

The Leading Magazine Of Home, Educational, And Recreational Computing

New Technologies: The Converging Digital Universe
Why Everything From
Computers \& CD-ROMs To TVs \& Satellites
Are On A collision Course

Adding Power To ST BASIC
 Valuable Techniques For Atari Programmers

Apple Hi-Res Graphics Mix, Flip, And Copy High-Resolution Screens

64 Screen Genie A Magic Method For Character Graphics

AmigadOs Batch Files Take Control of Your Amiga

Atari FontMaker Design Your Own custom Characters

When the Going Gets Tough, the Bard Goes Drinking.

Hnd the going is tough in Skara Brae town. The evil wizard Mangar has cast an eternal winter spell. Monsters control the streets and dungeons beneath. Good citizens fear for their lives. What's worse, there's only one tavern left that serves wine. But the Bard knows no fear. With his trusty harp and a few rowdy minstrel songs he claims

are magic, the Bard is ready to boogie. All he needs is a band of loyal followers: a light-fingered rogue to find secret doors, a couple of fighters to bash heads, a conjurer to create weird allies, a magician for magic armor.
Then it's off to combat, as soon as the Bard finishes one more verse. Now what's a word that rhymes with "dead ogre?"

4 classes of magic user, including wizard and sorceror. 85 new magic spells in all.

128 color monsters, many animated. All challenging.

Full-color scrolling dungeons. 16 levels, each better than the one before. 3-D city, too.

The Bard's Talew

Electronic Arts**

We don't care

which computer you own.

 We'll help you get the most out of it.

CompuServe puts a world of information, communications, and entertainment at your fingertips.

CompuServe is the world's largest information service designed for the personal computer user and managed by the communications professionals who provide business information services to over one quarter of the FORTUNE 500 companies.

Subscribers get a wealth of useful, profitable or just plain interesting information like national news wires, home
shopping and banking, travel and sophisticated financial data. Plus electronic mail, national bulletin boards, forums (special interest groups), and a multichannel CB simulator.

You get games and entertainment, too. Board, parlor, sports, space and educational games. Trivia and the first online TV-style game show played for real prizes. To buy a CompuServe Subscription Kit,
see your nearest computer dealer. To receive our informative brochure or to order direct call or write:

CompuServe ${ }^{*}$

Consumer Information Service, P. O. Box 20212 5000 Arlington Centre Blvd., Columbus, OH 43220 800-848-8199 in Ohio Call 614-457-0802

[^0]
Free software from Electronic Arts".

It's easy!

Buy any of these 12 smash hits from your participating dealer between February 1, 1986, and May 31, 1986. Then just mail in your proof of purchase, $\$ 5$ for shipping and handling, and the official "Get One Free" coupon. So what are you waiting for?

In case of emergency...

If you can't find a participating dealer, you can order direct from us by telephone or mail. Just call toll-free 800-227-6703. In California call 800-632-7979. Have your Visa or MasterCard number ready. Just tell us what you want to buy, and what you want for free. It's simple. And there's a 14-day "satisfaction or your money back" guarantee on all products ordered direct.

In case your participating dealer runs out of "Get One Free" coupons, use this.
\square Yes! I want free software from Electronic Arts!
\square No thanks. I'm using my computer as a doorstop.
(Check one)

Apple II, II+, //c, //e	Commodore 64 \& 128	Atari 400-1200 series	IBM PCir, PC, \& comp.
\square Dr. J. \& Larry Bird Go One-On-One	\square Dr. J. \& Larry Bird Go One-On-One	Dr. J. \& Larry Bird Go One-On-One	\square Dr. J. \& Larry Bird Go One-On-One
\square Archon	\square Archon	\square Archon	\square Archon
\square Financial Cookbook	\square Financial Cookbook	\square Financial Cookbook	\square Financial Cookbook
\square Music Construction Set			
\square Pinball Construction Set			
\square Seven Cities of Gold			
\square Archon II: Adept	\square Archon II: Adept	\square Archon II: Adept	
\square Movie Maker	\square Movie Maker	\square Movie Maker	
	\square M.U.L.E.	\square M.U.L.E.	
	\square Realm of Impossibility	\square Realm of Impossibility	
	\square Mail Order Monsters		
	\square Racing Dest-uction Set		
Please send my free software to the following address. I have enclosed the required Proofs of Purchase and $\$ 5$ (check or money order payable to Electronic Arts) to cover the cost of shipping and handling (\$7 Canadian).			
PLEASE PRINT			
Name			
Address			
City 4			
Phone			
	two items: 1) the dated cash register package you purchased. Cut off the ms and $\$ 5$ for shipping and handling be accepted.	or receipt showing the product yo mber on the back. lower-left-hand Canadian), along with the coupon. to or residents of the U.S.A. and Cana	chased. and 21 find the Command Only Arts, "Buy 1, Get 1 Free," ly. Only the products listed are available

Let's face it. Buying home software can be a risky proposition. Good software costs a lot of money. Cheap software practically rolls over and barks. But look at this.The titles listed below are Electronic Arts' greatest hits. They've all scored on the "top twenty" best-seller charts. Between them they've won over 60 product quality awards - making them the most honored products in the home software industry.

Best of all, there's no longer any reason to swallow hard when you think about treating yourself to quality software. Because now you can:

Buy1,Get1Free.

DR. J. \& LARRY BIRD GO ONE-ON-ONE*
The best-selling computer sports simulation of all time.
"Game of the Year" - Electronic Games
Apple // family, C-64 \& 128.
Atari, IBM PCjr, PC, and comp.

SEVEN CITIES OF GOLD~
Play Conquistador in this educational adventure of history and geography. "Best Role-Playing Adventure" - Family Computing Apple // family, C-64 \& 128, Atari, IBM PCjr. PC, and comp.

MOVIE MAKER *
Create your own high-quality animated movies "A masterpiece:

- Creative Computing

Apple // family, C-64 \& 128, Atari.

PINBALL CONSTRUCTION SET*
Build your own video pinball games "Best Game Generator" - Infoworld Apple // family, C-64 \& 128, Atari, IBM PCjr. PC, and comp.

ARCHON *
Like chess with arcade battle action.
"Game of the Year"

- Creative Computing

Apple // family, C-64 \& 128, Atari, IBM PCjr, PC, and comp.

REALM OF IMPOSSIBILITY* Action and adventure in a world of Escher-like illusions. Includes a unique 2-player cooperative mode. C-64 \& 128, Atari.

MUSIC
CONSTRUCTION SET*
Composition for anyone who can point a joystick. "Best Music Generator" - Infoworld Apple // family, C-64 \& 128, Atari, IBM PCjr, PC, and comp.

ARCHON II: ADEPT ${ }^{*}$
Graduate school for Archon addicts. Even more strategy and magic. "Best Strategy/Arcade Game" - Family Computing

Apple // family, C-64 \& 128, Atari.

M.U.L.E. ${ }^{*}$

The best multi-player computer game of all time.
"Best Strategy Game" - Infoworld "Best Multi-Player Game" - Electronic Games C-64 \& 128, Atari.

RACING DESTRUCTION SET* Land mines, oil slicks, animated spin-outs, collisions and crashes. the ultimate racing game.. - Computer Entertainer. C-64 \& 128.

MAIL ORDER MONSTERS ${ }^{*}$
New. Like an "Archon Construction Set." 'Best Construction Set" - Family Computing C-64 \& 128.

[^1]IBM is a registered trademark of International Business Mamped, self-addressed envelope to Electronic Arts Catalog. 1820 Gateway Drive. San Mateo, CA 94404 trademarks of Commodore Business Machines. Inc. Atari is a registered trademark iegistered trademark of Apple Computer Inc. Commodore 64 \& 128 are registered Financial Cookbook. Music Construction Set. Pinball Construction Set. Seven Citer Atari Computer Corp. Electronic Arts, Dr. J \& Larry Bird Go One-on-One. Archon. Order Monsters, and Racing Destruction Set are registered trademarks of Electronic Arts

ELECTRONIC ARTS ${ }^{\text {'M }}$

Elementary Amiga BASIC

> C. Regena
> $0-87455-041-6, \$ 14.95$

Disk $\$ 15.95$

Elementary ST BASIC
C. Regena

0-87455-034-3, \$14.95
Disk $\$ 15.95$

Basic programming at its best!

Two new programming guides from COMPUTE! Books.

Written by the author of the bestselling Programmer's Reference Guide to the TI-99/4A, these books introduce you to the new and powerful BASIC on the Amiga and Atari ST personal computers. The computers' impressive graphics, animation, and sound can be unlocked with the right commands, and BASIC is the place to start. Regena shows you how-in the clear, concise language that's made her such a popular writer.

Complete descriptions of the Amiga's and ST's BASIC commands, syntax, and organization take you from novice to full-power programming. Sample programs and subroutines, all ready to type in, are included. Plus, both books offer you working software while showing you how to write your own programs. A disk is also available for each book which includes all the programs from the book in an easy, ready-to-load format.

SPECIAL COMBINATION OFFER
 Order the book and disk together for only $\$ 29.95$!

You'll find these new programming guides and many more useful, entertaining COMPUTE! books at your local computer and book stores. Or you can order directly from COMPUTE! Books.
For the fastest service, call toll free 1-800-346-6767 (in NY 212-887-8525). Or mail the attached coupon with your payment to COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.
Please add shipping and handling charges to all orders: In U.S., $\$ 2.00$ per book, disk, or combination package; $\$ 5.00$ per item airmail.

I want the best in BASIC programming guides. Please send me:

CCMPUTE!

COMPUTEI The Journal for Progressive Computing (USPS: 537250) is published monthly by COMPUTE! Publications, Inc., 825 7th Ave., New York, NY 10019 USA. Phone: (212) 265-8360. Editorial Offices are located at 324 West Wendover Avenue, Greensboro, NC 27408. Domestic Subscriptions: 12 issues, $\$ 24$. POSTMASTER: Send address changes to: COMPUTEI Magazine, P.O. Box 10955, Des Moines, IA 50950. Second class postage paid at Greensboro, NC 27403 and additional mailing offices. Entire contents copyright © 1986 by COMPUTE! Publications, Inc. All rights reserved, ISSN 0194-357X.

Editor's Nołes

COMPUTE! Editor Tom Halfhill contributes an editorial this month.
-Robert Lock, Editor in Chief
The latest-generation personal computers present the best evidence to date that microcomputers are evolving into desktop mainframes. Megabytes of memory, hard disk drives, high-speed processors, and multitasking operating systems are no longer limited to the monster machines locked away in the data processing departments of governments and big corporations. Now you can get these features in a personal computer that costs less than $\$ 2,000$ and fits comfortably on a desktop.

But why would you want to? After all, many people are questioning why anyone needs any kind of computer in their home. Are the new machines just a more blatant example of technological overkill?

Practically everyone who's ever used a computer understands the value of more memory and mass storage, high-speed processing, and faster input/ output. All those things translate into more horsepower, and if the price is right, we'll welcome more horsepower. But one feature that some people are regarding with skepticism is multitask-ing-the ability to run more than one program at a time. Is it really practical to run a spreadsheet and a word processor simultaneously? Even if the computer can do two things at once, the user probably can't.

This criticism overlooks several advantages of multitasking: its convenience, the way it shifts busy work away from the user and onto the computer, its implications for software design, and its future applications in tomorrow's homes.

It's hard to appreciate the sheer convenience of multitasking until you've experienced it. Even if you aren't actively using two or more programs at once, you can keep them loaded in memory, available at the press of a key or click of a mouse button. For instance, you can type a letter with a word processor, switch to a terminal program to upload it to an electronic mail service, then switch to BASIC to finish a program you've been writing. On most home computers, that would
require rebooting the machine several times, swapping disks, running different programs, and waiting.

Multitasking can also spare you some drudgery by letting the computer do the tedious jobs. If you log onto a commercial information service to check stock quotations every evening, you can set up the computer to do this for you automatically-even while you're using the machine for something else in the meantime. Multitasking is something that's hard to do without once you've had it.

Multitasking also lets you create your own integrated software packages. You can buy whatever word processor, graphics program, spreadsheet, and terminal program you want and load them all into memory at once. If the computer supports a standardized file transfer protocol-as do the Macintosh and Amiga-you can cut and paste pictures or spreadsheet tables into documents created with the word processor and so forth, even if the programs were made by different software companies.

Finally, there are exciting possibilities for multitasking in the future. Remember that microcomputers are following the paths established by mainframes; it's a small step from multitasking to multiuser processing. If a computer can run several programs at once in windows on a single screen, why not turn those windows into separate screens and put them in different rooms? We know from our mail and readership surveys that many of you are already multicomputer households. Mom and Dad have a computer in the study, and the kids have one or two in the family room or bedroom. Someday you'll be able to buy a single personal computer with enough brute force to drive several terminals throughout your home. Each terminal will be as powerful and seemingly as independent as today's personal computers, yet the system will be economical because you'li all share the same printer, modem, hard disk drive, and CD-ROM player.

The main disadvantages of multi-tasking-the amounts of memory and processing time it can gobble up-are temporary annoyances. Memory chips are getting cheaper as fast as microprocessors are growing more powerful.

Atari recently introduced the first 1024 K computer for under $\$ 1,000$, just five years after an 8 K Atari 800 retailed for $\$ 1,000$. And Motorola recently announced a 20 megahertz version of its 68020 microprocessor, referred to as the "mainframe on a chip."

It seems that the only real problem to be overcome is the incredible complexity of writing and debugging a true multitasking operating system. Ask an IBM owner about all the popular Side-kick-type, co-resident programs that compete for the attention of DOS interrupts and the keyboard. Or ask an Amiga owner about the weird things that can happen when the computer tries to do too much at once. (In fact, one of the strangest things we've seen on the Amiga is something that can be described as a "half crash." On practically any other computer, a system crash is a system crash-the machine locks up and you have no choice but to reboot. On the Amiga, we've managed to crash part of the computer while the other part struggles valiantly onward. You end up rebooting anyway just to play safe, but it's an interesting demonstration of multitasking.)

Essentially, multitasking gives you the near-equivalent of several computers in a single box. And if the box is priced right and meets your other requirements, why walk when you can run?

Tom R. Halfhill, Editor

IF YOU CAN FIND A BETTER PROGRAM WF'Ll BUY IT FOR YOU!

WORD WRITER "cs sedele

Now with 85,000 word Spelling Checker

- An efficient, 80 -column professional word processing system which includes a spelling checker and built-in calculator.
- Contains all the features you'll need for everyday word processing, plus most of the sophisticated features found in more expensive programs: document chaining, form letter printout, page separations, horizontal and vertical scrolling, and more.

With Timeworks you gef more power for your dollar

You can use each program alone. Or interface this trio - one at a time if you like -into a completely integrated productivity system that delivers all the power and features most of you will ever need . . . at a cost that lets you enjoy their use.

Look for these and other Timeworks programs at your favorite dealer. Or contact Timeworks, 444 Lake Cook Road, Deerfield, IL 60015. Phone: (312) 948-9200.

DATA MANAGER 2

Fusfer, more efficienf, more versatile

- A complete general information storage and retrieval system with report-writing, graphics, statistics, and label-making capabilities.
- Exclusive X-SEARCH, X-SORT, and X-CHART features allow you to crosssearch any category of information; sort items alphabetically, numerically, or by date; break down statistical information into categories; and graphically view your results.

With Timeworks you get more than software

You Get Our Customer Technical Support Team

At the other end of our toll-free hotline, you'll find our full-time Customer Technical Support Team. Free of charge to all registered users.

You Get Our Liberal Trade-Up Policy

You'll find the details inside each package.

SWIFTCALC win SIDEWAYS

New easy-fo-use spreadsheet for home and small business use

- The SIDEWAYS option lets you print all your columns on one, continuous sheet . . . sideways.
- 250 rows and up to 250 columns (128 K version) provide up to 62,500 cells (locations on the spreadsheet) in which to place information.
- Performs mathematical functions up to 17 digits. Allows the use of minimum and maximum values, averages, sums, integers, absolute values and exponential notation.

* With Timeworks you get our Money Back Guarunfee

If you can find anything that works better for you, simply send us your Timeworks program, your paid receipt, and the name of the program you want, along with your check or credit card number for any retail price difference. If it's available, we'll buy it for you."
For Apple,
Commodore 128 (128K) \& Commodore 64
Computers

Other Timeworks Programs:

- The Evelyn Wood Dynamic Reader
- Sylvia Porter's Personal Finance Series - Swiftax $\#$ Cave of the Word Wizard - Business Systems - Wall Street - The Electronic Checkbook - The Money Manager

Publisher Founder/Editor In Chlef Senlor Editor Managing Ediltor Executive Editor	James A. Casella Robert C. Lock Richard Mansfield Kathleen Martinek Selby Bateman
Edilor Assistant Editor Production Director Production Editor Editor, COMPUTE!'s GAZETTE Technical Editor Assistant Technical Editors Program Editor Assistant Editor, COMPUTEI's GAZETTE Assistant Features Editor Programming Supervisor Editorial Programmers Research/Copy Editor Copy Editor Submissions Reviewer Programming Assistants Executlve Assistant Administrative Assistants Associate Edilors Contributing Editor	Tom R. Halfhill Philip Nelson Tony Roberts Gail Cowper Lance Elko Ottis R. Cowper John Krause, George Miller Charles Brannon Todd Heimarck Kathy Yakal Patrick Parrish Tim Victor, Kevin Mykytyn Joan Rouleau Ann Davies Mark Tuttle David Florance, David Hensley Debi Nash Julia Fleming, Iris Brooks, Mary Hunt, Sybil Agee Jim Butterfield Toronto, Canada Harvey Herman Greensboro. NC Fred D'Ignazio Roanoke, VA David Thornburg Los Altos. CA Bill Wilkinson
COMPUTEI's Book Division Editor Assistant Edilor Director, Book Sales \& Marketing	Stephen Levy Gregg Keizer Steve Voyatzis
Production Manager Art \& Design Director Assistant Editor, Art \& Design Mechanical Art Supervisor Artists Typesetting Illustrator	Irma Swain Janice R. Fary Lee Noel De Potter Debbie Bray, Dabney Ketrow Terry Cash, Carole Dunton Harry Blair
Director of Advertising Sales Production Coordinator	Ken Woodard Kathleen Hanlon
Promotion Assistant	Caroline Dark
Customer Service Manager Dealer Sales Supervisor Individual Order Supervisor Receptionist Warehouse Manager	Diane Longo Orchid Tamayo Judy Taylor Anita Armfield John Williams
Data Processing Manager	Leon Stokes
James A. Casella, President R. Steven Vetter, Vice President, Finance and Planning	
COMPUTEI Publications, Inc. publishes:	
COMPUTE! COMPUTEI'S 	
COMPUTEI Books COMPUTE'S 	5 DISK
COMPUTEI's Apple Applicafions Special	
Editorial offices:	324 West Wendover Avenue Suite 200 Greensboro, NC 27408 USA
Corporate offices:	825 7th Avenue New York, NY 10019 212-265-8360
Customer Service:	$\begin{aligned} & 800-346-6767 \\ & \text { (In NY 212-887-8525) } \end{aligned}$

Coming In Future Issues

Two New ColumnsI

For Atari ST
And Amiga
Hickory Dickory Dock:
Teaching Kids To Tell Time
For Commodore, Atari, ST,
Amiga, Apple, PC/PCjr
Commodore Auto-Boot Maker
Custom Characters
For Atarl SpeedScript
Add System Power
To Atari ST BASIC, Part 2
Amiga Puzzle:
An Amiga BASIC Application
Windows On The Commodore 128

Andit Burean
of Circulations
Subscription Orders
COMPUTEI
P.O. Box 10954

Des MoInes, IA 50340
TOLL FREE Subscription Order LIne 800-247-5470 In 14 800-532-1272

COMPUTEI Subscription Rates

 (12 Issue Year):US (one yr.) $\$ 24$

Canada and
Surface Mail \$30
Foreign Air
Delivery
$\$ 65$

Advertising Sales

1. New England

John Saval
Eastern Advertising
Manager
212-315-1665

2. Mid Atlantle

John Saval
Eastern Advertising
Manager
212-315-1665
3. Southeast \& Forelgn Harry Blair
919-275-9809
4. Midwest

Gordon Benson
312-362-1821
5. Northwest/ Mountaln/Texas
Phoebe Thompson
Dani Nunes
408-354-5553
6. Southwest

Ed Winchell
213-378-8361

Director of Advertising Sales

Ken Woodard
COMPUTEI Home Office 212-887-8460
Address all advertising materials to: Kathleen Hanlon
Advertising Production Coordinator COMPUTEI Magazine
324 West Wendover Avenue Suite 200
Greensboro, NC 27408

[^2]
Discover the thrill of

with COMPUTE! Books' 40 Great Flight Simulator Adventures

- Maneuver around the towers of the World Trade Center.
-Sightsee the Hudson River.
- Practice night flying and aerobatics.

