Apple PowerKey: Complete Progra. Inside

COMPUTEI

The Leading Magazine Of Home, Educational, And Recreational Computing

Beehive

An Irresistible Strategy Game For Commodore 64 And 128 BM RC/PCji, Atari, Apple And Amiga

Dr. Sound For Then
 Easily Modify Soundsern

 While Music Is PlayingA Full-featused 5
Home Finomsidf Cald

Atail And 64

speedup Techniques
Get Your Programs Off To
A Fast Start

Solvions!

MAIL ORDERS:
CRYSTAL COMPUTER INC.
In Michigan 1-517-224-7667
Outside Michigan 1-800-245-7316

CANADIAN DEALER ENQUIRIES:
INGRAM CANADA LTD.
1.416.738-1700

PW 128/64 Dictionary
also available at S14.95 (U.S.)

Besteselfing sofivere for rour commodore 128 or 64

You want the very best soffware you can find for your
You want integrated software - word processing, database and spreadsheet applications - at a sensible price. But, you also want top-of the-line features. Well, our Pocket $128 / 64$ software goes one better.

Only The Name Is New

The professional, full-featured software line from Digital Solutions is now called Pocket Software.
Pocket Writer 128/64. Pocket Filer 128/64. Pocket Planner 128/64. The names are new, but this super software is still the same.

From now on, when you hear the word Pocket, it means software that's full-featured, handy and easy to use.
Pocket Software at prices that won't pick your pocket.

> Serious software that's simple to use.

Commodore 128 or 64 , right?

With Pocket 128 or 64 , you'll find all the features you can imagine . . . and then some. And Pocket $128 / 64$ is so easy to use, you won't even need the reference guide. On-screen and in memory instructions will have you up and running in less than 30 minutes, even if you've never used a computer before.

The price? It's as low as you'd expect for a line of software called 'Pocket'. Suggested Retail Price for the 64 software is $\$ 39.95$ (U.S.) and $\$ 49.95$ (U.S.) for the 128.
Any of the 64 products may be upgraded to their 128 version for $\$ 15.00$ (U.S.) $+\$ 3.00$ shipping and handling. (Available to registered owners from Digital Solutions Inc. only.)
Pocket Writer 128 or 64 , Pocket Planner 128 or 64 and Pocket Filer 128 or $64 \ldots$ Solutions at sensible prices from Digital Solutions Inc.
International \& Distributor enquiries to:

30 Wertheim Court, Unit 2 Richmond Hill, Ontario Canada L4B1B9 telephone (416) 731-8775

Flight Simulator II Scenery Disks

The Challenge of Accomplished Flight

With a realism comparable to (and in some ways even surpassing) $\$ 100,000$ aircraft flight simulators, Flight Simulator II includes full flight instrumentation and avionics, and provides a full-color out-thewindow view. Instruments are arranged in the format standard to modern aircraft. All the radios needed for IFR flight are included. Front, rear, left, right, and diagonal views let you look in any direction. Program features are clearly documented in a 96-page Pilot's Operating Handbook.

For training in proper flight techniques, Flight Simulator II includes another 96 -page instruction manual, compiled by two professional flight instructors with over 8,000 hours flight time and 12,000 hours of aviation teaching experience. You'll learn correct FAArecommended flight procedures, from basic aircraft control through instrument approaches. To reward your accomplishments, the manual even includes a section on aerobatic maneuvers.

The Realism and Beauty of Flight

Go sight-seeing over detailed, realistic United States scenery. High-speed graphic drivers provide an animated out-the-window view in either day, dusk, or night flying modes.

Flight Simulator II features over 80 airports in four different scenery areas: New York, Chicago, Seattle, and Los Angeles. Six additional Scenery Disks covering the entire Western half of the United States are now available in IBM and C64/I 28 disk formats.

Apple II is a trademark of Apple Computer, Inc. Atari XL and XE are trademarks of Atari Corp.
Commodore 64 and 128 are trademarks of Commodore Electronics Ltd. IBM PC is a registered trademark of International Business Machines Corp.

Apple and Atari versions will be released soon. Each disk covers a geographical region of the country in detail, and is very reasonably priced.

The Pure Fun of "World War I Ace"

When you think you're ready, you can test your flying skills with the "World War I Ace" aerial battle game. This game sends you on a bombing run over heavily-defended enemy territory. Six enemy fighters will attempt to engage you in combat as soon as war is declared. Your aircraft can carry five bombs, and your machine guns are loaded with 100 rounds of ammunition.

See Your Dealer. Flight Simulator II is available on disk for the Apple II, Atari XL/XE, and Commodore 64/I28 computers for $\$ 49.95$. Scenery Disks for the C64 and IBM PC (Jet or Microsoft Flight Simulator) are $\$ 19.95$ each. A complete Western U.S. Scenery six-disk set is also available for $\$ 99.95$. For additional product or ordering information, call (800) 637-4983.

Commodore 64 and 128 are trademarks of Commodore Electronics Lid.

\$10,000.00 Atari ST Programming Contest!

First Prize \$5,000.00

Second Prize \$2,500.00

Third Prize \$1,000.00
Three Honorable Mentions \$500.00 each

Abstract

COMPUTE! Publications, Inc. is looking for the very best original software for the Atari ST series computers. And to prove we're serious, we're offering a total of $\$ 10,000.00$ in prize money to the top six winners. That's $\$ 5,000.00$ for First Prize, $\$ 2,500.00$ for Second Prize, $\$ 1,000.00$ for Third Prize, and $\$ 500.00$ each for three Honorable Mentions. In addition, the winners will receive our standard royalties when their programs are published. And even if your program doesn't win a prize, you can still earn purchase fees and royalties if we accept your entry for publication.

Interested? If so, read these rules:

1. Entries must be your original work, previously unpublished. All those whose programs are accepted will be required to affirm this in writing.
2. You can submit as many entries as you want, but we cannot consider programs which have been entered in other contests or submitted for publication elsewhere at the same time.
3. The deadline is October 1, 1986. All entries must be received at our offices by this date. Programs submitted after this date will still be considered for publication, but will not be entered in the contest.
4. Entries are allowed (and encouraged) in virtually all software categories: home and business applications, education, recreation, telecommunications, graphics, sound and music, utilities, and desk accessories.
5. Entries may be written in any programming language-including BASIC, Logo, C, machine language, Pascal, Modula-2, Forth, FORTRAN, and Prolog-as long as they meet two requirements. First, if you're using a compiled language, the compiled object or run-time code must be a selfstanding program that can be run by someone who doesn't own a copy of the language. (Exceptions are ST BASIC and Logo. Since these languages come with the ST, it can be assumed that everyone owns a copy.) Second, we must be able to legally distribute the program without incurring licensing fees or other obligations to the maker of the language. If you're not sure whether a certain language qualifies, contact its maker for clarification.
6. Entries must be submitted on a single- or double-sided $31 / 2$-inch ST disk with both the run-time code and source code included.
7. Entries must be accompanied by an article which explains how to use the program, what it does, and so on. If your program employs any new or unusual techniques that you think will be of interest to other ST programmers, you can also describe how the program works.
8. Submissions which do not win a prize and are not accepted for publication will be returned only if accompanied by a self-addressed, stamped mailer.
9. All judging will be handled by the staff of COMPUTE! Publications, Inc. All decisions regarding contest entries and acceptances will be solely at the
discretion of COMPUTE! Publications, Inc., and all decisions are final. This includes decisions regarding creativity, similarity among entries, and so forth.
10. Winners will be announced by COMPUTE! Publications, Inc. in late 1986.
11. This contest is void where prohibited by law. Full-time, part-time \& previous employees of COMPUTE! Publications, Inc., and Capital Cities/ American Broadcasting Corporation are ineligible for the contest, but may still submit work for publication at standard rates.

Every Contest Entry Must Contain This Form:

I warrant that the program presently entitled.
is my own original work and that the work has not been submitted for consideration elsewhere, nor has it been previously published. If my work is accepted by you, I understand that your decision as to the selection of winners and awarding of prizes is final and without recourse on my part. I agree, should you select my submission, to sign your standard contract, which includes assignment of the copyright of the program to COMPUTE!, and to allow you to use my name and image in promotional materials and other forms. (If you are under age eighteen, your parent or legal guardian must sign for you.)

Address entries to:
ATARI ST CONTEST
COMPUTE! Publications, Inc.
P.O. Box 5406

Greensboro, NC 27403
COMPUTE! Publications,Inc.abc
Part of ABC Consumer Magazines, Inc.
One of the ABC Publishing Companies

A bimonthly magazine devoted exclusively to Atari ST enthusiasts that includes a disk containing all of the programs found in each issue.

Atari has proven the pessimists wrong. The Atari 520ST and 1040ST have become the bestsellers among the new generation of personal computers. Both are breakthroughs in price and performance, and the community of ST owners is growing by thousands each month.
That's one reason why COMPUTE! Publications is announcing a new magazine specially designed for ST users. At the same time, we recognize that the power of the ST presents a unique challenge to magazines which publish program listings. That's why we're including a $31 / 2$-inch disk that contains every program found in each issue-ready to load and run. No more typing!
Here's what you'll get in every issue of COMPUTE!'s Atari ST Disk \& Magazine:

- Top-quality programs. Utilities. Games. Educational programs for youngsters. Application programs for home and business. And since all the programs will be on disk, there are few limitations on length or languages. A typical disk might contain an elaborate adventure game written in BASIC, a programming utility written in machine language, a dazzling graphics demo in compiled Pascal, and a useful home or business application written in Forth or C.
- Neochrome of the Month. Take a look at what computer artists are doing with the Atari ST. Each issue's disk contains a Neochrome picture file ready for you to load and admire. Are you an artist yourself? Send us a picture of your own, and we'll pay you if it's published.
- Regular columns. If you're a programmer-or would like to be-you'll love our columns on ST programming techniques and the C language. Or check out our column on the latest events and happenings throughout the ST community. Or send your questions and helpful hints to our Reader's Feedback column.
- Reviews. Honest evaluations of the latest software and hardware for the Atari ST.
- News \& Products. A comprehensive listing of the newest releases for your ST.

- And more: Interviews with ST newsmakers, reports on the latest industry trade shows, and overviews of significant new product introductions.

Starting with the October issue (available September 1), COMPUTE!'s Atari ST Disk \& Magazine will be found on newsstands nationwide for only $\$ 12.95$ per copy, including disk. Or it can be delivered directly to your mailbox six times a year for only $\$ 59.95$-a savings of over 20 percent.

> As a special bonus, if you order a prepaid subscription before August 1 , you'll get the first issue absolutely free!

To order, call 800-346-6767. In NY 212-887-8525 or send check or money order to
COMPUTE!'s Atari ST Disk \& Magazine
ABC Consumer Magazines, Inc.
Circulation Dept./8th Floor
825 7th Avenue
New York, NY 10019

Ceitificate Waker Because accomplishmentsdeserve to be recognized.

Offer Congratulations!

 Say Thanks! Have Fun!Giving someone a certificate is a wonderful way to recognize an outstanding achievement. It's also a perfect way to have a little fun.
Certificate Maker ${ }^{\text {TM }}$ gives you over 200 professionally designed certificates. From strictly official to fun and witty, there's something for everyone and every occasion. So you can surprise a family member, praise a student, applaud an athlete and honor an employee with great looking certificates. And each one will be as personal, professional and special as you choose.

Personalized certificates in minutes.

Simply choose a certificate, select a border, type your message; add a date and signature ...then print! lt's that quick and that easy.
You can even create a name file and automatically personalize certificates for everyone in your class or club!

Over 200 exciting Certificates,Awards, Diplomas, and Licenses.

SEPTEMBER 1986
VOLUME 8
NUMBER 9
ISSUE 76

Part of ABC Consumer Magazines, Inc.
One of the ABC Publishing Companies
ABC Publishing. President, Robert G. Burton
1330 Avenue of the Americas, New York, New York 10019

COMPUTEI The Journal for Progressive Computing (USPS: 537250) is published monthly by COMPUTE! Publications, Inc., 825 7th Ave., New York, NY 10019 USA. Phone: (212) 265-8360. Editorial Offices are located at 324 West Wendover Avenue, Greensboro, NC 27408. Domestic Subscriptions: 12 issues, $\$ 24$. POSTMASTER: Send address changes to: COMPUTEI Magazine, P.O. Box 10955, Des Moines, IA 50950 . Second class postage paid at Greensboro, NC 27403 and additional mailing offices. Entire contents copyright © 1986 by COMPUTE! Publications, Inc. All rights reserved, ISSN 0194-357X.

Editor's Notes

It's always a pleasure here to launch a new magazine. It is something we pride ourselves on doing well, and our family of publications, both books and magazines, represents a significant and ongoing commitment to quality of product. We are a fluid group, at least internally, and have been fortunate in that we managed, as an editorial group, to avoid most of the pitfalls of overexpansion that befell many of our publishing colleagues in this industry's jarring setbacks of 1984 and 1985. Tom Halfhill, most recently editor of COMPUTE!, has now taken the reins of our newest publication, COMPUTE's Atari ST Disk \& Magazine. It's our most massive diskbased undertaking to date, and no publishing house in the history of this industry has ever dared place tens of thousands of bound-in disks into general newsstand distribution. Lance Elko, long our editor of COMPUTE's GAZETTE, is expanding his duties to encompass COMPUTE!. We are confident this move will strengthen COMPUTE!, and help us in our continuing efforts to provide you with a constantly growing, and improving, publication. We welcome Lance to his new responsibilities, and can assure him, from long experience, that you out there will be the first to let him know how things are going.

A Software Product Note

While on the subject of COMPUTE!'s Atari ST Disk \& Magazine, we'd like to mention an important concern. This is a truly integrated product-the magazine
documents, nurtures, and tutors the disk. The programs, likewise, appear only on the disk. In short, you need the two parts to make the whole. One of our vendors' biggest concerns for this magazine was that of removal of the disk. After all, they argued, this is an expensive item, and so on. It is of major concern to us that you, as potential readers, be able to handle the magazine and browse the printed pages. For this reason, you will find that the newest magazine we publish has a bound-in disk. And pages that open for previewing. We're relying on you to prove us right. And, as always, COMPUTE! disk products are produced so that you can immediately, and easily, create your own backup. We do not engage in copy-protection. We expect you to refuse to engage in copying.

A Rare Exception

We do not frequently participate, in these pages, in a hand wringing regarding the ebbs and flows of our staff page. This is not, after all, afternoon television.

Our rare exception usually regards the move hither or yon of an editor or two as mentioned earlier in this piece. This month we must make a far more notable exception. Mr. Charles Brannon, of our resident staff, has accepted new employment, and we want not only to wish him well, but to devote to him a few sentences on this page. Charles, known by many of you as the author of SpeedScript, an incredibly sophisticated piece of COM-

PUTE!'s "giftware," came to work for us in 1980 as a high school student, doing program listings after school. Over the yoars Charles grew and evolved into a very senior young member of our staff, achieving the position of program editor, and the person behind many, many of the significant programs we have developed and published here. We have many talented people, and would not wish these accolades for Charles to diminish that collective excellence. But there is, after all, only one SpeedScript and Superfont, and well, Charles, we'll miss you, and we appreciate all the tremendous service you have provided to the readers and users of these publications over the last few years. We wish you well in your new venture.

Until next time, enjoy your issue. And watch for COMPUTE's Atari ST Disk \& Magazine, appearing on your local newsstand in early September.

Robert C. Lock Editor in Chief

Use The Brans Your COMMODORE WASNT BORN WITH.

Right at Your Fingertips in CompuServe's Commodore ${ }^{8}$ Forums

Our Commodore Forums involve thousands of Commodore users worldwide. These Forums show you just how easy and fun it is to get the most from your Commodore Computer.

The Commodore Communications Forum provides the latest news on communications software and advice on how to effectively use your machine for online computing.

The Commodore Programming Forum supports programmers and developers of Commodore 8-bit computers.

The Commodore Arts and Games Forum is for all Commodore 8-bit computers. Compose or play music, create or retrieve colorful graphics, and download games software.

The Commodore Amiga ${ }^{\otimes}$ Forum is the national resource for all business
and entertainment applications in the Amiga community.

Easy access to free software.

- Download first-rate, non-commercial usersupported software and utility programs.
- Take advantage of CompuServe's inexpensive weeknight and weekend rates (when Forums are most active, and standard online charges are just 10c a minute).
- Go online in most major metropolitan areas with a local phone call.
- Receive a $\$ 25.00$ Introductory Usage Credit when you purchase your CompuServe Subscription Kit.

Information you simply can't find anywhere else.

Use the Forum Message Board to exchange mail with fellow members. Join ongoing, real-time discussions in a Forum Conference-with Commodore luminaries like Jim Butterfield, Jim Gracely, Bob Landwehr and Steve Punter. Scan Forum Data Libraries for free software, documentation and contributions from Commodore enthusiasts.

Enjoy other useful services, too. Like electronic editions of your favorite magazines, newsletters and articles, including Family Computing, OMNI Online and the Electronic Gamer. ${ }^{\text {rM }}$

All you need is your Commodore computer and a modem...or almost any other personal computer.
To buy your Subscription Kit, see your nearest computer dealer. Suggested retail price is $\$ 39.95$. To receive our free brochure, or to order direct, call 800-848-8199 (in Ohio, call 614-457-0802). Ifyou're already a CompuServe subscriber, type GO CBMNET (the Commodore Users Network) at any ! prompt to see what you've been missing.

CompuServe ${ }^{\text { }}$

Publisher

Founder/Editor In Chief Senlor Ediltor Managing Ediltor
Executive Editor
Ediltor, COMPUTEI's Atarl ST Dlsk \& Magazine Assistant Ediltor, COMPUTEI Production Director Production Ediltor Ediltor, COMPUTEI's GAZETTE Technical Editor Assistant Technical Ediltor Program Editior Assistant Editor, COMPUTEI's GAZETTE
Assistant Features Ediltor Programming Supervisor Editorial Programmers

Copy Edilor
Submissions Reviewer Programming Assistants

Executive Assistant Administrative Assistants

Assoclate Editors
Contributing Editor

COMPUTEI's Book Division Editor
Assistant Edilors
Director, Book Sales \& Marketing

Production Manager Art \& Design Director Assistant Editor, Art \& Design
Mechanical Art Supervisor Artists Typesetting
Illustrator
Director of Advertising Sales
Associate Advertising Director
Production Coordinator
Promotion Assistant
Customer Service Manager Diane Longo Dealer Sales Supervisor Orchid Tamayo Individual Order Supervisor Cassandra Green Receptionist Anita Armfield Warehouse Manager John Williams

James A. Casella, President
Richard J. Marino, Vice President, Advertising Sales Christopher M. Savine, Director, Finance \& Planning

COMPUTEI Publications, Inc. publishes:

COMPUIE

COMPUTE'S

COMPUTEI Books

COMPUTEI'S

COMPUTEI'S

Apple Applications Special

Editorial offices:	324 West Wendover Avenue Suite 200 Greensboro. NC 27408 USA
Corporate offices:	825 7th Avenue New York, NY 10019 212-265-8360
Customer Service:	$\begin{aligned} & 800-346-6767 \\ & \text { (in NY 212-887-8525) } \end{aligned}$
Hours:	9:30 A.M.-4:30 P.M. Monday-Friday

Coming In Future Issues

> File Compressor And SpeedFile For The Commodore 64

TurboDisk For Apple DOS 3.3

Prisonball: A Captivating Game For Apple, Atari, And Commodore 64 Atari High-Speed String Sort IBM PC/PCjr Mini Assembler

Subscription Orders

COMPUTEI

P.O. Box 10954

Des Moines, IA 50340
TOLL FREE
Subscription Order Line
800-247-5470
In IA 800-532-1272

COMPUTE! Subscription Rates (12 Issue Year):

US
(one yr.) \$24
(two yrs.) \$45
(three yrs.) \$65
Canada and Foreign
Surface Mail \$30
Foreign Air
Delivery
\$65

Advertising Sales

2. Mid Atlantic

Jonathan Just

Regional Manager
212-315-1665
3. Southeast
\& Foreign
Harry Blair
919-275-9809
4. Midwest

Gordon Benson
312-362-1821

5. Northwest/

 Mountain/Texas Phoebe Thompson Dani Nunes 408-354-55536. Southwest

Ed Winchell
213-378-8361

Director of Advertising Sales:
Peter Johnsmeyer

Assoclate Advertising Director:

Bernard J. Theobald, Jr.
COMPUTEI Home Office 212-887-8460.
Address all advertising materials to: Kathleen Hanlon
Advertising Production Coordinator COMPUTEI Magazine
324 West Wendover Avenue
Suite 200
Greensboro, NC 27408

The COMPUTEI subscriber list is made available to carefully screened organizations with a product or service which may be of interest to our readers. If you prefer not to receive such mailings, please send an exact copy of your subscription label to: COMPUTEI P.O. Box 10955, Des Moines, IA 50950. Include a note indicating your preference to receive only your subscription.

Authors of manuscripts warrant that a!l materials submitted to COMPUTEI are original materials with full ownership rights resident in said authors. By submitting articles to COMPUTEI, authors acknowledge that such materials, upon acceptance for publication, become the exclusive property of COMPUTE! Publications, Inc. No portion of this © 1986. COMPUTE! Publications, Inc. Rights to programs developed and submitted by authors are explained in our author contract. Unsolicited materials not accepted for publication in COMPUTEI will be returned if author provides a self-addressed, stamped envelope. Programs (on tape or disk) must accompany each submission. Printed listings are optional, but helpful. Articles should be furnished as typed copy (upper- and lowercase, please) with double spacing. Each page of your article should bear the title of the article, date and name of the author. COMPUTE assumes no liability for errors in articles or advertisements. Opinions expressed by authors are not necessarily those of COMPUTEI.

PET. CBM, VIC-20 and Commodore 64 are trademarks of Commodore
Business Machines, Inc. and/or Commodore Electronics Limited
Apple is a trademark of Apple Computer Compan
IBM PC and PCjr are trademarks of International Business Machines, Inc.

F-15 STRIKE EAGLE

For Fighter Pilots-Not Sightseers

Enjoyed by
over 200,000 satisfied computer. fighter pilots!

If you have any questions, comments, or suggestions you would like to see addressed in this column, write to "Readers' Feedback," COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Due to the volume of mail we receive, we regret that we cannot provide personal answers to technical questions.

STRING\$, SPACES, And CHR\$

I have a suggestion for people who submit or translate IBM PC/PCjr programs for publication in your magazine. Whenever a BASIC program line requires that I type a long series of spaces, I find it difficult to tell exactly how many spaces are needed. This can be frustrating, because the "Automatic Proofreader" keeps signaling an error until I finally get the right number by trial and error. The STRING\$ function can easily eliminate this problem. For instance, the statement PRINT STRING $\$(15,32)$ has exactly the same effect as PRINT "
" and
is much easier to type in. STRING\$ can be used where any long series of identical characters is needed. For instance, PRINT STRING $\$(40,46)$ prints a line consisting of 40 dots.

Richard J. Patton
This is an excellent suggestion, and the same general advice applies to every version of BASIC. Some versions include STRING\$, which works exactly as in IBM BASIC; Amiga BASIC even includes a specialized SPACE\$ function for creating a string of spaces. For BASICs that don't support either function, you can do the same job through concatenation. To create a string consisting of 30 spaces, for instance, use $S P \$=$ " ":FOR $J=1$ TO 30: $S P \$=S P \$+C H R \$(32): N E X T$. This construction is easy to type and requires only a few more characters than printing the string in literal form.

For similar reasons, it's often preferable to express graphic characters or unusual symbols as CHR\$ values rather than as string literals. Here are two different versions of a typical Commodore BASIC line:

```
10 IF X$="|" THEN GOSUB 100
10 IF X$=CHR$(135) THEN GOSUB 100
```

The first version of line 10 uses a
literal graphics character to test whether the 11 function key has been pressed. The second version performs the same test with CHRS. To alleviate the "mysterious character" problem, our listing conventions (see "COMPUTE!'s Guide to Typing In Programs" elsewhere in this issue) replace any unusual Commodore or Atari character with a sequence that's easier to read. Here's what the same line would look like in a COMPUTE! listing:
$1 \varnothing$ IF $\mathrm{X} \$="\{\mathrm{Fl}\} "$ THEN GOSUB $1 ø \varnothing$
That's an improvement over listing an indecipherable graphics symbol, but it still requires that you remember the listing convention or look it up when the time comes. Of these three alternatives, the line with CHR\$ is preferred in many cases, since it's easy to read and type, and doesn't require reference to anything but the listing. Of course, where large numbers of characters are involved, CHR\$ may not be practical.

Spaced Out Operators

I enjoyed Bill Boegelein's "Amiga Puzzle" article in the May 1986 issue of COMPUTE!. I did have one problem, however, that may be of interest to your readers. The mistake was mine, not yours or the author's, but the solution might help everyone type in programs more accurately. The Play subroutine of Amiga Puzzle contains a complex IF statement that begins like this:

IF (mouseX>rat($x, y, 0$) AND ...

I mistakenly entered that portion of the statement like this:

IF (mouseX.rat(x,y,0) AND ...

Notice my inadvertent use of a period in place of the greater-than operator ($>$). Clearly, I forgot to hold down the SHIFT key when typing the $>$ character. The problem arises because Amiga BASIC lets you include a period as part of a variable name. Instead of performing the logical comparison triggered by $>$, BASIC saw mouseX.rat as the name of an array. Of course, there is no such array or variable in the program, so its value was set to zero, like all other uninitialized variables. As a result, this part of the IF test is always false and the program's CheckCheat routine can never
be called.
Although I was lucky enough to find this error without much searching, similar mistakes could be very difficult to detect in other situations. As a precautionary measure, I suggest that programmers always place a blank space on either side of a logical operator, as shown here:

IF (mouseX $>$ rat $(x, y, 0)$ AND ...

If the original line had been written in this way, my typing error would have been much easier to spot. More to the point, BASIC itself would have detected the mistake and signaled a syntax error immediately. Again, the problem was mine, not Mr. Boegelein's or yours. But it could easily be prevented by following this simple rule.

Jack Purdum
Thanks for the suggestion.

SpeedScript File Resurrected?

I recently experienced an odd thing when using SpeedScript on my Commodore 128 in 64 mode. After writing a document, I pressed the RESET switch to go back to 128 mode. Then I decided to go back to 64 mode to finish up the document. When I reloaded and ran SpeedScript, I saw the same document that was in memory before I reset the computer. Shouldn't the memory have been cleared during this process? Does this mean that my 128 running in 64 mode isn't fully compatible with a normal 64?

Chris Hicks
To answer your last question first, this experience does not signal any sort of incompatibility. Your computer behaved exactly as a normal 64 with a RESET switch would under the same circumstances. The 64's reset routine does not erase or scramble everything in the computer's memory; that happens only when you turn the computer off and on again. (For more details, see "64 RAM Report" in the June 1986 installment of this column.)

SpeedScript erases all of its text storage space when you first run the program, but not if you rerun it during the same session. When you run SpeedScript, it checks to see whether a special memory

${ }^{\text {He }}$ Premier Word Processing Package
 - CREATIVE COMPUTING

"PaperClip is easy to use, yet offers the advanced features of programs designed for the IBM PC. These include: block move, copy, delete, macros, automatic page numbering, headers, footers, underlining, boldface, super and subscripts, variable . character pitch, and custom character sets. The editing screen can be set up to 130 columns wide, \& text can be scrolled in any direction. A preview mode displays formatted text exactly as it will appear on the printed page. You may further define your own formatting parameters, including, margins, line lengths, page length and spacing.
PaperClip contains over 30 printer files for all the current major models. The documentation is excellent and the disk itself unprotected, though keyed through a joystick port. This means you can make as many back-up copies as you like, but can use the program only when the key is inserted." CREATIVE COMPUTING
"PaperClip is one of the easiest of the professional word processors to use, with a sensible manual and plenty of aids for the accident-prone." -COMPUTING NOW "a "must have" in an ideal software-library"- ELECTRONIC LEARNING
"PaperClip is the Cadillac of word processors" OMNI
"an excellent full-featured word processor" THE BOOK OF CO, So clearly superior, ...State-of-the-art word processing". ANTIC
"the ultimate word processor..." ANALOG
"...best professional word processor available" RUN
"exceptional word processing" INPUT "hard to beat" ACE "You'll find yourself growing spoiled."- FAMILY COMPUTING a superb word processor, ...the most sophisticated to date!' ".. does exactly what it was intended to do...and more".. "...most powerful of packages"-COMMODORE MAGAZINE
"...facts attest to its excellence!".
"You will not find a word processing package superior to this
one! CREATIVE COMPUTING
location contains the "I was here before" flag. If this flag is present, SpeedScript concludes that it was used previously in this session and sets up without erasing any text. Resetting the computer doesn't disturb either the memory area where text is stored or the location that holds the flag. So when you reran SpeedScript, the text was still there.

This feature of SpeedScript permits you to exit to BASIC if necessary, then reactivate the word processor without losing all of your work. As long as you don't load a different program or perform operations that change the contents of BASIC program space (or the memory location where SpeedScript stores the flag), any previous text should remain intact. To play it safe, of course, you shouldn't exit to BASIC more often than necessary. SpeedScript permits you to view the disk directory and send commands to the disk drive without leaving the program.

1541 Disk Drive Ratile

I have seen a BASIC command that prevents the Commodore 1541 disk drive from knocking when protected software is loaded. Is there any way to prevent the knocking sound when you format a new disk? I am worried that too much knocking will force my drive out of alignment.

Tom Smith

While it's true that head-knocking isn't particularly good for the drive, there's no easy way to prevent it during the format process. The 1541 drive is often called an "intelligent" peripheral because it contains its own microprocessor, free RAM, and operating system in ROM. The knocking sound heard when you format a disk is deliberate. It's caused by the format routine itself, which is permanently recorded in the drive's ROM.

A Commodore 1541 disk contains 35 tracks, numbered 1-35. Track 35 is nearest the center hub, and track 1 is the outermost. The drive always begins formatting with track 1 and proceeds inward, formatting one track at a time. To locate the read/write head accurately for the beginning of this process, the drive steps the head outward a total of 46 tracks. Since the drive is designed to access only 35 tracks in normal use, this maneuver is guaranteed to cause a read/write error regardless of the read/write head's initial position. The rattle is caused when the read/write head pounds against a mechanical metal stopper. The stopper physically prevents the head from moving past the outer edge of the disk.

As you've seen, the command that prevents the head from knocking in other cases doesn't work when formatting. That method works by storing a smaller than usual number in location $\$ 6 \mathrm{~A}$ in the
drive's RAM. This location is a zero-page counter used to control how many times the drive should try to access a requested sector before giving up and signaling a read/write error.

The reason this trick doesn't work is that the ROM formatting routine, the relevant portion of which begins at \$FAC7 in ROM, pays no attention to what's in location \$6A. After stepping the head out 46 tracks, the ROM routine does set up a counter (at location \$0620), but that's used to keep track of the number of errors encountered after the head-knock takes place.

It is possible to format a disk without rattling the head, but the alternatives are fairly involved and may be less reliable than the usual method. The first catch is that you need the ability to write a machine language routine for the drive to execute, download that code into one of the drive's RAM buffers, then cause the drive's microprocessor to execute it in place of the ROM format routine.

For those who are up to that challenge, here's one possibility: If your drive is correctly aligned, then, rather than locating the read/write head in the usual way, why not use a commercially formatted disk for calibration? Mass-produced commercial disks such as the 1541 Test/ Demo disk are usually created on industrial equipment, not 1541 disk drives, and software companies have a strong incentive to keep such equipment in good alignment. So any commercial disk that doesn't contain deliberately implanted errors should be very close to the standard.

The idea is to insert the calibration disk, move the drive's read/write head to track 1 by reading track 1 , sector 0 , leave the read/write head stationary at that point, perform the other setup tasks required, then enter the ROM format routine at a point that bypasses the headknocking section. That's a fairly tall order for most programmers and requires a much longer program than we can include in this space. This scheme could also increase the risk of inconsistent results, since it relies on two critical assump-tions-that your drive is correctly aligned and that the calibration disk was accurately formatted in the first place-which may not be true in every case.

Loading Touch Tablet Screens In Atari BASIC

How can I write a BASIC program to display pictures drawn with the Touch Tablet and Atari Artist cartridge?

Peter Hinz
Loading Touch Tablet pictures in Atari BASIC is quite possible, and by calling an operating system routine, your BASIC program can load the images at machine language speed. But first, there are a few
important points to cover.
To begin with, the Atari Artist cartridge that comes with the Touch Tablet saves pictures in a special compacted format to conserve disk space. That's why, if you examine a disk directory of Atari Artist pictures, you'll notice that the files are usually of different lengths. Before you can load these pictures with a BASIC program, you have to convert them to uncompacted format.

Although some people have written conversion utilities for this purpose, there's an even simpler method. It's not mentioned anywhere in the Atari Artist manual, but if you hold down SHIFT and press the greater-than key ($>$), Atari Artist saves the current screen onto disk with the filename PICTURE. (Be aware that this replaces any existing file named PICTURE on the disk.) The file PICTURE is uncompacted and always takes up 62 disk sectors. This trick is useful in a couple of ways. It makes it possible to load Atari Artist pictures into other drawing programs for the Atari that use this format, including the Atari Light Pen's Atari Graphics cartridge and Datasoft's Micropainter. And it also makes it possible to load Atari Artist pictures into your own programs.

But first, another point: Before loading the picture with a BASIC program, you have to set up the proper graphics mode. Atari Artist (and most other drawing programs for the Atari) uses a special mode often known as GRAPHICS $71 / 2$. Of course, there's really no such thing as GRAPHICS $71 / 2$, but the term refers to the fact that this mode has the same horizontal resolution as GRAPHICS 7 (160 pixels) and the same vertical resolution as GRAPHICS 8 (192 pixels, without a text window). Yet, it also offers the same number of simultaneous screen colors as GRAPHICS 7 (four), while GRAPHICS 8 is limited to only two colors. Because it combines the best of both modes, GRAPHICS $71 / 2$ has been the most popular mode for drawing programs.

GRAPHICS $71 / 2$ has always been supported by the Atari operating system. However, until the XL and XE series computers came out, it was not available from Atari BASIC without making some special POKEs to modify the display list. (The display list is an area of memory that tells the computer which graphics mode to display on the screen.) On an XL or XE, GRAPHICS $71 / 2$ is called GRAPHICS 15.

The following BASIC program shows how to load a 62 -sector screen file named PICTURE at machine language speed. It should work with any uncompacted screen files, including those created with Atari Artist, the Atari Light Pen, and Micropainter. This program is actually a slightly modified version of the program named MENU on the Atari COMPUTE!

[^0]
COMPUTE! Books'

Logk for these COMPUTE! books at your local book or computer store.

You can order directly from COMPUTE! by calling 800-346-6767 (in NY call 212-887-8525) or by sending your payment to COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.
Please include $\$ 2.00$ per book shipping and handling for U.S. and surface mail or $\$ 5.00$ for airmail. North Carolina residents add 4.5 percent sales tax.

Please allow 4-6 weeks for delivery from receipt of order.
COMPUTE! books are available in the U.K., Europe, the Middle East, and Africa from Holt Saunders, Ltd., 1 St. Anne's Road, Eastbourne, East Sussex BN21 3UN, England, and in Canada from McGraw-Hill, Ryerson Ltd., 330 Progress Ave., Scarborough, Ontario, Canada M1P 275.

COMPUTE!'s First Book of the Atari ST

Edited
A valuable collection of ready-to-type-in-and-use applications, games, and utilities. Graphics utilities like "ST Doodler," games like "Switchbox" and "Tug-a-War," and educational programs like "Hickory Dickory Dock" turn your Atari ST into everything from a business graphics machine to a powerful teaching tool. Tutorials show you how to add power to ST BASIC and how to add excitement to your own creations with sound effects. A disk is available for $\$ 15.95$ which includes all the programs in the book, 203BDSK.
(September release)
\$16.95 ISBN 0-87455-020-3
The Elementary Atari ST
William B. Sanders, 272 pages
A friendly, easy-to-use guide to the Atari ST, this book takes you through connecting your computer, loading programs, creating graphics and music, and writing your own programs.
\$16.95 ISBN 0-87455-024-6

Elementary ST BASIC

C. Regena, 208 pages

A tutorial and reference guide to the ST's impressive graphics, animation, and sound with complete descriptions of ST BASIC's commands, syntax, and organization. A disk is also available for $\$ 15.95$ which includes programs from the book, 343BDSK.
\$14.95 ISBN 0-87455-034-3
COMPUTE!'s Kids and the Atari ST
Edward H. Carlson, 238 pages
Easy-to-understand instructor notes, lessons, assignments, and lively illustrations help both kids and adults painlessly learn to program on the Atari ST. The latest in the bestselling series by this author.
\$14.95 ISBN 0-87455-038-6

COMPUTE!'s ST Programmer's Guide

Editors of COMPUTE, 356 pages
A comprehensive reference guide to the Atari ST, this book explores in detail Logo and BASIC, the advanced features of the ST such as GEM and TOS, and every aspect of programming from concepts to actual program writing. \$16.95 ISBN 0-87455-023-8

Introduction to Sound and Graphics on the Atari ST
Tim Knight, 197 pages
Thorough descriptions of the Atari ST's color graphics and sound abilities, plus all the information needed to create a complete sound and graphics system.
\$14.95 ISBN 0-87455-035-1

ANSA SOFTWARE
Paradox
ASHTON-TATE
Framework II.
CALL dBase III Plus...
BATTERIES INCLUDED Isgur Portfolio......................
BORLAND Lightening.. $\$ 159.00$

Sidekick (unprotected)
Reflex
$\$ 59.99$
$\$ 57.99$
Travelling Sidekick.
Turbo Prolog
CENTRAL POINT
Copy II PC-Backup
. $\$ 29.99$
PC Option Board......................S
DECISION RESOURCES
Chartmaster................................. $\$ 229.00$ Signmaster.
Diagram Master . $\$ 159.00$

Map Master $\$ 209.00$ $\$ 259.00$
FIFTH GENERATION
Fast Back................................
FUNK SOFTWARE
Sideways $\$ 4$
HARVARD SOFTWARE INC.
Total Project Manager.............. $\$ 269.00$
Presentation Graphics............... $\$ 239.00$

IMSI

PC Mouse/Dr. Halo... LIFETREE
Volkswriter III. LIVING VIDEOTEXT
Think Tank
Ready..

LOTUS

Symphony....
MECA SOFTWARE
Managing Your Money 2.0......... $\$ 99.99$
Manage Your Market.......
MICROPRO

Easy.

WordStar 2000
WordStar $2000+$
$\$ 289.00$ WordStar Pro. w/GL Demo...... $\$ 189.00$ MICRORIM SOFTWARE
R:Base 5000 .
$\$ 359.00$
Clout 2.0..
MICROSOFT
Flight Simulator
MultiPlan..
4

MultiPlan.
$\$ 129.00$
Word 3.
$\$ 279.00$
$\$ 139.00$
Cros
Cros
Rem

MICROSTUF

Crosstalk Mark IV
Remote
.. $\$ 89.99$
. $\$ 149.00$
.. $\$ 89.99$
Multi Mate Word PiMATE Advantage..

NOUNEMON

Intuit.. NORTON

PFS: IBM

Proof.
File/Graph.
PFS IBM

Report.. ..$\$ 74.99$ PROFESSIONAL SOFTWARE Write-N-Spell. .$\$ 89.99$ THE SOFTWARE GROUP Enable. $\$ 349.00$ SATELLITE SYSTEMS
Word Perfect 4.1........................ $\$ 219.00$ SORCIMIIUS
Accounting
AP/AR/GLINV/OE........(ea.) $\$ 299.00$ SuperCalc III.
EasyWriter II System.................. $\$ 239.00$
Super Project.
SUBLOGIC

Calloll

A40,A50,A55.
ALL
LBP-8A1 Laser CALL

CITIZEN

MSP-10 (80 col.) MSP-15 (132 col.). MSP-20 (80 col .). MSP-25 (132 col.)

C.ITOH

Prowriter 1550
....... Starwriter $10-30$ 3500 Tri Printer

corona	
Lazer LP-300 $\$ 2799.00$
DIABLO	
D25 Daisywh	heel.................... $\$ 549.00$
635 Daisywh	heel................... $\$ 1099.00$
D80IF Daisyw	wheel.....................CALL

dsisywriter
 2000

 CALLEPSON
Homewriter 10, LX-80....
FX-85, FX-286, RX-100
DX-10, DX-20, DX-35.
SQ-2000, $\mathrm{Hi} 80, \mathrm{HS} 80$, AP
LQ-800, LQ-1000.

6000 Letter Quality.
6100 Letter Quality
6200 Letter Quality.
6300 Letter Quality
6500 Letter Quality.
5510 Dot Matrix Color.

LEGEND

808 Dot Matrix 100 cps $\$ 179.00$
1080 Dot Matrix 100 cps
1380 Dot Matrix 130 cps .
1385 Dot Matrix 165 cps .
NEC
3000 Series............... $\$ 779.00$
8000 Series.
ELF 360 ..
P560, P660, P760.
ОҚIDATA
182, 183, 192, 193, 2410, 84.......CALL Okimate 10 (Specify C64/Atari) $\$ 189.00$ Okimate 20(IBM), 282, 283. Okidata 93.

Panasonic
KX1080.
KX1091
KX1092
KX1592
KX1595

QUADRAM

Quadjet
$\$ 399.00$
Quad Laser CALL

(f) SIIVER-REED

500 Letter Quality..................... $\$ 189.00$ 550 Letter Quality.................... $\$ 299.00$ 800 Letter Quality . $\$ 699.00$

stital

SG-10C (C64 Interface)................CALL SB/SD/NXISR Series. CALL
Powertype Letter Quality .CALL

Texas Instruments

T1850
 TIB55

TI865.
TOSHIBA
P321 (80 column)
P341 (132 column)
\$499.00
P351 (132 column).

$\$ 299.00$
$\$ 159.00$
$\$ 549.00$
PCNC8087 5 MHz .
PCNC8087-2 8 MHz
PCNC80287 6 MHz AT..
PCNC802878 8 MHz AT PCNC802878 8 MHz AT
1010 PC-Above Board.
2010 AT-Above Board
2110 AT-Above Board-PS

MYLEX

The Chairman
PARADISE
Color/Mono Card.
Multi Display Card
High Res Mono.
Autoswitch EGA
Modular Graphics Card
PERSYST

Bob Board.....................

Quadport-AT......
The Gold Quadboard.
Expanded Quadboard
Liberty...
QuadSprin
QuadLink.
QuadColor.
Q600 E. G. A. ca
EGA Plus STB
aptain. 64 TECMAR
9.00
$\$ 149.00$
$\$ 199.00$
$\$ 169.00$
$\$ 169.00$
$\$ 379.00$
$\$ 379.00$
$\$ 269.00$
$\$ 359.00$
119.00
$\$ 349.00$
$\$ 449.00$
$\$ 239.00$
$\$ 2179.00$
$\$ 309.00$
$\$ 309.00$
$\$ 499.00$
$\$ 399.00$
$\$ 199.00$
$\$ 3990$
$\$ 399.00$
$\$ 399.00$
$\$ 379.00$
Captain - 64........................... $\$ 199.00$
Graphics Master.
VIDEO-7
EGA..
$\$ 399.00$
TNTERFACES

DIGITAL DEVICES

Ape Face (Atari)........................ $\$ 49.99$
U-Print A (Atari)...
U-A16/Buffer (Atari).
U-Call Interface (Atari)...
U-Print C (C64).
P-16 Print Buffer
U-Print 16 apple lic
MICRO R \& D
Apple lic Parallel..
Kaypro 2000 Parallel. C64/128.

POrange micro

Grappler CD (C64).................... $\$ 89.99$ Grappler Plus (IIe, IIc)................ $\$ 89.99$
Grappler C (IIc)......................... $\$ 89.99$
Grappler 16K (Ile, II+)............. $\$ 139.00$

IBM PC SYSTEMS confligured to your specifications. Call for Best Price! IBM-PC, IBM-XT, IBM-AT

corona

PPC400 Dual Portable

 PPCXT 10 meg Portable........ $\$ 1989.00$PC400-HD2 10 meg............... $\$ 1989.00$
ITT X-TRA ITT
256K, 2 Drive System. ..CALL
$256 \mathrm{~K}, 10 \mathrm{meg}$ Hard Drive System CALL
H4YPN0
KP-2000 Portable
Kaypro
CALL Kaypro PC

PCTOO IBM CLONE
640K MB-256 installed, 150 Watt Power Supply, XT Keyboard, 360K Floppy, 20
$\mathbf{S 9 9 9 . 0 0}$ Meg Hard Drive...
$\stackrel{4}{4}$ STPERTY
Sperry-AT. as low as $\$ 1749.00$ Sperry-IT................as low as $\$ 2699.00$ All Models.....................................CALL

Finzer

PC-138 Series, PC-148 Series, PC-158
Series, PC-160 Series, PC-171 Series,
MONITORS

AMDEK

Video 310A Amber TTL. . $\$ 129.00$
410 TTL Amber or Green............CALL
Color 600 Hi -Res. RGB............. $\$ 399.00$

Color 722 Dual Mode
Color 725
Color 730
MAGNAVOX
515 RGB/Composite..
613 TTL Green
623 TTL Amber.
.. $\$ 99.99$

NEC
JB1280G TTL Green................. $\$ 129.00$
JB1285A TTL Amber...
JC1401 Multi Sync RGB...............CALL

PRINCETON

MAX-12 Amber
HX-9 9" RGB
HX-9E Enhanced....................... $\$ 519.00$
HX-12 12" RGB........................ $\$ 469.00$
SR-12 Hi-Res.
SR-12P Professional
QUADRAM
8400 Quadchrome 1.................. $\$ 499.00$
8420 Amberchrome.................... $\$ 179.00$
8500 Quad Screen.................. $\$ 1449.00$

THXAN

640720×400 RGB.............
ZVM 1220 Amber........................ $\$ 99.99$
ZVM 1230 Green........................ $\$ 99.99$
ZVM 1240 IBM Amber.............. $\$ 149.00$
ZVM 135 RGB.
$\$ 459.00$
ZVM 1330 RGB.
ZVM 1360 RGB
ZVM 1380 E G Comp..
CALL

,

\square

DISK. It's easily adapted to your own BASIC programs. Briefly, here's how it works.

Lines 10 and 160 create a very short machine language routine that is used later to call a high-speed loading routine in the operating system. Lines 170-177 set up graphics mode $71 / 2$ on any Atari computer. If your program is intended only for XL and XE models, you can replace these lines with a single statement such as 170 GRAPHICS $15+16$. Line 190 opens the file PICTURE on disk and jumps to the subroutine at line 980. This subroutine, in turn, calls an operating system routine which loads the screen into memory at full speed. Line 200 simply loops endlessly so the picture stays on the screen. Press BREAK or SYSTEM RESET to end the program.
HC 1ø DIM CIO\$(7)
 R\$(17も):CIO\$(5)="LV": CIO $\$(7)=$ CHR (228)
CO 17 © ERAPHICS $8+16$: DL=PEEK (56g) +256\$PEEK (561) +4
AJ 172 SETCOLOR 4, $\operatorname{D}, 12:$ SETCD LOR ஏ,2,1ø: SETCOLOR 1 , 2, 6: SETCOLOR 2, \varnothing, \emptyset
ND 175 POKE DL-1, 14+64:FOR I $=2$ TO 194:IF PEEK(DL+ I) $=15$ THEN POKE DL+I, 14
6H 176 IF PEEK $(D L+I)=15+64 \mathrm{~T}$ HEN POKE DL+I, 14+64
CH 177 NEXT I
II 19 OPEN \#1, 4, ø, "D:PICTUR E": ADL=PEEK (88): ADH=P EEK(89): LN=7936: GOSUB 98ø:CLOSE 1
FN 2 øの вOTO 2øø
EC 980 $\mathrm{X}=16$: REM File\#2, $\$ 20$
EF 990 ICCOM=834: ICBADR=836: ICBLEN=84D: ICSTAT $=835$
PL 1 øø \quad POKE ICBADR $+X$, ADL: PO KE ICBADR $+X+1$, ADH
LN 1 ø1ø L=LN: H=INT(L/256):L= L-H\$256: POKE ICBLEN+ $\mathrm{X}, \mathrm{L}:$ POKE ICBLEN $+\mathrm{X}+1$, H
PB102ø POKE ICCOM $+X, 7: A=U S R$ (ADR(CIOs), x)
K1 1 © 25 RETURN
When the picture appears, chances are the screen colors won't be right. You'll have to recreate the picture's original colors with four SETCOLOR statements inserted somewhere between lines 170 and 190. You can figure out what these SETCOLOR statements should be by looking at the Color Menu screen in Atari Artist. The four color register numbers along the bottom of the Color Menu screen-0,1,2, and 3-correspond to the first parameter in the SETCOLOR statement. Color $0=$ SETCOLOR 4, color $1=$ SETCOLOR 0, color $2=$ SETCOLOR 1, and color $3=$ SETCOLOR 2. The second parameter in SETCOLOR matches the color numbers along the vertical color bar on the Color Menu screen (0 to 15). And the third parameter in SETCOLOR is derived from the vertical luminance bar on the Color Menu screen (also 0 to 15, but use the even
numbers only). For example, if color 0 in Atari Artist is set to black, your program would need a statement such as SETCOLOR 4,0,0.

Incidentally, another undocumented trick makes it possible to load uncompacted-format pictures into Atari Artist, too. Simply hold down SHIFT and press the less-than key (<). This way, you can take 62-sector pictures created with the Atari Light Pen, Micropainter, and other drawing programs and modify them with the Touch Tablet. If you then save this screen with Atari Artist in the usual way, it's converted to compacted format.

Commodore SHIFT-SPACE

Sometimes when typing in programs from your magazine on my 64, I've come across a SHIFT-SPACE. When I press SHIFT and the space bar, it doesn't appear any different on my screen from the normal space. What does the SHIFT-SPACE character do? Warren Frederick
There is a difference between the normal space character and shifted space. Although they appear the same on your screen, they are actually two separate ASCII characters. The normal space is CHR\$(32) while the shifted space is CHR\$(160). This distinction is probably not significant in every Commodore program where a $\{$ SHIFT-SPACE\} appears. Many times, the programmer happens to be working in lowercase and types in an entire message with SHIFT LOCK down. When this happens, a shifted space appears in the listing, but an unshifted space would work just as well.

However, sometimes SHIFT-SPACE serves a special purpose. Certain programs use SHIFT-SPACE to mark a position on the screen that's invisible to the user. By PEEKing into screen memory, the program can distinguish between shifted and unshifted spaces even though both look identical on the screen.

You can also use SHIFT-SPACE to add short comments to disk filenames. If you include a shifted space as part of the filename, the disk drive treats that character as the end of the name and ignores any characters that come after it. But the extra characters are visible when you list the disk directory. For instance, you might want to save the current date to indicate when a program was last revised. This statement saves a program as FILE, followed by the date 9/22/86:

SAVE "FILE" + CHRS(160) + " $/ 9 / 22 / 86$ ", 8

After you execute this statement, you can still load the program normally, with LOAD "FILE",8. But when you list the directory, the filename appears as FILE/9/22/86. This trick is frequently used when saving machine language pro-
grams, to indicate the SYS address used to start the program. Of course you are limited to a total of 16 characters, just as with any other disk filename.

IBM PriSc Problems

When using the PrtSc function with my PCjr in "IBM Pie Chart Maker" (COMPUTE!, January 1985), my Gemini 10X prints the chart, but with thin blank lines between each row of the chart, as if the printer were displaying text lines. I have tried resetting the line space command to the printer and tested it in immediate mode to verify that the line space has been changed. But as soon as I type the PrtSc command, it seems that this command initializes the printer.

Rich Camaish
We've experienced the same problem when using PrtSc with anything except an Epson printer. Normally, pressing SHIFT-PrtSc just prints a text dump. In order to dump graphics with PrtSc, you need to enter the GRAPHICS command at the DOS command line to load the graphics print-screen driver. This driver was written specifically for the IBM Graphics Printer, a relabeled version of the Epson MX-80.

Apparently, the driver resets the printer completely before starting the graphics dump, as if the printer were turned off and on. (The Epson code for this is ESC-@.) It then sets the lines-per-inch to 8, corresponding to seamless eight-wire graphics printing. The code used for this function is different on the Gemini 10X and many other printers that are otherwise Epson compatible. Your printer accepts the reset sequence, though, throwing it back to nine lines per inch before starting the graphics dump. We've had the same problem with the IBM Color Printer.

The only way around this would be to modify the GRAPHICS driver. If you know something about 8088 machine language and have a working acquaintance with the DEBUG utility, you could search for the ESC-@ sequence (hex \$1F \$40) and replace it with two zeros to null it out. However, there are programs on the market and in the public domain that support graphics printing with PrtSc for many different printers. Check with your local IBM user group or nearest dealer to see if they've heard of these.

Apple HTAB In 80 Columns

I have an Apple IIe with an extended 80 -column card. I found out recently that the Applesoft BASIC HTAB command does not work properly. When I type the following line in 80 -column mode, I get an incorrect result:
HTAB 20:PRINT "THIS IS A TEST";: HTAB 1:PRINT "A"

8n expert system is like borrowing someone else's experience and expertise on a given subject. UNDERSTANDING COMPUTERS by TIME-LIFE BOOKS is exactly that, an expert system on the subject of computers.
l's not software based, so it can't crash. And since it's not machine-specific, it won't become outdated easily, which means you'll find it an invaluable, long-lived reference whether you have an IBM ${ }^{\oplus} \mathrm{PC}$, an Apple lle ${ }^{\oplus}$, a multimillion dollar $\mathrm{Cray}^{\circledR}$, or no computer at all right now.

A BRAND NEW SERIES THAT PRESENTS COMPUTERS IN A WHOLE NEW WAY.

UNDERSTANDING COMPUTERS is a new series of books that presents computers in a unique, broad-based way, unlike any other

On a digital record, sound is carried by pits and spaces, which are read by a laser beam. computer book you've ever seen. It gets "under the hood," right down to the nuts and bolts of computers to explain what you need to know about them in plain English.
The first volume, Computer Basics, unwraps the mystery of writing binary code ...the concept of logic gates ... how chips are designed... how a light pen works for graphic effects...the sequence of events in a computer from the first clock pulse to the last. And much, much more.

Succeeding volumes cover Software. Input/ Output: Graphics. Networking. The entire gamut of computer topics.

EVERY IMPORTANT CONCEPT IS ILLUSTRATED TO HELP ASSURE YOU UNDERSTAND.

Not only does UNDERSTANDING COMPUTERS give you all the computer background you want that you won't find elsewhere, it also shows you
what it's all about. Full-color illustrations help make every concept crystal clear. And glossaries of terms help ensure your understanding. Each volume is a big $91 / 4^{\prime \prime} \times 111 / /^{\prime \prime}$ hardcover book with approximately 128 pages.

FREE 10 DAY EXAMINATION. NO OBLIGATION.

Begin to expand your computer know-how now by examining Computer Basics for 10 days free. Keep it and pay only $\$ 12.95$ ($\$ 15.95$ in Canada), plus shipping and handling. Then you can continue to receive other volumes every other month, always
 with a 10 -day free trial. Keep only the books you want. And you can cancel any time. Or return Computer Basics and owe nothing.
Return the coupon today, and start to bridge the gap from computer buff to computer expert.
IBM is a registered trademark of International Business Machines Corporation. Apple lle is a registered trademark of Apple Computer, Inc. Cray is a registered trademark of Cray Research, Inc. (c) 1986. Time-Life Books Inc. Time \& Life Building, Chicago, IL $60672-2058$

UNDERSTANDING COMPUTERS STARTS HERE.
 Mail to TIME-LIFE BOOKS, Inc. Time \& Life Building, Chicago, IL 60672 -2058

YESI Send me Computer Basics, as my introduction to the shelf-based expert system, UNDERSTANDING COMPUTERS. lagree to the terms outlined in this ad.

D1A3Y9
Name

Address
City
State or
Zip or
Province
Postal Code
TIME
LDFE
BOOKS
All orders subject to approval. Price subject to change.

The computer prints this line preceded by 19 spaces:

THIS IS A TEST.A

Memory location 36 is supposed to contain the horizontal cursor position, but in 80 -column mode, it always contains 0 . The BASIC function POS (0) doesn't work either. How can I determine the current cursor position?

William Liao
Many older Apple II programs, especially those written in machine language, print to the screen by adding the horizontal cursor position (CH, location 36) to the address of the first character in the current row (BASL and BASH, locations 40 and 41), then storing a character at the address that results. When 80 -column hardware is in use, this technique could scramble the Apple's memory, since the organization of 80-column screen memory is different.

As a precaution, whenever the $A p$ ple's I/O software accesses the 80 -column screen to move the cursor or print, it resets CH to 0 . This is why PEEK(36) and POS(0) no longer work. In IIe and IIc computers, the 80-column cursor position is kept in location 1403, called OURCH. (If you're familiar with the Apple II's memory arrangement, you'll remember that addresses between 1024 and 2047 are
reserved for screen display memory. Since the 40 -column screen is 40×24, that's a total of 960 bytes that are actually used. The 64 unused bytes are called screen holes and are used to store I/O variables. OURCH is one of these.)

The HTAB command changes the cursor's position by storing a new value in location 36. To keep this command operational, the enhanced I/O routines keep a copy of CH in another screen hole, location 1147 (OLDCH). Before each screen access, CH and OLDCH are compared. If they are different, CH must have been changed, so its value is made the current position by storing it in OURCH. The only time this doesn't work is when 80-column mode is active. Since CH and OLDCH are both set to zero at each screen access, an HTAB 1 command stores zero in CH, and there's no way to tell that anything happened. Since CH and OLDCH still contain the same value, OURCH is not altered.

One simple way to move the current screen position to the first column is to use a lone PRINT statement. All it does is move the cursor to the first column of the next line without disturbing the display at all. Another way to be certain of the cursor's position in any display mode is to POKE the new column value (0-79) into both CH and OURCH. In standard display mode (40 columns, checkerboard cur-
sor), OURCH is not used; POKEing a value there doesn't seem to have any undesirable side effects.

When the enhanced I / O firmware is active (block cursor in 40 or 80 columns), you can find the current cursor column with PEEK(1403). To find the current column regardless of display mode, PEEK the value in CH . Then, if it has a value of zero, PEEK at 1403. This should always give the correct position.

EduCalc Clarification

A statement concerning disk initialization in the review of Grolier's EduCalc spreadsheet (March 1986) requires clarification. When using an uninitialized data disk, the program will automatically ask if you wish to initialize the disk and then lead you through an initialization routine. When using a disk that's already initialized, EduCalc recognizes that and skips the routine.

5.

Copyright 1986 by Billboard Publications, Inc. Complled by the Billboard Research Department and reprinted by permission. Data as of $7 / 5 / 86$ (entertainment) and 7/12/86 (education and home management).

DIGITIZE YOUR VOICE

synthesizer for your Atant. Iired of Iow-quality mechzaical sounding
voice output? Now you can make any Atari speak in your own voice Tired of four tone sound? Now any Atari can play a whole orchestra
complete with a singing choir "The Parrot" digital sound synthesize system lets you do all this and much more
How it works - "The Parrot" system plugs into your joystick port and
lets you record pure digital sound fom your stereo. JV miciophone any other sound source The special Parrot software lets you play back this high quality sound on any Atari system with no special hardware programs, that will run on anyone's Atari it also includes digital sequencer software that lets you turn your Atar into a synthesizet sound into a musical instrument, or design your own custom sounds car's honk, your own voice, or anything your imagination can come up with it turns your keyboard into an organ and lets you instantly octaves of notes Recording time varies depending on available memory and quality level desired you've got to hear it to believe itill ware with sample sounds and demore and playbackisynthesizet sott-

All For Only $\$ \mathbf{3 9 . 9 5}$

 MESHMPIER

BOOK I + DISK: (The Original) Thoroughly explains the techniques used by advanced software pirates, and the copy protection methods used to stop them. It offers clear and understandable explanations sophisticated enough for software writers of any scale yet easy enough for a beginner just wanting to learn more
puters. A MUST READ FOR ALL ATARP OWNERS
BOOK INCLUDES: • Duplicate sectoring • Custorn disk formatting Creating "BAD" sectors - Hardware data keys - Legal protection like copyrights, trade secrets, patents • Protecting BASIC programs • Sel modifying Code - ROM + EPSOM cartridges • Hidden serial numbers - Self-destructing programs - Freeware - Misassigned sectoring Much, much more
DISK INCLUDES: - Directory mover - VTOC scanner - Duplicate sector finder • Sector mover • Bad sector writer • Sector data displaye - Autorun builder • Other useful programs

This comprehensive book and disk package should not be confused
with low quality imitations offered elsewhere. with low quality imitations offered elsewhere.
BOOK II + DISK II: Advanced Software Protection. This all new sequel starts where the highly acclaimed Book I leaves off. Book II is the most up-to-date resource available for the Atari owner. includes review and explanations of products such as: The Happy Enhancement; The Impossible*: The Scanalyzer* The Chip* The Pill* and Super Pill* many others.
Book II: Fells you specifically what they copy, what they won't, how they are used, and the details of how they work. Book II also includes such topics as: - Transmitting protected programs • Copying disks with more than 19 sectors/track. Includes the newest protection methods by companies like Synapse AND Electronic Arts - Data encryption * Phreaking methods - Program worms - Logic bombs - Bank-select Sample BASIC + Assembler programs • On-line security • And much more
DISK II INCLUDES: • Automatic program protector - Custom format detector - Newest protection demos - Forced password appender Data encrypter • And much more

Book + Disk Packages only \$24.95 each or
Special Offer both for only $\$ \mathbf{3 9 . 9 5}$

Schematic Designer is designed to help you create the electronic gadget of your dreams. Features 28 built-in symbols and the possibility of hundreds more, in high resolution graphics. You can add titles, zoom in and print out your schematics SCHEMATIC DESIGNER includes many sample schematics which can be used to build many projects, including a working ligh SCHEMATIC DESIGNER ON A DISK... Only \$24.95

[^1]BONUS: Order any 3 programs and get FREE your choice
Deluxe Space Games or $\begin{aligned} & \text { Disk Pak } 1000 \\ & \text { (3 games on a disk) }\end{aligned}$ orty Package)

Promoting Computers In School

Kathy Yakal, Assistant Features Editor

Via free or discounted hardware and software, along with special teacher training, computer hardware manufacturers continue to promote their microcomputers in schools at every level. Here's an overview of recent efforts to increase the already impressive penetration of this technology into classrooms across the land.

Microcomputers now play a significant role in many areas of education. But getting computers into the classroom and deciding how they are best used continue to be subjects of much debate. A combination of factors has slowed the process even further: the problems of implementing a new, evolving technology; the chaotic atmosphere of the computer industry itself; the computer education of teachers and administrators; and the relatively
tight budgets of educational institutions.

Nevertheless, tremendous changes have occurred in teachers' attitudes toward microcomputers over the last couple of years. There are several reasons. First, software publishers have increasingly attempted to provide the kind of programs that teachers feel comfortable with-quantifiable, curriculumbased software. At the same time, innovative, nontraditional kinds of
learning aids have gained a wider acceptance. Second, the hardware and software shakeouts that have moved the computer industry toward maturity and greater stability have made educators feel more confident about making a financial commitment to microcomputers. Finally, teachers are generally less anxious about computers and more experienced at applying them, with a growing number of classroom success stories fueling increased computer use. It's not just the students and a few computer-wise teachers who are driving the movement anymore.

Each of the major computer manufacturers has made unique contributions to trigger the integration of computers into classrooms. Some offer educational discounts. Others provide special grants and develop efficient ways to exploit the hardware, such as networking. In addition to easing the financial burden, hardware manufacturers promote the general health of the educational computing industry by fostering quality software development and encouraging nontraditional applications of hardware to traditional curricula. Inservice training of teachers and special workshops sponsored by hardware companies have also been significant in creating a more upbeat attitude toward classroom computing in recent years.

Here's a company-by-company look at the variety of approaches.

Apple Computer

Officials at Apple Computer realized early on that a good software base was central to getting their hardware into schools. Apple made major efforts in the early 1980s to convince software developers to support its machines, offering them shared advertising, discounts on development machines, and technical support.

Currently, Apple has two educational discount programs. Step pricing gives buyers lower prices on larger orders, encouraging educators to buy in quantity whenever possible. And with the Volume Purchase Agreement, a school can elect to pay for its computers over a three-year time period. If a school involved in such an agreement finds that the hardware does not
meet its needs, it may return the equipment without making the remaining payments.

Support after the sale is also a key to Apple's success in the school market. Apple relies heavily on its local dealers to provide on-site support to educators. Ten days before an order of computers is scheduled to reach a school, Apple notifies a local dealer who is then responsible for installing the equipment and providing orientation and training for teachers and administrators. The dealer is also responsible for any follow-up repair and maintenance.

Apple has developed a fairly high profile on many college campuses across the country, thanks to the Apple University Consortium (AUC). A couple of years ago, 24 U.S. colleges and universities formed an organization whose purpose was to develop tools and resources for the Macintosh. Because of that, many campuses today maintain busy Macintosh labs and workstations. At least one institution, Drexel University, requires its freshmen to purchase Macintoshes.

Atari Corporation

Atari Corporation's change of ownership and revamped management have resulted in few formal educational programs currently in operation. Considering Atari's growing strength, however, that may soon change. Low-cost 8 -bit Ataris have already been the first kind of computer many students ever encountered in a class; their current availability and strong software base may even amplify this trend. And the low price of the powerful ST computers, as well as their strong graphics and music capabilities, may cause some educators to look twice, especially for use in creative applications.

Atari recently announced a marketing agreement with Montrealbased Arrakis, publisher of the Advantage series of educational software. ST versions of these programs, which have in the past been available for Apple, Commodore, and IBM, should be ready by the end of the year. The Arrakis series is known for its impressive graphics and cartoonlike animation, as well as a sophisticated parser which incorporates principles of artificial intelligence and
provides direct answers to students' questions.

Computer Curriculum Corporation (Palo Alto, CA) has announced a commitment to Atari equipment. CCC is packaging STs along with their minicomputers and a series of courses; that is, they bundle hardware and software and install the complete systems in schools.

Finally, a 10-percent discount is available to colleges and universities, with follow-up service and support provided by local dealers.

Commodore

Commodore's big draw for schools lies in its inexpensive hardware and broad base of third-party educational software. Many teachers, unable to get funds allocated for major hardware purchases, started out by buying a few Commodore 64s (or even bringing their own in from home). In many settings, this was all that was necessary to get students familiar with the fundamentals of microcomputers, while also providing workstations for wordprocessing, database management, and computer-aided learning. In other cases, some school administrators have been willing to make a financial commitment to microcomputers in the classroom, based on the excitement they've seen generated by a few hundred dollars'
worth of hardware and software.
Every major educational software publisher supports Commodore machines, so hundreds of titles have been developed for the Commodore 64 over the last few years. Though some are more appropriate for the less structured atmosphere of the home, many have been adopted for classroom use. A complete list of the more than 1500 packages will be available through distributors this fall.

Commodore has recognized that computer-aided education does not necessarily have to happen in a schoolroom, and has supported some unique opportunities for learning. Two of these involve telecommunications. QuantumLink, a year-old service that Commodore has backed with technical and marketing assistance, is an online forum for sharing information of all kinds. Though much of the earliest activity that went on there was computer-oriented, a variety of other special interests are now supported there. Education is one of them. The Resource Center, a relatively new forum in the Learning Center area of Q-Link, is composed of three sections. The Library includes curriculum guides, teaching strategies, software reviews, and articles about home and community education. In the Media Room, users can download software written

Each of the major computer manufacturers has made unique contributions to trigger the integration of computers into classrooms.
by teachers. The Lounge is an online conference area, a meeting place for teachers and parents to gather and discuss educational issues and plans. And the Resource Center's Message Boards keep everyone posted on what's happening in educational computing. (Quantum Computer Services, 8620 Westwood Center Dr., Vienna, VA 22180.)

Commodore is involved with another online educational venture: the Electronic University Network, operated by TeleLearning Systems, Inc., of San Francisco. By purchasing the $\$ 195$ enrollment package, you have access to online courses offered by 25 colleges and universities. You may either take selected courses or, if you have met the school's prerequisites, work toward an M.B.A. or undergraduate degree. Degrees are issued by the schools involved, not by the Electronic University Network. The system software also gives you access to online databases-libraries of information for research purposes-as well as counseling and online seminars. (Software allowing IBM and Apple owners to use the network is also available. For more information, write to TeleLearning Systems, Inc., 505 Beach St., San Francisco, CA 94133 , or call (800)22LEARN; in California, call (800)44LEARN.)

Commodore has, in the past, participated in more traditional outreach efforts to schools. Recent financial problems at the company have apparently forced cutbacks in ongoing educational support. That, too, may change if Commodore is able to weather remaining financial hurdles. The company has a strong history of major support to Canadian schools, and continues to maintain that presence.

IBM

IBM has made a major commitment to the basic skills of reading and writing with its Writing To Read program in the school market. Developed by educator Dr. John Henry Martin, Writing To Read was tested among 22,000 students and was evaluated in an independent two-year study by the Educational Testing Service before being introduced in the fall of 1984. The program has grown in use from 200 schools at the end of 1984 to 1100

Atari recently announced that 17 titles from the acclaimed Arrakis series will be available for the ST.
schools at the end of 1985. More than 125,000 students have participated in the program. The computer-based program allows students to advance at their own pace and offers positive reinforcement during a student's interaction with the computer.

Through Writing To Read, children learn the 42 phonemes (letter and sound combinations) that make up the English language. Using these phonemes, students are able to read and write everything they can say. Typically, students spend an assigned hour each day in a Writing To Read center or lab, a specially designed room made up of five learning stations. Work sessions in the lab are generally an hour long. Students alternate around the five stations: at the computer, with a work journal, at a listening library using specially

The Tandy 1000 computer is becoming an increasingly popular choice for educators.

taped lessons, and playing two phoneme-based games at the "make word" station.

IBM has made a significant commitment to developing curriculumbased software in many subject areas for elementary and secondary schools, programs that come bundled with several student disks and a teacher's guide for easy use in classrooms with multiple computer workstations. Many of the programs are also available individually. In addition, IBM has founded the National Disability Resource Center, a national technology resource that supports the needs of the disabled.

Tandy Corporation/ Radio Shack

The Tandy Corporation has had a longstanding commitment to computer use in the schools. In 1979, Tandy introduced the first low-cost classroom network system-Network 1. In 1980, the Radio Shack Education Division was formed to produce a line of educational courseware. In the years since, Tandy has offered free computer literacy training to teachers, provided formal support for educational software publishers, donated more than $\$ 1$ million in hardware and software products to support research and development activities, and sponsored conferences and associations to promote the further integration of computers into classrooms.

Currently, three major programs are in place in addition to these areas of ongoing support. In conjunction with Education Systems Technology Corporation (ESTC), Tandy offers an integrated learning system for elementary schools, consisting of three major components: a comprehensive $1500-$ lesson reading and mathematics curriculum for grades K-6; a computer laboratory composed of 1 Tandy 3000 host computer and up to 40 Tandy 1000 personal computer workstations, allowing an entire class to use the system at once; and an on-site facility management service, which includes an ESTC lab attendant and a complete com-puter-controlled student management and performance reporting system.

Frankie have sent you over 60 tasks in your journey from Mundanesville through the Pleasure Dome. Tasks ranging from the trivial, to heroic feats of skill and intelligence. Whenever you complete these challenges a bar-chart will show your increase in the various elements of your personality and Pleasure points will be awarded..

This combination awards you the minimum requirement (99% a complete person) to search for the Special Door - the Door to the Ulimate Experience - the heart of the Pleasure Dome.
Your goal is to become a complete person and to achieve this you must reach the top
on the Bar Charts (when the word BANG will light up above the personality factors) and achieve a score of 87,000 Pleasure Points.
"Best adventure game 1985" Commodore Computing International

Lyco Computer Markeeting \& Consultants

л ATARI ת

apple

COMMODORE

SUBLOGIC
(Atari)

Flight Simulator
Night Mission Pinbail. 29.95
18.95

Scenery Disks EA..... 14.95

SYNAPSE
 (Atari)

Synfile. 29.95
29.95

Template 14.95

ACCESS

(Atari)
Leader board. 24.75

FIREBIRD (Atari)
The pawn. 26.75
.26 .75

ACTIVISION
(Atari)

Hacker.................... 15.75
Mindshadow......... 15.75
Ghostbusters......... 15.75
Great Am Race...... 15.75
Music Studio.......... 22.75
Spater

UNISON WORLD
(Atari)
Printmaster............ 24.75
Art Gallery.......... 18.75
MICROLEAGUE (Atari)
Baseball................24.95
GM disk................
Team disk........... 14.95

ACTIVISION

(520 st)

Borrowed Time.

Little People...............29.75
$\underset{(520 \text { st) }}{\text { VIP }}$
VIP Professional......... 109
VIP Lite.. 65.95

> HABA
> $(520 \mathrm{st})$

Writer (520 St) 35.95

ACTIVISION (Apple)

Alter Ego..................28.75

 Little People..Mindshadow
Gamemaker

BRODERBUND (Apple) The Print Shop......... 31.50 Graphic Librarys EA.... 18.50 | Bank St. Writer 128K... 42.75 |
| :--- |
| Bank St. Spelle........ 42.75 | Carmen Sandiego. Karateka

Captain Goodnight Muppet Cruise P.S. Companion Science Kit.

MICROPROSE (Apple)
Crusade in Europe...24.75 Decision in Desert....24.75 F-15 Strike Eagle..... 20.75 NATO Commander .. 20.75
Silent Service 20.75 Silent Service 20.75
Solo Flight.......... 20.75

SSI (Apple)
Phantasie II..............24.75 Wizard's Crown 24.75 Rings of Zilfin.......... 24.75 Colonial Conquest.... 24.75
Battlegroup NAM 29.75
MICROLEAGUE (Apple)
M L Baseball............ 24.95
General Mgr.......... 24.95
General Mgr..............24.95

COMMODORE

128 C 15

EPYX-64

Movie Monster 24.75 Vorpol Kit
Fast Load Super Cycle.. World Games Football

SUBLOGIC

Nightmission Pinball.... 18.95

Flight Simulator Jet STimulator Football. Scenery Disk....EA....... 14.95 Set 1-6..................... 69.95

CARDCO

CB/2 2-slot Board..... 19.95
S'More Basic Rom.... 39.95
Freeze Frame

ACTIVISION

(C-64/128)
Alter Ego.
Hacker.
Little P Popil
Game Mape
Game Maker.
Borrowed Time
Space Shuttle
Music Studio.
Mind Shadow
Road Race.
Fount Down
Basketball.

BRODERBUND
The Print Shop 24.75
Graphics Library
I, II, III
Bank St. Writer
Lode Runner
Printshop Companion
Bank St. Speller
Bank St. Filer
Bank St. Mailer
Bank St. Mailer
Championship
Loderunner
19.75

UNISON WORLD
Print Master (Amiga)....22.75
Print Master (C.64/128)...2.75

FIREBIRD
Elite 19
Colossus iv 21.95

ACCESS

(C-64-Amiga)
Leader Board
Leader Board24.75
Leader Board Amiga 24.75
MACH 128
10th Frame

XETEC
Font Master II 64 . . 28.95

MONITORS

PANASONIC	TEKNIKA MJ-22 MS-305 RGB1499 309 THOMPSON 36512 RGB CALL	HITACHI MM-1218 12". Green. 99 	ZENITH ZVM 1220$\operatorname{ZVM} 1240$899 i49 19 NEC Multisync	PRINCETON GRAPHICS MAX-12 Ambe SR-12 RGB
NEW HOURS! Mon-Thur 9AM-8PM Sat 10AM-6PM Sat 10AM-6PM	MARKET	$\begin{aligned} & 0 \text { COMP } \\ & \& ~ C O N S \end{aligned}$		NEW HOURS! Mon-Thur 9AM-BPM Sat 10AM-6PM -

Lyco Computer Marketing \& Consultants

NEW HOURS! Mon-Thur 9AM-8PM Fri 9AM-6PM Sat 10AM:6PM

AMERICA'S MAILORDER HEADQUARTERS

SAVE ок тнеse ON THESE in Tock

 PRINTERSNEW HOURS:
Mon-Thur 9AM-8PM
Fri 9AM-6PM
Sat 10AM-6PM

1080 \qquad \$199

PANASONIC

1080

1092
3132
3151
3151

3159
1595

SILVER REED	

EPSON

OKIDATA

C. ITOH

1550 SP-

D1040

Prowititer Ir
Prowniter 8510 SP+

TOSHIBA

P351
P34
P34
35 ${ }_{P}^{\mathrm{P} 344 \mathrm{P}}$
${ }_{3}$ 351 shee
 Juki 6300

DIABLO

635 ..

COLOR RIBBONS NOW AVAILABLE!!

NX-10....CALL STAR MICRONICS NXA 10 (NEW)........CAL
NB-15 NEW)......CALL
SB-15 (NEW).......CALL

SGG-15.........................319
SD.
SD.10.
SD.

.469 .469
.589
.589 SR-15...
SB. 10 . 297

BROTHER

TOLL FREE 1-800-233-8760

In PA 717-494-1030
Customer Service 717-494-1670
mortecord
Montrcard VISA Jersey Shore, PA

17740

RISK FREE POLICY

Tandy offers special pricing on educational network systems. Educational customers purchasing two Model 4 computer/Network 4 Student Stations at the regular price of $\$ 1,099$ each will receive a third station free. Other network configurations are available at substantial discount. Network 4 is Tandy's newest and most powerful classroom network. Students at individual stations can sign on to teachercreated network accounts to share software stored on the hard disk drives at a central disk server. The system supports multiple disk and printer servers, which saves money by eliminating the need for peripherals at each workstation. (This promotion is good through September 30, 1986; interested customers may contact a Regional Education Coordinator by calling 800/433-5628.)

Finally, topics for the third and fourth quarter Grants Program have been announced. All nonprofit educational institutions and professional educators are eligible to submit proposals for these project grants. Proposals for "Creative Uses of Microcomputers in Education" should be submitted by September 30, 1986, and proposals for "Using Computers for Instructional Management" should be submitted by December 31, 1986. (Information packets required for use in order to submit proposals can be obtained by writing to Tandy Educational Grants Program, 1400 One Tandy Center, Fort Worth, TX 76102.)

For further information on any of the products or programs mentioned here, please contact:
Apple Computer
20525 Mariani Ave.
Cupertino, CA 95014
Atari Corporation
1196 Borregas Ave.
P.O. Box 3427

Sunnyvale, CA 94088
Commodore Business Machines
1200 Wilson Dr.
West Chester, PA 19380
IBM Educational Systems
P.O. Box 2150

Atlanta, GA 30055
Tandy Corporation/Radio Shack
1800 One Tandy Center
Fort Worth, TX 76102

THE REFERENCE

Library of the future

Kathy Yakal, Assistant Features Editor

Traditional classroom education has already undergone some major changes with the continuing integration of microcomputers into schools. But there's a relatively new technological development with far-reaching educational implications-CDROM (Compact Disc-Read Only Memory). By connecting a personal computer to a compact disc containing digital information, you can easily store and cross-reference an entire encyclopedia, with plenty of room to spare. Similar to the laserdriven audio compact discs that now hold an hour or so of recorded music, these new computer peripherals will surely alter many of our current approaches to education. Here's a look at what this might mean for the classroom of the future.

Your grandchild's sixth-grade history homework assignment: Turn in a report on the first manned space flight to the moon. Though the topic may sound typical, the research won't involve trudging to the school library or home encyclopedia to haul down 15 different books and stare at reams of text and a static photo of the moon.

Instead, with a few keystrokes:

- A laser-driven compact disc feeds through a computer system the digitized voice of Neil Armstrong as he steps down onto the moon's surface-That's one small step for
- A full-color animated sequence shows the touchdown of the lunar lander and the planting of the American flag. Another sequence displays the liftoff, orbital rotation, and space flight while the process is explained through speech synthesis and onscreen text.
- A few more keystrokes and the voice of President John F. Kennedy can be heard as, earlier in the decade, he set a national goal to reach the moon.
- A series of articles-all with voice, color animation, and printout

Give your BASIC programs the speed and performance they deserve

The complete compiler and development package. Speed up your programs 5 x to 35 x . Many options: flexible memory management; choice of compiling to machine code, compact p-code or both. '128 version: 40 or 80 column monitor output and FAST-mode operation. '128 Compiler's extensive 80 -page programmer's guide covers compiler directives and options, two levels of optimization, memory usage, VO handling, 80 column hi-res graphics, faster, higher precision math functions, speed and space saving tips, more. A great package that no software library should be without. 128 Compiler $\$ 59.95$ 64 Compiler $\$ 39.95$

For school or software development. Learn C on your Commodore with our indepth tutorial. Compile C programs into fast machine language. C-128 version has added features: Unix ${ }^{\text {TM }}$-like operating system; 60K RAM disk for fast editing and compiling Linker combines up to 10 modules; Combine M / L and C using CALL; 51 K available for object code Fast loading ($8 \mathrm{sec} .1571,18 \mathrm{sec}$. 1541); Two standard I/O librarys plus two additional libraries-math functions (sin, cos, sqrt, etc.) \& $20+$ graphic commands (line, fill, dot, etc.).
$\begin{array}{ll}\mathrm{C}-128 & \$ 59.95 \\ \mathrm{C}-64 & \$ 59.95\end{array}$

$$
\text { C-64 } \$ 59.95
$$

Easily create professional high quality charts and graphs without programming. You can immediately change the scaling, labeling, axis bar filling, etc. to suit your needs. Accepts data from CalcResult and MultiPlan. C -128 version has 3 X the resolution of the '64 version. Outputs to most printers.

$$
\begin{array}{ll}
\text { C-128 } & \$ 39.95 \\
\text { C_6A } & \$ 3909
\end{array}
$$

C-64 \$39.95

Remarkably easy-to-use interactive drawing package for accurate graphic designs. New dimensioning features to create exact scaled output to all major dot-matrix printers. Enhanced version allows you to input via keyboard or high quality lightpen. Two graphic screens for COPYing from one to the other. DRAW, LINE, BOX, CIRCLE, ARC, ELLIPSE available. FILL objects with preselected PATTERNS; add TEXT; SAVE and RECALL designs to/from disk. Define your own library of symbols/objects with the easy-to-use OBJECT MANAGEMENT SYSTEM-store up to 104 separate objects.

C-128 \$59.95
C-64 \$39.95

Let your '128 or '64 speak Pascal

Not just a compiler, but a complete system for developing applications in Pascal with graphics and sound features. Extensive editor with search, replace, auto, renumber, etc. Standard J \& W compiler that generates fast machine code. If you want to learn Pascal or to develop software using the best tools available-SUPER Pascal is your first choice. C-64 \$59.95

OTHER TITLES AVAILABLE:

COBOL Compiler

Now you can learn COBOL, the most widely used commercial programing language, and tearncobol on your 64. COBOL is easy to learn because its easydo read. COBOL Compiler package comes completesyat Editor, Compiler, Interpreter and Symbolic Debugger.

C-64 \$39.95

Personal Portfolio Manager

Complete portfolio management system for the individual or professional investor. Easily manage your portfolios, obtain up-to-the-minute quotes and news, and perform selected analysis. Enter quotes manually or automatically through Warner Computer Systems.

C-64 \$39.95

Xper

XPER is the first "expert system" for the C-128 and C-64. While ordinary data base systems are good for reproducing facts, XPER can derive knowledge from a mountain of facts and help you make expert decisions. Large capacity. Complete with editing and reporting.

C-64 \$59.95
C. 128 and C - 54 are trademarks of Conmodore Business Machines ine.

Unix is a trademark of Bet Laborabries

One of the most powerful spreadsheets with integrated graphics. Includes menu or keyword selections, online help screens, field protection, windowing, trig functions and more. PowerGraph, the graphics package, is included to create integrated graphs and charts.

C-64 \$39.95
Technical Analysis System for the C-64
\$59.95
Ada Compiler for the C-64 \$39.95
VideoBasic Language for the C-64
capabilities-reveal the early attempts at space flight, including a revolving three-dimensional overview of Sputnik; the voice of rocket expert Werner Von Braun; a cross-section of a typical rocket system, revealing how the physical configurations have changed over time; and a brief explanation of early V-1 and V-2 rockets during World War II.

Dozens of additional topics offer themselves almost magically to the young researcher-from Andy Williams singing Moon River to an animated demonstration of the moon's effects on the Earth's tides.

Although such examples may sound farfetched today, the development of this technology is already under way. The interactive nature of research in tomorrow's schools will be a far cry from the traditional approach.

For schoolchildren today, finding information is, in many ways, similar to the process that was followed by their parents and grandparents. The millions of available books can be a fascinating but often frightening and frustrating world for young students. And crossreferencing information from one source to another is even more daunting. The search process itself can sometimes be discouraging enough to thwart many students ${ }^{\prime}$ early efforts at learning.

In the next few years, however, laser technology in the form of compact disc players interfaced with personal computers are expected to have a major impact on how students research. Called CDROM, this configuration of digital technology embodies three elements that offer tremendous power for educational research. First, speed: Using a CD-ROM system, a student can find the most trivial fact contained in a multivolume reference work in the time it would take to remove a book from the shelf and flip it open to the index. Second, durability: Because the search functions of CD-ROM are driven by a laser beam reading a disc, the hardware and software, given reasonable care, could last hundreds of
years. And third, tremendous storage capability: A compact disc can hold over 550 megabytes of data. That's roughly a quarter of a million pages of text on a disc smaller than a 45 rpm record.

A Long Time Coming

The power of lasers was harnessed over twenty years ago and has potential applications in many industries. Engineers at many consumer electronics companies worldwide have been experimenting with consumer and business applications for almost as long as the technology has been available. We saw some of the first results of this experimentation in 1980, when Sony and N.V. Philips of the Netherlands announced specifications for a new kind of home stereo system: compact disc-audio. Compact disc players use laser beams to read music digitally encoded in microscopic pits on the disc. Since nothing actually touches the disc itself in the playing process, there is no wear on the disc. And the recording is free of the hisses and pops and other distortions we've grown accustomed to hearing on albums. CD players began appearing on the market in 1983 and, thanks to market acceptance, are now a very reasonably priced alternative to traditional stereo systems.

In that same year, Sony and Philips announced specifications for another way to use CD technology: Compact Disc-Read Only Memory (CD-ROM). Slightly modified CD players interfaced with personal computers are capable of holding the data that would require hundreds of the floppy disks that we've grown accustomed to using for data storage. And with the right search software, access to that data is almost instantaneous.

Reference material is an obvious first application for CD-ROM. Consequently, the first hardware/ software configuration actually available for the consumer market was a joint venture between Philips, which provided the player, and Grolier Electronic Publishing, which offered its online Academic American Encyclopedia on a compact disc. The package, sold in limited outlets across the country, retails for \$1,495.

Amazing Searches

Many now claim that the CD-ROM is superior to any previous reference tool. To see why, let's take a brief walk through a search using the Philips/Grolier package.

Installation of the system involves plugging a board into the IBM-PC, connecting the CD player cable to the PC, and turning everything on. Once you've loaded the search software (Knowledge Retrieval System, by Knowledge Set) from a floppy disk, put the CD into the drive and turned it on, you're ready to go.

Here is the opening screen of the CD-ROM search software developed by Knowledge Set (formerly Activenture).

The opening screen offers you the options of finding out more about the system itself, moving directly into a search, or entering the system. All commands are issued by simply pressing the desired function key.

Step 1: Set your search and relation parameters and enter the words or phrases you want to explore.

The first working screen of the system presents two sets of options. Search options let you look for desired words or phrases within article titles, bibliographies, fact boxes, article text itself-or anywhere in

Detailed guide presents the 128's operating system, explains graphic chips, Memory Management Unit, 80 | ROM listings. |
| :--- |
| Rolapp $\$ 19.95$ | ROM listings. 500pp \$19.95

Abacus inflilil Software
Get all the inside information on BASIC 7.0. This exhaustive handbook is complete with commented Summer' 86 .

a cata-becxer acok pualisieday
Abacus iililiil Software
Filled with info for everyone. Covers 80 column hi-res graphics, windowing, memory layout, Kernal routines, sprites, software protection, autostarting. 300pp \$19.95

Insiders' guide for novice \& advanced users. Covers sequential \& relative files, \& direct access commands. Describes DOS routines. Commented listings. $\quad \$ 19.95$

Learn fundamentals of CAD while developing your own system. Design objects on your screen to dump to a printer. Includes listings for ' 64 with Simon's Basic. $\quad 300$ pp $\$ 19.95$

Introduction to programing: problem analysis; thorough description of all BASIC commands with hundreds of examples; monitor commands; util-

Presents dozens of programming quick-hitters. Easy and useful echniques on the operating system, stacks, zero-page, pointers, the

ssential quide for everyone inter ested in CP/M on the 128. Simple explanation of the operating system, memory usage, CP/M utility pro-
grams, submit files \& more.

ANATOMY OF C-64 Insider's guide to the 64 internals. Graphics, sound, VO, kernal, memory maps, more. Complete commented ROM listings.

ANATOMY OF 1541 DRIVE Best handbook on floppySexplains all. Many examples and Ef JitiosNEUTH commented 1541 ROM listings. 500 pp \$19.95 MACHINE LANGUAGE C. 64 Learn 6510 code write fast programs. Many samples and listings for complete assembler, monitor, \& simulator. 200pp \$14.95 GRAPHICS BOOK C-64 - best reference covers basic and advanced graphics. Sprites, animation, Hires, Multicolor, lightpen, 3D-graphics, IRQ, CAD, projections, curves, more. 350pp $\$ 19.95$

TRICKS \& TIPS FOR C. 64 Collection of easy-to-use techniques: advanced graphics, improved data input, enhanced BASIC CP/M, more. 275pp \$19.95 1541 REPAIR \& MAINTENANCE Handbook describes the disk drive hardware. Includes schematics and techniques to keep 1541 running. 200pp \$19.95 ADVANCED MACHINE LANGUAGE Not covered elsewhere: - video controller, interrupts, timers, clocks, /O, real time, extended BASIC, more. 210pp $\$ 14.95$ PRINTER BOOK C-64/VIC-20 Understand Commodore, Epson-compatible print ers and 1520 plotter. Packed: utilities; graphics dump; 3D-plot; commented MPS801 ROM listings, more. 330pp $\$ 19.95$

SCIENCE/ENGINEERING ON C-64 In depth intro to computers in science. Topics: chemistry, physics, biology, astronomy, electronics, others. $\quad 350 \mathrm{pp} \$ 19.95$ CASSETTE BOOK C-64/VIC-20 Comprehensive guide; many sample programs. High speed operating system fast file loading and saving. 225 pp \$14.95 IDEAS FOR USE ON C-64 Themes: auto expenses, calculator, recipe file, stock lists, diet planner, window advertising, others. Includes listings. 200pp $\$ 12.95$ COMPILER BOOK C-64/C-128 All you need to know about compilers: how they work; designing and writing your own; generating machine code. With working example compiler. $\quad 300 \mathrm{pp} \$ 19.95$

Adventure Gamewriter's Handbook Step-by-step guide to designing and writing your own adventure games. With automated adventure game generator. 200pp \$14.95 PEEKS \& POKES FOR THE C- 64 Includes in-depth explanations of PEEK, POKE, USR, and other BASIC commands. Learn the "inside" tricks to get the most out of your ' 64 .

