋4： PRINT CHR\＄（32）：VTAB P $Y+2:$ HTAB PX：PRINT CH R\＄（32）；：HTAB PX＋4：P RINT CHR\＄（32）；
2A $252 \varnothing$ VTAB $Y$ ：HTAB $X$ ：PRINT CH R\＄（62）；：HTAB $x+4$ ：PR INT CHR\＄（6ø）：VTAB Y＋ 2：HTAB X：PRINT CHR\＄ 16 2）；：HTAB $X+4:$ PRINT $C$ HR\＄（6ø）；
C5 $2530 \mathrm{PX}=\mathrm{X}: \mathrm{PY}=\mathrm{Y}$
EC 2549 RETURN
6C उøøø I＝Ø：FOR J＝Ø TO 4 ST EP 2：FOR K＝$\varnothing$ TO 8：BN（ $\mathrm{J}, \mathrm{K})=\mathrm{I}: \mathrm{BN}(\mathrm{J}+1, \mathrm{~K})=\mathrm{I}$ $: I=I+1:$ NEXT K，J
27 3ø1ø FOR J＝$\varnothing$ TO 5：FOR K＝ ø TO 8：SJ＝INT（ RND（1 ）＊5）：SK＝INT（ RND（1 ）＊9）
86 $3 \varnothing 2 \varnothing \mathrm{~T}=\mathrm{BN}(S J, S K): B N(S J, S K)$ $=\operatorname{BN}(\mathrm{J}, \mathrm{K}): \operatorname{BN}(\mathrm{J}, \mathrm{K})=\mathrm{T}: \mathrm{N}$ EXT K，J

66 4øøg VTAB 11：HTAB 5：PRINT NUMBER OF PLAYERS（1 OR 2）？＂；
बF $4 \varnothing \varnothing 5 K=\operatorname{PEEK}$（49152）： $\mathrm{R}=$ RND （1）：IF K＞ 127 THEN PO KE 49168，$\varnothing$
CA $4 \varnothing 1 \varnothing$ IF K＜＞ 177 AND K＜＞ 1 78 THEN 4005
$784 \varnothing 2 \varnothing \mathrm{NP}=\mathrm{K}-177$
E8 493ø RETURN
15 45øø INPUT＂NUMBER OF MATCHES （1 TO 27）？＂； 5
D5 451 （ $\mathrm{NM}=$ VAL（S $\$$ ）：IF NM＜1 OR NM＞ 27 THEN NM $=27$
E6 $452 ø$ RETURN
उA 1øøøø HGR2 ：GOSUB 1ø99ø：GOS UB $12 ø \varnothing \varnothing$
D8 1 1øø3ø IF PEEK（19ø＊256）$=7$ 6 THEN PRINT CHR\＄（4）；＂ PR\＃A768＂：GOTO 1øø5ø
F9 1øø4ø POKE 54，ø：POKE 55，3：C ALL $1 ø ø 2$
FC 1øø5ø POKE 6，ロ：POKE 7，128：P OKE 230，64
831 1øøbø RETURN
F2 $1999 \varnothing$ FOR I $=768$ TO 855：REA D A：POKE I，A：NEXT ：R ETURN
FJ 11 øøø DATA 216，12ø，133，69，134 ，70，132， 71
5E 11ø1ø DATA 166，7，1ø，10，176，4， 16， 62
6B 11 ø2ø DATA 48，4，16，1，232，232， 10， 134
AJ 11 ■3ø DATA $27,24,1 \varnothing 1,6,133,26$ ，144，2
9711 104ø DATA $230,27,165,4 \varnothing, 133$ ， 8，165， 41
8511 105ø DATA 41，3，5，23ø，133，9，1 62， 8
56 11 1ø6ø DATA 16ø，$, 177,26,36,5 \varnothing$ ，48， 2
$881167 \emptyset$ DATA $73,127,164,36,145$ ， 8，230， 26
E4 11ø8ø DATA 2ø8，2，23ø，27，165，9 ，24，1ø5
7A 11ø9ø DATA 4，133，9，2ø2，2ø8，22 6，165，69
उЕ 111 Øø DATA 166，7ø，164，71，88，7 6，24ø，253
F2 12øøø FOR I＝ 32768 TO 33359： READ A：POKE I，A：NEXT ：RETURN
56 12ø1ø DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
46 12ø2ø DATA $1,3,6,12,24,48,96$ ， 64
JB $12 ø 3 \varnothing$ DATA $64,96,48,24,12,6,3$ ， 1
DF $12 ø 4 \emptyset$ DATA $65,99,54,28,28,54$ ， 99，65
$2512 ø 5 \emptyset$ DATA $152,152,152,143,13$ 5，128，128， 128
CJ $12 \emptyset 6 \emptyset$ DATA $128,128,128,135,14$ 3，152，152， 152
4C 12ø7ø DATA 14の，14の，14ø，248， 24 Ø，128，128， 128
$4512 ø 8 \emptyset$ DATA $128,128,128,24 \varnothing, 24$ 8，14ø，14ø， $14 \varnothing$
88 $12 ø 9 \varnothing$ DATA $128,176,152,14 \varnothing, 14$ Ø，152，176， 128
A1 $121 ø \emptyset$ DATA $128,134,14 \varnothing, 152,15$ 2，14ø，134，128
BE $1211 \varnothing$ DATA $\varnothing, 1,3,7,15,31,63,1$ 27
$551212 \varnothing$ DATA $127,63,31,15,7,3,1$
62 1213ø DATA $127,126,124,12 \varnothing, 11$ 2，96，64，$\varnothing$
CC $1214 \varnothing$ DATA $\varnothing, 64,96,112,12 \varnothing, 12$ 4，126， 127
AF $1215 \varnothing$ DATA $25,51,1 ø 2,76,25,51$ ，162，76
IE $1216 \emptyset$ DATA $76,1 ø 2,51,25,76,1 \varnothing$ 2，51，25
3B $1217 \emptyset$ DATA $128,188,23 \varnothing, 246,23$

8，230，188，128
बB 1218ø DATA $128,152,156,152,15$ 2，152，188， 128
B3 $1219 \emptyset$ DATA $128,188,239,176,14$ ஏ，23ø，254， 128
83 122øø DATA $128,188,23 \emptyset, 176,22$ 4，236，188， 128
95 1221ø DATA $128,176,184,18 \emptyset, 25$ 4，176，176， 128
BC $1222 \varnothing$ DATA $128,254,134,19 \varnothing, 22$ 4，23ø，188， 128
IB 1223ø DATA $128,188,134,19 \varnothing, 23$ ஏ，23ø，188， 128
E6 1224ø DATA $128,254,224,176,15$ 2，14ø，14ø，128
D8 1225 Ø DATA $128,188,230,188,23$ Ø，239，188， 128
$731226 \varnothing$ DATA $128,188,230,23 \varnothing, 25$ 2，176，152， 128
D1 1227 D DATA $128,152,128,152,17$ 6，23ø，188， 128
88 $1228 \varnothing$ DATA $14 \varnothing, 14 \varnothing, 14 \varnothing, 255,25$ 5，14ø，14ø， $14 \varnothing$
37 1229ø DATA $128,152,14 \varnothing, 134,14$ g，152，128， 128
IE 123øø DATA 157，178，149，181， 12 8，173，265， 186
A2 12316 DATA $128,140,152,176,15$ $2,14 \varnothing, 128,128$
F8 12326 DATA $128,188,230,176,15$ 2，128，152， 128
17 1233פ DATA 255，255，255，255， 25 5，255，255， 255
D9 1234ø DATA $128,252,230,236,25$ 4，236，230，128
D7 1235ø DATA 128，190，230，230， 19 Ø，23ø，254， 128
7B 1236ø DATA $128,188,230,134,13$ 4，23ヵ，190， 129
BF $1237 \varnothing$ DATA $128,19 \varnothing, 23 \varnothing, 23 \varnothing, 23$ ஏ，23ø，19ø， 128
F2 1238 g DATA $128,254,134,134,19$ 6，134，254，128
F6 1239ø DATA $128,254,134,134,19$ ø，134，134，128
65 124øø DATA $128,188,230,134,24$ 6，23ø，19ø，128
44 12419 DATA 128，239，23ø，23ø， 25 4，23ø，23ø， 128
8A $1242 \varnothing$ DATA $128,152,152,152,15$ 2，152，152， 128
JA $1243 \varnothing$ DATA $128,224,224,224,22$ 4，236，188， 128
IC 1244ø DATA $128,23 \emptyset, 230,182,15$ 8，230，230，128
46 1245ø DATA $128,134,134,134,13$ 4，134，254， 128
©C $1246 \varnothing$ DATA $128,23 \varnothing, 254,230,23$ ø，23ø，23ø， 128
AD $1247 \emptyset$ DATA $128,19 \varnothing, 23 \varnothing, 23 \varnothing, 23$ ஏ，23ø，236，128
CB $1248 \varnothing$ DATA $128,188,230,230,23$ Ø，23ø，188， 128
DJ $1249 \varnothing$ DATA $128,19 \varnothing, 230,230,19$ Ø，134，134， 128
8F $125 \emptyset \emptyset$ DATA $128,188,230,23 \varnothing, 23$ g，182，236， 128
97 1251ø DATA $128,19 \varnothing, 230,230,19$ の，236，23ø， 128
C1 12529 DATA $128,188,230,14 \varnothing, 17$ 6，23ø，19ø，128
B7 $1253 \varnothing$ DATA $128,254,152,152,15$ 2，152，152， 128
$4 E$ 1254ø DATA 128，230，230，230，23 Ø，23ø，19ø， 128
56 1255ø DATA $128,230,230,230,23$ ஏ，236，152， 128
CA $1256 \emptyset$ DATA $128,236,230,230,23$ ஏ，254，236， 128
A2 $1257 \emptyset$ DATA $128,236,236,23 \varnothing, 18$ 8，236，236，128
2212589 DATA 128，230，23ø，230， 18 8，152，152，128
8E 1259 D DATA $128,254,176,152,14$ ஏ，134，254，128

F9 $126 \emptyset \varnothing$ DATA $17 \varnothing, 17 \varnothing, 17 \varnothing, 17 \varnothing, 17$ ø，17ø，17ø，17ø
©A 12619 DATA $213,213,213,213,21$ 3，213，213，213
C5 1262 DATA $162,162,179,136,13$ 6，17ø，162，162
$231263 \varnothing$ DATA $136,136,17 \emptyset, 162,16$ 2，170，136， 136
B3 $1264 \emptyset$ DATA 85， $127,42, \varnothing, 85,127$ ，42，$\varnothing$
2E $1265 \varnothing$ DATA $\varnothing, 8,42,42,42,42,8$ ， g
B8 $1266 \emptyset$ DATA $74,1 \varnothing 9,85,74,1 ø 6,7$ 3，123， 43
4312679 DATA 96，96，96，96，96，96， 96，96
Af $1268 \emptyset$ DATA $3,3,3,3,3,3,3,3$
$481269 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 127$
©F 127 פø DATA $85,85,85,85,85,85$ ， 85， 85
17 1271』 DATA 42，42，42，42，42，42， 42，42
C8 $1272 \varnothing$ DATA $\varnothing, 8,34,8,34,8,34$ ， 8 Of $1273 \varnothing$ DATA $\varnothing, 8,34,8,34,8,34,8$ DJ 1274 DATA $8,42,28,8,28,42,8$ ，

## Program 5：Rememory For Atari 400，800，XL，And XE

BJ 1 OPEN \＃1，4，$\varnothing, " K: ": P R I N T$ CHR $\$(125)$
Il 2 DIM SPACE $1 \$(4 \emptyset)$ ，SPACE $2 \$$ （20）， $\mathrm{BN}(5,8), 5 \$(6), \operatorname{TR}(1$ ），SC（1）
HE 5 GOSUB $4 \varnothing \varnothing \emptyset: P O S I T I O N ~ 9,1$ 3：GOSUB $450 \varnothing$
HN $1 \emptyset$ GRAPHICS $\varnothing:$ POKE 82，$\emptyset: P$ OKE 83，39
FH 15 POKE 752，1：PRINT
DE $2 \emptyset$ DLIST＝PEEK（56 ）+ ＋PEEK（ 5 61）＊256
CD $3 \emptyset$ FOR T＝6 TO 28 STEP 2：$P$ OKE DLIST＋T， 6 ：NEXT $T$
PL 40 POKE 756， 226
CB 5 Ø SCREEN＝PEEK（88）$+\operatorname{PEEK}$（8 9）＊256
NK $6 \emptyset$ FOR $I=\emptyset$ TO $66 \emptyset$ STEP $6 \emptyset$ ：K＝SCREEN＋I
MA Bø FOR J＝4ø TO 59：POKE K＋ J，128：NEXT J：NEXT I
PA $9 \varnothing$ POKE $71 \varnothing, \emptyset:$ POKE 752， 1
$601 \emptyset 5$ GOSUB 3øøø：ROW＝ø：COL＝ $\emptyset: M F=\emptyset: T S=\emptyset: F O R \quad I=\emptyset T$ $01: \operatorname{TR}(I)=\varnothing: S C(I)=\varnothing: N$ EXT I：GOSUB 1 øøø： $\mathrm{PL}=\varnothing$
OH $11 \varnothing$ GOSUB 2øøø：IF BN（ROW， $C O L)=27$ THEN 119
BE 115 GOSUB 12øD：PROW＝ROW：$P$ $\mathrm{COL}=\mathrm{COL}$
GH 120 GOSUB 2øøø：IF（BN IROW ，$C Q L$ ）$=27$ ）OR（ $(P R O W=R$ OW）AND（PCOL＝COL）$T$ HEN $12 \emptyset$
N． 125 GOSUB $120 \emptyset$
00130 IF $B N(P R O W, P C O L)=B N(R$ OW，COL）THEN SC（PL）$=5$ $C(P L)+1: T S=T S+1: B N(R D$ $W, C O L)=27: B N(P R O W, P C O$ L）$=27$ ：GOTO 14ø
KK 135 FOR I＝1 TO 2øø：NEXT I ：GOSUB $11 \varnothing \varnothing$
JH $14 \emptyset \quad \operatorname{TR}(P L)=T R(P L)+1: G O S U B$ 1ø8ø：IF BN（ROW，COL）＜ 27 THEN PL＝NP－PL
O6 15ø GOSUB 1ø7ø：IF TSくNM T HEN $11 \varnothing$
ON $16 \emptyset$ POSITION $1 \varnothing, 9:$ PRINT＂ ANOTHER GAME（Y／N）？＂： POKE SCREEN＋4ø， 128
JF $17 \emptyset$ GET \＃ $1, K: I F K=89$ THEN GRAPHICS Ø：PRINT CHR \＄（125）：RUN
JB $18 \emptyset$ IF $K=78$ THEN GRAPHICS

Ø：PRINT CHR ${ }^{\text {（125）}: E N}$
6L $19 \varnothing$ GOTO 170
IK 1 Øøø POS＝SCREEN＋63：FOR $I=$ Ø TO 5：FOR J＝ø TO 8： POKE $4 * J+P Q S, 128:$ POK E 4＊J P POS＋1，128：NEXT J：POS＝POS＋12Ø：NEXT I
IL $1 \varnothing 5 \emptyset$ POSITION $1, \varnothing:$ PRINT＂ ＊P1 Øøø Øøø＂：IF NP＝1 THEN POSITION 29，$\varnothing$ ： PRINT＂P2 Øøø øøø＂

6C 1 ø 7 の POSITION 27＊PL＋1，Ø：P RINT＂＊＂：POSITION 27 ＊$(1-P L)+1, \emptyset:$ PRINT $C H$ R\＄（32）：G0TO 1.999
01 1 ø日ø $\mathrm{PR}=27 * \mathrm{PL}+8: 5 \$=5 T R \$(T$ R（PL））：POSITION PR－L EN（S\＄），ø：PRINT S\＄
IN 1 ø9ø S\＄＝STR\＄（SC（PL））：POSI TION PR＋4－LEN（S\＄），$\emptyset:$ PRINT $5 \$$
DC 1 Ø99 POKE SCREEN $+4 \varnothing, 128: R$ ETURN
JK 11 Øø PIC＝27：GOSUB 115ø：PR OW＝ROW：PCOL＝COL：GOSU B 115ø：RETURN
EM $115 \emptyset \times P O S=P C O L: Y P O S=P R O W$ ： GOSUB 2øøøø：RETURN
NO $120 \emptyset$ PIC＝BN（ROW，COL）：XPOS ＝COL：YPOS＝ROW：GOSUB 2øøøø：RETURN
AK $2 \emptyset \varnothing \emptyset$ GOSUB $251 \emptyset$
AM 2005 JY $=$ STICK（PL＊JS）：POKE 77，$\square$
JA $2 \emptyset 1 \emptyset$ IF STRIG（PL＊JS）$=\varnothing$ TH EN PQKE PCUR，PC1：POK E PCUR＋3，PC2：RETURN
FH $202 \emptyset$ IF $J Y=14$ THEN IF ROW ＞ø THEN ROW＝ROW－1：GO SUB 25øの
PI $203 \emptyset$ IF $J Y=13$ THEN IF ROW ＜5 THEN ROW＝ROW＋1：GO SUB 25øø
$\mathrm{Kl} 2 \mathscr{} 2 \boldsymbol{0}$ IF JY＝11 THEN IF COL ＞ THEN COL＝COL－1：GO SUB 25のø
IC 2ø5ø IF JY＝7 THEN IF COLS 8 THEN $\mathrm{COL}=\mathrm{COL}+1:$ GOS UB 25øø
GJ $206 \emptyset$ FOR I＝Ø TO $5 \emptyset: N E X T$ I ：GOTO $2 ø ø 5$
BC $250 \emptyset$ POKE PCUR，PC1：POKE $P$ CUR＋3，PC2
BO $251 \emptyset$ CUR＝SCREEN＋ROW＊ $12 \emptyset+4$ ＊COL＋62：PC $1=$ PEEK（CUR ）：PCZ＝PEEK（CUR＋3）
FA 252 Ø POKE CUR， 32 ：POKE CUR ＋3，32：PCUR＝CUR
KK 253 Ø RETURN
56 3øøø $I=\emptyset: F O R \quad J=\varnothing$ TO 4 STE P 2：FOR K＝ø TO 8：BN（ $J, K)=I: B N(J+1, K)=I: I$ ＝I＋1：NEXT K：NEXT J
BL $3 \emptyset 1 \emptyset$ FOR $J=\emptyset$ TO 5：FOR $K=\emptyset$ T0 8：SJ＝INT（RND（ $\varnothing$ ）＊ 5）：SK＝INT（RND（Ø）＊9）
PO 3ø2ø $T=B N(S J, S K): B N(S J, S K$ ）$=\mathrm{BN}(\mathrm{J}, \mathrm{K}): \mathrm{BN}(\mathrm{J}, \mathrm{K})=\mathrm{T}:$ NEXT K：NEXT J
K6 $3 \varnothing 3 \emptyset$ RETURN
IN 4øøø POSITION 9，9：PRINT＂ NUMBER OF PLAYERS（ 1 ／2）？＂；
FF 4 Ø1ø GET \＃1，NP：IF NPく＞49 AND NP $\langle>5 \emptyset$ THEN $4 \emptyset 1 \varnothing$
KG 4ø2ø NP＝NP－49：IF NP＝$\quad$ THE N 4ø6も
IM $4 \emptyset 3 \emptyset$ POSITION 9，11：PRINT ＂NUMBER OF JOYSTICKS （1／2）？＂；
F！ $4 \emptyset 4 \emptyset$ GET \＃1，JS：IF JS $<>49$ AND JS＜＞5Ø THEN $4 \emptyset 4 \emptyset$

NK 405 J JS＝JS－49
KK 4ø6ø RETURN
KJ 45øø PRINT＂NUMBER OF MAT CHES（1－27）＂；：INPUT S\＄：IF S\＄＝＂＂THEN S\＄＝ ＂$\varnothing "$
HB $451 \emptyset \quad N M=V A L$（S\＄）：IF NM＜1 $\quad \square$ $R \quad N M>27$ THEN $N M=27$
KL $452 \emptyset$ RETURN
JK 1 Øøøø DATA 81，69，65，82，82 ，68，90，67
NH 1øø1ø DATA 299，2ø7，Ø，74，7 2， $5,154,131$
KO $1 \varnothing \varnothing 2 \emptyset$ DATA $12,3, \emptyset, 93,91, \emptyset$ ，3， 86
DK 1 Øø 10 DATA 2，86，75，79，75， 79，2，86
6J $1 \varnothing \emptyset 4$ DATA $2 \varnothing, 84, \varnothing, 212,21$ 2，$, 84,2 \emptyset$
J6 10050 DATA $96,128,0,96,96$ ， $0,128,96$
H6 1øøGø DATA 8，128，ø，28，3ø， Ø，128， $2 \varnothing 4$
KI 1øø7ø DATA 73，79，65，83，83 ，68，75，76
EG 1 øø8ø DATA $2 \emptyset 1,2 \emptyset 7,26,84$ ， 84，26，203，204
16 10090 DATA $11,128,66,3,3$ ， 86，128， 15
6E $1 \varnothing 1 \varnothing \varnothing$ DATA 299，195，75，82， 82，79，209，195
MJ $1 \varnothing 11 \emptyset$ DATA $124,124, \emptyset, 6 \emptyset, 6$ Ø， $5,124,124$
EJ $1 \emptyset 12 \emptyset$ DATA $61,61,217, \emptyset, \varnothing$ ， 89，61，61
NH 1 Ø13Ø DATA 254，254，Ø，31， 3 1，$, 254,254$
FE $1 \emptyset 140$ DATA $199,169,45,55$ ， 45，55，119， 119
NB 10150 DATA $1,4,65,68,65,6$ 8，1，4
BO $1 \varnothing 16 \emptyset$ DATA $1,68,6,139,139$ ， $5,1,68$
DA $1 \varnothing 17 \emptyset$ DATA $128,128, \emptyset, 211$ ， 211，$\varnothing, 2 \varnothing 3,2 \emptyset 4$
NN $1 \emptyset 18 \emptyset$ DATA $128,128, \emptyset, 72,7$ 4，ø，2ø3，2ø4
OE 1 Ø19ø DATA $73,79, \emptyset, 128,12$ 8，ø，2ø3，2ø4
$161 \emptyset 2 \emptyset \emptyset$ DATA $73,128, \emptyset, 9 \varnothing, 69$ ，$\emptyset, 128,76$
$061 \emptyset 21 \emptyset$ DATA 2ø9，128， $0,9 \varnothing$ ， 6 9， $0,128,2 \emptyset 9$
DP 1 ø22ø DATA $128,128, \varnothing, 251$ ， 251，$, 128,128$
BM 1ø23ø DATA 71，7ø，Ø，66，86， Ø，7ø， 71
6B 1 ø24ø DATA $213,213, \varnothing, \varnothing, \varnothing$ ， Ø，206，206
OA $1 \varnothing 25 \emptyset$ DATA $6,7, \varnothing, \varnothing, \varnothing, \varnothing, 7$ ， 6
PN 1 Ø26ø DATA $198,198, \emptyset, 7 \emptyset, 7$ Ø， $0,198,198$
EK 1 ø27ø DATA $128,128, \emptyset, 128$ ， 128, ， 128,128
FF 2øøøø REM Call with PIC $h$ olding the picture number，XPOS \＆YPOS holding the card $p$ osition（ $0-8$, Ø－5）
J 2øø2ø RESTORE PIC＊1פ＋1øøø $\emptyset$
JO 2 Øø $4 \emptyset$ START＝SCREEN＋YPOS＊ 1 $2 \emptyset+X P O S+X P O S$
CK $2 \emptyset \varnothing 5 \emptyset$ FOR I＝1 TO 2：READ A ：POKE START $+4 \emptyset+1, A:$ NEXT I
BK 2øø6Ø FOR I＝1 TO 4：READ A ：POKE START＋61＋I＋XP OS＋XPOS，A：NEXT I
FJ 2øø7ø FOR I＝1 TO 2：READ A ：POKE START＋1 $\emptyset \emptyset+I, A$ ：NEXT I
NK 2øø日の RETURN

# On Balance 

James V. Trunzo

Requirements: Apple II-series computer with a minimum of 128 K . Both $3^{11 / 2-i n c h}$ and $51 / 4$-inch disks contained in each package.

After a hard day's work, few people want to take time to manage the money they make. In our house, that task is ably handled by my wife. Now, in order to make her job a little easier, I had, in the past, tried to get her to use my computer and any number of home accounting software packages. My efforts, however, were in vain. Either it took too many hours to set up accounts prior to even beginning to use the software, or the programs were too complicated for those of us without a degree in accounting. All we really needed was a computerized checkbook program with the ability to do some neat things, like sorts. Nothing we found could overcome her preference towards her own calculator, pen, and paper system. That is, nothing could until Broderbund released its newest productivity package: On Balance.

On Balance is a money management program-which, incidentally, is not copy protected-that so closely simulates the most basic of noncomputer household systems, it destroys the inhibitions many people have about using a computer to aid in financial management. The fact that it emulates the system most households are already using makes it unintimidating to novices, giving them the security they need to fairly evaluate the program.

## Simple And Versatile

On Balance allows the user to begin working with it immediately. After ten minutes of initial setup, you can begin making full use of the program. While you can create all your accounts before making any entries if you so desire, On Balance, unlike many other similar financial packages, doesn't require that you do so. Accounts can be established on the fly. If entering the details of a
check is your first transaction, you set up your checking account at that time. If your next entry is a deposit into a savings account, just answer the series of onscreen questions, and another account has come into existence. Simplicity is one of On Balance's best features.

However, don't confuse simplicity with lack of sophistication or get the idea that this program is a watereddown version of a "real" home accounting program-On Balance is as complete a program as any of its type currently on the market. It's just that Broderbund's program allows you a tremendous amount of versatility, and it doesn't require that you use all of its features if you need only a few. And it certainly has enough features. For instance: On Balance will handle all standard record keeping, reconciliation tasks, budgets, check printing, and so forth. It will generate reports showing your net income and net worth as well as reports on individual accounts and transaction lists. It will even print graphs allowing you to compare a variety of financial information, like money spent versus money budgeted. And it does all these things in a speedy, clear, simple way-which is what really separates it from others of its ilk.

Part of the ease of use implied above stems from On Balance's use of pull-down windows and constant onscreen menus. Using a mouse, a keyboard, or a combination of both, the user selects major elements of the program from a menu line at the top of the screen. This drops a window containing more detailed choices. For example, selecting "Accounts" from the menu line will open a window listing all the account types that have been created. Furthermore, onscreen help is almost always available, and editing is a snap if modification is needed due to change or error.

Other features aid in the speed and usefulness of the program. An everpresent, full-functioning calculator hides behind the main screen, waiting to be summoned through the use of Open Apple-C, and a Notepad is also always available to jot down important notations about a transaction. Another feature that saves the user time and
trouble is the ability to enter a set of regular payments, like a mortgage payment. For example, not only will On Balance prepare itself to handle these recurring transactions, it will also prompt you, through the use of onscreen messages, when one is due. Of course, these are just a few of the features built into On Balance.

## Manipulating Data

Once you have entered information, you can manipulate it in a variety of ways. Searches and sorts can provide you with various forms of comparisons that will clearly show you where your money is-or where it went. Search by date, check number, payee, dollar amount, or even text; and send the data to a customized report. Then view the information that you requested either on your monitor screen or on paper. On Balance lets you record up to 800 transactions a month, and Broderbund claims that users can store an entire year's data on a single disk. This is an important factor if you wish to flag certain transactions throughout the year (for example, tax-related entries) and pull them all at one time.

One other thing: On Balance is compatible with AppleWorks. This means that the user can both export financial data from On Balance to AppleWorks and do forecasting and analyzing without having to re-enter startup figures. A special disk facilitates the exporting of information from one program to the other.

Overall, On Balance is an impressive piece of work. It is designed to put you in charge of your financial affairs by giving you a wide variety of information in a simple, easily understandable fashion. Whether you're setting up a budget, keeping track of stock purchases, or simply balancing your checkbook, On Balance helps you do the job quickly and painlessly.

## On Balance

Broderbund Software
17 Paul Dr.
San Rafael, CA 94903-2101
$\$ 99.95$
(Interactive demo disk available for \$7.99. Price can be applied to purchase of full package at later date.)

# Amnesia 

James V. Trunzo

Requirements: Apple II series, IBM PC and compatibles, and Commodore 64 computers.

It's not the type of thing one often, if ever, thinks about. Yet, for a moment, consider the terrifying prospect of complete memory loss. Your entire life disappears. All those you have grown to know and love-or even hate-become strangers. The career you've built and the knowledge you've gained dissolve into nothingness. Your solitude is so complete that, upon looking in a mirror, you don't even know the face staring back at you.

The rather unpleasant concept of complete memory loss, or amnesia, is the basis for Electronic Arts' first journey into the text adventure genre. Employing the considerable skills of Thomas M. Disch, winner of the Campbell Award for best science fiction novel in 1980, EA thrusts the player into the hazy world of an amnesia victim who lives in New York City. As this character, you wake up in the fictional Sunderland Hotel suffering from acute amnesia, and are lacking any comforting physical resources like food, clothing, or money. As you stumble about trying to piece together information that will literally return your life to you, you discover that things could get worse. As the package copy notes: "A strange woman wants to marry you. A strange man is trying to kill you. The state of Texas wants you for murder....," and you still aren't sure who you are.

## Beyond The Ordinary

Amnesia, like other well-designed text adventures, puts you in a predicament and challenges you, with the aid of an extensive and sophisticated parser, to figure out which piece goes where in the giant puzzle. However, Amnesia goes well beyond ordinary text adventures, many of which arrived after Infocom's shining successes.

Electronic Arts lives up to its reputation by building its electronic novel in Manhattan-all of Manhattan. There are four thousand individual and authentic locations on this eclectic urban island, including 650 streets and the entire Manhattan subway system. Central Park, Chinatown, Soho, Broadway and 42nd Street, Times Square, Greenwich Village, the Battery, and even the Brooklyn Bridge are all faithfully reproduced. If you care to find out how faithfully, cruise Central Park at 2:00 in the morning (from the safety of your home). Am-
nesia's internal clock keeps very accurate time, so the muggers know when to come out. Actually, part of the enjoyment of playing Amnesia is wandering about fabulous Manhattan, especially if you're familiar with some of it. Even if you aren't, don't despair: Electronic Arts provides you with a detailed street map of the borough, as well as a complete map of the subway system.

Beyond the vast scope of the gaming environment that makes up Amnesia, Disch and EA have not glossed over the details that make day-to-day existence possible. In Amnesia, you need money or credit cards to function. Restaurants and stores open and close according to schedule. The television news (worth watching, incidentally) comes on at 7:00 in the evening. Your character is aware of the time of day, and it becomes hungry and sleepy.

Because Amnesia occurs in a modern-day setting that incorporates many familiar physical surroundings, it may appeal to some game players that don't enjoy the mythical or space-age formats that many computer games employ. This 1980's urban backdrop also provides the game with a sense of realism that may be a bit unsettling.

The program itself contains features typically found in text adventures. In addition to its excellent parser, Amnesia allows multiple saves, printouts, and a scoring system that rewards accomplishments beyond simply solving a piece of the puzzle.

The powerful combination of Thomas Disch's fine prose and EA's program design talent makes Amnesia a text adventure well worth experiencing.

## Amnesia

Electronic Arts
1820 Gateway Dr.
San Mateo, CA 94404
\$44.95 Apple II, IBM PC and compatible versions
\$39.95 Commodore 64 version

## Starglider

Andy Eddy

Requirements: Commodore 64, Amiga, Atari ST, Apple II, and IBM PC and compatibles. Disk drive required. Mouse optional, but recommended on systems where it is available; joystick optional, but recommended on all others. Color display also optional, but recommended. Atari ST and Commodore 64 versions reviewed.

Every once in a while, a game comes along that tickles and teases your senses. Remember the exhilaration you experienced the first time you played Space Invaders or Asteroids-the panic that overcame you as you got used to the controls, the racing heartbeat that seemed to match the pounding pulse of the sound effects, the adrenaline rush with every laser blast for or against you.

Over the years there have been some computer contests that touch you like this. One such product is Starglider by Rainbird Software (marketed in the U.S. by Firebird Licensees). A space sortie in vector graphics that can be likened to an aerial Battlezone, Starglider has a mix of bright colors, rapid movement, and strategic excitement that will bring you back again and again.

## Find Out For Yourself

One of the most enticing points of the game is the inherent mystery that its creator has engineered. Much like a suspense novel, Starglider's charms aren't spelled out at the beginning for you. Given very little in the way of instruction beyond the most cursory navigational direction, your piloting skill is increased only through prac-tice-during which time you will face many frustrating defeats-and careful perusing of the accompanying novella that details, in story form, the reason you are battling Herman Krudd and his troops. If your bent is to plunge into a game without reading through the manual, you'll find yourself in deep trouble time and time again

Once you've acquired the knowledge to stay alive and keep your craft aloft (refueling your ship, replenishing your missiles, lasers, shields, and so on), and you've learned how to track all of the various indicators that alert you to your ship's condition, position, and endangerment, all you have to do is dispatch the many enemies that threaten you. Oh, is that all?

Most of these adversaries can be blown away with your shipboard lasers, though it takes quite a few shots for them to meet their demise. Others are impervious to your blasters and


The Atari ST version of Starglider from Firebird.
must be taken out with a missile-and your ship can hold only two at any given time. If this gives you the impression that your work is cut out for you, you're right.

Importantly, it must be pointed out that the discouragement level is not enough for you to shelve the game. Waving a galactic carrot in your windshield, Starglider teases you into the just-one-more-try mode. Most times, you find yourself getting a few more points on the scoreboard than the last time, maybe reaching a higher level than before. But with each level come new challenges that must be overcome. And on and on....

Jeremy "Jez" San of Argonaut Software (Jez San of Argonaut, Jason and the Argonauts-get the connection?), who originated Starglider and programmed the 68000 versions, is a talented individual who has constructed a visually smooth concoction that's so realistic in its feel that you'll duck and squirm in your seat in an attempt to guide your careening jet with body English.

## A Loss In Translation?

Starglider was obviously designed on a 16 -bit machine and converted to the 8 bit counterparts, and it suffers a bit in the transition. For example, the game is very well suited to mouse use, as I discovered in the ST version, for controlling altitude, speed, steering, and laser triggering.

But, in the Commodore rendering, the joystick seems to come up a little short in giving you carefree handling of the ship, though some latitude is provided by having two different joystick modes. Here, the keyboard assists on certain functions; in fact, all versions of the game can be played entirely from the keyboard, and the ability to redefine keys lets the player make a personal layout for game control.

Graphics differences are more drastically exposed. On the ST, a radar screen at the bottom of your dashboard shows all objects within a certain perimeter with each item's "blip" a distinct color. On the 64, it's impossible to
distinguish one blip from the next, which puts you at a marked disadvantage when you're on the prowl for a docking silo or energy tower at critical moments. Other than that difference and a few variations in sound and visual effects between the two, the game play is very similar, and the differences only limit its spectacularity on the Commodore. I must say, the digitized voice status reports during play and the rockin' intermission music with vocals on the ST rendering were real shocks.

About the only across-the-board complaint I had was tolerable, to say the least. At the end of each foray, a high score table is displayed where you may insert your name among the top achiev-ers-standard fare for most games of this ilk, and, above all, making for some heated competition between contestants. The problem is that the list lasts only the length of that immediate session; no scores are saved to disk for permanent recall. While San told me that this was to prevent the possibility of overwriting vital program data, in the past it has been a feature on many games with very little, if any, detriment.

## To The Future

So far, Rainbird has brought The Pawn and Starglider to the Americas from overseas-and these are two of the most critically acclaimed programs in recent memory. If they keep this streak going, they can be counted on to become one of the major suppliers of quality gameware.

## Starglider

Firebird Licensees
P.O. Box 49

Ramsey, NJ 07446
$\$ 39.95$ Commodore 64 version
$\$ 44.95$ all other versions

## Robot Rascals

Karen G. McCullough
Requirements: Apple II series, Commodore 64.

Robot Rascals is a hybrid; it's a cross between a card game and a computer adventure-Go Fish meets the electronic scavenger hunt. In games, as in plants and animals, cross-fertilization has the potential to produce hopeless disasters as well as unusually strong, effective offspring. Robot Rascals is among the successes.

Each player (up to four) is dealt four item cards; then each selects a robot from the ten available onscreen. During a turn the player directs the robot on a scavenger hunt, looking for the items that match the cards in his or her hand. The player who gets to home first with items to match all the cards in his or her hand wins.

Sounds simple, right? You bet. Except for a few complications, like the luck cards you draw before each turn. These can direct you to take a card, steal a card, force a swap among other players, and so on, all of which can wreak havoc with your (or your opponent's) hand. The item deck contains a few surprises also: wild cards, a killer card, and a cosmic cheat, though these are used only in more advanced games. Then there's the problem of thieving robots, and, just to keep things from getting boring, the computer will occasionally change the rules.

If this sounds like overkill, take heart: The game can be played on several levels. Not all the complications apply at the lower echelons. To start, you can play a super-beginner game, a simple race to find the four items in your hand and beat your opponent(s) home. It's a good introduction, but only three- and four-year-olds won't be quickly bored and ready to move onto higher levels. The advanced game is a no-holdsbarred free-for-all, with more complications than a jet fighter's controls.

This is a well-designed, wellexecuted game program. The screen windows give all the status information you need, and they show what your robot is up to. Joystick control is tight and precise, a real pleasure. There's plenty of variety in the terrain you search, and enough travel and movement options: Your robot can walk or teleport to get around, drop an item, or erect defensive shields.

But the real joy of the game is the robots themselves. There are ten to choose from, and each is distinctive; in fact, it's no exaggeration to say they


The Commodore 64 version of Robot Rascals from Electronic Arts.
have individual personalities. The animation of these little technological marvels is subtle and clever. Each robot moves differently; some grin while they walk. Belbot pounds his chest in delight when he finds an item; Birt jumps for joy. Sphero flops along lazily when he moves, but if you take too long to give him directions, he'll stamp his "foot" impatiently.

The whole family, including the three-year-olds, can play Robot Rascals since a handicapping feature lets players of differing ability compete against each other. If the game has a flaw, it's that it's-pardon the pun-almost terminally cute. But then, so is Teddy Ruxpin, and we know how many of those have sold.

> Robot Rascals
> Electronic Arts
> 1820 Gateway Dr.
> San Mateo, CA 94404
> \$39.95 Commodore 64 version
> \$44.95 Apple II version

## Back issues of COMPUTE!, COMPUTEI's Gazette, or any magazine disks can be ordered by calling 800-346-6767 (in NY 212-887-8525). Some issues may no longer be available.

> COMPUTE! TOLL FREE Subscription Order Line 1-800-247-5470 In IA 1-800-532-1272

Jet
Michael B. Williams
Requirements: Apple II series with 64 K minimum, Commodore 64 , or IBM PC/PCjr and compatibles with 128 K minimum and color graphics adapter. Joystick optional. Apple version reviewed.

It's the realtime, three-dimensional display that best exemplifies this SubLOGIC program. Everything-from planes, missiles, and mountains, to the runway and control tower-is shown in perfect perspective and color. If you were to fire a missile at a plane passing in front of you, you would see not only the missile eject from your jet, but also, in perspective, the unwary plane approach from the side, be hit by the missile, and break into pieces as it falls toward the ground.

Jet has several display enhancements to help you maneuver the aircraft. As if using a telescope, you can zoom in to see objects in greater detail and zoom out to expand your field of vision. The attitude (pitch) indicator, which can be superimposed over the display, rotates, rises, and falls to reflect your orientation to the horizon. It, too, is seen in perspective, with its ten-degree graduations becoming smaller towards the center of vision. To help you in battle, you can summon a colorcoded radar display that shows the location of enemy planes and missiles and of your home base-all with respect to your aircraft. Jet' can also supply a range indicator that changes color as you close in on a target.

Jet's instrument panel is sparse compared with those of other flight simulators. It is this deceptively simple display that allows you to ignore many of the technical aspects of flying and to concentrate on the flying experience itself. At the same time, this makes Jet noticeably less realistic than SubLOGIC's Flight Simulator II.

## Flying By Remote Control

In addition to the normal cockpit display, there is a unique feature which allows you to pilot the plane from the control tower. In essence, you are flying the plane by remote control. Your field of vision is fixed toward the aircraft, and you can see the plane as it is taking off and landing. Since the only display feature that is accessible in this mode is zoom, you will find it difficult to fly the jet this way. You can easily toggle back to the cockpit display at any time. There, in addition to the forward view from the cockpit, you can also see
above and to the left, right, and rear of the plane.

Jet does have a few problems which surface because of the speed and graphics limitations of the Apple II: Sound effects are sparse. The program is painfully slow at updating the display, which can turn a smooth flight into a spasmodic one. The program is slowest in its combat mode; screen updates occur at about one second intervals. Most importantly, you must use a color monitor with the Apple version of Jet. On a monochrome monitor, it is nearly impossible to distinguish between the sky, horizon, and markings on the ground; attempting to land the jet becomes a daredevil event at best. With a color monitor, however, each element has a unique color to help distinguish it.

A few of Jet's problems are due to its implementation. The aircraft's speed is given as a Mach number (relative to the speed of sound) on a graduated scale which is only marked in increments of Mach 0.5. The altitude is also represented by a vertical graduated scale, but is equally difficult to read because it is marked with increasing intervals instead of constant ones. Digital readouts for both the speed and the altitude would help tremendously. When you are fighting MiGs, you won't have time to guess your actual altitude and speed.

To add to the feeling that you are really flying, Jet includes real hazards such as blackout and red out, which reflect the human body's limited tolerance to high acceleration. In the event of imminent destruction, you can push the eject button and float safely back to earth by parachute.

Jet comes with a quick reference card summarizing the commands available. It is also compatible with the same scenery disks used by Flight Simulator II and Microsoft's Flight Simulator. SubLOGIC offers scenery disks for Japan and the San Francisco area.

If you have a color monitor, you'll definitely want to consider adding the state-of-the-art Jet to your program library. Its lack of realism may turn off flying aficionados, but its ease of flight and its truly remarkable graphics are sure to please weekend pilots who want to take their F-16 for a spin around the Golden Gate Bridge.

## Jet

SubLOGIC
713 Edgebrook Dr.
Champaign, IL 61820
\$39.95 Apple II series and Commodore 64 versions
\$49.95 IBM PC/PCjr (and compatibles) version

## A Look At An Era

When there's talk about the success stories of the personal computer industry, most people think of Silicon Valley with all its ups and downs. Names like Jobs, Wozniak, Peddle, and others too numerous to mention, are bandied about as though they were the only people involved with the success of this industry.

While no one would want to diminish the contributions of these people, the fact remains that there is another part of the personal computer industry located far from Silicon Valley with success stories of its own. As valuable as your personal computer might be, you probably wouldn't know more than half the things you can do with your computer if it weren't for magazines like COMPUTE!.

Now this piece is not a pitch to get you to read COMPUTE!-after all, you are doing that already. The reason for spending time on this topic this month is that, with the departure of Robert Lock from the day-to-day operations of this magazine, COMPUTE! has entered a new era. Accordingly, I thought I might share some of my recollections on the growth of this magazine since I had an article in its very first issue, and have had at least one article in nearly every issue since that one.

Retrospectives of this sort are usually to be found in the last issue of a magazine just as it goes belly up. As you know, many computing magazines have fallen prey to the vagaries of the computer market. Some of the older magazines (like Recreational Computing) were acquired by other magazines (like COMPUTE!), and still others just quietly went out of business (like Creative Computing).

COMPUTE! has had its ups and downs-just as has the industrybut unlike most of its counterparts, COMPUTE! has emerged stronger than ever for one simple reason-

## its readers.

A dedicated base of readers is essential to the survival of a magazine, and COMPUTE! was careful from the start to insure that it had a solid base of editorial writers who helped maintain the consistency that made this magazine what it is.

In the fall of 1979 the first issue of COMPUTE. The Journal of Progressive Computing hit the stands. It was 104 pages long and contained 19 articles, 10 reviews, and a full spectrum of advertisers from Commodore to small garage operations. My company, Innovision, placed its first ad in this premier issue. While my company hasn't grown much in the intervening years, it is still around.

While the major focus of COMPUTE! was on the Commodore PET, it also devoted space to other 6502based computers like the Ohio Scientific Challenger (remember that one?) and the single-board computers like the KIM-1 and AIM-65 (may they rest in peace).

While COMPUTE! started as a quarterly, Robert decided to make it bimonthly starting with the January/ February 1980 issue. By this time the magazine was publishing articles about the Apple II and Atari 800, as well as continuing its strong PET coverage.

By the third issue, this column was started. This means that COMPUTE! has had the longest-running column on the social impact of computers in the history of personal computer magazines.

Within a short time COMPUTE! became a fancier magazine, sporting a full-color cover and monthly publication. Our magazine had come of age.

## ABC

I was concerned when $A B C$ acquired the magazine. I was afraid that COMPUTE! was going to lose some of its personal touch. But, un-
der Robert's careful guidance, this never happened. Even though I am on the West Coast and have never visited COMPUTE!'s offices, I could tell from my phone conversations that Robert was hiring exactly the right kind of people to let the publication grow and thrive.

From the humble beginnings of COMPUTE!, Robert built a multifaceted publishing venture that included several magazines and a full catalog of books. Furthermore, he did this during a time when the computer industry was on a rollercoaster ride of immense proportions.

## The Lesson?

When the computer magazines started to drop like flies, the "smart money" people said the the survivors would be the highly focused one-machine magazines. Magazines with a general focus were going to be victims simply because advertisers would not be able to target their ads as carefully.

Because COMPUTE! also published machine-specific magazines (like GAZETTE for Commodore owners), it could offer advertisers what they needed-and this probably helped maintain the magazine's success.

Can a general personal computing magazine survive? COMPUTE! has shown that it can not only survive, but that it can, with your support, thrive in both good times and bad.

The main reason, as I said before, is because of you-the readers of this magazine.

Another reason-one I think is equally as important-is because this magazine was built with the leadership of one of the finest men I have met in the industry.

Thank you, Robert, for all you have done for all of us. Our entire industry is watching to see what you will be doing next.

Sometimes the impact of a rumor is more significant than whether or not it proves, in the end, to be true. A good example is the new generation of personal computers that IBM may or may not have announced by the time that you read this. For months, we've been hearing about as many as three different PCs that IBM may come up with, with code names like "Renegade" and "CloneKiller." The most often discussed is a low-end machine for the home and educational market. The machine described doesn't have expansion slots-at least not any compatible with current mod-els-although it's said to have some networking capabilities (vital in an education setting). It will likely use the 80286 processor running at a slow six megahertz, and have a built-in graphics adapter, but rumors here range from a normal EGA-type adapter to one with fabulous graphics capabilities, such as $640 \times 480$ resolution with up to 256 colors onscreen at once, and windowing capabilities in ROM. Likewise, sound may be anything from an internal beeper to a fullblown synthesizer. All rumors agree on a $31 / 2$-inch disk drive and a full keyboard.

The operating system is another area of dispute. Most sources agree that it will use a new DOS, but reports on its features range from a slight change to support networking, to a version that includes Microsoft Windows or Topview, to a hybrid MS-DOS with a proprietary hardware/software scheme to shut out would-be cloners, to a completely proprietary system. In all of the rumors, we hear again and again of the possibility of a completely new hardware bus that will not accept the thousands of third-party add-on products for the current PC, and of a completely new operating system
that will be upwardly compatible with the current one, but that can't be copied. In short, the anticipated PC wouldn't be PC compatible, and couldn't be cloned.

At first, we heard that the machine would be announced during the Super Bowl, à la Apple. When that didn't come to pass, stories began to center around a big meeting of IBM dealers in March, and a possible April announcement. But whether or not any of the rumors turn out to be true, their existence is being felt in the PC marketplace. Corporate buyers are holding off, waiting to see what develops before they commit to new purchases. The mood is reminiscent of that which prevailed before the announcement of the PCjr, when a "PC II" was rumored to be imminent.

But rather than being the product of a conspiracy on IBM's part, as some have suggested, it may well be that these rumors are a reflection of a growing perception of the seriousness of IBM's position. Having spawned the enormous PC market, IBM has had to stand idly by and watch its influence in that market diminish. Whether IBM will take bold action, and whether that action will be enough to stem the tide, are questions that will keep everybody in the industry watching.

Although the new high-end Macintosh models discussed in this issue's "Editor's Notes" are priced beyond the means of the average consumer, they're bound to have an effect on the home computer market, just as the original Mac did. For one thing, their introduction will send down the price of the Mac Plus and 512 K Mac. The street price of the latter may break the $\$ 1,000$ barrier for the first time, putting it head to head with the Atari ST, the Amiga, and PC clones.

The small screen and closed
architecture of the old Mac are much less of a problem with the home market than with the business crowd, and users may be more apt to put up with these limitations for the time being, knowing that upgrades are available. Since software and the time spent creating data files usually end up as the biggest part of a computer investment, it's quite important that the user know that when he buys new hardware, he'll be able to take his software with him. Atari and Commodore have stated their intentions to manufacture 68020 machines, but so far, only Apple has assured a compatible upgrade path.

Although the Atari PC clones caused quite a sensation at CES, there have been recent reports that they may not appear quite as quickly as expected. Though Atari claimed that the machines would be ready by March, it may be as late as August when they are actually sold. For one thing, they have yet to undergo the sometimes-lengthy FCC approval. For another, Atari has yet to sign an agreement with Digital Research allowing it to distribute the GEM operating system with the machine. Though one distributor was quoted as saying he had the machines in the warehouse, others have doubted that the models shown at CES were actually the finished product.

In the meantime, Atari's announcements may end up hurting ST sales, with buyers waiting for the new PC clones or Mega ST machines. And though Atari cut the price of the current STs at the time the new machines were announced, dealers whose stock was purchased at the old price may be reluctant to sell them at as large a discount as some consumers will expect.

# Twelve Special Bulletin Boards 

While most continue to be microcomputer related, a growing number of electronic bulletin board systems (BBSs) have veered off the beaten track. BBSs devoted to law, medicine, genealogy, and real estate are common enough to elicit little more than a yawn from seasoned telecomputerists. Here are a dozen free boards that will spice up even the most jaded palate. Bon appétit!

Note: All numbers were verified as of February 20, 1987. Please observe board rules and common courtesy. Remember, you are a guest in the system operator's (SYSOP's) "house."
Aviation Connection
(214) 245-5633

Dallas, TX
You don't need a 2400 -bps modem to fly around here. Whether you're certified for flying on instruments or just an aeronautics buff, the Aviation Connection is dedicated to your wild blue yonder.
Bullet 'N Board
(703) 971-4491

Silver Spring, VA
SYSOP Tanya Metaksa's aim was to dedicate this board to the Second Amendment and firearms. News on the latest legislative happenings and weaponry. Gun-show schedules and National Rifle Association information abound. While this board is free, you must go through a registration process to gain access.
The Casino BBS
(609) 652-6030

Atlantic City, NJ
Feel lucky? You won't lose your shirt playing in this casino. SYSOP Dave covers the Atlantic City casino beat, including nightlife and entertainment guides. Ask regulars where the best slot payoffs are and how much it takes to build a hotel on Boardwalk these days.

## Collectors Network

(213) 204-0646

Los Angeles, CA

Just how much is that Charlie "Sunday Punch" Maxwell card worth? SYSOP Harry Rosenfeld knows. Info on coins, stamps, baseball cards, and just about anything else that's collectible. Also includes excellent BBS lists.

## Crime Prevention BBS

(214) 578-1311

## Plano, TX

Who broke Emma's window last Thursday night? Follow the saga of crime in Plano, Texas. Tips on spotting con artists, prevention of criminal mischief, and personal protection-all from SYSOP Captain Lyndon Payne and the rest of Plano's finest. Be sure to check out the "Crime of the Week."

## Cryptologic Research

(703) 237-4322

McLean, WV
Hours: 5:30 p.m.-8:00 a.m. EST M-F
Do you suspect that the scribblings of your three-year old are really cleverly coded messages for special agents? SYSOP Robert Juneman operates this board as a service to the International Association for Cryptologic Research (IACR) and anyone else interested in Cryptography and Computer Security.
Electronic Call Board
(718) 499-1633

Brooklyn, NY
Dedicated to the performing arts, SYSOP Bobby Ballard keeps aspiring actors apprised of the latest casting notices. Special-interest sections covering theater, film, video, music, and art. If the Muse moves you, participate in electronic role playing. The Call Board also includes schedules of stage shows playing around the country.

## The Guideboard

## (415) 864-3858

San Francisco, CA
Get a real hacker's view of one of America's most popular vacation spots. The Guideboard is frequented by cabbies who keep each other
posted on what's going on in the city by the Bay. Enough colorful personalities to populate a season's worth of "Taxi" TV reruns.
MIDI World Network
(213) 826-4288

Los Angeles, CA
SYSOPs Moore, Daystrom, and Fitzpatrick are in tune with the times. An excellent BBS devoted to MIDI-related computer use. Highly recommended if one of your keyboards has black and white keys.
Survival Communication
(707) 545-0746

Napa Valley, CA
Pack the freeze-dried food, hop in the jeep, and head for the mountains. Don't forget your modemequipped lap-top, though; there are forums on survival, self-sufficiency, and emergency preparedness. SYSOP Don Kulha hosts discussion areas on medicine, food, alternative energy, radio communications, weapons-craft, and survival vehicles.
Top of the Rockies BBS
(303) 963-3688

Roaring Fork, CO
Is warmer weather tempting you to hang up the skis and poles for the season? Let SYSOP Barry Clements tempt you with ski information for Aspen, Snowmass, Sunlight, and the rest of the country. If you get tired of discussing equipment and technique, check out the tasty recipes and nutrition information.

## The Train Board

(513) 398-0928

Mason, OH
Does the thought of the electric "chug" of an ancient Lionel train set running in your living room bring tears to your eyes? Or do you prefer using radio-controlled submarines in the local duck pond? SYSOP Decker Dogget moderates information on train collecting and radio-control hobbies.

## Hardware Add-Ons

There are an astonishing number of good hardware products for the Amiga 1000, and more are waiting in the wings. The following sampling represents products that are currently available, or that should be by the time this column appears. I've chosen to list only hard disks, RAM expansions, and clock calendars, since these represent the categories in which users are most interested.

## Hard Disks

Two outstanding products in the hard disk category are the MAS-20 from Microbotics, and the C Ltd. drive, both of which provide 20 megabytes of storage and a SCSI port for a list price of about $\$ 1,000$. C Ltd. has lately added a full line of higher-capacity drives, ranging from 30 megabytes for $\$ 1,300$ to 350 megabytes for $\$ 7,000$. Xebec is a name that's new to the Amiga community, but it's very familiar in the IBM PC world, where the company is a leading maker of hard drives and controllers. Just out is the Xebec 9720 H 20-Meg SCSI hard drive, with a list price of $\$ 1,075$. I've used a preliminary unit, and my timings indicate that this drive loads files a bit faster than the C Ltd. and Microbotics drives.

Two new drives should be available for sale by the time you read this. The first is from Supra Corporation, which has an established track record with hard drives for the Atari ST and the Macintosh. The Supra $20-\mathrm{meg}$ hard drive lists for $\$ 1,000$, and offers an optional 1-meg-RAM upgrade board that fits into the drive controller card. The second is the PAL Jr. from Byte by Byte. Having gone through many design changes, the final version will be a mini version of the PAL box, an expansion box that fits on top of the Amiga. Though only $2 \frac{1}{2}$ inches tall, it will come with a $20-$
meg hard drive and a meg of RAM, and have two full-size horizontal expansion slots. The price remains at $\$ 1,500$, and because all sales will be direct, there will be no discounts from list price. For this price premium, Byte by Byte hopes to offer much higher performance.

## RAM Expansion

RAM expansion units for the Amiga have really proliferated lately. Prices keep changing so quickly that it would be pointless to give exact costs here, but at this time, one-meg boards range from $\$ 300$ to $\$ 450$, and two-meg boards from $\$ 575$ to $\$ 850$. Many of these are in the form of self-contained modules that plug into the right side of the Amiga. In this category there's the the onemeg aMEGA from C Ltd.; the Xpander II from Pacific Cypress, a two-slot box that comes with a twomeg card in one slot; and my own favorite, the Starboard 2 from Microbotics. The Starboard is a compact unit which holds from 512 K to two meg, and has provisions for a multifunction card with clock calendar and 68881 math coprocessor.

The Insider, from Michigan Software Distributers, is a new onemeg board that mounts internally. It plugs into the 68000 processor socket, and includes a clock calendar. Another internal expansion is the Kickstart Eliminator and RAM Expansion Kit from Creative Microsystems. This isn't strictly a RAM expansion, since the kit provides the Kickstart 1.2 code on EPROM chips. Not only does this eliminate the need for the Kickstart disk, but it also frees up the 256 K of writeprotected RAM for general use. A couple of caveats apply. Installation is not for the inexperienced, and it voids your Amiga warranty. With Kickstart in ROM, you can't switch versions without changing chips, which means you can't run soft-
ware that only works with 1.1. But Sidecar or hard disk users, who will want to use 1.2 exclusively, won't find anything better for convenience and extra memory.

ASDG also makes memory expansion boards that fit in expansion boxes like the PAL Jr., and its own Mini-rack. But its most exciting product may well be the Recoverable RAM Disk, a shareware program which creates a RAM drive that survives a warm reset (CTRL-Amiga-Amiga). It's available on most of the information services and bulletin boards.

## Clock Calendars

There's a clock-calendar board available for almost every port on the the Amiga. Tic from Byte by Byte and MouseTime from Microbotics connect to the second mouse port. MouseTime fits next to memory expansion modules, but Tic doesn't, necessitating software that switches the function of the two mouse ports. Atime, from Akron Systems, sits on the printer port, and provides a pass-through for the printer. The most innovative, though, may be Time Saver from C Ltd., which connects in the keyboard line. Not only does it update the system time automatically at power-up time, without software, but it also has 8 K of battery-backedup RAM for keyboard macros and CLI command history.

## Only NRI teaches you to service all computers

 as you build your own fully IBM- w/ compatible microcomputerWith computers firmly established in offices-and more and more new applications being developed for every facet of business-the demand for trained computer service technicians surges forward. The Department of Labor estimates that computer service jobs will actually double in the next ten years-a faster growth rate than for any other occupation.

## Total systems training

No computer stands alone.. it's part of a total system. And if you want to learn to service and repair computers, you have to understand computer systems. Only NRI includes a powerful computer system as part of your training, centered around the new, fully IBM-compatible Sanyo 880 Series computer.

As part of your training, you'll build this highly rated, 16-bit IBMcompatible computer system. You'll assemble Sanyo's "intelligent" keyboard, install the power supply and disk drive and interface the highresolution monitor. The 880 Computer has two operating speeds: Standard IBM speed of 4.77 MHz and a remarkable turbo speed of 8 MHz . It's confidence-building, real-world experience that includes training in programming, circuit design and peripheral maintenance.

## No experience necessaryNRI builds it in

Even if you've never had any previous training in electronics, you can succeed with NRI training. You'll start with the basics, then rapidly build on them to master such concepts as digital logic, microprocessor design, and computer memory. You'll build and test advanced electronic circuits using the exclusive NRI Discovery Lab ${ }^{\otimes}$, professional digital multimeter, and logic probe. Like your computer, they're all yours to keep as part of your training. You even get some

of the most popular software, including WordStar, CalcStar, GW Basic and MS DOS.

## Send for 100-page free catalog

Send the post-paid reply card today for NRI's 100-page, full-color catalog, with all the facts about at-home computer training. Read detailed descriptions of each lesson, each experiment you perform. See each piece of hands-on equipment you'll work with and keep. And check out NRI training in other high-tech fields such as Robotics, Data Communications, TV/Audio/Video Servicing, and more.

If the card has been used, write to NRI Schools, 3939 Wisconsin Ave., N.W., Washington, D.C. 20016.


NRI is the only technical school that trains you as you assemble a top-brand microcomputer. After building your own logic probe, you'll assemble the "intelligent" keyboard.
.then install the computer power supply, checking all the circuits and connections with NRI's Digital Multimeter. From there, you'll move on to install the disk drive and monitor.

## NRI

McGraw-Hill Continuing Education Center 3939 Wisconsin Avenue, NW Washington, DC 20016 We'll Give You Tomorrow.


IBM is a Registered Trademark of International Business IBM is a Registered Tra
Machine Corporation.

## Sound And Music In BASIC

Programming sound and music on your computer can be both fun and rewarding. It's among my favorite things to do on the computer. I wish I could just give you a BASIC listing for some music on your specific computer this month, but that's not possible, since this is a column for all computers, and music commands in BASIC are very machinespecific. However, here are some general ideas you can use when programming sound and music.

## The Most Common Commands

To program your own music or sounds, you'll need to refer to your BASIC programming manual. The most common key BASIC words for sound are PLAY, SOUND, BEEP, and WAVE. Look these words up in your index or list of BASIC words to see if they are available on your computer. The Commodore 64 uses POKE commands, so refer to the chapter on sound in your manual as well as the pages in the appendices that list the memory locations and values for sound, volume, and voice programming.

On some computers you may be able to use the command PRINT CHR\$(7), which is the bell or beep character for a short tone.

The PLAY command usually uses note names in quotes to "play" musical tones ABCDEFG. You may also specify sharps with \# or + and flats with -. To specify which octave for the note you want, use the letter O before an octave number, such as O3. Other options include the length, L; a pause (rest), P; a dot for dotted notes; and tempo, T. The IBM PLAY statement has many more options which are listed in the manual. A sample command is

## 30 PLAY "O3 CBABCDE"

After you get used to the general PLAY command, try using
string variables to play a longer tune or to play repetitious phrases without typing a lot of individual PLAY statements. For example, let $\mathrm{A} \$$ be the string to play one musical phrase. Then you can use the command PLAY "XA\$;". You may use numeric variables also. For example, if you have a variable octave J , use the command PLAY " $\mathrm{O}=\mathrm{J} ;$ ". Consult your manual for the use of variables and to determine when the semicolon is necessary.

Different computers have different variations of the SOUND command. Here are some examples:
IBM: SOUND frequency, duration, volume, voice
Atari: SOUND voice, note, tone, loudness Atari ST: SOUND voice, volume, note, octave, duration
Amiga: SOUND frequency, duration, volume, voice
Commodore 128: SOUND voice, frequency, duration

Any of the parameters may be numeric variables, but you do need to make sure the variables are within the proper limits.

For the Atari and Atari ST commands, the notes are numbered. You can refer to charts to see the numbers that correspond to each musical note and tone or octave.

## Sound Frequency

Some SOUND commands use a frequency parameter. The frequency is the cycles per second, or Hertz (Hz), that produce a particular tone. For example, concert $A$ is 440 cycles per second. Your manual should have a chart comparing note names to frequencies. You might keep in mind that a note one octave higher is double the frequency. For example, concert $A$ is 440 Hz , and the $A$ note one octave higher is 880 Hz . The note $A$ one octave lower is 220 Hz .

The duration parameter is a number that tells how long to play a note. On the IBM and Amiga, the duration is figured in "clock ticks,"
which occur 18.2 times per second; on the Atari ST the duration is the time in $1 / 50$ second counts; on the Commodore 128 it's in $1 / 60$ second counts.

On most computers, the volume parameter is a number from 0 to 15 , with 15 the loudest. The Amiga uses numbers from 0 to 255 . The voice parameter refers to the sound channel you want to use. Using different voice numbers allows you to play more than one note at a time, as when playing a three-note chord.

Other commands may be associated with the SOUND command. You may need to use a delay loop instead of specifying a duration (Atari). If so, you could use a FORNEXT loop in a subroutine. In IBM BASIC, be sure to read about MB for the differences in music background and music foreground.

The WAVE command for the Amiga and Atari ST computers are very versatile commands that change the waveforms of the sounds so you can get, for example, white noise, a flute sound, or a trumpet sound. (POKE commands on the Commodore 64 change waveforms.) Since numeric variable names are allowed in SOUND commands, try using variable notes in FOR-NEXT loops for all kinds of different sound effects. You might keep the note number or frequency the same, but vary the volume. Or try a FOR-NEXT loop with the frequency increasing in the loop.

You might want to experiment a bit with PLAY and SOUND to create your own computer musical composition. You may need to experiment a lot to get the sound you want, but the results can be very satisfying.

## A Magic Slate For Young Writers

I am currently working with Alabama's Dr. Gloria Solomon and Canada's Dr. Julie Davis to develop multimedia presentations using computers in educational environments. For our word processor we have chosen Magic Slate from Sunburst Communications (39 Washington Ave., Pleasantville, NY 10570-9971). Magic Slate costs $\$ 99.95$ and is available for the Apple II family of computers with a minimum of 48 K . (An 80 -column card is needed if you use the $80-$ column version.)

Magic Slate is a full-function word processor. It lets your young authors do all the basic word processor functions, including cutting and pasting, word-wrap, centering, underlining, search and replace, and so on. It comes in a large orange notebook with a backup disk, a teacher's guide, and primary and advanced student handbooks which the manufacturer encourages you to reproduce. For an extra price you can also get a lab pack and extra reference cards.

## Electronic Pen Pals

We chose Magic Slate for three major reasons. First, it comes in 80column, 40 -column, and 20 -column versions. Teachers and older students find the 80 -column version easy to learn and use, yet comparable to "business"-quality word processors. Younger students delight in the 20 - and 40 -column versions. They especially like the 20 -column Magic Slate's big letters. It's easy to fill a screen with these letters, and you can print them out on paper if you have a graphics printer.

Second, Magic Slate's utility function makes it easy to convert students' papers, reports, and stories into files which can be sent via modem to other students thousands of miles away. There is so much more incentive for students to write when
they know their words will be transmitted quickly to other students over the telephone line. Hundreds of students have become electronic pen pals, and several students in Alabama and Canada are collaborating on research and science reports for their teachers. Another dozen students are jointly authoring an electronic novel which is presently growing at a rate of five new chapters a day.

Third, Magic Slate does not exist in a vacuum. It is supported by an excellent family of writing programs which enhance and extend the basic word processor. The first program is Type to Learn (for grade level 2-adult students, \$69). Type to Learn teaches students how to use the computer keyboard. Since the program uses a language-based approach, students not only learn where the keys are on the keyboard; they also practice their spelling, composition, grammar, and punctuation as they type. (At extra cost teachers can purchase a ten-disk lab pack, student typing textbooks, and a gradebook disk to manage students' keyboard activities.)

Next come a group of three programs: I Can Write! (\$40, for grade 2 students), Be a Writer! (\$40, for grade 3 students), and Write with Me! (\$59, for grade 4 students). Each program contains 25 lessons which take the student, step by step, toward becoming a young author. I Can Write!, the most elementary program, starts with openended writing exercises which encourage a student to explore his or her personal identity. Be a Writer! carries beginners into more formal language objectives, including the construction of full sentences, and using descriptive, narrative, and explanatory writing. The third program, Write with Me!, lets children construct their own book, 25 chapters long.

## The Collected Writings

Students use the 20 -column version of Magic Slate when they are doing I Can Write! and Be a Writer! activities; they use the 40 -column version of Magic Slate with Write with Me! The programs challenge students to develop their word processing skills along with their language skills. As their writing ability increases, students are encouraged to use more advanced word processing functions. Teachers can use a printer to print out the students' compositions. Each page of a student's work adds to a growing book of his or her writings. After three years and 75 chapters, a student's "collected writings" can be quite impressive.

One last program, Magic Slate Typestyles ( $\$ 49$ for either the 20column or 40 -column Magic Slate), lets students install new typestyles on their Magic Slate disk. Students can use premade typestyles or design new typestyles of their own with the program's powerful editor. Teachers especially like the typestyles program because it enables them to teach students that learning to write no longer means just putting words on a page (or screen). Now a person who wishes to communicate can also be involved with the way the writing looks. With this program, the writer must choose a page's layout and design, the character set and font being used, and the accompanying graphics. Even for second- and third-graders, desktop publishing is right around the corner. The Magic Slate family is so valuable because it prepares youngsters for the age of desktop publishing by integrating language arts, word processing, and "page processing" skills into a single curriculum of exercises and activities.©

## RUN And INIT Vectors

This month's discussion is something of a continuation of my column of a couple of months ago, where I presented a program that showed you the segments of a binary file. And that column, in turn, referred back to the April 1986 column. Both columns are required reading for a full understanding this month, but you'll learn something even if you are reading this cold.

We begin by noting that when you ask Atari DOS (version 2.0S or 2.5) to save a chunk of memory as a binary file, it asks you to supply four numbers:

## START,END,INIT,RUN

And, if you've looked through enough magazine articles or user group newsletters, you've probably come across places where an author instructed you to use the save binary file option, mentioned the beginning and ending addresses, and then told you to be sure to give the proper RUN (and/or INIT) address. The START and END numbers seem obvious: They are the first and last addresses of the range of memory to be written out. But what about INIT and RUN? What can those possibly mean?

## A Feature Unmatched

The ability of any binary file, including the ever-important AUTORUN.SYS, to have a RUN or INIT address associated with it is, in my opinion, a feature unmatched by any small system DOS, up to and including MS-DOS (IBM PC and clones) and TOS (for the ST). Only with Atari DOS's binary files and their format-compatible relatives can you tell the operating system to load part of your binary file (also called machine language file, object code, and so on-several names for the same thing), execute that part, and then continue loading more of the file. So let's see how it all works.

When DOS loads a binary file, including the AUTORUN.SYS file at power-up time, it monitors two locations. The simpler of the two is the RUN vector. Before DOS begins the load of a binary file, it puts a known value into locations 736 737 (hex \$2E0-\$2E1). When the file is completely loaded-DOS encounters the end of the file-if the contents of location 736 have been changed, then DOS assumes the new contents specify the address of the beginning of the program just loaded. DOS calls the program (via a JSR) at that address.

The second monitored location is the INIT vector, at 738-739 (hex \$2E2-\$2E3). This vector works much the same as the RUN vector, but DOS initializes and checks it for each segment as the segments are loaded. If the INIT vector's contents are altered, then DOS assumes the user program wants to stop the load process long enough to call a subroutine. So DOS calls (via a JSR) at the requested address, expecting that the subroutine will return so that the rest of the load can take place. This is a very handy feature. Most of you have probably seen it at work-for example, when a program first puts up an introductory screen (maybe just a title and a Please wait message) when you run (or boot), then continues to load.

## Taking Full Control

The other important difference between the RUN and INIT vectors is that DOS leaves channel 1 open while the INIT routine is called. (DOS always opens and loads the binary file via this channel.) I suppose a really tricky program could close channel 1, open a different binary file, and then return to DOS. DOS would proceed to load the new file as if it were continuing the load of the original one. Most of the time, though, INIT routines should
not touch channel 1.
As noted, when you SAVE a binary file from DOS 2.x (and many of its variants), you are allowed to specify both an INIT and a RUN address. But the INIT address is sort of useless, since it is added to the end of a file; so, for example, your opening screen display won't occur until the entire file is loaded. To take full control, you must resort to assembly language (or to a compiled language, such as Kyan Pascal or OSS's Action). For those of you familiar with assembly language, I present the skeleton listing below. This listing is compatible with the Atari Assembler Editor cartridge or the MAC/65 assembler. You will need to make a handful of minor substitutions if you are using some other assembler.

I'm not going to explain the program in great detail-the source code is fairly well documented. A couple of important points though: Notice that there is no special command to the assembler that will force it to put in an INIT vector (or RUN vector-unless you have the AMAC assembler). Instead, we simply create a binary file segment that is only two bytes (one word) long. And this segment is loaded by DOS's loader at-where else-the appropriate vector. So the very act of loading the specified addresses modifies the contents of the vector. What could be neater?

As mentioned, this is strictly a program skeleton. It will do nothing as is. You must add some of your own assembly language to it to make it actually do something. So, if you thought INIT and RUN vectors were beyond you, try this skeleton and be ready to change your mind.

## INIT Vector Example

[^1]; the screen before loading the ; main code.
$*=\$ 3000$; or someplace DOINIT
; the code which follows is for ; demo purposes only! Use your
; own code...pretty display lists ; or dazzling colors or whatever

LDX	\#0	; channel zero
LDA	\#9	; Put Text command
STA	\$342	; command byte
LDA	\#MSG\&255	
STA	\$344	; low byte, addr of msg
LDA	\#MSG/256	
STA	\$345	; high byte, ditto
LDA	\#255	; use a too-big length...
STA	\$348	; since RETURN terminates   ; this call anyway
JSR	\$E456	; call CIO
RTS		; back to DOS

MSG .BYTE 125 ; (clear screen) .BYTE 29,29,29,29 ; (cursor down) .BYTE 127 ; (tab once) .BYTE "-please wait-" .BYTE 155; (return...end of msg)
; now the INIT VECTOR forces DOS ; to call our DOINIT routine

* $=\$ 2 \mathrm{E} 2$; init vector
.WORD DOINIT ; gets pointed to us
; Your main program...
; you are on your own here!
* $=\$ 3000$; the same address if you like
; I can use the same address because ; my init code can disappear when ; its job is done. This may not ; work with your code. Be careful.


## DORUN

; then we get DOS to run our program ; by using a RUN vector.


Attention all FX80, FX100, JX, RX, \& MX owners: You already own half of a great printer
(ix she -

Now for $\$ 79.95$ you can own the rest. You see, today's new dot matrix printers offer a lot more.

Like an NLQ mode that makes their letters print almost as sharp as a daisy wheel. And mode switching at the touch of a button in over 160 styles. But now, a Dots-Perfect
upgrade kit will make your printer work like the new models in min-utes- at a fraction of their cost.

And FX, JX and MX models will print the IBM character set, too.

So, call now and use your Visa, MasterCard, or AmerEx. Don't replace your printer, upgrade it!

## 1-800-368-7737 <br> (Anywhere in the United States or Canada)

Dots-Perfect
sidesseinaus
8560 Vineyard Ave., Ste. 405, Rancho Cucamonga, CA 91730
Sample of
letter without letter without Dots-Perfect

9

An upgrade kit for EPSON FX, JX, RX, \& MX printers


## Window Magic

SUPER HI-RESOLLTION DRAWING IN MULTIOR MONO COLOR
 - SOOM-EXP RNDS A WINDOW TO DOU日LE SIZE - dines - Save nio loa y your windows on disk

- color souares - phints on standano dot matrix pranter
- CLone color attmigutes - tYpes letters nno grapmics - polyoon ghapes-expano, shrink and hotate, then staup antwhere - zoon plot.oraw on an expanded window and your daaming at the sAME TIME


## STOCK BROKER.



ACORN OF INDIANA, INC.

## 2721 OHIO STREET

MICHIGAN CITY, IN 46360


219-879-2284
SHIPPING AND HANDLING, ADD \$1.SO - C.O.D.'S ACCEPTED
VISA AND MASTER CARD ORDERS ADD AF
indiana residents add se sales tax

คгеcısian mages
Precision Images, Inc. P.O. Box 866

Mahwah, New Jersey 07430

## The Mother Load Of Software

Imagine thousands and thousands of computer programs available for less than ten cents each, and you have just imagined PC-Sig's new CD-ROM disc with more than 15,000 files. PC-Sig is an unofficial keeper (there being no official keeper) of the DOS computer programs that have found their way into the public domain either from computer clubs and savvy individuals or from professional software developers seeking to avoid the high cost of promotion and advertisement.

For about $\$ 20$ you can join PCSig and receive a directory listing the contents of more than 700 disks as well as a monthly newsletter describing new contributions. You may order disks through the mail, by toll-free telephone, or from several dozen PC-Sig authorized dealers. Each disk-even the ones stuffed with 20 or more programs-is priced at just \$6. Until recently PC-Sig's only method of distribution was via floppies, but now the distribution has entered the CD-ROM age.

## A Huge "Hard Disk"

For $\$ 195$ you can purchase the entire PC-Sig collection containing thousands of programs all on one CD-ROM disc. The disc comes with driver software causing your CDROM player to emulate a huge hard disk, which permits many standard DOS commands to be used to access and manipulate files on the CD-ROM. The CD is organized so that each floppy is allocated its own directory. To read a file named CASTLE.DOC on what would be disk number 47, for example, you simply use the DOS TYPE command. The syntax to point to the subdirectories and display the file would be TYPE D: $\backslash 1-100 \backslash$ DISK$047 \backslash$ CASTLE.DOC. The DOS COPY command is used to copy the programs from the CD-ROM to your floppies or hard disk for execution, although some programs
will execute directly off the disc.
In order to make the CD available as economically as possible, PC-Sig has not included expensive search software with the disc. Instead you must rely on the printed directory, on the DOS FIND command, or on your own word processing software to scan the index files and locate programs that are of interest to you. This isn't quite like looking for a disk in a haystack, since many of the disks have a theme: games, utilities, languages, word processing, communications, and special interest.

The quality of the software runs from ho-hum to excellent. The following descriptions are quoted from the PC-Sig newsletter's hit parade of disks. Disk 517: "IMAGEPRINT allows the production of high-quality characters on a dotmatrix printer....All the mathematical symbols, international characters, and graphics characters are included." Disk 418: "HARD DISK UTILITIES is a collection for the hard-disk user compiled from over 25 disks in our library." Disk 523: "SIDEWINDER is a program that allows printers to output sideways....It works much like the commercial program...is written in PASCAL and the source code is provided." Disk 558: "PCPROMPT is a memory-resident DOS extension that provides syntax prompting for DOS commands as you type." Disk 273: "BEST UTILITIES have been taken from other library volumes...to collect on one disk all of the better utilities." Disk 310: "QMODEM is a fantastic telecommunications program...." Disk 376: "PATCHES are programs that allow you to place the indicated programs on your hard disk or to make backup copies.'

## Personal Bests

Some of my own favorites: Disk 53, which contains BASIC programs to
make different sounds, including chirp, bomb, siren, engine, and tadaa; Disk 78, the PC-Write word processing program; Disk 120, a PC Chess program; Disk 216, a group of C utilities; Disk 241, specializing in games for the PCjr; Disk 321, home applications; Disk 354, another disk of games just for PCjrs; Disk 372, a collection of dozens of BASIC subroutines; Disk 375, a group of Pascal utilities; and Disks 528-529, which contain the New York Word word processing program. Other disks that look interesting include Disk 447-THE SKY, Disk 459—AGRICULTURAL PROGRAMS, Disk 465-FAMILY TIES, Disks 494-496-THE WORLD DIGITIZED, and Disk 565-HAMRADIO.

Although the PC-Sig CD is quite a bargain, most software distribution will continue to be made on floppy disks until CD-ROM players fall in price. For more information, write PC-Sig, 1030 East Duane Ave., Suite D, Sunnyvale, CA 94086, or call (408) 730-9291.

## Fix It Yourself

It wasn't long after I got my IBM PC that I took some of the key caps off just to see what made the keys click. The A and the S caps reseated perfectly, but the space bar didn't quite snap into place, and I'd been working with it partly attached for years. Now-thanks to a new book, How to Repair and Maintain Your IBM PC, by Gene Williams-I've been able to repair my faulty keyboard. If you are do-it-yourself inclined (or stupidly curious, as I was), this book may be just what you're looking for. It has chapters on diagnosing what is wrong, disk drives, power supplies, troubleshooting memory, adding to your system, and-when all else failsdealing with the technician. It's priced at $\$ 13.50$ from Chilton Publishing in Radnor, PA.

## Tower Of Babel

This month we'll take a whirlwind tour of some popular ST languages, translating a short but useful program into each language in turn. The assembly language version of this program is only 59 bytes long, but it can speed up disk save operations by a factor of about $30-50$ percent, depending on the size of the file involved. No, it's not done with mirrors. In fact, the job is so easy as to be almost trivial from a programming standpoint.

Like some other computers, the ST automatically verifies the success of every disk write operation. At memory location $\$ 444$ (1092) is a word-length variable that indicates whether verification is in effect. If this flag contains a nonzero value ( $\$ \mathrm{FF} 00$ is normal) the ST verifies all disk saves; if it contains zero, verification is turned off. Thus, you can disable verification simply by putting a zero into $\$ 444$. Our programmers use this technique regularly to speed up saves on floppy disk drives; however, I advise against using it with any hard disk drive.

## Assembly Language Version

Program 1 is the source code for the original version, which is written in assembly language. If you don't have an assembler, you can create this program with Program 6. Type in that program with ST BASIC and run it; then go to the desktop and double-click on QUICKSAVE.PRG. Verification is disabled, and you should notice a significant speedup in disk saves.

The first four instructions in Program 1 call the XBIOS routine known as Supexec, which executes a routine in supervisor mode. (As explained in a previous column, certain ST memory areas can be accessed only in supervisor mode.) The first instruction passes to Su -
pexec the address of the routine we want to execute. The second instruction passes the opcode (38) of the Supexec routine itself. When we invoke the routine with trap \#14, the machine flips into supervisor mode, performs the designated routine (mycode), and switches back to user mode. In the mycode routine, the instruction clr.w $\$ 444$ clears, or stores a zero in, location $\$ 444$. After returning from the XBIOS trap, we add six bytes to the stack pointer to adjust for the word and longword previously pushed onto it. Finally, the instructions clr.w -(sp):trap \#1 call Term, the standard GEMDOS routine for terminating a program.

## C Version

After writing and testing the assembly language version, I translated it into C (Program 2). The \#include statement in the first line tells the compiler to include, or read, a header file named osbind.h when it compiles this program. This particular header file contains definitions for all of the XBIOS, BIOS, and GEMDOS functions on the ST, including Supexec, the XBIOS function we need. Actually, we need to grab only two statements from osbind.h:

## extern long xbios( ); <br> \#define Supexec(a) xbios(38, a)

The \#define statement allows us to substitute the descriptive name Supexec for XBIOS function 38. We could have skipped the \#include and defined Supexec with these statements, but using the header file saves typing and minimizes the risk of typos-important considerations in longer programs, which may use dozens of different system routines. (By the way, every language package contains all the requisite include files.)

Note how the use of a descriptive name makes this program easier to read than the first example. If
you know what Supexec does (ignoring for the moment the question of how one attains that knowledge), you can tell at a glance what's involved in any statement where that name appears.

The second statement in the program-extern int mycode()makes it possible for Supexec to find the address of mycode, the function we wish to execute in supervisor mode.

The third line in Program 2 declares a pointer variable named ptr. Because C has no keyword equivalent to BASIC's POKE, we must use a pointer, which is simply a variable that points to something else. The first statement in the mycode function is ptr $=$ (int *) $0 \times 0444$. It makes ptr point at location \$444, or 0x0444 in C terminology. The expression (int ${ }^{*}$ ) is a cast which tells the compiler we're dealing with a word-length object rather than something of another size. Once ptr is aimed at the right spot, the statement ${ }^{*} \mathrm{ptr}=0$ stores a zero in the place where it points.

The main body of every C program is contained in a function named main. The curly braces $\{$ and \} mark the extent of main, and of every other function. Our main function contains the single statement Supexec(mycode), which invokes the Supexec function, passing to it the address of the routine we wish to execute in supervisor mode. The program terminates when we hit main's second curly brace. Notice that we don't have to do anything special to terminate the program; the compiler handles that detail for us, as it does many others.

## Pascal Version

Program 3 is the same program written for Personal Pascal, the OSS implementation of Pascal for the ST. Pascal is very different from C. In the first place, Pascal originated as an academic, not a practical,
computer language, and it was developed for large, multiuser computers where tinkering with the machine's innards is a definite nono. Accordingly, the pure incarnation of Pascal forbids any direct access to the computer's memory. But such concerns are less important on a single-user, non-multitasking computer like the ST. And, as a practical matter, most Pascal compilers let you do a number of things that the Pascal language doesn't want you to do. So let's be naughty.

Near the top of Program 3, the VAR statement declares the variable $s s p$, which we'll use later to store an address. Compare this to the statement which declares ptr in the C program. Though the syntax is slightly different, the result is the same: Both declarations tell the compiler the name and type of a variable which we intend to use. Unlike BASIC, which automatically creates variables as soon as you use them, Pascal and $C$ require you to declare every variable (state its name and type) before use.

The FUNCTION declaration gives the compiler the information it needs to call a system routine-in this case, the GEMDOS function named Super, whose opcode is $\$ 20$. Again, despite some syntactical variations, you can see the similarity between this and the \#define statement which we could have used in the $C$ version.

The naughty part of Program 3 is found in the procedure wpoke, which performs the equivalent of a POKE by means of an unusual variant record named funny. I can't take credit for this procedure, by the way; it comes from an unsupported OSS include file (unsupported meaning that OSS offers this code for general use, but does not answer questions or offer other customer support relating to it ).

The main body of this program occurs in the last BEGIN-END construct. Just as curly braces enclose the body of a C function, the words BEGIN and END enclose the body of a Pascal procedure. The first statement in this procedure invokes the system routine Super, passing it a zero to get us into supervisor mode and saving the previous address of the user stack pointer in the variable
ssp. The second statement calls the procedure wpoke to store a zero in location $\$ 444$. The third statement calls Super a second time, passing it the address stored in ssp to put us back in user mode. The two calls to Super have the same effect as one call to Supexec, without the difficulty of passing the address of one Pascal procedure to another.

## ST BASIC Version

Program 4, the ST BASIC version, requires only one line of code. The DEFDBL statement insures that we'll be POKEing a word-length quantity rather than a byte. Notice that we needn't do anything to put the computer in supervisor mode before doing the POKE: Either ST BASIC itself runs in supervisor mode, or it shifts in and out of supervisor mode to do the POKE.

That may sound convenient, particularly since ST BASIC offers no means to access the XBIOS or GEMDOS routines that invoke supervisor mode. But it makes POKE a potent weapon, indeed. One of the most common and most deadly BASIC programming errors comes from POKEing to an address different from the one intended. In this program, for instance, say that you accidentally type POKE AA, 0 instead of POKE A, 0 . The variable AA is never defined in this program, so it has the value zero by default. The effect is to POKE a zero into location zero: ST BASIC crashes with two cherry bombs on the screen, and the system locks up completely when the desktop reappears. Be extremely careful with POKE in ST BASIC.

## GFA BASIC Version

GFA BASIC offers two different types of POKE statements. POKE, DPOKE, and LPOKE let you store a byte, word, or longword value, respectively, in any memory location that's accessible in user (normal) mode. If you need to access protected memory, you may use SPOKE, SDPOKE, or SLPOKE, to store a byte, word, or longword in a protected address. The $S$ in these commands stands for supervisor mode.

What's nice about this scheme is that it protects the unwary tyro against simple blunders, without denying sophisticated programmers
access to the machine. If you accidentally POKE to a protected memory address, GFA BASIC traps the error and puts up a message suggesting that you check your POKEs and PEEKs. BASIC recovers without crashing, as it should from any runtime error. If you go to the trouble of putting an $S$ in front of the POKE, it is assumed that you know what you're doing and are prepared for the possible consequences.

## Bloody But Unbowed

That concludes our pocket tour of Babel, but the list of ST dialects is by no means exhausted. Had space (and my patience) permitted, we might have tried Modula-2, Forth, BCPL, and others. It's interesting to see how various languages favor different solutions to the same problem, but don't worry if some of the examples look confusing. Few programmers need to become proficient in more than one or two languages, and the plain truth is that a good programmer can write effective programs in almost any language. So find one that suits your own needs and go to work.