Charies Gulck
Sturning tours of the stratosphere, night fights, and doadstick landings. thiling, custornized fight scenarios put you in the pliot's ssot.
Fow filpt Smijtor ond figr smuatorion to Aopio, ose

40 Great Flight Simulator Adventures
 Charles Gulick

Forty exciting, customized flight simulator scenarios put you in the pilot's seat as you fly over bridges, around skyscrapers, and land at mysterious airports. Flight Simulator (IBM PC) and Flight Simulator II (Apple II, Commodore 64, Atari) are two of the most popular games/simulations for personal computers. With this book, you can experience flight adventures from the moment you load the program. Parameters set up each flight and a running commentary describes what you'll see (and where to look to see it). Ranging from the simple and straightforward to the advanced and even mystical, these 40 flights will open a new dimension to an already outstanding program.
$\$ 9.95$ ISBN 0-87455-022-X

Note: Flight Simulator from Microsoft Corporation and Flight Simulator II from Sublogie Corp. are required in order to use this book. The book is designed to enhance the programs.

Please send me \qquad copies of 40 Great Flight Simulator Adventures at $\$ 9.95$ each. (ISBN No. 0-87455-022-X)
All orders must be prepaid in U.S. funds.

Subtotal
NC residents add 4.5% tax
\$2.00 shipping and handling charge per book.
Total amount enclosed

\square Payment enclosed (check or money order)
\square Charge \square Visa \square MasterCard \square American Express
Name
Address
City \qquad State \qquad Zip \qquad
Please allow 4-6 weeks for delivery.

If you have any questions, comments, or suggestions you would like to see addressed in this column, write to "Readers' Feedback," COMPUTE, P.O. Box 5406, Greensboro, NC 27403. Due to the volume of mail we receive, we regret that we cannot provide personal answers to technical questions.

Relocating Machine Language

I would like to combine two Commodore machine language programs that both reside at location 49152 (\$C000). I know that BASIC lets you relocate programs quite easily, just by moving the bottom-of-BASIC pointer upward. How is this done with ML programs?

Richard Sands
Machine language programs written for a 6502-based computer are usually quite difficult to relocate. For instance, say that you have an ML program at $\$ C 000$ which starts with these instructions:
LDA \$C030, X
JSR \$C200
JMP \$C400
None of these instructions can be relocated unless you change the address contained in the instruction itself. The first (LDA \$C030, X) retrieves one byte of data from a table beginning at location \$C030 (note that the data lies within the program code). The JSR instruction works like GOSUB in BASIC, so JSR \$C200 goes to a subroutine located at \$C200 and then returns. JMP works like GOTO in BASIC: JMP \$C400 sends the computer straight to the segment of code located at \$C400. Now say that you move the entire program down to location $\$ 8000$. The instruction JSR \$C200 still sends the computer to \$C200, but that address isn't within the program any more. To make the code work correctly at $\$ 8000$, you'd have to change these three instructions to the following:

LDA \$8030,X
 JSR $\$ 8200$

JMP $\$ 8400$
That's not particularly difficult, and some machine language monitors even have a special command to make such adjustments automatically. However, you must be careful not to change addresses
that refer to locations outside the program:

JSR \$FFD2

This instruction calls the standard Commodore print-a-character routine, located in the computer's ROM. If you mistakenly adjust this address along with all the internal address references, the result may be disastrous. Now let's look at a more difficult case:

LDA (\$FB), Y

This instruction uses the powerful and very common indirect Y addressing mode, which refers indirectly to an address held in two successive zero page addresses (locations \$FB-\$FC in this case). There's no way to tell by looking at this instruction alone whether it refers to an area inside the program (and hence requires adjustment) or something external to the program code (in which case adjustment may be a mistake). You'll have to disassemble the program in its entirety, looking for other instructions that affect the contents of locations $\$ F B-F C$, either directly or indirectly. If this instruction is part of a general-purpose subroutine, you may find that it's called by many different parts of the program. Since free zero-page space is limited, you may also find that other subroutines re-use locations $\$ F B-F C$ for an entirely different purpose. And while it's obvious that an instruction like STA $\$ F B$ affects the contents of \$FB, what about ROR $\$ 03, X$ or STA (\$B0), Y? Those instructions might just as easily change the address held in \$FB-FC.

Once you've sorted out all the indirect addressing, you'll need to check for self-modifying routines-code that changes its own instructions while it runs. When that's done, you'll have to interpret all the program's data and variable areas. For instance, say that you find the following hexadecimal values in a memory dump of the program code:

$\begin{array}{llllllll}93 & 05 & 20 & \text { C4 } & 54 & \text { OD } & 41 & 43\end{array}$

These bytes could be virtually any-thing-sprite shape data, characters for a printed message, part of an internal dispatch table, preset values for a bunch of unrelated variables, or even garbage that will be replaced with something meaningful when the program runs. While some programmers locate data areas at the end of the program, others sprinkle data and
variables freely throughout the code. Until you find out exactly what purpose these bytes serve, there's no way to tell whether they need adjustment. This problem, more than any other, makes it impossible to write an "automatic ML relocator" that works correctly in every case. The relocator would need to have as much intelligence as a knowledgeable ML programmer who thoroughly understands the subject program.

These problems generally don't apply to 68000-based computers like the Amiga, Atari 520ST, and Macintosh. Since the computer normally decides for itself where to load the ML code, most 68000 ML programs must be relocatable. That's no great hardship for programmers, since the 68000 instruction set includes many relocatable instructions.

128 Atari Colors

Here is a machine language program that allows your Atari computer to display 128 colors at the same time. The program displays a different color on each horizontal display line.

```
1\varnothing FOR I=\varnothing TO 21:READ A:P
    OKE 1536+I,A:NEXT I
20 POKE 752,1:PRINT CHR$(
    125):A=USR(1536)
3\emptyset DATA 173,11,212,2ø1,32
    ,2ø8,249,141,1ø,212,14
    2,24,2ø8,232,232,2ø8,2
    46,142
40 DATA 24,2ø8,24ø,232
```

David Boyer
Thank you for the example.

Using Preview-80 With 64 SpeedCalc

I own a Commodore 64 and look forward to getting new programs from COMPUTE! each month, especially utilities. After typing in SpeedCalc (COMPUTE!, January 1985), I was pleased to find that the "Preview-80" program (COMPUTE!'s GAZETTE, November 1985) works just as well with SpeedCalc as it does with SpeedScript. This lets you preview a SpeedCalc file in 80 -column format on the screen before printing it out. The procedure for using Preview-80 is the same as usual. First, load Preview80 with LOAD"PREVIEW80", 8,1 . Then type NEW, and load SpeedCalc as you would normally. Instead of typing

You've captured the gold in Summer Games ${ }^{\circledR}$ and Summer Games IIT ${ }^{\text {™ }}$. Now it's on to the Winter Games! And what an incredible setting-a completely realistic winter wonderland featuring seven action-packed events.

At the Ski Jump you control your form in mid-air, knees straight, leaning forward. Hot Dog Aerials challenges your courage and your sense of humor. In Figure Skating you leap into Double and Triple Lutz jumps-wow the crowd with a perfect Camel into a Sit Spin. It's timing and style that counts. Free Skating lets you choreograph your own routines. In Speed Skating it's you against a fellow speed demon-the fastest human beings on level earth! And the Bobsled-still faster as you fly around hairpin turns, leaning hard to stay in the tube. Finally the Biathlon, the ultimate challenge to your endurance in cross-country skiing and marksmanship.

All of this fun and excitement is easy to learn and play. You control the
action with the joystick, animating your player for style and rhythm. You choose the country you want to represent. Listen to its national anthem. Then it's practice, training and learning a winning strategy for each event. Now the Opening Ceremony and the competition begins-against your friends or the computer. Will you be the one who takes the gold at the Awards Ceremony? Will your name be etched amongst the World Record holders?
The quest for the gold continues...
 And it's all here-the strategy, the challenge, the competition, and pageantry of Winter Games!

	APPLE	MAC	C64/128
Winter Games	\checkmark	\checkmark	\checkmark

1043 Kiel Ct., Sunnyvale, CA 94089

[^3]RUN to start SpeedCalc, type SYS52000 and press RETURN. SpeedCalc will become active as usual. But when you press SHIFT-CTRL-P for printed output, and then press S for output to the screen, Preview-80 takes over. All of the Preview- 80 options are available; to exit the Preview- 80 window, press RUN/STOP twice.

Bob Starr
Thanks for the tip.

Moving AmigaDOS Commands To RAM

Regarding your article "Introduction to AmigaDOS" (COMPUTE!, January 1985), I feel that it's inconvenient to have all of the AmigaDOS commands-especially often-used commands like DIR-stored on disk rather than in memory. Is it possible to load all or part of DOS into RAM? If so, how much memory does it take up? Can you write a batch file to make this part of the boot sequence? Will AmigaDOS become RAM-resident in the future?

Barry Silverstein
Every AmigaDOS command is disk-resident, and you're not likely to see any change in the near future. This can be inconvenient at times since, for each separate AmigaDOS command, the computer has to access the same Workbench disk that was present when you booted the system. If you have only one disk drive, this scheme creates delays and requires extra disk-swapping. Fortunately, there's a simple remedy. If you create a RAM disk, you can then COPY any or all of the AmigaDOS commands from floppy disk to RAM disk; the amount of memory consumed depends on how many commands you copy. Once that's done, an ASSIGN command tells the system to use the RAM-resident commands.

The most convenient way to move AmigaDOS commands into RAM is by editing the startup-sequence file, which is similar to an AUTOEXEC.BAT file in PC/DOS and MS/DOS systems. When you insert a disk in response to the Amiga's Workbench disk prompt, the computer looks in the S subdirectory of the currently mounted disk for a file named startup-sequence. If this file is present, the computer executes the AmigaDOS commands that it contains. Since startupsequence is an ordinary ASCII text file, it's easy to modify with a word processor or any text editor that handles ASCII files. (Before editing this file, make sure that you have at least one copy of the Workbench disk in addition to the one that came with your computer.) If you edit this file with Textcraft or some other word processor, you must resave it in the form of plain ASCII text, without special formatting characters or control codes.

AmigaDOS includes two text editors of its own. The easiest one to use is called ED. Type this line at the CLI prompt, then press RETURN:
ed "s/startup-sequence"
This command activates ED and loads startup-sequence into the editor. An unmodified startup-sequence file looks like this:

ECHO "Workbench disk. Version 1.1" ECHO ""
ECHO "Use Preferences tool to set date." ECHO ""
LoadWb
endcli > nil:
You'll probably recognize the messages that appear on the screen when you boot up with that disk. The LoadWb command loads and activates the Workbench, and endcli terminates the AmigaDOS command sequence, returning you to the Workbench screen. We'll use ED to add some new command lines between LoadWb and endcli. ED is a very simple text editor: Use the cursor keys to move around in the file, and the BACKSPACE key to delete characters. Everything that you type is inserted at the current cursor position (you can use uppercase if you like, but lowercase works just as well and is easier to type).

While you could copy the entire command directory (named C) into the RAMdisk, that wastes a lot of RAM since some AmigaDOS commands are used only rarely. To save memory, we'll copy only the most commonly used commands. Place the cursor on top of the E in endcli and enter these lines, pressing RETURN at the end of each line:
echo "Copying AmigaDOS commands to RAM disk..."
copy c/copy ram:c/copy
assign x: ram:c/copy
assign d: ram:c
cd sys:c
x : assign d:
x : cd d:
x: copy d:
x : delete d:
x dir d:
x: diskcopy d:
x : echo d:
x : ed d:
x : endcli d
x : info d:
x : list d:
x : makedir d :
x : newcli d:
x : rename d:
x : run d:
x : type d:
cd sys:
assign c: ram:c
assign d: c:delete
Remember, this set of commands goes between the LoadWb and endcli lines in the normal startup-sequence file. If you change your mind and don't want to modify the file, press ESC-Q followed by RE-

TURN; ED returns you to the CLI without changing anything. To save the modified file to disk, press ESC-X followed by RETURN. After the file is resaved, ED returns you to the CLI prompt. To test the new startup-sequence file, reboot the computer by pressing CTRL-Left AmigaRight Amiga. It takes about a minute to copy the commands shown above. Once the process is finished, all of the copied commands are instantly available in RAM (if this doesn't work, reload startupsequence into $E D$ and check for typing mistakes).

The first command line following ECHO copies the COPY command itself into RAM so the computer can copy subsequent commands without accessing the disk each time. The next three lines simplify your typing job: The first ASSIGN command tells the computer to substitute the characters ram:c/copy wherever it sees the characters x :. The second ASSIGN creates another short alias (d:) which stands for the pathname ram:c. The $C D$ command changes the current directory to SYS:C so you won't need to specify a subdirectory for every file you want to move. These three shortcuts let you abbreviate all of the remaining COPY commands (the command x : endcli d: becomes the equivalent of ram:c/copy sys:c/endcli ram:c, and so on).

Thus, each line beginning with x : causes the computer to copy a single AmigaDOS command to the RAM disk. Of course, you can delete commands from this list, or add others if desired. The command ASSIGN C: RAM:C tells the computer to use the C directory in the RAM disk as its command directory. From this point on, the Amiga searches the RAM disk when you tell it to execute an AmigaDOS command. The final ASSIGN command isn't really necessary, but shows how to create a shorthand name for an often-used command. In this case, we're creating d: as a synonym for DELETE. Once this is done, you can delete the file TEST by typing either DELETE TEST or D:TEST. This can be done for any command, using whatever shorthand you like. The command sequence shown here is adapted from an example in COMPUTE!'s AmigaDOS Reference Guide, which explains this and many other AmigaDOS topics in detail.

HELP For Atari XL And XE

I have an Atari 800 XL and would like to know how to read the HELP key.
R.E. Brock

The status of the HELP key can be determined by PEEKing location 732 on the Atari XL and XE computers. If the HELP key alone is pressed, this location returns a value of 17; when SHIFT and HELP are pressed simultaneously, it contains 81.

TAP THE POWER of the Commodore 128

By the author of Machine Language for Beginners and Second Book of Machine Language

128 Machine Language for Beginners
 Richard Mansfield

One of the bestselling computer books ever has now been completely revised for the Commodore 128. Most commercial software is written in machine language because it's far faster and more versatile than BASIC. This new edition of Machine Language for Beginners is a step-by-step introduction to 8502 machine language programming on Commodore's 128 computer.

The book includes everything you need to learn to effectively program the 128: numerous programming examples, memory management tutorials; a complete description of the many Kernal routines and other new 128 features; numerous hints and programming techniques; and a dictionary of all major BASIC commands and their machine language equivalents. It also includes a high-speed, professional-quality, label-based assembler, optimized to take advantage of the speed and extra memory of the 128.
0-87455-033-5
\$16.95

Like the other top-quality books from COMPUTE!, 128 Machine Language for Beginners brings you ready-to-use information in a clear, lively style that makes learning easy and enjoyable, whether you are a beginner or an advanced computer user.

An optional disk is also available which includes the assembler and example programs in the book. The 128 LADS Disk is fully tested and ready to load on the Commodore 128. It costs only $\$ 12.95$ and saves you hours of typing time.

Order your copy of 128 Machine Language for Beginners and the LADS Disk today. Call toll free 1-800-346-6767 (in NY 1-212-887-8525) or mail your payment (plus $\$ 2.00$ shipping per book or disk) to COMPUTE! Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.