200pp \$14.95
Optional Diskettes for books
For your convenience, the programs contained in each of our books are available on diskette to save you time entering them from your keyboard. Specify name of book when ordering.

Abacus

P.O. Box 7219 Dept. C9 Grand Rapids, MI 49510 - Telex 709-101 - Phone (616) 241-5510

Optional diskettes available for all book titles $-\$ 14.95$ each. Other books \& software also available. Call for the name of your nearest dealer. Or order directly from ABACUS using your MC, Visa or Amex card. Add $\$ 4.00$ per order for shipping. Foreign orders add $\$ 10.00$ per book. Call now or write for your free catalog. Dealer inquires welcome--over 1400 dealers nationwide.
the encyclopedia. If you're crossreferencing two words or phrases to see if they have any relationship to each other, you can choose from several Relation options. For instance, you can find out if your selected words or phrases appear in the same article, the same paragraph, within a certain number of words of each other, or in the exact order. The fifth option here, which can save you some time, lets you negate a word that might appear within the phrase you're looking for, but which is actually another subject entirely. If you are doing a report on Martin Luther, negating the word King will prevent you from pulling articles you don't need to read.

Step 2: After getting a list of entries, decide which you'd like to look at.

Let's say you're doing a research project on Indo-European culture. Upon entering that phrase, you'll find that there are 162 occurrences of that phrase in 65 articles. After asking to see a list of the articles, you can choose to read and even print out any of them. Moving around from article to article and in and out of searches is made quite simple by the function key menu that remains along the left side of the screen (and changes depending on what area of the software you're using).

To save you some time, if you don't want to skim through entire articles, every time your selected search word or phrase appears in an article or bibliography, it shows up as highlighted print.

The system's real power is quite evident the first time you sit down to conduct a search. The incredibly fast search capabilities were made possible by the software developers at Knowledge Set (formerly Activenture). In order to

The top screen shows (in highlighted text) where your selected phrase appears within a bibliography; the bottom screen shows it within an actual article about the topic. From here, you can print out a copy, continue your search, or begin a new search.
make referencing accurate and thorough, every unique word in the Academic American Encyclopedia was identified. Then the VAX minicomputer which compiled the list created an index that cross-referenced every entry. This accounts for the system's speed, as well as its ability to make connections between seemingly unrelated items that might never occur to the user, but which might make for some very interesting research.

Graphics And Sound, Too

Libraries and other institutions that have major information storage and retrieval needs have, understandably, shown a great deal of interest in CD-ROM. But there are still a few things that need to be worked out before CD-ROM becomes as commonplace as microfiche. First, compatibility: Ideally, CD-ROM should be a market similar to that of CD-audio; that is, any CD you buy will run on any manufacturer's CDROM player. Negotiations over standards are currently under way.

Second, where will the software come from? Many software publishers are very interested in de-
veloping for CD-ROM, though few have publicly committed to it. Part of the problem here stems from the old chicken-and-egg problem. Businesses are hesitant to buy a system unless there is a lot of software available, but software publishers are hesitant to put a lot of development money into a product unless there is a solid installed base of the hardware.

Sony and Philips recently announced specifications for a specialized kind of CD-ROM perhaps better suited to the home market. CD-I (Compact Disc-Interactive) suggests an environment that will allow the mixing of text, graphics, sound, and limited animation. It's described as a system, as opposed to CD-ROM, which is considered a peripheral. CD-I hardware may be available in several different configurations from several different companies, but the general idea is to get away from the need for any extensive technical knowledge to operate it. Several companies in the entertainment field have announced intentions to develop home entertainment products for the system.

Microsoft recently showed a prototype of the Multimedia Encyclopedia, a CD-I product.

Of course, better research tools won't necessarily mean better, smarter students. Motivation and the desire to learn are always key factors. But this new generation of electronic equipment will do much more than simply make it easier to find facts. Just as the computer age has so far sparked previously undreamed-of applications, so also may CD-ROM and CD-I technology lead to uses that we, at this early stage, can hardly -imagine. ©

alternate turns, filling in cells of the honeycomb one at a time. While attempting to complete your own course, you must also try to block your opponent's way, and this requires strategic thinking. The first player to connect both borders wins the game. As a reward, tiny bee faces appear along the line of connection, clearly marking the path to victory.

Entering The Game

Type in the program listing for your computer, referring to the special notes below. When you have saved a copy of the game, type RUN and press RETURN. Beehive begins by asking for the name of each player. After both players have entered their names, the beehive grid is drawn and play begins. In the Amiga and IBM PC/PCjr versions, the computer determines randomly which player should take the first turn; in other versions, player 1 always goes first. In the Amiga version, each player takes a turn by moving the mouse pointer to the desired cell and pressing the left mouse button once. Other versions substitute joystick or keyboard controls for the mouse (see below).

When you choose a cell, it is filled with a solid circle and your turn ends. While connecting your own borders, you should also be trying to prevent the other player from making a connection. Play continues until one player or the other completes a continuous line from one border to the other. At this point a victor is declared, and bee faces replace the circles along the entire winning route.

Winning Strategies

Like most two-player games, Beehive adjusts itself to the skill of the players. The basic concept is simple enough that even small children can enjoy playing. But when two knowledgeable players are matched, play proceeds at a much higher level. The flexibility of the game allows many different strategies.

Here are some important points for beginners to keep in mind. To begin with, your first move does not have to occur in one of your border rows. In fact, you can often establish a better strategic position by starting somewhere near the middle of the playing field. In a typical game you will have to swing back and forth between an expanding, offensive posture and a defensive, blocking posture. The middle areas accommodate both strategies well.

Second, it is not necessary that all of your cells be connected. That is, a new cell doesn't necessarily have to touch one of your existing cells. Any empty cell in the hive is fair game for either player, and it's often advantageous to space out your cells to allow multiple paths between borders. Starting multiple pathways makes it harder for an opponent to block your progress completely.

Finally, keep in mind that the hexagonal shape of each cell permits you to move in six different directions. Try not to get locked into a strict, straight-line strategy too often. Any pathway that connects both borders is legal, and in many cases the winning path will be quite roundabout.

Amiga Version

Before you begin typing in the Amiga version (Program 1), notice the small arrows marking the end of the line. They are not intended to be typed (in fact, we deliberately chose a character that's not available from the Amiga's keyboard). Instead, wherever you see an arrow in the listing, press RETURN or move the cursor off the line to enter it into memory.

The Amiga version of Beehive includes synthesized speech. Either player can toggle the speech effects on or off at any time. Press the left button once: A small box appears, indicating the current speech status. If speech was turned on, it is now turned off, and vice versa. Press the left button again to erase the speech box and resume the game.

Commodore 64/128 Version

The Commodore version (Program 2) runs on a Commodore 64 or Commodore 128 in 64 mode; it requires a joystick. Plug the joystick into port 1 and use it to move the bee-shaped pointer onto the desired cell. To select a cell, press the fire button.

Atari Version

Atari Beehive (Program 3) requires a joystick and runs on any Atari 400, $800, \mathrm{XL}$, or XE computer with at least 32 K of memory. Plug the joystick into port 1. Move the pointer over the cell you wish to occupy, then press the fire button to select it.

Apple II Version

The Apple II version of Beehive (Program 4) runs on any Apple IIseries computer, under DOS 3.3 or ProDOS. A color monitor and joystick are required. To select a cell, move the pointer onto it, then press the button.

IBM PC/PCjr Version

IBM Beehive (Program 5) requires a color/graphics card and BASICA for the IBM PC, and Cartridge BASIC for the PCjr. Keyboard controls are used to move the beeshaped pointer around the playing field and to select a cell. Use the arrow keys to move left, right, up, or down. When the pointer is above the desired cell, press the space bar to select it.

Program 1: Beehive For Amiga

Please refer to the typing instructions in the article before entering this listing.

CLS 4

talk $=$ =" ": GOSUB talk
GOSUB init4
GOSUB getnames 4
start: 4
CLS: RANDOMIZE TIMER 4
markers $=\varnothing$: winner $=\varnothing$: prev.pl ayer $=04$
player $=\operatorname{INT}\left(2^{*}\right.$ RND $\left.(1)+1\right) 4$
FOR $j=1$ TO 11: FOR $k=1$ TO 31: hive\% $(j, k)=\emptyset: ~ N E X T ~ k: ~ N E X T ~ j ~ « ~$
FOR $j=1$ TO 2ø: pathlen $(j)=\varnothing$: NEXT j 4
FOR $j=1$ TO 65: path\% $(j)=\varnothing: u$ sed\% $(j)=\varnothing:$ nodez $(j)=\varnothing:$ NEXT j4
GOSUB drawscreen 4
BREAK ON: ON BREAK GOSUB closeup
4
main: 4
IF prev.player <> player THEN \langle COLOR 44
LOCATE 1,2: PRINT "Player:
" 4
LOCATE 1,2: PRINT "Player: ";
COLOR colr(player): PRINT LEFT\$(player\$(player),15)
talk\$=player\$(player): GOSUB tal k
prev.player $=$ player 4
END IF4
WHILE MOUSE ($\varnothing)=\varnothing 4$
$\mathrm{x}=\mathrm{MOUSE}(\varnothing) 4$
$a \$=I N K E Y \$: I F ~ a \$="$ " THEN GOSUB r eadkey ${ }^{4}$
WEND 4
GOSUB checkmouse 4
IF used THEN main 4
GOSUB checkline 4
IF possible $=1$ THEN GOSUB check winner 4
LOCATE 3,2: PRINT"
4
IF winner $=1$ THEN drawpath 4
IF player $=1$ THEN 4
player $=2$
ELSE 4
player $=1$
END IF4
GOTO main 4
4
init: 4
CLS: $\operatorname{colr}(1)=2: \operatorname{colr}(2)=34$
DIM colcorio(11): FOR $j=1$ TO 11
: READ colcori (j) : NEXT $j 4$
DATA $5,4,4,3,3,2,2,1,1, \varnothing, \varnothing 4$
DIM row.inci(6), col.inc\% (6)
FOR $j=1$ TO 6: READ row.inci(j)
, col.inci(j): NEXT j 4
DATA $-1,-1, \varnothing, 1,1,1,1, \varnothing, \varnothing,-1,-1,-$ 14
DIM hive\% (11,31) 4
DIM usedz(65), node\%(65), path\%(65), pathlen(20)4

SCREEN 1,64の,2øø,3,24
WINDOW 1 , "BEE HIVE", 16,14
GOSUB setcolor 4
DIM hexa(1øø), ball1 (1øø), ball2(1
$\emptyset \emptyset)$, eyes $1(1 \varnothing \varnothing)$, eyes $2(1 \varnothing \varnothing) 4$
LINE $(3 \varnothing, 1 \emptyset)-(12,15), 7:$ LINE - S
$\operatorname{TEP}(\varnothing, 1 \varnothing), 7: \operatorname{LINE}-\operatorname{STEP}(18,5)$
, 74
LINE - STEP ($18,-5$), 7: LINE - ST
EP $(\varnothing,-1 \varnothing), 7: \operatorname{LINE}-\operatorname{STEP}(-18,-$ 5), 74

LINE $(30,11)-(13,15), 6:$ LINE - S
$\operatorname{TEP}(\emptyset, 9), 6: \operatorname{LINE}-\operatorname{STEP}(17,5)$, 64

LINE - STEP $(16,-4), 6:$ LINE - ST EP $(\varnothing,-1 \varnothing), 6:$ LINE - STEP (-17,4),64

GET $(12,1 \varnothing)-(48,3 \varnothing)$, hexa \leqslant
CLS: CIRCLE ($3 \varnothing, 2 \emptyset$),11, colr(1):
PAINT $(3 \varnothing, 2 \sigma), \operatorname{colr}(1): \operatorname{GET}(2 \sigma, 9$)-(4ø,31), ball14
GOSUB parts: $\operatorname{GET}(18,12)-(42,3 \varnothing)$
, eyesl 4
CLS: CIRCLE $(3 \varnothing, 2 \emptyset), 11, \operatorname{colr}(2):$
PAINT ($3 \varnothing, 2 \varnothing$), colr(2): GET (2ø,9)-(4ø, 31), ball24
GOSUB parts: $\operatorname{GET}(18,12)-(42,3 \varnothing)$
, eyes2: CLS4
RETURN 4
4
parts: 4
CIRCLE (25,19),4,1: CIRCLE (35,1
9),4,14

PAINT $(25,19), 1: \operatorname{PAINT}(35,19), 1$ 4
$\operatorname{PSET}(29,17):$ LINE $-\operatorname{STEP}(-5,-5$
): LINE - STEP $(-5,3) 4$
PSET $(31,17):$ LINE - STEP $(5,-5)$
: LINE - STEP $(5,3) 4$
CIRCLE $(3 \varnothing, 24), 2,1:$ PAINT $(3 \varnothing, 24$
),14
RETURN 4
4
getnames:4
COLOR 44
CLS: talk $\$=$ "WELCOME TO BEEE HIVE ": GOSUB talk
$\mathrm{a} \$=$ " What is the name of playe rl ": PRINT 4
PRINT a\$; : talk $=\mathrm{a}$: GOSUB talk: INPUT player\$(1) 4
$\mathrm{aS}=$ " What is the name of playe
r 2 ": PRINT 4
PRINT aS;: talk\$=a\$: GOSUB talk:
INPUT player\$(2) 4
talk\$="Press space bar to turn s
peech off or on during game." 4
LOCATE 15,14:PRINT talk\$
GOSUB talk:CLS: RETURN 4
4
drawscreen: 4
CLS: $Y=74$
FOR $r=1$ TO 114
$x=18 \emptyset-r * 184$
FOR $\mathrm{c}=1 \mathrm{TO} 114$
$x=x+364$
PUT (x, y), hexa, OR 4
NEXT $\subset 4$
$y=y+154$
NEXT r \&
PSET $(595,12), 2:$ GOSUB upndown:
LINE -STEP ($\varnothing, 1 \varnothing), 24$
PSET $(596,12), 2:$ GOSUB upndown:
LINE -STEP $(\emptyset, 1 \emptyset), 24$
PSET (597,12), 2: GOSUB upndown: LINE -STEP ($\varnothing, 1 \varnothing), 24$
PSET $(194,12), 2:$ GOSUB upndown: LINE -STEP ($\varnothing, 1 \varnothing), 24$
PSET (195,12), 2: GOSUB upndown: LINE -STEP ($\varnothing, 1 \varnothing), 24$
PSET (196,12),2: GOSUB upndown:
LINE -STEP $(\varnothing, 1 \varnothing), 24$
Yl=-5: y $2=5$: $\operatorname{PSET}(198,9), 3:$ GOS
UB across 4
$\operatorname{PSET}(198,10), 3$: GOSUB across 4
PSET (199,11),3: GOSUB across 4
yl=5: y2=-5: $\operatorname{PSET}(19,173), 3:$ GO
SUB across 4
PSET (19,174),3: GOSUB across 4
PSET $(19,175), 3:$ GOSUB across 4
RETURN 4
4
upndown: 4
FOR $j=1$ TO 104
LINE -STEP $(\varnothing, 1 \varnothing), \operatorname{colr}(1) \&$
LINE -STEP $(-18,5)$, colr $(1) \leftarrow$
NEXT j 4
RETURN 4

GET UPTO 2OO FUNFFILED PROGRAMS EACHYEAR-

Subscribe to COMPUTE! today through this special introductory money-saving offer, and you'll be getting a lot more than just another computer magazine. That's because each issue of COMPUTEI comes complete with up to 20 all-new, action-packed programs.

Subscribe now and you can depend on a steady supply of high quality, fun-filled programs like Hickory Dickory Dock, Switchbox, TurboDisk, Home Financial

 whit on the the trentumenure ins in

 Conecto ore te bistule the routho th

 Calculator, Turbo Tape, SpeedScript, SpeedCalc, and hundreds of other educational, home finance, and game programs the entire family can use all year long.

The superb programs you'll find in each issue are worth much, much more than the low subscription price.

And there's more to COMPUTE! than just exciting new programs. Month after month, COMPUTEI's superb articles deliver the latest inside word on everything from languages to interfaces...from programming to disk drives.

Whether you're a novice or an experienced user, COMPUTE! is the magazine for you. So subscribe today. Return the enclosed card or call 1-800-247-5470 (in lowa, 1-800-532-1272).

Do it now.

COMPUTEI:

COMPUTEI"Publications, Inc. abc

across: 4
FOR $j=1$ TO 114
LINE -STEP ($18, \mathrm{yl}$), colr(2) 4
LINE -STEP ($18, \mathrm{y} 2$), colr (2) 4
NEXT j 4
RETURN 4
4
checkmouse:
$x=\operatorname{MOUSE}(3): y=\operatorname{MOUSE}(4) 4$
offset $=\emptyset$: used $=\varnothing_{4}$
$\mathrm{yr}=\operatorname{INT}(\mathrm{y} / 15+.5):$ row $=\mathrm{yr}: \mathrm{yr}$ $=\mathrm{yr}$ * 15 4
IF INT $(\mathrm{yr} / 2)=\mathrm{yr} / 2$ THEN offset $=184$
$\mathrm{xr}=$ INT $((\mathrm{x}$-offiset $) / 36+.5):$ col
$=\mathrm{xr}: \mathrm{xr}=\mathrm{xr}$ * $36+$ offset 4
IF row < 1 OR row > 11 THEN 4
used $=14$
RETURN 4
END IF4
col $=\operatorname{col}-\operatorname{colcor}$ (row) 4
IF col < 1 OR col > 11 THEN4
used $=14$
RETURN 4
END IF4
rowhive $=$ row: colhive $=1 \varnothing+2 * \mathrm{co}$ 1-row
IF hiver(row, colhive) <> Ø THEN
used $=14$
RETURN4
END IF
markers $=$ markers +14
hivez(row, colhive) = player 4
IF player $=1$ THEN 4
PUT (xr-10,yr-9), balll, OR 4
ELSE 4
PUT (xr-1ø,yr-9),ball2,OR 4
END IF4
RETURN 4
checkline: 4
possible=14
IF player $=2$ THEN 4
FOR row $=1$ TO 6: $\mathrm{ff}=\emptyset: \mathrm{fb}=\emptyset 4$
FOR col = 1 TO 11: colhive=16+2*
col-row 4
IF hive\% (row, colhive)=player THE N ff=l4
colhive $=1 \sigma+2$ * (col) $-(12-$ row $) 4$
IF hive\%(12-row, colhive)=player
THEN $\mathrm{fb}=14$
NEXT col 4
IF $f f=\emptyset$ OR $f b=\emptyset$ THEN $<$
possible $=\varnothing_{4}$
row $=1 \mathrm{E}+\varnothing 94$
END IF4
NEXT row 4
ELSE4
FOR col $=1$ TO 6: $\mathrm{ff}=\emptyset: \quad \mathrm{fb}=\emptyset 4$
FOR row $=1$ TO 11: colhive=1ø+2* col-row 4
IF hiver (row, colhive)=player THE N ff=l4
colhive $=1 \varnothing+2$ * $(12-\operatorname{col})-$ row 4
IF hiver (row, colhive)=player THE N fb=14
NEXT row 4
IF $f f=\emptyset$ OR $f b=\emptyset$ THEN 4
possible $=\varnothing 4$
col $=1 \mathrm{E}+094$
END IF4
NEXT col 4
END IF4
RETURN 4
checkwinner: 4
LOCATE 3,2: COLOR 4: PRINT "Chec king..."4
used.cntr $=\varnothing$: winner $=\varnothing$: node.
cntr $=\varnothing$: node. total $=\varnothing$: counte
$r=04$
IF player $=1$ THEN checkl 4
FOR col = $1 \mathrm{TO} 11:$ row $=14$
IF hive\% (row, $1 \sigma+2^{*}$ col-row) <> pl
ayer THEN skip24
noderow $=$ row: nodecol $=$ col: GO SUB usedlookup
IF used.flag $=1$ THEN skip24
node.total = 1: path. total = 1:c
ounter $=14$
path\% (1) $=1 \varnothing \varnothing$ * noderow + nodec ol4
GOSUB checkpath 4
IF winner $=1$ THEN col $=1 \mathrm{E}+\varnothing 94$
skip2:4
NEXT col 4
RETURN4
4
checkl: 4
FOR row $=1$ TO 11: col $=14$
IF hiver (row, 1 $\varnothing+2$ *col-row) <> pl ayer THEN skipl4
noderow $=$ row: nodecol $=$ col: $G O$ SUB usedlookup 4
IF used.flag $=1$ THEN skipl 4
node.total $=1:$ path.total $=1:$ counter $=14$
path\% $(1)=1 \varnothing \emptyset *$ noderow + nodec 014
GOSUB checkpath 4
IF winner $=1$ THEN row $=1 \mathrm{E}+\emptyset 94$
skipl:4
NEXT row 4
RETURN 4
4
usedlookup: 4
used.flag $=\varnothing$: search $=1 \varnothing \varnothing$ * no derow + nodecol 4
$1 \mathrm{k}=\emptyset$: IF used.cntr $=\emptyset$ THEN sk ipsearch 4
FOR $1 \mathrm{k}=1 \mathrm{TO}$ used. cntr 4
IF search $=$ usedio (lk) THEN 4
used.flag $=14$
$1 \mathrm{k}=1 \mathrm{E}+\emptyset 94$
END IF
NEXT lk 4
skipsearch:4
IF used.flag $=\emptyset$ THEN 4
used.cntr $=$ used.cntr +14
usedi(used.cntr) $=$ search 4
END IF4
RETURN4
checkpath: 4
node.cntr $=\varnothing 4$
FOR nc $=1$ TO 64
noderow $=$ noderow + row.inc\%(nc)
: nodecol $=$ nodecol + col.incti(n c) 4

IF noderow < 1 OR noderow > 110 R nodecol < 1 OR nodecol > 11 TH EN skipnode
4
IF hives (noderow, 1ø+2* nodecol-no derow) <> player THEN skipnode 4 GOSUB usedlookup: IF used.flag = 1 THEN skipnode 4
node.cntr $=$ node.cntr +14
node.total $=$ node.total $+1:$ nod e\% (node.total) $=1$ øø * noderow + nodecol 4
IF (player $=2$ AND noderow $=11$)
$\mathrm{OR}($ player $=1$ AND nodecol $=11$)

THEN 4

winner $=14$
path.total $=$ path. total +14
path\% (path.total) $=1 \varnothing \varnothing$ * nodero
w + nodecol 4
nc $=1 \mathrm{E}+\emptyset 94$
END IF 4
skipnode: 4
NEXT nc4
IF winner $=1$ THEN RETURN4
IF node. cntr $=\varnothing$ AND node.total $=\varnothing$ THEN RETURN4
IF node.cntr $=\emptyset$ THEN 4
path.total $=$ path.total - pathle
n(counter)4
pathlen(counter) $=\varnothing 4$
counter $=$ counter -14
END IF 4
IF node.cntr >1 THEN counter $=$ counter + node.cntr - 14
noderow $=$ INT(node\% (node.total)/ 1øø) 4
nodecol $=$ nodeq (node.total) $-1 \emptyset$ Ø * noderow 4
path.total $=$ path.total +14
pathlen(counter) = pathlen(count
er) +14
patho (path.total) $=$ node\% (node.t otal)4
node.total $=$ node.total -14
GOTO checkpath 4
4
drawpath: 4
LOCATE 1,1: PRINT"
": COLOR 44
LOCATE 1, l: PRINT "THE WINNER: " ;:COLOR colr(player): PRINT play er\$(player); 4
$\mathrm{a} \$=$ "THE WINNER IS " + player\$(player): talk\$=a\$: GOSUB talk FOR $j=1$ TO path.total: offset $=04$
row $=\operatorname{INT}($ path\% $(j) / 1 \varnothing \varnothing): \operatorname{col}=p$ ath\% (j) - 1øø*row + colcor\% (row)

IF row/2 $=$ INT(row/2) THEN offse $\mathrm{t}=184$
$\mathrm{xr}=\operatorname{col} * 36+$ offset: $\mathrm{yr}=$ row * 154

IF player $=1$ THEN 4
PUT ($x r-1 \varnothing, y r-9$), balll, XOR 4
PUT ($x r-12, y r-5$), eyesl, OR 4 ELSE4
PUT ($x r-1 \emptyset, y r-9$), ball2, XOR4
PUT ($x r-12, y r-5$), eyes 2, OR 4
END IF4
NEXT $j<$
4
goagain: 4
LINE $(419,139)-(625,186), 7, b: L I$ $\operatorname{NE}(42 \emptyset, 14 \emptyset)-(624,185), 7, \mathrm{~b} 4$
LINE (421,141)-(623,184),4,bf: C
OLOR 64
LOCATE 19,55: a \$ $=$ " WANT TO PLA Y AGAIN ? ": PRINT as; 4
LINE $(431,162)-(487,18 \emptyset), 7$, bf: L OCATE 22,56: PRINT " YES "; 4
LINE (567,162) $-(615,180), 7, b f: L$ OCATE 22,73: PRINT " NO "; 4
talk\$=a\$: GOSUB talk ${ }^{4}$
4
waiter: 4
WHILE MOUSE($\varnothing)$ <> 14
WEND 4
$x=\operatorname{MOUSE}(3): y=\operatorname{MOUSE}(4) 4$
IF $\mathrm{y}<162$ OR $\mathrm{y}>18 \emptyset$ THEN waite
r4
IF $x>43 \varnothing$ AND $x<488$ THEN star
t 4 x > 566 AND x < 616 THEN clos
eup4
GOTO waiter 4
4
setcolor: 4
PALETTE $\emptyset, .3, .3,3$ 'grey 3
PALETTE 1, $\varnothing, \varnothing, \varnothing$ 'black
PALETTE 2, $0,1,0 \quad$ 'green 4
PALETTE $3, \varnothing, \varnothing, 1 \quad$ 'blue \quad
PALETTE 4,1,1,1 'white4
PALETTE 5, $0,1,1$ 'aqua
PALETTE 6,1,1,0 'yellow4
PALETTE 7,.8,.2,ø 'red
RETURN 4
closeup: 4
PALETTE $0, .1, .1,1$ 'blue 1
PALETTE 1,1,1,1 'white4
PALETTE 2, $0, \varnothing, \varnothing \quad$ 'black
PALETTE $3, .85, .2, \varnothing$ 'red
WINDOW CLOSE 14
SCREEN CLOSE 14

- Word Processing • Program Listings • Graphics• Quiet Operation• Upper and Lower case • All points addressable Graphics • Underline • Enhanced • Much much More

Super Quality

This printer was made by Canon ${ }^{\circledR}$ for one of the largest computer manufacturers in the world. The Big Blue printer comes ready to hook up to the serial port of the IBM®PC jr. Plus with low cost adapter cables you can connect the Big Blue printer to the IBM®PC, IBM®XT, IBM®AT, Apple ${ }^{\circledR}$ II, IIe, IIc, Commodore ${ }^{\circledR}$ 64,128, Atari ${ }^{\circledR}$, plus many more.

- 15 Day Free Trial

- 90 Day Immediate Replacement Warranty

Now you can have a full fledged $81 / 2$ '" letter size 80 column printer for less than the cost of a large box of paper. This printer uses advanced thermal technology to print upper and lower case (with true lower descenders), underline, enhanced, all points addressable graphics (works with Printshop) plus More. Print out pictures, program listings, wordprocessing pages, graphics and more. Perfect for the homeowner or student and definitely affordable. Fantastic Printer at an unbeatable price. List \$199.00 Sale \$39.95

> Intelligent Commodore Interface-Allows you to connect the Big Blue printer to the printer port of the Commodore 64 and 128 computer. Print Commodore graphics, use Printshop, Word processors and more...
> List $\$ 49.95$ Sale $\$ \mathbf{2 4 . 9 5}$

Intelligent Atari Interface-Allows you to connect the Big Blue printer to Atari computers (except 1200). Print Atari graphics, Printshop, word processors, and more... List $\$ 49.95$ Sale $\$ 24.95$

IBM®, Apple ${ }^{\circledR}$ RS-232 Adapter-Adapts the Big Blue printer to be used with any RS-232 port. List \$19.95 Sale \$9.95

Paper (2 Rolls) List \$19.95 Sale \$9.95
IBM, Apple. Canon, Commodore, Atari are trademarks of International Business Mochines. Apple Computer, Canon Inc, Commodore Business Mochines, Atari Inc. Respectively.

[^2]
COMMODORE 64 COMPUTER

(Order Now)

- C128 Disks 79ea.*
- Comstar Writer 64 \$19.95
- 13' Color Monitor \$139.95

CALL BEFORE YOU ORDER

COMMODORE 64 COMPUTER $\$ 149.95$ You pay only $\$ 149.95$ when you order the powerful 84 K COMMODORE 64 COMPUTER! LESS the value of the SPECIAL SOFTWARE DISCOUNT COUPON we pack with your computer that allows you to SAVE OVER $\$ 250$ off software sale prices!! With only $\$ 100$ of savings applied, your net computer cost is $\$ 49.95$!!

* C128 DOUBLE SIDED DISKS 79° EA.

Get these $51 / 4^{\prime \prime}$ Double Sided Floppy Disks specially designed for the Commodore 128 Computer (1571 Disk Drive). 100\% Certified, LIfetime Warranty, Automatic Lint Cleaning Liner included. 1 Box of 10 - $\$ 9.90$ ($99^{\circ} \mathrm{ea}$.), 5 Boxes of 10 - $\$ 44.50$ ($89^{\circ} \mathrm{ea}$.), 10 Boxes of 10 . $\mathbf{\$ 7 9 . 0 0 (7 9 ^ { \prime } \text { ea.). }}$

13' COLOR MONITOR \$139.95 You pay only $\$ 139.95$ when you order this $13^{\prime \prime}$ COLOR MONITOR. LESS the value of the SPECIAL SOFTWARE DISCOUNT COUPON we pack with your monitor that allows you to save over $\$ 250$ off software sale prices!! With only $\$ 100$ of savings applied, your net color monitor cost is only $\$ 39.95$. (16 Colors).

Promium Quality 150-170 CPS
Comstar A
The COMSTAR Aero 160 gives you a $10^{\prime \prime}$ carriage, 150-170 CPS, 9×9 dot matrix with double strike capability for 18×18 dot matrix (near letter quality), high resolution bit image (120×144 dot matrix), underlining, back spacing, left and right margin setting, true lower decenders with super and subscripts, prints standard, block graphics and special characters. It gives you print quality and features found on printers costing twice as much!! (Centronics Parallel Interface) List $\$ 499.00$ sale $\$ 199.00$.

9 " SAMSUNG GREEN SCREEN MONITOR

Super High Resolution composite green screen monitor. Perfect for 80 column use with The C128 computer (Req. \$19.95 Cable)
List \$129.95 Sale \$59.95.

30 COLUMNS IN COLOR

COMSTAR WRITER 64 WORD PROCESSOR $\$ 19.95$ This COMSTAR WRITER 64 WORD PROCESSOR is the finest available for the COMMODORE 64 computer! The ULTIMATE FOR PROFESSIONAL Word Processing, DISPLAYS 40 or 80 COLUMNS IN COLOR or black and white! Simple to operate, powerful text editing, complete cursor and insert/delete key controls line and paragraph Insertion, automatic deletion, centering, margin settings and output to all printers! List $\$ 99.00$. SALE $\$ 19.95$. Lid, Qty Closeout Ifem

COMMODORE 64 SYSTEM SALE

Commodore 64
Plus $\$ 30.00$ S\&H
Com. 1541 Disk Drive

13' Color Monitor

(Ltd. Qty)

Cl28 Commodore Computer \& 1571 Disk Drive \& 10000

- Voice Synthesizer $\$ 39.95$
- 12" Monitor \$79.95

PRICES MAY BE LOWER

We pack a SPECIAL SOFTWARE DISCOUNT COUPON with every COMMODORE 64 COMPUTER, DISK DRIVE, PRINTER, or MONITOR we selli this coupon allows you to SAVE OVER $\$ 250$ OFF SALE PRICESII
(Examples)
PROFESSIONAL SOFTWARE
COMMODORE 64

Name
PaperClip
Consultant
Leader Board
The Print Shop
Halley's Project
Practicale (spread sheet)
Volce Command Module Nine Princes in Amber Super Bowl Sunday Filp and File Disk Filer
Pro Joy Stick
PartyWare
Dust Cover
Financial Planner
Sylvia Porter Hardball
C64 Troubleshoot \&
Repair Guide
List Sale Coupon
$\begin{array}{lll}59.95 & \$ 34.95 & \$ 29.95\end{array}$
$\$ 59.95 \quad \$ 49.95 \quad \$ 39.95$
$\begin{array}{llll}\$ 39.95 & \$ 24.95 & \$ 22.95\end{array}$
$\$ 44.95 \quad \$ 27.95 \quad \$ 26.95$
$\begin{array}{lll}\$ 39.95 & \$ 22.95 & \$ 19.95\end{array}$
$\begin{array}{lll}\$ 59.95 & \$ 19.95 & \$ 14.95\end{array}$
$\begin{array}{lll}\$ 59.95 & \$ 1.95 & \$ 14.95 \\ \$ 79.95 & \$ 39.95 & \$ 34.95\end{array}$
$\begin{array}{lll}\$ 32.95 & \$ 24.95 & \$ 21.95\end{array}$
$\begin{array}{lll}\$ 35.00 & \$ 22.95 & \$ 19.95\end{array}$
$\begin{array}{lll}\$ 24.95 & \$ 14.95 & \$ 12.95\end{array}$
$\begin{array}{lll}\$ 19.95 & \$ 12.95 & \$ 10.00\end{array}$
$\begin{array}{lll}\$ 19.95 & \$ 14.95 & \$ 11.95 \\ \$ 8.95 & \$ 6.95 & \$ 4.60\end{array}$
$\begin{array}{lll}\$ 59.95 & \$ 38.95 & \$ 35.95\end{array}$
$\begin{array}{lll}\$ 29.95 & \$ 18.95 & \$ 16.95\end{array}$
$\begin{array}{lll}\mathbf{\$ 2 4 . 9 5} & \$ 15.95 & \$ 12.95\end{array}$
(See over 100 coupon items in our catalog) Wrife or call for
Sample SPECIAL SOFTWARE COUPON!

ATTENTMON Computer Clubs

 We Offer Big Volume Discounts CALL TODAY!
PROTECTO WARRANTY

All Protecto's products carry a minimum 90 day warranty. If anything falls within 90 doys from the date of purchase, simply send your product to us via United Parcel Service simply send your product to us via nited Parcel Sorvico prepaid. We wia United Parcel Sorvice prepaid. This warranty proves once again that We Love Our Cusfomers.

C128 COMPUTER \& 1571 \$499.00

Now you can get the Cl 28 Commodore computer \& the 1571 Disk Drive for one low price of only $\$ 499.00$. List $\$ 698.00$
SALE \$499.00.

340K 1571 COMMODORE

DISK DRIVE $\$ 259.00$
Double Sided, Single Disk Drive for C-128 allows you to use C-128 mode plus CPM mode. 17 times faster than 1541, plus runs all 1541 formats.
List \$349.00. Sale \$259.00.
SUPER AUTO DIAL MODEM $\$ 29.95$ Easy to use. Just plug into your Commodore 64 computer and you're ready to transmit and recelve messages. Easier to use than dialing your telephone, just push one key on your computer! Includes exclusive easy to use program for up and down loading to printer and disk drives.
Eest In U.S.A. List \$99.00. SALE \$29.95.
Coupon $\$ 24.95$.

VOICE SYNTHESIZER \$39.95

For Commodore-64 computers. Just plug it in and you can program words and sentences, odjust volume and pitch, make talking adventure games, sound action games and customized talkies I! PLUS ($\$ 19.95$ value) TEXT TO SPEECH program Included FREE, just type a word and hear your computer talk - ADD SOUND TO "ZORK", SCOTT ADAMS AND OTHER ADVENTURE GAMES!! (Disk or tape.) List $\$ 89.00$. SALE $\$ 39.95$

12" SAMSUNG AMBER SCREEN MONITOR $\$ 79.95$
Super High Resolution amber screen monitor. 80 columns $\times 24$ lines, easy to read, a must for wordprocessing. Fantastlc value.
List \$129.00. Sale $\$ 79.95$.
(C128 cable \$19.95. C64, Atarl cable \$9.95)

PRINTER/TYPEWRITER
 COMBINATION \$199.95

Superb letter quality, dalsy wheel printer/typewriter combination. Two machines in one - just a flick of the switch. Extra large carriage, typewriter keyboard, automatic margin control compact,lightweight, drop in cassette ribbon! (90 day warranty) centronics parallel interface Built -in. List $\$ 349.00$. SALE $\$ 199.95$.
(Led. ©ty.)
14" RGB \& COMPOSITE COLOR MONITOR $\$ 239.95$ Must be used to get 80 columns in color with 80 column computers (Cl 28 - IBM . Apple). (RGB Cable $\$ 19.95$) Add $\$ 14.50$ shipping. List $\$ \mathbf{3 9 9 . 0 0}$. SALE $\$ 239.95$.

- LOWEST PRICES • 15 DAY FREE TRIAL
- BEST SERVICE IN U.S.A. • ONE DAY EXPRESS MAIL

PHONE ORDERS

8 a.m. - 8 p.m. C.S.T. Weekdays
9 a.m. - 12 noon C.S.T. Saturdays

- و) DAY FREE REPLACEMENT WARRANTY
- OVER 5NO PROGRAMS • FREE CATALOGS

> Add $\$ 10.00$ for shipping, handling and insurance. Illinois residents please add $61 / 4 \%$ tax. Add $\$ 20.00$ for CANADA, PUERTO RICO, HAWAII, ALASKA, APO-FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES, EXCEPT CANADA. Enclose Cashier Check, Money Order or Personal Check Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! Prices \& Availability subject to change without notice. VISA - MASTER CARD - C.O.D. No. C.O.D. to Canada, APO.FPO

We Love Our Customers Box 550, Barrington, lllinois 60010 312/382-5244 to order

Famous Comstar National Brand

 $\underset{\text { Includes Commodore }}{10^{\prime 2}}$
Near Letter Quality

 InterfaceNear Letter Quality

Best Value in the USA

- 100 CPS draft/20CPS near-letter quality • Dot Addressable Graphics • Adjustable Tractor and Friction Feed • Automatic Paper Loading • Right and Left Margin settings • Pica, Elite, Condensed, Italics • Superscript • Subscript • Underline, Bold print, Double Strike • Superb NEAR LETTER QUALITY

Easy to Use

Fantastic
 Graphics

The Comstar 1000 is one of the best values in the United States today. Print your letters, documents, programs, pictures, and more at a blazing 100 Characters Per Second or 20 cps in the Near Letter quality mode. (Looks just like it came from a typewriter.) Plus, choose your printing mode (NLQ, Draft) from your wordprocessor or by simpiy pushing the controls on the front panel. Fantastic Quality at a Fantastic Price.List \$349.00 SALE $\$ 179.95$.

Print Method

Serial impact dot matrix (9 pin)
Print Speed
Draft-100 CPS NLQ- 20 CPS
Character Sets
96 ASCII Characters, Marker, Symbols (includes italic font)

Ribbon (Life exp.)
Black: cassette (2.5 million characters) Dimensions
$15.4(\mathrm{~W}) \times 10.9(\mathrm{D}) \times 4.7(\mathrm{H})$ inch
Weight
Approx. 10 lbs
Character Spacing
Fixed

Line Spacing

1/6, 1/8, 7/72, and 1/216 inch
Paper Feed
Adjustable tractor and friction feed
Paper feeding Direction
Bi-directional
Copies
2 plus original

Sumply Iss mimmititecl so mervy Tedery

We Love Our Customers
22292 N. Pepper Rd., Barrington, Illinois 60010
312/382-5244 to order

＂Beehive＂for the 512K Amiga，a chal－ lenging strategy game．

STOP4

4
readkey： 4
WINDOW 4，＂Speech＂$(25 \emptyset, 7 \emptyset)-(39 \varnothing$ ， 116），16，14
IF TalkFlag＝1 THEN 4
talk\＄＝＂Now I can talk．＂\leqslant
PRINT talk\＄4
TalkFlag＝1－TalkFlag 4
GOSUB talk 4
GOTO clearmouse 4
END IF4
IF TalkFlag＝ø THEN 4
talk\＄＝＂OK，I＇ll be quiet．＂ 4
PRINT talk\＄4
GOSUB talk 4
TalkFlag＝1－TalkFlag 4
END IF4
4
clearmouse： 4
WHILE MOUSE（ \varnothing ）＜＞\varnothing ：WEND 4
PRINT＂Press button once＂ 4
PRINT＂to continue．．．＂4
WHILE MOUSE（ \varnothing ）＜＞1：WEND4
WHILE INKEY\＄＜＞＂＂：WEND4
WINDOW CLOSE 44
RETURN 4
4
talk：
IF TalkFlag＝\emptyset THEN SAY TRANSLATE \＄（talk\＄） 4
RETURN 4

4

Program 2：Commodore 64／128 Beehive

Version by Kevin Mykytyn，Editorial Programmer
For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing in
Programs＂in this issue of COMPUTEI．
EF $1 \varnothing$ POKE56， 48 ：CLR：GOTO8 \varnothing
RK $2 \emptyset$ GOSUB56 0
QK 3ø JV＝15－（PEEK（56321）AND15） －128＊（（PEEK（56321）AND16） ＜＞16）：IFJV＞127THENRETURN

AX $4 \varnothing$ IFJV $=\varnothing$ THEN $3 \varnothing$

FF $50 \mathrm{TX}=\mathrm{X}: T \mathrm{Y}=\mathrm{Y}: \mathrm{TX}=\mathrm{TX}+\mathrm{X}(\mathrm{JV}): T \mathrm{Y}$ $=T Y+Y(J V)$
HK 60 IFTX＜1ORTX＞11ORTY＜1ORTY＞ 11THEN3Ø
BQ $7 \emptyset \mathrm{X}=\mathrm{TX}: \mathrm{Y}=\mathrm{TY}:$ GOSUB56 \varnothing ：GOTO3 \emptyset
XQ $8 \emptyset$ GOSUB17ø：GOSUB53 \varnothing
RM 9ø POKE5328ø，5：POKE53281，5： PRINT＂\｛CLR\}\{6 DOWN \}
\｛6 RIGHT\}";:GOSUB470:POK E53269，1
SC 1øø INPUT＂\｛BLK\}\{3 DOWN\} \｛2 RIGHT\} ENTER YOUR NAM E PLAYER ONE＂；PNS（1）
SR 11 I INPUT＂\｛DOWN \} \{ 2 RIGHT\}EN TER YOUR NAME PLAYER TW O＂；PNS（2）：POKE53269， 0

The Commodore 64／128 version of ＂Beehive＂features a bee－shaped pointer．

QC 120 GOSUB4øø：FORA＝1TO2：PN\＄（ $A)=\operatorname{LEFT} \$(\operatorname{PNS}(A), 15): N E X$ $T: X=1: P=1: U N=1: Y=1$
HM $13 \varnothing$ B\＄＝＂YOUR TURN＂：GOSUBll 60
RM 140 GOSUB2の：$S P=1397+4 \varnothing$＊$Y+X *$ 2－Y
MM 15ø IFPEEK（SP）＜＞32THENF＝1 0 ： GOSUB58Ø：GOTO14の
AK $160 \mathrm{BD}(\mathrm{X}, \mathrm{Y})=\mathrm{UN}: \mathrm{POKESP}, 81: \mathrm{PO}$ KESP $+54272,7 *(\mathrm{P}-1)$ ：GOSU B590：GOSUB61ø：P＝3－P：GOT $013 \varnothing$
KF $170 \mathrm{ML} \$=$＂EI彐＂$+\mathrm{CHRS}(8)+{ }^{\text {＂} \mathrm{EX}} \mathrm{X}<$ ＂$+\mathrm{CHRS}(3)+$＂E $2 \exists \mathrm{XJ}^{"}+\mathrm{CHRS}($
 ：POKE835， 6
SK 18ø POKE836，2ø8：POKE83ø，ø：P OKE831，216：POKE828，ø：PO KE829，56：POKE56334，Ø
SP 190 POKE1，51：ML\＄＝ML\＄：SYS（PE EK（51）＋256＊PEEK（52））：PO KE1，55：POKE56334，1
GF 2øø FORI＝12568TO1 2631：READJ ：POKEI，J ：NEXT：POKE53272 ， 28
AP $21 \varnothing$ FORA＝øTO1 $\varnothing: \operatorname{READX}(A), Y(A$ ）：NEXTA：FORA $=832$ TO895：R EADB：POKEA，B：NEXT
JE $22 \emptyset$ POKE53276，1：POKE2ø4ø，13 ：POKE53287，7：POKE53285， Ø：RETURN
ER $23 \varnothing$ DATA231，126，24，24，24，24 ，126，231
RC $24 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 126,231$
SC $25 \emptyset$ DATA231， $126, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
HR $26 \emptyset$ DATA7，30，24，24，24，24，12 6，231
DA $27 \emptyset$ DATA7， $3 \emptyset, 24,24,24,24,3 \emptyset$ ， 7
MF 28 D DATA224，12ø，24，24，24，24 ，120． 224
RA 290 DATA231， $126,24,24,24,24$ ，120，224
JA 3øø DATA195，36，126，219，255， 126，36，24
PH $31 \varnothing$ DATA $\varnothing, \varnothing, \varnothing,-1, \varnothing, 1, \varnothing, \varnothing,-$ $1, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 1, \varnothing, \varnothing, \varnothing$ ，\varnothing, \varnothing
CQ $32 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 16$
CS $33 \varnothing$ DATA $\varnothing, \varnothing, 65,8 \varnothing, \varnothing, 65,164$ ， $2 \varnothing$
JR $34 \emptyset$ DATA7ø，1øø，1，150，1øø，1， 165，144
JM $35 \varnothing$ DATAø，1ø6，64，5，1ø5，Ø， 26 ，17ø
GB 360 DATA64，21，153，144，26，86 ．80，5
SE 370 DATA5， $144,0,2,96,0,1,16$ \emptyset
SH $38 \varnothing$ DATA $0, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
JG $39 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 53$
GH 4øø PRINT＂$\{C L R\}\{8$ DOWN \}"SPC （13）＂$\{$ RVS $\}\{B L K\} £\{$ YEL $\}$ EJヨ\｛23 SPACES\}\{政K\}£"
CB $41 \emptyset$ PRINTSPC（12）＂$\{$ BLK $\}\{\bar{R} V S\}$
£\｛OFF\}£"; :FORA=1TO11: PRINT＂TWHT\} \} "; :NEXTA: P RINT＂\｛BLK\}\{RVS\}£\{OFF\} £＂
BC $42 \emptyset$ FORA＝1TO11
QA 430 PRINTSPC（12－A）＂$\{B L K\}$ \｛RVS\} $\underset{£}{ }\{O F F\} \underline{£}\{W H T\} \& "$ ：FORB＝1TO1Ø：PRINT＂＊＂： NEXT：PRINT＂${ }^{\prime \prime}$ \｛RVS\} \{BLK\} £\｛OFF\}£": NEXTA
GP $44 \emptyset \overline{\text { PRINT＂}}$ \｛BLK $\}$ \｛RVS $\} £\{O F F\}$ £\｛2 SPACES $\}$＂；$: F O \bar{R} A=1 T O$
11：PRINT＂\｛WHT\}\% "; :NEXT ：PRINT＂\｛LEFT\} \{BLK\} \{RVS\} £\｛OFF\}£"
FM $45 \emptyset \overline{\text { PRINT＂TBLK \} }}$ \｛YEL \} \{RVS \}
$\{23$ SPACES \}TOFF\}EHB
\｛BLK\}£": PRINT" $\{$ HOME \}
$\{7 \mathrm{SP} \overline{\mathrm{A}} \mathrm{CES}$ \}";
XJ $46 \emptyset$ POKE1827，39：POKE56099，1 ：POKE1459，40：POKE55731， 1
GH $47 \varnothing$ PRINT＂$\{B L K\}$ \｛RVS \} $8 K$ §
\｛2 SPACES \} \{OFF \}
\｛9 SPACES \} \{RVS\} EKヨ\{OFF \}
［KKヨ\｛RVS\}EKヨ\{OFF\}EKヨ
\｛BLK\} "SPC(24)" \{RVS\}[KK
\｛OFF\}EKヨ\{RVS\}EKヨ\{OFF\}
［K才＂SPC（8）＂\｛RVS\}EKヨ
\｛OFF\}EK刃\{RVS\}[KK\{OFF\}
区Kヨ＂SPC（24）；
MJ $48 \emptyset$ PRINT＂\｛RVS\}EK习\{OFF\}区Kヨ
\｛RVS\} $K K \exists\{O F F\}$ KKヨ \｛RVS \}

EKヨED习河\｛OFF\}EVヨ\{RVS\}

\｛OFF\}EKB \{RVS\}EFBED彐
\｛OFF\} \{RVS\}EKヨ\{OFF\}EKヨ

2）＂\｛RVS\}EKヨ\{2 SPACES \}
\｛OFF\} \{RVS\}区K刃ECヨ";
PP 49ø PRINT＂\｛OFF\}EFヨ \{RVS\}EKヨ ECヨ\｛OFF\}EFB \{RVS\}EKヨ
\｛2 SPACES\}\{OFF\}KK
\｛RVS\}EKJ \{OFF\}EKJ \{RVS\}
KKヨ\｛OFF\}EKヨ\{RVS\}EKヨ
\｛OFF\}EKヨ\{RVS\}EK习ECヨ
\｛OFF\}EFZ\{YEL\}"SPC(13)"
\｛RVS\}EK习\{OFF\}EKヨ\{RVS\}
EKヨ\｛OFF\}EKヨ\{RVS\}EKヨ
\｛OFF\}[KX $\{2$ SPACES \} \{RVS \}
［KX\｛OFF\}区Kヨ\{2 SPACES \}
\｛RVS\}EK刃";
HD 5øø PRINT＂$\{O F F\}$ EKヨ \｛RVS \} EK
\｛OFF\}EKヨ \{RVS\}EKヨ\{OFF\}
KKヨ ECヨ\｛RVS\}ECヨEVヨ\{OFF\}
EVヨ\｛RVS\}EKヨ\{OFF\}EKヨ
\｛BLK\}"SPC(14)"\{RVS\}EKヨ
\｛OFF\} $\mathbb{E K} \exists$ \｛RVS\}EKヨ\{OFF\}
EKヨECヨ\｛RVS\}E2 I $\left\{\begin{array}{c}\text { OFF }\} \\ \hline\end{array}\right.$

EVヨ\｛RVS\}EKヨ\{OFF\}[KK
\｛RVS\}EKヨ\{OFF\}EKB \{RVS\}
E2 I羽\｛OFF\}";
FC $51 \varnothing$ PRINT＂ECヨEVヨ ECヨ\｛RVS\}
 \｛RVS\}[Kヨ\{2 SPACES\}\{OFF\} ＂SPC（9）＂\｛RVS\}EK刃\{OFF\}
EKヨ\｛RVS\}EKヨ\{OFF\}EKヨ":
SH 520 POKE53248，30：POKE53264， 1：POKE53249，150：RETURN
JF $53 \emptyset$ FORA $=54272 \mathrm{TO} 4295$ ：POKEA
，$\varnothing:$ NEXT：POKE54296，15：PO KE54277， 25
MX $54 \varnothing$ DIMTA $(11,11,2), \mathrm{EH}(61), \mathrm{E}$ V（61）
SE $550 \operatorname{DIMBD}(11,11), \operatorname{SH}(5 \varnothing), S V($ 5Ø）：SPS＝＂$\left\{\right.$ RVS ${ }^{\prime \prime}$ ：FORA＝1T O2ø：SPS＝SP\＄＋＂＂：NEXT：RE TURN
KM $56 \emptyset$ POKE53249，ø：TX＝X＊16＋（11 $-\mathrm{Y}) * 8+36:$ POKE532 48 ，TXAN D255

Another Fantastic Collection

> COMPUTE! Books continues the tradition of excellent Apple-Il series coverage with COMPUTEI's Third Book of Apple, the follow-up to COMPUTEI's First and Second Book of Apple. These three programpacked books offer you in-depth futorials, valuable utilities, innovative applications, and terrific games to entertain the whole family.

COMPUTE!'s Flrst Book of Apple

Edited
228 pages
A collection of 35 exciting games, educational programs, home applications, and graphics routines for owners of Apple II, lle, and lic computers.
\$12.95, ISBN 0-942386-69-8

COMPUTE!'s Second Book of Apple

Edited

271 pages
Over 30 arcade-style games, applications, educational and logic games, graphics generators, and programming utilities for the Apple IIt, lle, and IIc. A disk is also available for $\$ 12.95$ which includes programs in the book, 0084BDSK.
\$12.95, ISBN 0-87455-008-4
Edited

Our best applications, garnes, tutoriak, and prograriming utitities for the Apple 1. 1+, Le, and arcade games, comprehensivo financial took. cricade games, and more.

COMPUTEI's Third Book of Apple

The best Apple applications, games, tutorials, and utilities from COMPUTEI magazine and COMPUTEI's Apple Applications Special have been brought together for the third volume in this bestselling series. Understandable tutorials help you get the most out of your Apple II, II+, Ile, or Ilc personal computer. Ready-to-type-in games-from vivid, exciting arcade games such as "High Rise" to thought-provoking strategy games like "Switchbox"-make the Apple an entertainment delight. Practical applications, like "Apple SpeedCalc," an impressive spreadsheet program, and "Your Personal Ledger," a complete financial tool, put the power in your Apple. Also included are utilities that will make programming easier and faster. All programs have been thoroughly tested and are ready to type in. Error-checking utilities insure that each program is typed in correctly the first time. A disk is available for $\$ 12.95$ which includes all the programs in the book, 637BDSK.
\$14.95, ISBN 0-87455-063-7

Your whole family will enjoy and use the business, educational, and recreational programs and tutorials in our three books of Apple.
Order one, two, or all three books today.
Call toll-free 800-346-6767 (In NY 212-887-8525), or write COMPUTEI Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.
All orders must be prepaid in U.S. funds. NC residents add 4.5 percent sales tax. NY residents add 8.25 percent sales tax. Please include $\$ 2.00$ shipping per book for U.S. and surface mail; $\$ 5.00$ airmail.
Please allow 4-6 weeks for delivery.

PS 57ø POKE53264，－（TX＞255）：POK E53249，Y＊8＋12Ø：POKE5326 9，1：RETURN
BM 58ø POKE54273，F：POKE54276，1 6：POKE54276，17：RETURN
XQ 59ø POKE54273，10：POKE54276， 64 ：POKE54276，65：FORZZ＝1 5TOLSTEP－．3：POKE54275，z Z：NEXT
HP $60 \emptyset$ RETURN
PG $61 \varnothing \mathrm{CH}=\mathrm{X}: \mathrm{CV}=\mathrm{Y}: \mathrm{LC}=\varnothing$ ： $\mathrm{RC}=\varnothing: \mathrm{FOR}$ $\mathrm{x}=-1 \mathrm{TO}: \mathrm{TH}=\mathrm{CH}+\mathrm{X}$
JK $62 \varnothing$ TV＝CV－1－（X＝1）：GOSUB78 \varnothing
JG $63 \varnothing \mathrm{TV}=\mathrm{CV}-(\mathrm{X}>-1)$ ：GOSUB78ø
BK $64 \varnothing$ NEXT
PM $65 \varnothing$ IFP $=1$ ANDCH $=10 \mathrm{RP}=2$ ANDCV $=$ 1 THENLC $=1$
EK $66 \emptyset$ IFP $=1$ ANDCH $=11$ ORP＝2ANDCV $=11$ THENRC＝ 2
QJ $67 \varnothing$ CC＝LC＋RC：IFCC＝3THENBD（C H，CV）＝UN＋1：GOTOB5ø
JA 680 IFCC＝ 0 THEN77
BS 69ø $\mathrm{SP}=\varnothing$ ： $\mathrm{SH}(\varnothing)=\mathrm{CH}: \mathrm{SV}(\varnothing)=\mathrm{CV}$
AM 7øø IFSP＝－1 THEN77ø
RC $710 \mathrm{DH}=\mathrm{SH}(\mathrm{SP}): \mathrm{DV}=\mathrm{SV}(\mathrm{SP}): \mathrm{SP}=$ SP－1
CH $720 \mathrm{BD}(\mathrm{DH}, \mathrm{DV})=\mathrm{UN}+\mathrm{CC}$
EP 736 FORX $=-1 \mathrm{TOl}: \mathrm{TH}=\mathrm{DH}+\mathrm{X}$
FJ 740 TV＝DV－1－（X＝1）：GOSUB82 \varnothing
JH 750 TV＝DV－（X＞－1）：GOSUB82 \varnothing
MC 760 NEXT：GOTO7øø
ED $77 \varnothing \mathrm{X}=\mathrm{CH}: \mathrm{Y}=\mathrm{CV}: \mathrm{UN}=5-\mathrm{UN}:$ RETUR N
DD 780 IFTH＜1ORTH＞11ORTV＜1ORTV ＞11THENRETURN
DP $790 \operatorname{IFBD}(\mathrm{TH}, \mathrm{TV})=\mathrm{UN}+1 \mathrm{THENLC}=$ 1
PS $8 \varnothing \varnothing \operatorname{IFBD}(T H, T V)=U N+2 T H E N R C=$ 2
SK 810 RETURN
SA $82 \varnothing$ IFTH＜1ORTH＞11ORTV＜1ORTV ＞11THENRETURN
FP $83 \varnothing \operatorname{IFBD}(T H, T V)=U N T H E N S P=S P$ $+1: \mathrm{SH}(\mathrm{SP})=\mathrm{TH}: \mathrm{SV}(\mathrm{SP})=\mathrm{TV}$
CM $84 \emptyset$ RETURN
PM 850 POKE53248，33：POKE53264， 1：POKE53249，195
PS 86ø FORZZ＝1TO2ø：POKE646，ZZ： B\＄＝＂YOU WIN＂：GOSUB117 Ø：NEXT：GOSUBII6Ø
CQ 870 FORCC＝1TO2：FE＝1：LE＝1：EH （1）$=\mathrm{CH}: \mathrm{EV}(1)=\mathrm{CV}: \mathrm{EF}=\varnothing: \mathrm{L}=$ 1
HA $88 \emptyset \mathrm{CD}=\mathrm{CH}: I F P=2$ THENCD $=C V$
KF 890 IFCC＝1ANDCD＝1ORCC＝2ANDC D＝11 THENHH（CC）＝ø：GOTO99 ■
HB $9 ø \emptyset$ NE＝LE：$E=F E$
RA $91 \varnothing \mathrm{DH}=\mathrm{EH}(\mathrm{E}): \mathrm{DV}=\mathrm{EV}(\mathrm{E})$
JQ $92 \varnothing$ FORX＝－1 TOl：TH＝DH＋X：TV＝D $\mathrm{V}-1-(\mathrm{x}=1)$ ：GOSUB1 $\varnothing 9 \varnothing$ ：TV＝ DV－（X＞－1）：GOSUB1ø9ø：NEX T
GM 930 IFEF＝1THEN99ø
XS 94ø IF（E＝LE）THEN97ø
EK $950 \mathrm{E}=\mathrm{E}+1: \mathrm{IFE}=61$ THENE＝1
XA 960 GOTO91ø
CM $97 \varnothing$ FE＝LE $+1: L E=N E: I F F E=61 \mathrm{TH}$ ENFE＝1
EC 98ø L＝L＋1：GOTO9øø
AE 990 NEXT：FORCC＝1TO2：DH＝HH（C C）： $\mathrm{DV}=\mathrm{VV}(\mathrm{CC}): \mathrm{L}=\mathrm{TA}(\mathrm{DH}, \mathrm{DV}$ CC）：IFDH＝ØTHEN1ळ4Ø
BF 1øøø POKE781，DV＋9：POKE782，D H＊2－DV＋13：POKE783，$\varnothing:$ SY S65520：PRINT＂\｛OFF\}R6ヨ* ＂：GOSUB59ø
ED $101 \varnothing$ IFL＝1THEN1 $04 \varnothing$
QQ $162 \varnothing$ FORX＝－1TOI：TH＝DH＋X：TV＝ DV－1－（ $\mathrm{X}=1$ ）：GOSUB1ø6Ø：T $\mathrm{V}=\mathrm{DV}-(\mathrm{X}>-1)$ ：GOSUB1ø60： NEXT
KM $1 \varnothing 3 \varnothing$ L＝L－1：DH＝AH：DV＝AV：GOTO $10 \varnothing \square$
EA 1ø4Ø NEXT：POKE781，CV＋9：POKE

782，CH＊2－CV＋13：POKE783 －\varnothing ：SYS65520：PRINT＂E6ヨ＊ ＂：GOSUB59ø
HH 1050 GOTOI19ø
AC $106 \emptyset$ IFTH＜10RTH＞110RTV＜1ORT V ＞ 11 THENRETURN
MF $167 \varnothing$ IFTA（TH，TV，CC）$=\mathrm{L}-1$ THEN $\mathrm{AH}=\mathrm{TH}: \mathrm{AV}=\mathrm{TV}$
XF 1 1 $8 \varnothing$ RETURN
KB 109ø IFTH＜1ORTH＞11ORTV＜1ORT V >11 THENRETURN
QJ $11 \varnothing \varnothing \operatorname{IFBD}(T H, T V)<>U N+C C O R T A$ （TH，TV ，CC）＜＞ N
FB $1110 \mathrm{TA}(\mathrm{TH}, \mathrm{TV}, \mathrm{CC})=\mathrm{L}: \mathrm{NE}=\mathrm{NE}+1$ ： IFNE＝61 THENNE $=1$
FF $112 \varnothing \mathrm{EH}(\mathrm{NE})=\mathrm{TH}: \mathrm{EV}(\mathrm{NE})=\mathrm{TV}$
SD $1130 \mathrm{CD}=\mathrm{TH}: \mathrm{IFP}=2 \mathrm{THENOD}=\mathrm{TV}$
DP 1146 IFCC＝1ANDCD＝1ORCC＝2AND $\mathrm{CD}=11 \mathrm{THENE} \mathrm{F}=1: \mathrm{HH}(\mathrm{CC})=\mathrm{T}$ $\mathrm{H}: \mathrm{VV}(\mathrm{CC})=\mathrm{TV}$
SK 1150 RETURN
KH 1160 POKE646，7＊（P－1）
FR 117ø POKE214，23：PRINT：A\＄＝LE FT\＄（SP\＄，（16－LEN（PN\＄（P） ）／2）$)+B \$+P N(P)$
JA $118 \emptyset$ PRINT＂＂AS；LEFT\＄（SP\＄，4 g－LEN（AS））；：RETURN
CQ $119 \varnothing$ POKE214，23：PRINT：PRINT ＂$\{\mathrm{WHT}\}$ \｛13 SPACES $\}$（RVS $\}$ press firebutton\｛off \} \｛10 SPACES\}";
PE $12 ø 0$ WAIT56321，16，16：POKE21 4，23：PRINT：PRINTSPC（12 ）＂\｛OFF\}\{2ø SPACES\}";
AR 1210 FORA＝1TO11：FORB＝1TO11： FORC $=1$ TO2 ：TA（A，B，C）$=\varnothing$ ： $B D(A, B)=\emptyset$
XA $122 \varnothing$ NEXTC，$B, A:$ POKE53269，\varnothing ： GOTO12ø

Program 3：Atari Beehive

Version by Kevin Mykytyn，Editorial

Programmer

For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing in Programs＂in this issue of COMPUTE．
BJ $1 \varnothing$ POKE 1ø6，96：GOSUB 2øøø ：ВОTO 8ø
L6 $2 \varnothing \mathrm{FL}=\varnothing$ ： $\mathrm{\theta} 0 \mathrm{SU} \mathrm{C}$ 56ø
MK 3 $\quad \mathrm{JV}=15-\mathrm{ST}$ ICK（ \varnothing ）+128 （ 5 ST RIG（ $)=\varnothing$ ）：IF JV＞127 TH EN RETURN
J4ø IF JV＝ø THEN $3 \varnothing$
NP 5ø POKE 77，$\varnothing: T X=X: T Y=Y: T X$ $=T X+X(J V): T Y=T Y+Y(J V)$
D6 6 I IF $T X<1$ OR $T X>11$ OR TY ＜1 OR TY＞11 THEN 3ø
If $7 \varnothing \quad X=T X: Y=T Y: F L=\varnothing:$ BOSUB 5 6ø：BOTO 3ヵ
FK 8ø BOSUB 530：BOSUB 170：PR INT＂CCLEAR3＂
OC9ø DIM T $\$(3 \varnothing)$ ，TM（3ø），NAM E（40），LENGTH（2）：FOR A $=1$ TO 4ø：NAME $\$(A, A)="$ ＂：NEXT A：POSITION 17，1 ø：PRINT＂BEEHIVE＂
HE 1 øø FOR $A=1$ TO 2：PRINT＂ （2 DOWN\}ENTER YOUR NA ME PLAYER＂；A；＂＂；：IN PUT T＊
EC 1 ø1 IF T\＄＝＂＂THEN T\＄n＂＂
OB 105 IF LEN（T＊）>15 THEN T $=T(1,15)$
NA 1 ø6 LENBTH（A）$=\operatorname{LEN}$（T \＄）
EC 11 D NAME $((A-1) * 15+1,(A-1$ ）$* 15+\operatorname{LEN}(T *))=T \$: N E X T$ $A: O Y=1$
OL $12 \varnothing$ BOSUB 4øø： $\mathrm{X}=1: \mathrm{P}=1 \mathrm{I}: \mathrm{UN}=$ $1: Y=1$
EB 14 T T $\$=$＂YOUR TURN＂：gOSUB 4øøø：POKE 712，15ø－98 ＊（ $\mathrm{P}=2$ ）

AG 145 GOSUB 2б：LOCATE X 草2－Y $+14, Y+5$, SP：POSITION X （2－Y＋14， $\mathrm{Y}+5$ ：PRINT CHR （SP）
LO 15 g IF SP＜＞32 THEN SOUND 1，1øø，12，15：FOR TD＝1 TO 5ø：NEXT TD：SOUND 1 ，$, \varnothing, \varnothing$ ВОТО 14%
 ＊2－ $\mathrm{Y}+14, \mathrm{Y}+5$ ：PRINT CHR （42＋P）：E0SUB 59ø
CP 162 EOSUB 61ø：P＝3－P：GOTO 14．
EC 170 FOR $A=\varnothing$ TO 1ø23：POKE 24576＋A，PEEK（57344＋A） ：NEXT A
6M175 FDR A＝256øø TO 25856： POKE A，g：NEXT A
CP 18® FOR $I=246 \varnothing \varnothing$ TO 247ø3： READ J：POKE I，J：NEXT I
II 21ø FOR $A=\varnothing$ TO 1 ：READ X ， $Y: X(A)=X: Y(A)=Y: N E X T$ A
KP 22．POKE 54279，64：POKE 53 277，3：POKE 559，62：POK E 623，1：POKE 7ø4， $6:$ RE TURN
W 23ø DATA 231，126，24，24， 24 ，24，126，231
DD 24ø DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 126$ ， 231
DE $25 \varnothing$ DATA $231,126, \varnothing, \varnothing, \varnothing, \varnothing$ ， ■，\varnothing
태 26 DATA $7,3 \oplus, 24,24,24,24$ ，126，231
LD 27ø DATA $7,3 \varnothing, 24,24,24,24$ ，3ø， 7
ME 28ø DATA 224，12ø，24，24， 24 ，24，12ø，224
ML 29ø DATA 231，126，24，24， 24 ，24，12ø，224
CC 3 פø DATA $195,36,126,219,2$ 55，126，36， 24
 ，17ø，4』，\varnothing
แ 3 Ф2 DATA $\varnothing, 2 \varnothing, 85,85,85,85$ ，26，\varnothing
H3ø3 DATA 2，2，8，8，32，32， 12 B， 128
KC $3 \varnothing 4$ DATA 85，$, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
KO $3 \varnothing 5$ DATA ø，$\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 85$
MI $31 \varnothing$ DATA $\varnothing, \varnothing, \varnothing,-1, \varnothing, 1, \varnothing$ ，\varnothing $,-1, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 1, \varnothing$ ，$\varnothing, \varnothing, \varnothing, \varnothing$
KE 4øø GOSUB 2øøø：POKE 756，9 6：POKE 752，1：DL＝PEEK（ 560）+256 ＊ $\operatorname{PEEK}(561)$ ： PO KE DL＋6，7：POKE DL＋3，7 1
NO 4б5 POSITION 5， D ：PRINT＂ BEEHIVE＂：POSITION 15，4：PRINT＂／／／／／／／／／ ／／／／／／／／／／／／／／／＂
FF41ø PRINT SPC $(1,12) ; "-" ;$ ：FOR $A=1$ TO 11：PRINT ＂$\$$＂；：NEXT A：PRINT＂ －＂
DB 420 FOR $A=1$ TO 11
MO 43® PRINT SPC（1，12－A）；＂－ \＆＂；：FOR B＝1 TO 1ヵ：PR INT＂，＂：NEXT B：PRIN T＂）－＂：NEXT A
CB44D PRINT＂－＂；：FOR A＝1 TO 11：PRINT＂\％＂；：NEX T A：PRINT＂ （LEFT\}-"
CJ 45ø PRINT＂．．．．．．．．．．．．．．．．． ．．．．．．．．．．．：POSITION 4，16：PRINT＂；＂：POSITI ON 36，6：PRINT＂（＂：RET URN
DH 53ø DIM TA（11，35），EH（61）， EV（61），BD（11，11），SH（5 б），SV（5ø），SP\＄（2ø），X（1
ø），$Y(1 \Xi), \operatorname{SPC}(2 \sigma), \mathrm{HH}($ 15），VV（15）
6C535 POKE 752，1：POSITION 1 4，19：PRINT＂PLEASE WA IT＂
PH54ø GロSUB 3øøø：FOR $A=1$ TO 2末：BP象（A，A）＝＂－＂：SPC $(A, A)="$＂：NEXT A：RETU RN
Eh 56 L LB＝PEEK（88）： $\mathrm{HB}=\operatorname{PEEK}$（ 8 9）：POKE 752，1：POKE 89 ，1øø：POKE 88，QYक8＋99： POSITIUN ø， $\operatorname{D:PRINT}$＂ \｛8 SPACES\}": IF FL THE N 575
ID 578 PQKE 53248，X 8 8＋（11－Y） 44＋61：POKE 88，Y POSITIUN ø，छ：PRINT＂区 \｛風\} PR ，\＆＂
BK 575 POKE 88，LB：POKE 89，HB ：$Q Y=Y$ ：RETURN
OP 59 FOR T＝15 TO \emptyset STEP－\emptyset ．4：SOUND 1， $1 \varnothing \varnothing, 1 \varnothing, T: N$ EXT T：RETURN
JL61ø CH＝X：CV＝Y：LC＝g：RC＝g：F QR $X=-1$ TO 1：$T H=C H+X$
BB 62ø TV＝CV－1＋（X＝1）：GOSUB 7 8 8
OC 6Зø TV＝CV＋（x＞－1）：GOSUB 78 NEXT $\quad \times$
DB64の NEXT X ． 2 AND $C V=1$ THEN $L C=1$
IE 66פ．IF $P=1$ AND $C H=11$ QR P $=2$ AND $C V=11$ THEN RC＝ 2
BA $67 \boldsymbol{D}$ CC＝LC＋RC：IF CC＝3 THEN $B D(C H, C V)=U N+1: G O T O$ 850
OH 68g IF CC $=\varnothing$ THEN $77 \boldsymbol{\square}$
肘69ø SP＝ø：SH（Ø）$=\mathrm{CH}: S V(\varnothing)=\mathrm{C}$ v

DB 7 Øø IF SP＝－1 THEN 77 （
LJ $710 \mathrm{DH}=\mathrm{SH}(\mathrm{SP}): \mathrm{DV}=\mathrm{SV}(\mathrm{SP}): S$ $\mathrm{P}=\mathrm{SP}-1$
FD 72． $\mathrm{BD}(\mathrm{DH}, \mathrm{DV})=\mathrm{UN}+\mathrm{CC}$
6K 73 FOR $X=-1$ TO 1：$T H=D H+X$
BA 74 ■ TV＝DV $-1+(X=1):$ GOSUB 8 29
OB 75ø TV＝DV＋（x）－1）：BOSUB 82 NEXT $X:$ GOTO $7 \boldsymbol{\sigma}$ g
DO 76 NEXT X：GOTO 7 Øø
日A $77 \boldsymbol{g} \quad \mathrm{X}=\mathrm{CH}: Y=C V: U N=5-U N: R E T$ URN
M6 78．IF TH＜1 OR TH＞11 OR T $V<1$ QR TV＞11 THEN RET URN
OA $79 \boldsymbol{0}$ IF $B D(T H, T V)=U N+1$ THE N LC＝1
OA 日月 IF BD（TH，TV）$m \mathrm{UN}+2$ THE N RC＝2
HJ B1g RETURN
NB B2ø IF TH＜1 OR TH 111 OR T V＜1 QR TV＞11 THEN RET URN
MB 日3ø IF BD（TH，TV）$=$ UN THEN SP＝SP＋1：SH（SP）＝TH：SV（ $S P)=T V$
HH 84！RETURN
6A 85．FL＝1：GOSUB 56．：T\＄＝＂YO U WIN＂：GOSUB 4 月月ø：FO R $A=255$ TO \wp STEP－1： POKE 712，A：NEXT A
HA 日6ø POSITION $\varnothing, 2 \emptyset:$ PRINT＂ \｛15 SPACES\}SEARCHING \｛13 SPACES\}"
BP 日7ø FOR CC＝1 TO 2：FE＝1：LE ＝1：EH（1）$=\mathrm{CH}: E V(1)=C V:$ $E F=\varnothing: L=1$
AD B8ø $C D=C H: I F P=2$ THEN $C D=$ CV
JD $89 \varnothing$ IF $C C=1$ AND $C D=1$ OR C $C=2$ AND $C D=11$ THEN HH （CC）＝ந：日ロTO 99．

EB 9甲g NE＝LE：EmFE
HI 91 D D $\mathrm{D}=\mathrm{EH}$（E）：DV＝EV（E）
HK 92 FOR $X=-1$ TD 1：$T H=D H+X$ ：TV＝DV－1 $+(X=1)$ ：BOSUB 1095：TV＝DV＋（x＞－1）：E0S UB 169 ：NEXT X
PF 93g IF EF＝1 THEN 996
FP 94 IF（ $\mathrm{E}=\mathrm{LE}$ ）THEN 97！
FF 959 E＝E＋1：IF E＝61 THEN E＝ 1
HC 96 D GOTO 91 g
BA 97 g $F E=L E+1$ ：$L E=N E$ ：IF $F E=6$ 1 THEN $F E=1$
N09日ø $\mathrm{L}=\mathrm{L}+1$ ：日ロT0 9øø
AO 990 NEXT CC：FOR CC＝1 TO 2 ：DH＝HH（CC）：DVEVV（CC）： $L=T A(D H, D V \& 3+C C): I F D$ $H=\varnothing$ THEN 1 ■4ø
CI 1 øøø POSITION DH\＆2－DV＋14， DV＋5：PRINT＂率＂：EOSUB 59ø

OK 1．g2ø FOR $\mathrm{X}=-1$ TO 1：TH＝DH＋ $X: T V=D V-1+(X=1):$ GOSU B 1ø6ø：TV＝DV＋（X＞－1）： GOSUB 1ø6פ：NEXT X
FP 1 ø3 $\quad L=L-1: D H=A H: D V=A V: G 0$ TO 1 øøஜ
CI 1040 NEXT CC：POSITION CH\％ $2-C V+14, C V+5: P R I N T$＂害＂：日0SUB 59の

00156 IF $T H<1$ OR TH＞11 OR TVく1 QR TV＞11 THEN R ETURN
OM 197 IF IF TA（TH，TV童 $3+C C)=$ L－ 1 THEN $A H=T H: A V=T V$
KJ 1 1日日g RETURN
PB1ø9ø IF TH＜1 OR TH＞11 OR TV＜1 OR TV＞11 THEN R ETURN
CI 11 ■ø IF $B D(T H, T V)<\rangle U N+C C$
 THEN RETURN
 NE＋1：IF NE＝61 THEN N $E=1$
$K 0112 \sigma E H(N E)=T H: E V(N E)=T V$
EK 113 Ø $C D=T H: I F P=2$ THEN CD ＝TV
06114 IF CC＝1 AND CD＝1 OR $C C=2$ AND $C D=11$ THEN $E F=1: H H(C C)=T H: V V(C C$ ）$=T V$
KH 1159 RETURN
JF $116 \boldsymbol{F}$ POSITION $5,2 \%$ ：PRINT ＂\｛12 SPACES\}PRESS FIR EBUTTON EB SPACES\} " $^{\prime \prime}$
AR 1165 IF STRIE（ \varnothing ）＜＞\quad THEN 1165
 ＂\｛36 SPACES\}": BOSUB 3 ஏøぁ：日ロT0 12．
㫙2øøø GRAPHICS ஏ：POKE 71． 15：POKE 7末9，$:$ ：POKE 7 ஏ8，45：POKE 54279，96： POKE 559，62：POKE 7 Ø4 ，162：RETURN
DI 3פøø FOR $A=1$ TO 11：FQR $B=$ 1 TO 35：TA $(A, B)=\varnothing: N E$ XT B：NEXT A：FOR A＝1 TO 11：FOR $B=1$ TO 11： $B D(A, B)=\varnothing: \operatorname{NEXT} B: N E X$ TA
KE 301』 RETURN
PL 4． ， $\operatorname{LEN}(T ⿻)+\operatorname{LENETH}(P))=$ NAME（ $(P-1)$ 事 $15+1$ ，（ $\mathrm{P}-$ 1）$\ddagger 15+\operatorname{LENGTH}(P))$
AJ 49ø5 POSITION 2，25：PRINT ＂\｛33 SPACES\}"
FL 491g POSITION 19－LEN（TM§） 12，2あ：PRINT TM RN

＂Beehive＂for Atari 400，800，XL，and XE computers．

Apple II version of＂Beehive．＂
Program 4：Apple II Beehive
Version by Tim Victor，Editorial

Programmer

For instructions on entering this listing，please refer to＂COMPUTE！＇s Guide to Typing in
Programs＂in this issue of COMPUTE！．
（1）1øø LOMEM：16384：DIM BD（11，1 1）， $\mathrm{SH}(5 \boxed{)}, \mathrm{SV}(5 \emptyset), \mathrm{TA}(11,11$ ，2），$E H$（61），EV（61）
6F $11 \emptyset$ FOR $A=768 \mathrm{TO} A+88:$ RE $A D$ D：POKE $A, D:$ NEXT ：RE AD D：IF $D<>-1$ THEN 1 ロ7®
A6 120 FOR $A=35328$ TO $A+7: P$ OKE A， ：NEXT
$3813 \emptyset$ FOR $A=3584 \emptyset$ TO $A+79:$ READ D：POKE A，D：NEXT ： READ D：IF $D<>-1$ THEN 197ロ
44 14ø TEXT ：HOME ：FOR I＝ 1 T 02
3D 150 PRINT＂PLAYER＂I＂＇S NAME： ＂；：INPUT＂＂；A\＄：NN（I）＝ LEFT（A\＄，24）：NEXT
$8716 \emptyset$ POKE 6，Ø：POKE 7，138：IF PEEK（19ø＊256）＜＞ 76 T HEN POKE 54， $0:$ POKE 55，3： CALL 1छg2：GOTD 18छ
B6 $17 \emptyset$ PRINT CHR\＄（4）；＂PR䡒A\＄3øø＂ 59 18ø GOSUB 85ø
FD $19 \emptyset \mathrm{P}=1: \mathrm{UN}=1: \mathrm{NH}=6: \mathrm{NV}=$ $6: C H=6: C V=6:$ GOSUB 93 Ø
7A 2ஏø HTAB 1：VTAB 21：CALL－ 8 68：PRINT NN\＄（P）＂；＂；：S＝ ASC（ RIGHT\＆（NN $(P), 1))$ ： IF S－32（S＞96）＜＞ 83 THEN PRINT＂S＂；
C9 21ø PRINT＂TURN＂：VTAB 2ø：H TAB 1：PRINT CHR象 $196+P$ ）
$9922 \emptyset$ IF PEEK（49249）＞ 127 THE N 29ø
A3 $23 \emptyset$ IF PDL（ \varnothing ）$<9 \emptyset$ THEN NH $=$ NH－1：IF NH＜ 1 THEN N $H=1$
$2324 \varnothing$ IF PDL（ø）>165 THEN NH $=\mathrm{NH}+1: \mathrm{IF} \mathrm{NH}>11$ THEN $\mathrm{NH}=11$

21259 IF PDL（1）＜ $9 \varnothing$ THEN NV $=$ NV－1：IF NV＜ 1 THEN N $V=1$
98266 IF PDL（1）>165 THEN NV $=$ NV＋1：IF NV >11 THEN NV $=11$
EC $27 \varnothing$ IF CH＜＞NH OR CV＜＞NV THEN GOSUB 96ø：CH $=\mathrm{NH}: \mathrm{C}$ $V=N V:$ Bosub 93ø
1E $28 \varnothing$ GOTO $22 \varnothing$
FE $29 \varnothing$ IF $\mathrm{BD}(\mathrm{CH}, \mathrm{CV})$＜$>\boldsymbol{\square}$ THEN P RINT CHR（7）；：BOTO 23ø
CB $3 \varnothing \varnothing \mathrm{BD}(\mathrm{CH}, \mathrm{CV})=\mathrm{UN}$
17310 GOSUB 960：GOSUB 930
8D 326 IF PEEK（49249）＞ 127 THE N 32.
D7 33ø LC $=$ ø：RC $=$ ø：FOR $X=-$ $1 \mathrm{TO} 1: \mathrm{TH}=\mathrm{CH}+\mathrm{X}$
E7 34ø TV $=C V-1+(X=1): 80$ SUB 506
16 $35 \varnothing$ TV $=C V+(x>-1)$ ：BOSU B 5øø
97 36® NEXT
58 37ø IF $P=1$ AND $C H=1$ OR P $=2$ AND CV $=1$ THEN LC $=$ 1
9C 38 Ø IF $P=1$ AND $C H=11$ OR P $=2$ AND CV $=11$ THEN RC $=2$
7E $39 \varnothing$ CC $=$ LC＋RC：IF CC $=3 \mathrm{~T}$ HEN $57 \varnothing$
D1 $4 \varnothing \varnothing$ IF CC $=\varnothing$ THEN $49 \varnothing$
$6841 \varnothing \mathrm{SP}=\varnothing: \mathrm{SH}(\varnothing)=\mathrm{CH}: \mathrm{SV}(\varnothing)=$
cs 420 IF SP $=-1$ THEN $49 \varnothing$
2D $43 \varnothing \mathrm{DH}=\mathrm{SH}(\mathrm{SP}): \mathrm{DV}=\mathrm{SV}(\mathrm{SP}): S$ $P=S P-1$
$3844 \varnothing \mathrm{BD}(\mathrm{DH}, \mathrm{DV})=\mathrm{UN}+\mathrm{CC}$
C9 450 FOR $x=-1$ TO 1：TH $=\mathrm{DH}$ $+\mathrm{X}$
2F 460 TV $=D V-1+(X=1): 60$ sUB 54ø
4C $47 \emptyset$ TV $=D V+(X>-1)$ ：BOSU B 54ø
7148 NEXT ：GOTO 42ø
1D 49ø $P=3-P: U N=5-U N: B O$ TO 206
FE 5øø IF TH＜ 1 OR TH＞ 11 OR T $V<1$ OR TV >11 THEN RET URN
$2 A 51 \varnothing \mathrm{IF} \mathrm{BD}(\mathrm{TH}, \mathrm{TV})=\mathrm{UN}+1 \mathrm{THE}$ $\mathrm{N} L C=1$
$3752 \varnothing \mathrm{IF} \mathrm{BD}(\mathrm{TH}, \mathrm{TV})=\mathrm{UN}+2$ THE $\mathrm{NRC}=2$
IB 530 RETURN
17 54ø IF TH＜ 1 OR TH＞ 11 OR T $V<1$ OR TV＞ 11 THEN RET URN
D5 55 ø IF BD（TH，TV）$=$ UN THEN SP $=S P+1: S H(S P)=T H: S V($ $S P)=T V$
21560 RETURN
85 57ø GOSUB 96ø：VTAB 21：HTAB 1：CALL－86B：PRINT NN（ P）＂WINS！＂：PRINT＂CHECKI NG BOARD＂
1E 58ø FOR CC＝ 1 TO 2：FE＝1：LE $=1: E H(1)=\operatorname{CH}: E V(1)=C$ $V: E F=\varnothing: L=1$
C1 $59 \varnothing \mathrm{CD}=\overline{\mathrm{CH}} \mathrm{C}: \mathrm{IF} \mathrm{P}=2$ THEN CD $=\mathrm{CV}$
CD $6 \varnothing \square$ IF CC $=1$ AND $C D=1$ OR C $C=2$ AND $C D=11$ THEN HH $(C C)=\varnothing:$ вOTO 7øø
$40610 \mathrm{NE}=\mathrm{LE}: \mathrm{E}=\mathrm{FE}$
D5 $62 \varnothing \mathrm{DH}=\mathrm{EH}(E): D V=E V(E)$
D9 630 FOR $\mathrm{x}=-1$ TO $1: \mathrm{TH}=\mathrm{DH}$
$+X: T V=D V-1+(X=1)$
：GOSUB 789：TV＝DV＋ C
＞－1）：GOSUB 789：NEXT
FB 64ø IF EF $=1$ THEN 7øø
$1965 \emptyset$ IF（ $E=$ LE）THEN $68 \varnothing$
$5 E 66 \varnothing E=E+1:$ IF $E=61$ THEN $E=1$
$2267 \varnothing$ GOTO $62 \varnothing$

F1 $68 \emptyset \mathrm{FE}=\mathrm{LE}+1: \mathrm{LE}=\mathrm{NE}: \mathrm{IF} F$ $E=61$ THEN FE $=1$
$5569 \mathrm{~L}=\mathrm{L}+1$ ：воTO $61 \varnothing$
बB 7øø NEXT ：FOR CC＝ 1 TO 2：DH $=H H(C C): D V=V V(C C): L=$ $T A(D H, D V, C C): I F D H=g$ THEN 74%
B6 710 HTAB DH＊ $2-D V+14: V T$ $A B D V+5:$ PRINT CHR（ $1 \varnothing$ 5）；：IF L $=1$ THEN 746
T9 720 FOR $x=-1$ TO 1：TH $=\mathrm{DH}$ $+X: T V=D V-1+(X=1)$ ：BOSUB 756：TV $=$ DV $+(X$ ＞－1）：GOSUB 759：NEXT
JC $73 \varnothing \mathrm{~L}=\mathrm{L}-1: \mathrm{DH}=\mathrm{AH}: \mathrm{DV}=\mathrm{AV}$ ：в0TO 71ø
IC $74 \varnothing$ NEXT ：HTAB CH $2-\mathrm{CV}+$ 14：VTAB CV＋5：PRINT C HR\＄（165）；：BOSUB 1ø1ஏ：E OTO 18ø
AB 750 IF TH＜ 1 OR TH＞ 11 OR T V＜ 1 OR TV＞ 11 THEN RET URN
DD 76 I IF TA $T \mathrm{TH}, \mathrm{TV}, \mathrm{CC})=\mathrm{L}-1 \mathrm{~T}$ HEN AH $=$ TH：AV $=$ TV
$2577 \varnothing$ RETURN
11789 IF TH＜ 1 OR TH＞ 11 OR T $V<1$ OR TV＞ 11 THEN RET URN
9F 79 ø IF BD（TH，TV）＜＞UN＋CC OR TA $\operatorname{TH}, \mathrm{TV}, \mathrm{CC})$＜＞THE N RETURN
$76806 \mathrm{TA}(\mathrm{TH}, \mathrm{TV}, \mathrm{CC})=\mathrm{L}: \mathrm{NE}=\mathrm{NE}$ +1 ：IF NE $=61$ THEN NE＝ 1
$89810 \mathrm{EH}(\mathrm{NE})=\mathrm{TH}: E V(\mathrm{NE})=$ TV
$10826 \mathrm{CD}=\mathrm{TH}:$ IF $\mathrm{P}=2$ THEN CD ＝TV
1183 IF CC $=1$ AND $C D=1$ OR C $C=2$ AND CD $=11$ THEN EF $=1: H H(C C)=T H: V V(C C)=$ TV
26848 RETURN
F9 85g HGR ：HOME ：FOR I＝ 6 TO 16：VTAB I：HTAB 26－I
95 86® FOR $\mathrm{J}=1$ TO 11：PRINT CH R（96）；CHR\＄（32）；：NEXT ：PRINT CHR（96）；
Bf $87 \mathscr{}$ FOR $\mathrm{J}=\varnothing$ TO 1：HTAB $18-$ I＋J：PRINT CHR 199 ＋ $\mathrm{J}+2$（I） I ） 2 INT（I （ 2）））：：HTAB 43－I＋J ：PRINT CHR $(99+J+2$
＊（I＝ 2 ＊INT（I／2）））； ：NEXT
6A 88ø NEXT ：HCOLOR＝4：FOR $I=$ ø TO 4：HPLOT $92+1,38$ TO 14 ＋I，127：HPLOT 255 $+\mathrm{I}, 38 \mathrm{TO} 177+\mathrm{I}, 127 \mathrm{inE}$ XT
$8889 \varnothing$ VTAB 5：HTAB 13：PRINT CH R\＄（161）；
E6 9øø FOR $\mathrm{J}=1$ TO 12：PRINT CH R\＄（1ø3）；CHR（1ø4）；：NE XT ：PRINT CHR（99）；
22910 VTAB 17：HTAB 2：PRINT CH R\＄（1ø2）；
IE 92ø FOR J＝ 1 TO 12：PRINT CH R\＄（164）；CHR（103）；：NE XT ：PRINT CHR（1øた）；：R ETURN
A8 $93 \varnothing$ HCOLOR $=7$
F4 940 GV $=\mathrm{CV} * \mathrm{~B}+32: \mathrm{GH}=92$ +7 （CH＊ $2-\mathrm{CV}$ ）
8F $95 \emptyset$ HPLOT GH，BV TO GH＋4，GV $\mathrm{TO} \mathrm{GH}+7, \mathrm{BV}+4 \mathrm{TO} \mathrm{OH}+$ $4, \mathrm{BV}+7 \mathrm{TOGH}, \mathrm{BV}+7 \mathrm{TO}$ GH－3， $\mathrm{BV}+3$ TO GH，BV：R ETURN
50960 HCOLOR＝4：GOSUB 94ø
$5 A 97 \varnothing$ VTAB CV＋5：HTAB $14+\mathrm{CH}$ ＊ $2-C V: A$＝CHR（ 32 ）
F2 980 IF $B D(C H, C V)>3$ THEN A\＄ $=$ CHR ${ }^{(97}+$（CV＜>2 ） INT（CV／2）））：вотס 1 曰øロ