## Program 1: Assembly Language Version

```
move. 1 \#mycode, -(sp)
move.w \#38, -(sp)
trap \#14
addq. 1 \#6,sp
clr.w -(sp)
trap \#1
mycode:
clr.w \(\$ 444\)
rts
```


## Program 2: C Version

\#include <osbind.h>
extern int mycode();
int *ptr;
main()
Supexec(mycode);
\}
mycode()

```
 ptr \(=\left(\right.\) int \(\left.{ }^{*}\right) 0 \times 0444 ;\)
 \({ }^{*} \mathrm{ptr}=0\);
```


## Program 3: Pascal Version

PROGRAM quiksave;

## VAR

ssp: long-integer;
FUNCTION super(sp: long-integer):
long-integer;

GEMDOS(\$20);
\{\$P-\}
PROCEDURE wpoke(address: long-
integer; value: integer);
TYPE
int $-\mathrm{ptr}={ }^{\text {integer; }}$
VAR
funny: RECORD
CASE boolean OF true: (a: long-integer);
false: ( p : int -ptr );
END;
BEGIN
funny.a := address;
funny. $\mathrm{p}^{\wedge}:=$ value;
END;
$\{\mathbf{\$ P}=\}$
BEGIN
ssp : = super(0);
wpoke(\$444,0);
ssp := super(ssp);
END

## Program 4: ST BASIC Version

10 defdbl a:a=\&H444:poke a,0

## Program 5: GFA BASIC Version

sdpoke \&H444, 0

## Program 6: QUIKSAVE.PRG Filemaker

$1 \varnothing \square$	close: open "R", 1,"A: \QUIK SAVE.PRG",59
110	field \#1,59 as a\$
120	for $j=1$ to 59:read byt $\$$
130	byt=val ("\&H"+byt\$)
140	$c=c+1: c h k=c h k+c+b y t$
150	x\$=x\$+chr\$(byt) : next
$16 \square$	lset a\$=x \$:put 1, ¢:cloge
$17 \emptyset$	if chk<>3363 then ? "Typi
	ng error":kill "A: \QUIKSA VE.PRG"
$18 \emptyset$	data 6П, 1A, $¢ \varnothing, \emptyset \varnothing, \varnothing \varnothing, 1 A$
196	data øø, $\varnothing$ ¢, øø, øø, øø, Øø
2øø	data øø, øø, øø, øø, øø, $\varnothing \varnothing$
210	data øø, $\varnothing, \emptyset \varnothing, \emptyset \varnothing, \varnothing \varnothing, \varnothing \varnothing) ~$
220	data øø, øø, $\varnothing \square, \emptyset \emptyset, 2 \mathrm{~F}, 3 \mathrm{C}$
230	data øø, $\varnothing, \emptyset \emptyset, 12,3 F, 3 C$
246	data $\varnothing \square, 26,4 \mathrm{E}, 4 \mathrm{E}, 5 \mathrm{C}, 8 \mathrm{~F}$
250	data $42,67,4 \mathrm{E}, 41,42,79$
260	data $\emptyset \emptyset, \emptyset \varnothing, \emptyset 4,44,4 \mathrm{E}, 75$
279	data øø, øø,øø,ø2,øø ©

## Attention Programmers

COMPUTE! magazine is currently looking for quality articles on Commodore, Atari, Apple, and IBM computers (including the Commodore Amiga and Atari ST). If you have an interesting home application, educational program,
programming utility, or game, submit it to COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Or write for a copy of our "Writer's Guidelines."

## Apple Magazine Indexer

The Apple version of this filing utility from the April issue (p. 106) is missing its first three lines. To create a working version, add the following to the published listing:
36 g GOTO 50
DE 1 REM FOSITION COMMAND
S 2 PRINT D\$"READ"Z末", R"FP", B"B Y: RETURN

## Euchre

In the Apple version of this game from the March issue, the first four lines are missing from the BASIC listing (Program 3, p. 54). For a complete program, add the following lines:

1 PRINT CHR\$ (4); "BLOAD EUCHRE. B IN, Aउ69ø8"
2 IF $\operatorname{PEEK}(19 \varnothing * 256)=76$ THEN PRIN T CHR\$ (4); "PR\#A36øø8": GOTO 4
3 POKE 54, 168: POKE 55, 140: CALL 1002
4 POKE 6, Ø: POKE 7, 141: POKE 23ø, 64

Many owners of IBM PC and compatible computers have had difficulty deciphering the graphics characters used in their version of the game (Program 5, p. 58). To simplify entry, change or add the following lines, which build the graphics from character codes in DATA statements:

[^2]LL 1114 DATA 32, 254, 32, 219,32, 25 $4,32,22 \emptyset, 32,32,32,219,32$ $, 32,32,32,32,219,32,32,3$ $2,32,32,219,32,32,32,32$, 32
CI 2218 COLOR 1ø, 2: $Y=F * 5+4$ : LOCAT E 21, Y:PRINT CHR\$(2ø1)CH R\$ (187) : LOCATE 22, Y: PRIN T STRING\$ $(2,186):$ LOCATE 23, Y: PRINT CHR $\$(2 \emptyset \emptyset)$ CHR $\$$ (188)
$113 \emptyset 7 \emptyset$ PRINT CHR $\$(2 \emptyset 5)$ CHR $\$$ (187) CD\$CL\$CHR ( 186 ) NL\$CD\$CHR \$ (186) CD\$CL\$CHR\$ (2øø) CHR \$ (295)
The article states that the Atari version (Program 2) will work on an Atari 400 . This is true only if the 400 has memory expansion.

## Atari Wari

There is an error in the Atari version of this game from the February issue (Program 6, p. 70), and in the WARI.FEB program on the COMPUTE! Disk for January-March. Line 840 should end with THEN 970 rather than THEN 950. As listed, the program will crash with an ERROR 16 (RETURN without GOSUB) after the maximum number of moves in a limited game. No problem occurs in an unlimited game. Thanks to Frank Walters for pointing out this correction.

## SpeedView

This 80 -column preview enhancement for SpeedScript (November 1986, p. 76) should not be confused with the "SPEEDVIEW" SpeedScript preview enhancement released earlier by Upstart Publishing, P.O. Box 22022, Greensboro, NC 27420. The latter program is a part of Upstart Publishing's SPEEDMATE customizer program for SpeedScript.

## Synthesis

Dan Monaghan

Hang on to your hats, music enthusi-asts-this program turns the Commodore 64 into an impressive music synthesizer with full control over the 64's multifaceted sound chip. Beginners and experts alike can have fun playing music and trying out different sounds with this program. And if you're already familiar with the 64's sound capabilities, you'll find "Synthesis" a powerful tool for experimenting with electronic music sounds. The program works with either disk or tape and requires no extra equipment.

When you got your Commodore 64 or 128, you may have heard that its SID (Sound Interface Device) chip is one of the best sound and music devices in any personal computer. That's true, but programming the SID chip can be a complex business, requiring several POKEs to produce just one sound. "Synthesis" unlocks the full potential of the 64's sound-maker, providing you the equivalent of a sophisticated electronic music synthesizer.

Synthesis turns the 64's keyboard into a musical keyboard, so you can play the synthesizer simply by pressing on the computer's keys. The program also provides a convenient, full-featured editor for designing your own sounds and for experimenting. Once you find a sound that you like, it can be saved to disk or tape for future use or revision. In this way you can build a complete library of instrument voices and sound effects.

Even if you don't know anything about programming the SID chip, you can have fun with this program immediately. This article includes 36 preset patches (sound settings), ranging from conventional musical instruments like the flute and cello to far-out electronic sounds such as space bass, percolator, and metallica.

## A Synthesizer And 36 Voices

This article includes two programs. Program 1 is the synthesizer and sound editor. Program 2 is not actually a program, but a data file of 36 different synthesizer voices. While it's not absolutely necessary to type in Program 2, you'll probably want to have it as a demonstration of the wide capabilities of Synthesis and the SID chip.

Both programs must be entered with the "MLX" machine language entry program found elsewhere in this issue. Follow the MLX instructions carefully. If you are using a cassette drive, you'll want to save Program 2 immediately after Program 1 on the same tape. Here are the addresses you need to type the programs in with MLX:
Program 1. SYNTHESIS
Starting address: 0801
Ending address: 1 C37
Program 2. VOICES
Starting address: 1C38
Ending address: 23E2
Although it's written in machine language, Synthesis loads and runs the same way a BASIC program does. Load it from disk or

"Synthesis" turns the Commodore 64 into an impressive musical synthesizer, and offers full control of the sound chip.
tape, type RUN, and press RETURN. Do not try to start it with a SYS command.

## Quick Demo

We'll describe all of the synthesizer's functions fully, but for those who can't wait to try it out, here's a quick demonstration. After typing and saving Programs 1 and 2, load and run Program 1. Synthesis puts you in the file editor screen. The top portion of the screen contains prompts that show you which keys to press for various options. The remainder of the screen is taken up with blank slots which will be filled in after you load a voice file. (Program 2 is a sample voice file.)

Let's begin by playing the synthesizer. From the main screen, press the $f 7$ function key: Synthesis displays the synthesizer screen. At the bottom of the screen is a musical keyboard display that indicates which of the computer's keys act as synthesizer keys. Play the synthesizer using these keys. (If you don't
hear any sound, turn up the volume on your TV or monitor.) This is the default voice-the one that Synthesis uses if you haven't loaded or created a custom voice.

When you've finished playing, press E to exit the synthesizer and return to the file editor. Now let's load a voice file. Press L; then type in the filename when prompted. If you saved Program 2 with the name VOICES, type VOICES and press RETURN. Synthesis then asks whether you wish to load from disk (press D) or tape (press T). After the file has loaded, Synthesis prompts you to press the asterisk (*) key to return to the file editor.

When you return to the main screen, notice that it is now filled with the names of 36 different synthesizer voices. All of these voices have been loaded in memory and are available for your use. To select a voice, press the f 1 key . Synthesis displays a cursor ( $>$ ) in front of the first voice name. Use the cursor keys to move around the screen until you find a voice that sounds interesting. To choose that voice, press RETURN.

The voice which you selected has now been loaded into the synthesizer. To hear what it sounds like, press f 7 to go to the synthesizer ; then press any of the synthesizer keys. The synthesizer uses the selected voice in place of the default voice which you heard earlier. When you've heard enough, press E to return to the file editor; then press f 1 to select one of the other 35 voices. There's a wide variety to choose from.

## File Editor

The program begins by displaying the file editor screen. Here is where you select existing voices, name new voices that you have created, and save or load completed files. A voice file can contain as many as 36 individual voices.

The file editor screen offers six options, which you select by pressing the keys indicated on the screen. A list of editor options follows.
f1. The $f 1$ function key loads a voice from the file into the synthesizer. Use the cursor keys to move the pointer to the desired voice, and press RETURN. Synthesis loads that voice into the synthesizer;
when you go to the synthesizer screen, that voice is available for your use.
f 3 . This key takes the voice currently in the synthesizer and stores it in the voice file. If you have just created a new voice and wish to save it, you must store the voice with this function before saving the file (the save function is explained below). f5. The f5 key allows you to change the name of the current voice. Enter a name when prompted and press RETURN. The voice name must be no more than 12 characters in length. To rename an existing voice, first select it with f1; then press $f 5$ to rename it.
f7. Press $f 7$ to exit the file editor and go to the synthesizer screen.
L. Loads a voice file from tape or disk. The program prompts you to enter a filename and then asks whether to load from disk or tape. Press C at the second prompt to cancel the operation.
S. Saves the voice file to tape or disk. This saves all of the voices which appear in the voice list on the file editor screen (voices which have been loaded with L or stored by pressing f 3 ). The current voice in the synthesizer will not be saved unless you have previously stored it in the file.

## Synthesizer Functions

The synthesizer screen serves two different purposes: playing music and creating new voices.

By pressing the keys indicated in the musical keyboard display, you can play notes using the current voice parameters. The musical keyboard configuration appears at the bottom of the screen. Press the E key to return to the file editor screen.

The synthesizer screen also allows you to change the current voice characteristics to create a new voice or modify the current one. The voice characteristics appear in the upper portion of the screen.

Playing the synthesizer requires no further explanation. To change a voice characteristic, use the cursor keys to move the pointer to the parameter you wish to change; then press the plus key ( + ) or minus key ( - ) to increase or decrease the current value.

When you're using this feature of Synthesis, it will help to have a basic understanding of how the SID chip works-a subject which is beyond the scope of this article. The user's manual for your computer explains more about the SID chip, and many other references are available. If you don't have a complete reference, don't be afraid to experiment: You can't hurt the computer in any way by trying out different settings (although certain combinations may result in no sound or very peculiar sounds). If you produce an unwanted sound, or simply want to discard the current voice, press the asterisk key (*); Synthesis resets all three voices to the default parameters.

Certain features of this synthesizer, such as sample and hold, are not features of the SID chip itself, but will be familiar to those who have a general knowledge of electronic music synthesis. Following is an explanation of what each voice parameter controls.

## Voice Parameters

Waveform. This parameter controls the basic tonal characteristics of each of the synthesizer's three voices. You may choose any of the basic waveforms supplied by the SID chip: triangle, sawtooth, pulse, and noise (random). Note that each of the three voices can have a different waveform.
Pulse width. This parameter controls the symmetry of the pulse waveform. Note that pulse width is relevant only if you have selected a pulse waveform; if you are using some other waveform, changing the pulse width has no effect. The range for this parameter is from $0-8$, with 0 creating a very narrow pulse and 8 creating a square wave.
Pulse mod. The pulse mod parameter allows you to use voice 3 to modulate the pulse width (note that pulse width is meaningful only when a pulse waveform is in use). A constantly changing pulse width can create very interesting sounds. You may choose as the source of modulation either the envelope of voice 3 (ENV) or the output of voice 3 (LFO). LFO stands for low frequency oscillator, a source which changes with a comparatively low frequency (over a comparatively
long period of time). If you choose ENV as the source of modulation, the modulation is controlled by voice 3's current ADSR parameters (see below).
Ring. This parameter enables or disables ring modulation, a special SID chip effect which combines the frequencies of two voices in a way which produces mathematically incongruous harmonics. If that description sounds baffling, select the steel drum voice from the VOICES file and play some notes on the synthesizer. The ringing, metallic tones result from ring modulation. Ring modulation always involves two voices. If you select ring mod for voice 1 , then its output is ring modulated with the output of voice 3 . Voice 2 is ring modulated by voice 1 , and voice 3 is ring modulated by voice 2 .
Sync. This parameter enables or disables synchronization, another special effect involving two voices. Synchronization combines the frequency output of two voices to create a more complex sound than would be created with either voice alone. To hear examples of synchronization, select space bass or sync sweep from the VOICES file. The modulation order for synchronization is the same as for ring modulation. Voice 1 is synchronized with voice 3 , voice 2 is synchronized with voice 1 , and voice 3 is synchronized with voice 2 .
Filtered. This parameter determines whether a voice is routed through the SID chip's built-in filter. The filter allows you to suppress the output of the selected voice within a defined frequency range.
Octave. The SID chip has a frequency range of seven full octaves. This function lets you set any voice to a desired octave. If you set voice 3's octave to 0 , that voice goes into LFO (low-frequency oscillator) mode. LFO mode is used in cases where you want to use voice 3's output to modulate some characteristic of a second voice. When you set a voice to LFO mode, that voice produces no audible output itself; instead, its output is rerouted for another purpose.
Interval. The interval parameter causes a voice's frequency to play at a certain number of half-steps
above the note being played on the musical keyboard. For instance, if you set voice 1's interval to 7 and play an F\# note on the musical keyboard, Synthesis plays a C\# note. If you set the voice 1 interval to 0 , the voice 2 interval to 4 , and the voice 3 interval to 7 , you will hear a complete major chord. The major triad voice in the VOICES file demonstrates one use of the interval parameter.
Pitch. The pitch parameter allows you to detune the selected voice by raising or lowering its pitch slightly, within the range +2 to -2 . The idea behind detuning is to make two (or more) voices play the same note, but set one voice just slightly off key by raising or lowering its pitch. The results sound more interesting and "natural" than if both voices were playing in perfect unison. Listen to the honky tonk voice in the VOICES file for a demonstration of detuning.
Pitch mod. Pitch modulation is useful for creating vibrato or other pitch-based effects. Again, this parameter always involves two voices. Voice 3 provides a modulating signal which you can use to affect the output of either voice 1 or voice 2 . Voice 3 may be in LFO, ENV, or S/H (sample and hold) mode. Sample and hold effects are explained below.
Track. This parameter determines whether or not the designated voice follows the synthesizer keyboard. If tracking is on for a given voice, its frequency is determined by which musical key you press. If tracking is off, the keyboard has no effect on its pitch: Instead, that voice's pitch is controlled solely by its octave, interval, and pitch parameters. Untracking a voice allows you to use its output as an LFO or to create a drone voice which plays at a constant frequency. The bagpipe voice in the VOICES file untracks one voice for use as a drone.
Attack. The next four parameters (attack, decay, sustain, and release) are usually abbreviated with the acronym ADSR. Together, they define the envelope, or characteristic shape of the final output for a given voice. The attack parameter controls the rate at which, after a musical key is pressed, the level of the
designated voice rises to its maximum volume.
Decay. After the attack has reached its peak (see above), the decay parameter controls the rate at which the output of the designated voice drops to the sustain level.
Sustain. This parameter controls the volume level at which the output of the designated voice remains until you release a key on the musical keyboard.
Release. After you've released a key, this parameter controls the rate at which the output of the designated voice fades away into silence.
Mod level. Some of the special effects available in Synthesis involve two voices: One voice is used to modulate (change) the output of a second voice. For pitch mod, pulse mod, sample and hold $(\mathrm{S} / \mathrm{H})$, and filter mod, the source of the modulating signal is either the ADSR envelope of voice 3 or the waveform output of voice 3. The mod level parameter controls the intensity of modulation in such cases. If you are using voice 3 to create vibrato, for instance, the mod level can change the vibrato effect from a slight wavering in pitch to a large, multioctave sweep. The maximum mod level is 9; at this extreme level, you may exceed the range for other parameters, creating a glitch in the sound.
S/H rate. The acronym S/H stands for sample and hold, another special electronic sound effect. This feature samples (looks at) the output of voice 3, holds the sampled level, then applies it to the pitch of any voice for which $\mathrm{S} / \mathrm{H}$ modulation is selected. The modulated voice is then played automatically, just as if you had pressed the key again. Instead of a constantly changing pitch, as with LFO modulation, $\mathrm{S} / \mathrm{H}$ modulation occurs in discrete steps. If you set the LFO mod level to 0 , the pitch of the modulated voice is not changed, but the voice is still automatically rekeyed. For examples of S/H modulation, listen to the staircase, random, and mandolin voices in the VOICES file.
Filter pitch. This parameter sets the resonant frequency of the filter.
Resonance. The resonance parameter controls the strength, or
amount of emphasis, which the filter has.
Mode: This characteristic selects the type of filter to be used. A bandpass filter (BP) causes the filter to pass through, or admit, only frequencies above the designated filter pitch; frequencies above the cutoff point are suppressed. A high-pass filter (HP) passes frequencies above the cutoff point and suppresses lower frequencies. Careful filtering can be very useful in simulating the sounds of natural instruments. However, since the filter is subtractivethat is, it takes away part of the sound you would otherwise hearit tends to make the final output somewhat quieter than normal.
Voice 3 . The voice 3 parameter enables or disables the final output of voice 3. If you are using voice 3 to modulate another voice, you will normally want to disable its output with this feature. If you don't, you may hear unwanted clicks during each envelope cycle for voice 3 . If you wish to disable the output of voice 1 or voice 2 , set all of the ADSR parameters for that voice to zero.
Please refer to the "MLX" article elsewhere in this issue before entering the following programs.

## Program 1: Synthesis

Ø8Ø1: ØB $\emptyset 8$ Øø Øø $9 \mathrm{E} \quad 323036$ EC Ø8Ø9:31 ØØ Øø ØØ 4С ЕØ ØE ØØ B3 Ø811:18 6A EØ ØØ DØ Ø2 A9 ØØ C5 Ø819:AØ ØØ 84 2A 18 9ø Ø4 2A E1 Ø821:26 2A 18 CA Dø F9 66 2A E3 Ø829:6A A6 14 A4 2A 6Ø BC 1E 4 F
 Ø839: C8 14 8D $6 \emptyset \quad$ Ø8 89 D7 1455 Ø841:8D 64 Ø8 B9 $\quad$ D2 14 8D 6535 Ø849: Ø8 $\mathrm{BD} 24 \mathrm{4} \mathrm{\emptyset} \mathrm{~F}$ Ø 08 AC 8D E3 Ø851: Ø2 B9 EE 176542 7D $18 \quad 67$ Ø859:40 7D 1B 40 A8 B9 $\quad$ D4 18 3E Ø861:85 45 B9 Fの 1A $8546 \quad 60 \quad 9 \mathrm{~F}$ Ø869:20 22 ØC A5 4599 ØØ D4 53 Ø871:A5 46 99 Ø1 D4 60 BD ØC D8 Ø879: $40 \quad 29$ FE 2 Ø 22 ØC 99 Ø4 4 E Ø881: D4 6Ø Aø ØØ B1 26 2Ø D2 61 Ø889:FF C8 Cø Ø9 Dø F6 6Ø A4 3C Ø891:28 E6 29 A6 29 18 20 FØ D9 Ø899:FF A2 Ø2 6Ø A9 09 18 65 9F Ø8A1:26 $85 \quad 26 \quad 9 \emptyset \quad$ Ø2 Ø8A9 : 48 A9 CD $85 \quad 26 \quad 68$ A8 10 8E Ø8B1:ø6 A9 E8 $85 \quad 26$ Dø 16 Fø 36 Ø8B9:14 2Ø 9D ø8 Cø Ø1 FØ ØD 99 Ø8C1:2Ø 9D Ø8 CØ Ø2 FØ Ø6 $2 \emptyset 56$ ø8C9:9D ø8 2Ø 9D Ø8 4C 83 ø8 99 Ø8D1:A9 $2 \emptyset \quad 2 \emptyset$ D2 FF 88 DØ FA $A E$ Ø8D9:6Ø 8D 51 Ø2 8A 48 AØ Ø2 8Ø Ø8E1:A9 Øø 8D 53 Ø2 8D $5 \emptyset \quad \emptyset 296$ Ø8E9:A2 $11 \begin{array}{llllllll} & 18 & 2 \mathrm{E} & 51 & \emptyset 2 & 2 \mathrm{E} & 5 \emptyset & \mathrm{~B} 4\end{array}$ Ø8F1: Ø2 CA Fø 11 2E 53 Ø2 AD 55 Ø8F9:53 Ø2 38 E9 ØA $3 \emptyset$ EB 8D $5 \emptyset$ Ø9ø1:53 ø2 $38 \mathrm{~B} \emptyset \mathrm{E} 6 \mathrm{AD} 53$ Ø2 E5
 Ø911:68 AA 6Ø 4A 4A 4A 4A 4C ØF

Ø921: D1 Ø8 C8 2ø 3D ø9 Aø Ø3 8B ஏ929:2ø D1 ø8 A9 1D 4C D2 FF 1B Ø931:20 DA Ø8 AØ Ø2 2ø D1 Ø8 51 Ø939: AØ ØØ FØ E7 B9 54 Ø2 2ø 7B Ø941: D2 FF C8 Cø Ø3 Dø F5 $6 \varnothing 89$ Ø949:48 AØ Ø2 $2 \emptyset$ D1 Ø8 $68 \quad 2089$ Ø951: D2 FF Aø Ø2 4C D1 Ø8 85 4ø Ø959:26 A9 $1485 \quad 27$ A2 Ø4 AØ $3 \varnothing$ Ø961: ØØ $84 \quad \mathrm{C} 7 \quad 18$ 2Ø FØ FF Bl 85 Ø969:26 FØ Ø6 2Ø D2 FF C8 DØ 86 Ø971:F6 60 A9 $\begin{aligned} & \text { Ø6 } \\ & 85 \\ & \text { C7 } \\ & 8 D \\ & 86 \\ & 99\end{aligned}$ Ø979: Ø2 A4 67 A6 68 18 20 FØ El Ø981: FF A9 3E $2 \emptyset$ D2 FF $2 \emptyset$ E4 83 Ø989:FF A4 67 A6 68 C9 1D Dø 91 Ø991: ØC Cø Ø6 Fø Ø4 AØ Ø6 DØ 29 Ø999: Ø2 AØ 1A DØ 24 C9 9D FØ 99 Ø9A1:FØ C9 11 DØ 09 E8 EØ 1792 Ø9A9: DØ 17 A2 Ø5 DØ 13 C9 9186 Ø9B1: DØ Ø9 CA EØ Ø4 DØ Ø2 A2 DF Ø9B9:16 Dø Ø6 C9 ØD DØ BA FØ 7A Ø9Cl:11 $8467 \begin{array}{lllllll}67 & 86 & 68 & \text { A9 } & 9 D & 2 \emptyset & 18\end{array}$ Ø9C9: D2 FF A9 $2 \emptyset 2 \emptyset$ D2 FF 18 EØ Ø9D1:90 A7 A9 1B 85 8C A5 68 ØF Ø9D9: 38 E9 Ø5 AA A9 CE 1869 EF Ø9E1:6A 9Ø Ø2 E6 8C CA 1ø F6 A2
 Ø9F1:35 9ø Ø2 E6 8C 85 8B A9 AC Ø9F9:1C 858 F A9 $38 \quad 85$ 8E 60 5D ØAØ1: A Ø ØØ 2Ø CF FF 99 Øø Ø2 CE ØAØ9:C8 C9 ØD DØ F5 AØ Øø B9 8E ØAll: Øø Ø2 AA C9 ØD FØ 1C 2925 ØA19:7F 38 E9 $3 \emptyset$ BØ $\emptyset 4$ A9 $2 \emptyset 44$ ØA21: DØ $\emptyset 9$ 8A $297 \mathrm{~F} \quad 38 \mathrm{E} 9$ 5B CF ØA29: BØ F4 8A 99 Øø $4 \emptyset$ C8 CØ 11 ØA31: ØC DØ DC 4C F8 Ø9 A9 Ø6 25 ØA39:8D 86 Ø2 A2 Øø AØ ØØ 8427 ØA41:29 $18 \quad 2 \emptyset \mathrm{~F} \emptyset \mathrm{FF}$ BD ØØ $4 \varnothing$ 3A ØA49: $2 \emptyset$ D2 FF E8 EØ ØC DØ F5 7F ØA51:A9 ØD $85 \quad 28 \quad 20$ 9Ø Ø8 A9 AD ØA59:16 $85 \quad 27$ A9 A9 $85 \quad 26 \quad 85 \quad 8 \mathrm{E}$ ØA61:C7 A9 Øø 8D 86 Ø2 A9 1ø 3C ØA69:85 2A A5 2A 3D ØC $4 \varnothing$ DØ 8D ØA71: Ø8 2ø 9D Ø8 18 Ø6 2A $9 \varnothing 83$ ØA79:F1 20 83 Ø8 A9 A9 85 26 A4 ØA81:CA 1Ø E3 $2 \emptyset 9 \varnothing$ Ø8 BD ØF AC ØA89:4Ø 2Ø 1B Ø9 CA 1Ø F7 $2 \emptyset 6 \emptyset$ ØA91:90 Ø8 BD 1240 20 A9 98 A6 ØA99:CA 1Ø F7 $2 \emptyset 90$ Ø8 BD ØC 44 ØAA1:4Ø 29 Ø4 $2 \emptyset$ A9 Ø8 CA $1 \emptyset$ B5 ØAA9:F5 209098 BD ØC 4018 ØA ØAB1:29 Ø2 2A $2 \emptyset$ A9 Ø8 CA $1 \emptyset 35$ ØAB9:F3 $20 \quad 9 \varnothing \quad \emptyset 8$ BD 154040.045 ØAC1:A9 Ø8 CA 1ø F7 A9 06 8D $\varnothing 7$ ØAC9:86 $\begin{array}{lllllllll} & \text { Ø2 } & 2 \emptyset & 9 \emptyset & \emptyset 8 & \text { AØ } & \emptyset 4 & 2 \emptyset & 99\end{array}$ ØAD1: D1 $\emptyset 8$ BD $184 \emptyset \quad 2 \emptyset$ ØF 9 C B6 ØAD9:AØ Ø3 2Ø D1 Ø8 A9 1D $2 \emptyset 61$ ØAE1:D2 FF CA $1 \varnothing$ E8 $2 \varnothing$ 9Ø 98 AA ØAE9: BD 1B $4 \varnothing$ 2Ø 1B $\quad$ Ø9 CA $1 \varnothing 50$ ØAF1:F7 20 9Ø 98 A9 FA $85 \quad 26 \quad \emptyset 7$ ØAF9:A9 $1685 \quad 27 \mathrm{BD} 1 \mathrm{E} 40$ A8 1 B ØBØ1:FØ 18 2Ø 9D Ø8 CØ 01 Fø A9 ØBø9:11 2Ø 9D ø8 Cø Ø2 Fø ØA DD ØB11:2Ø 9D Ø8 CØ Ø3 FØ Ø3 2Ø AD ØB19:9D $08 \quad 2 \emptyset \quad 83$ ø8 CA 10 D4 9C ØB21:2Ø $9 \emptyset \quad$ Ø8 A9 $16 \quad 85 \quad 27$ BD D9
 ØB31:2Ø 9ø Ø8 BD 24 4Ø $2 \emptyset$ A9 64 ØВ39: Ø8 CA 1Ø F7 20 9Ø Ø8 A9 84 ØB41: ØØ 8D 86 ØB49:20 14 Ø9 CA 10 F6 20 9ø 6F ØB51: Ø8 BD 27 4ø 29 ØF $2 \emptyset$ 1B A4 ØB59: ø9 CA 1Ø F5 2ø 9Ø ø8 BD 19
 ØB69:F6 $2 \emptyset \quad 9 \emptyset \quad$ Ø8 BD $2 \mathrm{~A} ~ 40 \quad 29$ D5 ØB71: ØF 2ø 1B Ø9 CA 1Ø F5 Aø 2E ØВ79:16 $2 \emptyset \quad 92$ ø8 A9 Ø6 8D 86 7C
 ØB89: Ø9 AØ $2 \emptyset \quad 2 \emptyset \quad 94$ Ø8 AD 34 A6 ØB91: 40 Ø9 $\begin{array}{llllllll} & 3 \emptyset & 2 \emptyset & 49 & \boxed{ } 9 & 2 \emptyset & 9 \emptyset & 51\end{array}$ ØB99: Ø8 AD $\begin{array}{llllllll} & 32 & 4 \emptyset & 2 \emptyset & 74 & 12 & \text { A9 } & \text { ØA }\end{array}$ ØBA1: ØØ 8D 86 Ø2 Aø ØD $2 \varnothing 9218$ ØBA9: $\varnothing 8$ AD 2D $4 \varnothing \quad 2 \emptyset \quad 31 \quad \emptyset 9$ AØ 51
 ØBB9:A9 Ø8 AØ ØD $2 \varnothing 92$ Ø8 AD 94 $\emptyset B C 1: 3 \varnothing \quad 4 \varnothing \quad 2 \emptyset 1 B \quad \emptyset 9 \quad A \emptyset \quad 1 F 2 \emptyset \quad D E$ ØBC9:94 Ø8 AD $3140 \quad 85$ 2A E6 48 ØBD1:27 AØ $2784 \quad 26$ AØ Øø A9 2 E ØBD9:1Ø 25 2A DØ 1Ø A9 Ø6 $2 \emptyset$ E6 ØBE1:9F ø8 A9 $2 \emptyset 15$ 2A DØ Ø5 79 ØBE9:A9 $\begin{array}{lllllllll} & \text { Ø6 } & 2 \emptyset & 9 \mathrm{~F} & \text { Ø8 } & \mathrm{B} 1 & 26 & 2 \emptyset & \mathrm{C} 7\end{array}$ ØBF1: D2 FF C8 C $\emptyset \quad \emptyset 6$ D $\emptyset$ F6 Aø 98 ØBF9: ØD $2 \varnothing 92$ Ø8 C6 27 A5 2A B9
 ØСØ9:A9 Ø4 2Ø A9 Ø8 $6 \emptyset$ FØ ØC 45 ØC11:AØ Øø 18 6A 6A 38 C8 E9 D2 ØC19: Ø3 DØ FA 98 Ø9 3ø 4C D2 44 ØC21:FF AØ ØE EØ Ø1 DØ Ø2 AØ 21 ØC29: Ø7 EØ Ø2 DØ Ø2 AØ Øø 6Ø 3D ØC31:AØ $14 \begin{array}{llllllll}14 & 27 & \text { AØ } & \mathrm{F} 2 & 84 & 26 & \text { Al }\end{array}$ ØC39:AØ ØØ B1 26 F Ø ØA 20 D2 FC ØC41:FF C8 Dø F6 E6 27 DØ F2 7D ØC49: $2 \varnothing 37$ ØA AØ Øø A2 Ø2 BD D6 ØC51: ØF 4099 Ø3 D4 BD 2740 9Ø ØC59:99 Ø5 D4 BD 2A 4 (Ø 99 Ø6 81 ØC61: D4 $98 \quad 18 \quad 69 \quad 97$ A8 CA 10104 ØC69:E6 A2 Ø1 BD 2D 40 9D $15 \begin{array}{llllll}54\end{array}$ øC71: D4 CA 1ø F7 18 AD 304040 ØС79: ØA ØA ØA ØA 85 2A А9 ØØ 23 ØC81: AE 15 4Ø F Ø Ø2 Ø9 Ø4 AE 38 ØC89:16 $40 \mathrm{~F} \emptyset \quad$ Ø2 09 Ø2 AE 17 BF ØC91: 4Ø FØ Ø2 Ø9 Ø1 Ø5 2A 8D D4 ØC99:17 D4 $18 \mathrm{AD} 3140 \quad$ Ø9 $\quad$ ØF FB ØCA1:8D 18 D4 AD 1C D4 AE 33 C ØСА9:4Ø 2Ø A4 ØD 85618462 6C ØCB1:86 6D AD 1B D4 AE 3440 D 9 ØCB9:20 A4 ØD 856384648681 ØCC1:6E CE Cl Ø2 DØ 1ø AD 3271 ØCC9:4の 8D C1 Ø2 A9 Ø1 4569 Ø3 ØCD1:85 69 F Ø Ø2 85 6A A2 Ø2 62
 ØCE1: $\emptyset 9$ AD 1C D4 AC 33 4Ø 4C B9 ØCE9:F1 ØC AD 1B D4 AC 34 4Ø 67 ØCF1:2 2 DB ØD CA 1Ø E2 AD 2F F5 ØCF9: 40 F (1C C9 Ø1 DØ Ø9 AC 98 ØDØ1:34 40 AD 1B D4 189096 DA ØDØ9: AC $33 \quad 40$ AD 1 C D4 18 CØ 4 E ØD11: Ø9 FØ Ø4 6A C8 DØ F8 18 A6 ØD19:6D 2D 4ø 8D 16 D4 A6 C5 2D ØD21:8A AC 8D Ø2 FØ Ø2 Ø9 8Ø 9F ØD29:85 F7 BD ØØ $14 \begin{array}{llllll} & 85 & \text { 6B } & 10 & 59\end{array}$ ØD31: ØA A2 Ø2 $2 \emptyset 77$ Ø8 CA $1 \varnothing$ BC ØD39:FA $3 \emptyset \quad \emptyset 2 \quad 85 \quad 41$ A2 $\emptyset 2$ A4 B2 ØD41:41 18 84 42 20 2 F Ø8 $\begin{array}{llllll} & 42\end{array}$ ØD49:21 40 FØ 22 1Ø Ø6 A5 6A 92 ØD51:FØ 24 DØ ØF C9 Ø2 Dø ØB FA ØD59:A5 6285 FA A5 61 A4 6D A8 ØD61:18 9ø Ø8 A5 6485 FA A5 DB ØD69:63 A4 6E 20 BB ØD $2 \emptyset 69 \mathrm{E} 9$ ØD71: Ø8 BD 21 4ø 10 Ø9 A5 69 8ø ØD79: DØ Ø5 $2 \varnothing 77$ Ø8 5Ø ØA A5 F3 ØD81:6B $3 \varnothing \quad \emptyset 6 \mathrm{BD}$ ØC $4 \varnothing \quad 2 \emptyset \quad 7 \mathrm{C} \quad 18$ ØD89: Ø8 CA 10 B3 A9 Øø 85 6A 5A ØD91:A5 6B 1Ø Ø3 2Ø 3E ØE 4C ED ØD99:A4 ØC 18 4C FØ FF Øø Øø 58 ØDA1: Øø Øø ØØ 18 A8 $3 \emptyset \quad$ Ø7 85 D6 ØDA9:2A 38 A9 7 F E5 $2 \mathrm{~A} \quad 29 \quad 7 \mathrm{~F}$ BD
 ØDB9: 11 Ø8 18 Cø øø Dø ØB 65 2C ØDC1:45 $85 \quad 45$ A5 FA $\begin{array}{llllll}65 & 46 & 85 & 62\end{array}$ ØDC9: 46 6Ø $38 \quad 85$ 8D A5 45 E5 Fl ØDD1:8D 8545 A5 46 E5 FA 85 5C ØDD9:46 6Ø 8D 1ø Ø2 A9 Øø 8D 26
 ØDE9: $\varnothing 2$ 9Ø F7 EE 11 Ø2 Bø F2 FB ØDF1: 20 22 ØC 99 Ø2 D4 18 AD Ø1 ØDF9:11 Ø2 7D ØF $40 \quad 99$ Ø3 D4 Ø1 ØEØ1:6Ø A9 9320 D2 FF A9 Ø1 17 ØEØ9:8D 86 Ø2 A9 Øø 85 C7 AØ AE ØE11: ØC A2 Ø1 $2 \emptyset$ 9B ØD 86 3D 59 ØE19:84 3E A9 3E 2Ø D2 FF 4C B8 ØE21:31 ØC A2 Øø 86 C7 E8 8E EØ ØE 29: 86 Ø2 A6 3D A4 3 E 2Ø 9B AB ØE31: ØD A9 $2 \emptyset \quad 2 \emptyset$ D2 FF 18 A5 B $\varnothing$ ØE39: B5 FØ Ø1 38 6Ø A6 F7 8A 28

ØE41：Aの Øø 29 8Ø FØ Ø1 C8 84 7C øE49：B5 8A 29 7F C9 40 FØ EC le ØE51：C9 Ø7 Fø 30 EA C9 02 Dø 88 ØE59：ø3 4C EE ØF C9 28 Dø Ø4 6D ØE61：18 4C $631 \varnothing$ C9 2B Dø Ø3 A9 ØE69：38 Bø F6 C9 31 Dø Ø3 4C 68 ØE71：C8 ØE C9 ØE DØ C6 2Ø F8 6A øE79：ø9 Aø øø 84 C6 6868 A9 DC ØE81：93 4C D2 FF $2 \varnothing 23$ ØE BØ 2F ØE89：ø9 EØ 14 Dø Ø2 A2 øø E8 75 ØE91：DØ ØC Cø 1F Dø Ø1 88 EØ 9F ØE99：Ø1 DØ Ø2 A2 15 CA 86 3D F2 ØEA1：8A 29 1ø FØ Ø8 AØ ØC EØ 1A ØEA9：1Ø Dø Ø2 AØ 1584 3E $2 \varnothing$ A3 ØEB1：9B ØD A9 3E $2 \varnothing$ D2 FF CE 13 ØEB9：ø1 24 Dø FB A9 3ø 8D Ø1 63 ØECl：24 CE ØØ 24 DØ Fl 60 AØ 95 ØEC9：34 B9 B8 1799 øø 4088 CC ØED1：10 F7 68684 C 31 øC Øø C6 ØED9：øø øø øø øø øø øø Øø A2 98 øEE1：FF 9A $2 \varnothing$ F8 09 A2 $\varnothing \varnothing 8691$ ØEE9：69 AØ Øø B9 B8 17918 EE 52 ØEF1：C8 Cø 35 Dø F6 981865 Ø6 ØEF9：8E 85 8E 9ø ø2 E6 8F E8 4D ØFØ1：EØ 25 DØ E5 A9 $932 \emptyset$ D2 FF ØFø9：FF A9 05 8D $2 \varnothing$ Dø 8D 21 8B ØF11：DØ A9 ØE 20 D2 FF Aø 17 B4 ØF19：A9 Øø 99 Øø D4 88 10 FA 23 ØF21：A9 Ø5 85 68 A9 ø6 856764 ØF29：A9 3885 8B A9 1C 85 8C E8 ØF31：20 F8 ø9 Aø 34 B1 8B 99 E1 ØF39：øØ 4Ø 88 10 F8 Aø Ø1 B9 7F ØF41：39 17 FØ Ø6 2ø D2 FF C8 55 ØF49：DØ F5 Aø øø B9 øø 4ø $2 \varnothing$ CF ØF51：D2 FF C8 Cø ØC DØ F5 A9 37 ØF59：øD 2ø D2 FF A9 $2 \emptyset$ A2 28 9B ØF61：2Ø D2 FF CA DØ FA E8 86 BB ØF69：8D 86 C7 A9 ø6 8D 86 ø2 F8 ØF71：A5 8D $2 \varnothing$ 1B ø9 Aø øб 8C D2 ØF79：86 Ø2 A9 9D $2 \varnothing$ D2 FF Bl 68 ØF81：8E 2Ø D2 FF C8 Cø øC Dø 7B ØF89：F6 18 A9 35658 E 85 8E BØ ØF91：90 Ø2 E6 8F E6 8D A5 8D 94 ØF99：C9 25 Dø CF A5 CB C9 Ø4 Fø ØFAl：DØ ØB A9 5C $2 \varnothing 58$ Ø9 2ø 7A ØFA9：73 ø9 4C 31 ØF C9 ø5 Dø DA ØFBl：15 A9 $722 \varnothing 58$ ø9 $2 \varnothing 73 \mathrm{AF}$ ØFB9：ø9 AØ 34 B9 øø $4 \varnothing 91$ 8B 56 ØFC1：88 1ø F8 4C 3E ØF C9 Ø6 D3 ØFC9：Dø ØB A9 9ø $2 \varnothing$ 58 Ø9 $2 \varnothing$ E5 ØFDl：ø1 ØA 4C 3E ØF C9 Ø3 Dø D6 ØFD9：ø6 $2 \varnothing$ Ø2 ØE 4C 3 E ØF C9 67 ØFE1：ØD Dø Ø3 4C CB 12 C9 2A 44 ØFE9：DØ B2 4C DD $122 \varnothing 23$ ØE E9 ØFFl：EØ ll DØ Ø3 4C AE ØE EØ 29 ØFF9：14 FØ F9 EØ 1ø DØ ØA AØ 24 1øø1：15 C4 3E Dø Ø2 Aø 1F Dø 53 1009：EB EØ 12 DØ ØA AØ ØС C4 56 1011：3E DØ Ø2 Aø 1E DØ DD EØ 9F 1019：13 Fø F2 18 A5 B5 F0 Ø1 C5 1ø21：38 98 Bø ØB Cø 1E Dø Ø2 6C 1029：A9 ø2 69 ø9 A8 DØ C5 Cø 31 1031：øC DØ Ø2 A9 27 E9 Ø9 A8 ø2 1039：DØ BA 10101010101064 1041：10 111111111111111 Eø 1049：11 1111111121288 9F F2 1051：B9 D8 El EA F3 ØE 2842 D9 1059：4C 556989 9D BD E7 F3 62 1ø61：1C 50 A9 øø 69 øø 85 B5 E4 1069：A6 3D A4 3E $2 \varnothing 73104 \mathrm{C}$ DF 1071：D3 ØE CA BD 3B 1048 BD 9C 1079：4F 1048 A2 øø C $\varnothing$ 1E FØ A8 1081：06 E8 Cø 15 Fø Ø1 E8 6ø 06 1089：BD ØC 40 A8 29 ØF 85 B5 64 1091：98 29 FO 18 2A DØ Ø2 A9 2A 1099：10 ø5 B5 9D øC $4 \varnothing 60$ BC 72 1ØAl：ØF $4 \varnothing$ A5 B5 Dø 09 C8 Cø 66 1ØA9：ø9 Dø Ø9 AØ Øø FØ $0588 \quad \varnothing 4$ 10B1：10 Ø2 Aø ø8 98 9D ØF 4088
 1ØCl：12 4Ø 60 A5 B5 Dø Ø9 C8 2D 1øC9：Cø Ø3 DØ ØA Aø FF DØ Ø6 72

10D1：98 10 Ø2 Aø ø3 88 98 6058 10D9：BD ØC 4Ø 49 Ø4 9D ØC 4ø 67 1øE1：60 BD ØC $4 \varnothing 49$ Ø2 9D ØC Cø 1øE9：4Ø $6 \emptyset$ BD 154049 Ø4 9D 18 1øFl：15 $4 \varnothing 6 \emptyset$ BD 18 4ø A4 B5 55 1øF9：Dø ø9 18 C9 $54 \mathrm{~F} \varnothing$ ØB 69 4A 11ø1：øC Dø 0738 C9 Øø FØ Ø2 F3 1109：E9 øC 9D 184060 BC 1B $7 \varnothing$ 1111：40 A5 B5 Dø Ø9 C8 CØ ØС 79 1119：DØ Ø9 Aø Øø FØ Ø5 88 10 B6 1121：ø2 Аø ØВ 98 9D 1B 4ø 6091 1129：BC 1E 4Ø A5 B5 Dø Ø9 C8 5F 1131：Cø Ø5 Dø ø9 Aø øø Fø Ø5 8B 1139：88 10 ø2 Aø ø4 98 9D 1E C9 1141：40 $6 \varnothing$ BC 214020 C4 1061 1149：9D 214060 BD 244049 D8 1151：ø4 9D 244060 BD 2740 ED 1159：A4 B5 Dø $\varnothing 61869101854$ 1161：90 Ø3 38 E9 1ø 9D 27 4ø 17 1169：6Ø BD 27 4Ø 29 ØF A4 B5． 98 1171：Dø $0518 \quad 69$ ø1 9ø ø3 385 F 1179：E9 Ø1 29 ØF 85 B5 BD 27 8C 1181：40 $29 \mathrm{~F} \varnothing \quad 05$ B5 9D 2740 2F 1189：60 BD 2A $4 \varnothing$ A4 B5 Dø ø6 38 1191：18 $69101890 \quad \emptyset 338$ E9 88 1199：10 9D 2A $4 \varnothing 60$ BD 2A $4 \varnothing \emptyset 3$ 11A1：29 ØF A4 B5 Dø Ø5 $18694 \varnothing$ 11A9：ø1 9ø Ø3 38 E9 Ø1 29 ØF 09 11Bl：85 B5 BD 2A $40 \quad 29$ FØ 05 EB 11B9：B5 9D 2A $4 \varnothing 6 \varnothing$ AD 3340 C7 11Cl：Cø $15 \mathrm{~F} \varnothing \emptyset 3 \mathrm{AD} 3440$ A6 3D 11C9：B5 Dø ØA AA E8 EØ ØA Dø 96 11D1：øA A2 Øø Fø Ø6 AA CA $1 \varnothing 31$ 11D9：Ø2 A2 $69 \mathrm{C} \varnothing 15 \mathrm{~F} 0$ Ø4 8E D5 11E1：34 4ø 6Ø 4C A9 13 Øø A5 3E 11E9：B5 Dø $042 \varnothing$ 5A $126 \varnothing 2 \varnothing 99$ 11Fl：63 $126 \emptyset$ Cø ØC DØ ØC A5 C3 11F9：B5 Dø Ø4 EE 2D $4 \varnothing 60$ CE 94 12ø1：2D $4 \varnothing 60 \mathrm{AE} 2 \mathrm{~F} 40 \mathrm{~A} 5 \mathrm{~B} 5 \mathrm{BE}$ 12ø9：DØ ØB E8 Eø Ø3 Dø Ø2 A2 85 1211：øØ 8E 2F $4 \varnothing 60$ CA 10 F9 ØB 1219：A2 Ø1 Dø F5 Cø øC Dø 1333 1221：AE $3 \varnothing$ 4ø A5 B5 Dø 04 E8 EC 1229：1890 Ø1 CA 8A 29 øF 8D EE 1231：30 40 6ø AD 3140 A2 øø 34 1239：A8 29 8ø FØ Ø2 A2 8086 3D 1241：B5 18 98 1249：A9 1ø Ø5 B5 8D 31 4ø 6054 1251：AD 31404980 8D 314012 1259：6Ø EE 32 4ø DØ 14 A9 05 E2 1261：Dø øD CE 3240 AD $324 \varnothing 8 B$ 1269：38 E9 05 Bø 05 A9 FF 8D 2C 1271：32 4ø 6ø 38 E9 Ø5 4C 31 7B 1279：ø9 93 øD ØD ØD 12 D3 4113 1281：56 45 2ø C6 49 4C 45 øD A5 1289：93 ØD ØD ØD 12 CC 4F 41 Dø 1291：44 $2 \varnothing$ C6 49 4C 45 øD C5 A4 1299：4E $54 \quad 45 \quad 52 \quad 20$ C6 49 4C C2 12Al：45 4E 41 4D 45 2ø 1F øø El 12A9：9ø øD øD D4 415045 2C 4A 12Bl：2ø C4 $49 \begin{array}{llllll}53 & 4 \mathrm{~B} & 2 \varnothing & 4 \mathrm{~F} & 52 & 41\end{array}$ 12B9：20 C3 41 12Cl：28 D4 2C C4 $2 \varnothing 4 \mathrm{~F} 52$ C3 A7 12C9：29 Øø Aø Øø B9 7A 12 2ø 92 12D1：D2 FF C8 Cø ØF Dø F5 A9 D5 12D9：$\varnothing \varnothing 48 \mathrm{~F} \varnothing 10$ Aø $\varnothing 0$ B9 8931 12E1：12 $2 \varnothing$ D2 FF C8 C $\varnothing$ ØF Dø A9 12E9：F5 A9 Ø1 48 Aø $\varnothing \varnothing$ B9 9728 12F1：12 Fø Ø6 $2 \varnothing$ D2 FF C8 Dø 17 12F9：F5 Aø øø 84 C6 $2 \emptyset$ CF FF DF 13ø1：29 7F 99 Ø0 02 C8 C9 ØD A2 1309：DØ F3 84 BB Aø øø B9 A9 Ø3 1311：12 Fø ø6 $2 \varnothing$ D2 FF C8 Dø 38 1319：F5 20 E4 FF C9 54 Fø 2282 1321：C9 44 Fø 22 C9 43 Dø F1 6C 1329：68 Aø Øø B9 A6 14 FØ Ø6 B4 1331：2Ø D2 FF C8 Dø F5 A5 CB 1E 1339：C9 31 DØ FA 20 F8 ø9 4C 9D 1341：3E ØF A2 Ø1 Dø ø2 A2 ø8 8A 1349：Aø ø日 A9 Ø1 $2 \varnothing$ BA FF A5 96 1351：BB A2 Øø Aø ø2 $2 \varnothing$ BD FF 14 1359：20 421468 Fø 2A A9 øø AC

1361：A2 38 Aø 1C 20 D5 FF 90 A5 1369：32 Aø 36 C9 Ø4 DØ Ø2 AØ 3C 1371：øø C9 ø5 Dø Ø2 Aø 11 C9 36 1379：Ø8 Dø Ø2 Aø 17 B9 C2 13 5A 1381：FØ A7 20 D2 FF C8 Dø F5 F5 1389：A9 3885 C1 A9 1C 85 C2 EA 1391：A9 C1 A2 E2 AØ 23 2ø D8 2A 1399：FF Bø CE AØ øø B9 4814 5B 13A1：FØ $872 \varnothing$ D2 FF C8 Dø F5 øE 13A9：EØ ØØ DØ ØA A5 B5 DØ Ø4 A4 13B1：A2 Ø1 Dø ø2 A2 ø9 8E 33 2D 13B9：4Ø $6 \varnothing$ Øø Øø Øø Øø Øø Øø 18 13Cl：øØ ØD 46494 C 45 2ø 4E 8E 13C9：4F $54 \quad 2 \varnothing 464 F 554 E 44 C 5$
 13D9：45 20 4E 4F $542 \varnothing 50 \quad 527 \mathrm{~F}$ 13E1：45 53 45 4E 54 øD øø øø E3 13E9：øD 4E 4F $2 \emptyset 46494 \mathrm{C} 454 \mathrm{~B}$ 13Fl：2ø 4E 41 4D 45 øD øø ØD 24 13F9：45 52524 F 52 øD øø FF 5D 14ø1： FF FF FF FF FF FF FF FF 29 1409：FF FF FF øø $\emptyset 1$ FF FF FF 39 1411：FF 03 FF 04 FF FF Ø2 FF 3E 1419：FF $06 \mathrm{FF} \quad 67$ Ø8 FF 65 FF 7D 1421：FF ØA FF ØB FF FF Ø9 FF 8E 1429：FF ØD FF ØE ØF FF ØC FF Ø6 1431：FF FF FF FF FF FF 10 FF 79 1439：FF FF FF FF FF FF FF FF 61 1441：øø A9 ØD 4C D2 FF øø ØD DD 1449：44 4F 4E 45 ØD øø øø Øø ED 1451：øの øø øø øø øø øø øø øø 79 1459：Øø Øø øø D3 45 4C 4543 E7 1461：54 2ø D6 4F 49434520 8D 1469：26 $2 \varnothing$ D2 45 54 55 52 $4 \mathrm{4E} 46$ 1471：Øø D3 45 4C 45435420 FB 1479：C6 49 4C 45 20 CC 4 F 43 4B 1481：41 54 49 4F 4E $2 \varnothing 26$ 2ø DC 1489：D2 455455524 E øø C5 DD 1491：4E $54 \begin{array}{llllll}55 & 2 \varnothing & \text { CE } & 41 & 4 D & C F\end{array}$ 1499：45 2ø 26 2ø D2 $455^{54} 55$ DC 14A1：52 4E 2ø 1F øø øD øD Dø 9B 14A9：52 455353 2ø 2A $2 \varnothing 54$ 2A $14 \mathrm{Bl}: 4 \mathrm{~F} \quad 20 \quad 5245 \quad 5455524 \mathrm{E} \quad 13$ 14B9：2Ø $54 \quad 4 \mathrm{~F} \quad 2 \varnothing$ C5 $44 \begin{array}{lllll}49 & 54 & 19\end{array}$ 14Cl：4F 52 øø øø øø øø øø 17 3D 14C9：18 181919 FC 68 D4 40 2C 14D1：AC lA 1A 1A 1B 1B $18 \quad 84$ B5 4D9：Fの 5C C8 øø øø øø 88 82 3E 14El：9C 40 9A 9E 9C 82 8E 90 42 14E9：82 9C 40 øø $62727 \varnothing 6 \mathrm{C}$ AC 14Fl：øø 13 ø5 1D 1D 1D 1D 1D 66 14F9：1D 1D 1D 1D 1D 1D 1D 1D 22 15ø1：12 D6 $4 \mathrm{~F} 49 \begin{array}{lllll}43 & 45 & 2 \varnothing & 31 & 09\end{array}$ 1509：20 1D D6 4 F 494345 2ø 4 C 1511：32 20 1D D6 4F 494345 D8 1519：20 33 2ø øD 9ø D7 $41 \begin{array}{llllll}56 & \text { Bl }\end{array}$ 1521：45 46 4F 52 4D ØD Dø $55 \quad 24$ 1529：4C $5345 \quad 20$ D7 $4944 \begin{array}{llllll}54 & \text { B9 }\end{array}$
 1539：CD 4F 44 ØD D2 49 4E 4717 1541：øD D3 59 4E 43 øD C6 49 1C 1549：4C 544552 ØD 1F CF 4344 1551：54 415645 øD C9 4E 5495 1559：45 5256414 C øD D 049 1B 1561：54 43 48 ØD Dø 495443 F7 1569：48 20 CD 4 F 44 øD CB 45 Al 1571：59 2ø D4 52 41 43 4B øD CA 1579：90 C1 $54 \begin{array}{llllll}54 & 41 & 43 & 4 B & \text { ØD E6 }\end{array}$ 1581：C4 45 43 $41 \begin{array}{llllll}59 & \text { ØD D3 } & 55 & \text { D7 }\end{array}$ 1589：53 54 41 49 4E øD D2 45 Cø
 1599：4F 494345 2ø 33 2ø CD 56 15Al：4F $442 \varnothing$ CC $45 \begin{array}{llllll}56 & 45 & 4 \mathrm{C} & \mathrm{AF}\end{array}$ 15A9：2ø C5 4E 56 1D 1D 1D 1D 39 15B1：1D 1D $2 \varnothing$ CC C6 CF ØD D3 E5 15B9：2F C8 $2 \varnothing$ D2 415445 øD D1 15Cl：9ø C6 49 4C 544552 2ø $5 \varnothing$ 15C9：DØ 49544348 1D 1D 1D 7B 15D1：1D 1D 1D 1D 1D 1D 1D CD AC 15D9：4F $44 \begin{array}{lllllll}55 & 4 \mathrm{C} & 41 & 54 & 45 & \text { OD } 1 \mathrm{~F}\end{array}$ 15E1：D2 $45 \begin{array}{lllllll} & 53 & 4 \mathrm{~F} & 4 \mathrm{E} & 4 \mathrm{E} & 43 & 7 \mathrm{D}\end{array}$ 15E9：45 1D 1D 1D 1D 1D 1D 1D 28

66 COMPUTEI May 1987

15Fl：1D 1D 1D 1D 1D 1D CD 4F AF 15F9：44 45 øD D6 4F 49434512 16ø1：2ø 33 ØD 1F 12 D3 484957 1609：46 $54 \begin{array}{lllllll}120 & 20 & \text { CF } & 43 & 54 & 41 & 37\end{array}$ 1611：56 45 ØD 12 ø5 $2 \varnothing$ 2ø $9 \varnothing$ F5
 1621：2ø A7 $2 \varnothing$ 2ø $9 \varnothing 2 \varnothing 2 \varnothing \varnothing 597$ 1629：2ø 9ø $2 \varnothing 2 \varnothing$ ø5 $2 \varnothing 9 \varnothing 2 \varnothing 79$ 1631：2ø ø5 2ø A7 2ø $2 \varnothing$ 9ø $2 \varnothing \mathrm{EF}$ 1639：2ø ø5 $2 \varnothing 9 \varnothing 2 \varnothing 2 \varnothing \varnothing 52 \varnothing 6 F$ 1641：A7 90922020 C5 3D C5 12 1649：58 49 54 øD 12 ø5 $2 \varnothing$ 2ø 54 1651：9ø $2 \varnothing 53$ ø5 $2 \varnothing 9 \varnothing 2 \varnothing 4450$ 1659： 65 2ø A7 $2 \varnothing 2 \varnothing 9 \varnothing 2 \varnothing 47$ D1 1661：ø5 $2 \varnothing$ 9ø $2 \varnothing 48$ Ø5 $2 \varnothing 9053$ 1669：2Ø 4A ø5 2ø A7 2ø $2 \varnothing 9 \varnothing 69$ 1671：2ø 4C ø5 $2 \varnothing 9 \varnothing 2 \varnothing$ 5B ø5 24 1679：2ø A7 90 92 2ø 2ø 2A 3D ED 1681：C3 4 C 454152 øD 651242 1689：2Ø 5A A7 $2 \emptyset$ 58 A7 $2 \varnothing 43$ 38 1691：A7 $2 \varnothing$ 56 A7 $2 \varnothing 42$ A7 $2 \varnothing 58$ 1699：4E A7 2ø 4D A7 2ø 3C A7 8D 16A1：2ø 3E A7 2ø 3F A7 øø øø FC 16A9：D4 $52 \begin{array}{llllllll}52 & 49 & 41 & 4 \mathrm{E} & 47 & 4 \mathrm{C} & 45 & 7 \mathrm{~F}\end{array}$ 16Bl：1D D3 $41 \begin{array}{lllllll}57 & 54 & 4 \mathrm{~F} & 4 \mathrm{~F} & 54 & \mathrm{Dl}\end{array}$ 16B9：48 1D Dø $554 \mathrm{C} 53452 \varnothing$ 1B 16Cl：2ø 2ø 1D CE 4F 49534522 16C9：2の $2 \varnothing$ 2ø 1D $2 \varnothing 2 \varnothing 2 \varnothing$ CF 75 16D1：46 46 2ø $2 \varnothing 1$ 1D $2 \varnothing 2 \varnothing 2 \varnothing 82$ 16D9：CC C6 CF $2 \emptyset 2 \emptyset 1 D 2 \emptyset 2 \emptyset E F$ 16E1：20 C5 4E 56 2ø $2 \varnothing$ 1D 2ø 9A 16E9：2ø $2 \varnothing$ D3 2 F C8 $2 \varnothing$ 2ø 1D BF 16Fl：2ø $2 \varnothing \quad 2 \varnothing$ CF $4 \mathrm{E} \quad 2 \varnothing \quad 2 \varnothing$ 2ø BA 16F9：1D $2 \varnothing \quad 2 \varnothing \quad 2 \varnothing$ 2D $322 \varnothing 2 \varnothing 55$ 17ø1：2ø 1D $2 \varnothing$ 2ø $2 \varnothing$ 2D $312 \varnothing$ C 4 17ø9：2の $2 \varnothing$ 1D $2 \varnothing 2 \varnothing 2 \varnothing 2 \varnothing 3 \varnothing$ E6 1711：2ø $2 \varnothing$ 2ø 1D $2 \varnothing$ 2ø $2 \varnothing$ 2B 1 A 1719：31 $2 \varnothing \quad 2 \varnothing \quad 2 \varnothing 1 D 2 \varnothing 2 \varnothing 2 \varnothing$ B7 1721：2B 32 2ø $2 \varnothing$ 2ø 1D $2 \varnothing 2 \varnothing 4 D$ 1729：CC Dø $2 \varnothing 2 \varnothing 2 \varnothing 2 \varnothing$ C2 Dø CF 1731：2Ø $2 \varnothing$ 2ø $2 \varnothing$ C8 Dø $2 \varnothing 2 \varnothing 67$ 1739：93 $1312 \mathrm{lF} 2 \varnothing 46 \quad 31 \quad 2 \varnothing \mathrm{C} 6$ 1741：92 2б CC $4 \mathrm{~F} 41442 \varnothing$ D6 81 1749：4F $49 \begin{array}{llllllll} & 43 & 2 \emptyset & 2 \emptyset & 12 & 2 \emptyset & \text { F3 }\end{array}$ 1751：46 33 2ø 92 2ø D3 54 4F E4 1759：52 45 2ø D6 4 F 494345 DE 1761：øD $12 \begin{array}{llllllll}12 & 2 \varnothing & 46 & 35 & 2 \varnothing & 92 & 2 \varnothing & 72\end{array}$ 1769：CE $45 \quad 57$ 2ø CE 41 4D 4598 1771：20 $2 \varnothing \begin{array}{llllllll}10 & 2 \varnothing & 12 & 2 \varnothing & 46 & 37 & 92\end{array}$ 1779：2ø 92 2ø D3 59 4E 544892 1781：øD 122020 CC $2 \varnothing 922 \varnothing$ EC 1789：CC $4 \mathrm{~F} \quad 41 \quad 44 \begin{array}{llllll} & 20 & \text { C6 } & 49 & 4 \mathrm{C} & 59\end{array}$ 1791：45 $2 \varnothing$ 2ø $2 \varnothing 12$ 2ø $2 \varnothing$ D3 95 1799：2ø 92 2ø D3 $41 \begin{array}{llllllllll}56 & 45 & 2 \varnothing & C B\end{array}$ 17A1：C6 49 4C 45 øD 05 C3 55 BC 17A9：52 52 45 $4 \mathrm{4E} 542 \varnothing$ D6 4 F 43 17B1：49 43 45 $2 \emptyset 12$ øø øø 2 AA BA $17 \mathrm{~B} 9: 2 \mathrm{~A} \quad \mathrm{E} 7$
 17C9：ø8 øø Øø øø øø øø øø $242 \varnothing$ 17D1：3ø 3 C øø øø øø $\varnothing 2$ Ø2 $\varnothing 235$
 17E1：øø F8 F8 F8 $2 \varnothing$ øø øб ØF øD 17E9：1ø ØA Ø1 øø øø øø øС øø DA 17F1：øの øø øø øø øø øø øø øø $2 \varnothing$ 17F9：øø øø øø ø1 ø6 ØB 11 1B D1 1801：25 $3447 \quad 61 \quad 83 \mathrm{AE}$ E3 ØA 78 1809：1A 2 B 3D $5063 \quad 79$ 8F A7 85
 1819：C7 F2 1F 4E 81 B6 EE 2A A1 1821：6A AD F4 4ø 8F E4 3E 9D BE 1829：ø2 6C DD 55 D4 5A E9 8ø EA 1831：1F C9 7C 3A 64 D9 BB AB 41 1839：A8 B5 D2 $\begin{aligned} & \text { Øø } \\ & \text { 18F } \\ & 92\end{aligned}$ F9 $75 \quad 33$ 1841：ø8 B2 775651 6B A4 øø F7 1849：7F 24 F2 EA 1065 EE AC EF 1851：A3 D6 49 øø FF 49 E5 D5 F8 1859：21 CB DC 5846 AC 93 øø 3A 1861：FE $93 \mathrm{CA} \mathrm{AB} 4297 \mathrm{~B} 8 \mathrm{~g}_{2} \mathrm{ED}$ 1869：ø7 øC 13 1D 2837 4B 67 7ø 1871：8B B8 ED ØB 1B 2 C 3E 50 5A 1879：65 7A $9 \varnothing$ A8 C1 DC F8 1621

1881：36 58 7C Al CA F4 $21 \quad 51$ 4A 1889：83 B9 Fl 2D 6D Bø F8 43 5E 1891：94 E8 42 A2 6772 E3 5B DD 1899：DA 61 Fø 8728 D1 8544 FD 18A1：ØE E4 C7 B7 B5 C3 El ØF 16 18A9：50 A3 ØB 89 1D C8 8E 6E 7C
 18B9：3A 91 1C DD D7 øD 84 3E 97 18Cl：41 $8 \mathrm{BF} \quad 2 \mathrm{~F} \quad 24 \quad 74 \quad 23 \quad 39 \mathrm{BA}$ FB 18C9： AE 1B $\quad$ Ø8 $7 \mathrm{D} \quad 82 \mathrm{IF} 5 \mathrm{E} 4886$ 18D1：E8 $47 \quad 72$ ø3 ø8 ØD 15 1F 84 18D9：2B $3 \mathrm{~B} \quad 5 \varnothing$ 6E 93 C 2 FA øC 99 18E1：1C 2D 3E 5166 7B 91 A9 36 18E9：C3 DD FA 1838 5A 7D A3 1E 18F1：CC F6 $23 \begin{array}{lllllll}53 & 86 & \mathrm{BB} & \mathrm{F} 4 & 30 & 1 D\end{array}$ 18F9：70 B4 FB 4798 ED 47 A7 36 1901：øC 77 E9 61 E1 68 F7 8F 9A 19ø9：30 DA 8F 4E 18 EF D2 C3 CA 1911：C2 D1 EF 1F 6ø B5 1E 9C BB 1919：31 DF A5 8785 A2 DF 3E BD 1921：Cl 6A $3 \mathrm{C} \quad 3963 \mathrm{BE} 4 \mathrm{~B}$ ØE A4 1929：ØB 45 BF 7D 83 D5 7972 DA 1931：C7 7C 96 1D 17 8A 7E FA E5 1939： 66 AB F2 E5 8E F8 2D 04 CC 1941：Ø9 ØE $17 \quad 21 \quad 2 \mathrm{E} \quad 3 \mathrm{~F} 5575 \mathrm{FE}$ 1949：9C CD ø2 øD 1D 2D 3F 52 BC 1951：67 7C 93 AB C4 DF FB 1A 3B 1959：3A 5B 7F A5 CE F8 2656 C6 1961：88 BE F7 3474 B7 FF 4B 97 1969：9C Fl 4C AC 11 7D EF 6881 1971：E8 6F FF 9738 E3 985848 1979：23 FA DE DØ DØ DF FE 2E 17 1981：71 C6 $3 \emptyset$ Bø 46 F5 BD Aø 55 1989：Aø BE FD 5D E2 8D 6160 Cl 1991：8D EA 7A 4040 7D FA BB 42 1999：C5 1B C3 C1 1A D4 F4 8199 19A1：80 FA $\begin{array}{llllllll} & \text { F4 } & 77 & 8 A & 37 & 87 & 83 & \text { AC }\end{array}$ 19A9：35 A9 E9 ø5 ØA ØF 1923 5ø 19B1：31 43 5B 7C A5 D8 ØA ØD 32 19B9：1D 2E $4 \varnothing \quad 5368$ 7D 94 AC 52 19C1：C5 Eø FD 1B 3B 5D 81 A7 7A 19C9：D $\emptyset$ FB $28 \quad 58$ 8B Cl FA 37 7E 19D1：77 BB Ø3 4F AØ F6 5Ø B1 37 19D9：16 82 F5 6E EE 76 ø6 9F 5A 19E1：40 EC Al 62 2D ø5 EA DC F9 19E9：DD ED øD 3E 81 D8 43 C4 C6 19F1：5B ØB D4 B9 BA DA 1A 7D BD 19F9： 03 Bl 8788 B7 16 A9 72 6F 1AØ1：75 B4 35 FA 9762 ØE 1061 1Aø9：6E 2D 52 E4 EA 69 6A F4 1F 1All：øF C4 1C 21 DD 5A A5 øø 37 1A19：øø Øø Øø øø øø øø øø øø 4D 1A21：øø øø øø Ø1 Ø1 Ø1 Ø1 Ø1 74 1A29：ø1 ø1 ø1 ø1 ø1 ø1 ø1 ø2 5E 1А31：ø2 ø2 ø2 ø2 ø2 ø2 ø3 ø3 68 1A39：ø3 03 Ø3 04 ø4 04 Ø4 05 8D

 1A51：ØE ØE ØF $^{10} 1111121315 \mathrm{FE}$ 1A59：16 17 18 1A 1C 1D 1F 21 B7 1A61：23 $25 \quad 27$ 2A 2 C 2F 3134 AC 1A69：38 3B 3 E 4246 4A 4 F 54 C 2 1A71：58 5 5E $63 \quad 6976767 D 854 A$ 1A79：8D 95 9E A8 B1 BC C7 D3 1C 1A81：Eø ED FB øø øø øø øø øø 21 1A89：øø øø øø øø øø øø øø ø1 BE 1A91：ø1 Ø1 ø1 ø1 ø1 ø1 ø1 ø1 C5 1A99：Ø1 Ø1 Ø1 ø2 ø2 ø2 日2 日2 EC 1AA1：ø2 ø2 ø3 ø3 ø3 ø3 ø3 ø4 16

 $1 A B 9: \emptyset B \quad \emptyset B \quad \emptyset C$ ØD øE øE ØF 1ø $5 F$ $\begin{array}{lllllllll}1 A C l: 11 & 12 & 13 & 15 & 16 & 17 & 19 & 1 A & 10\end{array}$ 1AC9：1C 1D 1F $2123 \quad 25 \quad 27$ 2A $6 F$
 1AD9：46 4B $4 \mathrm{~F} \quad 54 \quad 59$ 5E 64 6A AA 1AE1：7ø 77 7E 85 8D 96 9F A8 63 1AE9：B2 BD C8 D4 Eø EE FC øø ØA 1AF1：Øø øø Øø øø øø øø øø øø 26 1AF9：øø øø øø Ø1 ø1 Ø1 ø1 ø1 4D 1Bø1：ø1 ø1 ø1 ø1 ø1 ø1 ø1 ø2 38 1Вø9：ø2 ø2 ø2 ø2 ø2 ø2 ø3 ø3 42

1B11：ø3 03 Ø3 04 Ø4 04 ø4 0567 1B19：ø5 05 ø6 $06 \quad 07 \quad 07 \quad 07 \quad \varnothing 8$ 9E 1B21：ø8 Ø9 Ø9 ØA ØB ØB ØC ØD Ø9 1B29：øE ØE ØF $1 \varnothing 11121315$ D8 1B31：16 1719 1A 1C lD lF 21 Bl 1B39：23 $25 \quad 27 \quad 2 \mathrm{~A} \quad 2 \mathrm{C} \quad 2 \mathrm{~F} 3235 \quad 89$ 1B41：38 3 B $3 F 43 \quad 474 B 4 F \quad 54 \quad D 8$ 1B49：59 5E 64 6A 7ø 77 7E 86 DB 1B51：8E 96 9F A8 B3 BD C8 D4 ED 1B59：E1 EE FD øø øø øの øø øø FB 1B61：Øø øø øø Øø øø øø Ø1 Ø1 9A 1B69：ø1 ø1 ø1 ø1 ø1 ø1 ø1 ø1 9F 1B71：ø1 ø1 ø1 Ø2 ø2 ø2 ø2 ø2 C6 1B79：Ø2 ø2 ø3 ø3 ø3 ø3 ø3 ø4 EF 1B81：ø4 ø4 Ø4 Ø5 05 Ø5 Ø6 Ø6 99 1B89：07 $07 \quad 97 \quad 08$ Ø8 99 Ø9 ØA E6 1B91：øВ ØВ ØC ØD ØE ØE ØF 10 （ 39 1B99：11 121315161719 1A E9 lBAl：1C 1D 1F $2123 \quad 25 \quad 27$ 2A 49 1BA9： 2 C 2F $\begin{array}{lllllll}32 & 35 & 38 & 3 \mathrm{~B} & 3 \mathrm{~F} & 43 & \mathrm{CB}\end{array}$ lBBl：47 4B 4F 54595 F 64 6A 99 1BB9： $71 \quad 77$ 7E 86 8E 96 9F A9 76 1BC1：B3 BE C9 D5 E2 EF FD øø EA 1BC9：øø øø øø øø øの øø øø øø FF 1BD1：øø Øø Ø1 Ø1 Ø1 Ø1 Ø1 Ø1 47 1BD9：ø1 ø1 Ø1 Ø1 Ø1 ø1 Ø1 Ø2 11 1BE1：ø2 ø2 ø2 ø2 ø2 ø2 ø3 ø3 1B 1BE9：ø3 ø3 ø3 ø4 ø4 ø4 ø5 ø5 42 1BF1：ø5 05 Ø6 66 ø7 07 ø7 0877 1BF9：ø8 ø9 ØA ØA ØB $\emptyset_{B}$ øC ØD ø2 1Cø1：ØE ØF ØF 1011121415 F4 1Cø9：16 1719 1A 1 C 1E $1 \mathrm{~F} \quad 218 \mathrm{~F}$ lCll：23 2528 2A 2D 2 F 32358 B 1C19：38 3C 3 F 4347 4B 5054 F4 1C21：5A $5 \mathrm{~F} \quad 65$ 6B $71787 \mathrm{~F} 86 \mathrm{B4}$ 1C29：8E 97 Aø A9 B4 BE CA D6 4A 1C31：E2 Fø FE øø øø øø øø øø F6

## Program 2：Voices

1C38：50 $49414 \mathrm{E} 4 \mathrm{~F} 2 \varnothing 202053$
 1c48：ø4 ø4 øø øø øø øø øø øø 83 1C5ø： $3 \varnothing$ 3ø $3 \varnothing$ øø øø øø ø1 ø2 B6 1C58：ø2 øø øø øø Ø4 Ø4 Ø4 ØA D3 1C6ロ：ø8 ØA ø8 ø6 ø6 44 øø øø C1 1C68：øø 1ø ø5 ø1 øø 484 F 4 E 63 $\begin{array}{llllllll}1 C 7 \varnothing & 4 B & 59 & 2 \varnothing & 54 & 4 \mathrm{~F} & 4 \mathrm{E} & 4 \mathrm{~B} \\ 2 \varnothing & 2 \varnothing & 58\end{array}$
 1C8ø：øø øø øø øø øø $243 \varnothing 3 \varnothing$ D9 1C88：øø øø øø ø2 ø4 øø øø øø Ø1 1C90：Ø0 Ø4 ø4 Ø4 øø ØA ØA F8 BF 1C98： 06 Ø6 10 Øの $0 \varnothing$ ØF $9 \varnothing$ Ø5 B9 1CAø：ø1 øø 4D 41 4E 444 F 4 C 85 1CA8：49 4E $2 \varnothing$ 2ø $2 \varnothing 2 \varnothing 411134$ 1CBØ：41 ø5 ø8 ø6 øø øø øø øø 2C 1СB8：øø øø 3 C øø 3 C øø øø øø 5A 1CCØ： 64 Ø2 Ø1 FF øø FF 04 øø A3 1CC8： 04 ø6 22 Ø5 66 øø $051 \varnothing 63$ 1CDØ：Øø Øø ØF $1 \varnothing$ Ø8 Ø1 øø 4373 lCD8：4C $4152494 \mathrm{E} 45 \begin{array}{lllllll}54 & 20 & \mathrm{~B}\end{array}$ 1CEの：2の $2 \varnothing 2 \varnothing 111141$ ø8 98 EB 1CE8：$\varnothing 8$ øø øø øø øø øø øø øø 25
 1CF8：øø øの ø1 øø øø ø4 øø 2283 1Dø0：30 F8 Ø2 F8 ø9 øø øø 0 F B7 1Dø8：9ø 65 Ø1 Ø1 53 54 4545 B7 1D10：4C $2 \varnothing 4452554 \mathrm{~L} 2 \varnothing 2 \varnothing 66$ 1D18：11 1511 ø8 158 ø8 øø øø 23
 1D28：øø 97 ø2 ø2 ø2 øø øø øø 94 1D3ø：ø4 ø4 ø4 øø ø9 øø F8 ø8 3ø 1D38：øø 1ø øø øø øF 9ø ø5 ø1 3C
 1D48：2ø $2 \varnothing$ 2ø $2 \varnothing 2 \varnothing 4121 \quad 21$ 日A 1D50：ø8 ø8 ø8 øø øø øø øø øø 91 1D58：øø 182424 øø øø øø ø2 61 1D6ø：ø3 ø1 øø øø øø ø4 ø4 9478 1D68：5ø 6857 F8 0898 10 øø 22
 1D78：52， 49 4E $47 \begin{array}{llllll}53 & 2 \emptyset & 31 & 2 \varnothing & 6 A\end{array}$ 1D8ø：2ø＇ 20 21 2121 ø8 ø8 ø8 4A


#### Abstract

1D88：Øø øø Øø Øø Øø Øø 3C 3C 77 1D9の：3C øø øø øø Ø2 Ø3 Ø1 øø ø7 1D98：øØ Øø Ø4 Ø4 Ø4 5Ø 5ø 5Ø E5 1DAØ：F8 F8 F8 1Ø øØ ØØ ØF 1Ø E3 1DA8：ø5 Ø1 ØØ 53545249 4E A7 1DBØ： $47 \begin{array}{lllllllll}53 & 2 \emptyset & 32 & 2 \emptyset & 2 \emptyset & 2 \emptyset & 21 & 6 D\end{array}$ 1DB8： $21 \quad 21 \quad$ Ø8 18 ø8 øø øø Øø 8D 1DCØ：Øø ØØ Øø 24 3Ø 3C ØØ ØØ AF 1DC8：Øø Ø2 Ø3 ø1 øø øø øø Ø4 F7 1DDø：ø4 Ø4 5ø 5ø 5ø F8 F8 F8 6E   lDE8：20 $2 \emptyset \quad 2 \emptyset \quad 2 \emptyset 112121$ Ø8 98 1DFØ：Ø8 Ø8 øø Øø Øø øø Ø4 Ø4 3D 1DF8：18 18 18 Øø Øø Øø Ø2 Ø3 4F 1EØØ：Ø2 Øø Øø Øø Ø4 Ø4 Ø4 Ø6 7B 1Еø8：Ø5 Ø5 Ø6 Ø8 D8 Ø4 Øø Ø2 22 1ElØ：øF 1Ø Ø5 Ø6 Øø 46 4C 55 DF  1E2の：20 111111 Ø8 Ø8 Ø8 Øø 54 1E28：Øø Øø øø Øø Øø Øø 3C 3C 19 1Е3Ø：Ø7 Øø Øø Ø2 Ø2 Ø2 øø Ø1 29 1E38：Ø1 Øø Ø4 Ø4 øø 43 5ø F8 5C 1E4Ø：Øø F8 1Ø Øø Øø ØF 9ø Ø5 1F 1E48：ø1 Ø1 50455243555341 1E50：20 $42 \begin{array}{llllllll} & 41 & 53 & 53 & 20 & 41 & 11 & 39\end{array}$ 1E58：41 Ø8 Ø8 Ø8 øø Øø øø Øø B 8 1E6Ø：øØ øø 241824 Øø øø Øø C3 1E68：Ø3 Ø2 ø1 øø øø øø ø4 ø4 D2 1E7ø：ø4 Ø8 ØA Ø8 07 Ø7 Ø7 1ø E4  1E8Ø：41 $52 \begin{array}{llllllll}50 & 53 & 49 & 43 & 48 & 4 \mathrm{~F} & 68\end{array}$ 1E88：52 4420414141 Ø3 Ø1 2D 1E9の：Ø3 Øø Øø Øø Øø Øø Øø 4896 1E98：3C 3Ø Øø Øø ØØ ø2 Ø1 Ø2 ØВ 1ЕAØ：ØØ ØØ ØØ Ø4 Ø4 Ø4 Ø9 Ø8 67 1EA8：Ø9 Ø5 Ø5 Ø5 1Ø Øø ØØ ØF 2B 1EBØ：1Ø Ø5 Ø1 ØØ 4143434 F 43 lEB8：52 $44 \begin{array}{llllllll}49 & 41 & 4 \mathrm{E} & 2 \emptyset & 20 & 2 \emptyset & \mathrm{BF}\end{array}$ 1ECØ：11 4141 Ø8 Ø8 Ø8 Øø ØØ DE 


## Attention Programmers

COMPUTE！magazine is currently looking for quality articles on Commodore，Atari， Apple，and IBM computers（including the Commodore Amiga and Atari ST）．If you have an interesting home application， educational program， programming utility，or game，submit it to COMPUTE！，P．O．Box 5406，Greensboro，NC 27403．Or write for a copy of our＂Writer＇s Guidelines．＂

1EDの：Øø Øø Ø2 Ø4 øø øø øø øø 8D
 EEØ：F8 1ø Øø ØØ ØF 9Ø Ø5 Ø1 63 1EE8：Øø 4D 41 1EFØ：2Ø $46 \quad 49 \quad 53 \quad 4811 \quad 21 \quad 2117$
1EF8：Ø8 Ø8 Ø8 Øø ØØ ØØ Øø Ø4 4Ø 1Føの：ø4 øø 24 3ø ø9 øø øø ø2 12 Fø8：ø2 Ø2 Ø2 Øø øø øø Ø4 Ø4 14 1F1の：Cの ØØ ØØ F8 F8 F8 1の ØØ ØA 1F18：Ø1 ØF 9Ø Ø5 ø3 ø8 5ø 45 1B $1 \mathrm{~F} 2 \emptyset: 52434 \mathrm{~F} 4 \mathrm{C} 41544 \mathrm{~F} 5253$

 1F38：3C øø øø øø Ø2 ø2 ø2 øø Bø 1F4の：Øø øø Ø4 Ø4 Ø4 Øø Ø2 Ø4 67 $1 F 48: F 8$ Ø2 Ø4 2Ø ØØ Øø ØF 9Ø B4 1F50：ø5 Ø1 Øø 46524 E 4348 5ø 1F58：20 5ø 4F 4C 49434541 8C 1F60：11 11 ø8 ø8 ø8 øø øø øø 2D 1F68：Øø Øø Øø Øø 3C 3C Ø3 Ø7 86 1F7Ø：ø7 Ø2 Ø4 øø Øø Ø1 Ø1 Øø 39 1F78：Ø4 ø4 øø øø øø F8 F8 F8 88 1F8日：2の Øの Øø ØF 9Ø Ø5 Ø1 Ø5 5F 1F88：55 46 4F $2054414 \mathrm{~B} \quad 45 \quad 72$ 1F90：4F 46 1F98：Ø8 Ø8 Øø Øø Øø Øø Ø4 Ø4 E8 1FAØ：ØØ $3 \varnothing$ 3Ø Ø9 ØВ ØВ Ø2 Ø2 ØС 1FA8：Ø2 Øø Ø1 Ø2 Øø ØØ øø F Ø 19 1FBØ：ØØ ØØ FF FF ØØ Øø Øø Ø2 FØ
 1FCD：43 $2 \emptyset \quad 535745455 \emptyset 2 \emptyset 88$ 1FC8：2の $111311 \begin{array}{lllllll}11 & \emptyset 8 & \emptyset 1 & 04 & \emptyset \emptyset & 1 B\end{array}$ 1FDの：Øø ØØ ØØ ØØ Øø ØØ 3C 24 AB 1FD8：Ø6 Øø Øø Ø4 Ø2 Ø2 Ø2 Ø1 77 1FEØ：ØØ ØØ Ø4 Ø4 CB 18 ØØ Ø8 A6 1FE8：87 47 1の ØØ Øø ØF 9Ø Ø5 21 1FFØ：Ø2 $\quad$ Ø7 48 1FF8：50 $5445 \quad 52$ 2の $204181 \mathrm{C7}$ 2øøø：85 ø8 ø8 ø8 øø øø øø øø 86 2øø8：Øø Ø4 245454 øø Øø ØØ B5 2ø10：Ø2 Ø2 Ø2 FF FF FF Ø4 Ø4 1E 2ø18：Ø4 Ø3 Ø4 2Ø øØ Øø $\mathrm{F} \mathrm{\emptyset} 1493$ 2ø2ø：Øø Ø2 ØF 1ø ØE Ø9 Øø 46 9E 2ø28：49 4 C $54 \quad 45 \quad 52 \quad 45 \quad 44 \quad 2 \varnothing \quad 4 \mathrm{~F}$ 2ø3ø：45 4E 56111141 Ø8 Ø6 26 2Ø38：Ø8 Øø Øø øø ØØ Ø4 Ø4 Øø 94 2ø4ø：24 3ø Ø3 øø øø Ø2 Ø2 Ø2 ØD 2Ø48：Øø Øø Øø Øø Ø4 Ø4 59 Ø3 6E 2Ø5ø：Øø Ø8 5A FA ØØ ØØ Ø2 ØF AØ 2058：10 Ø5 Ø8 øø 48414 E 44 ØВ 2ø60：2Ø 243 4C $41 \begin{array}{lllllll}5 \emptyset & 20 & 20 & 2 \emptyset & 82\end{array}$ 2ø68：81 8181 ø8 ø8 ø8 øø Øø DA
 2ø78：Øø Øø Ø2 ø2 Ø2 øの øø Øø 29 2ø8ø：ø4 Ø4 Ø4 2253 Ø3 øø Ø3 1ø 2ø88：ø3 1ø Øø øø ØF 1Ø Ø5 Ø1 12
 2098：52 49 4l 4420414141 8A

 2ØВØ：Ø2 Ø2 øø øø øø Ø4 Ø4 Ø4 8E 2øB8：øø Øø øø F8 F8 F8 1の Øø 54 2øCØ：Øø ØF 1Ø Ø5 Ø1 ØØ 5354 1A 2øC8：41 $49 \begin{array}{llllllll} & 52 & 43 & 41 & 53 & 45 & 2 \emptyset & 7 C\end{array}$
 20D8：Øø Øø Øø øø Øø ØØ ØØ Øø 19 2øEØ：3C Ø1 øø Øø Ø2 Ø2 Ø2 Øø 9B 2ØE8：ØØ FF Øø Ø4 Ø4 ØØ ØØ Ø9 92 2ØFの：F8 Øø Ø5 1の ØØ ØØ ØF 9Ø FD 2ØF8：57 Ø1 $0752 \begin{array}{lllllll}51 & 4 \mathrm{E} & 44 & 4 \mathrm{~F} & 46\end{array}$
 21ø8：11 41 Ø8 ø8 ø8 øø øø øø E4 211Ø：øø Øø Øø Øø Øø 3Ø Ø1 øø 15 2118：Øø Ø2 Ø2 Ø2 øø øø FF Øø 3B 2120：Ø4 Ø4 Øø Øø Ø9 Øø Øø Ø5 B2 2128：1Ø ØØ ØØ ØF 9Ø 35 Ø1 Ø8 C6 2130：50 $41 \begin{array}{lllllll}54 & 54 & 45 & 52 & 4 \mathrm{E} & 53 & 1 \mathrm{E}\end{array}$
 2140：Ø8 Ø8 øø Øø øø øø øø øø 88 2148：Øø Øø 3ø Ø1 Øø Øø Ø2 Ø2 А6 2150：Ø2 Øø Øø FF Ø4 Ø4 Ø4 Øø CB 2158：Øø Ø5 Øø Øø Ø4 1ø Øø øø 3C

2160：ØF 90 35 Ø1 0753 50 41 6C

 2170：20 11 43 41 Ø8 05 Ø8 øø E7 2178：Øø øø øø øø øø 24 3ø 18 с3 218ø：øø Ø2 øø Ø2 Ø2 Ø2 Øø ø2 7D 2188：Øø Ø4 Ø4 Ø4 Ø7 Øø Øø Ø7 CB 2190：F8 Øø 1Ø øø Øø ØF 90 Ø5 B3 2198：ø7 ØØ 42 41 475049 | 19 |
| :--- | :--- | :--- | :--- | :--- | :--- |

 21A8： 41 Ø2 Ø2 Ø2 Øø Øø Øø Øø 6С 21Bの：Øの Øの $3 \varnothing 4848$ ØØ Øの Øø BF
 21CØ：ø4 ØØ $2 \emptyset 2 \emptyset$ F8 F8 F8 10 B8 21C8：Øø Øの ØF 1の Ø5 Ø1 ØØ 54 6E
 21D8：2の 20 20 114121 Ø8 Ø2 48 21Eの：ø8 øø Øø Øø Øø Ø4 Ø4 Øø 3F 21E8：3C 3C Øø ØØ Øø Ø2 Ø2 Ø2 66 21Fの：øの ØØ Øø Øø Ø4 Ø4 2425 DØ 21F8：55 Ø7 A8 A8 2B ØØ Ø2 ØF B3 22のØ：9Ø ØА Ø6 Øø 52 4E 44 2Ø 44 2208： $48 \quad 41 \quad 524 \mathrm{D} \quad 4 \mathrm{~F} \quad 4 \mathrm{E} 49 \begin{array}{lllll} & 48 & 7 \mathrm{E}\end{array}$ 221の：81 43 41 Ø8 Ø8 ø8 ØØ øø EE 2218：Øø Øø Øø Øø ØС 3C 3Ø øø ØE 222ø：øø øø Ø2 Ø2 Ø2 øø FF Ø2 D6 2228：Øø Ø4 Ø4 Øø Øø Øø 8F FC ØA 223Ø：øø 2ø øø øø ØF 9Ø 24 Ø6 85 2238：$\varnothing 8 \quad 4241 \quad 53534 \mathrm{~F} 4 \mathrm{~F} \quad 4 \mathrm{E} \quad 33$
 2248：ø8 Ø8 ø8 øø øø øø øø Øø 93 225Ø：Ø4 ØØ ØØ 24 Ø6 Øø ØØ Ø2 ØВ 2258：Ø2 Ø2 øø øø øø øø Øø Ø4 22 2260：øØ 44 Ø0 F8 Ø2 F8 ØD ØØ 53 2268：øø ØØ 9Ø Ø5 Ø1 Ø1 4F 52 Øc
 2278：20 20111111 Ø8 1188 С8 228ø：øø øの øø øø øø øø 3ø 3C 61 2288：24 øø ø7 øø Ø2 ø2 Ø3 øø DD
 2298：F4 44 D4 20 øø øø ØF 10133 22AØ：ØA Ø1 ØØ $574 \mathrm{~F} 57202 \emptyset$ D7
 22Bø：21 41 Ø8 Ø8 Ø8 ØØ Øø Øø 97
 22Cø：øø ø2 ø2 Ø2 øø øø øø ø4 E9 22C8：Ø4 Ø4 A9 Øø Øø Ø8 F8 F8 50 22Dø：Ø1 Øø Ø2 ØF 9ø ØA Ø8 Øø 83 22D8：53 4C $494445 \quad 52$ 2ø 20 1B 22EØ：2Ø 20 2Ø $2 \varnothing 111141$ ø8 9A 22E8：ø8 ø8 øø øø øø øø øø øø 33 22Fの：24 3ø 3ø øø Ø7 Øø Ø2 Ø4 99 22F8：Ø1 Øø Ø2 ø2 Ø4 Ø4 Ø4 ØA 60 23Øø：Øø Øø 87 F6 F6 2Ø ØØ Øø DE 23Ø8：ØF 9Ø ØA Ø7 ØØ 4D 4554 BF 2310：41 4C 4C $49 \quad 43 \quad 41 \quad 20 \quad 20$ A7 2318：2Ø 11 15 43 Ø8 ø8 ø8 øø F9 232の：øø øø øø øø øø 2448 ЗС С3 2328：Øø Øø ØØ Ø2 Ø4 Ø2 Øø Ø2 B8 2330：Ø2 Ø4 Ø4 Ø4 ØА ØА ØА Ø9 CE 2338：Ø4 Ø4 2Ø Øø øø ØF 9ø ØA FC 2340：ø7 Øø 4D 4 F 4E $53 \quad 54 \quad 45 \quad 56$ 2348：52 $2064241 \quad 53$ 53 $41 \begin{array}{llllll}41 & \text { C7 }\end{array}$ 2350：41 Ø8 Ø8 ø8 øø øø øø øø BA 2358：Øø Øø 18243 日 øø Øø Øø 65 2360：Ø2 Ø2 Ø2 Øø øø øø Ø4 Ø4 74 2368：Ø4 ØF Ø9 Ø4 ø8 Ø6 Ø5 20 58 2370：øø øø ØF 1Ø ØA Ø1 Øø 5341 2378：59 4E $54 \quad 48 \quad 45 \quad 58 \quad 20 \quad 20$ F9
 2388：ø8 Øø Øø øø Øø øø øø 3 Ø Ø3 2390：48 3С Øø øø Øø Ø2 Ø2 Ø1 17 2398：øø Øø Øø Ø4 Ø4 Ø4 Ø9 Ø9 6А 23AØ： 0798 Ø8 98 1Ø Øø ØØ ØF AA 23A8：10 Ø5 Ø1 ØØ 2A 2A 2A 2A D 0 $23 \mathrm{~B} \emptyset: 2 \mathrm{~A} \quad 2 \mathrm{~A} \quad 2 \mathrm{~A} \quad 2 \mathrm{~A} 2 \mathrm{~A} \quad 2 \mathrm{~A} 2 \mathrm{~A} \quad 2 \mathrm{~A} \quad \mathrm{~F} 6$ 23B8：11 11 11 Ø8 Ø8 Ø8 Øø øø CE 23CØ：Øø Øø Øø øø 24 3Ø 3C Øø 61 23C8：Øø Øø Ø2 Ø2 Ø2 Øø øø Øø 7F 23Dの： 04 Ø4 Ø4 øø øø Øø F8 F8 85 23D8：F8 1Ø ØØ øø ØF 10 FF Øø 58



# When It ComesTo ReadingMusic, MostPeopleDrawABlank. 

If you're not content with your knowledge of music, Wenger has something that will fill in the blanks.