[^4]r THE BEST PRICES！
r Next day shipping on all in stock items．
－Free easy access order inquiry．
－Orders from outside
Pennsylvania save state sales tax．
－Free technicial support with our factory trained technical staff．
－There is no limit and no deposit on C．O．D．orders．
There＇s no extra charge for using your MasterCard or Visa．Your card is not charged until we ship
No waiting period for cashiers checks．
－We accept purchase orders from qualified corporations．Subject to approval．
Educational discounts available to qualified institutions．
－FREE CATALOG MEMBERSHIP．

ORDER LINE
 CALL TOLL－FREE 1－800－233－8950
 Educational Institutions Call Toll－Free
 1－800－221－4283 CUSTOMER SERVICE \＆TECH SUPPORT 1－717－327－1450 Dept．A204

MAIIING ADDRESS

Computer Mail Order Dept．A204
477 East Third Street Williamsport，PA 17701

memeer direct marketing association

Add 3% ，minimum $\$ 7.00$ shipping and handling on all orders．Larger shipments may require additional charges．

All items subject to availability and price change．

Returned shipments may be sub－ ject to a restocking fee．

CANADIAN ORDERS
1－800－268－3974
Ontario／Quebec
1－800－268－4559
1－416－828－0866
In Toronto

TELEX：06－218960

2505 Dunwin Drive Mississauga，Ontario Canada L5L1T1
All prices shown are for U．S．A orders．
Call The Canadian Office for Canadian prices

APPLE

APPLE Ile． APPLE IIC
MacINTOSH． IIc LCD Display

CALL

ATARI
65XE（64K）． \qquad CALL
130XE（128K） \qquad ．CALL 800XL 64 K ．．．．．．．． CALL 00XL 64 K 010 Recorder．
1020 Printer．
\qquad ．．．$\$ 129.00$ 1030 Direct Connect Modem．．．．．$\$ 59.99$

COMMODORE

C128 Computer
$\$ 269.00$
C1571（Disk Drive for C128）．．．．．．．．．．．$\$ 249.00$ C1902（RGB 13＂Monitor for C128．．．．．．CALL C1670（Modem for C128）．．．．．．．．．．．．．．． 5179.00 C64 Computer C1541 Disk Drive． C1530 Datasette ．．CALL
\qquad $\$ 199.00$ 1802 Color Monitor $\quad \$ 189.00$ C1660 Auto Modem． DPS 1101 Daisy Printer．． 539

GRAPHICS
［Polaroid
Palette ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 1399.00$
Power Processor．．．．．．．．．．．．．．．．．．．$\$ 229.00$
Illuminated Slide Mounter．．．．．．．．．$\$ 39.99$
Polacolor 2 Pack film．．．．．．．．．．．．．．．$\$ 18.99$

ACCESSORIES
CURTIS POWER STRIPS
Diamond SP－1．．．．．．．．．．．．．．．．．．．．．．．．$\$ 32.99$
Emerald SP－2．．．．．．．．．．．．．．．．．．．．．．．． $\mathbf{\$ 3 9 . 9 9}$
Sapphire SPF－1．．．．．．．．．．．．．．．．．．．．．．$\$ 52.99$
Ruby SPF－2．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 59.99$
Sate Strip SP－3．．．．．．．．．．．．．．．．．．．．．．\＄19．99
KENSINGTON
MasterPiece．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 99.99$
MasterPiece Plus．．．．．．．．．．．．．．．．．．．$\$ 119.00$

File（64）．．
Fiie，Repo
Bridger 4.0 （All）．

ARTWORX

Strip Poker（All）．

ATARI

ROMS FOR ATARI ONLY
8036 Atari Writer ATARI ONLY
Star Raiders．．
Missile Command
Defender．
Galaxian．．
Asteroids．
Centipede

BRODERBUND

Print Shop（All）． Graphics Library I．II，III（All） Bank Street Writer（64，AT） Bank Street Writer（Ile／llc）．．．．．．．．．$\$ 44.99$

BATTERIES INCLUDED
Paperclip（AT，64／128）．．．．．．．．．．．．．．．$\$ 37$
Paperclip（Ile／llc）．
Homepack（64／AT）．．．．．．．．．．．．．．．．．．．．．$\$ 29.99$ D．E．G．A．S．（All）．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 27.99$

CONTINENTAL SOFTWARE

Home Accountant（All）．．．．．．．．．．．．．．$\$ 44$

Tax Advantage（All）．．．．．．．．．．．．．．．．．．．$\$ 44.99$
Home Acct．／Tax Bundle（All）．．．．．．$\$ 59.99$

MICROPROSE

Kennedy Approach（All）
Aerojet（All）．
Silent Service（All）
PFS

File，Report，Graph（Ile／llc） Write w／Proof（Ile／llc）

SPRINGBOARD
Newsroom（64）．
Clip Arts（64）．
Newsroom（Apple）
Clip Arts（Apple）．

SUBLOGIC

Flight Simulator（All）．
Jet（64）
$\$ 4.99$
$\$ 44.99$
$\$ 24.99$
$\$ 17.99$ $\$ 19.99$

Volksmodem
Volksmodem 300／1200 Signalman Express．．． Lightning 2400 Baud．． Expressi．
6470 （64／128）300／1200 Baud $\$ 139.00$

DIGITAL DEVICES

AT300－ 300 Baud（Atari）．
$\$ 99.99$
6 Hayes
Smartmodem 300
Smartmodem 1200
Smartmodem 1200B． Smartmodem 2400.
Micromodem Ile．
Smart Com II．
Chronograph．
Transet 1000
$\$ 59.99$ $\$ 189.99$ $\$ 259.00$ $\$ 399.00$ $\$ 199.00$

Reach 1200 Baud Half Card．．．．$\$ 399.00$

鳥 SUPRA
MPP－1064 AD／AA（C－64）
$\$ 69.99$

Novation 咢

 $\$ 139.00$ \＄389．00 \＄359．00 $\$ 599.00$ \＄149．00 $\$ 89.99$ $\$ 199.00$ \＄309．00$\$ 79.99$
$\$ 37.99$
Smart Cat Plus．．． J－Cat．
Novation 2400. Apple Cat II．
212 Apple Cat II Apple Cat 212 Upgrade．
$\$ 299.00$ $\$ 99.99$ $\$ 549.00$ $\$ 229.00$ $\$ 379.00$ $\$ 229.00$ $\$ 279.00$
$\$ 34.99$
$\$ 22.99$
$\$ 39.99$
$\$ 22.99$
$\$ 37.99$

PORTABLE COMPUTERS
（hD HEWLETT 41 CV ．
41CX．．
HP 11C．
HP 12C．
HP 15C．
HP 16C．．．．．．．．
HPIL Module
HPIL Cassette or Printer． Card Reader
Extended Function Module．
Time Module．
HEWLETT
PACKARD
…．．．．．．．．．．．．．．．．．．．$\$ 139.00$
DISKETTSS

$31 / 2$ DSIDD（10）．．．．．．．．．．．．．．．．．．．．．．．．$\$ 34.99$
51／4＂MD－1 w／Hardcases（10）．．．．．$\$ 12.99$
$51 / 4^{\prime \prime}$ MD－2 w／Hardcases（10）．．．．．$\$ 18.99$
51／4＂MD－2－HD for AT（10）．．．．．．．．．$\$ 39.99$
31／2＂ 5 pack SS／DD／Case．．．．．．．．．．$\$ 13.99$

IV Verbatim．

51／4＂SS／DD．
$51 / 4^{" 1}$ DS／DD．
$\$ 12.99$

Disk Analyzer，

Dennizon

Elephant $51 / 4^{\prime \prime}$ SS／SD．．．
Elephant $51 / 4^{\prime \prime}$ SS／DD．
Elephant $51_{4}{ }^{\prime \prime}$ DS／DD．．
Elephant Premium DS／DD（50）．．．．
Elephant $31 / 2^{\prime \prime}$ SS／DD．．．．．．
搳范
$51 / /^{\prime \prime}$ DSIDD floppy disks
（Box of 10 ）
$\$ 26.99$

DISK HOLDERS

INNOVATIVE CONCEPTS

Flip＇n File 10
Flip＇n File 50.
\＄2．99
Flip＇n File 50 w／lock．$\quad \$ 19.99$
Flip＇n File 100.
S199
Flip＇n File 100．．．．．．．．．．．．
Flip＇n File Data Case．
$\$ 19.99$
AMARAY
50 Disk Tub $51 / 4$
30 Disk Tub $31 / 2^{\prime \prime}$
$\$ 9.99$
$\$ 9.99$
AMMEK
Video 300 Green．．．．．．．．．．．．．．．．．．．
Video 300A Amber．．．．．．．．．．．．．
Video 310A Amber TTL．．．．．．．．
Color 300 Composite．．．．．．．．．．
Color 600 Hi－Res．RGB．．．．．．．．．
Color 710 Uitra Hi－Res．．．．．．．．．
Color 722 Dual Mode．．．．．．．．．
MAANAVOX
8562 RGB／Composite．．．．．．．．．．．

NEC	
JB1205A．	\＄79．99
JB1270G／1275A	．（ea．）$\$ 99.99$
JB1280G TTL．	．．．$\$ 129.00$
JB1285A TTL	．．．$\$ 129.00$
JC1460 RGB	．$\$ 229.00$
JC1225 Composit	．．．．．\＄179．00
JC1401 Multi Syn	．．．$\$ 549.00$

JC1401 Multi Sync RGB．．．．．．．
PRINCETON

MAX－12E Ambe
HX－9E Enhanced．．．．．．．．．．．．．．．．．．．$\$ 519.00$
HX－12 12＂RGB．．．．．．．．．．．．．．．．．．．．．$\$ 469.00$
HX－12E Enhanced．．．．．．．．．．．．．．．．．．．$\$ 5$
2 Hi －R

HAXAN

115 12＂Green．．．．．．．．．．．．．．．．．．．．．．$\$ 119.00$	
116	12＂Amber．．．．．．．．．．．．．．．．．．．．．$\$ 129.00$
121	TTL Green．．．．．．．．．．．．．．．．．．．．．$\$ 139.00$
	TTL Amber．．．．．．．．．．．．．．．．．．．．．$\$ 149.00$
	510x200 RGB．．．．．．．．．．．．．．．．．．．．SNEW
620	640x200 RGB．．．．．．．．．．．．．．．．．．．SNEW
630	640x200 RGB．．．．．．．．．．．．．．．．．．．．SNEW
640	720×400 RGB．．．．．．．．．．．．．．．．．．．SNEW
QUANTAM	
8400	Ouadchrome I．．．．．．．．．．．．．．．$\$ 499.00$
8410	0 Quadchrome II．．．．．．．．．．．．．．．$\$ 339.00$
8420	Amberchrome．．．．．．．．．．．．．．．．$\$ 179.00$
	O Quad Screen．．．．．．．．．．．．．．．．$\$ 1449.00$
Tramen	
zVM	M 1220 Amber．．．．．．．．．．．．．．．．．．．．$\$ 99.99$
	M 1230 Green．．．．．．．．．．．．．．．．．．．．$\$ 99.99$
ZVM	M 1240 IBM Amber．．．．．．．．．．．．$\$ 149.00$
ZVM	135 RGB．．．．．．．．．．．．．．．．．．．．．．$\$ 459.00$
ZVM	1330 RGB．．．．．．．．．．．．．．．．．．．．$\$ 459.00$
ZVM	1360 RGB ．．．．．．．．．．．．．．．．．．．．．．．CALL
ZVM	1380 E G Comp．．．．．．．．．．．．．．．．CALL

INTERFACES

AST
Multi I／O（Apple II）．

－Prprocincas
Graphcard．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 79.99$
Seriall Card．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 99.99$
Microbuffer II＋．．．．．．．．．．．．．．．．．．．．．$\$ 169.00$
Microbuffer 32K．．．．．．．．．．．．．．．．．．．．$\$ 189.00$
QUADFAM
Microfazer．．．．．．．．．．．．．．．．．．．．．．from $\$ 139.00$
Efazer（Epson）．．．．．．．．．．．．．．．．from \＄79．99
Orange micro
Grappler CD（C64）．．．．．．．．．．．．．．．．．．．$\$ 89.99$
Grappler＋（Apple）．．．．．．．．．．．．．．．．．．$\$ 89.99$
Grappler 16 K ＋（Apple）...........$\$ 159.00 ~$
DIGITAL DEVICES
Ape Face（Alari）．．．．．．．．．．．．．．．．．．．．．．$\$ 49.99$
U．Print A（Atari）．．．．．．．．．．．．．．．．．．．．．$\$ 54.99$
U－A16／Buffer（Atari）．．．．．．．．．．．．．．．．．$\$ 74.99$
U－Call Interface（Atari）．．．．．．．．．．．．．．$\$ 39.99$
U－Print C（C64）．．．．．．．．．．．．．．．．．．．．．．$\$ 49.99$
P－16 Print Buffer．．．．．．．．．．．．．．．．．．．．． $\mathbf{\$ 7 4 . 9 9}$
U－Print 16 apple IIc．．．．．．．．．．．．．．．．．． $\mathbf{\$ 8 9} 99$

$\$ 119.00$ ．$\$ 129.00$ ．$\$ 159.00$ $\$ 169.00$ \＄399．00 ．$\$ 439.00$ $\$ 529.00$
．$\$ 279.00$
$\$ 79.99$
$\$ 129.00$
．$\$ 129.00$ \＄229．00 $\$ 179.00$

INTERFACES

182，183，192，193，2410，84．．．．．．．CALL Okimate 10 （Specify C64／Atari）$\$ 189.00$ Okimate 20 （IBM）．．．．．．．．．．．．．．．．．．．．．．．．CALL

Panasonic	
KX1080 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．NEW	
KX1091．	\＄259．00
KX1092．	．$\$ 389.00$
KX1592．	．．$\$ 469.00$
KX1595．	．$\$ 659.00$
QUADRAM	
Quadjet．	．$\$ 399.00$
Quad La	．．．．．．CALL

先 SILVER－REED
500 Letter Quality．．．．．．．．．．．．．．．．．．$\$ 279.00$
550 Letter Quality．．．．．．．．．．．．．．．．．．$\$ 419.00$
800 Letter Quality．．．．．．．．．．．．．．．．．．．$\$ 699.00$
SG－10A（Atari）．．．．．．．．．．．．．．．．．．．．．．．．．CALL
SG－10C（C64 Interface）．．．．．．．．．．．．．．．CALL
SB／SD／SG／SR Series．．．．．．．．．．．．．．．．．CALL
Powertype Letter Quality \qquad CALL Texas Instruments
T1850 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 529.00$
T1855．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 639.00$
T1865．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 799.00$
TOSHIBA
1340 （80 column）．．．．．．．．．．．．．．．．．．$\$ 389.00$
P341（132 column）．．．．．．．．．．．．．．．．．$\$ 799.00$
P351（132 column）．．．．．．．．．．．．．．．$\$ 1049.00$

C＇Alloll

A40，A50，A55．．．．．．
LBP－8A1 Laser．
CITIZEN
MSP－10（80 col．）．
MSP－15（132 col．）． MSP－20（80 col．）． MSP－25（132 col．）
Prowriter 7500．．．．．．．．．．．．．
Prowriter 1550．
Starwriter 10－30．
3500 Tri Printer

corona

Lazer LP－300

DIABLO

D25 Daisywheel．．．．．．．．．．．．．．．．．．．．．．．$\$ 549.00$
635 Daisywheel．．
d＊isywriter
2000．．．

EPSON

Homewriter 10，LX－80．．．．．．．．．．．．．．．．．．CALLL FX－85，FX－286，RX－100，JX－80．．．．．CALL DX－10，DX－20，DX－35．．．．．．．．．．．．．．．．．．CALL SQ－2000，Hi－80，HS－80，AP－80．．．．．CALL LQ－800，LQ－1000，LQ－1500．．．．．．．．．．CALL

OKIDATA

$\$ 399.00$
$\$ 999.00$

Crosstalk XVI．．．．．．．．．．．．．．．．．．$\$ 89.99$

Crosstalk Mark IV．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 149.00$
Remote．
MULTIMATE
Multi Mate Word Proc．．．．．．．．．．．．．．$\$ 219.00$

On File．．

Just Write．
NOUNEMON
Intuit．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 69.99$
Norton Utilities 3．1．．．．．
$\$ 59.99$
ONE STEP
Goll＇s Best
PFS：IBM
Proo
File／Gra
Report
．．$\$ 37.99$

Write／Prool Combo．．．．．．．．．．．．．．．．．．．．．．．$\$ 79.99$

PROFESSIONAL SOFTWARE
 Write－N－Spell．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 89.99$

THE SOFTWARE GROUP
Enable ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 329.00$
SATELLITE SYSTEMS
Word Perfect 4．1．．．．．．．．．．．．．．．．．．．．$\$ 219.00$ SORCIMIUS
Accounting
APIARIGLINVIOE．．．．．．．．（ea）$\$ 299.00$
SuperCalc III．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 199.00$
EasyWriter II System．．．．．．．．．．．．．．．．$\$ 199.00$
Super Project．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 199.00$
SPI SOFTWARE
Open Access．．．．．．．．．．．．．．．．．
subloaic
Jet
．$\$ 379.00$
$\$ 37.99$

IBM PC SYSTEMS Configured to your specifications． Call for Best Price！ IBM－PC，IBM－XT，IBM－AT

Zhent

PC－138 Series，PC－148 Series，PC－158 Series，PC－160 Series，PC－171 Series AT－200 Senies．

奈SANYO

MBC 550－2，MBC 555－2，MBC 675 Por table，MBC775．MBC 880 DesktopCALL

6300

corona

PPC400 Dual Portable．．． PPCXT 10 meg Portable．．．
$\$ 1289.00$ PC40022 Dual Desktop．．．．．．．．．．．$\$ 1389.00$
PC400－HD2 10 meg．．．．．．．．．．．$\$ 1989.00$

ITT X．TRA ITT
 256K． 2 Drive System．．．．．．．．．．．CALL 256K． 10 meg Hard Drive System CALL
 XP5， 20 meg
 万 STPERरY
 Sperry－AT．
 as low as $\$ 1749.00$
 Call for Specific Contigu low $\$ 2699$.
 All Models．．．．．．．．．．．．．．．CALL

AST	
Rampage	\＄379．00
Six Pack Plus	\＄229．00
I／O Plus II．	\＄139．00
Advantage－AT	\＄399．00
Graph Pak／64K	\＄599．00
MonoGraph Plus	\＄399．00
Preview Mono．	\＄299．00
PC Net Cards	\＄379．00
5251／11 On－line．	．$\$ 669.00$
5251／12 Remote	\＄579．00
IRMA 3270 - － 8879.00	
IRMA Print．	．$\$ 999.00$
IRMA Smart Alec	． 7779.00
Edge Card．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 259.00$	
Graphics Edge	\＄239．00
Magic Card II．	\＄169．00
Graphics．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 299.00$	
Color．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 159.00$	

The Chairman．．．．．．．．．．．．．．．．．．．
Color／Mono Card．．．．．．．．．．．．．．．．．．．．．．．$\$ 149.00$
Modular Graphics Card．．．．．．．．．．．．．$\$ 259.00$
Multi Display Card．．．．．．．．．．．．．．．．．．．．$\$ 219.00$

Five Pack C．S．
Bob Board
PERSYST
d．．．．．．．．．．．．．．．．．．．．．．．．．359．00
Captain－ 64
Graphics Master．
．$\$ 469.00$

QUADIEMKO

Quadport－AT
Liberty－AT（128K）．
The Gold Quadboard．
The Silver Quadboard．
Expanded Quadboard． Liberty．．．．
QuadSprint．
QuadLink．．
QuadColor．
Chronagraph
terface Boar
INTEL
PCNC8087 5 MHz ．
PCNC8087－2 8 MHz
PCNC80287 6 MHz ．
1010 PC－Above Board．
1110 PS－Above Board．
2010 AT－Above Board．

Pressing CONTROL and HELP returns a value of 145. The statement POKE 732,0 clears location 732, so you can check for subsequent keypresses.