E2 99 IF IF $\mathrm{BD}(\mathrm{CH}, \mathrm{CV})>\boldsymbol{\emptyset}$ THEN A\＄ $=$ CHR（ 98 －（CV＜＞ 2 ＊ INT（CV／2）））
FD 1 øøø FRINT A\＄；：RETURN
85 1ø1ø VTAB 22：HTAB 1：PRINT＂ PRESS KEY TO QUIT，BUTTO N TO PLAY AGAIN＂
ED $162 \varnothing$ IF PEEK（49249）＞ 127 TH EN 1 ロ5ø
82 103ø IF PEEK（49152）＜ 128 TH EN 1 102g
551 1ø4ø POKE 49168，$\curvearrowleft: ~ N O R M A L ~: ~ E ~$ ND
EA 1 ø5ø HGR ：FOR I＝ 1 TO 11：F OR $J=1$ TO 11：BD（I，J）$=$ ø：TA（I，J，1）$=$ Ø：TA（I，J， 2）$=\emptyset_{2}$ NEXT ：NEXT
E9 $106 \square$ RETURN
${ }^{2 F} 167 \emptyset$ PRINT＂ERROR IN DATA STA TEMENTS＂：END
B2 1 ø8ø DATA $216,129,133,69,134$ ， 7ஏ，132，71，166，7，10
FA 1 ø9ø DATA $1 \varnothing, 176,4,16,62,48,4$ ，16，1，232，232
Fb 11 øø DATA $1 \varnothing, 134,27,24,191,6$ ， 133，26，144，2， 236
${ }^{9} 31119$ DATA $27,165,49,133,8,165$ ，41，41，3，5，238
BA $112 \varnothing$ DATA $133,9,162,8,169, \varnothing, 1$ 77，26，36，5ø，48
$31113 \emptyset$ DATA $2,73,127,164,36,145$ ， $8,236,26,268,2$
C2 1149 DATA 23ø，27，165，9，24， 165 ，4，133，9，2ø2，268
691159 DATA $226,165,69,166,79,1$ 64，71，88，76，246， 253
$65116 \varnothing$ DATA 255
$25117 \varnothing$ DATA－1
CE 1189 DATA $193,182,156,156,156$ ，156，182，193，129，136， 179
©A $119 \varnothing$ DATA 17פ，17ø，17ø，136，128 ，128，148，213，213，213， 213
FC 12øø DATA 148，128，128，128， 192 ，192，192，268，268，148， 138
$44121 \varnothing$ DATA $138,13 \varnothing, 136,128,128$ ，128，128，128，128，128， 128
EA 122Φ DATA $16 \varnothing_{2} 16 \varnothing, 168,168,148$ ，133，133，129，129，129， 128
BB $123 \varnothing$ DATA $128,128,128,17 \varnothing, 17 \varnothing$ ，179，17ø，128，128，128， 128
C7 $124 \varnothing$ DATA $213,213,213,213,128$ ，128，193，162，156，201， 201
251259 DATA $19 \varnothing, 156,136$
$23126 \emptyset$ DATA－1

Program 5：IBM PC／PCjr Beehive

Version by Patrick Parrish，
Programming Supervisor
For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTE！．
HI 1 （6 KEY OFF：DEF SEG＝ø：POKE $1 \varnothing 4$ 7，PEEK（1ø47）OR 64：日OTO 2ø JD $2 \varnothing$ gosub $35 ø$
LC 30 gosub 650
MP 40 REM START
QL $5 \emptyset$ RANDOMIZE TIMER
HB $6 \varnothing$ WINNER＝ø：PREV．PLAYER＝ø：ROW ＝6：CDL＝6：CB＝146：RB＝89
HC $7 \varnothing$ PLAYER＝INT（ 2 ＊RND +1 ）
J 80 LOCATE 12，11：PRINT＂Please wait a moment＂
KJ $9 \mathscr{}$ FOR $J=1$ TO 11：FOR $K=1$ TO 1 1：HIVE\％（J，K）$=$ Ø：NEXT K：NEXT J
HE 1 øø FOR $\mathrm{J}=1$ TO 2ø： $\operatorname{PATHLEN}(\mathrm{J})=$ ø：NEXT J
AA 110 FOR $\mathrm{J}=1$ TO 65：PATH\％（ J ）$=\varnothing$ ： USEDK（J）$=$ Ø： $\operatorname{NODEX}(\mathrm{J})=\emptyset:$ NEX T J
I1 126 GOSUB 7פø：LOCATE 24，1：PRI NT＂Player：＂；

Keyboard controls are used in the IBM PC／PCjr version of＂Beehive．＂

AE 136 REM MAIN
PC 14σ IF PREV．PLAYER＝PLAYER THE N 17ヵ
EP $15 \varnothing$ LOCATE 24，B：PRINT＂
＂；：LOCATE 24，8：P RINT PLAYER\＄（PLAYER）；：IF
PLAYER＝1 THEN PUT（270， 13 g），EYES1，PSET ELSE PUT（2 7ø，13（），EYES2，PSET
NH $16 \mathscr{}$ PREV．PLAYER＝PLAYER
KN $17 \varnothing$ PUT（CB，RB），BEE
DK 189 DEF SEG＝ø：POKE 1 1ø5ø，PEEK（ 1052）
OK $19 \varnothing$ A\＄＝RIGHT\＄（INKEY\＄，1）：IF LE $N(A \$)=\emptyset$ THEN 19ø
PO $2 ø \varnothing$ PUT（CB，RB），BEE：OCOL＝COL： OROW＝ROW
H $21 \varnothing$ IF $A \$=C H R \(77) THEN ROW＝R $\mathrm{OW}+1$ ： $\mathrm{COL}=\mathrm{COL}+1$ ：IF ROW >11 OR COL >11 THEN ROW＝OROW：C OL＝OCOL ELSE RB＝RB＋15：CB＝ CB＋9
CB 226 IF A $\$=C H R \(75) THEN ROW＝R OW－1：COL $=$ COL－1：IF ROW 10 R COL＜1 THEN ROW＝DROW：COL ＝OCOL ELSE RB＝RB－15：CB＝CB -9
CH 23 （IF A\＄＝CHR\＄（72）THEN ROW＝R OW－1－（ROW＝1）：IF ROW ＞OROW THEN CB＝CB＋9：RB＝RB－15
HD $24 \varnothing$ IF A $=$ CHR $\$(8 \varnothing)$ THEN ROW＝R $0 W+1+(R O W=11):$ IF $R O W<>O R D$ W THEN $\mathrm{CB}=\mathrm{CB}-9: \mathrm{RB}=\mathrm{RB}+15$
MK $25 \varnothing$ PUT（CB，RB），BEE
PA $26 \varnothing$ IF A $\$="$＂＇THEN GOSUB $165 \varnothing$ ELSE $18 \emptyset$
BB $27 \varnothing$ IF USED THEN PUT（CB，RB）， BEE：BOTO 140
O6 28 OR OROW＝ROW：OCOL＝COL：GOSUB 1 $11 \varnothing$
M6 $29 \varnothing$ IF POSSIBLE＝1 THEN GOSUB 129ø
IH $3 \varnothing \varnothing$ IF WINNER $=1$ THEN $188 \varnothing$
PD 31ø LOCATE 24，1：PRINT＂Player ：＂；
CC $32 \varnothing$ IF PLAYER $=1$ THEN PLAYER $=2$ ELSE PLAYER＝1
BC $33 \varnothing$ ROW＝OROW：COL＝OCOL：GOTO 14 ■
10340 REM INIT
AC 35 © CLS： $\operatorname{COLR}(1)=2: \operatorname{COLR}(2)=3$
EA $36 \emptyset$ DIM ROW．INC\％（ 6 ），COL．INC\％（ b）
DH $37 \varnothing$ FOR $J=1$ TO 6：READ ROW．INC \％（J），COL．INC\％（J）：NEXT J
NK $38 \varnothing$ DATA $-1,-1, \varnothing, 1,1,1,1, \varnothing, \varnothing$ ， $-1,-1,-1$
6P 396 DIM HIVE\％$(11,11)$
EA 4 øø DIM USED\％（65），NODE\％（65），P ATH\％（65），PATHLEN（20）
HK $41 \varnothing$ SCREEN 1：COLOR 1，2：DEFINT B
IN $42 \varnothing$ DIM HEXA（1øø），BALL1（1øø）， BALL2（1øø），EYES1（1øஜ），EYE S2（1øø）
NH $43 \varnothing \operatorname{LINE}(3 \varnothing, 1 \varnothing)-(21,15), 3: \operatorname{LI}$

NE－STEP（ $\varnothing, 1 \varnothing$ ），3：LINE－STE P $(9,5), 3$
PB 44ø LINE－STEP $(9,-5)$ ，3：LINE－S TEP（ $\varnothing,-1 \varnothing), 3:$ LINE－STEP（ $-9,-5), 3$
WI $45 \varnothing \operatorname{LINE}(3 \varnothing, 11)-(22,16), 2: \operatorname{LI}$ NE－STEP（ $(\boxed{0}, 9), 2:$ LINE－STEP $(8,4), 2$
JB 46 ■ LINE－STEP $(7,-4), 6:$ LINE－S TEP $(\varnothing,-1 \varnothing), 6:$ LINE－STEP $($ $-7,-4), 6$
FP $47 \varnothing$ GET $(21,1 \varnothing)-(39,3 \varnothing)$ ，HEXA
HE $48 \varnothing$ CLS：CIRCLE $(3 \varnothing, 2 \varnothing), 5$ ，COLR （1）：PAINT $(3 \varnothing, 2 \varnothing)$, COLR（1） ：GET $(25,16)-(35,24)$, BALL 1
H6 $49 \varnothing$ GOSUB 58ø：GET $(23,12)-(37$ ，25），EYES1
BJ $5 \varnothing \varnothing$ CLS：CIRCLE $(3 \varnothing, 2 \varnothing), 5$, COLR （2）：PAINT $(3 \varnothing, 29), \operatorname{COLR}(2)$ ：BET $(25,16)-(35,24)$ ，BALL 2
MC 51ø GOSUB 58ø：GET $(23,12)-(37$ ，25），EYES2：CLS
OA 526 READ $X, Y: E=(4+$ INT $((x+7) / 8$ ） \＆$^{(1) / 2: D I M ~ B E E(E): B E E(\varnothing)=~}$ X： $\operatorname{BEE}(1)=Y: F O R \quad I=2$ TO E：R EAD A\＄：BEE（I）＝VAL（＂\＆H＂＋A\＄ ）：NEXT
JL $53 \emptyset$ DATA $26,8,828, A, 5 A A, 8 \boxed{2 A}$ ， 95AA，BøAA
HK 54ø DATA 952A，AA，8øø2，Aø， $15 \emptyset \varnothing$ ，$\varnothing, \varnothing, \varnothing$
NP $55 \varnothing$ DATA 5øø，ø，ø
ML． $56 \emptyset$ RETURN
BM 57ø REM PARTS
KF 58 © CIRCLE $(26,19), 2,1$ ：CIRCLE （34，19），2， 1
EF 59 PAINT $(26,19), 1:$ PAINT（ 34 ，19）， 1
IE $6 \varnothing \operatorname{PSET}(29,17)$ ：LINE－STEP（ -$2.5,-5):$ LINE－STEP（ $-2.5,3$ ）
OC $61 \varnothing$ PSET（ 31,17 ）：LINE－STEP（ 2 ． $5,-5$ ）：LINE－STEP $(2.5,3)$
AA $62 \varnothing$ CIRCLE $(3 \varnothing, 24), 1,1:$ PAINT $(3 \varnothing, 24), 1$
Mg $63 \varnothing$ RETURN
DE $64 \emptyset$ REM GETNAMES
6B $65 \varnothing$ LOCATE 12，16：PRINT＂BeeHi ve＂：PUT（84，84），EYES1：PUT （192，86），EYES2
HC 66® FOR I＝1 TO 2：LOCATE 19＋I＊ 2－1，6：PRINT＂Player＂I＂＇s name＂；
H1 676 INPUT PLAYER\＄（I）：PLAYER\＄（ I）$=$ LEFT \＄（PLAYER\＄（I），15）： N EXT I
IH 689 CLS：RETURN
JC 69ø REM DRAWSCREEN
LD 7øø CLS： $\mathrm{Y}=7$
MF 710 FOR R＝1 TO 11
CD $720 \mathrm{X}=9$ ロ－R\＆9
EC $73 \varnothing$ FOR $\mathrm{C}=1$ TO 11
$10740 \mathrm{X}=\mathrm{X}+18$
BM $75 \mathscr{\square}$ PUT（ X, Y ），HEXA，OR
KH 760 NEXT C
HC 77ø $\mathrm{Y}=\mathrm{Y}+15$
DH 78 n NEXT R
6L 79 PSET $(297,12), 2:$ GOSUB $93 \varnothing$ ：LINE－STEP（ $(1,1 \varnothing), 2$
FH 8øø PSET（298，12），2：BOSUB 930 ：LINE－STEP（ $\varnothing, 1 \varnothing$ ）， 2
66 81ø PSET $(299,12), 2$ ：GOSUB $93 \varnothing$ ：LINE－STEP（ $\varnothing, 1 \varnothing$ ）， 2
NJ 820 PSET $(96,12), 2: G 0 S U B$ 930： LINE－STEP（ $\varnothing, 1 \varnothing$ ）， 2
NH $83 \varnothing$ PSET（97，12），2：GOSUB 930： LINE－STEP（ $\varnothing, 1 \varnothing$ ）， 2
OF $84 \varnothing \operatorname{PSET}(98,12), 2$ ：GOSUB 93ø： LINE－STEP（ $\varnothing, 1 \varnothing$ ）， 2
CB $85 \varnothing$ Y1 $=-5$ ：Y2＝5： $\operatorname{PSET}(99,9), 3:$ BOSUB 99．
ML 869 PSET（99，1ø），3：GOSUB 99ø
CK 87ø PSET $(1 \varnothing \varnothing, 11), 3:$ GOSUB $99 \varnothing$

CO $88 \emptyset$ Y1＝5：Y2＝－5：PSET $(9,173), 3$ ：BOSUB 990
A6 89ø PSET $(9,174), 3:$ GOSUB 99ø
AE $9 \varnothing \varnothing$ PSET $(9,175)$ ， 3 ：GOSUB $99 \varnothing$
MF 910 RETURN
80926 REM UPNDOWN
HC $93 \varnothing$ FOR $\mathrm{J}=1$ TO $1 \varnothing$
HC $94 \varnothing$ LINE－STEP（ $\varnothing, 1 \varnothing$ ），COLR（1）
C6 $95 \emptyset$ LINE－STEP $(-9,5)$ ，COLR（1）
OF 960 NEXT J
NB $97 \varnothing$ RETURN
PO $98 \varnothing$ REM ACROSS
6F 996 FOR $\mathrm{J}=1$ TO 11
KA 1 øøø LINE－STEP（ $9, Y 1$ ），COLR（2）
내 $101 \varnothing$ LINE－STEP（ $9, Y 2$ ），COLR（2）
6A 1 Ø2ø NEXT J
IE 1030 RETURN
PM 1g4ø REM SET PIECE
NB $165 \varnothing$ USED $=\varnothing$
LF 1 1g6 $\sqrt{\text { IF HIVE\％（ROW，COL })<>\varnothing \text { THE }}$ N USED＝1：RETURN
LI $107 \varnothing$ HIVE\％（ROW，COL）＝PLAYER
FA 1 ø8ø PUT（CB，RB），BEE：IF PLAYE $\mathrm{R}=1$ THEN PUT（CB $+1, \mathrm{RB}-1$ ）， BALLI ELSE PUT（CB $+1, \mathrm{RB}-1$ ），BALL2
JE $199 \varnothing$ RETURN
8J $11 ø \mathscr{}$ REM CHECKLINE
BI 1110 POSSIBLE＝1
CJ $112 \varnothing$ IF PLAYER＝1 THEN $12 ø \varnothing$
EL $113 \varnothing$ FOR ROW＝1 TO 6：FF＝ø：FB＝ø
If 1140 FOR COL＝1 TO 11
6J $115 \varnothing$ IF HIVE\％（ROW，COL）＝PLAYER THEN $F F=1$
JC $116 \varnothing$ IF HIVE\％（12－ROW，COL）＝PLA YER THEN FB＝1
LE $117 \varnothing$ NEXT COL
HM $118 \emptyset$ IF $F F=\varnothing$ OR $F B=\varnothing$ THEN POS SIBLE＝Ø：ROW＝6
PE $119 \varnothing$ NEXT ROW：RETURN
CK $120 \emptyset$ FOR COL＝1 TO 6： $\mathrm{FF}=\emptyset: \mathrm{FB}=\varnothing$
JP 1210 FOR ROW＝1 TO 11
FC 122σ IF HIVE\％（ROW，COL）＝PLAYER THEN FF＝1
6P $123 \varnothing$ IF HIVE\％（ROW，12－COL）$=$ PLA YER THEN FB＝1
OB 1249 NEXT ROW
HD 125 I IF $F F=\emptyset$ OR $F B=\emptyset$ THEN POS SIBLE＝g：COL＝6
LD 1260 NEXT COL
JE $127 \varnothing$ RETURN
EB 1289 REM CHECKWINNER
OA $129 \varnothing$ LOCATE 24，1：PRINT＂Check ing．．．
＂；
ED $13 \varnothing \varnothing$ USED．CNTR＝ø：WINNER＝ø：NOD E．CNTR＝ø： NODE． TOTAL＝ø：$C 0$ UNTER＝ø
L0 1310 IF PLAYER＝1 THEN $144 \varnothing$
II 1320 FOR COL＝1 TO 11：ROW＝1
JF $133 \emptyset$ IF HIVE\％（ROW，COL ）＜＞PLAYE R THEN 141Φ
NO $134 \varnothing$ NODEROW＝ROW：NODECOL＝COL： BOSUB $156 \varnothing$
6 D 1359 IF USED．FLAG $=1$ THEN 1410
E日 $136 \varnothing$ NODE． TOTAL $=1$ ：PATH． TOTAL $=$ 1：COUNTER＝1
OL $137 \varnothing$ PATH\％（1）$=1$ ■ø＊NODEROW + NOD ECOL
ML 1389 gasub 1659
FJ 1399 IF WINNER $=1$ THEN COL $=11$
JP $149 \varnothing$ REM SKIP2
LI $141 \varnothing$ NEXT COL
JJ 1420 RETURN
EL 1430 REM CHECK1
FI 1440 FOR ROW＝1 TO 11：COL $=1$
BB $145 \emptyset$ IF HIVE\％（ROW，COL）＜＞PLAYE R THEN 153Φ
M6 1469 NODEROW＝ROW：NODECOL＝COL： gosub 156ø
HO $147 \varnothing$ IF USED．$F L A B=1$ THEN $153 \varnothing$
FO 148 Ø NODE ．TOTAL＝1：PATH． TOTAL＝ 1：COUNTER＝1
 ECOL
KH 15 gø GOSUB $165 ø$

COMMODORI PLUS／4E cOMPLETE COMPUTER SYSTEM

 AT BELOW DEALER COST！

 AT BELOW DEALER COST！}

NOTE：Monitor not
available．The Plus $/ 4^{\mathrm{TM}}$

Ideal for home or business！Perfect for programmers！

Factory new！

Factory warranted by Commodore ${ }^{\circledR}$ ．Built－in

 software for word processing，data process－ ing，spreadsheets and 128 color graphics！Commodore ${ }^{\text {® }}$ designed this Plus $/ 4^{\text {Tu }}$ specifically for program－ mers and small businesses！And then they made it VERY EASY to learn and use for novices．Popular business software is available for a variety of purposes．For programmers，this machine has easy－to－use powerful commands and 60 K of usable memory．Can hook up as many as four disk drives．
Team up the computer with our compatible units of famous brand，factory reconditioned and warranted DISK DRIVE and DOT MATRIX PRINTER！Sorry，we can＇t print the brand name of the disk drive and printer．But phone us Toll－Free and we can tell you．With Disk Drive for data storage and Printer for＂hard copies＂，you＇ll have a complete system．．．at low liquidation prices．Order TODAY！

combination you desire．		
PLUS／4 COMPUTER	s299．0	
SK DRIVE	s269．0	\＄149
H－1402．383．1．005 Snp，hand：： 5	s20	\＄119
ip，hand：$\$ 2$		

Additional Features of

 COMMODORE PLUS／4Data base of 999 records．Com puter holds 99 lines of text befor puterhoids 99 lines of text before drive．Excellent terminal for use with modem． 128 colors available for graphics．Split screen and windowing capabilities Compat ible with all Commodore hard ware except joystick and dataset NOT compatible with C64 software．

DISK DRIVE

Intelligent，high－speed．External $51 / 4^{\prime \prime}$ floppy diskette recorder． 2 K RAM，16KROM．Maximum stor age of 170 K formatted data： 35 tracks．Uses single sided，single density disk．Serial interface． Second serial port for chaining second drive or printer．Data transfer rate of 400 bytes per second．

DOT MATRIX

PRINTER

Bi－directional 6×7 dot matrix impact printer． 60 characters per second．Has upper and lower case letters，numerals and sym bols．All PET graphic characters Standard friction feed．Maximum of 80 columns width，dot address－ able．CBM，ASCII character codes．Original plus maximum of $85^{\prime \prime}$ Size $13^{\prime \prime} \mathrm{W} \times 8^{\prime \prime} \mathrm{D} \times 31 / 4^{\prime \prime} \mathrm{H}$ 8.5 ．Size： 13
Weight： $61 / 2 \mathrm{lbs}$ ．

COMPLETE SYSTEM WITH 20 FREE FLOPPY DISKS

 Total Original List ．．．\＄827．90$\begin{aligned} & \text { Liquidation } \\ & \text { Priced At Only ．．．} \\ & \text { Item H－1402－5035－019 Ship，hand：} \$ 19.00\end{aligned}$

Credit card customers can order by phone， 24 hours a day，VISA Mortorcora amERICAN
Toll－Free：1－800－328－0609
Sales outside contiguous 48 states are subject to special conditions．Please call or write to inquire．