It's called The Music Class.m An exciting new 5-part
 software series for kids, adults, beginners, even professionals.

The Music Class is the consummate music teacher. Its simple step-by-step instructions teach everything from the basics to rhythm to note reading-all at your own speed.

And The Music Class even gives advice, points out errors, and applauds correct answers.

Fundamentals: Make sense of those skinny lines with blobs and tails. All the basics from note reading to rhythm. \$49.

Rhythm: What is the real difference between a waltz and a polka, ragtime and rock, and more. A comical little guy named Mr. Metro Gnome is your teacher. \$49.

Ear Training: How to hear exactly what's happening in a piece of music. You'll never listen to Bon Jovi or Mancini quite the same way again. \$49. Music Symbols: And you thought they were called squiggles, slashes, and dots. Animated graphics and games will teach you up to 80 musical symbols. $\$ 39$.

Note Reading: Know the difference between an E-Flat eighth note and a B-Flat quarter note. This is where you learn to read the foreign language called music. \$39.

Any Apple II or IIGS with 64K memory can run The Music Class.

So order by calling toll free 1-800-843-1337. In Hawaii and Alaska call collect 612-854-9554.

And begin changing that blank stare into an ear-to-ear grin.

# ShapeMaker For Apple II 

William C. Vergara

Have you ever wished that you could enliven your programs with eyecatching title pages or graphs and charts labeled with descriptive information? Shape tables are very useful for creating such effects on the Apple II. This comprehensive program makes it easy to create and edit shape tables for a variety of purposes. It runs on any Apple II-series computer, under either ProDOS or DOS 3.3.

Many programs can be enhanced by presenting graphics based on custom character fonts or other special shapes. But designing hi-res characters and generating shape tables can be a complex undertaking. "ShapeMaker" provides a simple means of generating and editing shape tables containing characters and shapes-from very small figures to shapes many times larger than standard Apple characters. You can design your own shapes and characters, or you can copy them automatically from existing shape tables and add them to your own customized table.

## Using ShapeMaker

Type in and save Programs 1 and 2. Note that you must save Program 2
with the filename SHAPEMAKER because that's the name Program 1 uses when loading Program 2. Program 1 is a very short program that resets the BASIC start-of-program pointer and runs Program 2. This is done to create a protected memory area for hi-res page 1.

Because BASIC memory is modified, you should be very careful about editing or resaving either of these programs after you have run them. If you need to edit the program, you should reboot the computer, reload the program from disk, make the desired changes, and resave it before running it again.

When you run the program, it displays a main menu which looks like this:

## MAIN MENU

(1) DESIGN A NEW SHAPE
(2) ESTABLISH SIZE OF DOT MATRIX
(3) CHANGE STARTING COORDINATES
(4) SAVE SHAPE TABLE TO DISK
(5) LOAD OR START A NEW SHAPE TABLE
(6) REVIEW A SHAPE TABLE
(7) COPY SHAPES FROM OLD TO NEW TABLE
(8) EDIT THE NEW SHAPE TABLE
(9) LEAVE THE PROGRAM
(PRESS <ESC> KEY TO CATALOG A DISK)

The main menu gives you ac-

"ShapeMaker" for Apple II computers is a convenient tool for creating and editing shape tables. This screen illustrates just one of the ways that shape tables can be used.
cess to the program's basic functions. To select an option, simply press the indicated key. For instance, you can press the ESC key to display a catalog of the current disk, or press 9 to exit the program and return to BASIC.

## Creating A New Shape

You will usually begin with option 5, which clears the screen and prints a menu with two options. Press N to begin a new table from scratch, or L to load a partially completed table from disk.

If you choose to create a new shape table, the program asks you
to enter the table's capacity-that is, the number of shapes which this table will contain. An Apple shape table can hold as many as 255 shapes. Next, the program prompts you to enter the number of rows and columns for the design matrix and the starting point within the matrix. For instance, say that you want to design a character which is seven pixels (screen dots) wide and nine pixels high; you would enter 7 at the column prompt and 9 at the row prompt. The starting point determines where in the matrix you will begin drawing; the lower left corner of the matrix corresponds to coordinates $(1,1)$.

The design matrix can be as wide as 35 columns and as high as 25 rows. On the screen, it is displayed six times its actual size. You are now ready to design your first shape. If you press $Q$ followed by N , you return to the main menu.

Once the matrix has been set up, you can begin designing a new shape by selecting option 1 from the main menu. The matrix appears immediately with a blinking cursor, which indicates your current position. Beneath the matrix, Shapemaker displays the capacity of the new shape table and the number of the shape being designed.

As indicated by the prompts, you can move the cursor with the arrow keys (for the IIe and IIc) or the keys I, J, K, and M. Press P wherever you want to draw a dot: That point in the matrix is filled. Continue by moving the cursor and plotting pixels until the shape is complete. Pressing $Q$ ends the design process and displays the shape in its true size to the right of the matrix.

At this point you can press $Y$ to add the shape as the next numbered shape in the current table, or press N to discard it. In either case, the program returns to the main menu.

## Additional Options

From the main menu, you can select option 2 to change the matrix size or option 3 to select new starting coordinates for the next shape. It's a good idea to save new shape tables frequently to protect against a power failure or other accidents. To save a file, choose option 4 and follow the prompts on the screen.

After it saves the file, ShapeMaker prints the starting address and the length of the file in bytes, which you may wish to record for future reference.

ShapeMaker goes to some lengths to protect against mistakes. If you hit the wrong key by mistake, it usually gives you another chance to repeat the input or sends you back to the main menu.

Option 7 allows you to copy an existing shape table into a new table. Again, you can simply follow the prompts on the screen after selecting this option. If there is a source shape table in memory, the program prints its name and asks whether you wish to copy that table. If no table is in memory, ShapeMaker asks you to enter both the name of the desired shape table and the drive where it can be found. At that point, the program gives a description of the source table and asks for the number of the source shape you wish to copy. Before proceeding with the copy, it allows you to verify that this is the correct shape by displaying it on the screen. If you press $Y$ (yes), that shape is copied to the end of the current shape table.

It can take several seconds to copy a shape, so ShapeMaker prints a flashing reminder while it is busy. When the copying is complete, you can either enter the next shape number to copy or enter 0 to exit to the main menu.

Option 6 allows you to review either the source or the destination table.

Option 8 lets you edit the new shape table. When you choose this option, it displays a four-item menu asking whether you wish to insert a shape, delete a shape, increase the table's capacity, or decrease its capacity. For the first two items, you'll need to enter the number of the shape to insert or delete. Inserting shape 7, for instance, has the effect of moving upward all existing shapes with the number 7 and above, and putting in a new shape as number 7 .

When you insert, ShapeMaker asks whether you will design the new shape from scratch or copy it from a source table in memory. For a new design, the program jumps to the design matrix. If you choose to
copy the new shape into place, the program follows the normal copying procedure, but inserts the shape where indicated rather than adding it to the end of the shape table. If the shape table is full before insertion, the table capacity is increased by one to make room for the inserted shape (as long as the number of shapes would not exceed 255). Deleting a shape removes it from the table and decrements the number of each shape higher than the number chosen.

When you select option 9 (quit), ShapeMaker checks to see if the new table has been changed since the last save. If so, it asks whether you really want to lose the changed shape table, and exits only if you respond with $Y$ (yes).

## Custom Character Sets

Programs 3-5 are three sample character sets which you can use immediately or modify further to your own tastes. Each shape table must be entered with the "MLX" machine language entry program listed elsewhere in this issue. Here are the starting and ending addresses needed to enter these files with MLX:
Program 3. SHAPETABLE3X6
$\begin{array}{ll}\text { STARTING ADDRESS? } & 7800 \\ \text { ENDING ADDRESS? } & 7 B F F\end{array}$
Program 4. SHAPETABLE5X7
$\begin{array}{ll}\text { STARTING ADDRESS? } & 7800 \\ \text { ENDING ADDRESS? } & 7 \mathrm{CA} 7\end{array}$
Program 5. SHAPETABLE7X9
STARTING ADDRESS? 7800
ENDING ADDRESS? 7F8F
The first shape table (SHAPETABLE3X6) contains 58 uppercase letters, numerals, and other ASCII characters in a format three pixels wide and six pixels high. The characters are small enough so that 70 of them can be placed across the high-resolution screen spaced one pixel apart.

The second table (SHAPETABLE5X7) duplicates the standard Apple character set in size, with uppercase, lowercase, and all other standard characters. The third shape table (SHAPETABLE7X9) includes a larger version of the previous table, plus a complete Greek alphabet.

Once you have saved these files to disk, they can be loaded,
reviewed，and edited at any time with ShapeMaker．

## Displaying A Shape Table

Program 6 is a short BASIC pro－ gram that will display any of the three example shape tables in its entirety．To view a shape table，run Program 6 and answer the two prompts requesting a filename and drive number．The shape table will be displayed on the monitor screen in several rows of 20 characters each．

## Hi－Res Bar Chart

Programs 7 and 8 aren＇t necessary to use ShapeMaker，but you may want to type them in to view an example of what can be done with shape tables．Program 7 is a BASIC program that loads a shape table into memory and uses it to create a bar chart on the hi－res screen．（See photo．）Program 8 is the shape table data for Program 7．It should be entered with MLX using these addresses：
Program 8．BARTABLE
STARTING ADDRESS？ 7800

## ENDING ADDRESS？ 79EF

For Program 7 to function properly， you must save the data from Pro－ gram 8 with the name BARTABLE． （See line 300 of Program 7．）

## Program 1：SHAPEBOOT

For instructions on entering this program． please refer to＂COMPUTE！＇s Guide to Typing In Programs＂elsewhere in this issue．
D2 $1 \varnothing$ REM THIS PGM RESETS THE ST ART OF BASIC
95 2ø REM IT ALSO RUNS SHAPEMAKE R
日8 3ø POKE 1ø3，1：POKE 1ø4，64：P OKE 16384，$D:$ REM PUT BASIC ABOVE HIRES PAGE 1
E 4 4ø PRINT CHR\＄（4）；＂RUN SHAPEM AKER＂

## Program 2：SHAPEMAKER

For instructions on entering this program，
please refer to＂COMPUTEI＇s Guide to Typing In Programs＂elsewhere in this issue．

345 GOSUB $342 \emptyset$
5B $1 \varnothing$ TEXT ：HOME ：IF PEEK（ $1 \varnothing 3$ $)+256 \cdot * \operatorname{PEEK}(1.54)<>1$ 6385 THEN PRINT ：PRINT＂R UN SHAPEBOOT TO SET START OF BASIC＂：PRINT ：GOSUB 2 12ø：GOTO 1ø4Ø
$602 \varnothing \mathrm{BL}=\varnothing: K T=\varnothing: X=\varnothing: Y=\varnothing$ ： $I=\varnothing: \operatorname{CODE}=\varnothing: M \$=" ": Q=$ $\emptyset: X Z=\varnothing: B H=\emptyset: P=\varnothing: H=$ $\emptyset: R=\varnothing: C=\varnothing: A D D R=\varnothing$
BE 30 ONERR GOTO $156 \emptyset$
$504 \varnothing$ HCOLOR＝3：SCALE $=1:$ ROT $=$ Ø：TA $=3 \emptyset 72 \emptyset: T B=23 \emptyset 4: P O$ KE TB，$: ~ P O K E ~ T A, ~ Ø: ~ R E M ~$
\＄78øø（NEW）\＄9øø（OLD）TA BLES
$385 \emptyset$ TC $=7938:$ FLAG $=\emptyset$
F9 $6 \emptyset$ POKE 768，1：POKE 769，$\curvearrowleft: ~ P O ~$ KE 779，4：POKE 771，Ø：REM CURSOR TABLE
3D $7 \emptyset$ POKE 772，112：POKE 773，3ø： POKE 774，7：POKE 775，32：
POKE 776，$\varnothing$
$078 \emptyset$ POKE TC，1：POKE TC $+1, \emptyset:$ POKE TC $+2,4:$ POKE TC +3 ，$\varnothing$ ：REM EDIT TABLE
3990 GOTO 84ø
BD $1 \emptyset \emptyset$ TEXT ：HOME ：$S N=\emptyset$
$6711 \emptyset$ PRINT＂PLEASE PRESS：＂：PR INT ：PRINT＂L TO LOAD A SHAPE TABLE FROM DISK＂ ：PRINT＂$N$ TO START A NEW SHAPE TABLE＂：PRINT ： PRINT ：PRINT＂PRESS ANY OTHER KEY FOR MAIN MENU＂ ：PRINT ：PRINT
BB $12 \emptyset$ PRINT＂YOUR SELECTION：＂； ：GET A\＄：PRINT A\＄
AE $13 \emptyset$ IF $A \$=$＂N＂THEN $22 \emptyset$
C8 140 IF $A \$<>" L "$ THEN 84の
$1115 \emptyset$ PRINT ：INPUT＂NAME OF TA BLE＂；N\＄
B1 $16 \emptyset$ GOSUB 154ø：REM GET DRIV E \＃
7E $17 \emptyset$ PRINT CHR\＄（4）；＂BLOAD＂；N \＄；＂，A＂；TA；＂，D＂；AN
$29189 \mathrm{~N}=($ PEEK $(T A+2)+256$ ＊PEEK（TA＋3）－2）／ 2
4A 190 SN＝PEEK（TA）：PRINT ：I $F S N=N$ THEN PRINT＂TABL E FULL＂：PRINT ：GOSUB 21 20：GOTO 84ø
$5929 \varnothing$ ADDR $=$ PEEK（TA + SN＊ 2 $+2)+$ PEEK（TA + SN＊ 2 ＋3）＊256＋TA
B4 210 GOSUB 34øø：GOSUB 212ø：G OTO 84の
F1 220 TEXT ：HOME ：PRINT＂PLEA SE ENTER THE DESIRED NUMB ER＂：INPUT＂OF SHAPES FOR THIS TABLE：＂；N：IF $N>$ 255 OR $N<1$ THEN PRINT ： $E N=2$ ：GOTO 158ø
BB $23 \emptyset$ POKE TA，$\emptyset: ~ P O K E ~ T A ~+1, ~ \emptyset ~$
CA 24ø D1 $=2 * N+2$
A4 25ø POKE TA＋2，D1－256＊IN T（D1／256）
$2226 \emptyset$ POKE TA +3 ，INT（D1／ 25 6）
$2527 \emptyset \mathrm{FOR} I=T A+4 \mathrm{TO} T A+2$ ＊$N+3:$ POKE I，D：NEXT I
6F $28 \emptyset$ PRINT ：PRINT＂CHOOSE SIZ E OF SHAPE DESIGN GRID＂
36 $29 \emptyset$ INPUT＂NUMBER OF COLUMNS （1－35）＂；C：C＝6＊C：I $F C>210$ THEN 290
15 $3 \emptyset \emptyset$ INPUT＂NUMBER OF ROWS（ 1 －25）＂；R：R＝15g－6＊R ：IF R＜$\varnothing$ THEN $3 \emptyset \varnothing$
4F 31ø HGR ：POKE 25ø，R：POKE 25 1，C
49320 IF $C=\emptyset$ OR R $=15 \emptyset$ THEN 155ø
B9 33ø FOR I $=R$ TO $15 \emptyset$ STEP 6： HPLOT $\emptyset, I$ TO $C, I$ ：NEXT I
C5 340 FOR I $=0$ TO C STEP 6：HP LOT I，R TO I，15ø：NEXT I
$1735 \emptyset$ IF $F 1=1$ THEN $37 \emptyset$
66360 IF $A=1$ OR FLAG $=1$ THEN 390
71370 HOME ：VTAB 21：PRINT＂OR IGIN OF SHAPE？LOWER LEF T IS（1，1）＂
EB 38ø INPUT＂COLUMN＂； $\mathrm{X1}$ ：INPUT ＂ROW＂；Y1
$D B 390 X=6 * X 1-3: Y=153-$

6＊Y1
5F $4 \emptyset \emptyset$ IF F $1=1$ THEN $224 \emptyset$
CB $41 \varnothing$ IF $S N=N$ AND $F L A G=\emptyset \quad \mathrm{TH}$ EN PRINT＂TABLE IS FILLED TO PRESENT CAPACITY＂：PR INT ：PRINT ：GOSUB 212 GOTO 84ø
$7 E 420$ IF FLAG $=1$ THEN $A D D R=F$ EEK $(T C+2)+$ TC：GOTO 4 4ø
7F $43 \emptyset$ ADDR $=$ PEEK $(T A+S N * 2$ $+2)+256 *$ PEEK（TA +5 $N * 2+31+T A$
04440 POKE 232，Ø：POKE 233，3：R EM CURSOR TABLE
64 45＠HOME ：VTAB 21：FRINT＂TA BLE CAPACITY：＂；N；＂SHAPE S－THIS IS \＃＂；
$8846 \emptyset$ IF FLAG $=\varnothing$ THEN PRINT SN ＋1：GOTO 48ロ
$6347 \emptyset$ PRINT IS
44 48ø VTAB 22：PRINT＂TO MOVE C URSOR，USE IJKM OR ARROW KEYS＂
$2549 \emptyset$ VTAB 23：PRINT＂PRESS：$P$ TO PLOT A POINT＂
8E 5øø VTAB 24：PRINT TAB（ 9）；＂Q TO END THIS SHAPE＂；
$9651 \emptyset$ CODE $=\varnothing$
97520 GOSUB 146ø：H＝8：REM DRAW B LINKING CURSOR
24546 IF $M \$=" P$＂THEN CODE $=4$ ： $\operatorname{FOR} I=X-1$ TO $X+1:$ HPLOT I，Y－ 1 TO I，Y +1 ：NEXT I：GOTO $52 \emptyset$
2755 IF $\mathrm{M} \$=$＂Q＂THEN POKE ADD R，CODE：POKE ADDR $+1,255$ ：GOTO 66ロ
EB 590 POKE 6，ASC（M\＄）：POKE 8， Y：POKE 9，X：POKE 252，COD E：CALL 2948
FE GøØ H＝PEEK（7）：$X=$ PEEK（9） $: Y=\operatorname{PEEK}$（ 8 ）
$4 E 61 \emptyset$ IF $H=8$ THEN $52 \emptyset$
78649 POKE ADDR， $\mathrm{H}: \mathrm{ADDR}=\mathrm{ADDR}+$ 1
GOTO $51 \emptyset$
$9665 \emptyset$ GOTO 51ø
$7866 \emptyset$ IF FLAG
7866 IF FLAG $=1$ THEN ADDR $=P$ EEK $(T C+2)+T C: L O C=A$ DDR：GOTO 68ø
$9467 \emptyset$ ADDR $=$ PEEK $(T A+S N * 2$ $+2)+256$＊PEEK（TA＋S $N * 2+3)+T A: L O C=A D D$ R
B6 $68 \emptyset V 1=$ PEEK（LOC）：IF V1＝ 255 THEN POKE ADDR，Ø：ADDR $=\mathrm{ADDR}+1:$ GOTO 78！
EF $69 \emptyset V 2=$ PEEK $($ LOC +1$):$ IF $V$ $2=255$ THEN POKE ADDR，$V 1$ ：POKE ADDR＋1，$:$ ADDR＝ ADDR＋2：GOTO 78ø
DE 7 Øø V $=$ PEEK $(L O C+2):$ IF $V$ $3=255$ THEN POKE ADDR，V1 +8 ＊V2：POKE ADDR +1 ， Ø：ADDR＝ADDR＋2：GOTO 7 8ø
EF $71 \emptyset$ BYTE $=V 1+8 * V 2+64 *$ V3
A4 729 IF BYTE $=\varnothing$ THEN POKE ADD R，64：POKE ADDR＋1，24：AD $D R=A D D R+2: L O C=L O C+$ 3：GOTO 68ø：REM USES 3 SKIP－UP VECTORS
7 D 73 IF V3＞ 9 AND V3＜ 4 THEN POKE ADDR，BYTE：ADDR＝AD $D R+1: L O C=L O C ~+~ 3: ~ G O T$ 0 689：REM USE ALL 3 VEC TORS
3274 B BYTE $=V 1+8 * V 2:$ REM SRD VECTOR NOT USED FROM HERE ON
$0675 \emptyset$ IF $V 2>\emptyset$ THEN POKE ADDR， BYTE：ADDR＝ADDR＋1：LOC
＝LOC＋2：GOTO 689：REM 2 VECTORS USED
F9 $76 \varnothing$ IF $\mathrm{V}_{1}$＜＞$\quad$ THEN POKE ADD R，BYTE：ADDR $=$ ADDR＋1：LO $\mathrm{C}=\mathrm{LOC}+1$ ：GOTO 68ø：RE M 1 VECTOR USED
$6677 \varnothing$ IF BYTE $=\varnothing$ THEN POKE ADD R，24：POKE ADDR＋1，8：ADD $R=$ ADDR $+2:$ LOC $=$ LOC＋ 2：GOTO 68ø：REM 2 SKIP－ UPS AND 2 OFFSETTING MOVE S SIDEWAYS
FE 780 IF FLAG $=1$ THEN POKE 232 ，TC－INT（TC／256）＊ 25 6：POKE 233，INT（TC／ 25 6）：DRAW 1 AT 2øø，1øø：G0 TO $227 \varnothing$
$8479 \varnothing$ POKE TA，SN＋1：POKE 232， TA－INT（TA／256）＊ 256 ：POKE 233，INT（TA／ 256 ）：XDRAW $5 N+1$ AT $245,1 \varnothing$ ø
$848 \emptyset \varnothing$ HOME ：PRINT ：VTAB 22：$P$ RINT＂SAVE THIS AS SHAPE NUMBER＂；SN＋1；＂（Y／N）＂；： GET A\＄
$0881 \varnothing$ IF $A \$=$＂Y＂THEN $S N=S N$ $+1: S F=1: I F S N<N$ THE N D1＝ADDR－TA：POKE TA $+2 * S N+2, D 1-256 *$ INT（D1／256）：POKE TA＋ 2＊SN＋3，INT（D1／ 25 b）
48820 IF A\＄＜＞＂N＂AND A\＄＜＞ ＂Y＂THEN 8øø
9\％ 830 POKE TA，SN
41 84ø TEXT ：HOME ：PRINT＂SH APEMAKER＂；TAB（ 32）；＂MAIN MENU＂：VTAB 4：PRINT＂PL EASE MAKE A SELECTION：＂： PRINT ：PRINT
$6585 \varnothing$ FLAG $=\varnothing: E X=\varnothing: B L=F R E$ （D）
01 $86 \emptyset$ PRINT TAB（ 3）；＂（1）DESIGN A NEW SHAPE＂
91870 PRINT TAB（ 3）；＂（2）ESTABL ISH SIZE OF DOT MATRIX＂
EA $88 \emptyset$ PRINT TAB（ 3）；＂（3）CHANGE STARTING COORDINATES＂
$8789 \varnothing$ PRINT TAB（ 3）；＂（4）SAVE S HAPE TABLE TO DISK＂
$109 ø \varnothing$ PRINT TAB（ 3）；＂（5）LOAD 0 R START A NEW SHAPE TABLE

F9 $91 \varnothing$ PRINT TAB（ 3）；＂（6）REVIEW A Shape table＂
7 920 PRINT TAB（ 3）；＂（7）COPY S HAPES FROM OLD TO NEW TAB LE＂
68930 PRINT TAB（ 3）；＂（8）EDIT T HE NEW SHAPE TABLE＂
of 940 PRINT TAB（ 3）；＂（9）LEAVE THE PROGRAM＂
8F $95 \emptyset$ PRINT ：PRINT ：PRINT＂$(P$ RESS 〈ESC〉 KEY TO CATALOG A DISK）＂
$6496 \varnothing$ PRINT ：PRINT ：PRINT＂YO UR SELECTION：＂；：GET A\＄： PRINT A\＄：A $=$ VAL（A\＄）
57970 IF ASC $(A \$)=27$ THEN 143 $\emptyset$

3F 980 IF $A<1$ OR $A>9$ THEN 84 $\varnothing$
AF $99 \varnothing$ PRINT ：IF $N=\varnothing$ AND $A<$ 5 THEN PRINT＂NO TABLE AV AILABLE．LOAD OR INITIAL IZE＂：PRINT＂A SHAPE TABL E bEFORE DESIGNING SHAPES ．＂：PRINT ：GOSUB 2120：G OTO 84ø
$8610 ø \square$ IF $S N=255$ AND $A<4$ TH EN ：HOME ：PRINT＂THE 5

HAPE TABLE IS FULL＂：PRI NT ：GOSUB 212ø：GOTO 84 $\varnothing$
AA $1 \varnothing 1 \varnothing$ ON A GOTO 31ø，28ø，31の， $1 \varnothing$ 5ø，137ø，114ø，17øø，2125， 1 ø2ø
FA $102 \varnothing$ IF SF $=\varnothing$ THEN $1 \varnothing 4 \varnothing$
FB $1 ø 3 \varnothing$ HOME ：PRINT＂YOU ARE AB OUT TO PERMANENTLY LOSE＂ ；CHR\＄（7）：PRINT＂THE S hape table file in memor $Y$＂：PRINT＂DO YOU REALLY WANT TO DO THAT？（Y／N） ＂；：GET AN\＄：IF AN\＄＜＞ ＂ Y ＂THEN $84 \varnothing$
C® 1ø4ø TEXT ：HOME ：POKE 103，1 ：POKE 194，8：POKE 2648， ø：POKE 2ø49，ø：POKE $2 ø 5$ Ø，Ø：VTAB 7：PRINT＂THE APPLESOFT POINTER HAS NO W BEEN RESET＂：PRINT＂TO ITS NORMAL LOCATION IN MEMORY．＂：VTAB 11：PRINT ＂TO LIST THIS PROGRAM F IRST USE COMMAND
8A $1 ø 45$ VTAB 14：HTAB 12：PRINT ＂LOAD SHAPEMAKER＂：END
9 $105 \varnothing$ INPUT＂NAME＂； $\mathrm{N} \$$
711 1060 GOSUB 1540
E6 $107 \emptyset \mathrm{BL}=$ PEEK（TA + SN＊2） ＋ 256 ＊PEEK（TA＋SN＊ $2+1)+T A$
72 1ø8ø FOR EO＝BL TO BL＋2øøø ：IF PEEK $(E O)=\varnothing$ THEN L＝EO－TA＋2：GOTO 11 øD
$28199 \varnothing$ NEXT EO
F6 11 1øø PRINT CHR\＄（4）；＂BSAVE＂； N\＄；＂，A＂；TA；＂，L＂；L；＂，D＂；A N
DJ $111 \varnothing$ PRINT ：PRINT＂FILE ：＂； Nक：PRINT＂SAVED AT：＂；T A；＂DECIMAL＂：PRINT＂FIL E LENGTH：＂；L；＂DECIMAL＂ ：PRINT ：PRINT＂PRESS A KEY＂：GET BL\＄
60 $112 \emptyset \mathrm{SF}=\emptyset:$ GOTO 84ø
581130 TEXT ：HOME ：END
B2 1149 IF PEEK（TB）$=\varnothing$ AND PEE $K(T A)=\varnothing$ THEN PRINT＂T here are no tables in me MORY＂：PRINT ：GOSUB 212 ø：GOTO 84ø
E7 115ø IF PEEK（TA）$=\varnothing$ THEN 12 10
$D D 116 \emptyset$ IF PEEK $(T B)=\varnothing$ THEN 11 90
$38117 \emptyset$ HOME ：PRINT＂WHICH SHAP E TABLE DO YOU WANT TO S EE？＂：PRINT ：PRINT＂PRE SS：＂：HTAB 3：PRINT＂1 F or the target（NEW）TABL E＂：HTAB 3：PRINT＂2 FOR THE SOURCE（OLD）TABLE ＂：GET AN\＄
E2 $118 \emptyset$ IF AN $\$$＜＞＂1＂THEN $12 \varnothing \varnothing$ 7F 1190 TT $=$ TA：SS $=$ SN：GOTO 12 $2 \varnothing$
EA 12øø IF ANक＜＞＂2＂THEN 84ø 16 121ø TT＝TB：SS＝OS
531220 POKE 232，TT－INT（TT／ 256）＊256：POKE 233，IN T（TT／256）
F5 $123 \varnothing$ HOME ：PRINT＂THERE ARE ＂；SS；＂SHAPE（S）IN THE T ABLE＂
C8 $124 \emptyset \mathrm{NN}=($ PEEK $(T T+2)+2$ 56＊PEEK（TT＋3）－2） ／2：PRINT＂TABLE CAPACI TY IS＂；NN；＂SHAPES＂
$04125 \emptyset$ IF SS $=\varnothing$ THEN PRINT ：G OSUB 212ø：GOTO 84ø
$64126 \varnothing$ PRINT ：PRINT＂ENTER $\emptyset T$

O RETURN TO MAIN MENU＂： PRINT
$61127 \emptyset$ INPUT＂OR ENTER NUMBER 0 F DESIRED SHAPE＂；DS\＄：DS
$=$ VAL（DS $\$$ ）：IF DS $>$ SS THEN $123 \varnothing$
$38128 \emptyset$ IF DS $=\varnothing$ THEN $84 \varnothing$
6F 1290 POKE 232，TT－INT（TT／ 256）＊256：POKE 233，IN T（TT／256）
$9813 \emptyset \emptyset$ HGR
C4 1310 XDRAW DS AT 22ø，1øø：VTA
B 21：CALL－868：PRINT
＂CURRENT SHAPE IS \＃＂；DS
$88132 \emptyset$ VTAB 22：PRINT＂ENTER NU MBER OF NEXT DESIRED SHA PE，＂：CALL－868：INPUT ＂OR ENTER $\square$ TO RETURN TO MAIN MENU＂；ANक：IF AN \＄＝＂Ø＂THEN 84ø
C7 1330 XDRAW DS AT 220，10ø：DS＝ VAL（AN\＄）
$88134 \varnothing$ IF DS＞SS OR DS＜ 1 THE N TEXT ：PRINT CHR $\$$（7）： GOTO $123 \varnothing$
$2 \mathrm{E} 135 \emptyset$ IF DS $=\varnothing$ THEN $84 \varnothing$
72 136ø GOTO 131ø
$58137 \varnothing$ HOME ：IF SF $=\varnothing$ THEN $1 \varnothing$ $\emptyset$
5F $138 \emptyset$ PRINT＂THE SHAPE TABLE I N MEMORY WILL BE＂：PRINT
＂LOST IF YOU START A NE w Shape＂：PRINT＂TABLE． DO YOU REALLY WANT TO D 0 ＂：PRINT＂THAT？（Y／N）＂ ；CHR\＄（7）；
E8 1390 GET AN\＄
IE $140 \varnothing$ IF AN $=$＂Y＂THEN 1 Øø
131415 IF AN $\$$＜＞＂Y＂AND AN\＄＜ ＞＂N＂THEN PRINT ：PRIN T ：GOTO 138ø
हु 1420 GOTO $84 \varnothing$
73 $143 \varnothing$ GOSUB 1540
DB 144ø PRINT CHR\＄（4）；＂CATALOG， D＂；AN
CA $145 \emptyset$ PRINT ：GOSUB 2120：GOTO $84 \varnothing$
D2 14Eø XZ $=\operatorname{PEEK}$（49168）：KT $=\varnothing$
151470 XDRAW 1 AT X，Y：KT $=K T+$
C5 $148 \varnothing$ IF KT $=2$ THEN KT $=\varnothing$
$4 C 149 \varnothing$ FOR $I=1$ TO $3 \varnothing: B L=P E E$ K（49152）：IF BL＞ 127 T HEN M\＄＝CHR\＄（BL－128） ：BL＝ø：GOTO 152ø
$75150 \varnothing$ NEXT I
7C 1510 GOTO $147 \varnothing$
2A 1520 IF KT $=1$ THEN XDRAW 1 A T X，Y
E7 $153 \emptyset$ RETURN
F1 $154 \varnothing$ HOME ：PRINT＂ENTER DISK DRIVE NUMBER：＂；：GET A Nक：PRINT AN\＄：AN＝VAL（ AN $\$$ ）：RETURN
C9 $155 \emptyset$ TEXT ：HOME ：PRINT＂THE RE＇S NO SHAPE DESIGN MAT RIX IN MEMORY＂：PRINT＂P LEASE ESTABLISH ONE＂：PR INT ：GOSUB 2120：GOTO в $4 \varnothing$
$84156 \emptyset$ TEXT ：HOME ：PRINT ：PR INT＂ODPS！CAN＇T DO THAT ＂：PRINT CHR\＄（7）
$58157 \varnothing$ EN $=$ PEEK（222）
51 1589 IF EN $=2$ OR EN $=3$ THEN PRINT＂THAT NUMBER IS T OO BIG OR SMALL＂
E4 $159 \varnothing$ IF EN $=4$ THEN PRINT＂SO RRY，CAN＇T WRITE TO A WR ITE＂：PRINT＂PROTECTED F ILE＂
$4 C 16$ g $~ I F ~ E N ~=~ 6 ~ T H E N ~ P R I N T ~ " S O ~$

RRY, CAN'T FIND THAT FIL E"
791610 IF EN $=8$ THEN PRINT "TH ERE'S SOME SORT OF INPUT /OUTPUT": PRINT "ERROR"
a3 1620 IF EN $=9$ THEN PRINT "SO RRY, THAT DISK IS ALREAD Y FULL OF DATA"
F8 $163 \emptyset$ IF EN $=1 \varnothing$ THEN PRINT " $S$ ORRY, CAN'T WRITE TO A L OCKED FILE"
2A $1640 \mathrm{IF} E N=11 \mathrm{OR} E N=16 \mathrm{TH}$ EN PRINT "THERE'S SOME S ORT OF SYNTAX ERROR HERE

D6 1659 IF EN $=53$ THEN PRINT "S ORRY, THAT NUMBER IS NOT LEGAL"
381660 IF EN $=77$ THEN PRINT " 0 H OH! WE'RE OUT OF MEMO RY!"
2A 167ø ONERR GOTO $156 \emptyset$
B8 $168 \varnothing$ PRINT : PRINT "LET'S RET URN TO THE MAIN MENU AND ": PRINT "TRY AGAIN": PR INT : GOSUB 212ø: GOTO 8 4ø
86 169ø OT\$ = "": GOTO 156ø
69 17øø IF SN = N THEN PRINT "TA BLE IS FULL": GOSUB $212 \varnothing$ : GOTO 84ø
DB 1710 HOME : IF OT\$ < > "" THE N PRINT "THE SQURCE SHAP E TABLE IN MEMORY IS:": PRINT OT\$: PRINT : PRINT "IS THAT OK? (Y/N):": G ET AN\$: IF AN\$ = "Y" THE N 1769
A2 $172 \varnothing$ PRINT : PRINT "ENTER NAM E OF SOURCE SHAPE TABLE: ": INPUT ""; OT\$:
791730 GOSUB 154ø
E1 1740 ONERR GOTO $169 \varnothing$
$69175 \varnothing$ PRINT CHR\$ (4);"BLOAD "; OT\$;", A"; TB; ", D"; AN
$88176 \varnothing$ HOME : IF $N=\varnothing$ THEN PRI NT "THERE IS NO TARGET T ABLE AVAILABLE IN": PRIN T "MEMORY. PLEASE INITI ALIZE A NEW TABLE": PRIN T "OR LOAD ONE FROM MEMO RY": PRINT : PRINT "RETU RNING TO MAIN MENU": PRI NT : GOSUB 2120: GOTO 84 ø
DB $177 \emptyset \mathrm{NO}=($ PEEK $(T B+2)+2$ 56 * PEEK (TB + 3) - 2) 12
AE 1780 OS $=$ PEEK (TB)
D8 1790 DA $=$ PEEK (TB $+0 S * 2+$ 2) + PEEK (TB + OS * 2 + 3) * 256 + TB: REM AD DRESS OF OLD TABLE
6F $18 \varnothing \emptyset$ PRINT "THE SOURCE TABLE CAN HOLD ";ND;" SHAPES": PRINT : PRINT "IT NOW H AS "; OS;" SHAPES IN IT": PRINT : GOSUB 212ø:
551810 HOME : HGR : UTAB 24: PR INT "ENTER $\varnothing$ TO RETURN T - MAIN MENU"

4A 1820 VTAB 21: HTAB 36: PRINT
311830 VTAB 21: HTAB 1: PRINT ENTER SOURCE SHAPE NUMBE R TO COPY: ";: INPUT ""; AN\$: AN = VAL (AN\$)
F\% 184ø IF AN $=\emptyset$ THEN $84 \varnothing$
AS $185 \emptyset$ IF AN < 1 OR AN > OS THE N PRINT "SORRY, NO SUCH SHAPE IN TABLE": PRINT " PLEASE PRESS A KEY ": GE T AN\$: GOTO $181 \varnothing$

EA 1869 FOKE 232, TB - INT (TB / 256) * 256: POKE 233, IN T (TB / 256)
IE $187 \emptyset$ DRAW AN AT 20ø,1øø: IF F LAG $=1$ THEN 263ø
65 188ø HOME : UTAB 21: PRINT "C OPY THIS AS SHAPE \#"; SN $+1 ; "(Y / N)$ ";: GET AN\$
851896 IF AN\$ $=$ "N" THEN 1810 68 1900 IF AN\$ < > "Y" THEN 840 AT 1915 VTAB 24: HTAB 1: FLASH : PRINT "COPYING DATA";: NDRMAL : PRINT "
861920 ADDR $=$ PEEK (TA + SN * 2 $+2)+256$ * PEEK (TA + SN * $2+3)+T A$
161936 SF = 1: IF SN < N THEN D 1 = ADDR - TA: POKE TA + 2* $5 \mathrm{~N}+2, \mathrm{D}_{1}$ - 256* I NT (D1 / 256): POKE TA + 2*SN + 3, INT (D1 / 2 56)

021940 POKE TA, $\mathrm{SN}+1$
A5 195ø OA $=$ PEEK $(T B+2 * A N)$ + PEEK (TB + 2 * AN + 1) * 256 + TB

31 1960 Z1 $=\varnothing$
$32197 \emptyset$ FOR I = 1 TO 1øøø
F4 $198 \emptyset$ POKE 232, TB - INT (TB / 256) * 256: POKE 233, IN T (TB / 256)
34 199ø BI $=\operatorname{PEEK}$ (DA)
83 2009 POKE 232,TA - INT (TA / 256) * 256: POKE 233, IN T (TA / 256)
C7 2010 POKE ADDR, BI
30 $2 ø 2 \varnothing$ ADDR $=$ ADDR +1
$042 \emptyset 3 \varnothing O A=O A+1$
$05204 \varnothing$ IF BI $=\varnothing$ AND $Z 1=\varnothing$ THE N POKE ADDR, $\mathscr{D}:$ ADDR $=$ ADD R + 1: GOTO $2 ø 8 \varnothing$
$89205 \varnothing$ IF BI $=\emptyset$ THEN $2 \emptyset 8 \emptyset$
$852060 \mathrm{Z1}=\mathrm{Z1}+1$
88 207ø NEXT I
CB $2 \varnothing 8 \varnothing S N=S N+1$ : IF $S N<N T$ HEN D1 = ADDR - TA: POKE $T A+2 * S N+2, D 1-25$ 6* INT (D1 / 256): POKE TA +2 * $5 N+3$, INT (D $1 / 256$ )
7A 2096 VTAB 23: HTAB 1: PRINT " DONE, PLEASE PRESS A KEY ";: GET AN\$
6821 Dø IF SN $=N$ THEN HOME : $V T$ AB 23: GOTO 17øø
652110 GOTO 1810
$43212 \varnothing$ PRINT "PRESS ANY KEY TO CONTINUE ";: GET AN\$: RE TURN
5F 2125 IF $N=\varnothing$ THEN $176 \emptyset$
4F $213 \emptyset$ HOME : PRINT "PRESS: ": P RINT : PRINT TAB ( 3);"(1 ) TO INSERT A SHAPE IN T ABLE": PRINT TAB ( 3);" 12 ) TO DELETE A SHAPE FROM TABLE"
$66214 \varnothing$ PRINT TAB( 3);"(3) TO IN CREASE TABLE CAPACITY": PRINT TAB ( 3);"(4) TO DE CREASE TABLE CAPACITY "; : GET ANS: PRINT AN\$: IF AN\$ < "1" OR AN\$ > "4" THEN $84 \varnothing$
$38215 \varnothing$ AN $=$ VAL (AN $)$
5F $216 \varnothing \mathrm{PL}=\varnothing$ : IF AN $=3$ THEN $P$ L $=1$
$66217 \varnothing$ IF AN $=1$ AND $S N=255 \mathrm{~T}$ HEN PRINT : PRINT "SORRY , THE NEW Shape table is FULL": PRINT : PRINT "D ELETE A SHAPE BEFORE ADD ING TO TABLE": GOSUB 212
ø: GOTO 84ø
$48218 \emptyset$ ON AN GOTO $219 \varnothing, 2749,3 \varnothing 2$ 5,3025
$11219 \varnothing$ HOME : PRINT "ENTER NUMB ER OF SHAPE TO BE INSERT ED": INPUT "INTO THE NEW TABLE "; IS: IF IS < 10 $R$ IS $>$ SN THEN PRINT : $P$ RINT "THAT NUMBER IS OUT OF RANGE": PRINT : GOSU B 2120: GOTO 840
Q3 $22 ø \emptyset$ FLAG $=1: S 1=S N: N N=N$
932210 HOME : PRINT "PRESS: ": P RINT : PRINT TAB( 3);" ${ }^{(1}$ ) TO DESIGN NEW SHAPE \#" ; IS: PRINT TAB ( 3);"(2) TO GET IT FROM THE SOURC E TABLE ";: GET AN\$: PRI NT AN $\$$ : IF AN $\$$ < "1" OR AN\$ > "2" THEN 221ø
312220 AN $=$ VAL (AN $\$$ )
E1223ø ON AN GOTO 2240,2610
9 $224 \emptyset$ F1 $=\emptyset:$ IF $C=\varnothing$ OR R $=$ $15 \emptyset$ THEN F1 $=1$ : GOTO 28 ø
E9 $225 \varnothing$ IF $N=\varnothing$ THEN PRINT : PR INT "NO TARGET TABLE AVA ILABLE": PRINT : GOSUB 2 12ø: GOTO 84ø
E5 $226 \emptyset$ GOTO $31 \varnothing$
5D 227ø HOME : POKE - 16368, $0: V$ TAB 22: HTAB 1: PRINT "I NSERT THIS AS SHAPE NUMB ER "; IS;" (Y/N)?";: GET AN $\$$
FD $228 \emptyset$ IF AN\$ < > "Y" THEN TEXT : HOME : GOTO $213 \varnothing$
DJ 2290 HOME : VTAB 24: FLASH : PRINT "INSERTING SHAPE N UMBER "; IS: NORMAL : SF =

B6 $23 \varnothing \varnothing \mathrm{NL}=\varnothing$
872310 FOR I $=T C+4$ TO TC +1 øøø
$91232 \varnothing \mathrm{BL}=\operatorname{PEEK}$ (I):NL $=\mathrm{NL}+$ 1: IF BL $=\varnothing$ AND NL $>1$ THEN $235 \varnothing$
17 233ø IF BL $=\varnothing$ THEN NL $=2$ : G OTO 235ø
82 2340 NEXT I
$74235 \emptyset$ IF SN $=N$ THEN EX $=2$
7A 2360 GOSUB 334ø
DE $237 \emptyset$ START $=$ PEEK (TA + IS * 2) + 256 * PEEK (TA + IS * $2+1)$ + TA: REM FR OM IS TO END
$58238 \emptyset$ FOR I $=$ OE TO START STEP
$26239 \varnothing$ POKE I + NL + EX, PEEK ( I)

74 24øø NEXT I
F9 $241 \varnothing$ Z $=\varnothing$
iC $242 \emptyset$ FOR I $=T C+4$ TO TC +4 + NL - 1: REM INSERT N EW SHAPE
D9 $243 \varnothing$ POKE START $+E X+Z$, PEE K (I): Z = Z + 1
84 244ø NEXT I
F4 $245 \varnothing$ BEGIN $=$ PEEK $(T A+2)+$ 256 * PEEK (TA + 3) + TA : REM ADDRS OF \#1 SHAPE
TC $246 \varnothing$ FOR I $=$ START - 1 TO BEG IN STEP - 1
27 247ø POKE I + EX, PEEK (I)
$94248 \emptyset$ NEXT I
$952490 \mathrm{BH}=\varnothing$
$4825 \emptyset \square$ A1 $=2$ : IF SN $+1>=N$ THEN A1 $=\varnothing$
262510 FOR $I=T A+2 * S N+A 1$ TO TA +2 * IS STEP - 2
A9 $2520 \mathrm{BH}=$ PEEK $(\mathrm{I}+1): \mathrm{BL}=\mathrm{P}$ $\operatorname{EEK}(\mathrm{I}): \mathrm{BL}=\mathrm{BL}+\mathrm{NL}+\mathrm{E}$

X：IF BL＞ 255 THEN BL＝ BL－256： $\mathrm{BH}=\mathrm{BH}+1: \mathrm{P}$ OKE I＋3，BH
D6 2530 POKE I＋2，BL：POKE I＋ 3，BH
86 2549 NEXT I
$10255 \varnothing$ FOR I $=T A+2$＊IS TO T $A+2$ STEP－ 2
79 2560 BH＝PEEK（ $1+1$ ）：BL＝P EEK（I）：BL＝BL＋EX：IF BL＞ 255 THEN BL $=$ BL 256： $\mathrm{BH}=\mathrm{BH}+1$ ：POKE I $+1, \mathrm{BH}$
7E $257 \emptyset$ POKE I，BL：POKE I＋1，BH
96 258 ■ NEXT I
A3 $259 \varnothing \mathrm{SN}=\mathrm{S} 1+1: \mathrm{N}=\mathrm{NN}+E X$ ／2：POKE TA，SN：D1＝ 2 ＊ $\mathrm{N}+2$
Ая 26øø HOME ：VTAB 23：PRINT＂I NSERTION OF SHAPE NUMBER ＂；IS；＂COMPLETE＂；：PRIN T ：GOSUB 212ø：GOTO 84ø
$9 \mathrm{~B} 261 \varnothing$ IF $N=\varnothing$ THEN $225 \varnothing$
712620 GOTO 1710
762630 HIME ：UTAB 21：PRINT＂I NSERT THIS AS SHAPE \＃＂； IS；＂（Y／N）＂；：GET A\＄：IF A $\$=$＂N＂THEN 181ø
B6 264の IF A\＄＜＞＂Y＂THEN 84の
1F $265 \emptyset 0 A=\operatorname{PEEK}(T B+2 * A N)$ + PEEK（TB＋ 2 ＊AN＋1） ＊ 256 ＋TB：REM ADDR 0 F SHAPE
122660 Z＝ø
C7 2670 FOR I＝Ø TO 1øøø：REM PUT IT IN TABLE
JA $2689 \mathrm{BI}=\operatorname{PEEK}(0 A+1)$
642699 POKE TC $+4+\mathrm{I}, \mathrm{BI}$
$1027 \varnothing \varnothing$ IF BI $=\varnothing$ AND $Z>\varnothing$ THEN 273ø
$75271 \varnothing$ IF BI $=\varnothing$ THEN POKE TC + 4 ＋I＋1，ø：GOTO 273ø
$82272 \varnothing$ NEXT I
8E $273 \varnothing$ GOTO $229 \varnothing$
832740 PRINT ：PRINT＂ENTER NUM BER OF SHAPE TO DELETE F ROM THE＂：INPUT＂TARGET （NEW）SHAPE TABLE＂；AN\＄： DS＝VAL（AN\＄）：IF DS＜ 1 OR DS＞SN THEN PRINT ：PRINT＂NO SUCH NUMBER IN TABLE＂：PRINT ：GOSUB 212ø：GOTO 84ø
A5 $275 \emptyset$ POKE 232，TA－INT（TA／ 256）＊256：POKE 233，IN T（TA／256）
$85276 \varnothing$ HGR ：DRAW DS AT 2øø，1øø $68277 \varnothing$ HOME ：VTAB 22：PRINT＂D ELETE THIS AS SHAPE \＃＂； DS；＂？（Y／N）＂；：GET AN\＄： IF AN\＄＜＞＂Y＂AND AN\＄ ＜＞＂N＂THEN 84ø
$96278 \emptyset$ IF AN $\$=$＂N＂THEN 274ø
EF 279ø HOME ：VTAB 22：FLASH ： PRINT＂DELETING SHAPE \＃
＂；DS：NORMAL ：SF＝ 1
$6228 \emptyset \varnothing$ ADDR $=$ PEEK（TA + SN＊ 2 ）＋256＊PEEK（TA＋SN ＊ $2+11$＋TA
E9 $281 \varnothing$ IF PEEK（ADDR）$=\varnothing$ THEN EO＝ADDR＋1：GOTO 285ø
592820 FOR EO＝ADDR TO ADDR＋ 1øøø：REM FIND END OF T ABLE
B3 $2830 \mathrm{BL}=\operatorname{PEEK}$（ED）：IF BL＝ g THEN 285ø
$28284 \varnothing$ NEXT EO
$54285 \emptyset$ START $=$ PEEK $(T A+2 * D$ S）+256 ＊PEEK（TA +2 ＊$D S+1)+T A$
16 286ø z＝Ø
$08287 \emptyset$ FOR I＝START TO START＋

1øøø：REM FIND LENGTH OF DELETE SHAPE
$67288 \emptyset \mathrm{BL}=\operatorname{PEEK}(\mathrm{I}): Z=Z+1$ ： IF BL $=\varnothing$ THEN 29øの
AB $289 \emptyset$ NEXT I
$3729 ø 0$ IF $Z=1$ THEN $Z=2$
FE 2910 FOR I＝START＋Z TO EO： REM MOVE VECTORS
$49292 \emptyset$ POKE I－$Z$ ，PEEK（I）
8A 2939 NEXT I
18 294ø EX＝Ø：IF SN＜N THEN E $X=2$
8A 2950 FOR I $=T A+2 * D S+2$ TO TA＋ 2 ＊SN＋EX STEP 2
$562960 \mathrm{BH}=\operatorname{PEEK}(\mathrm{I}+1): \mathrm{BL}=P$ EEK（I）：BL $=B L-Z: I F$ $\mathrm{BL}<\emptyset$ THEN BL $=\mathrm{BL}+25$ $6: \mathrm{BH}=\mathrm{BH}-1$
CC $297 \emptyset$ POKE I－2，BL：POKE I－ 1，BH
9E $298 \emptyset$ NEXT I
242990 IF $S N=N$ THEN BL $=E O-$ $Z+1:$ POKE TA $+2 * S N$ ，BL－INT（BL／256）＊ 2 56： POKE TA $+2 * \mathrm{SN}+1$ ，INT（（BL－TA）／256）
B6 3øøø IF EX $=2$ THEN POKE TA + 2＊SN＋2，Ø：POKE TA＋ 2 ＊ $5 N+3, \varnothing$
$73301 \emptyset \mathrm{SN}=\mathrm{SN}-1:$ POKE TA，SN： $E X=\varnothing: A D D R=E D+1$
43 3ø2ø HOME ：VTAB 22：PRINT＂D ELETION DF SHAPE NUMBER ＂；DS；＂COMPLETED＂：PRINT ：GOSUB 212ø：GOTO 84Ø
DC $3 ø 25$ GOSUB $34 \emptyset \emptyset:$ IF PL $=\emptyset \mathrm{TH}$ EN PRINT＂SUBTRACT＂；：G OTO $3 \emptyset 35$
81 3ø3Ø PRINT＂ADD＂；
$143 \emptyset 35$ INPUT＂HOW MANY SHAPES？ ＂；NC\＄：NC＝VAL（NC\＄）
60 3ø4ø GOSUB $334 \emptyset$
76 3ø5ø START $=$ PEEK $(T A+2)+$ 256＊PEEK（TA＋3）＋TA
CF 3ø6ø IF PL $=\varnothing$ THEN $323 \emptyset$
8 8 $367 \emptyset$ IF N＋NC $>255$ THEN HOM E ：PRINT＂TOQ MANY SHAP
ES！＂：PRINT ：GOSUB $212 \emptyset$ ：GOTO 84ø
JA 3ø8ø GOSUB 341ø：SF＝ 1
$573 \emptyset 9 \emptyset$ FOR I $=0 E$ TO START STEP $-1$
6E 31 Øø POKE I＋ 2 ＊NC，PEEK（I ）NEXT I
733110 NEXT I
$6 E 312 \emptyset$ FOR $I=$ START $T O T A+2$ ＊$(N+N C)+1$
2E $313 \emptyset$ POKE I，$\emptyset$
$7 F 314 \emptyset$ NEXT I
EF $315 \emptyset$ FOR I $=T A+2$ TO START － 2 STEP 2
$873160 \mathrm{BL}=\operatorname{PEEK}(\mathrm{I}): \mathrm{BH}=$ PEEK $(\mathrm{I}+1): \mathrm{IF} \mathrm{BL}=\varnothing$ AND B $H=\emptyset$ THEN $321 \emptyset$
BB 317ø BL $=\mathrm{BL}+2$＊NC
$60318 \emptyset$ IF BL $>255$ THEN BL $=B L$ －256： $\mathrm{BH}=\mathrm{BH}+1$ ：GOTO 318ø
7F $319 \emptyset$ POKE I，BL：POKE I +1 ，BH
71 32øø NEXT I
E7 $3210 \mathrm{BH}=$ INT $((0 E-T A+2 *$ $\mathrm{NC}+1) / 256): \mathrm{BL}=\mathrm{OE}$
+2 ＊NC＋ 1 －TA－BH＊ 256：POKE TA＋SN＊ 2 ＋ 2，BL：POKE TA＋SN＊ 2 $+3, \mathrm{BH}: \mathrm{N}=\mathrm{N}+\mathrm{NC}$
$21322 \emptyset$ GOSUB 34øø：GOSUB 212ø： GOTO 84ø
C5 323ø IF N－NC＜ 1 OR N－NC $>255$ THEN $213 \varnothing$
643235 IF NC＜ 1 THEN EN＝2：G

OTO 158ஏ
44 324ø IF SN＞N－NC THEN PRIN T＂DO YOU WANT TO LOSE＂ ；SN－N＋NC；＂SHAPE（S）？ （Y／N）＂；：GET AN\＄：IF A N\＄＜＞＂Y＂THEN 84！
32 325ø GOSUB 341ø：SF＝ 1
5C 326 F FOR I＝START TO OE：POK E I－ 2 ＊NC，PEEK（I）： NEXT I
B6 327 F FOR I $=T A+2$ TO START － $2-2$＊NC STEP 2
D1 $328 \emptyset \mathrm{BL}=$ PEEK（I）：BH $=$ PEEK $(\mathrm{I}+1): \mathrm{IF} \mathrm{BL}=\varnothing$ AND B $H=\emptyset$ THEN $332 \emptyset$
C9 $3290 \mathrm{BL}=\mathrm{BL}-2 * \mathrm{NC}$
92 33øø IF BL＜Ø THEN BL $=\mathrm{BL}+$ 256： $\mathrm{BH}=\mathrm{BH}-1$ ：GOTO 3 उøø
C1 331ø POKE I，BL：POKE I＋1，BH ：NEXT I
$693320 \mathrm{~N}=\mathrm{N}-\mathrm{NC}:$ IF $\mathrm{SN}>\mathrm{N}$ TH EN $S N=N:$ POKE TA，SN
6C 333Ø GOTO 322ø
C1 $334 \emptyset$ Z $=$ Ø：ADDR $=$ PEEK（TA＋ SN＊2）＋ 256 ＊PEEK（TA + SN＊ $2+1)+T A$
$26335 \emptyset$ FOR I＝ 1 TO 1øøø
9E 336 BL $=$ PEEK（ADDR）：IF BL $=\varnothing$ AND $Z>\emptyset$ THEN $339 \emptyset$
$9 A 337 \emptyset$ IF $B L=\emptyset$ THEN ADDR $=A D$ DR＋1：GOTO 339ø
$88338 \emptyset$ ADDR $=$ ADDR $+1: Z=Z+$ 1：NEXT I
73 339ø OE＝ADDR：RETURN
6B 34øø HOME ：PRINT＂THIS TABLE CAN HOLD＂；N；＂SHAPES＂： PRINT ：PRINT＂IT NOW H AS＂；SN；＂SHAPE（S）IN IT ＂：PRINT ：PRINT ：RETUR N
$9 E 341 \emptyset$ PRINT ：FLASH ：PRINT＂A DJUSTING CAPACITY＂：NORM AL ：RETURN
IF $342 \emptyset$ FOR $I=1$ TO 178：READ $X$ ：POKE $2 \emptyset 47+1, X$ ：NEXT I：RETURN
AE $343 \emptyset$ DATA $165,6,201,73,24 \emptyset, \emptyset 4$ ，2ø1，11，2ø8，37，165，252， 1 $33,7,56,165,8,291,3,249$ ， 16，233，6，133，8，197，25ø， 1 44，3
66 344Ø DATA 76，177，8，24，1ø5，6， 1 33，8，32，58，255，169，8， 133 ，7，76，177，8，2ø1，75，24ø， 4 ，2ø1，21，2ø8，37，24
FJ $345 \emptyset$ DATA $165,252,105,1,133,7$ $, 24,165,9,195,6,133,9,16$ 5，251，197，9，176，1ø2，56， 1 $65,9,233,6$
$9 E 346 \emptyset$ DATA $133,9,32,58,255,169$ $, 8,133,7,76,177,8,291,77$ ，24ø，4，2ø1，1ø，2ø8，37，24， 165，252，1ø5，2，133， 7
AB $347 \emptyset$ DATA $24,165,8,165,6,133$ ， 8，169，15ø，197，8，176，57，5 $6,165,8,233,6,133,8,32,5$ $8,255,169,8$
CE $348 \emptyset$ DATA $133,7,76,177,8,2 \emptyset 1$ ， $74,24 \varnothing, 4,2 \emptyset 1,8,2 \emptyset 8,32,24$ ，165，252，1ø5，3，133，7，56， 165，9，233， 6
AD $349 \emptyset$ DATA $133,9,165,9,2 \emptyset 1,24 \emptyset$ ，144，12，24，195，6，133，9， 3
$2,58,255,169,8,133,7,96$
53 5øøøø D\＄$=$ CHR\＄（4）：I\＄$=$ CHR\＄ （9）
1E 5øø2ø PRINT D\＄；＂PR\＃1＂
2F 5øø4ø PRINT I\＄；＂6ØP＂
85 5øø5ø PRINT I\＄；＂8øN＂
6E 5øø6Ø LIST 1，4øøø
44 5øø7Ø PRINT D\＄；＂PR\＃Ø＂

## Program 3：SHAPETABLE3X6

Please refer to the＂MLX＂article elsewhere in this issue before entering the following program．
78øø：ЗA Øø 76 Øø 7C Øロ 82 øø C5 78ø8：8E øø 98 øø Aø øø A8 ø® A9 7810：AC øø B4 øø BB øø C1 $\varnothing \varnothing 4 F$ 7818：C6 øø CA øø CE $\varnothing \varnothing$ D1 Øの DF 782の：D7 øø DF øø E6 øの EF øの 1ø 7828：F8 øø FF øø Ø6 $\varnothing 1$ ØE 11 E6
 7838：2E $0134 \emptyset_{1} 39 g_{1} 40 \quad 9166$ 784ø： 47 ø1 $49 \emptyset_{1} 510_{1} 59 \varnothing_{1} 9 \varnothing$ 7848：61 $\emptyset_{1}$ 6A $\emptyset_{1} 74 \emptyset_{1} 7 B \emptyset_{1} 27$ 785ø： $85 \emptyset_{1} 8 \mathrm{E} \emptyset_{1} 98 \emptyset_{1}$ Aø $\emptyset_{1} 31$ 7858：A9 ø1 Bø $\emptyset 1$ BA $\emptyset_{1} \mathrm{C} 4 \emptyset_{1} \mathrm{~EB}$

 787ø： 10 ø2 18 ø2 1E 10212 g4 2E 7878： 2024 ø4 øø $4 \varnothing 18 \quad 33$ øD D8 788ø： 24 øø 21241717171582 7888：36 77 6E 2427 øø 24 BC Cø 789ø：姖 Bø ø2 3ø 1E 3 C Ø4 øの 12 7898：2C 20 9F 日D 12 1F 26 gの CD 78Aø： 36 E5 23 ø5 29 E5 $ø 4$ פø 7B 78A8： 40 ø3 24 øø 23 C5 øC 96 DD 78Bg：1A 76 g4 ص9 24 1C 8E 128 BD 78B8：F6 ø4 øø Eø øD 16 1F 9437 78Cø：øø 2415 1F ø4 øø 32 1E F1 78C8： 94 øø 38 øD ø4 øø 12 ø4 DB 78Dø：פø 2C $2 \varnothing$ D7 9226 gø 219 C 78D8：E4 1E 3676 g5 $2 \varnothing$ gø 2ø BA 78EØ：BC 9536 6F g4 g® 21 E4 9A 78E8： 17 8E D1 17 2D 94 øø 2856 78Fg：2ø 3F 8E 1136 3F 94 øg 5B 78F8： $38 \quad 24$ gD $363626 \quad 903896$ 79øø： 24 2D 96 F6 27 øø 3864 Aø 79ø8： 9532 1E 1C 24 øø 182049 7910：2D $36 \quad 3626 \quad 99 \quad 382879$ F1 7918：D7 32 øE 952094 gø 38 DE 7920： 24 2D $36 \quad 36 \quad 26$ Øø 0429 F3 7928：øø ø4 Bø 13 ø4 ศø 15 C7 75 793ø： $28 \quad 28 \quad 20$ øø 25 38 B7 94 CL 7938：øø 1A øC øC 1C 1C ø4 øg 4D 794ø：Cø 2C 35 F6 $16 \emptyset 4$ gの 9075 7948： 025 E4 1E $36 \quad 36$ gD 24 CB 7959： 00601 C 3736366524 CB 7958：øD 2324 2D B6 $323 F 248 \mathrm{C}$
 7968：2ø øø ø日 4ø ø丁 3 F 36 F5 E7 797ø：36 2D 94 øø 69383736 D2 7978： 36 ø4 96 ø日 4ø 93 JF 36 CA 7989：36 2E 2524 øø $28241 F 99$
7988： 36 36 6E 2494 g® 24 3C D8 799ø：פD 96 1A 36 ø8 1F 94 gの 1B 7998：C1 ø日 $3 \varnothing$ 36 F6 97 20 $9 \varnothing$ EB 79Ag： 94 ED g9 1F 3636 6E 24 6C 79A日：øø 11 उE 272424 g4 øø D3
 79B8： 24 øø 24 1C 3636 6E JC A7 79Cø：øC 2424 øø 2124 JF 3695 79C8： 36 2E 25 g4 $9 \varnothing 28$ Eø 37 Eg 79D®： 3636 g4 9021 IC FD 36 FE 79D8： 36 øE 3 D 2824 øø ฮ5 29 DF
 79E8：6ø B5 32 1E 27 øø 122423 79Fø： 24 3C øD ø6 øø 31 JE 27 6F 79FB： 2424 øD 36 ø6 øの 2124 A2 7Aのg：1F 36
 7A1ø：2C $2 \varnothing$ 1F B6 32 פD 24 øø $8 \varnothing$ 7A18： 122464 FC 36 øø 2C 20 A5
 7A28：øø øø $ø \varnothing$ øø øø øø øø øø 1D
 7A38：øø øø øø øø øø øø øø øø 2D


 7A58：øø øø øø øø øø øø øø øø 4D
 7A68：øø øø øの øø øの øø øの øø 5D




7AB8：øø øø øø øø øø øø øの øø 7D


 7AAB：øø øの øø øø øø øø øø øø 9D 7ABø：øø øø øø øø øø øø øø øø A5 7AB8：øø øø øø øø øø øø øø øø AD


 7AD8：$\curvearrowleft \varnothing$ øø øの øø øø øø øø øø CD

 7AFø：øø øø øの øø øø øø øø øø E5 7AFB：øø øø øø øø øø øø øø øø ED
 7Bø日：øø øø øø øø øø øø øø øø FE


 7B28：øø øø øø øø øø øø øø øø 1F 7В3ø：øø øø øの øø øø øø øø øø 27 7B38：øø øø øø øø øø øø øø øø 2F


 7B58：øø øø øø øø øø øø øø øø 4F
 7B68：øø øø øの øø øø øø øø øø 5F 7B7ø：øø øø øø øø øø øø øø øø 67 7B78：øø øø øø øø øø øø øø øø 6F
 7B88：ஏの øø øの øø øø øø øø øø 7F

 7ВАФ：Øø øø øø øø øø øø øø øø 97 7BAB：øø øø øø øø øø øø øø øø 9F
 7BB8：øø øø øø øø øø øø øø øø AF 7BCø：øø øø øø øø øø øø øø øø B7 7BC8：øø øø øø øø øø øø øø øø BF
 7BD8：øø øø øø øの øø øø øø øø CF 7BEø：Øø øの øの øø øø øø øø øø D7 7BE8：øø øø øø øø øø øø øø øø DF 7BFø：øø øø øø øø øø øø øø øø Е7 7BF8：øø øø øø øø øø øø øø øø EF

## Program 4：SHAPETABLE5X7

Please refer to the＂MLX＂article elsewhere in this issue before entering the following program

78øø： 64 øø CA øø D1 øø D9 øø BE

 7818： 39 Ø1 उE Ø1 $44 \emptyset_{1} 48 \quad \emptyset_{1} 75$ 782ø：4E Ø1 5C ø1 $64 \emptyset_{1} 71 \emptyset_{1} 1 F$ 7828：7C ø1 87 ø1 92 Ø1 9F $0_{1} 71$
 7838：D2 ø1 D9 ø1 E2 ø1 E9 ø1 øE 784ø：F3 ø1 ø3 ø2 øF ø2 1E g2 AA 7848： 28 ø2 35 ø2 41 g2 4A 02 3D 785ø： 56 ø2 62 g2 6A $\varnothing 2 \quad 72 \quad 92$ 9B 7858：7E 02 86 ø2 92 ø2 $9 E$ ø2 D5 786ø：A9 ø2 B3 ø2 BE ø2 CA 02 D2 7868：D7 ø2 DF ø2 EA 02 F6 0231 787ø： 02 ø3 øD ø3 17 ø3 23 ø3 ø3 7878：2A 033203 38 03409397 788ø：45 03 4B 935803630397 7888：6C $93 \quad 76$ g3 81 g3 8A $93 \quad 9 F$ 789ø： 97 ø3 9F 93 A6 03 AD 93 D1 7898：B7 ø3 BE 03 C7 03 CF 03 1B 78Aø：D8 03 E3 93 ED 93 F4 93 D3 78A8：FD 03 g7 94 øF $9418 \quad 0437$ 78Bg： 2394 2D $94379441946 A$
 78Сб： 73 g4 7C 94 86 64 9ø 94 A5 78C8： $99 \quad 9499941898242436$
 78D8：øø 21 3C øC 3C øC 6C 36 7B 78E0：6F 17 3E GD $17 \quad 26$ g® 9942
 78Fø： 28 E5 16 g4 $0 \varnothing$ 2C 2828 9B 78F8： 2820 DF 3325 8D 9232 EB


79ø日： 29 DC 2 F 38601594 øø 8F 791ø：4ø 182920 3C 26 øø 4914
 792ø： 24 E4 94 øø $\varnothing 12828$ C8 Ag 7928： 23 1C gD 16 B5 23 D8 27 C9 793ø：øø ø9 29 24 FC 12 6D 25 DB 7938：øø 2135 F6 ø4 øø $4 \varnothing 1842$ 794ø：2D 2D 94 øø 2135 ø4 øø 7B 7948： $28 \quad 28 \quad 28 \quad 28 \quad 20 \quad 90202446$ 7959： 64 2D 15 36 36 1E 3 F 9473 7958： 282820 øø 29 3D 202418 796ø： 24 1E 94 gø 2D 2D DC 1B 6ø 7968： 64 2D 95 2ø 1C 3F 1E 9499 797ø：øø 7ø 2D ø5 20 1C 2F 28 6D 7978：Eø 3 F g4 øø 4924 FD $3 F 42$ 7989：2C 28283036949070 CD 7988：2D 05 20 E4 3F 27 2C 2D C1 799ø： 25 gø 29 2D 20 1C $3 F 3735$ 7998： 26 18 1864 2D 94 øø 996 E
 79AB：øø 29 2D $201 \mathrm{~L} \quad 3 \mathrm{~F} \quad 1726 \mathrm{BF}$ 79Bg： 18 ø日 64 2D $15 \quad 26$ ø\＆ 29 7B 79B8：2D 20 24 E4 $3 F 17 \quad 76$ 2D 日D 79Сø： 94 øø 29 3C 9428 3C 94 DB 79C8：øø 91 g5 $2027 \quad 25 \quad 38 \quad 2 \mathrm{Cl} 2 \mathrm{D}$ 79Dø： 94 øø 483938 6ø øC ø4 C1 79D8：gø 18 ge 2D 2D 94 38 3F CE 79Eの： 27 øø ø日 øC gC 1C 1C 9436
 79Fø：1E g4 gi 29 2D 18 ø日 $24 \quad 84$ 79F8： $3 F 36$ FD 1A 2424 gC 2D 71 7Aøஜ： 15 g4 øø 2424 gC gC 1541 7Ag8： $15 \quad 3636 \quad \mathrm{C} 4 \quad 3 \mathrm{~F} 94 \quad 90 \quad 2 \mathrm{D} 5 \mathrm{~F}$
 7A18：3C 28 2D 1526 øø 2924 C1

 7A3ø： 36 1E $3 F$ g4 øø 242424 EC 7A38：2D 2D 96 3B B7 2A 2D 14 5A 7A49：øø 242424 2D 2D 96 3B 日B 7A48： 27 øg 292464 2D 15 9E B7

 7A6ஜ：ø4 øø 29 E5 2424 ø7 28 C2 7AG8： 25 øø AB 2 D 2ø 24 3C 28 øA 7A7ø： 25 øø 242424 4D F1 1E 17 7A78：1E øE øE øE g4 øø 2D 2D 4A 7ABg：DC 18242424 øø 2424 FE
 7A9ø： 26 øø 242424 øE ØE ØE E2 7A98： 9621242424 øø 2024 6D
 7AAB：øD 242424 2D AD 36 1E 18 7ABg： 3 F g4 פø 292464 2D 15 6A
 7ACg： 24 2D AD FG $3 F$ פE gE gE 94 7AC8： 94 øø AB 2D ø5 2ø 1C 3F C7
 7ADB： 242424 3F 4D 25 øø 20808


 7AFB： $24 \begin{array}{llllllll} & 4 D & 36 & 36 & 1 E & 1 F & \text { gC } & 51\end{array}$ 7Bøø： 24 øの 64 פC øC gC FC 1B FB

 7B18：2D DC 1B øC øC øC øC 3C ES 7B20：3F 27 פø 99 E5 $24242 C 45$ 7B28：ø4 øø 48 ø9 1C 1C 1C 1C $6 \varnothing$ 7B3ø： 94 øø 2924242427 פø $9 \varnothing$
 7B4ø： 12 2D 2 D ø4 øø $4 \varnothing 4018$ øB 7B48： $7 \varnothing$ ø4 øø 29 øD $97203 F$ øF

 7B6ø：18 24 øø 29 E5 1B 24 øC EE
 7B7ø： 29 96 36 3E 27 gø $2925 \quad 78$ 7B78：ø8 3 F 3F $26 \quad 68$ 2D $15 \quad 9473$ 7B8ø：פø 2124 3C ø5 6ø 2D D6 E2
 7B9ø：ø8 24 2C $2 \mathrm{LD} 36 \quad 26$ øø 24 5B
 7BAg：E5 24 3C $\operatorname{DC} 20$ øø 72 2D EE 7BAB： $2 \mathscr{1} 242427$ øø 242424 AC 7BBø：4D F2 1E øE øE 26 øø 29 E1

7BB8：3D $202424 \quad 27 \quad$ øø $24 \quad 24 \quad \mathrm{C} 2$ 7BCD：AD $36 \quad 6 E \quad 24 \quad 24 \quad 27 \quad \emptyset \emptyset \quad 21 \quad \emptyset B$
 7BDø： 64 2D 15 36 1E 3F 94 gD 41 7BD8： $1224 \quad 24 \quad 24 \quad 2 D$ AD 36 1E 53
 7BE8： 36 E6 3827 Øø 2124 1C 17 7BFø：ØD AD $\varnothing 4$ Øø 29 2D Eø $3 F 59$ 7BF8：Ø7 6Ø 2D ø4 øø 71 Ø5 EØ 22 7CØロ： $23 \quad 2467$ AC 2A 04 ØD 20 CC
 7C1ロ：ØC ØC 24 DF 3376 Ø4 øø $1 \varnothing$ 7C18： 292056 ø5 2024 DF 33 4D 7C20： 36 Ø4 øø øC øC 1C 1C 4D 4C 7C28：F1 16 ØE Ø4 øø 12 2D $2 \varnothing 64$ 7C3Ø： 24 1C 1C 4D F1 $\emptyset 4$ gの 2D 67 7C38：2D DC 63 øC øC $3 F$ 3F $\emptyset 4$ øC
 7C48：$\emptyset \varnothing \quad \emptyset 9 \quad 24 \quad 24 \quad 24 \quad \emptyset 4 \quad \emptyset \emptyset \quad 29$ A4 7C50：Ø5 2の ØC 1C E4 27 Øロ 4ø 1B 7C58： $18 \quad 18 \quad \emptyset 8 \quad \emptyset C \quad 15 \quad 15 \quad \emptyset 5 \quad 204 C$ 7C60： $90 \quad 292 \mathrm{D} 38$ 3F 67 2D $05 \mathrm{C3}$ 7C68： $38 \quad 3 \mathrm{~F} \quad 67 \quad 2 \mathrm{D} \quad 05 \quad 38 \quad 3 \mathrm{~F} 67 \mathrm{FB}$ 7C7ø：2D $\emptyset 4$ Øロ $\emptyset 92424$ F4 1E 4B 7C78：4D E1 Ø4 Øø 18 ø8 ØE ØE 1C 7C8Ø：2C øC 1F 2424 Øø Ø9 EØ CC 7C88：1C $\varnothing 53 \emptyset 25$ A8 $2 A$ ø4 øø $1 F$ 7C9ø：ø9 $28 \quad 2838$ 3C Bø 3 F ø4 C7 7C98：øø $25242 \mathrm{~L} \quad 1 \mathrm{~F} \quad$ Ø5 $6 \emptyset \mathrm{AD} 9 \mathrm{D}$


## Program 5：SHAPETABLE7X9

Please refer to the＂MLX＂article elsewhere in this issue before entering the following program．

78øø：8ø øø Ø2 Ø1 1ø Ø1 20 Ø1 47 78ø8：2E ø1 $3 B \quad \emptyset 146 \quad \emptyset 154 \quad \emptyset 1$ A7 781ø：61 Ø1 73 Ø1 7A Ø1 87 Ø1 58 7818： 93 Ø1 9E Ø1 AB ø1 BS Ø1 AC
 7828：F1 ø1 FC Ø1 ø8 ø2 14 Ø2 74 783ø： 24 ø2 33 ø2 4ø ø2 4C 02 DE 7838： 57 ø2 63 ø2 6E Ø2 7A ø2 54 784ø：8B ø2 9C ø2 A4 ø2 AD ø2 B5 7848：C2 ø2 DB ø2 ED ø2 øø øЗ 31 785ø： 97 Ø3 10 ø3 19 ø3 33 ø3 F5 7858：उE øЗ 44 פЗ 4B øЗ 4E øЗ E7
 7868：95 øЗ A5 øЗ B4 ø3 C7 $93 ~ ø E ~$ 787ø：D3 øЗ E7 ø3 F8 ø3 øø ø4 11 7878：Ø8 $\emptyset 4 \quad 13 \quad \emptyset 4 \quad 1 \mathrm{E} \quad \emptyset 4 \quad 29 \quad \emptyset 4 \quad 68$
 7888：7A $0489 \quad 0499 \quad 94$ A4 9453 789ø：B4 ø4 C5 ø4 Dø ø4 DA $\emptyset 4 ~ 26 ~$ 7898：EA 94 F5 $94 \quad 96 \quad 9518 \quad 6578$ 78Aந： $28 \quad 95 \quad 3595 \quad 47 \quad 95 \quad 58 \quad \emptyset 5$ E1 78A8： $68 \quad 95 \quad 73 \quad 95 \quad 81 \quad 95 \quad 9 \varnothing 65 \quad 14$ 78Bø：AЗ ø5 B3 ø5 Cø $95 ~ D ø ~ ø 5 ~ З С ~$ 78BE：DB 95 ES 95 EE Ø5 F8 9568 78Cø：FD 95 פ4 $961096 \quad 29$ פ6 B1 78C8：2B 66 3B 9648 פ6 53 פ6 9F 78Dø： 65 פ6 71 Ø6 7A $9684 \quad 96$ 7F 78D8： 91 פ6 98 Ø6 A4 96 AE 0628 78EØ：B9 06 C8 Ø6 D9 Ø6 E1 06 5A 78E8：EC ø6 F7 ø6 ø2 ø7 øC 97 7C
 78F8：4E $9756 \quad 97 \quad 6 \emptyset \quad 976 A \quad 97 \quad 99$ 79øø：8B $97 \quad 2964$ AD $151515 \quad 15$ 79ø8： 94 4ø 18 1E 9F F2 27 פø 99 791g： $92 \quad 6520242424$ 2D AD 8D 7918：1E 3F 96 2D 9529.94 פø 4ø 7920： 9229 3C 2C 2424 1C 6F 4A 7928：49 F1 1E 1E ø4 øø 29 g5 59 793ø： 20 D7 23 øC E5 972064 3E 7938：AD 94 Øø $\emptyset 9$ E5 3B 2ø 2D 1D
 7948：Eø $3 F$ ø7 29 ø5 282974 DB 795ø：2D 3C 94 ஏø 9249 g9 24 59 7958： $24 \quad 24$ 1C FF 17 gD $36 \quad 26 \quad 69$ 796ø： $0 \emptyset 09$ 2D 28 20 3C 3F 3F 6D 7968： 36 פE C4 18 ø日 64 øC AD $A B$ 797ø： $15 \quad 26$ øø 29 б5 F8 $23 \quad 24$ 日ø 7978： 24 Øø $242424 \quad 95$ 2A 28138
 7988： $28 \quad 28 \quad 15 \quad 15$ C4 D8 24 E4 44