Apple Ile/llc Compatibility

I'm interested in buying an Apple IIc computer. Can it use IIe hardware and software?

Carlos Aguayo

The Apple IIc computer is basically an Apple IIe that has been redesigned to take up as little space as possible. To keep the IIc small, Apple left out the IIe's expansion slots (where additional hardware can be attached), but added a built-in $5^{1 / 4}$-inch disk drive. They also put the most common IIe expansion hardware (80-column video display, an extra 64 K of memory, and two serial input/output ports) on the main board of the IIc. In addition, the IIc has some features that weren't available when the IIe appeared: an advanced 65C02 microprocessor and a character set called Mousetext which contains extra characters especially for Macintosh-style icon- and menu-based programs. The newest version of the IIe (called Enhanced IIe) does have these extra features; dealers can upgrade an older IIe at a small cost.

The IIc can run almost all IIe programs, as long as no special hardware is required. For instance, some music programs can communicate with instruments through a MIDI (Musical Instrument Digital Interface) adapter. This adapter must connect to an expansion slot, which is possible only on a IIe. Other programs sometimes expect a parallel I/O interface to attach a printer. Since the IIc has only serial I / O, it can't run that type of modification. Although the IIc has no expansion slots, its peripherals (serial ports, disk drives, etc.) act like they are built into certain slots. Apple tried to select the most commonly used slot for each peripheral (printer in slot 1, disk drive in slot 6). However, not everyone puts everything in the same place, and some programs may demand an unconventional configuration. IIe owners can rearrange the cards in their slots to run such programs, but IIc owners don't have this option.

The serial ports on the IIc generate standard RS-232 signals which can be used to communicate with most modems from any manufacturer. Many of the most popular printers are also available with RS-232 interfaces. But the IIc does not have standard connectors for these ports. To save space on the back panel of the computer, DIN-type connectors are used instead; as a result, you'll need special cables (available from Apple dealers) to attach serial peripherals.

When it comes to expandability, the IIe is much more flexible than the IIc. Almost any kind of peripheral can be
attached through one of its slots, including parallel I/O ports, MIDI interfaces, hard disk drives, coprocessors, huge RAM expansion cards, and a host of other devices. However, some third-party companies have begun modifying the IIc to put in extras like additional memory and Z80 processors (to run the $C P / M$ operating system, a popular IIe add-on). It's still more difficult than expanding a IIe, but it can be done.

IBM PUT And GET

I own a TI-99/4A and an IBM PCjr. Lately, I've been trying to convert some programs from TI to IBM. I have only one problem: the PUT and GET graphic statements in the IBM system. I really don't understand them. Could you show me a way to make an image and move it?

> Billy Mobley

First, be aware that IBM BASIC has two types of GET and PUT statements: one for graphics and another for random files. The syntax for each type is different, so be sure you're using the graphics type. GET grabs the screen image within a specified rectangle and stores a copy of it in an array. PUT does just the opposite, putting the image from an array back onto the screen.

Several important rules apply to PUT and GET. Before using either command, you must be in a graphics mode (SCREEN 1, for example); neither PUT nor GET works on a text screen. The array that you GET a shape into must be a onedimensional numeric array dimensioned to the proper size. Finally, you must GET before you can PUT.

The most difficult task is deciding what size to dimension the array. If the array is too small, it can't hold the graphics image, and the program won't work. The simplest solution is to try a large size like DIM $A(500)$. It won't hurt to dimension it larger than necessary, but this method wastes memory. Here's a more efficient formula that tells you the minimum required size for the array:

INT($\left.\left(4+\operatorname{INT}\left(\left(\text { x }^{*} \text { res }+7\right) / 8\right)^{*} \mathrm{y}\right) / \mathrm{prec}\right)$

In this formula, the variable \times represents the width of the image in pixels; y is the height of the image; res is 1 for high resolution and 2 for medium resolution; and prec is the precision of the array (2 for integer, 4 for single precision, and 8 for double precision).

GET must be followed by the screen coordinates of two opposite corners of the rectangular image, and the name of the array. For example, GET (0,0)-(19,29),A grabs a 20×30 pixel image at the top-left corner of the screen and stores it in array A. (Of course, you must first have an image on the screen. This can be done with DRAW.) With a high-resolution
screen and a single-precision array, the formula above gives 23 , so the dimension statement would be DIM A(23).

PUT is followed by the coordinates of the location on the screen where the topleft corner of the image is placed, then the name of the array, and an optional parameter for special effects. Five special effects are available: PSET, PRESET, AND, OR, and XOR. If no special effect is specified, XOR is assumed.

PSET displays the image exactly as it appeared when GET was used. PRESET displays a negative image. AND displays only those parts of the image that overlap an image already on the screen. OR superimposes the image onto an image already on the screen. XOR is a combination of AND and PRESET, reversing only those parts of the image that overlap an image already on the screen. The best way to understand exactly what these special effects do is to try them yourself. Using our example, PUT $(200,100), A, P S E T$ displays the image stored in the A array in the center of the screen.

The operation of XOR may seem strange, but it's handy for animation. When you PUT using XOR twice in the same position, the screen is restored unchanged. This allows you to move an image over a background image, giving a 3-D effect. Animation with XOR is a three-step process: PUT the image on the screen with XOR, calculate the new position, PUT the image in the old position a second time to erase it. By performing these steps repeatedly, the image seems to move. The following program moves a ball across the screen.

10 SCREEN 1
26 DIM A(113)
$3 \emptyset$ CIRCLE $(20,20), 20$
40 PAINT $(2 \emptyset, 2 \emptyset)$
$5 \varnothing$ GET ($\varnothing, \emptyset)-(4 \varnothing, 40), A$
60 CLS
70 FOR C=1 TO 100 g
$8 \varnothing$ PUT ($\mathrm{X}_{1}, \mathrm{Y}_{1}$), A display ima ge
$90 X_{2}=X_{1}+1: Y_{2}=Y 1+1$, calculate new position
106 PUT (X_{1}, Y_{1}), A erase imag e
$11 \varnothing X_{1}=X 2: Y_{1}=Y 2$, old=new 12Ø NEXT repeat

Simpler Absent Printer Test

I'm writing with regard to the "Readers' Feedback" item on absent Commodore printers, published in the December 1985 COMPUTE!. Another way to avoid a DEVICE NOT PRESENT error is to access the appropriate device (4) through the command channel (15) and check the value of the status variable ST. If ST does not equal 0 , then the printer is not present. Here is a short routine to demonstrate:
$1 \emptyset$ OPEN $15,4,15:$ CLOSE 15
$2 \emptyset$ IF $S T<>\varnothing$ THEN $4 \varnothing$

All the exciting, entertaining, and educational games, applications, and utilities from COMPUTE! magazine are now available on disk

for your Commodore, Atari, Apple, or IBM personal computer.
 The COMPUTE! Disk

A new COMPUTE! Disk is published every month, rotating among the four major machines covered by COMPUTE:: Commodore 64 and 128; Atari 400/800, XL, and XE; Apple II-series; and IBM PC, PCjr , and compatibles.

Every three months you can receive a disk with all the quality programs from the previous three issues of COMPUTE! that will run on your brand of computer.

Like the popular COMPUTE!'s Gazette Disk, the COMPUTE! Disk is ready-to-load and error-free. It saves you valuable hours of typing time and eliminates typing errors.

With a subscription, you will receive one disk every three months for a total of four disks a year-for only $\$ 39.95$. That saves you $\$ 20$ a year off the singleissue cost.

Or you can order individual issues of the Disk for $\$ 12.95$ a disk plus $\$ 2.00$ shipping and handling.

Remember to specify your type of computer when ordering the COMPUTE! Disk. You'll find more information about this month's COMPUTE! Disk in this issue. (Note: You'll need the corresponding issues of COMPUTE! magazine to use the Disk since the disk will have no documentation.)

For fastest service when ordering a subscription to the COMPUTE! Disk, call toll free 1-800-247-5470 (in Iowa 1-800-532-1272).

For more details or to order individual issues of the COMPUTE! Disk, call our Customer Service Department toll free at 1-800-346-6767 (in New York 212-887-8525).
Please allow 4-6 weeks after placing an order for your first disk to arrive.

The 1O5O DUPLICATOR IS HERE...

THE 1050 DUPLICATOR: The most powerful diskdrive copy system ever developed for the ATARI.

The Duplicator
for The New "ST"
is now
available.

The only Copy System You will ever need! What will it do?

The main purpose of the Dupllcator is to copy disksl You will be able to copy just about any disk! The copies you make will run on any Atari drive. The Duplicator need not be present to run your backup copies. The Duplicator is fully automatic. You need only insert source and destination disks. Custom formats will be read and in turn reproduced on the backup copydisk. Our device will reproduce any custom format or heavily copy guarded scheme, bad sectors, double sectors, 19 through 24 sector format will present no problem to the Duplicator.

- You will still have single density, density and one half, and double density. When you have a Duplicator installed in a 1050 drive that drive will be turned into true double density. You will have twice the disk storage. Your drive will be compatible with other double density drives as The Rana Indus. Percom, etc.

HARDWARE POWER

Fully Compatible with the XL \& New XE Series.

EASY 5 MINUTE INSTALLATION

NO HARM TO YOUR DRIVE OR INCOMPATIBIUTY PROBLEMS CAN EVER ARISE AS A RESULT OF THE INSTALLATION OF OUR DUPLICATOR IMPORTANT: Only a hardware device like the DUPLICATOR can backup heavily copy-guarded disks. Don't be fooled by soltware programs that claim to do this.

Formerly Gardner Computing
 TERMS: We accept American Express, Visa, MasterCard and C.O.D. orders. Forelgn orders must be in U.S. dollars. All personal checks allow 14 days to clear. Most liems shipped within 24 hours
$3 \varnothing$ OPEN 1,4:PRINT\#1,"PRINTER I
S ON": CLOSE 1: END
$4 \varnothing$ PRINT CHRS(147);"TURN ON PR INTER":GOTO 10
If you run this program with the printer off, it instructs you to turn the device on. Printing begins as soon as the printer is active.

Jim Plavecsky
Thanks for this compact, all-BASIC solution. In programs that open disk files or use an RS-232 device (usually a modem), you may want to perform this check at the very beginning, before you perform any other OPEN statements. The statement CLOSE 15 closes all other channels in addition to the command channel, terminating any RS-232 communications and disconnecting (but not really closing) any open disk files.

Emphasized TI Character Set

The custom character set given for the Commodore 64 on pages 108-109 of COMPUTE!'s January 1986 issue can be used on the TI-99/4A with only slight modifications. Since that character definition data is listed in hexadecimal format, it can be read as a pattern-identifier string and assigned with the CALL CHAR statement (see page II-76 in the

TI User's Reference Guide). Each line in the Commodore character set listing contains data for a single character plus a checksum value at the end of the line. To convert the data in each line to a 16 character pattern-identifier string, type in the first eight two-digit hexadecimal numbers (spaces are left out, of course). In the first line, for instance, the resulting string could be used with a CALL CHAR statement to redefine the @ character. To create the new character set, first enter this program:
1ØØ FOR L=1 TO 94
110 READ C\$
$12 \emptyset$ CALL CHAR (L+32,C\$)
$13 \emptyset$ PRINT CHR\$ (L+32);
140 NEXT L
$15 \emptyset$ GOTO $15 \emptyset$
Next, you must enter a series of lines containing DATA statements. Each DATA statement represents the data for one character in the form of a 16 -character pattern identifier string. For example, the first DATA line would look like this:

500 DATA 7CC6DEDEC0C07800

Here is how to enter all of the DATA lines.
lines $500-800$ Use data from line
7108-71F8 (defines

ASCII characters 33-63)
line $810 \quad$ Use data from line 7000 (ASCII 64)
lines 820-1070 Use data from lines 7208-72D0 (ASCII 65-90)
line $1080 \quad$ Use data from line 70D8 (ASCII 91)
line 1090 Use 00C06030180C0600 as data (ASCII 92)
lines 1100-1110 Use data from lines 70E8-70F0 (ASCII 93-94)
line 1120 Use 00000000000000FF as data (ASCII 95)
line $1130 \quad$ Use data from line 7200 (ASCII 96)
lines $1140-1390$ Use data from lines 7008-70D0 (ASCII 97-122)
lines 1400-1420 Enter data from lines 72D8-72E8 (ASCII 123-125)
line 1430 Enter 000020745C080000 as data (ASCII 126)
The result of your effort will be an emphasized font with true lowercase.

John Hedstrom
Thank you for your suggestion.

HOTWARE: Software Best Sellers

Copyright 1986 by Billboard Publications, Inc. Compiled by the Billboard Research Department and reprinted by permission. Data as of $2 / 1 / 86$ (entertainment) and $2 / 8 / 86$ (education and home management).

ITALSO RUNS ON 64K.

Serious runners know it takes more than great running shoes to improve performance. It takes knowledge. Now Puma gives you both. With the RS Computer Shoe. The first training shoe to combine advanced footwear technology with computer technology.

The RS Computer Shoe has a custom-designed gate array built into its heel. This computer chip records your run, then communicates the results to any Apple IIE, Commodore 64 or 128 , or IBM PC computer.
A software program included with the shoe automatically calculates your time, distance and calories expended. Then graphically compares them to past performances and future goals.

The RS Computer Shoe from Puma. We're so out front in technology, we put computers in the backs of our shoes.

NEW TECHNOLOGIES The Converging Digital Universe

Selby Bateman, Features Editor

The winds of technological change have been blowing a gale for the past few years. And the forecast shows no indication of a letup. In fact, millions of consumers will begin to reap a resulting whirlwind of new high-tech products for the home, office, and classroom. Consider the following:

- A home stereo system answers your phone, takes messages, and alerts you to incoming calls.
- With the push of a button, your video film recorder captures a picture from your favorite TV show and instantly prints out a still photo for your wallet.
- Your 20 -volume set of encyclopedias, contained and crossindexed on a compact disc in a player connected to your computer, searches and prints out 37 reference sources on your selected topic in less than 30 seconds.
- The satellite dish in your backyard automatically tracks various communication satellites based on the pattern of TV programs you want to watch each night. At the same time, your computer is receiving and storing financial data that unobtrusively shares the same incoming satellite transmission to your TV.
- The digital TV in your living room displays two small windows on the screen while you watch a

The digitization of America is well under way. Thanks to a wave of new consumer electronics products, this year more people than ever will see and hear how the convergence of digital audio, video, satellite, telephone, optical, laser, television, and computer technologies is transforming the world. Yet, the phenomenon is just beginning.
program uninterrupted; one window shows the changing stock quotations, while the second window displays a program from a different channel or previews a tape from your videocassette recorder.

- The computer image recorder connected to your personal computer makes a 35 mm slide, color print, or overhead transparency of the business chart or digital painting you've just created.

Does any of this sound farfetched? You'll be able to buy products this year that do all of these things and more. If it seems difficult to keep up with the latest news about consumer electronics, it's not your fault. Never have so many dramatic technological changes produced so many new capabilities and products in so short a time. What has become strikingly clear is that all of these innovations share a
common foundation-the digital, microprocessor-based world of computer electronics.

These changes have become so important to our lives and our pocketbooks that market researchers are now targeting a new group of consumers: Technologically Advanced Families (TAFs). Could "yuppies" eventually be surpassed in importance by "taffies," households that purchase and use the latest computers, VCRs, stereo TVs, 8 mm camcorders (camera recorders), compact disc players, satellite dishes, and dozens of other products? Consumer electronics manufacturers and retailers believe that these households are the important leading-edge market for their array of new products.

Among the catalysts sparking enthusiasm for the latest in hightech gear, none is more important than the personal computer phenomenon of the past half-dozen years. Not only are computer owners the bedrock of the TAFs, but the new generation of $16 / 32$-bit computers is powerful enough to work with just about any other consumer electronics product. Suddenly, devices like VCRs, compact disc players, electronic keyboards, and camcorders have become computer peripherals. As these products continue to become more sophisticated
and flexible, their technologies converge and their capabilities expand. In the world of consumer electronics, the whole has indeed become more than the sum of its parts.

The development of the microcomputer has accelerated an already rapid evolution, says David Allen, president of Boston Media Consultants and a writer specializing in TV production, computers, videodiscs, and videotape. "They come along with greater speed. That's not a function of any interactivity, that's just a curve that the computer industry and microelectronics industry are on.
"Each development feeds the next development in a serendipitous way that makes succeeding developments faster to accomplish," says Allen. "You can really say that we're now to the point at which you could almost create any technological package you could conceive of, if you don't put a price restriction on it. Nothing is technologically impossible, in a broad sense. But it has to be accompanied by some kind of way to get return on investment. And that's what slows things down more than anything else right now. It's marketdriven, not technologically driven."

During the past year, a parade of new technologies has entered the computer scene. The arrival of MIDI (Musical Instrument Digital Interface) has opened the doors to a new world of computer-based music composition and performance (see "Making Music with MIDI," COMPUTE!, January 1986). Laserdriven compact disc technology has branched out from stereo systems to computer data storage and retrieval. Smaller, less expensive video cameras and camcorders that connect with VCRs and computers are making inroads in consumer markets.

In addition, a new family of audio/video hardware and software products has been created to take advantage of the latest computers, particularly the Commodore Amiga, Atari ST, and Apple Macintosh.

[^5]VCRs, laser disc players, other computers, or TVs with video outputsessentially any device that puts out a composite video signal. For instance, Commodore is releasing two fascinating video peripherals for the Amiga: the Genlock, which plugs into the back of the Amiga and mixes external video signals with the computer's own video output; and the Amiga LIVE digitizer (formerly known as the "frame grabber'), which captures and digitizes an external video image in the Amiga itself.