[^3]```
```

ZIP

```
```

}

KB $151 \varnothing$ IF WINNER $=1$ THEN ROW＝11
JJ 1520 REM SKIP1
OE $153 \emptyset$ NEXT ROW
JB $154 \varnothing$ RETURN
CC 1559 REM USEDLOOKUP
QK $156 \varnothing$ USED．FLAG＝ø：SEARCH＝1øø $\% \mathrm{~N}$ ODEROW＋NODECOL
NO $157 \emptyset$ LK＝ø：IF USED．CNTR $=\varnothing$ THEN $162 \emptyset$
FC 1589 FOR LK＝1 TO USED．CNTR
KL $159 \varnothing$ IF SEARCH＝USED\％（LK）THEN USED．$F L A B=1$ ：LK＝USED．CNT R
AA 16 Øø NEXT LK
OP $161 \sigma$ REM SKIPSEARCH
OA $162 \emptyset$ IF USED．FLAG $=\emptyset$ THEN USED ．CNTR $=$ USED．CNTR +1 ：USED\％（ USED．CNTR）$=$ SEARCH
JA $163 \varnothing$ RETURN
無 $164 \varnothing$ REM CHECKPATH
MO $165 \emptyset$ NODE．CNTR $=\emptyset$
PK 1669 FOR NC＝1 TO 6
AD $167 \varnothing$ NODEROW＝NODEROW＋ROW．INC\％ （NC）：NODECOL $=$ NODECOL + COL ．INC\％（NC）
PI 1689 IF NODEROW 1 OR NODEROW 1 11 OR NODECOL＜1 OR NODEC ㅁㄴ $>11$ THEN 1759
JL 1690 IF HIVE\％（NODEROW，NODECOL ）＜＞PLAYER THEN $175 \%$
OA 17の GOSUB 156\％：IF USED．FLAB＝ 1 THEN $175 \varnothing$
801710 NODE．CNTR 10 NODE．CNTR +1
OH $172 \boldsymbol{1}$ NODE．TOTAL $=$ NODE．TOTAL＋1： NODEX（NODE．TOTAL）$=1$ Eg zNO DEROW＋NODECOL
JA $173 \boldsymbol{1}$ IF（PLAYER＝2 AND NODEROW ＝11）DR（PLAYER＝1 AND NO DECOL＝11）THEN WINNER＝1： PATH．TOTAL＝PATH．TOTAL＋1： PATH\％（PATH．TOTAL）$=1$ G\＃\＄NO DEROW＋NODECOL： $\mathrm{NC}=6$
KP 174ø REM SKIPNODE
肘 1759 NEXT NC
JA 1769 IF WINNER $=1$ THEN RETURN
0 177ø IF NODE．CNTR＝ø AND NODE． TOTAL $=\varnothing$ THEN RETURN
HX 1789 IF NODE．CNTR $=\oiint$ THEN PATH －TOTAL＝PATH．TOTAL－PATHLE N（COUNTER）：PATHLEN（COUNT ER）$=$ Ø： COUNTER $=$ COUNTER－1
AG 1796 IF NODE．CNTR $>1$ THEN COUN TER＝COUNTER＋NODE．CNTR－1
KP 18\％Ø NODEROW＝INT（NODEX（NODE．T OTAL）／1 1 （1）
EM $181 \varnothing$ NODECOL＝NODEX（NODE．TOTAL ）－1 Gg kNODEROW
ED 1826 PATH．TOTAL＝PATH．TOTAL＋1
6A $183 \%$ PATHLEN（COUNTER）＝PATHLEN （CDUNTER）+1
6A 184ø PATHZ（PATH．TOTAL）＝NODEX（ NODE．TOTAL）
LL $185 \emptyset$ NODE．TOTAL＝NODE．TOTAL－1
B8 1869 GOTO 165g
os $187 \varnothing$ REM DRAWPATH
IF $188 \%$ LOCATE 1，1：PRINT＂THE WI NNER：＂：：PRINT PLAYER（P LAYER）：
JH $189 \varnothing$ FOR $\mathrm{J}=1$ TO PATH．TOTAL
If $196 \%$ ROW＝INT（PATHZ（J）／1 16 ）：CO L＝PATH\％（J）－ 1 GEb ROW：CB＝CO L （15－1
FI 1910 IF PLAYER＝1 THEN PUT（CB＋ 1，RB－1），BALL1，XOR：PUT（C B，RB－3），EYES1，DR ELSE PU $T(C B+1, R B-1), B A L L 2, X O R: P$ UT（CB，RB－3），EYES2，OR
HC 1920 NEXT J
IK 1938 REM BOABAIN
JH 1948 LOCATE 24，1：PRINT＂Want to play again（Y／N）？＂；
NE $195 \emptyset$ A $=$ INKEY ：IF Asく＞＂Y＂AND A费く＞＂N＂THEN 1950
LO 196』 IF As＝＂N＂THEN BCREEN $\varnothing$ ， ©，\＃：WIDTH Bø：END ELSE CL 8：BOTD 5ø

# Analyze! <br> For Amiga 

David Powell

Analyze!, unlike some other spreadsheets for the Amiga, is a true Amiga software product, making full use of windows, drop-down menus, icons, color, and the Amiga mouse. You insert the Analyze! disk when the Amiga asks for the Workbench. When you select the disk icon, a window appears containing icons for an Empty Drawer, a Trashcan, and the Analyze! program itself. By using the Empty Drawer and Trashcan, you can organize a spreadsheet into directories and subdirectories, and "clean house" easily when the disk gets too full.

When you select the spreadsheet icon, Analyze! opens a dialog window through which you can partition off memory for your spreadsheet. The default partition is 128 K . If you enter a larger value (one that's reasonable for your configuration, of course), the computer reserves that amount of memory, then displays the spreadsheet screen itself. The memory partitioning scheme lets you use most, but not quite all, of the system's free memory. On my 512 K system, there were 400 K bytes of memory available after Analyze! was loaded. However, I couldn't partition off more than about 300 K .

## Compression Yields Extra Room

I was curious to see how big a spreadsheet I could cram into the 128 K default partition. Theoretically, at one byte per cell, a square 128 K spreadsheet would have about 362 cells per side (or one could just fit a one-column spreadsheet 128 K cells long.) However, Analyze! employs the sparse-matrix technique to permit much bigger spreadsheets than would otherwise be possible. Only cells holding text, data, or formulae are actually stored in memory. Empty cells, such as spaces added to improve readability, are not.

So, 128 K of memory holds 128 K of actual data, text, and formulae-no matter how large the spreadsheet's ge-
ography grows. For example, a onecolumn, 128 K spreadsheet could actually be 256 K cells long if data cells alternated with empty cells. This permits you to arrange the spreadsheet in an attractive manner without worrying about wasted memory.

## Intuitive Operation

From within the spreadsheet screen, you reveal Analyze!'s main menu bar by holding down the right mouse button. The menu bar contains five menus: Project, Range, Worksheet, Print, and Recalculate. While holding the right button down, move the mouse pointer to one of these options; a menu of its commands drops into view. You select a command by sliding the mouse cursor to it and releasing the mouse button. In short, Analyze! handles menus and other program options in the usual Amiga fashion, which will seem natural to Amiga owners. It's easy to take these intuitive, easy-to-use features for granted until you try operating an Amiga program that lacks them. (It's still possible to buy an Amiga program that doesn't look or act like Amiga software at all. Amiga programs that ignore the mouse and visual icons, operating chiefly through keyboard controls, are usually quick translations of software written for an older machine such as the IBM PC.)

Commands within the Project menu display a Worksheet's current formatting parameters and allow you to load, store, delete, and update spreadsheets stored on internal or external disk drives. (Spreadsheets can be stored on disks used by other programs, because Analyze! only looks for files with the extension .SHT.)

The Range menu offers commands that name, format, label, copy, move, erase, and write-protect individual cells or groups of cells. People building spreadsheets will use these functions frequently, and it's nice to have them all in one place.

## Moving And Copying Cells

An example will show you how easy the Range command-and Amiga's mouse-make the task of moving or copying a block of cells to a new loca-
tion. This requires only three steps:

1. Select the Range option's Move (or Copy) command. A prompt appears on the screen asking for the range of cells you want to move.
2. Position the mouse cursor at the upper-left cell of this range, press the left mouse button, and drag the cursor to the lower-right cell. Release the mouse button; a prompt appears on the screen asking for the move destination.
3 . Move the mouse pointer to the upperleft cell of this destination; then click the left button. Analyze! repositions the entire block of cells so that its upper-left corner coincides with the destination cell.

I like the fact that such operations can be done without touching the keyboard. However, you can't use the mouse to define ranges that go beyond the visible screen. So Analyze! also offers simple keyboard procedures for selecting ranges and jumping to different places in a spreadsheet.

When you copy cells to a new location, Analyze! can copy formulae in the cells in absolute form (with row and column references transferred verbatim), in relative form (with references adjusted for the new location), or in a combination of both. (However, all cell references are kept verbatim when you transfer formulae to a new location with a Move command.)

## A Variety Of Formats

The main menu's Worksheet option includes commands that insert or delete blank rows and columns, erase a spreadsheet, enter titles, format all cells, set column widths, justify labels, and write-protect the entire spreadsheet. Of special interest is the Worksheet option's Format command, which differs from the Range option's Format command in scope. Worksheet formatting applies to every cell in the entire sheet, not to a specific block of cells.

Through Range-Format and Work-sheet-Format, you can display data in the following formats:

- fixed-point decimal
- scientific (exponential) notation
- dollars and cents


## - percentages

- dates
- with commas (for instance, 2,123 instead of 2123)

Negative numbers are automatically displayed in red to distinguish them from positive numbers, which appear black on the paper-white background of the spreadsheet.

Another Worksheet-Format option (labeled as $+/-$ ) can convert positive and negative integers into crude bar charts. This option is designed to work only with integers (whole numbers), so it doesn't work as well with noninteger values.

Following Worksheet in the main menu is the Print command, which enables you to format a spreadsheet and send it to a printer. (However, you must still use Preferences to select the correct settings for your particular printer.) The Print feature allows you to set top-ofform, define page lengths, transmit linefeeds, print part or all of a spreadsheet, set all four page margins, define page headers and footers, pick rows or columns to use as page borders, and print calculated formula results or the formulae themselves. If you don't want to print directly to a printer, you may send the same output to an ASCII disk file for further formatting by a word processing program.

The last option in the main menu (Recalculate) lets you set your spreadsheet's calculation order. You can make recalculations automatic (after each cell change) or manual (as requested). The calculation order can be top-to-bottom or right-to-left. Or, it can be natural, in which case the system performs multiple passes to pull together complex data relationships the way a person would.

This offers more calculation flexibility than many spreadsheets I've seen, but there's even more. Analyze! also lets you create a spreadsheet that runs through as many as 50 iterations, or recalculations, before displaying its results. As a former mathematician, I value this feature highly.

## Special Functions

Advanced users will also welcome the program's library of special functions. These include, but are not limited to, the following:

- comparisons and logical operators
- trigonometric functions
- statistical averages, standard deviations, and variances
- table lookups within a spreadsheet
- logarithms and exponentials
- present/future values of cash flows
- loan and annuity payments
- maxima/minima of values in a block
- modulus arithmetic
- random numbers

Analyze! is an effective, efficient spreadsheet, with very few apparent bugs. However, I do have some small complaints. It does not, for instance, offer a macro capability for writing spreadsheet-template programs (power users, take note). It could also handle formula input better. Some spreadsheets use a parser that looks at what you type and decides on its own whether you have entered data, text, or a formula. Analyze!, on the other hand, makes you begin every formula with a plus sign ( + ). This is a bit awkward.

The Analyze! user manual, like others of its type, suffers from too much text and too few illustrations. You should follow along with the computer as you read the manual. However, it does include very useful summaries of all system menus and special functions. However, since Analyze! is so well integrated with the Amiga's Workbench metaphor, you can learn to use the program almost without opening the manual.
Analyze!
Micro Systems Software
4301-18 Oak Circle
Boca Raton, FL 33431
$\$ 99.95$

## The American Challenge: A Sailing Simulation

Tony Roberts

Requirements: Apple II-series computer with at least 64 K RAM. IBM PC or PCjr with 128 K RAM and DOS 2.0 or above. Graphics card required for use with PC. Commodore 64 (available early fall).

The pleasures of sailboat racing are effectively recreated in The American Challenge: A Sailing Simulation from Mindscape and Tom Snyder Productions. Fashioned after the America's Cup races, the goal of the game is to win all the preliminary heats. This, in turn, gains you the right to challenge the Australians in an attempt to regain the Cup for the United States. Should you manage to beat Australia in the program's Cup Race, you become eligible for a contest that could win you a trip to Australia to watch the 1987 America's Cup races in person (the contest closes on October 30, 1986).

## Taking The Challenge

To play the game, you choose a course;
the computer displays an overhead view of the course and shows you a suggested route around it. Sailing against a boat piloted by the computer, you jockey for position and attempt to cross the starting line just as the horn sounds.

The computer sails a pretty good race. It's possible, but not easy, to beat it, and there's little room for error if you hope to win. You control your boat's direction, sail trim, and centerboard position. At any time during the race, you can press the space bar to return to the overhead view, which shows the paths


The American Challenge: A Sailing Simulation recreates the challenge of competing in the America's Cup races.
both boats have taken. Press the space bar again and the race resumes. Other controls allow you to look right and left off your board and to zoom in on the competition or zoom back for a wider angle view.

Seven of the eight courses are based on the courses used in actual sailboat races. Each race becomes progressively more difficult as the currents become stronger and your compass is taken away.

You're not to sail the Cup Race until your boat has beaten the computer at all seven of the preliminary races. Even for someone familiar with sailboat racing, it will take quite a while to become that proficient.

Racing against the computer is a challenge, but also becomes predictable. The computer maintains a record of the best time for each course and sails a course the same way each time until it is beaten.

## Two-Computer Version

One way to eliminate this predictability is to choose the two-player option. However, this choice requires that you have two computers connected by modem or a null modem cable, and both computers must be running the program. With this option, you can send messages to the other captain. This
communication becomes necessary to settle disputes regarding collisions or possible rules violations.

Sailing against another human adds to the enjoyment of the game, but it also slows things down a bit. If you are using 300 bit-per-second modems, the races take from five to twenty minutes each.

One other option allows you to race a high-speed motorboat around the courses. This can be fun, but don't expect to take on the Australians with anything but wind power.

While explaining the program, the manual also imparts quite a bit of information about sailing itself, including sailing basics, racing strategy, and right-of-way rules. The package even includes a 45 r.p.m. phono record with a sailing tutorial for novices.
The American Challenge: A Sailing Simulation
Mindscape
3444 Dundee Road
Northbrook, IL 60062
Apple II series/IBM flippy version
\$39.95
Commodore version (available early fall) $\$ 29.95$

# Vorpal Utility Kit 

N. Randall

Requirements: Commodore 1541 disk drive.

It has never been any secret that a major problem with a Commodore 64 system is the speed of the disk drive. It's slow. Several companies, understanding the impatience of the regular 1541 user, have released products that speed it up. One of the most popular has been Epyx's Fast Load cartridge, which many owners now swear they could scarcely do without. Following the success of Fast Load, Epyx has now released the Vorpal Utility Kit. For anyone who needs to manipulate files, copy disks, or make use of extremely fast loads and saves, the Vorpal package could quickly become indispensable.

The Vorpal Utility Kit is actually several utilities in one. With VFiler, you can load and save user-created programs at about 25 times the normal 1541 speed. Note that this does not apply to commercial software; the Fast Load cartridge takes care of those. What the Vorpal kit does is add a fifth file type to the 64's normal four (program, sequential, user, and relative). These files make use of the kit's greatly increased speed.

As a nonprogrammer, I must confess to a thorough disinterest in these
super-fast files, simply because I never create programs that could use them. They can be used, though, with any BASIC program (and some ML programs) which you receive from user groups or type in from a book or magazine, in addition to those you create yourself. Epyx makes it clear on the package that the high speed applies only to user-created software and BASIC programs.

## 20-Second Formatting

More exciting, for nonprogrammers at least, are the disk and file utilities. With the Vorpal Utility Kit, you can format a disk in 20 seconds rather than the usual two minutes. And you can copy an entire disk-including formatting-in less than three minutes. For those with two or more disk drives, the software allows you to renumber both the origin and the destination drives as needed.

File commands include Delete, Undelete, Protect, Unprotect, and Rename, in addition to the following special functions. You can change a file from one type to another. For example, if your old word processor stores documents as USR files, and you buy a new word processor that stores them as PRG files, the Vorpal Utility Kit lets you change them in seconds, without the tedium of reading a file into memory
and writing it back to disk in the new format. You can also copy files and convert them at the same time.

The final utility in the Vorpal Utility Kit is a hardware check. The program will check your 1541's head alignment and drive speed, and will even attempt to correct a minor alignment problem. Impressively, all the commands on the Vorpal kit respond to the touch of a single key, and the manual, although certainly complete, is practically superfluous. Even if you use only the 20second formatting or the three-minute disk copying, the Vorpal Utility Kit is one package you will not want to pass up.
Vorpal Utility Kit
Epyx
1043 Kiel Court
Sunnyvale, CA 94089
$\$ 34.95$

## Lords Of Conquest

Todd Heimarck
Lords of Conquest from Electronic Arts is a lot like the popular board game Risk, and in some ways, it's even better.

## What are the 5 ways a human being can react to a problem?



Read DIANETICS by L. Ron Hubbard, America's \#1 self-improvement bestseller. Over $71 / 2$ million copies sold. 26 weeks on the New York Times bestseller list in hardback. Now available wherever paperbacks are sold or call 1-800-367-8788.


Copyright ${ }^{\circ} 1986$ Bridge Publications, Inc. DIANEICS ${ }^{\text {* }}$ is a trademark and service mark owned by RTC and is used with is permission.

# All the exciting, entertaining, and educational games, applications, and utilities from COMPUTE! magazine are now available on disk 

## for your Commodore, Atari, Apple, or IBM personal computer.

## The COMPUTE! Disk

A new COMPUTE! Disk is published every month, rotating among the four major machines covered by COMPUTE!: Commodore 64 and 128; Atari 400/800, XL, and XE; Apple II-series; and IBM PC, PCjr, and compatibles.

Every three months you can receive a disk with all the quality programs from the previous three issues of COMPUTE! that will run on your brand of computer.

Like the popular COMPUTE!'s Gazette Disk, the COMPUTE! Disk is ready-to-load and error-free. It saves you valuable hours of typing time and eliminates typing errors.

With a subscription, you will receive one disk every three months for a total of four disks a year-for only $\$ 39.95$. That saves you \$20 a year off the singleissue cost.

Or you can order individual issues of the Disk for $\$ 12.95$ a disk plus $\$ 2.00$ shipping and handling.

Remember to specify your type of computer when ordering the COMPUTE! Disk. You'll find more information about this month's COMPUTE! Disk in this issue. (Note: You'll need the corresponding issues of COMPUTE! magazine to use the Disk since the disk will have no documentation.)

For fastest service when ordering a subscription to the COMPUTE! Disk, call toll free 1-800-247-5470 (in Iowa 1-800-532-1272).

For more details or to order individual issues of the COMPUTE! Disk, call our Customer Service Department toll free at 1-800-346-6767 (in New York 212-887-8525).

Please allow 4-6 weeks after placing an order for your first disk to arrive.

## King Of The World

A game of Risk begins with a world map divided into a number of countries owned by various players. By shaking the dice, you win and lose territories. Some countries are isolated (Eastern Australia, Japan, and Argentina), while others are busy crossroads (the Middle East and the Ukraine, to name a couple). The ultimate goal is to build up your armies and win enough battles to conquer the world.

In Lords of Conquest, the basic idea is to take over the world, but you win by building or capturing a certain number of cities-from three to six. Some of your territories produce raw materials such as gold, iron, coal, timber, and horses. When you've acquired certain combinations of materials, you can buy weapons or place a new city on the map.

Before the game starts, you split up the available territories. It's important to choose countries that contain coal mines, gold mines, forests, and the like, so you can start building up your stockpile of raw materials. At the same time, you should pick areas that are near each other, because your defenses will be stronger if you have friendly countries as neighbors.

## Up To Four Players

You can play one-on-one against the computer, or you can involve as many as four human players. The disk contains 20 maps, including Europe, Africa, North America, the Middle East, South America, Japan, Australia, and the Mediterranean. If you're not satisfied with the built-in maps, you can ask the computer to generate a random battlefield from parameters you supply. You can also create your own map. It takes some time to build a map, but you can fine-tune it until it looks just the way you want. These new maps can be saved to disk for use in later games.

Select a level of play: beginner, intermediate, advanced, or expert. In the beginner level, there are only pastures (a source of horses) and gold mines; this level is suitable for playing with children. More challenging is the expert level, featuring horses, gold, timber, coal, and iron.

Should you choose to play the computer, you must also select a level of difficulty. Level 1 gives you a big advantage (four extra territories) and level 9 skews the game in favor of the computer.

After you divvy up the territory, the game begins. Each round has several phases. During development, you can use your gold and other commodities to create weapons, boats, or cities. Production comes next; more raw mate-
rials are added to your inventory. You then have a chance to move your stockpile to a new country. The stockpile is like an imperial treasury; if another player captures it, he or she will get all your gold, iron, coal, and timber. Finally, there's a combat phase during which each player can send forces against the other players. You're limited to two attacks per round.

To create a city, you have two choices: Spend one unit of iron, coal, timber, and gold, or use four gold units. In the advanced and expert games you can build a boat (a naval force) with three timber units, or buy one with three units of gold. A boat can carry a horse and a weapon, which makes it a valuable offensive force.

## Offense Or Defense?

There's a lot to be said for building cities. The ultimate goal is to own three or more cities, so each one you build brings you one step closer to winning. Cities also increase production in the neighboring countries. If you place a city next to a gold mine, its output will double from one unit to two.

But cities are fairly expensive. And if you spend all your resources on cities while your opponents build up their horses, weapons, and boats, you may eventually lose the game. Your opponent will likely attack and conquer your cities. Ownership of a certain number of cities is the goal. It doesn't matter whether you build the cities or capture them.

Each game of Lords of Conquest has a definite rhythm. In the first couple of rounds, weak and isolated countries are overrun by invaders, especially if the country produces a valuable commodity. As the territories coalesce in the middle rounds, powerful armies build up along the borders between empires. When boats first appear, the complexion of the game changes. Suddenly, any coastal country is vulnerable to an attack from the sea. It's difficult to defend a coastal country from marauding Vikings.

The mechanics of the game are fairly simple; there are four commodities, three weapons, and the cities. But Lords of Conquest requires a good sense of strategy. On your way to the goal of building cities, you have to watch your resources and try to keep them from your opponents. If you own no country with a gold mine, you may have to develop a short-term strategy to capture one. You should spend your money wisely, occasionally forgoing a new weapon to save up for a city.

Geography and distribution of resources are also important factors. The strategy that works best on one map might fail miserably on another. Boats

## WORDS TO THE WISE from DAVIDSON.

When you are choosing educational software, the word is Davidson. It Works! Thousands of teachers and parents have made the Davidson choice . . . the wise choice in performance-proven educational software.

## NEW!

## GRAMMAR GREMILINS

Students of all ages learn grammar basics. Over 700 sentences reinforce grammar rules. Students practice their skills in the animated, fast-moving game. Color graphics, editor and more, all make learning fun! Apple ${ }^{T M}$ II family. \$49.95. (IBM ${ }^{\mathrm{TM}}$ available $8 / 86$.)
SPELL IT! Learn how to spell 1000 of the most commonly misspelled words. Animation, a lively arcade game and add-your-own words editor too! Apple ${ }^{\text {TM }}$ II family, Atari, ${ }^{\mathrm{TM}}$ Commodore ${ }^{\mathrm{TM}} 64 / 128$, IBM. ${ }^{\mathrm{mM}}$ \$49.95.
WORD ATTACK! Discover the meanings and usages of 675 new words. Includes a fun, fast-action arcade game and add-your-own words editor. Apple ${ }^{\text {TM }}$ II family, Macintosh, ${ }^{\text {TM }}$ Atari, ${ }^{\text {TM }}$
Commodore ${ }^{\mathrm{TM}} 64 / 128$, IBM: ${ }^{\text {TM }} \$ 49.95$.
More award winning educational software from Davidson:

## MATH BLASTER! ALGE-BLASTER! SPEED READER II CLASSMATE HOMEWORKERE

## (800) 556-6141

In Calif. (213) 534-4070


Address
City
State $\qquad$ Zip

## GREAT PRODUCTS FOR YOUR COMMODORE

promenade $\mathrm{C} 1^{\text {tm }}$

The Eprom Programmer. Thoughtfully designed, carefully constructed, the promenade $\mathrm{C}_{1}{ }^{\text {™ }}$ is respected around the world for quality and value. The original software controlled programmer does away with personality modules and switches. Intelligent programming capability can cut programming time by 95\%! With Disk Software ............. still just $\$ 99.50$

## CARTRIDGE MATERIALS:

## CAPTURE ${ }^{\text {™ }}$

Take control of your ' 64 or ' $128^{\circ}$ with this easy to use cartridge. Lets you make a back-up disk of your memory-resident software. Your program is then fully accessible to you and your program can be re-booted from your disk 3-5 times faster. Or make an autostarting cartridge using the promenade C1 and a CPR cartridge kit. Its magic!
CAPTURE ${ }^{\text {Tu }}$ is a bargain at 39.95

PCC2 - Two 2732 (4K) or 2764 (8K) eproms. For '64 or '128 in 64 mode .................................. 4.95
PCC4 - Four sockets for 2764,27128 or 27256 (32K) eproms. Bank switching. . . . . . . . . . . . . . . . . . . . . . . . . 17.95
PCC8 - Like the PCC4 but twice the capacity. For multiple programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.95
PRB4 - Four sockets, eprom \& battery backed RAM combination ...................................... 24.95
PTM2 - Basic 128 mode cartridge board. Two 2764 or 27128 eproms .................................. $5.95 \dagger$
PTM4 - Four sockets, 27128 \& 27256 eproms. 128 mode bank switcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $19.95 \dagger$
PCCH2 - Plastic case for above cartridges (except PCC8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.25
Eproms - Always in stock at competitive prices.
$\dagger$ available June '86.
*when in 64 mode.

## EPROM ERASERS:

Datarase - Hobbyist eprom eraser, 2 at a time, 3 to 10 minutes ......................................... 34.95
PE14 - Industrial quality eraser, 7 to 9 at a time . . ........................................................ 79.95
Starter Set - CAPTURE ${ }^{\text {u }}$, promenade C1 and one CPR3 kit................................................. 149.95
Deluxe Set - CAPTURE ${ }^{\text {w, }}$, promenade C1, Datarase and two CPR3 kits .................................. 199.95
SHIPPING \& HANDLING: USA - UPS SURFACE $\$ 3.00$
FOREIGN (AIR MAIL ONLY) $\$ 13.00$


JASON-RANHEIM
1805 INDUSTRIAL DRIVE
AUBURN, CA USA 95603
are valuable when islands are plentiful, but they're relatively unimportant when the map contains mostly land.

## The Role Of Diplomacy

The computer plays a tough game; at the higher levels you won't often beat it. And when you play with other people, diplomacy plays a role: "I won't attack you if you won't attack me." The multiplayer game also allows for alliances. When more than two players are near a battle, the uninvolved players can send forces to the attacker or defender, or they can remain neutral. You also have a chance to trade commod-ities-a gold and an iron for two coal mines, for example.

If you're a Risk player, you'll enjoy Lords of Conquest, and if you get tired of conquering one world, you can easily find or build another. A second useful feature is the one-player game: When you want to play, but can't round up a group of opponents, you can test the computer's abilities. The only negative comments I've heard concern the graphics. There's nothing particularly wrong with them; they're just simple. The countries, for example, are made up of colored squares. This doesn't af-
fect the playability of the game, so it's a minor criticism.

Lords of Conquest
Electronic Arts
1820 Gateway Drive
San Mateo, CA 94404
Commodore version $\$ 32.95$
Apple II and Atari 8-bit versions soon
to be released; no prices available.

## ©

## Attention Programmers

COMPUTEI magazine is currently looking for quality articles on Commodore, Atari, Apple, and IBM computers (including the Commodore Amiga and Atari ST). If you have an interesting home application, educational program, programming utility, or game, submit it to COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Or write for a copy of our "Writer's Guidelines."

This Publication is available in Microform.


University Microfilms International


## 300 North Zeeb Road

Dept. P.R.
Ann Arbor, Mi. 48106


# Jacket Lister 

## Gregory Jackmond

The more disks you have, the more you'll enjoy this novel utility. It prints a disk jacket with an alphabetized directory of all the programs on a disk. The original version of "Jacket Lister" runs on the Commodore 64 and 128 (in 64 mode). We've added new versions for the IBM PC/PCjr, Apple II series (DOS 3.3 and ProDOS), and Atari 400, 800, XL, and XE. A printer is required. The Atari version requires at least 32 K of memory.

How many times have you picked up a disk, only to realize that you can't remember which programs are on it? You can always get a disk directory in the usual way-by putting the disk in the drive and listing the directory on the screen-but that's slow and tedious when you're looking for a specific program.
"Jacket Lister" is a unique, time-saving solution to this perennial problem: It not only allows you to create a personalized jacket out of ordinary paper, but also lists an alphabetized directory on the jacket itself. In a glance, you can see which programs are on each of your disks. A date is also included so that you can tell whether the listing is obsolete. The jacket listing may include as many as 88 filenames, using the front and back of the jacket. (Some computers can store more than 88 files on a disk, but the jacket does not have room for more than that number.)



Type in the appropriate pro－ gram for your computer，then save a copy before you run it．The vari－ able NS $\$$ in line 420 （NAME\＄in line 15 for the Atari version）defines your personalized title for the jack－ et，which you can change to what－ ever you like．You may substitute any characters in the definition of NS $\$$ ，but don＇t make the string longer than 26 characters．

Jacket Lister is a self－prompting program，so you don＇t need elabo－ rate instructions．Simply run the program，insert the disk that you want to catalog，then follow the screen prompts to create a custom jacket for that disk．When the jacket has finished printing，all that＇s left to do is to cut the cover to size，fold it along the printed fold lines，and glue the flaps．

## Commodore 64 Version

Commodore Jacket Lister（Program 1）runs on a Commodore 64 or Commodore 128 in 64 mode．The program is written for standard Commodore printers（and for non－ Commodore printers that can emu－ late the standard Commodore graphics characters），but can easily be modified to work on other print－ ers as well．Simply change the graphics symbols to dashes（ - ）or exclamation points（！）in lines 510， 1100，and 1240．（Horizontal lines are formed from the dashes，and vertical lines from the exclamation points．）The program also uses characters 17 and 145 as control codes to set the printer for lower－ case／uppercase or uppercase／gra－ phics printing，respectively．You may need to substitute other con－ trol codes for these in lines 100 and 110.

If you have a Commodore Plus／4，16，PET／CBM，or VIC－20 with expansion memory，you should be able to make Jacket Lister work with only slight modifica－ tions．The POKEs that change the screen color and create sound ef－ fects are specific to the Commodore 64；if you delete these statements， the program should run on nearly any Commodore computer．

## Atari Version

The Atari version（Program 2）runs on any Atari $400,800, \mathrm{XL}$ ，or XE computer with at least 32 K of mem－ ory，and should work with any
standard－width printer．No special instructions are required；simply follow the directions on the screen．

## Apple II Version

With the Apple II version of Jacket Lister，all output is in uppercase．If you are using DOS 3．3，type in Program 3 as listed．For ProDOS， start with Program 3，but omit lines 80－200 and add the lines listed as Program 4．In either case，you may have to modify line 450 to suit your particular printer configuration．

## IBM PC／PCjr Version

In this version of Jacket Lister（Pro－ gram 5），all output is in uppercase．

## Program 1：Commodore Jacket Lister

For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEI．

GD $1 \emptyset$ REM＊＊＊＊＊＊PROGRAM SET UP ＊＊＊＊＊＊
RH $2 \sigma$ DIMTB\＄（144）：DIMAB\＄（144）
KR $3 \emptyset$ PRINT＂$\{$ CLR $\}$ E7ヨ＂：POKE5328 Ø，14：POKE53281，6
PS $4 \emptyset$ PRINT＂$\{4$ DOWN $\}\{9$ RIGHT $\}$ \｛RVS\} \{WHT \} WHAT IS TODAY ＇S DATE：＂：PRINT：
EK 50 PRINT＂ 55 RIGHT $\}\{R V S\}$ \｛WHT\} ENTER MO/DY/YR THE N＜RETURN＞\｛OFF\}"
MD 6Ø PRINT＂\｛2 DOWN \}"; SPC(11); ：INPUT DTS
QA $7 \emptyset$ PRINT＂$\{C L R\}\{4$ DOWN $\}$ \｛9 RIGHT \} \{RVS \} \{CYN \} UPPE R AND LOWER CASE ？＂：PRI NT：
RC $8 \varnothing$ PRINT＂$\{1 \varnothing$ RIGHT \} \{RVS \} \｛CYN \} \{WHT\}Y\{CYN\} OR \｛WHT \}N\{CYN\} THEN <RETURN $>\{\text { OFF }\}^{\prime \prime}$
CB 9ø PRINT＂\｛2 DOWN \}"; SPC(11); ：INPUT CCS
PR 1øØ IF CC\＄＝＂Y＂THEN CM\＄＝CHR \＄（17）：REM LOWER CASE
RC 110 IF CCS $\langle>$＂Y＂THEN CMS＝CH R\＄（145）：REM UPPER CASE
QF 120 PRINT＂\｛CLR\}E7习": POKE532 80，14：POKE53281，6
SX $13 \emptyset$ PRINT＂$\{4$ DOWN \} \{RIGHT \} \｛YEL\}WHICH DISK DRIVE D O YOU WANT TO LIST？＂
JC 140 PRINT＂$\{2$ DOWN $\} "$ ；SPC（11） ；：INPUT DI
MG $15 \emptyset$ REM＊＊＊＊＊READ DISK MEN U＊＊＊＊＊＊
XF $16 \emptyset$ PRINT＂$\{C L R\}\{C Y N\} ":$ POKE5 328ø，2：POKE53281，Ø
HK 170 PRINT＂$\{6$ DOWN $\}\{3$ RIGHT $\}$ \｛RVS\}\{2 SPACES\}READING \｛2 SPACES\}DATA : PLEASE STANDBY\｛2 SPACES\}"
ED $18 \emptyset$ GOSUB163ø
JD $19 \emptyset$ OPEN8，DI，Ø，＂\＄ O＂$^{2}$ ：FORC＝1T 08：GET\＃8，AS：NEXT：C＝1：DN \＄＝＂＂：FORC＝1TO16
JA 2øØ GET\＃8，AS：DNS＝DN\＄＋AS：NEX T：GET\＃8，AS：GET\＃8，AS：DN\＄ ＝DN\＄＋＂$\{2 \text { SPACES }\}^{\prime \prime}:$ GET\＃8 ，AS

ED $21 \varnothing$ DN $=\mathrm{DN} \$+\mathrm{A}$ ：$:$ GET\＃ $8, \mathrm{~A}$ ：$: \mathrm{DN} \$$ $=\mathrm{DN} \$+\mathrm{A} \$:$ GET\＃8，AS：GET\＃8， A\＄
GE 220 GET\＃8，AS：GET\＃8，AS：C＝1
FH 23Ø FORA＝1TO4：GET\＃8，AS ：NEXT ：PN
PM $24 \varnothing$ GET\＃8，AS：IFST＜＞${ }^{2}$ THEN31 $\varnothing$
FP 25 IFAS＝＂＂THEN31 $\varnothing$
MC $26 \emptyset$ IFASC（AS）＜＞34THEN $24 \emptyset$
BA 270 GET\＃8，AS：IFASC（AS）＜＞34T HENPN $\$=$ PN $\$+A \$:$ GOTO27Ø
FA $28 \emptyset \mathrm{GET} \# 8, \mathrm{~A}: \operatorname{IFASC}(\mathrm{A} \$)=32 \mathrm{TH}$ EN28Ø
RR 290 TY\＄＝TY\＄＋AS：GET\＃8，AS：IFA \＄＜＞＂＂THEN29の
RD $3 \varnothing \varnothing$ TB\＄（C）$=$ PN $\$: C=C+1: I F S T=\varnothing$ THEN23Ø
XC 310 CLOSE8
GH $32 \emptyset$ IF C＞88 THEN GOSUB1 $31 \emptyset$
JE $33 \emptyset$ REM＊＊＊ALPHABETIZE LIS TING＊＊＊
CA $34 \emptyset$ PRINT＂\｛CLR\}\{CYN\}":POKE5 328ø，4：POKE53281，ø
QX 35ø PRINT＂$\{6$ DOWN $\}$ \｛3 RIGHT $\}$ \｛RVS\} $\{2$ SPACES $\}$ SORTING $\{2$ SPACES $\}$ DATA ：PLEASE STANDBY $\{2$ SPACES $\}$
JS 360 GOSUB157ø
HA 370 ZS＝＂ZZZZZZZZZZZZZZZZ＂：E $=1$
GS 380 FORA $=1 \mathrm{TOC}-1: \mathrm{C} \$=\mathrm{ZS}: \mathrm{FORB}=$ 1TOC－1：IFC\＄＜TB\＄（B）THEN4 ØØ
JB $390 \mathrm{C} \$=\mathrm{TB} \$(\mathrm{~B}): \mathrm{D}=\mathrm{B}$
QF 4øø NEXT：AB\＄（E）＝C\＄：E＝E＋1：TB $\$(D)=Z \$: N E X T$
BM $41 \emptyset$ REM\｛2 SPACES $\}$＊＊＊＊JACKE T NAME $=$ NS $\$ * * *$
MA $42 \emptyset$ NS $\$=" * * * * *\{3$ SPACES $\}$ REF ERENCE $\{3$ SPACES $\} * * * * * "$
SJ $43 \emptyset$ REM＊＊＊＊＊PRINT ALPHA L IST＊＊＊＊＊
AA $44 \varnothing$ PRINT＂\｛CLR\}": POKE 5328ø ， 5 ：POKE53281，ø
GR 450 PRINT＂$\{6$ DOWN \} \{ 2 RIGHT \} \｛RVS\}\{2 SPACES\}PRINTING JACKET ：PLEASE STANDB Y\｛2 SPACES ${ }^{\prime \prime}$
MA $46 \emptyset$ GOSUB151Ø
EP $47 \emptyset \quad \mathrm{DD}=\emptyset_{2}=\mathrm{CD}=\operatorname{INT}(\mathrm{C} / 2):$ OPEN1， 4
JS $48 \emptyset$ FOR CR＝1TO2
FS $49 \varnothing$ PRINT\＃1，CHRS（1 $\varnothing$ ）：REM LI NEFEED
XA 5ØØ NEXT CR
JE 51ø TLS＝＂KOヨ＂
FS $52 \emptyset$ PRINT\＃1，TAB（2）；：FOR TL＝ 1 TO 72：PRINT\＃1，TL\＄；：NE XTTL：PRINT\＃1，＂CUT＂
KC 530 GOSUB1130：GOSUB114 4
RE $54 \emptyset$ GOSUB113 3
DC 55 Ø PRINT\＃1，CHRS（14）；NS\＄；CH R\＄（15）；：REM 14 DOUBLE W IDTH 15 SINGLE
JG 560 GOSUB114ø
PD $57 \emptyset$ FOR LE＝1TO2
RG $58 \emptyset$ GOSUB113Ø：GOSUB114
AD 590 NEXT LE
MK 6øø GOSUBll3
FX 610 PRINT\＃1，TAB（15）；CMS；DN\＄ ；SPC（5）；DTS；：GOSUB1140： GOSUB116Ø
CJ 62 IF C＞ 32 THEN79 7
QA $63 \emptyset$ REM＊＊PRINT ：＜ 32 PRO GRAMS＊＊
HC $64 \emptyset$ FORDD＝1TOCD：GOSUB113 $\varnothing$
JE 650 PRINT\＃1，CHRS（16）；CHR\＄（5 Ø）；CHRS（48）；CM\＄；AB\＄（DD） ；：REM PRINT HEAD POSITI ON
KS $66 \emptyset$ PRINT\＃1，CHRS（16）；CHRS（5 2）；CHRS（53）；CMS ；AB\＄（CD＋

# Two Exeiting New Books 



## from COMPUTE

# Electronic Computer Projects 

for Commodore and Atari Personal Computers

## COMPUTE!'s First Book of the Commodore 128

A spectacular collection of articles and programs exclusively for the Commodore 128 in 128 mode. Edited
The editors at COMPUTE! Publications have collected some of the best games, programs, and tutorials for the Commodore 128 from COMPUTE! and COMPUTE!'s Gazette, plus some never-beforepublished articles and programs. Learn how to create windows, program sound, and make disks autoload. You'll even find a map of all the important memory locations. There's something for every 128 user. All programs run in 128 mode. A disk is available which includes programs in the book, \$12.95. \$14.95 ISBN 0-87455-059-9

## Electronic Computer Projects

Learn how to build all kinds of new devices to interface with your computer from inexpensive, available parts.
For the Commodore 64, 128, VIC, and any eight-bit Atari personal computer.
Soori Sivakumaran
This introduction to digital electronics and computer interfacing is the easy way to learn how computers interact with the outside world. Using a Commodore 64,128, VIC, or any eight-bit Atari computer and Electronic Computer Projects, you'll be guided through the steps to building a joystick, light pen, game paddle, and numerous other devices. And since each project is independent from the others, you can choose only those projects that interest you. All the projects can be built at home and most require fewer than half a dozen parts.
\$9.95 ISBN 0-87455-052-1

Visit your local book or computer store for these new titles. Or order directly from COMPUTE! Books. Call toll-free 800-346-6767 (in NY 212-887-8525) or write COMPUTE! Books, P.O, Box 5038, F.D.R. Station, New York, NY 10150.
Please include $\$ 2.00$ per book ( $\$ 5.00$ air mail) for shipping and handling. NC residents add 4.5 percent sales tax. Allow $4-6$ weeks from receipt of order for delivery.

DD）：：GOSUB114ø
MC 670 REM PRINT HEAD POSITION AE 680 NEXT DD
KB 690 GOSUB1130：GOSUB1140：DD＝ DD＋1
FR $7 \varnothing 0$ IF DD＞17 THEN72 0
JF 710 GOTO69ø
XB $72 \varnothing$ GOSUBl22ø
QF 730 FOR SL＝1TO29
FK 740 GOSUB12ø ：GOSUB1210
AE 750 NEXT SL
FE 760 GOSUB124ø
HG 77ø GOSUBl26ø
SE 780 REM＊＊PRINT ：＞ 32 PRO GRAMS＊＊
BB 79ø FORDD＝1TO16：GOSUB113Ø
RX 8 øø PRINT\＃1，CHRS（16）；CHR\＄（5 Ø）；CHRS（48）；CMS；AB\＄（DD） ；：REM PRINT HEAD POSITI ON
QM $81 \varnothing$ PRINT\＃1，CHR\＄（16）；CHR\＄（5 2）； $\mathrm{CHRS}(53)$ ； CM ； AB （ $\mathrm{DD}+$ 16）；：GOSUB114ø
KF 820 REM PRINT HEAD POSITION
CR 830 NEXT DD
BB 84ø GOSUBl13Ø：GOSUB114ø
GJ 85ø GOSUB122ø
HG 860 GOSUBl200：GOSUB121ø
FM $87 \varnothing \mathrm{CX}=(\mathrm{C}-33) / 2: \mathrm{CZ}=\mathrm{CX}+32$
QD 880 FORDD＝33TOCZ：GOSUBl2øø
BE 890 PRINT\＃1，CHRS（16）；CHRS（5 Ø）；CHR\＄（48）；CMS ；AB\＄（DD） ；：REM PRINT HEAD POSITI ON
JQ 9ø0 PRINT\＃1，CHRS（16）；CHR\＄（5 2）；CHRS（48）；CMS；AB\＄（DD＋ CX）；：GOSUB121ø
AD 910 REM PRINT HEAD POSITION GC 920 NEXT DD
XH 93ø GOSUB12øø：GOSUB1210：DD＝ DD＋1
JB 940 IF DD＞6ø THEN960
FD 950 GOTO930
AG 960 GOSUBl240：GOSUB1260
RG 970 REM＊＊＊CLOSING REMARKS
PA 980 PRINT＂\｛CLR\}\{CYN\}":POKE5 3280，9：POKE53281，б
CC 990 PRINT＂\｛6 DOWN\}\{2 RIGHT \} \｛RVS\}\{2 SPACES \}ALPHABET IZED DISK COVER COMPLET E\｛2 SPACES\}"
MH 1 1øøø GOSUB1460
QC $101 \varnothing$ PRINT＂\｛5 DOWN $\}$
\｛2 RIGHT\}\{2 SPACES\}DO \｛SPACE\}YOU WANT ANOTHE R DISK COVER ：＂
RX $1 \varnothing 2 \varnothing$ INPUT＂$\{6$ RIGHT $\}$＇$Y$＇OR \｛SPACE\}'N' THEN <RETUR $\mathrm{N}>{ }^{\prime \prime}$ ；AG\＄
FC 1ø3ø FOR DD＝øTO144：ABS（DD）＝ ＂＂：NEXTDD
BX $104 \varnothing$ IF $A G \$<>" Y " T H E N 1 \varnothing 7 \varnothing$
EP 1050 PRINT＂\｛CLR\}E7ヨ": POKE53 280，14：POKE53281，6：GOT $07 \varnothing$
FP $106 \varnothing$ REM＊＊TERMINATE PROGR AM＊＊
HC $107 \varnothing$ PRINT＂\｛CLR\}\{CYN\}": POKE 53280，7：POKE53281，11
BP $108 \varnothing$ PRINT＂$\{8$ DOWN $\}$
\｛8 RIGHT\} $\{$ WHT $\}$ \｛RVS \} \｛2 SPACES\}PROGRAM TERM INATED ！\｛2 SPACES\}"
FJ $109 \emptyset$ GOSUB1410
EJ lløø FOR WT＝1TO 1øøø：NEXT W T
GE $111 \varnothing$ PRINT＂\｛CLR\}K7习": POKE53 280，14：POKE53281，6：END
RS $112 \emptyset$ REM＊＊＊DISK JACKET OU TLINE＊＊＊
 $\{7$ SPACES\}EG习*";:RETUR N
EM 1140 PRINT\＃1，CHRS（16）；CHRS（ $54)$ ；CHRS（52）；＂＊太Mヨ
\｛7 SPACES\}EL彐": RETURN
KE $115 \emptyset$ REM PRINT HEAD POSITIO N
JB 1160 PRINT\＃1，＂\｛2 SPACES\}EJヨ \｛7 SPACES\}EG习*";
HQ 117ø PRINT\＃1，TAB（15）；＂ を2ø Uヌ＂；
JS 1180 PRINT\＃1，CHR\＄（16）；CHR\＄（ 54 ）；CHR\＄（52）；＂＊EMヨ （7 SPACES\}EL彐": RETURN
FB 1190 REM PRINT HEAD POSITIO N
MP $12 \varnothing \varnothing$ PRINT\＃1，＂$\{1 \varnothing$ SPACES $\}$ EJJ＂；：RETURN：
CS 1210 PRINT\＃1，CHRS（16）；CHR\＄（ 54）；CHRS（53）；＂ELヨ＂：RET URN：REM PRINT HEAD POS ITION
GS 1220 CL\＄＝＂C＂
BD 1230 PRINT $\# 1, \mathrm{TAB}(2)$ ；：FOR CL ＝1 TO 72：PRINT\＃1，CLS；： NEXTCL：PRINT\＃1，＂FOLD＂ ：RETURN
XR 1240 LLS＝＂EUヨ＂
DS 1250 PRINT\＃1，TAB（10）；：FOR L L＝1 TO 56：PRINT\＃1，LL\＄； ：NEXTLL：PRINT\＃1，＂CUT＂ ：RETURN
MR 1260 PRINT\＃l：FOR CR＝1TO3
KM 127 PRINT\＃1，CHR\＄（10）
DG 1280 NEXT CR：CLOSEl：GOTO98ø
DE 1290 REM＊＊MENU TOO LONG T ○ LIST＊＊
FS 1306 REM＊＊CAN ONLY LIST 8 8 PGMS＊＊
HR 1310 PRINT＂\｛CLR\}\{CYN\}":POKE 53280，1：POKE53281，7
BJ $132 \varnothing$ PRINT＂\｛5 DOWN $\}$＂；SPC（1ø ）；＂\｛CYN\}TOO\{2 SPACES\}M ANY $\{2$ SPACES $\}$ PROGRAMS＂
CA 1330 PRINT $\operatorname{SPC}(10) ; "\{C Y N\} T$ O LIST ON JACKET＂
DR $134 \varnothing$ GOSUB146ø
JG 1350 PRINT＂\｛3 DOWN \}"; SPC(8) ；＂\｛RED\}PRINT\{2 SPACES\} THOSE\｛2 SPACES \}THAT \｛2 SPACES \}FIT?"
MC 1360 PRINT SPC（9）；＂（\｛RVS\}Y \｛OFF\} OR \{RVS\}N\{OFF\} T HEN＜RETURN＞）
HE 1376 PRINT＂\｛2 DOWN $\}$＂；SPC（15 ）；：INPUT AW\＄
FX 1380 IF AWS＜＞＂$Y$＂THEN $1 \varnothing 7 \varnothing$
XR 1390 C＝88：RETURN
SG $140 \varnothing$ REM\｛2 SPACES\}**** SOUN D SUBROUTINES＊＊＊
SA 141 R REM\｛2 SPACES \} \#\#\#\#\# BUZ ZER \＃\＃\＃\＃\＃
KR $142 \emptyset$ POKES， $24 \varnothing$
GF $1430 \mathrm{H}=54273: \mathrm{S}=54278$ ： $\mathrm{W}=5427$ $6: V=54296$
BK 144Ø POKEV，15：POKEH，5：POKEW ， 33 ：FORT＝ØTO5øø：NEXT
CP $145 \emptyset$ FORT＝H－1TOV：POKET，$\varnothing: N E$ XT：RETURN
QM 1460 REM\｛ 2 SPACES $\} \# \# \# \#$ DON G \＃\＃\＃\＃\＃
MG $1470 \mathrm{H}=54273: \mathrm{S}=54278$ ：W＝5427 $6: V=54296$
QG 148ø POKES－1，9：POKEH，36：POK ES $+9,16:$ POKEV， $15:$ FORU $=$ 1TO4：POKEW， $21:$ FORT＝ØTO 5øø
EM 1490 NEXT：POKEW，20：NEXT
KJ 1500 FORT＝H－1 TOV：POKET， $0: N E$ XT：RETURN

XF $151 \varnothing$ REM\｛2 SPACES $\} \# \# \# \# \#$ DIN
G \＃\＃\＃\＃\＃
MJ 152の H＝54273：S＝54278：W＝5427 $6: V=54296$
XQ 1530 FOR AA $=1$ TO3
CE 1540 POKEV，15：POKEH，40：POKE S－1，9：POKEW， 17 ：FORT＝1T 05øø：NEXTT
AK 1550 FORT＝H－1TOV：POKET，$\varnothing: N E$ XT
SX 1560 NEXTAA：RETURN
JD $157 \emptyset$ REM\｛2 SPACES\}\#\#\#\#\# BIN G－BONG \＃\＃\＃\＃\＃
JX 158 $\mathrm{H}=54273: \mathrm{S}=54278: \mathrm{W}=5427$ $6: V=54296$
DE 1590 POKEV，15：POKES－1，88：PO KES， 89 ：POKEW－1， $1:$ FORU $=$ 1TO6：POKEW，65
XR 16øø POKEH，20：FORT＝ØTO12ø：N EXT
BG $161 \varnothing$ POKEW， $64:$ POKEH， $50:$ POKE W， 65 ：FORT＝ØTO1 $2 \emptyset:$ NEXT： POKEW， $64:$ NEXT
KA 1620 FORT＝H－1TOV：POKET，$\varnothing: N E$ XT：RETURN
JD $163 \emptyset$ REM $\{2$ SPACES $\} \# \# \# \#$ BEL LS \＃\＃\＃\＃\＃
XS 1640 V＝54296：W＝54276：POKEW＋ 1，96
BQ $165 \emptyset$ POKEW＋1，9
DM 1660 POKEV， $15: F O R L=1 T O 5: P O K$ EW， 21
PX 167Ø POKEW－3，99＊RND（1）：POKE W＋11，99＊RND（1）
XK $168 \emptyset$ FORT＝1TO6Øø：NEXT：POKEW ， $2 \varnothing$ ：NEXT
XD 1690 FORI＝W－4TOV：POKEI，Ø：NE XT：RETURN

## Program 2：Jacket Lister for Atari 400，800，XL，and XE

Version by Kevin Mykytyn，Editorial Programmer
For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In
Programs＂in this issue of COMPUTEI．
DC $1 \varnothing$ DIM DATE $\$(12)$ ，UPPER $\$(1$ ），K\＄（1），DN\＄（1Ø），DIR\＄（1 7＊B8），T\＄（2ø），NAME\＄（26） ，SPC\＄（8ø）
FB 15 FOR $A=1$ TO 8ø：SPC\＄（A，A ）＝＂＂：NEXT A：NAME\＄＝＂＊＊ ＊＊＊REFERENCE DISK＊＊＊ ＊＊＂：REM THIS MUST BE 2 6 CHARACTERS
JM $2 \emptyset$ OPEN \＃4，4，Ø，＂K：＂
KD 1 Øø GRAPHICS $\emptyset:$ POKE $71 \varnothing, 1$ 5：POKE 7ø9，Ø：POKE 712 ， 55
FO $11 \varnothing$ PQSITION $1 \varnothing, 6:$ PRINT＂ WEIGT IS TDDEYTS DATE ■＂
Jg $12 \varnothing$ POSITION 6，8：PRINT＂ GNHER MOKDYZYR MHIEN マ RETMRID＂
PH 130 POSITION 15， $13:$ INPUT DATE\＄：PRINT＂${ }^{\text {\｛CLEAR\} }}$＂ ：POKE 752，1
6A $16 \emptyset$ PRINT＂\｛CLEAR\}": POSIT ION 2，5：PRINT＂WHICH DISK DRIVE DO YOU WAN T TO LIST＂：POSITION 1 7，7：PRINT＂（1－9）＂
FE $17 \varnothing$ GOSUB 1 øøø：IF $K \$<" 1 "$ DR K\＄＞＂9＂THEN $17 \boldsymbol{\square}$
HO 18ø DN\＄＝＂D1：＊．＊＂：DN\＄（2，2） ＝K\＄
JP $19 \emptyset$ PRINT＂\｛CLEAR\}":POSIT ION 3，8：PRINT＂EFEIE

IDETY＂：POKE 712，136
If 2øø TRAP 22ø：FILE＝1：OPEN \＃1，6，ø，DN\＄
FH $21 \varnothing$ INPUT \＃1，T\＄：DIR\＄（（FIL $E-1) *(7+1$ ，$F$ ILE＊ 17$)=T \$$ ：FILE＝FILE＋1：IF FILEく $9 \varnothing$ THEN $21 \varnothing$
M 22 FILE＝FILE－2：TRAP 65øø Ø：CLOSE \＃1：IF PEEK（19 5）$=136$ OR FILE $=88$ THE N 25ø
L6 230 PRINT＂\｛CLEAR\}": POSIT ION 12，11：PRINT＂DISK ERROR \＃＂；PEEK（195）
PN 240 POSITION 8， 13 ：PRINT＂ PRESS ANY KEY TO RETR Y＂：GOSUB 1øøø：GOTO 19 $\emptyset$
BH 25ø POSITION 5，8：PRINT＂＂ 3 DRITIE＂：POKE 712，2øø
NJ $260 \mathrm{G}=\mathrm{INT}$（FILE／2）
6H 265 N＝ø：FOR I＝1 TO FILE－G
CC 27ø IF DIR\＄（（I－1）＊17＋1，I＊ 17）＜＝DIR\＄（（I＋G－1）\＆ $17+$ 1，（I＋G）\＆ 17 ）THEN 29.
BJ $280 \quad \mathrm{~T} \$=\mathrm{DIR} \$(\mathrm{I}-1)$＊ $17+1$ ，I＊ 17）：DIR\＄（（I－1）＊17＋1，I ＊ 17 ）$=\mathrm{DIR}$（ $(\mathrm{I}+\mathrm{G}-1)$ \＆ $17+$ $1,(I+G) * 17): D I R \$((I+G$ $-1) * 17+1,(I+G) * 17)=T \$$ ：$N=1$
HE 29ø NEXT I：IF $N=1$ THEN 26 5
ID $3 \varnothing \emptyset \quad G=I N T(G / 2): I F G>=1 \quad$ TH EN 265
AO $31 \emptyset$ POSITION 2，8：PRINT＂

 712，1ø4：OPEN \＃1，4，4，＂ P：＂
MH 320 FOR $A=1$ TO 3：PRINT \＃1 ；CHR $\$(13)$ ：NEXT A
66330 GOSUB $3 \varnothing 7 \emptyset: P R I N T$ \＃1；＂ CUT＂
NH $34 \varnothing$ GOSUB $3 \varnothing \varnothing \varnothing:$ GOSUB $3 \varnothing 1 \varnothing$ ：GOSUB $3 \varnothing 2 \emptyset$
NO 35ø GOSUB 3øøø：PRINT \＃1；C HR\＄（14）；NAME $\$$ ；CHR $\$(2 \emptyset$ ）；：GOSUB 3ø2ø：REM 14 IS DOUBLE WIDTH， 26 I 5 NORMAL WIDTH
DI 36 FOR $A=1$ TO 2：GOSUB $3 \emptyset$ ஏø：GOSUB 3ø1ø：GOSUB 3 ஏ2ø：NEXT A
HL 37ø GOSUB 3øøø：PRINT \＃1；S PC\＄（1，22）；DATE\＄；SPC\＄ 1，उø－LEN（DATE\＄））；：GOS UB $3 \varnothing 2 \emptyset$
HD 38 © $\mathrm{CD}=\mathrm{INT}(F I L E / 2):$ IF FIL E $>32$ THEN 48ø
CA 39 FOR DD＝1 TO CD：GOSUB उØøの
JK 4 Øø PRINT \＃1；SPC $\$(1,8)$ ；DI $R \$((D D-1) \neq 17+1$ ，$D D * 17-$ 3）；SPC\＄$(1,9)$ ；DIR\＄（（CD $+D D-1) * 17+1,(C D+D D) * 1$ 7－3）；SPC\＄（1，7）；
NL 419 GOSUB $3 \varnothing 2 \emptyset: N E X T$ DD
LJ $42 \emptyset$ GOSUB उøøø：GOSUB $3 \varnothing 1 \emptyset$ ：GOSUB 3ø2ø：DD＝DD＋1
BH $43 \varnothing$ IF DD $>17$ THEN $45 \varnothing$
6H 44 Ø GOTO $42 \emptyset$
KC 45ø GOSUB 3ø7ø：PRINT \＃1； FOLD＂
CJ 46 FOR SL＝1 TO 29：GOSUB उø5ø：GOSUB उø6ø：GOSUB 3065
LK $47 \boldsymbol{6}$ NEXT SL：GOSUB 3ø9ø：PR INT \＃1；＂CUT＂：GOTO 2ø ■ø
AA 48の FOR DD＝1 TO 16：GOSUB 3 $\boxed{\square g}$

60 49ø PRINT $1 ; \operatorname{SPC} \$(1,8)$ ；DI R\＄（（DD－1）\＆ $17+1$ ，DD 3）；SPC\＄（ 1,9$) ; D I R \$(16$ $+D D-1) * 17+1,(16+D D) * 1$ $7-3) ; \operatorname{SPC} \$(1,7)$ ；
NL 5øø GOSUB 3ø2ø：NEXT DD
NG $51 \emptyset$ GOSUB उøøø：GOSUB 3 Ø1ø ：GOSUB 3ø2ø
CH 52 EOSUB $3 \varnothing 7 \emptyset:$ PRINT \＃1；＂ FOLD＂：GOSUB 3ø5ø：GOS UB 3פ6Ø：GOSUB 3965
FA 536 CX＝INT（ $($ FILE－33）／2）：C $Z=C X+32$
6N 54ø FOR DD＝33 TO CZ：GOSUB 305の
F6 55ø PRINT \＃1；SPC ${ }^{(1,9)}$ ；DI R\＄（（DD－1）\＆ $17+1$ ，$D D \neq 17-$ 3）；SPC $\$(1,6)$ ；DIR $\$($（DD $+C X-1)$ \＆ $17+1$ ，（ $D D+C X)$ ） 1 7－3）；SPC $\$(1,11) ; "!"$
$6 C 56 \emptyset$ NEXT DD
NC 579 GOSUB 365の：GOSUB $396 \emptyset$ ：GOSUB 3ø65：DD＝DD＋1
CC 58ø IF DD 661 THEN $57 \emptyset$
KF 59ø GOSUB 3פ9ø：PRINT \＃1；＂ CUT＂：GOTO 2פஏの
HA 1 Бஏø POKE 752，1：GET \＃4，K： K\＄＝CHR $\$(K)$ ：RETURN
KA 2øøø FOR CR＝1 TO 3：PRINT \＃1；CHR ${ }^{\text {\＃（13）}}$ ：NEXT CR： CLOSE \＃1
PL $2 \boxed{10}$ PRINT＂\｛CLEAR\}": POSI TION 3，1ø：PRINT＂ALP HABETIZED DISK COVER COMPLETE＂
ML 2 Ø2 2 POSITION 3，13：PRINT ＂DO YOU WANT ANOTHER DISK CQVER？＂
DH 2ø3ø GOSUB 1øøø：IF K\＄＝＂Y＂ THEN RUN

KD 2 Ø5 9 PRINT＂\｛CLEAR\} \｛2 DOWN\}BYE": POKE 75 2，$\curvearrowleft$ ：END
OE Зøøø PRINT \＃1；＂！ \｛8 SPACES\}! *"; RETUR N
FE $3 ø 1 \emptyset$ PRINT \＃1；SPC $\$(1,52)$ ； ：RETURN
KL 3ø2の PRINT \＃1；＂音！ \｛B SPACES\}!": RETURN
J0 3ø5ø PRINT \＃1；＂
\｛1Ø SPACES\}!";:RETURN
FL 3ø6ø PRINT \＃1；SPC\＄（1，54）； ：RETURN
6J 3 g65 PRINT \＃1；＂！＂：RETURN
BH $3 \varnothing 7 \emptyset$ PRINT \＃1；＂＂；FOR A $=1$ TO 72：PRINT \＃1；＂－ ＂；：NEXT A：RETURN
BJ 3ø9ø PRINT \＃1；＂ \｛11 SPACES\}"; :FOR $A=1$ T0 54：PRINT \＃1；＂－＂； ：NEXT A：RETURN

## Program 3：Apple II Jackeł Lister

Version by Tim Midkiff，Editorial Programmer
For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEI．
䗆新
$602 \emptyset$ DIM TB\＄（144），AB\＄（144），WS（1 Øøø）
CA $3 \emptyset$ HOME ：PRINT ：PRINT＂WHAT IS TODAY＇S DATE（MO／DY／YR ）＂；：INPUT DT\＄
5F $4 \varnothing$ HOME ：PRINT ：PRINT＂WHIC

H DRIVE DO YOU WANT TO LIS T $(1 / 2) " ;$ INPUT D1
AC 5 Ø IF D1＜ 1 QR D1＞ 2 THEN 4 Ø


3779 GOSUB 132ø：HOME ：PRINT＂ READING DATA ：PLEASE STAN DBY＂
78 8ø FOR I $=768$ TO 779：READ $A$ $:$ POKE I，A：NEXT ：P1 $=\varnothing: P$ $2=\varnothing: A \$=" n: C=\varnothing$
609 P1＝WS（ $) ~-~ W S ~(\varnothing) ~+~ P E E K ~$ （131）：P2＝WS（ $) ~-~ W S(\varnothing) ~+~$ PEEK（132）
34 1øØ POKE 769，P1：POKE 770，P2
AE 11Ø POKE 54，Ø：POKE 55，3：POK E 56，11：POKE 57，3：CALL 1 ロロ2
9A $12 \varnothing$ PRINT CHR\＄（4）；＂CATALOG，D ＂；D1
F8 125 PRINT
15130 POKE 768，173：POKE 769，P1 ：POKE 779，P2
40140 POKE 54，11：POKE 55，3：PO KE 56，6：POKE 57，3：CALL 1 10ロ2
$7115 \emptyset$ FOR I $=1$ TO 4：INPUT A\＄： NEXT ： $\mathrm{C}=1$
B8 160 INPUT $A \$:$ IF $A \$=" n$ THEN $17 \varnothing$
C2 165 IF LEFT $\$(A \$, 1)=$＂ま＂THE $N A \$=$ RIGHT\＄（A\＄，LEN（A \＄）－1）
$38167 \mathrm{~TB} \$(C)=\mathrm{MID} \$(A \$, 7,18): C$ $=C+1:$ GOTD 16ந
D7 17ø POKE 54，24ø：POKE 55，253： POKE 56，27：POKE 57，253： CALL 1øø2
3C $18 \emptyset$ FOR I $=1$ TO C $-1:$ PRINT TB\＄（I）：NEXT
$7119 \emptyset$ DATA $141, \varnothing, 64,238,1,3,2 \emptyset 8$ ， 3
EA 260 DATA $238,2,3,96$
CF $34 \emptyset$ IF $C>88$ THEN GOSUB $126 \emptyset$
12 35ø REM 絃 ALPHABETIZE LISTI NG 童家室
F9 360 GOSUB 1320：HOME ：PRINT ＂SORTING DATA ：PLEASE ST ANDBY＂
4A 379 Z $\$=$ CHR $\$(255): E=1$
7038 FOR $A=1$ TO $C-1: C \$=Z$ \＄：FOR B＝ 1 TO C－1：IF C $\$$＜TB\＄（B）THEN 4øø
$6439 \emptyset C \$=T B \$(B): D=B$
52 4øØ NEXT ：AB\＄$(E)=C \$: E=E+$ 1：TB\＄（D）＝Z\＄：NEXT


事宗斿事＂


CB $44 \varnothing$ GOSUB 132ø：HOME ：PRINT ＂PRINTING JACKET ：PLEASE STANDBY＂
A2 45 Ø DD $=$ Ø：CD $=$ INT（C／2）： PRINT CHR\＄（4）；＂PR\＃1＂：PR INT CHR\＄（9）；＂8gN＂
EA 460 FOR CR $=1$ TO 2
8B $47 \emptyset$ PRINT CHR $\$$（1ø）：REM LINE FEED
6C 48ø NEXT
97 51ø TL\＄＝＂－＂
7A $52 \emptyset$ PRINT TAB（ 4）；：FOR TL＝ 1 TO 71：PRINT TL\＄；：NEXT ：PRINT＂CUT＂
2D $53 \emptyset$ GOSUB 11øø：GOSUB $111 \varnothing$
CB $54 \emptyset$ GOSUB 11 øø
D6 $55 \emptyset$ POKE 36，INT（ $4 \emptyset$－LEN（N S\＄）（ 2）：PRINT NS\＄；
DJ 560 GOSUB $111 \varnothing$
A9 570 FOR LE $=1$ TO 2

37580 GOSUB 11øø：GOSUB 1110
日F $59 \varnothing$ NEXT
C4 $6 \varnothing \varnothing$ GOSUB $11 \varnothing \varnothing$
D1 610 POKE 36，36：PRINT DT\＄；：G OSUB 111ø：GOSUB $112 \varnothing$
FJ 629 IF C $>32$ THEN $79 \varnothing$
A6 636 REM＊＊＊PRINT ：＜ 32 PROG RAMS＊＊＊
19 64ø FOR DD $=1$ TO CD：GOSUB 1 1 1ø
96 $65 \emptyset$ PDKE 36，20：PRINT AB\＄（DD） ；
B8 $66 \varnothing$ POKE 36，45：PRINT AB\＄（CD ＋DD）；
D6 $67 \varnothing$ GOSUB 1110
6E $68 \emptyset$ NEXT
B5 69ø GOSUB 1100：GOSUB 111ø：DD $=D D+1$
A8 760 IF DD $>17$ THEN 720
IE 710 GOTO 690
E5 720 GOSUB $117 \varnothing$
28730 FOR SL $=1$ TO 29
95740 GOSUB 115ø：GOSUB $116 \varnothing$
99 750 NEXT
F5 $76 \varnothing$ GOSUB $119 \varnothing$
D9 77ø GOSUB 1210
B2 780 REM＊＊＊PRINT ：＞ 32 PROG RAMS＊＊＊
41790 FOR DD $=1$ TO 16：GOSUB 1 1 1ø
8E 8øø PDKE 36，2ø：PRINT AB\＄（DD） ；
$9281 \varnothing$ POKE 36，45：PRINT AB\＄（DD +16 ）；
CE $82 \varnothing$ GOSUB 1110
66830 NEXT
$3284 \varnothing$ GOSUB 11ø0：GOSUB $111 \varnothing$
EC $85 \varnothing$ GOSUB $117 \varnothing$
9A $86 \varnothing$ GOSUB 115ø：GOSUB $116 \varnothing$
$71870 \mathrm{cx}=(\mathrm{C}-33) / 2: C z=c x$ $+32$
F1 88ø FOR DD $=33$ TO CZ：GOSUB $115 \varnothing$
A $89 \varnothing$ POKE 36，2ø：PRINT AB\＄（DD） ；
$169 \varnothing \varnothing$ POKE 36，4ø：PRINT AB\＄（DD +CX ）；
E1910 GOSUB 1160
65920 NEXT
11936 GOSUB 115ø：GOSUB 1160：DD $=\mathrm{DD}+1$
2C 94ø IF DD $>66$ THEN $96 \varnothing$
A3 950 GOTO 930
63 960 GOSUB 119ø：GOSUB 121ø
1F 970 REM＊＊＊CLOSING REMARKS＊ ＊＊
$3498 \emptyset$ PRINT CHR\＄（4）；＂PR\＃Ø＂
$3699 \varnothing$ GOSUB 132ø：HOME ：PRINT ＂ALPHABETIZED DISK COVER COMPLETE＂
131 1øøø PRINT ：PRINT＂DO YOU WA NT ANOTHER DISK COVER $Y$ ／N）＂；：INPUT AG\＄
711010 FOR DD $=\varnothing$ TO 144：AB\＄（DD ，＝＂＂：NEXT ：RESTORE
68 1ø2ø IF AG\＄＜＞＂Y＂THEN $165 \varnothing$
111 103ø GOTO 4ø
5A $194 \varnothing$ REM＊＊TERMINATE PROGRAM ＊
2A $165 \emptyset$ HOME ：PRINT＂pROGRAM TE RMINATED＂
$5 F 1$ 166ø GOSUB $132 \varnothing$
AB $167 \varnothing$ FOR WT $=1$ TO 1øøø：NEXT
FF 1 108ø HOME ：END
IA $169 \varnothing$ REM \＃\＃\＃DISK JACKET OUTL INE＊＊＊
FE 11 Øø PRINT＂！！＊＂； RETURN
F9 1110 POKE 36，64：PRINT＂＊！ ！＂：RETURN
421120 PRINT＂！！＊＂；
FC 1130 POKE 36，29：PRINT

96 1140 POKE 36，64：PRINT＂＊： ！＂：RETURN
$55115 \varnothing$ PRINT＂ TURN
DC 1160 PDKE 36，66：PRINT $"!": ~ R$ ETURN
DF 1170 CL\＄＝＂－＂
6E $118 \emptyset$ PRINT TAB（ 4）；：FOR CL＝ 1 TO 71：PRINT CL\＄；：NE XT ：PRINT＂FOLD＂：RETU RN
781190 LL\＄＝＂－＂
D3 $12 ø \varnothing$ PRINT TAB（ 12）；：FOR LL ＝ 1 TO 55：PRINT LL\＄；：N EXT ：PRINT＂CUT＂：RETU RN
F9 121ø PRINT ：FOR CR $=1$ TO 3
时 $122 \varnothing$ PRINT CHR\＄（1ø）：REM LIN EFEED
9C $123 \varnothing$ NEXT ：GOTO 98ø
F2 1240 REM＊＊＊MENU TOO LONG TO LIST＊＊＊
TC $125 \varnothing$ REM＊＊＊CAN ONLY LIST 88 PGMS＊＊＊
IF $126 \varnothing$ GOSUB 1320：HOME ：PRINT ＂TOD MANY PROGRAMS TO L IST ON JACKET＂
F6 $127 \varnothing$ PRINT ：PRINT＂PRINT THO SE THAT FIT（Y／N）＂；：INP UT AW\＄
2C 1289 IF AW\＄＜＞＂Y＂THEN 1ø5
8B $129 \varnothing$ C $=88$ ：RETURN
471360 RE
48 131の REM $\ddagger$＊＊＊＊SOUND ROUTINE

AB 1320 FOR $I=1$ TO 1ø：A $=$ PEEK （－16336）：NEXT ：RETU RN

## Program 4：ProDOS

## Modifications for Program 3

Refer to the article for instructions on adding these replacement lines．
BJ $8 \emptyset \mathrm{D} \$=$ CHR\＄（4）：PRINT D\＄；＂P REFIX，D＂；D1：PRINT D\＄；＂PRE FIX＂
C2 96 INPUT P\＄
C3 $10 \varnothing$ PRINT D\＄；＂OPEN＂；P\＄；＂，TDI $\mathrm{R}^{\prime \prime}$
36 110 PRINT D\＄；＂READ＂；P\＄
63 $12 \varnothing$ FOR I $=1$ TO 3：INPUT AS： NEXT ：C＝ 1
DC $13 \varnothing$ INPUT A\＄：IF LEN（A\＄）$>\varnothing$ THEN TB\＄$(C)=$ MID $\$(A \$, 2$ ，15）：PRINT TB\＄（C）：C＝C ＋1：GOTO 130
$7914 \varnothing$ PRINT D\＄；＂CLOSE＂；P\＄

## Program 5：IBM PC／PCjr Jacket Lister

Version by Tim Midkiff，Editorial Programmer
For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing in Programs＂in this issue of COMPUTEI．

DF $1 \varnothing$ KEY OFF：WIDTH 8ø：DEF SEG＝ø ：POKE 1ø47，PEEK（1ø47）OR 6 4
OB 20 DIM TB\＄（144）：DIM AB\＄（144）
EJ $3 \varnothing$ CLS：PRINT：PRINT＂What is $t$ oday＇s date（Mo／Dy／Yr）＂；：I NPUT DT\＄
日F 4ø CLS：PRINT：PRINT＂Which dis $k$ drive do you want to lis t（A／B）＂；：INPUT DI\＃：IF DI\＄ ＜＞＂A＂AND DI\＄＜＞＂B＂THEN 4Ø

L6 $5 \varnothing$ REM＊＊＊READ DISK MENU＊＊＊
KL $6 \varnothing$ BEEP：CLS：PRINT＂READING DA TA ：PLEASE STANDBY＂
CP $7 \varnothing$ FSPEC $\$=D 1 \$+": * . * "$
E6 $8 \varnothing$ HEAD＝1ø5ø：TAIL＝1ø52：BUFFER $=1$ 1054： $\mathrm{C}=\varnothing$
LK $9 \varnothing$ ON ERROR GOTO 110
OC 1 øø FILES FSPEC $\$$ ：ON ERROR GOT O ø：GOTO 12ø
If $11 \varnothing$ BEEP：CLS：PRINT＂CANNOT RE AD DIRECTORY＂：ON ERROR GO TO ø：END
6K 120 DIM TT\＄（24）：LOCATE 3，1：RO WS＝ø
OH $13 \varnothing$ POKE HEAD， 30 ：POKE TAIL， 34 ：POKE BUFFER， $\mathscr{D}:$ POKE BUFFE R＋1，79：POKE BUFFER $+2,13: \mathrm{P}$ OKE BUFFER +3 ， 28
HC 14ø LINE INPUT TT\＄（ROWS）：IF T T\＄（ROWS）＜＞＂＂THEN ROWS＝RO WS＋1：GOTO 13ø
태 $15 \emptyset$ ROWS＝ROWS－1：FOR I＝ø TO RO WS：FOR J＝ø TO 3
6B $16 \emptyset \mathrm{~T} \$=\mathrm{MID} \$(T T \$(\mathrm{I}), \mathrm{J} * 18+1,12)$
KC $17 \emptyset$ IF T\＄＜＞＂＂THEN TB $(C)=T \$:$ $\mathrm{C}=\mathrm{C}+1$
PK $18 \emptyset$ NEXT J：NEXT I：ERASE TT\＄
CD 190 IF C＞88 THEN GOSUB $126 \varnothing$
CL $2 ø \emptyset$ REM＊＊ALPHABETIZE LISTI NG＊＊＊
EB 21ø BEEP：CLS：PRINT＂SORTING D ATA ：PLEASE STANDDY＂
FF 220 Z $\$=$ CHR $\$(255): E=1$
QK 236 FOR A＝ø TO C－1：C $=2 \$: F O R$ $\mathrm{B}=\emptyset$ TO $\mathrm{C}-1: \mathrm{IF} \mathrm{C}\langle\mathrm{TB} \$(\mathrm{~B}) \mathrm{T}$ HEN $25 \varnothing$
BF $240 \mathrm{C}=\mathrm{TB} \$(\mathrm{~B}): \mathrm{D}=\mathrm{B}$
FE 250 NEXT：AB $(E)=C \$: E=E+1$ ：TB\＄（ D）$=$ Z $\$$ ：NEXT
IE 410 REM \＆＊JACKET NAME $=$ NS $\$$事豙
CN 42 NS $\$=$＂＊＊＊＊＊REFERENCE＊＊繥事＂
PD $43 \varnothing$ REM＊＊＊PRINT ALPHA LIST ＊＊＊
60 44ø BEEP：CLS：PRINT＂PRINTING JACKET ：PLEASE STANDBY＂
EF $45 \varnothing$ DD＝ø：CD＝INT（C／2）
ML $46 \emptyset$ FOR CR＝1 TO 2
CA $47 \varnothing$ LPRINT CHR $\$(1 \varnothing):$ REM LINEF EED
CE 48ø NEXT CR
6851ø TL\＄＝＂－＂
OC $52 \varnothing$ LPRINT TAB（3）；：FOR TL＝1 T －71：LPRINT TL\＄；：NEXT TL： LPRINT＂CUT＂
MF $53 \varnothing$ GOSUB 11øø：GOSUB $111 \varnothing$
OA $54 \varnothing$ GOSUB 11 פø
IA $55 \emptyset$ LPRINT TAB（INT（39－LEN（NS $\$$ ）／2））；NS\＄；
PB 56ø GOSUB $111 \varnothing$
KN 57ø FOR LE＝1 TO 2
NP $58 \varnothing$ GOSUB 11øø：GOSUB $111 \varnothing$
PC 59ø NEXT LE
0J 6øø GOSUB $11 \varnothing \varnothing$
EA 610 LPRINT TAB（36）；CM\＄；DT\＄；：G OSUB 111ø：GOSUB 112ø
KN 620 IF C $>32$ THEN 79の
Bh 630 REM＊＊＊PRINT ：＜ 32 PROG RAMS＊
HO $64 \varnothing$ FOR DD＝1 TO CD：GOSUB 11 øø
FB 65 LPRINT TAB（2Ø）；AB\＄（DD）；
NG $66 \varnothing$ LPRINT TAB（45）；AB\＄（CD $+D D$ ） ；
PE $67 \varnothing$ GOSUB $111 \varnothing$
J6 680 NEXT DD
CA $69 \varnothing$ GOSUB 11øø：GOSUB 1119：DD＝ DD＋1
FC 7 Øø IF DD $>17$ THEN $72 \emptyset$
KJ 710 GOTO $69 \varnothing$
EJ $72 \varnothing$ GOSUB $117 \emptyset$
CO 730 FOR SL＝1 TO 29
IC 746 GOSUB 1156：GOSUB 1160

| IP 750 NEXT SL | * |  | URN |  |
| :---: | :---: | :---: | :---: | :---: |
| 6 l 760 GOSUB 1190 | 애 98ø | BEEP:CLS:PRINT "ALPHABETI | kJ $116 \varnothing$ | LPRINT TAB(66);":":RETUR |
| AB 778 GOSUB 1210 |  | 2ED DISK COVER COMPLETE" |  |  |
| EB 789 REM *** PRINT : > 32 PROG | PI 996 | PRINT:PRINT "Do you want | 601170 | CL\$=' |
|  |  | another disk cover (Y/N)" ;: INPUT AGs | PJ 1189 | LPRINT TAB(3);:FOR CL=1 TO 71:LPRINT CL\$;:NEXT C |
| FJ Bøø LPRINT TAB(2ø); AB\$ (DD) ; |  | FOR DD=ø TO 144:AB\$ |  | L:LPRINT " FOLD":RETURN |
| 6N B1ø LPRINT TAB(45); AB\$(DD+16) |  | " ": NEXT DD | Kk $119 \varnothing$ | LL\$="-" |
| ; | LIN 1010 | IF AG\$<>"Y" THEN $194 \varnothing$ | OF 1200 | LPRINT TAB(11);:FOR LL=1 |
| PM $82 \varnothing$ GOSUB 1119 | HJ 1929 | CLS: GOTO 4ø |  | TO 55:LPRINT LL*; :NEXT |
| J0 836 NEXT DD | QK 1930 | REM ** TERMINATE PROGRAM |  | LL:LPRINT" CUT":RETURN |
| NK 84ø GOSUB 119ø:GOSUB 1119 |  | * | DN 1210 | LPRINT:FOR CR=1 TO 3 |
| EA 850 GOSUB $117 \varnothing$ | HF 1040 | BEEP:CLS:PRINT "PROGRAM | CP 1220 | LPRINT CHR\$(1ø): REM LINE |
| IH 86ø GOSUB 1159:GOSUB 1160 |  | TERMINATED" |  | FEED |
| KA 87ø CX= ${ }^{\text {c }}$ (-33)/2: $C Z=C X+32$ | 1650 | FOR WT=1 TO 1øøø:NEXT | LB 1230 | NEXT CR: GOTO 98ø |
| 6A 88ø FOR DD=33 TO CZ: GOSUB 115 | $\begin{array}{ll} \text { BH } & 1 \boxminus 6 \emptyset \\ \text { OA } & 169 \emptyset \end{array}$ | CLS: END DISK JACKET OUTL | DF 124ø | REM ** MENU TOO LONG TO LIST * |
| 6L 896 LPRINT TAB(20); AB\$(DD); |  | INE \$ \% $^{\text {\% }}$ | IE 1250 | REM ** CAN ONLY LIST 88 |
|  | IP 1190 | LPRINT " : ${ }^{\text {\% }}$; $:$ R |  | PGMS * |
|  |  | ETURN | DK $126 \varnothing$ | BEEP:CLS:PRINT "TOO MANY |
| DH 910 GOSUB 1160 | DC 1110 | LPRINT TAB(64); "* |  | PROGRAMS TO LIST ON JAC |
| JN 926 NEXT DD |  | I": RETURN |  | KET" |
| NA 930 GOSUB 1159:GOSUB 1160: DD= | 80 | LPRINT " : ${ }^{\text {( }}$ "; | CC 127ø | PRINT: PRINT "Print those |
| DD+1 | QN 1130 | LPRINT TAB(29);"- |  | that fit (Y/N)";:INPUT |
| LF 949 IF DD>69 THEN 969 |  | -----------"; |  | AW\$ |
| IP 959 G0TO 930 | EL 1140 | LPRINT TAB(64); "* | 661289 | IF AW\$<>"Y" THEN 1ø4ø |
| 6 Cl 96 GOSUB 119ø: GOSUB 121ø |  | I": RETURN | DD 129ø | C=88: RETURN © |
| EA 97ø REM *** CLOSING REMARKS \# | cC 1150 | LPRINT " ; ; :RET |  |  |

# 64 Encryptor 

James Pettus

This BASIC utility will hide your programs from prying eyes. It encrypts a BASIC program in memory so that it can be neither stopped while running nor listed. The program also includes an option for restoring things back to normal if you wish. A secret ID code even prevents people who have the Encryptor program themselves from unlocking your secrets.

Part of the fun of computing is sharing one of your programs with others. At times, however, you may want to keep things confidential. For example, you might have written a finance program which contains DATA statements revealing your entire personal portfolio. You might want to prevent others from looking at this information. The LIST command ordinarily displays the contents of any BASIC program.

However, you can use "64 Encryptor" to encrypt any BASIC program to prevent other people from deciphering it. Though the encrypted program can't be listed or examined, it still runs normally. And since each copy of Encryptor has a unique ID code, your protected program should be safe even from others who have 64 Encryptor themselves.

## A Special Random Identifier

Type in and save the BASIC loader program listed below. You may save it with any filename you like, except ENCRYPTOR (that's what the BASIC loader will name the machine language file that it creates). When the program runs, it spends a few seconds creating the Encryptor machine language routine in the memory area starting at

49152, then it saves the machine language to disk. To have the Encryptor file saved to tape instead, change the $\mathrm{DV}=8$ in line 80 to $\mathrm{DV}=1$.

When the loader writes Encryptor into high memory, it embeds an identifier mark within the program. The identifier is randomly selected and will be different each time you run the loader. This feature makes a program encrypted with one copy of Encryptor incompatible with any other copy of En-cryptor-even another copy created on the same 64. As a result, you don't have to worry that other people with this program can decrypt your programs.

To encrypt or decrypt a BASIC program, follow these steps:

- Load Encryptor with LOAD"ENCRYPTOR", 8,1 for disk or LOAD "ENCRYPTOR",1,1 for tape.
- Type NEW and press RETURN.
- Load the BASIC program you wish to encrypt or decrypt.
- To encrypt a program, type SYS 49152 and press RETURN. When the cursor returns, be sure to immediately save a copy of the encrypted version using a different filename. - To decrypt a program, type SYS 49155 and press RETURN.

An encrypted program runs normally, but cannot easily be examined by the person using it. When you run an encrypted program, a built-in machine language subroutine is called to decrypt the actual program data and run it. At the same time, Encryptor disables the LIST command and the RUN/ STOP-RESTORE key combination. You should make sure that the program being encrypted does not contain any references to the ROM routine at 65505 (\$FFE1), which tests to see whether the RUN/ STOP key has been pressed. The program to be protected also should not offer the user the option of exiting the program.

Because the BASIC loader program creates a different Encryptor each time it is run, you should take care to make a backup copy of each Encryptor that you create. (You should also keep an unprotected copy of any important programs you encrypt.) If you accidentally erase your only copy of Encryptor, you will not be able to decrypt any programs protected with that version. Of course, to keep your programs secure, you should not give anyone else a copy of your version of Encryptor.

## Works With BASIC/ Machine Language Combinations

Some BASIC programs require that you relocate the start of BASIC text before you load and run them, others leave little memory for variables (meaning you should not enlarge the program), and some BASIC programs cannot be relocated because they have ML routines appended to the end of BASIC text. Encryptor has been designed with all these conditions in mind. The ML routine included in an encrypted program contains no absolute addresses, and it moves
program data down in memory after it has done its work, so nonrelocating BASIC programs can still be safely encrypted.

## 64 Encrypior

For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing In
Programs" in this issue of COMPUTEI.
GH $1 \varnothing$ PRINTCHRS(147)CHR\$(155)" PLEASE WAIT": $I=49152$
HG $2 \emptyset$ READA:IFA $=256$ THEN4 0
HJ $3 \varnothing$ POKEI, $\mathrm{A}: \mathrm{CK}=\mathrm{CK}+\mathrm{A}: \mathrm{I}=\mathrm{I}+1: \mathrm{GO}$ т $02 \varnothing$
MC $4 \varnothing$ IFCK < > 66816THENPRINT"ERR or in data statements. ": STOP
JG $5 \emptyset$ POKEI $+4574,255$
FQ 60 POKEI $+4577,128: F O R A=I-31$ 7TOI-3ø8: POKEA, PEEK ( I +45 86) : NEXT: POKEI + 4577, $\varnothing$

DB 70 POKEI $+4574, \varnothing$
HB 8Ø DV=8:SYS57812 "ENCRYPTOR" , DV
XG $9 \emptyset$ PRINT"SAVING ENCRYPTOR"
JM 1øø POKE251,Ø:POKE252,192:P OKE780, 251 : POKE782,I/25 6: POKE781, I-PEEK (782) *2 56
PH $11 \varnothing$ SYS65496:PRINT "ENCRYPTO R CREATED.": END
EE $12 \emptyset$ DATA76, 254,192,76,28,19 3,167,43
RH 130 DATAl $35,251,135,253,167$ ,44,135,254
EE $14 \emptyset$ DATA232,134,252,160, 0,1 77,251,145
AF 150 DATA253,230,251,230,253 ,2ø8,4,23ø
KH $16 \emptyset$ DATA252,230, 254, 167, 252 ,197,46,2ø8
SQ $17 \emptyset$ DATA236,167,251,197,45, 2ஏ8,23Ø,198
RF $18 \emptyset$ DATA46,96,167,44,135,17 5,167,43
AM 190 DATA56,233,1,176,2,198, 175,133
SF 2 Øø DATAl74,167,46,135,252, 232,134,254
AJ $21 \emptyset$ DATAl67,45,56,233,1,176 ,4,198
GC $22 \emptyset$ DATA252,198,254,133,251 ,133,253,16ø
HC 230 DATAØ, 177, 251, 145, 253,1 98,251,198
GA 24ø DATA253,167,251,2ø1,255 ,2ø8,4,198
MB 25 Ø DATA $252,198,254,167,252$ ,197,175,2ø8
KC 260 DATA232,167,251,197,174 ,2ø8,226,23Ø
QH $27 \emptyset$ DATA $46,96,167,43,135,25$ $1,167,44$
RJ 28ø DATA232,134,252,160, Ø,1 62,8,177
FR 290 DATA251,1ø,1ø2,255,2ø2, 2ø8,250,167
EQ 3øø DATA255,145,251,230,251 ,208,2,230
EQ $31 \emptyset$ DATA252,167,252,197,46, 2ø8, 23Ø, 167
CD $32 \emptyset$ DATA251,197,45,2ø8,224, 96,169, $\varnothing$
CX 33Ø DATA133,255,16ø,165,191 ,79,192,69
RC 34Ø DATA255,133,255,2ø9,43, 2ø8,6,2øø
PB $35 \emptyset$ DATAl $92,175,2 \emptyset 8,240,96$, 169,199,160

QX $36 \emptyset$ DATA192,32,3ø,171,1ø8,2 ,16ø,69
KP $37 \emptyset$ DATA78, $67,82,89,8 \emptyset, 84,7$ 9,82
DQ $38 \emptyset$ DATA $32,73,46,68,46,32,7$ 7,73
AK 39ø DATA83,77,65,84,67,72,ø , 169
DR 4øø DATAØ,133,255,16ø,165,1 91,79,192
GM $41 \varnothing$ DATA69, 255,133,255,145, 43,2øø,192
CX $42 \emptyset$ DATA175,2ø8,242,96, $0, \varnothing$, Ø, Ø
GC $43 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 32,5 \varnothing$
JC $44 \emptyset$ DATA192,32,122,192,16ø, Ø,191,48
GG $45 \emptyset$ DATA193, 145, 43,2øø,2ø8, 248, 32, 223
QM $46 \emptyset$ DATAl $92,32,89,166,32,51$ ,165,164
FD 470 DATAlø $4,108,2,160,32,16$ 6,192,32
EA $48 \emptyset$ DATAl22, $192,32,6,192,32$ ,89,166
AC 49 D DATA $32,51,165,104,104,1$ Ø8,2,160
RR 5øø DATA25,8, $0, \varnothing, 158,194,4 \emptyset$ . 52
MS $51 \varnothing$ DATA51,41,17Ø,50,53,54, 172,194
JA 52ø DATA4Ø, 52,52,41,17Ø,50, 54, $\varnothing$
XF $53 \emptyset$ DATAØ, $\varnothing, 167,43,135,251$, 167,44
BJ $54 \emptyset$ DATA232,134,252,16Ø, Ø, 1 62,8,177
FR 55ø DATA251,1ø,1ø2,255,2ø2, 2ø8,25ø,167
PR $56 \emptyset$ DATA255,145,251,230,251 ,2ø8,2,23ø
HR $57 \emptyset$ DATA252, 167,252,197,46, 2ø8,23ø,167
JR 58ø DATA251,197,45,208,224, 160,84,177
MQ 59ø DATA43,153,172,1,2øø,19 2,165,2ø8
AH 6øø DATA246,76, $0,2,167,43,1$ 35,251
DP 61ø DATA135,253,167,44,135, 254, 232,134
RS $62 \emptyset$ DATA252,16ø, $0,177,251,1$ 45,253, 23ø
XB 63ø DATA251,23ø,253,2ø8,4,2 3ø,252,23ø
PX 64ø DATA254,167,252,197,46, 2ø8, 236, 167
DF 650 DATA251, 197, 45, 2ø8,23ø, 198,46,32
PB 660 DATA89,166,32,51,165,12 Ø, 162,255
JJ $67 \emptyset$ DÁTAl6́9,182,143,6,3,169 , 234,143
AG 68Ø DATA4Ø, 3,169,246,143,41 ,3,169
FK 69ø DATA193,143,24,3,169,25 $4,143,25$
PG 7øø DATA3,88,76,174,167, Ø, Ø . $\varnothing$
RP $71 \varnothing$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
KM $72 \varnothing$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
FK $73 \varnothing$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
BJ $74 \varnothing$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
RJ $75 \varnothing$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing ~$
KX $76 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
FS 77ø DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing ~$

RR $79 \varnothing$ DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
MR 8øø DATA $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
GQ $81 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
HF $82 \emptyset$ DATAの,256


With ANIMATE you can create rapidly moving 3-D graphics within a BASIC program. This series of photos shows only 4 of the 95 screens used for the CUBE display, which creates a rotating cube that moves toward and away from the viewer.

# Easy IBM Full-Screen Animation 

Paul W. Carlson

Now you can write BASIC programs with smooth, flicker-free animated displays that move at machine language speeds. For the IBM PC/PCjr. BASICA and a color/graphics card are required to use the program on the PC. Cartridge BASIC is required for the PCjr.

Full-screen animation is achieved by rapidly displaying a series of high-resolution screens on the video display. Producing realistic animation using BASIC is very difficult because of the time required to create the screen images. The creation of a high-resolution screen image usually consists of two processes repeated many times. First, the coordinates of the endpoints of a line segment are computed. Second, the line segment is displayed on the screen.

The method of animation presented here is unusual in that it completely separates the two pro-
cesses. The computation of the coordinates of every line segment for every screen image is done by a BASIC program which writes the coordinates to disk as a binary (non-ASCII) file. This file of line segment coordinates is then input to a machine language program which displays the screens in rapid succession to produce the animation.

To begin, type in and save Program 1. Before you run this program, make sure you have a disk in the active drive with at least 60,000 bytes of available space. Now run Program 1; it creates a disk file named ANIMATE.OBJ containing the machine language animation routine. The DOS LINK utility must then be used to generate an executable version of this file. To do this, first exit DOS by typing SYSTEM and pressing Enter. Place a DOS system disk containing the file LINK .EXE in the active drive (check the master disk that came with your copy of DOS), type LINK, then press Enter. When you are prompt-
ed for the object modules, remove the DOS system disk and replace it with the disk containing ANIMATE .OBJ. At this point you should type ANIMATE,,NUL,NUL and press Enter. After a minute or so the DOS prompt will reappear. Your disk now contains a new file named ANIMATE.EXE, the usable version of the machine language program that creates animated displays from the files produced by Programs 2 or 3.

## A Rotating Demo

Now you are ready to type in and save Program 2 (this program can be saved on any disk). When you run the program, you will be prompted for an output filename. Enter any legal filename. Program 2 creates images of the word LOVE rotating in three-dimensions. After you press Enter, the program begins computing the line segment coordinates for each screen and writing them to the specified disk file. The display will show which screen is currently being computed.

Program 2 computes 71 screens．Do not remove the disk from the drive until you see the message that the file is complete．

When the BASIC Ok prompt reappears，type SYSTEM and press Enter to exit to DOS．Put the disk containing ANIMATE．EXE in the active drive，then type ANIMATE and press Enter．When you are asked for the name of the input file， put the disk containing the file cre－ ated by Program 2 in the active drive and enter the name you speci－ fied for that file．The disk drive light will go on for a few seconds，and then the animated image should appear on the screen．Press the Q key to terminate the display．

Once you have used Program 2 to create the animation data file， you won＇t need it again．However， before you delete it，notice that lines 430－520 also occur in Pro－ gram 3．In fact，you＇ll find these lines in every program that you write that produces data files for the ANIMATE program．To save your－ self a lot of typing，load Program 2 and delete all lines except 430－520； save the shortened program with a name you＇ll remember－you will probably use it as a template pro－ gram many times．

To enter Program 3，first load the file containing lines 430－520 of Program 2．Then type in the other lines listed as Program 3 and save the file．At this point you should follow the same procedure as for Program 2．Program 3 computes 95 screens．The computation for each screen takes longer than those in Program 2 because of computations to remove hidden lines from the display．Now run the animate pro－ gram using this data file as input． You will see a rotating cube repeat－ edly coming toward and going away from you（see photos）．

## Make Your Own Art

Writing your own programs with ANIMATE is not difficult．Just fol－ low these steps：
1．Load the template file containing the lines 430－520．
2．All DIM statements and initial－ ization of variables should be per－ formed prior to line 430．If there is not enough room in the program to do this，you can GOSUB to a rou－
tine located further down in the program．DATA statements，of course，can be placed anywhere in the program．
3．The variable NUMSCNS should be assigned a value equal to the number of screens to be displayed． This assignment must also be done prior to line 430.
4．The subroutine that does the computation for each screen must begin at line 1000 ．For each line segment，the program must com－ pute the segment endpoint coordi－ nates（the variables X1，Y1，X2，and Y2）and execute a GOSUB 500.

The ANIMATE program can handle up to 4000 line segments． This means that the number of screens times the number of line segments per screen cannot exceed 4000.

Programs 2 and 3 both pro－ duced 3－D images，but this doesn＇t mean that you need to know 3－D geometry to create impressive dis－ plays．Two－dimensional animation， when it＇s fast and smooth，can be truly spectacular as well．

For instructions on entering these listings， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEI．

## Program 1：ANIMATE．OBJ File Maker

KK 1ø T＝g：OPEN＂ANIMATE．OBJ＂FOR QUTPUT AS 1
KL $2 \varnothing$ FOR $\mathrm{J}=1$ TO 1ø76：READ A ${ }^{1} \mathrm{~N}=$ VAL（＂\＆H＂＋A\＄）
FA $3 \varnothing$ T＝T＋N：PRINT\＃1，CHR\＄（N）；：NEX T：CLOSE 1
PL 46 IF T＝84992！THEN PRINT＂FIL E SUCCESSFULLY CREATED！＂：E ND
LI $5 \varnothing$ PRINT CHR＊（7）；＂＊＊＊＊＊ERROR IN DATA STATEMENTS＊＊＊＊＊＂ ：END
BE 1 øø DATA $8 \varnothing, 03, \varnothing \varnothing, \emptyset 1,41,3 B, 96$ ，11，øø，øø
OD $11 \varnothing$ DATA $94,43,53,45,47,64,44$ ，53，45，47
BI $12 \varnothing$ DATA $94,53,53,45,47, \mathrm{D} 6,98$

OH $13 \varnothing$ DATA $E 1, \not 1, \varnothing 2, \varnothing 1, \varnothing 1,1 B, 98$ ，$\varnothing 7, \varnothing \varnothing, 6 \varnothing$
NB 14ø DATA 9D，BF，ø3，ø1，ø1，Aø，98 ， $07, \boxed{1,74}$
내 $15 \emptyset$ DATA $8 \emptyset, \emptyset \varnothing, \varnothing 4, \varnothing 1, \varnothing 1,67, A \varnothing$ ，$\varnothing$ C，øø，ø2
AA $16 \varnothing$ DATA $\varnothing \varnothing, \varnothing \varnothing, 8 \varnothing, 4 \varnothing, 2 \varnothing, 1 \varnothing, \varnothing 日$ ， $64, \varnothing 2,61$
J． $17 \varnothing$ DATA 53，A2，øF，øø，ø2，ø日，øø ，øø，4ø， 1
EF $18 \emptyset$ DATA $\varnothing \varnothing, \emptyset 1, \varnothing \varnothing, \varnothing \varnothing, \emptyset \varnothing, \varnothing 2, \varnothing \varnothing ~$ ，øø，ø1，A2
BO $19 \varnothing$ DATA øF，$\varnothing \varnothing, \varnothing 2, \varnothing 8,8 \varnothing, A \varnothing, 1 F$ ，$\varnothing 1, \varnothing \varnothing, \varnothing_{1}$
PG $2 \varnothing \varnothing$ DATA $\varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing 2, \varnothing \varnothing, \varnothing \varnothing, \varnothing 2$ ，Aø，1A，øø
积 $21 \varnothing$ DATA $\varnothing 2,48, \mathrm{BF}, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing$
，ø๓，ஜ๓，øø
BE 22ø DATA øø，$\varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing ~$

JH $23 \varnothing$ DATA $\varnothing \varnothing, \varnothing \varnothing, \varnothing \varnothing, 14, \varnothing \varnothing, 29, A 2$ ， $\operatorname{DE}$, ®6， 62
 ， 0 ， 0 ，$\varnothing \varnothing$
OC $25 \varnothing$ DATA $\varnothing 1,2 \varnothing, F A, A \varnothing, 2 F, \varnothing \varnothing, \varnothing 2$ ，72，BF， 68
NK $26 \varnothing$ DATA $\oplus \varnothing, 45,6 E, 74,65,72,20$ ，69，6E，7ø
DF $27 \varnothing$ DATA $75,74,29,66,69,6 C, 65$ ，26，6E， 61
MH $28 \emptyset$ DATA $60,65,3 A, 20,24$, ®A，øD ，46，69，6C
DP $29 \varnothing$ DATA 65，26，6E，6F，74，2ø， 66 ，6F，75，6E
II $3 \varnothing \varnothing$ DATA $64,24,49, A \varnothing, \varnothing 1, \varnothing 1, \varnothing 1$ ， $09,09,1 \mathrm{E}$
HI $31 \varnothing$ DATA $33, C \varnothing, 5 \varnothing, B 8, \varnothing \varnothing, \varnothing \varnothing, 8 E$ ，DE，B8， 06
D8 $32 \varnothing$ DATA $96, B 7,67, B 9, \varnothing \varnothing, \boxed{1}, B A$ ，4F，18，CD
DJ $33 \varnothing$ DATA $16,33, D 2, B 7,6 \varnothing, B 4, ~ 62$ ，CD，16，BD
10 34ø DATA $16, \varnothing \varnothing, \varnothing \varnothing, B 4, \varnothing 9, C D, 21$ ，日D，16，$\boxminus \varnothing$
d． $35 \varnothing$ DATA $\varnothing \varnothing, B 4, \emptyset A, C D, 21, B 7, \varnothing \varnothing$ ，BA，1E， $\boldsymbol{D}_{6}$
6C 36ø DATA øø，C6，87，øø，øø，øø，8D ，16， $10, \varnothing \varnothing$
NK 376 DATA $B 6,6 \%, B 4,3 D, C D, 21,73$
$, 99,8 D, 16$
IA $38 \varnothing$ DATA $\varnothing \varnothing, \emptyset \varnothing, B 4, \varnothing 9, C D, 21, C B$ $, A 3,06,011$
II $39 \varnothing$ DATA $8 B, 1 E, ø \varnothing, \varnothing \varnothing, 8 D, 16, \varnothing \varnothing$ ， $6 \boxed{6}, 52,89$
PG $4 \varnothing \varnothing$ DATA $8 \varnothing, \varnothing \varnothing, B 4,3 F, C D, 21,5 A$ ，B1，C2，日ø
OB 41ø DATA øø，3D，øø，øø，75，EE，B8 ，66，60，CD
PI $42 \varnothing$ DATA $1 \varnothing, E B, \varnothing \varnothing, \varnothing \varnothing, 8 D, 1 E, \varnothing \varnothing$ ，$\varnothing \varnothing, 8 \mathrm{~B}, 67$
FJ $43 \varnothing$ DATA 3D，9D，FF，74，2F，3D， 19 ，FC，75， 65
FI $44 \varnothing$ DATA EB，$\varnothing \varnothing, \varnothing \varnothing, E B, E B, A 3, \varnothing \varnothing$ ，60，83， $\mathrm{C3}$
JK $45 \varnothing$ DATA ø2， $8 \mathrm{~B}, \varnothing 7, A 3, \varnothing \varnothing, \varnothing \varnothing, 83$ ，C3，62，8B
$0046 \varnothing$ DATA $97, A 3, \varnothing \varnothing, \varnothing \varnothing, 83, C 3, \varnothing 2$ ，8B，67，A3
BK $47 \varnothing$ DATA $\varnothing \varnothing, \varnothing \varnothing, 83, C 3, \varnothing 2,53, E 8$ ，$\varnothing$ ，ஜ， 5 B
6C $48 \varnothing$ DATA EB，CA，E8，øø，øø，B4，ø6 ，B2，FF，CD
ME $49 \varnothing$ DATA $21,3 C, 71,74,64,3 C, 51$ ，75，1B， 32
BB 5øø DATA FF，B8，øø，ø6，33，C9，BA ，4F，18，CD
LO $51 \varnothing$ DATA $1 \varnothing, \mathrm{BB}, \varnothing \varnothing, \varnothing 2,33, \mathrm{DB}, 33$ ，D2，CD， 1 ©
ML 52ø DATA B8，ø2，øø，CD，1ø，CB，E日 ，$\varnothing \varnothing, \varnothing \varnothing, 83$
HP $53 \varnothing$ DATA C3， $62, E B, 96,1 E, \varnothing 6,8 C$ ，DE，BE，Cø
PB 54ø DATA 8D，उE，øø，øø，BE，øø，B8 ，BE，DE， 33
DN $55 \varnothing$ DATA $F 6, B 9, A \varnothing, 1 F, F C, F 3, A 5$ ，07，1F，C3
IB $56 \varnothing$ DATA $66, B 8,45,9 C, 94, \varnothing \varnothing, C 8$ ，ம5，øø，ø2
BB 57ø DATA ø2，9D，BF，C4，2ø，øø，ø2 ， $62,74, \mathrm{BF}$
태 $58 \varnothing$ DATA $C 4,28, ø \varnothing, \varnothing 2, ø 2,5 C, B F$ ， 44,32, ，$\varnothing$
FL $59 \varnothing$ DATA $\varnothing 2, ø 2,5 D, B F, C 4,36, ø \varnothing$ ， 62, 62，5E
E1 $6 ø \varnothing$ DATA $B F, C 4,3 B, \varnothing \varnothing, \varnothing 2, ø 2,5 E$ ，BF，C4，47
 ，øø，ø2，$\varnothing 2$
 ，72，BF，C4
$8063 \varnothing$ DATA 57，øø，ø2，ø2，ø日，øø， 84 ，71，øø，$\varnothing 1$
K0 64ø DATA ø1，E1，øø，С4，75，øø，ø2 ，ø2，ø日，øø
NG $65 \varnothing$ DATA $84,84, \varnothing \varnothing, \emptyset 1, \varnothing 1, \emptyset F, \varnothing 1$ ，C4，日9，øб
MB 66ø DATA $\varnothing 2, \boxed{6}, 48, \mathrm{BF}, \mathrm{C4}, 91, \varnothing \varnothing$ ，$\varnothing 2, \varnothing 2,4 \mathrm{~A}$
LE 67ø DATA BF，C4，99，øø，ø2，ø2，4C ，BF，C4，A1
BF $68 \emptyset$ DATA $ø \varnothing, \emptyset 2, ø 2,4 E, B F, 84, A 8$ ，$\varnothing, \varnothing 1, \varnothing 1$
PK $69 \varnothing$ DATA 22， $01,84, A E, \varnothing \varnothing, \varnothing 1, \varnothing 1$ ，FB，øø， 84
FA 7øø DATA DA，øø，ø1， $1, ø F, \varnothing 1, C 4$ ，E9，øø，ø2
LD $71 \varnothing$ DATA ø2，ø日， $8 \varnothing, 1 B, A \varnothing, E B, \varnothing \varnothing$ ， $11, F D, \varnothing \varnothing$
DK $72 \emptyset$ DATA $\varnothing \varnothing, B 8,8 E, C \emptyset, B 9, A \varnothing, 1 F$ ，33，FF，8D
 ，C3，66，8C
PB $74 \varnothing$ DATA DB，$B E, C \varnothing, B 9, A D, 1 F, 8 D$ ， 3 E, øø，øø
J1 $75 \varnothing$ DATA 33，Cø，FC，F3，AB， $67, C 3$ ，D6，BC，DB
JC $76 \emptyset$ DATA $8 E, C \varnothing, B E, \emptyset 1, ø \varnothing, B F, \varnothing 1$ ．$ø \varnothing, 8 \mathrm{~B}, 16$
JB 77ø DATA øø，øø，2B，16，øø，øø，7D ， $84, F 7, D F$
MA 78ø DATA F7，DA，89，3E，øø，øø， $8 B$ ，ஜE，øø，ஜø
FP $79 \varnothing$ DATA 2B，øE，øø，øø，7D，ø4，F7 ，DE，F7，D9
AE 8øø DATA 89，36，øø，øø，3B，CA，7D ，ø日，BE，øø
8L B1ø DATA øø，87，CA，EB，$\varnothing 4,9 \varnothing, B F$ ， $6 \boxed{6}, \boxed{1}, 89$
QN $82 \varnothing$ DATA 36，øø，øø，89， $3 E, \varnothing \varnothing, \varnothing \varnothing$ ，8B，C2，D1
LJ $83 \varnothing$ DATA Eø，$A 3, \varnothing \varnothing, \varnothing \varnothing, 2 B, C 1,8 B$ D8，2B，C1
DC 84ø DATA A3，øø，øø，8B，36，øø，$\varnothing \varnothing ~$ ，BB， $3 \mathrm{E}, \varnothing \varnothing$
DJ $85 \varnothing$ DATA $ø \varnothing, 41,56,53,8 B, C 7,8 A$ ，E®，25，FE
 ， $8 \mathrm{~B}, \mathrm{DB}, 8 \varnothing$
ME $87 \varnothing$ DATA E7， $97, D 1, E ø, D 1, E \emptyset, \varnothing 3$ ，DB，8D， 6
8K 88ø DATA øø，øø，ø3，D8，8B，C6，D1 ，FB，D1，FB
D6 $89 \varnothing$ DATA D1，FB，ø3，D8，81，E6， 67 ，ص®，BA， 84
IP $9 \varnothing \varnothing$ DATA $\varnothing \varnothing, \varnothing \varnothing, 26, \varnothing A, \varnothing 7,26,88$ ， $67,5 B, 5 E$
LI 91ø DATA 83，FB，øø，7D，11，ø3，36 ，øø，øø，øア
KC 92ø DATA $3 E, \varnothing \varnothing, \varnothing \varnothing, \varnothing 3,1 E, \varnothing \varnothing, \varnothing \varnothing$ ，E2，B3，EB
 ， 3 E, Øの，$\varnothing \varnothing$
EJ 94ø DATA ø3，1E，øø， $6 \varnothing, E 2, A 2, ø 7$ ，C3，82，9C
JP 95ø DATA 99，øø，С4，øВ，øø，ø2，ø2 ，68， 8 ， 14
EJ $96 \emptyset$ DATA 1C，øø，ø2，ø2，ø日，8ø，C4 ，32， $6 \boxed{1}, 62$
$0097 \varnothing$ DATA $62,4 \mathrm{E}, \mathrm{BF}, \mathrm{C4}, 36, \boldsymbol{1}, \boldsymbol{6}$ ， $\operatorname{D2}, 4 \mathrm{~A}, \mathrm{BF}$
KD $98 \varnothing$ DATA C4，4ø，øø，ø2，ø2，52，BF ，C4，44，$\varnothing 8$
HI 99ø DATA ø2， $92,4 C, B F, C 4,48, ø \varnothing$ ，$\varnothing 2, ø 2,48$
OP 1 øøø DATA BF，C4，52，øø，ø2，ø2，5 ©，BF，C4， 65
 9，øø，ø2，ø2
HK 1 1ø2 DATA 56，BF，C4，7ø，øø，ø2，ø 2，5B，BF，C4
BH $1 \oplus 3 \varpi$ DATA $79, ø \varnothing, ø 2, ø 2,5 A, B F, C$ 4，7D，ஜ®，ஜ2


2，©2，4A，BF
BD 1 1ø5ø DATA C4，Aø，øø，ø2，ø2，øB， 8 б，C4，B4， 64
HP 1 ø6ø DATA ø2，ø2，C4，C5，øø，ø2，ø 2，54，BF，C4
CP 1 1ø7 DATA C9，øø，ø2，ø2，56， $\mathrm{BF}, \mathrm{C}$ 4，CD，øø，ø2
IA 1 ø日ø DATA ø2，5日，BF，C4，D6，øø，$\varnothing$ 2， $02,5 \varnothing, B F$
PH 1 199ø DATA C4，DA，øø，ø2，ø2，52，B F，C4，DE， $6 \mathfrak{D}$
 $\mathrm{E}, \varnothing \varnothing, \varnothing \varnothing, \varnothing_{1}$
NH $111 \varnothing$ DATA $97,41,52,52,59,53,4$ उ，4E，FB，$\varnothing$ ø
 1，65，45，52
 E，9ø， 0 E ， 109
JO $114 \varnothing$ DATA $\varnothing \varnothing, \emptyset 1,67,4 D, 45,4 \mathrm{D}, 4$ C，49，4E，45
： $115 \varnothing$ DATA 22，ø1，øø，3ø，9ø，बE，$\varnothing$ ø，øø，ø1，ø7
CH $116 \varnothing$ DATA $53,43,4 \mathrm{E}, 41,52,52,5$ 9，E1，øø，øø


## Program 2：LOVE File Maker

DJ 1ø DIM $\mathrm{BX}(11), \mathrm{BY}(11), \mathrm{EX}(11), \mathrm{E}$ Y（11）
PH 26 FOR $\mathrm{N}=\emptyset$ TO 11：READ BX（N），B $Y(N), E X(N), E Y(N): N E X T$
DC $3 \varnothing$ DATA $-22,3,-22,-3,-22,-3$ ，－ 14，－3
OA $4 \varnothing$ DATA $-1 \varnothing, 3,-1 \varnothing,-3,-1 \varnothing,-3,-$ 2，－3
EL $5 \varnothing$ DATA $-2,-3,-2,3,-2,3,-19,3$
J\＆ 69 DATA 2，3，6，$-3,6,-3,19,3$
${ }^{F 6} 7 ⿷$ DATA $22,3,14,3,14,3,14,-3$
os $8 \varnothing$ DATA $14,-3,22,-3,2 \varnothing, \varnothing, 14, \varnothing$
8А 9ø $C X=326: C Y=1 ø 6: A=6.2831853 *$
CF 1 øø NUMSCNS＝71
JI $43 \varnothing$ INPUT＂OUTPUT FILE NAME＂；$F$ \＄：OPEN F FOR OUTPUT AS 1
EE $44 \varnothing$ PRINT＂COMPUTING SCREEN NU MBER：＂；
HB $45 \varnothing$ FOR SCRN $=1$ TO NUMSCNS：PRI NT SCRN；
NH $46 \varnothing$ BOSUB 1 øøø
IE 47® PRINT＊1，CHR\＄（157）；CHR\＄（25 5）；：NEXT SCRN
FO 48 g PRINT\＃1，CHR（25）；CHR $\$(252$ ）：CLOSE 1：PRINT
BJ $49 \varnothing$ PRINT＂ANIMATION DATA FILE ＂；CHR（34）；Fs；CHR（34）；＂ IS COMPLETE＂：END
CL $5 \not \square \varnothing$ PRINT\＃1，CHR（INT（X1）AND 255）；CHR（INT（X1／256））；CH R\＄（INT（Y1））；CHR（ஜ）；
KA $51 \Phi$ PRINT\＃1，CHR\＄（INT（X2）AND 255）；CHR（INT（X2／256））CH R\＄（INT（Y2））；CHR\＄（ø）；
MD $52 \varnothing$ RETURN
HF 1 Øøø FDR $\mathrm{N}=\varnothing$ TO 11
KL $1 ø 1 \varnothing \mathrm{ZE}=-\mathrm{BX}(\mathrm{N}) \mathrm{ESIN}(\mathrm{A})+3 \varnothing$
PO 1 1 $10 \times 1=1 \varnothing \varnothing * B X(N) * \operatorname{COS}(A) / Z E+C$ $X: Y 1=-1 ø \boxminus * B Y(N) / Z E+C Y$
MP $1 \varnothing 3 \varnothing \mathrm{ZE}=-E X(N) * \operatorname{SIN}(A)+3 \varnothing$


II $165 \varnothing$ gosub $5 ø \varnothing$
Di 1ø6ø NEXT N：$A=A-8.726646 E-62$
JA $167 \varnothing$ RETURN
Program 3：CUBE File Maker
bF 1 ，PROGRAM 3
OH 2 ，
WH 16 DIM $V(8,3), S V(8,2), 5(6,5)$ ，
$N(6,3), E(12,3)$
FE 20 FOR $I=1$ TO 8：FOR $J=1$ TO 3： READ $V(I, J):$ NEXT $J, I$
A日 $3 \varnothing$ FOR $I=1$ TO 6：FOR $J=1$ TO 5： READ S（I，J）：NEXT J，I
 ，－4ø，4ø，4币，－4ø，－4ø
PJ $5 \varnothing$ DATA $-4 \varnothing,-4 \varnothing,-4 \varnothing,-4 \varnothing,-4 \varnothing, 4$

LE $6 \varnothing$ DATA $1,2,3,4,1,1,8,7,2,1,8$ ，5，6，7，8
NE $7 \varnothing$ DATA $5,4,3,6,5,2,7,6,3,2,4$ ，5，8，1，4
KP 9ø $\mathrm{CX}=32$ Ø： $\mathrm{CY}=1$ øø： $\mathrm{TH}=.2: \mathrm{PH}=.8$ ： PPD＝2øøø：DIST $=2$ 2øøø
HH $10 \varnothing$ NUMSCNS＝95
JM $43 \varnothing$ INPUT＂OUTPUT FILE NAME＂；F ©IOPEN F F FOR OUTPUT AS 1
EE 44ø PRINT＂COMPUTING SCREEN NU MBER：＂；
KB 45ø FOR SCRN＝1 TO NUMSCNS：PRI NT SCRN；
NH $46 \varnothing$ bosub 1 1øøø
IE 47ø PRINT＊1，CHR\＄（157）；CHR\＄（25 5）；：NEXT SCRN
FO 48 g PRINT\＃1，CHR $\$(25)$ ；CHR $\$(252$ ）：CLOSE 1：PRINT
BJ $49 \varnothing$ PRINT＂ANIMATION DATA FILE ＂；CHR\＄（34）；F\＄；CHR\＄（34）；＂ Is COMPLETE＂：END
CL $5 \nsubseteq \varnothing$ PRINT\＃1，CHR\＄（INT（X1）AND 255）；CHR（INT（X1／256））；CH R末（INT（Y1））；CHR\＄（ø）；
KA 51ø PRINT\＃1，CHR\＄（INT（X2）AND 255）；CHR（INT（X2／256））；CH R末（INT（Y2））；CHR（ $\quad$ ）；
HD $52 \emptyset$ RETURN
KC 1 1gø $\operatorname{S1}=\operatorname{SIN}(T H): C 1=\operatorname{COS}(T H): S 2$ $=\operatorname{SIN}(\mathrm{PH}): \mathrm{C2}=\mathrm{COS}(\mathrm{PH})$
PP 1 1ø1ø FOR $I=1$ TO $8: X=V(I, 1): Y=$ $V(1,2): Z=V(1,3): S X=-X * S 1$ ＋Y Y C1
FL 1ø2б SY＝－X＊C1＊C2－Y＊S1＊C2＋Z＊S2 ：SZ＝－X＊S2 2＋DIST
IB $163 € \operatorname{SV}(1,1)=P P D *(2.67$ ：SX／SZ） ＋CX：SV（I，2）＝－PPDZ（SY／SZ） ＋CY：NEXT
10 1 164б FOR $I=1$ TO $6: F=S(I, 1): G=$ S（I，2）： $\mathrm{H}=\mathrm{S}(\mathrm{I}, 3): \mathrm{Ul}=\mathrm{V}(\mathrm{B}, 1$ ）$-V(F, 1): U 2=V(B, 2)-V(F, 2$ ，
FL 1 ø5ø $U 3=V(B, 3)-V(F, 3): V 1=V(H$, 1）$-V(F, 1): V 2=V(H, 2)-V(F$ ， 2）：$V 3=V(H, 3)-V(F, 3)$
8J $1069 \mathrm{~N}\left(\mathrm{I}_{2} 1\right)=\mathrm{U} 2 \mathrm{Z} \mathrm{V} 3-\mathrm{V} 2 \mathrm{zU3}: \mathrm{N}(\mathrm{I}, 2$ ）＝UЗะV1－V3＊U1：N（I，3）＝U1 V2－V1＊U2：NEXT
 ＊S1：ZE＝DIST ${ }^{\text {\＃}}$ C2：$M=1$
JO 1 ø日ø FOR $I=1$ TO 6：E2＝S（I，1）：W $X=X E-V(E 2,1): W Y=Y E-V(E 2$, 2）：$W Z=Z E-V(E 2,3)$
NH $199 \%$ IF（ $N(I, 1)$ ）$W X+N(I, 2)$＊WY + $N(I, 3)$ \＃WZ $)<=\varnothing$ THEN $114 \varnothing$
 2＝S（I，J）：FOR K＝1 TO M
KH 1110 IF $E(K, 1)=E 2$ AND $E(K, 2)=$ E1 THEN E（K，3）＝2：BOTO 11 39
EP 1120 NEXT K：$E(M, 1)=E 1: E(M, 2)=$ E2：$E(M, 3)=1: M=M+1$
BH $113 \varnothing E 1=E 2$ ：NEXT J
CB 114ø NEXT I：FOR I＝1 TO 12：IF $E(I, 3)=\varnothing$ THEN $116 \varnothing$
CH $115 \varnothing \mathrm{~J}=\mathrm{E}(\mathrm{I}, 1): \mathrm{K}=\mathrm{E}(\mathrm{I}, 2): \mathrm{x} 1=\mathrm{SV}($ J，1）：Y1＝SV（J，2）：X2＝5V（K， 1）：$Y 2=5 V(K, 2): g 0 s U B 5 \varnothing \varnothing$
PC 116ø NEXT： $\mathrm{TH}=\mathrm{TH}+6.544985 \mathrm{E}-62$ ： $\mathrm{PH}=\mathrm{PH}+6.544985 \mathrm{E}-62$ ：IF SC RN＜4B THEN PPD＝PPD +583.3 ：RETURN
IA $117 \boldsymbol{1}$ PPD＝PPD－583．3：RETURN

# COMPUTEI's All New Apple Applications Special 

COMPUTE!'s latest Apple Applications Special features in-depth articles and interviews, all the inside news about Apple, clearly written tutorials, software buyer's guides, new product information, and valuable ready-to-type-in programs for all Apple users.


## Apple owners find these special Apple issues the most understandable, complete, and valuable resources available today.

## PLUS

All the programs in COMPUTE!'s Apple Applications Special are also available on a timesaving disk, ready to run on your Apple II, II +, IIe, and IIc. The Disk costs only $\$ 12.95$ (plus $\$ 2.00$ shipping and handling) and gives you immediate access to all the great programs in this special issue.

Look for the Fall/Winter 1986 issue of COMPUTE!'s Apple Applications Special on sale where you buy other COMPUTE! publications, or order directly from COMPUTE!. This special issue goes on sale October 7, 1986.
Send in the attached order card or call toll free 800-346-6767 (in NY call 212-887-8525).

## Features

## The Latest At Apple

An inside look at the newest products from Apple. Impressive hardware, sophisticated software.
Interview: William Mensch
A fascinating talk with the designer of the chips inside the millions of Apple computers. What we can expect in the coming years.

## Business Applications

## Mastering The Macintosh

Power software for the Macintosh takes Apple's innovative computer to new heights. Complete tutorial and application ideas.

## New On The Wire

Telecommunications keeps exploding-witness the new information services, new software, and powerhouse 2400 baud modems. Our telecommunications specialists look at all this and more.

## At School

## Experts At The Table

A panel of well-known software developers, educators, and computerists explain where educational computing has been, where it's going, and why.

## The Story Machine

Children of all ages can write, read, and print stories up to 20 pages long with this easy-to-use word processor for all Apple II computers.

## Solarpix

Educational software that entertains, this tour of the solar system is a dazzling display of the Apple's graphics power.

## Hi-Res Poster Printer

Print hi-res drawings in poster size for banners, signs, and business presentations. Two sizes and a simple-to-use menu make it a snap.

## At Home

## Your Graphics Primer

Tips, techniques, and more show how to create impressive graphics on the Apple II.

## Power Sketch

This hi-res sketching program for the Apple II puts paint, draw, fill, air brush, and other tools in every artist's hands. Save and load screens to disk.

## High Rise

This unique game of elevators and an out-of-control robot is written entirely in machine language. Easily one of the best Apple arcade-style games we've ever published.
DOS Adjust
Customize DOS 3.3 with this comprehensive program that's easy to use: no programming knowledge required.

## Apple User Groups

A complete list of all Apple user groups.

## And much more

Including reviews, buyer's guides, new products, and useful programs.

# Powerkey For Apple 

Patrick Parrish, Programming Supervisor

This valuable utility puts 52 customized strings or keywords instantly at your fingertips. You can even create several sets of custom commands for use with different applications. For all Apple II series computers with DOS 3.3 or ProDOS.

Using an Apple II computer usually involves a considerable amount of typing, and most of us-good typists or not-would be happy to automate the process of commmunicating with our machine. Have you ever wished you could just strike one key and produce a directory, run a program, or perform some common task?
"PowerKey" provides a selection of 52 different one-touch keywords which you can customize to your own liking. It lets you access up to 52 keywords or other strings of your own by pressing either the Open Apple or Solid Apple key (or paddle buttons for those who have an Apple II + , which lacks these keys) along with one of the letter keys (A-Z). Although the program relies on a short machine language routine, you can use it without understanding machine language at all.

## Entering The Program

This utility is written in three parts. Program 1, POWERKEY.CUSTOM, is a BASIC program that lets you create and save tables of your custom strings or keywords to disk. Program 2, POWERKEY.LOADER, is a BASIC loader which POKEs the machine language driver routine into memory and saves a copy of this code to disk in the form of a binary file. (Since Program 2 uses the name POWERKEY.BINARY for the file it creates, you must not use that name for Program 2 itself. If you do, you'll get a FILE TYPE MISMATCH error when Program 2 is run.) Program 3, POWERKEY.SYSTEM, is a short BASIC program which loads both the keyword table and the driver routine, and then activates PowerKey. Before going any further, carefully type in these three programs and save a copy of each to disk.

## Creating Customized Keys

After entering Programs 1-3, load and run Program 1, which creates a customized table of keywords and strings. The first prompt asks if you want to load a keyword table from disk. Since this is the first time you've run the program, no tables yet exist, so you should press N for no. In the future, after creating one or more tables, you could also press
$Y$ to gain access to a preexisting table. If you press $Y$, the program displays a directory and asks you to enter the filename of the table to load. If you press RETURN at this prompt without entering a name, PowerKey looks for a default file named TABLE.

If you've specified that no keyword table is to be loaded, Program 1 reads in its 52 default keywords (see lines 910-960). The first 26 keywords can be accessed with the Open Apple key (or the paddle 0 button), and the second 26 keywords by the Solid Apple key (or the paddle 1 button). You can change or rearrange the keywords in the DATA statements if you like, but make sure not to add or delete any keywords. You'll get an OUT OF DATA error if there aren't at least 52 DATA items.

Now PowerKey displays keywords $1-26$ on the screen. To the left of each keyword is the letter that will access it. For instance, the keyword AND is represented by $A$. Each keyword or string in the table can be up to 16 characters long, but they can be combined for longer commands. A table can occupy a maximum of 832 bytes and unused characters are signified by dots.

At the bottom of the screen, you are given three options. You can press A to Alter a keyword, the

Solid Apple key (or paddle 1 button) to look at the second 26keyword set, or W to write the completed table to a disk file. You can switch back and forth between keyword sets by pressing the Solid Apple key (or paddle 1 button) and Open Apple key (or paddle 0 button).

For practice, let's change CATALOG, the current default keyword accessed with Open Apple-C. Select the Open Apple keyword set, then press $A$ and the program prompts you for the letter of the keyword you wish to change. Enter C for the keyword CATALOG. Let's add a carriage return to this keyword so that you'll be able to examine the disk directory from immediate mode with only one keystroke. Type CATALOG followed by a backslash ( $\backslash$ ), then press RETURN. The backslash always stands for a carriage return character.

The screen should now reflect the change you've made. Notice that the backslash is shown as a control character (CTRL-M is equivalent to RETURN). Other keywords or strings in the table can be altered in the same manner. In fact, if you anticipate repeatedly using a phrase longer than 16 characters in your programming, stretch it out over two or more 16-character strings.

Once the table suits you, press W (for Write) to save it to disk. At this point, the 52 strings in your table are converted to their ASCII equivalents and POKEd into memory at 37376 . To distinguish a string from the one that follows, the last character of each string has its high bit set ( 128 is added to its ASCII value). Before the program saves the table, you are allowed once more to look at the directory on the target disk. After this, a filename for your table is requested. Again, if you strike RETURN, the default filename TABLE is chosen for you. Before the program ends, you are given a chance to put a copy of this file on other disks as well.

## Installing The Driver

With the keyword table safely on disk as well as in memory, run Program 2. Line 110 of this program POKEs the PowerKey ML driver routine into memory at 768. This
area is safe from BASIC, so PowerKey should not interfere with, or be overwritten by, most programs. Line 130 saves a copy to disk using the filename POWERKEY.BINARY.

PowerKey is now ready to be activated. Type CALL -768 and press RETURN. Then, press Open Apple (or paddle button 0 ) along with the A key. The keyword AND should appear on the screen. Press RETURN and try another one. Hit Open Apple and C for CATALOG. Immediately, a directory of your disk appears on the screen (recall that we added a carriage return to CATALOG).

Try out some more keywords, using the Solid Apple (paddle button 1) set as well. The computer recognizes your keywords and strings from immediate and program mode as well as from the monitor.

## Putting it All Together

Because PowerKey is on your disk as a binary file, it can easily be loaded and run by other programs. In fact, this is just what Program 3 does. It sets HIMEM to protect the reserve space for the keyword table, then asks you to specify the name of the table to be loaded from disk (press RETURN alone at the prompt to load the default file TABLE). The POWERKEY.BINARY machine language file created by Program 2 is loaded into memory, and activated with the appropriate CALL. You can even have PowerKey automatically loaded when you boot your disk if you use DOS 3.3. Simply save Program 3 as the HELLO file on the desired disk.

You can also load PowerKey from immediate mode. With DOS 3.3, type in the following line (substitute the appropriate table filename for TABLE):

## HIMEM:37376:PRINT CHR\$(4)"BLOAD TABLE,A37376":PRINT CHR\$(4) "BLOAD POWERKEY.BINARY":CALL 768

If you are using ProDOS, substitute this line:
HIMEM:36352:PRINT CHRS(4)"BLOAD TABLE,A37376":PRINT CHR\$(4) "BLOAD POWERKEY.BINARY":CALL 768

## How It Works

PowerKey works basically the same
whether you are using DOS 3.3 or ProDOS. In either operating system, it relies on a method known as a wedge. The input vector that normally points to the keyboard input subroutine (KEYIN) at \$FD1B, is rerouted to point instead to the starting location of our machine language code. Once this is done, the program checks a flag to see whether it is already in the process of printing a keyword. If not, it checks the Open and Solid Apple keys. The routine also responds to paddle button presses, since the Open and Solid Apple keys are read by the same circuitry that reads the buttons.

If one of the special keys is pressed, PowerKey begins printing the one-touch keyword. First, the relative number $(0-51)$ of the desired keyword is determined, a flag is set, and the keyword is located in the table. The first character of the word is then put in the accumulator, the table location is updated, and we return to BASIC. The operating system then prints the character in the accumulator and returns to the program for another character. The next time through the program, another character is loaded into the accumulator since the flag is set. This process continues until the last character of the keyword or phrase is detected (this character has the high bit set). The flag is then set to zero and we're returned to BASIC.

Before all this can happen, however, the program must go through a short initialization routine to determine which operating system is installed. This is done by looking at the starting location for ProDOS's global page (\$BF). When ProDOS has been booted, the value in location \$BF00 is always 76 (representing the JMP command). If this is the case, then the vector that points to KEYIN (CHIN1 at \$BE32\$BE33) is loaded in low-byte/highbyte format with the starting address for our routine, and the program returns to BASIC.

If the value at $\$$ BF00 is some other value, then the program assumes we are in DOS 3.3. In this case, the input vectors (KSW for KeySWitch) at \$38-\$39, which normally point to KEYIN, are loaded in a likewise manner with the starting
address of our program. We then jump to a routine at \$3EA which updates the input pointers with these new values, reconnects DOS, and returns us to BASIC. Henceforth, with either operating system, our routine gets called so we can print our keywords.

## Program 1: Keyword Table Customizer

For instructions on entering these listings, please refer to "COMPUTEI's Guide to Typing In Programs" in this issue of COMPUTEI.

971 1øø REM OMNIKEY. CUSTOM
C6 110 TEXT :TL = 37376
9A $12 \emptyset$ HIMEM: TL: IF PEEK (48896 ) $=76$ THEN HIMEM: TL -1 Ø24: REM TL IS TABLE LOCA TION; IF PRODOS, HIMEM IS MOVED DOWN 1K MORE
$2 B 13 \emptyset$ FOR I $=768$ TO 777: READ A: POKE I, A: NEXT : DATA $1 ø 4,168,1 ø 4,166,223,154,7$ 2,152,72,96: REM ONERR FI x
69 14ø DIM $A \$(52): F \$=" . .$. ........": $\mathrm{R} \$(\varnothing)=$ "OPEN-A PPLE":R\$(1) = "SOLID-APPL $E^{\prime \prime}: P=\emptyset:$ REM APPLE KEYS CORRESPOND TO PADDLE BUTT ONS
D5 15ø HOME : HTAB 11: VTAB 6: I NVERSE : PRINT "KEYWORD C USTOMIZER": NORMAL
C1 $16 \emptyset$ VTAB 1ø: PRINT "WANT TO L OAD A TABLE FROM DISK";: GOSUB $79 \emptyset$
F9 $17 \emptyset$ IF $\mathrm{X}<>89$ THEN $2 \emptyset \emptyset$
$5518 \emptyset$ GOSUB $83 \emptyset$
E7 19ø $W=\emptyset: V=13$ : GOSUB 48ø: GOTO 21ø
7F 2øø FOR I = 1 TO 52: READ A\$ ( I) : NEXT
4. $21 \varnothing$ GOSUB 28ø

50 $220 \mathrm{X}=$ PEEK $(-16384): Y=P$ EEK ( - 16287): $Z=$ PEEK ( - 16286): IF $X<=127 \mathrm{~A}$ ND $Y<=127$ AND $Z<=12$ 7 THEN 229
5A 230 POKE - 16368, Ø: $X=x-12$ 8: IF $X=87$ THEN $57 \varnothing$
94 24ø IF $Z>127$ AND $P=\varnothing$ THEN $P=1:$ GOTO $21 \varnothing$
B6 25 Ø IF $Y>127$ AND $P=1$ THEN $P=$ Ø: GOTO 21ø
90260 IF $\mathrm{X}=65$ THEN $36 \emptyset$
IC $27 \emptyset$ GOTO $22 \emptyset$
$3028 \emptyset$ HOME : VTAB 2: HTAB 11: I NVERSE : PRINT R $\$(P)$; : ND RMAL : PRINT " KEYWORDS: " : PRINT
9A $29 \varnothing$ PRINT $: L=1: H=13:$ FOR $J=1$ TO 22 STEP 21: FOR
$I=L$ TO $H:$ INVERSE : HTA B J: PRINT CHR\$ $(64+I)$; : NORMAL : PRINT " ";
C4 3øø D\$ $=A \$(I+(P=1) * 26)$ : FOR $Z=1$ TO LEN (D\$): $X$ $=\operatorname{ASC}(\operatorname{MID} \$(D \$, Z, 1)):$ IF $x<32$ THEN INVERSE : PRINT CHR $\$(X+64)$; : NOR MAL : GOTO 32ø
$9831 \emptyset$ PRINT CHR\$ (X);
5A $32 \emptyset$ NEXT $Z:$ PRINT MID $\$$ ( $F \$, 1$, 16 - LEN $(A \$(I+(P=1)$
(26))): NEXT :L = 14:H =

26: VTAB 5: NEXT
FA 330 UTAB 20: PRINT "PRESS: "; : INVERSE : PRINT "A";: N ORMAL : PRINT " TO "; IN VERSE : PRINT "ALTER";: N QRMAL : PRINT " A KEYWORD

BA $34 \emptyset$ UTAB 21: HTAB 8: INVERSE : PRINT R\$ $(P=\varnothing)$; : NORMA L : PRINT " FOR ";: INVER SE : PRINT R\$ $(P=\varnothing)$; : NO RMAL : PRINT " SET, ": HTA B 8: INVERSE : PRINT "W"; : NORMAL : PRINT " TO "; INVERSE : PRINT "WRITE"; : NORMAL : PRINT " TABLE TO DISK."
$6835 \emptyset$ REM INPUT KEYWORD
91 36ø VTAB 2ø: HTAB 28: PRINT " ": HTAB 8: PRINT "
": HTAB 8: PRINT "
28370 UTAB 2Ø1 PRINT "ENTER KEY ( $\mathrm{A}-\mathrm{Z}$ ) TO CHANGE ";: INPU T L\$:L = ASC (L\$) - 64: I FL < D ORL>26 OR LEN (L\$) $>1$ THEN $37 \emptyset$
71389 VTAB 22: PRINT "NEW KEYWO RD FOR "; : INVERSE : PRIN T L\$;: NORMAL : PRINT " ? ";: PRINT F\$
86390 VTAB 24: PRINT "(")" WILL EMBED A CARRIAGE RETURN) ";: HTAB 2ஏ: VTAB 22:C = Ø: D\$ = ""
C7 4 Øø $X=$ PEEK $(-16384)$ : IF $X$ $<=127$ THEN 4øø
5B 41 Ф POKE - 16368, ø: $X=X-12$ 8: IF $X=13$ THEN 469
B9 $42 \emptyset$ IF $X=92$ THEN $X=13$
$0943 \emptyset C=C+1: D \$=D \$+C H R \$$ $(X)$ : IF $X<32$ THEN INVER SE : PRINT CHR\$ $(X+64)$; : NORMAL : GOTO 450
9F $44 \varnothing$ PRINT CHR $\$(X)$;
D7 450 IF C < 16 THEN 4 4 g
B8 $46 \emptyset \mathrm{~A} \$(\mathrm{~L}+(\mathrm{P}=1)$ 26)$=\mathrm{D} \$$ : FOR I = 1 TO 4øØ: NEXT : GOTO 21ø
$9247 \emptyset$ REM LOAD TABLE
C2 $48 \emptyset$ ONERR GOTO $75 \emptyset$
47 49ø HOME : HTAB 6: VTAB 1ø: G OSUB 69Ø: PRINT : PRINT C HR\$ (4) "BLOAD "FL\$: POKE 216, $\varnothing$
57 5øø VTAB 16: HTAB 1ø: PRINT " READING TABLE..."
$7451 \varnothing \mathrm{C}=\varnothing$ : FOR I = 1 TO 52: EF $=\varnothing$
E9 $52 \emptyset A=$ PEEK (TL + C): IF $A>$ 127 THEN $A=A-128: E F$ $=1$
JE 530 A $\$(I)=A \$(I)+\operatorname{CHR} \$(A):$ $C=C+1:$ IF EF THEN NEX T I
3754 IF I < 53 THEN 52ø
If $55 \emptyset$ RETURN
$6356 \emptyset$ REM SAVE TABLE
EF 57ø HOME : VTAB 7: HTAB 9: NO RMAL : PRINT "...SETTING UP TABLE"
2F 58ø C $=\emptyset: A=\varnothing: F O R I=1$ TO 52: $C=C+A: A=\operatorname{LEN}$ (A\$ (I)): FOR J = 1 TO A - 1

2E $59 \varnothing \mathrm{G}=\mathrm{ASC}$ ( MID\$ (A\$ (I) , J, 1 )) : : IF $G=92$ THEN $G=1$ 3
EA GøØ POKE TL + C + J - 1, G: NE XT J
$\begin{aligned} & 60619 \mathrm{~B}=\mathrm{ASC} \text { ( RIGHT\$ (A\$ (I), } 1 \\ &\text { ) })+128: \text { IF } B=22 \emptyset \text { THEN }\end{aligned}$
$B=141$
19629 POKE TL + C + A - 1, B: NE XT I
$5463 \emptyset$ VTAB 1ø: HTAB 6: PRINT "R EADY TO SAVE TABLE TO DIS K.": GOSUB 83ø: W = 1: HOM E
BC 64ø ONERR GOTO $75 \emptyset$
B1 $65 \emptyset$ VTAB 1ø: HTAB 6:V $=13: G$ OSUB 69ø: PRINT : PRINT C HR (4) "BSAVE "FL\$", A" ST R\$ (TL)",L日32": POKE 216, פ
55669 VTAB 16: HTAB 6: PRINT "A NOTHER COPY";: GOSUB 79ø
F8 679 IF $X=89$ THEN HOME : GOT 0 640
$9 E 68 \emptyset$ END
58690 PRINT "TABLE FILENAME: "; : INPUT FL\$: IF FL\$ $=$ "" THEN FL\$ $=$ "TABLE"
CA 7øØ VTAB V: PRINT "PUT PROPER DISK IN DRIVE \& HIT <RET URN>.";
बE $710 \mathrm{X}=$ PEEK $(-16384)$ : IF X < $=127$ THEN $71 \emptyset$
2E $72 \emptyset$ POKE - 16368, $: X=X-12$ 8: IF $X<>13$ THEN $71 \emptyset$
ID 730 RETURN
C7 746 REM DISK ERROR ROUTINE
9F $75 \emptyset$ PRINT : HTAB 8: PRINT "DI SK ERROR \#" STR\$ ( PEEK ( 222))"."

FD $76 \emptyset$ CALL 768: UTAB 18: UTAB 2 g: HTAB 8: PRINT "TYPE 'C " TO CONTINUE"; : GET S\$: IF $W=\varnothing$ THEN 48ø
$4277 \emptyset$ IF $W=1$ THEN HOME : GOTO 640
IB 78ø HOME : $V=15$ : GOTO 84ø
DD 79 PRINT " ("; : INVERSE : PR INT "Y";: NORMAL : PRINT "/";: INVERSE : PRINT "N" ;: NORMAL : PRINT ")?"
CC $8 \emptyset \emptyset \mathrm{X}=$ PEEK $(-16384)$ : IF X $<=127$ THEN 8øø
$2581 \varnothing$ GET S\$: POKE - 16368, $9: X$ $=X-128:$ IF $X<>78 \mathrm{AN}$ D $x<>89$ THEN 8 gø
IC 820 RETURN
$1183 \emptyset V=16:$ VTAB 13: PRINT "N EED A LOOK AT THE CATALOG FIRST"; : GOSUB 79Ø: IF X $=78$ THEN RETURN
$2284 \emptyset \mathrm{~W}=2$ : ONERR GOTO 75 g
45 85ø GOSUB 7øø
B6 86Ø POKE 34, Ø: HOME : HTAB 12 : PRINT "DISK CATALOG:": HTAB B: PRINT

DE $87 \emptyset$ POKE 34, 2: PRINT : PRINT CHR\$ (4) "CATALOG": POKE 2 16, $\square$
76 889 HTAB 8: PRINT : PRINT "CA TALDG ANOTHER DISK"; : GOS UB 79ø: IF $X=89$ THEN $V$ = 23: GOTO 85Ø
$3389 \varnothing$ PRINT : PRINT "PRESS RETU RN TO CONTINUE": GOSUB 71 g
43 9øø POKE 34, $:$ RETURN
C5 916 REM PADDLE $\varnothing$ OR OPEN APPL E KEY WDRDS
If 926 DATA AND, 日LDAD, CATALOG, D ATA , END, FOR, GOSUB, HOME, I NPUT, GET, READ, LOAD , MID\$ (
A3 $93 \emptyset$ DATA NEXT, QR, PRINT, STOP, R UN , SAVE, THEN, TEXT, VTAB, WRITE, PEEK, REM, CONT
26 94ø REM PADDLE 1 OR CLOSED AP PLE KEY WORDS
$0295 \emptyset$ DATA ASC (, BRUN , CLOSE, DEL , DIM, FLASH, GOTO, HTAB, INVE

## FA $96 \varnothing$ DATA LEFT\$(,NEW, OPEN, POKE ,RIEHT \$ (, RETURN, STR\$ (,STE P, TAB C, VERIFY, INT C, CALL , L ENC, CLEAR

## Program 2:PowerKey Binary File Creator

A4 $1 \varnothing \varnothing$ REM OMNIKEY.LOADER
DJ 116 FOR I $=768$ TO 939: READ A: POKE $I, A: X=X+A: N E$ XT
A2 $12 \emptyset$ IF $\mathrm{X}<>18 \emptyset 1 \varnothing$ THEN PRINT "ERROR IN DATA STATEMENT s.": STOP

E2 130 PRINT CHR\$ (4)"BSAVE OMNI KEY. BINARY, A768, L172"
$8114 \varnothing$ DATA $162,146,134,7,16 \emptyset, \varnothing$, 132,6
A4 $15 \varnothing$ DATA $162,33,16 \varnothing, 3,173, \varnothing, 1$ 91,2ø1
66 $16 \varnothing$ DATA $76,2 ø 8,7,142,50,190$, 140,51
If $17 \varnothing$ DATA $196,96,134,56,132,57$ ,76, 234
IA $18 \emptyset$ DATA $3,44,169,3,48,94,32$, 27
$2819 \varnothing$ DATA 253, 72, 32, 74, 255, 173 ,97,192
AJ $20 \varnothing$ DATA $16,7,169,9,141,17 \emptyset, 3$ ,24ø
FA $21 \varnothing$ DATA $1 \varnothing, 173,98,192,16,65$, 169, 26
F7 226 DATA $141,17 \emptyset, 3,1 ø 4,56,233$ ,193,48
C1 236 DATA $55,261,26,176,51,24$, 109,17ø
4A $24 \varnothing$ DATA $3,141,17 \varnothing, 3,169,255$, 141, 169
F9 $25 \emptyset$ DATA $3,173,17 \emptyset, 3,24 \emptyset, 38,1$ 60, $\varnothing$
F4 $26 \emptyset$ DATA $162, \emptyset, 23 \varnothing, 6,2 ø 8,2,23$ 6,7
$9127 \varnothing$ DATA $177,6,48,2,16,244,23$ 2,236
10 $28 \varnothing$ DATA $17 ø, 3,2 ø 8,238,32,63$, 255, 236
DB 29ø DATA 6,2ø日,9,23ø,7,2ø8,5, 1.04
of $36 \varnothing$ DATA $32,63,255,96,16 \varnothing, \varnothing, 1$ 77,6
6C $31 \varnothing$ DATA $141,171,3,23 \varnothing, 6,2 ø 日$, 2,23ø
$8832 \varnothing$ DATA $7,173,171,3,48,4,24$, 1.05

57336 DATA $128,96,169, \varnothing, 141,169$ ,3,133
23346 DATA $6,169,146,133,7,173$, 171,3
$1135 \varnothing$ DATA $96, \varnothing, \varnothing, \varnothing$

## Program 3: PowerKey Loader

## 75 1øø REM OMNIKEY.SYSTEM

C6 110 TEXT :TL $=37376$
IA 120 HIMEM: TL: IF PEEK $(48896$ ) $=76$ THEN HIMEM: TL -1 ø24
AA $13 \varnothing$ HOME : PRINT "ENTER KEYWO RD TABLE NAME"; : INPUT N : IF N\$ $=$ " " THEN N $\$=" T$ ABLE"
A5 14 Ø PRINT CHR\$ (4) "BLOAD "N\$" , A" STR\$ (TL)
A $15 \emptyset$ PRINT CHR\$ (4) "BLOAD OMNI KEY. BINARY"
$6816 \emptyset$ CALL 768: PRINT : PRINT " OMNIKEY IS ACTIVATED.": E ND

# Atari 130XE Automated RAM Disk 

Stephen J. Rockower

Offering high speed and instantaneous access to programs and files, the Atari 130XE's RAM disk is one of its most attractive features. Now it's even more effective with this utility that moves selected programs and files into the RAM disk automatically whenever you boot the system. Your system will be custom configured on power up. A floppy disk drive and Atari DOS 2.5 are required.

If you own an Atari 130XE, you may have a number of BASIC programs or other files which you like to put on the RAM disk whenever you boot up. Once in the RAM disk, those files are available almost instantly, but it's a tedious process to copy each file to RAM manually. "RAM Disk Loader" for the Atari 130XE automates that chore with a custom AUTORUN.SYS file. When you boot the system, it automatically transfers selected BASIC programs and text files from the default drive (D1:) to the RAM disk (D8:).

## Typing Instructions

Here's how to create the RAM Disk Loader. First, boot your computer with DOS 2.5. Go to the DOS menu to select option L; then load SETUP.COM. Use option 2 to create an AUTORUN.SYS file named D1TOD8.SAV. Now go back to BASIC and type in the program.

Note that the DATA statement in line 30 should contain the names of the BASIC programs or text files that you want to transfer to the RAM disk on power-up. When adding these names, include the full name and extender (such as PROG.BAS), but not the drive specifier (don't put D1: at the beginning of the name). Every extender must be exactly three characters long; add extra spaces if necessary to pad the extender to the correct length. The last DATA item in this series must be END which acts as a marker for the end of the list of filenames.

When you type line 40 , substitute the name of the program you want to run when the system boots. For example, if you want to run MYPROG.BAS from drive D1:, line 40 should look like this:

## 40 READ F\$:IF F $\$=$ "END" THEN RUN "D1:MYPROG.BAS"

Note that this program can be one of the programs you just put on the RAM disk (to run such a program, use the D8: drive prefix).

Be very careful when typing lines 290 and 560 , which contain tiny machine language routines stored in strings. These strings must be typed correctly, or the computer will probably crash. The REM statements at the end of each line explain exactly which characters to type in the strings. After you finish typing in the program, be sure to save a copy to disk. For the program
to work properly，you must use the same filename you specified when you created the AUTORUN．SYS file（D1TOD8．SAV）．Now you are ready to boot up again．This time， all your programs and data will be on D8．

With only slight modifications， you can use this program to transfer programs from D1：to D2：（rather than to D8：）without having to copy each file manually．This modifica－ tion allows you to do batch file copies from one drive to another．A second possibility is to eliminate the DATA line altogether and read the filenames from a previously created disk file rather than from DATA．With a statement like IN－ PUT\＃1，STRING\＄，you can bring in the name of each file to be trans－ ferred．The file could terminate with the name of the next program to run（IF STRING\＄＝＂END＂THEN INPUT\＃1，STRING\＄：RUN STRING\＄）．

## Program Techniques

The program begins by READing filenames one at a time from the DATA statements in line 30 ．If the name is not END，the program loops through the directory sectors $(361-368)$ one at a time in search of the file．When the file is found， FLEN holds its length．

The subroutine named GET－ BYTES determines whether this is a BASIC program or a file containing text or other data．Since the file header for a BASIC program always starts with two zeros，we assume that anything lacking two zeros in the header is not BASIC．The next six pairs of header bytes contain information about the size and lo－ cation of certain memory pointers． We are interested in the last two bytes，which tell us how many more bytes must be loaded to find the end of the file（DEND）．The computation in line 680 adjusts the total number for BASIC program files．

At this point，the program opens an IOCB（Input／Output Control Block）to read the bytes from FROM\＄into the string $\mathrm{ZZ} \$$ ． Then ZZ \＄is manipulated to allow for text／data（FLEN＊125）or a BASIC program（actually held as a string of length BYTES）．Before writing the string，we must find the
true end of the data．If you think about it，a text file of FLEN charac－ ters will have fewer than FLEN＊125 bytes．By eliminating the zero bytes－CHR\＄（0），the heart sym－ bol－we arrive at the true length of the file．This feature，incidentally， makes the program unsuitable for use with machine language files， since ML programs often contain one or more zero bytes．

Once you have this program working，you＇re likely to find many uses for it．I use it to move a main menu program onto the RAM disk， along with a number of programs and files I use to manage our house－ hold accounts．This method takes 20 to 30 percent less time than load－ ing in the same files manually．

## Ałari 130XE RAM Disk Loader

For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTE！．

CK 15 POKE 712，148：POKE 559， 6：POKE 8，255：POKE 731， 1
PP 2 g DIM A（128），ZZ末（125 15 D），F（ 15 ），FROM（15），RD ISK（15），B\＄（16），FNAME （16）
D6 25 TRAP 71.
KI 3 D DATA JUNK． 1 ，JUNK． 2 ，D1TODB．BXE，END
 EN RUN＂D1：NEXTPRQE．SA V＂
$K K$ FOR SNUM $=361$ TO 368
PH $6 \emptyset$ CLOSE \＃1：FLEN＝$=0$
JJ 7 Ø $A \$=\operatorname{CHR}(\S): A \$(128)=C H R$

FC 9 g DRIVE＝1：TYPE $=82$ ：$B U F=A D$ R（A）：GOSUB 26』：REM＂D ISC＂ROUTINE
ND 1 øø EOSUB 33ळ：REM＂．DECODE ＂ROUTINE
J\＆ 11 I 1 IF FLEN THEN SNUM $=368$
BF $12 \emptyset$ NEXT SNUM
HI 130 REM
HA 14ø FROM\＄＝＂D1：＂：FROM\＄（LEN （FROM ）+1 ）$=$ F \＆：RDISK $=$ FROM ：RDISK $(2,2)=" 8 "$
HF 15 EOSUB 6øछ：REM＂GETBYT ES＂
AB 17ø INDEX＝BYTES年（BYTESく＞ ）＋FLEN\＆ 125 \％（BYTES＝ ）

 Z象（2）$=\mathrm{ZZ}$（
KO $19 \varnothing$ OPEN $2, B, \varnothing, R D I S K \$: O P$ EN $1,4, \varnothing, F R O M$
DC 2ø円 I OCB＝1：TYPE＝7：BUF＝ADR （ZZ事）：GOSUB 5øø：REM＂ IOCB＂FOR READ
MK 21ן IF BYTES＞THEN $22 \boldsymbol{\square}$
EK 211 IF ZZ象（LEN（ZZ末））＝CHR （ $\curvearrowleft)$ THEN ZZ末＝ZZ末（1，LE N（ZZ末）－1）：GOTO 211
FC 212 INDEX＝LEN（ZZ\＃）
HP 22ø IDCB＝2：TYPE＝11：BUF＝AD R（ZZ末）：BOSUB 5øø：REM ＂IOCB＂FOR WRITE


## DD 24 EOTO 4 日

80250 END
IH 26 R 2 PM PROCEDURE＂DISC＂
KD 276 POKE 779，INT（SNUM／256 ）：POKE 778，SNUM－256事I NT（SNUM／256）
JA 28ø POKE 769，DRIVE：POKE 7 73，INT（BUF／256）：POKE 772 ，BUF－256事INT（BUF／2 56）：POKE $77 \boldsymbol{6}$ ，TYPE
 ：REM D．184，32，83，228， 96 or smali h ，space， Cap．S，inverse small d，ctrl－．
HD 3 Øø RETURN
HB 310 REM TYPE $=82$ FOR READ， 87 FQR WRITE
HJ 329 REM
AL 336 REM PROCEDURE＂DECODE ＂

CJ 34 FLEN＝$\quad$ ．
AN $35 \emptyset$ FOR $A=1$ TO $B$
 ）：IF $\operatorname{ASC}(B \$(1,1))>127$ THEN GOTO 46 g
 SC（B）（3））
MF 38ø FSTART＝ASC（B\％（4））＋256 ＊ASC（B\％（5））
OB 39 FNAME $\$=\mathrm{B}$（ 6,13 ）
KD 394 IF FNAME（LEN（FNAME \＄） ）$=$＂＂THEN FNAME $\$=$ FNA ME（1，LEN（FNAME ）-1 ）： EOTD 394
EP 4 Øø FNAME（LEN（FNAME \＄）＋1） ＝＂．＂：FNAME\＄（LEN（FNAME （\＄）+1$)=\mathrm{B}(14,16)$
EJ 41 IF FNAME $\$=F$ THEN $A=8$ ：GOTO 47．
CK 44曰 FLEN＝ø
BL 47 5 NEXT A
HM 48छ RETURN
IB 490 REM
ID 5øø REM Pracedure＂IOCB＂
BL 51ø REM ASSUMES IDCB ALRE ADY OPEN FOR READ OR WRITE
LF 529 BLOCK $=832+$ IOCB 16
AB $53 \%$ POKE BLOCK＋2，TYPE：REM READ $=7$ ，WRITE $=11$
LJ 54 ¢ POKE BLQCK +5 ，INT（BUF／ 256）：POKE BLOCK＋4，BUF －256的INT（BUF／256）
JD 55＠POKE BLOCK＋9，INT（INDE $X / 256$ ）：POKE BLOCK＋8，I NDEX－256速INT（INDEX／25 6）
KA 56\％I＝USR（ADR（＂hhh ${ }^{\text {FLVE＂）}}$ 。 IOCB $\ddagger$（ 6 ）：REM $h, h, h$ ，in verse t，L，V，inverse $d$
FC 57 © CLOSE $\operatorname{loCB}$
HK 58．RETURN
IC 59の REM
MO Gøø REM PROCEDURE＂GETBYT ES＂
FN 61 D OPEN W $1,4, \boldsymbol{D}$ ，FROM
CF $62 \boldsymbol{2}$ GET \＃1，I：GET \＃1，J
OF 6 З IF I $<>\varnothing$ QR $J<>\varnothing$ THEN BYTES＝6：GOTO 690
CA 64 Ø FOR $X=1$ TO 6
CI 65ø EET W1，I：GET \＃1，J
DD $66 \boldsymbol{6}$ NEXT $X$
HK 67g DEND＝256＊J＋I
NH 68．BYTES＝DEND－256＋14
时 69 CLOSE \＃ 1
HH 7 Øø RETURN
HH 710 REM
PO 720 PDKE 559，34
IL 730 ？＂ERROR＂；PEEK（195）； ＂AT LINE＂；PEEK（186） ＋256＊PEEK（187）

# IF-THEN-ELSE For SpeedCalc 

Anthony Chandler

This tutorial shows you how to get more out of SpeedCalc. By using clever formulas, you can set up a spreadsheet to perform different computations based on the result of logical IF tests. The techniques apply to any version of SpeedCalc, COMPUTE!'s powerful machine language spreadsheet program. (The Commodore 64/128 version of SpeedCalc appeared in the January, 1986 issue of compute. The Apple II and Atari versions were published in February 1986 and March 1986, respectively.)

SpeedCalc, the versatile spreadsheet program published in the JanuaryMarch, 1986 issues of COMPUTE!, offers a great variety of built-in functions. It supports all the math operations of BASIC, as well as two new ones (@ave and @sum), but there is no specific mention of how the program can perform conditional operations and make decisions. Here are techniques to make SpeedCalc calculate based on the outcome of logical tests modeled after the IF-THEN-ELSE construction in BASIC.

## More Than A <br> Glorified Calculator

Many people use a spreadsheet as little more than a glorified calculator: Once a sheet has been set up, you punch a button and the program performs a large number of related calculations. While the re-
sult of one calculation frequently serves as input for another, the process doesn't involve anything resembling intelligence on the part of the program. Nevertheless, the SpeedCalc spreadsheet program can test conditions and take action based on the results. The process works very much like the familiar IF-THEN-ELSE construction in BASIC.

In plain English, a typical IF-THEN-ELSE construction would be translated as, "IF a certain condition is true, THEN do the first task. ELSE if the condition is false, do the second task." A computer can't work with abstract concepts such as truth or falsity, but it's very good at telling the difference between one numeric value and another. When the computer performs an IF test in BASIC, it uses numeric values (usually -1 and 0) to represent true and false, respectively. You can verify this by entering the following statements in BASIC direct mode:
$\mathrm{A}=1$ :PRINT $(\mathrm{A}=1)$
$A=0: \operatorname{PRINT}(A=1)$
In Microsoft BASIC and most other versions, the computer prints -1 and 0 , indicating that it uses -1 to represent a true condition and 0 to represent a false condition. The BASICs on Apple II and eight-bit Atari computers use 1 instead of -1 to represent true. To implement IF-THEN-ELSE with a formula in SpeedCalc, we can take advantage of the fact that true and false are represented as simple numeric values.

## How Many Tesis Do You Need?

If you give the matter some thought, you'll discover that only two basic IF tests are needed to cover all possible cases. Here they are:

IF A>B THEN (this cell=) C ELSE (this cell=) D
IF A<>B THEN (this cell=) C ELSE (this cell=) D
In these examples the letters $\mathrm{A}, \mathrm{B}$, $C$, and $D$ represent the values contained in particular cells within the spreadsheet. A cell, of course, can contain a simple numeric value such as 2500 , a reference to another cell, or a complex expression such as (ab2*(@sqr(2))) or (12*ac24+ 52*11).

Other IF tests can be achieved by varying one of the preceding constructions. For example, these two statements are logically equivalent:

IF $\mathrm{A}=<\mathrm{B}$ THEN C ELSE D
IF B $>$ A THEN C ELSE D
Likewise, these two statements are equivalent:

## IF A = B THEN C ELSE D

IF A <> B THEN D ELSE C

## IF-THEN-ELSE Formulas

Every IF-THEN-ELSE statement can be broken into two separate parts-the IF test and its consequence. The first portion (for example, IF $A=B$ ) tests a logical condition. The second portion (for example, THEN C ELSE D) states the consequence of the test. The

THEN portion of the consequence is performed when the IF test is true, and the ELSE portion is performed when the IF test is false. Table 1 shows SpeedCalc formulas for the two IF tests described in the preceding section.

The consequence (THENELSE) portion of the formula will always be the same expression-$\mathrm{D}+(\mathrm{C}-\mathrm{D})^{*}(\ldots)$-which represents the logical statement ELSE + (THEN - ELSE)*(...). When the ELSE portion of the consequence is to be 0 , the expression reduces to a simple $C^{*}(\ldots)$. When the THEN portion of the consequence is to be 0 , all you need is the expression D - D*(...).

To express a complete IF-THEN-ELSE statement in a SpeedCalc formula, you need to multiply the consequence portion of the statement by the IF portion. For example, say that you wish to use this statement:

## IF A>B THEN C ELSE D

The SpeedCalc equivalent is expressed by this formula:
D+(C-D) * @int((@sgn(A-B)+1)/2)
Note that we have placed the consequence portion-D $+(C-D)$ first and the IF portion-@int( $(@ \operatorname{sgn}(\mathrm{~A}-\mathrm{B})+1) / 2)$-last. The multiplication operator (*) separates the two portions of the statement.

## Inside The IF Test

Recall that the computer ordinarily makes a decision based on an IF test by comparing two numbers. More specifically, it subtracts one number from the other, then determines whether the result is positive (true), or zero or negative (false). For example, to perform the statement IF $A>B$, we want to know whether the result of $(A-B)$ is positive or not. If it is positive, then A is greater than $B$. If $i t$ is zero, then $A$ equals $B$. If it is negative, $A$ is less than $B$. In other words, after subtracting the two numbers, we then need to know the sign of the remainder.

SpeedCalc, of course, has no difficulty performing the subtraction. To determine the sign of the result, you need only enclose the expression in a @sgn( ) function, using the formula @sgn(A-B). When the result of $A-B$ is positive,
$@ \operatorname{sgn}(A-B)$ resolves to 1 . When the result of $A-B$ is negative, it resolves to -1 , and when the subtraction yields 0, @sgn(A-B) yields 0 .

Now let's build on this basic expression to perform specific IF tests. To select only cases where A is greater than $B(\operatorname{IF} A>B)$, you need to select only the positive result. To do this, add the value of 1 , divide by 2 , and make the result an integer with the @int() function:

## @int((@sgn(A-B)+1)/2)

This formula yields 1 when $A$ is greater than B , and 0 in all other cases.

To select only cases where $A$ is unequal to B (IF $A<>B$ ), you need to include negative as well as positive results (in other words, all nonzero results). The @abs( ) function easily converts any negative value into a positive value:
@abs(@sgn(A-B))

This formula yields 1 whenever $A$ is unequal to $B$, and 0 only when $A$ equals $B$.

Now we have formulas which resolve to the value 1 when the desired condition is true or the value 0 when it is false. Table 2 shows the complete formulas.

For both formulas in Table 2, when the IF test is true (resolves to 1), the cell is made equal to $D+$ (C-D)*1. This performs the THEN part of the IF-THEN-ELSE statement, making the cell equal to $C$. When the IF test is false (resolves to 0 ), the cell is made equal to $D+$ (C-D)*0. This performs the ELSE part of the IF-THEN-ELSE statement by making the cell equal to D .

To take a more realistic example, say that you want SpeedCalc to compute the equivalent of the following statement:
IF $\mathrm{Q}>9$ THEN (this cell $=$ ) $\mathrm{Q}^{*} \mathrm{P}^{*} .85$ ELSE (this cell=) $\mathrm{Q}^{*} \mathrm{P}$
Now assume that the value $Q$ is in

## Table 1: IF Formulas

| IF Test | SpeedCalc formula |
| :--- | :--- |
| IF A > B | @int((@sgn(A-B)+1)/2) |
| IF A <> B | @abs(@sgn(A-B)) |

## Table 3: Quantity Discounts

| Unit price $\ldots \ldots \ldots \ldots \ldots \ldots$ |  |
| :--- | ---: |
| Quantity discounts: | 1 to $9-$ net |
|  | 10 to $99-10 \%$ |
|  | 100 up $-15 \%$ |

## Table 2: IF-THEN-ELSE Formulas

## Logical expression

IF A>B THEN C ELSE D IF A $<>$ B THEN C ELSE D

## SpeedCalc Formula

$=\mathrm{D}+(\mathrm{C}-\mathrm{D})^{*} @ \operatorname{int}((@ \operatorname{sgn}(\mathrm{~A}-\mathrm{B})+1) / 2)$
$=\mathrm{D}+(\mathrm{C}-\mathrm{D})^{*} @ \operatorname{abs}(@ \operatorname{sgn}(\mathrm{~A}-\mathrm{B}))$

Table 4: Quantity Discounts

| Quantity | 1 | 9 | 10 | 99 | 100 | 1000 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Tot. list | 10 | 90 | 100 | 990 | 1000 | 10000 |
| Disc 10 | 0 | 0 | 10 | 99 | 0 | 0 |
| Disc 100 | 0 | 0 | 0 | 0 | 150 | 1500 |
| Tot amt | 10 | 90 | 90 | 891 | 850 | 8500 |

## Sample Spreadsheet

|  | AA | AB |
| :---: | :---: | :---: |
| 001 | price $p$ | 10.00 |
| 002 | qty q | 0.00 |
| 003 | tot list | = ab1*ab2 |
| 004 | disc 10 | $\begin{array}{r} =\mathrm{ab} 3^{*} \cdot 1^{*} @ \operatorname{int}((@ \operatorname{sgn}(a b 2-9)+1) / 2){ }^{*} \\ @ \operatorname{int}((@ \operatorname{sgn}(100-\mathrm{ab} 2)+1) / 2) \end{array}$ |
| 005 | disc 100 | $=\mathrm{ab3}{ }^{*} .15^{*}$ @int( $@$ @gn(ab2-99)+1)/2) |
| 006 | tot amt t | = ab3 $-\mathrm{ab} 4-\mathrm{ab} 5$ |

cell $A B 1$ and the value $P$ is in cell $A B 2$. This formula produces the desired result:

```
= ab1*ab2+(ab1*ab2*.85-ab1*ab2)*@int
 ((@sgn(ab1-9)+1)/2)
```


## Boolean Operators

In certain cases the Boolean operator OR, NOT, or AND is required to perform a conditional test. The easiest of these to implement is NOT. If the value of $A$ is 1 , then the expression NOT A yields 0 . If A equals 0 , then NOT A equals 1. Both alternatives can be handled with this SpeedCalc expression:
abs(1-A)
The AND and OR operations can be simulated by combining two

IF tests. For an AND operation, the results of both IF tests are multiplied:
[consequence] * [IF test 1] * [IF test 2]
For an OR operation, the results of both IF tests are added together:
[consequence] * (IF test 1] + [IF test 2])

## A Practical Illustration

For example, say that your business wants to calculate the quantity discounts diagrammed in Table 3. When you sell items in quantities of 9 or fewer, no discount is given. A 10 percent discount is given on purchases of 10 to 99 items, and purchases of 100 or more items qualify for a 15 percent discount.

To calculate the discounts
within SpeedCalc, you need to set up a sheet with two conditional calculations; the first one requires an AND function. Run SpeedCalc and enter the sheet as shown in the figure.

To test whether the sheet performs as expected, enter some test results in cell AB2. You should get the results shown in Table 4.

Although the algorithms are simple, it is easy to make mistakes in logic when setting up such involved formulas. It often helps to write the statements on paper before entering the actual formula. Before using the formula for serious purposes, you should test it with some sample values to make sure it works correctly.

# Amiga BASIC Style 

Jim Butterfield, Associate Editor

Here's how to manage custom menus and output windows, read mouse input, trap background events, and master other techniques which give Amiga BASIC its unique character. The article also highlights some of the differences between Amiga BASIC and earlier BASICs, and includes a useful program for calculating mortgages.

There's a different style to BASIC programming on the Amiga. You should take a close look at new features; you'll discover concepts that lead to a radically different style of programming and user interaction.

To illustrate some of these con-
cepts, let's construct a simple Amiga BASIC program which analyzes the five important variables in a home mortgage: principal (amount borrowed), interest rate, period of loan, monthly payment, and balance due. Since interestcompounding schedules are different in Canada than in the United States, the program includes an option for choosing either schedule. We'll discuss elements of the program as we go through it.
[Editor's note: In the following listing we have used the \& character to indicate the end of a program line. Don't try to type this characterwe've deliberately chosen one that's not on the Amiga keyboard. The 4 character merely shows where you should press RETURN to end one program line and start another.]

## Initialization

REM Mortgage (Version 1) 4
DIM title\$(6), site\$(2), pudef\$(5)
, value\#(5), peryear (2), compound (2 ) 4
cal $=4$ : site $=14$
The REM identifies the program and version. The DIM statement defines the six arrays used in the program, which we'll discuss as we go along. Note that there are no line numbers in Amiga BASIC. They are not needed. Even with GOTO or GOSUB, it's usual to identify a line with a label, not a number. (You may include line numbers if you like-a feature included for the sake of compatibility with other BASICs-but since the line numbers are treated simply as labels, numeric order is irrelevant.)

Also, notice that we use descriptive words for variable names.

In the versions of BASIC on earlier Commodore computers, only the first two characters of the variable name were significant (HO\$ and HOUSEHOLD\$ would be considered the same name). In Amiga BASIC, names can be up to 40 characters long with every character significant (Householdbudget1 and Householdbudget2 are recognized as distinct names). Descriptive variable names make the program much easier to understand and reduce the need for explanatory REM statements. We also set the default value of the two variables that determine which menu items are selected. The loan variable to be calculated (cal) is 4 , the payment amount. The default interest compounding schedule (site) is that for country 1, Canada. Change either of these if you wish.

DATA Principal, Rate, Years, Paymen t, Balance, Quit 4
MENU 5, $\varnothing, 1$,"Calculate" 4
FOR $j=1$ TO 6: READ titleS $(j)<$
MENU 5,j,1-( $j=$ cal )," "+title\$( $j$ ): NEXT ${ }^{4}$

The DATA statement contains the items for the first of our custom menus, as well as the captions for the output window (the array title\$). One of the most significant features of Amiga BASIC is that the programmer can easily construct custom menus.

We'll choose menu 5 for our first custom menu so that menus 1-4 can retain their default uses: Project, Edit, Run, and Windows. The first MENU statement sets Calculate as the title for the menu, then the FOR-NEXT loop reads the DATA items into the corresponding menu slots. Note the expression $1-(j=c a l)$ for the third parameter of the MENU statement in the loop. Just like earlier Commodore BASICs, Amiga BASIC interprets a true expression as -1 and a false expression as 0 , so $1-(\mathrm{j}=\mathrm{cal})$ will evaluate to $1-(-1)=2$ when the value of $j$ equals the value of cal, and $1-(0)=1$, otherwise. A value of 2 for this parameter puts a check to the left of the menu item, so this feature is used to indicate which calculation option is currently selected. A value of 1 displays the menu item without a checkmark, but still makes it active; a value of 0 would deactivate the menu item,
leaving it dimmed, or ghosted, and impossible to select.
DATA Canada, 2, 6, USA, 12,14
MENU 6, 0,1 , "Country" 4
FOR j=1 TO 2: READ site\$(j), perye $\operatorname{ar}(j)$, compound $(j) \leftarrow$
MENU 6,j,1-(j=site)," "+siteS(j ): NEXT j 4

Different rules are used in the U.S. and Canada to work out a monthly interest rate based on the annual interest figure. In the U.S., the annual amount is simply divided by 12. In Canada, semiannual compounding is used, which involves dividing by two to get the semiannual rate and then using a more complex formula. The user will be able to pick the appropriate system from menu 6, which is titled Country. It would not be too hard to add extra menu items, such as compounding quarterly (the numeric DATA items would be 4,3 ). The FOR-NEXT loop here uses the same technique for flagging the current menu selection as the one above.

## Format With PRINT USING

| DATA | "\#,\#\#\#,\#\#\#.\#\#"4 |
| :---: | :---: |
| DATA | \#\#\#.\#\#\#\%) ${ }^{\text {\# }}$ \% |
| DATA | " \#\#\#.\#\#\#\# |
| DATA | "\#, \#\#\#,\#\#\#,\#\#" |
| DATA | "\#,\#\#\#,\#\#\#.\#\#" |
| FOR | $=1$ TO 5: READ pud |
| j4 |  |

These are the PRINT USING templates that tell how the numeric values of the five loan variables are to be printed. The principal amount, for example, is printed as a dollars-and-cents value. The annual interest rate, in contrast, will be shown to three decimal places with a percent sign.
DATA 1øøøø,1Ø,1Ø, 1,04
FOR $j=1$ TO $5:$ READ value\# $(j):$ NEXT ${ }^{j}$

These are just arbitrary figures to appear on the initial screen. I've picked a principal amount of $\$ 10,000$ at 10 percent over ten years. You could substitute your own default values if you like. Once the program is running, any of these values can easily be changed.

An important point: Note that the array into which the values are read, value\#, has an extra symbol at the end. The \# sign (pound sign, hash mark, or whatever you want to call it) indicates that these variables are double precision. If you've worked with previous Commodore
machines which offered only one level of numeric precision, you might be unclear about this issue. Here's the story: In earlier Commodore BASICs, variables worked to about ten digits of accuracy. That was enough-just barely enoughto do most home finance calculations. Normal (single-precision) Amiga BASIC variables-the type you usually get if you don't add a type identifier after the variable name-are reliable to only about seven digits. This means that it can't handle amounts of over about $\$ 167,000$ without losing pennies.

Computer scientists will tell you that single-precision Amiga BASIC variables have a 24 -bit mantissa, as opposed to the 32-bit mantissa in earlier Commodore BASICs. What it means to you is this: Whenever you need to deal with dollars-and-cents values-or with other values requiring a high accuracy-you need to call for a double-precision variable. Such a variable will have more accuracyenough to cover a federal budget and still be exact on the pennies. To specify double precision, add a \# sign to the end of the variable name. Be careful to include the sign each time you use the variable name, however. Amiga BASIC will consider value and value\# to be two different variables.

## A Custom Window

WINDOW 2,"Mortgage", $(10,10)-(4 \varnothing \varnothing$ ,1Ø0),84
WINDOW OUTPUT 24
GOSUB calc:GOSUB showval 4 LOCATE 7,14
PRINT "Use menu buttons to selec t option." 4
PRINT "Click on existing values
to change." ${ }^{4}$
GOSUB hang 4
WINDOW CLOSE 24
END4
Now we open a new window in which the calculations will appear. The only gadget we put on the window is the closing gadget (code 8). It's there so that the user can still put away the window manually in case the program is stopped. The window is not only created, but also selected for output. Then the initial calculations are displayed, along with brief instructions near the bottom of the window.

The program's main job is a subroutine called hang. We'll stay in that subroutine until the user
wants to quit, at which time the window will be closed. Here is the hang subroutine:
hang: 4
ON MENU GOSUB event 4
ON MOUSE GOSUB event 4
MOUSE ON4
MENU ON4
kwit=04
WHILE kwit<<1:WEND4
MOUSE OFF4
MENU OFF4
MENU RESET 4
RETURN 4
We define an action for the mouse and for the menus we previously defined. Clicking the left mouse button or selecting a menu item invokes the event subroutine. These two activities are interrupts or event traps. After they are activated with MENU ON and MOUSE ON, they will remain in place, waiting for the appropriate event to happen, until they are canceled or turned off. While they are active, it doesn't matter what the program is doing; a suitable stimulus will immediately cause the program to jump to the specified subroutine.

A variable called kwit is used by the program to tell when it's time to quit. As long as it's zero, the program stays in the WHILE-WEND loop. How does it ever get out of this seemingly endless loop? Remember the event traps we just enabled. Pressing the left mouse button or selecting a menu item will trigger a GOSUB to the event routine, which in turn calls subroutines to process the button click or menu selection. One menu selection, the Quit option from the Calculate menu, will change the value of $k w i$ to one to end the loop. After exiting the loop, we'll shut off the menu and mouse, disconnect the event traps, and return to the main program which ties things up.

## A Major Event

event: 4
$\mathrm{ms}=\operatorname{MOUSE}(\varnothing): \mathrm{mn}=\operatorname{MENU}(\varnothing) \leftharpoonup$
IF mn THEN GOSUB menuhit 4
IF ms THEN GOSUB eek 4
IF kwit= $\emptyset$ THEN GOSUB calc: GOSUB showval 4
RETURN 4
Now let's look at the routine where the real action takes place. When we arrive at the event subroutine, we know that one of two things has happened. Either the left mouse button has been clicked or a menu item has been selected by using the right mouse button. The MOUSE
and MENU functions are used to check which, and the appropriate service subroutine is called. Once the new value for cal or site has been established, we're ready to calculate new values, but first we check that kwit is still zero-we don't want to calculate values if the Quit option from the Calculate menu was selected. The new financial values are determined by calling the subroutine calc, then displayed using the showval subroutine. Keep in mind that we'll come back to this routine to recalculate anytime the data elementsor the rules-are changed.

## calc: 4

ON ERROR GOTO Oops 4
principal\#=value\#(1)4
rl\#=(value\#(2)/1øø/peryear(site)
$+1)^{\wedge}(1 / \text { compound }(\text { site }))^{4}$
rate\#=rl\#-14
months=value\# (3)*124
payment\#=value\# (4) 4
balance\#=value\# (5) 4
ON cal GOSUB fprin,fintr,fper, fp ay, fbal 4
scale=1øø:IF cal=2 OR cal=3 THEN scale=1øøø
value\# (cal)=INT(value\#(cal)*scal
e+.99)/scale4
ON ERROR GOTO 04
RETURN4
The calc subroutine is where the dirty work begins. The principal, interest rate, number of periods, payment amount, and final balance are extracted from the val$u e \#$ array so that they can be used by the various calculation programs more easily. Note that in most cases, we retain double-precision accuracy with the \# sign. The monthly interest rate is worked out by a fairly complex formula, and the number of months equals the number of years times 12 .

The variable cal tells us what to calculate. Depending on its value, we'll call fprin (find principal), fintr (find interest rate), fper (find period), fpay (find payment), or fbal (find balance). The calculation with scale rounds any calculated value to the next highest penny, or, if not a money figure, to three decimal places.

The calculation subroutine also includes an error trap, since some calculations are impossible or ridiculous (for example, how long would it take to pay off a $\$ 1,000$ mortgage with a payment of $\$ 0$ per month?). Problems are directed to an event trap named oops.

00ps:4
value\# (cal) $=04$
RESUME oops 24
oops 2: 4
WINDOW 24
RETURN4
If there's any calculation problem, we set the calculated value to zero and give up. We do not go back to the detailed calculation program. Instead, using oops2, we return to the main calc routine. But, first, it's necessary to reopen WINDOW 2, since the Amiga always closes any secondary windows when an error occurs. Notice that the message at the bottom of the window is not reprinted. So if you see the window blink, then reappear minus the message and with the value being calculated set to zero, an error has been trapped. If this occurs when you enter what seem to be legitimate values, it may indicate that you made an error while entering the program. For this reason you may want to omit the ON ERROR statements until you are confident that you have eliminated all typing mistakes in the program.

Here are the five calculation routines. We won't plunge into details of the math here, since it's rather complex.

## fprin: 4

value\# (1) = (balance\#+payment\#* (rl
\#"months-1)/rate\#)/rl\#"months؛ RETURN4
4
fintr: 4
rø\#=ø: rl\#=EXP(75/months):IF rl\#>
2 THEN rl\#=2 4
rate\#=rl\#-1: r9\#=rate\#*1004
pø\#=balance\#+payment\#*months-pri ncipal\#4
p9\#= (balance\#+payment\#* (rl\#^mont hs-l)/rate\#)/rl\#"months-principa 1\#4
IF p Ø\#< OR p9\#> THEN $\leqslant$ r2\#=ø4
ELSE4
flop\% $=04$
WHILE ABS (r9\#-rø\#) >. $\varnothing \emptyset 14$
flop\%\%=1-flop\% 4
IF flop\%>ø THEN 4
r2\#=(rø\#+r9\#)/24
ELSE4
r2\#=rø\#-pø\#* (r9\#-rø\#) / (p9\#-pø\#) « END IF4
$r 1 \#=(1+r 2 \# / 1 ø \varnothing /$ peryear (site) ) ^(1
/compound(site)) $\&$
rate\#=rl\#-1
p2\# = (balance\#+payment\#*(rl\#^mont hs-1)/rate\#)/rl\# ^months-principa 1\#4
IF p2\#> 1 THEN $\leqslant$
rØ\#=r2\#:pØ\#=p2\# 4
ELSE 4
r9\#=r2\#:p9\#=p2\#4
END IF4
WEND 4
END IF
value\# (2) $=$ r2\# 4

```
RETURN}
4
fper:4
value#(3)=LOG((payment#-rate#*ba
lance#)/(payment#-rate#*principa
l#))/LOG(rl#)/12#4
RETURN4
4
fpay:4
value#(4)=rate#*(principal#*rl#^
months-balance#)/(rl#^months-1)&
RETURN4
4
fbal:&
value#(5)=principal#*rl#^months-
payment#*(rl#^months-1)/rate#&
RETURN4
```

The only one of the above routines that's lengthy is fintr. There's no simple formula for the interest rate, so we must zero in on the correct value by repeated calculations.

## Displaying Results

Now to display the calculated values:
showval: 4
FOR $j=1$ TO 54
LOCATE j, $1 \leftarrow$
IF j=cal THEN $\leftarrow$
PRINT "*";
ELSE4
PRINT " ";
END IF4
PRINT title\$(j);SPACES (2Ø) 4
LOCATE j,124
PRINT USING pudef\$ $(j)$; value\# $(j) \nless$ NEXT j 4
RETURN $\leqslant$
For a good human interface, I wanted to distinguish between the calculated item and the entered values. The title for the value being calculated will be preceded by an asterisk. SPACE\$ is used to generate a string of blanks to wipe out any old values.

## A Choice Is Made

menuhit: 4
$\mathrm{ms}=04$
IF mn>4 THEN 4
$\mathrm{mnl}=\mathrm{MENU}(1) \leftarrow$
ON mn-4 GOSUB newcalc, style $\leftarrow$
END IF4
RETURN 4
Here's the routine to handle menu selections. The value $m n$, given the value of MENU(0) in the calling routine, is used to determine which menu is involved. MENU(1) tells us which item from the menu has been selected. We then subtract 4 from $m n$ to get an offset of 1 or 2 for the ON-GOSUB statement.

[^4]LOCATE $v, 12:$ PRINT USING pudef $\$(v$ ); value\# (v) \&
END IF4
END IF4
RETURN4
The newcalc subroutine is called when menu 5 , the Calculate menu, is selected. If the item selected from that menu is $1-5$, the previously selected menu item has its checkmark removed, and a checkmark is placed beside the newly selected item. The value of cal is updated to show which variable is now being calculated. If menu item 6, Quit, was chosen, we instead set the value of kwit accordingly. The style subroutine sets site to the selected country when an item is selected from menu 6, the Country menu.
newcalc: 4
IF mnl <6 THEN 4
MENU 5, cal,14
cal=mnl4
MENU 5, cal,24
ELSE 4
IF mnl=6 THEN kwit=14
END IF4
RETURN 4
style:4
IF mnl < 3 THEN 4
MENU 6,site,14
site=mnl4
MENU 6,site, 24
END IF4
RETURN4
When the left mouse button is clicked, the eek subroutine allows entry of a new value. It's important to read $\operatorname{MOUSE}(0)$ before reading the mouse's position, but in this case, that's already been done in the event routine that calls eek. The $x$ and $y$ coordinates of the mouse pointer's current position come from MOUSE(3) and MOUSE(4), since those functions return the position of the mouse when the button was clicked. MOUSE(1) and MOUSE(2) return the mouse's position at the time of the MOUSE(0) call, so either would probably give comparable results in this case. Remember that we are reading pixel positions, not character positions. Before recognizing a click as a request to enter input, we check that the pointer was reasonably close to one of the displayed values. One more limitation is that we won't allow an entry for the cal variable: The computer calculates that value.

Once we know it's a valid variable, we clear the old value using SPACES, input a new value, and then print it neatly formatted in the space provided.

## Maiden Voyage

Let's give the program a trial run. You'll see the window appear. If you have used the initial values suggested, you'll notice that the program has calculated a payment of $\$ 131.04$. That's the Canadian computation. Now press the right button, slide the mouse pointer up to the Country menu, and move down to USA before you release the button. The payment should change to $\$ 132.16$.

This is a ten-year mortgage. Let's see what the balance would be after five years. Use the right button (also called the menu button, for obvious reasons) to select the Balance option from the Calculate menu. The balance will show a slightly negative amount. That's okay (each payment is rounded up a fraction of a penny, so the final payment will be slightly less than zero). Next, move the pointer up to the Years value in the display window menu and click the left button. The computer is inviting you to enter a new value: Enter 5 for five years. Observe that the balance still due after five years is a little over $\$ 6,000.00$.

How long to pay it off at $\$ 150$ a month? Select Years from the Calculate menu. Change the Balance value to 0 and the Payment value to 150. The answer is a little over eight years. If you change the interest rate to 12 percent, you'll see that it would take over nine years to pay off the loan. At 18 percent, you wouldn't live long enough to pay it off at $\$ 150$ a month, and at 20 percent, it's impossible (note the Years value is set to zero to indicate the error). When you've snooped through the combinations enough to satisfy yourself, select Quit. And don't forget to save the program. If your answers don't match these, check the formulae for typographical errors.

After running through this exercise, think how different things would be on any eight-bit computer. It's not just the mortgage calculation; it's the style of the machine. With a fresh approach, you can make your Amiga more flexible and useful than any computer you've used before.

# Home Financial Calculator For Atari ST 

Patrick Parrish, Programming Supervisor

Rarely has there been a program integrating as many useful loan and investment features as "Home Financial Calculator." It is versatile, easy to use, and flexible. Rapid recalculation features make it an ideal tool for "what if" projections. A calculator mode with memory lets you solve problems not directly supported by the program, and you can pass values generated by one calculation to another. Home Financial calculator was originally published in the May 1985 issue of COMPUTE!. This new version is for any Atari ST computer which has TOS in ROM.
"Home Financial Calculator" integrates a number of common financial calculations in a menu-driven package. It also features a calculator mode or scratch pad area where program variables can be manipulated using common mathematical operations.

Be particularly careful when typing the long lines in this program which contain financial formulae. A mistyped program may still run, but the results it gives could be inaccurate.

When you run the program, a main menu offers you a choice of Investment or Loan calculations. Type I or L to reach the appropriate submenu.

Easy "What If" Projections
Before looking at any calculations, let's consider some basics of the program. Home Financial Calculator uses some parameters or variables repeatedly in the calculations. These variables are Total (also referred to as Future Value, Total Owed, and so forth, depending on
the calculation); Present Value (principal); Interest Rate; Years; Months; Number of Periods (of either compounding, deposits, withdrawals, or payments, depending on the application); Deposits; and Withdrawals. When in the calculator mode (explained below), you'll reference these eight variables with the single letters $T, P, I, Y, M, N, D$, and $W$.

As you work with Home Financial Calculator, the values of the eight variables are preserved until you change them. Whenever the program asks you for an input (for example, Interest), the current value of that variable is displayed (zero if no value has been entered yet). If you want to keep the current value, just press Return. Otherwise, enter the new value and press Return.

With this feature, Home Financial Calculator makes it easy for you to generate "what if" projections. Simply run the same calculation repeatedly, each time changing a previously entered value. Press Return to keep a value, and change only one or two values to see the effect on the final result.

You can also store the current value into the calculator mode's Memory Register or recall a value from the Memory Register. To see how all this works, let's take a closer look at your options.

## Your Investment Menu

Here is the Investment submenu that appears when you type I from the main menu:

1) Future Value with Periodic Interest
2) Future Value with Interest

Compounded Continuously
3) Future Value with Regular Deposits
4) Future Value with Cash Flows
5) Withdrawal of Funds
6) Net Present Value
7) Calculator Mode
8) Return to Main Menu.

Determine which option you want and press the appropriate key.

Each option displays screen prompts which ask you to input several values. These values are stored in the eight variables mentioned above: $T$ for Total (Future Value), $P$ for Present Value (principal), I for Interest Rate, $Y$ for Years, $M$ for Months, $N$ for Number of Periods, $D$ for Deposits, and $W$ for Withdrawals. Of course, not all calculations require you to enter all these values, while others may ask for additional information.

Most calculations can be solved for any one of the variables. To solve for a variable, enter an uppercase $X$ at the corresponding input prompt. For example, you could enter values for everything except the Interest Rate, typing $X$ at the Interest Rate prompt. Home Financial Calculator then solves for the Interest Rate.

Remember, however, that the program can solve for only one variable during each calculation. If you enter an $X$ at more than one prompt, the program does not have enough information to calculate an answer.

## Future Value With Periodic Interest

Home Financial Calculator's options are fairly self-explanatory when you run the program, but let's try an example. We'll calculate the future value of an investment drawing periodic interest. This kind
of investment could be a savings account, interest-bearing checking account, bonds, or a money market account. Choose this option by entering 1 at the Investment submenu.

After the screen clears, the program asks for the first input-Future Value, which appears with an asterisk (*). Below this is a zero (the current value of this variable in memory; all variables start out with a value of zero). Following this is an input prompt.

The asterisk preceding Future Value means that this is one of the variables you can solve for. (A variable not preceded by an asterisk means that variable cannot be solved for in that particular calculation, so $X$ would be an illegal response.) If you'd like to calculate the Future Value, enter an $X$ here, and answer all the other prompts with the appropriate values.

Let's calculate the future value of a $\$ 1,000$ investment drawing 8 percent interest for two years and three months, with four compounding periods each year. Enter an $X$ for Future Value, since we'll be solving for this total. Answer Present Value with 1000 (the principal you're investing); Annual Int Rate (\%) with 8 (enter the percentage, not a fraction); For \# Of Years with 2; For \# Of Months with 3; and \# Of Periods (Compounding) with 4. After you enter the last value, Home Financial Calculator figures the Total Future Value and displays the an-swer-\$1195.09.

Now suppose you wish to know the future value of the same $\$ 1,000$ investment if you make 9 percent interest. Choose option 1 on the Investment submenu again and rerun the calculation. Notice how Home Financial Calculator automatically prints the current value of each variable at each prompt. The Future Value prompt shows a current value of 1195.09 from the previous calculation. Type an $X$ at this prompt, 9 for Interest Rate, and Return at all other prompts to preserve their values. The result should be $\$ 1221.71$.

The versatility of Home Financial Calculator becomes apparent when you realize how many different ways you can run this calculation. Using this same menu option,
you can calculate the initial investment (or present value) necessary to accrue a certain future value with periodic interest; the interest rate necessary to accrue a future value from a present value; or the time (in years and months) it would take to accumulate a future amount from an initial investment with periodic interest payments. Just enter an $X$ for the unknown value you're seeking and fill in all the other prompts.

## Fułure Value With Interest Compounded Continuously

Option 2, a variation of option 1, handles investments paying a continuous interest rate. Like option 1, option 2 can handle a number of calculations-just place an $X$ in the slot you'd like to solve for.

Here, after entering all other parameters, you can calculate the future value of an investment; the initial investment required to reach a certain future value; the interest required to reach a desired future value; or the time required to reach a certain future value at a specified interest rate.

Notice that any variables used in option 1 will be displayed with their current values when running option 2. Recall that the eight major variables in Home Financial Calculator retain their values throughout the program until you change them. This feature is convenient when going from one option to another on the Investment or Loan submenus.

In addition, the values are preserved for use in the calculator mode. For instance, you could compare the effect of continuously compounded interest to periodic interest (option. 1) without having to retype the input.

## Future Value With Regular Deposits

If you're interested in setting up an annuity, you'd choose option 3 on the Investment submenu. You can determine the future value of an account (such as a savings account, Individual Retirement Account, or college or vacation fund) with regular deposits where interest is compounded with each deposit.

Option 3 can also tell you the amount of each deposit necessary
to accrue a future value; the interest rate needed to provide some future value with regular deposits; or the time it would take to amass a future value with regular deposits.

## Future Value With <br> Cash Flows

Option 4 does a single calcula-tion-it always solves for Future Value, so don't enter an $X$ anywhere. It calculates the future value of an investment with yearly cash flows (either positive or negative). The Annual Interest Rate you input here is the growth rate on the money you've invested.

As an example, suppose you wish to determine the value of a vacation fund collected over four years. You're asked for the number of years, then for the deposit or withdrawal each year. You deposit $\$ 500$ in the fund the first year and $\$ 200$ the second. The third year you are forced to withdraw $\$ 300$ (entered as -300 ), and the fourth year, you put in $\$ 400$. The fund has a growth rate of 12 percent. Its value after four years will be $\$ 1,017.34$.

A future value determination can also tell you whether an investment is worthwhile. If the future value of all cash flows is positive or zero, the investment is profitable. A negative future value, on the other hand, represents a losing investment.

## Withdrawal Of Funds

If you intend to open an account from which you can regularly withdraw funds, choose option 5. With this option, you can determine the initial deposit required in the account to cover your withdrawals; the amount you can withdraw regularly from this account; the rate of interest you must make on funds in the account; or the period of time over which you can make withdrawals.

## Net Present Value

Option 6 lets you determine the feasibility of a prospective investment by calculating its net present value. Net present value is the current value of all future yearly cash flows to an investment along with any initial cash requirement. The interest rate you input here is the rate of return you require on your investment. A positive net present
value indicates a profitable investment, while a negative result signifies a losing investment.

As an example, suppose you have the opportunity to make a $\$ 2,000$ investment which would return \$1,500 the first year, cost you $\$ 750$ the second year, and return $\$ 1,900$ the third year. You hope to make 13 percent on your money. With option 6, you would determine a net present value of $\$ 56.87$, representing a profitable investment.

## The Calculator Mode

Option 7 puts you in the calculator mode (also available from the Loan submenu). Calculator mode works very much like a hand-held calculator with a single memory. You can type in a value or recall one from a variable by entering its symbolT(otal), P(resent Value), I(nterest Rate), Y(ears), M(onths), N(umber of Periods), D(eposits), and W(ithdrawals). You can perform simple math on values stored in the Memory Register using reverse Polish notation. And you can use the results in future calculations.

When you enter calculator mode, the calculator command line appears on the screen:

## V S HR M + M- $\mathbf{M}^{*}$ M/ MR MC MEM=0

Here are the commands:
V View the values of the eight primary variables
S Store Memory Register into a variable
H Help-prints the command line
R Return to main menu, exit calculator mode
M+ Add the last input to the Memory Register
M- Subtract the last input from the value in the Memory Register and store the result in the Register
$\mathrm{M}^{*} \quad$ Multiply the last input times the value in the Memory Register and store the result in the Register
M/ Divide the last input into the value in the Memory Register and store the result in the Register
MR Memory Recall
MC Memory Clear to zero
MEM $=$ Memory Register's current value
If you've run through a sample investment calculation, you now have some variables in memory. Enter V in the calculator mode to see them. The screen displays the eight values currently in memory for the eight variables.

To work with one of these variables, enter one of their letters ( $T, P$, $I, Y, M, N, D$, or $W$ ) and press Return. Then type $\mathrm{M}+$ to add it to the Memory Register (all variables must be stored in the Register before you can perform any operations on them). Suppose you put the current value for T into the Register and now wish to add $\$ 229$ to this value. Enter 229, press Return, then type M+ and press Return. The addition is performed and the result displayed. To store this value back into the $T$ variable, enter $S$ for Store. A prompt appears, requesting the variable in which you intend to store the value. Type T to store the value into the variable T.

You can also use the Memory Register to hold a value not represented by any of the eight variables. To do this, determine a value using the calculator mode and store it into the Memory Register with M+. Then, when you're running a calculation elsewhere in the program, you can substitute this value for any of the eight primary variables by typing MR (Memory Recall) at the appropriate prompt. MR can be used both in the calculator mode and at any prompt where the previous value is displayed.

Finally, option 8 on the Investment submenu returns you to the main menu. Once there, you can perform some loan calculations by typing L .

## Loan Calculations

Here is the Loan calculations submenu:

1) Regular Loan Payments
2) Remaining Loan Liability
3) Final Loan Payment
4) Single Payment Loan
5) Loan Amortization Schedule
6) Calculator Mode
7) Return to Main Menu

## Regular Loan Payments

Option 1 handles a number of calculations for equal payment loans. You can figure the principal of a loan; the amount of each regular payment necessary to repay a loan; the annual interest rate on a loan with regular payments; or the term of the loan.

## Remaining Loan Liability

With option 2, you can determine
the remaining balance on a loan with regular payments after a number of payments have been made. Enter the principal on the loan, the amount of each payment, the annual interest rate, the number of payments yearly, and the last payment number.

## Final Loan Payment

Option 3 calculates the amount of the final payment on a loan. In many cases, the last payment of a loan will vary from the amount of the regular payment. This option handles situations where the final payment is greater than ("balloon payments") or less than the regular payment.

## Single Payment Loan

Option 4 calculates the amount owed on a loan that is paid off with a single payment. You must input the principal on the loan, its annual interest rate, its term in years and months, and the number of times a year the interest on the principal is compounded.

## Loan Amortization Schedule

Option 5 displays a loan amortization schedule. Enter the principal on the loan, the amount of each payment, the annual interest rate, the term of the loan, and the number of payments yearly. Then enter the period of the year in which the loan began (for instance, 10 for October) and the range in years of the amortization schedule you'd like to examine.

Because of the complexity of these calculations, there may be a delay before the output appears on the screen, especially if you have chosen to look at the latter years in a long-term loan repayment schedule (such as a home mortgage). When the amortization table appears, it displays the payment number, the beginning balance for the period, the amount paid toward the loan principal, the amount paid in interest, and the ending balance. To keep the information from scrolling off the screen, the program shows only a few payment periods at a time. Press Return to view another screenful. When the end of a year is reached, the program gives the total amounts paid on the principal and
in interest for the year．In addition， when the last period of the loan is reached，the program displays the final payment for the loan．

The last two options on the Loan submenu are the same as those on the Investment submenu．

## Modifying The Program

Home Financial Calculator is writ－ ten in a modular format for easy modification．For many routines，it uses common input labels（lines 4590－4960）and some output labels （lines 4970－5050）．If you want to add an investment or loan calcula－ tion routine，choose the labels from these lines that fit your application．

Also，you may wish to add a printer option to the loan amortiza－ tion schedule．Examine lines 3140－ 3840．Here，variable D5（defined in line 140）determines the number of loan payments considered on each screen．Variables S1，S2，S3，and S4 （defined in lines 150－180）format the output horizontally on the screen．

## Home Financial Calculator For Atari ST

Version by George Miller，Assistant Technical Editor

| 10 | GOSUB 5340 |
| :---: | :---: |
| 20 | RES $=$ PEEK（SYSTAB + （ ） |
| 36 | IF RES $\rangle 4$ THEN 6D |
| 49 | ？＂Please switch to Medium or High＂ |
| $5 \emptyset$ | ？＂Resolution．＂：STOP |
| 60 | COLOR 1，1 |
| 70 | DIM V（8） |
| 8® | V粫＝＂TPIYMNDW＂ |
| 90 | C\＄＝＂VSHR＂ |
| 1 106 | C历\＄＝＂V S H R＂ |
| 110 | C1\＄＝＂M＋M－M\％M／MR MC＂ |
| 129 | C2\％$=$＂M＋M－M＊M／MRMC＂ |
| 130 |  |
| 14ø | D5 $=12$ |
| 15ø | S1＝10 |
| 168 | S2＝25 |
| 179 | $53=4 \%$ |
| 189 | S4＝55 |
| 19® | TITLE $\ddagger="$ Home Financial C alculator＂＋CHR（ $\varnothing$ ） |
| 206 | GOSUB 534ø：GOSUB TITLEBAR |
| 210 | PRINT＂INVESTMENTS OR LOA NS？（Select＇I＇or＇L＇）＂ |
| 220 | A\＄$=$ CHR ${ }^{(1)}$（ 1 PP（2）） |
| 230 | IF A\＄＝＂I＂OR A\＄＝＂i＂THE N 260 |
| 240 | IF A\＄＝＂L＂OR A\＄＝＂1＂THE N 2120 |
| 25ø | GOTO 220 |
| 266 | G0SUB 5349 |
| 279 | TITLE争＝＂INVESTMENTS＂：GO SUB TITLEBAR |
| 288 | GOTOXY 1ø，5：PRINT＂1）FUT URE VALUE WITH PERIODIC I |
|  | NTEREST＂${ }^{\text {I }}$ |
| 290 | GQTOXY 1ø，6：PRINT＂2）FUT |
|  | URE VALUE WITH INTEREST $C$ |

OMPQUNDED CONTINUOUSLY＂ GOTOXY 1ळ，7：PRINT＂3）FUT URE VALUE WITH REGULAR DE POSITS＂
31ø GOTOXY 1ø，8：PRINT＂4）FUT URE VALUE WITH CASH FLOWS
32. BOTOXY 1ஏ，9：PRINT＂5）WIT HDRAWAL OF FUNDS＂
GOTOXY 1ø，1ø：PRINT＂6）NE T PRESENT VALUE＂
34ஜ GOTOXY 1ø，11：PRINT＂7）CA

## LCULATOR MODE＂

GOTOXY 1ஏ，12：PRINT＂日）RE
TURN TO MAIN MENU＂
36 GOTOXY 16，14：PRINT＂YOUR CHOICE？＂：
$A=I N P(2)-48$
389 IF $A<1$ OR $A>B$ THEN 379
39\％ON A GOTO 420，68ø，920， 131

4 G日 GOSUB 466ø
41б GOTO 196
42の GOSUB 534
430 TITLE ${ }^{\circ}$＂FUTURE VALUE WIT H PERIODIC INTEREST＂：GOS UB TITLEBAR
440 PRINT
45\％BOSUB 4596
$46 \%$ GOSUB 463ø
47ஏ PRINT＂高＂；
489 GOSUB 472の
49 PRINT＂事＂；
5פぁ GOSUB 476ø
51ø IF E＝4 THEN 530
52ø GOSUB 48øた
53ø GOSUB 485\％
540
$55 \% \quad V(1)=$ INT $(V(2) \&(1+V(3) / V(6$

56 GOSUB 497ø
570 IF E＜＞2 THEN 6øø
$580 \quad V(2)=$ INT $(V(1) /((1+V(3) / V($


## GOSUB 5øøø

IF Eく＞3 THEN 63€
61ஏ $V(3)=$ INT（ $(V(6) \&(V(1) / V(2)$ ）＾（1／（V（6）\＃Y））－V（6））\＆ 1 Øぁळ

629 GOSUB 5ø3ø
63ø IF E＜＞4 THEN 66』
$64 \varnothing \quad V(4)=\operatorname{LOG}(V(1) / V(2)) /(V(6)$
細（ $1+V(3) / V(6)))$

## 65 GOSUB 5060

669 GOSUB 521ø
670 GOTO 26ø
68ø GOSUB 534』
69 TITLE ${ }^{6}=$＂FUTURE VALUE WIT H INTEREST COMPOUNDED CON TINUOUSLY＂：GOSUB TITLEBA R

| $76 \emptyset$ | PRINT |
| :---: | :---: |
| $71 \%$ | GOSUB 4590 |
| 720 | GOSUB 4630 |
| 730 | PRINT＂${ }^{\text {c }}$＂； |
| 740 | GOSUB 4720 |
| 75\％ | PRINT＂${ }^{\text {b }}$＂ |
| 760 | GOSUB 476\％ |
| 776 | IF E＝4 THEN 790 |
| $78 \%$ | G08UB 489\％ |
| 790 | IF E＜＞1 THEN 820 |
|  | ```V(1)=INT (V (2) &EXP (V (3) &Y) *1ø\emptyset+.5)/1ø\emptyset``` |
| 810 | GOSUB 497¢ |
| 829 | IF E＜＞2 THEN 85¢ |
| 830 | ```V(2)=INT (V(1)/EXP (V (3) &Y) (16g+.5)/16\emptyset``` |
| 840 | G05UB 5øøø |
| 856 | IF Eく＞3 THEN 88ø |
| 86ø | $\begin{aligned} & V(3)=\text { INT }(\operatorname{LOG}(V(1) / V(2)) / Y \\ & \text { ( } 1 \varnothing \varnothing \varnothing \sigma+.5) / 1 ø \varnothing \varnothing \varnothing \end{aligned}$ |
| 876 | GOSUB 5930 |

IF E＜＞4 THEN $66 \varnothing$
$V(4)=I N T(\operatorname{LOG}(V(1) / V(2)) / V$
（3）$\ddagger 1$（ஏぁ＋．5）／1øø
GOSUB 5ø6も
GOTO 660
G0sub 5349
TITLE象＂＂FUTURE VALUE WIT
H REGULAR DEPOSITS＂：GOSU
B TITLEBAR
PRINT
GOSUB 4596
PRINT＂\＆REGULAR DEPGSIT \＄
$C=6$


1øぁぁ
115 IF ABS (T-V(1))/V(1)<. ■øøø
5 THEN $121 \varnothing$
116 IF $T<V(1)$ THEN $119 \varnothing$
$1176 \quad V(3)=V(3)-T E$
1189 GOTO $112 \emptyset$
$1199 \quad V(3)=V(3)+T E$
1260 GOTO 1120

Øロロぁ

## $122 \%$ GOSUB 5ø30

$123 \varnothing$ IF E＜＞4 THEN $126 \varnothing$

$V(7))+1) /(V(6)$ \＆LOG（ $1+V$（3） （V（6）））
$125 \emptyset$ GOSUB 506ø
126ø IF E＜＞7 THEN $66 \varnothing$
127ø $\quad V(7)=$ INT $(V(1)$ \＆$(V(3) / V(6))$
／（（1＋V（3）／V（6））へ（V（6）\＆Y）－

$128 \emptyset$ PRINT
$129 \emptyset$ PRINT＂REGULAR DEPOSITS R EQUIRED： ＂$^{1 / V(7) ~}$
G0TO 66\％
131\％GOSUB 534\％
1329 TITLE \＃\＃＂FUTURE VALUE WIT H CASH FLOWS＂：GOSUB TITL EBAR
1336 PRINT
1346 GOSUB 4720
1359 GOSUB 476の
$136 \emptyset$ PRINT＂CABH FLOW $(+/-)$＂
137』 PRINT
$1389 \quad V(1)=9$
1390 FOR $I=1$ TQ $V(4)$
$14 \emptyset \emptyset$ PRINT＂CASH FLOW－YEAR＊
＂；I
141ஜ INPUT A象
142פ $A=V A L$（ $A 末$ ）
$1436 V(1)=V(1)+A$ 安 $(1+V(3)) \wedge(V(4$
）－I）

146末 GOSUB 4970
$147 \boldsymbol{T} T E=V(1)$
148 GOSUB 515』
1495 GOTO 669
159 GOSUB 5349

| 1510 | TITLE $=$＝＂WITHDRAWAL OF FU NDS＂：GOSUB TITLEBAR | 2150 | ULAR LOAN PAYMENTS＂ GOTOXY 21，6：PRINT＂2）REM | $\begin{aligned} & 275 \emptyset \\ & 276 \emptyset \end{aligned}$ | GOSUB 4850 <br> PRINT＂LAST PAYMENT \＃WAS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1520 | PRINT |  | AINING LOAN LIABILITY＂ |  |  |
| 1536 | GOSUB 4630 | 2168 | GOTOXY 21，7：PRINT＂3）FIN | 2779 | INPUT A\＄ |
| 1548 | PRINT＂EREGULAR WITHDRAWA |  | AL LOAN PAYMENT＂ | 2789 | $A=$ VAL（ $A$ \＄） |
|  | L \＄＂ | 2178 | GOTOXY 21，B：PRINT＂4）SIN | 279ø | FOR $J=1$ TO $A$ |
| 1550 | $\mathrm{C}=7$ |  | GLE PAYMENT LOAN＂ | 28øø | $\mathrm{I}=\mathrm{INT}(\mathrm{P}+\mathrm{C}(3) / \mathrm{V}(6) * 1 \emptyset \emptyset+.5)$ |
| 1560 | G0SUB 3850 | 2180 | GOTOXY 21，9：PRINT＂5）LOA |  | ／1øの |
| 1576 | PRINT＂\％＂； |  | N AMORTIZATION SCHEDULE＂ | 2810 | $\mathrm{P}=\mathrm{P}+\mathrm{I}-\mathrm{V}$（7） |
| 1580 | GOSUB 472ø | 2190 | GOTOXY 21，19：PRINT＂6）CA | 2820 | NEXT J |
| 1590 | PRINT＂＊＂； |  | LCULATOR MODE＂ | 2830 | LI＝INT（P＊1øø＋．5）／1øø |
| $16 \square 0$ | GOSUB 476® | 22øø | GOTOXY 21，11：PRINT＂7）RE | 2849 | PRINT |
| 1610 | IF E＝4 THEN 163 ¢ |  | TURN TO MAIN MENU＂ | 2850 | PRINT＂LIABILITY AFTER |
| 1626 | GOSUB 48øణ | 221ø | GOTOXY 21，13：PRINT＂YOUR |  | A；＂PAYMENTS：\％＂；LI |
| 1630 | G0SUB 4850 |  | CHOICE？＂； | $\square$ | GOTO 2670 |
| 1640 | IF E＜＞2 THEN 167ø | 2220 | $A=I N P(2)-48$ | 2876 | GOSUB 5340 |
| 1650 | $V(2)=$ INT $(V(8) \& V(6) / V(3) \&($ <br> $1-(1+V(3) / V(6)) \wedge(-V(6)$ \＆$Y)$ | $\begin{aligned} & 223 \varnothing \\ & 224 \varnothing \end{aligned}$ | IF $A<1$ OR $A>7$ THEN 2226 ON A GOTO 227\％，2696，287\％， | 2889 | TITLE象＂LAST LOAN PAYMEN T＂：GOSUB TITLEBAR |
|  |  |  | $3 \varnothing 3 \varnothing, 314 \varnothing, 225 \varnothing, 19 \varnothing$ | 289ø | PRINT <br> GOSUB 4679 |
| 1660 | GOSUB 5øøø | 226 | BOTO 19ø | 2910 | GOSUB 4890 |
| 1670 | IF E＜＞3 THEN 181ø | 227\％ | GOSUB 5340 | 2926 | G08UB 4726 |
| 1689 | $V(3)=.99$ | 2288 | TITLE¢\＃＂REGULAR LOAN PAY | 2930 | G0SUB 4930 |
| 1690 | $\mathrm{I}=$ Ø |  | MENTS＂：GOSUB TITLEBAR | 2946 | GOSUB 4850 |
| 179\％ |  | 2290 | PRINT | 2959 | FOR $J=1$ TO V（6）\＃Y |
|  | $(1+V(3) / V(6)) \wedge(V(6)$＊Y）-1$)$ | 23ø冋 | PRINT＂\％＂； | 2969 |  |
|  |  | 2310 | GOSUB 467\％ |  | 100 |
| 1710 | TE＝ABS（V） 3 ）－I）／2 | 2320 | PRINT＂\％＂； | 297\％ | $\mathrm{P}=\mathrm{P}+\mathrm{I}-\mathrm{V}$（7） |
| 1729 | $\mathrm{I}=\mathrm{V}$（3） | 2330 | BOBUB 4890 | 2980 | NEXT J |
| 1736 |  | 2340 | PRINT＂\％＂ | 2998 |  |
|  | 5 THEN 179め | 2356 | GOSUB 472ø |  |  |
| 1740 | IF R＜V（8）THEN 177 ¢ | 2360 | PRINT＂\％＂ | 3060 | PRINT |
| 1759 | $V(3)=V(3)-T E$ | 237\％ | G0sub 4760 | 3010 | PRINT＂LAST PAYMENT：\％＂；LP |
| 1769 | GOTO 17øø | 2380 | IF E＝4 THEN 24øm |  |  |
| 1770 | $V(3)=V(3)+T E$ | 2390 | GOSUB 489® | 3620 | GOTO 2670 |
| 1789 | GOTO 17øの | 2400 | GOSUB 485\％ | 3030 | GOSUB 5340 |
| 1790 | $V(3)=$ INT（V（3）＊ 1 øøøø＋．5）／1 | 2416 | IF E＜＞2 THEN 2469 | 3040 |  |
|  | のøøロ | 2420 | $V(2)=I N T(V(7)$ tV（6）／V（3）t $($ | 365\％ | OAN＂：GOSUB TITLEBAR PRINT |
| 1860 | GOSUB $563 \emptyset$ IF E＜＞4 THEN 184ø |  | $1-(1+V(3) / V(6)) \wedge(-V(6)+Y)$ | 3056 | GOSUB 467. |
| 1810 1820 | IF E＜＞4 THEN 184ø $V(4)=\operatorname{LOG}(\mathrm{V}(6)$ \＆$V(8) /(\mathrm{V}(6)$ |  |  | 3076 | GOSUB 4720 |
| 1826 | $V(8)-V(3) * V(2))) /(V(6) \& \text { LQ }$ | $\begin{aligned} & 2436 \\ & 2446 \end{aligned}$ | PRINT＂AMT OF PRINCIPAL： | 3¢8¢ | GOSUB 4930 |
|  | $\mathrm{G}(1+\mathrm{V}(3) / \mathrm{V}(6)))$ |  | ＂；V（2） | 309\％ | BOSUB 4859 |
| 1839 | GOSUB 5ø6ø | 2450 | QOTO 267\％ | 3166 | $V(1)=$ INT $(V)(2) \&(1+V(3) / V(6$ |
| 1840 | IF E＜＞8 THEN 66ø | 2460 | IF E＜＞3 THEN 26\％\％ |  |  |
| 1859 | $V(8)=I N T(V(2) * V(3) / V(6)$ \＃（ | 2476 | $V(3)=.99$ | 3110 | PRINT |
|  | $1 /((1+V(3) / V(6)) \wedge(V(6)$ \＆$Y)$ | 248® | $\mathrm{I}=$ ø | 3126 | PRINT＂TOTAL OWED：\％＂；V（1） |
|  | －1）＋1）$\ddagger$（ $\dagger \square+.5) / 1 ø \square$ | 249ø |  | 3130 | B0TO 267E |
| 1869 | PRINT |  | $(1+V(3) / V(6)) \wedge(-V(6) * Y))$ ） | 3146 | C5ma |
| 187\％ | PRINT＂REGULAR WITHDRAWAL |  | ＋16ぁ＋．5）／ 1 ¢ø | 3150 | N5＝ø |
|  | S：\＄＂；V（8） | 2506 | TE＝ABS（V）${ }^{\text {（ }}$ ）-1$) / 2$ | 3169 | $F=\varnothing$ |
| 188ø | GOTO 66ø | 2510 | $\mathrm{I}=\mathrm{V}$（3） | 3176 | $\mathrm{P} 1=\emptyset$ |
| 1896 | GOSUB 5340 | 2520 | IF ABS（P－V（2））／V（2）＜．$¢$（ | 3189 | $11=\square$ |
| 19øø | PRINT＂NET PRESENT VALUE： |  | 605 THEN 258® | 3198 | GOSUB 534ø |
|  | \＄＂ | 2536 | IF P＜V（2）THEN 2568 | 3260 | TITLE事＂LOAN AMORTIZATIO |
| 1910 | PRINT | 2540 | $V(3)=V(3)+T E$ |  | N SCHEDULE＂：GOSUB TITLEB |
| 1920 | PRINT＂INITIAL INVESTMENT | 2559 | GOTO 2496 |  | AR |
|  |  | 2566 | $V(3)=V(3)-T E$ | 3210 | GOSUB 4676 |
| 1930 | $\mathrm{C}=1$ | 2570 | GOTO 249® | 3220 | G08UB 4890 |
| 194® | G0SUB 3850 | 2596 | $V(3)=$ INT（V（3） 1 （19＠g＋．5）／1 | 3230 | GOSUB 4720 |
| 1959 | G0SUB 4720 |  | ๑๓ロロ | 3246 | G05UB 4936 |
| 1966 | G0SUB 476ø | 2596 | G08UB 5¢3¢ | 3256 | PRINT＂＊OF PAYMENTS YEAR |
| 197\％ | PRINT＂CASH FLOW（＋／－）＂ | 2600 | IF E＜＞4 THEN 263Ø |  | LY＇ |
| 1989 | PRINT | 2610 | $V(4)=-\operatorname{LOG}(1-V(3) * V(2) /(V)$ | 3268 | GOSUB 3850 |
| 199\％ | NV $=-V(2)$ |  | 6） $\mathrm{*} V(7))$ ）／（V（6）$+\operatorname{LOG}(V(3) /$ | 3270 | PRINT＂ENTER THE PERIOD 0 |
| 2ஏøø | FOR $\mathrm{I}=1$ TO $\mathrm{V}(4)$ |  | $v(6)+1)$ ） |  | F THE YEAR IN WHICH THE L |
| 2910 | PRINT＂CASH FLOW－YEAR | 2620 | GOSUB 5 ¢6® IF E＜＞7 THEN 2670 | 3280 | OAN BEGAN＂ INPUT N |
| 2020 | INPUT A ${ }^{\text {S }}$ | 2630 | $V(7)=$ INT $(V(3)$ \＆$V(2) /(V(6)$ \％ | 3296 | NE＝N |
| 2639 | $A=V A L$（ $A \$$ ） |  | $\left(1-(V(3) / V(6)+1)^{\wedge}(-V(6) \nLeftarrow Y\right.$ | 336\％ | $N P=(V(4) * 12+V(5)) /(12 / V(6)$ |
| 2040 | $N V=N V+A /((V)(3)+1) \wedge I)$ |  | ））$\ddagger(10 \square+.5) / 1 ø \emptyset$ |  | ）） |
| 2659 | NEXT I | 2650 | PRINT | 331\％ | $N Y=I N T(() N-1)+N P) / V(6)+.9$ |
| 2060 | NV＝INT（NV\＆ 1 П冋＋．5）／1øø | 2660 | PRINT＂REQ PAYMENT：\＄＂；${ }^{\text {P }}$（7 |  |  |
| 207ø | PRINT |  | ） | 3329 | PRINT＂ENTER THE RANGE OF |
| 268． | PRINT＂NET PRESENT VALUE： | 2676 | GOSUB 521ø |  | YEARS YOU＇D LIKE TO EXAM |
|  | \＄＂；NV | 2689 | GOTO 2129 |  | INE（FIRST，LAST）＂ |
| 2696 | TE＝NV | 2698 | GOSUB 534ø | 3330 | INPUT F1，Li |
| 2100 | GOSUB 5159 | 27øø | TITLE\＄$=$＂REMAINING LOAN L | 3346 | IF L1＜＝NY THEN 3366 |
| 2110 | B0TO 66\％ |  | IABILITY＂：GOSUB TITLEBAR | 3350 | Lim ${ }^{\text {NY }}$ |
| 2120 | GOSUB 5340 | 2710 | PRINT | 336\％ | FOR J1＝1 TO Li |
| 2136 | TITLE事＝＂LOANS＂：GOSUB TI | 2729 | GOSUB 467ø | 3370 | IF J $1<\mathrm{F} 1$ THEN $339 \%$ |
|  | TLEBAR | 2736 | GOSUB 4890 | 3389 | GOSUB 5250 |
| 2146 | GOTOXY 21，53PRINT＂1）REG | 2740 | GOSUB 4729 | 3390 | FOR $\mathrm{J}=1$ TO $V(6)-\mathrm{N}+1$ |


| 34øø | $\begin{aligned} & I=I N T(P * V(3) / V(6) * 1 ø \varnothing+.5) \\ & / 1 ø \varnothing \end{aligned}$ | 4980 4990 | Bosub 441 ø <br> INPUT A | $\begin{aligned} & \text { 48øø } \\ & 481 \varnothing \end{aligned}$ | PRINT＂FOR \＃OF MONTHS＂ $\mathrm{C}=4$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3419 | $\mathrm{NS}=\mathrm{NS}+1$ | 410¢ | IF ASC（A ${ }^{\text {（ }}$ ）$>57$ THEN 4130 | 4820 | bosub $385 \emptyset$ |
| 3420 | $\mathrm{PP}=\mathrm{V}(7)-\mathrm{I}$ | 4110 | $\mathrm{T}=\mathrm{VAL}$（ $A \$$ ） | 4839 | $Y=V(C-1)+V(C) / 12$ |
| 3436 | IF $\mathrm{J} 1<>\mathrm{NY}$ THEN 347＠ | 4120 | B0TO 4ø9． | 4849 | RETURN |
| 3449 | IF NS＜＞NP THEN 347¢ | 4130 | FOR $\mathrm{I}=1$ TO 8 | 485ø | PRINT＂\＃OF PERIODS（COMP |
| 3459 | $\mathrm{PP}=\mathrm{P}$ | 4140 | IF $\mathrm{A} \$<>\mathrm{MID}$（ V \＄， $\mathrm{I}, 1)$ THEN |  | OUNDING，DEPOSITS，WITHDR |
| 3460 | $\mathrm{F}=1$ |  | 417ø |  | AWALS，PAYMENTS）YEARLY＂ |
| 3479 | IF J1＜F1 THEN 35øø | 4150 | PRINT V（I） | 486ø | $\mathrm{C}=5$ |
| 3489 | PRINT TAB（5）；MID（STR（N5 | 4160 | $\mathrm{T}=\mathrm{V}$（I） | 487 | G0sub 385ø |
|  | ），2，LEN（STR（N5））－1）${ }^{\text {d }}$（ABB（ | 4179 | NEXT I | 4889 | RETURN |
|  | S1）；INT（P\％1ø币t．5）／1ø๓； | 4180 | FOR $\mathrm{J}=1$ T0 6 | 4896 | PRINT＂PAYMENTS＊ |
| 349ø | PRINT TAB（S2）；INT（PP＊1øø＋ | 4190 |  | 496． | $\mathrm{C}=6$ |
|  | ．5）／1ø日；Q ${ }^{\text {；}}$ TAB（53）； |  | ，2）THEN $421 ⿷$ | 4910 | GOSUB 385ø |
| 3560 | $\mathrm{P}=\mathrm{P}+\mathrm{I}-\mathrm{V}(7)$ | 4200 | ON J GOSUB 4460，448ஏ，45øø | 4929 | RETURN |
| 3519 | IF $F=\emptyset$ THEN 3540 |  | ，4520，454б，4560 | 4936 | PRINT＂TERM OF LOAN： |
| 3529 | $\mathrm{P}=\varnothing$ | 4210 | NEXT J | 4946 | GOSUB 476ø |
| 3530 | $J=V(6)$ | 4220 | FOR $K=1$ TO 4 ， | $\begin{aligned} & 4950 \\ & 4960 \end{aligned}$ | GOSUB 480. RETURN |
| 3540 | IF J1＜F1 THEN 3578 | 4230 |  | $\begin{aligned} & 496 \emptyset \\ & 4979 \end{aligned}$ | RETURN <br> PRINT |
| 3559 | PRINT I；TAB（S4）；INT（P＊1øø ＋．5）／1øø； | 424ø | CN K GOSUB 429ø，434б，441ø ，444б | 4989 | PRINT＂FUTURE VALUE：$\%$＂；V 1) |
| 3569 3576 | PRINT $\mathrm{I} 1=\mathrm{I} 1+\mathrm{I}$ | 4250 | ＇ NEXT K | 499ø | RETURN |
| 3580 | $\mathrm{P} 1=\mathrm{P} 1+\mathrm{PP}$ | 4268 | IF M5 $=0$ THEN 409\％ | 5060 | PRINT |
| 3590 | $\mathrm{C} 5=\mathrm{C} 5+1$ | 427® | M5＝g | 5610 | PRINT＂REQUIRED INVESTMEN |
| 3600 | IF C5＜＞D5 THEN 367¢ | 4289 | RETURN |  | T：\％＂；${ }^{\text {P }}$（2） |
| 3610 | IF J1＜F1 THEN 3670 | 4290 | FOR $\mathrm{I}=1$ TO 8 ， | 5020 | RETURN |
| 3620 | gosub 5210 | 4309 |  | 5039 5649 | PRINT＂ANNUAL INT RATE（\％ |
| 3630 | gosub 534ø | 4310 | NEXT I |  | PRINT ANNUAL INT RATE（\％ |
| 3649 | $\mathrm{C} 5=\varnothing$ | $\begin{aligned} & 431 \varnothing \\ & 432 \emptyset \end{aligned}$ | NEXINT ${ }^{\text {P }}$ | 5650 | RETURN |
| 3650 3660 | IF $\mathrm{J}=\mathrm{V}(6)-\mathrm{N}+1$ THEN $367 \emptyset$ |  |  |  | $V(5)=V(4)-$ INT（ $V(4)$ ） |
| 3660 3678 | gosub 525 ■ | 433018 | PRINT＂IN WHAT VARIABLE＂ | $5 ø 7 \varnothing$ |  |
| $\begin{aligned} & 3679 \\ & 3689 \end{aligned}$ | NEXT J <br> IF J1＜F1 THEN 379の | 4346 | PRINT＂IN WHAT VARIABLE＂ |  | 5）／1ø） |
| 3680 | IF F＝ø THEN $372 \emptyset$ | 4350 | INPUT A\＄ | 5986 | $V(4)=\operatorname{INT}(V(4))$ |
| 37øø | GOTOXY $\varnothing, \varnothing 1$ | 4369 | FOR $\mathrm{I}=1$ TO | 5090 | IF $V(5)<>12$ THEN 512פ |
| 3710 | PRINT＂FINAL PAYMENT ：$\%$＂； | 4370 |  | 5106 | $V(4)=V(4)+1$ $V(5)=9$ |
|  | INT（ $(P P+1) * 1 ø \emptyset+.5) / 1 ø \emptyset$ |  | 4390 | 5110 | $V(5)=0$ |
| 3728 | PRINT | 4380 | $V(I)=M$ | 5120 | PRINT |
| 3738 | PRINT＂TOTAL INT PAID IN | 4390 | NEXT I | 5136 | PRINT＂类 OF YEARS AND MON |
|  | YR＂；J1；$=$ ¢＂；INT（I1＊1øøt． | 44øø | RETURN | 5140 | THSI＂ |
| $\square$ | 5）／1øø PRINT＂TOTAL PRINC PAID I | 4416 |  | 5150 | PRINT |
|  | N YR＂；J1；＂：\＄＂；INT（P1＊1øg |  | OLOR 1，1 | 5160 | IF TE＞$=$ ¢ THEN 5196 |
|  | ＋．5）／1øø | 4420 | PRINT | 5176 | PRINT＂THIS IS A LOSING |
| 3759 | IF $F=1$ THEN 3830 | 4430 | RETURN |  | NVESTMENT． |
| 3768 | IF $\mathrm{J}_{1=1}$ L1 THEN $383 \emptyset$ | 4448 | MS $=1$ | 5189 | RETURN |
| 3770 | bosub 5210 | 4450 | RETURN | 519\％ | PRINT＂THIS IS A PROFITAB |
| 3789 | gosub 534ø | 4460 | $M=M+T$ |  | LE INVESTMENT．＂ |
| 3790 | C5＝ø | 4470 | вотO 457ø | 52.0 | RETURN |
| 38øø | $P 1=\emptyset$ | 4480 | $\mathrm{M}=\mathrm{M}-\mathrm{T}$ | 5218 | PRINT |
| 3810 | $\mathrm{I}=\varnothing$ | 4496 | 80тO 457\％ | 5220 | COLOR 2，2：PRINT＂Press an |
| 3820 | $\mathrm{N}=1$ | 4500 | $\mathrm{M}=\mathrm{M}$＊ $\mathrm{T}^{\text {d }}$ |  | y key to continue＂；icolor |
| 3830 | NEXT J1 | 4510 | 80TO 457\％ |  | 1，1 1 |
| 3846 | G0t0 2670 | 4520 | $M=M / T$ | 5236 | $A=$ INP（2） |
| 3850 | $\mathrm{C}=\mathrm{C}+1$ | 4530 | 80TO 457ø | 5240 | RETURN |
| 3869 | IF C＜＞3 THEN 3896 | 4540 | $T=M$ | 5250 | gosur 53 |
| 3878 |  | 4550 | в0t0 457ø | 5260 | PRINT＂LOAN AMORTIZATION |
| 3889 | вото 39øø | 4560 | $M=\emptyset$ |  | SCHEDULE FOR YR＂；J1 |
| 3896 | PRINT V（C）， | 4570 | PRINT＂MEM＝＂；${ }^{\text {c }}$ | 527ø | PRINT＂PRIN \＃＂IV（2）；＂RA |
| 3960 | INPUT A\＄ | 4580 | RETURN |  | TE＂：V（3）＊160：＂\％＂；PAYM |
| 3910 |  | 459® | PRINT＂\％FUTURE VALUE \＄＂ |  | \＄＂：V 7 （ |
| 3929 | RETURN | 4600 | C＝ø | 5280 | PRINT |
| 3936 |  | 4610 | gosub 3850 | 5296 | COLOR 3，1 |
| 3940 | PRINT＂MEM＝＂；M；＂USE AS VARIABLE HERE（ $\mathrm{Y} / \mathrm{N}$ ）＂ | $\begin{aligned} & 4620 \\ & 4636 \end{aligned}$ | RETURN PRINT＂\＆PRESENT VALUE \＄＂ | 5360 | PRINT TAB（5）；＂\＃＂；TAB（11）； ＂BEG BAL＂；TAB（26）；＂PRINC＂ |
| 3956 | INPUT A\＄ | 4640 | $\mathrm{C}=1$ |  | ；TAB（41）；＂INT＂； |
| 3968 | IF A\＄$=$＂N＂THEN 39øø | 4650 | gosub 385ø | 5318 | PRINT TAB（56）；＂END BAL＂ |
| 3976 | $V(C)=M$ | 4660 | RETURN | 5326 | COLOR 1，1 |
| 3989 | RETURN | 4670 | PRINT＂PRINCIPAL \＄＂ | 5330 | RETURN |
| 3996 | IF As＝＂X＂THEN E＝C：RETURN | 4680 | $\mathrm{C}=1$ | 5349 | CLEARW 2：FULLW 2ıBOTOXY |
|  |  | 4690 | gosub 385ø |  |  |
| 4060 | IF A免＝＂x＂THEN E＝CIRETURN | $47 ø \emptyset$ | $\mathrm{P}=\mathrm{V}$（C） | 5350 | RETURN |
|  |  | 4710 | RETURN | 5360 | TITLEBAR： |
| 4016 | $V(C)=V A L(A *)$ | 4720 | PRINT＂ANNUAL INT RATE $\%$ | 5370 | A $=$ OB ：BINTIN $=\operatorname{PEEK}(A$ |
| 4020 | IF C＜＞3 THEN 404\％ |  |  |  | \＃＋8） |
| 4936 | $V(C)=V(C) / 1 \pm \emptyset$ | 4730 | $\mathrm{C}=2$ | 538® | POKE GINTIN＋ø，PEEK（SYSTAB |
| 4640 | RETURN | 4740 | gosub 3850 |  | ＋8）：PDKE GINTIN＋2，2 |
| 4.650 | REM CALCULATOR MODE | 4759 | RETURN | 5396 | S\＃＝EINTIN＋4 ：TITLE＊ |
| 4ø6あ | GOSUB 534\％ıTITLE㕩＝＂Calcu | 4760 | PRINT＂FOR \＃OF YEARS＂ |  | TITLE + CHR（ ${ }^{\text {（ })}$ |
|  | lator Mode＂：gOSUB TITLEB | 4776 | $\mathrm{C}=3$ | 546ø | POKE S＊，VARPTR（TITLE\％） |
|  | AR | 4780 | gosub 3850 |  | GEMSYS（105） |
| 4976 | $M 5=\varnothing$ | 4790 | RETURN | 541ø | RETURN © |

# Fast IBM Batch File Editor 

Tony Roberts, Production Director

Now it's quick and easy to edit and fine-tune batch files with this DOS utility. It works on any IBM PC or PCjr with an 80-column monitor.

The power of the batch file quickly becomes evident to anyone who works regularly in PC-DOS. The hardy AUTOEXEC.BAT handles a variety of chores each time the system is booted, and any number of other .BAT files stand by, ready to help with such tasks as initializing applications, sending out printer codes, and presenting program menus.

The problem with batch files is that to be effective and helpful, they need to be adjusted as your system grows and your applications change. Performing the necessary batch-file maintenance, however, is often so cumbersome that it's discouraging. Loading a full-blown word processor to edit a five- to tenline batch file can be a lot more time and trouble than it's worth.
"EdBat" solves this problem by focusing all its energy on your batch files. EdBat is without frills, but it's fast and easy to use.

## What EdBat Does

EdBat is a full-screen editor with very limited features. Because it is designed for speed, it limits itself to files of fewer than 512 bytes-adequate for most batch files. (If your file is longer, you're probably better off with a more sophisticated editor.)

When called, the program clears the screen and displays the file you want to edit. Using the cursor keys, you can move to the
appropriate place, make the necessary changes, and press Alt-S to save the edited file. It is not impossible to open a file, edit it, close it, and be back at the DOS prompt in as little as 15 seconds.

The price you pay for this fast operation is that EdBat has very few features. You're essentially limited to the regular character keys and the cursor keys. The Insert key does not work, the Delete key does not work, nor do the function keys perform any function. The Backspace key moves the cursor back a character, but it does not perform a delete.

If you were writing a novel, these restrictions would be serious, but in batch file editing, none of them is particularly restrictive. With batch files, you're usually just performing one or two simple operations such as adding, deleting, or correcting a line. EdBat can handle all these tasks efficiently.

## Using The Program

EdBat is a machine language program that is activated from the DOS prompt. The program listed below, "EdBat Loader," is a BASIC program that creates the file EDBAT.COM from the information in BASIC DATA statements. Type in EdBat Loader using the "IBM Automatic Proofreader," save a copy to disk, and then run it once to create EDBAT.COM.

To run EdBat, enter this line from the DOS prompt:

## EDBAT filename

(The EDBAT.COM file must be on the disk in the current drive when you enter this command.) Filename is the name of the file you wish to
edit. Full drive and subdirectory specifications are allowed when indicating a filename. If the file is too long or if EdBat is unable to open the file, the program will print a message and exit. If the file you have specified does not exist, EdBat assumes you are creating a new file.

In a matter of seconds, the file you are to edit is displayed on the screen below a line containing the program title and the name of the current file. If you have started a new file, the screen's work area will be blank.

Use the cursor keys to move around the file, editing as needed. Notice that a triangle signals the end of each line. If you decide to cut a line short, move to the appropriate spot and press Enter. A triangle is inserted and the cursor moves to the beginning of the next line. The screen may continue to show characters beyond the end-of-line marker, but they will be ignored when the file is saved.

To delete an entire line, simply move to the first position on that line and press Enter. An end-of-line marker appears at that spot, indicating that the line will be ignored.

Inserting a line is slightly more difficult since there is no insert function. Move the cursor to the end-of-line marker on the line that will precede your new line. Press $\mathrm{Ctrl}-\mathrm{Y}$ and a down-arrow character $(\downarrow)$ will replace the end-of-line marker. Add the new line right after the down arrow and press Enter as usual. When the file is saved, the lines will be adjusted.

## Saving The Changes

When you're finished editing, press

Alt－S to save the file．The program＇s save routine reads the screen and saves what it sees to your file．It begins with the first line of the text area and continues until it finds a space in the first position of any line．EdBat ignores any characters in a line which follow the first end－ of－line marker．

The only other option the pro－ gram offers is Alt－Q，the Quit op－ tion，which returns you to DOS without changing the original file． In nearly every case，your entire file will fit easily on the screen．If part of your file scrolls off the screen， use Alt－Q to quit and find another method of editing the file．EdBat cannot save what it cannot see．

Unlike many word processors， EdBat does not make a backup of your original file．In most cases， though，a backup of a very short file is superfluous．For years，EDLIN， the line editor included with PC－ DOS，had been my batch file editor． Eventually，though，I lost patience with it over the time it spent writing backup files and went to work on EdBat．

## EdBat Command Summary

## Alt－Q Quit

Alt－S Save
Ctrl－Y Multistatement delimiter（prints as a down arrow）
Enter End－of－line（prints as left－pointing triangle）
Space Space in first position of line sig－ nals text end

## EdBat Loader

For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In
Programs＂in this issue of COMPUTEI．
HL $1 \emptyset$ CLS
EI $2 \emptyset$ OPEN＂EDBAT．COM＂AS 1 LEN
FC $3 \emptyset$ FIELD 1， 1 AS A\＄
GP $4 \emptyset$ PRINT：PRINT＂Writing EDBAT． COM to disk．Please wait．＂
6C $5 \emptyset$ FOR I＝1 TO 8：READ B\＄：GOSUB 139：NEXT I
CH 6ø FOR I＝1 TO 75：B\＄＝＂5F＂：GOSU B 13ø：NEXT I
6月 $7 \emptyset$ B $\$=$＂ 24 ＂：GOSUB 130
OF 8 G FOR $I=1$ TO 74：B\＄＝＂Ø＂：GOSUB 135：NEXT I
H月 $9 \varnothing$ FOR $I=1$ TO 648：READ B\＄：GO SUB 13ळ：NEXT I
061 1øø CLOSE
MA $11 \emptyset$ PRINT：PRINT＂EDBAT．COM has bean created．＂
LO $12 \emptyset$ END
MF 136 REM write byte to disk
QO $14 \varnothing$ LSET A\＄$=$ CHR $\$\left(V A L\right.$（＂$\& H^{\prime \prime}+B$ \＄）
LK $15 \emptyset$ PUT \＃1
MH $16 \emptyset$ RETURN

DN $17 \emptyset$ DATA E9，Eø，$\varnothing, 45,64,4$ 2，61，74，2，$\quad$ g
CE $18 \emptyset$ DATA $2,5 \emptyset, 6 \mathrm{C}, 65,61,7$ $3,65,20,73,7!, 65,63$ ，69，66，79， 26
EK 190 DATA $66,69,6 C, 65,6 E$ ， $61,6 \mathrm{D}, 65,2 \mathrm{E}, \mathrm{D}, \mathrm{A}, 24$ ， 45，72，72，6F
EH $26 \emptyset$ DATA $72,2 \emptyset, 6 F, 79,65$ ， $6 E, 69,6 E, 67,28,66,6$ 9，6C，65，2E，D
BL 216 DATA A， $24,46,69,6 C, 6$ 5，2פ，74，6F，6F，26，6C ，6F，6E，67，2E
BP 226 DATA $D, A, 24, F C, B F, 54$ ，1，$B E, B \emptyset, \Phi, A C, A 2,9$ 9，1，FE，E
J 236 DATA 99， $1,3 \mathrm{C}, ~ 6,75,9$ ， $B A, A 1,1, E 8,7,2, E 8$ ， 25，2，$A C$
FH 24 D DATA $3 C, D, 74,3, A A$ ，EB ，$F B, E B, B A, 1,73, E, 3$
D，2，ஏ， 74
日A $25 \mathscr{D}$ DATA 3ø，$B A, B C, 1, E B, E$
$C, 1, E B, A, 2, B A, 26,4$ ，8B， $1 E, 9 A$
Q1 $26 \emptyset$ DATA $1,8 B, E, 9 F, 1, B 4$ ， 3F，CD，21，3B，6，9F， 1 ，75，C，EB
AD $27 \emptyset$ DATA $A \mathscr{}$ ， $1, B A, D 2,1$ ，E8 ，CB，1，E日，E9，1，A3， 9 6，1，EB， 91
HA $28 \emptyset$ DATA $1, E B, C B, 1, B A, 3$ ， $1, E 8, \mathrm{B9}, 1, \mathrm{C}, 6,9 \mathrm{E}$ ， $1,5, \mathrm{C} 6$
KF 290 DATA 6，9D， 1,14 ，E8， $6 \emptyset$ ，1， $\mathrm{BE}, 55,1,33, \mathrm{C9}, 8$ $A, E, 99,1$
HP Зஜø DATA AC， $8 A, D \emptyset, 8 \emptyset, F A$ ，
61， $72,3,8 \varnothing, E 2$, DF，EB ，9C，1，E2，Fg
HL $31 \emptyset$ DATA C6， $6,9 E, 1,2, C 6$ ， $6,9 \mathrm{D}, 1, \mathrm{E}, \mathrm{EB}, 3 \mathrm{~A}, 1$ ，
日3， $3 E, 96$
OJ $32 \emptyset$ DATA $1, \emptyset, 74,1 F, F C, B E$
，26，4，日B，$E, 96,1, A C$ ，BA，D $\quad 8$ ， 8
JN $33 \varnothing$ DATA $F A, D, 75,7, B 2,11$ ， $\mathrm{EB}, 71,1, \mathrm{~B} 2, \mathrm{D}, \mathrm{EB}, 6$ C，1，E2，EC
HM $34 \emptyset$ DATA E8， $14,1, \mathrm{B4}, \emptyset, \mathrm{CD}$ ，16，3C， $0,74,13,3 C$ ， D，74，A， SC
NO $35 \emptyset$ DATA $8, B 4,4 B, 74,1 \mathrm{C}, 3$ C，19， $72, E A, E B, 1 \mathrm{~F}, 1$ ， EB，ES，日ø，FC
PE $36 \mathscr{D}$ DATA $48,75, E, 8 \emptyset$, उE， 9 $E, 1,2,74, \mathrm{D9}, \mathrm{FE}, \mathrm{E}, 9$ E，1，EB，E6
$0837 \emptyset$ DATA $\varnothing, 8 \emptyset, F C, 4 B, 75, \mathrm{E}$ ，日ஜ， $3 \mathrm{E}, 9 \mathrm{D}, 1$, ． $74, \mathrm{C}$
6，$F E, E$ ， 9 D
D6 उ8Ø DATA 1，E8，D3，$\sigma, 8 \emptyset, F C$ ， $4 \mathrm{D}, 75, \mathrm{E}, 8 \mathrm{~B}, 3 \mathrm{E}, 9 \mathrm{D}$ ， 1，4F，74，B3
0J $39 \emptyset$ DATA FE，6，9D，1，E8，Cø ，$Б, 8 \%, F C, 5 \emptyset, 75, E, 8$
Ø，ЗE，9E， 1
NJ 4øø DATA $18,74, \mathrm{~A}, \mathrm{FE}, 6,9$ $E, 1, E B, A D, \varnothing, 8 D, F C$ ， $10,75,6, E B$
QK $41 \emptyset$ DATA FD，$\emptyset, E 8, F, 1,8 \emptyset$ ， FC， $1 \mathrm{~F}, 75,89, \mathrm{C}, 6,9$ 6，1，$\square, ~ \curvearrowleft$
JD $42 \emptyset$ DATA BF， $26,4, \mathrm{C}, 6,6$ ， 9 E ，1，2， $\mathrm{C} 6,6,9 \mathrm{D}, 1,9$ ， $\mathrm{EB}, 87, \emptyset$
ML $43 \varnothing$ DATA C6， $6,95,1, ~ \emptyset, ~ B 4$ ， $B, C D, 16,3 C, 2 \emptyset, 74,4$ E，3C，11， 75
BB 44ø DATA 9，FE，6，9E，1，EB， $6 F, 9, E B, D E, 89,3 E, 9$ 5，1，59， 77

DJ $45 \varnothing$ DATA $18, B 4,8, C D, 1 \varnothing, 3$
C， $11,74,16,3 C, 19,75$ ， $1 \mathrm{C}, \mathrm{B}$ ， $\mathrm{D}, \mathrm{AA}$
DE $46 \emptyset$ DATA $F F, 6,96,1$ ，$B \emptyset, A$ ， $E B, 11,95, \mathrm{~B}, \mathrm{D}, \mathrm{B4}, \mathrm{~A}$ ，$A B, 83,6$
$A B 47 \emptyset$ DATA 96， $1,2, \mathrm{FE}, 6,9 \mathrm{E}$ ， $1, E B, A F, A A, F F, 6,96$

LC $48 \emptyset$ DATA 95，1，FE，6，9D，1， $E B, 2 E, \mathscr{E}, \mathrm{~EB}, \mathrm{BF}, \mathrm{FB}, \mathrm{B}$ A，55，1，B4
CF $49 \emptyset$ DATA $3 \mathrm{C}, \mathrm{B9}, ~ Б, ~ Ø, ~ C D, ~ 21$ ， $73,9, \mathrm{BA}, \mathrm{BC}, 1, \mathrm{~EB}, 6$ 5，©，E8， 83
LA $5 \emptyset \emptyset$ DATA $\emptyset, 8 B, \mathrm{DB}, \mathrm{BB}, \mathrm{E}, 96$ ，1， $\mathrm{BA}, 26,4, \mathrm{B4}, 46, \mathrm{C}$ D，21，EB， 21
HD $51 \varnothing$ DATA $\emptyset, E B, 5 B, ~ ஏ, ~ E B, ~ 6 D$ ，$\emptyset, 8 A, 36,9 E, 1,8 A, 1$ 6，9D，1，B4
C8 $52 \emptyset$ DATA $2, C D, 1 \emptyset, C 3, F B, B$ $A, 55,1, B ⿹, 2, B 4,3 D$ ， CD，21，AJ，9A
LC 530 DATA 1， $\mathrm{C}, 8 \mathrm{BB}, 1 \mathrm{E}, 9 \mathrm{~A}, 1$ ，$B 4,3 E, C D, 21, C 3,8 A$ ， Dø，日ஜ，FA，D
PH $54 \emptyset$ DATA 74， 8, EB， $25, \emptyset$, FE ， $6,9 \mathrm{D}, 1, \mathrm{CJ}, \mathrm{B2}, 11, \mathrm{E}$ B，1B，D，B2
JD 550 DATA D，E8， $16,5, \mathrm{~B}, \mathrm{~A}$ ， $E B, 11,6, F E, 6,9 E, 1$ ， C6，6，9D
ID 560 DATA $1,9, \mathrm{C3}, 50, \mathrm{B4}, 9$ ， $C D, 21,58, C 3, B 4,2, C$ D，21，C3，B4
I6 57ø DATA $\mathrm{F}, \mathrm{CD}, 1 \emptyset, 88,3 \mathrm{~B}, 9$ C，1，B4，$\varnothing, B ø, 2, C D, 1$ Б，B4，5，Вஜ
BF $58 \emptyset$ DATA $_{\text {g }} \quad \mathrm{CD}, 1 \emptyset, C 3, C D, 2$


# 3-D Tic-Tac-Toe For Atari ST 

David Bohlke

This new rendition of an old favorite lets you match wits against the ST computer in a three-dimensional contest. You can even, if you like, make changes to the program which will make the computer play more aggressively or more cautiously. "3-D Tic-Tac-Toe" runs on any Atari 520ST or 1040ST computer with a color monitor.
"3-D Tic-Tac-Toe" is a strategy game where you take on the Atari ST in a battle of wits. The object of the game is similar to the traditional Tic-Tac-Toe game, except this version takes place in a simulated three-dimensional space containing four game boards. To win, you must place four pieces in a row. The row may extend across a single plane or vertically though all four planes. Though it's not a flawless player, the ST will provide you with a formidable opponent.

## Entering Tic-Tac-Toe

Type in the program as listed and save it to disk. The program works in either low- or medium-resolution modes. When you run the program, it randomly selects whether you or the computer should go first. The computer needs only a few seconds to pick its move and places a red uppercase $C$ at the selected square. (The ST takes less time to move if

"3-D Tic-Tac-Toe For Atari ST" challenges you to best the computer in a three-dimensional strategic simulation.
you refrain from moving the mouse pointer around while it is calculating; moving the pointer freezes normal BASIC operations. In addition, you should avoid moving the slider bars on the output window, since this may jumble part of the game board.)

It's your turn when the screen prompt appears. Use the mouse to move to the square of your choice, then click the left mouse button. Due to the slowness of ST BASIC, you may need to hold the button down for as long as one second before the computer recognizes your choice. A blue uppercase $H$ appears on the square you have chosen. The $H$, of course, stands for the Human, you, and the $C$ stands for Computer.

## Programmed Strategy

You may be interested in learning how the ST plays this simple strategy game. The computer does not use a "look-ahead" technique, but rather determines its move by assigning a numeric value to each empty square. This value is explained in the table, which shows a sample Tic-Tac-Toe combination of four squares in a row, along with the corresponding BASIC line number that assigns the value.

## Combination Values

| Line | Pattern | Value |
| :--- | :--- | :--- |
| 540 | HHHH | human wins |
| 540 | CCCC | computer wins |
| 550 | H_HH | 33 points |
| 560 | -H_H | 5 points |
| 570 | CC_C | 2 points |
| 580 | CC_C | 77 points |
| 590 | C_CC | 6 points |
| 600 | _C_ | 1 point |

Each computer piece is stored with a value of 5 in the V() array, and each human piece has a value of 1 in the array. So if a row of four squares contains two computer pieces, that combination has a value of 10 . Lines 540-600 then convert these combination values into point values, which are evaluated to choose the next move. Note that the order of pieces in the table has no significance: What matters is the number of pieces and blanks. In the third entry, for instance, the se-
quence H_HH merely indicates that the row contains one blank and three human pieces, in any order. No value is assigned to a row that contains both computer pieces and human pieces since it's clearly impossible to win on that row.

This game is designed so that the computer plays a nearly equal balance of offense and defense. If you would like the computer to play more aggressively, increase the values for offensive moves in lines 590 and 600 . For a more conservative game, you can increase the values in lines 560 and 570 . With a little experience, you'll find that a change of just one or two points in these four lines will make a significant difference in the computer's move strategy.

## 3-D Tic-Tac-Toe

## 1øø fullw 2:clearw 2

110 dimb(64),v(64),x(64),m(6) 4,28 ) : gosub $67 \emptyset$
120 , new game
13ø clearw 2:color 1:print:fo $r$ s=1 to 64:gosub 870 gotoxy $x-1, y: p r i n t " \ \_$" :next
15ø for $i=1$ to 64:b(i)=ø:x(i) $=\emptyset: v(i)=\emptyset:$ next: $w(1)=\emptyset: m v=$ $g$
169 randomize $\boldsymbol{6}$ :if rnd (1) $<.5$ then $s=i n t(\operatorname{rnd}(1) * 64)+1: g$ osub 84ø:coior 2:goto 37ø

170 , human moves
18ø gosub 84ø:color 4:print:g otoxy Ø, Ø:print"Point and Click to MOVE"
190 gosub mousexy: mx=int (msx/ 9): my=int (msy/9.3)

2øø sq=ø:if msb<>1 then 19ø
210 for s=1 to 64:gosub 870
220 if $y=m y-2$ and abs $(x-m x)<=$ 1 then $s q=5$
23ø next:if sq=ø then 19ø
240 s=sq:gosub 87ø
$25 \varnothing$ if $b(s)<>\varnothing$ then $19 \varnothing$
260 sx=1:gotoxy x,y:print"H_" ; : b ( 5 ) $=1: v(5)=\varnothing$ : gosub $5 \overline{2}$ g if $w(1)>\varnothing$ then $44 \varnothing$ , computer moves gosub 84פ:color 2:print:g otoxy ஏ, ø:print"Atari ST" 5 Move
3øø $s x=\varnothing$ : for $s=1$ to 64:if bis ) $>\varnothing$ or $x(5)=\varnothing$ then $31 \emptyset$ el se $v(5)=\emptyset$ : gosub 52の
310 next
32ø $s=\emptyset: h=\emptyset:$ for $i=1$ to 64
$33 \emptyset$ if $v(i)=h$ and $\operatorname{rnd}(1)<.3$ a nd $h>\sigma$ then $h=v(i): s=i$ if $v(i)>h$ then $h=v(i): s=i$

## $35 \emptyset$ next

36ø if s=ø then gotoxy ø, ø:pr int" DRAW game
 $w(2)=2: w(3)=3: w(4)=4$ : got - 460
gosub 87ø:b (s) $=5$ : $v(\mathrm{~s})=$ ø
for $i=1$ to 4:gotaxy $x, y: p$
rint" ";:sound $1,8,1,4,1$
$\emptyset$
39б gotaxy $x, y: p r i n t$ "C_";:sou
nd 1,8,1,5,10: next sound
1, Б, Б, Ø, ம
$490 \quad 5 x=1:$ for $i=1$ to $64: \times(i)=0$ snext:gosub 52g
410
42
43

559 if $p=3$ then $q=33$ :goto 620
, load legal win combos i nto M(64,28)
clearw 2:color 1:print" L oading DATA ..."
for $i=1$ to 64:m(i, Ø)=ø: ne xt
for $i=1$ to 16: $a=i$ \& 4-3: for $j=1$ to $4: w(j)=a: a=a+1$ : ne xt:gosub 82Ø:next
for $i=1$ to 4: for $j=i$ to $i$ +48 step 16:n=j
for $k=1$ to 4:w(k)=n:n=n+4 :next:gosub 82g:next:next for $i=1$ to 16: for $j=\emptyset$ to 3:w(j+1)=j*16+i:next:gosu b 820: next
740 for $i=1$ to 28: for $j=1$ to 4:read a:w(j)=a:next:gosu b 829:next:return
$3,12,27,42,57,16,31,46,61$
789 data $13,25,37,49,14,26,38$ ,5Ø, 15, 27, 39, 51, 16, 28, 4月,
79 data $1,6,11,16,17,22,27,3$ $2,33,38,43,48,49,54,59,64$
Bøø data $4,7,16,13,26,23,26,2$ 9, 36, 39, 42, 45, 52,55,58, 61
81ø data $1,22,43,64,4,23,42,6$ $1,13,26,39,52,16,27,38,49$

826
830
$84 \varnothing$

85ø
866
for $k=1$ to $4: 1=m(w(k), \varnothing)$ )
$4+1: m(w(k), \varnothing)=m(w(k), \varnothing)+1$
for $p=1$ to $4: m(w(k), 1)=w($ p) : $1=1+1$ : next: next: return color 1:mv=mv+1:gosub clr prt:gotoxy $\sigma, 2: p r i n t " M o v e$ \# ";mv;ireturn
clrprtigotoxy $\varnothing$, ø: print s pc (23) ; : return
$86 \emptyset$ input s=square to move to, returns $x, y$ as print position
$a=\operatorname{int}((s-1) / 16): y=a * 4+3: b$ =5-ak 16
g c=int ( $(b-1) / 4): y=y+c-2: x=$ (4-a) \& $^{4+c}$ $x=x+(b-c * 4)$ (3-1: return mousexyzpoke contrl, 124:p oke contrl+2, $\sigma$
poke contri+6, $0:$ vdisys( $(\square)$ msx =peek (ptsout) : msy=peek (ptsout +2 ) : msb=paek (intou t) : return

[^5]ID 1øø OPEN \#1,9, п,"D:AUTORU
N.SYS":REM APPEND PAT
CHES TU END OF ORIGIN
AL FILE
EO11g RESTORE 17%
BC 12g PRINT "WRITING...""
DF 130 FOR BYTE=1 TO NBYTES:
READ ABYTE:PUT \#1, ABY
TE:NEXT BYTE
FP 14| CLOSE 贯1
JO 15% PRINT "DONE":END
C\& 16Ø REM \&1FØD-\$1F2B, 1ST
PATCH
HC 17% DATA Ø, 31
KK 180 DATA 43,31
DD 19% DATA 162, Б,32,199,58,
32
81 2øø DATA 88,46,173,17,66,
2.5
CB 21ø DATA 1,66,144,24ø,173
,1
JF220 DATA 66,133, 295,173,1
9,66
JE 230 DATA 265,2,66,144,227
,169
CH24! DATA 65, 16ø, 79, 162, 5,
32
HC 25@ DATA 199,5日, 32, 89,33,
162
IB 26g DATA 4,96
HM 27.0 REM
BK 28ø REM \$1F4g-\$1F4A, 2ND
PATCH
KP 29ø DATA 64,31
KI 3øø DATA 74,31
HC 31% DATA 173,143,62,24!,3
FP 320 DATA 76,150,51,76,152
,33
HK 330 REM
CH34. REM \$2CDB-\$2CEØ,REPL
6 BYTES IN SPEEDCALC
CODE
OC 35@ DATA 219,44
NP 36% DATA 224,44
PO 37% DATA 32, 5,31,32,199,5
8
HP 38% REM
PL 39% REM %31C9-\$31CB,COPY/
MDVE PATCH
\#K 4.g DATA 2%1,49
NH 41% DATA 2.53,49
ED 42g DATA 76,64,31
LI 436 ERR=PEEK(195):PRINT"
ERRIR- ";ERR
KD 44! PRINT "PROGRAM ABORTE
D!"
8D 450 CLDSE 粕1

```

\title{
Commodore 128 Machine Language
}

\section*{Part 2}

\author{
Jim Butterfield, Associate Editor
}

This second in a series of articles on programming the 128 computer in its 128 mode, explores the built-in machine language monitor and looks at ways to link machine language programs to BASIC.