799ø：1C ø4 øø 92242424 6C 22 7998： $31 \quad 36$ פE 1F 27 Øø $2124 \quad$ Ø5 79AD： 24 6F 49 FG 1E 1E $\emptyset 4$ øØ 8B 79A8： 49 2D Eø 3F 3F 6ø ØC E5 15 79Bø： 63 2D 1C 94 פø 99 2D 2B 1 BB 79B8： $2 \emptyset$ 1C 1C F7 1E 76 ø4 øø 98 79Cø： 992424 3C 17 4D 28 2D F4 79CB：9F $3636 \quad$ Ø4 øø $92 \quad 24 \quad 24$ D6 79DØ： 24 øC ØC AD 15 FG 1E E7 DD 79DE：ø4 øø 18 ø日 64 øC 2D 2D 2C 79Eg：9F פE F6 1E 3F $2 \emptyset$ פø 49 AB 79E8： 2424 3C BF øD 48 2D 9462 79FD：ØD ø1 $2 \emptyset 24$ 3C 4D Ø9 17 AA 79F8： 36 F6 27 øø 9924 3F 2021 7Aøø： 6425 B4 A9 36 1E $\emptyset 4$ Øø DJ 7Aø日： 29282828 FB 1 B 6F AA EØ 7A1Ø： $1115 \quad 25$ פD 92492424 9D 7A18： 2424 DF פE 36 ØE øD ø5 øE 7A2の： $2 \emptyset 64$ Ø4 øø 29 Ø5 $2 \emptyset 248 \emptyset$
 7AЗø：1C ஏ4 øø 25 E4 24 ØC ØC 62 7A38：2D 15 ØE $3617 \quad 3625$ øø øA 7A4ø：18 ø日 ØE ØE $24242424 \quad \emptyset 4$ 7A48：2D 2D ø4 øø 4ø 18 28 2D 7F 7A5ø：2D E5 1C 96 2A $2 \emptyset$ ØD $4 \emptyset 54$ 7A58：18 $28 \quad 28$ Bø $12 \quad 97 \quad 20 \quad 2 \mathrm{D}$ 8D 7AGø：2D 25 øø 4924242424 E7 7A68：1E 1E 4D E1 ø4 øø 49 18 86 7A7D：ø日 ø4 38 $3 \mathrm{~F} 44 \quad 9956$ 2D 85 7A78：ø4 øø 2D 2D 2D DC DB øC 88 7ABø：øC øC FD 38 38 3828 2D E1 7AB8：2D 25 øø $4 \varnothing 18 \quad \emptyset 5 \quad 28$ 15 9B 7A9ø：15 2D $2 \emptyset 18$ g8 1E 3 F 38 5 5 7A98： $3817 \quad 94 \quad 9 \varnothing 49 \quad \emptyset 418 \quad \emptyset 8 \quad 82$
 7AAB： 24 4D 36 ø4 øø ø9 24 3C B2 7ABD： $27 \quad 28 \quad 35$ øE $35 \quad 3644 \quad 28 \mathrm{FD}$
 7ACø：ø4 øø 28 2D 2D ø5 2ø 1C 69 7AC8：उF 3F ø7 2ø øC 2D 2D E5 65 7ADø：BЗ B6 B6 1F $942 \emptyset 942 \emptyset \mathrm{DE}$ 7AD8：ø4 2ø øø 49 ø9 ø5 Eø 17 A1 7AEØ：DF 63 ØC ØC פC ØC פC DF 69 7AEB：E3 17 ØE Ø4 Øø 29 6D E1 FB 7AFØ： 2765 DF 1F 17 2E 4D $6 \emptyset 13$

 7Bø日：1C 1C 2424 ØC øC ø4 øø 73 7B1ø： 49 øC øC 2424 1С 1C 94 4ø 7B18：Øø 6ø ØC 2D øE øE DE 23 Ø5 7B2ø： 24 38 $3 F$ Ø4 18 ø8 øE ØE $6 A$ 7B28：2D øC øC 96 3F ø7 18 ø8 F1 7B3ø： 24 ø4 øø 49 2ø 24 3F 6746 7B38： 092495 2A 25 øø 922989
 7B48：2D 25 øø ø9 94 øø 6Ø øC 9С 7B5ø：øC øC øC øC ø4 øø 29 2D 32 7B58：2D $20 \quad 24 \quad 24$ E4 3 F 3F 17 6E 7B6ø： 363636 øC øC ØC ØC ØC ЗС 7B68：ø4 øø 29 2D E5 $232424 \quad 81$ 7B7Ø： 24 1E $\quad 64$ Øø 2 D 2D 2 D DC D6 7B78：DB 63 øC øC 65 øC E4 $3 F$ DC

 7B90：2D $1536 \quad 64$ Øロ 49 Ø9 24 C5 7B98：2C 1F 3F 3F øC øC øC øC FD 7BAD：$\emptyset \mathrm{C}$ 36 36 7BA8： 0520 E4 $3 F 3 F 2724$ 2C C5 7BBø：2D 2D 25 Øø 29 2D 2D 20 AG 7BB8：E4 3 F 3F $37 \begin{array}{lllllll} & 36 & \emptyset 4 & 4 \emptyset & 18 & \text { A7 }\end{array}$
 7BCB： 2464 פC פC ஏC 3C 3F 3F 3C 7BDø： 37 ø4 øø 29 2D 2D 2ø E4 3A
 7BEø：ØC 2D 2D $1536 \quad \emptyset 4$ Øø $7 \emptyset 52$ 7BEB：2D 2D ø5 $2 \emptyset 24$ 3F $3 F$ 3F $4 \varnothing$ 7BFの： 2064 2D 2D 15 36 154 øø 13 7BF8：$\quad 11 \begin{array}{lllllllll}18 & \text { g8 } & 94 & 4 \varnothing & 18 & 94 & \emptyset \emptyset & 22\end{array}$
 7Cø日： 49 E1 1C 1C 1C øC øC ØC 98 7C1の：ØC Ø4 Øの 4Ø 18 2D 2D 2D 11 7C18： 64 38 3F 3F 27 øø 99 ø5 4D 7C20： 282828 Eø 1C 1C 1C 04 D7 7C28：øø 49 ø4 2ø øС øС øC E4 83 7C3Ø： 3 F 3F 1726 פø 29 2D E5 C2 7C38：DB 23242464 2D 2D 15 F5

7C4D： 36 F6 3F 27 ØC 35 פ4 $9 \emptyset$ A9
7C48： $2424 \quad 24$ ØC ØC 2D 15 15 F5
7C5ø： 36 3F 3 F 6F 4A $31 \quad 36 \quad 94$ 9A
7C58：Øø 2D 2D 2D 2ø E4 3F 3F 67
7C6D： $362618 \quad 4024$ 3C GD 2D 5E
7C68：AD 36 g4 øø 99 2D 2D FB 96
7C7ø：DB 1C 2424 øC बC 2D AD BD
7C78：ø4 øø 2D 2D 2D $2 \varnothing 1242442$
7CBg：E4 JF JF AF $36 \quad 36 \quad 36 \quad 9499$
7C88：Øø 2D 2D 2D DC DB 2324 ø6
7C9ø：2D E5 1B 24 2C 2D 2D 25 D4
7C98： $\operatorname{gD} 2424$ 2D E5 1B 24 2C 92
7CAø：2D 2D 25 øg 99 2D 2D 2997
7CAB：उC FF 9A 1C 2424 øC ØC AA
7CBE：2D AD $\emptyset 4$ øg 24242424 4A
7CBE：4D $49 \begin{array}{llllllll}36 & 36 & 36 & 36 & C 4 & 18 & \text { Ø1 }\end{array}$
7CCØ：ø8 3 F 3F 94 פg 29 2D E5 9A
7CCB： 23242424 3F 4D 25 פø 9C
7CDE：7ø 2D 0529242424 6F 59
7CDB： $94 \quad$ gø 24242424 4D 49 3ø
7CED：1E 1E 1E 1E 6F 72 gE פE 85 7CEB： 04 Øø 2D 2D 2D DC DB 2314 7CFD： $24 \begin{array}{lllllllll}24 & 24 & 94 & \text { פg } & 24 & 24 & 24 & \mathrm{C}\end{array}$ 7CFB： 24 פE gE פE 26 פВ פC ØC 9F 7Døø： 36363636 פ4 øø 2424 5A
 7D19： $36 \quad 94 \quad 18$ ø日 242424 øø A4 7D18： 09 2D 95 2B 20 24 E4 1C 7D 7D29： $3 \mathrm{~F} \quad 17 \quad 17 \quad 36$ 36 GE 94 gø B8
 7D3ø：1E $3 F$ 3F 94 פg 99 2D gD BD 7D38：1C 1C 9 D 2424 1C 1C 3F 35 7D4פ：1E 1E 3636 gE 94 gø 24 Ag 7D48： 242424 2D 2D AD 36 1E 60 7D5ø： $3 F$ 3F 8D פE बE øE פ4 פø FD 7D58：7g 2D 2D 05 2g E4 3F 3F 1F
 7D68： $4924 \quad 242424$ 3F 6F 24 DD 7D7ø：2D 64 øø 29 2D 2D 2012418 7D78： 2424 DF DB 36 7D8g： $9 \emptyset 49$ 1C 1C 1C 2424 6C 39 7D88： 49313636 1E 1E 94 פø 10 7D96： 24242424 4D 493636 9F 7D98： $36 \quad 36 \quad 67 \quad 38 \quad 38 \quad 201841 A 166$
 7DAB：1C $6 C 4931$ 1E 1E 16 פE AC 7DBø：פE 26 gø 492424 1C 1C D6 7DB8：1C 6C 4931 1E 1E 94 פø 8A 7DCg：2D 2D 2D DC DB 63 gC gC A1 7DC8：øC øC øC 3C 3F 3F 27 פø 57 7DDø：ø9 2D E5 1B 242424 2C 3D 7DDE：2D פ4 ตø 48 49 E1 1C 1C 16 7DEø：1C 1C 1C 14 ØD 29 2D 24 D7 7DEB： 242424 3F 27 פø 4ø 4ø 71 7DFØ： $4 \emptyset 48 \mathrm{E} 1 \mathrm{3F}$ 3F 1794 פø AC 7DF8：2D 2D 2D ø4 ஏø 4ø 4ø 4ø 7D 7Eøø： 49 1C 24 øø 29 6D 3 C ต5 A9 7EøB：20 24 3F BF $1736 \quad 64$ Øø 9B 7E1g： $24 \quad 24 \quad 65$ 2D 1536 F6 JF 56 7E18： 67 2ø 18 18 182424 øø 24 7E2ø： 29 2D 05 FB DB 2464 2D 92 7E28：AD 94 gø 29 6D 3C 952916 7E3g：उC 95202496 1B $3 F 1789$ 7E38： $36 \quad 26$ øg 29 2D ES DB 2348 7E4ø：2D 2D 25 E4 3 F BF $26 \quad 9 \varnothing 57$ 7E48： 992424 3F 4D FD 206452 7E5ø：AD 04 Øø 12 ØE 2D 2D 2ø ES 7E58： $24 \quad 24 \quad 24$ 1E 97 38 BF 36 AS 7E6の： 76 2D ø5 20 Øø 242424 日3 7E68： 2496 gA GC AD $15 \quad 36 \quad 26 \quad 73$ 7E7 7E78：פ4 øø 12 ตE 2D 2D 2624 1D 7EBø： $2424 \quad$ Ø4 øø 2424242437 7E88： 9649 F1 1E 6F 72 ØE 94 AB
 7E98： 2424 2C AD 3636 4D 24 5A 7EAD： 24 1C 27 Øø 2424 AC פC B2 7EAB：2D $153636 \quad 94$ Øø 29 2D 4B 7EBg： $65 \quad 29241 \mathrm{C}$ 3F BF $36 \quad 26$ gA 7EBE：ஏø 9224242424 ตE 65 F3 7ECg： 28 AD 36 F6 3 F פ7 2g $9 \varnothing$ C9 7EC8： $9249 \quad 99 \quad 24 \quad 24 \quad 2424$ 1E DC
 7ED8：Øの 242474 øC 2D 15 ø4 ED 7EEØ：Øø 7ø 2D 2D EØ E7 E7 פC F4 7EE8：2D AD 94 gø 49 2D F8 23 7C

7EFD： 2424 B4 3B 4D 25 Øø 29 7B 7EFB：2D 652024 FC DB 3636 gE 7Føø： 94 øø ø9 1C 1C 24 6C 99 37 7Fø8： 36 F6 64 Øø $2 \emptyset 24$ 6C 11 DB 7F1ø： 36 F6 6F 29 日5 20 2424 7D 7F18：øø øC øC 25 3F 386849 E2 7F2ø：1E 9615 Ø4 Øø 12 ØE 2D 48 7F28：2D 20242424 DF 1B 3699 7F3Ø：36 ØE 2D ø5 2ø øØ 2D 2D 4C 7F38：E5 DB øC øC øC 9538 3F 87 7F4ø： 3 F Ø4 Øø 49 2D DC 23 E4 7C 7F48：øC 24 øC 2D ø4 øø 49 2の 7D

 7F6の：4ø 18 4ø 18 6Ø AD 15 2D 2ø 7F68： $2 \emptyset$ øø 242424243536 9ø 7F7D： $36362 E \quad 2424 \quad 24 \quad 24 \quad 354 F$ 7F78： 36 7F8ø： 35363636 2E 242424 4ø 7F88： 24 Ø4 Øø øø Øø FF øø ஏø 9A

## Program 6：DISPLAYSHAPE

For instructions on entering this program． please refer to＂COMPUTEI＇s Guide to Typing In Programs＂elsewhere in this issue．

2E $1 \emptyset$ HOME ：TEXT
$922 \emptyset$ HGR ：SCALE＝ 1 ：ROT $=\varnothing$ ：HC OLOR＝ 3
Aी $3 \emptyset$ POKE 232，Ø：POKE 233， 112 F8 $4 \varnothing$ VTAB 22：PRINT＂ENTER NAME DF TABLE：＂：INPUT＂＂；N\＄： PRINT＂ENTER DRIVE \＃：＂；： GET AN\＄：AN＝VAL（AN\＄）
4C $5 \emptyset$ PRINT AN
9E $6 \varnothing$ PRINT CHR\＄（4）；＂BLOAD＂；N\＄ ；＂，A28672，D＂；AN
EJ $7 \emptyset X=1: Y=1$
$308 \emptyset$ FOR $I=\emptyset$ TO 2øø STEP $2 \emptyset$
$489 \emptyset$ FOR $J=1$ TO 20
$231 \emptyset \emptyset X=X+1 \varnothing$ ：IF $J=1$ THEN

## COMPUTE！ Subscriber Services

Please help us serve you better．If you need to contact us for any of the reasons listed below，write to us at：

## COMPUTEI Magazine

P．O．Box 10954
Des Moines，IA 50340
or call the Toll Free number listed below．
Change Of Address．Please allow us 6－8 weeks to effect the change；send your current mailing label along with your new address．

Renewal．Should you wish to renew your COMPUTEI subscription before we remind you to，send your current mailing label with payment or charge number or call the Toll Free number listed below．
New Subscription．A one year（12 month）US subscription to COMPUTEI is $\$ 24.00$（2 years，$\$ 45.00 ; 3$ years，$\$ 65.00$ ． For subscription rates outside the US， see staff page）．Send us your name and address or call the Toll Free number listed below．

Dellvery Problems．If you receive dupli－ cate issues of COMPUTEI，if you experi－ ence late delivery or if you have prob－ lems with your subscription，please call the Toll Free number listed below．

COMPUTE！
1－800－247－5470
In IA 1－800－532－1272

F9 110 IF $\mathrm{I}+\mathrm{J}>\operatorname{PEEK}$（28672）T HEN $15 \emptyset$
C8 126 DRAW I $+J$ AT $X, Y$
$6413 \emptyset$ NEXT J
E5 140 NEXT I
IA 15Ø HOME ：VTAB 22：PRINT＂PL EASE PRESS A KEY＂；：GET AN\＄：TEXT ：HOME ：END

## Program 7：BARCHART

For instructions on entering this program，
please refer to＂COMPUTEI＇s Guide to Typing In Programs＂elsewhere in this issue．

B7 11ø TEXT ：HOME ： $\operatorname{MAX}=\varnothing$
2F $12 \emptyset$ READ NB，WB
$3813 \emptyset W S=(28 \emptyset-N B * W B) /(N$ $B+1)$
F7 $14 \emptyset \mathrm{X}=\mathrm{WS}+1$
74 15ø IF NB＊（WB＋WS）$<28 \emptyset T$ HEN $17 \varnothing$
58 16Ø PRINT CHR\＄（7）；＂CHART IS TOO WIDE＂：PRINT＂PLEASE PRESS A KEY＂：GET AN\＄：G OTO 49ø
48 17ø DIM BAR（2＊NB），C（5ø）
2A $18 \emptyset$ FOR I $=1$ TO $2 * \mathrm{NB}$
98190 READ BAR（I）
$9920 \varnothing$ IF MAX＜BAR（I）THEN MAX $=$ BAR（I）
E 210 NEXT I
11 $220 \mathrm{SCL}=13 \emptyset / \mathrm{MAX}$
$5 B 23 \emptyset$ HGR ：ROT $=\varnothing$ ：SCALE $=1: \mathrm{H}$ COLOR＝ 3
OC 24ø HPLOT Ø，Ø TO $\varnothing, 159$ TO 279 ，159 TO 279，ø TO Ø，Ø
FC $25 \emptyset$ FOR I $=1$ TO NB
7D 260 HPLOT $X, 159$ TO $X, 159$－SC L＊BAR（I）TO X＋WB， 159 －SCL＊BAR（I）TO $X$＋WB， 159
$91270 X=X+W B+W S$
EE 280 NEXT I
5D $281 \mathrm{X}=W \mathrm{~W}+W B+13: B W=W B$ $-5$
FB 282 FDR I $=\mathrm{NB}+1$ TO 2 ＊NB
48283 HPLOT X， 159 TO X， 159 －SC L＊BAR（I）TO $X+B W, 159$ －SCL＊BAR（I）TO X＋BW， 159
AJ $284 \mathrm{X}=\mathrm{X}+\mathrm{WB}+\mathrm{WS}$
63 285 NEXT I
fF $29 \emptyset$ POKE 232，ø：POKE 233， 112
19 3øø PRINT CHR\＄（4）；＂BLOAD BAR TABLE，$A \$ 7 \emptyset ø \emptyset^{\prime}$
F5 310 FOR I＝ 1 TO NB
2C $32 \emptyset \mathrm{~K}=\emptyset$
3333 FOR J＝ 1 TO 10
55 34ø READ C（J）：IF C（J）$=\varnothing$ TH EN 38ø
4A $35 \emptyset$ DRAW $C(J)$ AT I＊（WS＋WB ）＋5，156－K＊ 9
$5 B 36 \emptyset K=K+1$
6E $37 \emptyset$ NEXT J
$7838 \emptyset$ IF I $=$ NB THEN 4øø
F1 $39 \emptyset$ NEXT I
43 4øø FOR I＝ 1 TO 25
FB $41 \varnothing$ READ C（I）
EJ $42 \emptyset$ DRAW C（I）AT 18 ＋（I＊9） ， 13
E6 430 NEXT I
FF $44 \emptyset$ FOR $I=1$ TO 4
84 45ø READ C（I）
$8746 \emptyset$ DRAW C（I）AT $185+(I * 5$ ）， 22
EE $47 \emptyset$ NEXT I
QA 471 FOR $I=1$ TO 4
DB 473 READ C（I）：DRAW C（I）AT 5 7 ＋I＊5，22
FE 474 NEXT I
6D 476 DRAW 32 AT 85，24：DRAW 31

AT 213，24
F1 $48 \emptyset$ DRAW $3 \emptyset$ AT $1 \emptyset, 15 \emptyset$
8E 49Ø VTAB 24：PRINT＂PRESS ANY KEY＂；：GET AN\＄：TEXT ： HOME
80 5øø END
AC $51 \emptyset$ DATA $4,1 \emptyset, 16 \emptyset, 1 \emptyset 8,42,168$ ， $119,148,111,127$
F5 $52 \emptyset$ DATA $1,2,3, \varnothing, 4,2,2,3, \varnothing, 7$ ， $1,6,1,5, \varnothing, 8,3,9,4,3,8, \emptyset$
72530 DATA $1 \emptyset, 11,12,13,14,15,16$ $, 11,24,17,14,11,11,12,24$ ， 18，1ø，19，2ஏ，21，22，14，15， 1 9，23
$2354 \emptyset$ DATA $25,26,27,28,25,26,2$ 9，25

## Program 8：BARTABLE

Please refer to the＂MLX＂article elsewhere in this issue before entering the following program．



7818：C8 øø DЗ Øø E4 øø EF Øø EE

7828： 36 פ1 45 ஜ1 $53 \quad \emptyset 161 \quad$ ø1 8F
783ø： 73 ø1 75 ø1 7C 1183 日1 C9
7838：8B 5192 ø1 9C 91 D5 9127
7840：E4 012424 日C ©C 15 15 7A
7848： 3636 C4 $3 F$ g4 gø AB 2D $\operatorname{~DD~}$

7858： 15094 øø 202424 4D 3154
7860： 3636 1E JF 94 g』 2424 3E
7868： 24 2D AD F6 3F פE GE ØE 38
787＠：ø4 פø AB 2D 2g 24 3C 28 7D
7878： 25 øø 242424 2D AD 36 2A
7889：1E 3 F 日4 242424 GE DB
7888：बE פE 9621242424 פD E2
789ø： 242424 2D 2D 96 3B B7 E5


78AB： $24 \quad 2424 \quad 2 \mathrm{D}$ 2D AD 36 1E B6
78B！： 3 F 3F 日D GE GE GE 94 פø 54
78BE：2D 2D 2D DC DB 2324 2D DF
78C＠：E5 1B 24 2C 2D 2D 25 gg 1B
78C8：2D 2D 2D DC DB $23 \quad 2424$ E6
78Dø： 24 ø4 øø 242424 ตC øC EC
78DE：2D $1515 \quad 36$ 3F $3 F 6 F 4 A \quad C B$
78EØ： $3136 \quad 94$ Øø 49242424 BF
78EB： 24 3F 6F 99 2D 94 פ6 29 DC
78Fg：2D ES 23242424 3F 4D 16
78FB： 25 gø 49 1C 1C 1C 242425
79ø日：6C $49 \quad 31 \quad 36 \quad 36$ 1E 1E 64 6F
79ø8：ஏø 7ø 2D 2D ø5 2ø E4 3F 41
7910： JF 日7 20 64 2D 2D 15 に4 FA
791日：6ø 24242424 2D 2D AD BB
7920：36 1E 3F 3 F Ø4 9069 2D Fø
7928： 65282024 E4 1C SF 17 1B
793ø： 17 36 36 ØE Ø4 øø 2D 2D 8B
7938：2D 20 2424 E4 JF JF AF E2
7949： 36
7948：20 242424 DF DB 3636 2C
7950： $36 \quad 26 \quad$ øø 69 2D 2D FB DB 64
795日：1C 2424 øC øC 2D AD 04 1C

7968：ФE ஏE ஏE 36 ஏ4 18 øB 24 BF

7978：36 6F 94 פø 3824 2D 36 C5
798ø： $36 \quad 26 \quad 9 \emptyset \quad 38 \quad 649532$ 1E 97
7988：1C 24 øø 3824 2D 96 FG 10

7998：ஏ5 2ø $64 \quad$ øø $24 \quad 24 \quad 24 \quad 24$ B4
79Ag：2D 2D 2D 2D 2D 2D 2D 2D 93
79A8：2D 2D 36
79Bg：3F 3F 3F 3F 3F 3F 3F 27 8B
79B8：Ø8 4の СØ ØE ØE ØE बE ØC 89

79C8：øC ØC øC DF FJ 9E FJ 1C 62
79D』：1C 18 1C 94 gø 2424 2C Ag
79D8：2D 2D 2D 2D 3636 3E 3F 6C
79ED： 3 F 3F 27 פの 2424 2C 2D 5F
79E8： $35 \quad 36 \quad 36 \quad 3 F \quad 3 F$ gの $\quad 96 \quad 94 \mathrm{BC}$

# Font Printer For The IBM PC/PCjr 

John Klein
"Font Printer" for the IBM PC/PCjr allows you to print a wide variety of custom character styles on a dotmatrix printer. Its editor makes it easy to design custom text fonts, and the printing program lets you print any ASCII (plain text) file using your custom print style. Another program allows you to print large banners using any custom printer font. As a special bonus, the quarterly IBM PC/PCjr disk that includes this month's COMPUTE! programs also contains a library of 25 ready-to-use custom printer fonts for this program. The editor program requires a color monitor, and, for the IBM PC and compatibles, a color/graphics card or equivalent hardware is also required. The printing program requires an IBM Graphics Printer or compatible dot-matrix printer. All the programs require BASICA for the PC, Cartridge BASIC for the PCjr, or GWBASIC for compatibles, and DOS version 2.1 or higher.
"Font Printer" makes it possible to create, edit, and print custom fonts on a dot-matrix printer. You can print text in almost any imaginable print style, from Gothic and Roman to Old English, outlined characters, or whatever else you can devise. You have full control over the shape of each character, so Font Printer isn't limited to printing ordinary characters of the alphabet. It also can print custom letterheads, other graphic designs, and banners.

This article includes four programs. The font editor (Program 1) lets you design and edit complete custom fonts and save them to disk. The printing program (Program 2)

## Figure 1: Custom Fonts

## REGULARQUALITY

This is a test
abcde fghi jk l mnopars tuvwxyz
DOUBLEE
This is a test
ABCDEFGH I JKLMNOPQRSTUVWXYZ
abcde figh ijk 1 mnopars tuvwxyz
1234567890
TRIPLE
This is a test
ABCDEFGH I JKLMNOPQRSTUVWXYZ
abcdefghijk 1 mnopqrstuvwxyz 1234567890
GRYDLESGORGOT
This is a test
 abcdekghijkemnapqrsturuacyz 1234567890
OLDWEST
This is a test
ABCDEFGHI UKI MNOPGRSTUXWXYZ
abodelghi jklmnoparsturwxyz
1234557890


MiPce


## RANDOM

This is a test
ABCDEEGHI JKLMNOPORSTUVWXYZ
abcdefshijk 1 mooparsturwxyz
OEDENGEISH
This is a fesf
ABCDEFSE9 SkEMNOPORSTUUHXUZ
abcdef ghi jkI mroppqrs fupmxyz
"Font Printer" allows you to create many different custom fonts and print any font in a variety of sizes.
lets you print any ASCII text file using the custom font of your choice. Program 3 helps you keep track of the custom fonts you have created, and the banner printer pro-
gram (Program 4) prints large-letter banners using custom fonts. The accompanying figures illustrate just a part of what you can do with Font Printer.

Figure 2: Letterhead


Dear Prospective Traveler,
With prices rising in what seems every market, the
cost of travel is lower than it has ever been. In fact
some companies cut their prices in half all the way across
the board. Take that long needed vacation today! Don't
put it off any longer.
Come down and see our special vacation packages. Simply
choose your vacation spot and budget and we'Il set you up with
the best possible package. We'Il get you your airplane, bus,
or cruise tickets and reserve a nice place to stay, once at your destination.

See us soon. There is no better time than the present!

Sincerely,

Herbert Filling

Herbert Filling
General Manager
safe travel
SAFE TRAVEL

"Font Printer" can also create eye-catching graphic designs, such as this letterhead for a fictitious travel agency. The graphics shapes are created by redefining a block of text characters.
(Ed. Note: As a bonus for disk subscribers, the COMPUTE! Disk that includes the programs for this month also contains 25 ready-made custom printer fonts. (Because space is limited, we cannot publish the bonus fonts in the magazine.)

These programs were tested on an IBM Graphics Printer, a Star Micronies SD-10 (in IBM mode), and on an Okidata printer with the IBM Plug ' $n$ Play Kit. To use Font Printer on another type of printer, check the printer manual to see if it can print APA (All Points Addressable) graphics, also known as bit-image graphics. The printer must also use the command sequence $\mathrm{CHR} \$(27)$ CHR\$(76)-ESC L-in order to get 960 dots in the same space normally occupied by 80 text charactersusually referred to as doubledensity graphics mode.

## Using The Font Editor

Type in Programs 1-4 and save them on disk; then load and run Program 1, the font editor. The program begins by asking you to enter a filename for the font you wish to edit. Each custom font is saved in a separate disk file. The filename must be no longer than eight charactors, not including the extension. You should add a special extension such as .FNT with font filenames as a reminder that they contain custom printer fonts.

Each disk that contains font files must also contain a font code directory file named FONTCODE.DIR. If no font code directory is found on the disk, the font editor will create a new FONTCODE.DIR file. The font editor will also make the appropriate entries in the font code directory for each new font you create. Any disks containing
font files must also have a font code directory file before the fonts can be used by Programs 2-4.

To load an existing font, place a disk containing the appropriate font file in the drive and enter the desired filename. The editor loads the file from disk and displays the first character of that font on the screen. If you enter the name of a file that is not found on the disk or is not currently in the font code directory, Program 1 asks whether you wish to create a font code diretory entry for the new file. Press Y to create a new font file or to add an existing file to the font code directory, or press N to abort the function and return to the original prompt.

If a file with the specified name exists on the disk but is not in the font code directory, Program 1 allows you to simply add the file to the directory and begin editing. Otherwise, you must create a new font file. In this case, you have two options: You can start with an empty font (all character patterns will be blank), or you can start with a font that is a copy of an existing font. If you choose the option to start with an empty font, you must answer a few questions before you begin to edit. First, the program requests that you specify the charaster size in terms of width and height.

The character width (in dots) can be any whole number from $4-36$. A width value of 12 creates normal-width characters which will print ten characters to the inch on a standard printer. To create halfwidth characters, you would specify a width of 6 . Use a width of 24 for double-width characters, 36 for triple-width, and so on.

After you specify the character width, Program 1 asks you to specify the character height in terms of lines. A character may be one, two, or three lines high. Each line contain eight vertical dots, and the normal printer font is one line in height. A character with a height of two lines is 16 dots high, and one with three lines is 24 dots high-a very large character, indeed.

The next prompt asks you to enter the font call code for this font. This is the code name you will use to call (begin using) the font within a word processing document. The
font call code can be a descriptive word of any length, but it must contain no spaces, colons, or hyphens. To use a font, you need to remember its call code, not its filename. The font code directory matches call codes with filenames.

Finally, the font editor program prompts you to press $C$ if you wish to create a character font or H if you wish to create a header. A header is simply a picture or graphic design that is built of several individual custom chanacters. The process of creating headers is described later in this article.

## Editing Screen

After you answer those questions (or if you began the program by loading an existing font), the font editor displays the main editing screen. This screen is divided into two areas. On the left is a list of single-key options used in editing. On the right is the editing window, which displays an enlarged version of the current character.

A custom character set is created by drawing one character at a time in the editing window. Use the cursor keys to move around inside the editing window. If you press the space bar when the cursor is on a blank space, that space is turned on. To turn off a space that is already turned on, simply move the cursor to that square and press the space bar again.

Font Printer allows you to define patterns for ASCII characters 33-126. These are all the characters that can be entered from the IBM PC/PCjr keyboard without using the Alt-key entry mode.

If you are creating a comparatively small font, you can draw each character by moving around the editing window and turning on the dots to represent that character. For larger characters or graphics, you may find it faster to draw each character on graph paper before transferring the design to the computer. Another method is to tape a sheet of clear plastic over the monitor screen and draw on the plastic with washable marking pens, then use the editor to fill in the squares to make up the design. When you're done creating one character, simply wipe off the plastic and proceed to the next.

## Figure 3: Centering Guidelines



## Placement

The placement of each character within the editing window is critical. If you don't align each character in the set properly, the font may look messy or be difficult to read. For most fonts, you'll want to leave white space around characters to prevent them from running into one another and becoming illegible. Figure 3 illustrates some centering guidelines which will create a pleasing appearance in most cases. Note that all characters except uppercase I should be placed flush against the left side of the editing window.

The exact amount of blank space bordering each character depends on the effect you wish to achieve. In general, you should leave one or two blank lines below the characters to leave room for descenders on the lowercase characters $q, j, p, q$, and $y$. Similarly, the top line or two of space should be reserved for uppercase characters and for the ascenders in the lowercase characters $b, d, h, k, l$, and $t$. Every character should have at least one row of white space to the right.

## Editing Options

The left side of the editing screen displays the font editor's single-key commands:

M	move to new character
C	clear editing window
T	trace from character
s	save character to disk
I	reinitialize font parameters
A	clear all characters
w	rewrite screen
R	restart program
Q	quit
SPACE	plot/erase point
	or cancel current comma
D	turn draw mode
E	turn erase mode on/o

The move command ( $M$ ) lets you change which character you are editing.

The clear window command
(C) clears the editing window, eras-
ing the current character pattern.

The trace command ( T ) allows you to copy the pattern of another character in the font into the editing window. This is useful for creating characters that look similar. For instance, to create a lowercase $e$ character, you might begin by tracing in the pattern of lowercase $c$ (assuming you have already created the $c$ ). When asked to choose which character to trace, you may either enter the character's ASCII value or simply type the desired character. Note that this command clears the current character before tracing the pattern of the new one.

The save command ( S ) saves the current character pattern (the contents of the editing window) to the font file. To add the pattern to the font file, you must save it before moving to another character or exiting from the editor. After you save a pattern, you will automatically be moved to the next character in the set. Note that all the data for the pattern may not be written immediately to disk when you use the S command. The computer collects the data in a buffer and writes to disk only when the buffer is full. For this reason, it's important to always exit the program with the Q (quit) command. If you use CtrlBreak to break out, the last editing changes you made may not be written to disk.

The initialize command (I) resets the size of the font and allows you to change its call code. If you change the font size, you'll probably need to use the clear all (A) command to erase any previous character definitions. Character patterns designed for one font size will appear garbled when displayed in another size.

The clear all command (A) clears all the characters in the current font. Use this command with care; it's not possible to recover the character patterns once they have

## been erased.

The rewrite command (W) erases and redisplays the entire editing screen. The editing window is redrawn with the character pattern from the font file.

The restart command ( R ) restarts the program. The current chararacter set patterns will be cleared, and you'll be given the opportunity to choose another font file for editing.

Press the $Q$ key to exit the program and return to BASIC. All saved character patterns will be written to disk before the program exits.

The clear all, restart, and quit commands all ask Are you sure? before proceeding. Respond with $Y$ to execute the command or $N$ to cancel the command. You can also cancel the clear, trace, and save commands by pressing the space bar while the command is acting.

The draw-mode command (D) allows you to turn automatic draw mode off and on. When draw mode is on, the cursor automatically turns on every square which it moves over. This is useful for filling large areas of the editing window. When draw mode is off, the cursor moves without disturbing anything in the edit window.

The erase-mode command (E) allows you to turn automatic erase mode off and on. When erase mode is on, the cursor automatically erases every square which it moves over.

Both draw mode and erase mode are canceled when you draw with the space bar.

## Creating Headers

A header is simply a picture made of many custom characters. Perhaps the most common use of a header is to create a letterhead which goes at the top of a page of stationery. (See Figure 2.) However, you can use this feature to put graphics anywhere on a page.

The first step in creating a header is to decide on its size. You must subdivide the header into blocks of character size. For example, to create a header that is 240 dots wide by six lines high, you could use character blocks 24 dots wide by three lines high, in which case 20 characters would be re-
quired for the header-two rows of 10 characters each. Other character sizes could be used, such as 12 dots wide by two lines high, in which case the header must be subdivided into more blocks. The only restriction is that the complete header pattern can use no more that 94 blocks (only characters 33-126 can be defined). If you use the largest character size ( 36 dots wide by three lines high) and divide the header into 26 characters across by 3 characters high, you can create a header line that is three times as high as the largest font style and the width of 80 normal characters, a space about $8 \times 3 / 4$ inches in size.

If you create a header of the maximum size, the three lines of character blocks can be divided in many different ways. For instance, you might use the upper two lines to create a custom letterhead for the top of a page, and use the remaining line to create a design for the bottom of the page.

Header characters can be created by drawing as you go on the editing screen. However, you may find it somewhat difficult to visualize the overall design, since only one character is visible in the editing window. Perhaps the simplest method is to tape together several sheets of graph paper and design the header completely before you begin editing with the font editor. Then decide what portion of the design should go in each character block, and begin filling in the characters. You'll have an easier time remembering which character blocks comprise the header pattern if you use a sequential series of characters for the patern. For example, if you subdivide your header design into two rows of ten characters, you might use characters 65-74 (corresponding to $A-J$ ) for the top row and characters 75-84 (corresponding to $K-T$ ) for the bottom row. Be sure you remember which characters you used for your design. You'll need this information to print the header later.

## Forbidden Character Values

When you save a character, its pattern is converted into a series of numbers in the range $0-255$. Two
of the 256 possible values create problems when you attempt to write them to disk as part of a file. The tab character (ASCII 9) is written as five space characters rather than as one tab character. Character 26 signifies the end of a file and prevents all subsequent values from becoming part of the file. If you try to save a pattern containing either of these values, the program shows you which dots in the pattern create the problem number (they will be changed to red), and it gives you a chance to correct them. Simply change one of the offending dots in the vertical column containing a problem pattern and try to save the character again. Fortunately, these values appear infrequently.

## Using Custom Fonts

Once you have created a custom font or header, you can use the font or header in a word processor document. The first step, of course, is to create the document and decide which fonts you wish to use. You can use almost any word processor, as long as it has an option to store documents as ASCII text files. (Program 2, the printing program, can use only ASCII text files.) You can use any of the fonts created with the font editor as well as the standard character styles available in your word processor or printer. A few special rules must be followed when preparing a document to use the custom fonts and headers.

Using a font that's wider than the usual 12-dot width may require some extra planning. Because the characters take up more space horizontally, you may have problems centering them or determining how many will fit on a line. For instance, if you are using double-width (24dot) characters, you should reduce the margins on your word processor by half, or insert an extra space between each character in a line so that the word processor will not attempt to store too many characters per line. If a line of text translates into font characters requiring more than the maximum number of dots the printer can place on a line (960 dots for the IBM Graphics Printer), characters to the right of the limit will be lost. Similarly, you may encounter problems when trying to set the page length for fonts

## Increase your knowledge about all aspects of compo

## Select 5 Books for only \$3 ${ }^{95}$

More programs, projects, and ways to use your micro. Keep well-informed about the latest books available-and get the original publishers' editions at discounts of up to $\mathbf{5 0} \%$ off the publishers' prices!


## minn


$2850 \$ 25.95$


1535 \$16.95

$1737 \quad \$ 18.95$

$2732 \quad \$ 18.95$


1884P $\$ 18.95$


2831 \$22.95

$1990 \quad \$ 24.95$


2766P $\$ 12.95$

$2738 \quad \$ 29.95$


1085P \$10.25
$1807 \quad \$ 17.95$


1768 \$19.95

$1816 \quad \$ 15.95$



1970 \$22.95

$2622 \$ 21.95$

$2710 \quad \$ 27.95$
Counts as 2


1251P $\$ 10.25$

$1988 \quad \$ 23.95$



1724P $\$ 13.50$

$2756 \quad \$ 18.95$


2650 \$21.95

$2856 \quad \$ 25.95$

$1275 \$ 15.95$


2694 \$22.95


1997 \$21.95

$2771 \quad \$ 25.95$

$2749 \quad \$ 22.95$


1993 \$21.95

$2855 \quad \$ 24.95$

Please accept my membership in The Computer Book Club ${ }^{\circledR}$ and send the 5 volumes circled below, billing me $\$ 3.95$ plus shipping and handling charges. If not satisfied, I may return the books within ten days without obligation and have my membership canceled. I agree to purchase at least 3 books at regular Club prices (plus shipping/handling) during the next 12 months, and may resign any time thereafter.
$\begin{array}{llllllllllll}1085 P & 1251 P & 1275 & 1535 & 1724 P & 1737 & 1768 & 1807 & 1816 & 1876 P & 1884 P\end{array}$ $\begin{array}{lllllllllllll}1970 & 1988 & 1990 & 1993 & 1997 & 2622 & 2623 & 2650 & 2691 & 2694 & 2710 & 2730\end{array}$ $\begin{array}{llllllllllll}2732 & 2738 & 2749 & 2756 & 2761 & 2766 P & 2771 & 2831 & 2850 & 2855 & 2856\end{array}$ Name
Address
City
State/Zip Phone
Valid for new members only. Foreign applicants will receive special ordering instructions. Canada must remit in U.S. currency. This order subject to acceptance by The Computer Book Club*

All books are hardcover editions unless numbers are followed by a P for paperback.
Membership Benefits - Big Savings. In addition to this introductory offer, you keep saving substantially with members' prices of up to $50 \%$ off the publishers' prices. - Bonus Books. Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to $80 \%$ off publishers' prices. - Club News Bulletins. 13 times per year you will receive the Book Club News, describing all the current selections-mains, alternates, extras-plus bonus offers and special sales, with hundreds of titles to choose from. - Automatic Order. If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no book at all, simply indicate your choice on the reply form provided. - Ironclad No-Risk Guarantee. If not satisfied with your books, return them within 10 days without obligation! - Exceptional Quality. All books are quality publishers' editions especially selected by our Editorial Board.
that are taller than usual-each line printed in the tall font will occupy more than one line printed in standard height. You can compensate by inserting a blank line between each line of double-height text, or two blank lines between each line of triple-height text.

## Comma Command

To change the font style within a word processing document, you must include a comma command at the point of change. A comma command is simply a comma (,) followed immediately by a the call code of the font which you wish to use. (Remember, use the call code for the font, not the filename under which the font is stored.) When the document is printed, the comma command tells the printing program (Program 2) which font to use at that point in the printout.

All of the fonts created by the font editor program are line fonts, meaning that you must print an entire line of text in the selected font, not just part of the line. The comma to begin the command must be the first nonspace character in the line, except that leading form feed characters, CHR\$(12), are allowed. Only one comma command is allowed per line of text.

The comma must be followed immediately (without spaces) by the call code of the desired font, which must be entirely in uppercase characters. A comma command can also take several optional parameters. Here is a list of the comma command options:
S space following lines horizontally
SS space following lines horizontally and vertically
D double strike
G change printer graphics mode
H horizontal expansion
V vertical expansion
You need not include any options in the comma command. For example, if you simply wish to change to the custom font named MYFONT, you would insert this comma command at the beginning of the line where you want the change to take effect:
,MYFONT:Your text goes here.
Notice that the call code (MYFONT) contains no spaces. The comma command must be separated from the text to be printed by a
colon (:). In this case, your text consists of the words Your text goes here. If you include options in the comma command, each option must be preceded by a hyphen ( - ). For instance, this comma command changes the font to MYFONT and causes the printer to double-strike each character one dot below the first character.

## ,MYFONT-D1:Your text goes here.

The S and SS options tell the printer program how to handle large fonts. The S option assumes that you have provided extra spaces between each character to be printed; this option is appropriate when you are printing characters that are normal height, but wider than normal . The SS option makes the same assumption about horizontal spacing and further assumes that you have inserted an extra line between each line of text to be printed; this option is appropriate when you are using characters that are both wider and higher than usual.

The D option invokes doublestrike mode, in which the printer prints each character, then backs up and prints it again before proceeding to the next character. You may follow the D with a number from 1 to 3 to control how many dots below the first character the second character is printed. Double-strike values of 1 or 2 make characters appear darker than normal. Larger values create a mirrored or doubling effect.

The $G$ option changes the printer's graphics mode. This permits you to squeeze or expand existing fonts even further by invoking built-in printer modes. The G should be followed by the two-digit numeric code of the option you want to invoke. For an IBM Graphics Printer and compatibles, the codes 75,76 , and 90 invoke normal graphics, double-wide graphics, and compressed graphics, respectively Thus, the comma command ,MY-FONT-G90 causes the printer to use the characters in MYFONT, using compressed graphics mode.

The H and V options affect the optional automatic spacing invoked by the S or SS options (see above). The H option is followed by a number in the range 1-9 to indicate how many times the font should be ex-
panded horizontally. The V option is followed by a number from 1 to 4 to indicate how many times to expand the font vertically. For example, the comma command ,MYFONT-H3-V2-SS tells the printer program to print each subsequent character three times its normal width and two times its usual height.

Expanding characters with the H and V options can be a slow process. To indicate that something is happening, the program flashes an exclamation point (!) on the screen.

## Back To Normal

To cancel a custom font and resume printing with the printer's standard character set, insert this comma command:

## ,REGULAR

Note that this command cannot use any of the options of the other commands. There are two ways of changing the print style while using the standard character set. The first is to use the usual formatting commands for your word processor. You must use some care, however, when mixing these commands with Font Printer comma commands. To use this method, insert all of the comma commands needed to do what you want, then print the document to disk using your word processor's printer option or print program. It is important to include this step so that the output is reformatted according to your embedded formatting commands and so that the final file is in ASCII.

## Standard Fonts

The second way to change printer styles is to define special printer font call codes. The definitions must be entered as DATA statements at the end of Program 2. Remember, a standard printer style is one which your printer can print without the aid of Font Printer. Program 2 must know three things for each standard character style: the style's call code, the ASCII code or sequence of codes which invokes the style, and the code or sequence which disables the style.

Definitions for some styles available on the IBM Graphics Printer are already in the DATA
lines at the end of Program 2, but you may want to add more. To avoid confusion, it is best to put each set of standard font information on its own DATA line. Begin by typing a descriptive name for the style. This name is the style's call code; note that the call code must be entirely in uppercase, with no spaces, colons, or hyphens. The call code must be followed by the ASCII value or values which invoke (enable) this font, each number separated by a comma. Next must come the value -1 , which marks the end of the invoking sequence. In the same manner, enter the ASCII values which turn off (disable) the font, following that sequence with another -1 . Here are two examples for standard compressed and double-width compressed modes:

## 1010 DATA COMPRESSED,15,-1,18,-1 1020 DATA DOUBLECOMPRESSED, $15,14,-1,20,18,-1$

Notice that two codes are used to enable double-width compressed mode: The first valueequivalent to CHR\$(15)-invokes compression and the second (14) invokes double-width printing.

If you add new DATA lines to Program 2, note that the last DATA item must be named ENDD. Do not delete the line containing the REGULAR call code; this item is needed to return to normal print mode after you have invoked a custom font.

Once you have defined the special font codes for the standard styles, you can invoke the styles by including comma commands just like those for the custom fonts. For example, if you have defined a call named COMPRESSED, you can invoke that style with the command ,COMPRESSED:.

## Printing Headers

Headers are printed in much the same manner as any other font created by Font Printer. The comma commands have the same effect for headers as for any font. The only difference is in how the different parts of the picture are written into the document. Remember, a header consists of many different blocks which have been designed to make up one large picture. Thus, your word processing document would contain the constituent characters
which, when redefined, make up the picture.

To illustrate, say that you have created a graphic header named MYHEAD using all of the characters from ASCII 33-110; you have used the largest font style as suggested earlier, and the design occupies three lines, 26 characters to each line (characters $33-58$ were used for the top line, $59-84$ for the middle, and $85-110$ for the bottom). In the header file-and in the final printed product-each character's pattern makes up part of the overall design. But here is the way the header would appear in a word processing document before printing to disk:

## ,MYHEAD:!"\#\$\%\&'0* ${ }^{\text {* }}$,-./ 0123456789 : $;<=>$ ?@ABCDEFGHIJKLMNOPQRST UVWXYZ[ \] -'abcdefghijklmn

The comma command ,MYHEAD tells the printer program to use the font from the file MYHEAD. Like other comma commands, it is separated from subsequent text with a colon. After the comma command comes the series of characters which, when translated by the printer program, creates the graphic design of the header.

## Printing A Document

When you run Program 2, it asks you for the name of the file to print. Enter the name of the ASCII text file that contains your document. There are two different ways to print the document. The first is to enter LPT1: (or simply press Enter) when the program asks you for the output file/device. This option causes the document to be printed directly to the printer, a method which works in most cases.

If the first method does not produce the expected results, or if you wish to print more than one copy of the document, use this technique: When prompted for the output file/device, enter a filename. The program creates a disk file containing the data that would otherwise have been sent to the printer. Once saved on disk, the document can be printed in one of two ways. You can use the DOS PRINT command to put the file in the print queue, allowing you to run other programs while the file is printing. You can also use TYPE and redirect the output to the print-
er instead of the screen. Here are examples of both commands (remember, these are DOS commands which you enter from the DOS prompt):
PRINT filename
TYPE filename >LPT1:
The expression >LPT1: diverts the output from TYPE to the printer. TYPE works about twice as fast as PRINT, but it doesn't allow you to perform other tasks while printing like PRINT does.

After you enter the output file/ device, Program 2 asks for the name of the disk drive (be sure to include the colon-A:, B:, and so on) which contains the font files. This allows you to keep your font files on a separate disk. If you have more than one drive, put the document disk (the one containing your text file) in drive A: and the the font disk in drive $B$ :; then specify $B$ : for the drive containing font files. If you have only one disk drive, you can either put the text file on the same disk as the font files, or you can enter B: for the font-file drive. In the latter case, you'll have to repeatedly swap the document and font disks. (When it's time to swap disks, the computer will beep twice. Wait for a message to insert the correct disk.) In any case, the font disk must also contain a font code directory file (FONTCODE.DIR).

If the program can't find a font file called in your document, it indicates the error and gives you the option of inserting a disk containing the specified font file or ignoring the font change.

After you have answered all the necessary questions, Program 2 prints the document to a file or to the printer, according to your choice.

## Listing Call Codes

Program 3 helps you keep font files in order. To get a complete list of the font call codes for all of the font files in the current font code directory for a disk, use Program 3. You can direct the listing of font codes and filenames to the screen, printer, or a disk file. Program 3 also has an option to create a file containing a sample of all the fonts in the font code directory. If you choose this option, the program will create a disk file named ALLFONTS, which you can then print with Program 2.

## Printing Banners

Program 4 prints banners using custom fonts which you have creat－ ed with the font editor．After you enter the words to be printed on the banner and the font call code for the font in which the banner is to be printed，the program displays the possible print sizes and asks you how many times to expand the font horizontally and vertically．In most cases，the best results are obtained by selecting a horizontal expansion value that is about half the vertical expansion value．This prints the font with about the same propor－ tions as it would normally have．

After you select the banner size，you are given three different ways to make up each letter．In the first method，the banner letters are made from the words of the mes－ sage itself．For example，if the mes－ sage is Happy Birthday，each letter is made up of the letters HappyBirth－ day．The second method is to create each character out of normal－sized versions of the character itself．（The large $H$ is made of small $H$ charac－ ters，and so on）．The third method lets you choose the character or combination of characters to use for the banner；for instance，to make a happy birthday banner for your friend Bill，you might use BILL to make up each character．

For instructions on entering these programs， please refer to＂COMPUTE！＇s Guide to Typing In Programs＂elsewhere in this issue．

## Program 1：Font Editor

FM 10	SCREEN Ø，1：WIDTH 8ø：KEY OF F：DIM CHAR $(2,37), \operatorname{CODE} \$(2,5$ ø）： $\mathrm{COL}=3$
Q1 20	CLS：LOCATE 1，14：COLOR $\varnothing, 5$ ： PRINT＂Font Editor＂：LOCAT E 3，1：COLOR 5，$:$ ：INPUT＂Name of font file to edit $>", F$ ILE\＄：B\＄＝FILE\＄：GOSUB 949：IF
	B $\$="$＂THEN BEEP：GOTO $2 \emptyset$ E LSE FILE $\$=B \$$
LJ $3 \emptyset$	A\＄＝＂＂：ON ERROR GOTO 4D：OPE N＂I＂，\＃1，FILE\＃：CLOSE \＃1：ON ERROR GOTO Ø：GOTO 5ø
HO 4ø	IF ERR＝53 THEN A\＄＝＂NOT＂：R ESUME $5 \emptyset$ ELSE $98 \emptyset$
IL $5 \emptyset$	ON ERROR GOTO 6ø：OPEN＂I＂，\＃ 3，＂FONTCODE．DIR＂：ON ERROR GOTO Ø：GOTO 7ø
BD $6 \varnothing$	IF ERR＝53 THEN OPEN＂ロ＂，\＃3， ＂FONTCODE．DIR＂：CLOSE \＃3：RE SUME $5 \emptyset$ ELSE 98Ø
KE 7ø	IF NOT（EOF（3））THEN FOR $Z=$ $\emptyset$ TO 2：INPUT \＃3，CODE\＄：NEXT
	Z：IF CODE $\$\langle>$ PILE\＄THEN 7ø
	ELSE IF A\＄＝＂＂THEN 9ø
OA $8 \square$	CLOSE \＃3：GOSUB 57ø：GOTO 1ø

Q1 $2 \emptyset$ CLS：LOCATE 1，14：COLOR $\varnothing, 5$ ： RINT＂Font Editor＂：LOCAT 3，1：COLOR 5，Ø：INPUT＂Name ILE\＄：B\＄＝FILE\＄：GOSUB 949：IF B\＄＝＂＂THEN BEEP：GOTO $2 \emptyset$ E LSE FILE $\$=B \$$
LJ $3 \varnothing$ A $=$＝＂＂：ON ERRDR GOTO 4ø：OPE N＂I＂，\＃1，FILE\＄：CLOSE \＃1：ON ERROR GOTD Ø：GOTD 5ø
HO 4ø IF ERR＝53 THEN A\＄＝＂NOT＂：R ESUME $5 \varnothing$ ELSE $98 \emptyset$
IL 5ø ON ERRDR GOTO 6ø：OPEN＂I＂，\＃ 3，＂FONTCODE．DIR＂：ON ERROR Ø：GOTO 7
BD $6 \emptyset$ IF ERR＝53 THEN OPEN＂O＂，\＃3， ＂FONTCODE．DIR＂：CLOSE \＃3：RE SUME $5 \emptyset$ ELSE 98Ø
KE $7 \emptyset$ IF NOT（EOF（3））THEN FOR $Z=$ $\emptyset$ TO 2：INPUT \＃3，CODE\＄：NEXT Z：IF CODE\＄く〉FILE\＄THEN 7ø ELSE IF A\＄＝＂＂THEN 9ø
OA $8 \varnothing$ $\emptyset$

BK 9ø CLOSE \＃3：OPEN＂R＂，\＃1，FILE\＄， 4：FIELD \＃1， 2 AS B\＄，2 AS C\＄ ：GET \＃1：$X=V A L(B \$): Y=V A L(C \$$ ）＊8：CLOSE \＃1
GL 1øø OPEN＂R＂，\＃1，FILE\＄，X：FIELD \＃1，X AS D\＄：CHR＝1
PD $11 \varnothing$ COLOR 6，Ø：LOCATE 8，1：PRIN T＂M＝MOVE to new charact er＂：PRINT＂C＝CLEAR editi ng window＂：PRINT＂T＝TRAC E（copy）image from chara cter＂：PRINT＂S＝SAVE char acter to disk＂：PRINT＂I＝ reINITIALIZE font paramet ers＂：PRINT＂A＝clear ALL characters＂
NP $12 \emptyset$ PRINT＂W＝reWRITE screen＂ ：PRINT＂R＝RESTART progra m＂：PRINT＂Q＝QUIT＂：PRINT＂ SPACE BAR＝plot／erase po int＂TAB（1ø）＂（or cancel cu rrent command）＂：PRINT＂D＝ DRAW is OFF＂：PRINT＂E＝E RASE is OFF＂：DRAWS＝ø：ERAS ES＝ø
IJ $13 \emptyset$ GOSUB 92ø：COLOR 4，Ø：FOR Z ＝1 TO 25：LOCATE Z，42：PRIN T SPACE $\$$（38）；：NEXT $Z: F O R$ $Z=1$ TO $X$ ：LOCATE $Y+1, Z+42$ ： PRINT RIGHT\＄（STR\＄（Z），1）；： NEXT Z：FOR $Z=\emptyset$ TO 1：FOR $Z$ $1=1$ TO Y：LOCATE $\mathrm{Z1}, 42+(Z *$ $(X+1))$ ：PRINT RIGHT\＄（STR\＄（ Z1），1）；：NEXT Z1，Z：XP＝1：YP ＝1：CR＝CHR
ND 14ø GOSUB 89ø：FOR $Z=1$ TO Y／8： GET \＃1，（（CR－1）$\ddagger$ Y／8）＋Z +1 ：F OR Z1＝1 TO X：A＝ASC（MID\＄（D \＄， $\mathrm{Z} 1,1)$ ）：IF $A=\varnothing$ THEN $18 \emptyset$
내 $15 \emptyset$ IF INKEY\＄＝＂＂THEN GOSUB 93Ø：GOTO 19ø
6H 16Ø FOR Z2＝7 TO Ø STEP－1：IF $A=>2^{\wedge} Z 2$ THEN $A=A-\left(2^{\wedge} Z 2\right): L$ OCATE $(Z-1) * 8+(8-Z 2), Z 1+4$ 2：COLOR 5，5：PRINT＂＂；
KF $17 \emptyset$ NEXT $Z 2$
LH $18 \emptyset$ NEXT $Z 1, Z: C O L=(S C R E E N(Y P$ ， 42＋XP，1）AND 15）
HB $19 \emptyset$ COLOR，$\varnothing$ ：LOCATE 23，1：PRIN T SPACE ${ }^{(4 \varnothing)}$ ；
PE 2øø LOCATE YP，XP＋42：COLOR 1，C OL：PRINT CHR\＄（1）；
MO 210 A $\$=I N K E Y \$:$ IF $A \$=" "$ THEN 2 $1 \varnothing$
NE $22 \emptyset$ IF CANCEL THEN CANCEL＝ø：C OLOR ，Ø：LOCATE 21，1：PRINT SPACE $\$$（4б）；
נJ 230 IF LEN $(A \$)=2$ THEN $39 \emptyset$ ELS E IF A $\$=$＂＂THEN IF DRAWS THEN A\＄＝＂D＂ELSE IF ERAS ES THEN A\＄＝＂E＂ELSE COLOR 5，5：LOCATE YP，XP＋42：PRIN T＂＂；：IF COL＝5 OR COL＝4 T HEN COL＝3：GOTO 2øø ELSE C OL＝5：GOTO 2øø
PA 24Ø LOCATE YP，XP＋42：COLOR COL ，COL：PRINT＂＂；：A\＄＝CHR\＄（AS $C(A \$)+32 \%(A \$>=" a$＂AND A\＄＜ ＝＂z＂））
MF 25 IF $A \$=" C$＂THEN COL＝3：GOSU B 89ø：GOTO 2øø
EO $26 \emptyset$ IF $A \$=" T$＂THEN $5 \emptyset \emptyset$
FK $27 \emptyset$ IF $A \$=" S$＂THEN $42 \emptyset$
JK 280 IF $A \$=" W "$ THEN GOSUB 56』： GOTO $11 \emptyset$
DP $29 \varnothing$ IF $A \$=" M$＂THEN $53 \emptyset$
E1 3øø IF A\＄＝＂I＂THEN GOSUB 96ø： CLOSE \＃1：GOSUB 72ø：GOTO 1 $3 \emptyset$
JH 310 IF $A \$=" A$＂THEN GOSUB 96ø： GOSUB 86ø：GOSUB 89ø：COL＝3 ：CHR＝1：GOSUB 92ø：GOTO 2øø 68320 IF $A \$=" R$＂THEN GOSUB 96ø：

CLOSE \＃1：RUN
PL $33 \emptyset$ IF $A \$=" Q$＂THEN GOSUB 96ø： CLOSE \＃1：SCREEN g：CLS：END
FI $34 \emptyset$ IF $A \$=" D$＂THEN DRAWS＝1－DR AWS：COL＝5：IF ERASES THEN ERASES＝ø
$6135 \emptyset$ IF $A \$=" E$＂THEN ERASES＝1－E RASES： $\mathrm{COL}=3$ ：IF DRAWS THEN DRAWS＝ø
HD $36 \emptyset$ LOCATE 19，13：IF DRAWS THE N COLOR 14，Ø：PRINT＂ON＂E LSE COLOR 6，Ø：PRINT＂OFF＂
Q1 37ø LOCATE 2ø，14：IF ERASES TH EN COLOR 14，Ø：PRINT＂ON＂ ELSE COLOR 6，$:$ PRINT＂OFF＂
C1 38ø GOTO 2øø
LK 39ø A\＄＝RIGHT\＄（A\＄，1）：XO＝XP：YO＝ YP：IF A\＄＝＂H＂AND YP＞1 THE $N$ YP＝YP－1 ELSE IF $A \$=" M "$ AND $X P<X$ THEN $X P=X P+1$ ELS E IF $A \$=" P$＂AND YP＜Y THEN $Y P=Y P+1$ ELSE IF $A \$=" K " A$ ND $X P>1$ THEN $X P=X P-1$ ELSE $2 \emptyset \emptyset$
DM 4øø LOCATE YO，XO＋42：COLOR COL ，COL：PRINT＂＂；：COL＝（SCREE N（YP，XP＋42，1）AND 15）：IF D RAWS THEN COL $=5$ ELSE IF E RASES THEN COL $=3$
If 410 LOCATE YP，$X P+42$ ：COLOR 1， C OL：PRINT CHR\＄（1）；：GOTO 2ø $\emptyset$
PO $42 \emptyset$ SAVED＝ø：COLOR 2，ø：LOCATE 21，1：PRINT＂SAVING＂SPACE\＄（ 18）；
PD 43 Ø FOR $X 1=43$ TO $X+42$ ：FOR NUM $=1$ TO Y／8：BYTE＝ø：FOR Y1＝8 TO 1 STEP－1：BYTE＝BYTE－2 ＾（8－Y1）＊（（SCREEN（Y1＋（NUM－ 1）$\left.\# 8, X_{1}, 1\right)$ AND 15）＜＞3）：NEX T Y1
HM 44ø IF INKEY $\$=$＂＂THEN GOSUB 93Ø：GOTO 2øø
KO $45 \emptyset$ CHAR（NUM－1，X $1-42$ ）＝BYTE：IF BYTE $=9$ THEN COLOR 4，4：LO CATE（NUM－1）$\% 8+5, \mathrm{X} 1:$ PRINT ＂＂；：LOCATE（NUM－1）$\ddagger 8+8, x$ 1：PRINT＂＂；：SAVED＝1
6 46ø IF BYTE＝26 THEN COLOR 4，4 ：LOCATE（NUM－1）$\% 8+4, \times 1:$ PR INT＂＂；：LOCATE（NUM－1）＊8＋ 5，X1：PRINT＂＂；：LOCATE（NU M－1）＊8＋7，X1：PRINT＂＂；：SAV $E D=1$
CC 47ø NEXT NUM，X1：IF SAVED＝1 TH EN COLOR 4， 1 ：LOCATE 21，1： PRINT＂PATTERN CANNOT BE $S$ AVED＂：CANCEL＝1：GOTO 2øø
MK 48ø FOR $Z=1$ TO $Y / 8: B \$=" ": F O R$ $Z 1=1$ TO $X: B \$=B \$+C H R \$$（CHAR （Z－1，Z1））：NEXT Z1：LSET D\＄ ＝B\＄：PUT \＃1，（（CHR－1）$\# Y / 8)+$ Z＋1：NEXT Z
FC 496 CHR＝CHR－1＊（CHR＜94）：GOSUB 920：COLOR ，Ø：LOCATE 21，1： PRINT SPACE\＄（6）：CR＝CHR：GO TO 14ø
FE 5øø COLOR 3，Ø：LOCATE 23，1：LIN E INPUT＂Character to trac e（！－～or 33－126）＞＂，B\＄：I F B\＄＝＂＂THEN 19ø
MP $516 \mathrm{CR}=\mathrm{VAL}(B \$)-32$ ：IF $C R<=-23$ THEN IF $\mathrm{B} \$>" \sim$＂OR $\mathrm{B} \$<"!"$ THEN BEEP：GOTO 5øø ELSE C HR＝ASC（B\＄）－32：GOSUB 920：C R＝CHR：GOTO 14ø ELSE IF CR ＜1 OR CR＞94 THEN BEEP：GOT $05 \emptyset \emptyset$
DA $52 \emptyset$ GOTO $14 \emptyset$
KL 530 COLOR 3，ø：LOCATE 23，1：LIN E INPUT＂Character to edit （！－～or 33－126）＞＂，B\＄：IF B\＄＝＂＂THEN 196

HE 54 Ø CR＝VAL（B\＄）－32：IF CR＜＝－23 THEN IF B\＄＞＂～＂OR B\＄く＂！＂ THEN BEEP：GOTO 53Ø ELSE C HR＝ASC（B\＄）－32：GOSUB 920：C R＝CHR：GOTO 149 ELSE IF CR ＜1 OR CR＞94 THEN BEEP：GOT 0 53ø
JM 550 CHR＝CR：GOSUB 920：GOTO 14ø
If $56 \emptyset$ CLS：LOCATE 1，14：COLOR $\emptyset, 5$ ：PRINT＂Font Editor＂：LOC ATE 3，1：COLOR 5， $9:$ PRINT＂C urrent font filename＞＂FI LE $\$$ ：RETURN
CK 570 COLOR 12：LOCATE 21，1：IF C ODE\＄く＞FILE\＄THEN 59ø
DN $58 \emptyset$ PRINT FILE\＄；＂appears in the font code directory， but isn＇t on disk．＂：PRINT ＂Do you wish to create a new version of＂；FILE\＄；＂ （Y／N）？＂；：GDTD 6øø
FB 590 PRINT＂There is no entry $f$ or＂；FILE\＄；＂in the font code directory．＂：PRINT＂Th ere is＂；A\＄；＂a file named ＂；FILE\＄；＂on this disk．＂ ：PRINT＂Do you wish to cre ate an entry for＂；FILE\＄； ＂（Y／N）？＂；
LD 6øØ B\＄＝INPUT\＄（1）：IF B\＄＝＂N＂OR B\＄＝＂n＂THEN RETURN $2 \emptyset$
NC 610 IF $B \$\rangle " Y "$ AND $B \$\rangle " Y$＂TH EN BEEP：GOTO 6øø
KC 620 LOCATE 21，1：FOR $Z=1$ TO 3： PRINT SPACE $\$$（7ø）：NEXT Z：L OCATE 21，1：PRINT＂（E）＝st art with an EMPTY font＂：P RINT＂（C）＝start with a C QPY of an existing font＂： IF $A \$="$＂THEN PRINT＂$(A)=$ ADD an existing font fil $e$ to the font code direct ory＂
FC $63 \emptyset \mathrm{~B} \$=\mathrm{INPUT} \$(1):$ IF B\＄＝＂E＂OR B\＄＝＂e＂THEN GOSUB 56ø：A\＄ ＝＂NEW＂：GOTO $72 \emptyset$
NH 64Ø IF $B \$=" A$＂OR $B \$=" a "$ THEN IF $A \$="$＂THEN SOURCE $\$=F I L$ E\＄：GOTO 67ø
CK 650 IF B\＄＜＞＂C＂AND B\＄＜＞＂c＂TH EN BEEP：GOTO 63ø
OA 66Ø CLS：INPUT＂Filename of fon $t$ to copy＞＂，SOURCE\＄：B\＄＝S OURCE $\$$ ：GUSUB 94ø：IF $B \$="{ }^{\prime \prime}$ THEN BEEP：GOTO $66 \emptyset$ ELSE SOURCE $\$=\mathrm{B}$ \＄
JB 670 ON ERROR GOTO 71ø：OPEN＂I＂ ，\＃1，SOURCE\＄：CLOSE \＃1：OPEN ＂R＂，\＃1，SOURCE $\$, 4$ ：FIELD \＃1 ， 2 AS B\＄，2 AS C\＄：GET \＃1：$X$ $=\operatorname{VAL}(B \$): Y=V A L(C \$) * 8: C L O S$ E \＃1：ON ERROR GOTO $\emptyset$
$6168 \emptyset$ IF SOURCE $\$=F$ ILE $\$$ THEN GOS UB 56ø：GOTO 78ø
N1 $69 \varnothing$ OPEN＂R＂，\＃1，SOURCE\＄，X：FIEL D \＃1，$X$ AS B\＄：OPEN＂R＂，\＃2，F ILE $\$, X: F I E L D$ \＃2，$X$ AS C $\$$
IE 7øØ FOR $\mathrm{Z}=1$ TO 94：GET \＃1， $\mathrm{Z}+1$ ： LSET C $\$=B \$$ ：PUT \＃2，$Z+1:$ NEX T Z：CLOSE：GOSUB 56ø：GOTO 78ø
IL 710 GOSUB 56ø：LOCATE 5，1：PRIN T＂ERROR：＂；SQURCE\＄；＂not found or couldn＇t be read ．＂：RESUME 62Ø
EM 720 COLOR 5，ø：LOCATE 4，1：INPU T＂Character width in dots （4－36）＞＂，X：IF X＜4 OR X $>36$ THEN BEEP：GOTO $72 \emptyset$
BJ 730 LOCATE 5， $1:$ INPUT＂Characte $r$ height in lines（1－3）$>$ ＂， $\mathrm{Y}: \mathrm{Y}=\mathrm{Y} * 8:$ IF $\mathrm{Y}\langle 1$ OR $\mathrm{Y} / 8>$ 3 THEN BEEP：GOTO 73ø

EM 74 OPEN＂R＂，\＃1，FILE\＄，4：FIELD \＃1，2 AS B $\$, 2$ AS C $\$$
PL 75 L LSET B $\$=$ RIGHT $\$(\operatorname{STR} \$(X), 2)$ ：LSET C $\$=$ RIGHT\＄（STR $\$(Y / 8)$ ，2）：PUT \＃1，1：CLOSE \＃1
EH 76 Ø IF $A \$=" I "$ OR $A \$=" N E W "$ THE N OPEN＂R＂，\＃1，FILE\＄，X：FIEL D \＃1，X AS D\＄
HO $77 \emptyset$ IF $A \$=" N E W$＂THEN GOSUB 86 Ø：CLOSE \＃1
J $78 \emptyset$ COLOR $3, \emptyset:$ LOCATE 23， $1:$ INP UT＂Enter code name for th is font＞＂，CODE\＄：B\＄＝CODE\＄ ：GOSUB 940：IF B\＄＝＂＂THEN BEEP：GOTO $78 \emptyset$ ELSE CODE\＄＝ B\＄
AC 790 LOCATE 23， $1:$ INPUT＂Font ty pe：（C）＝Character or（H ）＝Header＞＂，TYPE\＄：IF T YPE $=$＝＂C＂OR TYPE\＄＝＂c＂THE N TYPE＝ø ELSE IF TYPE $\$=$＂H ＂OR TYPE $\$=$＂$h$＂THEN TYPE＝ 2 ELSEBEEP：GOTO 79ø
BF $8 \emptyset \emptyset$ OPEN＂I＂，\＃3，＂FONTCODE．DIR＂ ：Z＝ø
FK 81ø WHILE NOT（EOF（3））：FOR Z1＝ $\emptyset$ TO 2：INPUT \＃3，CODE $\$(Z 1$ ， Z）：NEXT Z1：Z＝Z +1 ：WEND：CLO SE \＃3：Z1＝ø
KB 820 IF $Z 1=Z$ THEN $Z=Z+1$ ELSE $I$ F CODE\＄$(2, Z 1)<>F I L E \$$ THEN Z1＝Z1＋1：GOTO 82Ø
 DE\＄（1，Z1）＝CODE\＄：CODE\＄（2，Z 1）$=$ FILE $\$$
BL 84ø OPEN＂ロ＂，\＃3，＂FONTCODE．DIR＂ ：FOR Z1＝ø TO Z－1：FOR Z2＝ø TO 2：PRINT \＃3，CODE\＄（Z2，z 1）：NEXT Z2，Z1：CLOSE \＃3
JP $85 \emptyset$ COLOR，Ø：LOCATE 23，1：PRIN T SPACE\＄（5ø）；：RETURN
H6 86Ø FOR Z＝1 TO 94：FOR Z1＝1 TO Y／B
OP 87ø IF INKEY $\$=$＂＂AND $A \$=" A$＂ THEN 93Ø
KF 88ø LSET D $\$=$ STRING $\$(x, \operatorname{CHR} \$(\varnothing)$ ）：PUT \＃1，$(Z-1)$ \＃Y／B＋Z1＋1：N EXT Z1，Z：RETURN
KH 89ø FOR Z1＝1 TO Y：COLOR 3，3：L OCATE Z1，43：PRINT SPACE\＄（ X）；
BI 9øø IF INKEY\＄＝＂＂AND A\＄＝＂C＂ THEN 93Ø
DB 910 NEXT Z1：Z1＝FRE（＂c＂）：RETUR N
LF 920 COLOR 7，Ø：LOCATE 6，1：PRIN T＂Current character $=$＂； COLOR 15：PRINT CHR\＄（CHR＋3 2）；：COLOR 7：PRINT SPC（5）； ＂ASCII＝＂；：COLOR 15：PRINT CHR＋32；：RETURN
OK $930 \mathrm{COL}=($ SCREEN $(Y P, 42+X P, 1)$ AN D 15）：CANCEL＝1：COLOFR 4，$\varnothing$ LOCATE 21，1：PRINT＂COMMAND CANCELLED＂：WHILE INKEY\＄く ＞＂＂：WEND：RETURN
JI 94ø C\＄＝＂＂：FOR Z2＝1 TO LEN（B\＄） ：ASCII＝ASC（MID\＄（B\＄，Z2，1）） ：IF ASCII＜＞32 THEN C $\$=C \$+$ CHR\＄（ASCI I＋32＊（（ASCI I＞96） AND（ASCII＜123）））
FI $95 \emptyset$ NEXT Z2： $8 \$=C \$$ ：RETURN
IM 960 COLOR 12， $0:$ LOCATE 23，1：PR INT＂Are you sure you wish to＂A\＄＂（Y／N）？＂；：B\＄＝INP UT\＄（1）：IF B\＄＝＂Y＂OR B\＄＝＂y ＂THEN LOCATE 23，1：PRINT SPACE（41）；：RETURN
KJ 970 IF $B \$=" N "$ QR $B \$=" n$＂THEN RETURN $19 \varnothing$ ELSE $96 \emptyset$
IC 980 CLOSE：PRINT：PRINT＂Error＂ ；ERR；＂in line＂；ERL：RESUME 99ø

ME 990 END

## Program 2：Printing Program

IF $1 \emptyset$ SCREEN $\emptyset: W I D T H$ 8ø：COLOR 2， Ø，Ø：KEY OFF：DIM TEXT\＄（94，2 ），CODE $\$(3,1 \emptyset \emptyset), B \#(96 \emptyset)$
$Q 02 \emptyset$ READ $A \$:$ IF $A \$\rangle$＂ENDD＂THEN CODE\＄（ $\varnothing, Z)=" 1 ": \operatorname{CODE} \$(1, Z)$ ＝A\＄：FOR $Z 1=2$ TO $3:$ READ A：W HILE $A\rangle-1: \operatorname{CODE}(Z 1, Z)=C O D$ E\＄（Z1，Z）＋CHR\＄（A）：READ A：WE ND：NEXT $Z 1: Z=Z+1$ ：GOTO $2 \emptyset$
NH 30 STANDARD＝Z－1
KB $4 \emptyset$ CLS：COLOR ஏ，2：LOCATE 1，33： PRINT＂Font Printer＂：COLO R 2，ø：LOCATE 3，1：INPUT＂Dri ve with disk containing do cument file（default $=A$ ：） ＞＂，DISK1\＄：IF DISK1\＄＝＂＂T HEN DISK1 $\$=$＂A：＂ELSE IF RI GHT\＄（DISK1\＄，1）＜＞＂：＂THEN B EEP：GOTO 4ø
PP 5ø LOCATE 5，1：PRINT＂Insert di sk containing document fil e into drive＂；DISK1\＄
$6 F 6 \emptyset$ LOCATE 7，1：PRINT SPACE\＄（78 ）：LOCATE 7，1：INPUT＂Name of ASCII document file to pr int $>$＂，IN\＄：IF IN\＄＝＂＂THEN BEEP：GOTO $6 \emptyset$
DL $7 \emptyset$ ON ERROR GOTO 82ø：OPEN＂I＂， \＃2，DISK1\＄＋IN\＄：ON ERROR GOT $0 \emptyset$
MP 日ø FEND＝ø：WHILE NOT（EOF（2））：L INE INPUT \＃2，A\＄：FEND＝FEND＋ 1：WEND：CLOSE \＃2
I1 $9 \emptyset$ IF FEND＝ø THEN BEEP：LOCATE 9，1：PRINT＂ERROR：Input fi le＂；IN\＄；＂is empty．＂：GOSU B 76ø：GOTO 4ø
CO 1 øø LOCATE 9，1：PRINT SPACE $\$$（ 7 8）：LOCATE 9，1：INPUT＂Name of output file or device （default $=$ LPT1：）＞＂，OUT T\＄：IF OUTT\＄＝＂＂THEN OUTT\＄ ＝＂LPT1：＂
BB $11 \emptyset$ ON ERROR GOTO 83ø：OPEN＂O＂ ，\＃1，OUTT\＄：ON ERROR GOTO Ø
ED 120 LOCATE 11，1：PRINT SPACE\＄（ 78）：LOCATE 11，1：INPUT＂Dri ve with disk containing $f$ ont files（default＝B：） $>$＂，DISK2\＄：IF DISK2\＄＝＂＂T HEN DISK2\＄＝＂B：＂ELSE IF R IGHT\＄（DISK2\＄，1）＜＞＂：＂THEN BEEP：GOTO 12Ø
ML $13 \emptyset$ IF DISK $2 \$<>$ DISK1 $\$$ THEN LO CATE 13，1：PRINT＂Insert di sk containing font files into drive＂；DISK2\＄
CB 146 PRINT：PRINT STRING\＄（78，＂－ ＂）
DN $15 \emptyset$ OPEN＂R＂，\＃2，DISK1\＄＋IN\＄，1：F IELD \＃2，1 AS I\＄：FLIN＝ø：CH $A R=\emptyset: N U M=\emptyset$
KH 160 FLIN＝FLIN＋1：IF FLIN $=$＝FEND THEN 2øø
DE $17 \emptyset$ CLOSE：PRINT STRING\＄（78，＂－ ＂）：PRINT＂Finished printin g＂；IN\＄：PRINT
BN $18 \emptyset$ PRINT＂Print another docum ent $(Y / N)>" ; A \$=I N P U T \$($ 1）：IF $A \$=" Y$＂OR $A \$=" Y$＂TH EN 4ø
MO $19 \varnothing$ IF $A \$<>" n$＂AND $A \$\rangle " N$＂TH EN BEEP：GOTO $18 \emptyset$ ELSE CLS ：END
EE $2 \emptyset \emptyset$ A\＄＝＂＂：ON ERROR GOTO $88 \emptyset$
to 210 IF EOF（2）THEN $17 \emptyset$ ELSE C HAR＝CHAR＋1：GET \＃2，CHAR：IF

ASC $(1 \$)<>13$ THEN A $\$=A \$+1$ \＄：LS＝（I\＄く＞＂＂）：GOTO 21の
If 220 GET \＃2：IF ASC（I $\$$ ）＜＞ $1 \varnothing$ THE $\mathrm{N} L F=g \quad E L S E \quad C H A R=C H A R+1: L$ $\mathrm{F}=-1$
BO 236 IF INSTR（A\＄，CHR $\$(12))=1 \mathrm{~T}$ HEN A\＄＝RIGHT\＄（A\＄，LEN（A\＄）－ 1）：PRINT \＃1，CHR\＄（12）；
MD $24 \varnothing \mathrm{Z}=\mathrm{INSTR}(\mathrm{A} \$, ", "):$ IF $\mathrm{z}=\varnothing$ TH EN $54 \varnothing$ ELSE IF $\mathrm{z}=1$ THEN 2 $6 \square$
EA 250 FOR Z1＝1 TO Z－1：IF MID $\$(A$ \＄， $\mathrm{Z} 1,1)<>"$＂THEN $Z=\varnothing$ ：NEX T Z1：IF $\mathrm{Z}=\varnothing$ THEN 54ø
$6 E 260$ Z1＝INSTR（Z，A\＄，＂：＂）：IF Z1＝ g THEN 54ø ELSE FONT\＄＝MID \＄（A\＄，$Z+1, Z 1-z-1)$
ル 27 Z $22=I N S T R(F O N T \$, "-"): I F Z 2$ THEN OPT $\$=$ MID $\$(F O N T \$, Z 2)$ ：FONT $\$=$ LEFT $\$$（FONT $\$$, Z2－1）
J6 $28 \emptyset$ COLOR 6：PRINT＂font＝＂；FONT \＄；IF Z2 THEN PRINT＂\＆＂； OPT＊；
BJ $29 \varnothing$ IF FONT $\$=0 L D \$$ THEN $39 \varnothing$
MC $3 \varnothing \varnothing \quad \mathrm{zB}=\varnothing$
E月 316 IF $Z 3<=$ STANDARD THEN IF $C$ ODE $\$(1,23)=$ FONT $\$$ THEN $38 \emptyset$ ELSE $23=23+1$ ：GOTO 310
$6132 \varnothing$ FLAG $=1$ ：GOSUB 78ø：ON ERROR GOTO 869：OPEN＂I＂，\＃3，DISK 2\＄＋＂FONTCODE．DIR＂：ON ERRO R GOTO $\varnothing$
$00339 \mathrm{Z}=$ STANDARD +1 ：WHILE NOT（EO F（3））：FOR $Z 3=\emptyset$ TO 2：INPUT \＃3，CODE $\$(Z 3, z):$ NEXT Z3：Z ＝ $\mathrm{z}+1$ ：WEND：CLOSE \＃3： $\mathrm{Z3}=$ STA NDARD＋1
MJ $34 \varnothing$ IF $Z 3<Z$ THEN IF CODE $\$(1, z$ 3）$=$ FONT $\$$ THEN 389 ELSE $Z 3$ ＝Z3＋1：GOTO 34ø
DH $35 \mathscr{D}$ BEEP：PRINT：PRINT：PRINT＂No entry for＂；FONT\＄；＂in f ont code directory．＂
FE 366 PRINT＂（I）$=$ Ignore font $c$ hange＂：PRINT＂（R）＝Retry on another font file disk ＂：B\＄＝INPUT\＄（1）：IF B\＄＝＂i＂ OR B\＄＝＂I＂THEN FLAG＝2：GO SUB 78ø：GOTO 53ø
NH $37 \varnothing$ IF $B \$=" r$＂OR B $\$=$＝＂R＂THEN $32 \varnothing$ ELSE BEEP：GOTO $36 \varnothing$
$0038 \emptyset$ NUM $=Z 3$ ：IF VAL（CODE $\$(\varnothing$ ，NUM ）$=1$ THEN PRINT：GOTO $53 \varnothing$
KE $39 \varnothing$ DOUBLE $=$ ： $\mathrm{DNUM}=\emptyset:$ GR＝76：SPA CED＝ø：VERT $=1$ ： $\mathrm{HOR}=1$ ： $\mathrm{SP}=\varnothing$ ： P R＝ø：IF $Z 2=\emptyset$ THEN $47 \varnothing$
CJ 4 صø FOR $Z 3=1$ TO LEN（OPT $\$$ ）：$B \$=$ MID\＄（OPT\＄，23，1）
J6 410 IF $B \$=" S$＂THEN SPACED $=1$ ：I F MID\＄（OPT\＄， $\mathrm{Z} 3+1,1$ ）$=$＂S＂ T HEN SPACED＝2：$Z 3=23+1$
IH 420 IF $B \$=" D$＂THEN DOUBLE $=1: D$ NUM $=$ VAL（MID $\$$（OPT\＄， $23+1,1$ ） ）： $23=23+1$
KD $43 \varnothing$ IF $B \$=" G$＂THEN GR＝VAL（MID \＄（OPT\＄， $\mathrm{z3}+1,2$ ））： $\mathrm{Z3}=\mathrm{Z3}+2$
FA 440 IF $B \$=" V$＂THEN VERT＝VAL（M ID $\$($ OPT $\$, ~ Z 3+1,1)$ ）： $\mathrm{Z3}=\mathrm{Z3}+1$ ：IF VERT＞4 THEN VERT＝4 EL SE IF VERT＜1 THEN VERT＝1
HL 45ø IF $B \$=$＂ H ＂THEN HOR＝VAL（MI $\mathrm{D} \$(\mathrm{OPT} \$, \mathrm{Z3}+1,1)$ ）： $\mathrm{Z3}=\mathrm{Z3}+1$ ： IF HOR＜1 THEN HOR＝1
L8 469 NEXT 23
HE $47 \varnothing$ PRINT \＃ 1 ，CHR $\$(27)+$ CHR $\$(5 \varnothing$ ）；：IF FONT $\$=$ OLD $\$$ THEN NUM ＝ONUM：PRINT＂－Font alre ady in memory．＂：GOTO $53 \varnothing$
ED $48 \varnothing$ ON ERROR GOTO 87ø：OPEN＂I＂ ，\＃3，DISK2\＄＋CODE $\$(2, N U M): C$ LISE \＃3：ON ERROR GOTO g
If 496 OPEN＂R＂，\＃3，DISK2\＄＋CODE（2 ，NUM），4：FIELD \＃3， 2 AS B\＄，