Commodore/Amiga's Genlock accessory tucks beneath the rear of the Amiga computer and permits sophisticated video image mixing.
"Genlock is external to the Amiga and externally mixes two video sources, one of them the Amiga's," explains Paul Higginbottom, an Amiga product manager at Commodore. "So you take the Amiga's video source and the external video source, and you combine them-and the audio as well. Nothing comes into the Amiga with Genlock. With Amiga LIVE, a digitized picture is brought into the Amiga. So one [Genlock] is doing superimposing, and the other [Amiga LIVE] is actually taking an image and bringing it in.
"They operate separately, but you could certainly use them together," says Higginbottom. "You may want to take a real image and put Amiga's graphics on it, and digitize those back into the Amiga again."

Immediate applications for the Genlock include on-screen titling for video presentations or home movies, "electronic chalkboard" effects similar to those used for TV sports analysis, and special video effects achieved by mixing Amiga
graphics with other video images. At the Amiga's official unveiling in New York last summer, artist Andy Warhol used a video camera, Genlock, and Amiga LIVE to digitize a picture of rock singer Deborah Harry, then used a mouse-controlled graphics program to "paint" the video image with new colors. Amiga LIVE can be used not only for special video effects such as these, but also for video databases, says Higginbottom.
"We don't just mean pretty pictures. If you're a real estate agent or an architect, or you have a parts list you want to inventory, something like that-then you can have a video inventory," he explains. "And Amiga LIVE performs in realtime, not like most digitizers you see that usually take anywhere from 8 to 30 seconds to generate the picture on the screen. This is in realtime; if you have a movie camera, you'll see the image move as you move the camera."

Both the Genlock and Amiga LIVE are expected to be available in April or May, pending final FCC approval. Each accessory will cost about $\$ 249.95$.

Adifferent video digitizer is in the works for the Atari ST and should be available by the time you read this. Hippopotamus Software is introducing the Hippovision Video Digitizer this spring for the ST and plans to have a version available later for the Amiga. (No price announced yet.)
"Anything that produces video signals, you just plug into the [digitizer] box that's connected to the computer," says Clint Ballard, vice president of engineering for the Los Gatos, California firm. "You press a button when you get a picture you like, and there you have it. We'll also have image processing software with which you can change around the colors-do whatever you want with it. This really opens up the graphics world.'

For the Macintosh, which has a two-year head start on the Amiga and ST, there are already several video digitizers and compatible graphics programs available. MacVision from Koala Technologies, Micro-Imager from Servidyne Systems, Inc., Thunderscan from Thunderware, Inc., and a few others

Each book contains valuable tutorials, programming guides, personal and business applications, and games. Together, the books provide all the up-to-date, ready-to-use information and programs you need to get the most from your IBM personal computer.

Icons and Images: A Graphics Collection for the IBM PC and PCjr Elmer Larsen, 227 pages Ninety-four short routines to instantly enhance business, educational, and entertainment programs on either the IBM PC or PCjr.
ISBN 0-942386-84-1
\$14.95

Easy BASIC Programs for the IBM PC and PCjr Brian Flynn, 359 pages Everything from games to home and office applications programs is included for the IBM PC and PCjr.
ISBN 0-942386-58-2
\$14.95

COMPUTE!'s
Telecomputing on the IBM Arlan R. Levitan and Sheldon Leemon, 274 pages The ins and outs of telecomputing on the IBM PC or PCij, from selecting a modem and evaluating terminal software to getting online with the major information services.
ISBN 0-942386-96-5
\$14.95

ORDER ALL FOUR BOOKS FOR \$49.95 AND SAVE OVER $\mathbf{1 5 \%}$ OFF THE RETAIL PRICE!

Take advantage of the great price savings and exceptional value of these bestselling books from COMPUTE! and order the four-book set today.
To order, call our toll free customer service number, 1-800-346-6767 (in NY 212-887-8525) and ask for COMPUTE!'s IBM Library. Or, mail the attached coupon with your payment to COMPUTE! Books, P.0. Box 5038, F.D.R. Station, New York, NY 10150.

You can also order individual copies of any of the above books at the stated retail price. Sorry, no substitutions. LIMITED TIME OFFER! You must order before May 20 to receive your $\mathbf{1 5}$-percent discount.

Please send me the books I have selected. My payment is enclosed.

- Sets of COMPUTEI's IBM Library (four hooks per set) $\$ 49.95$ COMPUTEI's First Book of IBM (010-6) \$14.95
——COMPUTEI's Telecomputing on the IBM (96-5) \$14.95
—— Easy BASIC Programs for the IBM PC and PCjr (58-2) \$14.95 Icons and Images: A Graphics Collection for the IBM PC and PCjr (84-1) \$14.95

All orders must be prepaid.
\square Payment enclosed (check or money order)
\square Charge \square MasterCard \square Visa \square American Express
Subtotal
NC residents add 4.5\% sales tax
Shipping and handling
($\$ 2.00$ per book, $\$ 5.00$ per book airmail)
Total amount enclosed
Exp. Date \qquad
Account №. \qquad Exp \square
Tip
City State
Zip

COMPUTE! Publications,Inc.abc
 One of the ABC Publishing Companies
 8257 th Avenue, 6 th Floor. New York. NY 10019

COMPUTE! books are available in the U.K., Europe, the Middle East, and Africa from Holt Saunders, Ltd., 1 St. Anne's Road, Eastbourne, East Sussex BN21 3UN, England and in Canada from Holt, Rinehart, \& Winston, 55 Horner Avenue, Toronto, ON M8Z 4 X6.

THE ST COMPUTER LINE from atari.

IT'S LIKE GETTING THE POWER AND SPEED OF A FERRARI ${ }^{\circ}$ FOR THE PRICE OF A FORD:

When Atari introduced the $520 \mathrm{ST}^{\mathrm{TM}}$, we set the personal computer industry on its ear.

Nobody had ever produced a machine so powerful and technically advanced for such an incredibly low price. Nobody but Atari has done it yet.

The competition was stunned.
The critics wrote rave reviews.
And consumers were ecstatic.
We could have rested on our laurels, but we didn't.

Instead, Atari extended the ST concept to a new computer called the 1040ST ${ }^{\mathrm{TM}}$.

The amazing new 1040ST is even more powerful than the 520ST and years ahead of all the competition at almost any price. The only question in

	$\begin{aligned} & \text { ATARI } \\ & \text { 1040ST } \\ & \hline \end{aligned}$	$\begin{gathered} \text { COMMODORE © } \\ \text { AMIGA }^{\text {TM }} \end{gathered}$	$\begin{aligned} & \text { IBMO } \\ & \text { PCAT }{ }^{T M} \end{aligned}$	APPLE (MacintoshTM	APPLE lic ${ }^{\text {c }}$
Price	\$999	\$1795	\$4675	\$1995	\$1295
CPU Speed MHz	$\begin{gathered} 68000 \\ 8.0 \\ \hline \end{gathered}$	$\begin{gathered} 68000 \\ 7.16 \\ \hline \end{gathered}$	$\begin{gathered} 80286 \\ 6.0 \\ \hline \end{gathered}$	$\begin{gathered} 68000 \\ 7.83 \\ \hline \end{gathered}$	$\begin{gathered} 65002 \\ 1.0 \\ \hline \end{gathered}$
Standard RAM	1 MB	256 K	256 K	512 K	128 K
Standard ROM	192K	192 K	64 K	64 K	16 K
Number of Keys	95	89	95	59	63
Mouse	Yes	Yes	No	Yes	Optional
Screen Resolution (Non-Interlaced Mode) Color Monochrome	$\begin{aligned} & 640 \times 200 \\ & 640 \times 400 \\ & \hline \end{aligned}$	$\begin{aligned} & 640 \times 200^{\cdots} \\ & 640 \times 200^{\cdots} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} 640 \times 200 \\ 720 \times 350 \\ \hline \end{array}$	$\begin{gathered} \text { None } \\ 512 \times 342 \\ \hline \end{gathered}$	$\begin{array}{r} 560 \times 192 \\ 560 \times 192 \\ \hline \end{array}$
Color Output	Yes	Yes	Optional	None	Yes
Number of Colors	512	4096	16	None	16
Disk Drive	$3.5{ }^{\prime \prime}$	3.5 "	5.25*	3.5 "	$5.25{ }^{\prime \prime}$
Built-in Hard Disk (DMA) Port	Yes	No	Yes	No	No
Midi Interface	Yes	No	No	No	No
\# of Sound Voices	3	4	1	4	1

Atari 520ST with 512 K RAM, $\$ 799$

- Connects to standard color T.V. For RGB color monitor add $\$ 200$.
\cdots With optional monochrome board (non bit-mapped).

1986 isn't which company to buy a computer from, but which computer to buy from Atari.

At \$799, the

520ST gives you 512 Kbytes of RAM, a high-resolution monochrome monitor, 2 -button mouse, and $3.5^{\prime \prime}$ disk drive.

At \$999, the 1040ST gives you 1024 Kbytes of RAM, an ultra high-resolution monochrome monitor, 2 -button mouse, and a built-in double-sided $3.5^{\prime \prime}$ disk drive, plus built-in power supply. Both the 520ST and the 1040ST can be connected directly to your own color T.V. Or you can add an Atari RGB color monitor to get the sharpest, most colorful images possible. Add $\$ 200$ for color monitor.

It's simply a matter of choosing which model best fits your needs.

And whether you choose the 520ST or the 1040ST, you'll be getting the power and speed of a Ferrari for the price of a Ford.

In fact, you'll save hundreds and in some cases thousands of dollars over comparable computers. Which is why consumers are still ecstatic. Why the critics are still writing rave reviews. And why the competition is still stunned.
make excellent use of the Mac's high-resolution monochrome graphics. Since the Amiga and the ST each boast superb color graphics as well as high-resolution modes surpassing the Mac's, video digitization hardware and graphics software are becoming even more flexible and powerful.

As computers grow more capable of handling video images, other manufacturers are gearing up to take advantage of new markets expected to develop. Toshiba and Polaroid have announced products which strengthen the connections among computers, photography, and video. The two companies are jointly introducing a new instant video film recorder that produces instant color prints or slides from a TV set or monitor and has optional RGB (red-green-blue) computer input. The recorder features digital freeze-field capture, color preview capability, and accepts standard NTSC (National Television Standards Committee) signals.

The recorder captures and digitizes any image from a TV screen, whether the signal originated from a broadcast station, VCR, video camera, or any other standard video device. When equipped with the appropriate camera, the result is an instant photo print or 35 mm slide. With the push of a button, you could freeze one frame of your home movies, your favorite rock video, or a TV show, and then instantly produce a color picture. The recorder is expected to be available by midyear.

Polaroid is also introducing this year an improved version of its Palette computer image recorder. The Palette provides presentationquality photos from computer graphics generated by a wide variety of computers, such as the Apple II series and the IBM PC family. It's capable of handling image resolutions up to 920×700, depending on the combination of hardware and software. Almost all presenta-tion-graphics and graphics-editing software is compatible with the under- $\$ 2,000$ system.

Although few personal computer owners will spend several thousand dollars to buy such video systems for the home, the next few years will see
dramatic price drops as technology improves and costs decline.

For example, Kodak's Consumer Electronics Division plans to introduce a still video system that allows you to select and record individual video images. The system's player/recorder captures images in realtime from any NTSC video signal and stores up to 50 images on a tiny floppy disk. An adjunct to this system is a film-todisk transfer station that may be installed at film processors; you could have 35 mm color negatives transferred to the floppy disk, then view the pictures at home on your TV-ordering regular prints later, if you like.

Kodak had also planned to announce a new color video imager for producing instant prints of any video image. However, a recent decision by the U.S. Supreme Court on behalf of Polaroid has forced Kodak to withdraw from the instant photography business. Although Kodak had expected initial sales of the video imager to be in commercial and industrial applications, the long-range plan was to make the product part of home computer and video centers, according to Richard D. Lorbach, vice president of Kodak's consumer division.
"We anticipate that the color video imager eventually will be used as a home entertainment center component," said Lorbach before the court decision was handed down. "Our market research indicates that there is significant consumer interest in being able to make photographs of personal images displayed on TV screens."

This type of video system presents a wide range of possibilities. For example, by capturing images from your home videos, you could make a slide show of still shots or produce prints or slides for family albums. Computer artists could take their digital paintings or images captured from a video source and create their own sequenced video show. With the appropriate computer software, text could be overlayed on any of the images.

There are hundreds of business and industrial applications for this technology. Rather than spending thousands of dollars on outside production of sales and marketing presentations, almost any business
would have access to high-quality video production. A real estate agency could take photos or videotapes of its properties, add textual information on prices and other details, and then show the resulting package to their customers. Any of the frames could be turned into glossy prints for the house-hunters to keep for reference. The ramifications are virtually limitless.

0ne of the most important developments in the marriage of computer and video technology is the introduction of digital TVs-TV sets that convert the incoming analog broadcast signal into digital form. Toshiba, Sony, and most of the other large consumer electronics companies have invested millions of dollars to develop digital TV. Exceptionally clear pictures are only one of the benefits of this research. Digital TVs also have what's called PIP (picture-in-picture) capabilitythey can partition the viewing screen by opening separate "windows" for simultaneously displaying other video signals.

An example is the 26 -inch DT2680A TV receiver/monitor from NEC Home Electronics. It can simultaneously display the picture from the station that's tuned in plus moving pictures from any of three auxiliary video inputs, or color computer graphics through the set's RGB input. You can watch two channels at once, or a channel and a videotape, or even work with your home computer while watching TV on the same screen.

The picture you'll be watching is much sharper, too. Today's conventional TVs offer approximately 250 lines of horizontal screen resolution, while the NEC digital TV is capable of resolving up to 500 lines. This is actually more resolution than is available from broadcast signals. Through special filtering, the digital TV displays a broadcast screen resolution of 336 lines-the best that's possible with today's broadcasts.

In addition, the NEC digital TV has enough microprocessor-based memory to store up to three different still video pictures at a time. By pressing a button on the remote control, you can capture any video image and display it as an $81 / 2$-inch

Superior Performance, Practical Price!

More programs, projects, ways to use your micro for home, hobby, education, and business!

Select 5 Books for Only
 $\$ \square 95$

1160
List $\$ 14.95$

List $\begin{gathered}\text { 1228P } \\ \$ 9.25 \text { (paper) }\end{gathered}$

1997

List $\$ 25.95$

List $\begin{gathered}1907 \\ \text { \$21.95 }\end{gathered}$

List \$21.95

List \$12.95 (paper)

List \$18.95

1993
List \$21.95

1945 List \$16.95

1540
List $\$ 22.95$

List $\$ 15.50$ (paper)

2-1tref
 Plus FREE For Joining

1295P
List $\$ 10.25$ (paper)

1882
List $\$ 19.95$

1427P
List \$12.95 (paper)

7 very good reasons to join The Computer Book Club ${ }^{\text {® }}$

- Big Savings. Save 20% to 75% on books sure to increase your computer know-how
- No-Risk Guarantee. All books returnable within 10 days without obligation
- Club News Bulletins. All about current selectionsmains, alternates, extras-plus bonus offers. Comes 13 times a year with hundreds of up-to-the-minute titles to pick from - Automatic Order. Do nothing, and the Main selection will be shipped automatically! But . . . if you want an Alter nate selection-or no books at all-we'll follow the instructions you give on the reply form provided with every News Bulletin
- Bonus Books. Immediately get Dividend Certificates with every book purchased and qualify for big discounts of 60\% to 80\%
- Extra Bonuses. Take advantage of added-value promotions, plus special discounts
- Exceptional Quality. All books are first-rate publisher's editions selected by our Editorial Board and filled with useful up-to-the-minute information

The Romputer Bnok Chia

P.O. Box 80, Blue Ridge Summit, PA 17214
Please accept my membership in The Computer Book Clubs and send the 5 volumes circled below, plus my FREE copy of BASIC Statements, Commands and Functions billing me only $\$ 2.95$ plus shipping and handling charges. If not satisfied, I may return the books within ten days without obligation and have my membership canceled. I agree to purchase 4 or more books at regular Club prices (plus shipping/handling) during the next 12 months, and may resign any time thereafter.
1000P 1160 1228P 1275 1295P 1407 1427P 15221540 1718P 1737 1748P 1750P 1811 1831P 1873187618821884 1907194519511960 1976P 1993199726272648 Name
Addres
City
State__Zip \qquad Phone
Valid for new members only. Foreign applicants will receive ordering instructions. Canada must remit in U.S. currency. This order subject to acceptance by The Computer Book Club ${ }^{\oplus}$
(diagonal) window within the 26inch screen. Meanwhile, the background video image is unaffected. You could freeze-frame a fullback plowing through the line while watching the play continue on the main screen.

As might be expected, the connection capabilities and special features of such a TV set go far beyond the few video and audio plugs found on even the better current sets. The NEC digital TV contains a stereo amplifier and stereo speakers, three sets of line video inputs for VCRs, video disc players, color cameras, and home computers, and an eight-pin RGB input. Outputs include a monitor jack that carries whatever is on the screen, a TV output that carries whatever channel is tuned, external speaker outputs, fixed audio line outputs for recording, and variable audio line outputs for volume-controlled connections to an external sound system.

As NEC vice president Gerry Tangney says, this "is a taste of the future of home TV." The NEC digital set is expected to be introduced in May, with the price to be announced soon.

Another new technology already on the horizon is high-definition TV (HDTV), an enhanced broadcast signal that offers 1,125 scan lines of information instead of the 525 now used in conventional American TV broadcasting. This would require broadcasters to upgrade their equipment, however, and efforts to adopt an HDTV standard have reportedly been mired in international and corporate disagreements over how to bring about this doubling of screen clarity.

The growing popularity of compact disc (CD) audio players has given new impetus to the development and widespread consumer distribution of their digital data cousins, called CD-ROMs (Compact Disc-Read Only Memories). Although these laser discs are only 4.72 inches in diameter, they are capable of storing 600 megabytes of information on a single side, with an access time of seconds.

The first company out the door with CD-ROM players in the retail
market is the Subsystems and Peripherals Division of North American Philips Corporation. Its CM 100 disc player and CM 155 controller card works with the IBM PCcompatible computers (other interfaces will be announced this year). Available with the Philips CDROM player is Grolier's The Electronic Encyclopedia, the equivalent of a 20 -volume reference collection on just about a quarter of one side of a CD-ROM disc. Although the initial purchase price of $\$ 1,495$ may keep initial sales out of the home market in volume, the price for CDROM technology is expected to drop quickly over the next couple of years.