\section*{A Monitor At Your Fingertips}

Some of the earlier Commodore products had no built-in machine language monitor. To work on machine language on the VIC-20 or Commodore 64, for example, you had to load a machine language monitor from tape or disk, or rely on a plug-in cartridge. Other products had simple monitors: Many PET/CBM models had monitors which could display and change memory, save or load programs, and not much else. The built-in monitor on the Commodore 128 has many attractive features; the best way to learn them is to try them.

Type MONITOR and press RETURN. You'll see the familiar register display, with values under the titles: PC (program counter), SR (status register), AC (accumulator or A register), XR (X register), YR (Y register), and SP (stack pointer). They are all similar to what you may have met on other machines except that the value under PC
looks a little odd. It has five digits instead of four. The extra digit at the beginning is the bank number, and since it's an \(F\), we're in bank 15.

We've noted previously that bank isn't quite the right term. We should more properly say configuration 15 , since each configuration consists of a mixture of memory elements. Figures 1 and 2 show the configurations for banks 15 (the default) and 0 . You'll notice that for addresses below \(\$ 4000\), both bank 0 and bank 15 use exactly the same
memory. Thus, the contents of address \(\$\) F1000 is exactly the same as the contents of address \(\$ 01000\). In fact, it's the same memory. We'll look for ourselves in a few moments.

\section*{Number Conversion}

You may be quite comfortable with hexadecimal numbers. You may even be able to do hex-to-decimal conversions in your head and amaze your friends. I can't, however, and I like the number conversion features that are built into the monitor.

\title{
Only NRI teaches you to service and repair all computers as you build your own 16-bit IBM-compatible
} micro

Now that computers are firmly established in offices-and in homes, too-the demand for trained computer service technicians surges forward. The Department of Labor estimates that computer service jobs will actually double in the next ten years-a faster growth rate than any other occupation.

\section*{Total systems training}

No computer stands alone
. it's part of a total system. And if you want to learn to service and repair computers, you have to understand computer systems. Only NRI includes a powerful computer system as part of your training, centered around the IBM-compatible Sanyo 550 Series computer.

As part of your training, you'll build this highly rated, 16 -bit IBM compatible computer system, assemble Sanyo's "intelligent" keyboard, install the power supply and disk drive, interface the highresolution monitor and dot matrix printer, even expand the memory from 128 K to 256 K RAM. It's confidence-building, real-world experience that includes training in programming, circuit design, and peripheral maintenance.

\section*{No experience necessary- NRI builds it in}

Even if you've never had any previous training in electronics, you can succeed with NRI training. You'll start with the basics, then rapidly build on them to master such concepts as digital logic, microprocessor design, and computer memory. You'll build and test advanced electronic circuits using the exclusive NRI Discovery Lab \({ }^{\circledR}\), professional digital multimeter, and logic probe. Like your computer system, they're all yours to keep as part of your training. You even get over \(\$ 1,000\) worth of software, including the popular WordStar and CalcStar.

\section*{Send for 100-page free catalog}

Send the coupon today for NRI's 100-page full color catalog, with all the facts about

NRI is the only home study school that trains you on a total computer system. You'll install and check keyboard, power supply, disk drive, printer, and monitor, following step-by-step directions.
computer training. Read detailed descriptions of each lesson, each experiment you perform. See each piece of hands-on equipment you'll work with and keep. And check out NRI training in other high-tech fields such as

Your NRI total
systems training includes
all of this - NRI Biscovery
Lab to design and modify
circuits - Four-function digita
multimeter with audio cassette training • Digital logic probe for visual examination of computer circuits - Sanyo 550 Series computer with "intelligent" keyboard and 360 K double-density, double-sided disk drive - Highresolution monochrome monitor - RAM expansion module to give you powerful 256K memory - 120 CPS dot matrix printer with near-letter-quality mode - Easy Writer I, WordStar, CalcStar bundled software - Refer ence manuals, schematics, and bite-sized lessons.

Robotics, Data Communications,
TV/Audio/Video Servicing, and more.
Mail the coupon today, and see how NRI can prepare you for advancement and new careers in the exciting world of electronics. If the coupon has been used, write to NRI Schools, 3939 Wisconsin Ave., Washington, DC 20016.

\section*{SEND COUPON TODAY FOR FREE NRI CATALOG!}

\section*{\(\sqrt{2} \sqrt{\text { schools }}\)}

McGraw-Hill Continuing Education Center
McGraw-Hill Continuing Education Center We'll give you tomorrow.
CHECK ONE FREE CATALOG ONLY
Computer Electronics with Microcomputers
\(\square\) TV/Audio/Video Servicing Satellite Electronics Robotics \& Industrial Controls Data Communications
\(\square\) Industrial Electronics \(\square\) Communication Electronics \(\square\) Electronic Design Technology \(\square\) Telephone Servicing \(\square\) Digital Electronics Servicing \(\square\) Basic Electronics \(\square\) Bookkeeping \& Accounting
\(\qquad\)

Appliance Servicing Small Engine Repair \(\square\) Air Conditioning. Heating, \& Refrigeration
\(\square\) Locksmithing \& Electronic Security Building Construction Automotive Servicing

Name (Please print)
Street

We've talked about hexadecimal address \(\$ 4000\) already. Let's find its value in decimal.

Type in the value \(\$ 4000\) on a line by itself and press RETURN. You'll see a display of this number as it appears in various number bases. First, the hexadecimal number., The dollar sign means hex, of course, so the monitor simply echoes what you typed in: \(\$ 4000\). The next line starts with a plus sign (+). To the 128 's monitor, the plus sign means decimal. So you can see that \(\$ 4000\) equals decimal 16384. The following line starts with an ampersand (\&), which means octal, a notation that's rarely if ever used with Commodore machines. (Octal numbers are base 8 , so \(\& 40000\) is equal to four times eight raised to the fourth power.) Finally, the number that starts with a percent \(\operatorname{sign}(\%)\) is the binary representation of \(\$ 4000\). Since the computer's internal code is always binary-not decimal or hexadecimal-it's sometimes useful to be able to look at a number this way.

You may also convert a decimal number to the other bases by typing it in, leading off with a plus sign. If you like, try entering +16384 and watch the computer figure out that it's the same as \(\$ 4000\). And if you ever need to do so, you can convert from octal or binary the same way.

Conversions are convenient, but the monitor includes another bonus: Any number may be entered in any base, any time. If you put in a number without a prefix, the monitor will assume you mean it to be hexadecimal. But you can slip in a decimal number anywhere by prefixing it with the plus sign. We'll be doing this; you'll see how handy it is.

\section*{Looking At Memory}

You may display memory with the command M. If you follow \(M\) with two addresses, the monitor displays all the values between them. Thus, to display the contents of addresses \$1000-\$1029, just type M 1000 1029 and press RETURN.

You'll get more than you bargained for. Depending on whether you are on a 40 -column or 80 column screen, the monitor will display 8 or 16 memory locations at
a time. Each group of locations is on a single line, with the address of the first item on the line showing at the left. We asked for 42 locations, but we got 48 , since the computer always finishes the line it's working on.

On the right, we see the ASCII character equivalent of the contents of the memory locations; some locations don't happen to have an alphanumeric equivalent, in which case a period is printed. If you display the addresses suggested above, you'll see some readable text in this area. The zone of memory we're looking at holds the function key definitions.

Just to confirm something that was said before, try using \(M\) to display memory locations F1000F1029. That's bank 15 instead of bank 0, but you'll see that it is in fact the same memory. And you might like to try \(\mathrm{M}+4096+4137\) which uses decimal addresses for the same locations.

If you follow an M command with only one address, you'll get a fixed number of memory locations. This can save you typing, and here's a tip for browsing through large amounts of memory: If you type \(M\) alone with no addresses, you'll get a continuation of the last memory display.

\section*{Making Changes Directly}

The simplest way to change memory is to display the area you're interested in, then move the cursor back and type over the values on the screen. When you press RETURN, the monitor enters all the values for that line. It's a bit like screen editing in BASIC.

Try it. If you have displayed memory as suggested above, you may see the word GRAPHIC on the right-hand side of the memory display. Let's change the \(G\) stored in memory to a \(T\) so that it says TRAPHIC. The code for a \(G\) is \(\$ 47\); it's found in the left-hand part of that line. Move the cursor over the 47 and type 54, which is the code for \(T\). Now press RETURN and the memory change is made.

Remember that you can't change the right-hand ASCII side of the display. And by the way, this is not the recommended way to change the function key definitions. It's easier (and better) to use

BASIC's KEY command.
You can't change locations in read only memory (ROM). Try this: M F4200 F4200 will show you part of the BASIC ROM. Move the cursor back, type over a value, and press RETURN. You'll see from the display that the original values have been restored and ROM has not changed. Here's a note for technical types: The values from the line have "poked through" into the RAM memory which lies beneath ROM, but the monitor shows only the ROM.

The first character on the memory display line is the greaterthan sign \((>)\). This is in fact a synonym for the change memory command. On rare occasions, you might like to use this command directly.

Here's a typical case where the greater-than sign might be typed: You want to change a single location in an I/O chip. Using the "display and type over" method, you'd change 8 or 16 locations at a time. Usually, that's okay, but I/O chips are delicate and you don't want to change other registers accidentally. As a simple example, you might like to change the 40 -column border color to red, but you don't want to change anything else. You may type \(>\) FD020 2 (remember that the I/O chips are in bank 15) and the border will change. The monitor will display a full line of memory locations, but you've changed only one. By the way, did you notice that the address you changed does not now contain the value 2 you put in? Funny things, I/O chips. If you're interested, you might type \$D020 to ask the computer what decimal address in bank 15 you have changed. You might recognize the answer, +53280 .

\section*{Write A Simple ML Program} Let's write a short program to print a line of asterisks. We'll use the built-in assembler. Here goes:

\section*{A 1500 LDX \#0}

The A means assemble. The address at which we will put this instruction is 1500 ; it's in hexadecimal (put a dollar sign in front if you like). The instruction itself is LDX \(\# 0\), load counter \(X\) with a value (the \# character means a value, not an address) of zero. Press RETURN
and you'll see that the line has changed to
A 01500 A2 00 LDX \#\$00
The machine code in addresses 1500 and 1501 (bank 0, but in this area that's the same as bank 15) is hex A2 00. These two bytes have been placed in memory, and the monitor is ready for your next line of code; in fact, it has typed part of it for you. Complete the next line so that it reads
A 01502 LDA \#\$2A
This instruction, when the program runs, will load the ASCII code for an asterisk (hex 2A) into the A register; that's the register we use for printing. Continue with
A 01504 JSR \$FFD2
A 01507 INX
A 01508 CPX \#+20
The first instruction in this group prints a character, calling the Kernal ROM routine usually known as BSOUT (also known in the Commodore 64 as CHROUT). The next adds one to the \(X\) register, which we're using as a counter. The last instruction says, "Compare the counter with decimal 20." Note the plus sign for decimal. When you press RETURN, the line changes to

\section*{A 01508 E0 14 CPX \#\$14}

The value 20 has been changed to hexadecimal. Don't be surprised; it's still the same number. Continue entering with
A 0150A BNE \(\$ 1504\)
A 0150C LDA \#\$0D
A 0150E JMP \$FFD2
The instruction BNE \$1504 sends the program back to print again if we haven't reached 20 characters. The sequence LDA \#\$0D:JMP \$FFD2 prints a carriage return and terminates the program (we know that the ROM routine at \$FFD2 ends with RTS, so we can save a little code by using that RTS to return, rather than ending with the more conventional JSR \$FFD2:RTS). After typing the last line, the computer prompts you with A 01511. Simply press RETURN to end the assembly.

If you like, you can proofread your program by entering the command D 1500 150C. The D command is for disassemble, which performs an activity more or less the reverse of an assembly.

\section*{Starting Up}

You can go to this program with a G (go) command, which doesn't permit a return. Better, you can call it with a J (jump subroutine) command. But first, you must think about what bank you are in.

If you enter the command J 1500, you'll have a disaster on your hands. Why? Because you're entering bank 0 which contains no Kernal ROM and no I/O chips. Remember, the program uses the Kernal ROM routine BSOUT to print each character. If you JSR to this routine when the Kernal ROM is absent, you'll never print those asterisks, and your program will almost certainly fail. If you really want to call this program from the machine language monitor, invoke bank 15 with J F1500.

It's also quite simple to call the routine from BASIC. First, find the starting address. Type \(\$ 1500\) and read the answer, decimal +5376 .

\section*{Back To BASIC}

Return to BASIC by giving the \(X\) (exit) command. You'll see the familiar READY response of BASIC. Now type NEW (don't worry, your machine language program won't be harmed) and enter the following program:
100 BANK 15
110 SYS 5376
120 PRINT "THIS WORKS"
130 SYS 5376
140 PRINT "WITHOUT PROBLEMS" 150 SYS 5376

Run the program and you should see a row of asterisks. If you've done these exercises, you should have a feeling for the 128's machine language monitor. It's convenient and flexible. In upcoming articles we'll learn more about the monitor, and how to link BASIC and machine language programs together.

> COMPUTE! TOLL FREE Subscription Order Line 1-800-247-5470

In IA 1-800-532-1272

\section*{Copies of articles from this publication are now available from the UMI Article Clearinghouse.}

For more information about the Clearinghouse, please fill out and mail back the coupon below.

\section*{UMMT Article
Cleamingouse}

Yes! I would like to know more about UMI Article Clearinghouse. I am interested in electronic ordering through the following system(s):
\begin{tabular}{ll}
\(\square\) DIALOG/Dialorder & \(\square\) ITT Dialcom \\
\(\square\) OnTyme & \(\square\) OCLC ILL \\
& Subsystem
\end{tabular}Other (please specify)
I am interested in sending my order by mail.
\(\square\) Please send me your current catalog and user instructions for the system(s) I checked above.
Name
Title
Institution/Company

\section*{Department}

Address
City_State_Zip
Phone (\(\quad\))

Mail to: University Microfilms International 300 North Zeeb Road, Box 91 Ann Arbor, MI 48106

\title{
Stringing Atari Machine Language
}

\author{
Robert Martinsons
}

Storing Atari machine language in a string is a time-honored technique, but how do you get the ML into the string in the first place? This program does the job automatically, creating the necessary string and appending it to the BASIC program of your choice. It's easy and very fast.

A good way to enhance the performance of BASIC programs is to use machine language subroutines for tasks which either take too much time or consume too much memory. And one of the most popular places to store short ML routines is in an Atari BASIC string. Once the ML code is stored in a string, BASIC's ADR function can calculate the string's address, and the USR function can call it.

Short machine language routines can be dealt with by manually typing them into strings, but this can be somewhat tricky, since it usually involves typing strangelooking control characters. Another possibility is to use DATA statements which BASIC can READ under program control. Neither of these methods is attractive for large routines, however. Substantial ML programs are usually written with an editor/assembler, which produces a binary file as output. The problem, then, is how to convert the contents of a binary file into a string that BASIC can easily handle.

The routine that accompanies this article solves the problem of converting binary files into string form. It reads binary data from a disk or tape file, stores it in a series of strings through the editor's forced read mode, then deletes itself from memory. Type in the program lines listed below, then LIST the routine to disk or tape. Do not save the routine: It must be LISTed so that you can later ENTER it into memory without disturbing a program that's already present.

\section*{Stringing Along}

To use the routine, first load the BASIC program to which you would like to add a machine language routine. Of course, the ML routine is one which normally resides in a binary file. (Note that the ML routine must be relocatable, since Atari BASIC strings can move around in memory while a program runs.) The BASIC program must not use any line numbers higher than 31499 , since this routine itself uses the lines beginning at 31500 . Next, ENTER the routine from disk. This brings it into memory without altering the BASIC program. To activate the routine, type GOTO 31500 and press RETURN.

The program begins by requesting the filename of your binary file. Be sure to include the correct device prefix in your response. For instance, to read the binary file CODE.BIN from disk, enter D:CO-

DE.BIN at the prompt. At the next prompt, enter the name of the BASIC string which will hold your machine code. Limit the name to eight characters or fewer (if you enter too many characters, the routine automatically truncates the name). Answer the last prompt with the line number where you want the new ML strings to begin. When answering this prompt, you should take care not to start the new lines at a place which would overwrite existing lines. A safe rule of thumb is to allow ten line numbers for every 256 bytes of machine language.

At this stage, the routine begins reading the ML code into memory and converting it into strings. When the process is complete, the routine deletes itself, leaving your original program plus the strings that contain the machine language. Before you can resave the program, you must manually add a DIMension statement for the new string and add USR calls for the routine where needed. It's also a good idea to LIST the revised program to disk, type NEW, and ENTER it again, before saving it a final time. In this way you can clear out all the variables used by the deleted routine.

\section*{The Editor Does All The Work}

For those who are interested, here is a short explanation of how the

\section*{From the publishers of COMPUTE!}

\section*{September 1986 COMPUTE! Disk}

All the exciting programs from the past three issues of COMPUTE! are on one timesaving, error-free, floppy disk that is ready to load on your Atari 400/800, XL, and XE. The September 1986 COMPUTE! Disks contain the entertaining and useful Atari programs from the July, August, and September 1986 issues of COMPUTE!.

The September 1986 COMPUTE! Disk costs \(\$ 12.95\) plus \(\$ 2.00\) shipping and handling and is available only from COMPUTE! Publications.

For added savings and convenience, you may also subscribe to the COMPUTE! Disk. At a cost of only \(\$ 39.95\) a year (a \(\$ 12.00\) savings), you'll receive four disks, one every three months. Each disk will contain all the programs for your machine from the previous three issues of COMPUTE!. To order a subscription, call toll free 800-247-5470 (in IA 800-532-1272).

This is an excellent way to build your software library while you enjoy the quality programs from COMPUTE!.

Disks and subscriptions are available for Apple, Atari, Commodore 64 and 128, and IBM personal computers. Call for details.

For more information or to order individual issues of the September 1986 COMPUTE! Disk, call toll free 1-800-346-6767 (in NY 212-887-8525) or write COMPUTE! Disk, P.O. Box 5038, F.D.R. Station, New York, NY 10150.
conversion routine works．All Atari binary files have a six－byte header， which contains the information shown in the table．

\section*{Typical Binary File Header}
\begin{tabular}{cccl}
Byte & Number & Number Description \\
1 & 255 & FF & \begin{tabular}{l}
Identification \\
2
\end{tabular} \\
255 & FF & \begin{tabular}{l}
code for \\
binary load file
\end{tabular} \\
3 & 0 & 00 & \begin{tabular}{l}
Starting address \\
（LSB）
\end{tabular} \\
4 & 10 & 0A & \begin{tabular}{l}
（MSB） \\
5
\end{tabular} \\
72 & 4 C & \begin{tabular}{l}
Ending address \\
（LSB）
\end{tabular} \\
6 & 13 & 0D & （MSB）
\end{tabular}

The conversion routine opens the binary file and executes a CIO （Central Input／Output）system call to bring in the first six bytes．It examines these and confirms that you have accessed a binary file，and then computes the file size by sub－ tracting the starting address from the ending address．Next，a subrou－ tine which dimensions a temporary string（TEMP\＄）is created and exe－ cuted．For the sample header shown，the dimension of TEMP\＄ will be 841．TEMP\＄becomes the input buffer for the next CIO call which reads in the remainder of the binary file．

A loop beginning at line 31610 now begins to break the data from TEMP\＄into segments short enough to be stored in a BASIC line．Each new string will hold 90 bytes unless we find the ATASCII equivalent of a quotation mark（34）or carriage return（155）．These values are han－ dled separately to avoid confusing the screen editor．

The POKEs in the subsequent lines switch the editor into forced read mode，causing it to enter the new line just as if you＇d typed it manually and pressed RETURN． Because the address of TEMP\＄ moves every time the editor enters a new line，its address is recomput－ ed at the beginning of each loop． After the last byte of data has been packed into the new string，the con－ version routine again uses forced read mode to delete itself from the finished program．

Chances are that you＇ve been using a more manual method of embedding your assembly lan－ guage routines into BASIC．If so，
this routine should become a wel－ come part of your toolkit．Sit back and enjoy watching the screen edi－ tor do all the work．A final note： Every effort was made to keep the program as compact as possible． Therefore，no REMark statements are included and error trapping is held to a minimum．

\section*{String Atari Machine Language}

For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing in Programs＂in this issue of COMPUTEI．

BD \(315 \emptyset \varnothing\) CLR ：GRAPHICS \(\varnothing\) ：IND EX＝1：LINENO \(=\varnothing\) ：STRTL INE＝45：DIM BUFFER（ 8），FILNAM（15），STRN AME（8），A（1）：CIO＝A

GN \(3151 \emptyset\) ？＂Enter filename \(f\) or binary load fille ＂：INPUT FILNAM\＄
BO 31520 ？＂Enter BASIC stri ng name＂：INPUT STRN AME
NL 31530 ？＂Enter starting 1 ineno for string＂：I NPUT LINENO
PK 3154 ． \(\mathrm{A}=\mathrm{ADR}\)（BUFFER \({ }^{2}\) ）：OPEN \＃ \(1,4, \varnothing, F\) I LNAM \({ }^{4}\) ：POK E 850，7：B＝INT（A／256 ）：POKE 852，A－256＊B： POKE 853，B：POKE 857 －\(\varnothing\)
CO \(3155 \%\) POKE 856， \(6: N=\) USR CCI 0）：IF \(\operatorname{PEEK}(A)<>255\) QR PEEK \((A+1)<>255 T\) HEN CLOSE \(1: ?\)＂ERR QR：Not a binary fi 10＂：STOP
HC 3156 FILSIZ \(=(\operatorname{PEEK}(A+4)+2\) 56\％PEEK \((A+5))\)－（PEEK \((A+2)+256\)＊PEEK \((A+3)\) ）+1
PH 3157 GRAPHICS \(\emptyset: P O S I T I O N\) 2，4：PRINT＂3175 D IM TEMP（＂；FILSIZ；＂ ）：RETURN＂
FK \(3158 \%\) PRINT＂CONT＂：PQSITI ON 2，\(:\) POKE 842，13： STOP
FK \(3159 \emptyset\) POKE 842，12：GOSUB 3 175玉：TEMP象（1）＝＂＂：T EMP（FILSIZ）\(=\)＂＂：TE MP（2）＝TEMP \＆：ADDRES S＝ADR（TEMP\＄）：B＝INT（ ADDRESS／256）
OC 316 פø POKE B52，ADDRESS－25 6年B：POKE 853， \(\mathrm{B}: \mathrm{B}=\mathrm{IN}\) T（FILSIZ／256）：POKE 856，FILSIZ－256：B：PO KE 857，B：N＝USR（CID） ：CLDSE 1
FB 3161 Ø BRAPHICS \(\quad\) ADDRESS＝ ADR（TEMP象）：POSITION 2，4：LINELIM＝INDEX＋ 89
OL 3162 IF LINELIM＞FILSIZ T HEN LINELIM＝FILSIZ
OM 3163 A 16 TEMP（INDEX，INDE X）：IF A \(=\)＝CHR \((34)\)（ R A \(=\)＝CHR（155）THEN 3169
CA \(3164 \boldsymbol{6}\) LINESTRT＝INDEX：FOR INDEX＝LINESTRT TO L

INELIM
CH 3165 A \(X):\) IF \(A \$=C H R(34) \quad\)（ R As＝CHR（155）THEN LINEND＝INDEX－1：GOT \(03167 \boldsymbol{1}\)
PC 3166 NEXT INDEX：LINEND＝L INELIM
HK 3167 PRINT LINEND；＂＂； 3 T RNAME \({ }^{\text {P }}\)＂（＂；LINESTR T；＂，＂；LINEND；＂）＝＂；C HR象（34）；
FK 3168 F FOR I＝LINESTRT TO L INEND：？＂\｛ESC\}";TEM P象（I，I）；：NEXT I：？C HR（34）：GOTO 317 øø
B 3169 ？LINEND；＂＂；STRNAM E\％；＂（＂；INDEX；＂，＂；I NDEX；＂）\(=\) CHR（＂；ASC（ A（）；＂）＂：INDEX＝INDEX \(+1\)
LB 317 ■ \(\quad\) IINENO＝LINENO＋1：PRI NT＂CONT＂：POSITION 2，6：POKE 842，13：3T0 \(P\)
㫙 31716 POKE 842，12：IF LINE LIMくFILSIZ THEN 316 \(1 \varnothing\)
日f \(3172 \emptyset\) GRAPHICS \(Б: P O S I T I O N ~\) 2，4：FOR Im31490 TO 31650 STEP 1ø：？I： NEXT I：？＂CONT＂：POS ITION 2， \(6:\) POKE 842， 13：STOP
F6 3173 POKE 842，12：GRAPHIC 5 ह：POSITION 2，4
063174 FOR I＝I TO 3175 ST EP 1ヵ：？I：NEXT I：？ ＂POKE 842，12＂：POSIT ION 2， \(5:\) POKE 842，13 ：STOP

\section*{COMPUTEI}

\section*{Subscriber Services}

Please help us serve you better．If you need to contact us for any of the reasons listed below，write to us at：

\section*{COMPUTEI Magazine}

P．O．Box 10954
Des Moines，IA 50340
or call the Toll Free number listed below．
Change Of Address．Please allow us 6－8 weeks to effect the change；send your current mailing label along with your new address．

Renewal．Should you wish to renew your COMPUTEI subscription before we remind you to，send your current mailing label with payment or charge number or call the Toll Free number listed below．
New Subscription．A one year（12 month）US subscription to COMPUTEI is \(\$ 24.00\)（2 years，\(\$ 45.00 ; 3\) years，\(\$ 65.00\) ． For subscription rates outside the US， see staff page）．Send us your name and address or call the Toll Free number listed below．
Dellvery Problems．If you receive dupli－ cate issues of COMPUTEI，if you experi－ ence late delivery or if you have prob－ lems with your subscription，please call the Toll Free number listed below．

COMPUTE！
1－800－247－5470
In IA 1－800－532－1272

\section*{Sandbox Fred And His Media Maniacs}

Recently, while I was in Vancouver, Canada, at the World Congress on Education and Technology, I was asked to teach an intensive weeklong teacher's workshop at Simon Fraser University, one of Canada's leading universities. The first night of my course at Simon Fraser, I learned that most of the teachers taking my course were novices in electronic media, and that some of them had never even touched a computer. They saw me as a media expert and hoped the course would give them some hands-on experience creating teaching units with different media equipment.

The learning resources center where I taught the course has one of the richest collections of electronic media that I have ever seen. To be frank, there were so many darkrooms, multitrack tape decks, audio/video mixers, computers, projectors, and the like, that it was downright intimidating. Even I was scared, so how were my fearful teachers to acquire the courage to use all that stuff?

\section*{Electronic Sandbox}

As I stood in front of my class that first night, I dug deep inside myself for the one thing that I stood for, the one thing that would charge up the class to leap into the media with gusto and pizzazz. Then I thought of the magic word: sandbox. To me a sandbox is more than four boards and a bag of sand. It is a metaphor for play, storytelling, world building, and for a child's personal journey of exploration and discovery. And sand is a metaphor for what good media should be-rich, malleable, and gritty. Playing with media should be a multisensory experience. As with sand, you should smell it, taste it, and touch it. It should get in your ears, in your shorts, and in your hair.

I told my teachers that I was not a media expert nor a teacher,
but an author. And what I could bring to the course was not technical expertise, but my imagination, my gift for storytelling, and my playfulness. I wasn't going to teach them. I was going to climb into the sandbox with them as "head kid." This approach was not what the teachers expected, but it turned out to be just what they needed.

We began the week with imagination exercises: We closed our eyes and tried to imagine holding a baby. We tried to smell the baby, touch the baby, taste the baby, see the baby, and hear the baby coo, laugh, and cry. We explored how media affects the imagination and how imagination is instrumental in creating good media. Although many of the students had never used a computer before, some had, and the veterans coached the beginners so they could sign on to the university's network. Beginning that first night we kept an electronic journal online that eventually amounted to 50 typed pages. We used the journal to reflect on the week's experiences and to examine the effectiveness of the sandbox approach to learning electronic media.

The teachers eventually divided themselves, according to their interests, into four groups:
- Mandalas (video, animation, sound synthesis, poetry, the arts)
- Choclit (a cartoon with sound synthesis)
- The Sandbox Saga (desktop publishing)
- The Media Maniacs (a documentary video of our week together)

Although no one had planned it, all the groups became intensely involved in storytelling and the imagination. And the groups divided neatly into Mandalas and Choclit, which were an exercise of the imagination looking outward, and Sandbox Saga and Media Maniacs, which showed the imagination
looking inward at ourselves. The Media Maniacs theme came from the Fred's Media Maniacs buttons that one of the teachers made for us with the help of his mentally retarded students.

\section*{Jumping In Headfirst}

By week's end I knew that grownup, high-tech sandboxing can really work. Teachers threw themselves into their projects with ferocious energy and creativity. They mastered machines that they had never even seen before, fussed with buggy software and malfunctioning equipment, and moved on. Nothing stopped them. And their movies, stories, and cartoons were delightful.

But sandboxes have their dark side, too, and we stumbled into this area often. Playing is good, but sometimes there is nothing in a sandbox to play with. My metaphor of a sandbox as a free, unstructured environment encouraged the teachers to be childlike and playful, but they needed guidance and instruction to produce real results. "It's exciting to watch people playing in a sandbox," said one of my students. "But it's no fun at all if you can't get in."

The best part came at week's end when we held a Sandbox Media Festival for a class of computer software teachers. All the teachers' products were terrific, but I especially liked the ones done by the Media Maniacs. One of its producers, Morey, had gotten his three-year-old son, Cameron, to play the part of Sandbox Fred as a child. In the sequence Cameron zigs and zags around the sandbox in his red shorts and a white sun hat and says, "I'm Sandbox Fred, and I like to play in sandboxes. I'm Sandbox Fred, and I like computers. I'm Sandbox Fred, and I have to go potty on the tree."

\section*{Sampled Sounds}

While the debate continues to rage over the destiny of the home computer, specialized programmable computers are showing up in people's homes in record numbers. These computers are the inexpensive music synthesizers manufactured by Casio, Yamaha, Seiko, Kawai, and several others.

In an earlier column I mentioned that the acceptance of the MIDI interface standard has resulted in a powerful merging of synthesizer technology with personal computers. I expect that within a few years every new personal computer will have a built-in MIDI interface.

\section*{Music For Everyone}

Our love affair with music is extraordinary. At any time of the day or night you can turn on your radio and find that the vast majority of stations are playing music. Given the popularity of recorded music and concerts, you might conclude that we are more interested in hearing music than making it. While this is probably true to some extent, it's not as pervasive as it seems. Musical instruments sell briskly.

Millions of people want to enjoy music by playing it themselves. Historically there have been two barriers to this creative urge. The first is the difficulty of learning to play a conventional musical instrument, and the second is the difficulty of learning to read and write music using traditional notational schemes. Faced with the need to practice for years, many would-be musicians give up in frustration.

From the moment it is brought home, the modern digital synthesizer allows music to be created. Unlike a real trumpet, whose first sounds seem better suited for burglar alarms than for music, a synthesized trumpet sounds sweet from the very beginning.

In addition to providing high-
quality sounds, the inexpensive modern synthesizer provides additional help to musicians in the form of sophisticated rhythm sections, automatic arpeggios and chords, and even the ability to sequence several tracks of music into a completely orchestrated piece. All these features can be found at the local discount store for under \(\$ 200\).

\section*{New Instruments}

If I felt for a moment that synthesized instruments were going to replace traditional instruments, I would be concerned. Instead, we are seeing the synthesizer emerge as a class of instrument in its own right, taking its place next to traditional instruments.

The most exciting aspect of synthesizers is that they can produce sounds unavailable in traditional instruments. If you think about it, musical sounds are made in one of four ways: by hitting something (drums or pianos), plucking something (harpsichords, guitars), blowing air into or across something (organs, horns), or scratching two things together (violins). The synthesizer can emulate many of these sounds, but more importantly, it can be used to create sounds that can't be made by traditional methods. This allows the design and creation of new musical instruments by a new breed of craftsperson-one who works with programs rather than with chisels and glue.

\section*{The SK-1}

If there is a major limitation to modern synthesizers, it is that new sounds can be hard to implement. For instance, the Yamaha DX-7, one of the standard instruments in the field, is difficult to program without the use of a separate computer.

A recent entry into the lowcost synthesizer market has made
this task a lot easier. This instrument is Casio's SK-1 sampling keyboard, which retails for well under \(\$ 200\). The computer in the instrument allows sounds to be captured from external sources through a built-in microphone. Suppose you would like to make an instrument that sounds like a hammer hitting a pipe. To capture this sound, you need only place the SK-1 near a pipe (an external mike can be used), press the Sample key on the synthesizer, and hit the pipe with a hammer. The internal computer samples the sound for 1.4 seconds, encodes the sound digitally, and stores it in about 14 K bytes of RAM. The sound you record is assigned to the A key. Once the sound is entered, you can play it at any pitch by pressing the appropriate key on the keyboard. You can also modify the sound's envelope after it is recorded-

\section*{Experimentation}

The most exciting aspect of this instrument, and others like it, is that it stimulates creative experimentation. If it took hours to create new sounds, you might be reluctant to try offbeat ideas, simply because they might turn out to be a waste of time. With the SK-1, a new sound can be captured in a few seconds. As a result, new owners of the instrument typically spend the first day or so capturing everything from motorcycle engines to recited poetry and using these sounds to create new music.

This playful aspect of the synthesizer is its greatest strength. The computer in this synthesizer is completely transparent to the user. There is no barrier between your goal-music making-and a satisfying result. Technology has receded into the background to facilitate the creation of music, and another computer has quietly entered the home.

\section*{That Other Computer Language}

Usually when someone talks about a "computer language," we think of programming languages like BASIC, Pascal, Forth, Logo, and so on. These languages are of interest only to programmers-if you merely want to use a computer, you don't have to learn anything about these languages at all.

But no matter how far removed you want to remain from the inner workings of the machine, there is one computer language you do have to learn: lingo, all those complicated terms and odd slang words that only computer experts seem to understand. You know what I mean: "Oh, you're having RS-232 glitches? This is just a kludge, but try checking your DTR pin and changing duplexes, and if that doesn't work, flip your floppy and warmboot DOS with an ASCII batch file."

\section*{Alien Conversations}

When you're a struggling com-puter-illiterate, it's tempting to assume that this kind of gibberish was invented merely to exclude outsiders from the inner circle. Actually, every occupation, hobby, and field of interest has its own lingo. Listen to yourself someday when talking to a co-worker or a fellow student; you'll be surprised how alien the conversation might sound to someone who is uninitiated.

This was brought home to me recently when I was helping a new computer owner learn to set up and use his system. Suddenly he interrupted: "Boot it up? Does that mean the same thing as turn it on?" I was caught off-guard. Once you learn lingo, it's amazing how fast you take it for granted.

To help clear up any similar confusion you may be experiencing, let's take a look at some of the terms which make up computer lingo:

Back door A secret method of gaining entry to a restricted program by circumventing the password protection. Usually planted by the programmer.

Boot To start up a computer system, usually by switching on the power. Some computers equipped with disk drives must be booted with a disk in the drive (a boot disk) that contains the disk operating system (DOS). Commodore computers are exceptions, because DOS is built into the drives themselves. On the Amiga and early versions of the Atari ST, the computer's operating system itself must be loaded from disk when booting.

Bug A malfunction of hardware or software that can often be replicated. Usually the fault of the programmer or designer.

Bus A connector on a computer into which accessories and cables are plugged. Usually referred to as a system bus or expansion bus.

Clone A computer that is designed to run the same programs and accept the same accessories as another computer made by a rival manufacturer. Clones typically sell for less than the computer they're imitating. The computers most often cloned are the IBM PC and Apple II.

Cold start To boot up a computer system by switching on the power.

Crash Sudden, total failure of a program or computer system. The program or computer refuses to acknowledge commands, usually because of a bug or glitch.

Daisychain Two or more ac-cessories-such as disk drives, a printer, or a modem-all hooked together sequentially to form a chain. The term can also be used as a verb to describe the process of connecting a device to the chain.

Elegant Perhaps the highest compliment that can be paid to the
design of a program or piece of computer hardware. A solution that achieves both success and efficiency.

Gender changer An adapter that turns a male plug into a female jack or vice versa. Intended for matching cables to various kinds of computers and accessories.

Glitch A momentary malfunction of hardware or software. Similar to a bug, but more transitory, and not necessarily the fault of the designer or programmer.

Hacker Originally, someone who became deeply absorbed in programming or exploring the innards of the machine, even if nothing practical ever resultedsometimes to the point of obsession. Recently this term has taken on a different connotation, due largely to misuse in popular media. In this usage, a hacker is someone who gains access to a computer system with mischievous intent, often via a telephone link.

Kludge (Pronounced klooj) A sloppy design or an inelegant solution to a problem. It works, but is clumsy or inefficient.

Lockup The keyboard refuses to respond to typed commands. Usually indicates a crash.

Meg Short for megabyte, a measurement of computer memory capacity. One megabyte equals 1024 kilobytes \((1024 \mathrm{~K})\). A kilobyte equals 1024 bytes. A byte, in turn, is roughly equivalent to one character of storage. Thus, a meg of memory can hold 1,048,576 \((1024 \times 1024)\) characters.

Motherboard The main circuit board inside a computer.

Warm start To reboot a computer system that has already been cold-started, but has crashed or needs to be reset for some other reason. Most computers have a reset button or special key sequence for this purpose.

\section*{Photo Labeling}

There should be a law requiring all photographs to be labeled with the date and content；otherwise，how is one to remember when and where each snapshot was taken？Unfortu－ nately，writing on the back of a photograph is about as much fun as writing on wax paper．Writing on a word processor，on the other hand， is lots of fun－so if we could some－ how get our PC to print on the backs of photographs，we just might have something useful．The solution is the BASIC program list－ ed below to print address labels， which stick nicely to almost any surface－including wax paper and photographs．In addition，the pro－ gram incorporates features to print multiple labels with the same infor－ mation and to date each label automatically．

The program reads a file named LABELS，which you create using a word processing program or text editor．The file must be in ASCII format，and the length of each line should not exceed the width of a label．The program is designed to use \(3-1 / 2 \times 15 / 16\) inch，fanfolded，pressure－sensitive labels that may be purchased in most office－supply stores for about \(\$ 7\) per thousand．This size label holds five 34 －character lines of text．

In order to separate one label from another，the program looks for a dash（ - ）in the first column of the data．If there is a number immedi－ ately after the dash，the program will print that many labels with the text that follows．The first line in the file must either be a blank or contain a date that will be append－ ed automatically to each label．The following figure shows an example of a LABELS file．

\footnotetext{
（July＇ 86 ）
－15
Vacation at Yellowstone
Uncle Eric
}

\section*{－6}

Family Reunion
Miller Park
Mayberry，N．C．
Joe and Phyllis
Aunt Mary＇s house
This file prints 15 labels for the photos taken at Yellowstone， 1 la－ bel for Uncle Eric＇s photo， 6 to be stuck on the backs of the reunion photos，and 1 each for Joe and Phyllis and Aunt Mary＇s house． The program prints only five lines to a label；lines after the fifth are discarded，but it＇s up to you to for－ mat the length of each line to stay within the label boundary．The pro－ gram includes a line－up routine to make it easy to get the labels posi－ tioned in the printer．

\section*{Photo Labeler}

\section*{6A 16 REM}

AF \(2 \varnothing\) REM Program to print \(31 / 2\) \(\times 15 / 16\) inch
MJ 36 REM labels for the backs o \(f\) photographs．
DD 40 REM First line in LABELS \(f\) ile may either be
\(015 \emptyset\) REM blank or a date．The－ sign signals
CI 60 REM the end of one label a nd beginning of
DP \(7 \emptyset\) REM a new one．The \(-n\) opti on may be used to
BN \(8 \varnothing\) REM print＂\(n\)＂identical la bels．Each label
DN \(9 \varnothing\) REM may have a maximum of 34 characters
MA 1 øø REM by 5 lines．
P6 110 REM
61 \(12 \varnothing\) KEY OFF：CLS：DIM S\＄（2ø）
FB \(13 \varnothing \mathrm{X}=1: \mathrm{I}=1: \mathrm{SW}=\emptyset: \mathrm{CNT}=\emptyset\)
Mo 140 OPEN＂labels＂FOR INPUT \(A\) 5 \＃1
LJ 150 LINE INPUT \＃1，DAT\＄
BI 169 REM Ready printer and ali gn labels
DJ \(17 \varnothing\) REM Print a test label．
IP \(18 \emptyset\) PRINT＂Insert labels in \(p\) rinter and press＂
OD \(19 \varnothing\) PRINT＂any key to continu e．．．＂
KO 2øø A\＄＝INKEY \(\$=I F A \$="\)＂THEN 2 øø
DH 21 LPRINT＂くくれ＊＊＊＂；SPACE \(\$\)（6） ；＂Top Line＂；SPACE\＄（6）；＂＊＊ ；＊＊\({ }^{\text {＊}}\)
```

PN 220 FOR I＝1 TO 5：LPRINT：NEXT I
KF 230 PRINT＂Is label aligned？ （Y／N）＂
CO $24 \emptyset A \$=I N K E Y \$:$ IF $A \$="$＂THEN 2 4ø
BJ $25 \emptyset$ IF $A \$=" Y$＂OR $A \$=" y$＂THEN 27ø ELSE 21ø
LL $26 \emptyset$ REM Read data from file
K6 279 IF $\operatorname{MID} \$(A \$, 1,1)="-"$ THEN $X=A B S(V A L(A \$))$
If $28 \emptyset$ IF $x=\emptyset$ THEN $x=1$
BC 29 LINE INPUT \＃1，$B \$$
PG 3øø IF MID $\$(B \$, 1,1)="-"$ THEN GOSUB 36ø：$A \$=B \$: I=1:$ GOTO 27ø
MF $310 \quad \mathrm{~S} \$(\mathrm{I})=\mathrm{B} \$$
JC $32 \emptyset$ I＝I＋1
IE $33 \emptyset$ IF EOF（1）THEN GOSUB 36Ø： PRINT：PRINT CNT；＂Labels printed＂：END
HD $34 \emptyset$ GOTO $29 \emptyset$
NH $35 \emptyset$ REM Print Label（5）
6C $36 \emptyset$ IF SW＝$\quad$ THEN SW＝1：RETURN
내 $37 \emptyset$ I＝I－1
so $38 \emptyset$ IF $I>5$ THEN $I=5$
HI $39 \emptyset$ FOR $\mathrm{J}=1$ TO X
If $4 \varnothing \varnothing$ CNT＝CNT＋1
DB $41 \varnothing$ FOR $K=1$ TO I－1
JB $42 \emptyset$ PRINT S\＄（K）
NP $43 \emptyset$ LPRINT $5 \$(K)$
OG 44ø NEXT K
FH 450 PRINT S\＄（I）；DAT\＄
MB $46 \emptyset$ LPRINT S\＄（I）；DAT\＄
L6 $47 \emptyset$ FOR L＝1 TO 5－I
MB $48 \emptyset$ PRINT SPACE $\$$（4）
AB $49 \emptyset$ LPRINT SPACE $\$(4)$
PJ 5 5ø NEXT L
DJ 516 PRINT SPACE $\$(4)$
PE 529 LPRINT SPACE\＄（4）
OL $53 \emptyset$ NEXT J
MJ 540 FOR $K=1$ TO I
FH 550 S\＄（K）＝SPACE $\$$（4）
PL $56 \emptyset$ NEXT K
NN 579 RETURN
QP $58 \emptyset$ REM End of Labels Program

```
©

COMPUTE！ TOLL FREE Subscription Order Line 1－800－247－5470 In IA 1－800－532－1272

Telecomputing Today

\section*{A Well-Deserved Feast}

What restaurant in your home town has the best Szechuan fare? How about barbecue, or Mexican, Thai, or Continental cuisine? Make a mental list of those places, then figuratively fold it up and put it aside for a few moments.

About a year ago, while cruising through the message section of a Chicago-based bulletin board, I ran across a message that caught my attention. It announced the opening of a new bulletin board in the Detroit area for IBM PC and PC-compatible computer owners. Dubbed "The Business Board," it was located in a nearby suburb. I was intrigued. While there were dozens of Atari-, Commodore-, and Apple-oriented BBSs in and around the Motor City, there had been a distinct paucity of PC-related boards. Prior to this time, I had been calling boards in other citiesnot an economical practice when you count the long distance charges. A local PC BBS might open up new fields of interest as well as relieve my pocketbook.

As the modem dialed the new board's number, I purposely held down my expectations. Bulletin boards come and go. Most are started by well-intentioned folks who don't realize how much work is involved in maintaining and operating a BBS. The life expectancy of an average new board is about 30 to 60 days.

\section*{Two Deadly Errors}

Why such a high mortality rate? There are two common, often fatal mistakes. Many a would-be SYSOP decides to run a board during hours when his or her computer is not otherwise in use. These moonlight boards are usually down more often than they're up. As the novelty wears thin, the neophyte SYSOP soon decides that taking the board up and down constantly is more bother than it's worth. An even
more deadly mistake is attempting to use the same phone line for both voice and BBS communications.

As Ilogged onto "The Business Board," I was pleasantly surprised to see a nice introductory bulletin with slick graphics. Based on a dedicated Compaq portable with a 30 megabyte hard drive, the BizBoard (as it's called by users) has a download area containing over 1000 files. That's one of the most complete and up-to-date collections of "freeware" and public domain software that I've run across in years.

\section*{Dedicated Downloading}

A quick electronic chat with SYSOP Rick Brenner revealed that the BizBoard's collection of files is the result of untold hours of downloading from a dozen or so of the nation's best bulletin boards. Apart from the phone charges, which are not insignificant, that sort of activity represents a very substantial investment in time.

Brenner started his board to facilitate the exchange of information among professionals who use computers in business. In keeping with this special focus, access to the board is limited. Membership is by registration only and costs \(\$ 25\) per year. You must also participate actively in the board's message traffic. Those whose sole interest is in downloading files are politely dropped from the rolls (and given a refund of their registration fees).

While the BizBoard's house rules may seem straight-laced to some, they have succeeded in fostering an unusually high degree of computer literacy and esprit de corps among BizBoard members. There's much humor to be found in the message bases and recentlyadded special interest forums, in addition to useful technical information, discussions of some of the more obtuse business applications of microcomputers, and accounts of mem-
ber experiences with new products.

\section*{When Onliners Meet Offline}

In February of this year, at my suggestion, the local BizBoard membership met for some offline conferencing at a local French bistro. Prior to the event, some new members had voiced concerns about holding their own in face-to-face communications with established technical heavies. To add to the interest, the suit-to-sandals ratio among the twenty-odd group members ran just about fifty/fifty. How did it go? The dinner meeting had been scheduled to run from 6:30 to 9:00 in the evening. We were finally ushered out the door at 2:00 the next morning. Since that auspicious beginning, bimonthly dinner meetings have become a BizBoard tradition.

It's been a year now since the BizBoard began. Since then, my favorite BBS has garnered about a hundred members, and survived several hard disk crashes, power failures, and even a fried motherboard. Most of the credit is due to its hard-working SYSOP.

There are hundreds of Rick Brenners across the land running bulletin board systems for telecomputing enthusiasts. Their labor of love goes largely unheralded. Have you got a local BBS in your area that deserves recognition? Unfold that piece of paper you stashed away mentally a few minutes ago. In my book, September is National SYSOP Month. Put off buying that new piece of software until next month. Instead, treat your local SYSOP to a gastronomic feast as rich as the one proffered to you via the telephone lines day after day. You'll both be better off for the experience.

\section*{Pointer Potpourri}

Welcome to "ST Outlook." Beginning this month, I'm taking over compute!'s Atari ST column from Bill Wilkinson, who had agreed to do the column on an interim basis. By way of an introduction, I'm an ST owner and programmer, as well as a writer and editor. In addition to COMPUTE!'s ST Programmer's Guide, which I coauthored, I'm currently collaborating with COMPUTE! programmer Tim Victor on an upcoming book, Mapping the Atari ST, the first volume of which is scheduled for an early 1987 release.

\section*{Pick Your Pointer}

Every ST owner is familiar with the way the mouse pointer changes appearance in response to system events. When you open an application from the desktop, or load a program from BASIC, the pointer changes from an arrow to a busy bee, and so on. In many situations, the ST manages the pointer shape automatically. But you can also change it under program control to suit your own needs.

This month's program shows how to access the ST's eight built-in pointer shapes from BASIC. It displays all the pointers in turn, prompting you to click the mouse button when you're ready to see the next one in the series. In addition to the familiar arrow and bee, you'll see two hand shapes, three different crosshair pointers, and a cursor shaped like a slender I-beam.

It's not difficult to see how alternate pointer shapes can come in handy. For instance, the bee does not automatically appear when you read or write to disk or perform other time-consuming chores in BASIC. While you can print the conventional PLEASE WAIT message under those circumstances, it's also prudent (and it adds a touch of elegance) to change the pointer to a bee. By reducing the user's tempta-
tion to fiddle with the menus or wave the pointer absent-mindedly, this little icon increases the chances that your program will work as intended. These cautions are doubly important because BASIC freezes program execution whenever the pointer is in motion and offers no easy means for disabling its own menus.

If you've used 1st Word, the word processor supplied with the ST, you may recognize the pointing hand, which appears whenever you drag the pointer to define a block of text. The I-beam cursor, thin enough to fit neatly between text characters, is ideally suited to word processing and similar applications. The grabbing hand pointer is often used to manipulate objects such as window sliders. And the crosshairs are ideal for drawing or any activity that requires precise positioning.

\section*{Suit Yourself}

Of course, you're free to use these pointers as you please. The grabbing hand, for instance, is suitable for jobs that resemble grasping or pulling, but it works just fine as an eraser, too. One exception is our old friend, the bee, whose significance is already defined in clear and narrow terms. Unless you're writing software for apiarists, it's confusing (and, hence, lousy GEM etiquette) to use the bee shape to signify anything other than "busy."

In addition to the pointerchanging routine (labeled CHANGE) the program demonstrates VDI routines which read the mouse button, make the pointer invisible, and force it back onto the screen. The routine labeled CLICK calls VDI routine 124 , which can read the pointer's screen coordinates as well as monitor button activity. To read the pointer's \(x\) and \(y\) coordinates, add this line to the program:

\section*{ " \(y=\) ="; peek (ptsout +2)}

The subroutines HIDE and SHOW call VDI routines that disable and enable the mouse pointer, respectively. If you don't hide the pointer before you change its shape, it may misbehave, depositing an unwanted ghost image in some cases. Watch out for such unexpected side effects whenever you call a GEM routine from BASIC. It's fun to manipulate GEM artifacts such as the pointer, but with that added power comes an extra measure of responsibility.

\section*{The BASIC Difference}

Calling GEM routines from BASIC is significantly different from using them in a language like C or Pascal. Some system routines are downright antagonistic to BASIC, others are a waste of time, and others are redundant. The first difference arises because BASIC is itself a GEM application-a large, complicated program with its own ideas about what should be happening at any given time. Certain GEM routines shouldn't be used because they conflict with BASIC's own manipulation of the GEM environment.

The second category of routines includes those which do a job already performed by BASIC. For instance, since BASIC provides an output window, it's usually not necessary to open a virtual workstation or obtain a device handle before you call a system routine that draws on the screen. In the third category are routines that duplicate an existing BASIC command; why call a VDI routine to draw a circle, when CIRCLE is more convenient and achieves exactly the same result?

There's a fourth-fortunately, quite large-category of GEM routines: those which are both useful
and usable from BASIC．In the months to come，we＇ll look at more of them．
1月た fullw 2:clearw 2
11ஜ for \(j=\) mo 7 irnm Show al
 18 pointers
\(12 \%\) gosub HIDEigosub CHANGEig
 otoxy 1,1
\(13 \boldsymbol{p r i n t s}\) mad shapesiprint s
 hapes
146 print "Click left button
 to continue..."
156 gosub SHOW: gosub CLICK
16 next \(j\)

\section*{176}
188
190
196
260
218
220
230
gosub HIDE arem Restore \(t\)
he arrow
\(j=\emptyset\) : gomub CHANGE
clomew 2:gosub SHOW
end
HIDE: poke contri, 123:rem
 Hide pointer
vdiEyE(छ) : return
SHOW: poke contri, 122 ire
m Show pointer
vdi \(5 y\) e(\((\varnothing)\) a return
CHANGE: \(a^{*}=g b\) irem Key to
 Pandora's box
gintin=peek (ailob) irmm Fr
om me to AES
poke gintin,j :rem New mo

\section*{use shape}
gemsys（78）：return
CLICK：poke contr1，124：re
m Read mouse
vdi sys（ 8 ）
if peek（intout）\(<>1\) then \(C\) LICK
return
data Ye Olde Arrow，I－Beam Cursor
data Busy Bumblebee，＂Poin ting Hand＂
data Grabbing Hand，Skinny Crosshair
data Chubby Crosshair，Hol 10w Crosshair

\title{
Game Programming
}

Many computer games are transla－ tions of games that already exist in some other form．The challenge in making such a conversion is to offer features that make you want to play the game on a computer instead of the usual way（with cards，dice，a board，or whatever）．In the next two columns，we＇ll construct a game that has been popular under vari－ ous names，but is usually called ＂Solitaire．＂

The original Solitaire game consists of several pegs arranged in a pattern of holes on a board．The center hole is left without a peg． Your goal is to get rid of pegs by jumping：One peg jumps over an－ other into an adjacent hole，then the jumped peg is removed．You keep jumping and removing pegs until you can no longer jump．The optimum solution is to end up with one peg in the center hole．Actually， if you end up with one peg any－ where，you are an excellent player， and even two，three，or four re－ maining pegs would be a good score．

Why create this game on a computer？The main reason is that you＇ll often start to play the game， but find that some pegs are missing． You can＇t even set up the board without the right number of pegs． The computer will always set up the game without losing pegs，and can also check for impossible
moves and thus prevent cheating． In a computerized version，we can also include a feature which would allow backing up and changing a move，or even replaying several moves．As a final enhancement，the program can keep track of every move in the game and print them out so you could prove to a friend that you really solved the puzzle．

I usually start game program－ ming by designing the graphics． This playing board consists of yel－ low circles for the pegs and black circles for the holes．Lines 190－240 define graphic characters and col－ ors，and lines 250－280 define strings for printing the board．The subroutine in lines 620－770 prints the starting board on the screen．

The next step is to move the pegs．CALL KEY is used for key－ board input．Use the arrow keys to move to the peg you want to move， then press ENTER．Now press an arrow key to show which direction to jump．The computer then needs to check to see whether you made a valid move．

Since the complete program is too long to include in a single col－ umn，I＇ve split it into two separate portions．This month＇s listing in－ cludes enough of the program to draw the graphics and move the pegs，so you can play a complete game．However，not all of the fea－ tures are included．Next month＇s
column will explain more of the programming techniques and add the sections that let you back up to change a move，replay the game，or make a game printout．

If you to prefer to save typing time，you may obtain a copy of the complete program by sending a check for \(\$ 3\) together with a stamped，self－addressed mailer and a blank cassette or disk to：
C．Regena
P．O．Box 1502
Cedar City，Utah 84720
Be sure to specify the title，＂Soli－ taire＂for the TI－99／4A．
```

1ø\emptyset REM SOLITAIRE
11\emptyset DIM G(12,12),M$(43)
12\emptyset CALL CLEAR
13@ PRINT TAB(5);"** SOLITA
    IRE **"
14\emptyset PRINT ::"MOVE A PEG BY
    JUMPING OVER"
15\emptyset PRINT : "ANOTHER PEG TO
    AN EMPTY HOLE"
16\emptyset PRINT : "THEN REMQVE THE
        JUMPED PEG."
17\emptyset PRINT : "TRY TO END WITH
        ONLY ONE"
18ø PRINT : "PEG IN THE CENT
    ER HOLE."
19\emptyset CALL CHAR(96,"\emptyset")
2\emptyset\emptyset CALL CHAR(97,"\emptyset\emptyset\emptyset\emptyset183C3
    C18")
21\emptyset CALL CHAR(98,"Øø183C7E7
    E3C18")
22\emptyset CALL COLOR (9,11,7)
23\emptyset CALL CHAR(1\emptyset5,"\emptyset\emptyset183C7E
    7E3C18")
24ø CALL COLOR (1\emptyset,2,7)
25ø A$=".......".
26\emptyset B$="`a`a`a`"
270 C$="\cdots".".\&A\$\&"*...""

```
```

28ø D$="`a`a`a"&B$\&"a`a`a*"
29\emptyset FOR J=\emptyset TO 12
3\emptyset\emptyset FOR K=\emptyset TO 12
31\emptyset READ G (J,K)
320 NEXT K
33\emptyset NEXT J
34@ DATA 2,2,2,2,2,2,2, 2, 2,
2,2,2,2
35\emptyset DATA 2,2,2,2,2,2,2,2,2,
2,2,2,2
36\emptyset DATA 2,2,2, 2, 2, 1, 1, 1, 2,
2,2,2,2
37\emptyset DATA 2,2,2,2,2,1,1,1,2,
2,2,2,2
38\emptyset DATA 2,2,2,2,2,1,1,1,2,
2,2,2,2
39\emptyset DATA 2, 2, 1, 1, 1, 1, 1, 1, 1,
1,1,2,2
4ø\emptyset DATA 2,2,1,1,1,1, ఐ,1,1,
1,1,2,2
41\emptyset DATA 2, 2, 1, 1, 1, 1, 1, 1, 1,
1,1,2,2
42\emptyset DATA 2, 2, 2, 2, 2, 1, 1, 1, 2,
2,2,2,2
43@ DATA 2, 2, 2, 2, 2, 1, 1, 1, 2,
2,2,2,2
44ø DATA 2,2,2,2,2,1,1,1,2,
2,2,2,2
45\emptyset DATA 2, 2, 2, 2, 2, 2, 2, 2, 2,
2,2,2,2
46ø DATA 2, 2, 2, 2, 2, 2, 2, 2, 2,
2,2,2,2
47\emptyset PRINT :::"PRESS <ENTER>
48\emptyset CALL KEY (\emptyset,K,S)
490 IF K<>13 THEN 48ø
5ø\emptyset CALL CLEAR
51ø PRINT "USE THE ARROW KE
YS THEN"
52g PRINT "<ENTER> TO SELEC
T THE PEG,"
53Ø PRINT "THEN PRESS AN AR
ROW KEY TO MOVE."
54ø PRINT : :"PRESS FCTN-8 T
O REDO A PLAY."
55\emptyset PRINT : :"PRESS FCTN-5 T
O SHOW ALL"
56\emptyset PRINT "MOVES FROM THE S
TART."
57\emptyset PRINT : :"PRESS FCTN-P T
O PRINT THE"
58ø PRINT "SEQUENCE OF MOVE
S."
59ø PRINT :::"PRESS <ENTER>
TO START NOW."
6\emptyset\emptyset CALL KEY(\emptyset,K,S)
610 IF K=13 THEN 780 ELSE 6
\emptyset\emptyset
620 CALL CLEAR
63\emptyset FOR T=1 TO 3
64\emptyset PRINT TAB(11);A\$
65\emptyset PRINT TAB(11);B\$
66\emptyset NEXT T
67g FOR T=1 TO 3
68ø PRINT TAB(5);C\$
69\emptyset PRINT TAB(5);D\$
7\emptyset\emptyset NEXT T
71\emptyset PRINT TAB(5);C\$
72\emptyset FOR T=1 TO 3
73@ PRINT TAB(11);B\$
74\emptyset PRINT TAB(11);A\$
75\emptyset NEXT T
760 CALL HCHAR(14,16,1ø5)
77\emptyset RETURN
780 GOSUB 620
79\emptyset PRINT : :
8\emptyset\emptyset R=6
81\emptysetC=4
82\emptyset ROW=R*2
83@ COL=C*2+4
84\emptyset CALL GCHAR(ROW, COL,GG)
85\emptyset CALL KEY(\emptyset,K,S)
86\emptyset CALL HCHAR(ROW, COL,96)

```
\(87 \emptyset\) CALL HCHAR（ROW，COL，GG）
88ø IF \(5<1\) THEN 85ø
\(89 \emptyset\) IF \(K=13\) THEN 11 Øø
9 9ø IF \(K<>69\) THEN \(95 \emptyset\)
\(91 \varnothing\) IF R－1＜2 THEN 85ø
\(92 \emptyset\) IF \(G(R-1, C)=2\) THEN \(85 \emptyset\) \(930 \mathrm{R}=\mathrm{R}-1\)
940 GOTO 820
\(95 \emptyset\) IF \(K<>83\) THEN 1 Øøø
96 IF \(\mathrm{C}-1<2\) THEN 85の
97 IF \(G(R, C-1)=2\) THEN \(85 \emptyset\)
\(98 \emptyset \mathrm{C}=\mathrm{C}-1\)
\(99 \varnothing\) GOTO 83ø
1 1øø IF Kく＞68 THEN 1 Ø5
\(1 \varnothing 1 \emptyset\) IF \(\mathrm{C}+1>1 \varnothing\) THEN \(85 \emptyset\)
1 1ø2ø IF \(G(R, C+1)=2\) THEN \(85 \emptyset\)
\(1030 \mathrm{C}=\mathrm{C}+1\)
\(1 \emptyset 49\) GOTO 830
1 1ø5 IF \(K<>88\) THEN \(85 \emptyset\)
1 Ø6 \(1 F\) R \(+1>1 \varnothing\) THEN 85ø
\(1 \emptyset 7 \emptyset\) IF \(G(R+1, C)=2\) THEN \(85 \emptyset\)
1 108ஏ R＝R＋1
1 1月9の GOTO 820
11 1ן CALL SOUND（5の，14の日，2）
\(111 \varnothing\) IF \(G G=1 \varnothing 5\) THEN 85ø
\(112 \boldsymbol{\sigma}\) CALL \(\operatorname{KEY}(\varnothing, K, S)\)
\(113 \sqsubseteq\) CALL HCHAR（ROW，COL，98）
\(114 \varnothing\) CALL HCHAR（ROW，COL，97）
\(115 \emptyset\) IF \(5<1\) THEN \(112 \emptyset\)
116 IF \(K<>69\) THEN \(124 \varnothing\)
\(117 \boldsymbol{I}\) IF \((G(R-2, C)<>\varnothing)+(G(R-\) \(1, C)<>1\) ）THEN \(153 \emptyset\)
118 G \(G(R-1, C)=\varnothing\)
\(119 \boldsymbol{D}\) CALL HCHAR（ROW－2，COL， 1 65）
\(12 \emptyset \emptyset\) CALL HCHAR（ROW，COL， \(1 ø 5\)
\(121 \emptyset G(R, C)=\varnothing\)
\(1220 \mathrm{R}=\mathrm{R}-2\)
1230 GOTO \(147 \emptyset\)
124 IF \(K<>83\) THEN \(132 \emptyset\)
125 IF \((G(R, C-2)<>\varnothing)+(G(R\), \(C-1)<>1)\) THEN 1536
\(126 \emptyset G(R, C-1)=\varnothing\)
127 © CALL HCHAR（ROW，COL－2， 1 ©5）
\(128 \emptyset\) CALL HCHAR（ROW，COL， 105
129 G \((R, C)=\varnothing\)
\(13 \varnothing \varnothing C=C-2\)
1319 GOTO \(147 \varnothing\)
1329 IF \(K<>6 日\) THEN \(14 \varnothing \varnothing\)
133 IF \((G(R, C+2)<>\varnothing)+(E(R\) ， \(C+1)\langle>1)\) THEN 1536
\(134 \boldsymbol{G}(\mathrm{R}, \mathrm{C}+1)=\varnothing\)
1350 CALL HCHAR（ROW，COL＋2， 1 ■5）
\(136 \emptyset\) CALL HCHAR（ROW，COL， 195
137ø \(G(R, C)=\varnothing\)
\(1389 \quad C=C+2\)
139 GOTO \(147 \emptyset\)
14 Iの IF \(K<>88\) THEN 11 Øø
1416 IF \((G(R+2, C)<>\emptyset)+(B(R+\) \(1, C)\rangle\) 1）THEN \(153 \emptyset\)
\(142 \emptyset \mathrm{G}(\mathrm{R}+1, \mathrm{C})=\varnothing\)
\(143 \varnothing\) CALL HCHAR（ROW＋2，COL， 1 g5）
\(144 \emptyset\) CALL HCHAR（ROW，COL， \(1 \varnothing 5\)
\(145 \emptyset G(R, C)=\varnothing\)
\(1460 \mathrm{R}=\mathrm{R}+2\)
\(1470 \mathrm{G}(\mathrm{R}, \mathrm{C})=1\)
148 R ROW＝Rま2
149 COL \(=\) C \(2+4\)
\(159 \emptyset\) CALL HCHAR（ROW，COL，97）
\(151 \emptyset\) CALL SOUND（5ø，14øø，2）
1529 GOTO 840
1539 CALL SOUND（1øø，135，2）
154 GOTO 85の
©

\section*{Save Your Copies of COMPUTE！}

Protect your back issues of COMPUTE！in durable binders or library cases． Each binder or case is custom－made in flag－blue binding with embossed white lettering．Each holds a year of COMPUTE！．Or－ der several and keep your issues of COMPUTE！ neatly organized for quick reference．（These binders make great gifts，too！）

\section*{Binders}
\(\$ 8.50\) each；
3 for \＄24．75； 6 for \(\$ 48.00\)

Cases：
\＄6．95 each； 3 for \＄20．00； 6 for \(\$ 36.00\)
（Please add \(\$ 2.50\) per unit for orders outside the U．S．）

Send in your prepaid order with the attached coupon

Mail to：Jesse Jones Industries P．O．Box 5120
Dept．Code COTE
Philadelphia，PA 19141
Please send me \(\qquad\) COM－
PUTE！\(\square\) cases \(\square\) binders．
Enclosed is my check or money order for \(\$\) ．（U．S．funds
only．）
Name
Address
City
State \(\qquad\) Zip
Satisfaction guaranteed or money refunded．
Please allow 4－6 weeks for delivery．

\section*{Five-Year Retrospective}

This month marks my fifth anniversary writing "INSIGHT: Atari" for COMPUTEI. In the course of the last five years, I've covered a lot of different topics. Just for fun, I decided to look back through the last 60 issues of COMPUTE! and engage in some healthy self-criticism-listing the worst of Wilkinson as well as the best.

You may or may not agree with my assessments. But the point isn't simply to rate what's been done. After five years of writing about the same family of machines, it can be difficult to come up with a fresh topic every month. As you read these lists, let me know about some new topics you want me to cover, or some old topics that could stand further explanation or a fresh treatment. Not all of you have been reading COMPUTE! for a full five years, after all. And even long-time programmers can grow rusty in certain areas. This column is designed to serve you, the readers, so please provide some feedback in a card or letter addressed to:

Bill Wilkinson
P.O. Box 710352

San Jose, CA 95171-0352

\section*{The Brightest And Best}

First, here's what I consider the best of "INSIGHT: Atari." Whether you agree will depend on your own viewpoint and needs. I have listed articles chronologically within broad categories.
- Getting more out of Atari BASIC: 9/81, 10/81, 12/81, 4/82, 5/82, 2/83, 1/84, 2/84, 3/84, 12/85, 3/86
- Calling I/O and GRAPHICS routines from assembly language: \(11 / 81\) through \(2 / 82,7 / 82\) through \(10 / 82,8 / 85\) through \(10 / 85\)
- Assembly language techniques, with or without Atari BASIC: 12/81, 4/82, 10/82, 12/82, 7/83 through \(9 / 83,1 / 84,12 / 84,1 / 85\),

3/85, 2/86, 4/86
- Converting BASIC programs to assembly language: \(12 / 81,2 / 82\), \(8 / 82\) through \(10 / 82,5 / 84\) through 7/84
- Atari BASIC internals: \(1 / 82\) through 7/82
- Bugs in Atari BASIC: 11/81, 5/85, 6/85
- Benchmarks: 9/82, 1/84, 11/84, 2/85, 3/85
- Playing music and sounds in background while a BASIC program runs: \(3 / 82\)
- User definable function keys: \(5 / 82\)
- Undocumented graphics mode: \(10 / 83\) and \(11 / 83\)
- Using the extended memory of XL machines (with pictorial map): 12/83

\section*{Not So Memorable}

Now for the less memorable columns. Some of my self-appointed projects have met with less than enthusiastic response. Perhaps the worst of these was "BAIT," a pseu-do-BASIC interpreter written in Atari BASIC. The program was supposed to show you how language interpreters worked: It was so slow that you could literally watch the FOR-NEXT loops plod along. I prolonged the agony for four months (March, May, June, and August 1983).

Then I tried to rescue 1050 disk drive owners with an enhanced version of DOS 2.0S. It worked, but I doubt that more than a couple of dozen readers managed to get it installed properly. This series appeared May through September 1984. Less than four months later, we reworked DOS 2.0S for Atari to produce DOS 2.5. More time and energy down the drain.

My April Fool's columns have always received mixed reviews. This year, I got distracted and actually forgot to do a joke column. A couple of readers wrote me to compliment
me on my restraint. Thanks, folks.
Some of the funniest installments of "INSIGHT: Atari" were unintentionally humorous, consisting of various predictions regarding future Atari products. I could have done better with a ouija board.

In addition to the obvious honkers, I've omitted from this list several columns which were relevant at the time they were written, but have since become outdated. One general regret is that I covered certain topics in less depth than now seems desirable. But that's a difficult factor to measure. When I invite you to explore a subject, do you ever sit down to research it further? If so, then I have succeeded. If not, perhaps the topic is inappropriate, or the treatment needs to be refined. Again, the more feedback you provide, the better I can meet your needs.

\section*{Truth Stranger Than Fiction} Since I just made fun of my precognitive powers, it's only fair to mention that one of my predictions is actually coming true. In July 1984, Jack Tramiel and company had just bought Atari. I wrote a column (published in October that same year) containing several predictions about what the "new" Atari would produce. On some points, I was correct: The 1450 died quickly, and the "Atari MAC" was already under development (it became what is now the ST).

Though it caused chuckles at the time, I also stated that Atari would continue to produce game machines and that they would soon come out with the already-designed 7800. As it happened, Atari sold over a million 2600 game machines in 1985. And, at the 1986 Summer Consumer Electronics Show, Atari announced that the 7800 will be available this autumn. Now, how would you like to know what's in store for 1988?

\title{
The Operating System
}

Amiga has released beta-test copies of version 1.2 of the operating system. These experimental versions are being distributed to software developers, but Amiga is encouraging informal distribution to help them get as much testing as possible. There will be a few more beta versions released, and we should see version 1.2 (which may actually be called version 2.0) out by Christmas.

However, it is also reported that Amiga is preparing to replace the WCS (Writeable Control Store, the area of RAM used to store the Kickstart portion of the operating system) with EEPROM (Electrically Erasable Programmable Read Only Memory), finally burning the operating system permanently into ROMs on the motherboard. This would have to be the final version, since replacing ROMs, if bugs are later discovered in the operating system, is not a trivial task.

\section*{The End Of WCS?}

If Amiga replaced the WCS with ROM, we would lose the advantage of WCS: the ability to upgrade to a new (and even completely different) operating system at any time. On the other hand, there would be no need for a Kickstart disk, so booting up wouldn't take as long. 256 K of ROM is cheaper than 256 K of RAM, so this may be Amiga's primary consideration. But does Amiga plan to offer this ROM upgrade to current Amiga owners, or will we just use a Kickstart containing the equivalent of what gets burned into ROM?

Not everyone is clear on the hierarchy of the Amiga operating system, popularly referred to as Intuition. Although Intuition is fundamental, it's only part of the complete operating system (OS). There are actually several layers in the Amiga OS, which can be grouped into four major categories: Exec, Graphics, Intuition, and DOS.

Exec is the core of the operating system and controls every machine language program. Every task in the Amiga is part of a task list, and each task has a priority. Tasks with the most priority are allowed to run first. Whenever a task "goes to sleep" while waiting for something (keyboard or disk input, graphics, a response from another task, and so forth), the next highest priority task is allowed to run. However, no task is allowed to run longer than 64 milliseconds, the unit of time defined as a quantum. When a task's quantum is up, it is put to sleep to allow other lowerpriority tasks to take their turn. Exec also contains subroutines for allocating and deallocating chunks of memory, and low-level input/ output routines for accessing Amiga devices directly.

The Graphics library performs all the screen drawing functions such as line, rectangle, filled rectangle, and polygon drawing (and in version 1.2 includes functions for drawing hollow or filled circles and ovals). It contains powerful routines for animating graphic objects (bobs) and virtual sprites (vsprites), as well as providing direct access to the sprite hardware. In addition, the Graphics library allows programmers to modify the copper list, which controls the vertical aspect of the display. If you count the Layers library and Diskfont library as part of the Graphics library, the package also manages overlapping screen areas and multiple text fonts and styles.

\section*{Remarkable Flexibility}

Intuition draws upon the resources of Exec and the Graphics library to create the high-level metaphors of windows, screens, menus, and gadgets. Intuition is large and complex, but it offers the programmer a remarkable level of flexibility. AmigaDOS uses Intuition for its CLI
(Command Line Interface) and console windows, and Workbench relies heavily on Intuition to support its illusion of a desktop. Intuition is clearly the most visible part of the Amiga operating system (and probably the most important), but it cannot run on its own.

AmigaDOS is the topmost level of the operating system, the last part written, and was contracted from MetaComCo in England. Most Amiga applications are considered AmigaDOS processes, as opposed to Exec tasks. The Workbench is a layer above AmigaDOS, an application that creates a graphic world which performs many of the same functions as an AmigaDOS CLI without the cumbersome typing required by a command-driven DOS. AmigaDOS is much more than just a CLI, though. It includes the tools programmers need to read, write, and manage files and directories, rather than having to resort to direct track and sector access, as well as routines to load and execute programs as processes.

All these parts work in harmony (well, to be honest, with a few sour notes here and there) to orchestrate the complete Amiga system. You boot Kickstart, which loads in Exec, Intuition, and the Graphics library. You then insert a Workbench disk, which boots AmigaDOS and, finally, the Workbench. You open Workbench windows via Intuition and AmigaDOS, and execute applications, which have full access to all Amiga resources, even if many other programs are running at the same time. You can build your own unique working environment by choosing which programs you'd like to run together, and customize other options via Preferences. And when you add extra memory and peripherals, you have a symphony of exceeding range and power.

\title{
COMPUTEI＇s Guide To Typing In Programs
}

Computers are precise－type the pro－ gram exactly as listed，including neces－ sary punctuation and symbols，except for special characters noted below．We have provided a special listing conven－ tion as well as a program to check your typing－＂The Automatic Proofreader．＂

Programs for the IBM，TI－99／4A， and Atari ST models should be typed exactly as listed；no special characters are used．Programs for Commodore， Apple，and Atari 400／800／XL／XE computers may contain some hard－to－ read special characters，so we have a listing system that indicates these con－ trol characters．You will find these Commodore and Atari characters in curly braces；do not type the braces．For example，\(\{\) CLEAR \(\}\) or \(\{C L R\}\) instructs you to insert the symbol which clears the screen on the Atari or Commodore machines．A complete list of these sym－ bols is shown in the tables below．For Commodore，Apple，and Atari，a single symbol by itself within curly braces is usually a control key or graphics key．If you see \(\{\mathrm{A}\}\) ，hold down the CONTROL key and press \(A\) ．This will produce a reverse video character on the Commo－ dore（in quote mode），a graphics char－ acter on the Atari，and an invisible control character on the Apple．

Graphics characters entered with the Commodore logo key are enclosed in a special bracket：\([K A>]\) ．In this case， you would hold down the Commodore logo key as you type A．Our Commo－ dore listings are in uppercase，so shifted symbols are underlined．A graphics heart symbol（SHIFT－S）would be listed as \(\underline{S}\) ．One exception is \｛SHIFT－ SPACE \(\}\) ．When you see this，hold down SHIFT and press the space bar．If a number precedes a symbol，such as \(\{5\) RIGHT \}, \(\{6 \underline{S}\}\) ，or \([<8 Q>\) ，you would enter five cursor rights，six shifted S＇s， or eight Commodore－Q＇s．On the Atari， inverse characters（white on black） should be entered with the inverse video

\section*{Atarl 400／800／XL／XE}
\begin{tabular}{|c|c|c|c|c|}
\hline When you see & \multicolumn{2}{|l|}{Type} & See & \\
\hline \｛CLEAR\} & ESC & SHIFT＜ & \(\sigma\) & Clear Screen \\
\hline \｛UP\} & ESC & CTRL－ & ＋ & Cursor Up \\
\hline ［DOWN3 & ESC & CTRL＝ & 4 & Cursor Down \\
\hline ［LEFT\} & ESC & CTRL＋ & \(\leftarrow\) & Cursor Left \\
\hline ［RIGHT］ & ESC & CTRL & \(\rightarrow\) & Cursor Right \\
\hline \｛BACK S \({ }^{\text {a }}\) & ESC & DELETE & 4 & Backspace \\
\hline \｛DELETE\} & ESC & CTRL DELETE & 51 & Delete character \\
\hline 〔INSERT\} & ESC & CTRL INSERT & 1】 & Insert character \\
\hline CDEL LINE 3 & ESC & SHIFT DELETE & 1 & Delete line \\
\hline \｛INS LINE\} & ESC & SHIFT INSERT & 5 & Insert line \\
\hline \｛TAB\} & ESC & TAB & － & TAB key \\
\hline \｛CLR TAB\} & ESC & CTRL TAB & E & Clear tab \\
\hline \｛SET TAB］ & ESC & SHIFT TAB & E & Set tab stgp \\
\hline \｛BELL\} & ESC & CTRL 2 & 回 & Ring buzzer \\
\hline \｛ESC］ & ESC & ESC & E & ESCape key \\
\hline
\end{tabular}

\section*{Commodore PET／CBM／VIC／64／128／16／＋4}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline When You Read： & \multicolumn{2}{|r|}{Press：} & \multirow[t]{2}{*}{See：} & \multirow[t]{2}{*}{When You Read：} & \multicolumn{3}{|l|}{Press：} & See： \\
\hline \｛CLR \} & SHIFT & CLR／HOME & & & COMM & DORE & 1 & 4 \\
\hline \｛HOME \} & & CLR／HOME & \％ & ［2才 & COMM & DORE & 2 & \(\bigcirc\) \\
\hline \｛UP\} & SHIFT & \(\dagger\) CRSR \(\downarrow\) & & ［3习 & COMM & DORE & 3 & ［8i） \\
\hline \｛DOWN \} & & \(\dagger\) CRSR \(\downarrow\) & H & ［4］ & COMM & DORE & 4 & ［㫛 \\
\hline \｛LEFT\} & SHIFT & \(\leftarrow\) CRSR \(\rightarrow\) & \％ & ［5］ & COMM & DORE & 5 & P18 \\
\hline \｛RIGHT\} & & \(\leftarrow\) CRSR \(\rightarrow\) & 1 & ［6］ & COMM & DORE & 6 & \\
\hline \｛RVS\} & CTRL & 9 & ［1］ & ［7习 & COMM & DORE & 7 & \\
\hline \｛OFF\} & CTRL & 0 & & ［ 8 习 & COMM & DORE & 8 & － \\
\hline \｛BLK\} & CTRL & 1 & & \｛ F1 \} & & \(f 1\) & & \\
\hline \｛WHT\} & CTRL & 2 & E & \｛ F2 \} & SHIFT & \(f 1\) & & \\
\hline \｛RED \} & CTRL & 3 & R & \｛ F3 \} & & \(f 3\) & & \\
\hline \｛CYN \} & CTRL & 4 & & \｛ F4 \} & SHIFT & \(f 3\) & & \\
\hline \｛PUR\} & CTRL & 5 & 发 & \｛ F5 \} & & \(f 5\) & & \\
\hline \｛GRN \} & CTRL & 6 & & \｛ F6 \} & SHIFT & \(f 5\) & & \\
\hline \｛BLU\} & CTRL & 7 & & \｛ F7 \} & & 77 & & \\
\hline \｛YEL\} & CTRL & 8 & TII & \｛ F8 \} & SHIFT & f7 & & \\
\hline & & & & 4 & \(\square\) & & & \\
\hline
\end{tabular}
key (Atari logo key on 400/800 models).
Whenever more than two spaces appear in a row, they are listed in a special format. For example, \(\{6\) SPACES \(\}\) means press the space bar six times. Our Commodore listings never leave a single space at the end of a line, instead moving it to the next printed line as \(\{\mathrm{SPACE}\}\).