2 AS C\＄：GET \＃3，1：WIDE＝VAL （ $\mathrm{B} \$$ ）： $\mathrm{HIGH}=\mathrm{VAL}(\mathrm{C} \$):$ CLOSE \＃ 3：SP\＄＝STRING（WIDE，$\varnothing$ ）
FB 5 Øø OPEN＂R＂，\＃3，DISK2\＄＋CODE\＄（2 ，NUM），WIDE：FIELD \＃3，WIDE AS B\＄
NO 510 FOR $z=1$ TO 94：FOR $z 3=\varnothing$ TO HIGH－1：GET \＃3，（ $\mathrm{z}-1$ ）＊ HIGH ＋Z3＋2：TEXT $\$(Z, Z 3)=$ B\＄：NEXT z3，z：CLOSE \＃3：FOR $z=\varnothing$ TO HIGH－1：TEXT $\$(\varnothing, z)=$ SP $\$:$ NE XT Z
B1 52 Ø OLD $\$=F O N T \$$ ：ONUM＝NUM：PRINT ＂high＝＂；HIGH；＂wide＝＂； WIDE：FLAG＝2：GOSUB 78ø
㫙 $53 \emptyset$ A $\$=$ MID $\$(A \$, Z 1+1)$
PO $54 \varnothing$ COLOR 7：IF VAL（CODE $\$(\square, N U$ M））$=1$ THEN PRINT A\＄：PRINT \＃1，CODE\＄（2，NUM）；A\＄；CODE $\$$ （3，NUM）；：IF NOT（LF）THEN PRINT \＃1，CHR\＄（27）；CHR\＄（74 ）；CHR\＄（1）；：GOTO 16の ELSE PRINT \＃1，＂＂：gOTO 16ø
ह1 $55 \varnothing$ IF SPACED＝ø THEN $6 \varnothing \varnothing$
6C 569 LE＝LEN（A $\$$ ）：$B \$=A \$: A \$=" ": F 0$ $\mathrm{R} \mathrm{z}=1$ TO LE STEP WIDE＊HOR ／12：FOR $Z 1=1$ TO WIDE＊HOR／ 12：IF $\operatorname{MID\$ (B\$ ,Z+Z1-1,1)="'~}$ ＂THEN NEXT Z1：A\＄＝A\＄＋＂＂ ELSE A $\$=A \$+M I D \$(B \$, Z+Z 1-$ 1，1）
FH $57 \varnothing$ NEXT Z：IF SPACED $=1$ THEN 6 øø
НВ 58 ø SP＝SP＋1：IF SP＝HIGH＊VERT T HEN SP＝ø：IF NOT（PR）THEN 6øø ELSE PR＝ø：GOTO $16 \varnothing$
HK $59 \varnothing$ IF NOT（LS）OR PR THEN $16 \varnothing$ ELSE PR＝－1
DD $6 \boxed{0}$ A $\$=$ LEFT $\$$（A\＄，INT（96ø）（WIDE ＊HOR）））：LE＝LEN（A\＄）：PRINT A
HF $61 \varnothing$ FOR $Z 1=\varnothing$ TO HIGH－1：FOR 22 $=\varnothing$ TO DOUBLE：IF $Z 2=1$ THEN PRINT \＃1，CHR\＄（27）＋CHR\＄（5 1）＋CHR\＄（DNUM +1 ）ELSE IF Z $1>\varnothing$ AND VERT $=1$ THEN PRINT \＃1，CHR\＄（27）+ CHR\＄（49）
DB $62 \varnothing$ C $\$=$ CHR $\$(27)+$ CHR $\$(G R)+$ CHR $\$$ （（LE＊WIDE＊HOR）MOD 256）＋CH R\＄（FIX（LE＊WIDE＊HOR／256））： IF VERT＝1 THEN PRINT \＃1，C \＄；
6K $63 \varnothing$ FOR $Z 3=1$ TO LE：ASCII＝ASC（ MID $\$(A \$, 23,1))-32:$ IF ASCI I＜ø OR ASCII＞94 THEN ASCI $I=\varnothing$
$1064 \varnothing$ IF VERT $>1$ THEN $68 \varnothing$
HF $65 \emptyset$ IF ASCII＝ø THEN FOR $Z 4=1$ TO HOR：PRINT \＃1，SP\＄；：NEXT Z4：GOTO 71ø
AG 665 IF HOR $=1$ THEN PRINT \＃1，TE XT\＄（ASCII，Z1）；：GOTO 719
$0 E 67 \emptyset$ FOR $Z 4=1$ TO WIDE：A $=$ MID\＄（ TEXT $\$(A S C I I, Z 1), Z 4,1):$ FOR Z5＝1 TO HOR：PRINT \＃1，A\＄； ：NEXT Z5，Z4：GOTO 71ø
CE $68 \emptyset$ FOR $Z 4=1$ TO WIDE：$A=A S C$（MI D\＄（TEXT\＄（ASCII，Z1），Z4，1）） ：B\＃＝の
JF $69 \varnothing$ FOR $25=7$ TO $\emptyset$ STEP－ $1:$ IF A $>=2^{\wedge}$ Z5 THEN $A=A-\left(2^{\wedge} Z 5\right): F 0$ R $Z 6=\varnothing$ TO VERT－1：B\＃＝B\＃＋（2 ＾Z5＾VERT）＊（2＾Z6）：NEXT Z6
NH 7øø NEXT Z5：FOR Z5＝1 TO HOR：B \＃（（Z3－1）＊WIDE＊HOR＋（Z4－1）＊ HOR + Z5）$=$ B\＃：GOSUB 75ø：NEXT Z5， 24
FK 716 NEXT $23, Z 2$ ：IF VERT $=1$ THEN 730
CG 726 FOR $22=$ VERT TO 1 STEP－1：$P$ RINT \＃1，C\＄；：FOR Z3＝1 TO W IDE＊HOR＊LE：PART＝INT（（ $(B \#$（ Z3）／256＾22－INT（B\＃（Z3）／256
＾Z2））＊256＾Z2）／256＾（Z2－1）） ：PRINT \＃1，CHR\＄（PART）；：GOS UB 759：NEXT Z3：PRINT \＃1，C HR\＄（27）＋CHR\＄（49）：NEXT Z2
BC $73 \varnothing$ NEXT Z1：IF VAL（CODE $\$(\boldsymbol{I}, \mathrm{NU}$ M））$=2$ THEN PRINT \＃1，＂＂：GO то 160
NC $74 \varnothing$ PRINT \＃1，CHR\＄（27）＋CHR\＄（5ø ）：GOTO 16ø
PC 75ø PRINT＂！＂CHR\＄（29）＂＂CHR\＄（2 9）；：RETURN
6C $76 \varnothing$ PRINT TAB（8）＂Press any ke $y$ to continue．．．＂：WHILE I NKEY $\$=$＂＂：WEND：RETURN
HD $77 \varnothing$ LOCATE 11， $1:$ PRINT SPACE $\$($ 78）：PRINT SPACE（78）：RETU RN
HI 78 Ø IF DISK1\＄＜＞DISK2\＄THEN RE TURN ELSE BEEP：ON FLAG GO T0 79ø，8øø
NA 796 PRINT：PRINT＂Remove docume nt disk from drive＂；DISK 1\＄；＂．Insert font disk．＂： GOTO 81ø
FD 8øø PRINT：PRINT＂Remove font d isk from drive＂；DISK1\＄；＂ ．Insert document disk．＂
DP 81ø BEEP：PRINT＂Press any key when ready．＂：WHILE INKEY\＄ ＝＂＂：WEND：RETURN
СВ 826 IF ERRく＞53 THEN $89 \varnothing$ ELSE BEEP：LOCATE 9，1：PRINT＂ERR OR：Input file＂；IN\＄；＂no $t$ found on the disk in dr ive＂；DISK1\＄：GOSUB 76ø：RE SUME 4ø
HA $83 \emptyset$ IF ERR $=24$ OR ERR＝25 OR ER $\mathrm{R}=27$ OR ERR＝64 OR ERR＝68 THEN BEEP：LOCATE 11， $1:$ PRI NT＂ERROR \＃＂；ERR；＂－Check device＂；OUTTक：GOSUB 76ø： GOSUB 77ø：RESUME 1øø
OC 84ø
IF ERRく＞58 THEN $89 \varnothing$ ELSE BEEP：LOCATE 11，1：PRINT＂ER ROR：The disk already con tains a file named＂；OUTT \＄：PRINT＂Do you want to re place the existing file（ Y／N）＞＂；：A\＄＝INPUT\＄（1）：IF A\＄＝＂y＂OR A\＄＝＂Y＂THEN KI LL OUTT\＄：GOSUB 77ø：RESUME 110
JH $85 \varnothing$ IF A\＄＜＞＂n＂AND A\＄＜＞＂N＂TH EN BEEP：GOTO 84ø ELSE GOS UB 77ø：RESUME $1 ø \varnothing$
QJ $86 \varnothing$ IF ERRく＞53 THEN 890 ELSE BEEP：PRINT：PRINT：PRINT＂ER ROR：The disk in drive＂； DISK2\＄；＂has no font code directory file．＂：PRINT T $A B(8)$＂Insert another disk ．＂：GOSUB 76Ø：RESUME 32ø
BH $87 \varnothing$ IF ERR＜＞53 THEN $89 \varnothing$ ELSE BEEP：PRINT：PRINT：PRINT＂ER ROR：Font file＂；CODE $\$(2$ ， NUM）；＂not found on the d isk in drive＂；DISK2\＄：RES UME 360
CB $88 \emptyset$ IF ERR $=15$ THEN RESUME $2 \emptyset \emptyset$ CD 896 PRINT：PRINT＂Error＂；ERR；＂i n line＂；ERL：RESUME 9øø
LC $9 \varnothing \varnothing$ END
CG 1 øøø DATA REGULAR，$-1,-1$
JP $1 \varnothing 1 \varnothing$ DATA CONDENSED， $15,-1,18$ ， $-1$
EE $1 ø 2 \emptyset$ DATA DOUBLEWIDTH， $14,-1,2$ Ø，－${ }^{-1}$
ON $1 ø 3 \varnothing$ DATA ENDD

## Program 3：Call Code Lister

AG $1 \varnothing$ SCREEN Ø：COLOR 12，Ø，Ø：WIDT H 8ø：CLS
CP $2 \emptyset$ PRINT：INPUT＂Drive containi ng font files（default $=A$ ：）＞＂，DISK $=$ IF DISK $="=T$ HEN DISK\＄＝＂A：＂
PB $3 \emptyset$ ON ERROR GOTO 1øø：OPEN＂I＂， \＃1，DISK\＄＋＂FONTCODE．DIR＂：ON ERROR GOTO $\varnothing$
6P $4 \emptyset$ PRINT：PRINT＂Select quṭput device（P）rinter（S）creen or（D）isk＂：PRINT
EN 5 Ø $A \$=I N P U T \$(1):$ IF $A \$=" S "$ OR A\＄＝＂S＂THEN OUTT\＄＝＂SCRN：＂ ELSE IF $A \$=" p$＂OR $A \$=" P " T$ HEN OUTT\＄＝＂LPT1：＂ELSE IF A\＄＝＂d＂OR A\＄＝＂D＂THEN $7 \varnothing$ E LSE BEEP：GOTO 5ø
6J $6 \emptyset$ TB＝$\varnothing$ ：OPEN＂O＂，\＃2，OUTT\＄：WHIL E NOT（EOF（1））：INPUT \＃1，A\＄： INPUT \＃1，A\＄：INPUT \＃1，B\＄：PR INT \＃2，TAB（4ø＊TB）B\＄；＂＝＂； A\＄；：TB＝1－TB：WEND：PRINT \＃2， ＂＂：CLOSE：END
6D $7 \emptyset$ PRINT：PRINT＂Do you want th e alphabet for each font $p$ rinted also $(Y / N)>": A \$=I$ NPUT\＄（1）：IF A\＄＝＂n＂OR A\＄＝＂ $N "$ THEN $9 \emptyset$ ELSE IF $A \$\rangle " y "$ AND A\＄く＞＂Y＂THEN $7 \emptyset$
GP 8øC $\$=\operatorname{CHR} \$(13)+C H R \$(1 \emptyset): D \$=C \$$ ：FOR $Z=65$ TO 9ø：$C \$=C \$+C H R \$$ $(Z): D \$=D \$+C H R \$(Z+32):$ NEXT Z
NN 9Ø OPEN＂ロ＂，\＃2，＂ALLFONTS＂：WHIL E NOT（EOF（1））：INPUT \＃1，A\＄： INPUT \＃1，A\＄：PRINT \＃2，＂，＂；A \＄；＂：＂；A\＄；C\＄；D\＄：INPUT \＃1，A\＄ ：WEND：CLOSE：END
OL 1 Øø BEEP：PRINT：PRINT＂The disk in drive＂；DISK\＄；＂has $n$ －font code directory fil e．＂：RESUME $2 \emptyset$

## Program 4：Banner Printer

CH 1ø SCREEN Ø：WIDTH 80：COLOR 1， Ø，$\emptyset:$ CLS：DIM TEXT $\$(94,2)$
fC 20 LINE INPUT＂Enter Banner wo rds＞＂，A\＄
j6 $3 \varnothing$ INPUT＂Enter Font Call Code $>$＂，CODE\＄：FOR $Z=1$ TO LEN（
 IF B\＄＞＂＊＂AND B\＄く＂\｛＂THEN $C \$=C \$+C H R \$(A S C(B \$)-32)$ ELS E IF B\＄＜＞＂＂THEN C $\$=C \$+B \$$
BL 4ø NEXT Z：COLOR 6：PRINT＂Inse rt disk with font files in to disk $A$ ：and press any $k$ ey when ready＂：AN\＄＝INPUT\＄（ 1）
ON 5ø CODE $=$＝$\$$ ：ON ERROR GOTO $24 \varnothing$ ：OPEN＂I＂，\＃1，＂FONTCODE．DIR＂ ：WHILE NOT（EDF（1））：INPUT \＃ 1，C\＄：INPUT \＃1，C\＄：IF CODE\＄く ＞C CLOSE：BEEP：COLOR 7：LOCATE 3，1：PRINT＂FONT NOT FOUND＂ SPACE（65）：C\＄＝＂＂：COLOR 1：L OCATE 2，1：GOTO 3ø
FD 60 INPUT \＃1，FILE $\$:$ CLOSE：LOCAT E 3，1：PRINT SPACE $\$$（79）：ON ERROR GOTO Ø：OPEN＂R＂，\＃1，FI LE\＄，4：FIELD 解1， 2 AS B\＄， 2 A
 ：HIGH＝VAL（C $\$$ ）：CLOSE：OPEN＂R ＂，\＃1，FILE ${ }^{(1)}$ WIDE：FIELD \＃1，W IDE AS B\＄

PH 7ø FOR $Z=1$ TO 94：FOR $Z 1=\emptyset$ TO HIGH－1： EET \＃，$(\mathrm{Z}-1)$＊HIGH＋Z 1＋2：TEXT ${ }^{(Z)}(Z 1)=B \$$ ：NEXT $Z 1$ ，Z：CLOSE：SP象＝STRING\＄（WIDE， Ø）：FOR $\mathrm{Z}=\varnothing$ TD HIGH－1：TEXT\＄ $(\mathscr{E}, \mathrm{Z})=$ SP $\$$ ：NEXT $Z$
FM 8ø COLOR 2：LOCATE 4，1：PRINT：F QR $Z=1$ TO $8 \emptyset /(H I G H$（\＃）：PRIN T USING＂\＆\＃\＃\茾．\＃\＆＂；SPACE\＄（ 1の）；$Z$ ；＂）＂；Z $\%$ 8＊HIGH／1ø；＂in ches tall＂：NEXT Z：PRINT
BH 96 INPUT＂Enter VERTICAL expan aion multiple＞＂，VERT：IF VERT $\Rightarrow>Z$ THEN $9 \varnothing$
JF 1øø COLOR 3：FOR Z1＝1 TO Z－1：L DCATE $\mathrm{Z1}+4,5$ ：PRINT USING

 hes 1 ong＂：NEXT Z1
6J 110 LOCATE 5＋Z，4あ：INPUT＂Enter HORIZONTAL expansion mul tiple＞＂，HOR
PB $12 \emptyset \mathrm{~B} \$=" \mathrm{~F}: \mathrm{FOR} \mathrm{Z}=1$ TD LEN（A\＄）： IF MID\＄（A\＄，Z，1）＜＞＂＂THEN B\＄＝B\＄＋MID\＄（A\＄，Z，1）
JD $13 \emptyset$ NEXT Z：COLOR 6：LOCATE 18， 25：PRINT＂Create the lette rs of the banner with：＂TA $B(25) " 1)$ The original str ing＂TAB（25）＂2）Each lett er creating itselt＂TAB（25 ）＂3）You enter the string used＂：PRINT
PL 140 LOCATE 22，3Ø：INPUT＂Enter melection $>$＂，AN：IF AN＞3 OR AN 1 THEN $14 \emptyset$ ELSE IF AN＝3 THEN LOCATE 23，36：IN PUT＂Enter String＞＂，B\＄
FE 15ø COLOR 20：LOCATE 3，18：PRIN T＂GET UP PRINTER AND PRES

5 ANY KEY WHEN READY＂：AN ＝INPUT $\$$（1）：LOCATE 3，18：PR INT SPACE（18）＂PRINTING＂S PACE（18）
PO $16 \emptyset$ TABB $\$=$ SPACE $\$$（INT（ 8 （ 8 －VERT （B＊HIGH）／2））：LPRINT CHR（ 27）；CHR（49）
MK $17 \varnothing$ FOR $Z=1$ TO LEN $(A \$): I F$ MID $\$(A \$, Z, 1)="$＂THEN FOR Z1
＝1 TO WIDE + HOR：LPRINT：NEX
T Z1：GOTO 230
JC $18 \emptyset \mathrm{ST}=\mathrm{ST}+1: \mathrm{FOR} \quad \mathrm{Zi=1}$ TO WIDE： FOR Z2＝1 TO HOR：ST＝ST＋1：I F ST＞LEN（B\＄）THEN ST＝1
OP $19 \emptyset$ PT＝ST：FOR $Z 3=H I G H-1$ TO $\emptyset$ STEP－1：ASCI I＝ASC（MID\＄（TEX T\＄（ASC（MID\＄（A\＄，$Z, 1))-32, Z$ 3），Z1，1））：FOR Z4＝ø TO 7：I F ASCII MOD $2^{\wedge}(Z 4+1)>\emptyset T H$ EN ASCII＝ASCII－2＾Z4：FLAG＝ －1 ELSE FLAG＝ø
CD 2פø FOR $Z 5=1$ TO VERT：$P T=P T+1$ ： IF PT＞LEN（B\＄）THEN PT＝1
PE $21 \emptyset$ IF NOT（FLAG）THEN LN $\$=L N \$$ ＋＂＂ELSE IF AN＝2 THEN LN \＄＝LN\＄＋MID\＄（A\＄，Z，1）ELSE L $\mathrm{N} \$=\mathrm{LN} \$+\mathrm{MID} \$(\mathrm{~B} \$, \mathrm{PT}, 1)$
KH $22 \emptyset$ NEXT Z5，Z4，Z3：LPRINT TABB \＄；LN\＄；SPACE\＄（Bø－LEN（TABB\＄ ＋LN（\＄））；：LN\＄＝＂＂：NEXT Z2，Z1
EO $23 \emptyset$ NEXT Z：COLOR 7：BEEP：CLS：E ND
AE 240 COLOR 7：PRINT＂FONT FILES NOT FOUND－Insert correc $t$ disk and press any key to continue＂：AN\＄＝INPUT\＄（1 ）：LOCATE 2，1：RESUME 2ø

COMPUTE！Publications，Inc．is seeking to fill the following in－ house editorial positions：

Assistant Book Editor－Requires knowledge of computer programming．Undergraduate degree in English or related field．Two years writing and editing experience．
Assistant Technical Editor－Requires extensive experience with microcomputers，knowledge of machine language． Experience or training in editing or writing．Undergraduate degree preferred；experience in lieu of degree considered．
Microcomputer Programmer－Requires proficiency on one or more of the following computers：IBM PC，Commodore， Atari，Apple．College degree preferable with coursework in BASIC．Proficiency in BASIC programming．Extensive ma－ chine language experience a plus．
Features Editor－Requires college degree in journalism， English，communications，or related field which emphasizes writing；three years experience in journalism；some expe－ rience with microcomputer industry desirable．
Send résumé and salary history in complete confidence to：
Personnel Director
COMPUTE！Publications，Inc．
P．O．Box 5406
Greensboro，NC 27403

# 128 Colorswap 

Paul W. Carlson

This short machine language routine makes it simple to create dazzling special effects on the Commodore 128 by swapping colors in the multicolor graphics mode. Several BASIC demonstration programs are included to show you how to use the routine. A disk drive is required.

Many different graphics effects are possible in the Commodore 128's multicolor graphics mode. Here is a brief explanation of that mode and the way it is used by " 128 Colorswap." A multicolor mode screen consists of 1000 blocks of 32 double-width pixels. Four different color sources can be used within each block of pixels: background, foreground, multicolor 1, and multicolor 2. These color sources correspond to the color source numbers $0,1,2$, and 3 in the BASIC COLOR statement. Although each of the 1000 blocks of pixels can have its own colors for each of the four color sources, this article explores some of the effects possible when the same four colors are used for the entire screen and three of the four colors are instantly interchanged.

## Creating The Machine Language Routine

To begin, type in, save, and run Program 1. This program creates a short machine language (ML) routine on disk using the filename COLORSWAP. You may want to give Program 1 a descriptive name and keep it to create the Colorswap routine on other disks. The other
programs demonstrate how you can use the ML routine in your own programs even if you're not an ML programmer.

## Demonstration Programs

Program 2 is the first demonstration program. Type it in and save it on the disk containing the ML file COLORSWAP. Now run the program: It displays three colored boxes. Press any key (except Q, which exits the program) to see how the colors are swapped. Each time you press a key, the colors are shifted one box to the right with the rightmost color going into the box on the left. The box on the left is always the current foreground color at the moment a key is pressed. Likewise, the center box is the current multicolor 1 color and the right box is the current multicolor 2 color.

When you press a key, the program calls the ML routine with the statement SYS 2816. This routine replaces the multicolor 2 color with the multicolor 1 color, replaces the multicolor 1 color with the foreground color, and replaces the foreground color with the old multicolor 2 color. If you look at Program 2, you'll see that it executes SYS 2816 once in line 60 before it waits for a keypress in line 70. This is done because the ML routine does not change any colors the first time it is called in a program.

Programs 3, 4, and 5 show how rapid color swapping can simulate movement. Type in and save all of them.

Program 3 creates a red, green, and blue spiral design against a
white background. When the pattern is complete, the spiral appears to rotate rapidly. In fact, this illusion is achieved without redrawing anything or swapping screens (page flipping). Instead, the program simply calls the Colorswap routine to swap the colors.

Programs 4 and 5 use a similar technique. Program 4 creates the illusion of rushing through a tunnel. Program 5 has an interesting 3-D effect that's difficult to describe.

## Using Colorswap

Colorswap is easy to put to work. Because the ML routine resides in the cassette buffer, it can be BLOADed at any point in your program before the first SYS 2816 that activates it. Keep in mind that no colors are changed the first time you call the ML routine (this is not important, however, if you intend to call the ML many times in succession to simulate animation).

"128 Colorswap" is a machine language utility that makes it possible to create interesting graphics displays. In this screen, different colors in the design are changed rapidly to create an animated, 3-D effect.

A second point to remember is that Colorswap will change the color of all non-background pixels on the screen to the current color source colors defined in your BASIC program. A multicolor screen could contain as many as 16 colors, but after you call the ML routine, the number of colors is reduced to four at the most. This might be useful in some applications, but for simulating animation you should create the display using just one color for each of the four color sources.

It's important to time color changes carefully to eliminate flickering in simulated animation. Flickering occurs in cases where the Colorswap routine cannot change the colors everywhere on the screen during the time the raster is outside of the display area. No flashing is visible in Programs 3-5 because the timing is such that the flickering is limited to the top left corner of the screen, where no swapping occurs. The timing in all three demonstration programs is controlled by the same series of statements. (See lines 130-140 of Program 3.) Fortunately, the timing that produces the least amount of flicker also produces a nice rate of color changing. If you want to use a different rate in your own programs, you may have to experiment a bit.

BASIC 7.0 makes it easy to create multicolor graphics screens, and Colorswap can really make those screens come alive. The short demonstration programs in this article just hint at what is possible.

For instructions on entering this program,
please refer to "COMPUTEI's Guide to Typing In Programs" elsewhere in this issue.

## Program 1: 128 COLORSWAP File Creator

QK $1 \emptyset \mathrm{~T}=\varnothing:$ FORN=2816TO292ø:READ $\mathrm{K}: \mathrm{T}=\mathrm{T}+\mathrm{K}:$ POKEN, K:NEXT
JE 2 IFT<>154øøTHENPRINT"*** \{SPACE\}ERROR IN DATA STA TEMENTS ***": END
PD $3 \emptyset$ BSAVE"COLORSWAP", P2816TO P2921
JD 40 PRINT"COLORSWAP SUCCESSF ULLY CREATED": END
BP $5 \emptyset$ DATA $166,132,164,133,165$ ,134,134,133
DQ 60 DATA $132,134,133,132,10$, $10,10,10$
MR 70 DATA $24,101,133,133,250$, 169, 0,133
JG 80 DATA $251,133,253,169,216$ ,133,252,169

JF 90 DATA $28,133,254,162,4,16$ $\varnothing, \varnothing, 165$
DB $1 \emptyset \emptyset$ DATA $134,145,251,165,25$ Ø,145,253,2øø
PB $11 \emptyset$ DATA $2 \emptyset 8,245,230,252,23$ Ø, 254,2ø2,208
AM 120 DATA $238,165,1,41,254,1$ 33,1,162
KK 130 DATA $4,160,0,132,251,16$ 9,216,133
KF 140 DATA $252,165,134,145,25$ 1,2øø,2ø8,249
RB $15 \emptyset$ DATA $230,252,2 \emptyset 2,2 \emptyset 8,24$ 4,169,10,205
KH 160 DATA $18,2 \emptyset 8,2 \emptyset 8,251,165$ ,1,41,253
ER 170 DATA $133,1,165,1,9,3,13$
QM $18 \emptyset$ DATA 96

## Program 2: 128 ColorswapDemo 1

GM $1 \varnothing$ BLOAD"COLORSWAP"
MA $2 \emptyset$ COLORØ, $2:$ COLOR1, 3 :COLOR2 , 6: COLOR3, 7 : COLOR4, 2 : GRA PHIC3, 1
DD $3 \varnothing \mathrm{Xl}=1 \varnothing: \mathrm{Yl}=7 \emptyset: \mathrm{X} 2=5 \emptyset: \mathrm{Y} 2=13 \varnothing$
PD $4 \emptyset$ FORC=1TO3: BOXC,X1,Y1,X2, Y2, , 1
EJ $5 \emptyset \mathrm{Xl}=\mathrm{Xl}+5 \emptyset: \mathrm{X} 2=\mathrm{X} 2+5 \emptyset:$ NEXT
MX $6 \emptyset$ SYS 2816
BA $7 \emptyset$ GETKEYAS: IFAS $\langle>$ " $Q$ "THEN6 $\varnothing$
JE $8 \emptyset$ COLORØ, 12:COLOR4,14:GRAP HICØ, 1: GRAPHICCLR

## Program 3: 128 ColorswapDemo 2

GM $1 \varnothing$ BLOAD"COLORSWAP"
CB $2 \emptyset$ COLORø, 2:COLOR1,3:COLOR2 , 6:COLOR3, 7:COLOR4, 2
KF $3 \emptyset$ GRAPHIC3,1:CX=8Ø:CY=1øø
DH $4 \emptyset$ CIRCLE3,CX,CY,63,9Ø
EG $5 \emptyset \mathrm{RD}=89.5: T \mathrm{P}=2$ * $\uparrow: \mathrm{K}=9: \mathrm{N}=2 \varnothing$ : $\mathrm{F}=\mathrm{RD} / \mathrm{TP}: \mathrm{DA}=\mathrm{TP} / \mathrm{K}: \mathrm{DB}=\mathrm{TP} / \mathrm{N}:$ $A=\varnothing: C=4$
AQ 60 FORI $=1 T O K: B=\emptyset: A=A+D A: C=C$ -1: IFC=ØTHENC=3
FR $7 \emptyset$ DRAWC, CX, CY
QH $8 \emptyset$ FORJ=1TON: $B=B+D B: R=F * B: D$ RAWCTOCX +.7 *R*SIN ( $A+B$ ) , C $\mathrm{Y}+\mathrm{R}^{\star} \operatorname{COS}(\mathrm{A}+\mathrm{B}): \operatorname{NEXTJ}, \mathrm{I}$
QF $9 \emptyset$ DRAW3,78,1ø2:A= $\emptyset$
MP 1øØ FORI=1TOK: $A=A+D A: C=C-1$ : IFC=øTHENC=3
GQ 110 PAINTC, $\mathrm{CX}+.65$ *R*SIN(A), CY+. 95 * R * $\operatorname{COS}(\mathrm{A}), 1: \mathrm{NEXT}$
RK 120 CIRCLE $0, C X, C Y, 63,9 \emptyset$
CD 130 FORN=1TO1Ø:NEXT:SYS2816
MS 140 GETAS:IFAS=""THEN130
BD 150 COLORØ, 12: COLOR4, 14:GRA PHICØ, 1:GRAPHICCLR

## Program 4: 128 ColorswapDemo 3

GM $1 \varnothing$ BLOAD"COLORSWAP"
CR 2ø COLORø,1:COLOR1,3:COLOR2 , 6: COLOR3, 7 : COLOR4, 1 : GRA PHIC3,1
JM $3 \emptyset \mathrm{C}=1: \mathrm{Xl}=16: \mathrm{X} 2=144: \mathrm{Yl}=1 \varnothing: Y$ $2=19 \varnothing$
RK $4 \varnothing$ FORI $=\varnothing$ TOl $\varnothing: \mathrm{XP}(I)=X 1+1: Y P$ ( $I$ ) $=Y 1+1$
HK 50 BOXC, X1, Y1, X2, Y2
BC $60 \mathrm{C}=\mathrm{C}-1: I F C=\varnothing$ THENC=3
SM 7Ø X1=X1+.1*(X2-X1):X2=159-

AB 8 Ø Y1=Y1+.1*(Y2-Y1): Y2=199Y1: NEXT
QA $90 \mathrm{C}=2: \mathrm{FORI}=\emptyset \mathrm{TO} 9: \mathrm{C}=\mathrm{C}-1: \mathrm{IFC}=$ ØTHENC=3
EX 1øø PAINTC, XP (I), YP (I), 1:NE XT
KA $11 \varnothing$ GETAS:IFAS < > " "THEN 130
JS 120 FORN=1TOIの:NEXT:SYS2816 : GOTO11ø
KB 13ø COLORø, 12:COLOR4,14:GRA PHICØ, 1:GRAPHICCLR

## Program 5: 128 ColorswapDemo 4

GM $1 \varnothing$ BLOAD"COLORSWAP"
MA 2ø COLORø,2:COLOR1,3:COLOR2 , 6 : COLOR3, 7 : COLOR4, 2 : GRA PHIC3,1
RM 3ø CX=8 : $\mathrm{CY}=11 \varnothing: \mathrm{RD}=7 \emptyset: \mathrm{TP}=2$ * $\uparrow: N=15: F=R D /(2 * T P): D B=T P$ $7(N+N): C=1$
QG $4 \emptyset$ FORJ $=1 T O 4.8^{*} \mathrm{~N}: \mathrm{B}=\mathrm{B}+\mathrm{DB}: \mathrm{R}=\mathrm{F}$ * $\mathrm{B}: \mathrm{X}=\mathrm{CX}+.7 * \mathrm{R} * \mathrm{SIN}(\mathrm{B}): \mathrm{Y}=\mathrm{CY}$ $+R^{*} \cos (B)$
EK 50 IFJ $>1$ ØTHENCIRCLEC, $X, Y, .1$ $75{ }^{*} \mathrm{R}, .25^{*} \mathrm{R}$ : PAINTC, $\mathrm{X}, \mathrm{Y}, \varnothing$
BC $6 \emptyset \mathrm{C}=\mathrm{C}+1:$ IFC=4 THENC $=1$
RJ $7 \emptyset$ NEXT
CF 8 GETAS:IFAS < > ""THEN1øØ
CD 90 FORN=1TO1 $:$ SYS2816:GOTO8 $\emptyset$
EX 1øø COLORø,12:COLOR4,14:GRA PHIC $\varnothing, 1:$ GRAPHICCLR
©

## COMPUTE! Disk Subscriptions

COMPUTE! Disks are available for the following computers:

- Apple II series
- Commodore 64 and 128
- Atari 400/800 /XL/XE
- IBM PC and PCjr

Each error-free disk contains all the programs from the previous three issues of COMPUTE!. With a disk subscription, you'll receive one disk-for the machine you specify-every three months. To subscribe, call toll free
800-247-5470
(in lowa 800-532-1272).

# Six New Operators For Atari BASIC 

Rhett Anderson, Assistant Editor

This compact machine language utility adds six useful bitwise operators to Atari BASIC.

Atari BASIC differs from most other BASICs in a number of ways. Although it includes some hardwarerelated commands (GRAPHICS, STICK, PADDLE, and so on), its lack of bitwise operators makes accessing other hardware features difficult. "Six New Operators for Atari BASIC" adds six bitwise operators to BASIC. The program is published in the form of BASIC statements which you can add to your own programs. Begin your program at line 30 .

## Bitwise Operators

What are bitwise operators, and what makes them so important? On some computers you may see a line that looks like this:

```
1\emptyset POKE 6546\emptyset,PEEK(6546\emptyset)
 AND 254
```

This line looks confusing to most Atari programmers because Atari BASIC uses AND only as a logical operator. Logical operators consider values to be either true or false. They are often used to create an IF statement that contains two or more logical tests. For instance, this line uses AND as a logical operator:

```
2\emptyset IF A=1 AND Y<2\emptyset\emptyset THEN
 GOTO 2\emptyset\emptyset
```

In this statement, the computer performs GOTO 200 only when the value of A is 1 and the value of Y is less than 200. The AND links together the conditions $A=1$ and $\mathrm{Y}<200$.

In Atari BASIC, a zero is treated as false and anything else is considered true. Logical operators always return a value of either 0 or 1. Thus, the result of the IF test in line 20 is 0 when one or both conditions are false, and 1 when both of them are true.

A bitwise operator, on the other hand, treats each bit of a byte-size value separately. A plain English translation of line 10 would read something like this: "Get the value from memory location 65460 and perform an AND operation with the value 254 , treating each bit separately. Store the result back in location 65460." Since 254 is 11111110 in binary, line 10 has the effect of turning off the least significant bit of location 65460 (setting the lowest bit to 0 ).

Bitwise operators are extremely useful when you need to access one of the Atari's hardware registers (a memory location set aside for controlling a specific hardware feature). Some hardware registers serve more than one purpose, with each bit in the register controlling a different feature. There are many cases where you might want to change the value of just one bit in a hardware register, without disturbing the other bits. That sort of activity is difficult if you don't have bitwise operators.

This program provides a convenient means for performing bitwise operations such as the one in line 10. If you are a bit confused by the preceding explanation, don't lose heart. The last section of this article offers some examples which you can use even if you don't understand binary numbers or bitwise operators fully.

## Operator Lis

The new bitwise operators are XOR (eXclusive OR), BOR (Bitwise OR), BAND (Bitwise AND), BNOT (Bitwise NOT), SHL (SHift Left), and SHR (SHift Right). Let's examine them.
XOR. The result (for each bit) is 1 if one and only one of the operands is 1. So, 1 XOR $1=0$ and 0 XOR $1=1$.
BAND. The result is 1 only if both operands are 1. So, 1 AND $1=1$ and 0 AND $1=0$.
BOR. The result is 1 if either or both operands are 1. So, 1 OR $1=1$ and 0 OR $1=1$.
BNOT. The result is opposite the operand (this operator only accepts one operand).
SHL. Shifts all bits ( 16 of them) to the left a designated number of times. Each shift is equivalent to a multiplication by 2 .
SHR. Shifts all bits to the right a specified number of times. Each shift is equivalent to an integer division by 2 .

These operators are accessed with the USR function. Following are examples which show the syntax of each operator.

RESULT = USR (XOR, $, a, b$ )
RESULT $=$ USR (BAND $, a, b$ )
RESULT $=$ USR(BOR, $a, b$ )
RESULT $=$ USR (BNOT, $a$ )
RESULT $=$ USR $(S H L, a, b)$
RESULT $=\mathrm{USR}(\mathrm{SHR}, a, b)$
Each USR statement must include the desired operator (XOR, BAND, and so on) plus two operands (except for BNOT, which takes only one operand). The oper-ands-represented by $a$ and $b$ in the examples-are the values needed
to perform the operation. The operands may consist of numeric constants or any expressions that evaluate to a numeric value. For instance, both of these lines return the result of 3 :
$1 \emptyset$ RESULT=USR (BOR, 1, 2)
$2 \varnothing A=1: B=(2 * A):$ RESULT $=$ USR ( $B O R, A, B$ )
In each case, the variable RESULT will contain the result of the operation. Of course, you can replace RESULT with any legal Atari BASIC variable name. To save space, the machine language routine includes no error checking, so be sure to include the proper number of parameters. If you don't, you will have to press SYSTEM RESET to regain control of your computer.

## Examples

Bitwise operators can be used in many different ways. Following are some examples which you can use in your own programs. Ian Chadwick's book, Mapping the Atari (available from COMPUTE! Books), contains much more information about hardware registers and how to use them.
$B=\operatorname{USR}(B A N D, A, 1): \operatorname{REM} B=$ 1 IF $A$ IS ODD, $B=\emptyset$ IF A IS EVEN
$B=\operatorname{USR}(X O R, B, 1): R E M$ MAK
ES $B=1$ IF $B$ WAS $\emptyset, ~ M A K$ ES $B=\emptyset$ IF $B$ WAS 1 .
$B=\operatorname{USR}(B N O T, B): R E M$ SAME AS ABOVE
$B=$ USR (BAND, NUM, 255): RE $M$ RETURNS THE LOW BYTE OF NUM
$B=\operatorname{USR}(S H R, N U M, 8)$ : REM R ETURNS THE HIGH BYTE $\square$ F NUM
$A=\operatorname{USR}(B A N D, 8, S T I C K(\emptyset))$
: REM RETURNS A $\varnothing$ IF TH E JOYSTICK IS PRESSED RIGHT (AND A 8 IF IT I SN'T)
$A=\operatorname{USR}(B A N D, 1, \operatorname{PEEK}(5327$ 9)) : REM RETURNS A Ø IF START IS PRESSED, A 1 IF IT ISN'T.

POKE 623, USR (BOR, PEEK ( 623), 64): REM ENABLE GT IA MODE 9. THIS IS INT ERESTING TO DO IN GRAP HICS Ø.

POKE 562, USR (BAND, PEEK (562), 254): REM TURN OF F KEYBOARD DEBOUNCE CI RCUIT.

## Six New Operators For Atari BASIC

For instructions on entering this program, please refer to "COMPUTE!'s Guide to Typing In Programs" elsewhere in this issue.
HD $1 \varnothing$ FOR $T=1536+128$ TO 1775 : READ A:POKE T,A:NEXT T
FN $29 \times O R=1536+128: B A N D=X O R+$ $16: B O R=16+B A N D: B N O T=16$ +BOR: $\mathrm{SHL}=\mathrm{BNOT}+12: S H R=S$ HL+13
BA 1 Ø1ø DATA $32,214,6,165,21$ 2,69, 214, 133
HL $1 \emptyset 2 \emptyset$ DATA 212,165,213,69, 215, 133, 213,96
AN $1 \emptyset 3 \emptyset$ DATA $32,214,6,165,21$ $2,37,214,133$
H1 $1 \emptyset 4 \emptyset$ DATA $212,165,213,37$, 215, 133, 213,96
NK $165 \emptyset$ DATA $32,214,6,165,21$ 2,5,214,133
EF 1 Ø6 D DATA $212,165,213,5,2$ 15, 133, 213,96
HC 1 פ7Ø DATA $1 \emptyset 4,1 \emptyset 4,73,255$, $133,213,104,73$
BN 1 ø日ø DATA 255, 133, 212, 96, 32,214,6,166
E! $199 \emptyset$ DATA $214,6,212,38,21$ 3,2ø2,2ø8,249
OC 11 פø DATA $96,32,214,6,166$ , 214,70,213
KB $111 \emptyset$ DATA $1 \emptyset 2,212,2 \boxed{ } 2,2 ø 8$ , 249, 96, 104, 133
MI 1120 DATA $216,104,133,217$ , 104, 104, 133,213
ME $113 \emptyset$ DATA $1 \emptyset 4,133,212,1 \emptyset 4$ , 133,215, 1ø4, 133
FH 114 D DATA $214,165,217,72$, 165,216,72,96

THE AMAZING
VOCEMASTER。 ENTER
THE FINAL
FRONTER
OF
MAN-TO-MACHINE
COMMUNICATIONS

There is nothing else like it. Voice Master gives both speech output

and voice recognition with this single hardware product! Your voice controls programs, or home appliances, robots, and more with spoken commands. Verbal response back gives status, verifies, or requests your reply! Speech output and recognition patterns are recorded in with your voice. Or use the voice of your friend, boss, teacher, mother, even the family pet! Programming is simple with new commands added to BASIC. A music bonus program lets you write and compose musical scores simply by humming the tune. Unlimited applications for fun, education, and commercial use. Design your own programs for profit. Speech and recognition quality unsurpassed by even the most sophisticated machines. Only Covox provides this high-tech marvel at a price less than most common peripherals.
The Covox Voice Master comes complete with all hardware and software for only $\$ 89.95$. (Add $\$ 4$ shipping and handling for USA $\$ 6$ Canada, $\$ 10$ overseas.) Available for Commodore 64/128, Apple ll, IIt, Ilc, Ile, Atari 800 , $800 \mathrm{XL}, 130$ XE. Specify when ordering. Visa, MasterCard phone orders accepted.


Call or write for FREE Voice Master Infopak
and special combination package affers.
675-D Conger Street • Eugene, Oregon 97402 - U.SA Area Code (503) 342-1271 - Telex 706017 (Av Alarm UD)

## Public Domain \& User Supported Software

## NEW TOP TEN FOR COMMODORE 64

## The 64 GOLD Library <br> S5.00/DISK

105 ARTIST SKETCHBOOK drawing programs $\square 106$ GREAT AMERICAN NOVELSTS word processing
107 PHONE CONNECTIONS communications 108 SPACE WARS space games
109 DUNGEONS \& DRAGONS text adventures

- 110 HOME ORCHESTRA instrument simulation
1111 JUKE BOX prerecorded songs 112 EINSTEINS FAVORITES advanced math 113 PONZO'S TUTOR programming from BASIC to machine
] 114 ELECTRONIC SECRETARY filehandling utilities
NEW TOP TEN FOR IBM S6.00/DISK
PC-SIG Authorized Dealer
] 005 PC-FILE III, V4 labels, forms, and more
7078 PC-WRITE v. 2165 popular and powerful
$\square 273$ BEST UTIUTIES print spooler, file search, more
$] 274$ BEST GAMES packman, breakout. wizard, more
1293 ARCADE GAMES (color graphics required)
I 405 DESKMATE more than a sidekick
1457 GREATEST ARCADE the best of the best games
528 NEW YORK WORD sophisticated word processing. 1 of 2
] 529 NEW YORK WORD 2 of 2
$\square 557$ PINBALL ALLEY from simple to complex pinball games

NEW TOP TEN FOR APPLE S5.00/DISK
$\square 037$ FREEWRITER wordprocessor (Apple II + needs paddles)
$\square 038$ BUSINESS HOME MANAGEMENT checkbook, calculator, more
$\square 039$ BEST OF BUSINESS general ledger. payroll, much more
$\square 056$ BANKin SYSTEM check balancer, write \& print checks
057 OMNI FILE data base with instructions 064 BEST OF EDUCATION math drills, spelling, typing, etc.
1085 BASIC MATH DRILLS fractions, multiple choice. work problems 118 GAMES fast action space arcade games 195 PASSTIME, a potpourri of programs 213 BEST UTILITIES diskcat, krunch. diskcheck, diskmap. etc.
NEW TOP TEN FOR MAC S9.00/DISK 1005 CODE CRACKING. FEDIT edit file blocks in ASCll or hex
$\square 006$ ResED and ReED edit menu bars. icons and I.D numbers
007 SWITCHER edit multiple Microsoft BASIC files 029 COMMUNICATIONS Red Ryder, MacTep 037 SLIDE SHOW ] 039 FONTS Font catalog 045 DESK ACCESSORIES Minifinder, timer 062 GAMES Dungeons of doom,baseball 067 GAMES Billiards. volleyball, juggling 086 BEST OF MAC MacWorld 86
PUBLIC DOMAIN SOFTWARE EXCHANGE Authorized Dealer

Add $\$ 4$ shipping \& handling per order. CA residents add 6.5\% sales tax
Amount enclosed \$ Check I IVISA $\square$ MasterCard
Card No.
Signature $\qquad$ Exp. Date
Phone ( Call toll free 800-431-6249 in Calif. 415-952-1994
ame
Address


# Omega Sort 

Jonathan J. Holuta

Written entirely in machine language, this fast sorting routine for the Commodore 64 can be used by anyone and does not take away any space from BASIC memory.

If you write programs that handle data, sooner or later you will need a routine to sort items into alphabetical order. There are several sorting methods suitable for use in BASIC, including the bubble sort, shell sort, and quick sort. None of those methods, however, is very efficient for sorting large amounts of data.
"Omega Sort" is a speedy machine language routine which you can use in any BASIC program, even if you don't know a thing about machine language. Program 1 contains the sort routine. Type in this program with the "MLX" machine language entry program found elsewhere in this issue. Here are the starting and ending addresses you'll need when typing in the program:

## Starting address: C000 <br> Ending address: C377

Don't forget to save a copy of the program after you finish typing it in. If you want use Program 2 to test the sorting routine, save the data from Program 1 with the name OMEGASORT, since that's the name Program 2 looks for.

Omega Sort can sort 1000 randomly ordered strings in alphabetical order in less than six seconds. To see the routine at work, type in and save Program 2, the BASIC demonstration program. If you are using tape instead of disk, change the 8 to a 1 in line 10 of Program 2 .

When you run Program 2, it loads the machine language routine from disk or tape into memory. Then it prompts you to enter the number of strings you wish to sort. To create 1000 random strings, for instance, type 1000 and press RETURN. The program prints all of the strings on the screen in their original order, then it sorts them alphabetically. When the sorting is done, the program displays the strings in the new order, one screenful at a time. Press any key to view the next page of data, or press f1 to exit the program.

## How To Use It

To use Omega Sort, your program must begin by loading the machine language routine into memory. The first line of Program 2 demonstrates how this is done.

Some machine language sorting routines sort only one dimension of a multidimensional array, which is not always convenient. To demonstrate why, suppose that you have an address file program that stores a list of names and addresses in a two-dimensional array as shown here:
$\mathrm{N} \$(1,1)=$ name 1
$\mathrm{N} \$(1,2)=$ street 1
$\mathrm{N} \$(1,3)=$ city 1
$\mathrm{N} \$(1,4)=$ state 1
$\mathrm{N} \$(1,5)=$ zip code 1
$\mathrm{N} \$(1,6)=$ phone 1
Each full entry contains six separate items: the name, street, city, state, zip code, and phone number. In a real program, of course, you might have dozens or even hundreds of such entries. The name for entry 2 would be contained in $\mathrm{N} \$(2,1)$, and so forth.

If you sort the first dimension of this array (name), then the names will be mismatched with the other data items. The name for entry number 1 might be matched with the street for entry 36 , and so on.

Instead of sorting the strings themselves, Omega Sort sorts a numeric index array. Each element of the numeric array points to one data set in the string array. The advantage of this method is that all the items within each data set remain in their original order. In addition to great speed, this gives you more flexibility in using string arrays.

In Program 2, the string array is named A\$, and the index array is named N\%. Note that the index array must be an integer array (one whose name ends with \%). Any legal Commodore variable names may be used, provided you follow this simple rule.

## Calling The <br> Machine Language

Like other machine language routines, Omega Sort is called with a SYS command. In addition to the command itself, which includes the starting address of the machine code, you must supply three items of information: the number of elements to sort, the name of the string array, and the name of the index array. Here is an example:

## 100 SYS 49152,N,N\$(0),N\%(0)

In this statement, the variable $N$ indicates the number of elements to be sorted, and the variable $N \$(0)$ indicates the name of the array you wish to sort. If there are 40 elements in the $\mathrm{N} \$$ array, for instance,
you would set N to 40 before exe－ cuting line 100．Or，you could just replace N with the number 40 ．The variable $N \%$ is the index array．

Once the sorting is complete， the index array contains the new order．To gain access to the sorted data，you must refer to elements of the string array through the index． Look at line 110 of Program 2．The expression $\mathrm{A} \$(\mathrm{~A} \%(\mathrm{X}))$ causes PRINT to display the elements of $\mathrm{A} \$$ in the order contained in the A\％array．Remember，Omega Sort rearranges the order of the numeric index array，not the string array itself．Each element of the index array points to one element of the string array．

The SYS statement for a multi－ dimensional array is the same，ex－ cept that you must specify which dimension to sort．Here is an example：
100 SYS 49152，N，N\＄（0，3），N\％（0）
For the address array men－ tioned above，the preceding state－ ment would sort the addresses according to the array＇s third dimension（city）．This statement would sort it according to the first dimension（name）：
100 SYS $49152, \mathrm{~N}, \mathrm{~N} \$(0,1), \mathrm{N} \%(0)$
This statement would sort the address array by its fifth element （zip code）：

## 100 SYS 49152，N，N\＄（0，5），N\％（0）

Here is an example line that would print the elements of the address array in their new order：

## 110 FOR $X=0$ TO N：PRINT X，N\＄（N\％（X）

 ，5）：NEXTYou can use this routine with－ out knowing how it works，but，for those who are interested，here is a brief explanation．Omega Sort first stores important zero page pointers in the cassette buffer so it can use these locations for its own pur－ poses．Then it determines where in memory the arrays reside．In the case of strings，the actual text is stored from the top of BASIC mem－ ory in a downward direction．The array storage space（located just above the end of BASIC program text）contains a series of pointers to the strings in high memory．Omega Sort checks the pointers and then changes the values of the integer array to match the alphabetical or－
der of the strings themselves．When finished，it restores the contents of the zero page and returns to BASIC． The entire process works so quickly that it can sort a hundred strings in less than a second．

## Program 1：Omega Sort

Please refer to the＂MLX＂article elsewhere in this issue before entering the following program．
 Cøø8：CØ E6 D9 DØ Ø2 E6 DA 3885 CØ1Ø：A5 DD E9 Ø2 85 DD A5 DE 07
 Cø2Ø：9A C $\emptyset 6 \emptyset$ A5 DD 85 DF A5 EF CØ28：DE 85 EØ A9 Øø 85 E1 8590 Cø3Ø：E2 Aø Ø1 A5 E1 91 DF 8863 CØ38：A5 E2 91 DF C5 DA FØ $16 \quad \emptyset 7$ CØ4Ø：18 A5 DF 69 Ø2 85 DF A5 55 CØ48：EØ 69 ØØ 85 EØ E6 E1 DØ 24 Cø50：EØ E6 E2 4C 31 Cø A5 E1 D6 Cø58：C5 D9 Fø Ø3 4C $4 \emptyset$ CØ $6 \emptyset$ C6 CØ6Ø：20 FD AE 2Ø 9E AD 2Ø F7 2D C 68 ：B7 A5 $14 \quad 85$ D9 A5 $15 \quad 85 \quad 1 \mathrm{~F}$ C $\varnothing 7 \emptyset: D A$ 2 $2 \emptyset$ FD AE $2 \emptyset$ 9E AD A5 8E Cø78： 4785 DB A5 $48 \quad 85$ DC 2007 Cø8Ø：FD AE $2 \emptyset$ 9E AD A5 $47 \quad 85$ B2 Cø88：DD A5 $48 \quad 85$ DE $6 \emptyset$ Aø 1996 Cø9Ø：B9 D8 Øø 99 3C Ø3 88 DØ 8E Cø98：F7 6Ø AØ 19 B9 3 C Ø3 99 32 CØAØ：D8 Øø 88 DØ F7 60 A5 DD 17 CØA8：85 DF A5 DE $85 \mathrm{E} \emptyset$ AØ 02 7A CØBØ：18 A5 DF 6D 72 C3 85 DF Ø8 CØB8：A5 EØ 6D 73 C3 85 EØ 88 A8 CØCØ：D $\emptyset$ EE $6 \emptyset$ A5 DD 85 El A5 3B CøC8：DE 85 E 2 A A $\quad$ Ø2 18 A5 E1 1 F CØDØ：6D 74 C3 85 E1 A5 E2 6D CF CØD8：75 C3 85 E2 88 DØ EE 6Ø AA CØEØ：AØ Ø1 B1 DF 8D 76 C3 88 7D CØE8：B1 DF 8D 77 C3 A5 DB 8556 CØFØ：E6 A5 DC 85 E7 AØ Ø3 1823 CØF8：A5 E6 6D 76 C3 85 E6 A5 C3 Cløø：E7 6D $77 \mathrm{C} 3 \quad 85 \mathrm{E} 788 \mathrm{D} \quad \mathrm{AB}$ Cl冋8：EE AØ 02 B1 E6 99 EA ØØ F9 C110：88 1Ø F8 6Ø Aø Ø1 B1 E1 4F C118：8D 76 C3 88 B1 E1 8D 77 A8 C120：C3 A5 DB 85 E8 A5 DC 85 DF C128：E9 Aø Ø3 18 A5 E8 6D 76 CC C130：C3 85 E8 A5 E9 6D 77 C3 26 C138：85 E9 88 DØ EE AØ Ø2 B1 C6 C140：E8 99 EA Øø 88 1Ø F8 6Ø D2 C148：A2 Ø1 A9 Ø1 9D 8ø C3 A9 C2 C150：øØ 9D AE C3 E8 A5 D9 9D 7C C158：8 10 C3 A5 DA 9D AE C3 A9 48 C160：ø2 8D 7A C3 A9 øø 8D 7B B7 C168：C3 AE 7A C3 BD 8 1 C3 8D ØA C170：78 C3 BD AE C3 8D 79 C3 CE C178：AD 7A C3 DØ Ø3 CE 7B C3 Ø5 C18Ø：CE 7A C3 AE 7A C3 BD 8Ø 4C C188：C3 8D 7C C3 BD AE C3 8D DA C190：7D C3 AD 7A C3 DØ Ø3 CE 57 C198：7B C3 CE 7A C3 AD 7C C3 DD C1AØ：8D 72 C3 AD 7D C3 8D 7364 C1A8：C3 AD 78 C3 8D 74 C3 AD 38 C1B0：79 C3 8D 75 C3 18 AD 7C 41 ClB8：C3 6D 78 C3 8D 7 E C3 AD 60 ClCØ：7D C3 6D 79 C3 8D 7F C3 5ø ClC8：6E 7F C3 6E 7E C3 A5 DD EE ClDØ： 85 E3 A5 DE 85 E4 AØ ø2 B5 ClD8：18 A5 E3 6D 7E C3 85 E3 17 ClEØ：A5 E4 6D 7 F C3 85 E4 88 9C ClE8：DØ EE AØ Øø B1 E3 8D 7754 C1FØ：C3 C8 B1 E3 8D 76 C3 A5 $7 \emptyset$ ClF8：DB $85 \mathrm{~F} \emptyset$ A5 DC 85 Fl AØ C5 C2øø：ø3 18 A5 FØ 6D 76 C3 $85 \quad 23$ C208：FØ A5 F1 6D 77 C3 85 F1 4C C21Ø：88 DØ EE AØ Ø2 B1 FØ 9948 C218：ED ØØ 88 1Ø F8 2Ø A6 CØ FC

C220：2Ø EØ CØ A $\begin{gathered}\text { FF C8 C4 ED AA }\end{gathered}$ C 228 ： $\mathrm{B} \emptyset \quad$ ØF C4 EA $\mathrm{B} \emptyset 14 \mathrm{Bl}$ EB 36 C230：D1 EE 9Ø ØE FØ EF 4C 5A 87 C238：C2 A5 EA C5 ED $9 \emptyset$ Ø3 4C 46 C240：5A C2 EE 72 C3 DØ Ø3 EE FE C248：73 C3 18 A5 DF $69 \quad \emptyset 2 \quad 85$ Ø4 C25Ø：DF A5 EØ 69 Øø 85 EØ 4C Ø6 C258：1D C2 $2 \emptyset$ C3 Cø $2 \emptyset 14 \mathrm{Cl}$ CD C26Ø：AØ FF C8 C4 EA Bø ØF C4 98 C268：ED B $\emptyset 14$ Bl EE D1 EB $9 \emptyset$ D5 C27ø：ØE Fø EF 4C 9A C2 A5 ED 15 C278：C5 EA 9ø Ø3 4C 9A C2 AD DD C280：74 C3 DØ Ø3 CE 75 C3 CE 1E C288：74 C3 38 A5 E1 E9 Ø2 85 DA C290：E1 A5 E2 E9 øø 85 E2 4C 93 C298：5A C2 AD 73 C3 CD 75 C3 EC C2AØ：9Ø $12 \mathrm{~F} \emptyset$ Ø3 4C E2 C2 AD 62 C2A8： 72 C3 CD 74 C3 $9 \varnothing$ Ø5 Fø B4 C2Bø： 3 4C E2 C2 AØ ØØ B1 DF 9B C2B8： 48 C8 B1 DF 48 B1 E1 9127 C2C ：DF 88 Bl El 91 DF AØ Ø1 FA C2C8： 6891 El 886891 El EE E7 C2D $: 72$ C3 Dø Ø3 EE 73 C3 AD 45 C2D8：74 C3 Dø ØЗ CE 75 C3 CE 76 C2E0：74 C3 AD 73 C3 CD 75 C3 82
 C2Fの：72 C3 CD 74 C3 9Ø Ø5 FØ FC C2F8：Ø3 4C FF C2 4C 1D C2 AD 49 C3øø：7D C3 CD 75 C3 $9 \varnothing$ 10 FØ B9 C3ø8： 03 4C 43 C3 AD 7C C3 CD 7D C31ø：74 C3 9ø Ø3 4C 43 C3 EE EA C318：7A C3 DØ Ø3 EE 7B C3 AE B3 C32ø：7A C3 AD 7C C3 9D 8 10 C3 AC C328：AD 7D C3 9D AE C3 EE 7A 15 C330：С3 DØ ø3 EE 7B C3 E8 AD 87 C338：74 C3 9D 8Ø C3 AD 75 C3 2A C340：9D AE C3 AD 72 C3 8D 7C CF C348：C3 AD 73 C3 8D 7D C3 CD 7F C350：79 C3 9ø Ø3 4С 5A C3 4C 67 C358：A9 Cl Dø 08 AD 7C C3 CD 74 C36Ø：78 C3 9Ø F3 AD 7B C3 DØ 1A C368：Ø6 AD 7A C3 Dø Ø1 6Ø 4C 81 C370：69 C1 EA Øø Øの Øø øø Øø 7A

## Program 2：BASIC Demonstration

For instructions on entering this program， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂elsewhere in this issue．

DG $1 \emptyset$ IF $\mathrm{Z}=\emptyset$ THEN $\mathrm{Z}=1:$ LOAD＂OME GASORT＂， 8,1
QQ $2 \emptyset$ POKE 53281，1：PRINT＂$\{$ CLR \} \｛2 DOWN\}\{BLK\}"
MH $3 \varnothing \operatorname{DEFFNA}(X)=\operatorname{INT}(X * 1 \varnothing \varnothing+.5) /$ $1 \varnothing \varnothing$
MC 40 INPUT＂HOW MANY＂；N：DIMAS（ N），A\％（ $N$ ）
PA $5 \emptyset$ AS＝＂ABCDEFGHIJKLMNOPQRST UVWXYZ＂
QQ $6 \emptyset$ FORX＝ØTON：$A \$(X)=\operatorname{MIDS}(A \$$ ， RND（1）＊ $18+1$ ，RND（1）＊5＋3）： PRINTX，A\％（X），AS（X）
RJ $7 \emptyset$ NEXT
FK $8 \emptyset$ PRINT＂\｛DOWN\} \{RVS\}SORTING ＂：Tl＝TI
GD $9 \varnothing$ SYS $49152, \mathrm{~N}, \mathrm{~A} \$(\varnothing), \mathrm{A} \%(\varnothing)$
EG $1 \emptyset \emptyset \mathrm{~T} 2=\mathrm{TI}: T M=(\mathrm{T} 2-\mathrm{Tl}) / 60: \mathrm{PRI}$ NT＂\｛CLR \} \{DOWN \}"
HF $11 \varnothing$ FORX $=\emptyset T O N: \operatorname{PRINTX}, A \%(X)$ ， A\＄（A\％（X））
BG $12 \emptyset$ IFPEEK $(214)<21$ THEN17 9 BR 130 PRINT＂\｛DOWN\}HIT ANY KEY TO CONTINUE：$\{2$ SPACES $\}$ Fl TO END
BQ $14 \varnothing$ GETBS：IFBS＝＂＂THEN14 1
CH 150 IFB $\$="\{$ Fl $\}$＂THENX $=\mathrm{N}-18$
GH $16 \emptyset$ PRINT＂\｛CLR\} \{DOWN\}"
SQ 170 NEXT
FE 180 PRINT＂ 22 DOWN \} \{RVS $\}$＂FNA （TM）＂\｛OFF\} SECONDS"

# Atari Disk Sector Editor 

Marcelo Adapon

With this utility you can view and change the contents of any sector on a standard floppy disk. The program works with Atari DOS 2.0 and 2.5 and runs on any Atari 800XL, 65XE, or 130XE computer. (The program will not work on the older 400 or 800 models.) A disk drive and joystick are required. Recommended for intermediate and advanced programmers.

If you are interested in learning about Atari disk organization, or if you have ever needed to recover an accidentally deleted disk file, "Atari Disk Sector Editor" can be a very useful tool. It's a convenient, menudriven utility which allows you to display the contents of any disk sector on the screen and modify any byte or series of bytes within the sector. (A disk editor is a very powerful tool-if misused, it can easily scramble an entire disk, destroying its contents forever. To avoid losing important data, you should practice using this program on an unimportant disk until you are familiar with its use.)

Type in the program and save it to disk. Notice line 5: To edit an enhanced-density DOS 2.5 disk, you'll need to change the DENSI$T Y=0$ in that line to DENSITY $=1$. The program uses several of the less common screen editor sequences, so be sure to refer to the "Guide to Typing In Programs" article elsewhere in this issue if you see something in braces ( $\}$ ) that you don't understand. For example, the $\{5$ DEL LINE $\}$ in line 470 means to type the delete-line sequence, ESC-SHIFT-DELETE, five times.

When you run Disk Sector Editor, it spends a few moments in-
stalling machine language subroutines; then it displays the menu screen. This screen lists all the commands available in the program. The menu disappears when you display a disk sector. Use the joystick to move the cursor from one byte to another in the sector display. You can go back to the menu at any time by pressing the question mark key (?).

## Command List

Here is a complete list of the program's commands:
R. Reads the sector indicated by the number in the sector indicator and displays its contents on the screen.
W. Writes the current sector back to disk, including any changes you have made while editing the sector.
C. Changes to a new sector.
T. Activates text input mode. Text mode lets you change the contents of the byte under the cursor by typing a key. (Don't type too quick-ly-input is rather slow in this mode.) Exit this mode by pressing CTRL-CLR.
H. Activates hexadecimal input mode. As with text mode, this mode lets you change the contents of a byte. However, the new value is typed as a hexadecimal value. For instance, typing the characters AA changes the contents of the byte under the cursor to hexadecimal $\$ A A$. Exit hexadecimal mode by typing $Z Z$.
D. Activates decimal input mode. This mode works the same as text and hexadecimal mode, except that entries are in decimal. Exit by typing -1 .
L. Displays sector link information. This function shows the data con-
tained in the last three bytes of the current sector. These bytes show the number of active bytes in the sector, the file number, and the next sector in the chain of linked sectors. Note that if the last byte is zero, you have reached the final sector in the chain (the end of the file).
S. Shows the decimal value of the byte under the cursor.
A. Shows the character in ATASCII and internal format.
N. The Next command automatically reads the next sector in the file chain and increments the sector indicator to that sector number.

+ . Pressing the plus key $(+)$ causes the program to read the next sector in numerical order. If you execute this command from sector 720 (standard density) or 1010 (enhanced density), the program proceeds to sector 1 .
-. Pressing the minus key ( - ) causes the program to read the previous sector in numerical order. If you execute this command from sector 1, the program backs up to sector 720 (standard density) or 1010 (enhanced density).
?. The question mark key (?) returns you to the main menu, which lists all the program's commands.

Among other things, this program allows you to recover a file that was deleted accidentally. Before you try to recover an actual file, it's a good idea to practice this process with a dummy file on an unimportant disk. For instance, create a dummy file by saving a oneline BASIC program to disk; then delete the file to set up the conditions for recovering it. After you know that you can successfully recover the dummy file, you can proceed to restore important files.

## Directory Records

To begin the recovery process, read the directory sectors (361-368) to find out whether the filename of the deleted file still exists. It's important to understand the format of file records within the disk directory. Each record contains 16 bytes, whose significance is explained as follows.

## Byte 0: Status

The status byte records the file's status, which is one of four possible values:
$\$ 40=$ normal
$\$ 43=$ unclosed
$\$ 80=$ deleted
$\$ 20=$ locked
The status byte for a deleted file appears on the screen as the heart character.
Bytes 1-2: Length
These bytes show the length of the file in low-byte/high-byte format. To convert from low-byte/highbyte format to a decimal number, use the BASIC statement PRINT LO $+256^{*} \mathrm{HI}$, where LO equals the low-byte value and HI equals the high byte.
Bytes 3-4: Starting sector
This pair of bytes indicates the sector where the file begins. This value is also in low-byte/high-byte format.
Bytes 5-12: Filename
The first part of the filename (the eight characters before the period) is contained in these bytes.

## Bytes 13-15: Extension

These three bytes contain the threecharacter extension which appears after the period in a filename.

When you view a file record with this program, each record takes up two lines of the display. Each record starts on a line that ends with a zero ( 10,20 , and so on). To recover a deleted file, you need only change that file's status byte from $\$ 80$, meaning that it's deleted, to $\$ 40$, the normal file type. Once this is done, write the sector back to disk.

## File Recovery

The best time to recover a file is immediately after it has been deleted, before any other files have been created or updated. That way, you can be reasonably certain that no part of the deleted file has been
overwritten by another file. After recovering a file, you should exit the program and attempt to read the file normally, to make sure all of it is present. (Don't write to that file or any other file on the disk, however, or you may destroy your chances of recovering it.)

With the file intact, only one job remains. You have changed the file's status back to normal, but you must still update the disk's VTOC (Volume Table Of Contents) so that DOS knows the file's sectors are in use again. Copy the recovered file to a second disk; then insert the original disk and delete the file again from the DOS menu. Now copy the file back from the second disk to the original. DOS updates the VTOC and the file is restored completely.

Recovery is much more difficult in cases where the deleted file has no entry in the directory sectors or where part of it is missing after you've restored it to normal status. Since the directory holds no clue as to the file's length or location, you have to look through every sector on the disk to find the beginning of the file, then determine its length manually by chaining through all its sectors until you reach the final sector. Once that has been done, you have to construct a new file record in the directory and update the VTOC as well. It's possible to recover a file in this way, but only if none of it has been overwritten by other files. And this method depends on your ability to recognize the file's first sector amongst all the other sectors on the disk. Unless the file is absolutely irreplaceable, you may find it more time-efficient to recreate the file by using the program that created it in the first place.

## Atari Disk Sector Editor

For instructions on entering this program, please refer to "COMPUTE!'s Guide to Typing In Programs" elsewhere in this issue.

FE 5 DENSITY=ø: REM DENSITY=1 IF USING DOS 2.5 ENHAN CED DENSITY
MA $1 \emptyset$ IF $\operatorname{PEEK}(1536)<>173$ THE N GOSUB $115 \varnothing$
FF 2ø P2=PEEK (1פ6)-5:POKE $1 \emptyset$ 6, P2: GRAPHICS $\emptyset: S C 1=P E$ EK (88) : SC2=PEEK (89):SC RN=P2*256:DL=PEEK (56ø) +256*PEEK (561)
AF $3 \varnothing$ POKE 752, 1: SECTOR=1
CN 4 D DIM R $\$(1), B U F \$(128), C M$ $D \$(1): D R I V E=1: B U F \$=C H R$
\$( $\varnothing$ ): BUF\$(128)=BUF\$:BU $F \$(2)=B U F \$: A D D R=A D R(B U$ F\$)
JA $5 \emptyset$ DIM $H X \$(16), H X N \$(3), H X$ N1 $\$(2): H X \$=" \emptyset 123456789$ ABCDEF"
10 6ø DIM ML1\$(26), ML2\$(19): RESTORE 62
FI 62 FOR I=1 TO 26: READ BYT : ML $1 \$(I)=C H R \$(B Y T): N E X$ T I
FN 64 FOR I $=1$ TO 19: READ BYT : ML2\$(I) $=$ CHR $\$(B Y T):$ NEX T I
NP 66 DATA $104,1 \emptyset 4,133,1,1 \emptyset 4$ , 133, Ø, 162, $, 16 \emptyset, \emptyset, 169$ , $, 145, \varnothing, 2 \emptyset \varnothing, 2 \varnothing 8,249,2$ $3 \varnothing, 1,232,224,4,2 ø 8,242$ , 96
HD 68 DATA $72,138,72,162, \emptyset, 1$ 69, $5,157,192,158,232,2$ $24,4 \emptyset, 2 \emptyset 8,246,1 \emptyset 4,179$, 1 104,64
$F C 7 \emptyset \quad A=U S R(A D R(M L 1 \$), S C R N):$ $A=A D R(M L 2 \$):$ POKE $A+9$, I NT ( (SCRN+96ø) /256) : POK E $A+8, S C R N+96 \emptyset-P E E K(A+$ 9) * 256

JF 日ø POKE DL+1ø, 13ø: POKE 51 3, INT $(A / 256): \operatorname{POKE} 512$, A-PEEK (513) *256:POKE 5 4286, 192
FH $9 \emptyset$ ? "R - READ SECTOR " PD $1 \varnothing \emptyset$ ? "W - WRITE SECTOR"
MB11ø ? "C - CHANGE SECTOR READ/WRITE NUM"
HE $12 \varnothing$ ? "T - ENTER TEXT DAT $A^{\prime \prime}$
AJ $13 \emptyset$ ? "H - ENTER HEX DATA
BA $14 \varnothing$ ? "D - ENTER DECIMAL DATA"
EJ $15 \varnothing$ ? "L - PRINT SECTOR L INK INFO"
EH $16 \varnothing$ ? "S - SHOW DECIMAL $V$ ALUE"
JM $17 \varnothing$ ? "A - CHARACTER REPR ESENTATIONS"
KA $18 \emptyset$ ? "N - NEXT SECTOR IN CHAIN"
JK 190 ? " + - DISPLAY NEXT $S$ ECTOR"
NC $2 \emptyset \varnothing$ ? " - DISPLAY PREVIO US SECTOR"
6L 210 ? "? - HELP SCREEN"
CK 220 ? " USE JOYSTICK TO M QVE CURSQR "
NH 230 ? " PRESS A KEY TO CO NTINUE "
MN 24 D OPEN \# $1,4, \varnothing$, "K: "
IE 25 GET \#1, B:IF FL<>1 THE N GOSUB Gøø
FD 26 . $\mathrm{FL}=1$ : GOSUB 65ø: POKE 7 54, 1: POKE 694, $:$ POKE 7ø2,64
LB 27 Ø IF PEEK $(754)<>1$ THEN $45 \varnothing$
KE 28日 $\mathrm{D}=\mathrm{PEEK}(632)$ : IF $\mathrm{D}=15 \mathrm{~T}$ HEN $27 \varnothing$
DH $29 \varnothing$ POKE LOC, PEEK (LOC) - 12 8: POKE LOC+1, PEEK (LOC +1) -128
BA $3 \emptyset \varnothing$ POSITION 28, Y+1:? " "
JA $31 \emptyset$ POKE TEMP, PEEK (TEMP) 128: POKE TEMP + 1, PEEK ( TEMP + 1) - 128
BH $32 \varnothing$ POSITION $6+x * 3, \varnothing: ? x$ : POSITION $29+x, \varnothing: ? x$
$6 C 330$ IF $D=1 \emptyset$ OR $D=14$ OR $D=$ 6 THEN $Y=Y-1$
DH 349 IF $D=9$ OR $D=13$ OR $D=5$ THEN $Y=Y+1$
$6 C 35$ IF IF $D=1 \varnothing$ OR $D=11$ OR $D=$ 9 THEN $X=X-1$
AH 360 IF $D=6$ OR $D=7$ OR $D=5$ THEN $\quad x=x+1$
OK $37 \emptyset$ IF $x>7$ THEN $X=\emptyset$
OJ $38 \emptyset$ IF $X<\emptyset$ THEN $X=7$
BN 390 IF $Y>15$ THEN $Y=\varnothing$
BD $4 \varnothing \varnothing$ IF $Y<\varnothing$ THEN $Y=15$
CP $41 \emptyset \quad L O C=S C R N+45+4 \emptyset * Y+X * 3:$ POKE LOC，PEEK（LOC）+12 8：POKE LOC＋1，PEEK（LOC ＋1）＋128：POSITION 28，Y $+1: ? ~ "\{E S C\}\{R I G H T\} "$
 E TEMP，PEEK（TEMP）+128 ：POKE TEMP＋1，PEEK（TEM $P+1)+128$
EP $43 \emptyset$ POSITION 6＋X＊3，$\emptyset: ~ C H$ R\＄（176＋X）：POSITION 29 $+X, \varnothing$ ：$?$ CHR\＄$(176+x)$
6K 44ø GOTO 27ø
CC 45ø GET \＃1，B：R\＄＝CHR\＄（B）：$P$ OKE 754，1
LE 46ø IF R\＄＝＂？＂THEN GOSUB 660：GOTO 25ø
IK $47 \varnothing$ IF $R \$=" R "$ THEN CMD $\$="$ R＂：GOSUB 127ø：GOSUB 6 Øø：POSITION $\varnothing, 18: ? "$ \｛5 DEL LINE\}":GQTO 27 $\emptyset$
JF 48ø IF R\＄＝＂W＂THEN CMD\＄＝＂ W＂：GOSUB $127 \emptyset:$ GOSUB 6 øø：POSITION $\emptyset, 18: ?$ \｛5 DEL LINE\}": GOTO 27 Ø

DC 49ø IF R\＄＝＂C＂THEN 67ø
DC 5øø IF R\＄＝＂H＂THEN 88ø
CL $51 \emptyset$ IF R\＄＝＂D＂THEN 84ø
6852ø IF R\＄＝＂T＂THEN 1 Øøø
DE 53ø IF R\＄＝＂L＂THEN $74 \varnothing$
BI 54ø IF R\＄＝＂＋＂THEN 69ø
BE 55ø IF R\＄＝＂－＂THEN $71 \emptyset$
DN 560 IF R\＄＝＂S＂THEN 73ø
DA57ø IF R\＄＝＂A＂THEN 77Ø
DK 58ø IF R\＄＝＂N＂THEN 820
HA 59ø GOTO 27ø
MP 6øø GOSUB 65ø：$X=\varnothing: Y=\emptyset:$ LOC $=S C R N+45$
MO 61ø POSITION $\emptyset, \emptyset: ? ~ " L I N E ~$ $\begin{array}{lllllll}\text { 区 } & 1 & 2 & 3 & 4 & 5 & 6\end{array}$ 7 ［E1234567＂：A＝USR（15 36，ADDR）
ON 620 ？：？＂SECTOR \＃TO BE WRITTEN／READ：＂；SECTOR ；
HM 63Ø TEMP＝LOC－3：POKE TEMP， PEEK（TEMP）＋ 128 ：POKE $T$ $E M P+1, \operatorname{PEEK}($ TEMP＋ 1$)+12$ 8
LJ 640 POKE LOC，PEEK（LOC）+12 8：POKE LOC＋1，PEEK（LOC ＋1）＋128：POSITION 28， 1 ：？＂\｛ESC\}\{RIGHT\}": RET URN
PD 65 Ø POKE DL＋4，$\varnothing$ ：POKE DL +5 ，P2：POKE 88，Ø：POKE 89 ，P2：RETURN
K0 66Ø POKE DL＋4，SC $1:$ POKE DL ＋5，SC2：POKE 88，SC1：PO KE 89，SC2：RETURN
IK $67 \emptyset$ POSITION $\varnothing, 18$ ：？ \｛5 DEL LINE\}SECTOR NU MBER＂；：TRAP 670：INPUT SECTOR：POSITION 3Ø， 1 7：？SECTOR；＂
DN $68 \emptyset$ POSITION $\emptyset, 18: ?$
\｛DEL LINE\}":GOTO 27 Ø
NO 69ø SECTOR＝SECTOR＋1：IF SE CTOR＞1ø1ø THEN SECTOR ＝ 1
KD 691 IF DENSITY＝ø AND SECT
$\square R>72 \emptyset$ THEN SECTOR＝1
007 Øø R $=$＝＂R＂：GOTO 47ø
NH $71 \emptyset$ SECTOR＝SECTOR－1：IF SE CTOR＜1 THEN SECTOR＝1 $\emptyset$ $1 \varnothing$
AE 711 IF DENSITY＝ø AND SECT QR $>72$ THEN SECTOR＝72 Ø
PA $720 \mathrm{R} \$=" \mathrm{R} ":$ GOTO $47 \emptyset$
AF $73 \varnothing$ POSITION $\varnothing, 18: ?$ \｛5 DEL LINE\}THE DECIM AL VALUE OF BYTE \＃＂； ＊ $8+X$ ：？＂IS EQUAL TO＂ ；PEEK（ADDR＋ 8 ＊$Y+X$ ）：GOT －28ø
AK $74 \emptyset \mathrm{FN}=\mathrm{INT}($ PEEK（ADDR＋125） ／4）：NSEC＝PEEK（ADDR＋12 6）＋256＊（PEEK（ADDR＋125 ）-FN ＊4）
EJ 750 POSITION $\varnothing, 18: ?$
〔5 DEL LINE\}DOS FILE NUMBER＂；FN：？＂NEXT S ECTOR IN THIS FILE IS ＂；NSEC：AC＝PEEK（ADDR＋ 127）
FJ 76ø ？＂THERE ARE＂；AC；＂A CTIVE BYTES＂：？＂IN TH IS SECTOR＂：GOTO $27 \emptyset$
OC $77 \emptyset$ POSITION ø，18：？＂〔5 DEL LINE\}ASCII \｛1ø SPACES\} INTERNAL": ？＂GRAPHIC ASC
\｛4 SPACES\}GRAPHIC INT
EO $78 \emptyset \quad V=\operatorname{PEEK}(Y * 8+X+A D D R)$ ：IF $V=155$ THEN $V=27$
AK $79 \emptyset$ POSITION $1 \emptyset, 18:$ CHR （27）；CHR $\$(V):$ POKE SCR $N+75 \emptyset, V$
EM 8øø $V=V$－INT $(V / 64) * 64+64: P$ OSITION 15，19：？CHR\＄（ 27）；CHR $\ddagger(V):$ POKE SCRN ＋79の，V＋64－（V＋64＞128）＊ 128
6L81ø GOTO $27 \emptyset$
$6182 \emptyset \mathrm{FN}=\mathrm{INT}$（PEEK（ADDR＋125） ／4）：NSEC＝PEEK（ADDR＋12 6）+256 ＊（PEEK（ADDR＋ 125 ）- FN＊4）：IF NSEC＝$\varnothing$ THE N GOTO 260
6H 83ø SECTOR＝NSEC：CMD\＄＝＂R＂： R\＄＝＂R＂：GOTO 47ø
LM 84の POSITION $\emptyset, 18: ?$
\｛5 DEL LINE\}TYPE IN D ECIMAL NUMBER THEN RE TURN＂：？＂TYPE－ 1 TO E ND DECIMAL ENTRY MODE

EP 85ø POSITION 2，2の：？＂
\｛DEL LINE\}NUMBER TO R EPLACE＂；PEEK（ADDR＋Y＊ 8＋X）；＂：＂；：TRAP 85ø：I NPUT V：TRAP $4 \emptyset \emptyset \emptyset \emptyset$
FL 86Ø IF $V=-1$ THEN POSITION の，18：？＂\｛5 DEL LINE\} ＂：GOTO 26ø
P6 87ø GOSUB 1ø6ø：GOTO 85ø
山 88ø POSITION ஏ，18：？＂ \｛5 DEL LINE\} TYPE IN H EXADECIMAL NUMBERS AN D RETURN＂；
MH 89ø ？＂TYPE IN ZZ TO END HEX ENTRY MODE＂
$609 \varnothing \emptyset \quad V=P E E K(A D D R+Y * 8+X): H X$ ＝V：GOSUB 126ø：POSITIO N $\varnothing, 2 \varnothing:$ ？＂〔DEL LINE\}H EX NUMBER TO REPLACE \＄＂；HXN\＄；＂：？＂：INPUT H XN ${ }^{\text {\＄}}$
BG $91 \varnothing$ TRAP $9 \varnothing \emptyset: H X N 1 \$=" \emptyset \emptyset ": H$ XN1\＄（3－LEN（HXN\＄），2）$=\mathrm{H}$ XN\＄：HXN\＄＝HXN1\＄：TRAP 4