Philips has introduced its CD-ROM drive which comes with Grolier's Electronic Encyclopedia on a compact disc. The entire package sells for $\$ 1,495$.

Technology occasionally moves in mysterious ways, and an example can be seen in new products which have taken advantage of the popularity-and intimidationof word processors. Casio's new CW-30 Personal Typewriter blends the comforting familiarity of a typewriter with the ease of use of a computer word processor. The $\$ 399.95$ hybrid machine looks very much like a standard electric typewriter. But a quick look at the key-

This Casio computer-compatible electronic typewriter is a hybrid-part typewriter and part word processor-that can connect to a computer to serve as a printer.
board also shows a set of cursor and special function keys, plus a 15character liquid-crystal display window for editing

One of the most interesting features of the Casio typewriter is that it's computer-compatible. It contains both a Centronicsstandard parallel interface and an RS-232 serial interface that lets the typewriter become a computer printer (plain or thermal paper). It can be hooked up to a 300 baud modem for uploading and downloading text with a computer. It has built-in pica and elite pitches, right justification, and multiple type fonts: boldface, underlining, dou-ble-wide characters, special symbols, and foreign alphabet characters. It has enough memory to store two pages of text, and with an optional memory expander, up to ten pages of text. Small removable memory cards let you save and store text. Casio obviously hopes to capture the best of both worlds, typewriters and word processors, at the same time it is attracting those who don't want to give up typewriters, but are fearful they're being left behind by word processors.

The Magnavox VideoWriter is an $\$ 800$ dedicated word processor aimed at the home market.

Magnavox has taken a different approach with its new Videowriter, a dedicated home word processor that contains its own software, printer, spelling checker, and 18-line monitor (smaller than a regular computer screen, but larger than most portable computers). The $\$ 800$ Videowriter has a memory capacity of approximately 70 pages of text, automatically stored on standard $31 / 2$-inch disks. While dedicated word processors have been used in offices for years, it's unusual to
see such a product for the home market, especially considering the number of people who buy multipurpose computers primarily for word processing.

Computers are converging with yet another technology, tootelephones. For example, Commodore is planning to introduce its new 1100 AnswerMate, a programmable computer-controlled telephone answering machine for the Amiga. The AnswerMate connects to the Amiga's RS-232 port and to a telephone. Not only does it play back your taped greetings and record messages, but it also can respond with messages generated by the Amiga's built-in synthesized voice. And multitasking software included with the AnswerMate lets it answer phone calls while you're busy using the computer for other things. (Price to be announced.)

Commodore's AnswerMate connects to the Amiga computer to serve as a telephone answering machine that can make use of the Amiga's multiprocessing and synthesized speech capability.

There is scarcely an area of consumer electronics which is not moving either directly or indirectly toward the personal computer, either as a peripheral or as a microprocessor-based stand-alone device. Even the ways in which computer users receive their software may be undergoing change in the future.

For example, Cauzin Systems, with backing from Kodak, has developed the Softstrip system of information storage. Data is encoded on a strip of paper in a format similar to-but more compact than-the familiar bar codes found
on consumer products. One strip, which typically measures $91 / 2$ by $5 / 8$ inches, can store up to 5,500 characters (about three typewritten pages). The strips can be printed on ordinary paper and are read by an electro-optical scanner. Connected to a computer, the scanner reads the coded strips and transfers the data into memory for later storage on disk.

Further examples of converging electronics technologies abound in virtually every field. The emergence of stereo TVs and VCRs, coupled with a stereo-capable computer such as the Amiga, obviously opens new possibilities for audiophiles. Interactive video, spurred by improvements in laser discs, is another rapidly evolving technology with a connection to personal computing. Radio signals relayed by satellites can carry data accessible by computer users. Use of electronic mail systems is expected to jump from less than a billion messages a year today to more than 20 billion by the end of the decade, ultimately becoming a major service as common as the telephone and the U.S. mails.

As media consultant David Allen noted earlier, technology is capable of virtually anything today; but the successful marketing of an idea is the key to its success. In the forseeable future, neither technology nor the marketplace shows any signs of slowing down.

Attention Programmers

COMPUTE! magazine is currently looking for quality articles on Commodore, Atari, Apple, and IBM computers (including the Commodore Amiga and Atari ST). If you have an interesting home application, educational program, programming utility, or game, submit it to COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Or write for a copy of our "Writer's Guidelines.'

23 PARK ROW, NEW YORK, N.Y. 10038 $\underset{\substack{\text { ORDER } \\ \text { TOL-FREE }}}{\substack{\text { Ren }}} \mathbf{8 0 0 . 2 2 1 . 8 1 8 0}$

23 PARK ROW, DEPT. C4, NYC, NY 10038
name:
ADDRESS:
CITY:

$\square=\square=$

Report From:

The Winter Consumer Electronics Show

A Turning Point For Atari?

Tom R. Halfhill, Editor
Following up its strong showing at the Comdex computer show in November, Atari introduced a more powerful version of its ST at the Winter Consumer Electronics Show in January. Thanks to increasing sales, growing software support, widening distribution, and hints of new enhancements to come, industry watchers are suddenly taking more notice of Atari's bid for a comeback. Meanwhile, Commodore also entered 1986 with encouraging sales and Apple is responding with an improved Macintosh and lower prices.

Ayear ago it seemed impossible. Commodore founder Jack Tramiel had split with his successful computer company after a management dispute, bought the debt-ridden Atari that he had nearly destroyed in price wars, installed his sons in key positions, laid off most of the work force, rushed the design of a powerful 16/32-bit machine in only six months, introduced it at an unheardof low price, and announced he was going to resurrect Atari as a major contender in the personal computer marketplace.

Atari still isn't home free. But the house that Jack built suddenly seems a lot more solid.

Strengthened by encouraging sales of the 520ST-according to estimates, at least 100,000 units worldwide through Christmas-Atari is now attracting more attention within the industry. "Frankly, a lot of people didn't think Jack would make it this far," says one observer. "Now they're

The new Atari 1040ST is the first onemegabyte computer for under $\$ 1,000$. It has $1,024 \mathrm{~K}$ of RAM and a built-in, dou-ble-sided disk drive.
taking him a lot more seriously."
If Atari's comeback ultimately succeeds, the six-week period between late November 1985 and early January 1986 may well become recognized as the turning point. During that period, Atari piled up sizeable holiday sales and made impressive appearances at two crucial industry trade shows: Fall Comdex and the Winter Consumer Electronics Show. Both are held annually in Las Vegas and are among the largest trade shows in the U.S., with upwards of 100,000 people at each event.

At Comdex, which is oriented toward business computing, Atari demonstrated to skeptics that its 520ST was a real machine with dozens of software packages. At CES, a show that encompasses every consumer electronics product imaginable, Atari was the only major computer manufacturer in attendance and made three important announcements: the new 1040ST, a more powerful version of the 520ST with one megabyte of memory and a built-in disk drive; price reductions of $\$ 100$ for the monochrome and color 520ST systems; and a shift to mass-market outlets such as department stores for the 520ST.

Atari's appearances at Comdex and CES seemed all the more impressive due to the conspicuous absence of its closest competitor, Commodore. People were surprised when Commodore missed Comdex because the company has been trying to position the Amiga as a business computer and Comdex was the ideal place. But there was shock when Commodore bowed out of CES because Commodore has never missed a CES since the days when wristwatches and calculators were its stock in trade.

Commodore didn't have much to say about missing the shows. However, one Commodore executive admitted he was "uneasy" about the reaction at CES-ironically, the rumors of imminent financial catastrophe that once followed Atari were now being whispered about Commodore. The rumors proved untrue, however, and Commodore says it definitely plans to attend the Summer CES in Chicago this June.

Actually, Commodore finished 1985 with heavy sales of its own. According to reliable estimates, Commodore sold about one million 64 s , as many as 500,000 Commodore 128 s , and at least $20,000 \mathrm{Ami}-$ gas. Even Commodore was caught off guard by the 64 and 128 sales. In fact, insiders say Commodore tried twice during the fall to discontinue the 64, but had to restart production both times to meet sudden demand. As an indication that Amiga sales are healthy, the leading independent software supplier for the com-puter-Electronic Arts-says it recovered all of its 1985 Amiga development costs within two weeks after releasing its first Amiga products.

Although Atari and Commodore are still struggling financially, both have survived a rough market in 1985 and appear to be in better shape for 1986.

Since Atari was the only major computer company exhibiting at CES (IBM and Apple routinely avoid this show), most of the computer news was Atari-related. The main event was the introduction of the 1040ST, the first one-megabyte computer selling for under $\$ 2,500$. In fact, it's the first one-megabyte computer selling for under $\$ 1,000$.

The 1040ST is basically an enhanced 520 ST and is fully compatible with existing ST software and hardware. The keyboard and all interfaces are identical: RS-232 serial and Centronics-standard parallel ports; in/out MIDI (Musical Instrument Digital Interface); floppy and hard disk interfaces; plus monochrome and analog RGB monitor outputs. The graphics-oriented user interface, GEM (Graphics Environment Manager), is the same.

New features on the 1040ST include one megabyte $(1,024 \mathrm{~K})$ of Random Access Memory (RAM), twice the amount that comes with the 520ST; a built-in, double-sided $31 / 2$-inch disk drive with a capacity of 770 K per disk, twice the capacity of the drive sold with the 520 ST ; a TV output jack; and an internal power supply for both the computer and drive, reducing the familiar clutter of external cables.

Like recent-model 520STs, the 1040ST comes with its Tramiel Operating System (TOS) in Read Only Memory (ROM) chips, freeing up more than 200K RAM that used to be required when loading TOS from disk. Also like the 520ST, the 1040ST comes with ST BASIC, the NEOchrome graphics-drawing program, and a word processor, 1 st Word (the 520ST comes with ST Writer). Atari says 1st Word has GEM features such as drop-down menus and on-screen type fonts. (ST Writer, by contrast, is a direct translation from the AtariWriter word processor for eight-bit Ataris.)

There are two different 1040ST packages. With a high-resolution monochrome monitor, the suggested retail price is $\$ 999.95$. With an analog RGB color monitor, the price is $\$ 1,199.95$. Atari says the 1040ST will be sold only through computer dealers and should be available immediately.

The 520ST also underwent some minor changes. The latest models will be shipped with TOS in ROM and a TV output jack. To widen distribution, the 520 ST will be sold through massmarket outlets in three different ways. A system that includes the computer, a single-sided $31 / 2$-inch disk drive (380 K capacity), and hires monochrome monitor will now
be priced at $\$ 699$ suggested retail. The same system with an analog RGB color monitor instead of the monochrome screen will be priced at $\$ 899$. Both prices are $\$ 100$ lower than before. The 520ST components are also available separately: $\$ 399$ for the computer, $\$ 199$ for a single-sided drive, $\$ 299$ for a dou-ble-sided drive, $\$ 199$ for the monochrome monitor, and $\$ 299$ for the RGB monitor.
by lining up a series of computers running the now-famous Amiga bouncing ball demo. (A screen photo of this demo appears in COMPUTE!'s cover story on the Amiga in September 1985; it shows a red-and-white checkered globe spinning and bouncing around the screen, casting a transparent shadow on the background.) An Amiga, 520ST, Macintosh, and eight-bit Atari 130XE spent four straight

Atari's 520ST has been improved with a ROM-based operating system, a TV output jack, and a $\$ 100$ lower price. Also, for the first time, the computer and other components will be available separately in mass-market outlets.

Rumors abounded at CES about new developments for the ST line, including a better graphics chip, a bit-block transfer chip similar to the one in the Amiga, a $5^{1 / 4}$ inch disk drive adapter for use with an IBM PC emulator, and more. Officially, Atari won't confirm or deny if it's preparing to introduce any of these products in the near future.

However, Atari is expected to announce at least one enhancement at an upcoming computer show in West Germany (about half of all ST sales are in Europe). The most likely possibility is the bit-block chip, which allows faster screen graphics. Also, it is now known that three companies outside Atari are working on PC emulators for the ST, each taking a slightly different approach. At this writing (mid-January), none of them is expected to be ready for several months.

Atari's CES exhibit poked fun at the Amiga and Apple Macintosh
days dribbling checkered balls at the Atari booth. Oddly enough, the 130XE version was perhaps the most impressive of all. Not only was the 130XE bouncing a checkered ball, but also a 3-D image of the Atari logo decorated with 128 rippling colors.

Apple hasn't been oblivious to the competition, and a week after CES announced an improved version of the Macintosh and lower prices for the $512 \mathrm{~K} \mathrm{Mac}$. Macintosh Plus has one megabyte of RAM, a double-sided disk drive that stores 800 K (twice the capacity of existing Macintosh drives), a redesigned keyboard with numeric keypad and cursor keys, a faster operating system, and an extra peripheral port called the Small Computer System Interface. The suggested retail price is $\$ 2,599$. The 512 K Mac was reduced from $\$ 2,499$ to $\$ 1,999$, and kits are available so owners of 128 K and 512 K Macs can upgrade to the Mac Plus.

Now Get Up To 200 FREE Programs* When You Subscribe to COMPUTE! Today.

Subscribe to COMPUTE! today and you'll be getting a lot more than just another computer magazine. That's because COMPUTE! comes complete with up to 20 FREE programs in each big issue.

Subscribe now and you can depend on a steady supply of high quality, fun-filled programs like Cash Flow Manager, Speed Ski, Turtle Pilot, Boggler, Text Plot, Retirement Planner, and hundreds of other educational, home finance, and game programs the entire family can use all year long.

The free programs alone are worth much more than the low subscription price. But there's more to COMPUTE! than just free programs.

COMPUTEI's superb articles deliver the latest inside word on everything from languages to interfaces...programming to disk drives. And our up-to-the-minute software reviews are must reading for any home user.

Whether you're a novice or an experienced user, COMPUTE! is perfect for you. So subscribe today. Return the enclosed card or call 1-800-247-5470 (in lowa 1-800-532-1272).

COMPUTE! Publications,Inc.abc
Part of ABC Consumer Magazines, inc.
8257 th Avenue, oth Floor. New York. NY 10018

*Ranging from short techniques and programming tips to complete, powerful applications programs.

Atari didn't ignore its older products at CES. Among other things, two new eight-bit computer packages were unveiled.

The $130 X E$, a $400 / 800 / X L-$ compatible computer with 128 K RAM that was introduced last year, will now be available in a $\$ 399$ package that includes a 1050 disk drive, 1027 printer, and five pieces of software: AtariWriter, Music Painter, Paint, Star Raiders, and Silent Butler. The 130XE is still available separately for $\$ 149$.

Atari's new lowest-end computer is the 65 XE , a $400 / 800 / \mathrm{XL}-$ compatible machine with 64 K

Relics from another age? Nope. Videogame machines are still selling so well that Atari has redesigned the nine-yearold 2600 and introduced a new model, the 7800 .

RAM. It was actually announced at last year's Winter CES, but was withheld from the market until existing inventories of 800 s and 800XLs were sold out. The 65XE will be sold separately for under $\$ 100$ or in a package similar to the 130XE's for \$300-\$350.

Much to everyone's surprise, Atari also came to CES with a redesigned 2600 videogame machine (formerly known as the VCS) and the new 7800 game machine. What's that, you thought videogame machines were dead? Guess again. Atari says it sold over a million 2600s in 1985. Apparently many of them are going to new markets overseas-including, we hear, the People's Republic of China.

The revamped 2600 is smaller, lighter, sleeker, has a carrying handle, and costs less than $\$ 50$. The 7800 machine was one of the last projects of the old Atari before Tramiel took over, and is now being unpacked from mothballs. Thanks to a chip named MARIA, the 7800's graphics are superior even to those of the eight-bit computers, and the machine accepts all 2600 cartridges without an adapter. It sells for less than $\$ 80$ and comes with a new version of Pole Position, the hit car racing game.

computers aren't much good without software, and Winter CES demonstrated that a lot of companies are bringing out new programs for the ST and Amiga as well as popular eight-bit machines. Unfortunately, there were a lot fewer software companies at this CES than last year's. The West Hall, a large building which supplements the main Convention Center, once was filled with software publishers. This year, only a handful of them shared space with companies selling satellite dishes, videotapes, cable TV accessories, and other periphernalia. The last two years have been tough, and many software developers either can't afford to exhibit at CES anymore or are out of business altogether.

Still, some fascinating products are on the way. Starting with ST and Amiga software, here's what's new:

Electronic Arts (San Mateo, California) announced several new programs for the Amiga and its first products for the Atari ST. New Amiga software slated for release this year includes Deluxe Music, a note-oriented composition program; Instant Music, a composition program for nonmusicians; Arcticfox, a strategic combat tank simulation; Adventure Construction Set, for do-it-yourself adventure games; and Deluxe Printing Construction Set.

A previously announced Electronic Arts program, Deluxe Video Construction Set, is due for release soon. It lets you create animated sequences that can be integrated with screens created in DeluxePaint, a drawing program released in December. (Electronic Arts says it

Arcticfox is a new strategic tank game for the Amiga from Electronic Arts.

This is the Amiga version of Marble Madness, but Electronic Arts is also bringing out an Atari ST version of the game.

Deluxe Music is a note-oriented composition program designed for the Amiga by Electronic Arts.

Even if you don't know much about music, you can play songs on an Amiga with Electronic Arts' Instant Music program. It has numerous built-in instrument sounds and doesn't rely on standard musical notation.

GET THE KNOW-HOW TOREPAR EVERY

 COMPUTER ON THIS PAGE.Learn the Basics the NRI Way-and Earn Good Money Troubleshooting Any Brand of Computer
The biggest growth in jobs between now and 1995, according to Department of Labor estimates, will occur in the computer service and repair business, where demand for trained technicians will actually double.

You can cash in on this opportunity-either as a fulltime corporate technician or an independent service-person-once you've learned all the basics of computers the NRI way. NRI's practical combination of "reason-why" theory and "hands-on" building skills starts you with the fundamentals of electronics, then guides you through advanced electronic circuitry and on into computer electronics. You also learn to program in BASIC and machine language, the essential languages for troubleshooting and repair.

You Build-and Keep-a 16-bif Sanyo personal computer

The vital core of your training is the step-by-step building of the 16 -bit Sanyo MBC-550 series computer. Once you've mastered the details of this state-of-theart machine, you'll be qualified to service and repair virtually every major brand of computer, plus many popular peripheral and accessory devices.