Amiga program listings contain only one special character, the left arrow \((\mapsto)\) symbol. This character marks the end of each program line. Wherever you see a left arrow, press RETURN or move the cursor off the line to enter that line into memory. Don't try to type in the left arrow symbol; it's there only as a marker to indicate where each program line ends.

\section*{The Automatic Proofreader}

Type in the appropriate program listed below, then save it for future use. The Commodore Proofreader works on the Commodore 128,64 , Plus \(/ 4,16\), and VIC-20. Don't omit any lines, even if they contain unfamiliar commands or you think they don't apply to your computer. When you run the program, it installs a machine language program in memory and erases its BASIC portion automatically (so be sure to save several copies before running the program for the first time). If you're using a Commodore 128, Plus/4 or 16, do not use any GRAPHIC commands while the Proofreader is active. You should disable the Commodore Proofreader before running any other program. To do this, either turn the computer off and on or enter SYS 64738 (for the 64), SYS 65341 (128), SYS 64802 (VIC-20), or SYS 65526 (Plus/4 or 16). To reenable the Proofreader, reload the program and run it as usual. Unlike the original VIC/ 64 Proofreader, this version works the same with disk or tape.

On the Atari, run the Proofreader to activate it (the Proofreader remains active in memory as a machine language program); you must then enter NEW to erase the BASIC loader. Pressing SYSTEM RESET deactivates the Atari Proofreader; enter PRINT USR(1536) to reenable it.

The Apple Proofreader erases the BASIC portion of itself after you run it, leaving only the machine language portion in memory. It works with either DOS 3.3 or ProDOS. Disable the Apple Proofreader by pressing CTRL-RESET before running another BASIC program.

The IBM Proofreader is a BASIC program that simulates the IBM BASIC line editor, letting you enter, edit, list, save, and load programs that you type. Type RUN to activate. Be sure to leave Caps Lock on, except when typing lowercase characters.

Once the Proofreader is active, try typing in a line. As soon as you press RETURN, either a hexadecimal number (on the Apple) or a pair of letters (on the Commodore, Atari, or IBM) appears. The number or pair of letters is called a checksum.

Compare the value displayed on the screen by the Proofreader with the checksum printed in the program listing in the magazine. The checksum is given to the left of each line number. Just type in the program a line at a time (without the printed checksum), press RETURN or Enter, and compare the checksums. If they match, go on to the next line. If not, check your typing; you've made a mistake. Because of the checksum method used, do not type abbreviations, such as ? for PRINT. On the Atari and Apple Proofreaders, spaces are not counted as part of the checksum, so be sure you type the right number of spaces between quote marks. The Atari Proofreader does not check to see that you've typed the characters in the right order, so if characters are transposed, the checksum still matches the listing. The Commodore Proofreader catches transposition errors and ignores spaces unless they're enclosed in quotation marks. The IBM Proofreader detects errors in spacing and transposition.

\section*{IBM Proofreader Commands}

Since the IBM Proofreader replaces the computer's normal BASIC line editor, it has to include many of the direct-mode IBM BASIC commands. The syntax is identical to IBM BASIC. Commands simulated are LIST, LEIST, NEW, FILES, SAVE, and LOAD. When listing your program, press any key (except Ctrl-Break) to stop the listing. If you enter NEW, the Proofreader prompts you to press \(Y\) to be especially sure you mean yes.

Two new commands are BASIC and CHECK. BASIC exits the Proofreader back to IBM BASIC, leaving the Proofreader in memory. CHECK works just like LIST, but shows the checksums along with the listing. After you have typed in a program, save it to disk. Then exit the Proofreader with the BASIC command, and load the program as usual (this replaces the Proofreader in memory). You can now run the program, but you may want to resave it to disk. This will shorten it on disk and make it load faster, but it can no longer be edited with the Proofreader. If you want to convert an existing BASIC program to Proofreader format, save it to disk with SAVE "filename", A.

\section*{Program 1: Atari Proofreader}

By Charles Brannon, Program Editor
```

1øø GRAPHICS ø
11ø FOR I=1536 TO 17ø\emptyset:REA
D A:POKE I,A:CK=CK+A:N
EXT I
12\emptyset IF CK<>19072 THEN ? "E
rror in DATA Statement
s. Check Typing.":END
130 A=USR(1536)
14\varnothing ? :? "Automatic Proofr
eader Now Activated."
15g END
16\varnothing DATA 104,16\emptyset,\emptyset,185,26,
3,2\emptyset1,69,246,7
17\emptyset DATA 2\emptyset\emptyset,26\emptyset,192,34,2\emptyset
8,243,96,200, 169,74
180 DATA 153,26,3,20\emptyset,169,
6,153,26,3,162
19\varnothing DATA \emptyset,189, }0,228,157,
4,6,232, 224,16
2\emptyset\emptyset DATA 2\emptyset8,245,169,93,14
1,78,6,169,6,141
21ø DATA 79,6,24,173,4,228
,165,1,141,95
22\emptyset DATA 6,173,5,228,1ø5,\emptyset
,141,96,6,169
23@ DATA \emptyset,133,263,96,247,
238,125, 241,93,6
24g DATA 244, 241,115, 241,1
24,241,76, 2\emptyset5, 238
25\emptyset DATA \emptyset, },\emptyset,\emptyset,\emptyset,32,62,
46,8,2\emptyset1
260 DATA 155,240,13,201,32
,245,7,72,24,161
27\emptyset DATA 2ø3,133,2\emptyset3,1ø4,4
g,96,72,152,72,138
28\emptyset DATA 72,16\emptyset,\emptyset,169,128,
145,88,2ø\varnothing,192,4\varnothing
29\emptyset DATA 2\emptyset8,249,165,2\emptyset3,7
4,74,74,74,24,165
30日 DATA 161,160,3,145,88,
-165,203,41,15,24
31. DATA 165,161,2\emptyset\varnothing,145,8
8,169,\emptyset,133,263,1\emptyset4
32\emptyset DATA 17Ø,1\emptyset4,168,1\emptyset4,4
\emptyset,96

```

\section*{Program 2: IBM Proofreader}

By Charles Brannon, Program Editor
10 : Automatic Proofreader Vers ion 3.6 (Lines 265, 296 adde d/190 deleted/470,490 chang ed from V2.ø)
1 DIM L\$(5øø), LNUM (5øø): COLO R \(\emptyset, 7,7:\) KEY OFF: CLS: \(M A X=\emptyset\) : LNUM (6\()=65536\) !
110 ON ERROR GOTO 12ஏ: KEY 15, C HR\$ (4) + CHR\$ (79): ON KEY (15) GOSUB 649: KEY (15) ON: GOT -130
\(12 \emptyset\) RESUME \(13 \varnothing\)
\(13 \emptyset\) DEF SEG=\&H4Ø: W=PEEK (\&H4A)
140 ON ERROR GOTO 65Ø: PRINT:PR INT"Proofreader Ready."
156 LINE INPUT L \(\$: Y=\) CSRLIN-INT (LEN (L\$)/W)-1: LOCATE \(Y, 1\)
160 DEF SEG= \(6:\) POKE 105 1030 POK E 1ø52,34:POKE 1654, \(\varnothing:\) POKE 1655, 79: POKE 1656, 13: POKE 1ø57, 28: LINE INPUT L\$:DEF SEG: IF L\$="" THEN 15ø
\(17 \emptyset\) IF LEFT \(\$(L \$, 1)=" \quad "\) THEN L \(\$\) =MID\$(L\$,2):GOTO 17ø
\(18 \emptyset\) IF VAL（LEFT \(\$(L \$, 2))=\emptyset\) AND MID \(\$(L \$, 3,1)="\) THEN L \(\$=M\) ID\＄（L\＄，4）
266 IF ASC \((L \$)>57\) THEN \(26 \sigma^{\prime}\) no line number，therefore co mmand
265 BL＝INSTR（L\＄，＂＂）：IF BL＝ø T HEN BL \(\$=L \$:\) GOTD \(2 \sigma 6\) ELSE B L\＄＝LEFT\＄（L\＄，BL－1）
206 LNUM＝VAL（BL\＄）：TEXT\＄＝MID\＄（L \＄，LEN（STR \(\$(\) LNUM \()\) ）+1 ）
210 IF TEXT \(\$=\| "\) THEN GOSUB 540 ：IF LNUM＝LNUM（P）THEN GOSU B 56ø：GOTO 159 ELSE 159
\(22 \emptyset\) CKSUM＝ø：FOR I＝1 TO LEN（L\＄） ： CKSUM \(=\)（CKSUM + ASC（MID\＄（L\＄， I））\＆I）AND 255：NEXT：LOCATE Y，1：PRINT CHR \(\$(65+\) CKSUM \(/ 1\) 6）+ CHR \((65+(\) CKSUM AND 15）\()\) ＋＂＂+ L\＄
236 GOSUB 549：IF LNUM（P）＝LNUM THEN L\＄（P）＝TEXT\＄：GOTO 15ø ＇replace line
240 GOSUB 58ø：GOTO 150 ＇insert the line
26＠TEXT\＄＝＂＂：FOR I＝1 TD LEN（L\＄ ）：\(A=\) ASC（MID\＄（L\＄，I））：TEXT\＄＝ TEXT\＄＋CHR\＄（A＋32 （ \(A>96\) AND A＜123））：NEXT
27ø DELIMITER＝INSTR（TEXT\＄，＂＂） ：COMMAND\＄＝TEXT\＄：ARG\＄＝＂＂：IF DELIMITER THEN COMMAND \(\$=L\) EFT\＄（TEXT\＄，DELIMITER－1）：AR E\＄＝MID\＄（TEXT\＄，DELIMITER＋1） ELSE DELIMITER＝INSTR（TEXT \＄，CHR（34））：IF DELIMITER T HEN COMMAND\＄＝LEFT\＄（TEXT\＄，D ELIMITER－1）：ARG\＄＝MID\＄（TEXT \＄，DELIMITER）
28ø IF COMMAND \(\$\rangle\)＂LIST＂THEN 4 10
\(29 \emptyset\) OPEN＂scri：＂FOR QUTPUT AS \＃1
3ØØ IF ARG \(\$="\)＂THEN FIRST \(=\emptyset: P=\) MAX－1：GOTO \(34 \emptyset\)
31ø DELIMITER＝INSTR（ARG\＄，＂－＂）： IF DELIMITER＝ø THEN LNUM＝V AL（ARG\＄）：GOSUB 54ø：FIRST＝P ：GOTO 340
\(32 \emptyset\) FIRST＝VAL（LEFT\＄（ARG\＄，DELIM ITER）\():\) LAST \(=V A L(M I D \$(A R G \$\) ， DELIMITER＋1））
\(33 \varnothing\) LNUM＝FIRST：GOSUB 54ø：FIRST ＝P：LNUM＝LAST：GOSUB 54ø：IF \(P=\emptyset \quad\) THEN \(P=M A X-1\)
\(34 \varnothing\) FOR \(X=F\) IRST TO P：N \(\$=M I D \$(S\) \(\operatorname{TR} \$(\operatorname{LNUM}(X)), 2)+" \quad "\)
\(35 \emptyset\) IF CKFLAG＝ø THEN \(A \$="\)＂：GOT － 370
\(36 \emptyset\) CKSUM \(=\emptyset: A \$=N \$+L \$(X): F O R \quad I=\) 1 TO LEN \((A \$):\) CKSUM \(=(\) CKSUM + ASC（MID\＄\((A \$, I)) * I)\) AND 255 ：NEXT：A\＄＝CHR\＄（65＋CKSUM／16） + CHR \(\$(65+\)（CKSUM AND 15）\()+"\)
\(37 \emptyset\) PRINT \＃1，A\＄＋N\＄＋L\＄（X）
\(38 \emptyset\) IF INKEY \(\$\rangle\)＂＂THEN \(X=P\)
\(39 \emptyset\) NEXT ：CLOSE \＃1：CKFLAG＝ø
\(4 \emptyset \varnothing\) GOTO 136
\(41 \varnothing\) IF COMMAND\＄＝＂LLIST＂THEN \(\square\) PEN＂lpt1：＂FOR QUTPUT AS \＃1：GOTO 3øø
420 IF COMMAND \(\$=\)＂CHECK＂THEN C KFLAG＝1：GOTO \(29 \emptyset\)
436 IF COMMAND\＄＜＞＂SAVE＂THEN 4 \(5 \varnothing\)
44ø GOSUB 6øø：OPEN ARG\＄FOR OU TPUT AS \＃1：ARG\＄＝＂＂：GOTO 3ø \(\emptyset\)
450 IF COMMAND\＄＜＞＂LOAD＂THEN 4

46ø GOSUB 6ஏб：OPEN ARG\＄FOR IN PUT AS \＃1： \(\mathrm{MAX}=\emptyset: P=\emptyset\)
479 WHILE NOT EOF（1）：LINE INPU T 证1，L\＄：BL＝INSTR（L\＄，＂＂）：B L\＄＝LEFT\＄（L\＄，BL－1）：LNUM \((P)=\) VAL（BL\＄）：L\＄（P）＝MID\＄（L\＄，LEN （STR\＄（VAL（BL\＄）））+1 ）：\(P=P+1\) ： WEND
48ø MAX＝P：CLOSE \＃1：GOTO 13Ø
490 IF COMMAND \(\$=\)＂NEW＂THEN INP UT＂Erase program－Are yo u sure＂；L\＄：IF LEFT\＄（L\＄，1）＝ ＂y＂OR LEFT\＄（L\＄，1）＝＂Y＂THE N MAX＝ø：LNUM（Ø）\(=65536\) ！：GOT －13ø：ELSE 13Ø
5øø IF COMMAND\＄＝＂BASIC＂THEN C OLOR 7，Ø，Ø：ON ERROR GOTO Ø ：CLS：END
516 IF COMMAND \(\$\rangle\)＂FILES＂THEN \(52 \sigma\)
515 IF ARG \(\$="\) THEN ARG \(\$=" A: "\) ELSE SEL＝1：GOSUB 6øø
517 FILES ARG\＄：GOTO \(13 \emptyset\)
529 PRINT＂Syntax error＂：GOTO 1 \(3 \varnothing\)
\(54 \varnothing \mathrm{P}=\emptyset:\) WHILE LNUM 1 LNUM（P）AND \(P<M A X: P=P+1\) ：WEND：RETURN
560 MAX \(=\) MAX \(-1:\) FOR \(X=P\) TO MAX：L \(\operatorname{NUM}(X)=\operatorname{LNUM}(X+1): L \$(X)=L \$(\) \(X+1)\) ：NEXT：RETURN
\(58 \emptyset \operatorname{MAX}=M A X+1\) ：FQR \(X=\) MAX TO \(P+1\) STEP \(-1: \operatorname{LNUM}(X)=\operatorname{LNUM}(X-1)\) \(: L \$(X)=L \$(X-1):\) NEXT：\(L \$(P)=\) TEXT\＄：LNUM \((P)=\) LNUM：RETURN \(6 \emptyset \emptyset\) IF LEFT \(\$\)（ARG\＄， 1 ）\(\langle>\) CHR \(\$\)（34） THEN 52の ELSE ARG\＄＝MID\＄（A RG \(\$, 2\) ）
\(61 \varnothing\) IF RIGHT\＄（ARG\＄，1）＝CHR\＄（34） THEN ARG\＄＝LEFT \＄（ARG\＄，LEN（ ARG\＄）-1 ）
629 IF SEL \(=9\) AND INSTR（ARG\＄，＂． ＂）\(=\varnothing\) THEN ARG\＄＝ARG \(\$+\)＂．BAS＂
\(63 \emptyset\) SEL＝ 6 ：RETURN
\(64 \emptyset\) CLOSE \＃1：CKFLAG＝ \(0:\) PRINT＂St opped．＂：RETURN 15ø
\(65 \emptyset\) PRINT＂Error \＃＂；ERR：RESUME 159

\section*{Program 3：Commodore \\ Proofreader}

By Philip Nelson，Assistant Editor
\(1 \varnothing \mathrm{VEC}=\operatorname{PEEK}(772)+256 * \operatorname{PEEK}(773)\) ：LO＝43：HI＝44
20 PRINT＂AUTOMATIC PROOFREADE R FOR＂；：IF VEC \(=42364\) THEN \｛SPACE\}PRINT "C-64"
\(3 \emptyset\) IF VEC \(=50556\) THEN PRINT＂VI \(\mathrm{C}-20^{\prime \prime}\)
\(4 \varnothing\) IF VEC \(=35158\) THEN GRAPHIC C LR：PRINT＂PLUS／4 \＆ 16 ＂
50 IF VEC \(=17165\) THEN LO \(=45: \mathrm{HI}=\) 46 ：GRAPHIC CLR：PRINT＂ 128 ＂
\(60 \mathrm{SA}=(\) PEEK \((\) LO \()+256 *\) PEEK \((\mathrm{HI}))+\) \(6: A D R=S A\)
\(7 \varnothing\) FOR \(J=\varnothing\) TO 166 ：READ BYT：POK E ADR，BYT：\(A D R=A D R+1: C H K=C H K\) ＋BYT：NEXT
8 IF CHK＜ 2057 THEN PRINT＂＊ ERROR＊CHECK TYPING IN DATA STATEMENTS＂：END
\(9 \emptyset\) FOR \(J=1\) TO 5 ：READ RF，LF，HF ： RS \(=S A+R F: H B=I N T(R S / 256): L B=\) RS－（ 256 ＊ HB ）
1 øø CHK \(=\mathrm{CHK}+\mathrm{RF}+\mathrm{LF}+\mathrm{HF}:\) POKE \(\mathrm{SA}+\mathrm{L}\) \(\mathrm{F}, \mathrm{LB}:\) POKE \(\mathrm{SA}+\mathrm{HF}\) ，HB ：NEXT
\(11 \varnothing\) IF CHK＜＞22054 THEN PRINT＂ ＊ERROR＊RELOAD PROGRAM AND
\｛SPACE\}CHECK FINAL LINE": EN D
120 POKE SA \(+149, \operatorname{PEEK}(772): \operatorname{POKE}\) SA \(+150, \operatorname{PEEK}(773)\)
130 IF VEC \(=17165\) THEN POKE SA + 14,22 ：POKE \(\mathrm{SA}+18,23\) ：POKESA + 29,224 ：POKESA \(+139,224\)
\(14 \emptyset\) PRINT CHR\＄（147）；CHR\＄（17）；＂ PROOFREADER ACTIVE＂：SYS SA
\(15 \emptyset\) POKE HI，PEEK（HI）+1 ：POKE（ P \(\operatorname{EEK}(L O)+256^{*}\) PEEK（HI））\(-1, \varnothing: \mathrm{N}\) EW
\(16 \emptyset\) DATA \(12 \emptyset, 169,73,141,4,3,16\) 9，3，141，5，3
\(17 \emptyset\) DATA \(88,96,165,20,133,167\) ， \(165,21,133,168,169\)
\(18 \varnothing\) DATA \(\varnothing, 141, \varnothing, 255,162,31,18\) \(1,199,157,227,3\)
190 DATA \(202,16,248,169,19,32\) ， \(210,255,169,18,32\)
2 のø DATA \(210,255,160, \emptyset, 132,18 \emptyset\) \(, 132,176,136,230,180\)
\(21 \varnothing\) DATA \(2 \emptyset \varnothing, 185, \varnothing, 2,240,46,2 \emptyset\) \(1,34,208,8,72\)
220 DATA \(165,176,73,255,133,17\) \(6,1 \varnothing 4,72,261,32,2\) 68
\(23 \emptyset\) DATA \(7,165,176,208,3,104,2\) 08，226，104，166，18ø
240 DATA \(24,165,167,121,0,2,13\) \(3,167,165,168,105\)
250 DATA \(\varnothing, 133,168,262,208,239\) \(, 240,262,165,167,69\)
260 DATA \(168,72,41,15,168,185\) ， \(211,3,32,210,255\)
270 DATA \(1 \varnothing 4,74,74,74,74,168,1\) \(85,211,3,32,210\)
\(28 \emptyset\) DATA \(255,162,31,189,227,3\) ， \(149,199,262,16,248\)
290 DATA \(169,146,32,210,255,76\) \(, 86,137,65,66,67\)
\(3 \emptyset \emptyset\) DATA \(68,69,7 \emptyset, 71,72,74,75\) ， \(77,80,81,82,83,88\)
\(31 \emptyset\) DATA \(13,2,7,167,31,32,151\) ， \(116,117,151,128,129,167,136\) ，137

\section*{Program 4：Apple \\ Proofreader}

By Tim Victor，Editorial Programmer
\(1 \emptyset C=\varnothing:\) FOR \(I=768 \mathrm{TO} 768+\) 68：READ A：\(C=C+A:\) POKE I ，A：NEXT
20 IF \(\mathrm{C}<>7258\) THEN PRINT＂ER ROR IN PRODFREADER DATA STAT EMENTS＂：END
30 IF PEEK \((190 * 256)<>76 ~ T\) HEN POKE 56，\(\varnothing:\) POKE 57，3：CA LL 1øø2：GOTO 5ø
\(4 \varnothing\) PRINT CHR\＄（4）；＂IN\＃A \(\$ 3 \emptyset \varnothing "\)
\(5 \emptyset\) POKE 34，Ø：HOME ：POKE 34，1： VTAB 2：PRINT＂PRODFREADER INSTALLED＂
\(6 \varnothing\) NEW
1 Øø DATA \(216,32,27,253,2 \emptyset 1,141\)
\(11 \emptyset\) DATA \(2 \emptyset 8,6 \emptyset, 138,72,169, \emptyset\)
120 DATA \(72,189,255,1,261,160\)
130 DATA \(240,8,164,16,125,255\)
\(14 \emptyset\) DATA \(1,1 \emptyset 5, \emptyset, 72,2 \emptyset 2,2 \emptyset 8\)
156 DATA \(238,164,176,41,15,9\)
\(16 \emptyset\) DATA \(48,2 \emptyset 1,58,144,2,233\)
\(17 \emptyset\) DATA \(57,141,1,4,138,74\)
\(18 \emptyset\) DATA \(74,74,74,41,15,9\)
\(19 \emptyset\) DATA \(48,261,58,144,2,233\)
\(2 \emptyset \emptyset\) DATA \(57,141, \varnothing, 4,1 \emptyset 4,17 \emptyset\)
\(21 \varnothing\) DATA \(169,141,96\)

\title{
COMPUTE's Author Guide
}

Most of the following suggestions serve to improve the speed and accuracy of publication. COMPUTE! is primarily interested in new and timely articles on the Commodore 64/128, Atari, Apple, IBM PC/PCjr, Amiga, and Atari ST. We are much more concerned with the content of an article than with its style, but articles should be clear and well-explained.

The guidelines below will permit your good ideas and programs to be more easily edited and published:
1. The upper left corner of the first page should contain your name, address, telephone number, and the date of submission.
2. The following information should appear in the upper right corner of the first page. If your article is specifically directed to one make of computer, please state the brand name and, if applicable, the BASIC or ROM or DOS version(s) involved. In addition, please indicate the memory requirements of programs.
3. The underlined title of the article should start about \(2 / 3\) of the way down the first page.
4. Following pages should be typed normally, except that in the upper right corner there should be an abbreviation of the title, your last name, and the page number. For example: Memory Map/Smith/2.
5. All lines within the text of the article must be double- or triple-spaced. A one-inch margin should be left at the right, left, top, and bottom of each page. No words should be divided at the ends of lines. And please do not justify. Leave the lines ragged.
6. Standard typing paper should be used (no erasable, onionskin, or other thin paper) and typing should be on one side of the paper only (upper- and lowercase).
7. Sheets should be attached together with a paper clip. Staples should not be used.
8. If you are submitting more than one article, send each one in a separate mailer with its own tape or disk.
9. Short programs (under 20 lines) can easily be included within the text. Longer programs should be separate listings. It is essential that we have a copy of the program, recorded twice, on a tape or disk. If your article was written with a word processor, we also appreciate a copy of the text file on the tape or disk. Please use high-quality 10 or 30 minute tapes with the program recorded on both sides. The tape or disk should be labeled with the author's name, the title of the article, and, if applicable, the BASIC/ROM/DOS version(s). Atari tapes should specify whether they are to be LOADed or ENTERed. We prefer to receive Apple programs on disk rather than tape. Tapes are fairly sturdy, but disks need to be enclosed within plastic or
cardboard mailers (available at photography, stationery, or computer supply stores).
10. A good general rule is to spell out the numbers zero through ten in your article and write higher numbers as numerals (1024). The exceptions to this are: Figure 5 , Table \(3, \mathrm{TAB}(4)\), etc. Within ordinary text, however, the zero through ten should appear as words, not numbers. Also, symbols and abbreviations should not be used within text: use "and" (not \&), "reference" (not ref.), "through" (not thru).
11. For greater clarity, use all capitals when referring to keys (RETURN, TAB, ESC, SHIFT), BASIC words (LIST, RND, GOTO), and three languages (BASIC, APL, PILOT). Headlines and subheads should, however, be initial caps only, and emphasized words are not capitalized. If you wish to emphasize, underline the word and it will be italicized during typesetting.
12. Articles can be of any length-from a singleline routine to a multi-issue series. The average article is about four to eight double-spaced, typed pages.
13. If you want to include photographs, they should be either \(5 \times 7\) black and white glossies or color slides.
14. We do not consider articles which are submitted simultaneously to other publishers. If you wish to send an article to another magazine for consideration, please do not submit it to us.
15. COMPUTE! pays between \(\$ 70\) and \(\$ 800\) for published articles. In general, the rate reflects the length and quality of the article. Payment is made upon acceptance. Following submission (Editorial Department, COMPUTE! Magazine, P.O. Box 5406, Greensboro, NC 27403) it will take from four to eight weeks for us to reply. If your work is accepted, you will be notified by a letter which will include a contract for you to sign and return. Rejected manuscripts are returned to authors who enclose a self-addressed, stamped envelope.
16. If your article is accepted and you have since made improvements to the program, please submit an entirely new tape or disk and a new copy of the article reflecting the update. We cannot easily make revisions to programs and articles. It is necessary that you send the revised version as if it were a new submission entirely, but be sure to indicate that your submission is a revised version by writing, "Revision" on the envelope and the article.
17. COMPUTE! does not accept unsolicited product reviews. If you are interested in serving on our panel of reviewers, contact the Review Coordinator for details.

\section*{64 Uncruncher}

The first line was omitted from the MLX-format listing for this program in the August issue (p. 100). It should read as follows:
C000:AD 20 D0 8D 0A C6 A5 73 7D

\section*{Screen Machine II}

When entering the program that accompanies Part 1 of this article in the July issue (p. 86), you'll encounter many lines for which the published "Automatic Proofreader" checksum will not match the one returned by the Proofreader even when the line is entered exactly as listed. The program in the July listing was generated by processing the commented listing from Part 2 of the article in the August issue (Program 1, p. 95) with the "REMover" program in that issue (Program 2, p. 99). REMover removes all comments, but in the case of comments at the end of program lines it leaves the space between the last BASIC statement and the apostrophe ('). This space affects the checksum calculated by our lister program, but cannot be typed when you enter the program (any spaces after the last character in a program line are ignored). Except for the Proofreader checksums, the July "Screen Machine II" program is correct as listed, so it should work if entered as listed without using the Proofreader. The checksums should all be correct in the commented (August) version.

\section*{Apple ProDOS \\ Catalog Sorter}

The article with this utility program in the July issue (p. 96) states that the program can be modified for a 40-column video display simply by changing the PR\#3 in line 260 to PR\#0. Actually, several other changes are also required if you wish to display the sorted catalog on a 40 -column screen: The HTAB statements should be removed from lines 340 and 780. The PRINT L2\$: in line 460 should be changed to PRINT LEFT\$(L2\$,80 - 41 * (A\$
\(<>\) " P ")): and the PRINT DA\$(I): in line 740 should be changed to PRINT LEFT\$(DA\$(I), \(80-41\) * (A\$ <> " \(\mathrm{P}^{\prime \prime}\))):.

Also, the author has provided the following enhancement (this is not a correction). As published, the program sorts programs strictly by name. However, it's often useful to have programs sorted by type as well as by name, especially for directories on a hard disk. If you would like to modify the program to add this feature, change the assignment of the variable SK\$(E) in line 680 to \(\mathrm{SK} \$(\mathrm{E})=\operatorname{MID} \$(\mathrm{~L} 4 \$, 18\), \(3)+\operatorname{MID} \$(\mathrm{~L} 4 \$, 2,15)\).

\section*{Converting IBM ML to BASIC DATA}

The article for this program erroneously states that this program will work on the PCjr. Cartridge BASIC for the PCjr does not support the SHELL command. (SHELL is in-
cluded in Cartridge BASIC, but control does not return to BASIC after the command has executed.) Reader Wayne E. Robinson suggests a novel solution for PCjr owners: The PCjr normally uses Cartridge BASIC rather than either of the PC versions provided on the DOS disk, but it's not impossible to use the disk versions which properly support SHELL. When you type either BASIC or BASICA at a DOS A> prompt, DOS checks for the presence of Cartridge BASIC and displays an error message if no cartridge is found. You can trick the computer and use the disk versions of BASIC simply by changing their names. For example, you can use the ML-to-DATA program by using DOS to rename BASICA.COM as BASICB.COM, then typing BASICB (instead of BASICA) to start Advanced Disk BASIC, which can be used to run the program as listed.@

\section*{TANDY* COMPUTERS SAVE 20-40\%} Off List on All Tandy and RS Equipment The IBM* PC compatible computer that's ahead of the crowd! Includes DeskMate \({ }^{\circledR}\) software for word processing, spreadsheet analysis, telecommunications and more, so you can use your computer right away. \#25-1000 -IBM/TM International Business Machines Corp.

Tandy Model 3000 HD , List 3599, Our Tandy Model 600, List 1599, Our Tandy Model 3000, List 2599, Our Model 200 Portable, List 999, Our Model 102 Portable, List 499, Our Non-RS Expansion Boards Non-RS Hard Drives.

You will be pleased with our courteous, efficient service . . . and with the knowledge that we WILL NOT be undersold!

FOR COLORADO RESIDENTS AND INFORMATION CALL 303-249-9125.

CALL TOLL FREE FOR ORDERS
1-800-44SHACK Great Western Electronics

\title{
News \(\mathfrak{G B}\) Products
}

\section*{Epyx Ships New Entertainment Packages}

COMPUTE!'s coverage of the Summer Consumer Electronics Show (CES) in last month's issue inadvertently omitted significant new products from Epyx of Sunnyvale, California.

Epyx has introduced a variety of new entertainment programs for Apple, Commodore, Atari, and IBM computers.

Among the new releases are three bestselling packages recently converted for the Amiga and Atari ST computers: the classic Temple of Apshai Trilogy, three adventure role-playing games in one; Rogue, a 26 -level graphic adventure game; and the popular Winter Games, featuring seven Winter Olympic contests. Epyx announced that many more of its most popular titles will appear in Amiga and ST versions later this year.

New titles include The Movie Monster Game, featuring the ever-popular Godzilla, an action game that lets the player take part in movie monster mayhem; World Games, a new series of Olympic contests in which players become international athletes and travel to eight different countries to compete in an event specific to each locale-for example, cliff-diving in Mexico or sumo wrestling in Japan; Super Cycle, an ar-cade-action motorcycle racing game that features a realistic first-person perspective; Championship Wrestling, a fast-action wrestling contest in which you choose your own wrestling personality and climb into the ring with a formidable opponent; and World Karate Championship, a graphically detailed karate-action program that features eight different compeition locations against increasingly difficult opponents. As with most earlier Epyx titles, these entertainment packages are available currently, or soon, for all major personal computer systems. Prices vary.

Epyx, Inc., 1043 Kiel Ct., Sunnyvale, CA 94089.
Circle Reader Service Number 170.

\section*{Color Printer Interfaces For Amiga, ST}

Okidata has announced that the Okimate 20, a color thermal transfer printer, can now be easily interfaced with

The Okimate 20 now works with the Amiga and ST computers.
the Amiga and Atari ST through its Plug ' \(N\) Print modules. The module is included in the \(\$ 268\) price for the printer, and contains everything the user needs to begin printing immediately: a data cable, black and color cartridge ribbons, and sample computer paper.

In addition to printing over 100 colors, the Okimate 20's 24 -element printhead provides correspondence at 80 cps in draft mode and 40 cps in NLQ mode. Users can select from several different type fonts, including wide print, boldface, fine print, and italics. Underlining, superscript, and subscript are also standard features.

Okidata, 532 Fellowship Rd., Mt. Laurel, NJ 08054.
Circle Reader Service Number 171.

\section*{Electronic Greetings}

Create and send electronic greetingsincluding animation and sound-with Color Mail from Hallmark Cards. This program lets you combine graphics, animation, music, sound, and personal messages to send greetings to other subscribers of CompuServe.

To use Color Mail, a subscriber develops a greeting offline and sends it through the electronic mail facility. The recipient transfers the greeting for off-
line viewing using his or her own Color Mail disk.

Color Mail can be ordered from CompuServe for \$40. This includes CompuServe's VIDTEX communications program, 103 design elements, and illustrated user guides. A PalPak costs \(\$ 60\) and contains two disks, one for the sender and one for the recipient. There is a fee of 25 cents in addition to the connect time charge when using Color Mail. New groups of design elements can be ordered for \(\$ 3.50\) to \(\$ 5.00\).

Hallmark Color Mail, 2440 Pershing Rd., Ste G-40, Kansas City, MO 64108. Circle Reader Service Number 172.

\section*{Database Manager For Commodore 128 And Amiga}

Mid-Kansas Computers recently announced the release of Woodsoftware's Flex File for the Commodore 128 and Amiga, based on the earlier Flex File database manager for the 64 and PET computers.

On the Amiga version, all of the earlier command formats have been retained, and new features have been
added that take advantage of the Amiga's power. These features include sophisticated virtual window entry editor with UNDO and CLEAR LINE functions; minimal mouse commands to speed data entry, editing, and processing; and storage of housekeeping data in machine memory to maximize file space. Two versions are included: An Amiga BASIC version that you can customize; and a machine language version for speed, multitasking with other programs, and more memory to handle extremely large and complex files. It retails for \(\$ 79.95\).

Flex File 128 is completely compatible with data disks created on earlier versions of Flex File and Practifile for other Commodore computers. Its command structure is identical to that of the older version, with a few enhancements. Up to 10,000 records can be created, with up to forty fields per record. 80 -column FAST mode is supported, and HELP screens are available without disk access. It retails for \(\$ 49.95\).

Mid-Kansas Computers, 204 W. 6th, P.O. Box 506, Newton, KS 67114.

Circle Reader Service Number 174.

\section*{MECC Apple}

Educational Software
MECC has introduced two educational tools for Apple II series computers.

Quickflash! is a utility package that lets teachers create electronic flashcards. The program includes automatic recordkeeping, randomization of questions, control of mastery level, and printed progress reports.

Quickflash! can be adapted to various subject levels and includes diacritical marks and special characters for foreign language study. A printer option lets teachers print the questions and answers.

Students in grades six through nine can learn to write plays with Show Time. The students pick the cast from over 1000 possible combinations, build the sets, compose the music, and write the scripts using the integrated word processor, MECC Writer. With Show Time, students add stage directions, rehearse, edit the scripts, and finally watch the play. A support manual is included. Both Quickflash! and Show Time require an Apple II series computer with at least 64 K . Contact MECC for prices.

MECC, 3490 Lexington Ave. N., St. Paul, MN 55126-8097.
Circle Reader Service Number 175.

\section*{Commodore 128 And IBM Compatibility}
S.O.G.W.A.P. Software has introduced The Big Blue Reader, a software program
that lets users transfer word processing and ASCII files generated on most IBMcompatible software to Commodore 128 DOS files, and vice versa.

Release 1.0 of The Big Blue Reader is priced at \(\$ 29.95\), plus \(\$ 2\) for shipping and handling (California residents add \$1.95). The Big Blue Reader is selfbooting. A full menu appears on the \(80-\) column screen, while on the 40 -column screen the program offers a main menu and submenus. Prompts take the user through the copying process, whether going from Commodore to IBM or IBM to Commodore.

The Big Blue Reader also offers the user the option of translating MS-DOS standard ASCII characters to Commodore ASCII characters-and vice versa-solving the problem of reversed capitals and lowercase letters.
S.O.G.W.A.P. Software, Inc., 611 Boccaccio Ave., Venice, CA 90291.
Circle Reader Service Number 176.

\section*{Pro Golf Simulator For Atari ST}

Leader Board, for the Atari ST, is a realistic golf simulator that provides the player with a true perspective of the game. It features multiple 18 -hole courses, 3-D animation, trees and sandtraps, and three levels of play. The program also provides for computerized scoring, a handicap system, and requires the player to make strategic decisions involving the choice of club, distance, and many other variables.

A joystick is required. The ST version of Leader Board retails for \(\$ 39.95\).

Access Software, Inc., 2561 S. 1560 W., Woods Cross, UT 84087.

Circle Reader Service Number 177.

\section*{RAM-Resident IBM Writing Tool}

Micro Logic has released a RAM-resident productivity tool for the IBM-PC and compatibles. Tornado Notes lets you process random information using a system of parallel text processing. You can enter text into logical modules and then change, reorganize, and code the information as you wish. Tornado Notes has a flexible search capability and includes a pile-of-paper simulator, forms capability, note-joining function, twokeystrok duplication feature, and importing and exporting of both files and screens. There is a built-in editor as well as a helpful icon-based user interface.

Tornado Notes runs on the IBM-PC and compatibles with PC-DOS (MSDOS) 2.0 or later and uses 50 K of RAM, plus space for notes. It does not use bit graphics and supports most 80 -character monochrome and color displays. The
software is not copy-protected.
Tornado Notes costs \$49.95, which includes a collection of reference notes and a 30-day money-back guarantee.

Micro Logic Corp., P.O. Box 174, 100 2nd St., Hackensack, NJ 07602.
Circle Reader Service Number 178.

\section*{Idea Processor For Amiga}

Flow is an idea processor that takes full advantage of many of the Amiga's features, including multi-tasking, pulldown menus, windows, and the mouse.

The program's primary use is in organizing and arranging ideas in preparation for writing papers, articles, or books; or for presentations, planning, and decision-making. It can also be used to store and rapidly find important dates and appointments, or to save factual information in an orderly fashion. Suggested retail price is \(\$ 99.95\).

New Horizons Software, P.O. Box 43167, Austin, TX 78745.
Circle Reader Service Number 179.

\section*{BASIC Programming On The Apple}

Thirty-five lessons in Ace Programmer cover the fundamentals of Apple BASIC programming on the Apple-II series computers. This new program from MindPlay instructs users, gives examples, and then offers students a chance to practice with 70 additional playspace assignments. The package includes recordkeeping, options to create additional playspace assignments, and a guidebook.

Ace Programmer is available on lev\(e l\) I for grades 2 through 6 and level II for grades 7 through adult. Backup and lab packs are also available. Suggested retail price is \(\$ 39.95\).

MindPlay, Methods \& Solutions, Inc., 82 Montvale Ave., Stoneham, MA 02180.

Circle Reader Service Number 180.

\section*{Hard Disk Drive For Commodore 64}

The Data Chief is a hard disk drive system with floppy disk included for the Commodore 64, available in a \(10-\) megabyte or 20 -megabyte version. Produced by InConTrol, Inc., each system comes with a 170 K floppy drive, a \(135-\) watt power supply, a hard disk drive, and controller/driver cards, all housed in a metal case.

A second hard disk can be added without an additional driver card and, with an expansion kit that will be available this fall, three hard disks can be installed in the system. The Model HFD-60 is a 10 -megabyte system
(\$895); the Model HFD-120 is a 20 megabyte system (\$995).

InConTrol, Inc., 103 Baughman's Ln., Ste. 301, Frederick, MD 21701. Circle Reader Service Number 181.

\section*{ST Versions Of Popular Text/Graphics Adventures}

Spinnaker has announced that several titles in its popular Telarium series will now be available for Atari ST computers. The games include Nine Princes Of Amber, a game of negotiation, politics, and alliances in which you play a prince fighting for the throne of the one true perfect world (written by Roger Ze lazny); Amazon, where as a special agent for a high-tech research firm you must travel to the dangerous, unexplored Amazon (written by Michael Crichton); and Perry Mason: The Case Of The Mandarin Murder, in which you play the role of world-famous criminal lawyer Perry Mason.

The ST versions of each program retail for \$49.95.

Spinnaker Software, One Kendall Sq., Cambridge, MA 02139.
Circle Reader Service Number 182.

\section*{Commodore 16 And Plus/4 Programs}

Two entertainment programs and a home finance package for the Commodore 16 and Plus/4 computers have been introduced by Robinson Software Associates.

Bounty Hunter is a text adventure set in the Old West; Grave Robbers is a graphic treasure-hunting adventure; and Savings \(\mathcal{E}\) Loan is a home finance program that calculates principal, interest payments, amortization on loans, and various types of savings.

Each program sells for \(\$ 9.95\), plus \(\$ 1.50\) postage.

Robinson Software Associates (RSA), 50 South Valley Road B2, Paoli, PA 19301. Circle Reader Service Number 183.

\section*{Star Micronics Printer}

Star Micronics has introduced the NL10, a 9-wire dot matrix desktop printer for professional, small office, and home use. The NL-10 prints high-speed draft quality at 120 cps and near letter quality at 30 cps . It offers eleven format and print functions, including three print pitch selections, type style, print mode, margin settings, and forward and reverse paper feed. The rear tractor feed has a quick tear feature plus an automatic feed. There is an optional automatic single and dual bin cut sheet feeder. Ribbon cartridges snap in easily.

The NL-10 has plug-in interface cartridges for the IBM PC and PC com-

The NL-10 dot matrix printer from Star Micronics is compatible with all major personal computers.
patibles, Commodore \(64 / 128\), standard parallel computers, Apple computers, and an RS-232C serial interface cartridge.

Suggested retail price for the NL10 with one interface cartridge is \(\$ 379\). The base unit retails for \(\$ 319\) and each cartridge is priced at \(\$ 60\).

Star Micronics, Inc., 200 Park Ave., Ste. 3510, New York, NY 10166.
Circle Reader Service Number 184.

\section*{Inexpensive ST Software}

Keypunch Software has introduced a line of inexpensive game, educational, and personal productivity programs for the Atari ST. Titles include Trivia Master, The Gambler, Strategy Games, Cards Cards Cards, Mind Games, Personal Finance Pak, Executive Data Pak, and Finance I \& II.

Each program retails for \$9.99. Amiga versions are planned for the fall of 1986.

Keypunch Software, 1221 Pioneer Bldg., St. Paul, MN 55101.
Circle Reader Service Number 185.

\section*{Macintosh Graphics}

Dynamic Graphics has introduced DeskTop Art software for the Macintosh, a new line of programs that contains graphics selected and digitized from the company's library of more than 20,000 exclusive illustrations and photos. All images are based on original art, commissioned and purchased by Dynamic Graphics from leading illustrators for its international art services.

Each volume under the DeskTop Art name, categorized by subject and style, includes more than 300 illustrations stored on two disks as MacPaint documents. Also included in every
package is a 24 -page how-to guide, a pictorial index to the art, and suggested applications projects. The first two volumes are Graphics \& Symbols (\$66.95), a collection of high-contrast pictograms and symbols; and Artfolio I (\$74.95), a miscellany of styles and subjects that includes people, familiar objects, and animals.

Dynamic Graphics, Inc., 6000 N. Forest Park Dr., P.O. Box 1901, Peoria, IL 61656-1901.
Circle Reader Service Number 186.

\section*{IBM Software From Bułtonware}

Buttonware has introduced several software packages for the IBM PC and compatibles.

PC-Dial is a communications package that features DOS access for commands or programs, complete support of DOS subdirectories, a built-in minieditor for editing files online, support of user-defined scripts, smart keys that save up to 12 macros, a help screen, an automatic redial, communication at speeds from 75 bps up to 9600 bps , screen colors, and an on-screen timer. \(P C\)-Dial requires a serial communications port, a modem, DOS 2.0 or higher, 164 K available RAM memory without the mini-editor and 220 K of available RAM memory with the minieditor.

PC-Style analyzes the readability of your writing by computing the percentage of long words, personal words, action verbs, words per sentence, and average syllables per word. This program works with any standard ASCII or Wordstar document.

PC-Tickle is a reminder program that helps you keep track of appointments, dates, and meetings. It also has
an option that allows you to keep running totals of your checkbook balance, calorie consumption, and more.

PC-File III is a general purpose database manager program.
\(P C\)-File \(/ R\) has more features than PC-File III, including relational database capabilities, integrated letter writing, and mail-merge capabilities.

A word processor, PC-Type can perform DOS functions and has keyboard macros as well as help panels to guide you through each process.

The graphics extension to PC-File III and PC-File /R is PC-Graph, which can plot a line graph of a database or a report created with the word processing programs.

PC-Dial, PC-File III, and PC-Graph each sell for \(\$ 59.95\). PC-Style and PCTickle each sell for \(\$ 29.95\) and PCFile \(/ R\) costs \$149.00.

ButtonWare, Inc., P.O. Box 5786, Bellevue, WA 98006.
Circle Reader Service Number 187.

\section*{PBS Science Series Offers Free Software}

Newton's Apple, the popular PBS science series, will introduce supplementary software to support this fall's series, thanks to a major grant from the Dupont Corporation.

The software series will consist of six Apple programs that deal with the scientific principles covered in the series. For example, as the host relates the laws of probability to the workings of a slot machine, a companion software program brings the lesson to the viewer through computer simulations of coin flipping, dice throwing, and slot machine playing. Additional software will be based on such program themes as mirrors, telescopes, and alcohol's effects on the body.

Newton's Apple software will be available at no cost on major online news and information services, local bulletin boards systems, user groups, and local board of education computer resource centers.

For further information, contact your local Apple user group or call a local FIDO-NET BBS.
Circle Reader Service Number 188.

\section*{Writing Aids For Apple II}

I Can Write and Be A Writer introduce students to word processing as part of a book-building venture which encourages creative writing and helps teach basic grammar and writing skills. Both programs require the use of the Magic Slate, a Sunburst educational aid.

Challenges offered by I Can Write,
designed for second graders, range from open-ended explorations of personal identity to changing a monster's description with new adjectives or commanding its actions with different verbs. Sudents can easily change or add to each exercise, then print out individual lessons to become part of their own personal writing record. In addition, they can create their own books of original stories, poems, letters, and drawings.

In Be A Writer, designed for third graders, students explore the narrative, descriptive, and explanatory styles of writing with imaginative characters like Ruby Robot and Giant George.

Both programs, available for Apple II computers, consist of 25 lessons each, and retail for \(\$ 40\).

Sunburst Communications, Inc., 39 Washington Ave., Pleasantville, NY 10570.

Circle Reader Service Number 189.

\section*{Statistical Baseball Game}

SubLogic has introduced Pure-Stat Baseball, a statistical baseball simulation game originally being released for the Commodore 64, with later versions planned for the Apple II and IBM computers.

Pure-Stat Baseball contains every

\section*{DISKS 504} - PRINTERS -
 EDUcator

LIFETIME WARRANTY圊 TYVEK SLEEVES•LABELS WRITE PROTECTS • PACKAGED
FACTORY NEW - 1st QUALITY GeNeric SSIDD .60 .55 .50
BASF DS/DD 1.00 .95 .90

> Mes. Microcomputar Barvices EロO-4CEF7FE
> In Michigan [sia] 4e7-0esi INFO \& CUSTOMER SERVICE-[313] 685-7766 HOURS: MON-SAT 10:00 A.M.-6:00 F.M. 12864 Farmington Rd. Livonia: MI 48150

\footnotetext{
MC/VISA/C.O.D. Dealer Inquiries Invited All prices discounted for cash or check, add 3\% for MC/VISA. Shipping: Printers \(\$ 10.00\), Educator \(\$ 20.00\), Disks \(\$ 4.00\) per 100, (West Coast - add \(\$ 2.00\) per order). Add \(\$ 2.00\) for C.O.D. Reduced shipping for large quantities. Prices and availability subject to change without notice. ALL MERCHANDISE CARRIES MANUFACTURERS WARRANTY
}
major-league team from the 1985 season, along with eight classic teams from the past. The game, which is for one or two players, lets you trade team players, draft new players, or create your own teams. There are three stadiums to choose from on the game disk, or you can purchase an optional disk with every major league stadium in the U.S.

The emphasis throughout the game is on statistical realism. You select the team you want to manage, then pick the team you want to play against. Choose starting lineups, pitchers, make player substitutions, and call plays. Each player acts and moves individually on every play. The game maintains a complete statistical record as well.

The Commodore 64 version sells for \(\$ 49.95\). Versions for the Apple II and IBM PC computers will be released at a later date.

SubLogic Corp., 713 Edgebrook Dr., Champaign, IL 61820.
Circle Reader Service Number 190.

\section*{ST Cookbook On A Disk}

Micro Cookbook, from FTL, consists of more than 150 recipes, and is an authoritative source of cooking tips and nutritional information designed to make you a better cook. It's a timesaving meal planner for organizing every menu detail. You pick the menu, and Micro Cookbook creates a shopping list of all the ingredients you'll need.

Available for the Atari ST, Micro Cookbook retails for \(\$ 49.95\).

FTL, 6160 Lusk Blvd., C206, San Diego, CA 92191.
Circle Reader Service Number 191.

\section*{Apple, IBM, Commodore PlayWriter Programs}

Woodbury Software has announced the availability of two new programs in the company's PlayWriter series for the Apple II, Commodore 64, and IBM PC/PCjr computers. Each title in the series helps young authors write, edit, print, illustrate, and produce hardcover novels.

MYSTERY! and Castles \& Creatures, the newest additions, are aimed at users age seven and above, including adults. In MYSTERY!, you write your detective novel by choosing and describing your sleuth, determining the method and motive of the murder, and creating your own cast of characters. In Castles \(\mathcal{E}\) Creatures, you build your own adventure in a world of fantasy and imagination. Your environment is filled with dragons, knights, sorcerers, and royalty.

Each PlayWriter title is priced at \(\$ 39.95\) and includes a software story
disk, color stickers, full-page illustrations, a hardcover book jacket, special paper, and easy to use instructions. Earlier PlayWriter titles include Tales of Me and Adventures In Space.

Woodbury Software, 127 White Oak Ln., CN 1001, Old Bridge, NJ 08857.
Circle Reader Service Number 192.

\section*{Commodore Music Software Guide}

Commodore 64 \& 128 Music Software Guide, by noted computer music consultant Lolita Walker-Gilkes, is a comprehensive music software guide that ranges from advice on how to use the Commodore for music to detailed explanations of individual software programs and their target audiences. The text presents descriptions, age groups, and prices, and breaks the information into sections on theory, eartraining, fingerings, composition, entertainment, and graphics. A separate section is devoted to MIDI (Musical Instrument Digital Interface), and appendices include vendor addresses, periodicals, and books that can further help users

The guide sells for \(\$ 11.95\).
Unsinn Publications, P.O. Box 672, Drexel Hill, PA 19026.
Circle Reader Service Number 193.

\section*{Telecomputing Package}

A new hardware and software package from Kinesis Corporation allows up to 23 simultaneous callers. POPnet lets users carry on private or open conversations with other users, take part in any of the two-player games, including chess, checkers, backgammon, and othello, or drop into one of the multiplayer games such as poker, liar, star trader, and house-o-fun. There are also mail and bulletin board areas.

POPnet is set up for operation as a business, complete with accounting software. Typical charges to a user is 75 cents an hour. Contact Kinesis Corp. for price.

Kinesis Corp., 3000 Citrus Circle, Suite 212, Walnut Creek, CA 94598.
Circle Reader Service Number 194.

\section*{Apple II, IBM Grammar Program}

Grammar Gremlins, a comprehensive grammar program for elementary students, is the newest release from Davidson \& Associates, for the Apple II + , IIe, and IIc at a suggested retail price of \(\$ 49.95\). An IBM version will be released in September.

Grammar Gremlins presents grammar rules with over 700 practice examples and sentences. The program covers
abbreviations, subject/verb agreement, capitalization, contractions, parts of speech, plurals, possessives, punctuation, and sentence structure. Its features include an easy-to-use editor, animation, color, optional sound effects, record-keeping, and print-out capabilities.

Davidson \& Associates, Inc., 3135
Kashiwa St., Torrance, CA 90505.
Circle Reader Service Number 195.

\section*{Commodore 64 Music}

Free Spirit Software, publishers of the classical music disk, Music of the Masters, has announced a second classical music disk for the Commodore 64, Music of the Masters, Vol. II.

The program contains 40 compositions by composers such as Mozart, Bach, Beethoven, Brahms, and others. Instrument simulations include piano, harpsichord, violin, flute, guitar, and clarinet. Screen commentary on the composers is included.

Music of the Masters, Vol. II, has a price of \(\$ 9.95\). Both volumes may be purchased for \(\$ 16.95\). No shipping and handling charges.

Free Spirit Software, Inc., 5836 S. Mozart, Chicago, IL 60629.
Circle Reader Service Number 196.

\section*{Commodore Bulletin Board}

Blue Board from SOTA Computing Systems is a bulletin board system for the Commodore 64 that supports over 200 online messages (of up to 1,023 characters), up to 220 users, and more than 25 sysop-definable sub-boards.

Written entirely in machine language, the system includes remote SYSOP access, a private sysop sub-board, and unlimited session connect time. Blue Board also includes Scribbles, which are mini sub-boards for messages of up to 80 characters (for opinion forums, voting, chess games, etc.). The system can be reconfigured by the sysop.

Blue Board requires a Commodore 64 or 128 with one disk drive (1541 or equivalent), and a 300 -baud autoanswer modem (Commodore 1650 or equivalent). The suggested retail price is \(\$ 69.95\) (U.S. funds).

SOTA Computing Systems, Ltd., 2131080 Broughton St., Vancouver, British Columbia, Canada V6G 2A8.
Circle Reader Service Number 197.

ATARI 130XE
ATARI 130XE Super Computer Package
130XE Computer
1027 Printer
1050 Disk Drive
Atariwriter +
Call for individual \& super package price
ATARI PRINTER INTERFACES
Uprint A

\section*{Supra 1000E Modem \\ 44.95 \\ Atari XM-301 Modem \\ 39.95 \\ ATARI \(130-x\) E SUP证 \\ PRINTER PACLACES}

NX-10 Printer \& U-Print A 299
Panasonic 1091 \& U-Print A 299

ATARI 130XE SOFTWARE

BRODERBUND
Print Shop
Karateka
Print Shop
Graph. I. II, or III
Print Shop Comp.
Print Shop C
INFOCOM
See Commodore 64 sec
tion for items and prices
ELECTRONIC ARTS
Archon II
Archon
Seven Cit. of Gold. Skytox.
Pinball Const Super Boulder Dash. Chessmaster 2000 Racing Destruction Ultima III
T-down Football MICROPROSE Silent Service Gunship
F-15 Strike Eagle . Kennedy Approach Cont

\section*{lion for items and prices}

\section*{ATARIST}
 Atarl shast-RCB System
Athat s2esfr-Monochrome Syitom SFritiosion Dith Dhtw. from Computabiflity for ninety tay

\section*{MISCELLANEOUS ST}

\section*{Kings Quest il ST Talk.} H\&D Base Typesetter SI Word Invaders Mean 18 Golf....
Financial Cookbo Financial
Brataccus. Michtron Utilities Black Cauldron Printmaster ST P.C. Intercom Final Word Hex.
Mudpies
Sundog
Fipside.
VIP Professional Ultima II
Perry Mason
Degas
Farenheit 451
Personal Pascal
Art Gallery 1
Compubridge
Major Motion
Pawn
DFT....
Macrodesk
Rubber Stamp
Kissed
Cards.
Rouge
Mastertype.
Easy Record
Data Manager ST Little Comp. People Philon.

2895 Mind Pursuit
20.95 Never-Ending Story .. 18.95 Fooblitzky. 5 Syncalc... Typesetter. Ultima III. Ultima IV.
Beachead II
Raid Over Moscow Fight Nigh 19.95 Flight Simulator II 24.95 Alternate Reain
19.95
Fleet System II 24.95 Page Designer. Megatont II Rubber Stamp. Halley Project. Synfile... Beachead II. Music Studio. Wizard's Crown Gettysburg Island Caper Basic XE
Action Action. Paper Clip/Spell

Call for Hardware and Add-on Peripherals prices

\section*{AMIGA SOFTWARE}

\section*{Hacker}

\section*{Mindshadow} Mastertype VIP Professional Analyze
On-line

\section*{Adventure Const} Deluxe Video Deluxe Paint Infocom Monkey Business Rouge. Apshai Trilogy Delta Patrol. Aegts Draw......
Little Comp. People Intte Comp. Peop Instant Musi
Mean 18 .. Mean \(18 \ldots . .\).
Leader Board 29.95 Maxicom

\section*{APPLE} SOFTWARE
BRODERBUND
Print Shop.
Print Shop Graphics I. II. or III. .

Karateka

\section*{ELECTRONIC ARTS}

Bard's Tale
Auto-Duel
Lords of Conquest
Lords of C
Ultima IV
Ultima IV
Moebius.
Amnesia.
EPYX
Winter Games .
INFOCOM See IBM section for items Math Blaster. and pric MICROPROSE Wizardry/Diam.
Wizardry/Legacy \(\begin{array}{r}2395 \\ \hline 275 \\ \hline\end{array}\) .25 Wizardry/Legacy.
.27 .95 SSI
21.95 See Commodore 64 sec29.95 APPIE MISCEL \& prices.
29.95 APPLE MISCELLANEOUS
34.95 Gamemaker
27.95 Hardball
\(\begin{array}{ll}.27 .95 & \text { Hardball } \\ .27 .95 & \text { Sundog. }\end{array}\)
39.95 Newsroom.
.Call Clip Art Vol I I. II. Gato
24.95 Kung Fu Master Math Blaster. Fight Night
Phantasie II

See Atari 130XE s
items and prices.
Phanta
Amer Challenge.

\section*{IBM PC}

Corona PC-400 Compatible Corona Portable PC Compatible ... Cat
\begin{tabular}{|c|c|}
\hline BRODERBUND & INFOCOM \\
\hline Print Shop 39.95 & Deadline 34.95 \\
\hline Print Shop Graph I . . 27.95 & Starcross 34.95 \\
\hline Bank Street Writer ... 49.95 & Zork 1.............. 27.95 \\
\hline Ancient Art of War . . 29.95 & Zork II or III. 29.95 \\
\hline MICROPROSE & Witness 27.95 \\
\hline F-15 Strike Eagle ... 23.95 & Suspended 34.95 \\
\hline Kennedy Approach . . 27.95 & Planetfall........... 27.95 \\
\hline Acrojet 27.95 & Sorcerer 29.95 \\
\hline Silent Service 27.95 & Seastalker 27.95 \\
\hline IBM MISCELLANEOUS & Cuthroats 27.95 \\
\hline Mean 18 34.95 & Hitchiker 27.95 \\
\hline Gato 27.95 & Suspect 29.95 \\
\hline Wizardry........... 39.95 & Wishbringer 27.95 \\
\hline Strip Poker 27.95 & Infidel 29.95 \\
\hline Jet 34.95 & Enchanter 27.95 \\
\hline Newsroom 39.95 & Spellbreaker 34.95 \\
\hline Superbowl Sunday .. 24.95 & Mind forever 34.95 \\
\hline Home Pak 34.95 & Balyhoo \\
\hline Alter Ego 34.95 & SIERRA \\
\hline Hacker............. 29.95 & King's Quest 34.95 \\
\hline Borrowed Time. 27.95 & King's Quest II 34.95 \\
\hline Isgur Portfolio 16495 & Ultima II 39.95 \\
\hline Typing Tutor 34.95 & \\
\hline
\end{tabular}

\section*{COMMODORE \\ COMMODORE 128}

\section*{C-128 Computer} 1571 Disk Driv
1902 Monitor
COMMODORE 128 SOFTWARE
Swiftcalc w/Side. 49.95 Superscript 128....... . 59.95 Data Manager II49.95 \(\begin{array}{ll}\text { Perfect Writer } & \text { Sorter-128 }\end{array}\) Fleet System III. 54.95 Perfect Filer Mach 12834.95 Viziwrite 128 Superbase \(128 \ldots . .69 .95\) Vizistar 128...

\section*{COMMODORE 64}

NEW 64C Computer .. Call 1660 Modem C-64 Computer

Call 1670 Modem 1541 Disk Drive .

\section*{COMMODORE 64/128} SUPER PRINTER PKGS.
NX-10 \& Xetec Supergraphic 299 Panasonic 1091 \& Xetec
Supergraphic
Legend 1080 \& Xetec
Supergraphic

Super Printer Packages have no added shipping
or charge card surcharges when shipped in
Continental USA

Volksmodem
Prometheus 1200
Maxwell 1200
Maxwell 2400
Maxwellheus 2400 Call
MONITORS
NAP Amber ...
Goldstar \(13^{\prime \prime}\) Color
Teknika RGB.
Magnovox RBG
Commodore \(1902 \ldots\). . Call

\section*{GENERAL HARDWARE} stonl

NX-1
G-10........ . Call
SG-15 369
SD-10....... . 339
SD-15 449
SR-10 489
\begin{tabular}{l}
\(\mathrm{NL}-10 \ldots\). Call \\
\(\mathrm{NL}-10 \mathrm{C}\) \\
\hline
\end{tabular}
PRINTERS
Legend 808 ... Legend 1080
Powertype
Juki...
Panasonic 1080 215
PRINTER BUFFERS
MicrofazerFrom 169
U-Buff 16K 79.95
U-Buff 64K.
99.95 299
Call
Call
Call

9.95
Call
129
Call
Call
Call

\title{
 \\ \\ Computcfbility "ew
}

COMMODORE 64 SOFTWARE
ACCESS
Mach V-Cart.
Leader Board
Tenth Frane
SSI
Battle/ Antietam
Panzer Grenider
USAAF . .
Kroadside . .
Carrier Force Comp. Ambush
Field of Fire
Gemstone Warrior
Computer Baseball
Computer Quaseball .
Comp. Quarterback . . . 24.95 Racing Destruction . .
Wizards Crown
Gettysburg
Phantasie ..
Mech Brigade
SSI (NO ATARI)
Rings of Zilfin
Battle Group
Roadwar 2000
MICROPROSE

\subsection*{21.95 Zork।}
27.95 Zork II. or II

MISCELLANEOUS
24.95 COMMODORE 64
27.95 Deadline 29.95 \(\begin{gathered}\text { Freeze Frame } \\ \text { Print Shop }\end{gathered}\)
. 32.95 Witness 24.95 Cal-Kit
\(\begin{array}{ll}\text {. } 32.95 & \text { Witness } \text { Planetfall24.95 } 24.95 \\ \text { Superbase } \\ \text { Karateka }\end{array}\)
Karateka
Hacker Gamemaker Ultima II

See Atari 130XE section for rest of items \& prices.

\section*{ABACUS SOFTWARE}

\section*{E NO SURCHARGE FOR MASTERCARD \& VISA \\ To Order Call Toll Free \\ 800-558-0003 \\ For Technical Info., Order Inquiries, or for Wisc. Orders}

ORDERING INFORMATION: Please specify system. For fast delivery send cashier's check or money order. Per sonal and company checks allow 14 business days to clear. School P.O.'s welcome. C.0.D. charges are \(\$ 3.00\) In Continental U.S.A. include \(\$ 3.00\) for software orders, \(4 \%\) shipping for hardware, minimum \(\$ 4.00\). Master Card and Visa orders please include card \#, expiration date and signature. WI residents please include \(5 \%\) saleg tax. HI, AK, FPO, APO. Puerto Rico and Canadian orders, please add \(5 \%\) shipping, minimum \(\$ 5.00\). All other foreign orders add \(15 \%\) shipping. minimum \(\$ 10.00\). All orders shipped outside the Continental U.S.A. are shipped first class insured U.S. mail. If foreign shipping charges exceed the minimum amount, you will be charged the additional amount to get your package to you quickly and safely. All goods are new and include factory warranty. Due to our low prices all sales are final. All defective returns must have a return authorization number. Please call (414) \(351-2007\) to obtain an R.A.\# or your return will not be accepted. Priced and availability subject to change without notice.
20.95 M-Copy
24.95 Winter Games
27.95 Silent Service
27.95 Flight Simulator II
27.95 Music Studio
54.95
59.95
Phantasie . Megabyte Upgrade
59.95 Extended Warranty
34.95 Extended Warranty.

Call Chessmaster 2000.

\section*{A Complete Pro Football Prediction Program For The 1986 NFL SEASON}

\section*{COMMODORE AMIGA}
256 K. Color Amiga
System........................ 256 K. Amiga CAL
A1010 \(3 / 2^{\prime \prime}\) Drive CAL A1050 256 K .

Expansion.

\section*{ATARI ST}

520 ST Color
System
520 ST Monochrome System
SF 314 Drive
SF 354 Drive

\section*{ATARI 8-BIT}

\section*{CALL ON THESE AND OTHER PRODUCTS}

WE CARRY A COMPLETE LINE OF SOFTWARE AND HARDWARE INCLUDING PRINTERS

\section*{TOP HITS}

\section*{ATARI SOFTWARE ST}

Home Planetarium \$ 24
Joust \$ 24

CP/M Emulator
2 Key Accounting
Little Computer People
Championship Golf
Degas
Music Studio
Leader Board Golf
Financial Cookbook
Fortran.
Jet
Flight Simulator II
Pascal
"C" Compiler
Cobol.
Print Master
CALL
. 39
CALL
\$ 29
. 37
CALL
. 29
\$129
CALL
\$ 39
. \(\$ 129\)

Art Gallery

\section*{ATARI SOFTWARE XL/XE}

Battle of Antietam \(\$ 30\)
USAAF \(\$ 35\)
M.U.L.E. \(\$ 17\)

Movie Maker \(\$ 39\)
One On One \(\$ 24\)
Seven Cities of Gold \$24
Silent Service \(\$ 27\)
F-15 Strike Eagle............ . \(\$ 25\)
Music Studió
Printshop Companion
Temple of Apshai Trilogy ... \(\$ 26\)
Flight Simulator II \$39
Scenery Disk (For Above) . . \(\$ 16\)
Karateka \(\$ 24\)
Nam
\$29
Super Bowl Sunday \(\$ 22\)
Atari Basic (R) \$ 5
Print Shop .
Graphic Library I, II \& III . . . ea. \$18

COMMODORE SOFTWARE AMIGA
\begin{tabular}{|c|c|}
\hline Artic Fox & 30 \\
\hline Sky Fox & 29 \\
\hline Deluxe Paint & 56 \\
\hline Deluxe Print & \$65 \\
\hline Aegis Draw & CALL \\
\hline Aegis Animator & \$99 \\
\hline Music Studio & \$39 \\
\hline One On One & \$29 \\
\hline On Line & 49 \\
\hline Analyze & \$69 \\
\hline Amiga Assembler & CAL \\
\hline BBS & \$65 \\
\hline Lattice "C" & ALL \\
\hline Amiga Pascal & ALL \\
\hline Scribble & \\
\hline
\end{tabular}

COMMODORE SOFTWARE 64/128
Mastertronics Title
As Low As \(\$ 7.95\)
All Abacus Title CALL

Football \(\$ 29\)
Printship \(\$ 35\)
Printshop Companion \(\$ 28\)
Leader Board Golf \(\$ 28\)
Tournament Disk (For Above) . . \$14
Print Master \(\$ 27\)
Newsroom \(\$ 39\)
Fontmaster II. \(\$ 31\)
Fast Hack'em \(\$ 31\)
Snapshot \(\$ 39\)
Tenth Frame CALL
Merlin 64/128 CALL
Bard's Tale \(\$ 28\)
Lords of Conquest \(\$ 29\)
Sky Fox \(\$ 27\)
USAAF \(\$ 27\)
\(\$ 35\)
Gunship. . \(\$ 25\)
Silent Service \(\$ 25\)
ATARI POWER PACKS
REPLACEMENT TRANSFORMER FOR 800/400, 810, 1050,
1200XL, 1020
. \(\$ 4.95\)

\title{
EARLVEIRD CHRISTMAS SPECIALS suncom P.Q. PARTY QUIZ ONLY S14 \({ }^{95}\) \\ ATARI OR COMMODORE (8-BIT) \\
}

\section*{RIBBONS}

Atari 1025 (Black) \(\$ 2.50\)
Atari 1025 (Color) . \(\$ 3.50\)

Panasonic 1091 (Black) \(\$ 8.50\)
Okimate 10 (Color)
. \(\$ 6.00\)
Star Gemini 10 (Black) \(\$ 2.50\)
Star Gemini 10 (Color) \(\$ 3.50\)
Star Powertype \(\$ 6.00\)
Epson MX/RX/FX-80 \(\$ 6.00\)
Commodore 1525 (Black) . . . \(\$ 7.50\)
Commodore 1526 (Black) . . . \(\$ 7.00\)
Commodore MPS 801 \(\$ 7.50\)
Commodore MPS 802 \(\$ 7.00\)
Commodore MPS 803 \(\$ 9.00\)

\section*{BULK DISKS}

100 Quality DSDD \(51 / 4^{\prime \prime}\).ea. \(\$.69\)
100 Quality SSDD 51⁄" .ea. \(\$.59\)
Less Than 100
DSDD 514"
.ea. \(\$.79\)
Less Than 100
SSDD 5¼"ea. \$. 69
SONY DSDD \(312^{\prime \prime}\)

\section*{DATASOFT}

Commodore 64/128
O'Riley Mine (D/C)
Dallas Quest (D)
Mancopter (D)
ATARI XL/XE
Pooyan (D/C)
\$5.95
\$5.95
ATARI, INC.

\section*{ATARI XL/XE}

Juggle's Rainbow (C)
\$2.99
Juggle's House (C)
States \& Capitals (C) \(\$ 1.99\)
My First Alphabet (D) \(\$ 2.99\)

\section*{TIMEWORKS}

COMMODORE 64/128
Money Manager (D/C) \(\$ 5.95\)
Electronic Checkbook (D/C) . \(\$ 5.95\)
Data Manager (D/C)
. \(\$ 5.95\)

\section*{ATARISOFT}

APPLE
Defender (D)
\$2.99
Dig Dug (D)
\$2.99
Robotron (D)
\$2.99
Pac Man (D)
\$2.99
Centipede (D)
\$2.99
Donkey Kong (D)
\$179
\$199
CALL
CALL
CALL
\$179

1-800-282-0333
ORDERS ONLY! Sales Personnel Do Not Have Information on Previous Orders or Product Specs.

\section*{s5 TALKING DISK}

OVER 100 WORDS in vocabularies that you can put into your own programs! No extra hardware required. Sample programs include:
- Talking four-function calculator - choose English, Spanish, or German.
- Talking keyboard - letters and punctuation in English.
- Demonstration of voice editing.

The \(\$ 5\) Talking Disk is available for Commodore 64, 128, Atari 800, 800XL, 130XE, and Apple II+ (64K), Ile, and IIc.
If you want to make your own vocabularies, in any language or accent, then you must have a VOICE MASTER for processing speech input. VOICE MASTER lets you do much more: YOU CAN RECOGNIZE SPOKEN COMMANDS and WRITE MUSIC AS YOU HUM! And affordable too - under \(\$ 90\) including the headset and microphone.
Send \(\$ 5\) for the talking disk. Prepaid orders only. Includes postage. (\$7 outside USA, Canada, and Mexico.) Information on VOICE MASTER will accompany your disk. Or you can call or write for VOICE MASTER information separately. Please specify computer make and model with your order.

\section*{COMMODORE REPAIR CENTER}

1-800-772-7289
IN ILLINOIS (312) 879-2888
```

C64 Repair kcpu only) .
42.95*
AMIGA Repair . . . . CALL
1541 Repair . . . . 79.95*
1541 Alignment
only ......... 29.95* CBM \& AMIGA PARTS
C128 Repair ${ }_{\text {Ipuonty) }}$ 79.95*
Call (312) 879-2350
*Includes parts, labor \& UPS return shipping. APO/FPO or Air Freight add $\$ 10.00$
CALL BEFORE SHIPPING, VISA, MASTERCARD OR MONEY ORDER
24-48 Hrs. Turnaround (Subject to parts availability)
Diagnosis fee of $\$ 25.00$ for any unit altered or with no defects.

```

\section*{SAVE YOURSELF SOME MONEY}

Due to our vast experience in repairing 64s we have found that the power supply is a major cause of board failures. By inserting our device between the power supply and computer over 63\% of our customer's repairs would have been avoided. For only \(\$ 19.95\) our C64 Over Voltage Sensor will continuously monitor your power supply output. If an overvoltage occurs the Over Voltage Sensor will prevent damage to your 64.

64 OVER VOLTAGE SENSOR \(\$ 19.95\)
TEKTONICS PLUS, INC.
150 HOUSTON STREET BATAVIA, IL 60510

CLIP AND SAVE

\section*{Commodore Compatible and only. . . \$139.00}

FSD-1 514" \({ }^{\prime \prime}\) Disk Drive
Directly replaces the Commodore 1541 disk drive.
Check these Features
- Runs all C-64 Software - Including heavy copyright protected software
- Full 6 month warranty - your assurance of quality
- Heavy duty construction - to run whisper quiet and smooth year after year
- Built in 24 watts solid state power supply - runs cool and efficient always
- Vented metal chassis - eliminates most radio-frequency interference
- Dual serial ports with chaining option for expandability
- External device number switches - for use as second disk drive
- Save and replace capability
- Positive lever locking system - to eliminate "Pop out" problem
- Standard 51/4" SSSD Diskette, 175K storage capacity, 310 RPM running speed, 90 Sec. format time, 1200 BPS data transfer - same as the 1541 - Compatible with C-128 in C-64 mode

To Order Call Toll Free 1-800-356-5178
Visa \& MasterCard welcome. Credit Card orders shipped in 24 hrs. Allow \(\$ 8.00\) shipping and handling. Send mail order with payment to:

Greatest party game ever ! Hundreds of songs in one of the most challenging and fun games out for the Commodore. No two games ever alike ! Up to 5 players at a time.

With Rock Challenge Group Editor you can add your favorite group's titles and save them to your own data disk. Later when the group comes out with more songs just add them to your data disk.
Example: You choose to play the Beatles with 35 songs to play. The program chooses one of the over 100 songs and places as a series of dashes. Player 1 guesses a letter in the song, if there he wins a point and continues his turn till he guesses wrong or solves the song for a 5 point bonus.

FAST MACHINE CODE PROGRAM
Only \(\$ 14.95+\$ 1.50\) Postage
Send check or money order to:
SoftPace Software Co
P.O. BOX 788

Brea, CA. 92622-0788
Yisa or Mastercard call:
(800) 225-6207

In California call:
(714) 524-0343

\section*{COMPUTE! Classified is a low-cost way to tell over \(\mathbf{3 5 0 , 0 0 0}\) microcomputer owners about your product or service.}

Rates: \(\$ 25\) per line, minimum of four lines. Any or all of the first line set in capital letters at no charge. Add \(\$ 15\) per line for boldface words, or \(\$ 50\) for the entire ad set in boldface (any number of lines.) Inquire about display rates.
Terms: Prepayment is required. Check, money order, American Express, Visa, or MasterCard is accepted. Make checks payable to COMPUTE! Publications.
Form: Ads are subject to publisher's approval and must be either typed or legibly printed. One line equals 40 letters and spaces between words. Please underline words to be set in boldface.
General Information: Advertisers using post office box numbers in their ads must supply permanent address and telephone numbers. Ad will appear in next available issue after receipt.
Closing: 10th of the third month preceding cover date (e.g., June issue closes March 10th). Send order and remittance to: Harry Blair, Classified Manager, COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. To place an ad by phone, call Harry Blair at (919) 275-9809.

Notice: COMPUTE! Publications cannot be responsible for offers or claims of advertisers, but will attempt to screen out misleading or questionable copy.

\section*{SOFTWARE}

FREE SOFTWARE for C64, C128, IBM, \& CPM. Send SASE for info (specify computer) to: PUBLIC DOMAIN USERS GROUP PO Box 1442-A1, Orange Park, FL 32067

DISCOUNT SOFTWARE: Amiga/Apple/Atari/ C64-128/IBM PC-PCjr/TRS-80/Timex/Sinclair. Free Catalog: WMJ DATA SYSTEMS, 4 Butterfly Dr., Hauppauge, NY 11788

COMMODORE: TRY BEFORE YOU BUY. Best selling games, utilities, educational, classics and new releases. 100's of titles. Visa/MC. Free brochure. RENT-A-DISC, Frederick Bldg. \#345, Huntington, WV 25701 (304) 529-3232
BRIDGE GAME PROGRAM \(\$ 39.95\) demo disk \(\$ 5\). 1 to 4 players for IBM, Apple, TI99, TRS80, C64, 128, +.4, 16, VIC. Authors John \& Lynda Allan, Box 313, Azilda, Ontario, Canada P0M 1B0

ATARI 8 BIT: FULL FUNCTION BUSINESS DBMS. Any drive(s)/upgrades. GL/AR/AP/Inv/ Mail/W/P. 9000 records/disk. MICROMOD, 1635-A Holden, Orlando, FL 32809 (305)857-6014
\$\$ WIN WITH THOROUGHBRED HARNESS \& Greyhound handicapping software...\$29.95, enhanced... \(\$ 49.95\). For most computers. Free info. Software Exchange, Box 5382 CP, W. Bloomfield, MI 48033. Call: (313) 626-7208

\section*{FREE APPLE SOFTWARE}

Over 1000 Public Domain Programs on 50 diskettes. \(\$ 5\) each plus \(\$ 1\) shipping per order. Send \(\$ 1\) for catalog (refundable with order.) C\&H ENTERPRISES
PO Box 29243, Memphis, TN 38127
Update \& Analyze your income and expenses with INCOME ANALYSIS. Menus, hardcopies, totals, averages, percentages, summaries, fastedit, sound \& more. A MUST for part-time employees! Atari 48 K Disk only \(\$ 12.95\). DATA LOGIC, POB 52193, Livonia, MI 48152

THE PICKS-86. PRO FOOTBALL PICKING GAME! Compete against your friends. Computer keeps track of stats. Send only \(\$ 12\). Epic Software, Box 1153, West Hanover, MA 02339. Apple II family. 1 disk drive + printer. Send SASE for more information.
PRO FOOTBALL ANALYST. Beat the spread! Only 5 min ./wk \& local newspaper is all it takes to find hidden overlays in the betting line. Winning season guaranteed! IBM/C64/T199-\$34.95 (\(+\$ 4.55 \mathrm{~s} / \mathrm{h}\)) ORDER NOW! 1-800-341-1950 Ext. 77. Mail Orders: RIDGE, 170 Broadway \#201-C, NYC, NY 10038. Catalog.

\section*{100\% ERROR FREE} [DISKETTES!
MFR. LIFETIME WARRANTY
With Hub Rings, Write Protect Tabs, Tywec Envelopes, User ID Labels : In Factory/Sealed Poly Packs
(YOU GET EVERYTHING BUT THE BOX)
PRICES ARE PER DISK
51/4" \(31 / 2^{\prime \prime}\)
\begin{tabular}{|c|c|c|c|c|}
\multicolumn{3}{c|}{\(51 / 4^{\prime \prime}\)} & \multicolumn{2}{c|}{\(31 / 2^{\prime \prime}\)} \\
\hline SSDD & DSDD & DSHD96TPI \\
\hline .47 & .52 & 1.69 \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|c|c|c|}
\hline SS & DS \\
\hline 1.39 & 1.60 \\
\hline
\end{tabular}

SUPER DISCOUNTS ON ORDERS OF 500 OR MORE

\section*{IN STOCK ITEMS SHIPPED IN 24 HOURS} Minimum order: \(\$ 25.00\). Shipping and Handiling: \(\$ 4.00\) per 100 diskettes. Continental U.S.A. APO; PFO, add \(\$ 8.00\) per 100 diskettes. Foreign order, please call. Reduced shipping charge for larger quantities. C.O.D. add \(\$ 4.00\). Cash/certified check. MI residents add \(4 \%\) sales tax. Prices subject to change without notice. HOURS: 8:30 AM - 6:00 PM Eastern Time. COD COL

\section*{Precision Data Products}
pd
P.O. Box 8367, Grand Rapids. M1 49518 (616) 452-3457 • Michigan 1-800-632-2468 Outside Michigan 1-800-258-0028

LOTTO PICKER. Improve your chances for those Million Dollar Jackpots! Picks LOTTO, WIN-4 and Daily Numbers. All USA \& CAN. games incl'd. Expandable! IBM/C64/TI99-\$29.95. Order Now! 1-800-341-1950 Ext. 77. Mail Orders: Ridge, 170 Broadway \#201-C, NY, NY 10038. Catalog.
PRINT YOUR OWN BUSINESS STATIONERY
Use your dot-matrix printer and this Business Papers Kit to make personalized invoices, letterheads, business cards, memos, etc. from plain paper. Try before you buy. Send \(\$ 7.50\) to: Honor-System Software, Box 338, Medinah, IL 60157. Specify Apple II or C64.

SELL YOUR PROGRAMS to Software Publishers. Software for the Apple, Atari, Commodore, IBM, TI, TRS-80, Zenith, Osborne, Kaypro, others. Directory \$5.95. I.W., Box 40581, Pas., CA 91104
TI-99/4A QUALITY SOFTWARE for Business, Home and Entertainment ** Bonus Software Offer! \({ }^{* *}\) Send for FREE catalog to MICRO-BIZ HAWAII, BOX 1108, PEARL CITY, HI 96782

\section*{HARDWARE}

Clone Kits, Modems, Hard Drive Kits, Disk Drives, Diskettes, Printers, Memory \& ICs Distributor Pricing to End Users and Dealers. Free Shipping. For Catalog Call 1-800-833-2600, In Ohio (513) 531-8866
MISCELLANEOUS
IBM PCjr REPORT: THE NATIONAL NEWS-
LETTER. PCjr-specific articles, reviews, Public Domain from across the nation. \(\$ 18 / \mathrm{yr}\). PCjr CLUB, POB 95067, Schaumburg, IL 60195

\section*{Advertisers Index}
Reader Service Number/Advertiser Page
102 Abacus Software 27
103 Abacus Software 29
104 Abby's Discount Software 125
105 Acorn of Indiana 128
106 Alpha Systems 19
107 Artificial Intelligence Research Group 128
Batteries Included 11
108 Bridge Publications 47
C.O.M.B. Direct Marketing Corp. 44
109 CompuServe 7
110 ComputAbility 123
111 Computer Mail Order 14,15
Covox Company 126
Crown Custom Covers 85
112 Davidson \& Associates, Inc 49
113 Digital Solutions, Inc. IFC
114 Electronic One 124
115 Emerald Component International 126
116 Firebird Licensees, Inc. 23
117 Firebird Licensees, Inc 51
118 Free Spirit Software, Inc. 128
Great Western 117
119 Jason Ranheim 50
Jesse Jones Industries 110 Lyco Computer 24,25
121 Marathon Software 124
Reader Service Number/Advertiser Page
122 Micro Computer Services 121
123 Micro Marketing 83
124 MicroProse 9
NRI Schools 97
125 Origin Systems Inc. BC
126 Precision Data Products 127
127 Protecto 35,36,37
128 Silicon Express 53
129 SoftPace Software Co. 126
130 Springboard 4
131 subliGIC Corporation 1
Tektonics Plus, Inc 126
132 Thompson Consumer Products IBC
133 Time Life Books
1
134 Unitech 127
COMPUTE! Books' Atari ST Collection 13
COMPUTE! Classifieds 127
COMPUTE! Disk Subscription 48,101
COMPUTE! First Book of Commodore 128 and Electronic Computer Projects 55
COMPUTEI Subscription 33
COMPUTEI's Apple Applications Specia 64COMPUTEI's Atari ST Disk \& Magazine Contest
,COMPUTEI's First, Second, and Third Book of Apple

\section*{Window Magic}

SUPER HI-RESOLUTION DRAWING INMLITI OR MONO COLOR - POLYGON SHAPES - EXPAND, SHRINK AND ROTATE, THEN STAMP ANYWHERE - ZOOM-EXPANDS A WINDOW TO DOUALE SIZE - MIRAOR, FLIP, ANO SCRELL ING WINDOWS. COPY. CLONE COLOR ATTRIBUTES ROOOM PLOT. DAWW ON AN EXPANDED WNDOW AND YOUR DRAWING ATTHE SAME TINE. SAVE AND LOAD YOUA WINDOWS ON DISX - PRINTS ON STANDAROCS MATRICS PRINTER 324.95 C 44 Disk

\section*{STOCK BROKER.}
profits guaravteed or TOUR WONFI BACK buyng gooo qualtr, volatile issues ano USING THE TRADNG SYSTEM WIL HAVE YOU FULIY
MNESTED AT THE LOWEST PAICES ANO CONVEATNG TO CASH AS TEE STOCK NEARS ITS PEAK - TECHRICAL TRADING THA - RECORD UP TO 144 STOCKS ON A DISK . And

ABANOON SHP. S.O.S.
ma-res ahcade style game that requires strategy and joystick SKILSS. THERE ARE S2 ROOMS IN THE HMS BLACK. THE BRIDGE. ENGINE OOOM, ARMORY, AND SUPPLY ROOM ARE TME give my regards to davey jones 321.50 C. 64 DISK

ACORN OF INDIANA, INC.
2721 OHIO STREET
MICHIGAN CITY, IN 46360
219-879-2284
HIPPING; AND HANDLING, ADD SL. 50 - CO.D'S ACCFFIFD HSA AND MASTER CARD ORDFRG ADD \(4 \%\) INDANA RESDENTS ADD S\% SAIFSTAX

\section*{GONVERSE WITH YOUR COMPUTER}

AT LAST! A FULL IMPLEMENTATION of the original ELIZA program is now available to run on your personal computer!
Created at MIT in 1966, ELIZA has become the world's mos celebrated artificial intelligence demonstration program. ELIZA is a non-directive psychotherapist who analyzes each statement as you type it in and then responds with her own comment or question - and her remarks are often amazingly appropriate!
Designed to run on a large mainframe, ELIZA has never before been available to personal computer users except in greatly stripped down versions lacking the sophistication which made the original program so fascinating
Now, our new personal computer version possessing the FULL power and range of expression of the original is being offered at the introductory price of only \(\$ 45\). And to let you find out how she does it or teach her to do more) we have included the complete SOURCE PROGRAM (written in BASIC) at no extra cost
Order your copy of ELIZA today and you'll never again wonder how to respond when you hear someone say, "Okay, let's see what this computer of yours can actually do!
READ WHAT THE EXPERTS SAY ABOUT OUR VERSION OF ELIZA: "Much more than a mere game... You'll be impressed with ELIZA ...A convincing demonstration of Artificial Intelligence."
-PC MAGAZINE
"Delightful entertainment...An ideal medium for showing off you syste
- MICROCOMPUTING MAGAZIN

ELIZA is an astounding piece of software ...A A ascinating program to use and study." -BARON'S MICROCOMPUTER REPORTS "ELIZA is a great way to introduce your friends to computers...A very tunny party game." -PETER A. McWILLIAMS
"ELIZA is an exceptional program, one that's fun to use, shows off your machine, and has great historical interest.
-POPULAR COMPUTING MAGAZINE
"This version of ELIZA is the best we have seen. As a party game, it is unmatched."