Øøøø
KO 92ø IF HXN\＄＝＂ZZ＂THEN POS ITION ø，18：？ \｛5 DEL LINE\}": GOTO 26 Ø
DD $930 H=\operatorname{ASC}(H X N \$(1,1)):$ IF（ $\mathrm{H}<48$ QR $\mathrm{H}>57$ ）AND（ $\mathrm{H}<$ 65 QR $H>7 \emptyset$ ）THEN ？＂ \｛BELL\}":GOTO 9øø
EK 94 L $\mathrm{L}=\mathrm{ASC}(\mathrm{HXN}(2,2)$ ）：IF（ $L<48$ OR $L>57$ ）AND（ $L<$ 65 OR L＞7ø）THEN ？＂〔BELL\}": GOTO 9øø
ME 950 IF $H<65$ THEN $H=H-48: G$ OTO 97ロ
$A D 960 \quad \mathrm{H}=\mathrm{H}-55$
NE 97ø IF Lく65 THEN L＝L－48：G OTO 99．
AN $980 \mathrm{~L}=\mathrm{L}-55$
BC99ø V＝H＊16＋L：GOSUB 1ø6ø：G ロTO 9 Øø
HB 1øøø POSITION $\varnothing, 18: ?$ \｛5 DEL LINE\}ASCII CH ARACTER ENTRY MODE＂
IC 1ø1ø POSITION 2，19：？＂PRE SS GEDTE－ EXT ENTRY MODE＂
DH $1 \varnothing 2 \varnothing \quad V=P E E K(A D D R+Y * 8+X): P$ OSITION Ø，2ø：？
\｛DEL LINE\} CHARACTER TO REPLACE＂；：IF $V=1$ 55 THEN ？＂EJERDEL＂：G OTO 1ø2ø
＊B1ø3Ø ？CHR\＄（27）；CHR\＄（V）
LC $1 \emptyset 4 \emptyset$ GET \＃1，V：IF $V=158$ TH EN POSITION $\emptyset, 18: ? "$ \｛5 DEL LINE\}": GOTO 2 60
ED 1 Ø5 $\quad$ GOSUB 1ø6Ø：GOTO $1 \varnothing 2 \emptyset$
PG 1 Ø6 6 POSITION X＊3＋5，Y＋1：H $X=V$ ：GOSUB 126ø：？HXN \＄：POSITION $X+29, Y+1$ ： ？CHR\＄（27）；：IF $V=155$ THEN ？CHR\＄（27）：GOT －1ø8ø
YP 1 Ø7 $? ~ C H R \$(V)$
EL 1 ø8ø POSITION 6＋ $\mathrm{x} * 3$ ， ，： x ：POSITION $29+x$ ，$\varnothing$ ：$x$
PP 1 Ø9ø POKE ADDR $+Y * 8+X, V$
HH $11 \emptyset \emptyset \quad X=X+1$ ：IF $X>7$ THEN $X=$ Ø：POSITION 28，Y＋1：？ ＂＂；：Y＝Y＋1：IF $Y>15 \mathrm{~T}$ HEN $Y=\emptyset$
LP $111 \emptyset$ POKE TEMP，PEEK（TEMP） －128：POKE TEMP＋1，PEE $K($ TEMP＋ 1$)-128$
EC $112 \emptyset$ TEMP＝SCRN＋42＋4ø＊Y：PO KE TEMP，PEEK（TEMP）+1 28：POKE TEMP＋1，PEEK（ TEMP＋1）＋ 128
FP $113 \emptyset \quad L O C=S C R N+45+4 \emptyset * Y+X * 3$ ：POKE LOC，PEEK（LOC）＋ 128：POKE LOC＋1，PEEK（ LOC＋1）＋128：POSITION 28， $\mathrm{Y}+1$ ：？＂\｛ESC\} \｛RIGHT\}"
॥114ø POSITION 6＋X＊3，Ø：？C HR\＄（176＋X）：POSITION $29+\mathrm{X}$, Ø：？CHR\＄$(176+\mathrm{X})$ ：RETURN
DK $115 \emptyset$ RESTORE $116 \emptyset: F O R \quad A=\emptyset$ TO 2ø7：READ B：POKE $A+1536$ ，B：NEXT A：RETU RN
AJ $116 \emptyset$ DATA $173,6,228,141,1$ $89,6,238,189,6,173,7$ ，228，141，19ø，6，169，ø ，141，253，6，141，254
DB $117 \emptyset$ DATA $6,141,255,6,165$ ，10，141，2ø8，6，165， 11
，141，2の9，6，1ø4，194，1
$33,11,194,133,19,174$

```
JN 1180 DATA 253,6,172, 254,0
 ,224,\emptyset,2\emptyset8,15,14\emptyset,25
 5,6,152,32,148,6,169
 ,58,32,188,6,172
KE 119ø DATA 254,6,177,10,32
 , 148,6, 169,32,32,188
 , 6, 238, 254, 6, 238, 253
 ,6,173,253, 6, 2ø1
M6 12ø\emptyset DATA 8,2ø8, 2ø8, 169,\emptyset
 , 141, 253,6,169,27,32
 ,188,6,172,255, 6,177
 ,1ø,2\emptyset1,155,2ø8,2
DH 121\emptyset DATA 169,27,32,188,6
 , 238, 255, 6, 238, 253,6
 ,173,255,6,201,128,2
 4\emptyset,49,173,253,6,2\emptyset1
60122\emptyset DATA 8,2ø8,217,169,\emptyset
 ,141,253,6,169, 155,3
 2,188,6,76,43,6,141,
 21\emptyset,6,41,24\emptyset,74
HM123\emptyset DATA 74,74,74,170,18
 9,192,6,32,188,6,173
 , 210,6,41,15,170,189
 ,192,6,32,188,6
KA 124\emptyset DATA 96,173,2\emptyset8,6,13
 3,1\emptyset,173,2ø9,6,133,1
 1,96,32,176, 242, 96,4
 8,49,5\emptyset,51,52,53
KA 125\emptyset DATA 54,55,56,57,65,
 66,67,68,69,7\emptyset
CB 126g H=INT (HX/16):L=HX-H*
 16+1:H=H+1:HXN$(1)=H
 X$(H,H):HXN$(2, 2)=HX
 $(L,L):RETURN
E1 127\emptyset POSITION Ø, 18:?
 {5 DEL LINE}";:POKE
 54286,64:TRAP 133\emptyset
|! 128\emptyset DIM SIOCALL$(16)
6 129\emptyset RESTORE 132\emptyset
JA 13Ø\emptyset FOR CNT=1 TO 14:READ
 BYTE
EH131\emptyset SIOCALL$(CNT)=CHR$(B
 YTE):NEXT CNT
M132\emptyset DATA 104,32,89,228,1
 73,3,3,133,212,169,\emptyset
 ,133,213,96
PC 133\emptyset TRAP 4ø\emptyset\emptyset\emptyset
NE 134\emptyset IF SECTOR<1 OR SECTO
 R>(720+DENSITY*29\emptyset)
 THEN POSITION Ø, 18:?
 "{2 BELL}SECTOR NUM
 BER ERROR":POKE 5428
 6,192:RETURN
66 135\emptyset POKE 768,ASC("1")
EF 136\emptyset POKE 769,DRIVE
OE 137\emptyset POKE 77\emptyset,ASC(CMD$)
6B 138\emptyset POKE 771,128
LK139\emptyset IF CMD$="R" THEN POK
 E 771,64
QE 14\emptyset\emptyset POKE 773, INT(ADDR/25
 6)
OH 141\emptyset POKE 772,ADDR-256*PE
 EK(773)
PH 142\emptyset POKE 774,3
PG 143\emptyset POKE 775,0
MN 1440 POKE 776,128:POKE 77
 7,\emptyset
LS 145\emptyset IF DENSITY=2 THEN PO
 KE 776,\emptyset:POKE 777,1
KF 146\emptyset POKE 779, INT (SECTOR/
 256)
YC 1470 POKE 778,SECTOR-256*
 PEEK(779)
HH148\emptyset SIOSTATUS=USR(ADR (SI
 OCALL$))
00 149\emptyset IF SIOSTATUS<>1 THEN
 POSITION Ø,18:? "ER
 ROR ";SIOSTATUS;" DU
 RING LAST READ/WRITE
OA 15\emptyset\emptyset POKE 54286,192:RETUR
 N

\title{
Mirrors \\ For IBM PC/PCjr
}

\author{
Paul W. Carlson
}

Here's a program that really shows off the graphics capabilities of the PC and PCjr. "Mirrors" produces an ever-changing, lightning-fast kaleidoscopic display in medium resolution. The program requires a color monitor and, for the IBM PC, a color/ graphics adapter card.

This graphics program creates entrancing, constantly changing designs on the medium-resolution screen. Type in the program and save a copy, then place a disk in the drive and run it. This BASIC program creates an executable machine language program named MIRRORS.COM. (Once you have created MIRRORS.COM, you won't need the BASIC program again.) To use the program, type SYSTEM and press Enter to exit BASIC and enter DOS. At a DOS prompt, type MIRRORS and press Enter. The program clears the screen and begins to create its display. The screen is divided into four quadrants. Inside each quadrant, a graceful series of lines moves in a changing pattern. Since each quadrant mirrors the others, the result is pleasingly symmetrical. Press the Q key to terminate the program and return to DOS.

\section*{How It Works}

The program begins by plotting 20 lines in each quadrant. Then, in
each quadrant, the oldest line is erased and a new line is plotted. The direction in which the lines move is controlled by an \(x\) and a \(y\) increment for each end of the lines. When the program detects that the end of a line is about to leave the top or the bottom of its quadrant, it randomly picks a new \(y\) increment for that end of the lines. The new increment will be opposite in sign to the old one, to send the lines back toward the center of the quadrant. The \(x\) increment changes in the same manner when the end of a line is about to go beyond the side of a quadrant.

The program achieves its speed by avoiding BIOS routines and writing directly to video RAM. Since almost every operation in the program has to be performed four times (once for each quadrant), the macro capabilities of the IBM Macro Assembler were used to generate in-line code rather than using subroutine calls. This increased the size of the program, but resulted in a dramatic speed increase.

\section*{MIRRORS.COM Filemaker}

For instructions on entering this program please refer to "COMPUTEI's Guide to Typing In Programs" elsewhere in this issue.

\footnotetext{
E1 1曰 T=ø: OPEN "MIRRORS.COM" FOR OUTPUT AS 1
LJ 20 FOR \(J=1\) TO 48: READ \(A \$: N=V A\) L ("\&H"+A\$)
LN \(3 \varnothing T=T+N:\) PRINT\#1, CHR \(\$(N) ;\) NEX
}

T
IN \(4 \emptyset\) FOR \(J=1\) TO．1øø：PRINT\＃1，CHR \＄（ \(\varnothing\) ）；CHR\＄（1）；：NEXT
QP 5ø FOR \(J=1\) TO 1121：READ A\＄：\(N=\) VAL（＂\＆H＂＋A\＄）
FD 6ø T＝T＋N：PRINT\＃1，CHR\＄（N）；：NEX T：CLOSE 1
BA \(7 \emptyset\) IF \(T=89299\) ！THEN PRINT＂MIR RORS．COM SUCCESSFULLY CREA TED！＂：END
LP 8Ø PRINT CHR\＄（7）；＂＊＊＊＊＊ERROR IN DATA STATEMENTS＊＊＊＊＊＂ ：END
HK \(9 \emptyset\) DATA E9， \(1 \varnothing, \emptyset 1,3 F, \emptyset \emptyset, 3 F, 4 \varnothing\) ， 3F， \(8 \emptyset, 3 F\)
JB 1 Øø DATA CØ，CF，Øø，CF，1ø，CF，2Ø ，CF，3ø，F3
\(0111 \emptyset\) DATA \(\boxed{1}, F 3, \emptyset 4, F 3, \varnothing 8, F 3, \emptyset C\) ，FC，Øø，FC
NL \(12 \emptyset\) DATA \(\varnothing 1, F C, \emptyset 2, F C, \emptyset 3, \varnothing \varnothing, \emptyset \varnothing\) ，Øø，Øø，øø
\(6 B 13 \emptyset\) DATA \(\varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing ~\) ，øø，Øø，Ø2
6B \(14 \emptyset\) DATA \(\varnothing \varnothing, \emptyset 2, \emptyset \varnothing, \emptyset 2, \emptyset \emptyset, \emptyset 2, \emptyset \emptyset ~\) ，ØЗ，øø，\(\boxed{~}\)
AE \(15 \emptyset\) DATA Øø，1E，Øø，ØF，Øø，Øø，Øø ，Øø，Øø，Øø
JJ \(16 \emptyset\) DATA Øø，Øø，øø，øø，Øø，B8，øø ，B8，8E，Cø
JI \(17 \emptyset\) DATA FB，B8，\(\varnothing 5, \emptyset \emptyset, C D, 1 \varnothing, B 8\) ，Øø，Ø6，33
DJ \(18 \emptyset\) DATA C9，BA \(, 4 \mathrm{~F}, 18,32, F F, C D\) ，16，C7， 66
IH \(19 \emptyset\) DATA 11，ø2，ø1，øø，C7，ø6，Ø9 ，ø2，øø，øø
HA 2øØ DATA C7，ø6，ØB，Ø2，øø，øø，C7 ，Ø6，øD，Ø2
KD \(21 \varnothing\) DATA \(3 F, \emptyset 1, C 7, \emptyset 6, \emptyset F, \emptyset 2, \emptyset \emptyset\) ，Øø，E8，ØF
CF \(22 \emptyset\) DATA \(\emptyset 3, C 7, \emptyset 6, \emptyset 9, \emptyset 2,3 F, \emptyset 1\) ，C7，ø6，ØB
PG \(23 \varnothing\) DATA Ø2，øø，øø，C7，Ø6，ØD，ø2 ，3F，Ø1，C7
QN 24ø DATA Ø6，øF，ø2，C7，øø，E8，F4 ，ø2，С7，ø6
PH 25 DATA Ø9，ø2，ЗF，Ø1，C7，Ø6，ØB ，Ø2，С7，øø
OE \(26 \emptyset\) DATA C7，Ø6，øD，ø2，øø，øø，C7 ，Ø6，ØF，ø2
AE \(27 \emptyset\) DATA C7，Øø，E8，D9，Ø2，C7，Ø6 ，ø9，ø2，øø
QN \(28 \emptyset\) DATA øø，C7，Ø6，øB，ø2，C7，øø ，C7， 66, ØD
66 29ø DATA Ø2，øø，øø，C7，Ø6，ØF，ø2 ，Øø，øø，ЕВ
IL Зøø DATA BE，Ø2，BE，Ø1，øø，C7，ø6 ，Ø9，ø2，Аø
B6 \(31 \emptyset\) DATA \(\varnothing \varnothing, C 7, \emptyset 6, \emptyset D, \emptyset 2\), ЗE，ø1 ，89，36， 0 B
PO 329 DATA \(\varnothing 2,89,36\), ØF，Ø2，E8，A4 ，ø2，46，83
LD \(33 \emptyset\) DATA FE，64，75，EF，C7，ø6， 99 ，ø2，Ø1，øø
II 34ø DATA C7，Ø6，øD，ø2，9F，øø， 89 ，36，øВ，\(\varnothing 2\)
OA 35 DATA 89,36, ØF，Ø2，E8，87，\(\varnothing 2 ~\) ，46，81，FE
LI \(36 \emptyset\) DATA C7，\(\emptyset \emptyset, 75, E E, B F, \emptyset 2, \emptyset \varnothing\) ，BE，øø，Øø
CN \(37 \emptyset\) DATA 8B，85， \(31, \emptyset 1,8 B, 9 \mathrm{D}, 95\) ， \(11, A 3, \emptyset 9\)
H0 38ø DATA ø2，89，1E，øD，ø2，8B， 85 ，63，Ø1，8B
A6 \(39 \emptyset\) DATA 9D，C7， \(1, A 3, \varnothing B, ~ Ø 2,89\) ，1E，ØF，ஏ2
NK 4øø DATA C7，Ø6，11，ø2，øø，øø，E8 ，53， \(02, A 1\)
6C \(41 \emptyset\) DATA \(\varnothing 1, \emptyset 2,8 B, 1 E, \emptyset 5, \emptyset 2, A 3\) ， \(99,02,89\)
QL \(42 \emptyset\) DATA \(1 E, \emptyset D, \emptyset 2, A 1, \emptyset 3, \emptyset 2,8 B\) ，1E，\(\boxed{1, ~} 72\)
A6 \(43 \emptyset\) DATA \(A 3, \emptyset B, \emptyset 2,89,1 E, \emptyset F, \emptyset 2\)

KE \(44 \emptyset\) DATA \(\varnothing 2, \emptyset 1, \emptyset \varnothing, E 8,2 E, \emptyset 2\) ，B日 ， 3 F, ø1，\(_{1,8 B}\)
CK \(45 \emptyset\) DATA D8，2B，85，95， \(91,2 B, 9 D\) ， 31, D1 \(^{2}\) ，A3
JA \(46 \emptyset\) DATA \(\varnothing 9, \emptyset 2,89,1 E, \emptyset D, \emptyset 2,8 B\) ，85，C7， 01
JA \(47 \emptyset\) DATA \(8 B, 9 D, 63, \emptyset 1, A 3, \emptyset B, \emptyset 2\) ，89，1E， ØF \(^{\text {B }}\)
ID \(48 \emptyset\) DATA \(\varnothing 2, C 7, \emptyset 6,11, \emptyset 2, \emptyset 1, \emptyset \emptyset\) ，E8，ø2，ø2
KH \(49 \emptyset\) DATA B8， \(3 F, \emptyset 1,8 B, D 8,2 B, \emptyset 6\) ，ø5，ø2，2B
6C 5øø DATA 1E，ø1，ø2，AЗ，ø9，ø2， 89 ，1E，\(\varnothing D, \varnothing 2\)
AA \(51 \emptyset\) DATA \(A 1, \emptyset 7, \emptyset 2,8 B, 1 E, \emptyset 3, \emptyset 2\) ，\(A 3\), ，\(B, \varnothing 2\)
PD \(52 \emptyset\) DATA \(89,1 E, \emptyset F, \emptyset 2, C 7, \emptyset 6,11\) ，Ø2，øø，øø
Q 53. DATA E8，D7，Ø1，BB，ЗF，Ø1， \(8 B\) ，DB，2B， 85
NB \(54 \emptyset\) DATA \(95, \emptyset 1,2 B, 9 \mathrm{D}, 31, \emptyset 1\), A3 ， \(99, \boxed{ø 2,89}\)
HH \(55 \emptyset\) DATA \(1 E, \emptyset D, \emptyset 2, B 8, C 7, \emptyset \emptyset, 8 B\) ，DB，2B， 85
OP \(56 \emptyset\) DATA C7，Ø1，2B，9D，63， \(61, ~ A 3 ~\) ，øВ，ø2，89
JN \(57 \emptyset\) DATA \(1 E, \emptyset F, \emptyset 2, C 7, \emptyset 6,11, \emptyset 2\) ，øø，øø，ЕВ
JP \(58 \emptyset\) DATA AG，Ø1，B8，3F，Ø1，8B，DB ，2B，ø6， 05
NC \(59 \emptyset\) DATA \(\varnothing 2,2 B, 1 E, \emptyset 1, \emptyset 2, A 3, \emptyset 9\) ，\(\boxed{62}, 89,1 \mathrm{E}\)
내 \(6 \emptyset \emptyset\) DATA ØD，Ø2，B8，C7，Øø，8B，DB ，2B，Ø6，ø7
PA \(61 \emptyset\) DATA \(\varnothing 2,2 B, 1 E, \emptyset 3, \emptyset 2, A 3, \emptyset B\) ，\(\varnothing 2,89,1 \mathrm{E}\)
\(6662 \emptyset\) DATA \(\varnothing \mathrm{F}, \varnothing 2, \mathrm{C} 7, \emptyset 6,11, \emptyset 2, \varnothing 1\) ，Øロ，E8， 75
6P \(63 \emptyset\) DATA \(\emptyset 1,8 B, 85,31,61,8 B, 9 D\) ，95， \(01, A 3\)
FM 64Ø DATA ø9，ø2，89，1E，øD，ø2，B8 ，C7，Øø，8B
HL 65ø DATA D8，2B，85，63，Ø1，2B，9D ，C7， 1, A3 \(^{2}\)
DA \(66 \emptyset\) DATA ØB，Ø2，89，1E，ØF，Ø2， 17 ， \(66,11, \emptyset 2\)
AF \(67 \emptyset\) DATA \(\varnothing 1, \emptyset \emptyset, E 8,49, \emptyset 1, A 1, \emptyset 1\) ，ø2，8B，1E
6 L 68 DATA \(\boxed{6}, \emptyset 2, A 3, \emptyset 9, \emptyset 2,89,1 \mathrm{E}\) ，\(\square \mathrm{D}, \emptyset 2, \mathrm{BB}\)
Q \(69 \emptyset\) DATA C7，Øø，8B，D8，2B，ø6，Ø了 ， \(02,2 \mathrm{~B}, 1 \mathrm{E}\)
FF \(7 \emptyset \emptyset\) DATA \(\emptyset 7, \emptyset 2, A 3, \emptyset B, \emptyset 2,89,1 E\) ，ØF，Ø2，C7
\(\mathrm{KL} 71 \emptyset\) DATA \(\varnothing 6,11, \emptyset 2, \varnothing \varnothing, \varnothing \varnothing, E 8,1 E\) ，Ø1，A1，Ø1
KC 72 DATA \(\varnothing 2,89,84,31, \emptyset 1, A 1, ø 3\) ，Ø2，89，84
LE \(73 \emptyset\) DATA \(63, \emptyset 1, A 1, \emptyset 5, \emptyset 2,89,84\) ，95， \(01, A 1\)
DI \(74 \emptyset\) DATA \(97,62,89,84, C 7, \emptyset 1,83\) ，C7， 62,83
 ，83，C6， 62
CL \(76 \emptyset\) DATA 83，FE，28，75， \(93, ~ B E, ~ ø ø ~\) ，Øø，A1，Ø1
K1 77 DATA ø2，ø3，ø6，F9，Ø1，3D，ø1 ，Øø，72，Ø5
MH 78ø DATA 3D，Aø，øø，72，15，E8，AЗ ， \(11,25, \emptyset 3\)
OA \(79 \varnothing\) DATA \(\varnothing \emptyset, \emptyset 5, \emptyset 2, \emptyset \emptyset, 83, \emptyset 6, F 9\) ，Ø1，Øø，78
NB 8øØ DATA Ø2，F7，D8，A3，F9，Ø1，A1 ，\(\varnothing 3, \boxed{6, ~} 03\)
KL \(81 \emptyset\) DATA ø6，FB，Ø1，3D，Ø1，øø， 72 ，Ø5，3D， 64
JK \(82 \emptyset\) DATA øø，72，15，E8，7D，ø1， 25 ，ø3，øø，ø5
FA \(83 \emptyset\) DATA \(\emptyset 2, \emptyset \emptyset, 83, \emptyset 6, F B, \emptyset 1, \emptyset \emptyset\) ，78， \(62, F 7\)
IH \(84 \emptyset\) DATA DB，AЗ，FB，\(\varnothing 1, A 1, \emptyset 5, \emptyset 2\) ，\(\boxed{63, ø 6, F D}\)

ML 85ø DATA \(\varnothing 1,3 D, \emptyset 1, \emptyset \varnothing, 72, \emptyset 5,3 D\) ，Aø，øø， 72
 ，ø5，ø2，øø
KL 87ø DATA 83，Ø6，FD，Ø1，øø，78，Ø2 ，F7，D8，A3
나 \(88 \emptyset\) DATA FD，Ø1，A1，Ø7，Ø2，ø3，øc ，FF，\(\varnothing 1,3 D\)
61 89ø DATA ø1，øø，72，ø5，3D，64，øø ，72，15，E8
CI 9øø DATA \(31, \emptyset 1,25, \emptyset 3, \emptyset \emptyset, \emptyset 5, \emptyset 2\) ，øø，83， 66
MP 91ø DATA FF，Ø1，øø，78，ø2，F7，D8 ，\(A 3, F F, \varnothing 1\)
NB \(92 \emptyset\) DATA A1，Ø1，ø2，ø3，ø6，F9，ø1 ，\(A 3,{ }^{\circ} 1, \varnothing 2\)
CP \(93 \emptyset\) DATA A1，Ø3，ø2，ø3，ø6，FB，ø1 ，A3，\(\boxed{, 1, ø 2}\)
LH \(94 \emptyset\) DATA \(A 1, \emptyset 5, \emptyset 2, \emptyset 3, \emptyset 6, F D, \emptyset 1\) ，AЗ，Ø5，ø2
FP \(95 \emptyset\) DATA \(A 1, \emptyset 7, \emptyset 2, \emptyset 3, \emptyset 6, F F, \emptyset 1\) ，\(A 3, \emptyset 7, \varnothing 2\)
KF \(96 \emptyset\) DATA B4，Ø6，B2，FF，CD，21，3C ，71，74， 07
LE \(97 \emptyset\) DATA \(3 C, 51,74,93, E 9, A 1, F D\) ，32，FF，B8
HL 98ø DATA øø，Ø6，33，C9，BA，4F， 18 ，CD，1ø，B8
IK 99ø DATA \(9 \varnothing, \boxed{62}, 33, \mathrm{DB}, 33, \mathrm{D} 2, \mathrm{CD}\) ，1ø，B8，ø2
MC 1øøø DATA Øø，CD，1ø，C3，5ø，53，5 \(1,53,57,56\)
OH 1 1ø1ø DATA BE，Ø1，Øø，BF，Ø1，øø， 8 B，16，\(\boxed{6},{ }^{\circ}, 02\)
6P 1 Ø2ø DATA \(2 B, 16, \emptyset B, \emptyset 2,7 D, \emptyset 4, F\) 7，DF，F7，DA
HC \(1 \emptyset 3 \emptyset\) DATA \(89,3 E, 25, \emptyset 1,8 B, \emptyset E, \emptyset\) D，ø2，2B，øE
NA 1ø4ø DATA ø9，\(\boxed{~ 1,7 D, ~} 04, F 7, D E, F\) 7，D9，89，36
EP 1 ø5ø DATA 23，ø1，3B，CA，7D，ø8，B E，Øø，நø，87
MJ 1 Ø6ø DATA CA，EB，Ø4， \(9 \emptyset, B F, \emptyset \emptyset, \emptyset\) Ø，89，36， 27
NL \(1 ø 7 \emptyset\) DATA \(\emptyset 1,89,3 E, 29, \emptyset 1,8 B, C\) 2，D1，EG，A3
LH 1 Ø8ந DATA 2B，Ø1，2B，C1，8B，D8， 2 \(B, C 1, A 3,2 D\)
IC 1ø9ø DATA \(\emptyset 1,8 B, 36, \emptyset 9, \emptyset 2,8 B, 3\) E，øB，ø2，41
BH 11 ■ø DATA 8B，16，11， \(62,56,53,8\) B，C7，BA，ED
MH \(111 \varnothing\) DATA 25，FE，Ø1，D1，EØ，D1，E Б，D1，EØ，8B
ED \(112 \emptyset\) DATA D8，8ø，E7，Ø7，D1，Eø，D 1，EØ，Ø3，D8
Q1 \(113 \emptyset\) DATA 8B，C6，D1，F8，D1，F8，\(\emptyset\) 3，D8，81，E6
CL 114 DATA \(\varnothing 3\) ，Øø，D1，E6，D1，E6，\(\emptyset\) 3，F2，D1，E6
DH \(115 \emptyset\) DATA \(8 B, 84, \emptyset 3, \emptyset 1,26,22, \emptyset\) 7，ØA，C4， 26
LC \(116 \emptyset\) DATA \(88, \emptyset 7,5 B, 5 E, 83, F B, \emptyset\) ஏ，7D，11，\(\boxed{~ 1 ~}\)
NB \(117 \emptyset\) DATA \(36,27, \emptyset 1, \emptyset 3,3 E, 29, \emptyset\) \(1, \emptyset 3,1 E, 2 B\)
JE \(118 \emptyset\) DATA \(\varnothing 1, E 2, B 1, E B, \emptyset F, 9 \varnothing, \emptyset\) 3，36，23， 11
KF \(119 \emptyset\) DATA \(\emptyset 3,3 E, 25, \emptyset 1, \emptyset 3,1 E, 2\) D，Ø1，E2，Aø
EH \(12 \emptyset \emptyset\) DATA \(5 E, 5 F, 5 A, 59,5 B, 58\) ，C 3，51，52，A1
DL \(121 \emptyset\) DATA \(2 F, \varnothing 1,75, \varnothing 9, F B, B 4, \varnothing\) Ø，CD， 1 A， 89
\(6 \mathrm{~L} 122 \emptyset\) DATA \(16,2 \mathrm{~F}, \emptyset 1, \mathrm{B9}, \emptyset 8, \emptyset \emptyset, \mathrm{~A}\) \(1,2 \mathrm{~F}, \varnothing 1,33\)
OA \(123 \emptyset\) DATA D2，A9，Ø2，øø，74，ø2，B 2，ø1，A9， 44
KD 124ø DATA \(\varnothing \varnothing, 74, \varnothing 2, B 6, \varnothing 1,32, \mathrm{D}\) 6，Dø，EA，D1
IK \(125 \emptyset\) DATA DB，E2，E8，A3，2F，\(\varnothing 1,5\) A，59，C3

\title{
Solving Alphanumeric Puzzles On Your Home Computer
}

\author{
Jim Butterfield, Associate Editor
}

In this article, Associate Editor Jim Butterfield shows how a computer can be used to solve a classic brainteaser. The example program works on any computer with BASIC.

Alphanumeric puzzles are a popular diversion, but have you ever tried to solve one with a computer? Let's give it a try. In the process, we'll learn about program building, as well. Here is the puzzle we'll attempt to solve:
RAM
AND
ROM

\section*{DATA}

This is an addition problem. Each letter in the puzzle stands for a numeric digit. The challenge is to replace each letter with a number so that the addition makes sense. Here's a hint: There's nothing odd about this computer's RAM and ROM, and we have truly prime DATA.

Alphanumeric puzzles of this sort are sometimes easy to solveyou almost can do them in your head. At other times, they are complex and require lengthy cogitation. One slip in the addition and you might spend an hour chasing a solution that won't work.

A computer is good at performing math and repetitive tasks, so it can help a great deal. But you must use common sense in putting the problem to your computer, or you'll waste a massive amount of
computer time. If you attack the problem with brainpower, you may arrive at a solution without having to program the computer at all. On other occasions, the computer saves hours of dull work.

We'll solve this problem using your home computer. But first, a comment about the problem's terminology and assumptions.

\section*{First Reasoning}

The phrase nothing odd about RAM and ROM signals that these are even numbers. This may not be only a hint; it may be needed to eliminate extra solutions. Since even numbers must end in a last digit of \(0,2,4,6\), or 8 , we may assume that the letter M has one of these values. Examining the right-hand column of the addition, we also see that M cannot have a value of zero. (If M were equal to zero, then the result of adding the rightmost row would be D rather than A.) Thus, we know that M must be \(2,4,6\), or 8 . When we begin to write the program, this will be one of the first facts which we will give the computer.

Another important hint is found in the phrase truly prime DATA. This means that DATA will work out to be a prime number (one which doesn't divide evenly by any other number). We may need to examine the possible solutions to see which are prime and which are not, but, in the meantime, the fact that DATA is prime reveals another important piece of information: The letter A must be odd. Since the last digit of an odd number must be
odd, then A must have a value of 1 , \(3,5,7\), or 9 . Of these, we can eliminate the value 5 immediately. Any number ending in 5 is divisible by 5 , so it can't be prime. Thus, we know that A must represent the digit \(1,3,7\), or 9 .

Take a look at the first letters of each number: R, A, and D. None of these can be zero because we don't write conventional numbers with zero as the first digit. When we come to these digits, we'll instruct the computer not to try replacing them with zero.

Now we have the basis for some more advanced conclusions. We know that A must be an odd digit. Look at the rightmost column: M plus D plus M equals A , plus a possible carry to the next column. Since A must be odd, we conclude that the sum of M plus M must be an even number. So to make the total odd, D must be an odd number, too. Another fact which we'll give to the computer.

Look at the left column. The letter D is generated by a carry. The biggest carry we possibly could have for this addition would be two. And since we've just decided that D must be odd, that means D must have a value of one. This is a good place to start programming. Enter a NEW command to erase any previous program, then enter this line:

\section*{\(1 \varnothing \varnothing \mathrm{D}=1\)}

That's our first fact: D equals 1. Type in the rest of the program lines as they appear in this article.

Let's concentrate on the rightmost column again. We normally add digits in right-to-left order, and we'll ask the computer to do the same, trying out various values to see which ones work. We know that M plus D plus M equals A (plus a possible carry). We know the value of \(D\), as well, so let's try different values for M. Since M is an even digit (but not zero) this FOR-NEXT loop is appropriate.
110 FOR M=2 TO 8 STEP 2
990 NEXT M
Note that we're looking ahead and writing the NEXT statement at the same time as FOR, allowing lots of space in between for the lines we have yet to write.

At this stage we should ask if there is any forbidden value for M . It's a good idea, each time you introduce a new trial value, to make sure that the number isn't taken already by a letter whose value we have solved. In this case, the only solved letter is D with a value of 1 ; since M starts at 2 it can never conflict. To remind ourselves of the rule, let's test for the forbidden value anyway.

\section*{\(12 \varnothing\) IF \(\mathrm{D}=\mathrm{M}\) THEN \(99 \varnothing\)}

Now that we have values for \(D\) and M , we can calculate a total for the first column. Calling this total T1, we calculate as follows.

\section*{\(13 \varnothing \mathrm{Tl}=\mathrm{M}+\mathrm{M}+\mathrm{D}\)}

Let's see if we have a carry to the next column; this happens if the value of T1 is 10 or greater. If we divide T1 by 10 and take the integer (INT) value of the result, we arrive at the carry to the next column: It might be 0,1 , or 2 in this case. The variable K 1 holds the value of the carry.
\(14 \varnothing \mathrm{Kl}=\mathrm{INT}(\mathrm{Tl} / 1 \varnothing\))
We have the total and the carry, but we still don't know the digit that belongs at the bottom of column 1. For example, if the total was 17 (with a carry of 1), the digit 7 would appear in this place. We can obtain this by subtracting ten times the carry from the total.
\(150 \mathrm{Dl}=\mathrm{Tl}-\mathrm{Kl}\) * \(1 \varnothing\)
At this point, we have the digit that goes at the bottom of column 1 (to represent the letter A). Let's set it and check to make sure it's not the same as the solved values for M
and D. If it is the same, we must try new values.
160 A=D1
\(17 \varnothing\) IF \(A=M\) OR \(A=D\) THEN \(99 \varnothing\)
As long as we're setting values for A, we know it must be odd (the value of DATA is prime). We could put in a specific test for this, but that's not necessary in this case. Because D has a value of 1 , the total for this column must be odd. (The sum of \(M\) plus \(M\) must be even; adding 1 to that sum always creates an odd number.)

We might as well eliminate another possibility so as to save computing time. As noted earlier, the fact that DATA is prime means that A can't have a value of 5 .

\section*{\(18 \varnothing\) IF A=5 THEN \(99 \varnothing\)}

\section*{Quick Trial}

At this point, let's try a test run to see if we are getting reasonable values. Enter the following line and run the program.

\section*{\(2 \varnothing \varnothing\) PRINT D;M;A}

When you run this program, line 200 reveals the possible values of \(\mathrm{D}, \mathrm{M}\) and A . There are only three, and D always has a value of 1 (remember, we set that value at the beginning). You might like to try the arithmetic on the right hand column to insure that it's correct. It's time to tackle the second column. We'll wipe out line 200, which existed only for testing purposes, and proceed to more ambitious calculations.

\section*{Onward And Upward}

The second column contains the addition A plus N plus O (the letter O , not the numeral 0), plus any carry from column 1 . We know the value of A , but N and O are unknown to us. Let's try out various values, beginning with N .
\(2 ø \varnothing\) FOR \(N=\emptyset\) TO 9
980 NEXT N
Again, we enter both parts of the FOR-NEXT loop together. Note that for correct nesting, NEXT N must be occur ahead of NEXT M. We'll check N for credibility.
\(21 \varnothing\) IF \(N=A\) OR \(N=M\) OR \(N=D\) THEN \(98 \varnothing\)
Add these lines to try different values for O.
\(22 \varnothing\) FOR O=ø TO 9
230 IF O=N OR O=A OR O=M OR O= D THEN 970
970 NEXT 0

If you study the puzzle carefully, you may see that the values for O and N are interchangeable. They appear only in this column, and their total is all that counts. You might exploit this by changing line 230 to include IF \(\mathrm{O}<\mathrm{N}\) OR... which would force O to be bigger than N and thus eliminate duplicate solutions and extra calculating. But such things are easier to spot in hindsight than when you're programming. We'll leave the program as shown.

Here's an important note. It's a wise practice to avoid variables named O, since it's easy to confuse the alphabetic letter with an unrelated number. We're using O in this case to keep the program close to the original puzzle. Be careful not to confuse the letter O with the numeral 0 in the preceding lines and in the ones to follow.

It's time to compute the total for column 2. Remember, we must add in the carry from column 1. These lines calculate the digit at the bottom of this column and the carry.
```

24\sigma T2=Kl + A +N+O
25\emptyset K2=INT(T2/1\emptyset)
260 D2=T2-K2*1\emptyset
270 T=D2
280 IF T=O OR T=N OR T=A OR T=
M OR T=D THEN 970

```

Again, we'll add a test line and run the program to see whether we're making progress.
\(3 ø \varnothing\) PRINT D; M; A;N;O;T
The list of possible answers is pretty long, but the rest of the program will chop it down.

\section*{Last Column}

For column 3, we need to calculate the sum of \(R\) plus \(R\) plus \(A\), plus the carry from column 2. The value of \(R\) is not known, so we must try a new set of values. However, we do know that R cannot be zero (because it's the first digit in a number).
\(30 \emptyset\) FOR \(R=1\) TO 9
\(31 \varnothing\) IFF \(R=T\) OR \(R=O\) OR \(R=N\) OR \(R\)
\(=A\) OR \(R=M\) OR \(R=D\) THEN \(96 \varnothing\)
960 NEXT R
The totals are computed as in previous cases.
\(\begin{array}{ll}32 \emptyset & \mathrm{~T} 3=\mathrm{K} 2+\mathrm{R}+\mathrm{R}+\mathrm{A} \\ 33 \emptyset & \mathrm{~K} 3=\mathrm{INT}(\mathrm{T} 3 / 1 \varnothing) \\ 34 \emptyset & \mathrm{D} 3=\mathrm{T} 3-\mathrm{K} 3 * 1 \emptyset\end{array}\)
Since the digit at the bottom of this column must be A, we can exclude other values immediately.

\section*{350 IF D3<>A THEN 960}

We know, too, that the carry must have a value of 1 to yield the correct value for D.
360 IF K3<>1 THEN 960
How close are we getting? Enter this test line and run the program. 400 PRINT D;A;T;A

There will be duplicate numbers. We foresaw this fact when we noted the interchangeability of the variables N and O . The computer prints ten lines, representing five different solutions. The first one is 1383-not a prime number, since it divides evenly by 3 .

Now that you have reduced the number of possibilities to five, you could check them out by hand. You might find it an interesting exercise to do a little factoring within your program. Three of the five possibilities divide by 3 , and here's an interesting fact: If a number divides by three, the sum of its digits will divide by three. Thus, if you add the values of \(\mathrm{D}, \mathrm{A}, \mathrm{T}\), and A , you can check this total for divisibility by three.

What's the lesson? A computer can eliminate some of the drudgery work, but it can't replace the human brain. It often requires considerable reasoning just to set up a problem in a form that the computer can handle. And in many cases, such as this one, the computer may not give you the final answer, but will instead reduce the possibilities to a range that humans can manage easily.

In short, computers are only as smart as the humans who program them. A "dumb" program-one that has no pre-reasoning applied to its construction-runs very slowly indeed, and may yield inaccurate results. A little brainwork goes a long way.

As an additional exercise, you might add some program lines to check the final value of DATA to make sure that it's prime. For that matter, the computer might print the final result on the screen or a printer. If you're looking for a new challenge, you might try writing your own program to solve this classic alphanumeric puzzle:
SEND
MORE
MONEY ©

\title{
Hi-Res Text For Apple II
}

Adam Levin

This program copies the contents of a 40-column text screen onto either of the Apple's hi-res screens, opening the door to a whole new category of graphics effects. Among other things, it allows Apple II + owners to display lowercase characters. This technique is fully compatible with the Applesoft/DOS Tool Kit character sets.

The Apple II's high-resolution graphics screen has certainly been put through its paces over the years. There are programs to fade it in and out, scroll it every which way, invert the colors, and so on. The text screen, on the other hand, gets less attention. There are clever methods available for manipulating it, but it just doesn't offer as much flexibility as the hi-res screen.

But what if you could treat the text screen just like the hi-res screen? You could fade the text in and out, smoothly scroll it in various directions, and even invert the colors. "Hi-Res Text" takes each character on the 40 -column text screen and, using a lookup table, draws that character on either of the hi-res graphics screens. The lookup table is in the same format as the Applesoft/DOS Programmer's Tool Kit character sets, so you
can use your favorite character set for the translation or create your own. In addition, since you define the shapes of the characters, Apple II + users can obtain lowercase characters on the hi-res screen.

\section*{Starting Out}

Except for Program 5, the BASIC demonstration program, the programs and file included with this article must be entered with the " MLX " machine language entry program published elsewhere in this issue. Read the MLX instructions carefully before you begin. Note that if you wish to use the demonstration program (Program 5), you must save Programs 1-4 from MLX with the filenames indicated below (Program 2 must be saved as HIRES.FADE, and so on). You will need starting and ending addresses to enter Programs 1 and 2.
For Program 1, HIRES.TEXT:
STARTING ADDRESS? 0300
ENDING ADDRESS? 0351

For Program 2, HIRES.FADE:
\(\begin{array}{ll}\text { STARTING ADDRESS? } & 0350 \\ \text { ENDING ADDRESS? }\end{array}\)
Program 1 (HIRES.TEXT) copies the text screen to a hi-res screen. Program 2 (HIRES.FADE) erases a screenful of hi-res text by fading it
gradually to the background color． Program 3 （IIEC．ASCII．SET）and Program 4 （II＋．ASCII．SET）are character sets．The data in Program 3 is for the Apple IIe and IIc，and the data in Program 4 is for the II + ． Choose the character set appropri－ ate for your computer and type it in with MLX．Again，you will need starting and ending addresses to enter these programs．
For Program 3，IIEC．ASCII．SET：
\(\begin{array}{ll}\text { STARTING ADDRESS？} & 6000 \\ \text { ENDING ADDRESS？} & 62 \mathrm{FF}\end{array}\)
For Program 4，II＋．ASCII．SET：
\begin{tabular}{ll}
STARTING ADDRESS？ & 6000 \\
ENDING ADDRESS？ & 62 FF
\end{tabular}

After you have typed those files from MLX，type and save Pro－ gram 5，then run it．After asking which computer you are using，it prints a screenful of text on the text screen，then copies it to the hi－res screen．After a short pause，it fades out the hi－res screen．

\section*{Using HIRES．TEXT}

Program 5 shows the basic tech－ niques for using HIRES．TEXT and the character set of your choice．To use HIRES．TEXT，first BLOAD it into memory at location 768 （\＄300）． Next，BLOAD a character set into memory at location 24576 （ \(\$ 6000\) ）． Once the character set is in place， you can activate HIRES．TEXT with CALL 768 from BASIC or 300G from the built－in machine language monitor．

After HIRES．TEXT has copied the text screen to the hi－res screen， you can manipulate the hi－res screen any way you like．There are， however，some options to consider． First，HIRES．TEXT does not clear the hi－res screen before it begins copying．This makes it easy to over－ lay text onto existing graphics．If you want the hi－res screen to be blank before the characters are transferred，you must erase it in the usual way．

In order for HIRES．TEXT to copy text onto the correct hi－res page（1 or 2 ），you must place a number in a memory location where the program can find it．If you use the command HGR or HGR2，this is done for you．Other－ wise，you must POKE a value into location 230 before you run HIRES．TEXT．For hi－res page 1 ，use

POKE 230，32．For page 2，use POKE 230，64．

You will also need to decide what is to be visible during the copying process．If you want to see the characters becoming visible on the hi－res screen，you must turn on that screen beforehand．Or，sup－ pose that you want to fade in the entire screen：In that case，you might display a blank hi－res screen while the copying is underway，and then use a routine that fades from the filled hi－res screen to the blank one．Here are the POKEs for turn－ ing on different screens．

\section*{Text Screen}

POKE－163øø，\(:\) POKE－163ø2，\(: P O K ~\) E－16303，ø
Hi－Res Page 1
POKE－163øø，\(:\) POKE－163ø2，\(:\) POK E－16297，Ø：POKE－163ø4，Ø
Hi－Res Page 2
POKE－16299，\(:\) POKE－163 \(02, \emptyset: P O K\) E－16297，\(:\) POKE－163ø4，

If you have an Apple II + ，you won＇t be able to type the lowercase letters in lines 58 and 62 unless your computer has been modified to include a lowercase character generator．It＇s possible to get lower－ case characters on the screen by displaying the characters which， when converted，correspond to lowercase in the new character set． Under normal circumstances，these character values appear as lower－ case and punctuation．If you＇d rath－ er not figure out the proper character codes，you can simply omit the lowercase text in these lines．Program 5 will still provide an effective demonstration of text on the hi－res screen．As an alterna－ tive，any word processors have some method for entering lower－ case characters even if they can＇t be displayed at the time．You could use such a word processor to create a message for your text，then EXEC the text into your program．Alterna－ tively，you can add \(32(\$ 20)\) to the ASCII value of each character which you want to display in lowercase．

Please refer to the＂MLX＂article in this issue before entering the following programs．

\section*{Program 1：HIRES．TEXT}

Ø3øø：AS E6 \(\emptyset 91885 \mathrm{EG}\) A2 1759 Ø3ø8：AØ 2784 FF A9 Øø 85 FD ØF Ø31ø：A9 \(\emptyset 785\) FE 8A \(2 \emptyset\) C1 FB A1 Ø318：B1 \(28 \quad 297 \mathrm{~F}\) 38 E9 20 3ø F7 Ø32Ø： 28 ØA ØA 26 FD ØA 26 FD C2

Ø328： 69 øø 85 FC A5 FD 6960 BB 9330： 85 FD A5 2945 E6 8529 B9 ø338：A4 FE B1 FC A4 FF 9128 C6 0340： 38 A5 29 E9 04 C6 FE 10 D8 9348：ED 88 1ø BE CA 10 B9 68 BF ø358：E2 E5 øø øø øø øø øø ø® 41

\section*{Program 2：HIRES．FADE}

Ø359：A9 2085 E6 20 F2 F3 2927 ø358：øø ø3 AD 52 Cø AD 57 Cø 26 Ø36ø：AD 54 CD AD \(5 \varnothing\) Cø AD 5177 6368： 93 85 E6 A9 FF 85 FD Ag 7B 937ø： \(9 \varnothing 18\) A9 3866 FD 901 C 9 D 9378：A9 \(9 \varnothing 8526\) A5 E6 \(85 \quad 27 \quad 61\) 9380：B1 2625 FD 9126 E6 2686 ø388：Dg F6 E6 27 A5 2729 1F \(3 F\) Ø399：Dg EE Fg DF 2058 FC 2C 5F ø398： 54 Cø 2C 51 Cø \(6 \emptyset\) øø øø 1B

\section*{Program 3：IIEC．ASCII．SET}

 6ø2Ø：Ø8 3С øA 1C 28 1E Ø8 øø Cø 6ø28：Ø6 \(261 \varnothing\) ø8 ø4 32 उØ øø 41 6ø3ø：Ø4 ØA øA Ø4 2A 12 2C øø EB 6ø38：ø8 ø8 ø日 øø øø Øø øø øø FF 6ø4ø：ø8 ø4 ø2 ø2 ø2 ø4 ø8 øø 96
 6ø5ø：ø8 2A 1C \(\varnothing 8\) 1C 2A 08 Øø \(3 D\) 6ø58：øø ø8 ø8 उE ø8 Ø8 øø Øø 6ø 6ø6Ø：Øø øø øø øø Ø8 Ø8 Ø4 øø 89 6ø6日：Øø Øø øø उE Øø Øø Øø øø ØD 6ø7ø：Øø Øø Øø Øø Øø Øø Ø8 Øø 41 6ø78：ஏø 2ø 1ø ø日 ø4 Ø2 øø øの EB 6ø8ø：1C 2232 2A \(26 \quad 22\) 1C \(\quad \emptyset \square \quad \mathrm{B} 2\) 6ø88：ø8 øC ø8 ø8 ø8 ø8 1С øø 6A 6ø9ø：1C \(22 \quad 2 \emptyset 18 \quad \emptyset 4 \quad \emptyset 2\) उE \(\quad \emptyset \emptyset 12\) 6ø98：उE 2ø 1ø 18 2ø 22 1C 18 ØD GØAD： \(1 \varnothing 18181412\) उE 1010109065 6øAB：उE Ø2 1E \(2 \emptyset \quad 2 \emptyset \quad 22\) 1C øø \(9 \varnothing\)
 6øB8：उE \(2 \emptyset 1 \emptyset\) ø8 ø4 ø4 ø4 øø 5B 6øCØ：1C 2222 1C 2222 1C øø EF 6øC8：1C 2222 उC \(2 \varnothing 1 \emptyset\) ØE Øø 85
 6øD8：Øø øø ø日 øø ø8 Ø8 ø4 øø Ø了
 6øE8：Øø Øø उE øø उE Øø Øø øø 63
 6øF8：1C \(221 \emptyset\) Ø8 ø8 Øø ø8 øø 23 61øø：1C 22 2A 3 A \(1 A \quad \emptyset 2\) उС \(\emptyset \emptyset 93\) 61ø8：ø8 \(1422 \quad 22\) उE \(22 \quad 22\) øø F8 611ø：1E 2222 1E \(22 \quad 22\) 1E \(1 \mathrm{D} \quad 66\) 6118：1C 22 ø2 ø2 \(\varnothing 222\) 1C øø A2 612ø：1E \(22 \quad 22 \quad 22 \quad 22 \quad 22\) 1E \(1 \mathrm{\emptyset} \emptyset \mathrm{~B}\) B

 6138：उС ø2 ø2 ø2 3222 उС øø 8C 6140： \(2222 \quad 22\) उE \(2222 \quad 22\) Øø A2 6148：1С ø8 ø8 ø8 ø8 ø8 1С øø 35
 6158： 2212 ØA Ø6 ØA 1222 Øø \(2 F\)
 6168： 22 36 2A 2A \(22 \quad 22 \quad 22\) Øø 8 F 617ø： \(22 \quad 22 \quad 26 \quad 2 A \quad 32 \quad 22 \quad 22\) øø 92 6178：1C \(22 \quad 22 \quad 22 \quad 22 \quad 22\) 1C \(\quad \emptyset \emptyset \emptyset A\) 618ø：1E 2222 1E 1 g 2 Ø2 \(\quad \emptyset 2\) øø 1 D 6188：1C \(22 \quad 22 \quad 22\) 2A 12 2C øø 3 A 619ø：1E 2222 1E ØA 1222 øø ED 6198：1C 22 ø2 1C \(2 \emptyset 22\) 1C 1 C Ø 125
 61AB： \(22 \quad 22 \quad 22 \quad 22 \quad 22 \quad 22\) 1C Øø 3 D 61Bø： \(\begin{array}{lllllllll}22 & 22 & 22 & 22 & 22 & 14 & 98 & \emptyset \emptyset & E 4\end{array}\) 61B8： \(22 \quad 22 \quad 22 \quad 2 \mathrm{~A} \quad 2 \mathrm{~A} \quad 36 \quad 22 \quad \emptyset \emptyset \quad 6 A\) \(\begin{array}{llllllllll}\text { 61Cø：} & 22 & 22 & 14 & \boxed{ } & 14 & 22 & 22 & 90 & 8 D\end{array}\) 61C8： \(222214 \quad \emptyset 8\) ø8 ø8 98 øø 98
 G1D8：उE Ø6 Ø6 Ø6 Ø6 Ø6 उE Øø 22

61EØ：øø ø2 ø4 ø日 \(1 \varnothing 2 \emptyset\) øø øø 26 61E8：ЗE \(3 \varnothing 3 \varnothing 3 \varnothing 3 \varnothing 3 \varnothing\) ЗE \(\varnothing \varnothing\) 9E
 61F8：\(\varnothing \varnothing\) øø øø øø øø øø 7F øø BA
 62ø日：øø øø 1С 2ø उС 22 उС øø 35 621ø：Ø2 ø2 1E 222222 1E øø 12 6218：øø øø उС ø2 ø2 ø2 3C øø 15
 6228：øø øø 1C 22 उE ø2 उC øø ø5
 6238：øø øø 1C 2222 3C 2ø 1C ø1 624ø：ø2 ø2 1E \(22 \quad 22 \quad 22 \quad 22\) øø 4A 6248：øВ øø øС ø8 ø8 ø日 1С øø AB 625ø： 10 øø \(181 \varnothing 101012\) øC 12 6258：ø2 ø2 2212 øE 1222 øø ø1 626ø：øC ø日 ø日 ø日 ø日 ø日 1С øø 47 6268：øø øø \(362 A 2 A 2 A \quad 22 \emptyset \emptyset\) D4 627ø：øø øø 1E 22222222 øø F8 6278：øø øø 1С 222222 1C øø B4 628ø：øø øø 1E 2222 1E \(22 \emptyset 2 \mathrm{BA}\) 6288：øø øø 3C 2222 3C \(2 \varnothing 2 \varnothing 59\)
 6298：øø øø 3 C ø2 1C \(2 \emptyset 1 E\) øø \(A 2\) 62Aø：ø4 ø4 1E \(\varnothing 4 \quad \varnothing 42418\) øø 4D 62AB：øø øø 22222232 2C øø ø6 62Bø：øø øø 22222214 ø日 øø 4D 62B8：øø øø \(2222 \quad 2 A 2 A \quad 36\) øø 4 A 62Cø：\(\varnothing \varnothing\) øø \(2214 \quad \emptyset 814 \quad 22\) øø DF 62C8：øø øø 222222 3C 2ø 1C 52 62Dø：øø øø \(3 \mathrm{E} 1 \varnothing\) ø8 ø4 3 E øø 2B 62D8： 38 øट øС ø6 øट øट 38 øø 9F 62Eø：ø8 ø8 ø8 ø8 ø8 ø8 ø8 ø8 A5 62E8：øE 18 18 \(3 \varnothing 1818\) øE øø FD 62Fø：2C 1A øø øø øø øø øø øø 52 62F8：\(\varnothing \varnothing 2 A 142 A 142 A \quad \varnothing \varnothing\) Øg B6

\section*{Program 4：II＋．ASCII．SET}

6øøø：øø øø øø øø øø øø øø øø Сø டøø日：øø ø日 ø8 ø๐ ø日 ø8 øø ø8 B4 6ø1ø：øø 141414 øø øø øø øø 99 6ø18：øø 1414 3E 14 3E 14141 A 6ø2ø：øø ø日 ЗС øA 1C 28 1E ø8 Dø
 6øろŋ：Øø ø4 ØA ØA Ø4 2A 12 2C EC 6ø38：øø ø8 ø8 ø日 øø øø øø øø 7C
 6ø48：øø ø日 \(1 \varnothing 2 \varnothing 2 \varnothing 2 \emptyset 1 \varnothing\) ø8 B8
 6ø58：øø øø ø日 ø8 उЕ ø日 ø日 øø BC
 6ø68：øø øø øø øø \(3 E\) øø øø øの 1B
 6ø78：øø øø \(2 \varnothing 1 \emptyset\) Ø8 ø4 ø2 øø 92 6ø日曰：øø 1C \(22 \quad 32\) 2A 2622 1C F9 6ø88：øø ø日 øС ø日 ø日 ø日 ø日 1С D9 6ø9ø：øø 1С 22 2ø 18 ø4 ø2 \(\mathrm{BE} B 1\) 6ø98：øø \(3 \mathrm{E} 2 \varnothing 1 \varnothing 182022\) 1C 8F
 6øA8：øø \(3 E \emptyset 2\) 1E \(2 \varnothing 2 \varnothing 22\) 1C FC 6øВø：øø \(38 \emptyset 4\) ø2 1E 2222 1C Fq
 6øCø：øø 1C \(22 \quad 22\) 1C 2222 1C B8 எøC8：øø 1С 2222 उC \(2 \varnothing 1 \varnothing\) ØE 87 ЄøDø：øø øø øø ø日 øø ø8 øø øø 32 6øD8：øø øø øø ø日 øø ø8 ø8 ø4 4E
 6øE8：øø øø øø उE ๆø \(3 E\) øø øø 86
 6øF8：øø 1C \(221 \varnothing\) ø 1 ø8 øø ø日 6E 61øø：øø 1C 22 2A 3 A 1 A ø2 3 C 2B 61ø8：øø ø日 \(14 \quad 22 \quad 22\) उE \(22 \quad 22\) E1 611ø：øø 1E 2222 1E 2222 1E 9C 6118：øø 1С 22 ø2 \(\varnothing 2\) ø2 22 1C BE 612ø：øø 1E \(222222 \quad 22\) 22 1E CC 6128：øø उE ø2 ø2 1E ø2 ø2 3 E 16
 6138：øø 3C ø2 ø2 ø2 \(32 \quad 22\) 3C C3 614ø：øø \(22 \quad 22 \quad 22\) उE \(22 \quad 22 \quad 22\) D2 6148：øø 1С ø日 ø日 ø日 ø日 ø8 1С \(2 \emptyset\) 6150：øø 2ø 2ø 2ø 2ø \(202210 ~ ø 3\)

6158：øø 2212 øA ø \(\emptyset\) øA 122225 616ø：øø ø2 \(\varnothing 2\) ø2 ø2 ø2 ø2 उE 5E 6168：øø \(22 \quad 362 A 2 A 22 \quad 22 \quad 22\) 5D 617ø：øø \(22 \quad 2226\) 2A \(3222 \quad 22\) E2 6178：øø 1C 2222222222 1C A2
 6188：øø 1C \(22 \quad 22 \quad 22\) 2A 12 2C C2 619ø：Øロ 1E 2222 1E ØA 1222 Aø 6198：øø 1C 22 ø2 15 \(2 \varnothing 22\) 1C 88 61Aø：øø ЗЕ ø8 ø8 ø8 ø8 ต8 ø8 EC 61AB：øø \(22 \quad 22 \quad 22 \quad 22 \quad 22 \quad 22\) 1c 54
 61B8：øø \(22 \quad 22 \quad 22\) 2A 2A \(36 \quad 22\) F2 61Cø：øø 222214 ø日 14222288
 61Dø：øø उE \(2 \varnothing 1 \varnothing\) ø日 \(\varnothing 4 \quad \emptyset 2\) उE BA 61D8：øø JE ø6 ø \(\emptyset\) ø \(\emptyset 6\) ø \(3 E D E\) 61Eø：øø øø ø2 ø4 ø日 \(192 \varnothing\) øø E4 61E8：\(\varnothing \varnothing\) उE \(3 \varnothing \quad 3 \varnothing \quad 3 \varnothing \quad 3 \varnothing \quad 3 \varnothing\) IE 25
 61F8：øø øø øø øø øø øø øø 3E F9 62øø：øø ø4 ø8 1ø øø øø øø øø С7 62ø8：øø øø øø 15 2ø 3C 22 3C ø1 621ø：øø ø2 ø2 1E 222222 1E 73 6218：øø øø øø उC ø2 ø2 ø2 3C F8 622ø：øø \(2 \varnothing 2 \varnothing\) उC 222222 उC CE 6228：øø øø øø 1C 22 उE ø2 3C F8
 6238：øø øø 10 2222 3C 2ø 1C 10 624ø：øø ø2 ø2 1E \(22 \begin{array}{lllll}22 & 22 & 22 & \text { A7 }\end{array}\) 6248：øø ø日 øø øС ø日 ø日 ø日 1С 5С 625ø： 10 øø 18 1ø \(1 \varnothing 1012\) øC 12 6258：øø ø2 ø2 2212 øE 1222 øF 626ø：øø øC ø日 ø日 ø8 ø日 ø8 1С 36 6268：øø øø øø \(362 A 2 A 2 A 22 ~ \emptyset 1\) 627ø：øø øø øø 1E \(22 \begin{array}{llll}22 & 22 & 22 & 17\end{array}\) 6278：øø øø øø 1C \(2222 \quad 22\) 1C FB 628ø：øø øø 1E \(22 \quad 22\) 1E ø2 ø2 BA 6288：øø øø 3C 2222 3С 2ø 2ø 59
 6298：øø øø øø 3C ø2 1C 2ø 1E FF 62Aø：øø ø4 ø4 1E \(\varnothing 4 \quad \emptyset 4 \quad 241859\)

 62B8：øø øø øø \(22 \quad 22 \quad 2 \mathrm{~A} \quad 2 \mathrm{~A} \quad 36 \mathrm{EJ}\) 62Cø：øø øø øø 2214 g8 1422 B2 62C8：øø øø \(22 \quad 22 \quad 22\) 3C \(2 \varnothing\) 1C 52 62Dø：Øø øø Øø 3E \(1 \varnothing\) ø8 94 उE 6ø 62D8：øø 38 øC øC ø6 øC øC 38 9E 62Eø：ø8 ø日 ø8 ø8 ø8 ø8 ø8 ø8 A5 62E8：Øø øE \(1818 \quad 18 \quad 1818\) ØE DS
 62F8：øø øø 2A \(142 A 142 A\) Øø \(3 A\)

\section*{Program 5：Demonstration}

For instructions on entering this program， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂elsewhere in this issue．
\(511 \varnothing \mathrm{D} \$=\) CHR \(\$\)（4）
c5 15 PRINT D\＄＂BLOAD HIRES．TEXT＂ ：REM ，A\＄3 \(\emptyset \varnothing\)
DF 20 PRINT CHR \(\$\)（26）＂ 1 ＂：TEXT ： HOME
AB \(3 \emptyset\) PRINT＂DEMONSTRATION OF HI RES．TEXT＂
1934 PRINT＂
AND HI RES．FADE＂
\(584 \varnothing\) PRINT ：PRINT ：PRINT＂WHI \(C H\) TYPE OF APPLE ARE YOU \(U\) SING？＂
9D 41 VTAB PEEK（37）＋3：PRINT ＇Q＇WILL QUIT＂： VTAB PEEK（37）－ 2
8242 PRINT＂＇+ ＇PLUS＇E＇ENHNC \(D\)＇C＇COMPACT＂；：GET T\＄： PRINT T\＄
3843 IF \(T \$=" Q "\) OR \(T \$=" q "\) TH EN HOME ：TEXT ：END
F8 44 IF T\＄＜＞＂＋＂AND T\＄＜＞＂ E＂AND \(T \$<>" E\)＂AND T\＄＜

VTAB PEEK（37）：GOTO 42
B3 50 PRINT ：PRINT＂HIRES．TEXT WILL BE USED TO TURN＂：PRI NT＂THIS SCREEN INTO GRAPH ICS．＂
AB 52 PRINT ：PRINT＂PRESS RETUR N TO SEE HIRES．FADE＂：GET L\＄：
5A 54 IF L\＄＜＞CHR\＄（13）THEN 5 2
fE 56 HOME ：PRINT ：PRINT＂LOAD ING ASSOCIATED FILES．＇
DE 58 PRINT ：PRINT＂THE NEXT FE W LINES ARE IN LOWER－CASE： ＂：PRINT ：PRINT＂Now is \(t\) he time for all good men＂： PRINT＂to come to the aid of their country．＂
AB \(6 \emptyset\) PRINT ：PRINT＂！＂＋CHR\＄ （34）＋＂\＃\＄\％\＆＂（）＊＋，－．／ø1234 56789：；＜＝＞？\({ }^{2}\) ABCDEFGHIJKLMN OPQRSTUVWXYZ＂＋CHR\＄（91）；
6862 PRINT CHR \(\$(92)+\)＂］＾＂\(+C\) HR\＄（95）＋CHR\＄（96）＋＂ab cdefghijkl mnopqrstuvwxyz＂
+ CHR\＄（123）＋CHR\＄（124） + CHR\＄\((125)+\) CHR \(\$(126)\) + CHR\＄（127）
FB 64 IF T\＄\(="+"\) THEN T\＄\(=" ":\) PRINT D\＄＂BLOADII＋．ASCII．SE T＂：REM ，A\＄6øøø
1566 IF LEN（T\＄）THEN PRINT D \(\$\)＇ BLOADIIEC．ASCII．SET＂：REM ，A\＄6øøøØ
3668 IF L \(\$=\) CHR \(\$\)（13）THEN PRI NT D\＄＂BLOADHIRES．FADE＂：RE M ，A\＄350
A9 \(7 \emptyset\) PRINT ：PRINT＂THIS IS STI LL THE TEXT SCREEN．
1372 PRINT＂PRESS A KEY WHEN RE ADY．．．＂；：GET A\＄
87 80 CALL 848：REM \(\$ 350\)
JF 85 POKE－ 16368 ，Ø
609 FOR \(\mathrm{R}=1\) TO 4øø：IF PEEK （－16384）＜ 127 THEN NEXT
4695 POKE－16368， 0
स9 \(10 \square\) GOTO 20
©

All the programs in this issue are avail－ able on the ready－ to－load COMPUTE！ Disk．To order a one－year（four－disk） subscription，call toll free 800－247－5470 （in IA 800－532－1272）． Please specify which computer you are using．

\title{
Hi-Res PRINT For Commodore 64
}

\author{
Scott M. Petty
}

This short machine language utility allows you to quickly print characters on the Commodore 64's high-resolution graphics screen.

How many times have you thought of an idea for a game, replete with high-resolution screens, colorful animated sprites, and onscreen scoring and timing? Many different utilities are available for drawing shapes on a hi-res screen, but most of them omit one important item: printing text. Of course, you can always copy character patterns onto the hi-res screen in BASIC, but the process is painfully slow. "HiRes PRINT" is a short machine language routine which allows you to print letters and numbers anywhere on a hi-res screen, using different colors and reverse mode if desired. Because it's done in machine language, the process is as fast as using normal PRINT statements in BASIC. And you can use the routine from BASIC, without having any machine language knowledge.

\section*{Typing The Programs}

You'll need to type in four short programs. Program 1 is the machine language (ML) program itself. Program 2 creates an abbreviated character set for use by the ML program, Program 3 demonstrates hi-res character printing, and Program 4 is used to relocate the ML to a different memory area.

Begin by typing in Program 1 with the "MLX" machine language
entry program found elsewhere in this issue. Read the MLX instructions carefully and be sure to save a copy of the program when you are done typing. Here are the starting and ending addresses for Program 1:

\section*{Starting address: C000 \\ Ending address: C20F}

It is important that you save this program with the filename HRPRINT so that the other programs can load it by that name.

The ML program will need a set of character patterns to use for printing on the hi-res screen. Program 2 (CHARSETMAKER) is a BASIC program that makes a disk file containing data for the first 64 characters of the Commodore 64 character set. Type in Program 2 and save a copy.

The character file which you create with Program 2 will load at any address that you specify. For now, supply the address indicated below so that you can use this character set with the demonstration program (Program 3). Run Program 2. When it asks for the address of the character set, enter the number 16384 and press RETURN. The program then asks you to name the file in which this character set will be stored. Type in HRCHARSET and press RETURN. Again, it is important to use this particular filename so that Program 3 can load the file from disk. After you answer the second prompt, the program writes the file to disk and ends.

Type in and save Programs 3 and 4, then load and run Program 3

If you think it's difficult to print characters on the Commodore 64's hi-res screen, look again. "Hi-Res PRINT" is a convenient machine language utility which prints letters and numbers at any location on a hi-res screen. No machine language knowledge is necessary to use this program.
(DEMO) for a demonstration. The program begins by loading the files HRPRINT and HRCHARSET into the correct memory locations and by clearing the hi-res screen. Then it draws a sine wave to prove that you are indeed looking at a hi-res screen. Finally, the program prints several text messages in different colors. In the left portion of the screen are two example score and timer displays which continue to update as long as the program runs. To end the demonstration and return to the normal screen, press any key.

\section*{Loading From A Program}

Let's learn how to use the machine language routine by observing how Program 3 handles it. Several preparatory steps are required. First, the BASIC program must load both the ML code and the special charac-
ter set which it uses. Program 3 does this in lines 110-120:
\(11 \emptyset\) IF \(A=\emptyset\) THEN \(A=1: L O A D " H R P R I\) NT", 8, 1
120 IF \(A=1\) THEN \(A=2\) : LOAD"HRCHA RSET" 8 , 1
These lines should appear at the very beginning of the program, before any other BASIC statements (except REMarks, which the computer ignores). If you are not familiar with how LOAD works in program mode, these lines may look somewhat baffling. Here is an explanation of how they work.

When it executes a LOAD statement under program control, BASIC performs the load and then reruns the program from the beginning. However, BASIC remembers the values of variables that were previously used in the program. Thus, the first time you run Program 3, the variable \(A\) is set to 1 , and the computer loads the machine language file HRPRINT. After the load is complete, the computer runs the program a second time, beginning again with the first line of the program. But now A is equal to 1 , so the IF test in line 110 fails, and the computer proceeds to line 120 . The variable \(A\) is set to 2 , the computer loads the file CHARSET , and the program is run from the beginning for a third time. This time both IF tests fail, and the computer goes on to execute the remainder of the program.

\section*{Locating The Hi-Res Screen}

The next step is to decide where to put the hi-res screen. High-resolution screens require two separate blocks of memory. The largest block, called the bitmap, is 8000 bytes in size; it contains information about which pixels (screen dots) are turned on and which are off. The second block is 1000 bytes in size; it contains color information for each of the \(8 \times 8\)-pixel blocks in the bitmap. The computer combines pixel information from the first block and color information from the second block to produce the final picture which appears on the hi-res screen.

The 64's video chip can refer to addresses only within a 16 K (16,384-byte) memory zone. As a result, you must always locate the 8000 -byte bitmap and its 1000 -byte
color-memory block within the same 16 K area. The Commodore 64's memory can be divided into four such blocks, which are known as video banks:
\(\begin{array}{lrr}\text { Bank 0: } & 0-16383 & (\$ 0000-\$ 3 F F F) \\ \text { Bank 1: } & 16384-32767 & (\$ 4000-\$ 7 F F F) \\ \text { Bank 2: } & 32768-49151 & (\$ 8000-\$ B F F F) \\ \text { Bank 3: } & 49152-65535 & (\$ C 000-\$ F F F F)\end{array}\)
Program 3 locates the bitmap and color memory in video bank 0. The bitmap will start at location 8192 and color memory will go at 1024 , the same area used as screen memory in text mode. Line 200 tells the computer the bitmap's location, and line 220 puts the machine in hires bitmap mode.

The following shows where Program 3 puts the bitmap, color memory, and character set:

\section*{Location Usage}

\section*{1024-2023 color memory \\ 8192-16383 bitmap \\ 16384-16895 character set}

One disadvantage of using video bank 0 is that it locates the bitmap in the middle of the RAM (Random Access Memory) area normally used to store BASIC programs. BASIC memory ordinarily resides in locations 2049-40959, giving you 38,911 bytes to hold a BASIC program and its variables. In this case, however, it is restricted to locations 2049-8191, leaving only 6141 bytes of BASIC program space. What's more, the program takes no steps to protect the bitmap; if you expand the program, it will eventually encroach on the bitmap area, corrupting its contents. For longer BASIC programs, you may need to use a different video bank-a subject that is beyond the scope of this article. In Programming the Commodore 64, available from COMPUTE! Books, you can find detailed explanations of video bank usage and methods for creating a protected memory zone.

\section*{Setting Up}

Once you have loaded the machine language program and its character set, located the hi-res screen, and enabled hi-res mode, you're nearly ready to print characters on the screen. Before you can use the ML program, however, you must tell it what sort of printing to perform, as well as the location of the bitmap, color memory, and character set.

Line 150 sets two important vari-ables-IN and PR-which are used in later SYS statements. The variable IN stands for initialize. This variable is used in a SYS call which passes the initializing information to the ML program. The first initializing statement occurs in line 240: 240 SYS IN, 2, 8192, 16384, 1024

The first value in every SYS statement is the address of the ML code which you wish to execute. Since we set IN to 49152 (line 150), this SYS statement transfers control to the ML instructions beginning at location 49152. If the ML code loads at location 49152, you should always set IN to 49152 . If you relocate the code to a different memory area (see below), IN should be set to the new starting address of the ML code.

This particular ML program is designed to retrieve additional information which appears after the SYS address. The last three values in line 150 should look familiar: Here the numbers 8192,16384 , and 1024 indicate the location of the bitmap, character set, and color memory, respectively. When you execute this SYS statement, the ML program stores this information for future reference.

The second value in the SYS statement (2, in this case) is a special flag for the ML program. This value must be either 1 or 2 , depending on what sort of printing you desire and what sort of hi-res screen is in use. For normal hi-res (not multicolor) screens and normal printing, this value should be 1 . If you are using a multicolor hi-res screen, or if you wish to have reverse printing on a normal screen, set this value to 2 .

Of course, any of the values in the SYS statement can be replaced by numeric variables. For instance, BASE is set to 8192 , so you could replace the 8192 in line 240 with BASE.

Once you've initialized the program for use, the next step is usually to clear the hi-res screen. If you don't do this, it will contain random shapes. Clearing the bitmap in BASIC is a time-consuming chore, since you must POKE zeros into 8000 consecutive memory locations. Line 270 does the job in less than a second by using the ML
program to print reverse spaces on the entire hi-res screen.

Clearing the screen is a very simple matter. Line 260 creates a string, F\$, which consists of 40 spaces. In line 270 , the program prints F\$ 24 times, once for each character row on the screen. Here is the SYS statement that prints the string:
SYS PR, 15, 0, J, F\$
Once again, the first parameter after SYS is an address within the ML program. The variable \(P R\) stands for PRINT; it is set to 49207 in line 150 . The second value sets the printing color (15 , in this case, for light gray). The third and fourth parameters set the character column and character row, respectively, where the first character of the string is printed. In this example, we always start printing at column 0 , the leftmost column of the screen. The fourth value is set by the variable J, which the FORNEXT loop in line 270 causes to cycle from 0 to 24 .

The last parameter tells the ML program what to print. On this occasion it is a string variable (\(\mathrm{F} \$\)). You can also use any string or numeric expression that requires no more than 80 characters to print. Here are just a few examples:
SYS PR, 15, 0, 0, "HELLO"
SYS PR, 15, 0, 0 , LEFTS(A\$(12),1)
SYS PR, \(15,0,0, \operatorname{SIN}(T I) * T I \uparrow 2\)
The rest of the SYS statements in Program 2 print messages on the screen, reinitializing the ML program as needed for various kinds of printing. By examining and experimenting with these lines, you will see how to use the ML routine in several different ways.

\section*{Relocating The \\ ML Program}

Program 4 is not immediately necessary, but you may want to type it in for future use. Like many other machine language programs on the Commodore 64, Hi-Res PRINT normally occupies the protected memory area beginning at location 49152. It may happen that you wish to use this program with some other ML utility which also loads at that address. If so, you can run Program 4 to create a copy of the ML program which loads and runs
at a different memory address.
Before using Program 4, you must decide on a new location for the ML program. This can be any free RAM area at least 524 bytes in size which is not otherwise in use at the time. When you run Program 4, it loads the HRPRINT file at its normal memory location, and then asks you to enter the new memory address and the filename to use for the new file. Of course, you should use some filename other than HRPRINT for the new file. (When loading the new file under program control, you would then substitute the new filename for HRPRINT.) The program adjusts all of the ML program's internal addresses for the new location and writes the new file to disk.

As a convenience, Program 4 also prints the new addresses to use for IN and PR in the SYS statements for this program (see above). Make a note of these addresses and be sure to set IN and PR accordingly when using the relocated version.

In addition to the memory occupied by the ML code itself, this program stores information in the following memory locations:
679-767 (\$02A7-\$02FF)
820-827 (\$0334-\$033B)
1020-1023 (\$03FC-\$03FF)
You should take care not to POKE into these locations or otherwise disturb their contents when using this program.

\section*{Program 1: HRPRINT}

Please refer to the "MLX" article in this issue before entering the following program.
CøøØ: 2Ø F1 B7 8E 13 Ø3 4C 15 4ø Cøø8:CØ 2Ø FD AE 2Ø 9E AD \(2 \varnothing 93\) Cø1ø:CE Bl A5 \(656 \emptyset \quad 2 \emptyset \quad\) Ø9 Cø C6 Cø18:8D FA Ø2 A5 64 8D FB ø2 ØD CØ20:20 Ø9 CØ 8D FC Ø2 A5 6484 Cø28:8D FD Ø2 \(2 \emptyset\) Ø9 Cø 8D FE 97 Cø3Ø:Ø2 A5 64 8D FF Ø2 6Ø AØ EA Сø38: Øø A9 Øø 99 A7 Ø2 C8 Cø 55 Cø40:51 Dø F8 2Ø Fl B7 8E 34 7F Cø48: Ø3 2ø Fl B7 8E 36 Ø3 2 2Ø 8ø Cø50:F1 B7 8E 35 Ø3 20 FD AE 21 CØ58:20 9E AD A5 ØD DØ 13 2Ø 93 Cø6Ø: DD BD A0 Øø B9 Øø Ø1 C9 ED Cø68: ØØ FØ 26 99 A7 Ø2 C8 4C A7 Cø7Ø:64 Cø 2ø A3 B6 AØ Øø B1 7C Cø78:64 85 Ø2 C8 B1 \(6485 \mathrm{FB} 8 \emptyset\) Cø80:C8 B1 6485 FC Aø Øø B1 D3 Cø88:FB 99 A7 Ø2 C8 C4 Ø2 Dø B1 Cø90:F6 A9 A7 85 F9 A9 Ø2 8545 Cø98:FA AD 13 Ø3 C9 Ø1 Dø 12 9B CØAØ:AD \(34 \quad\) Ø3 85 FB A9 1085 EA CØA8:FC \(2 \emptyset\) B5 Cø AD FC Ø3 8D 68 CøBø:34 Ø3 4C D1 Cø A9 Øø 8D ED CØB8:FD Ø3 8D FC Ø3 A2 0846 CøCØ:FB \(9 \varnothing\) Ø3 1865 FC 6A 6 E A8 CøC8:FC Ø3 CA DØ F2 8D FD Ø3 BC

CØDØ:6Ø AD 35 Ø3 85 FB A9 AØ D4 CøD8:85 FC \(2 \emptyset\) B5 Cø 18 AD FC 7A CØEØ:Ø3 6D FC Ø3 8D FC Ø3 AD 23 CøE8:FD Ø3 6D FD Ø3 8D FD Ø3 Ø5 \(C \emptyset F \emptyset: A D F C\) Ø3 8D FE Ø3 AD FD \(1 F\) CØF8:Ø3 8D FF Ø3 AD 36 Ø3 8561 C1øø:FB A9 Ø8 85 FC 20 B5 Cø D9 C1ø8:18 AD FC Ø3 6D FE Ø3 8D CD Cl10:FC Ø3 AD FD Ø3 6D FF Ø3 39 Cl18:8D FD Ø3 18 AD FC Ø3 6D 98 C12ø:FA Ø2 8D FC Ø3 AD FD Ø3 Fø Cl28:6D FB Ø2 8D FD Ø3 AD FC CE C13Ø:ø3 8D 37 Ø3 AD FD Ø3 8D A8 C138:38 Ø3 Aø FF C8 B1 F9 C9 77 C140:øø Dø ø1 6ø 8D 39 Ø3 C9 3F C148: 40 9 915 C9 60 FØ ØB \(\quad\) Bø \(D C\) C150:09 38 E9 40 8D 39 Ø3 4C 4B Cl58:60 Cl 38 E9 80 8D 39 Ø3 D1 C160:AD 39 Ø3 85 FB A9 9885 DD C168:FC 20 B5 Cø 18 AD FC 03 A9 C17Ø:6D FC Ø2 8D 3A Ø3 AD FD 3A C178: 03 6D FD Ø2 8D 3B Ø3 A2 BA C180:FF 8C F9 Ø2 AØ Øø E8 8E EB C188:F8 Ø2 18 AD F8 62 6D \(37 \mathrm{C8}\) C190: 0385 FD A9 Øø 6D 38 Ø3 7A C198:85 FE 18 AD F8 62 6D 3A 61 ClAø:ø3 85 FB A9 Øø 6D 3B Ø3 5Ø ClA8:85 FC Bl FB 91 FD EØ 0771 C1BØ: DØ D4 AC F9 Ø2 AD 35 Ø3 3 B C1B8:85 FB A9 2885 FC 20 B5 CB ClCø:CØ 18 AD FC Ø3 6D 36 Ø3 6D ClC8:8D FC Ø3 AD FD Ø3 69 øø 5C ClDø:8D FD Ø3 18 AD FC 93 6D 51 ClD8:FE \(0285 \mathrm{FB} A D \mathrm{FD}\) Ø3 6D A5 ClEØ:FF Ø2 \(85 \mathrm{FC} A D 13\) Ø3 C9 EE ClE8: \(01 \mathrm{D} \emptyset \quad\) Ø8 \(\mathrm{AD} 34 \quad\) Ø3 11 FB C8 ClFø:4C F6 Cl AD 34 Ø3 91 FB 38 ClF8:18 A9 Ø8 6D 37 Ø3 8D 37 E2 C2øø:ø3 A9 øø 6D 38 Ø3 8D 3869 C2ø8: Ø3 4C 3C Cl Øø Øø øø Øø C5
For instructions on entering these programs, please refer to "COMPUTE!'s Guide to Typing In Programs" elsewhere in this issue.

\section*{Program 2: CHARSETMAKER}

JS IØø REM CREATE CHARACTER SE T FOR
BG \(11 \varnothing\) REM 'HI-RES PRINT' ML R OUTINE
MG \(12 \emptyset\) PRINT CHR \((142):\) REM USE CHRS (14) FOR\{2 SPACES \} LOWERCASE
AS 130 PRINT CHR\$ (8): REM DISAB LE CASE CHANGE FROM KEY BOARD
QD 140 INPUT "LOCATION OF CHAR ACTER SET"; N
RB \(150 \mathrm{~A}=\mathrm{N}-\operatorname{INT}(\mathrm{N} / 256) * 256: \mathrm{B}=\mathrm{I}\) NT (N/256)
XC 160 INPUT "FILENAME"; FS
EC \(17 \emptyset\) IF LEN \((F \$)=\varnothing\) THEN \(16 \emptyset\)
DA \(18 \emptyset\) PRINT "WORKING..."
JE 190 REM COPY FIRST 64 CHARA CTERS FROM ROM CHARACTE R SET
SS 2øø POKE 56334, \(\operatorname{PEEK}(56334)\) AND 254
AP \(21 \varnothing\) POKE 1, PEEK (1) AND 251
KK \(22 \emptyset\) FOR J=ø TO 511
CK \(23 \varnothing\) POKE \(J+N\), \(\operatorname{PEEK}(53248+J)\) QF 240 NEXT J
FG \(25 \emptyset\) POKE 1, PEEK (1) OR 4
PF 260 POKE 56334, \(\operatorname{PEEK}(56334)\) OR 1
HF \(27 \varnothing\) CLOSE 15 : OPEN \(15,8,15\) "Iの"
FA \(28 \emptyset\) GOSUB \(41 \varnothing\)
KD 290 OPEN \(2,8,2, \mathrm{~F} \$+\cdots, \mathrm{P}\), W"
JA \(3 \varnothing \emptyset\) GOSUB \(41 \varnothing\)
HQ \(31 \varnothing\) PRINT\#2, CHRS(A);:PRINT \#2, CHR\$(B);

AC \(32 \emptyset\) GOSUB \(41 \varnothing\)
SS \(33 \emptyset\) FOR \(J=\emptyset\) TO 511
PH \(34 \emptyset\) PRINT\#2, CHRS (PEEK (\(\mathrm{J}+\mathrm{N}\)));
DQ 350 NEXT J
AH \(36 \emptyset\) GOSUB \(41 \varnothing\)
XD \(37 \emptyset\) CLOSE 2:CLOSE 15
BJ \(38 \emptyset\) PRINT CHR (9): REM ENABL E CASE CHANGE FROM KEYB OARD
PS \(39 \varnothing\) END
DQ \(4 \emptyset \emptyset\) REM CHECK DISK DRIVE ER ROR STATUS
QR \(41 \varnothing\) INPUT\#15, EX, EXS,TR, SE
BE \(42 \emptyset\) IF EX \(=\varnothing\) THEN RETURN
RF \(43 \emptyset\) PRINT CHRS (18) "DISK ER ROR"
SB \(44 \varnothing\) PRINT EX;EX\$;TR;SE
AB \(45 \emptyset\) GOTO \(37 \varnothing\)

\section*{Program 3: Demo}

KB \(1 \emptyset \emptyset\) REM 'HRPRINT' DEMO
EQ \(11 \varnothing\) IF \(A=\varnothing\) THEN \(A=1:\) LOAD " \(H\) RPRINT", 8, 1
DP \(12 \emptyset\) IF \(A=1\) THEN \(A=2:\) LOAD " H RCHARSET", 8, 1
HD 130 POKE 53280,15
HC 140 REM SET SYS ADDRESSES
SA 150 IN \(=49152\) : \(P R=49207\)
JG 160 REM BI ARRAY IS USED TO DRAW CURVE
RK \(17 \emptyset\) FOR \(\mathrm{J}=\emptyset \mathrm{TO} 7: \mathrm{BI}(\mathrm{J})=2 \uparrow \mathrm{~J}:\) NEXT
KF \(18 \emptyset\) REM BITMAP AT 8192
MP \(19 \emptyset\) BASE=8192
JB 2øø POKE 53272, \(\operatorname{PEEK}(53272)\) \{SPACE\}OR 8
XF \(21 \varnothing\) REM HI-RES
QQ \(22 \emptyset\) POKE 53265, \(\operatorname{PEEK}(53265)\) OR 32
BM \(23 \emptyset\) REM INITIALIZE MULTI/RV S(2), BITMAP AT 8192,CHA RSET AT 16384,COLOR AT \{SPACE\}1024
RG 240 SYS IN, 2, 8192, 16384, \(1 \varnothing 24\)
BK \(25 \emptyset\) REM CLEAR SCREEN AND DR AW CURVE
MA 260 F \(\$=" ": F O R\) J=1 TO \(4 \varnothing: F \$=\) F\$+CHRS (32): NEXT
RH \(27 \emptyset\) FOR J=Ø TO 24:SYS PR, 1 5, Ø, J, F\$:NEXT
PJ \(28 \emptyset\) FOR \(Y=\emptyset\) TO 199 STEP . 5
XX \(290 \mathrm{X}=\operatorname{INT}(16 \varnothing+4 \varnothing\) * SIN(Y/ 1б))
DG \(3 \emptyset \emptyset \mathrm{BY}=\mathrm{BASE}+4 \emptyset\) * \((\mathrm{Y}\) AND 2 \(48)+(Y\) AND 7\()+(X\) AND \{SPACE\}504)
HM \(31 \varnothing\) POKE BY, PEEK(BY) OR (B I(NOT X AND 7))
AB 320 NEXT Y
MX 330 REM INITIALIZE HIRES (1) , BITMAP AT 8192 , CHARSET AT 16384,COLOR AT 1 1024
GD 340 SYS IN, 1, 8192, 16384, \(1 \oslash 24\)
QH \(35 \emptyset\) REM PRINT MESSAGES ON H I-RES SCREEN
HM 360 SYS PR, 6, \(1,1, \quad\) PPRINT HR DEMO"
DJ \(37 \varnothing\) SYS PR, 2, 1, 2, "(C) 1 987 COMPUTE!"
RQ \(38 \emptyset\) SYS PR, 1, 17, 21, "HIT ANY KEY TO EXIT"
HR \(39 \emptyset\) SYS PR, 8, 17, 5, "YOU \{SPACE\}CAN PRINT NORMAL LY"
AM 4øø REM INITIALIZE FOR REVE RSE
DJ \(41 \emptyset\) SYS IN, 2, 8192, 16384, 1024
EM \(42 \emptyset\) SYS PR, 5, 17, 13, "OR
\{SPACE\}IN REVERSE LETTE RS"
JA \(43 \emptyset\) REM NORMAL CHARACTERS A GAIN
RM 440 SYS IN, \(1,8192,16384\), 1024
CG 450 SYS PR, 14, 2, 9, "TIME R:"
HM 460 SYS PR, 14, 2, 17, "SCO RE: "
CS 470 REM UPDATE SCORE AND TI MER
PD \(48 \varnothing\) FOR \(\mathrm{J}=\varnothing\) TO løøøø
EX 490 SYS PR, Ø, 8, 9, TI
FP 500 SYS PR, \(0,8,17, \mathrm{~J}\)
BB 510 GET X\$
JD 520 IF \(X \$=" "\) THEN NEXT J
AD 530 REM BACK TO NORMAL TEXT SCREEN
EP 540 POKE 53265,27:POKE 5327 2,21
PS 550 PRINT CHR (147): END

\section*{Program 4: Relocator}

KJ løø REM THIS PROGRAM RELOCA TES THE
PJ \(11 \emptyset\) REM 'HRPRINT' ML ROUTIN E AND WRITES
CA 120 REM THE RELOCATED CODE \{SPACE\}TO DISK
QS \(13 \emptyset\) IF \(A=\emptyset\) THEN \(A=1: L O A D\) " H RPRINT" \({ }^{\prime \prime} 8,1\)
HJ 140 INPUT "NEW LOCATION FOR HRPRINT"; N
JD \(15 \emptyset\) INPUT "NEW FILENAME FOR HRPRINT";F\$
EX \(16 \emptyset A=\operatorname{INT}(N / 256): B=N-256 * A\)
XB \(17 \emptyset\) PRINT "WORKING..."
RX 18ø CLOSE 15:OPEN 15,8,15," I年
PM \(19 \emptyset\) GOSUB \(41 \varnothing\)
GK 2øø OPEN \(2,8,2, \mathrm{~F} \$+", \mathrm{P}\), W"
AR \(21 \emptyset\) GOSUB \(41 \emptyset\)
RJ \(22 \emptyset\) PRINT\#2, CHRS (B) ; CHRS (A);
JQ \(23 \emptyset\) GOSUB \(41 \varnothing\)
XD 240 FOR J=49152 TO 49675
QR 250 P=PEEK (J)
QK 26 IF \(\mathrm{P}<>76\) AND \(\mathrm{P}<>108\) AND P<>32 THEN PRINT\#2,CHR \$(P) ; : NEXT J
HX \(27 \emptyset \mathrm{Z}=\mathrm{PEEK}(\mathrm{J}+2)\)
JS \(28 \emptyset\) IF \(Z<192\) OR \(Z>194\) THEN \{SPACE \}PRINT\#2, CHR\$(P); : NEXT J
QJ \(290 \mathrm{X}=49152-\mathrm{N}\)
HX 3 Øø \(Y=\operatorname{PEEK}(\mathrm{J}+1)\)
AS \(310 \mathrm{~A}=\mathrm{Y}+\mathrm{Z}\) * \(256-\mathrm{X}\)
JQ \(32 \emptyset \mathrm{Z}=\mathrm{INT}(\mathrm{A} / 256)\)
PE 33 \(\quad \mathrm{Y}=\mathrm{A}-256^{*} \mathrm{Z}\)
KP 340 PRINT\#2, CHR\$ (P); CHR\$ (Y); CHRS (Z);
EF 35 Ø \(\mathrm{J}=\mathrm{J}+2\)
XR 360 NEXT J
FK \(37 \emptyset\) PRINT "NEW SYS VALUE FO R 'IN':";N
KF \(38 \emptyset\) PRINT "NEW SYS VALUE FO R 'PR': " \(\mathrm{N}+55\)
DD 39ø CLOSE 2:CLOSE 15:END
DQ \(4 \emptyset \emptyset\) REM CHECK DISK DRIVE ER ROR STATUS
QR 410 INPUT\#15, EX,EX\$,TR, SE
BE \(42 \emptyset\) IF EX= \(\varnothing\) THEN RETURN
RF \(43 \emptyset\) PRINT CHRS (18) "DISK ER ROR"
SB \(44 \emptyset\) PRINT EX;EXS;TR; SE
SD 450 GOTO \(39 \emptyset\)
©

\title{
Indexing With Sorts
}

\author{
Thomas P. Shultz
}

This article explains a simple way to improve the efficiency of string sort operations in BASIC. Although the programs are written for the Commodore 64 , the technique can be adapted for almost any computer with BASIC.

Many programs require that you sort a group of strings in alphabetical order. Whether you're creating an address file, keeping track of recipes, or compiling statistics for the local softball team, sorting is often a fundamental requirement. The simplest method of sorting involves exchanging the contents of one string for another. On the Commodore 64 , exchanging strings of different lengths causes an internal process known as garbage collection, in which the computer reclaims small amounts of memory left vacant by the exchanges. Though it does conserve memory, garbage collection can be very time consuming. This article demonstrates a method for avoiding garbage collection delays and speeding up alphabetical sorts.

To understand how the improvement works, let's look at the
conventional method for storing and sorting strings. Program 1 demonstrates an elementary bubble sort of a string array containing 500 elements. The program first creates 500 strings, each containing a random assortment of 20 characters. Then it sorts the strings into alphabetical order.

The sorting occurs in lines \(210-250\). We sift through the array, comparing pairs of strings. If the first string has a lower alphabetical value than the second (line 230), we conclude that it's in the right place and don't exchange it. Otherwise, we exchange the two strings through the use of a temporary string named A\$ (line 240). To evaluate the efficiency of this sort, the program displays the time required to sort the array, as well as the amount of memory required for strings. Depending on its original position, a given string may need to be recopied many times before the sort is complete. This process is slow in itself, and it also creates the likelihood of significant garbage collection delays.

Program 2 shows how to improve the sort through the use of a matching numeric array. The basic idea is to use the numeric array as an index into the string array. Lines 210-260 perform the sort in this program. Again, the basic technique is to compare pairs of items, swapping them if they're not already in the desired order. But instead of exchanging the strings themselves, we simply change the elements of the numeric array which point to those strings.

The result is a dramatic savings in time and memory consumption. In one test, Program 1 took 12,616 seconds (just over \(31 / 2\) hours) to complete the sort, while Program 2 did the job in only 4820 seconds. The secret is to leave the strings in their original order and to switch the numeric indices instead. Lines 290310 show one way to access the strings once they have been sorted. You could also use an expression like \(L \$(S O(X)\)), where \(X\) represents the string you wish to access.

This technique should work with little or no modification on most computers with BASIC. (Atari BASIC is a notable exception, since it doesn't support string arrays.) If
you have a Commodore 64, you may want to refer to the "Omega Sort" article elsewhere in this issue, which follows the same basic idea but takes advantage of a machine language routine to perform the sort even faster. Commodore programmers should note that the index array in Program 2 is a floating point array, not an integer array. In some versions of BASIC, integer values work faster than floating point variables, but this is not the case in Commodore BASIC.

For instructions on entering these programs, please refer to "COMPUTEI's Guide to Typing In Programs" elsewhere in this issue.

\section*{Program 1: Bubble Sort}
\begin{tabular}{|c|c|c|}
\hline GS & 100 & PRINT "CREATING \(5 \emptyset \emptyset\) RAN \\
\hline & & DOM STRINGS" \\
\hline RX & 110 & DIM LS (50ø) \\
\hline GB & 120 & FOR \(J=1\) TO 5øø \\
\hline RS & 130 & X\$="":FOR K=1 TO 2ø \\
\hline XP & 140 & ```
X$=X$+CHR$ (INT (RND (1)*2
5)+65)
``` \\
\hline RA & 150 & NEXT K \\
\hline XB & 160 & \(L \$(J)=X \$\) \\
\hline RB & 170 & NEXT J \\
\hline CE & 180 & \[
\begin{aligned}
& \mathrm{Ml}=\operatorname{PEEK}(52) * 256+\operatorname{PEE} \\
& \mathrm{K}(51)
\end{aligned}
\] \\
\hline QF & 190 & PRINT "SORTING" \\
\hline XD & \(2 ø \emptyset\) & TIS = "øøøøøø" \\
\hline BF & 210 & FOR X = 499 TO Ø STEP 1 \\
\hline KH & 220 & FOR Y \(=1\) TO X \\
\hline PM & 230 & IF \(L \$(Y)<L \$(Y+1)\) THEN 250 \\
\hline QG & 240 & \[
\begin{aligned}
& A \$=L \$(Y): L \$(Y)=L \$(Y \\
& +1): L S(Y+1)=A \$
\end{aligned}
\] \\
\hline DB & 250 & NEXT: NEXT \\
\hline
\end{tabular}

GS 1øØ PRINT "CREATING 5øØ RAN DOM STRINGS"
RX 110 DIM LS (5øø)
GB \(12 \emptyset\) FOR J=1 TO 50ø
130 XS=" :FOR K=1 TO 20
(5) +65 )

150 NEXT K
RB 170 NEXT J
CE \(180 \mathrm{Ml}=\operatorname{PEEK}(52) * 256+\operatorname{PEE}\) K (51)
QF \(19 \varnothing\) PRINT "SORTING"
XD 2øø TIS = "øøøøøø"
BF \(21 \varnothing\) FOR \(\mathrm{X}=499\) TO Ø STEP 1

KH 220 FOR Y \(=1\) TO X
QG \(240 \begin{aligned} & 25 \emptyset \\ & \mathrm{~A} \$ \\ & \mathrm{~L}\end{aligned} \mathrm{~L} \$(\mathrm{Y}): \mathrm{L} \$(\mathrm{Y})=\mathrm{L} \$(\mathrm{Y}\) \(+1): L \$(Y+1)=A \$\)
DB 250 NEXT:NEXT

HH 260 T\$ = TI\$
QD \(27 \emptyset \mathrm{M} 2=\operatorname{PEEK}(52) * 256+\operatorname{PEE}\) K (51)
AA \(28 \emptyset\) FOR \(X=1\) TO 5øø
SP 290 PRINT LS (X)
FD 3øø NEXT
KJ \(31 \varnothing\) PRINT "\# BYTES USED FOR STRINGS: ";M1-M2-6
EX \(32 \emptyset\) PRINT " \(\{6\) SPACES \(\}\) \# SECO NDS REQUIRED: ";T\$

\section*{Program 2: Bubble Sort With Index}

GS \(10 \emptyset\) PRINT "CREATING \(5 \emptyset \emptyset\) RAN DOM STRINGS"
DA 110 DIM LS(5øø),SO(5øø)
GB \(12 \emptyset\) FOR J=1 TO 5øø
RS \(13 \varnothing \mathrm{X} \$=" \mathrm{~F}: \mathrm{FOR} \mathrm{K}=1\) TO \(2 \emptyset\)
XP \(14 \emptyset\) X\$=X\$+CHR\$ (INT (RND (1)*2 5) +65 )

RA 150 NEXT K
HS 160 LS (J)=X\$:SO \((J)=J\)
RB 170 NEXT J
CE \(180 \mathrm{Ml}=\operatorname{PEEK}(52) * 256+\operatorname{PEE}\) \(K(51)\)
QF 190 PRINT "SORTING"
XD 20ø TIS = "øøøøøø"
BF \(21 \emptyset\) FOR X \(=499\) TO Ø STEP 1
CG 220 FORZ \(=1\) TO X
XS 230 YA \(=S O(Z): Y B=S O(Z+1)\)
PB 240 IF LS \((Y A)\) < LS (YB) THEN 260
JB \(25 \emptyset \mathrm{SO}(\mathrm{Z})=\mathrm{YB}: S O(\mathrm{Z}+1)=\mathrm{YA}\)
XA 260 NEXT: NEXT
DJ 270 T = \(\mathrm{TI} \$\)
JC \(280 \mathrm{M} 2=\operatorname{PEEK}(52) * 256+\operatorname{PEE}\) K (51)
QD 290 FOR \(X=1\) TO 5øø
\(X X \quad 3 \varnothing \varnothing Y=S O(X)\)
RM 310 PRINT LS(Y)
RF 320 NEXT
BG 33Ø PRINT "\# BYTES USED FOR STRINGS: ";M1-M2-6
QR \(34 \emptyset\) PRINT " \(\{6\) SPACES \(\}\) \# SECO NDS REQUIRED: ";T\$ ©

> To receive additional information from advertisers in this issue, use the handy reader service cards in the back of the magazine.