With NRI training, you learn at your own convenience, in your own home. You set the pace-without classroom pressures, rigid night-school schedules, or wasted time. You build the Sanyo IBM compatible computer from the keyboard up, with your own personal NRI instructor and the complete NRI technical staff ready to answer your questions or give you guidance and special help whenever you need it.

Praised by critics as the "most intriguing" of all the IBM-PC compatible computers, the new Sanyo uses the same 8088 microprocessor as the IBM-PC and

features the MS/DOS operating system. As a result, you'll have a choice of thousands of off-the-shelf software programs to run on your completed Sanyo. Your NRI course includes installation and troubleshooting of the "intelligent" keyboard, power supply, and disk drive, plus you'll check out
the 8088 microprocessor functions, using machine language. You'll also prepare the interfaces for future peripherals such as printers and joysticks.

100-Page Free Cafalog Tells More

Send the coupon today for NRI's big 100-page color catalog on NRI's electronics training, which gives you all the facts about NRI courses in Microcomputers, Robotics, Data Communications, TV/Video/ Audio Servicing, and other growing high-tech career fields. If the coupon is missing, write to NRI Schools, 3939 Wisconsin Avenue, NW, Washington, DC 20016.

double density/double sided disk drive,
and "intelligent" keyboard; the NRI
Discovery Lab ${ }^{\text {² }}$, teaching circuit design and operations; a Digital Multimeter, Bundled Spread Sheet and Word Processing Software worth over $\$ 1000$ at retail-and more.

shipped 15,000 copies of DeluxePaint the first two weeks.) Scores composed with Deluxe Music can also be integrated with Deluxe Video Construction Set.

ST software from Electronic Arts includes two programs already released for the Amiga: Financial Cookbook, a home financial planner, and Marble Madness, an arcade game. Prices for Electronic Arts' Amiga and ST software range from $\$ 39.95$ to $\$ 79.95$.

Hippopotamus Software (Los Gatos, California) is bringing out the Hippo ST Sound Digitizer and Hippovision Video Digitizer for the Atari ST. The sound digitizer plugs into the printer port and lets you sample, modify, and play back any type of sound. It includes specialeffects software and a microphone for $\$ 139.95$. The video digitizer lets you capture images in 256×256 pixel resolution from any composite video source, such as a video camera, videocassette recorder, videodisc player, or TV tuner. Picture files are compatible with Atari's NEOchrome drawing program, can be printed on color printers, and can be transmitted via modem. The price was not announced.

Hippopotamus has 13 other ST programs scheduled for release soon, including HippoWord, an $\$ 89.95$ word processor; HippoConcept, an idea processor, $\$ 89.95$; HippoSimple, a database manager, \$49.95; Hippo Disk Utilities, \$49.95; HippoBackgammon, \$39.95; HippoSpell, a spelling checker with 30,000-word dictionary and userdefinable terms, \$39.95; Hippo RAMdisk, \$34.95; Hippo Computer Almanac, which contains over 35,000 facts on everything from area codes to sports trivia, $\$ 34.95$; Hippo Jokes \& Quotes, with selectable PG, R, or X ratings, \$34.95; HippoArt I, a collection of 30 picture files compatible with NEOchrome, \$39.95; Hippo EPROM Burner, for programming your own chips, \$139.95; HippoClean, a disk drive cleaning kit, \$29.95; and HippoPixel, a utility for creating your own sprites and fonts, $\$ 39.95$.

Aegis Development (Santa Monica, California) is bringing out four graphics products for the Amiga: Aegis Images, a drawing program; Aegis Draw, a ComputerAided Design (CAD) program; Ae-

This strikingly beautiful picture was created on the Amiga's 320×200-pixel screen in 32 colors with Aegis Images, a graphics-art program demonstrated at CES.
gis Animator, for creating animated sequences; and Impact, an executive graphics package. Images, Animator, and Impact were actually developed by Island Graphics of Sausalito, California. Under an agreement with Commodore, they were supposed to be released under the Amiga brand name. For instance, Images was originally known as Graphicraft or ProPaint (several screens created with this program appear on the Amiga's packaging and in the September 1985 issue of COMPUTE!). But Island Graphics and Commodore had a falling out, and the Amiga Graphicraft currently being sold is not the software developed by Island

Impact, another product from Aegis Development, makes it possible to produce three-dimensional business graphics using the Amiga's 4,096 colors.

Graphics. Instead, Aegis acquired the marketing rights to the Island Graphics programs, enhanced them, and renamed them Aegis Images, Animator, and Impact.

Images is available for $\$ 79.95$ separately, or for $\$ 139.95$ in a package with Aegis Animator. Using Images screens as a backdrop, Animator allows 3-D animation and rotation, metamorphic shape manipulation, storyboarding of up to nine separate sequences, and ghost-line animation. Impact ($\$ 199.95$) is for business presentation graphics and includes a slide show feature-charts, graphs, and pictures can be flipped in a predetermined sequence and transformed.

Aegis Draw is a Computer-Aided Design (CAD) program for the Amiga which is aimed at professional users.

Detailed guide presents the 128 's operating system, explains graphic chips, Memory Management Unit, 80 ROM listings. $\quad 500 \mathrm{pp}$ \$19.95

Introduction to programing; problem analysis; thorough description of all examples: monitor commands; til oxam; mosh more 400 pp sion

ANATOMY OF C-64 Insider's guide to the ' 64 internals. Graphics, sound, VO, kernal, memory maps, more. Complete commented ROM listings.

300pp \$19.95
ANATOMY OF 1541 \&DRIVE Best handbook on floppy Sexplains all. Many examples and uttitesivelly commented 1541 ROM listings. $X P$ 500pp $\$ 19.95$
MACHINE LANGUAGE C. 64 Learn 6510 code write fast programs. Many samples and listings for complete assembler, monitor, \& simulator. 200pp \$14.95 GRAPHICS BOOK C-64 - best reference covers basic and advanced graphics. Sprites, animation, Hires, Multicolor, lightpen, 3D-graphics, IRQ, CAD, projections, curves, more. 350pp $\$ 19.95$

Filled with info for everyone. Covers 80 column hi-res graphics, windowing, memory layout, Kernal tection, autostarting. 300pp $\$ 19.95$

nsiders' guide for novice \& ad vanced users. Covers sequential \& relative files, \& direct access commands. Describes DOS routines. Commented listings. 500pp $\$ 19.95$

Learn fundamentals of CAD while developing your own system. Design objects on your screen to dump to a Simon's Basic. $\quad 300 \mathrm{pp} \$ 19.95$

Presents dozens of programming Essential guide for everyone interested in CP/M on the 128. Simple explanation of the operating system stacks, zero-page, pointers, the grams, submit files \& more. \$19,95

TRICKS \& TIPS FOR C-64 Collection of easy-to-use techniques: advanced graphics, improved data input, enhanced BASIC CP/M, more. 275pp \$19.95 1541 REPAIR \& MAINTENANCE Handbook describes the disk drive hardware. Includes schematics and techniques to keep 1541 running. 200pp \$19.95 ADVANCED MACHINE LANGUAGE Not covered elsewhere: - video controller, interrupts, timers, clocks, VO, real time, extended BASIC, more. 210pp \$14.95 PRINTER BOOK C-64/VIC-20 Understand Commodore, Epson-compatible printers and 1520 plotter. Packed; utilities; graphics dump; 3D-plot; commented MPS801 ROM listings, more. 330pp \$19.95

SCIENCE/ENGINEERING ON C-64 In depth intro to computers in science. Topics: chemistry, physics, biology, astronomy, electronics, others. 350 pp \$19.95 CASSETTE BOOK C-64/VIC-20 Comprehensive guide; many sample programs. High speed operating system fast file loading and saving. 225 pp \$14.95 IDEAS FOR USE ON C. 64 Themes: auto expenses, calculator, recipe file, stock ists, diet planner, window advertising, others. Includes listings. 200pp \$12.95 COMPILER BOOK C-64/C-128 All you need to know about compilers: how they work; designing and writing your own; generating machine code. With working example compiler. \quad 300pp $\$ 19.95$

Adventure Gamewriter's Handbook Step-by-step guide to designing and writing your own adventure games. With automated adventure game generator. 200pp \$14.95 PEEKS \& POKES FOR THE C-64 Includes in-depth explanations of PEEK POKE, USR, and other BASIC commands. Learn the "inside" tricks to get the most out of your ' 64 .

200pp \$14.95
Optional Diskettes for books
For your convenience, the programs contained in each of our books are available on diskette to save you time entering them from your keyboard. Specify name of book when ordering.
$\$ 14.95$ each

128 and C.-64 are trademarks of Cocm

Aegis Draw, for hobby and professional CAD work, actually consists of two programs: Aegis Draw and Aegis Draw Professional. The first version retails for $\$ 199.95$ and can be upgraded to the Professional version at extra cost. Aegis Draw has zooming, automatic scaling, selectable grids, layering, and multiple windows so you can work on several drawings simultaneously, or on different parts of the same drawing. It supports Kurta and Summagraphics digitizers, and plotters by Roland, Hewlett Packard, Houston Instruments, Epson, and Comrex. All four Aegis programs for the Amiga should be available immediately.

Supra Corporation (Albany, Oregon) announced a series of hard disk drives for the Atari ST with capacities of 10,20 , 40, and 80 megabytes. Prices start at $\$ 799$ for 10 megabytes. They should be available this spring.

Optimized Systems Software (San Jose, California) was demonstrating Personal Pascal for the ST at the Atari booth and has already started shipping. This language supports all of the ST's special features, compiles and links most programs in about a minute (even faster with a hard disk or RAM disk), and sells for $\$ 74.95$. OSS is also readying a version of the Prolog language and a set of disk utilities for the ST.

Cardco (Wichita, Kansas), known in the past for its VIC-20 and Commodore 64 add-ons, is preparing a one-megabyte memory expansion board for the Amiga. The board plugs into the expansion bus, and Cardco says it will be available this spring for about $\$ 400$.

Unison World (Berkeley, California) is converting PrintMastera printer utility similar to The Print Shop-to the Atari ST. It's already available for the Commodore 64, IBM, and CP/M computers.

Activision (Mountain View, California) said sales of its initial software for the ST and Amiga have been "quite strong" and that additional titles will be released this year. These include Garry Kitchen's GameMaker: The Computer Game Design Kit and The Music Studio for the Amiga and ST; and The Activision Little Computer People Discov-

Another new music-composition program is The Music Studio from Activision. There are versions for the Amiga, Atari ST, and IBM PCjr/Tandy 1000 computers.
ery Kit for the Amiga. GameMaker lets you write videogames without learning a programming language. Finished games can be saved on a blank disk and run independently of the master program, so you can distribute copies to friends. Activision is sponsoring a GameMaker contest-first prize is a trip to Activision plus $\$ 5,000$.

The Music Studio is a composition tool designed by Audio Light for both amateur and professional musicians. With it, you can design instruments and create new sound effects. The Amiga version plays up to 16 simultaneous sound channels in stereo.

Accolade/FTL Games (Cupertino, California) has released Sundog: Frozen Legacy for the ST. Originally written for the Apple II series, Sundog is a graphics strategy game that has been completely redesigned to take advantage of the ST's advanced graphics. Thanks to a proprietary data-compression scheme, hundreds of different fullcolor screens are stored on the program disk.

Mindscape (Northbrook, Illinois) is introducing three programs

Mindscape's Deja Vu: A Nightmare Comes True is a 1940s-style mystery game for the Amiga and Macintosh.
for the Amiga and one for the ST. Brataccas (\$49.95) is a graphics adventure game for both computers that was developed by Psygnosis Limited of England. It was written specifically to take advantage of the 68000 chip inside the Amiga and ST. In Brataccas, you're a scientist who has invented a genetic process for creating a superbeing. With an evil government and the underworld in pursuit, you flee to a colonized asteroid, Brataccas. The object is to expose the government's corruption and clear your name. Brataccus is populated with nearly 60 different characters.

For the Amiga only, Mindscape is releasing The Halley Project: A Mission in Our Solar System (\$49.95), a realtime simulation of the solar system developed by Tom Snyder Productions with help from the Massachusetts Institute of Technology; Deja Vu: A Nightmare Come True (\$54.95), a 1940 s -style mystery game; and Keyboard Cadet (\$39.95), a typing tutor. (Incidentally, Mindscape is the company which wrote the Amiga Tutor supplied with the Amiga.)

Abacus Software (Grand Rapids, Michigan) is importing a pro-fessional-quality program called $P C$ Board Design for the ST. When Abacus finishes translating this circuitdesigning utility from German, it will sell for $\$ 395$.

Batteries Included (Richmond Hill, Ontario) was demonstrating its D.E.G.A.S. drawing program for the ST with a slideshow of screens called up in rapid sequence from a hard disk. D.E.G.A.S. started shipping just before CES, and it's already a hit-Batteries Included says that sales figures for the first two weeks were greater than for any other program in its history. ST and Amiga versions of the Isgur Portfolio System, a stock-management program, are scheduled for release later this year at $\$ 249.95$.

Q-R-S (Buffalo, New York), a company that started back in 1900 by making music rolls for player pianos, is releasing its digital music library for the Amiga and ST. This consists of a number of disks containing piano music by Joplin, Gershwin, Liberace, and other artists and composers. Each disk contains six songs and sells for $\$ 19.95$.

Sierra On-Line (Coarsegold,

Our BASIC Compilers are the complete compiler and development packages. Speed up your programs from 5 x to 35 x .
Our BASIC Compilers give you many options: flexible memory management; choice of compiling to machine code, compact p-code or a mixture of both. Also on the '128, 40 or 80 column monitor output and FAST-mode operation.

The '128 Compiler's extensive 80 -page programmer's guide covers compiler directives and options, two levels of optimization, memory usage, input/output handling, 80 column hi-res graphics, faster, higher precision math functions, speed and space saving tips, more. A great package that no software library should be without.

BASIC 128 Compiler $\$ 59.95$
BASIC 64 Compiler $\$ 39.95$

For school or software development, select SUPER C. Learn to use one of today's most popular languages on your Commodore 128. Powerful screen editor, compiler, linker-link up to seven modules, 1/O library-includes printf and fprintf. Compile your C programs into fast machine language. C-128 $\$ 79.95$

For the professional who wants to easily create high quality charts and graphs without programming. You can immediately change the scaling, labeling, axis, barfilling, etc. to suit your needs. Accepts data from CalcResult and MultiPlan. C-128 version has $3 X$ the resolution of the '64 version. Outputs to most $\begin{array}{lll}\text { printers. } & \mathrm{C}-128 & \$ 39.95 \\ & \mathrm{C}-64 & \$ 39.95\end{array}$

PowerPlan

One of the most powerful spreadsheets with integrated graphics for your Commodore computer. Includes menu or keyword selections, online help screens, field protection, windowing, trig functions and more. Power-Graph, the graphics package, is included to create integrated graphs \& charts. C-64 \$39.95

CADPAK is a remarkably easy to use drawing package for accurate graphic designs.

Using CADPAKs new dimensioning features you can create exact scaled output to all major dot-matrix printers.

This enhanced version of CADPAK allows you to input via the keyboard or a high quality lightpen. Two graphic screens permit you to COPY from one screen to another. DRAW, LINE, BOX, CIRCLE, ARC, ELLIPSE are but a few of the many selections to choose from. FILL objects with preselected PATTERNS; add TEXT; SAVE and RECALL designs to/from disk. You can define your own library of intricate symbols/objects with the easy-to-use OBJECT MANAGEMENT SYSTEM-it will store up to 104 separate objects.

C-128 \$59.95
C-64 \$39.95

Not just a compiler, but a complete system for developing applications in Pascal. Extensive editor with search, replace, auto, renumber, etc. Standard J \& W compiler that generates fast machine code. If you want to learn Pascal or to develop software using the best tools available-SUPER Pascal is your first choice. C-128 \$59.95
C-64 \$59.95

OTHER TITLES AVAILABLE:

Technical Analysis System

A sophisticated charting and technical analysis system for serious investors. By charting and analyzing the past history of a stock, TAS can help pinpoint trends \& patterns and predict a stock's future. Enter data from the keyboard or from online financial services.

C-64 \$59.95

Personal Portfolio Manager

Complete portfolio management system for the individual or professional investor. Easily manage your portfolios, obtain up-to-the minute quotes and news, and perform selected analysis. Enter quotes manually or automatically through Warner Computer Systems.

C-64 \$39.95

Xper

XPER is the first "expert system" for the C-128 and C-64. While ordinary data base systems are good for reproducing facts, XPER can derive knowledge from a mountain of facts and help you make expert decisions. Large capacity. Complete with editing and reporting.

C-64 \$59.95

Abacus Software

P.O. Box 7219 Grand Rapids, MII 49510- Telex 709-101 - Phone (616) 241-5510

Call now for the name of your nearest dealer. Or to order directly by credit card, MC, AMEX of VISA call (616) 241-5510. Other software and books are available-Call and ask for your free catalog. Add $\$ 4.00$ for shipping per order. Foreign orders add $\$ 12.00$ per item. Dealer inquires welcome-1200+ nationwide.

California) has converted its series of 3-D graphics adventure games for the ST: King's Quest I, King's Quest II, and Walt Disney's The Black Cauldron. The King's Quest games have been particularly popular on IBM computers.

Spinnaker Software (Boston, Massachusetts) has converted Fahrenheit 451, Treasure Island, Perry Mason, Nine Princes of Amber, Amazon, and Homework Helper Math for the ST.

The popular eight-bit computers weren't ignored by software publishers, either, and some significant new programs were announced for the Commodore 64, 128, Apple, IBM PC/PCjr, and Atari. There isn't room here to list them all, but additional information can be found in this month's "News \& Products" section.

One of the biggest hits at the show was a graphics-oriented operating system in final stages of development for the Commodore 64. Called GEOS (Graphic Environment Operating System), it's modeled after the user interface popularized by the Macintosh and adapted by the Atari ST and Amiga. GEOS loads from disk and replaces the 64's normal operating system. It speeds up disk access by a factor of five to seven times and displays a desktop screen with pull-down menus, icons, and windows. You manipulate these features by moving an on-screen pointer with a mouse or joystick.

Although some people were skeptical that GEOS could run fast enough on an eight-bit machine, even the unfinished version at CES ran surprisingly smoothly. By moving the pointer to a menu bar at the top of the screen and pressing the joystick button, you can select various options for managing files and running applications (see photo). To rename a file, for instance, you pull down the File menu and choose Rename. The new filename you enter appears on the directory or beneath the program's icon. To delete a file, you point to its icon, press the joystick button, and "drag" the icon to the trash can icon. To print a file, you drag its icon to the printer icon.