ELIZA IS AVAILABLEIN THE FOLLOWING FORMATS:
- IBM PC, PCjr., PC-XT and all compatibles - All Apple II computers (II, II Plus, Ile, Ilc)

Apple Macintosh (Microsoft BASIC required)
- Commodore 64 (specity disk or cassette)
- \(51 / 4\) inch or 8 inch disk for all CP/M systems

All versions are \(\$ 45\) and include a six page users manual.
Please add \(\$ 2.00\) shipping and handling to all orders
(California residents please add \(61 / 2\) \% sales tax)
ARTIFICIAL INTELLIGENCE RESEARCH GROUP
 921 North La Jolla Avenue, Dept.M
Los Angeles, CA 90046
(213) \(656-7368\) (213) \(654-2214\)
MC, VISA and checks accepted MC, VISA and checks accepted

\section*{\(T_{r \varepsilon \varepsilon}\) Spirit Software, Inc.}

DATAFILER 128 - Database program for the \(\mathrm{C} 128^{*}\) in 128 mode. Store, sort, recall by up to 20 fields. Store up to 5000 name and address records on single disk! Also includes special options for mailing labels, program library \& film library. Disk - \(\$ 24.95\)
The Great War - WWI strategy game for the \(\mathrm{C} 128^{*}\) in 128 mode. Armies of 16 countries in conflict. Military strategy conditioned by terrain, weather, lines of supply, political consideration, troops, weaponry. For advanced wargamers Disk - \(\$ 19.95\)
BASICally SIMPLE 128 - How to use all C128* commands \& functions in Basic programs. C128* only. Disk - \(\$ 19.95\)
Music of the Masters - One hour of classical music on disk for the C64*. Mozart, Beethoven, Handel \& many more. Disk - \(\$ 9.95\)
Music of the Masters. Volume II - More great classical music on the disk for the C64*. Minuets, waltzes, sonatinas \& more. Disk - \(\$ 9.95\)
SPECIAL OFFERI Order both volumes of Music of the Masters for only \(\$ 16.95\) FREE SHIPPING \& HANDLING. Illinois residents add \(7 \%\) sales tax. Send check or money order to:

\section*{Free Spirit Software, Inc.}

5836 S. Mozart
Chicago, IL 60629
*Registered trademarks of Commodore International, Ltd

\title{
COMPUTEI's Disk
}

YES! I want to save time and money. Please enter my quarterly subscription to the following COMPUTE! Disk:
\(\square\) Commodore \(\square\) Apple \(\square\) Atari \(\square\) IBM
Save \(33 \%\) off the single issue price. 1 year subscription, \(\$ 39.95\)

Save even more! 2 year subscription, \(\$ 69.95\)

All Disk orders must be prepaid.
\(\square\) Payment enclosed (check or money order)ChargeMasterCardVisa

Acct. No. \(\qquad\) Exp. Date \(\qquad\)
Signature \(\qquad\)
Name \(\qquad\)
Address \(\qquad\)
City \(\qquad\) State \(\qquad\) Zip
(Outside U.S. and Canada, add \(\$ 9.00\) per year for shipping and handling.)
```

NO POSTAGE NECESSARY
IF MAILED
IN THE
UNITED STATES

```


POSTAGE WILL BE PAID BY ADDRESSEE

\section*{COMPUTE!'s DISK}
P.O. BOX 10036

DES MOINES, IA 50347

\section*{BUSINESS REPLY MAIL}

POSTAGE WILL BE PAID BY ADDRESSEE

TIME \& LIFE BUILDING CHICAGO, ILLINOIS 60672-2058

COMPUTEI'S

\section*{FREE Reader Information Service}

Use these cards to request FREE information about the products advertised in this issue. Clearly print or type your full name and address. Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.
Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTE! cannot be responsible if advertisers do not provide literature to readers.

Please use these cards only for subscribing or for requesting produc \(\dagger\) information. Editorial and customer service inquiries should be addressed to: COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.

\section*{Use these cards and this address only for computels Reader Infor-} mation Service. Do not send with payment in any form.

\section*{COMPUTE!}
\begin{tabular}{lllllllllllllllll}
101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 & 112 & 113 & 114 & 115 & 116 & 117 \\
118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 \\
135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 149 & 150 & 151 \\
152 & 153 & 154 & 155 & 156 & 157 & 158 & 159 & 160 & 161 & 162 & 163 & 164 & 165 & 166 & 167 & 168 \\
169 & 170 & 171 & 172 & 173 & 174 & 175 & 176 & 177 & 178 & 179 & 180 & 181 & 182 & 183 & 184 & 185 \\
186 & 187 & 188 & 189 & 190 & 191 & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 & 200 & 201 & 202 \\
203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 & 211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 \\
220 & 221 & 222 & 223 & 224 & 225 & 226 & 227 & 228 & 229 & 230 & 231 & 232 & 233 & 234 & 235 & 236 \\
237 & 238 & 239 & 240 & 241 & 242 & 243 & 244 & 245 & 246 & 247 & 248 & 249 & 250 & 251 & 252 & 253
\end{tabular}

SUBSCRIBE TO COMPUTE!

Please print or type name and address. Limit one card per person.

Name
Address
City
State/Province Zip

Country
Phone
\begin{tabular}{lll}
Please Include ZIP Code \(\quad\) Expiration Date 10/31/86 & CO986
\end{tabular}
- \$24.00 One Year US Subscription
- \$45.00 Two Year US Subscription
\begin{tabular}{lll}
Name & & \\
\hline Address & & \\
\hline City & State & Zip \\
\hline
\end{tabular}
\(\square\) Payment Enclosed \(\square\) Bill me Charge my: \(\square\) VISA \(\square\) MasterCard \(\square\) American Express Account No. Expires

\title{
COMPUTEI Reader Service P.O. Box 2141 Radnor, PA 19089
}

\section*{WE TOP APPLE AND COMMODORE BEAUTIFULLY}

\section*{From Origin comes the long-awaited sequel}

\section*{Quest of the Avatar}

A state-ofthe-art fantasy roleplaying game of unprecedented magnitude by Lord British' \({ }^{\mathrm{m}}\).

Drepare yourself for a grand adventure: Ultima \({ }^{\mathrm{mM}} \mathrm{IV}\), sixteen times larger than Ultima III, is a milestone in computer gaming - one that challenges your physical and mental skills while testing the true fabric of your character.

Enter Britannia, kingdom of Lord British. Journey through terrain of infinite proportions, conversing with characters
 on hundreds of topics. Unravel the mysteries of a superior magic system. At each turn beware of daemons, dragons and long-dead wizards haunting the most tranquil of places. Encounters with parties of mixed enemy types test your strategic abilities. Shrewd use of terrain can lead to victory against seemingly impossible odds.

Survive this multi-quest fantasy, then begin the final conflict, your quest of the Avatar. The ultimate challenge-the self-awaits....

ULTIMA \({ }^{\text {TM }}\) III sends you on an incredible fantasy roleplaying journey through monster-plagued Sosaria in search of the elusive Exodus.

MOEBIUS \({ }^{\text {T4 }}\) takes you through the elemental planes of a colorful Oriental world of fantasy and adventure in search of the Orb of Celestial Harmony.

AUTODUEL \({ }^{\mathrm{TM}}\) is a futuristic, fast-paced strategy roleplaying game where the right of way goes to the biggest guns.

OGRE \(^{\text {TM }}\) is a strategy game fought on the nuclear battlefield of tombrrow as an inhuman'juggernaut Cybertank battles conventional forces..```

[^0]: 12 COMPUTEI September 1986

[^1]: 4435 Mall ALPHA SYSTEMS - Dept.
 4435 Maplepark Rd./Stow, OH 44224 Send check or money
 order Include $\$ 200$ sto $\&$ talig Ohio residents $51 / 2 \%$ sales tax

[^2]: Add $\$ 10.00$ for shipping, handling, and insurance. Illinois residents please add $61 / \%$ sales tox. Add 20.00 for CANADA, PUERTO RICO, HAWAII, ALASKA, APO.FPO orders. All orders must be in U.S. Dollars. WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA. Enclose Cashier Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, I day express mail. Prices \& Availability subiect to change without notice.

[^3]: c．O．M．B．Direct Marketing Corp．
 1405 N ．Xenium Lane／Minneapolis，MN 55441－4494
 Send the following items．（Minnesota residents add 6\％sales tax．Sorry，no C．O．D．orders．）
 Send＿COMPLETE SYSTEM（s）Commodore Plus $/ 4^{\text {™ }}$ ，Disk Drive，Printer and Floppy Disks item H－1402－5035－019 at \＄339 each plus $\$ 19$ each for ship，handling．
 Send－COMMODORE PLUS $/ 4^{\text {＊＊}}$ COMPUTER（s）Item H －1402－ 5035－001 at $\$ 79$ each plus $\$ 8$ each for ship，handling．
 Send＿DISK DRIVE（s）Item H－1402－3553－013 at \＄149 each plus $\$ 8$ each for ship，handling
 Send＿PRINTER（s）Item H－1402－3831－005 at $\$ 119$ each plus \＄7 each for ship，handling．
 \square My check or money order is enclosed．（No delays in processing orders paid by check，thanks to TeleCheck．） Charge：\square VSA\＆\square MasterCard8 \square American Expresse
 Acct．No． \qquad
 I Name
 I Address
 I City
 State \square
 Phone

    ```
    ```

 ZIP

    ```
    ```

[^4]: eek: 4
 $x=\operatorname{MOUSE}(3): y=\operatorname{MOUSE}(4) \leftarrow$
 IF $x>5$ AND $x<19 \varnothing$ THEN 4
 $\mathrm{v}=\mathrm{INT}((\mathrm{y}+8) / 8) 4$
 IF $v>\emptyset$ AND $v<6$ AND $v<>C a l$ THEN 4 LOCATE $\mathrm{v}, 12$: PRINT SPACE $(2 \emptyset) 4$ LOCATE v,12:INPUT value\#(v) $\&$

[^5]: DUST COVERS
 \star Custom made to fit

 * HEAVY 32-oz. VINYL ANTI-STATIC
 \star EXTENDS EQUIPMENT LIFE
 \star Choice of Colors Light Tan or Brown

 | COMPUTERS | PRINTERS- |
 | :---: | :---: |
 | C.64; Plus $4 \ldots8 .00$ | C.MPS/803, C-1520 $\quad . \quad 8.00$ |
 | C-128 $\quad 13.00$ | Panasonic 1090/91 ...13.00 |
 | Datassette (C2N) .-..... 5.00 | Gemini 10 \& Star 10's 13.00 |
 | Amiga $1000 \quad 13.00$ | Gemini 15 \& Star 15's 16.00 |
 | (W/Amiga Mon. Stacked) 28.00 | Okidata $92 \quad 13.00$ |
 | Keyboard only $\quad 7.00$ | Okidata 120/192 .-. 13.00 |
 | Atari 800XL, 130XE 10.00 | Okimate 10/20 $\quad 8.00$ |
 | Atari 520 ST $\quad 14.00$ | Epson MX/FX/RX80 13.00 |
 | 520 Keyboard (only) 10.00 | Epson LX80/C. $1000 \quad 13.00$ |
 | IBM PC XT $\quad 28.00$ | Seikosha SP-1000 $\quad 13.00$ |
 | M 5051 Keybaord | Comrex 220 |
 | (Dimensions Required | C'Itoh $7500 \quad 13.00$ |
 | for IBM Clones) | Citizen MSP $10 \quad 13 . \quad 13.0$ |
 | | Atari $1027 \quad 13.00$ |
 | disk drives | C/DPS 1101 |
 | C.1541, C.1571 $\quad 8.00$ | |
 | Amiga 31/2" D/Drv ... 8.00 | MONITORS |
 | Amiga $5^{1 / 4 \prime \mathrm{~L}} \mathrm{D} / \mathrm{Drv}$. 9.00 | C.1702, BMC Color $\quad 16.00$ |
 | Indust GT, MSD SD- 18.00 | C-1902/Amiga $\quad 19.00$ |
 | $\begin{array}{ll}\text { MSD SD- } 2 & 10.00\end{array}$ | Amdek 500.70 |
 | Enhancer 2000 - 8.00 | $\begin{array}{llll}\text { Tsknika MJ 10/22 } & 19.00\end{array}$ |
 | $\begin{array}{ll}\text { FSD. } 1 & 8.00\end{array}$ | CM. 141 (C-1802) |
 | Atari 1050 | Gold Star 13" $3^{\prime \prime}$ Color $\quad 19.00$ |
 | | Thompson CM 365.6619 .00 |
 | VIDEO RECORDERS $\quad 13.00$ | C.1902A/Magnvx 4019.00 |
 | State Make \& Model | Magnavox $80 \quad 19.00$ |
 | | NEC 1225 19.00 |
 | | Taxan $220 \quad 19.00$ |
 | Inters | Sakata SC-100 |
 | .1525/MPS $801 \quad 10.00$ | Zenitth 122/123 .-. 19.00 |
 | C.1526/MPS $802 \quad 13.00$ | Zenith 131/133 $\quad 23.00$ |
 | Order by stating MAKE, MODEL and COLOR CHOLCE - TAN or BROWN with check or money order plus 51.50 per item (54.50 max.) shipping and handing (Foreign air extra). Calif. Res. Include 6.5% State Tax. | |
 | SPECIAL COVERS WILL BE MADE TO YOUR DIMENSIONS. SEND YOUR REQUIREMENTS FOR OUR LOW PRICE QUOTES. | |
 | Crown Cust
 9606 SHELLYFIEL DOWNEY,
 (213) 86 | om Covers RD., Dept. E A 90240 2.8391 |

 # Rapid Transfer

 Buck Childress

 The Commodore 64's BASIC has no built-in search-and-replace function, so renaming variables in a program can be a very time-consuming job. With this utility, you can easily rename any type of variable in a BASIC program. Though it's written in machine language for extra speed, no machine language knowledge is needed to use it.

 No matter how well you plan ahead, nearly every BASIC programmer needs to modify his or her work from time to time. Renaming variables is one of the most tedious and exacting tasks you will face as a BASIC programmer. You must painstakingly comb every line of the program to insure that you have changed every reference to the variable involved. Should one reference be overlooked, the program will refuse to run correctly, if at all. The longer the program, the more tiresome the task becomes, and the greater the risk of introducing errors. The next time you find yourself in this situation, give "Rapid Transfer" a try. It automatically renames any variable you choose, whether string, numeric, integer, or array. It's easy to use, and gets the job done in a jiffy.

 ## Getting Started

 Type in the program as listed, then save a copy to disk or tape. To install Rapid Transfer, simply type RUN and press RETURN. The program automatically loads a machine language routine into the memory area beginning at location 50000. Since this memory zone isn't part of BASIC program space, you can load and save BASIC programs without interference.

 Next, load the BASIC program you want to work on. To activate Rapid Transfer, type SYS 50000 and press RETURN. It begins by asking you for the old variable name-the name of an existing variable which you want to change. Type in this name, then press RETURN. At this point, you're asked to supply a new name for the variable. Should you happen to make a mistake while answering a prompt, press the INST/DEL key (pressing it twice will start you at the beginning).

 You can enter up to ten characters for each variable name, in case you like to use extended names such as HOUSE\$ or MATH\%. If the variable you want to change is an integer or string, you will not be able to enter any additional characters after pressing the \% or \$ key (BASIC syntax doesn't allow it). Also, you can enter a number only after you've entered a letter (another BASIC syntax rule). Should you enter different types of variables, such as renaming a numeric variable with a string variable, Rapid Transfer displays the message TYPE MISMATCH. You'll then be given the option of going ahead with the transfer or starting over.

 If the variable you want to change is an array, press the asterisk (*) key. You can do this at any time while you are entering the variable names, and it has to be done only once. Note that Rapid Transfer can tell when a variable is an array and responds accordingly. It is not necessary to enter the parentheses which ordinarily indicate an array-just enter the name itself. For example, to enter an array that you DIMension as $\mathrm{A}(20)$, you would enter A, not A().

 After you press the asterisk
 key, the message ARRAY? begins flashing at the top of your screen. This is your prompt to enter the number of dimensions in the array. Enter 1, 2, or 3, depending on whether the array has one, two, or three dimensions. After you answer the prompt, the message stops flashing. If you make a mistake or want to cancel the array option, press the English pound ($£$) key. Rapid Transfer will not change an array variable to a nonarray variable, or vice versa, nor will it change the number of dimensions in an array.

 After entering the new variable name and pressing RETURN, you'll see the message ARE YOU SURE? $(\mathrm{Y} / \mathrm{N})$. Press Y to proceed or N if you wish to reenter your choices.

 ## Prescan For Name Conflicts

 The first thing you'll notice when Rapid Transfer begins working is the line numbers of your program flashing at the top of the screen. Rapid Transfer is prescanning every line of the program to see whether it already contains a variable with the new name that you have chosen. If a name conflict is found, Rapid Transfer displays a warning message. If the variable is an array, an asterisk appears next to its name (a two-dimensional array has two asterisks, and so forth).

 After it finishes the prescan, Rapid Transfer displays the prompt ARE YOU SURE? (Y / N). If no name conflicts appeared, or if you wish to proceed despite the conflict, press Y. Press N if a conflict is found or if you simply change your mind.

 Rapid Transfer now displays the lines of your program as it seeks out the old variables and renames
 them. If the old variable doesn't exist in your program, Rapid Transfer displays a warning message indicating that the designated variable can't be found. Again, array variable names are displayed with one, two, or three asterisks, depending on the number of dimensions in the array. When it's done, the program lets you continue with another change (press Y) or quit (press N).

 ## Safety Features

 Rapid Transfer has several built-in safety features to insure accurate operation. It won't change anything enclosed within quotation marks or anything which appears on a line following a REM or DATA statement. While scanning each line, it also checks for excessive length. If, for example, you decide to change the variable CO\$ to COST\$ and, as a result, one of the program lines will exceed the 80-character logical length, Rapid Transfer aborts operation and displays the line number where the excessive length occurred. It also displays that line as it currently appears in the program so that you can make any necessary adjustments.

 In addition, Rapid Transfer can tell the difference between different kinds of variables. For example, let's say that you want to rename the numeric variable A to A1. Rapid Transfer will rename only the numeric variable A. It will not rename any integer, string, or array variables of the same name, nor will it inadvertently change a variable which happens to begin with A, such as $A B$. The same holds true for the other types of variables, including arrays. If you have a onedimensional array named A, Rapid Transfer will not change a two- or three-dimensional array of the same name, or vice versa.

 Rapid Transfer works equally well with extended variable names. If you have used HOUSE\$ in a home budget program, Rapid Transfer will recognize it as HO\$, exactly as the 64 does. The entire name is present in the program line, but only the first two characters are significant. So you can use and change extended variable names as much as you like, with variables of any type.

 Rapid Transfer can be brought to a halt at any time by pressing the RUN/STOP key. Enter SYS 50000 to reactivate it.

 ## Rapid Transfer

 For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing in Programs" in this issue of COMPUTEI.
 GD $1 \emptyset$ PRINTCHRS (147)CHRS (5) "LO ADING AND CHECKING DATA \{SPACE \}LINE: ": J=5øøøø:L= 45: C=11
 GS $2 \emptyset$ PRINTCHRS (19)TAB (31)L:PR INT
 CG $3 \emptyset$ FORB= $\varnothing T O C:$ READA: POKEJ +B , $\mathrm{A}: \mathrm{X}=\mathrm{X}+\mathrm{A}:$ NEXTB : READA
 DR $4 \emptyset$ IFX < > ATHENPRINT "ERROR IN DATA LINE: "L: END
 SJ 5 Ø $\mathrm{X}=\varnothing: \mathrm{J}=\mathrm{J}+12: \mathrm{L}=\mathrm{L}+5:$ IFL <685 THEN2ø
 GQ 60 IFL=685 THENC=9:GOTO2の
 EE $7 \emptyset$ PRINT"DATA OK AND LOADED ...": PRINT:PRINT"SYS 5øØ øø TO ACTIVATE...": END
 HM $8 \emptyset$ DATA $32,59,2 \emptyset \varnothing, 133,198,13$ $3,253,162,96,134,251,142$. 1793
 GF 90 DATAl $38,2,157,0,2 \emptyset 1,232$, 2 20, 25ø, 2ø2,142,224,2ø1, 1957
 PG 1øø DATA142,225,2ø1,169,94; $133,252,141,247,201,162$,10,1977
 HH $11 \varnothing$ DATA32,71,200,133,254,1 $66,252,169,1 ø \emptyset, 157,0,4$, 1538
 JD 120 DATAl73,134,2,157, 0,216 ,32,162,2øø,173,141,2,1 392
 AC $13 \emptyset$ DATA2ø1, $2,176,246,32,22$ 8,255,201,13,2ø8,3,76,1 641
 DA 140 DATAl79,196,201,20,2ø8, $3,76,136,196,201,92,240$, 1748
 AS $15 \emptyset$ DATA51, 2ø1, 42, 2ø8, 87, 14 $1,239,201,173,33,268,14$ 1,1725
 GX $16 \emptyset$ DATA $25,216,32,36,2 \emptyset \emptyset, 20$ 6,221,2ø1,2ø8,17,32,36, $143 \varnothing$
 ER $17 \emptyset$ DATA2øø, 238,222,2Ø1,48, $6,32,116,200,76,203,195$, 1737
 DJ 180 DATA $32,110,2 \emptyset 0,206,248$, 2ø1,32,162,2ø0, 32,228, 2 55,19ø6
 QC 19Ø DATA2ø1,92,2ø8,11,169, Ø ,141,239,2ø1,32,11ø,2øø , 1604
 JD 2øø DATA76,247,195,2ø1,49,1 $44,2 ø 6,2 ø 1,52,176,2 \emptyset 2,1$ 41,189ø
 JP 210 DATA25,4,56,233,49,141, 234,2ø1,32,116,2øø,141, 1432
 EK $22 \emptyset$ DATA25,216,140,222,2ø1, $76,134,195,2 \emptyset 1,36,240,4$, 169ø
 EB 230 DATA2ø1,37,2ø8,31,166,2 51,48,14,174,96,2ø1,24Ø , 1667
 PA 240 DATA236,141,253,201,141 , 254,2ø1,76,34,196,174, 192,2099
 FR 25 D DATA2Ø1,24Ø,222,141,255 , 201,133,254,76,90,196,

 166,2175
 PC $26 \emptyset$ DATA254,224,10,144,13,2 $40,2,176,204,162,88,32$, 1549
 EM 270 DATA71, 2øø, 230,254,2ø8, $195,2 \emptyset 1,48,144,191,2 \sigma 1$, 58,2øø1
 BF 280 DATAl76,16,174,96,2ø1,1 64,251,16,3,174,192,2ø1 , 1664
 KA 290 DATA224, Ø, 24ø,173,2ø8,8 ,261,65,144,167,201,91, 1722
 MA 3øØ DATA176,163,23ø,254,166 ,251,157,0,2ø1,230,251, 48,2127
 FM 310 DATAl2,174,236,201,224, $2,176,15,238,236,261,2 \emptyset$ 8,1923
 XS 320 DATA1Ø, 174,237,201,224, 2,176,3,238,237,201,32,
 BM 330 DATA $170,255,230,252,165$,251,141,247,2ø1,76,121 ,195,2344
 XF $34 \emptyset$ DATA174,247,201,16,112, $166,211,32,210,255,2 \sigma 2$, 2ø8,2ø34
 DA $35 \emptyset$ DATA250, 142,192,201,142 ,237,201,142,247,2ø1,14 2,255,2352
 CR 360 DATA2Ø1, 169, 145, 32,53,2 Øø,169,192,162,27,16ø,1 74, 1684
 JM 37Ø DATA133,251,132,252,76, $116,195,166,252,173,33$, 2ø8,1987
 GC 38Ø DATA157, $0,216,173,96,2 \emptyset$ $1,24 \varnothing, 197,166,251,16,22$ 6,1939
 CD $39 \varnothing$ DATAl73,192,201,240,188 ,141,2ø8,2ø1,173,193,20 1,141,2252
 RF 4øø DATA2ø9,2ø1,169, Ø,141,1 $38,2,141,98,201,157,0,1$ 457
 AA $41 \emptyset$ DATA2ø1,173,254,201,205 $, 255,2 \varnothing 1,24 \varnothing, 5,162,44,3$ 2,1973
 RC $42 \emptyset$ DATA71,2øø,162,64,32,71 ,2øø, 32,162,2øø,32,42,1 268
 CB $43 \emptyset$ DATA2øø,2ø1,25,240,67,2 Ø1,39,2ø8,242,76,8ø,195 , 1774
 PB 440 DATAl73,251,2ø1,2ø8,26, $162,96,32,82,200,173,25$ 4,1858
 EM $45 \emptyset$ DATA2Ø1,24Ø,8,2ø5,97,2ø $1,240,3,32,210,255,32,1$ 724
 RP 460 DATA93,2ø0,162,117,76,3 3,197,162,112,32,71,2øø , 1455
 BM $47 \emptyset$ DATA162,130,32,71,20ø, 3 2,162,2øø,32,42,2øø,2ø1 , 1464
 JE $48 \emptyset$ DATA25,24ø,2ø2,2ø1,39,2 Ø8,242,169,0,133,198,96 , 1753
 GX 49Ø DATA141,235,2ø1,169,1,1 $62,8,141,24 \varnothing, 2 \emptyset 1,142,24$ 1,1882
 DG 5øø DATA2ø1,32,59,2øø,133,1 98,168,173,24ø,201,174, 241,2ø20
 RP 510 DATA2ø1,133,253,134,254 ,32,216,199,177,253,208 ,14,2ø74
 EX $52 \emptyset$ DATAl73,243,2ø1,2ø8,155 $, 238,243,201,141,252,20$

 1,76,2332
 EC 53ø DATA60,197,32,216,199,1 77,253,170,32,216,199,1 77,1928
 JA 54ø DATA253,142,249,2ø1,141 ,250,2ø1,32,205,189,169 ,32,2064
 KD $55 \emptyset$ DATA $32,21 \varnothing, 255,32,216,1$ 99,169,2ø1,133,252,169, 96,1964
 EP 560 DATA174,243,2.01,2ø8,2,1 69,2ø8,133,251,162, 0,14 2,1893
 DK $57 \varnothing$ DATA228,2ø1,142,231,2ø1 ,142,242,201,173,232,20 1,240,2434
 KM $58 \emptyset$ DATA6,142,232,201,142,2 52,2ø1,161,253,24б,28,3 2,1890
 BJ 590 DATA223,199,133,2,32,52 ,199,165,2,162, ø,193,13 62
 SR 6øø DATA251,2ø8,99,236,251, 161,251,24б,1ø2,32,216, 199,224б
 RE 610 DATA76,175,197,142,216, 2ø1,142,244,2ø1,142,246 ,201,2183
 CM $62 \emptyset$ DATA142,252,2ø1,32,62,2 60,173,245,201,208,16,3 2,1764
 RQ $63 ø$ DATA $216,199,165,253,166$,254,141,24ø,2б1,142,24 1,201,2419
 MG 64б DATA76,73,197,142,245,2 ø1,173,249,2ø1,172,250, 2ø1,218ø
 FG $65 \emptyset$ DATA2ø5,224,2ø1,2ø8,5,2 ø4,225,201,240,221,141, 224,2299
 XJ 660 DATA2ø1,14ø,225,2ø1,32, 71,2øø,169,19,141,119,2 , $152 \varnothing$
 FA 670 DATA169,13,141,120,2,14 1,121,2,141,122,2,169,1 143
 DG 680 DATA4,133,198,76,49,168 ,32,162,2ø0,32,216,199, 1469
 DD 69ø DATA76,142,197,142,227, 2 21,142,228,201,142,233 ,201,2132
 SC 7øØ DATA2ø2,134,2,142,230,2 61,173,246,2ø1,208,227, 173,2139
 hF 710 DATA $252,201,32,141,200$, 164,2,2øø,238,23ø,2ø1,1 77,2ø38
 EX $72 \varnothing$ DATA253,2ø1,32,240,246, 132,2,238,227,2б1,174,2 39,2185
 RF $73 \varnothing$ DATA2ø1,2ø8,53,2ø1,40,2 40,195,32,223,199,173,2 28,1993
 XC 740 DATA2ø1,2ø8,7,173,252,2 61,2ø8,48,24б,15,164,2, 1719
 MQ $75 \emptyset$ DATA2øø,177,253,2ø1,32, 240,249,132,2,2ø1,40,24 Ø, 1967
 FR 760 DATA165,32,24,2ø日,205,2 32,2ø1,2ø8,84,173,232,2 61,1957
 JE $77 \varnothing$ DATA $2 ø 8,82,2 ø 6,230,201$, 76,224,198,2ø1,40,24ø,3 2,1938
 QA 780 DATA $32,223,199,173,252$, 2ø1,24б,61,173,227,2ø1, 201,2183
 DG 790 DATA2,144,162,173,97,20

 1,174,243,201,2ø8,3,173 , 1781
 SJ $8 \varnothing \varnothing$ DATA2ø9,2ø1,2ø1, $0,2 \varnothing 8,1$ 47,240,37,32,24,200,205 ,17ø4
 RS $81 \varnothing$ DATA232,2ø1,2ø8,29,164, 2,2øø,177,253,240,22,2ø 1,1929
 BD $82 \varnothing$ DATA $44,2 \varnothing 8,3,238,233,2 \varnothing$ 1,2ø1,41,208,240,206,23 Ø, 2053
 HM 83ø DATA2ø1,173,233,201,2ø5 ,234,201,240,3,76,38,19 8,2øø3
 PS 840 DATA173,242,201,32,141, 2øø,172,243,2ø1,2ø8,32, 173,2018
 EG 850 DATA $216,201,208,237,169$,29,32,53,200,162,192,3 2,1731
 JS $86 \emptyset$ DATA82,2ø日, $32,93,2 \varnothing 0,16$ 2,1ø2,142,243,2ø1,32,71 , 1560
 HG $87 \emptyset$ DATA2øø,141,252,201,76, 234,196,140,245,2ø1,14ø , 251,2277
 HF $88 \varnothing$ DATA2ø1,174,236,201,2ø2 ,169,20,32,103,200,172, 230,194ø
 PP 89ø DATÁ2ø1,24ø,1ø,48,6,32, 216,199,136,208,250,160 ,17ø6
 KA $9 \varnothing 0$ DATAØ,185,192,201,240,1 75,32,120,199,200,208,2 45,1997
 FE $91 \varnothing$ DATA2ø1,128,144,57,166, 212,2ø8,53,2ø1,131,2ø8, 2,1711
 RR $92 \varnothing$ DATA $240,4,2 \varnothing 1,143,2 \varnothing 8,3$,141,246,201,56,233,127 ,18ø3
 RM 930 DATA17 $0,160,255,202,24 \varnothing$,8,200,185,158,160,16,2 50,2004
 HC 940 DATA $48,245,200,185,158$, 160,48,14,238,238,201,3 2,1767
 JE $95 \varnothing$ DATAL13,199,169, $\varnothing, 141,2$ 38,201,76,90,199,56,233 , 1715
 EQ 960 DATA1 $28,201,32,240,3,23$ 8,242,2ø1,174,244,201,4 8,1952
 CC $97 \emptyset$ DATAll,2ø8,30,166,211,2 24,79,144,3,238,244,2ø1 , 1759
 FH 980 DATA174,243,201,208,13, 2ø1,34,2ø8,8,173,216,2ø 1,188ø
 PK $99 \varnothing$ DATA $73,1,141,216,201,96$,76,210,255,173,238,201 . 1881
 GH 10øø DATA240,2,104,104,104, 1ø4,162,148,142,244,2ø 1,32,1587
 QS $101 \varnothing$ DATA71,2øø,174,249,2ø1 ,173,250,2ø1,32,205,18 9,169,2114
 AE 1820 DATA $32,32,210,255,173$, 240,201,174,241,2ø1,13 3,253,2145
 RF 103ø DATA1 $34,254,169,4,133$, 251,164,251,177,253,24

 MR 1040 DATA $32,52,199,230,251$, 76,2ø2,199,230,253,2ø8 ,2,1934
 JG 1650 DATA23ø,254,96,164,212 ,240,5,160, $0,76,17,2 \varnothing 0$, 1654
 PD $1 \varnothing 60$ DATA2ø1,32,240,242,2ø1
 ,36,240,4,201,37,208,9 , 1651
 SK $107 \emptyset$ DATAl41,228,2ø1,141,23 2,201,76,13,2ø0,201,48 ,144,1826
 SC $1 \varnothing 8 \emptyset$ DATA16,2ø1,58,144,8,2ø $1,65,144,8,2$ ø1,91,176, 1313
 KJ $109 \varnothing$ DATA4,238,252,201,96,1 40,232,201,140,252,201 ,96,2053
 RB 1100 DATAl73,255,201,174,24 3,2ø1,240,3,173,254,2ø 1,96,2214
 HA 1110 DATA169,40,141,221,201 ,96,165,2ø3,2ø5,235,2ø 1,246,2117
 FC $112 \varnothing$ DATA $249,141,235,201,96$,32,210,255,76,210,255 , 32,1992
 SH 1130 DATA68,229,169, $0,133,1$ 99,133,212,133,216,96, 189,1777
 JP 1140 DATA177,2øø,240,250,32 ,210,255,232,2ø8,245,1 89, 0,2238
 QR 1150 DATA2ø1,240,239,32,21ø ,255,232,2ø8,245,173,2 39,2ø1,2475
 GX $116 \emptyset$ DATA $24 \varnothing, 228,174,234,2 \emptyset$ 1,169,42,32,21ø,255,20 2,16,2øø3
 KE $117 \varnothing$ DATA $250,96,173,33,268$, 76,119,2øб,173,134,2,1 33,1597
 SD $118 \varnothing$ DATA2, $162,96,160,5,189$,177,2ø0,153,18,4,165, 1331
 MK 1190 DATA2,153,18,216,232,1 36,16,241,96,172,243,2 Ø1,1726
 PA $12 \varnothing \varnothing$ DATA $2 \varnothing 8,6,2 \varnothing 5,237,2 ø 1$, 76,155,2øø,2ø5,236,2ø1 ,240,217ø
 CJ $121 \varnothing$ DATA $239,104,164,76,38$, 198,32,225,255,2ø8,229 ,164,1812
 EM $122 \varnothing$ DATA1ø4,169, $0,141,138$, $2,76,68,229,13,83,89,1$ 112
 HE $123 \varnothing$ DATA83,53,48,53,48,53, ø,13,13,79,76,68,587
 EF 1240 DATA $32,86,65,82,73,65$, 66,76,69,63,32, $6,7 \varnothing 9$
 AQ 1250 DATAL3,13,78,69,87,32, 86,65,82,73,65,66,729
 AF 1260 DATA76,69,63,32, $1,13,1$ 3,18,84,89,80,69,606
 RH $127 \varnothing$ DATA $32,77,73,83,77,65$, 84,67,72,46,46,46,768
 ME $128 \emptyset$ DATAØ, $13,13,18,65,82,6$ 9,32,89,79,85,32,577
 KE 1290 DATA83, $85,82,69,63,32$, $4 \varnothing, 89,47,78,41, \varnothing, 7 \varnothing 9$
 QP 1300 DATA $2,32,18,76,73,77$, 73,84, $0,191,153,129,93$ 8
 FG $131 \varnothing$ DATA146,146,129,32,32, 18,69,88,73,83,84,83,9 83
 FJ $132 \varnothing$ DATA $0,68,79,78,69, \varnothing, 32$,32,18,78,79,84,617
 EK $133 \varnothing$ DATA $32,7 \varnothing, 79,85,78,68$, ø,13,13,67,79,78,662
 PA 1346 DATA84,73,78,85,69,63, 32,40,89,47,78,41,779'
 HF $135 \emptyset$ DATAØ, $13,18,69,88,67,6$ 9,83,83,73,86,69,718
 QK 1360 DATA $32,76,69,78,71,84$, 72,13,13, $6,5 \varnothing 8$

 # Dr. Sound For The 64

 Don Malone

 #### Abstract

 Music enthusiasts will have a field day with this Commodore 64 program, which allows you to experiment with a great variety of different sound parameters while the music plays. A disk drive is required.

 "Dr. Sound" is an algorithmic note sequencer which plays notes according to parameters which you choose in realtime. Using the 64's built-in SID (Sound Interface Device) chip, it simulates a singlevoice electronic synthesizer with dynamic timbre (tone color) control. If you're familiar with conventional electronic synthesizers, you'll probably recognize the screen display as a flowchart of the synthesizer's current patch or configuration. By changing different elements of the patch, you can alter the character of the music dramatically. After you create a patch you like, you can save it to disk for later reloading and use within the program. If you're new to computer-generated music, you'll enjoy experimenting and you can also learn a good deal from this program. Experts will appreciate all the features available in Dr. Sound.

 Type in the program as listed and save a copy before you try to run it. Dr. Sound always begins with a short pause while it initializes. Then you will see the main
 display screen. The top portion of the screen contains a flowchart of the synthesizer's current patch. At the bottom are several prompts indicating parameters you can change by pressing various function keys. The bottom screen line is reserved for your input.

 ## Music In The Background

 When the display screen appears, you'll notice that background music begins playing immediately. The music will continue to play at all times while the program runs, except during disk operations.

 Using Dr. Sound involves changing various program parameters to alter the character of the music. As a rule, whenever you change the synthesizer's patch, the screen display changes color to indicate which part of the synthesizer you are affecting. The different program options are selected by pressing one of the eight special function keys, f1-f8. Once an option is selected, the bottom screen line changes color and displays the keys you may press to select a choice within that option. In some cases, pressing the indicated key increases the value associated with that parameter; for these options, pressing the SHIFT key along with the indicated key decreases the same value.

 ## Waveform And ADSR

 One of the most fundamental changes involves waveforms. To
 choose a different waveform, press the f1 key. The bottom screen line then indicates your choices. To change the waveform, press the W key. There are four wave shapes available. The triangle is the sweetest of these, containing only oddnumbered overtones decreasing in loudness exponentially. The sawtooth is the brightest, containing all of the harmonic overtones. The pulse wave depends on its width (duty cycle) for its harmonic content. The closer to 99 percent or 1 percent, the more nasal (oboe-like) the pulse wave sounds. The closer to a 50 percent duty cycle, the more hollow (clarinet-like) it will be. Press P to change the pulse width. The noise waveshape is the most unpitched.

 Ring modulation is a special SID effect, which you can toggle on and off by pressing the M key. When an M appears in the flowchart between the sound source and the modulator, you can see that modulation is on. Ring modulation is possibly the most sophisticated timbre control on the SID chip, making nonharmonic, bell-like overtones. The timbre of the sound depends on the frequency relationship between the sound source and the modulator. (Because of the way the SID chip circuitry is designed, only triangle waveshapes are available for this option.)

 Pressing H toggles the harmony option on and off, which forces
 the sound source to be harmonicthat is, synchronous at an exact integer multiple with the modulator. When the harmony option is selected, an H appears in the display between the modulator and the sound source. This can be used to shift the A440 tuning of the sound source or to insure harmonic (more pitched) modulation. Modu-lation-like most of the other terms in this article-can be best understood by listening to the effect it has on different sounds.

 The A, D, S, and R keys control attack, decay, sustain, and release, respectively. Attack is the amount of time it takes to begin the note. Decay is the amount of time it takes to drop to the sustain level, which is indicated as a percentage of the loudest sound possible. Release is the amount of time it takes to return to silence.

 ## Special Effects

 The f3 key allows you to change the low-pass filter parameters. Q changes the electronic resonance, which at 100 percent almost whistles, indicating sonically the changes in the cutoff frequency. F changes the percentage of the envelope generator (ADSR) used to control the cutoff frequency, and therefore the timbre, during each note. The lower the percentage, the more muffled the sound will be.

 The f5 key selects the modulator section. W and P work just like the sound source section. T toggles on and off a trigger that allows the modulator to be heard while also modulating the sound source. I toggles parallel/oblique modes of the interval relationship between the modulator and the sound source. In the parallel mode the frequency follows the sound source at an interval indicated as a percentage of the sound source frequency. M and L change this relationship in 10 percent and 1 percent increments, respectively. Note that there is a delay of about six seconds to calculate these increments. In the oblique mode the frequency of the modulator is always the same. That frequency is tunable from 1 to 3995 Hz (cycles per second). The F, Q, C, and Y keys change the frequency in $1000 \mathrm{~Hz}, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$, and 1 Hz increments, respectively. The

 ADSR articulation control for the modulator is apparent only when the modulator trigger is on.

 The f7 key selects the control section. The W, P, F, Q, C, and Y keys work the same way here as they do in the modulator section. However, in this case the waveshape and the relationship of the frequency to the duration of the current note determine the next note. The triangle and sawtooth waveshapes will produce easily recognizable patterns. The pulse produces a more austere pattern, and the noise waveform produces a random pattern.

 G and A change the gate length. During the gate, the attack, decay, and sustain portions of the envelope generators are active. The gate time does not necessarily need to be longer than the attack time plus the decay time, but if it isn't, strange effects, including complete silence, may occur. R and E change the release time. During the release time, the release portion of the envelope generators are active. After the gate and release time, it takes about 223 microseconds to look at the keyboard. This delay becomes much longer if a key has been pressed. It takes another 104-195 microseconds to calculate the next note. However, if the release time of the sound source envelope generator is long enough, these delays will not be apparent.

 ## Pitch Sets

 The f2 key allows a choice of one of the 16 pitch sets. The patterns generated by Dr. Sound will be restricted to one of these sets at a time. They are defined as shown here:

 | 0 | Major scale |
 | :--- | :--- |
 | 1 | Tonic |
 | 2 | Supertonic |
 | 3 | Mediant |
 | 4 | Subdominant |
 | 5 | Dominant |
 | 6 | Submediant |
 | 7 | Diminished |
 | 8 | Subtonic |
 | 9 | Augmented |
 | A | Chromatic |
 | B | Whole tone |
 | C | East |
 | D | Harmonic minor |
 | E | Pure minor |
 | F | Phrygian |

 The f4 key allows control over the pitch range. The octaves are
 labeled from 0 to 7 , with octave 0 being the lowest. The octave of each note is chosen from a set of eight possibilities, all of which are displayed on the screen. Pressing a number from 0 to 7 changes the next octave number in the set.

 The f6 key allows control over the rhythm. This is also a set of eight, controlled like the octaves. The release time is multiplied by a factor from 1 to 8 .

 The $f 8$ key permits you to save all of the current Dr. Sound settings with a filename of your choice, or to load a file of previously saved settings.

 ## Dr. Sound For The 64

 For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing In Programs" in this issue of COMPUTEI.

 CB 10 POKE5328 $1, \varnothing:$ POKE53281, \varnothing : PRINTCHR\$ (142) CHR\$ (8):PR INT"E8习\{CLR\}": POKE214,1ø :PRINT
 DM $2 \varnothing$ PRINTTAB (16) "DR. SOUND": PRINTTAB (13)" \{DOWN \}WILL \{SPACE\}BE RUNNING"
 RK 3 - PRINTTAB (14)" \{DOWN\} IN 24 SECONDS": C\$=CHR\$(13)
 FD 40 DIMPI\$(11),PT\$(15),OC\$(7), RH\$ (7), PI (12), PM (12), A \$(15), R\$(16), S\$(15), P\$(1 5)

 GS 50 FORC $=\varnothing$ TO7 : POKE4992 $\varnothing+$ C, 4 * 16 :NEXT: FORC= ØTO7 : POKE49 $936+C, 1$:NEXT:SI=54272
 FJ $6 \emptyset$ FORC=SITOSI $+24:$ POKEC, $0: N$ EXT : POKESI $+24,9 * 16+15$: PO KE53236,31:POKE53239,128
 CR $70 \mathrm{MS}(\varnothing)=" \mathrm{~B} ": \mathrm{MS}(1)=" \mathrm{M} ": \mathrm{H} \$(\varnothing$ $)=" B ": H \$(1)=" H ": T \$(\varnothing)="$ * OFFネ":TS(1) = "*****"
 CG $8 \emptyset$ WS\$T(\varnothing) =" TRIANGLE": WS\$ (1)=" SAWTOOTH":WS\$ (2)="
 \{4 SPACES \}PULSE ":WS\$(3)= " $\{2$ SPACES $\}$ NOISE $\{2 \text { SPACES }\}^{\prime \prime}$
 SR $90 \mathrm{FS}(\emptyset)=" 1 \varnothing \varnothing \% \quad ": F \$(1)=" 5 \emptyset \%$
 $\{2 \text { SPACES }\}^{\prime \prime}: F \$(2)=" 25$ \%
 \{2 SPACES $\}$ ": F\$ (3) $=$ " 12.5 \%
 MB 1øø FORC=5Ø176TO5ø399: READD : POKEC, D: NEXT: FORC=ØTOI 2: READD: PI (C) =D: NEXT
 AR $11 \emptyset$ FORI $=\emptyset T O 15: \operatorname{READPT}(\mathrm{I}): F$ ORC=ØTO15 : READD: POKE496 64+I* $16+\mathrm{C}$, D: NEXT: NEXT
 MF 120 FORC=øTO15: READAS (C):NE $\mathrm{XT}: \mathrm{FORC}=\varnothing \mathrm{TO} 6:$ READR (C) :NEXT: FORC= \quad TO7: $\mathrm{E}(\mathrm{C})=2 \uparrow$ C: NEXT
 QQ 130 FORC=øTO15:S\$(C)=STRS (I NT (C*6.66666667)) :S\$(C) $=S \$(C)+" \%\{2$ SPACES $\} ": N E$ XT
 KJ 140 FORC $=\emptyset T O 15: P \$(C)=S T R S(I$ NT (C*256/40.95)):P\$(C)= P\$(C)+"?\% ":NEXT
 KR 150 ML=.99:GOSUB55 :GOSUB62 $\emptyset: C W=1: H=\varnothing: M=\varnothing: P C=\varnothing: A C=$
 $\emptyset: D C=\varnothing: S C=15: R C=4$: GOSUB 710
 XK 160 RS=4:FC=1:AF=7:DF=3:SF= $13: R F=5: G O S U B 78 \varnothing: P W=\emptyset: P$ $C=\emptyset: A P=\emptyset: D P=\varnothing: S P=8: R P=1$ 5
 SD 17ø TP=1:FM=1:FP= $\emptyset: G O S U B 83 \varnothing$ $: W W=1: F Q=112: G G=20: R R=2$ 2:GOSUB940: PT=13
 FP 18ø INS="TRUMPET":POKE53232 ,PT*16:GOSUB1ø5ø:GOSUB1 ø8ø:GOSUB1120:GOSUB115ø
 PB 19ø SYS5ø176:GETK\$:IFK\$く>"" THEN117ø
 FB 2øø GOTO19ø
 QF $21 \varnothing$ DATA $162, \varnothing, 173,27,212,4$ $1,7,170,189,16,195,17 \varnothing$, 173,244,207,2ø2
 JP $22 \varnothing$ DATA $48,6,1 \varnothing 9,244,207,7$ 6,15,196,141,243,207,16 2, $0,173,27,212$
 DP $23 \varnothing$ DATA $41,15,141,239,207$, 173,240,207,109,239,207 ,17ø,189, $\varnothing, 194,17 \varnothing$
 QC 240 DATA $173,27,212,41,7,16$ 8,185,0,195,141,238,207 ,138,109,238,207
 XH 250 DATA $17 \varnothing, 189,0,192,141$, 7,212,189,128,192,141,8 ,212,173,248,207
 GA $26 \emptyset$ DATA $2 ø 8,12,189,0,193,1$ 41, $0,212,189,128,193,14$ 1,1,212,173,252
 BG $27 \varnothing$ DATA $207,165,1,141,18,2$ 12,173,251,207,105,1,14 1,11,212,173,25ø
 SB $28 \varnothing$ DATA $207,109,249,207,14$ 1,4,212,173,247,207,141 ,255,207,173,246,207
 KC 290 DATA $141,237,207,172,24$ 5,207,173,28,212,174,25 3,207,24ø,4,74,2ø2
 HB $30 \emptyset$ DATA $2 \varnothing 8,252,141,22,212$,136,2ø8,238,2ø6,237,2ø 7,2ø8,230,2ø6,255,207
 MS $31 \varnothing$ DATA $2 ø 8,219,173,252,20$ 7,141,18,212,173,251,20 7,141,11,212,173,250
 XQ $32 \varnothing$ DATA 207,141,4,212,173, 243,207,141,254,207,173 ,242,207,141,237,207
 PH $33 \varnothing$ DATA $172,241,207,173,28$,212,174,253,207,240,4, 74,2ø2,2ø8,252,141
 KF 340 DATA $22,212,136,2 ø 8,238$,2ø6,237,2ø7,2ø8,230,2ø 6,254,207,208,219,96
 XG 359 DATA $268,284,301,318,337$,358,379,401,425,451,47 7,5ø6,536
 BQ $36 \varnothing$ DATA"MAJOR\{1ø SPACES $\}$ ", $5,7,9,1 \varnothing, 12,5,4,2, \varnothing, \varnothing, 1$ 2,9,5,9,5, \varnothing
 XS $37 \varnothing$ DATA"TONIC\{1ø SPACES\}", $5,9,12, \varnothing, 5,9,12, \varnothing, 5,9,1$ $2, \varnothing, 5,9,12, \varnothing$
 GR $38 \emptyset$ DATA"SUPERTONIC 7 TH ", 7 ,10,2,5,7,10,2,5,7,10,2 ,5,7,10,2,5
 HP 390 DATA"MEDIANT $\{8$ SPACES\}" ,9,12, $0,3,9,12, \varnothing, 3,9,12$, $0,3,9,12,0,3$
 XP $4 \varnothing \varnothing$ DATA"SUBDOMINANT
 \{4 SPACES \}",1ø,2,5,10,2 ,5,10,2,5,10,2,5,10,2,5 , $1 \varnothing$
 HS $41 \varnothing$ DATA"DOMINANT 7TH
 $\{3$ SPACES $\}$ ", $0,4,7,1 \varnothing, 12$, $0,4,7,1 \varnothing, 12,0,4,7,1 \varnothing, 1$ 2, \varnothing

 KC $42 \emptyset$ DATA"SUBMEDIANT
 [5 SPACES. ${ }^{\prime \prime}, 2,5,9,12, \varnothing$, $2,5,9,2,5,9,2,5,9,12, \varnothing$
 MC 436 DATA"DIMINISHED 7 TH ", 4 ,7,10,1,4,7,10,1,4,7,1ø ,1,4,7,10,1
 DJ 440 DATA"SUBTONIC\{7 SPACES $\}$ ",3,7,10,3,7,10,3,7,10, $3,7,10,3,7,10,3$
 CE $45 \emptyset$ DATA"AUGMENTED
 \{6 SPACES ${ }^{\prime \prime}, \varnothing, 4,8,12, \varnothing$,
 $4,8,12, \varnothing, 4,8,12, \varnothing, 4,8,1$ 2
 MG 460 DATA"CHROMATIC
 $\{6$ SPACES $\}$ ", $\varnothing, 1,2,3,4,5$ $, 6,7,8,9,10,11,12,0,12$, 6
 MJ $47 \varnothing$ DATA "WHOLETONE
 \{6 SPACES $\}$ ", $\varnothing, 2,4,6,8,1$ Ø,12,10,8,6,4,2, $, 2,10$, 12
 KD $48 \emptyset$ DATA"EAST\{11 SPACES\}", \varnothing ,2,5,7,9,12, $0,2,5,7,9,1$ $2,5,2,5,7$
 EE 490 DATA "HARMONIC MINOR ",5 ,7,8,10,12,10,8,7,5,4,1 , $0,1,4,5,8$
 CA $5 \emptyset \emptyset$ DATA"PURE MINOR
 \{ 5 SPACES ${ }^{\prime \prime}, 5,7,8,10,12$, 10,8,7,5,3,1, $0,1,3,5,8$
 JQ 510 DATA"PHRYGIAN $\{7$ SPACES \}
 ",5,6,8,10,12,10,8,6,5, $3,2, \varnothing, 2,3,5,8$
 XF $52 \emptyset$ DATA. $\varnothing \emptyset 2 \mathrm{~S}, . \emptyset \emptyset 8 \mathrm{~S}, . \emptyset 16 \mathrm{~S}$, 024S, .038S, .056S, .068S, .ø8S ,.1S\{2 SPACES\},. 25 S ,.5S\{2 SPACES\},. 8 S
 GE 530 DATAIS $\{3$ SPACES $\}, 3 S$
 \{3 SPACES $\}, 5 S\{3$ SPACES \} ,8S\{3 SPACES\},.øø6S,..ø2 4S,.048S,..072S,.114S,. 1 68s, .204S
 PS 540 DATA. 24 S ,.3S\{2 SPACES\} $, .75 \mathrm{~S}, 1.5 \mathrm{~S}, 2.4 \mathrm{~S}, 3 \mathrm{~S}$
 \{3 SPACES\},9S\{3 SPACES\} , 15S\{2 SPACES $\}, " 24 \mathrm{~S}$
 \{2 SPACES\}","\{7 SPACES $\}$
 EK 550 FORC=øTO12:FORI=øTO7:PI $=\mathrm{PI}(\mathrm{C}) * \mathrm{E}(\mathrm{I}): \mathrm{HP}=\mathrm{INT}(\mathrm{PI} / 2$ 56) : $\mathrm{IFHP}>255$ THENH $\mathrm{P}=255$

 EM 560 POKE4928Ø + I* $16+\mathrm{C}$,HP:POK E49152+I*16+C,PI-256*HP AND255:NEXT:NEXT
 GP $57 \varnothing$ IFLEN(STRS(ML)) >5 THENML $=I N T(M L * 1 \varnothing \sigma) / 1 \varnothing \varnothing$
 CP 580 FORC=øTO12:PM(C)=PI(C)* ML:NEXT
 BX 590 FORC $=\varnothing$ TO12:FORI $=\varnothing$ TO7:PI $=\mathrm{PM}(\mathrm{C}) * \mathrm{E}(\mathrm{I}): \mathrm{HP}=\mathrm{INT}(\mathrm{PI} / 2$ 56) : IFHP >255 THENH $\mathrm{P}=255$

 XP 6øø POKE49536+I*16+C,HP:Z=P I-256*HP:IFZ>255 THENZ $=2$ 55
 SB 610 POKE494ø8+I* $16+\mathrm{C}, \mathrm{Z}:$ NEXT :NEXT: RETURN
 CE 620 PRINT" $\{C L R\}\{2$ DOWN \}"SPC

 BP 630 PRINTTAB (4)" \uparrow "SPC(10)" \uparrow " $\operatorname{SPC}(7)$ "B"
 MB 64ø PRINTTAB (4) " \underline{B} " $\operatorname{SPC}(18)$ " \underline{B}
 GB 650 PRINTTAB(4)"B"SPC(18)"B
 JQ 660 PRINTTAB(4)"B"SPC(18)" KQ 彐 ${ }^{*} *>$ FILTER ${ }^{\star} *>$ OUT"
 CR $670 \mathrm{PRINTTAB}(4) " \bar{B} " \operatorname{SPC}(18) " \underline{B}$ "SPC(5)" \uparrow "
 MQ 680 PRINTTAB(4)"B"SPC(18)" \underline{B}

 GQ 690 PRINTTAB(23)"B"SPC(5)" \uparrow ": PRINTTAB (9)"***** $>$ AMP
 6)" \uparrow "

 RA 706 RETURN
 CE 710 PRINT"\{HOME \}\{DOWN\}":IFM $=1$ THENCW= \varnothing
 QH $72 \emptyset$ PRINTTAB(2)WS $(C W):$ IFCW =2THENPRINT" $\{\mathrm{UP}\}$ " P (PC)
 SG $73 \varnothing$ PRINTTAB(7)" $\{D O W N\}[F 1] "$ SPC(3)"A "AS(AC):PRINTT $\mathrm{AB}(4) \mathrm{M} \$(\mathrm{M}) \mathrm{SPC}(9) \mathrm{D}$ " R (DC)

 XP 740 PRINTTAB(14)"S"S (SC): P RINTTAB (4) H\$ (H) SPC (9) "R "RS(RC)
 PP $75 \emptyset W C=2 \uparrow(C W+4): I F M=1 T H E N W C$ $=2 \varnothing$
 SA $76 \emptyset$ IFH=1THENWC=WC +2
 CD 770 POKE53243,WC:POKESI +10 , PC:POKESI $+12, \mathrm{AC} * 16+\mathrm{DC}: \mathrm{P}$ OKESI+13,SC*16+RC: RETUR N
 JE 78ø POKE214,4:PRINT:PRINTTA $B(28) " Q$ " S (RS)
 SG 790 PRINTTAB(28)"\{2 DOWN $\}$ "F \$(FC):PRINTTAB (34)" \{UP\} [F3]"
 BJ $8 \varnothing \varnothing$ PRINTTAB(28)" \{DOWN \}A "A \$(AF):PRINTTAB(28)"D "R \$(DF)
 FC $81 \varnothing$ PRINTTAB(28)"S"S $(\mathrm{SF}):$: RINTTAB(28)"R "R\$(RF)
 CB 820 POKESI $+23, R S * 16+3$:POKE5 3245,FC: POKESI $+19, \mathrm{AF}^{*} 16$ +DF:POKESI $+2 \emptyset, S F * 16+\mathrm{RF}$: RETURN
 AH 83Ø POKE214,8:PRINT:IFM=1TH ENPW= \varnothing
 CS $84 \emptyset$ PRINT"\{DOWN \} "WS\$(PW)SP $\mathrm{C}(8) \mathrm{T}$ (TP) : IFPW=2THENPR INT"\{UP\}"PS(PP)
 QS $85 \emptyset$ IFFP=1THENPRINT"
 \{4 SPACES \}FQCY
 \{4 SPACES \}":PRINTTAB(4) STRS(FM)+"HZ\{3 SPACES\}"
 EJ 860 IFFP $=1$ THENZ $=F M / .06097$: P $\mathrm{H}=\mathrm{INT}(\mathrm{z} / 256): \mathrm{PL}=\mathrm{Z}-\mathrm{PH} * 25$ 6:POKESI,PL:POKESI+1,PH
 JA $87 \varnothing$ IFFP $=\varnothing$ THENPRINT"
 \{4 SPACES \}PARALLEL": PRI NTTAB (4)"ML"STRS (INT (ML *1øø+.5)) + " $\%\{2$ SPACES $\} "$
 GC $88 \emptyset$ IFTP=1THENPRINTTAB (15)" \{UP\}A "AS (AP): PRINTTAB (15)"D "R\$(DP)

 RH 890 IFTP=øTHENPRINTTAB (15)" \{UP\} "R\$(16):PRINTTAB (15) R\$(16)
 PF 906 IFTP=1THENPRINTTAB (9) " [F5]"SPC(2)"S"S\$(SP):PRI NTTAB(15)"R "R\$(RP)
 SA $91 \varnothing$ IFTP=øTHENPRINTTAB (9)"[F5] "SPC (2) RS (16) : PRINTT $\mathrm{AB}(15) \mathrm{R} \(16)
 $\mathrm{XQ} 92 \varnothing \mathrm{WP}=2 \uparrow(\mathrm{PW}+4)$: POKE53242, W P:POKESI +3 ,PP:POKE5 3241 ,TP: POKE5324Ø, FP
 FQ $93 \emptyset$ POKESI +5, AP* $16+$ DP: POKES I +6 , SP* $16+\mathrm{RP}$: RETURN
 QC 940 POKE214,16:PRINT
 EC 950 PRINT"[F7] "WSS (WW)SPC(1) "FQCY"STRS (FQ) + "HZ \{3 SPACES \}"
 RP $96 \emptyset$ IFWW=2THENPRINTTAB (4)" \{UP\}" P ($(C P)$
 RF $97 \varnothing$ SS=2 $\uparrow(W W+4)$:POKE53244, S $\mathrm{S}:$ POKESI $+17, \mathrm{CP}: \mathrm{Z}=\mathrm{FQ} / . .66$

 Ø97: $\mathrm{CH}=\mathrm{INT}(\mathrm{Z} / 256): \mathrm{CL}=\mathrm{Z}-$ CH* 256
 FR 980 POKESI+14,CL:POKESI+15, $\mathrm{CH}: \mathrm{GY}=(\mathrm{GGAND} 127)+1: \mathrm{GL}=1$: IFGG>127 THENGL=128
 GG 99ø GT= $14 \varnothing+((18+1((4+1(18+1$ $(7 * F C)+2)+9) * G Y)-1)+9)$ * GL (-1) +9) * 128 (-1))/ 1 (ø2ø øøø
 FF 10øø GT=INT(GT*1øøø)/1øø日:P RINTTAB(27)"\{2 UP\}GA"S TRS(GT)+"S\{2 SPACES\}"
 CE $1010 \mathrm{RY}=($ RRAND1 27) $\mathrm{Cl}: \mathrm{RL}=1: \mathrm{I}$ FRR >127 THENRL $=128$
 FG $1020 \mathrm{RT}=(32+(() 8+()(4+1((8+$ $((7 * F C)+2)+9) * R Y)-1)+9$)*RL) -1) +9) * 3()$-1)$)/ $1 \varnothing$ 2øøøø
 KP $103 \varnothing \mathrm{RT}=\mathrm{INT}(\mathrm{RT} * 1 \varnothing \varnothing \varnothing) / 1 \varnothing \varnothing 0: \mathrm{P}$ RINTTAB (27)"RE"STRS (RT)+"S\{2 SPACES\}"
 EX 1040 POKE53238,GL: POKE53237 ,GY:POKE53234,RL: POKE5 3233, RY: RETURN
 CS 1ø50 POKE214,18:PRINT:PRINT "[F2] PITCH SET(ø-F)"; : IFPT<1ØTHENPRINTPT; PT \$(PT)
 GD 1060 IFPT>9THENPRINT" "CHR\$ (PT+55)" "PT\$(PT)
 FP 1ø76 POKE53232,PT*16:RETURN
 RJ 1ø8Ø POKE214,19:PRINT
 AE 1ø9ø FORC=øTO7:OC $\$(C)=$ RIGHT \$(STR\$ ($\operatorname{\text {PEEK}}(4992 \varnothing+C)$) (16),1):NEXT

 AD 1106 PRINT"[F4] OCTAVE ($0-7$) " ; :FORC=øTO7:PRINTOC \$(C);CHRS(44);:NEXT:PR INT"\{LEFT\} "
 CE 1110 RETURN
 SF 1120 POKE214,20:PRINT:FORC= ØTO7: RH\$(C)=RIGHT\$(STR \$($(\operatorname{PEEK}(49936+C))+1), 1$): NEXT
 PG 1130 PRINT"[F6] RHYTHM (1-8) ";:FORC=øTO7:PRINTRH \$(C) ; CHRS (44);:NEXT:PR INT" $\{$ LLEFT \} \{HOME\}"
 KG $114 \emptyset$ RETURN
 XA 1150 POKE214,21:PRINT:PRINT "[F8] DISK ACCESS \{HOME \}"
 FX 1160 POKE214, $\varnothing:$ PRINT:PRINTT AB (27) IN\$: RETURN
 KX $117 \emptyset \mathrm{~K}=\mathrm{ASC}(\mathrm{K} \$+\mathrm{CHR} \$(\varnothing)): I F K>$ $=132$ ANDK $<=14 \varnothing$ THENGOSUB 1190
 GE $118 \emptyset$ ONJGOSUB1 23ø,138ø,152ø ,18øø,2ø4ø,2ø80,211ø,2 140:GOTO19ø
 KS $119 \emptyset$ IFJ $=\emptyset$ THEN $121 \varnothing$
 RK 12øø PRINT"E8习": ONJGOSUB123 ø,1380,1520,18øø,2040, 2ø80,2110,2140
 XP $121 \varnothing \mathrm{~J}=\mathrm{K}-132$:PRINT" $\mathbb{4} 4 \exists \mathrm{Z}$: RET URN
 RR 1220 RETURN
 HJ 1230 POKE214,22:PRINT:PRINT " \{RVS\} SOUND SOURCE \{5 SPACES \}W P M H A D \{SPACE\}S R\{6 SPACES\} \{OFF\}"
 JQ 1240 IFK $\$=$ " W "THENCW= $(\mathrm{CW}+1) \mathrm{A}$ ND3
 PP 1250 IFK $\$=$ "H "THENH=H+1 AND1
 EP 1260 IFK $\$=$ " ${ }^{\text {" }}$ "THENM=M+1 AND1
 AM 1270 IFK $\$=" \mathrm{P}$ " $\mathrm{THENPC=PC+1} \mathrm{AND}$ 15
 JA 1280 IFK $\$=$ " $\underline{\text { " }}$ THENP $C=A B S$ ($\mathrm{PC}-$ 1)

 EH 1290 IFK $=$ "A"THENAC=AC+1AND 15
 FX 1300 IFK $=$ " $D " T H E N D C=D C+1$ AND 15
 KB 1310 IFK\$="S"THENSC=SC+1AND 15
 EC 132 IFK $\$=$ " R " $\mathrm{THENRC}=\mathrm{RC}+1$ AND 15
 EB 1330 IFK $\$=$ "A" $\mathrm{THENAC}=\mathrm{ABS}$ (AC1)

 QE 1340 IFK $=$ " ${ }^{\text {" }}$ "THENDC=ABS (DC1)

 CF 1350 IFK $\$=$ " " $^{\text {THENSC }}=$ ABS (SC1)

 FH 1360 IFK $\$=$ " ${ }^{\text {R" }}$ THENRC=ABS (RC1)

 SJ $137 \varnothing \mathrm{~K} \$=" \mathrm{":GOTO71} \mathrm{\varnothing}$
 SB 1380 POKE214,22:PRINT:PRINT " $\{$ RVS $\}$ FILTER
 \{4 SPACES \}Q F A D S R \{17 SPACES\}\{OFF\}"
 BG 1390 IFK $\$=$ " Q " T HENRS=RS +1 AND 15
 MP 1400 IFK $\$=$ " Q " T HENRS $=$ ABS (RS1)

 BP $141 \varnothing$ IFK $=$ " F "THENFC=FC+1AND 3
 AP 1420 IFK $\$=$ " ${ }^{\prime \prime}$ "THENFC=ABS (FC1)

 CG 1430 IFK $\$=$ "A"THENAF=AF+1AND 15
 FQ 1440 IFK $\$=$ " $D " T H E N D F=D F+1$ AND 15
 FB 1450 IFK $\$=$ " S "THENSF=SF+1AND 15
 GD 1460 IFK $\$=$ " R " $\mathrm{THENRF}=\mathrm{RF}+1$ AND 15
 CX $147 \varnothing$ IFK $\$=$ " ${ }^{A}$ " THENAF=ABS (AF1)

 MC $148 \emptyset$ IFK $\$=$ " ${ }^{\text {"THENDF }}=$ ABS (DF1)

 ED 1490 IFK $\$=$ " $\mathbf{S}^{\prime T}$ THENSF=ABS (SF1)

 KH 1500 IFK $\$=$ " ${ }^{\text {P }}$ "THENRF=ABS (RF1)

 RP $151 \varnothing \mathrm{~K} \$=" \mathrm{n}:$ GOTO78
 EJ 152ø POKE214,22:PRINT:PRINT " $\{$ RVS $\}$ MODULATOR W P T I M/L F/Q/C/Y A D S R \{OFF\}"
 JQ 1530 IFK $\$=$ "W "THENPW= ($\mathrm{PW}+1$) A ND3
 FM 1540 IFK $\$=$ " P " T HENPP $=P P+1$ AND 15
 BX 1550 IFK $\$=$ " P " $T H E N P P=A B S(P P-$ 1)

 MP 1560 IFK $\$=" T$ "THENTP $=T P+1$ AND 1
 SA $157 \varnothing$ IFK $\$=$ "I "THENFP=FP+1AND 1
 AH $158 \emptyset$ IFK $\$=" F$ "THENFM $=F M+1 \varnothing \varnothing \varnothing$
 RK 1590 IFK $\$=" Q$ "THENFM $=F M+1 \varnothing \varnothing$
 PD $16 \varnothing$ IFK $\$=" \mathrm{C}$ "THENFM $=F M+1 \varnothing$
 SP 1610 IFK $\$=" Y " T H E N F M=F M+1$
 HR 1620 IFFM> 3995 THENFM $=3995$
 CF 1630 IFK $\$=" F " T H E N F M=A B S$ (FM10øø)
 BK 1640 IFK $\$=$ " " $" T H E N F M=A B S(F M-$ 1øø)
 BP 1650 IFK $\$=$ "C"THENFM=ABS (FM1ø)
 HD 1660 IFK $\$=$ " Y " $T H E N F M=A B S$ ($F M-$ 1)

 RK $167 \varnothing$ IFK $\$=$ "M"THENML=ML+.1:G OSUB57ø
 RJ 1680 IFK $\$=$ "L "THENML=ML+. $\varnothing 1$: GOSUB57ø
 BD 1690 IFK $\$=$ "M"THENML=ABS (ML.1) : GOS̄UB57 \varnothing
 DA $17 \emptyset 0$ IFK\$="L"THENML=ABS (ML. ø1) : GŌSUB5 $7 \varnothing$

 MQ 1710 IFK $\$=$ " A "THENAP $=A P+1$ AND 15
 MC 172 IFK $=$ " ${ }^{\text {D"THENDP }}=\mathrm{DP}+1$ AND 15
 AH 1730 IFK $\$=$ "S "THENSP=SP+1AND 15
 GK 1740 IFK $\$=$ "R"THENRP=RP+1AND 15
 DD 1750 IFK $\$=$ " A " $T H E N A P=A B S(A P-$ 1)

 KG 1760 IFK $\$=$ " ${ }^{\text {" }}$ THENDP $=A B S$ (DP1)

 BF 1770 IFK $\$=$ " " THENSP $=$ ABS (SP1)

 KJ 178 IFK $\$=$ " ${ }^{\text {" }}$ "THENRP $=$ ABS (RP1)

 RM $179 \varnothing \mathrm{~K} \$=" \mathrm{n}:$ GOTO83ø
 RM 18øø POKE214,22:PRINT:PRINT " \{RVS \} CONTROL
 \{4 SPACES \}W P F/Q/C/Y
 \{2 SPACES\}G/A
 \{2 SPACES \}R/E
 \{6 SPACES\}\{OFF\}"
 JM 1810 IFK $\$=" W$ "THENWW= $(W W+1)$ A ND3
 SG 182 IFK $\$=$ " P "THENCP $=C P+1$ AND 15
 XQ 1830 IFK $\$=$ " $\underline{\text { " }}$ "THENCP $=$ ABS ($C P-$ 1)

 PK 1840 IFK $\$=$ " F "THENFQ $=F Q+1 \varnothing \varnothing \varnothing$
 RD $185 \emptyset$ IFK $\$=" Q$ "THENFQ=FQ+1ø
 PH $186 \varnothing$ IFK $=" \mathrm{C}$ "THENFQ $=F Q+1 \varnothing$
 GS 1870 IFK $\$=" Y$ " T HENFQ $=F Q+1$
 XF 1880 IFFQ>3995THENFQ $=3995$
 RJ 1890 IFK $\$=$ " ${ }^{\text {" }}$ "THENFQ $=A B S(F Q-$ 1øøø)
 KS 1900 IFK $=$ " Q " $T H E N F Q=A B S ~(F Q-$ 100)

 KB 1910 IFK $\$=$ "C"THENFQ=ABS (FQ10)

 DH 1920 IFK $\$=$ " $\underline{"}$ "THENFQ $=A B S(F Q-$ 1)

 PJ 1930 IFK $\$=" \mathrm{G}$ "THENGG=GG+25
 MQ 1940 IFK $\$=$ " A "THENGG=GG+1
 QM 195 IFGG >255 THENGG $=255$
 XJ 1960 IFK $=$ "G"THENGG=ABS (GG25)

 MR $197 \varnothing$ IFK $\$=$ "A ${ }^{\text {" } T H E N G G=A B S(G G-~}$ 1)

 BK 198ø IFK $\$=$ " R "THENRR $=\mathrm{RR}+25$
 XH 199ø IFK $\$=$ " E "THENRR=RR+1
 KG $2 ø \varnothing$ IFRR> 255 THENRR $=255$
 PF 2010 IFK $\$=$ "R"THENRR=ABS (RR25)

 AS $2 ø 2 \varnothing$ IFK $\$=$ "E"THENRR $=$ ABS (RR1)

 QF $2 ø 3 \varnothing \mathrm{~K} \$=" \mathrm{":} \mathrm{GOTO94} \mathrm{\varnothing}$
 QD 2ø4ø POKE214,22:PRINT:PRINT " \{RVS\} PITCH SET
 $\{2$ SPACES $\} \varnothing 123 \ldots$ \{SPACE\}9 A B C D E F \{2 SPACES $\}$ \{OFF \}"
 HE $2 \varnothing 50$ IFK<58ANDK>47THENPT=K48
 PM $2 ø 60$ IFK<71ANDK>64THENPT=K55
 GJ $2070 \mathrm{~K} \$=" \mathrm{C}: \mathrm{GOTO1} 650$
 KR 2ø8ø POKE214,22:PRINT:PRINT " \{RVS\} OCTAVES
 $\{4$ SPACES \} $\varnothing, 1,2,3,4,5$, 6,7\{12 SPACES\}\{OFF\}"
 DJ $209 \emptyset$ IFK<56ANDK>47THENK $=$ K-4 8:CT=CT+1AND7:POKE4992 $\emptyset+$ CT , K* 16

 AC 2110 POKE214,22:PRINT:PRINT " \{RVS \} RHYTHMS
 \{6 SPACES\}1,2,3,4,5,6, 7,8\{10 SPACES\}\{OFF\}"
 RA 212σ IFK < 57 ANDK > 48THENK $=K-4$ 9:YT=YT+1AND7:POKE4993
 $6+Y \mathrm{~T}, \mathrm{~K}$
 KK $213 \emptyset \mathrm{~K} \$="$＂：GOTO112
 AS 2140 POKE214，22：PRINT：PRINT ＂\｛RVS\}\{2 SPACES\}DISK A CCESS\｛5 SPACES\}S L \｛18 SPACES \}\{OFF\}"
 SC 2150 IFK $\$=$＂S＂THENGOSUB218 8
 FR 2160 IFK\＄＝＂L＂THENGOSUB23日も： GOSUB244ø
 BD $217 \emptyset \mathrm{~K} \$=" \mathrm{C}: \mathrm{GOTOL15} \mathrm{\emptyset}$
 AA 218Ø POKE214，22：PRINT：PRINT
 ＂\｛RVS\} SAVE FILE NAME \｛21 SPACES\}\{OFF\}"
 BS 2190 PRINTTAB（18）＂\｛UP\}\{RVS\} ＂；：INPUTIN\＄：PRINT＂\｛UP\} \｛OFF\}": IN\$=LEFT\$(IN\$,1 2）
 AX 22øø OPEN15，8，15：OPEN2，8，2， ＂$\emptyset: "+I N \$+", S, W "$
 QS 2210 GOSUB241ø：IFEN＞1THENFO RC＝ØTO5øøø：NEXT：CLOSE2 ：CLOSE15：RETURN
 CD 222 Ø PRINT\＃2，CW；C\＄；H；C\＄；M；C \＄；PC；C\＄；AC；C\＄；DC；C\＄；SC ；CS；RC
 EG 223 Ø PRINT\＃2，RS；C\＄；FC；CS；AF ；CS；DF；C\＄；SF；CS；RF
 AH 2240 MD＝ML：PRINT\＃2，PW；C\＄；PP ；C\＄；MD ；C\＄；FM；C\＄；TP；C\＄； FP；C\＄；AP；CS；DP；C\＄；SP；C \＄；RP
 SQ 2250 PRINT\＃2，WW；C\＄；CP；CS；FQ ；C\＄；GG；C\＄；RR；C\＄；PT：GOS UB241ø
 GF $226 \emptyset$ FORC $=\emptyset$ TO7 ：PRINT\＃2，PEEK （4992 $0+\mathrm{C}$ ）
 GJ 2270 NEXT：FORC＝øTO7：PRINT\＃ 2 ， $\operatorname{PEEK}(49936+C)$
 ER 228 NEXT：GOSUB241 10
 XQ 2290 CLOSE2：CLOSE15：RETURN
 EJ 23øø POKE214，22：PRINT：PRINT ＂\｛RVS\} LOAD FILE NAME \｛21 SPACES \}\{OFF\}"
 FA 2310 PRINTTAB（18）＂\｛UP\}\{RVS\} ＂；：INPUTIN\＄：PRINT＂\｛UP\} $\{O F F\}$＂：IN $\$=$ LEFT $($ INS, 1 2）
 JP 232 OPEN15，8，15：OPEN2，8，2， ＂Ø：＂＋INS＋＂，S，R＂
 RG 2330 GOSUB2410：IFEN >1 THENFO RC＝ØTO5øøø ：NEXT：CLOSE2 ：CLOSE15：RETURN
 BF $234 \emptyset$ INPUT\＃2，CW，H，M，PC，AC，D C，SC，RC
 GK 235 Ø INPUT\＃2，RS，FC，AF，DF，SF ，RF
 JX 2360 INPUT\＃2，PW，PP，MD ，FM，TP ，FP，AP，DP，SP，RP
 SE $237 \emptyset$ INPUT\＃ 2 ，WW，CP，FQ，GG，RR ，PT：GOSUB241б
 RQ 238 FORC＝ 0 TO7：INPUT\＃2，X：PO KE（ 4992 Ø＋C），X：NEXT
 QP 2390 FORC $=$ ØTO7：INPUT\＃2，X：PO KE（ $49936+\mathrm{C}), \mathrm{X}: \mathrm{NEXT}: G O S$ UB241ø
 HG 24øØ CLOSE2：CLOSE15：RETURN
 KG 2410 INPUT\＃ 15 ，EN，EMS，ET，ES
 SH 242 Ø IFEN＞1THENPOKE214，22：P RINT：PRINTCHRS（18）；EMS ；CHR\＄（32）；＂\｛5 SPACES\}"
 CK $243 \emptyset$ RETURN
 RK $244 \emptyset$ IFFP $=\emptyset$ THENIFMD $<>$ MLTHEN ML＝MD：GOSUB5 $7 \varnothing$
 RM 2450 PRINT＂E8习\｛HOME\}":GOSUB 710：GOSUB780：GOSUB830： GOSUB94ø
 EG 2460 GOSUB1 $05 \emptyset: G O S U B 1$ ø8ø：GO SUB1120：PRINT＂ㅌ43
 \｛HOME \}": GOSUB115ø:RETU RN

 # Fast Data For 64

 ## Bob Kodadek

 This handy Commodore 64 routine offers a speedy alternative to READ－ ing large amounts of information from DATA statements and POKEing it into memory．By using this automatic technique，you can cut program ini－ tialization delays dramatically．Use it for new programs or convert all your old ones－either way，you＇ll be de－ lighted at the difference it makes．

 Have you ever waited for a BASIC program to READ loads of data from DATA statements and POKE it into memory？This has always been the traditional way to store data for sprite images or custom characters，to set up musical note tables，and for many other purposes． No matter what the goal，there are few experiences more tedious than staring at a PLEASE WAIT message while BASIC executes hundreds（or even thousands）of READ and POKE statements．＂Fast Data For $64^{\prime \prime}$ can perform such operations in a flash，at the speed of machine language．Yet，it becomes part of your BASIC program and is simply called with a GOSUB．For example， 2000 bytes of data can be read and POKEd into memory in only 6／10
 second－about 3000 bytes per sec－ ond．It takes BASIC over 27 full seconds to do the same job．Best of all，this routine automatically ap－ pends itself to any BASIC program and can be used even if you don＇t know anything about machine lan－ guage．

 ## A Speedy Alternative

 Type in and save the program as it appears in the listing．When you run it，the program installs a ma－ chine language routine in memory， then displays several instructions on the screen．Next，load the BASIC program you wish to convert．After the load is finished，enter SYS 49152 and press RETURN．When the word LIGHTNING appears on the screen，a special routine has been added to your program．If you list the program，you will notice that it now contains four extra lines， numbered 63996－63999．（These line numbers are used because the routine must be located at the very end of your program，and BASIC will not allow line numbers higher than 63999．）

 Now locate the very last DATA statement in your program and add a comma followed by -1 ．For in－ stance，say that the last DATA line in the program looks like this：

 ## 5000 DATA 224,169,255,96

 You'd change it to:
 5000 DATA $224,169,255,96,-1$
 The value -1 marks the end of the data. (Because -1 is used as a marker, you cannot use this program for data that contains the value -1 elsewhere. This shouldn't pose any problems when the program is used for its intended purpose, since it's impossible to POKE a negative value into a memory location.)

 To call the routine, add a line which sets the variable D equal to the beginning of the memory area where you want to store the data and then executes GOSUB 63997. For example, to move a block of data into screen memory, which normally begins at location 1024, you could use this line:

 ## $100 \mathrm{D}=1024$:GOSUB 63997

 The same procedure is used whether you're writing a new program or enhancing an existing one. If you're updating an existing program, be sure to remove the old lines that previously did the POKEing. (Of course, you must not remove the DATA lines themselves, since the ML routine still needs something to read.) This routine uses the variable names $\mathrm{D}, \mathrm{D} \%$, and A , so you must not use those variables anywhere in your own program. When you're finished making the changes, save the modified version of the program with a new filename.

 If you're interested in how all this works: Line 63997 of the conversion routine changes the variable D into a low-byte/high-byte address and sets up a pointer at 253-254 (\$FD-\$FE) for the machine language routine to use in storing the data. Line 63998 updates the DATA pointer at 65 (\$41) by reading and POKEing the first byte of data from BASIC. It then calculates the location of the machine language routine in BASIC memory and calls it with the resultant SYS number. Line 63999 contains the actual machine language in a REM statement. This technique works fine as long as the code is relocatable and does not contain any zero bytes or control characters. Note that this special line con-
 tains more than the usual 80 characters. Do not attempt to edit or change this line in any way; the BASIC editor will shorten the line and scramble the machine language it contains.

 ## Fast Data For 64

 For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing in
 Programs" in this issue of COMPUTE!.
 XB $1 \varnothing$ PRINT" $\{C L R\}$ \{DOWN \}PLEASE \{SPACE \}WAIT":FOR I=ø TO \{SPACE \} 386: READ BY: POKE \{SPACE \} $49152+\mathrm{I}, \mathrm{BY}: \mathrm{CK}=\mathrm{CK}+$ BY: NEXT
 RF $2 \varnothing$ IF CK <> 38541 THEN PRIN T"ERROR IN DATA STATEMEN T1": END
 GG $3 \varnothing$ DATA $162, \varnothing, 189,101,193,2$ $40,6,32$
 XC $4 \varnothing$ DATA $210,255,232,208,245$,169,77,133
 GS $5 \varnothing$ DATA $17 \varnothing, 169,192,133,171$,32,51,165
 FQ $6 \varnothing$ DATA $160,0,177,17 \varnothing, 2 \varnothing 1,3$,240,18
 EM $7 \varnothing$ DATA $145,34,230,34,2 \varnothing 8,2$,230, 35
 SD $8 \varnothing$ DATA $23 \varnothing, 17 \varnothing, 2 \varnothing 8,2,23 \varnothing, 1$ 71,160, 0
 MG $9 \varnothing$ DATA $24 \emptyset, 232,32,51,165,1$ 65,34,24
 QF 1øø DATA $1 \varnothing 5,2,144,2,230,35$,133,45
 FJ 110 DATA $133,47,133,49,165$, 35,133,46
 GA $12 \varnothing$ DATA $133,48,133,50,96,5$ 8,8,252
 MR $13 \varnothing$ DATA $249,128,58,143,32$, 82,38,80
 SG $14 \emptyset$ DATA $32,82,79,85,84,73$, 78,69
 BB $15 \emptyset$ DATA $46,7 \varnothing, 73,82,83,84$, 32,83
 JP 160 DATA $69,84,32,68,61,84$, 79,32
 QR $17 \varnothing$ DATA $68,69,83,84,32,84$, 72,69
 FM $18 \emptyset$ DATA $78,32,71,79,83,85$, 66,32
 DC 190 DATA $54,51,57,57,55,0,1$ Ø3, 8
 DR $2 ø \emptyset$ DATA $253,249,68,37,178$, 68,173,5ø
 KA $21 \emptyset$ DATA $53,54,58,151,50,53$,52,44
 QX $22 \varnothing$ DATA $68,37,58,151,50,53$,51,44
 CB 230 DATA $68,171,68,37,172,5$ Ø, 53,54
 PM 240 DATA $58,135,32,65,58,15$ 1,32,68
 PB $25 \emptyset$ DATA $44,65, \varnothing, 156,8,254$, 249,158
 RD 260 DATA $32,194,40,52,54,41$,172,51
 JX $27 \varnothing$ DATA $53,54,17 \varnothing, 194,40,5$ 2,53,41
 RJ $28 \emptyset$ DATA $171,32,49,49,56,32$,58,142
 KK 290 DATA $58,143,32,76,73,78$,68,32
 CX 3 Øø DATA $49,83,84,32,66,89$, 84,69
 FK $31 \varnothing$ DATA $32,79,7 \varnothing, 32,77,47$, 76, 0

 KG $32 \emptyset$ DATA $22,9,255,249,143,3$ 4,230,253
 XR 330 DATA 2ø8,2,230,254,160, 255,200,132
 GP 340 DATA $98,132,99,132,100$, 23ø,65,2ø8
 MS $35 \emptyset$ DATA $ø 2,23 \emptyset, 66,177,65,2$ ø8, 014,165
 CF 360 DATA $65,24,105,5,133,65$,144,44
 MM $37 \varnothing$ DATA $23 \varnothing, 66,2 ø 8,40,234$, 2ø1,44,24ø
 EK $38 \emptyset$ DATA $35,2 \varnothing 1,32,240,224$, 2ø1,45,2ø8
 FK $39 \varnothing$ DATA $12,165,65,24,105,2$,133,65
 RX $4 ø \emptyset$ DATA $144,2,230,66,96,56$,233,48
 QE $41 \emptyset$ DATA $166,99,134,98,166$, 106,134,99
 FP $42 \varnothing$ DATA $133,1 \varnothing 0,176,193,16$ 2,1øø,165,98
 FC $43 \varnothing$ DATA $24 \varnothing, 9,2 \emptyset 1,1,240,2$, 162,2øø
 BF $44 \emptyset$ DATA $138,133,98,165,99$, 246,8,162
 XX 450 DATA $9,24,101,99,202,2 \varnothing$ 8,250,24
 QR 460 DATA $1 \emptyset 1,98,24,101,1 \varnothing \varnothing$, $145,253,144$
 JE $47 \varnothing$ DATA $141, \varnothing, \varnothing, \varnothing, 3,76,73$, 71
 AF $48 \emptyset$ DATA $72,84,78,73,78,71$, 33, 013
 FJ $49 \varnothing$ DATA $\varnothing, 4 \varnothing, 67,41,49,57,5$ 6,54
 DC $50 \emptyset$ DATA $66,79,66,75,79,68$, $65,68,69,75, \varnothing$

 ## COMPUTE!
 Subscriber Serviにes

 Please help us serve you better. If you need to contact us for cny of the reasons listed below, write to us at:

 ## COMPUTEI Magazine

 ## P.O. Box 10954

 Des Moines, IA 50ミ40
 or call the Toll Free number listed below.
 Change Of Address. Please allow us $6-8$ weeks to effect the change; send your current mailing label along with your new address.
 Renewal. Should you wish to renew your COMPUTEI subscription before we remind you to, send your current mailing label with payment or charge number or call the Toll Free number listed below.
 New Subscription. A one year (12 month) US subscription tc, COMPUTEI is $\$ 24.00$ (2 years, $\$ 45.00$; © years, $\$ 65.00$. For subscription rates outside the US, see staff page). Send us your name and address or call the Till Free number listed below.
 Dellvery Problems. If you receive duplicate issues of COMPUTE, if you experience late delivery or if you have problems with your subscription, please call the Toll Free number listerd below.

 ## COMPU'TE!

 1-800-247-5470
 In IA 1-800-532-1272

 # Enhancements For Atari SpeedCalc

 Fred Chapman

 Here are two enhancements for the Atari version of COMPUTE！＇s popular spreadsheed program SpeedCalc （published March 1986）．These new features give you greater control over printed output and allow you to copy or move blocks of cells without recal－ culating the entire spreadsheet．A disk drive is required．

 Atari SpeedCalc is an excellent spreadsheet program，but even a good program can be improved here and there．＂Enhancements For Atari SpeedCalc＂makes several modifications to SpeedCalc to in－ crease its power and convenience． Type in the program and save it to disk or tape，then run it．

 When the program begins，you are prompted to insert a disk con－ taining Atari SpeedCalc．Make sure you have a backup copy of SpeedCalc stored safely on another disk，in case you experience a disk error or change your mind about using the enhanced version of SpeedCalc．Press RE－ TURN when the disk is in place． The enhancement program auto－ matically appends the necessary code to the SpeedCalc AUTORUN． SYS file．After a few moments，the computer prints DONE．To enter SpeedCalc，remove or disable BASIC，then reboot the system．

 ## Selective Printing

 When printing to a device（a print－ er，disk drive，or the screen），the original SpeedCalc always starts printing at the upper left cell in the spreadsheet（cell AA1）．This feature effectively limits the width of any printout to seven－or eight－cell col－ umns on an 80 －column printer．The enhanced version of SpeedCalc has the ability to send the contents of any block of cells to the device you select．

 To print out a selected block of cells，move the cursor to the bottom right cell of the block that you want to print，then press CTRL－P（hold down CTRL，then press P）．When prompted for the output device，en－ ter P：to select the printer，E：to select the screen，or D：followed by a filename to print to a disk file． Now move the cursor to the top left cell of the block you wish to print， then press RETURN．SpeedCalc prints only the selected block．

 ## Improved Move And Copy

 The new version of SpeedCalc also has the ability to copy or move blocks of cells without recalculat－ ing．This permits you to piece to－ gether sections of the spreadsheet for printing without causing calcu－ lation errors．For example，you may want to move a column of titles just to the left of the cells to be printed． Recalculation during copy and move operations is now consistent with SpeedCalc＇s automatic recalcu－ lation mode．If automatic recalcula－ tion is turned on，copy and move commands cause the entire spread－ sheet to be recalculated．If automat－ ic recalculation is turned off，copy and move simply move the contents of the selected block from one place to another within the sheet．Just as in the original version，you can tog－ gle automatic recalculation mode on or off by pressing CTRL－R．

 ## Enhancements For Atari SpeedCalc

 For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTEI．
 MH 1 II REM PRINT ROUTINE ENHA NCEMENTS FOR SPEEDCALC BI 20 REM THIS PROGRAM APPEN DS SEVERAL PATCHES TO THE ORIGINAL SPEEDCALC DB 3 TRAP 43%
 WI 4 CHECKSUM＝ C ： $\mathrm{NBYTES=8} \mathrm{\varnothing}$
 JL 5% FOR BYTE＝1 TO NBYTES：R EAD ABYTE：CHECKSUM＝CHE

    ```
    CKSUM+ABYTE:NEXT BYTE
    OJ 6\emptyset IF CHECKSUM<>7369 THEN
        PRINT "ERROR IN DATA
            8TATEMENTS":GOTO 44.
    CI7\emptyset DIM A$(1)
    PM 8\emptyset PRINT "{CLEAR}INSERT S
    PEEDCALC DISK & PRESS
    RETURN":INPUT A&
    DD9\emptyset CLOSE #```