\section*{From the publishers of COMPUTE!}


\section*{May 1987 COMPUTE! Disk}

All the exciting programs from the past three issues of COMPUTE! are on one timesaving, error-free, floppy disk that is ready to load on your Apple II, II + , IIe, and IIc computers. The May 1987 COMPUTE! Disk contains the entertaining and useful Apple programs from the March, April, and May 1987 issues of COMPUTE!.

The May 1987 COMPUTE! Disk costs \(\$ 12.95\) plus \(\$ 2.00\) shipping and handling and is available only from COMPUTE! Publications.

For added savings and convenience, you may also subscribe to the COMPUTE! Disk. At a cost of only \(\$ 39.95\) a year (a \(\$ 12.00\) savings), you'll receive four disks, one every three months. Each disk will contain all the programs for your machine from the previous three issues of COMPUTE!. To order a subscription, call toll free 800-247-5470 (in IA 800-532-1272).

This is an excellent way to build your software library while you enjoy the quality programs from COMPUTE!.

Disks and subscriptions are available for Apple, Atari, Commodore 64 and 128, and IBM personal computers. Call for details.

For more information or to order the May 1987 COMPUTE! Disk, call toll free 1-800-346-6767 (in NY 212-887-8525) or write COMPUTE! Disk, P.O. Box 5038, F.D.R. Station, New York, NY 10150.

\section*{Macintosh File Protection}

Sentinel is a data-security program for locking up your files on the Macintosh. You can secure your private files with one mouse click. Locked files cannot be accessed without a password, nor can they be copied using disk-recovery programs. Sentinel also encrypts files to DES standards.

DiskFit is a hard-disk backup utility that backs up incrementally and automatically. The program creates a smart set of disks which it continually updates. DiskFit revises the files on the same floppy disk rather than writing the altered files to a new disk. All the files are kept in standard Apple format so they appear as icons on the screen. DiskFit also identifies a growing file and moves it to a new disk or splits the file onto two disks.

Retail price for Sentinel and DiskFit is \(\$ 74.95\) each.

SuperMac Software, P.O. Box 390725, Mountain View, CA 94039 Circle Reader Service Number 216.

\section*{PC Communications Software}

Headlands Communications has released PC-Talk4, the fourth version of this data-communications software. PC-Talk 4 has an errorchecking protocol for accurate file transfers; screen emulation of VT100/52 as well as the standard TTY terminals, expanded macro capability, and expanded dialing directory which allows a single keystroke command for up to 990 phone numbers; and split-screen editing for privacy. You can stay in PC-Talk4 and still access DOS commands, subdirectories, view DOS files, and check available disk space. Plus, there are quick online baud-rate changes that use only one keystroke to change from 300 to 9600 bps .

PC-Talk4 is available for the IBM PC and compatibles. Laptop versions are also available for Toshiba and Zenith computers. Retail list price is \(\$ 129\), with upgrades priced at \(\$ 45\).

Headlands Communications, P.O. Box 8, 1624 Tiburon Blvd., Tiburon, CA 94920-0008
Circle Reader Service Number 217.

\section*{Zoomracks II For The ST}

Quickview has released Zoomracks II, an upgraded version of the Zoomracks database and word processor for the Atari ST. New features include arithmetic functions, mail merge, and report formatting.

Quickview has also introduced a Business Start Kit which contains over 35 Zoomracks templates and output forms for invoicing, payables, prospecting, area codes, daily calendar, names and addresses, checkbook, phone logs, and many other small-business uses.

There's also a Home Start Kit of templates and output forms for home use. It offers names and addresses, checkbook balancing, phone logs, gift lists, recipes, cookbook indexes, and other applications.

These Quickview products are available for the Atari ST. Zoomracks II retails for \$119.95. Each Starter Kit sells for \$19.95.

Quickview Systems, 147 Main St., Ste. 404, Los Altos, CA 94022 Circle Reader Service Number 218.

\section*{PrintMaster Plus Update}

Unison World has updated PrintMaster Plus for the Amiga to include the ability to save graphics to the IFF format and support Amiga's color screens. With this program, you can create customized signs, banners, stationery, calendars, and greeting cards. Text can be mixed with the more than 100 graphics included. There is a built-in graphics editor to modify artwork or save
it to disk. Ten type fonts can be created in five styles-standard, shadow, silhouette, rain, or checkered. The program features both monthly and weekly calendar routines.

PrintMaster Plus is not copyprotected. It is available for MS-DOS-compatible computers at \(\$ 59.95\), for the Commodore 64/128 at \(\$ 34.95\), for the Atari ST at \(\$ 39.95\), and for the Amiga at \(\$ 49.95\).

Unison World, 2150 Shattuck Ave., Ste. 902, Berkeley, Ca 94704 Circle Reader Service Number 219.

\section*{Atari Eight-Bit \\ Combat Simulation}

Firebird Licensees has released MRCA-Mach 2, a combat flight simulator for the Atari eight-bit computers. This game simulates the USAF F-15 jet fighter with 3-D cockpit displays, aerobatic maneuvers, air-to-air combat, crosswinds, turbulence, blind landings, training modes, and pilot skill ratings. The package includes a full-color poster and a user's manual. A joystick is required.

Suggested retail price is \$24.95.

Benford Communications, 520 Havens Cove Rd., Bricktown, NJ 08723-6940
Circle Reader Service Number 220.

\section*{PC-Based Die \(\dagger\)}

Munch is a menu-driven, computerbased diet and nutrition program for the MS-DOS-compatible computers. Each day you enter the food you have eaten, and the program calculates the carbohydrates, proteins, fats, and kilocalories you have consumed. Then it compares this with a reasonable diet for someone with your weight, height, sex, and age, and suggests ways you might improve your diet. The emphasis is on a food exchange
system, so the program can be used
by dieters and diabetics.
Munch runs on the IBM PC, PCjr , and any other MS-DOSbased computers.

Suggested retail price is \$39.95.

Pat Munyon \& C.R. Smolin, 7760 Fay Ave., Suite J, La Jolla, CA 92037
Circle Reader Service Number 221.

\section*{Scholastic Writing Program}

Scholastic Software has released an outlining and writing software program for students in grades 6 and up. First Draft guides students from organizing ideas to printing essays, reports, and stories. Help screens explain each function in the program. Students can print their work in outline form or in report form. Outlines can be saved as files compatible with The Bank Street Writer and most other word processors.

First Draft is available in school and home editions for the Apple II series with 64 K , IBM PC with 128 K , and Tandy 1000. The school edition contains a program disk and a data disk, backup disks, a user handbook, a reference guide, and suggestions for student activities. The home edition contains a program disk and data disk plus the user handbook.

Retail price for the home edition is \(\$ 69.95\). The school edition costs \(\$ 87.45\), and lab packs and educator discounts are available.

Scholastic Software, 730 Broadway, New York, NY 10003
Circle Reader Service Number 222.

\section*{New Games From SSI}

Strategic Simulations has announced several new games for personal computers. Battlecruiser provides hours of simulated ship-to-ship combat on the Atlantic Ocean during World Wars I and II. One or two advanced game players have the option of fighting battles in either war, using the scenarios on the disk or creating their own scenarios. The WWI disk has four scenarios with ship types for Britain and Germany. The WWII disk has ship types from Britain, France, Germany, and Italy with four sce-narios-Cape Tuelada, the Bis-
marck chase, Channel Dash, and Sirte. Players choose from 158 classes of warships or modify ship data to create their own warships. During combat, the computer keeps track of shell hits, flooding, fire, and damage to the ships.

Battlecruiser is available for Apple II-series, Commodore 64/ 128, and Atari eight-bit computers.

Roadwar 2000 is now available for the IBM PC, Atari ST, Amiga, and Macintosh computers in addition to the Apple II series and Commodore 64 . This futuristic adventure game centers on the survival of the fittest. You are a gang leader who must conquer a city by collecting soldiers, vehicles, and supplies. Once in control, you have to contact eight scientists crucial to the survival of the world and return them to your research base. There are 19 vehicle types and an assortment of supplies to help you. Social interaction with residents, wanderers, cannibals, and foreign armies is important in your mission. The playing field is a geographically accurate map of the US and parts of Canada and Mexico.

Realms of Darkness is a graphic adventure game in which you use command phrases to guide players in and out of tight spots. An adventure-mode parser lets you talk directly to game characters who understand over 100 verbs and nouns.

Your goal is to defeat the Rogue Alliance in their 20 -level dungeon stronghold of Darkness using seven comrades. You have to survive seven different action scenarios to win.

Realms of Darkness provides over 150 hours of play for intermediate players. A joystick is optional.

SSI now has a version of Phantasie available for the Atari eight-bit machines, and Phantasie II available for the Atari ST. Phantasie is a multiple-character role-playing game where players assemble a party of one to six characters to search the Isle of Glenor for nine rings to rid their land of the Dark Lord. There are eight races and six classes of characters to choose from, and over 80 types of monsters to fight.

Phantasie II takes place on the Isle of Ferronrah. In this game, you

\section*{Does Your Computer Speak To strangers? \\ Only if you want it to with the Lockheed-GTEX GTX 100 Secure Modem.}

The GTX-100 secure modem is an electronic barrier for your data files. This modem uses state-of-the-art technology designed especially to protect your data bases from unauthorized
telecommunication access. It uses a sophisticated callback/password sequence to authenticate all callers attempting to access your computer files via the telephone lines. If the GTX-100 does not "clear" the caller, computer access is denied. After qualifying the caller and allowing him to gain access to your computer, the GTX X-100 then functions as a standard \(300 / 1200\) baud intelligent modem. And, it's very user friendly.


\section*{LOCKHEED GHTE100 THE SECURE MODNM}

\section*{Price \\ Now Only... \\  \\ Act Fast. Quantity Limited} Add \(\$ 6.00\) for shipping \& handling 30 DAY MONEY BACK GUARANTEE

\section*{FEATURES:}
- 300/1200 baud external full feature, intelligent modem
- Interfaces with standard RS-232C (terminal or CPU mode)
- Compatible with major communications packages
- Call progress tone detection displayed on terminal
- Auto-dial, Auto-answer with tone or rotary pulse dialing
- 4 operating modes, 3 secure or conventional intelligent modem operation
- Battery backup of memory
- 2 year warranty


Toll Free: 1-800-523-2445 ex. 125 In Pa. 1-800-222-2070 ex. 125 Outside the continental U.S.:

305-486-6551
must sail to the magical Isle to capture and destroy the Dark Lord's powerful and evil Orb.

Battlecruiser has a suggested retail price of \(\$ 59.95\). Roadwar 2000, Realms of Darkness, Phantasie, and Phantasie II each retail for \(\$ 39.95\).

Strategic Simulations, 1046 N. Rengstorff Ave., Mountain View, CA 94043
Circle Reader Service Number 223.

\section*{Clip Art Package For PaintPro}

Abacus Software has released a clip art package for PaintPro, an ST graphics and art program. PaintPro Library \#1 contains hundreds of symbols and features for architecture, electronics, and graphicdesign uses. They can be used in the three display resolutions of the ST. There are also five new fonts that are GDOS compatible.

Suggested retail price for PaintPro Library \#1 is \$29.95.

Abacus Software, P.O. Box 7219,
Grand Rapids, MI 49510
Circle Reader Service Number 224.

\section*{SONY.}
3.5" DISKETTES

Certified by Apple for MacIntosh \({ }^{\text {TM }}\)
- Salaty Auto Shutter protects against fingerprints and dust
- Salety Auto Design is heat-resistant and guards against disk damage during handling
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Price Per Diskette } \\
\hline & SS & DS \\
\hline Box & 1.09 & 1.59 \\
\hline Bulk & 1.17 & 1.29 \\
\hline \\
GUARANTEED \\
\(100 \%\) ERROR FREE \\
\hline
\end{tabular}

POLY PACK \(51 / 4^{\prime \prime}\) DISKETTES
(From Leading Mfr.)
100\% Error Free
Lifetime Warranty
- Blank Jackets
- WP Tabs
- Envelopes

Sold in Lots of 100 Only

\section*{QUALITY PRINTER RIBBONS}

\section*{Apple Imagewriter \\ Okidata 80/82/83 \\ . \(\$ 3.95\) ea \\ Epson LX 80/90 .}

Sold 6/Box (Minimum)
Min. Order \(\$ 25.00\) S\&H: Continental USA: \(\$ 4.00 / 100\) or fewer disks: discount at 300 . Ribbons \(\$ .25\) each. Foreign orders APO/FPO, please call. MI residents add 8:30 AM \(-7: 00\) PM.


Precision Data Products \({ }^{\text {™ }}\) (616) 452-3457 • Michigan 1-800-632-2468 Outside Michigan 1-800-258-0028

\section*{New Flight Simulator II Scenery Disk}

SubLOGIC has released scenery disk number 7 for the Commodore 64 and 128 versions of Flight Simulator II and Jet. This disk covers the East Coast of the US from Washington, DC, to Key West, Florida, and features many miles of coastlines, rivers, roads, railroads, racetracks, transmitter towers with blinking lights, and elevated bridges. There are over 130 airports, including a dozen military airports. The scenery includes the Washington Monument, White House, Capitol Building, Pentagon, Lincoln Memorial, and a space shuttle on the launch pad.

You must have Flight Simulator II or Jet to use this disk.

Retail price is \(\$ 19.95\).
SubLOGIC, 713 Edgebrook Dr., Champaign, IL 61820
Circle Reader Service Number 225.

\section*{Peripherals, Software From Progressive}

Progressive Peripherals \& Software has introduced several new products.

The Megaboard 2 is a twomegabyte RAM-expansion board for the Amiga 1000. The board, which uses programmable array logic, is \(4 \times 10^{1 / 2}\) inches, so it fits against the Amiga without taking up too much workspace.

CLI-Mate is a disk-management utility program for the Amiga that bypasses the CLI and Workbench. Using the mouse, you can rename or delete files and create directories and multiple file copies. There is a print/display option so you can adjust page length, margins, and page number, or print with or without line numbers in ASCII format. A pattern/wildcard utility searches the directory for similar filenames.

Vizawrite, for the Amiga, is a word processing package written entirely in 68000 machine code for speed and compactness. This is a WYSIWYG (What You See Is What You Get) format, so you can experiment with fonts, type styles, and page layout before printing. Vizawrite supports all Amiga proportional and fixed-width fonts, bold, underline, italic, superscript, subscript, and most international characters.

With Vizawrite you can load files from other packages-including graphics, text, or IFF-format pic-tures-into one of the windows and incorporate them into your document. There's a glossary so you can define commonly used phrases and insert them into the text. And the find-and-replace function searches for a defined string and replaces it with another.

Vizawrite requires 256 K memory. It has Workbench 1.2 installed on the disk and requires Kickstart 1.2 or greater. Recommended printers are Hewlett-Packard LaserJet, NEC Pinwriter P6/P7, Juki 6100 daisywheel, and Diablo-compatible printers. Vizawrite supports text and graphics created with DeluxePaint, Graphicraft, Textcraft, and other Amiga software packages.

Retail price: \(\$ 599.95\) for the MegaBoard 2; \$39.95 for CLI-Mate; and \(\$ 149.95\) for Vizawrite.
Progressive Peripherals \& Software, 464 Kalamath St., Denver, CO 80204 Circle Reader Service Number 226.

\section*{Football For The PC}

One or two players control the field in this gridiron simulation from SubLOGIC. With Football, you choose the team and call the playsboth offensive and defensive-and then participate on the field.

Each of your football players has different physical attributes and performance characteristics which you can adjust to fit your needs.

Football requires an IBM PC, PCjr, or PC-compatible with 256 K memory, a color graphics adapter card or the equivalent, and a com-posite-color or RGB monitor. The PCjr requires a joystick for the twoplayer mode.

Retail price is \(\$ 39.95\). Versions for other computers should be available by the time you read this.

SubLOGIC, 713 Edgebrook Dr., Champaign, IL 61820
Circle Reader Service Number 227.

\section*{Guessing Game}

Buzzword is a new game with 200 categories in levels from bright to gifted. Players use clues to guess the words and increase their vocabulary in the process. It's available for the Atari eight-bit, Commodore 64, and IBM PC computers for
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{IBM SOFTWAR} \\
\hline \multicolumn{2}{|l|}{ACCOLADE} & Buraeucracy...... 524 \\
\hline Mean 18 Golf & 530 & Hiltchhikers Guide .. 524 \\
\hline an 18 F & & \\
\hline & & 24 \\
\hline \multirow[t]{2}{*}{} & & \\
\hline & & \\
\hline 兂 & 30 & \\
\hline Hacker \(2 .\). & S24 & MICRO \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ARTW}} & Baseball. ......... 524 \\
\hline & & -Box Scoro/Stats \\
\hline Bridge 4.0 & S16 & \\
\hline P P & s25 & \\
\hline Data Disk\#1 & & \\
\hline Data Dlsk \#2 Male & \$14 & -1986 Team Dlsk.... 512 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Data Disk \#3 Female . \(\$\) AVALON HILL}} & \\
\hline & & MICROPROS \\
\hline \multirow[t]{4}{*}{Super Bowl Sunday S.B.S. Champs Disk S.B.S. '85 Team Disk Portal} & . 21 & F. 15 Strike Eag \\
\hline & . 514 & Sllent Se \\
\hline & & MINDSCAPE \\
\hline & & Amarican Challenge 524 \\
\hline \multicolumn{2}{|l|}{BRODERBUND} & \\
\hline \multirow[t]{2}{*}{Anclent Art of War Carmen Sandiego} & \$27 & 19 \\
\hline & & 19 \\
\hline & & Infiltrator \(\ldots . . \begin{array}{r}\text { S19 } \\ \hline 19\end{array}\) \\
\hline & \$21 & \\
\hline \multirow[t]{2}{*}{Print Shop .} & & \\
\hline & & \\
\hline P.S. Gra & & Ba \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Llbrary \#1 or \#2 \$2 Toy Shop}} & \\
\hline & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{CENTRAL POINT}} & 24 \\
\hline & & \\
\hline Copy 2 & & \\
\hline PC Tools & & SIERR \\
\hline \multicolumn{2}{|l|}{DATA EAST} & Black Cauldr \\
\hline Commando & 524 & KIng's \\
\hline T Tean & & 1, 2, or \(3 \ldots \ldots .532 \mathrm{Ea}\). \\
\hline ELECTRONIC ARTS & & Space Ques \\
\hline & Sotware Classic S & SPECTRUM HOLOBYTE \\
\hline Arhon .......... 59 & 59.88 & Ga \\
\hline \multirow[t]{2}{*}{} & 59.88 & \\
\hline & 59.88 & w \\
\hline \multicolumn{2}{|l|}{One-on-One .... 59.} & SPRINGBOAR \\
\hline PInball Const & 59.8 & Certificato \(M\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Seven CIties Gold . . . 59.8 Super Boulder Dash . 59.8}} & C.M. Llbrary \\
\hline & & Newsroom ......... 536 \\
\hline \multicolumn{2}{|l|}{SLECTRONIC ARTS} & Nowsroom Pro ..... 589 \\
\hline Amnesila. .......... & \$29 & N.R. CIIP Art H1 . . . . 519 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & N.R.Cllip Art \\
\hline & & N.R. Cllp Ar \\
\hline \multirow[t]{2}{*}{Murder Party
Scrabble} & . 52 & P.S. Grap \\
\hline & \$26 & \\
\hline & \$32 & Sublog \\
\hline \multicolumn{2}{|r|}{53} & Football \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{\text {EPY }}\) World}} & \\
\hline & & telarium \\
\hline ate A C & 519 & Amaz \\
\hline Destroy & \$24 & Drago \\
\hline ummer Game & 52 & \\
\hline World Game & 524 & 38 \\
\hline World Karate Champ. & & Perry Mason . . . . . 59.88 \\
\hline gamestar & & Rendezvous ..... 59.88 \\
\hline \multicolumn{2}{|l|}{lamp. Basoball . . . 52} & UNISON WORLD \\
\hline amp. Basketbal & \$24 & Nowsmaster ....... 559 \\
\hline LCh & \$24 & Printmaster Plus .... 536 \\
\hline \multicolumn{2}{|l|}{HI-TECH EXPRESSIONS} & Art Gallery 1 or 2 . \(\mathbf{5 1 9 \mathrm { Ea }}\). \\
\hline Ware ..... \({ }^{\text {S }}\) & \({ }^{59.88}\) & VALUE TIME \\
\hline ard Ware . . . . . . . 68 & \$6.88 & Art Llibrary 1 or 2.56 .88 Ea \\
\hline art Ware ....... 56 & \({ }^{56.88}\) & Ca \\
\hline  & 59.88 & 88 \\
\hline NFOCOM & & Greeting Cards .... 56.88 \\
\hline Ballyhoo & & SIgns 4 Banners .. 56 \\
\hline
\end{tabular}

\section*{COMMODORE 64 \& 128}
\begin{tabular}{|c|c|}
\hline ACCESS & Chessmaster 2000 . \$26 \\
\hline Tenth Frame . . . . . . \(\$ 25\) & Marble Madness . . . . \(\$ 23\) \\
\hline World Class & Pegasus . . . . . . . . . \(\$ 25\) \\
\hline Leader Board . . . . \$25 & Star Fleet \(1 . . . . . .\). \$26 \\
\hline ACCOLADE & World Tour Golf . . . \$25 \\
\hline Ace of Aces . . . . . . . \(\$ 19\) & EPYX \\
\hline Comics . . . . . . . . \(\$ 19\) & Champ. Wrestling . . \(\mathbf{\$ 2 3}\) \\
\hline Fight Night . . . . . . \(\$ 19\) & Create A Calendar. . . \(\$ 19\) \\
\hline Hardball . . . . . . . . . \(\$ 19\) & Destroyer . . . . . . . . \(\mathbf{\$ 2 3}\) \\
\hline Killed UntII Dead . . . \(\mathbf{\$ 1 9}\) & Fast Load (cart) . . . . \(\mathbf{\$ 2 3}\) \\
\hline ACTION SOFT & Sub Battle Simulator \$25 \\
\hline Up Periscope! . . . . . \(\$ 19\) & Summer Games 2 . . . \$23 \\
\hline ACTIVISION & Super Cycle . . . . . . . \(\$ 23\) \\
\hline Allens . . . . . . . . . . . . \$23 & World Games ....... \(\$ 23\) \\
\hline Gamemaker . . . . . . . \$25 & \\
\hline Gamemaker Library Disks & Ellte . . . . . . . . . . \(\$ 19\) \\
\hline Sports or Scl. Fl. \$14 Ea & Starglider . . . . . . . . \(\mathbf{\$ 2 5}\) \\
\hline Greeting Card Maker. \(\$ 23\) & The Pawn . . . . . . . . . \(\mathbf{\$ 2 5}\) \\
\hline Hacker 2. . . . . . . . . . \(\mathbf{\$ 2 3}\) & Tracker . . . . . . . . . . \(\mathbf{\$ 2 5}\) \\
\hline Music Studlo . . . . . . \(\mathbf{\$ 2 3}\) & GAMESTAR \\
\hline Portal . . . . . . . . . . . . \(\mathbf{\$ 2 5}\) & Champ. Baseball. . . \$23 \\
\hline Shanghal . . . . . . . . \(\mathbf{\$ 2 3}\) & Champ. Basketball . \(\$ 23\) \\
\hline Transformers ..... \(\$ 23\) & GFL Champ. Football\$23 \\
\hline ARTWORX & INFOCOM \\
\hline Bridge 4.0 . . . . . . . \(\$ 16\) & Bureaucracy \(128 . . .\). \\
\hline Highland Games . . \(\$ 9.88\) & Hitchhlker's Guide . . \(\mathbf{\$ 2 3}\) \\
\hline Pollce Cadet . . . . . \(\$ 9.88\) & Hollywood Hijinx . . \$23 \\
\hline Strip Poker . . . . . . . . \(\mathbf{\$ 2 1}\) & Leather Goddesses . \$23 \\
\hline Data Disk \#1 Female . \(\$ 14\) & Zork Trilogy . . . . . . . \(\$ 39\) \\
\hline Data Disk \#2 Male . . \(\$ 14\) & MASTERTRONIC \\
\hline Data Disk H3 Female . \$14 & Bounder . . . . . . . \(\$ 6.88\) \\
\hline Thal Boxing . . . . . \(\$ 9.88\) & Captain Zap . . . . \(\mathbf{\$ 6 . 8 8}\) \\
\hline AVALON HILL & Knight Games . . . \(\$ 6.88\) \\
\hline Super Sunday ...... \$21 & Ninja ........... 56.88 \\
\hline S.B.S. 1985 Team Disk \$14 & Pro Golf. . . . . . . . . 56.88 \\
\hline S.B.S. Champs Disk . \$14 & Shogun . . . . . . . . 56.88 \\
\hline AVANTAGE & Vegas Poker \\
\hline Spy vs. Spy 1 \& 2 . \(\$ 9.88\) BERKELEY SOFTWORKS & \[
\begin{aligned}
& \text { Blackjack ...... } 56.88 \\
& \text { MICROPROSE }
\end{aligned}
\] \\
\hline GEOS 64 . . . . . . . . . 539 & Gunship . . . . . . . . . \(\mathbf{\$ 2 3}\) \\
\hline GEOS add-ons . . . . . Call & Sllent Service . . . . . \(\mathbf{\$ 2 3}\) \\
\hline BRODERBUND & MINDSCAPE \\
\hline Print Shop . . . . . . . \(\mathbf{\$ 2 6}\) & American Challenge . \(\mathbf{\$ 1 9}\) \\
\hline P.S. Graphics LIbran & Bop \& Wrestle . . . . . \$19 \\
\hline \#1, \#2 or \#3 . . . \(\$ 16 \mathrm{Ea}\). & Defender of the Crown \$25 \\
\hline Toy Shop . . . . . . . . . \(\$ 39\) & Fist. . . . . . . . . . . . . \(\$ 19\) \\
\hline DATA EAST & Sup \\
\hline Breakthru. . . . . . . . . \(\mathbf{\$ 2 3}\) & \\
\hline Commando ....... . \(\mathbf{\$ 2 3}\) & Uchi Mata ........... \(\$ 19\) \\
\hline Express Ralder . . . . \(\mathbf{\$ 2 3}\) & Autoduel \(\$ 32\) \\
\hline Ikari Warriors . . . . . . \(\mathbf{\$ 2 3}\) & Autoduel . . . . . . . . \(\$ 32\) \\
\hline Tag Team Wrestling . \(\mathbf{\$ 2 3}\) & Moeblus . . . . . . . . . . . . \(\$ 388\)
Ultima 4. \\
\hline ELECTRONIC ARTS & SPRINGBOARD \\
\hline Software Classic Series: & Certificate Maker ... \$32 \\
\hline Archon 2: Adept . . . \(\$ 9.88\) & C.M. Llbrary \#1 . . . . \(\$ 23\) \\
\hline Heart of Africa . . . \(\$ 9.88\) & Newsroom . . . . . . . . \(\$ 32\) \\
\hline Mail Order Monsters \(\$ 9.88\) & N.R.Clip Art \#1 or \#3 \$19 \\
\hline Movie Maker . . . . . \(\$ 9.88\) & N.R.Cllp Art \#2 . . . . \(\$ 25\) \\
\hline Music Const. Set . . \$9.88 & SSI \\
\hline One-on-One . . . . \(\$ 9.88\) & Gettysburg . . . . . . \(\$ 37\) \\
\hline Pinball Const. Set . \(\mathbf{\$ 9 . 8 8}\) &  \\
\hline Seven Cities Gold . \(\$ 9.88\) & Rings of ZIIfin . . . . . \(\mathbf{\$ 2 5}\) \\
\hline Skyfox . . . . . . . . 59.88 & Shard of Spring . . . . . \(\mathbf{\$ 2 5}\) \\
\hline Super Boulder Dash . \$9.88 & Wizard's Crown . . . . . \(\mathbf{\$ 2 5}\) \\
\hline Touchdown Football 59.88 & SUBLOGIC \\
\hline Ultimate Wizard ... 59.88 & Baseball. . . . . . . . . \(\$ 32\) \\
\hline ELECTRONIC ARTS & Flight SImulator 2 . . \(\$ 32\) \\
\hline America's Cup Salling \$23 & F.S. Scenery Disks \$14 Ea. \\
\hline Arctic Fox . . . . . . . \(\mathbf{\$ 2 3}\) & Football . . . . . . . . . \(\$ 28\) \\
\hline Bard's Tale 1 or \(2 \mathbf{\$ 2 6 E a .}\) & Jet . . . . . . . . . . . . . \(\$ 28\) \\
\hline
\end{tabular}

\section*{APPLE II SERIES}

ACCESS
Triple Pack: BH1, BH2,
Rald Over Moscow \$14
World Class
Leader Board . . . . \(\$ 22\) ACCOLADE
Fight Night Hardball
ACTIVISION
Gamemaker Llbrary Disks: Scl-FI
Sports
Gamemaker ......... \(\$ 30\)
Hacker 2.
Murder on the
Misslssippl
Music Studio GS
Paintworks GS
Portal
Shanghal
Shanghal GS
Tass TImes GS
ARTWORX
Bridge 4.0
Internatlonal Hockey \(\$ 16\)
Strip Poker
Data Disk \#1 (Female) \(\$ 14\)
Data Dlsk \#2 (Male) . . \(\$ 14\)
AVALON HILL
Dr. Ruth
Super Sunday
BANTAM
Walt Disney Series:
Card \& Party Shop. \(\$ 24\) BAUDVILLE Award Maker Video Vegas BRODERBUND
Animate (128K) Carmen San Dlego

USA
World
Dazzle Draw (128K).
Fantavision ........ \(\$ 30\)
Karateka ............ \(\$ 21\)
Print Shop (Enhanced) \(\$ 27\) Print Shop Companion \(\$ 23\) P.S. Graphics LIbrary
\#1, 2 or \(3 \ldots . . . \$ 14\) Ea Toy Shop \(C\) OINT
Copy 2
DATA EAST
Commando
Tag Team Wrestiling. . \$21
ELECTRONIC ARTS
Age of Adventure . . \(\$ 9.88\)
Amnesla . . . . . . . . . . . \(\$ 29\)

Archon ......... 59.88
\begin{tabular}{l} 
Archon 2: Adept . . . \(\$ 9.88\) \\
Articfox \\
\hline
\end{tabular}
Bard's Tale 1 or 2.
Battlefront
Carriers at War
Chessmaster 2000 ..
Deluxe Paint II GS . . \$65
D. Paint Art \#1 GS . . . \(\$ 19\)
D. Paint Art \#2 GS . . \(\$ 19\)

24

Europe Ablaze. .\(\$ 30\)
.\(\$ 26\) Lords of Conquest Make Your Own Murder Party Marble Madness Mind MIrror
Moeblus Movle Maker . . . . . \(\$ 9.88\) Music Const. Sot . . \(\$ 9.88\) Music Const. Set GS \(\mathbf{\$ 3 2}\)

\section*{Ogre}

Ogre ........
One-on-One
\(\$ 25\)
Pegasus
PInball Const. Set . \(\$ 9.88\)
Russla (The Great War) \(\$ 26\) Scrabble
Seven Clities of Gold. \(\$ 9.88\)
Skyfox.
Star Fleet 1 . . . . . . . . \(\$ 32\)
Super Boulder Dash . 59.88
Ultima 4
EPYX
Champ. Wrestling . . \(\$ 23\)
Create A Calendar. . . \(\$ 19\)
Winter Games . . . . \$23
GAMESTAR
Champ. Baseball. . . . \(\$ 24\)
Champ. Basketball . . \(\$ 24\)
Champ. Football. ... \(\$ 2\)
HI.TECH EXPRESSIONS
Award Ware \(\quad \$ 9.88\)
Card Ware . . . . . . . . \(\$ 8.88\)
Heart Ware ....... \(\$ 8.88\)
INFOCOM
Hitchhiker's Guide . . \(\$ 24\)
Hollywood HIJinx . . \(\$ 24\)
Leather Goddesses . \(\$ 24\)
Moonmist . Zork Trilogy MICROLEAGUE ... \(\$ 44\)
Baseball
Box Score Stats \(\$ 14\)
General Mgr.IOwner . \(\mathbf{\$ 2 4}\) 1986 Team Disk F. 15 Strike

Sllent Service
MINDSCAPE
American Challenge \(\mathbf{\$ 2 4}\)
21 Bop \& Wrestle . . . . . . \(\$ 19\) SSI
Gettysburg Phantasie 21 ifin
Rings of Zllfin
Shard of Spring
Wizard's Crown
SPRINGBOARD
Certificate Maker . . . \(\$ 29\)
C.M. LIbrary Vol. 1 . . . \(\$ 21\)

Newsroom ........... \(\$ 32\)
N.R. Clip Art \#2 ..... \(\$ 23\)

VIP TECHNOLOGIES
VIP Professional GS \(\$ 179\)
P.O. BOX 111327—DEPT. CP—BLAWNOX, PA 15238
- Please Read The Following Ordering Terms \& Conditions Carofully Before Placing Your Order: Orders with cashiers check or money order shipped immediately on in stock items. Personal a Company checks, allow 3 weoks clearance. No C.O.D.'sI Shipping: Continental U.S.A. -Orders under \(\$ 100\) add \(\$ 3\); free shlpping on orders over \(\$ 100\). AK, HI, FPO, APO-add \(\$ 5\) on all orders. Canada \& Puerto Rico-add \(\$ 10\) on all orders. Sorry, no other International orders accepted! PA residents add b\% sales tax on the total amount of order Including shipping charges! REASONS FOR CALLING CUSTOMER SERVICE-412.361.5291 (1) Status of order or back order (2) If any merchandise purchased within 80 days from S. D. of A. Is defective, please call for a return authorization number. Defective merchandise will be replaced with the same merchandise only. Other returns subject to a \(15 \%\) rostocking charge. After 60 days please refer to the manufacturers warranty Included with the merchandise \& return directly to the manufacturer. Customer service will not accept collect calls or calls on S.D. OF A.'s 800 \# order lines! Have you seen our on line catalog of 1000 software tities for Commodoro, Atari, Apple, IBM and Amiga? It's on Compuserve's Electronic Mall-Just typo GO SDA and shopping for software will never be the same agail change!
\(\$ 39.95\). The Atari ST version is \$42.95.

Buzzword Game Company, P.O. Box 440747, Aurora, CO 80044
Circle Reader Service Number 228.

\section*{PageMaker 2.0}

Aldus has released a new PageMaker version for the Macintosh that features dictionary-based hyphenation, kerning, interactive facing pages, and support for longer documents. It will also send edited files back to Microsoft Word 3.0.

PageMaker 2.0 retails for \(\$ 75\) to registered users who bought a previous version before September 3, 1986, and \(\$ 37.50\) for subscribers to Aldus' Extended Technical Support Service. Anyone who bought Page-

\section*{SOLARSIM \\ James Tursa}


The Solar System Simulation Program
SOLARSIM is a dynamic 3-D color graphics simulation of our solar system and nearby star systems. It simulates the planets, 250 asteroids and comets (including Halloy's), and over 800 stars, nebula and galaries. And, one of the most unique features of SOLARSIM is that you can add planetoids and stars. View and identify the stars and solar system from any point on Earth or in space, on any date. For an interesting twist, place yourself on Halley's Comet during its 1985-86 trek past the sun and view the Solar System as it passes by!
"SOLARSIM is fun . . . It is as much a learning experience as a pleasure trip." TI Computing "This PC program is a real gem."Jerry Pourneile, BYTE ONLY \$29.95!
Systems: IBM PC/XT/f/AT: 128K, CGA T1 Pro: 256K, 3-plane graphics See your local software dealer, or send check, money order or COD orders Box 57825, Webster TX 77598, (713) 333-3909 Please add \(\mathbf{\$ 2}\) for shipping. In Texas, add sales Cred
Credit card orders:
(800) 622-4070 (Nat'
(800) 942.7317 (ILL
interstel
SECURITY
KEYS
Programmers! Protect your software with the most effective system available. We manufacture "dongle" keys in any quantity at low cost. Available for C64, C128, Amiga and ST. Call or write for more information or send \$5.00 for a unique sample to: DATALDCK

Manufacturing Co .
P.O. Box 950 St. Joseph, MI 49085 (616) 982-1786

Maker after September 3, 1986 will receive version 2.0 free.

Aldus, 411 First Ave. S., Ste. 200, Seattle, WA 98104
Circle Reader Service Number 229.

\section*{New Line-Up \\ From Mindscape}

Mindscape has released several new products. The educational division is now distributing the Understanding Math Series, a collection of five programs that teach basic math skills. The programs can be customized to meet the needs of each student in grades 1 through 6.

The programs in the series are Learning Place Values, Learning Addition, Learning Subtraction, Learning Multiplication, and Learning Divison. The series is available for the IBM PC, Tandy 1000, and the Apple II family with 128 K .

The retail price for the Understanding Math Series is \(\$ 299.95\). Each title is available individually for \(\$ 69.95\).

Teachers and students can create crossword puzzles for math, science, social studies, language arts, reading, and spelling drills with Crossword Magic Puzzle Disks. The disks work with Crossword Magic and are appropriate for grades 5 through 8. There are six disks in the series, and each disk has 20 puzzles plus printouts of the puzzles.

Crossword Magic Puzzle Disks are available for Apple II-series computers with 48 K . You will need Crossword Magic to use the Puzzle Disks.

The series retails for \(\$ 59.95\) and individual disks are \(\$ 14.95\) each. Crossword Magic retails for \(\$ 59.95\), or can you buy Crossword Magic and the series of Puzzle Disks for \(\$ 119.95\).

Mindscape's Quest for Files series (in social studies and science) promote research and critical thinking for students in grades 7 through 12. In each subject, the student must compare, contrast, and combine facts from the database to develop generalizations and conclusions. An online tutorial and file manager helps to access the database.

The Quest for Files: Social Studies series includes Families of
the World: The Melting Pot; The American Presidency: Hail to the Chief; and The First U.S. Congress: Dawn's Early Light. Titles in the Quest for Files: Science series are Rocks and Minerals: The Upper Crust; Elements, Compounds, and Mixtures: A Matter of Mystery; and Nutrition: Food, Glorious Food.

Each of the series is available for the Apple II family with 64 K , the IBM PC or PCjr, and the Tandy 1000 for \(\$ 125.95\). Individual titles are priced at \(\$ 49.95\) each.

Two other Mindscape pack-ages-Mindscape's Reading Workshop and Social Studies Explorer Series-are now available for MSDOS computers. The Reading Workshop provides students ten activities to provide practice in reading comprehension, vocabulary building, sequencing, and other reading and language arts skills. It includes selections from fairy tales, adventure stories, historical fiction, and short stories from authors such as Poe, Twain, Melville, and Verne.

This series has six complete packages, one for each reading level from 4 to 9 . Every package contains three story disks and backups, a Toolkit disk, a teacher's manual, a printout of each story, and reference cards for students.

The Social Studies Explorer Series stimulates students to think critically and determine relevant facts during their online travels. There are American History and World Geography sets for students to visit; the object is for students to ask questions and use the answers to determine where they are. Then they have to identify the clues they used to reach their conclusions.

Mindscape's Reading Workshop and Social Studies Explorer Series are both available for the IBM PC or PCjr, Tandy 1000, and Apple II computers. The Reading Workshop series costs \(\$ 150\) for each level, \(\$ 425\) for a set of three levels, and \(\$ 375\) for a lab pack. The American History and World Geography sets each cost \(\$ 150\). Each title within a set costs \(\$ 39.95\), and lab packs are \(\$ 100\) per title.

Mindscape, 3444 Dundee Rd., Northbrook, IL 60062
Circle Reader Service Number 230.

\title{
FRANKLIN ACE 2200 PERSONAL COMPUTER
}

\section*{For Personal, Business, And Educational Computing!}

The Franklin ACE 2200 Personal Computer is an exceptional value in microcomputers. It's easy to operate and has the advanced design features, power, and versatility for a variety of computing applications in the home, school, or small business. The Franklin Ace 2200 is compatible with two of the most widely used computers today, the Apple® Ile and IIc. This model has been thoroughly reconditioned by experienced technicians to a condition as good or better than new. Now you can purchase it at a LOW liquidation price!

\section*{Look at All These Advanced Features:}
- Apple \({ }^{*}\) II Compatibility: Includes features of the Apple \({ }^{(8)}\) lle such as 128 K RAM and 80 column video display functions.
- Additional 64K Memory: Additional bankswitched memory, also known as "lle text card" or "lle extended text card" capability.
- 12" Diagonal Monochrome Monitor: Features an 80 character \(\times 24\) line display on a flat, nonglare, green phosphor screen. Tilt/swivel base for easy, no-strain viewing.
- Double High Resolution Display: Allows display of \(560 \times 192\) pixels on the screen, the same as in the Apple \({ }^{8}\) \|c.
- 90-Key Detachable Keyboard: Includes the open and closed "F" keys needed for many Apple \({ }^{\circledR}\) software programs, plus extra features such as 12 programmable function keys and switchable command keys on the numeric keypad.
- Advanced Built-In Software: Includes Franklin's own Disk Operating System, Franklin DOS 2, and BASIC programming language, Franklin BASIC. Highly compatible with programs written for the Apple \({ }^{\odot} \|+\), lle, and IIc.
- Printer Interface Hardware and Software: For four of the most popular printers, including graphics printing capability. Also includes software controls for many printer functions.
- 65SC02 Microprocessor: The main processor on the Franklin incorporates this new chip, which is available as an upgrade for the Apple \({ }^{\circledR}\) Ile. It offers extra power and a number of additional commands for experienced programmers.
- Built-In, Compact, Half-Height Dual Disk Drives: Capable of using diskettes in 40 track format, in addition to those in standard Apple 35 track format. This option lets you increase diskette storage capacity by \(15 \%\) while maintaining the ability to use standard Apple \({ }^{\ominus}\) diskettes.
- Expansion Slots: Include parallel printer port and joystick/game port, which allow for easy addition of peripherals.


\section*{THE FRANKLIN ACE 2200...}

Simple enough to be a "first" computer, yet powerful enough to meet the advanced needs of experienced users. Whether you're a professional person, business executive, homemaker, or college student, you'll find the Franklin Ace 2200 an excellent choice for all your computing needs.

\section*{Reconditioned with 90-Day Limited Factory Warranty.}

Original List Price
Liquidation Priced At Only
\(\$ 1138.00 \$ 000\)
Item H-2424-7107-055 Shipping, handling: \$15.00 each

Toll-Free: 1-800-328-0609 Credit Card customers can order by phone, 24 hrs. a day, 7 days a week.

SEND TO:
C.O.M.B. Direct Marketing Corp.

1405 Xenium Lane N/Minneapolis, MN 55441-4494
Send__Franklin Computer(s) Item H-2424-7107-055 at \$699 each, plus \(\$ 15\) each for ship, handling. (Minnesota residents add 6\% sales tax. Sorry, no C.O.D. orders.)
\(\square\) My check or money order is enclosed. (No delays in processing orders paid by check.)
Charge: \(\square\) VISA * \(\square\) MasterCard, \(\square\) Discover \({ }^{\mathrm{SM}} \square\) American Express*
Acct. No.

PLEASE PRINT CLEARLY
Name
Address
City
State \(\qquad\)
Phone
Sign Here
Sales outside the 48 contiguous states are subject to special conditions. Please call or write to inquire.

COMMODORE PC-10
INCLUDES
\begin{tabular}{ll} 
512K RAM & PARALLEL \& SERIAL I/O \\
360K D/S DRIVE & GW BASLC AND MS DOS \\
CGA BOARD & SIDEKICK BY \\
1 YEAR WARRANTY & BORLAND \(\mathbf{\$ 7 7 9}\)
\end{tabular}

BLUE CHIP PC INCLUDES

512 K RAM 360K D/S DRIVE CGA BOARD

PARALLEL \& SERIAL I/O GW BASIC AND MS DOS 6 EXPANSION SLOTS

\author{
CALL FOR LATEST PRICE
}

PC COMPATIBLE EXTRAS MS DOS 3.2 \& GW AASIC EXT.....s. 59.95
 ZUCKERBOARDS (Made In USA) Clock Calendar.
Mono Graphics Board. . . . . ...........79.95 Mono Graphics BD (Hercules Comp.). .99.95 (All ZUCKERBOARDS Have a 2 Year Warranty)

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{} \\
\hline PANASONIC & OKIDATA & & EPSON & STAR MICRONICS & SPECIAL PURCHASE & OKIMATE 20 \\
\hline Panasonic 10801... 199 & Okidata 120........ 215 & LX 86 & . 219 & NX-10............Call & CANON A-60 18 PIN PRINTER & PLUG AND PRINT \\
\hline Panasonic 10911 .... 259 & Okidata \(182 \ldots \ldots . . .249\) & EX 886 E . & &  & -200 CPS Dratt \({ }^{\text {a }}\) - Font Cartridges & Intertaces Avallable For \\
\hline Panasonic 3131..... 279 & Okidata \(193+\ldots . . .3559\) & EX 1000 & & NX-15................ \({ }^{369}\) & -100 CPS NLO -Optional Sheet Feeder & AMIGA - ATARIST - IBM \\
\hline Panasonic \(3151 . . . .409\) & Okidata 292E . . . . 4449 & FX 286 E & & ND-15 ............. 4449 &  & PLE+/2E9 \\
\hline Panasonic \(1592 . . .419\)
Panasonic
1595 & Okidata 293E . . . . . 599 & LQ 8000 & . 719 & NR-15.......... 5189 &  & S199 \\
\hline Panasonic 5955 & & LQ 2500 & .......... \({ }^{1149}\) & NB 24/15 (24 Wire) ...Call & \$349 & CONTINENTAL USA \\
\hline
\end{tabular}

\section*{COMMODORE G4/128 SUPER PRINTER PACIUAGES}

C-64/128 PACKAGE \#1
- NX-10 Printer
- Xetec Super Graphic Interface
-2 Extra NX-10 Ribbon
NO SUARCAARGES On Credit Cards
FREE SHIPPING In Continental USA
\$279

ATARI PACKAGE \#1
- NX-10 Printer
-Supra 150 Interface
-2 Extra Ribbons
-2 EXtra Ribbons
NO SURCHARGE
NO SURCCHARGES On Credit Cards
FREE SHIPPING in Continental USA
\$269

C-64/128 PACKAGE \#2
-Panasonic 10801 Printer 1 - Extra Rlbbon
NO SURCHARGES On Credit Cards FREE SHIPPING in Continental USA
\$279

- Panasonic 10801 Printer
- Supra 1150 Interface

1 Extra Ribbon
NO SURCHAARGES On Credit Cards
FREE SHIPPING In Continental USA \$269

C-64/128 PACKAGE \#3
- Panasonic 10911 Printer - Xetec Super Graphic Interface NO SURCHARG NO SURCHARGES On Credit Cards
FREE SHIPPING In Continental USA \$339

C-64/128 PACKAGE \#4 - Seikosha SP1000VC Printer
- Bullt-In Graphics Interface

NO SURCHARGES On Credit Cards \$179

\section*{SUPER COMPUYER PACKACES}


COMMODORE 64C PACKAGE
- Commodore 64C Computer -1802C Monitor 1541C Disk Drive NO SURCHARGES On Credit Cards
FREE SHIPPING In Continental USA PRICE TOO LOW TO ADVERTISE!! COMMODORE 128 PACKAGE \#2 Commodore 128 Computer
1571 Disk Drive
NO SURCHARGES On Credit Cards FREE SHIPPING In Continental USA \(\$ 779\) (Limited to first 100 orders)

ATARI 1040ST SYSTEM PACKAGE Including RGB or Monochrome Monitor,
Mouse, Double-Sided Disk Drive, Basic, TOS on Mouse, Double-Sided Disk Drive, Basic, TOS on ROM, and Built-II Power Supty
-Fuli' Manutateturer Warranty
CALLI

ATARI 520 ST SYSTEM PACKAGE - Including RGB or Monochrome Monitor Mouse, Disk - Full Manufacturer's Warranty Apglies

ATARI PACKAGE \#3
- Panasonic 10911 Printe
- Extra Ribbon

NO SURCHARGES On Credit Cards FREE SHIPPING In Continental USA \$329

ATARI PACKAGE \#4
- Atari 1027 Printer

NO SURCHARGES On Credit Cards FREE SHIPPING In Continental USA \(\$ 129\)

\section*{MISCELLANEOUS HARDWARE}
\begin{tabular}{|c|}
\hline \multirow[t]{9}{*}{} \\
\hline \\
\hline
\end{tabular}

\section*{ATARI XE•XL•400•800}

\section*{Atari 130 XE} 1050 Disk Drive PR. Connection. Animation XM-301 Supra 1150 Intertace 850 Interface Graphic At Interface

\section*{ATARI 520ST•1040ST} SH 20420 MEG Hard Drive SF314 DS/DD Disk Drive Sypra 20 MEG Hard Drive \({ }^{1040} 520\) Dust Cover Z.Time 520.
Z.Time 1040.
\begin{tabular}{|c|c|}
\hline & Xetec Super Graphic...............69.95 Graphic At Intertace .................399.95 APPLE HARDWARE \\
\hline & \\
\hline
\end{tabular}

BERKLEY
SOFTWORKS GEOS
Writer's
Geodex
Desk Pak
Deodex
Dosk Paki
Font Pak
Geopublish
Geotile.
Geochart
Desk Pak
MISCELLANEOUS COMMODORE 64 Final Cartridg \(\underset{\text { Leather }}{\text { Gunship }}\) Moonther Hollywood H Fontmaster 2 . Disney Comic Strit WWF Wresting Starfle
Thunder chooper UP Periscope. The Pawn
Tracker Tracker
Starglider Jet Subiogic Footb Flight Simulator Sublogic Bas \({ }^{\text {Printmaster }}\) Art Gallery 10 Superscript 64 Ace of Aces. Kill Until Dead Hardball
Fight PSI Trading co Print Shop

\section*{ACCESS}

\section*{Mach V-Cart} Loadrnament Disk Executive Disk. Robotic Worksho Tenth Frame.
Famous Cours
21.95
.24 .95

\section*{ACABUS 64}

Chartpak Cad-Pak
Powerplan Powerplan ........
Super C Compile
Super Pascal Basic Compiler Forth
Geos Inside äOut
Personal Porttolio
Xper System

TIMEWORKS
Business Sytems . Business Sytems
Wordwriter Spell Swiftcalc/Sideway Data Manager Syivia Porter Evelyn Wood
Sideways Sideways
Partner 64 Swiftax 86

Newsroom _...... 30.95 Clip Art 1 Or \(3 \ldots . .18 .95\)
Certificate Maker ...30.95 \(\quad\) Cllp Art \(2 \ldots \ldots . . .21 .95\)
Certificate Maker. 30.95
Graphics Expander 21.95
Graphics Expander 21.95


\section*{EST. 1982 Oथ约}
P.O. Box 17882, Milwaukee, WI 53217 ORDER LINES OPEN
Mon-Fri. 11 a.m. -7 p.m. CST © Sat. 12 p.m. -5 p.m. CST To Order Call Toll Free \(\because 00=5503003\)

For Technical Info, Order Inquiries, or for Wisc. Orders
414-357-8181
TELEX NUMBER 9102406440
(ANSERBACK = COMPUT MILW UQ)

\section*{ELECTRONIC ARTS}

Touchdown Football10.95
Ultimate Wizard...10.95
Adv, Construction 25.95 Adv. Construction America's Cup. Arctic Fox Autoduel. Bard's Tale ii Chickamauga Battlefront Carriers At War Uurope Ablaze Lords Of Conqeust 22.95

Moebius. Murder Party Orge.
Pegasus
 Reach For The Star
Road To Moscow Robot Rascals Russia Scrabble Chessmaster 2000 Ultima 1
Ultima 3
Ultima 3
World Tour Goif
EPYX

\section*{Destroyer} Fast Load.. Movie Monster .. World Games. Winter Games Summer Games Apshai Trilogy
Vorpal Utility

\section*{COMMODORE 128 SOFTWARE}

Superbase 128 Superscript 12 Wordwriter 1 Wordwriter 128 Swiftcalc 128 Sylvia Porter 128 Partner 128 Fleet System 4 Pocket Writer 2



\title{
It's easy to make a copy. It's quick. It's illegal. It's wrong.
}

It's hard to believe.
People who wouldn't think of shoplifting a software product on their lunch hour don't think twice about going back to the office and making several illegal copies of the same software.

Making unauthorized copies of software is a violation of U.S. Copyright Law. Yet, the problem has reached epidemic proportions because many people are unaware, or simply choose to ignore the law. The software industry is urging decision-makers and software users to take steps to stop software piracy in their organizations. In the meantime, the industry has been forced to prosecute willful copyright violators.

There are legal, moral and economic imperatives forbidding theft of copyrighted software.

There is a free pamphlet on the subject. Call or write for a copy. A copy. A copy. A copy for everyone you know. Please ask for Priscilla.


ADAPSO
1300 North Seventeenth Street
Arlington, Virginia 22209
(703) 522-5055

\title{
COMPUTEI's Author's Guide
}

Most of the following suggestions serve to improve the speed and accuracy of publication. COMPUTE! is primarily interested in new and timely articles on the Commodore 64/128, Atari, Apple, IBM PC/PCjr, Amiga, and Atari ST. We are much more concerned with the content of an article than with its style, but articles should be clear and well-explained.

The guidelines below will permit your good ideas and programs to be more easily edited and published:
1. The upper left corner of the first page should contain your name, address, telephone number, and the date of submission.
2. The following information should appear in the upper right corner of the first page. If your article is specifically directed to one make of computer, please state the brand name and, if applicable, the BASIC or ROM or DOS version(s) involved. In addition, please indicate the memory requirements of programs.
3. The underlined title of the article should start about \(2 / 3\) of the way down the first page.
4. Following pages should be typed normally, except that in the upper right corner there should be an abbreviation of the title, your last name, and the page number. For example: Memory Map/Smith/2.
5. All lines within the text of the article must be double- or triple-spaced. A one-inch margin should be left at the right, left, top, and bottom of each page. No words should be divided at the ends of lines. And please do not justify. Leave the lines ragged.
6. Standard typing paper should be used (no erasable, onionskin, or other thin paper) and typing should be on one side of the paper only (upper- and lowercase).
7. Sheets should be attached together with a paper clip. Staples should not be used.
8. If you are submitting more than one article, send each one in a separate mailer with its own tape or disk.
9. Short programs (under 20 lines) can easily be included within the text. Longer programs should be separate listings. It is essential that we have a copy of the program, recorded twice, on a tape or disk. If your article was written with a word processor, we also appreciate a copy of the text file on the tape or disk. Please use high-quality 10 or 30 minute tapes with the program recorded on both sides. The tape or disk should be labeled with the author's name, the title of the article, and, if applicable, the BASIC/ROM/DOS version(s). Atari tapes should specify whether they are to be LOADed or ENTERed. We prefer to receive Apple programs on disk rather than tape. Tapes are fairly sturdy, but disks need to be enclosed within plastic or
cardboard mailers (available at photography, stationery, or computer supply stores).
10. A good general rule is to spell out the numbers zero through ten in your article and write higher numbers as numerals (1024). The exceptions to this are: Figure 5 , Table 3, \(\mathrm{TAB}(4)\), etc. Within ordinary text, however, the zero through ten should appear as words, not numbers. Also, symbols and abbreviations should not be used within text: use "and" (not \&), "reference" (not ref.), "through" (not thru).
11. For greater clarity, use all capitals when referring to keys (RETURN, TAB, ESC, SHIFT), BASIC words (LIST, RND, GOTO), and three languages (BASIC, APL, PILOT). Headlines and subheads should, however, be initial caps only, and emphasized words are not capitalized. If you wish to emphasize, underline the word and it will be italicized during typesetting.
12. Articles can be of any length-from a singleline routine to a multi-issue series. The average article is about four to eight double-spaced, typed pages.
13. If you want to include photographs, they should be either \(5 \times 7\) black and white glossies or color slides.
14. We do not consider articles which are submitted simultaneously to other publishers. If you wish to send an article to another magazine for consideration, please do not submit it to us.
15. COMPUTE! pays between \(\$ 70\) and \(\$ 800\) for published articles. In general, the rate reflects the length and quality of the article. Payment is made upon acceptance. Following submission (Editorial Department, COMPUTE! Magazine, P.O. Box 5406, Greensboro, NC 27403) it will take from four to eight weeks for us to reply. If your work is accepted, you will be notified by a letter which will include a contract for you to sign and return. Rejected manuscripts are returned to authors who enclose a self-addressed, stamped envelope.
16. If your article is accepted and you have since made improvements to the program, please submit an entirely new tape or disk and a new copy of the article reflecting the update. We cannot easily make revisions to programs and articles. It is necessary that you send the revised version as if it were a new submission entirely, but be sure to indicate that your submission is a revised version by writing, "Revision" on the envelope and the article.
17. COMPUTE! does not accept unsolicited product reviews. If you are interested in serving on our panel of reviewers, contact the Review Coordinator for details.

\title{
COMPUTEI＇s Guide To Typing In Programs
}

Computers are precise－type the pro－ gram exactly as listed，including neces－ sary punctuation and symbols，except for special characters noted below．We have provided a special listing conven－ tion as well as a program to check your typing－＂The Automatic Proofreader．＂

Programs for the IBM，TI－99／4A， and Atari ST models should be typed exactly as listed；no special characters are used．Programs for Commodore， Apple，and Atari \(400 / 800 /\) XL／XE computers may contain some hard－to－ read special characters，so we have a listing system that indicates these con－ trol characters．You will find these Commodore and Atari characters in curly braces；do not type the braces．For example，\(\{C L E A R\}\) or \(\{C L R\}\) instructs you to insert the symbol which clears the screen on the Atari or Commodore machines．A complete list of these sym－ bols is shown in the tables below．For Commodore，Apple，and Atari，a single symbol by itself within curly braces is usually a control key or graphics key．If you see \(\{A\}\) ，hold down the CONTROL key and press A．This will produce a reverse video character on the Commo－ dore（in quote mode），a graphics char－ acter on the Atari，and an invisible control character on the Apple．

Graphics characters entered with the Commodore logo key are enclosed in a special bracket：\([K A>]\) ．In this case， you would hold down the Commodore logo key as you type A．Our Commo－ dore listings are in uppercase，so shifted symbols are underlined．A graphics heart symbol（SHIFT－S）would be listed as \(\underline{S}\) ．One exception is \｛SHIFT－ SPACE \}. When you see this, hold down SHIFT and press the space bar．If a number precedes a symbol，such as \(\{5\) RIGHT \}, \(\{6 \underline{S}\}\) ，or \(K 8 \mathrm{Q}>\) ，you would enter five cursor rights，six shifted S＇s， or eight Commodore－Q＇s．On the Atari， inverse characters（white on black） should be entered with the inverse video

\section*{Atari 400／800／XL／XE}
\begin{tabular}{|c|c|c|c|c|}
\hline When you see & Typ & & See & \\
\hline \｛CLEAR\} & ESC & SHIFT＜ & \(\ldots\) & Clear Screen \\
\hline \｛UP\} & ESC & CTRL－ & \(\uparrow\) & Cursor Up \\
\hline \｛DOWN\} & ESC & CTRL＝ & \(\pm\) & Cursor Down \\
\hline \｛LEFT\} & ESC & CTRL＋ & \(\leftarrow\) & Cursor Left \\
\hline ［RIGHT \} & ESC & CTRL＊ & \(\rightarrow\) & Cursor Right \\
\hline \｛BACK S \({ }^{\text {¢ }}\) & ESC & DELETE & 4 & Backspace \\
\hline \｛DELETE\} & ESC & CTRL DELETE & EII & Delete character \\
\hline \｛INSERT\} & ESC & CTRL INSERT & 17 & Insert character \\
\hline \｛DEL LINE\} & ESC & SHIFT DELETE & ［1］ & Delete line \\
\hline \｛INS LINE\} & ESC & SHIFT INSERT & ［2］ & Insert line \\
\hline \｛TAB\} & ESC & TAB & － & TAB key \\
\hline \｛CLR TAB\} & ESC & CTRL TAB &  & Clear tab \\
\hline \｛SET TAB\} & ESC & SHIFT TAB & E & Set tab stop \\
\hline \｛BELL\} & ESC & CTRL 2 & W & Ring buzzer \\
\hline \｛ESC \(\}\) & ESC & ESC & E． & ESCape key \\
\hline
\end{tabular}

Typ

ESC ESC CTRL ESC CTRL＋ ESC CTRL＊ ESC CTRL DELETE ESC CTRL INSERT ESC SHIFT INSERT ESC TAB CTRL TAB ESC CTRL 2 ESC ESC

See
Clear Screen
or Up
Cursor Down
or Left
Righ
Delete character
Insert character
Delete line
Insert line

Clear tab
Ring buzzer
ESCape key

\section*{Commodore PET／CBM／VIC／64／128／16／＋4}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline When You Read： & \multicolumn{2}{|r|}{Press：} & \multirow[t]{2}{*}{See：} & \multirow[t]{2}{*}{When You Read：} & \multicolumn{3}{|l|}{Press：} & \multirow[b]{2}{*}{See：} \\
\hline \｛CLR\} & SHIFT & CLR／HOME & & & COMM & DORE & 1 & \\
\hline \｛HOME \} & & CLR／HOME & \％ & K2习 & Сомм & DORE & 2 & ． \\
\hline \｛UP\} & SHIFT & \(\dagger\) CRSR \(\downarrow\) & － & ［3者 & COMM & DORE & 3 & 80， \\
\hline \｛DOWN \} & & \(\dagger\) CRSR \(\downarrow\) & ［1． & ［4才］ & Сомм & DORE & 4 & ［1］ \\
\hline \｛LEFT\} & SHIFT & \(\leftarrow\) CRSR \(\rightarrow\) & \＃ & 大5 习 & СомM & DORE & 5 & 5 \\
\hline \｛RIGHT \} & & \(\leftarrow\) CRSR \(\rightarrow\) & 1 & E6习 & COMM & DORE & 6 & \\
\hline \｛RVS \(\}\) & CTRL & － 9 & ［ & K 7 习 & Сомм & DORE & 7 & \\
\hline \｛OFF\} & CTRL & 0 & & ［8习 & COMM & DORE & 8 & － \\
\hline \｛BLK \} & CTRL & 1 & & \｛ F1 \} & & \(f 1\) & & \\
\hline \｛WHT\} & CTRL & 2 & E & \｛ F2 \} & SHIFT & \(f 1\) & & \\
\hline \｛RED \} & CTRL & 3. & － & \｛ F3 \} & & \(f 3\) & & \\
\hline \｛CYN \} & CTRL & 4 & 等 & \｛ F4 \} & SHIFT & \(f 3\) & & \\
\hline \｛PUR\} & CTRL & 5 & & \｛ F5 \} & & \(\mathrm{ff}^{5}\) & & \\
\hline \｛GRN \} & CTRL & 6 & 1 & \｛ F6 \} & SHIFT & \(f 5\) & & \\
\hline \｛BLU \} & CTRL & 7 & 2 & \｛ F7 \} & & \(f 7\) & & \\
\hline \｛YEL\} & CTRL & 8 & TII & \｛ F8 \} & SHIFT & 67 & & \\
\hline & & & & 4 & \(\longleftarrow\) & & & － \\
\hline
\end{tabular}
key (Atari logo key on 400/800 models).
Whenever more than two spaces appear in a row, they are listed in a special format. For example, \(\{6\) SPACES\} means press the space bar six times. Our Commodore listings never leave a single space at the end of a line, instead moving it to the next printed line as \(\{\) SPACE \(\}\).

Amiga program listings contain only one special character, the left arrow \((\uparrow)\) symbol. This character marks the end of each program line. Wherever you see a left arrow, press RETURN or move the cursor off the line to enter that line into memory. Don't try to type in the left arrow symbol; it's there only as a marker to indicate where each program line ends.

\section*{The Automatic Proofreader}

Type in the appropriate program listed below, then save it for future use. The Commodore Proofreader works on the Commodore 128, 64, Plus/4, 16, and VIC-20. Don't omit any lines, even if they contain unfamiliar commands or you think they don't apply to your computer. When you run the program, it installs a machine language program in memory and erases its BASIC portion automatically (so be sure to save several copies before running the program for the first time). If you're using a Commodore 128, Plus/4 or 16, do not use any GRAPHIC commands while the Proofreader is active. You should disable the Commodore Proofreader before running any other program. To do this, either turn the computer off and on or enter SYS 64738 (for the 64), SYS 65341 (128), SYS 64802 (VIC-20), or SYS 65526 (Plus/4 or 16). To reenable the Proofreader, reload the program and run it as usual. Unlike the original VIC/ 64 Proofreader, this version works the same with disk or tape.

On the Atari, run the Proofreader to activate it (the Proofreader remains active in memory as a machine language program); you must then enter NEW to erase the BASIC loader. Pressing SYSTEM RESET deactivates the Atari Proofreader; enter PRINT \(\operatorname{USR}(1536)\) to reenable it.

The Apple Proofreader erases the BASIC portion of itself after you run it, leaving only the machine language portion in memory. It works with either DOS 3.3 or ProDOS. Disable the Apple Proofreader by pressing CTRL-RESET before running another BASIC program.

The IBM Proofreader is a BASIC program that simulates the IBM BASIC line editor, letting you enter, edit, list, save, and load programs that you type. Type RUN to activate. Be sure to leave Caps Lock on, except when typing lowercase characters.

Once the Proofreader is active, try typing in a line. As soon as you press RETURN, either a hexadecimal number (on the Apple) or a pair of letters (on the Commodore, Atari, or IBM) appears. The number or pair of letters is called a checksum.

Compare the value displayed on the screen by the Proofreader with the checksum printed in the program listing in the magazine. The checksum is given to the left of each line number. Just type in the program a line at a time (without the printed checksum), press RETURN or Enter, and compare the checksums. If they match, go on to the next line. If not, check your typing; you've made a mistake. Because of the checksum method used, do not type abbreviations, such as ? for PRINT. On the Atari and Apple Proofreaders, spaces are not counted as part of the checksum, so be sure you type the right number of spaces between quote marks. The Atari Proofreader does not check to see that you've typed the characters in the right order, so if characters are transposed, the checksum still matches the listing. The Commodore Proofreader catches transposition errors and ignores spaces unless they're enclosed in quotation marks. The IBM Proofreader detects errors in spacing and transposition.

\section*{IBM Proofreader Commands}

Since the IBM Proofreader replaces the computer's normal BASIC line editor, it has to include many of the direct-mode IBM BASIC commands. The syntax is identical to IBM BASIC. Commands simulated are LIST, LLIST, NEW, FILES, SAVE, and LOAD. When listing your program, press any key (except Ctrl-Break) to stop the listing. If you enter NEW, the Proofreader prompts you to press Y to be especially sure you mean yes.

Two new commands are BASIC and CHECK. BASIC exits the Proofreader back to IBM BASIC, leaving the Proofreader in memory. CHECK works just like LIST, but shows the checksums along with the listing. After you have typed in a program, save it to disk. Then exit the Proofreader with the BASIC command, and load the program as usual (this replaces the Proofreader in memory). You can now run the program, but you may want to resave it to disk. This will shorten it on disk and make it load faster, but it can no longer be edited with the Proofreader. If you want to convert an existing BASIC program to Proofreader format, save it to disk with SAVE "filename", A.

\section*{Program 1: Atari \\ Proofreader}

By Charles Brannon, Program Editor
1 פø, GRAPHICS \(\emptyset\)
\(11 \varnothing\) FOR \(I=1536\) TO \(17 \emptyset \emptyset:\) REA \(D A: P O K E\) I, \(A: C K=C K+A: N\) EXT I
126 IF CK<>19ø72 THEN ? "E rror in DATA Statement 5. Check Typing.": END
\(13 \varnothing A=\operatorname{USR}(1536)\)
\(14 \varnothing\) ? : "Automatic Proofr eader Now Activated."
\(15 \emptyset\) END
\(16 \emptyset\) DATA \(164,16 \emptyset, \varnothing, 185,26\), 3,261,69,24の,7
\(17 \emptyset\) DATA \(2 \emptyset \emptyset, 2 \emptyset \emptyset, 192,34,2 \emptyset\) \(8,243,96,260,169,74\)
\(18 \emptyset\) DATA \(153,26,3,2 \emptyset \emptyset, 169\), \(6,153,26,3,162\)
\(19 \emptyset\) DATA \(\varnothing, 189, \emptyset, 228,157,7\) \(4,6,232,224,16\)
\(2 \emptyset \emptyset\) DATA \(2 \emptyset 8,245,169,93,14\) \(1,78,6,169,6,141\)
\(21 \emptyset\) DATA \(79,6,24,173,4,228\) , \(165,1,141,95\)
\(22 \varnothing\) DATA \(6,173,5,228,1 \emptyset 5, \emptyset\) , 141,96, 6, 169
230 DATA \(\emptyset, 133,203,96,247\), \(238,125,241,93,6\)
\(24 \emptyset\) DATA \(244,241,115,241,1\) 24, 241, 76, 265, 238
\(25 \varnothing\) DATA \(\varnothing, \emptyset, \varnothing, \emptyset, \emptyset, 32,62,2\) 46, 8, 201
\(26 \emptyset\) DATA \(155,24 \varnothing, 13,2 \emptyset 1,32\) \(, 24 \emptyset, 7,72,24,1 \emptyset 1\)
\(27 \emptyset\) DATA \(2 \emptyset 3,133,2 \emptyset 3,1 \emptyset 4,4\) \(\emptyset, 96,72,152,72,138\)
\(28 \emptyset\) DATA \(72,166,6,169,128\), \(145,88,2 \emptyset \varnothing, 192,4 \emptyset\)
\(29 \varnothing\) DATA \(2 \emptyset 8,249,165,263,7\) \(4,74,74,74,24,165\)
\(3 \varnothing \varnothing\) DATA \(161,166,3,145,88\), \(165,203,41,15,24\)
316 DATA \(165,161,2 \varnothing 0,145,8\) \(8,169,0,133,263,194\)
\(32 \emptyset\) DATA \(17 \emptyset, 1 \emptyset 4,168,1 \emptyset 4,4\) Ø, 96

\section*{Program 2: IBM Proofreader}

By Charles Brannon, Program Editor
10 'Automatic Proofreader Vers ion \(3 . \emptyset\) (Lines \(2 \emptyset 5,296\) adde d/19ø deleted/470,490 chang ed from V2.ø)
1 Dø DIM L\$(5øø), LNUM (5øø): COLO R \(\emptyset, 7,7\) : KEY OFF: CLS: \(\mathrm{MAX}=\emptyset:\) LNUM \((\emptyset)=65536\) !
\(11 \varnothing\) ON ERROR GOTO 120:KEY 15, C HR\$ (4) + CHR\$ (7ø): ON KEY (15) GOSUB 649:KEY (15) ON: GOT 0130
120 RESUME \(13 \emptyset\)
\(13 \varnothing\) DEF SEG=\&H4 \(: W=\operatorname{PEEK}(\& H 4 A)\)
\(14 \emptyset\) ON ERROR GOTO 65Ø:PRINT:PR INT"Proofreader Ready."
\(15 \emptyset\) LINE INPUT L \(\$: Y=C S R L I N-I N T\) (LEN (L\$)/W) - 1: LOCATE \(Y, 1\)
\(16 \emptyset\) DEF SEG= \(:\) POKE 1 \(165 \emptyset, 3 \emptyset:\) POK E 1ø52,34:PDKE 1ø54, ø: POKE 1ø55, 79: POKE 1ø56, 13: POKE 1057, 28: LINE INPUT L\$: DEF SEG: IF L\$="" THEN \(15 \emptyset\)
\(17 \emptyset\) IF LEFT \(\$(L \$, 1)="\) " THEN L \(\$\) \(=\) MID \(\$(L \$, 2)\) : GOTO \(17 \emptyset\)
\(18 \emptyset\) IF VAL（LEFT \(\$(L \$, 2))=\emptyset\) AND MID \(\$(L \$, 3,1)="\)＂THEN L \(\$=M\) ID\＄（L\＄，4）
\(2 \emptyset \emptyset\) IF ASC（L\＄）\(>57\) THEN \(266^{\circ}\) no line number，therefore co mmand
\(265 \mathrm{BL}=\operatorname{INSTR}\left(\mathrm{L} \$,{ }^{(1)}\right.\)＂）：IFBL＝ø T HEN BL \(\$=L \$:\) GOTO 206 ELSE B L\＄＝LEFT\＄（L\＄，BL－1）
206 LNUM＝VAL（BL \(\$\) ）：TEXT \(\$=M I D \$(L\) \＄，LEN（STR\＄（LNUM））+1 ）
\(21 \varnothing\) IF TEXT \(\$="\)＂THEN GOSUB \(54 \varnothing\) ：IF LNUM＝LNUM（P）THEN GOSU B 56ø：GOTO 150 ELSE 15ø
\(22 \emptyset\) CKSUM＝ø：FOR I＝1 TO LEN（L\＄） ：CKSUM＝（CKSUM＋ASC（MID\＄（L\＄， I））\＆I）AND 255：NEXT：LOCATE Y，1：PRINT CHR \(\$(65+\) CKSUM／ 1 6）+ CHR \(\$(65+\)（CKSUM AND 15）） ＋＂＂＋L \＄
230 GOSUB 54ø：IF LNUM \((P)=\) LNUM THEN L\＄\((P)=\) TEXT\＄：GOTO 15ø ＇replace line
\(24 \emptyset\) GOSUB 58ø：GOTO \(15 \emptyset\)＇insert the line
\(26 \emptyset\) TEXT \(\$=" "\) ：FOR \(I=1\) TO LEN（L\＄ ）：A＝ASC（MID\＄（L\＄，I））：TEXT\＄＝ TEXT\＄＋CHR\＄（A＋32＊（A＞96 AND A（123））：NEXT
27ø DELIMITER＝INSTR（TEXT\＄，＂＂） ：COMMAND\＄＝TEXT\＄：ARG\＄＝＂＂：IF DELIMITER THEN COMMAND \(\$=L\) EFT\＄（TEXT\＄，DELIMITER－1）：AR G\＄＝MID\＄（TEXT\＄，DELIMITER＋1） ELSE DELIMITER＝INSTR（TEXT \＄，CHR（34））：IF DELIMITER T HEN COMMAND\＄＝LEFT\＄（TEXT\＄，D ELIMITER－1）：ARG\＄＝MID\＄（TEXT \＄，DELIMITER）
28の IF COMMAND\＄く〉＂LIST＂THEN 4 \(1 \varnothing\)
\(29 \emptyset\) OPEN＂scrn：＂FOR OUTPUT AS \＃1
3øø IF ARG \(\$=" "\) THEN FIRST \(=\varnothing: P=\) MAX－1：GOTO 34の
\(31 \emptyset\) DELIMITER＝INSTR（ARG \(\$, "-"):\) IF DELIMITER＝\(\varnothing\) THEN LNUM \(=V\) AL（ARG\＄）：GOSUB 54ø：FIRST＝P ：GOTO 34の
\(32 \emptyset\) FIRST＝VAL（LEFT\＄（ARG\＄，DELIM ITER ））：LAST＝VAL（MID\＄（ARG\＄， DELIMITER＋1））
\(33 \varnothing\) LNUM＝FIRST：GOSUB 54ø：FIRST ＝P：LNUM＝LAST：GOSUB 549：IF \(P=\emptyset\) THEN \(P=M A X-1\)
\(34 \emptyset\) FOR \(X=F\) IRST TO \(P: N \$=M I D \$(S\) TR\＄（LNUM \((X)), 2)+"\)＂
\(35 \emptyset\) IF CKFLAG＝ø THEN \(A \$=" ":\) GOT － 379
\(36 \emptyset\) CKSUM \(=\varnothing\) ：\(A \$=N \$+L \$(X):\) FOR \(I=\) 1 TO LEN \((A \$):\) CKSUM \(=\)（CKSUM + ASC（MID\＄\((A \$, I)) \& I)\) AND 255 ：NEXT：A\＄＝CHR \(\$(65+\) CKSUM \(/ 16\) ） ＋CHR\＄\((65+(\) CKSUM AND 15）\()+"\)
\(37 \emptyset\) PRINT \＃1，A\＄＋N\＄＋L\＄（X）
\(38 \emptyset\) IF INKEY \(\$\rangle\|\|\) THEN \(X=P\)
\(39 \emptyset\) NEXT ：CLOSE \＃1：CKFLAG＝ø
4 Øø GOTO \(13 \varnothing\)
\(41 \emptyset\) IF COMMAND \(\$=\)＂LLIST＂THEN 0 PEN＂lpt1：＂FOR OUTPUT AS \＃1：GOTO \(3 \varnothing \emptyset\)
420 IF COMMAND \(\$=\)＂CHECK＂THEN C KFLAG＝1：GOTO 29ø
\(43 \emptyset\) IF COMMAND \(\$<>\)＂SAVE＂THEN 4 \(5 \emptyset\)
\(44 \varnothing\) GOSUB 6øø：OPEN ARG\＄FOR OU TPUT AS \＃1：ARG\＄＝＂＂：GOTO 3ø \(\emptyset\)
\(45 \emptyset\) IF COMMAND\＄＜＞＂LOAD＂THEN 4 \(9 \varnothing\)

46Ø GOSUB 6øØ：OPEN ARG\＄FOR IN PUT AS \＃1：MAX＝ø：\(P=\varnothing\)
\(47 \emptyset\) WHILE NOT EOF（1）：LINE INPU T \＃1，L\＄：BL＝INSTR（L\＄，＂＂）：B L\＄＝LEFT \(\$(L \$, B L-1): \operatorname{LNUM}(P)=\) VAL（BL\＄）：L\＄（P）＝MID\＄（L\＄，LEN （STR \(\$(\operatorname{VAL}(\mathrm{BL} \$)))+1): P=P+1\) ： WEND
48Ø MAX＝P：CLOSE \＃1：GOTO 13Ø
\(49 \varnothing\) IF COMMAND \(\$=\)＂NEW＂THEN INP UT＂Erase program－Are yo u sure＂；L\＄：IF LEFT\＄（L\＄，1）＝ ＂ y ＂OR LEFT\＄（L\＄，1）＝＂Y＂THE N MAX＝\(\varnothing\) ：LNUM \((\varnothing)=65536\) ！：GOT －13Ø：ELSE 13Ø
\(5 \emptyset \emptyset\) IF COMMAND \(\$=\)＂BASIC＂THEN C OLOR 7，\(, \emptyset:\) ON ERROR GOTO \(\varnothing\) ：CLS：END
\(51 \emptyset\) IF COMMAND\＄＜＞＂FILES＂THEN 52ø
515 IF ARG \(\ddagger="\)＂THEN ARG \(\$=" \mathrm{~A}: "\) ELSE SEL＝1：GOSUB GøØ
517 FILES ARG\＄：GOTO 13ø
526 PRINT＂Syntax error＂：GOTO 1 3ø
\(54 \emptyset P=\emptyset:\) WHILE LNUM \(>\) LNUM（ \(P\) ）AND \(P<M A X: P=P+1\) ：WEND：RETURN
56の \(\operatorname{MAX}=\mathrm{MAX}-1\) ：FOR \(X=P\) TO MAX：L \(\operatorname{NUM}(X)=\operatorname{LNUM}(X+1): L \$(x)=L \$(\) \(X+1)\) ：NEXT：RETURN
\(58 \emptyset \operatorname{MAX}=M A X+1\) ：FOR \(X=\) MAX TO \(P+1\) \(\operatorname{STEP}-1: \operatorname{LNUM}(X)=\operatorname{LNUM}(X-1)\) ：\(L \$(X)=L \$(X-1):\) NEXT：\(L \$(P)=\) TEXT\＄：LNUM \((P)=\) LNUM：RETURN
6øØ IF LEFT\＄（ARG\＄，1）＜＞CHR\＄（34） THEN 52ø ELSE ARG\＄＝MID\＄（A RG\＄，2）
616 IF RIGHT\＄（ARG \(\$, 1\) ）\(=\) CHR \(\$\)（34） THEN ARG \(\$=\) LEFT \(\$\)（ARG \(\$\) ，LEN （ ARG\＄）－1）
\(62 \emptyset\) IF SEL \(=\emptyset\) AND INSTR（ARG\＄，＂． ＂）\(=\varnothing\) THEN ARG \(\$=A R G \$+"\) ．BAS＂
\(63 \emptyset\) SEL \(=\varnothing\) ：RETURN
64ø CLOSE \＃1：CKFLAG＝ø：PRINT＂St opped．＂：RETURN \(15 \varnothing\)
\(65 \varnothing\) PRINT＂Error \＃＂；ERR：RESUME 15ף

\section*{Program 3：Commodore Proofreader}

By Philip Nelson，Assistant Editor
\(10 \mathrm{VEC}=\operatorname{PEEK}(772)+256 * \operatorname{PEEK}(773)\) ：LO＝ \(43: \mathrm{HI}=44\)
20 PRINT＂AUTOMATIC PROOFREADE R FOR＂；：IF VEC＝42364 THEN \｛SPACE\}PRINT "C-64"
30 IF VEC＝5Ø556 THEN PRINT＂VI \(C-2 \varnothing^{\prime \prime}\)
40 IF VEC \(=35158\) THEN GRAPHIC C LR：PRINT＂PLUS／4 \＆ 16 ＂
50 IF VEC＝ 17165 THEN LO \(=45: \mathrm{HI}=\) 46 ：GRAPHIC CLR：PRINT＂ \(128^{\prime \prime}\)
60 SA＝\((\operatorname{PEEK}(L O)+256\)＊PEEK（HI）\()+\) \(6: A D R=S A\)
\(7 \emptyset\) FOR \(J=\varnothing\) TO \(166:\) READ BYT ：POK E ADR，BYT ：ADR＝ADR \(+1: C H K=C H K\) ＋BYT：NEXT
\(8 \emptyset\) IF CHK＜＞2ø57ø THEN PRINT＂＊ ERROR＊CHECK TYPING IN DATA STATEMENTS＂：END
\(9 \emptyset\) FOR J＝1 TO 5 ：READ RF，LF，HF ： \(\mathrm{RS}=\mathrm{SA}+\mathrm{RF}: \mathrm{HB}=\mathrm{INT}(\mathrm{RS} / 256): \mathrm{LB}=\) RS－（ \(256^{*} \mathrm{HB}\) ）
1 Øø \(\mathrm{CHK}=\mathrm{CHK}+\mathrm{RF}+\mathrm{LF}+\mathrm{HF}:\) POKE \(\mathrm{SA}+\mathrm{L}\) F，LB：POKE SA＋HF，HB：NEXT
\(11 \varnothing\) IF CHK＜＞22054 THEN PRINT＂ ＊ERROR＊RELOAD PROGRAM AND
\｛SPACE \}CHECK FINAL LINE": EN D
120 POKE SA +149 ，PEEK（ 772 ）：POKE SA \(150, \operatorname{PEEK}(773)\)
130 IF VEC \(=17165\) THEN POKE SA＋ 14，22：POKE SA＋18， 23 ：POKESA + 29,224 ：POKESA \(+139,224\)
140 PRINT CHRS（147）；CHRS（17）； PROOFREADER ACTIVE＂：SYS SA
150 POKE HI，PEEK（HI）+1 ：POKE（P EEK（LO）\(+256 * \operatorname{PEEK}(\mathrm{HI}))-1, \varnothing: N\) EW
160 DATA \(120,169,73,141,4,3,16\) 9，3，141，5，3
\(17 \emptyset\) DATA \(88,96,165,20,133,167\) ， \(165,21,133,168,169\)
\(18 \emptyset\) DATA \(0,141,0,255,162,31,18\) \(1,199,157,227,3\)
\(19 \varnothing\) DATA \(202,16,248,169,19,32\) ， \(210,255,169,18,32\)
\(20 \emptyset\) DATA \(21 \varnothing, 255,16 \emptyset, 0,132,18 \emptyset\) \(, 132,176,136,230,18 \emptyset\)
\(21 \varnothing\) DATA \(2 \varnothing \varnothing, 185, \varnothing, 2,240,46,2 \varnothing\) \(1,34,268,8,72\)
220 DATA \(165,176,73,255,133,17\) \(6,104,72,201,32,208\)
230 DATA \(7,165,176,208,3,104,2\) Ø8，226，104，166，18ø
\(24 \varnothing\) DATA \(24,165,167,121,0,2,13\) \(3,167,165,168,105\)
250 DATA \(0,133,168,202,208,239\) ，240，202，165，167，69
260 DATA \(168,72,41,15,168,185\) ， \(211,3,32,210,255\)
\(27 \emptyset\) DATA \(1 \varnothing 4,74,74,74,74,168,1\) \(85,211,3,32,210\)
\(28 \emptyset\) DATA \(255,162,31,189,227,3\) ， \(149,199,202,16,248\)
290 DATA \(169,146,32,210,255,76\) \(, 86,137,65,66,67\)
3øø DATA 68，69，7Ø，71，72，74，75， \(77,80,81,82,83,88\)
\(31 \emptyset\) DATA \(13,2,7,167,31,32,151\) ， \(116,117,151,128,129,167,136\) .137

\section*{Program 4：Apple \\ Proofreader}

By Tim Victor，Editorial Programmer
\(1 \varnothing \mathrm{C}=\varnothing:\) FOR I \(=768\) T0 \(768+\) 68：READ A：C \(=C+A:\) POKE I ，A：NEXT
\(2 \emptyset\) IF C＜＞ 7258 THEN PRINT＂ER ROR IN PROOFREADER DATA STAT EMENTS＂：END
\(3 \varnothing\) IF PEEK \((19 \varnothing * 256)<>76 \mathrm{~T}\) HEN POKE 56， \(0: ~ P O K E ~ 57,3: ~ C A ~\) LL 1øø2：GOTO 5ø
\(4 \varnothing\) PRINT CHR\＄（4）；＂IN\＃A\＄3øø＂
\(5 \emptyset\) POKE 34，Ø：HOME ：POKE 34，1： VTAB 2：PRINT＂PROOFREADER INSTALLED＂
\(6 \emptyset\) NEW
1 1ø DATA \(216,32,27,253,201,141\)
\(11 \emptyset\) DATA 268，66，138，72，169， 6
\(12 \emptyset\) DATA \(72,189,255,1,261,1\)＇6
\(13 \varnothing\) DATA \(24 \varnothing, 8,104,1 \varnothing, 125,255\)
\(14 \emptyset\) DATA \(1,1 \emptyset 5, \emptyset, 72,2 \emptyset 2,2 \emptyset 8\)
\(15 \emptyset\) DATA \(238,1 \emptyset 4,17 \emptyset, 41,15,9\)
\(16 \emptyset\) DATA \(48,291,58,144,2,233\)
176 DATA \(57,141,1,4,138,74\)
\(18 \emptyset\) DATA \(74,74,74,41,15,9\)
\(19 \emptyset\) DATA \(48,261,58,144,2,233\)
\(2 \emptyset \varnothing\) DATA 57，141，ø，4，1ø4，17ø
210 DATA \(169,141,96\)

\title{
1 Machine Language Entry Program For Commodore 64 And 128
}
"MLX" is a labor-saving utility that allows almost fail-safe entry of machine language programs. Included are versions for the Commodore 64 and 128.

Type in and save some copies of whichever version of MLX is appropriate for your computer (you'll want to use it to enter future ML programs from COMPUTE!). Program 1 is for the Commodore 64, and Program 2 is for the 128 (128 MLX can also be used to enter Commodore 64 ML programs for use in 64 mode). When you're ready to enter an ML program, load and run MLX. It asks you for a starting address and an ending address. These addresses appear in the article accompanying the MLX-format program listing you're typing.

If you're unfamiliar with machine language, the addresses (and all other values you enter in MLX) may appear strange. Instead of the usual decimal numbers you're accustomed to, these numbers are in hexadecimal-a base 16 numbering system commonly used by ML programmers. Hexadecimal-hex for short-includes the numerals \(0-9\) and the letters A-F. But don't worryeven if you know nothing about ML or hex, you should have no trouble using MLX.

After you enter the starting and ending addresses, you'll be offered the option of clearing the workspace. Choose this option if you're starting to enter a new listing. If you're continuing a listing that's partially typed from a previous session, don't choose this option.

A functions menu will appear. The first option in the menu is ENTER DATA. If you're just starting to type in a program, pick this. Press the E key, and type the first number in the first line of the program listing. If you've already typed in part of a program, type the line number where you left off typing at the end of the previous session (be sure to load the partially completed program before you resume entry). In any case, make sure the address you enter corresponds to the address of a line in the listing you are entering. Otherwise, you'll be unable to enter the data correctly. If you pressed E by mistake, you can return to the command menu by pressing RETURN alone when asked for the address. (You can get back to the menu from most options by pressing RETURN with no other input.)

\section*{Entering A Listing}

Once you're in Enter mode, MLX prints the address for each program line for you. You then type in all nine numbers on that line, beginning with the first twodigit number after the colon (:). Each line represents eight data bytes and a checksum. Although an MLX-format listing appears similar to the "hex dump" listings from a machine language monitor program, the extra checksum number on the end allows MLX to check your typing. (Commodore 128 users can enter the data from an MLX listing using the built-in monitor if the rightmost column of data is omitted, but we recommend against it. It's much easier to let MLX do the proofreading and error checking for you.)

Figure 1: 64 MLX Keypad


Figure 2: 128 MLX Keypad
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
A \\
(F1)
\end{tabular} & \begin{tabular}{c} 
B \\
(F3)
\end{tabular} & \begin{tabular}{c} 
C \\
(F5)
\end{tabular} & \begin{tabular}{c} 
D \\
(F7)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|}
\hline 7 & 8 & 9 & \begin{tabular}{c} 
E \\
\((+)\)
\end{tabular} \\
\hline 4 & 5 & 6 & \begin{tabular}{c} 
F \\
\((-)\)
\end{tabular} \\
\hline 1 & 2 & 3 & \begin{tabular}{c} 
E \\
N \\
T \\
E \\
\(R\)
\end{tabular} \\
\hline \multicolumn{3}{|c|}{0} & \(\bullet\)
\end{tabular}

When you enter a line, MLX recalculates the checksum from the eight bytes and the address and compares this value to the number from the ninth column. If the values match, you'll hear a bell tone, the data will be added to the workspace area, and the prompt for the next line of data will appear. But if MLX detects a typing error, you'll hear a low buzz and see an error message. The line will then be redisplayed for editing.

\section*{Invalid Characters Banned}

Only a few keys are active while you're entering data, so you may have to unlearn some habits. You do not type spaces between the columns; MLX automatically inserts these for you. You do not press RETURN after typing the last number in a line; MLX automatically enters and checks the line after you type the last digit.

Only the numerals \(0-9\) and the letters A-F can be typed in. If you press any other key (with some exceptions noted below), you'll hear a warning buzz. To simplify typing, 128 MLX redefines the function keys and + and keys on the numeric keypad so that you can enter data one-handed. In either case, the keypad is active only while entering data. Addresses must be entered with the normal letter and number keys. The figures below show the keypad configurations for each version.

MLX checks for transposed characters. If you're supposed to type in A0 and instead enter 0 A, MLX will catch your mistake. There is one error that can slip past MLX: Because of the checksum formula used, MLX won't notice if you accidentally type FF in place of 00 , and vice versa. And there's a very slim chance that you could garble a line and still end up with a combination of characters that adds up to the proper checksum. However, these mistakes should not occur if you take reasonable care while entering data.

\section*{Editing Features}

To correct typing mistakes before finishing a line, use the INST/DEL key to delete the character to the left of the cursor. (The cursor-left key also deletes.) If you mess up a line really badly, press CLR/HOME to start the line over. The RETURN key is also active, but only before any data is typed on a line. Pressing RETURN at this point returns you to the command menu. After you
type a character of data, MLX disables RETURN until the cursor returns to the start of a line. Remember, you can press CLR/HOME to quickly get to a line number prompt.

More editing features are available when correcting lines in which MLX has detected an error. To make corrections in a line that MLX has redisplayed for editing, compare the line on the screen with the one printed in the listing, then move the cursor to the mistake and type the correct key. The cursor left and right keys provide the normal cursor controls. (The INST/ DEL key now works as an alternative cursor-left key.) You cannot move left beyond the first character in the line. If you try to move beyond the rightmost character, you'll reenter the line. During editing, RETURN is active; pressing it tells MLX to recheck the line. You can press the CLR/HOME key to clear the entire line if you want to start from scratch, or if you want to get to a line number prompt to use RETURN to get back to the menu.

\section*{Display Data}

The second menu choice, DISPLAY DATA, examines memory and shows the contents in the same format as the program listing (including the checksum). When you press D, MLX asks you for a starting address. Be sure that the starting address you give corresponds to a line number in the listing. Otherwise, the checksum display will be meaningless. MLX displays program lines until it reaches the end of the program, at which point the menu is redisplayed. You can pause the display by pressing the space bar. (MLX finishes printing the current line before halting.) Press space again to restart the display. To break out of the display and get back to the menu before the ending address is reached, press RETURN.

\section*{Other Menu Options}

Two more menu selections let you save programs and load them back into the computer. These are SAVE FILE and LOAD FILE; their operation is quite straightforward. When you press S or L, MLX asks you for the filename. You'll then be asked to press either D or T to select disk or tape.

You'll notice the disk drive starting and stopping several times during a load or save (save only for the 128 version). Don't panic; this is normal behavior. MLX opens and reads from or writes to the file instead of using the usual LOAD and SAVE commands ( 128 MLX makes use of BLOAD). Disk users should also note that the drive prefix 0 : is automatically added to the filename (line 750 in 64 MLX ), so this should not be included when entering
the name. This also precludes the use of @ for Save-with-Replace, so remember to give each version you save a different name. The 128 version makes up for this by giving you the option of scratching the existing file if you want to reuse a filename.

Remember that MLX saves the entire workspace area from the starting address to the ending address, so the save or load may take longer than you might expect if you've entered only a small amount of data from a long listing. When saving a partially completed listing, make sure to note the address where you stopped typing so you'll know where to resume entry when you reload.

MLX reports the standard disk or tape error messages if any problems are detected during the save or load. (Tape users should bear in mind that Commodore computers are never able to detect errors during a save to tape.) MLX also has three special load error messages: INCORRECT STARTING ADDRESS, which means the file you're trying to load does not have the starting address you specified when you ran MLX; LOAD ENDED AT address, which means the file you're trying to load ends before the ending address you specified when you started MLX; and TRUNCATED AT ENDING ADDRESS, which means the file you're trying to load extends beyond the ending address you specified when you started MLX. If you see one of these messages and feel certain that you've loaded the right file, exit and rerun MLX, being careful to enter the correct starting and ending addresses.

The 128 version also has a CATALOG DISK option so you can view the contents of the disk directory before saving or loading.

The QUIT menu option has the obvious effect-it stops MLX and enters BASIC. The RUN/STOP key is disabled, so the Q option lets you exit the program without turning off the computer. (Of course, RUN/STOP-RESTORE also gets you out.) You'll be asked for verification; press \(Y\) to exit to BASIC, or any other key to return to the menu. After quitting, you can type RUN again and reenter MLX without losing your data, as long as you don't use the clear workspace option.

\section*{The Finished Product}

When you've finished typing all the data for an ML program and saved your work, you're ready to see the results. The instructions for loading and using the finished product vary from program to program. Some ML programs are designed to be loaded and run like BASIC programs, so all you need to type is LOAD "filename", 8 for disk
(DLOAD "filename" on the 128) or LOAD "filename" for tape, and then RUN. Such programs will usually have a starting address of 0801 for the 64 or 1 C 01 for the 128 . Other programs must be reloaded to specific addresses with a command such as LOAD "filename", 8,1 for disk (BLOAD "filename" on the 128) or LOAD "filename" , 1,1 for tape, then started with a SYS to a particular memory address. On the Commodore 64, the most common starting address for such programs is 49152, which corresponds to MLX address C000. In either case, you should always refer to the article which accompanies the ML listing for information on loading and running the program.

\section*{An Ounce Of Prevention}

By the time you finish typing in the data for a long ML program, you may have several hours invested in the project. Don't take chances-use our "Automatic Proofreader" to type the new MLX, and then test your copy thoroughly before first using it to enter any significant amount of data. Make sure all the menu options work as they should. Enter fragments of the program starting at several different addresses, then use the Display option to verify that the data has been entered correctly. And be sure to test the Save and Load options several times to insure that you can recall your work from disk or tape. Don't let a simple typing error in the new MLX cost you several nights of hard work.

\section*{Program 1: MLX For Commodore 64}

SS \(1 \varnothing\) REM VERSION 1.1: LINES 8 \(30,95 \emptyset\) MODIFIED, LINES 4 85-487 ADDED
EK 1øø POKE 56,5Ø:CLR:DIM INS, \(I, J, A, B, A S, B \$, A(7), N \$\)
DM \(11 \varnothing C 4=48: C 6=16: C 7=7: Z 2=2: Z\) \(4=254: Z 5=255: Z 6=256: Z 7=\) 127
CJ \(12 \emptyset \mathrm{FA}=\operatorname{PEEK}(45)+\mathrm{Z} 6\) * \(\operatorname{PEEK}(46)\) : BS \(=\operatorname{PEEK}(55)+Z 6 * \operatorname{PEEK}(56\) ) : H\$="ø123456789ABCDEF"
SB \(130 \mathrm{R} \$=\mathrm{CHR} \$(13): \mathrm{L} \$="\{\) LEFT \}" : S\$=" " : DS=CHR\$ (2Ø) : Z\$= \(\operatorname{CHR}(\varnothing): T \$="\{13\) RIGHT \(\} "\)
CQ \(140 \mathrm{SD}=54272: \mathrm{FOR} \mathrm{I}=\mathrm{SD}\) TO SD +23 : POKE I, \(\varnothing\) :NEXT:POKE \{SPACE\}SD+24,15:POKE 78 8,52
FC 150 PRINT"\{CLR\}"CHR\$ (142)CH RS(8): POKE 53280, 15 : POK E 53281,15
EJ \(16 \varnothing\) PRINT TS" \{RED\} \{RVS \}
\(\{2\) SPACES \(\}\) E8 @ \(\}\)
\(\{2\) SPACES \(\} \operatorname{SPC}(28)\) "
\(\{2\) SPACES \(\}\{O F F\}\{B L U\} M L\) \(X\) II \{RED\} \{RVS \}
\(\{2\) SPACES \(\}\) " \(\operatorname{SPC}(28) "\)
\{12 SPACES \}\{BLU\}"
FR \(17 \varnothing\) PRINT" 3 DOWN \(\}\) \{3 SPACES \(\}\) COMPUTE!'S MA

CHINE LANGUAGE EDITOR \｛3 DOWN\}"
JB 180 PRINT＂\(\{\) BLK \(\}\) STARTING ADD
 D：GOSUB1Ø4ø：IF F THEN18 Ø
GF 190 PRINT＂\(\{\) BLK \(\}\{2\) SPACES \(\} E N\) DING ADDRESSE4刃＂；：GOSUB \(3 \varnothing \varnothing: E A=A D: G O S U B 1 \varnothing 30: I F\) \｛SPACE\}F THEN19ø
KR 2øø INPUT＂\(\{3\) DOWN\} \{BLK\}CLEA R WORKSPACE［Y／N］［4才＂；A \＄：IF LEFT\＄（A\＄，1）＜＞＂Y＂TH EN220
PG \(21 \varnothing\) PRINT＂ 22 DOWN \}\{BLU\}WORK ING．．．＂；：FORI＝BS TO BS＋ EA－SA +7 ：POKE \(I, \varnothing: N E X T: P\) RINT＂DONE＂
DR \(22 \emptyset\) PRINTTAB（10）＂\｛2 DOWN \(\}\) \｛BLK\}\{RVS\} MLX COMMAND \｛SPACE\}MENU \{DOWN\}E4 \({ }^{\prime \prime}\) ： PRINT TS＂\｛RVS\}E\{OFF\}NTE R DATA＂
BD 230 PRINT T\＄＂\｛RVS\}D\{OFF\}ISP LAY DATA＂：PRINT T\＄＂ \｛RVS\}L\{OFF\}OAD FILE"
JS 240 PRINT TS＂\｛RVS\}S\{OFF\}AVE FILE＂：PRINT TS＂\｛RVS\}Q \｛OFF\}UIT\{2 DOWN\}\{BLK\}"
JH \(25 \emptyset\) GET AS：IF AS＝NS THEN25ø
HK \(26 \emptyset \mathrm{~A}=\emptyset: \mathrm{FOR} \mathrm{I}=1\) TO \(5: I F \mathrm{~A}=\) MIDS（＂EDLSQ＂，I，1）THEN A ＝I： \(\mathrm{I}=5\)
FD 270 NEXT：ON A GOTO42 \(0,610,6\) \(90,7 \emptyset \varnothing, 280\) ：GOSUB1Ø6Ø：GO TO250
EJ \(28 \emptyset\) PRINT＂\｛RVS\} QUIT ":INPU T＂ ［DOWN \} 4 4 \(\exists\) ARE YOU SURE ［Y／N］＂；AS：IF LEFT\＄（AS， 1）＜＞＂Y＂THEN22ø
EM 290 POKE SD＋24，\(\theta:\) END
JX \(3 \varnothing \varnothing\) IN \(\$=N \$: A D=\varnothing:\) INPUTINS：IF LEN（IN\＄）＜＞4THENRETURN
KF \(310 \mathrm{~B} \$=\mathrm{IN}\) ：\(:\) GOSUB320： \(\mathrm{AD}=\mathrm{A}: \mathrm{B}\) \＄ ＝MIDS（INS，3）：GOSUB320：A \(D=A D * 256+A: R E T U R N\)
PP 320 A＝ \(0: F O R \quad J=1\) TO 2：AS＝MID \(\$(B S, J, 1): B=A S C(A S)-C 4+\) （ \(A \$>\)＂＠＂）＊C7：A＝A＊C6＋B
JA \(33 \emptyset\) IF \(B<\emptyset\) OR \(B>15\) THEN \(A D=\) \(\emptyset: A=-1: J=2\)
GX 340 NEXT：RETURN
CH \(350 \mathrm{~B}=\mathrm{INT}(\mathrm{A} / \mathrm{C} 6):\) PRINT MIDS（ H \＄， \(\mathrm{B}+1,1) ;: \mathrm{B}=\mathrm{A}-\mathrm{B}^{*} \mathrm{C} 6: \mathrm{PRI}\) NT MIDS（H\＄， \(\mathrm{B}+1,1) ;\) RETU RN
RR \(360 \mathrm{~A}=\mathrm{INT}(\mathrm{AD} / \mathrm{Z} 6):\) GOSUB350：A ＝AD－A＊Z6：GOSUB350：PRINT ＂：＂；
BE \(37 \varnothing \mathrm{CK}=\operatorname{INT}(\mathrm{AD} / \mathrm{Z} 6): \mathrm{CK}=\mathrm{AD}-\mathrm{Z4}\)＊ CK＋Z5＊（CK＞Z7）：GOTO39ø
PX 38 CK \(=\) CK＊ \(\mathrm{Z} 2+\mathrm{Z} 5^{*}(\mathrm{CK}>\mathrm{Z7})+\mathrm{A}\)
JC \(39 \emptyset\) CK＝CK＋Z5＊（CK＞Z5）：RETURN
QS 4øø PRINT＂\｛DOWN\}STARTING AT K4ヨ＂；：GOSUB3øø：IF IN\＄〈＞ NS THEN GOSUB1ø3ø：IF F \｛SPACE \} THEN4øø
EX \(41 \varnothing\) RETURN
HD \(42 \emptyset\) PRINT＂\｛RVS\} ENTER DATA \｛SPACE\}":GOSUB4øø:IF IN \＄＝N\＄THEN220
JK \(43 \varnothing\) OPEN3， 3 ：PRINT
SK 440 POKE198，Ø：GOSUB36 \(0:\) IF F THEN PRINT INS：PRINT＂ \｛UP\}\{5 RIGHT\}";
GC 450 FOR \(I=\emptyset\) TO 24 STEP \(3: B \$\) \(=S \$: F O R \quad J=1\) TO \(2: I F\) F T HEN BS＝MIDS（INS，I＋J，I）
HA 460 PRINT＂\(\{\) RVS \}"BSL\$;:IF I< 24THEN PRINT＂\｛OFF\}";
HD 470 GET AS：IF AS＝NS THEN47 0

FK 48 IF（A\＄＞＂／＂ANDAS＜＂：＂）OR（A \＄＞＂＠＂ANDAS＜＂G＂）THEN54ø
GS \(485 \mathrm{~A}=-\left(\mathrm{A} S={ }^{\prime \prime} \mathrm{M}^{\prime \prime}\right)-2^{*}(\mathrm{~A} S=", ")-\) 3＊\((A S=" \cdot ")-4^{*}(A S=" / ")-5\) ＊\((A S=" J ")-6\)＊\((A S=" K ")\)
FX \(486 \mathrm{~A}=\mathrm{A}-7^{*}(\mathrm{~A} S=" \mathrm{~L} ")-8^{*}(\mathrm{~A} S=":\) ＂）\(-9 *(A S=" U ")-1 \sigma^{*}(A S=" I\) ＂）\(-11^{*}(\mathrm{~A} S=" \mathrm{O} ")-12^{*}(\mathrm{~A} S=\)＂ \(\mathrm{P}^{\prime \prime}\) ）
CM \(487 \mathrm{~A}=\mathrm{A}-13^{*}(\mathrm{~A} \$=\mathrm{S} \$)\) ：IF A THE N AS＝MIDS（＂ABCD123E456F Ø＂，A，1）：GOTO 54ø
MP \(49 \emptyset\) IF AS＝RS AND（（ \(I=\varnothing\) ）AND（ J \(=1) \mathrm{OR}\) F）THEN PRINT B\＄；： \(\mathrm{J}=2:\) NEXT \(: \mathrm{I}=24\) ：GOTO55 0
KC \(50 \emptyset\) IF AS＝＂\(\{\) HOME \(\}\)＂THEN PRI NT \(\mathrm{B} \$: \mathrm{J}=2: \mathrm{NEXT}: \mathrm{I}=24:\) NEX \(\mathrm{T}: \mathrm{F}=\varnothing\) ：GOTO \(44 \varnothing\)
MX \(51 \varnothing\) IF（AS＝＂\｛RIGHT\}")ANDF TH ENPRINT B\＄LS；：GOTO54ø
GK 520 IF AS \(<>L S\) AND AS \(<>D S\) OR （ \((I=\varnothing)\) AND（ \(\mathrm{J}=1)\) ）THEN GOS UB1ø6Ø：GOTO47Ø
HG 530 AS＝LS＋SS＋LS：PRINT B\＄LS； \(: J=2-J: I F ~ J\) THEN PRINT \｛SPACE\}LS;:I=I-3
QS 540 PRINT AS；：NEXT J：PRINT \｛SPACE\}S\$;
PM 550 NEXT I：PRINT：PRINT＂\｛UP\} \｛5 RIGHT\}";:INPUT\#3, IN\$ ：IF IN\＄＝N\＄THEN CLOSE3： GOTO22ø
QC 560 FOR \(I=1\) TO 25 STEP3： \(\mathrm{B} \$=\) MIDS（IN\＄，I）：GOSUB320：IF I＜25 THEN GOSUB380：A（I （3）\(=\mathrm{A}\)
PK 570 NEXT：IF A \(<>C K\) THEN GOSU Blø60：PRINT＂\(\{\) BLK \} \{RVS \} \｛SPACE\}ERROR: REENTER L INE［ 4 ＂＂： \(\mathrm{F}=1\) ：GOTO44 0
HJ 58 GOSUBlø8ø：B＝BS＋AD－SA：FO \(R \quad I=\emptyset\) TO \(7:\) POKE \(B+I, A\)（I ）：NEXT
QQ \(590 \mathrm{AD}=\mathrm{AD}+8:\) IF \(\mathrm{AD}>\mathrm{EA}\) THEN C LOSE3：PRINT＂\｛DOWN\} \{BLU\} ＊＊END OF ENTRY＊＊\｛BLK\} \｛2 DOWN \}": GOTO7øø
GQ \(6 \varnothing\) F＝ø：GOTO44
QA 610 PRINT＂\｛CLR\}\{DOWN\}\{RVS \} \｛SPACE\}DISPLAY DATA ": G OSUB4øø：IF IN\＄＝N\＄THEN2 \(2 \emptyset\)
RJ \(62 \emptyset\) PRINT＂\(\{\) DOWN\} \{BLU\}PRESS: \｛RVS\}SPACE \{OFF\} TO PAU SE，\｛RVS\}RETURN\{OFE\} TO BREAK［4 4 \｛DOWN\}"
KS 630 GOSUB360：\(B=B S+A D-S A: F O R\) \(I=B T O \quad B+7: A=P E E K(I): G O S\) UB350：GOSUB380：PRINT SS ；
CC 640 NEXT：PRINT＂\(\{\) RVS \(\} ": A=C K\) ：GOSUB350：PRINT
KH \(650 \mathrm{~F}=1: \mathrm{AD}=\mathrm{AD}+8: \mathrm{IF} \quad \mathrm{AD}>\mathrm{EA}\) TH ENPRINT＂\｛DOWN \} \{BLU\}** E ND OF DATA＊＊＂：GOTO220
KC \(66 \emptyset\) GET AS：IF AS＝RS THEN GO SUB1 \(08 \varnothing\) ：GOTO22の
EQ 670 IF \(\mathrm{A} \$=\mathrm{S} \$\) THEN \(\mathrm{F}=\mathrm{F}+1: \mathrm{GOS}\) UB1ø8ø
AD \(68 \emptyset\) ONFGOTO6 \(30,660,630\)
CM 690 PRINT＂\｛DOWN \} \{RVS \} LOAD \｛SPACE\}DATA ": OP=1:GOTO 710
PC \(7 \emptyset \emptyset\) PRINT＂\(\{\) DOWN \} \{RVS\} SAVE \｛SPACE\}FILE ": OP= \(\varnothing\)
RX 710 INS＝NS：INPUT＂\(\{\) DOWN \}FILE NAME［4刃＂；INS：IF INS＝N\＄ \｛SPACE\}THEN22ø
PR \(720 \mathrm{~F}=\varnothing\) ：PRINT＂\(\{\mathrm{DOWN}\}\) \｛BLK \} \｛RVS\}T\{OFF\}APE OR \{RVS\} D\｛OFF\}ISK: \(\mathbb{E} 4 \exists\)＂；

FP 730 GET A\＄：IF AS＝＂T＂THEN PR INT＂T \｛ DOWN \}": GOTO88ø
HQ 740 IF \(\mathrm{A}\langle<>\)＂ D ＂THEN73 1
HH 750 PRINT＂D\｛DOWN\}": OPEN15,8 ，15，＂IØ：＂：B＝EA－SA：IN\＄＝＂ Ø：＂＋INS：IF OP THEN81ø
SQ 760 OPEN \(1,8,8\) ，INS＋＂，P，W＂：G OSUB860：IF A THEN22 2
FJ \(77 \varnothing \mathrm{AH}=\mathrm{INT}(\mathrm{SA} / 256): \mathrm{AL}=\mathrm{SA}-(\mathrm{A}\) H＊256）：PRINT\＃1，CHR\＄（AL） ；CHRS（AH）；
PE 780 FOR \(I=\emptyset\) TO B：PRINT\＃1，CH \(\mathrm{RS}(\operatorname{PEEK}(\mathrm{BS}+\mathrm{I}))\) ；：IF ST T HEN8øø
FC 790 NEXT：CLOSE1：CLOSE15：GOT \(094 \varnothing\)
GS \(8 \varnothing 0\) GOSUB1 \(\varnothing 60:\) PRINT＂\｛DOWN \} \｛BLK\}ERROR DURING SAVE: K4 ヨ＂：GOSUB86 ：GOTO22ø
MA \(81 \emptyset\) OPEN \(1,8,8\), INS \(+^{\prime \prime}, \mathrm{P}, \mathrm{R}^{\prime \prime}: \mathrm{G}\) OSUB860：IF A THEN22 \(\varnothing\)
GE 820 GET\＃ \(1, A \$, B S: A D=A S C(A S+Z\) S）\(+256^{*} \mathrm{ASC}(\mathrm{B} \$+\mathrm{Z} \$): I F \mathrm{AD}\) ＜\({ }^{\text {SA THEN }} \mathrm{F}=1\) ：GOTO85 \(\varnothing\)
RX 83ø FOR \(I=\emptyset\) TO B：GET\＃1，AS：P OKE BS＋I，ASC（AS＋ZS）：IF（ \(I<>B)\) AND ST THEN \(F=2: A D\) \(=I: I=B\)
FA 840 NEXT：IF \(\mathrm{ST}<>64\) THEN \(\mathrm{F}=3\)
FQ 850 CLOSE1：CLOSE15：ON ABS（F \(>\varnothing)+1\) GOTO960，97Ø
SA 860 INPUT\＃15，A，AS：IF A THEN CLOSE1：CLOSE15：GOSUB1Ø 60：PRINT＂\｛RVS\}ERROR: "A \＄

GQ 870 RETURN
EJ 880 POKEl 83 ， \(\operatorname{PEEK}(\mathrm{FA}+2)\) ：POKE 187，PEEK（FA＋3）：POKE188， PEEK \((\mathrm{FA}+4)\) ：IFOP \(=\) ØTHEN92 \(\emptyset\)

HJ 890 SYS 63466：IF（PEEK（783）A ND1）THEN GOSUB1ø6Ø：PRIN T＂\｛DOWN \} \{RVS\} FILE NOT \｛SPACE\}FOUND ": GOTO69ø
CS \(900 \mathrm{AD}=\operatorname{PEEK}(829)+256^{*} \operatorname{PEEK}(8\) 30）：IF \(A D<>S A\) THEN \(F=1\) ： GOTO97ø
SC \(91 \varnothing \mathrm{~A}=\operatorname{PEEK}(831)+256 * \operatorname{PEEK}(83\) 2）\(-1: F=F-2^{*}(A<E A)-3^{*}(A>\) \(\mathrm{EA}): A D=A-A D: G O T O 93 \varnothing\)
\(K M 920 \mathrm{~A}=\mathrm{SA}: \mathrm{B}=\mathrm{EA}+1: G O S U B 101 \varnothing: \mathrm{P}\) OKE780，3：SYS 63338
JF \(930 \mathrm{~A}=\mathrm{BS}: \mathrm{B}=\mathrm{BS}+(\mathrm{EA}-\mathrm{SA})+1: G O S\) UB1ø10：ON OP GOTO950：SY S 63591
AE 940 GOSUBl \(08 \emptyset:\) PRINT＂\(\{\mathrm{BLU}\} * *\) SAVE COMPLETED＊＊＂：GOT O22ø
XP 950 POKE147，Ø：SYS 63562：IF \｛SPACE\}ST> \(>\) THEN97Ø
FR 960 GOSUBl ø8ø：PRINT＂\｛BLU\}** LOAD COMPLETED＊＊＂：GOT \(022 \varnothing\)
DP 970 GOSUBl \(660:\) PRINT＂\(\{\) BLK \} \｛RVS\}ERROR DURING LOAD: \｛DOWN\}\&4シ":ON F GOSUB98 Ø，990，10ø0：GOTO22ø
PP 980 PRINT＂INCORRECT STARTIN G ADDRESS（＂；：GOSUB360： PRINT＂）＂：RETURN
GR 990 PRINT＂LOAD ENDED AT＂； \(A D=S A+A D: G O S U B 360\) ：PRINT DS：RETURN
FD \(10 \varnothing 0\) PRINT＂TRUNCATED AT END ING ADDRESS＂：RETURN
\(\mathrm{RX} 1 \varnothing 1 \emptyset A H=\operatorname{INT}(A / 256): A L=A-(A H\) ＊256）：POKE193，AL：POKE1 94，AH
FF \(102 \emptyset \quad A H=\operatorname{INT}(B / 256): A L=B-(A H\) ＊256）：POKE1 74，AL：POKE1 75，AH：RETURN

FX \(103 \varnothing\) IF AD＜SA OR AD＞EA THEN \(105 \varnothing\)
HA 1040 IF（AD＞511 AND AD \(<40960\) ） \(\mathrm{OR}(A D>49151\) AND \(A D<53\) 248）THEN GOSUB1ø8ø：F＝ø ：RETURN
HC 1050 GOSUB1ø60：PRINT＂\｛RVS\} \｛SPACE\} INVALID ADDRESS \｛DOWN\}\{BLK\} ": F=1:RETU RN
AR 1060 POKE SD＋5， 31 ：POKE SD＋6 ，208：POKE SD，240：POKE \｛SPACE\}SD+1,4:POKE SD+ 4，33
DX \(107 \varnothing\) FOR S＝1 TO 1øø：NEXT：GO TO109ø
PF 1080 POKE SD \(+5,8: \mathrm{POKE} \mathrm{SD}+6\) ， 240：POKE SD，\(\varnothing\) ：POKE SD＋ 1，90：POKE SD＋4，17
AC 109ø FOR S＝1 TO \(100: N E X T: P O\) KE SD＋4，\(\varnothing:\) POKE SD，\(\varnothing: P O\) KE SD \(+1, \varnothing\) ：RETURN

\section*{Program 2：MLX For Commodore 128}

AE \(10 \varnothing\) TRAP 960：POKE 4627，128： DIM NLS，A（7）
XP \(110 \quad \mathrm{Z} 2=2: \mathrm{Z4}=254: \mathrm{Z} 5=255: \mathrm{Z} 6=2\) \(56: Z 7=127: B S=256\)＊PEEK（ 4 627）：\(E A=6528 \varnothing\)
FB \(12 \varnothing\) BE \(\$=\operatorname{CHR} \$(7):\) RT \(\$=\operatorname{CHR} \$(13\) ）：DL \(\$=\mathrm{CHR} \$(2 \varnothing): \mathrm{SP} \$=\mathrm{CHR} \$\) （32）：LF\＄＝CHR\＄（157）
\(\operatorname{KE} 130 \operatorname{DEF} \operatorname{FNHB}(A)=\operatorname{INT}(A / 256)\) ： \(\operatorname{DEF} \operatorname{FNLB}(A)=A-\operatorname{FNHB}(A) * 2\) 56： \(\operatorname{DEF} \operatorname{FNAD}(A)=\operatorname{PEEK}(A)+\) 256＊PEEK（A＋1）
JB 148 KEY 1，＂A＂：KEY 3，＂B＂；KEY 5，＂C＂：KEY 7，＂D＂：VOL 15 ：IF RGR \((\varnothing)=5\) THEN FAST
FJ \(15 \emptyset\) PRINT＂\(\{C L R\) \}"CHR\$(142); \(C\) HR\＄（8）：COLOR \(\varnothing, 15\) ：COLOR 4，15：COLOR 6，15
GQ 160 PRINT TAB（12）＂\(\{\) RED \(\}\) \｛RVS\}\{2 SPACES\}E9 @] \｛2 SPACES\}"RT\$;TAB(12)" \｛RVS \} \(\{2\) SPACES \(\}\) \｛OFF \(\}\) \｛BLU\} 128 MLX \｛RED\} \｛RVS\}\{2 SPACES \}"RT\$;TAB （12）＂\｛RVS\}\{13 SPACES\} \｛BLU\}"
FE \(17 \varnothing\) PRINT＂\｛2 DOWN \} \｛3 SPACES \}COMPUTE I'S MA CHINE LANGUAGE EDITOR \｛2 DOWN \}"
DK 180 PRINT＂\｛BLK\}STARTING ADD RESSE4习＂；：GOSUB 260：IF \｛SPACE\}AD THEN SA=AD:EL SE 180
FH 190 PRINT＂\｛BLK\}\{2 SPACES\}EN DING ADDRESSE4 4 ＂；GOSUB 260：IF AD THEN EA＝AD：E LSE 190
MF 200 PRINT＂\｛DOWN\}\{BLK\}CLEAR \｛SPACE\}WORKSPACE [Y/N]? E4才＂：GETKEY AS：IF ASく＞＂ Y＂THEN \(22 \varnothing\)
QH \(21 \varnothing\) PRINT＂\｛DOWN\}\{BLU\}WORKIN G．．．＂；：BANK \(\varnothing:\) FOR A＝BS \｛SPACE\}TO BS \(+(E A-S A)+7\) ： POKE \(A, \varnothing\) ：NEXT A：PRINT＂D ONE＂
DC \(22 \varnothing\) PRINT TAB（1 0 ）＂\｛DOWN\} \｛BLK\}\{RVS\} MLX COMMAND \｛SPACE\}MENU \(k 4 \exists\) \｛DOWN \}": PRINT TAB（13）＂\｛RVS\}E \｛OFF\}NTER DATA"RT\$;TAB( 13）＂\(\{\) RVS \(\}\) D \(\{O F F\}\) ISPLAY D ATA＂RT\＄；TAB（13）＂\｛RVS\}L \｛OFF\}OAD FILE"

HB 230 PRINT TAB（13）＂\｛RVS \}S \｛OFF\}AVE FILE"RTS;TAB(1 3）＂\(\{\) RVS \(\}\) C\｛OFF \(\}_{\text {ATALOG }}\) DI SK＂RT\＄；TAB（13）＂\｛RVS \}Q \｛OFF\}UIT \{DOWN\}\{BLK\}"
AP 240 GETKEY AS：A＝INSTR（＂EDLS CQ＂，AS）：ON A GOTO 340,5 \(50,640,650,930,940\) ：GOSU B 950：GOTO \(24 \varnothing\)
SX 250 PRINT＂STARTING AT＂；：GOS UB 260：IF（ \(A D<>\varnothing\) ）OR（ \(A S=N\) L\＄）THEN RETURN：ELSE 250
BG \(260 \mathrm{~A}=\mathrm{NL} \$:\) INPUT AS：IF LEN（ \(\mathrm{A} \$\) ）\(=4\) THEN \(\mathrm{AD}=\mathrm{DEC}(\mathrm{A}\) ）
PP \(27 \varnothing\) IF \(A D=\varnothing\) THEN BEGIN：IF A \＄く＞NLS THEN 3øø：ELSE RE TURN：BEND
MA \(28 \emptyset\) IF \(A D<S A\) OR AD \(>E A\) THEN \｛SPACE\}3øø
PM 290 TF AD＞511 AND AD＜65280 \｛SPACE\}THEN PRINT BES; : RETURN
SQ 300 GOSUB 950：PRINT＂\｛RVS\} I NVALID ADDRESS \｛DOWN\} \(\{B L K\} ": A D=\varnothing\) ：RETURN
RD \(31 \varnothing\) CK＝FNHB（ AD ）： \(\mathrm{CK}=\mathrm{AD}-\mathrm{Z} 4 * \mathrm{CK}\) ＋Z5＊（CK＞Z7）：GOTO \(33 \varnothing\)
DD 32 Ø CK＝CK＊Z2＋Z5＊（CK＞Z7）+A
AH \(330 \mathrm{CK}=\mathrm{CK}+\mathrm{Z} 5\)＊（ \(\mathrm{CK}>\mathrm{Z5}\) ）：：RETURN
QD \(34 \varnothing\) PRINT BES；＂\(\{\) RVS \(\}\) ENTER \｛SPACE\}DATA ":GOSUB 250 ：IF AS＝NL\＄THEN \(22 \varnothing\)
JA \(35 \emptyset\) BANK \(\varnothing:\) PRINT \(: F=\varnothing\) ：OPEN 3 ． 3
BR 360 GOSUB \(310:\) PRINT HEXS（AD ）+ ＂：＂；：IF F THEN PRINT \｛SPACE \}LS:PRINT"\{UP\} （5 RIGHT）＂；
QA 370 FOR \(I=\varnothing\) TO 24 STEP \(3: B \$\) ＝SPS：FOR J＝1 TO 2：IF F \｛SPACE\}THEN BS=MID\$(LS, I＋J，1）
PS \(38 \varnothing\) PRINT＂\｛RVS\}"BS+LFS;:IF \｛SPACE\} I＜24 THEN PRINT＂ \｛OFF\}";
RC 390 GETKEY AS：IF（AS＞＂／＂AN D AS＜＂：＂）OR（AS＞＂＠＂AND AS＜＂G＂）THEN 47ø
AC \(4 \varnothing 0\) IF \(A S="+"\) THEN \(A S=" E ": G\) OTO \(47 \varnothing\)
QB \(41 \varnothing\) IF \(A S="-"\) THEN \(A S=" F ": G\) OTO \(47 \varnothing\)
FB \(42 \varnothing\) IF \(A \$=\) RT \(\$\) AND（ \((I=\varnothing)\) AN D（ \(J=1\) ）OR F）THEN PRIN T BS；：J＝2：NEXT：\(I=24\) ：GOT － 480
RD \(43 \varnothing\) IF AS＝＂\｛HOME \}" THEN PRI NT BS：J＝2：NEXT：I＝24：NEX T：F＝ø：GOTO \(36 \varnothing\)
XB \(44 \varnothing\) IF（ \(A \$="\{\) RIGHT \(\} "\) ）AND \(F\) THEN PRINT BS＋LFS；：GOT － 470
JP 450 IF AS＜＜LFS AND AS＜＞DLS \｛SPACE \}OR ( \((I=\varnothing\) ）AND（ \(J\) ＝1））THEN GOSUB 950：GOT － \(39 \varnothing\)
PS 460 A \(=\mathrm{LF} \$+\) SP \(\$+\mathrm{LF} \$:\) PRINT B \＄ ＋LFS；：J＝2－J：IF J THEN P RINT LFS；： \(\mathrm{I}=\mathrm{I}-3\)
GB \(47 \varnothing\) PRINT AS；：NEXT J：PRINT \｛SPACE\}SPS;
HA 480 NEXT I：PRINT：PRINT＂\｛UP\} \｛5 RIGHT\}";:L\$=" \｛27 SPACES \(\}\)
DP 490 FOR I＝1 TO 25 STEP 3：GE T\＃3，AS，BS：IF AS＝SPS THE N I＝25：NEXT：CLOSE 3：GOT － \(22 \varnothing\)
BA \(500 \mathrm{~A} S=\mathrm{A} \$+\mathrm{B} \$: \mathrm{A}=\mathrm{DEC}(\mathrm{A} \$): \mathrm{MID} \$\) （LS，I，2）＝AS：IF I＜25 THE N GOSUB \(320: \mathrm{A}(\mathrm{I} / 3)=\mathrm{A}: \mathrm{GE}\) T\＃3，AS

AR 510 NEXT I：IF A＜＞CK THEN GO SUB 950：PRINT：PRINT＂ \｛RVS \} ERROR: REENTER LI NE＂：F＝1：GOTO 360
DX \(52 \varnothing\) PRINT BES：B＝BS + AD－SA：FO R \(I=\emptyset\) TO 7：POKE B＋I，A（I ）：NEXT I
XB \(530 \mathrm{~F}=\varnothing: \mathrm{AD}=\mathrm{AD}+8: I F \mathrm{AD}<=\mathrm{EA} \mathrm{T}\) HEN 360
CA 540 CLOSE 3：PRINT＂\({ }^{\text {（DOWN }\}}\) \｛BLU\}** END OF ENTRY ** \｛BLK\}\{2 DOWN\}":GOTO 650
MC 550 PRINT BES；＂\｛CLR\}\{DOWN\} \｛RVS \} DISPLAY DATA ":GO SUB 250：IF AS＝NL\＄THEN \｛SPACE \}22ø
JF \(56 \varnothing\) BANK \(\varnothing:\) PRINT＂\(\{\) DOWN \(\}\) \｛BLU\}PRESS: \{RVS\}SPACE \｛OFF\} TO PAUSE, \{RVS\}RE TURN \(\{O F F\}\) TO BREAKE4 \｛DOWN \({ }^{\prime \prime}\)
XA 570 PRINT HEXS（AD）+ ＂：＂；：GOS UB \(310: B=B S+A D-S A\)
DJ \(58 \emptyset\) FOR \(I=B\) TO \(B+7: A=\operatorname{PEEK}\)（ \(I\) ）：PRINT RIGHT\＄（HEX\＄（A）， 2）；SP\＄；：GOSUB \(320:\) NEXT \｛SPACE］I
XB 590 PRINT＂\｛RVS\}";RIGHT\$(HEX \＄（CK），2）
GR \(60 \varnothing \mathrm{~F}=1: \mathrm{AD}=\mathrm{AD}+8: I F \mathrm{AD}>\mathrm{EA} \mathrm{TH}\) EN PRINT＂\｛BLU\}** END OF DATA＊＊＂：GOTO 22 ø
EB 610 GET AS：IF AS＝RTS THEN P RINT BES：GOTO \(22 \varnothing\)
QK 620 IF \(\mathrm{A}=\mathrm{SP} \$\) THEN \(\mathrm{F}=\mathrm{F}+1: \mathrm{PR}\) INT BES；
XS 630 ON F GOTO \(570,510,570\)
RF 640 PRINT BES＂\｛DOWN\}\{RVS\} L OAD DATA＂：OP＝1：GOTO 66 \(\emptyset\)
BR \(65 \emptyset\) PRINT BE\＄＂\(\{\) DOWN\} \(\{\) RVS \(\} ~ S\) AVE FILE＂：OP＝\(\varnothing\)
DM \(66 \varnothing \mathrm{~F}=\varnothing\) ：F \(\$=\mathrm{NL} \$:\) INPUT＂FILENA MEE4才＂； \(\mathrm{FS}: I F\) FS＝NL \(\$\) THE N 220
RF \(67 \varnothing\) PRINT＂\({ }^{\text {DOWN }}\) \｛BLK\}\{RVS\}T \｛OFF\}APE OR \{RVS\}D\{OFF\} ISK：Е4习＂；
SQ 680 GETKEY AS：IF AS＝＂T＂THE N 850：ELSE IF ASく＞＂D＂T HEN \(68 \emptyset\)
SP 690 PRINT＂DISK\｛DOWN\}":IF OP THEN 760
EH 700 DOPEN\＃1，（F\＄＋＂，p＂），W：IF \｛SPACE\}DS THEN AS=DS:GO TO 740
JH 710 BANK \(\varnothing\) ：POKE BS -2, FNLB（S A）：POKE BS－1，FNHB（SA）：P RINT＂SAVING＂；FS：PRINT
MC 720 FOR \(A=B S-2\) TO BS + EA - SA ： PRINT\＃1，CHRS（PEEK（A））；： IF ST THEN AS＝＂DISK WRI TE ERROR＂：GOTO 750
GC 730 NEXT A：CLOSE \(1:\) PRINT＂ \｛BLU\}** SAVE COMPLERED \｛SPACE \}WITHOUT ERRORS * ＊＂：GOTO 220
RA 740 IF DS \(=63\) THEN BEGIN：CLO SE 1：INPUT＂\｛BLK\}REPLACE EXISTING FILE［Y／N］区4 ＂；AS：IF AS＝＂Y＂THEN SCR ATCH（FS）：PRINT：GOTO 7øø ：ELSE PRINT＂\｛BLK\}": GOTO 660 ：BEND
GA 750 CLOSE \(1:\) GOSUB 950 ：PRINT ＂\｛BLK\}\{RVS \} ERROR DURIN G SAVE：E4ヨ＂：PRINT AS：G OTO \(22 \varnothing\)
FD 760 DOPEN\＃1，（F\＄＋＂，P＂）：IF DS THEN AS＝DS \(\$: F=4: C L O S E\) \｛SPACE\}1:GOTO 790

PX 770 GET\＃1，AS，B\＄：CLOSE 1：AD＝ ASC（AS）\(+256^{*}\) ASC（BS）：IF \｛SPACE\}AD<>SA THEN F=1: GOTO 790
KB 780 PRINT＂LOADING＂；F\＄：PRIN \(\mathrm{T}: \operatorname{BLOAD}(\mathrm{FS}), \mathrm{B} \emptyset, \mathrm{P}(\mathrm{BS}): \mathrm{AD}\) \(=\mathrm{SA}+\mathrm{FNAD}(174)-\mathrm{BS}-1: \mathrm{F}=-2\) ＊\((A D<E A)-3 *(A D>E A)\)
RQ 790 IF F THEN 8ø0：ELSE PRIN T＂\｛BLU\}** LOAD COMPLETE D WITHOUT ERRORS＊＊＂：GO TO \(22 \varnothing\)
ER 800 GOSUB 950：PRINT＂\｛BLK\} \｛RVS\} ERROR DURING LOAD ：843＂：ON F GOSUB 810，8 20，836，840：GOTO22ø
QJ 810 PRINT＂INCORRECT STARTIN G ADDRESS（＂；HEXS（AD）；＂ ）＂：RETURN
DP 820 PRINT＂LOAD ENDED AT＂；H EXS（AD）：RETURN
EB \(83 \varnothing\) PRINT＂TRUNCATED AT ENDI NG ADDRESS（＂HEXS（EA）＂） ＂：RETURN
FP 840 PRINT＂DISK ERROR＂；AS：R ETURN
KS 850 PRINT＂TAPE＂：AD＝POINTER（ FS）：BANK \(1: A=\operatorname{PEEK}(A D): A\) \(\mathrm{L}=\operatorname{PEEK}(\mathrm{AD}+1): \mathrm{AH}=\mathrm{PEEK}(\mathrm{AD}\) +2 ）
XX 860 BANK \(15: S Y S\) DEC（＂FF68＂） ， 0,1 ：SYS DEC（＂FFBA＂），1， \(1, \emptyset: S Y S\) DEC（＂FFBD＂），A，A L，AH：SYS DEC（＂FF9ø＂）， 12 8：IF OP THEN 890
FG 870 PRINT：\(A=S A: B=E A+1: G O S U B\) 920：SYS DEC（＂E919＂），3： PRINT＂SAVING＂；FS
\(A B 880 A=B S: B=B S+(E A-S A)+1: G O S\) UB 92ø：SYS DEC（＂EA18＂）： PRINT＂\(\{\) DOWN \(\}\) \｛BLU \(\} * *\) TAP E SAVE COMPLETED＊＊＂：GO TO \(22 \varnothing\)
CP 890 SYS DEC（＂E99A＂）：PRINT：I \(\mathrm{F} \operatorname{PEEK}(2816)=5\) THEN GOS UB 950：PRINT＂\｛DOWN\} \｛BLK\}\{RVS\} FILE NOT FOU ND＂：GOTO \(22 \varnothing\)
GQ \(9 ø \varnothing\) PRINT＂LOADING ．．．\｛DOWN\} ＂： \(\operatorname{AD}=\operatorname{FNAD}(2817): I F A D<>\) SA THEN \(F=1\) ：GOTO 8øø：EL SE \(\operatorname{AD}=\operatorname{FNAD}(2819)-1: F=-2\) ＊\((A D<E A)-3 *(A D>E A)\)
JD \(91 \varnothing \mathrm{~A}=\mathrm{BS}: \mathrm{B}=\mathrm{BS}+(\mathrm{EA}-\mathrm{SA})+1\) ：\(G 0 S\) UB 920：SYS DEC（＂E9FB＂）： IF ST＞も THEN 8øø：ELSE 7 90
XB \(92 \varnothing\) POKE193，FNLB（A）：POKE194 ， \(\operatorname{FNHB}(\mathrm{A})\) ：POKE 174，FNLB（ B）：POKE 175，FNHB（B）：RET URN
CP 930 CATALOG：PRINT＂\(\{\) DOWN \(\}\) \｛BLU\}** PRESS ANY KEY F OR MENU＊＊＂：GETKEY AS：G ото \(22 \varnothing\)
MM 940 PRINT BES＂\｛RVS\} QUIT E4习＂；RTS；＂ARE YOU SURE \｛SPACE\}[Y/N]?":GETKEY A S：IF ASく＞＂Y＂THEN 220：E LSE PRINT＂\｛CLR\}": BANK 1 5：END
JE 950 SOUND \(1,500,10\) ：RETURN
AF 960 IF ER＝14 AND EL＝260 THE N RESUME \(3 ø \varnothing\)
MK 970 IF ER＝14 AND EL＝5 øø THE N RESUME NEXT
KJ \(98 \varnothing\) IF ER＝4 AND EL \(=78 \emptyset\) THEN \(\mathrm{F}=4: \mathrm{A} \$=\mathrm{DS} \$\) ：RESUME \(8 \varnothing \varnothing\)
DQ 990 IF ER＝30 THEN RESUME：EL SE PRINT ERRS（ER）；＂ERR OR IN LINE＂；EL

\title{
1 Machine Language Entry Program For Apple tim Victor．Editorial Programmer
}

To make it easier to enter machine lan－ guage programs into your computer with－ out typos，COMPUTE！is introducing its ＂MLX＂entry program for the Apple II series．It＇s our best MLX yet．It runs on the \(I I, I I+\) ，IIe，and IIc，and with either DOS 3.3 or ProDOS．

A machine language（ML）program is usually listed as a long series of num－ bers．It＇s hard to keep your place and even harder to avoid making mistakes as you type in the listing，since an incorrect line looks almost identical to a correct one．To make error－free entry easier， COMPUTE！generally lists ML programs for Commodore and Atari computers in a format designed to be typed in with a utility called＂MLX．＂The MLX program uses a checksum system to catch typing errors almost as soon as they happen．

Apple MLX checks your typing on a line－by－line basis．It won＇t let you enter invalid characters or let you con－ tinue if there＇s a mistake in a line．It won＇t even let you enter a line or digit out of sequence．Best of all，you don＇t have to know anything about machine language to enter ML programs with MLX．Apple MLX makes typing ML programs almost foolproof．

\section*{Using Apple MLX}

Type in and save some copies of Apple MLX on disk（you＇ll want to use MLX to enter future ML programs in COM－ PUTE！）．It doesn＇t matter whether you type it in on a disk formatted for DOS 3.3 or ProDOS．Programs entered with Apple MLX，however，must be saved to a disk formatted with the same operat－ ing system as Apple MLX itself．

If you have an Apple IIe or IIc，make sure that the key marked CAPS LOCK is in the down position．Type RUN．You＇ll be asked for the starting and ending ad－ dresses of the ML program．These values vary for each program，so they＇re given at the beginning of the ML program listing and in the program＇s accompanying arti－ cle．Find them and type them in．

\section*{Invalid Characters Banned}

Apple MLX is fairly flexible about how you type in the numbers．You can put extra spaces between numbers or leave the spaces out entirely，compressing a line into 18 keypresses．Be careful not to put a space between two digits in the middle of a number．Apple MLX will
read two single－digit numbers instead of one two－digit number（ F 6 means F and 6，not F6）．

You can＇t enter an invalid character with Apple MLX．Only the numerals 0－9 and the letters \(\mathrm{A}-\mathrm{F}\) can be typed in．If you press any other key（with some excep－ tions noted below），nothing happens． This safeguards against entering extrane－ ous characters．Even better，Apple MLX checks for transposed characters．If you＇re supposed to type in A0 and in－ stead enter 0A，Apple MLX will catch your mistake．

The next thing you＇ll see is a menu asking you to select a function．The first is （E）NTER DATA．If you＇re just starting to type in a program，pick this．Press the E key，and the program asks for the ad－ dress where you want to begin entering data．Type the first number in the first line of the program listing if you＇re just starting，or the line number where you left off if you＇ve already typed in part of a program．Hit the RETURN key and begin entering the data．

Once you＇re in Enter mode，Apple MLX prints the address for each program line for you．You then type in all nine numbers on that line，beginning with the first two－digit number after the colon（：）． Each line represents eight bytes and a checksum．When you enter a line and hit RETURN，Apple MLX recalculates the checksum from the eight bytes and the address．If you enter more or less than nine numbers，or the checksum doesn＇t exactly match，Apple MLX erases the line you just entered and prompts you again for the same line．

Apple MLX also checks to make sure you＇re typing in the right line．The address（the number to the left of the colon）is part of the checksum recalcula－ tion．If you accidentally skip a line and try to enter incorrect values，Apple MLX won＇t let you continue．Just make sure you enter the correct starting address；if you don＇t，you won＇t be able to enter any of the following lines．Apple MLX will stop you．

\section*{Editing Features}

Apple MLX also includes some editing features．The left－and right－arrow keys allow you to back up and go forward on the line that you are entering，so you can retype data．Pressing the CONTROL （CTRL）and D keys at the same time （delete）removes the character under the
cursor, shortening the line by one character. Pressing CTRL-I (insert) puts a space under the cursor and shifts the rest of the line to the right, making the line one character longer. If the cursor is at the right end of the line, neither CTRL-D nor CTRL-I has any effect.

When you've entered the entire listing (up to the ending address that you specified earlier), Apple MLX automatically leaves Enter mode and redisplays the functions menu. If you want to leave Enter mode before then, press the RETURN key when Apple MLX prompts you with a new line address. (For instance, you may want to leave Enter mode to enter a program listing in more than one sitting; see below.)

\section*{Display Data}

The second menu choice, (D)ISPLAY DATA, examines memory and shows the contents in the same format as the program listing. You can use it to check your work or to see how far you've gotten. When you press D, Apple MLX asks you for a starting address. Type in the address of the first line you want to see and hit RETURN. Apple MLX displays program lines until you press any key or until it reaches the end of the program.

\section*{Save And Load}

Two more menu selections let you save programs on disk and load them back into the computer. These are (S)AVE FILE and (L)OAD FILE. When you press S or L, Apple MLX asks you for the filename. The first time you save an ML program, the name you assign will be the program's filename on the disk. If you press L and specify a filename that doesn't exist on the disk, you'll see a disk error message.

If you're not sure why a disk error has occurred, check the drive. Make sure there's a formatted disk in the drive and that it was formatted by the same operating system you're using for Apple MLX (ProDOS or DOS 3.3). If you're trying to save a file and see an error message, the disk might be full. Either save the file on another disk or quit Apple MLX (by pressing the \(Q\) key), delete an old file or two, then run Apple MLX again. Your typing should still be safe in memory.

\section*{Apple MLX: Machine Language Entry Program \\ For instructions on entering this program.} please refer to "COMPUTEI's Guide to Typing In Programs" elsewhere in this issue.

88 \(1 \emptyset 0 \mathrm{~N}=9\) : HOME : NORMAL : PR INT "APPLE MLX": POKE 34, 2: ONERR GOTO 610
CC 110 VTAB 1: HTAB 20: PRINT "S TART ADDRESS"; : GOSUB \(53 \emptyset\) : IF \(A=\emptyset\) THEN PRINT CHR \$ (7): GOTO 110
\(8 \subset 1205=A\)

हנ \(13 \emptyset\) VTAB 2: HTAB 2ø: PRINT "E ND ADDRESS ";: GOSUB 530 : IF \(S>=A\) OR \(A=\emptyset\) THE N PRINT CHR\$ (7): GOTO 13 \(\emptyset\)
\(28140 \mathrm{E}=\mathrm{A}\)
B5 \(15 \varnothing\) PRINT : PRINT "CHOOSE: (E) NTER DATA"; : HTAB 22: PRI NT " (D) ISPLAY DATA": HTAB 8: PRINT " (L) OAD FILE ( S)AVE FILE (Q)UIT": PRIN \(T\)
AE 160 GET \(A \$: F O R I=1\) TO 5: I FA\$ < > MID\$ ("EDLSQ", I, 1) THEN NEXT : GOTO \(16 \emptyset\)

93 17ø ON I GOTO 27ø,22ø,18ø,2øø : POKE 34, \(\mathbf{D :}\) : END
AF 18Ø INPUT "FILENAME: ";A\$: IF \(A \$<>\| \|\) THEN PRINT CHR \$ (4);"BLOAD"; A\$;", A"; S
A1 \(19 \emptyset\) GOTO \(15 \emptyset\)
\(382 \emptyset \emptyset\) INPUT "FILENAME: ";A\$: IF A \(\$<>" \|\) THEN PRINT CHR \$ (4) ; "BSAVE"; A\$;", A"; 5 ;" , L"; (E-S) + 1
92 21ø GOTO 150
C2 220 GOSUB 590: IF \(B=\varnothing\) THEN \(15 \emptyset\)
9E 230 FOR B \(=\) B TO E STEP 8:L \(=\) 4:A = B: GOSUB 58ø: PRIN TA\$;": ";:L = 2
8524 FOR \(F=\emptyset\) TO \(7: V(F+1)=\) PEEK \((B+F)\) : NEXT : GOS UB 569:V(9) \(=C\)
F2 250 FOR \(F=1\) TO \(N: A=V(F):\) GOSUB 58ø: PRINT A\$" "; NEXT : PRINT : IF PEEK (4 9152) < 128 THEN NEXT

94260 POKE 49168, Ø: GOTO 150
CC 270 GOSUB 59ø: IF \(B=\emptyset\) THEN \(15 \varnothing\)
48280 FOR \(B=B\) TO E STEP 8
A6 290 HTAB \(1: A=B: L=4\) : GOSUB 58ø: PRINT A\$;": "; CAL L 64668: \(A \$=" ": P=\varnothing: G 0\) SUB 33Ø: IF \(L=\varnothing\) THEN 15 \(\emptyset\)
F9 30ø GOSUB 479: IF F < > N THE N PRINT CHR\$ (7);: GOTO 2 \(9 \varnothing\)
27310 IF \(N=9\) THEN GOSUB 560: IF \(C<>V(9)\) THEN PRINT CHR \({ }^{2}\) (7);: GOTO \(29 \varnothing\)
72320 FOR \(F=1\) TQ 8: POKE B + \(F-1, V(F):\) NEXT : PRINT : NEXT : GOTO \(15 \emptyset\)
\(8 E 330\) IF LEN \((A \$)=33\) THEN A \(\$\) \(=0 \$: P=0:\) PRINT CHR \(\$ 17\) );
\(22340 \mathrm{~L}=\) LEN (A\$):0\$=A\$:0= \(P: L \$=n n: I F P>\emptyset\) THEN \(L \$=L E F T \$(A \$, P)\)
E日 \(350 \mathrm{R} \$=" \|\) : IF \(P<L-1\) THE \(N R \$=\) RIGHT\$ \((A \$, L-P-\) 1)
\(5536 \emptyset\) HTAB 7: PRINT L\$; : FLASH : IF \(P<L\) THEN PRINT MID \$ (A\$,P + 1,1); : NORMAL : PRINT R\$;
\(7837 \emptyset\) PRINT " "; : NORMAL
E6 \(389 \mathrm{~K}=\) PEEK (49152): IF K < 128 THEN 38ø
C1 \(39 \emptyset\) POKE \(49168, \emptyset: K=K-128\)
5B 4øø IF \(K=13\) THEN HTAB 7: PR INT A\$;" "; : RETURN
8A \(41 \emptyset\) IF \(K=32\) OR \(K>47\) AND \(K\) < 58 OR K \(>64\) AND \(K<7\) 1 THEN A \(\$=\mathrm{L} \$+\) CHR \(\$(K)\) \(+R \$: P=P+1\)
IF \(K=4\)
C1 42 IF \(K=4\) THEN \(A \$=L \$+R\)
\(5543 \emptyset\) IF \(K=9\) THEN \(A \$=L \$+\) \("+M I D \$(A \$, P+1,1)+\) R
6A 440 IF \(K=8\) THEN \(P=P-(P\)
\(9345 \emptyset\) IF \(K=21\) THEN \(P=P+(P\) (L)

9D 460 GOTO 330
\(3747 \emptyset \mathrm{~F}=1: \mathrm{D}=\emptyset:\) FOR \(P=1 \mathrm{TO}\) LEN (A\$):C \(=\) MID\$ (A\$,P , 1): IF \(F\rangle N\) AND \(C\) \(\$\rangle\) " " THEN RETURN
B8 48ø IF C \(\$<\gg "\) THEN GOSUB \(520: V(F)=J+16 *(D=\) 1) \(V(F): D=D+1\)
\(5 F 49 \emptyset\) IF \(D>\emptyset\) AND \(C \$=" \|\) OR \(\mathrm{D}=2\) THEN \(\mathrm{D}=\emptyset: F=F+\) I
\(885 \emptyset \emptyset\) NEXT : IF \(D=\emptyset\) THEN \(F=\) \(F-1\)
\(1751 \varnothing\) RETURN
B5 \(520 \mathrm{~J}=\) ASC (C\$): \(\mathrm{J}=\mathrm{J}-48-\) \(7 *(J>64):\) RETURN
\(A B 53 \emptyset A=\emptyset:\) INPUT \(A \$: A \$=\) LEFT \(\$(A \$, 4)\) : IF LEN \((A \$)=\varnothing\) THEN RETURN
6F 54ø FOR \(P=1\) TO LEN (A\$) \(=C \$\) \(=M I D \$(A \$, P, 1): I F C \$<\) "Ø" OR C \(\$>\) "و" AND C " \(A\) " OR C\$ \(>\) "Z" THEN \(A=\) Ø: RETURN
2D 550 GOSUB 52ø: \(A=A * 16+J:\) NEXT : RETURN
\(28560 \mathrm{C}=\) INT \((\mathrm{B} / 256): \mathrm{C}=\mathrm{B}-\) \(254 * C-255 *(C>127\) ): \(C=C-255 *(C>255)\)
29570 FOR \(F=1\) TO \(8: C=C * 2\) \(-255 *(C>127)+V(F):\) \(C=C-255 *(C>255):\) NEXT : RETURN
\(D A 58 \emptyset I=\operatorname{FRE}(\varnothing): A \$=" n: F O R\) \(I=1\) TO L:T = INT (A 11 6) : A\$ = MID\$ ("Ø123456789 ABCDEF", \(A-16 * T+1,1)\) \(+A \$: A=T:\) NEXT : RETUR N
If \(59 \varnothing\) PRINT "FROM ADDRESS "; : \(G\) OSUB 53ø: IF \(S>A\) ORE< \(A\) OR \(A=\varnothing\) THEN \(B=\varnothing: R\) ETURN
00 6øø \(B=S+8 *\) INT ( \((A-S)\) ( 8): RETURN
B6 \(61 \emptyset\) PRINT "DISK ERROR": GOTO \(15 \emptyset\)

All the programs in this issue are available on the ready-to-load COMPUTE! Disk. To order a one-year (four-disk) subscription, call toll free 800-247-5470 (in IA 800-532-1272). Please specify which computer you are using.

\section*{SOFTWARE}

FANTASTIC DAILY NUMBER FORECASTER!
Not a R/N Gen. Guaranteed! Str. Hits. C/64, Ap, IBM, Atari. 1 Drive. OH add 5\% SASE for info. \(\$ 42.95\) on Disk only to: Z-Way, PO Box 9017-C, Canton, OH 44711
COMMODORE: TRY BEFORE YOU BUY. Best selling games, utilities, educational, + classics and new releases. 100's of titles. Visa/MC. Free brochure. RENT-A-DISC, Frederick Bldg. \#345, Hunt'n, WV 25701 (304) 529-3232

\section*{FREE APPLE SOFTWARE}

Over 1000 Public Domain Programs on 50 diskettes. \(\$ 5\) each plus \(\$ 1\) for shipping per order. Send \(\$ 1\) for catalog. Refundable with order.

\section*{C\&H ENTERPRISES}

PO Box 29243, Memphis, TN 38127
TI-99/4A QUALITY SOFTWARE for Business, Home and Entertainment ** Bonus Software Offer! ** Send for FREE catalog to MICRO-BIZ HAWAII, BOX 1108, PEARL CITY, HI 96782
TI-99/4A Software/Hardware Bargains.
Hard-to-find items. Huge Selection.
Fast Service. Free Catalog.
D.E.C., Box 690, Hicksville, NY 11801

TANDY 1000 PROGRAMS AND NEWSLETTER Send for free information on educational \& entertainment programs \& newsletter. Soda Pop Software, POB 653, Kenosha, WI 53141
APPLE PUBLIC DOMAIN SOFTWARE (almost free) Send \(\$ 2\) for sample disk and catalog. Refundable with order. Disks cost \(\$ 2.50\) and less. CALOKE IND., Box 18477, K.C., MO 64133

DISCOUNT SOFTWARE for most computers. FREE CATALOG. Sale: \(5.25^{\prime \prime}\) DSDD Disks 25 for \(\$ 13.95\) ppd. WMJ DATA SYSTEMS-C, 4 Butterfly Dr., Hauppauge, NY 11788
CHEAP SOFTWARE FOR PC/MS-DOS/PCjr... Games, Business, Educational and Utility Disk. For catalog write: Morning Star, P.O. Box 3095, Ann Arbor, MI 48106

\section*{FREE! PUBLIC DOMAIN SOFTWARE!} MS-DOS, IBM \& Compatibles - Save \(\$ \$ \$\) @ \(\$ 3.50\) per disk! Free flyer: AP-JP, Inc, P.O. Box 1155 , W. Babylon, NY 11704

\section*{ATARI 8-BIT \& ST! Best PD software for} your Atari. 150+ disks total to choose from! Only \(\$ 5\) each. Send SASE for catalog. Specify ST or 8-bit PLEASE! Gator-Ace Box 1215, Gainesville, FL 32602

INTERACTIVE TEXT GAMES - C64/128, Atari 8 -bit. MEDIEVAL I, a mystic quest (C64/128 only) or LEGEND, an epic fantasy war. Each disk \(\$ 17.95 \mathrm{Ch} / \mathrm{MO}\) to: SPECTRUM VISUAL CONCEPTS, 1609 Royal Pl., Clementon, NJ 08021

> ATTENTION T.I.99/4A OWNERS - Over 1500 Accessories THE WORLD'S LARGEST COMPUTER ASSISTANCE GROUP
> Now serving over 35,000 members worldwide with the best in technical assistance, service, and products for the Texas Instrument 99/4A. To become a member and receive newsletters, catalog, technical assistance and membership package, send \(\$ 10.00\) for a ONE Year Membership to: 99/4A National Assist Group

> National Headquarters
> P.O. Box 290812

> Ft. Lauderdale, Florida 33329 Attention Membership Division For Information Call (305) 962-8846

IBM PUBLIC DOMAIN SOFTWARE \$3 PER DISK Send for free list. We have dbases/games/ spreadsheets/finance/educational/and more. For home or business. Disks are new DSDD. JDX/C P.O. Box 1561, Corona, CA 91718

FREE SOFTWARE for C64, C128, IBM \& CPM send SASE for info (specify computer) to: PUBLIC DOMAIN USERS GROUP PO Box 1442-A1, Orange Park, FL 32067

THE GLEANER, A C64 GENEALOGY PROGRAM Grp sheets, ped charts, index, 25 p manual, selective search. \(\$ 19.95+\$ 2 \mathrm{p} / \mathrm{h}\) Kudzu Software, Box 993, Morrow, GA 30260

MUTUAL FUND PROGRAM (MFP) saves trouble and money by figuring lowest taxable capital gain on withdrawals. Keeps funds, bank accounts, IRA's, etc. all in one record. Disk and manual, C64:\$50, IBM PC: \(\$ 100\). Bernhardt MFP Software, 8 Kings Ct., Great Neck, NY 11024

\section*{HEY AMIGO! PD software for AMIGA!}

Games, Graphics, Utilities, More! Over 50 disks available, only \(\$ 5.95\) ea! SASE for cat. AMYWARE, POB 19474, Jacksonville, FL 32245
MAKE YOUR BASIC PROGRAMS COME TO LIFE! Speed-up your C64 programs 5-20 times using high-speed ML. Send program disk and \(\$ 15\) check or m.o. to: Sean Applegate, 976 W. Foothill \#517, Claremont, CA 91711

HOME \& BUSINESS
Savings/Loans, Cost Schedule, Calculator Files: List, Search, Create, Read, Add Data. Calculating Files: Charge Account Budget/ Inventory, Check \& Bank Statement/Bal Tally/Expenses, Auto, Phone, Payroll, Text-File, Invoice Records: Sales,
Service, Payments, Returns. Sorts Files Editing, Instruction Manual, Help Access Basic Programmers can List Code.
PC/MS-DOS IBM \& Compatible 256K Min Calc-Data, Inc., Ver.CD1.0(C)
Tamarind Dr., Hallandale, FL 33009
Orders 1-800-247-7893, 305-456-0417
COD/MO/Chs.Chk \(\$ 39.95+\$ 5 \mathrm{~s} / \mathrm{h}\)

\section*{HARDWARE}

JOYSTICKS for all COMMODORE and ATARI computers. Super smooth and precise operation \(\mathrm{w} /\) steel spring centering mechanism in handsome casing. Fully compatible but superior to standard Atari stick. Brand new, boxed w/warranty. \(\$ 6.95 /\) ea postpaid or \(\$ 11.95 /\) pair. Dealers/Groups: \(\$ 59 /\) dozen. Send order to: 25th Century, POB 8042, Long Island, New York 11802

\section*{MISCELLANEOUS}

SAFEWARE INSURES COMPUTERS against fire, theft, \& power surges for as little as \$39. Call Safeware, The Insurance Agency Inc. at 800/848-3469, Columbus, Ohio.

BBS Numbers \(\$ 5\) BBS Software! Order by modem (300 BAUD) 818-840-8066 or send \(\$ 5\) to BBS-FUNPAK, Box 6055, Burbank, CA 91510 Multi-User Modem Party Line: 818-842-3322
VIDEO GAME CARTRIDGES FOR GAMEPLAYING MACHINES! ALL SYSTEMS! WE BUY \& SELL, RETAIL \& WHOLESALE. ALSO HAVE COMPUTER SOFTWARE. FREE PRICE LIST! PLEASANT VALLEY VIDEO, DEPT. G, 8141 PL VAL RD, CAMDEN, OH 45311 (513) 787-4707 (VOICE), (513) 787-3777 (BBS, MODEM)
** COMMODORE REPAIR **
C64:\$45, SX64:\$75, 1541:\$50, 1571:\$65
Will buy used units. Repairs warranted 30 days. Dave Taylor, 5106 Daventry Pl., Midland, TX 79705. (915) 683-8398

\section*{COMPUTE! Classified is a low-cost way to tell over 350,000 microcomputer owners about your product or service.}

Rates: \(\$ 25\) per line, minimum of four lines. Any or all of the first line set in capital letters at no charge. Add \(\$ 15\) per line for boldface words, or \(\$ 50\) for the entire ad set in boldface (any number of lines.) Inquire about display rates.
Terms: Prepayment is required. Check, money order, American Express, Visa, or MasterCard is accepted. Make checks payable to COMPUTE! Publications.
Form: Ads are subject to publisher's approval and must be either typed or legibly printed. One line equals 40 letters and spaces between words. Please underline words to be set in boldface.
General Information: Advertisers using post office box numbers in their ads must supply permanent address and telephone numbers. Ad will appear in next available issue after receipt.
Closing: 10th of the third month preceding cover date (e.g., June issue closes March 10th). Send order and remittance to: Harry Blair, Classified Manager, COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. To place an ad by phone, call Harry Blair at (919) 275-9809.
Notice: COMPUTE! Publications cannot be responsible for offers or claims of advertisers, but will attempt to screen out misleading or questionable copy.

\section*{tdvertisers Index}
Reader Service Number/Advertiser ..... Page
102 Abacus ..... 29
103 Acorn of Indiana ..... 57
104 Activision, Inc ..... 15
105 ADAPSO ..... 120
106 Air Force ..... 1
107 The Avalon Hill Game Company ..... 5
108 Blackship Computer Supply ..... 93
Circle International Trading Ltd. ..... 113
C.O.M.B. Direct Marketing Corp ..... 117
109 CompuServe ..... 13
110 ComputAbility ..... 118-119
111 Computer Book Club ..... 83
112 Computer Direct ..... 24-25
113 Computer Mail Order ..... 10-11
114 Covox. Inc ..... 93
115 Datalock Manufacturing Co. ..... 116
116 Dresselhaus ..... 57
117 Electronic Arts ..... 9
118 EPYX ..... IFC
119 EPYX ..... 21
Reader Service Number/Advertiser Page
120 Interstel Corp. ..... 116
121 Lyco Computer ..... 32-35
Mindscape, Inc ..... 2
NRI Schools ..... 53
122 Precision Data Products ..... 114
123 Precision Images ..... 57
124 Pro-Tech-Tronics ..... 16
125 Silicon Express ..... 31
126 Software Discounters of America ..... 115
127 sublOGIC Corporation ..... IBC
128 Video Technology Computers, Inc ..... BC
129 Wenger Corp. ..... 69
Classified Ads ..... 131
COMPUTE! Books' Amiga Selections ..... 27
COMPUTE! Books' Commodore 64 \& 128 Selections ..... 67
COMPUTE! Disk Subscription ..... 111
COMPUTE! Subscription ..... 17
Mastering Microsoft Works ..... 7

> If you have any information about services which maintain a database of all currently available commercial software, please write to:

\section*{Copies of articles from this publication are now available from the UMI Article Clearinghouse.}

For more information about the Clearinghouse, please fill out and mail back the coupon below.

\section*{UMIIArticle Clearnighouse}

Yes! I would like to know more about UMI Article Clearinghouse. I am interested in electronic ordering through the following system(s):
\(\square\) DIALOG/Dialorder
\(\square\) ITT Dialcom
\(\square\) OnTyme
\(\square\) OCLC ILL Subsystem
\(\square\) Other (please specify)
\(\square\) I am interested in sending my order by mail.
\(\square\) Please send me your current catalog and user instructions for the system(s) I checked above.
Name
Title
Institution/Company
Department
Address
City \(\qquad\) State
Zip \(\qquad\)
Phone \(\qquad\) -)
Mail to: University Microfilms International 300 North Zeeb Road, Box 91 Ann Arbor, MI 48106


TRY COMPUTE! EVERY MONTH—12 ISSUES—AT \(33 \%\) OFF THE COVER PRICE.

Mr/Ms \(\qquad\)
Street \(\qquad\)
City \(\qquad\) State \(\qquad\) Zip
\(\square\) I prefer 24 issues-2 years-at \(\$ 45.00\)Bill Me \(\square\) Check EnclosedJ5636

Foreign and Canadian, please add \(\$ 6\) (U.S.) per year postage. Offer subject to change without notice.

\title{
BUSINESS REPLY MAIL \\ FIRST CLASS \\ PERMIT NO. 7478 \\ DES MOINES, IA
}

POSTAGE WILL BE PAID BY ADDRESSEE
P.O. Box 10955

Des Moines, IA 50347-0955

\section*{RUSH POSTAGE-PAID CARD FOR YOUR FREE CATALOG}
- COMPUTER ELECTRONICS training prepares you to service all computers as you build your own 16-bit IBM PC compatible computer. Total system program inciudes disk drive, test equipment, bundled software, and NRI Discovery Lab.
- TV/VIDEO/AUDIO SERVICING includes training with a state-0f-the-art 27 " high resolution broadcast stereo TV for learning troubleshooting and professional bench techniques.
- SATELLITE ELECTRONICS training gives you the skills to service both consumer and commercial satellite earth station equipment as you assemble your own home satellite TV system.
- ROBOTICS training features remote-controlled, mobile, fully programmable robot you build, experiment with, and keep along with other test equipment.

\begin{tabular}{|lll|}
\hline & & \\
\hline Name & (Please Print) & Age \\
\hline Street & & \\
\hline City & State & Zip \\
\hline
\end{tabular}

For career courses approved under G.I. Bill \(\square\) Check for details.

\section*{BUSINESS REPLY MAIL}

FIRST CLASS MAIL PERMIT NO. 10008 WASHINGTON, D.C.

POSTAGE WILL BE PAID BY ADDRESSEE

\author{
NRI Schools \\ McGraw Hill Continuing \\ Education Center \\ 3939 Wisconsin Avenue \\ Washington, D.C. 20077-9265
}

\section*{COMPUTEI's}

\section*{FREE Reader Information Service}

Use these cards to request FREE information about the products c vertised in this issue. Clearly print or type your full name and addre Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.
Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTE! cannot be responsible if advertisers do not provide literature to readers.

Please use these cards only for subscribing or for requesting product information. Editorial and customer service inquiries should be addressed to: COMPUTEI, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.
Use these cards and this address only for COMPUTEl's Reader Information Service. Do not send with payment in any form.

\section*{COMPUTE:}
\begin{tabular}{lllllllllllllllll}
101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 & 112 & 113 & 114 & 115 & 116 & 117 \\
118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 \\
135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 149 & 150 & 151 \\
152 & 153 & 154 & 155 & 156 & 157 & 158 & 159 & 160 & 161 & 162 & 163 & 164 & 165 & 166 & 167 & 168 \\
169 & 170 & 171 & 172 & 173 & 174 & 175 & 176 & 177 & 178 & 179 & 180 & 181 & 182 & 183 & 184 & 185 \\
186 & 187 & 188 & 189 & 190 & 191 & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 & 200 & 201 & 202 \\
203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 & 211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 \\
220 & 221 & 222 & 223 & 224 & 225 & 226 & 227 & 228 & 229 & 230 & 231 & 232 & 233 & 234 & 235 & 236 \\
237 & 238 & 239 & 240 & 241 & 242 & 243 & 244 & 245 & 246 & 247 & 248 & 249 & 250 & 251 & 252 & 253
\end{tabular}


Please print or type name and address. Limit one card per person.
\begin{tabular}{lll}
\hline Name & & \\
\hline Address & & \\
\hline City & & \\
\hline State/Province & & \\
\hline Country & & \\
\hline Phone & & \\
\hline Please Include ZIP Code & Expiration Date 6/30/87 & CO587
\end{tabular}

SUBSCRIBE
TO
COMPUTE!

For Fastest Service, Call Our Toll-Free US Order Line 800-247-5470

Name
Address
City State ZipPayment EnclosedBiii me Charge my: \(\square\) VISA MasterCardAmerican Express Account No.

\title{
COMPUTE! Reader Service P.O. Box 2141 Radnor, PA 19089
}


NO POSTAGE
NECESSARY

POSTAGE WILL BE PAID BY ADDRESSEE

P.O. Box 10955

Des Moines, IA 50347-0955

\section*{Fly to Florida!}

Scenery Disk \# 7 covers the entire East Coast area from Philadelphia to Miami. The Florida coastline, from Cape Canaveral to Miami, is perfect for concentrated sight-seeing. Or fly to Washington DC, where scenery details include the Capitol Building, Pentagon, and Washington Monument. Whether seeking the intellectual challenge of Flight Simulator or the bruteforce fun of Jet, you'll find this latest evolution of SubLOGIC scenery absolutely breath-taking!


Scenery Disks now available: Areas 1-7
San Francisco 'STAR'
Central Japan
See your dealer. SubLOGIC Scenery Disks are available individually for \(\$ 19.95\). The six-disk Western U.S. set is available for \(\$ 99.95\). For additional product ordering information or the name of the dealer nearest you, call

sublogic
Corporation Champaign IL 61820 (217) 359 S482 Telex: 206995

ORDER LINE: (800) 637-4983
(except in ilinois. Alaska and Hawai)
Open 7 AM to 9 PM Central Time


\section*{Apple IIe/IIc compatible}

\section*{The Laser 128 is a smashing success.}

\section*{"A Remarkably Compatible, Competent Penfuswer" - InCider Magazine "A Better Value" - Computer Sbopper}

The Laser 128 Apple-compatible computer is a successful hit with its audience. Industry publication reviews make it clear - the Laser 128 is a hot ticket. The Laser 128 is made to grow like an Apple lle, designed to go like an Apple IIc and priced to go like a Commodore. And, only the Laser 128 has all these performance features: 128K RAM, built-in floppy disk drive, serial and parallel printer interfaces, mouse interface, modem interface, 80-column text, numeric keypad and an expansion slot. These leading features make the Laser 128 a headline performer with a style perfect for home, school or business use. Get the Laser 128 performing for you. Call or write for the name of your nearest Laser 128 dealer.

\section*{LIDO TECHNOLOGY CQMPUTERS, INC.}```


[^0]:    Indoor Sports is available on C64 \& C128. High Roller is available on C64 \& C128 and Atari ST Bop'n. Wrestle is available on Apple II family. IBM \& compatibles. C64 \& C128 and Atari 800 . Infiltrator is available on Apple II family.
    IBM \& compatibles. C64 \& C128 and Atari 800 . Balance of Power is available on Apple II family Macintosh IBM \& conpatibles Amiga IBM \& compatibles. C64 \& C128 and Atari 800 . Balance of Power is available on Apple II family. Macintosh. IBM \& compatibles. Amiga and Atari ST.
    Visit your retailer or call $1.800-443-79 e 2$ (in illinois $1.800-654-3767$ ) for VISA or MasterCard orders. To purchase by mail. send VISA or MasterCard number with expiration date. check or money order to Mindscape. Inc., PO. Box
    1167 . Northbrook. IL 60065 . Add $\$ 300$ for shipping and handlin. Allow 3.5 wis 1167. Northbrook. IL 60005 . Add $\$ 3.00$ for shipping and handling. Allow $3-5$ weeks for delivery.

    If you're an attorney read this: Apple, IBM, PC jr. Commodore. Atari and Amiga are registered trademarks of Apple Computer. Inc. International Business Machines, Commodore Electronics Ltd. Atari. Inc. and Commodore Amiga. Inc. respectively. Mindscape is a trademark of Mindscape. Inc.

[^1]:    ; Skeleton of a program which puts ; a 'please wait' type message on

[^2]:    PL 1 øø5 COLOR ø, 6: LOCATE 1, 28, ø: PRINT CHR\$ (2Ø1) STRING\$ (1 Ø, 2ø5) CHR\$ (187)
    PI $1 \emptyset 1 \emptyset$ LOCATE 2, 28:PRINT CHR\$ (1 86)" EUCHRE "CHR\$(186)

    JC 1015 LOCATE 3, 28: PRINT CHR\$ (2 øø) STRING\$ (1ø, 2ø5) CHR\$ (1 88)

    EC 1 Ø6ø FOR I=ø TO S:LOCATE 19+I , 33: PRINT CHR\$(222); : NEX T
    CB $107 \emptyset$ FOR $I=\emptyset$ TO 5: LOCATE S+I, 33:PRINT CHR\$(222); : NEXT
    QL 1112 RESTORE 1113:FOR $\mathrm{I}=\emptyset$ TO 2: $\mathrm{N} \$(\mathrm{I})=" \mathrm{n}:$ FOR $\mathrm{J}=\emptyset$ TO 19 : READ A:N\$ (I) $=N \$(I)+C H R \$$ (A) : NEXT J, I

    GA 1113 DATA $32,32,219,32,220,32$ , 22ø, 32, 222, 32, 32, 22ø, 32 , 22ø, 22ø, 32, 254, 32, 254, 3 $2,222,32,219,32,32,220,2$ $29,32,32,32,220$