The screen would get cluttered

The desktop screen from GEOS, a remarkable Macintosh-like operating system for the Commodore 64. It offers pull-down menus, icons, windows, desk accessories, and custom type fonts, and also speeds up disk access five to seven times.
if the icons for every file were displayed at once, so GEOS lets you flip through windows as if they were pages in a book. The page number of the current window is displayed near its bottom margin. As the accompanying photo shows, GEOS uses the Commodore 64's high-resolution graphics screen to display a smaller-sized character set.

The desktop includes a full range of Macintosh-like desk accessories, such as a calculator, notepad, alarm clock, photo and text albums (for transferring data between applications), and a preferences window. The preferences window lets you adjust screen colors, change the shape and speed of the pointer, set the date and time, and so forth. The desk accessories can be called up while running other applications-if you're using the word processor and need to perform a calculation, for example, you can pop open the calculator, get your answer, close the calculator, and continue writing.

GEOS comes with two applications: geoWrite, a what-you-see-is-what-you-get word processor that lets you type on-screen with several different proportional fonts, and geoPaint, a graphics-drawing program with vertical and horizontal scrolling that lets you create images
as large as an $81 / 2 \times 11$-inch page (80 dots per inch resolution).

The price for the entire pack-age-GEOS, the desktop and desk accessories, geoWrite and geo-Paint-is $\$ 59.95$. It was designed by Berkeley Softworks (Berkeley, California) and is scheduled to be available early this spring.

Timeworks (Deerfield, Illinois) is releasing three new programs for the Commodore 128 and one for the 64. Partner 128 (\$59.95) and Partner 64 (\$49.95) are desktop management programs similar to Borland International's Sidekick for the IBM PC. Both Partner programs include a multifunction business calculator, memo pad, appointment calendar, typewriter, address book, phone book, envelope addresser, and screen printer.

SwiftCalc 128 is a spreadsheet that takes advantage of the 128 's 80 -column mode. It has programmable keys, multilevel sorting, and several ways of charting data (including 3-D) that can be shown on the screen or printed out. Those who already own the original SwiftCalc for the Commodore 64 can upgrade to the 128 version for a nominal fee. Timeworks has also adapted Sylvia Porter's Personal

Financial Planner (\$69.95) for the 128's 80-column mode.

Cardco (Wichita, Kansas) announced a Sidekick-style product, too. Called Side Saddle (Cardco is negotiating with Borland for the Sidekick name), it offers quick access to a calculator, appointment calendar, telephone directory/ dialer, memo pad, screen printer, and disk functions. It comes on a cartridge for the Commodore 64, with a 128 version to follow. Another interesting Cardco program is Freeze Frame, a screen printer that Cardco claims can capture any 64 screen on paper, even with commercial software. It works with any printer that emulates the Commodore 1525, and all Epson- and Okidata-compatibles. A 128 version of Freeze Frame is also planned.

The Commodore 128 got another boost when Cardco announced its Personal Productivity Series for the 128 's CP/M mode. The first three products in the series are Personal Accountant, a financial manager for home or small business; Personal Inventory, for figuring your net worth; and Personal Time Manager, which can handle up to 26 events for as many as 240 people. Each program sells for $\$ 39.95$.

In addition to software, Cardco announced three hard disk drives for the 64 and 128. Available in late March for the 64 and shortly afterward for the 128 , the drives will come in $5-10-$, and 20 -megabyte capacities for $\$ 599.95, \$ 899.95$, and $\$ 1,299.95$, respectively. They're capable of loading a full-function spreadsheet program in $2 \frac{1 / 2}{2}$ seconds.

Access Software (Salt Lake City, Utah) is releasing a number of products for the Commodore 64, 128, Atari, and Apple. The Mach 128 Enhancement Package is a cartridge and disk for the 64 and 128. When the cartridge is plugged in, it senses whether a 1541 or 1571 disk drive is connected and-in the case of the 128 -which mode is active. Then it engages or disengages disk speed-up routines as appropriate. Typically there's a fivefold increase in loading speed with either the 1541 or 1571 . The cartridge also has a system reset switch. In addition, the Mach 128 disk includes a disk organizer utility, two machine language monitors, and a program that
expands BASIC workspace by 4 K . The price is $\$ 49.95$.

The Development System (\$79.95) is a professional macro assembler and text editor for the Commodore 128 (128 or 64 mode) and 64. It includes Spritemaster, a utility for creating and animating sprites with machine language programs.

Leader Board, The Pro Golf Simulator is a 3-D game that offers a perspective view of the golf course. It's one of the most detailed sports simulations we've ever seen, with multiple 18 -hole courses, handicapping, a wide range of clubs, and numerous other variables. The Commodore 64 version should be available immediately for $\$ 39.95$. Inside Story-The Anatomy Learning System is an educational program with 50 high-resolution graphics screens that let you explore the inner working of the human body. For the Commodore 64 , the price is $\$ 34.95$.

For the Atari 400/800, XL, XE, and Apple II series, Access Software is releasing Raid Over Moscow and Beach-Head II: The Dictator Strikes Back, popular games previously available for the Commodore 64 and 128. In Raid Over Moscow, the Soviets have launched a nuclear attack on North America; your job is to deploy stealth bombers from an orbiting space station to destroy the warheads before they hit. It requires at least 48 K RAM and sells for $\$ 34.95$. Beach-Head II is the sequel to Beach-Head and features speech synthesis, multiple screens, and the choice of playing another person or the computer. It requires at least 48K RAM and sells for $\$ 39.95$.

Access has signed an agreement with Multibotics, Inc. (Woods Cross, Utah) to market its line of robotic construction sets. The sets-for youngsters and adultscontain snap-together connectors, gears, shafts, clutches, wheels, electric motors, and other parts that make it possible to build all sorts of motorized contraptions that can be controlled by a personal computer. You can also experiment with digitized speech or temporarily turn a computer into a voltmeter or oscilloscope. Four different Multibot sets are available from $\$ 59.95$ to $\$ 199.95$. Interfaces are ready for the Commodore 64 and 128, and Access is working on interfaces for Atari, Apple, Amiga, and IBM computers.
f you've got a good memory, you might recall reading some reviews about a year ago of a Commodore 64 word processor called SkiWriter. Although the reviews were good, marketing problems kept the program from appearing on store shelves. Now it's been acquired by a British company, Mastertronic (U.S. offices in Frederick, Maryland). Two changes were made-the built-in telecommunications feature was dropped, and the program is being sold on disk instead of cartridge-but the price has been chopped from $\$ 69.95$ to $\$ 15$. There's also a Commodore 128 and Apple II version. At the same time, Mastertronics is introducing two more programs for the Commodore 64: Busicalc 3, a spreadsheet, and Instant Recall, a filer that stores up to 30,000 characters of data. Both of these products sell for $\$ 15$, too.

Mindscape (Northbrook, Illinois) is bringing out The Luscher Profile (Apple, Commodore 64, IBM PC, and Mac), which constructs a psychological profile based on a person's reactions to colors and shapes; The American Challenge: A Sailing Simulation (Apple and IBM), an unusual America's Cup simulation that can be played by two people in remote locations using computers and modems; Dick Francis' High Stakes (Apple and IBM), an interactive text adventure that puts you in the role of a wealthy English horse owner; a talking Macintosh version of Racter, the AI (artificial insanity) program that holds bizarre conversations with humans; and Stephen King's The Mist and James Bond: A View To A Kill (Apple, IBM, and Mac), text adventures based on popular thrillers. All of these programs are $\$ 39.95$, except for Racter, which is $\$ 44.95$.

And finally, if you can spare $\$ 39.95$, you can now indulge any Rambo fantasies you might have with a Mindscape program called Rambo: First Blood Part II. But Rambo isn't the shoot-em-up action game you might expect-it's a text adventure. One of its features is a sophisticated parser that lets you communicate in plain English (which is more than the movie character Rambo can do). It runs on the Apple, IBM, and Macintosh. ©

Tug-A-War

Mark Tuttle, Submissions Reviewer

Don't be fooled by the apparent simplicity of this two-player strategy game. It looks easy on the surface, but it's a stiff test of your concentration and ability to think ahead. The original version was written for the Commodore 64. We've added new versions for the Atari 400/800, XL, and XE, Apple II-series computers, Atari 520ST, Amiga, IBM PC/PCjr, and the TI-99/4A. Since the game is based on colors, every version requires a color monitor or TV. The IBM version requires BASICA and a color/graphics adapter for the PC or Cartridge BASIC for the PCjr. The Atari version requires at least 16 K of $R A M$, and the Amiga version requires at least 512 K .

Nearly everyone has played tug of war at one time or another. The traditional game pits two players or teams at opposite ends of a rope. At the middle of the rope is a flag, and each side tries to pull the flag into its territory. "Tug-a-War" is based on a similar concept. In this version, the flag is replaced with a round ball shape, and each player tries to maneuver the ball onto his or her side of the screen. Like many twoplayer games, the difficulty of Tug-a-War depends somewhat on the intelligence of your opponent. But even at the simplest level, you'll find that skill and foresight are essential to success.

Type in and save the appropriate program below. The rules are the same for every version (except Atari 520ST-see special instructions).

Battle Of The Colors

When you run Tug-a-War, two sets of colored boxes appear, one above the other. The lower, longer series of squares is the playing field. Near the middle of the playfield area is a
round ball; the outermost boxes at each end of the playfield represent each player's home position. The players alternate turns, each trying to move the ball in their own direction, until it reaches one of the home squares.

So far, so good-but how do you move the ball? It's done not by pulling a rope, but by changing the colors of boxes in the playfield. The color of the square under the ball determines which direction it moves and how far it travels. On any given turn, the ball can move either one or two squares to the left, or one or two squares to the right. At the top of the screen are four boxes that show you which colors are linked to which directions. For instance, the leftmost box shows you which color makes the ball move one square to the left. The next box to the right shows you which color makes it move two squares to the left. The second pair of boxes show you which colors make the ball move in the opposite direction, to the right. By changing the color of the box where the ball is currently located, you can make it move toward your home square.

The playfield contains 11 boxes (9 in the TI version, 10 in the Atari ST version). When the game begins, each of these boxes is randomly given one of the four colors shown at the top of the screen. On each turn, you may change the color of one, several, or all of the boxes (however, you must always change at least one box). Below each box is a number which represents its distance from the home position of the player whose turn it is. For instance, if you are the player on the left, then on your turn the boxes are numbered 1, 2, 3, etc., from left to right (the tenth box is marked with a 0 , and the eleventh
with an A). When it's the right player's turn, the numbering is reversed (the rightmost box is 1 , etc.).

To take a turn, you must select a number that corresponds to the numbers shown below the boxes in the playfield. This is done by pressing a single key. Press a number key from 1-0 to select one of the first ten values, or press the A key to choose the eleventh box. The number you choose determines how many boxes change color. For instance, if you press 1, only one box (the one nearest your home square) changes color. If you press 2 , the two boxes nearest your home box change, and so on.

Where do the new colors come from? Every box cycles through the same series of four colors shown in the uppermost set of boxes, going from left to right. For example, if the colors shown there are white-blue-red-purple (the exact colors may be different on your computer), then a white square always changes to blue; a blue square always changes to red; a purple square changes to white, and so on. In other words, the box's current color determines which color it gets after the next color change.

Though every turn involves at least one color change, the ball doesn't necessarily move on every turn. It only moves when you change all the boxes between your home position and the current position of the ball. For example, if the ball is three boxes away from your home square, then you must change the color of at least three boxes in order to move it at all.

Foresight Rewarded

As you can see, there's much more to this game than appears on the surface. At first you might be tempted to try to move the ball as

COMPUTEI's

> Everything you need for successful, entertaining, and challenging programming on your Amiga, Atari ST, or Commodore 128 computer.

> Each book is carefully written in COMPUTE!'s lively, understandable style to help even beginning programmers learn the ins and outs of their personal computers.

COMPUTE!'s 128 Programmer's Guide

ISBN 0-87455-031-9
Editors of COMPUTE! 464 pages
Written and compiled by the most technically proficient authors in consumer computing today, the technical staff of COMPUTE! Publications, this guide to the powerful Commodore 128 computer contains a wealth of information for every programmer. Explore BASIC 7.0 through countless hands-on examples and sample programs. Learn how to create dazzling graphics and sophisticated sounds in both BASIC and machine language. See how to program peripherals, such as disk drives, printers, and modems. Enter the world of $C P / M$, just one of the three modes of the 128. There are even chapters introducing you to machine language programming and the computer's method of managing memory. COMPUTEI's 128 Programmer's Guide includes numerous appendices covering everything from error messages to memory maps.
\$16.95

COMPUTEI's ST Programmer's Guide

 0-87455-023-8Editors of COMPUTE!
Complete and comprehensive, yet easy to understand, COMPUTEI's ST Programmer's Guide is a must-buy for any Atari ST owner. The technical staff of COMPUTE! Publications has put together a reference guide to programming that takes the reader through every aspect of this newest Atari personal computer. Logo and BASIC, the two programming languages now available for the machine, are explored in detail. From programming concepts to writing programs, the scores of ready-to-type-in examples show just what can be done, and how to do it. Advanced features of this new-generation computer, such as GEM and TOS, the ST's user interface and operating system, are illustrated as readers write their own applications. Valuable appendices provide information programmers need, including GEM VDI opcodes and a list of ST resources.
$\$ 16.95$

COMPUTEI's Amiga Programmer's Guide 0-87455-028-9

Edited
Covering AmigaDOS, BASIC, Intuition, C, machine language, and the other important programming tools which accompany the new Amiga, COMPUTE!'s Amiga Programmer's Guide is a clear and thorough guide to the inner workings of this fascinating, newgeneration computer. The great speed of its 68000 microprocessor, coupled with the versatility of the Amiga-specific graphics and sound chips, makes the Amiga one of the most powerful computers available today.
\$16.95 Africa from Holt Saunders, Ltd., 1 St. Anne's Road, Eastbourne, East Sussex BN21 3UN, England.
often as possible．But that＇s usually a losing strategy．Remember，the direction the ball moves depends on the color of its square before you take the turn．

In many cases，you＇ll want to move the ball only if it＇s on a color that moves it toward your goal．But like other games of strategy，Tug－a－ War rewards the player who looks beyond the current move and tries to set things up for future moves； sometimes it＇s wise to make a small，temporary sacrifice in order to benefit later in the game．Because the boxes change colors in the same sequence，the effect of your own move is always completely predict－ able．However，since a single turn can change the color of many box－ es，dramatic changes of fortune are also possible．

Amiga And 520ST Versions

Since the mouse is an integral sys－ tem feature on both the Amiga and ST，both of these versions substi－ tute mouse input for keyboard in－ put．To select a square，simply move the mouse pointer to the de－ sired box and press the left mouse button．Because keyboard prompts are unnecessary，no numbers are displayed below the playfield boxes．

Before entering BASIC to load the ST version，you should switch to the low－resolution graphics mode（use the Set Preferences op－ tion in the desktop＇s Options menu）．Also，if your ST has 512 K and a disk－based operating system， before running the program you should turn off buffered graphics （controlled by the Buffer Grph op－ tion in the Settings menu；it＇s off when no check appears beside the option in the menu）．The standard 520ST leaves only about 5 K free for BASIC programs，so Tug－a－War won＇t fit into memory unless the buffered graphics option is turned off．The program fits with buffered graphics switched on only if you have a 1040ST，or a 520ST with memory expansion，or a 520ST that has been upgraded with the TOS operating system in ROM chips （Read Only Memory）．

The Amiga version uses the computer＇s built－in speech feature to announce the players＇turns．In other respects，these games work exactly like the others．

For instructions on entering these listings，
please refer to＂COMPUTEI＇s Guide to Typing in Programs＂in this issue of COMPUTEI．

＂Tug－a－War＂for the Commodore 64 and 128 is a game that looks simple，but de－ mands good concentration and foresight．

Program 1：Tug－A－War For Commodore 64／128

JJ 10ø POKE5328ø，Ø：PRINT＂\｛CLR\} ＂；：BC＝53281：POKEBC， $5:$ PC （1）＝5： $\mathrm{PC}(2)=7: P S=6: C R=1$ ：PL＝1： $\mathrm{X}=2 \emptyset$
CE $110 \mathrm{~B}=55715: A S=$＂OKY $\exists \mathrm{P}\{\mathrm{DOWN}\}$ \｛3 LEFT\}EH习 ENヨ\{DOWN\} \｛3 LEFT\}L区P习@": P\$(1)="G REEN \｛RVST\｛BL̄$\}$ \｛OFF\} \｛LEFT\}": P\$ (2)="YELLOW": $B S="\{2$ UP\}"
DM 120 TMS＝＂\｛HOME $\}\{9$ DOWN $\} ": Q S$ $="\{$ RVS $\}\{B L K\}\{34$ SPACES $\}$ ＂：DIMCL（11）
QG 130 FORI＝ØTO23：PRINT＂$\{$ RVS \} \｛BLK\}\{39 SPACES\}"
KE 140 POKE1ø63＋（40＊I），160：POK E55335＋（40＊I），ø：NEXT
AQ $15 \emptyset$ PRINT＂$\{$ RVS $\}\{39$ SPACES $\}$ \｛HOME\}": POKE2023,160:PO KE56295，\varnothing
DG 160 PRINT＂$\{$ HOME $\}$＂SPC（15）＂ \｛RVS\}TUG-A-WAR": PRINTSP C（13）＂\｛DOWN\}\{RVS\}\{WHT\}" ASB\＄＂\｛RED\}"ASBS"\{BLK\}
\｛CYN\}"A\$BS"\{PUR\}"A\$B\$
RS 170 PRINTSPC（14）＂\｛BLK\}1"SPC （2）＂2＂SPC（3）＂1＂SPC（2）＂2 \｛DOWN\}":PRINTSPC(15)" \｛RVS \}<C"SPC(5) "C>"
HK $18 \emptyset$ GOSUB6 $\overline{2} \emptyset: P R I N T T \bar{M} \$ "$
\｛DOWN\}\{RVS\} \{GRN\}"ASBS; ：FORZ＝1TOll： $\mathrm{Y}=\mathrm{INT}\left(\right.$ 4＊RND * （ 1 ）$)+1: \mathrm{CL}(\mathrm{Z})=\mathrm{Y}:$ POKE646， Y
FQ 190 PRINT＂\｛RVS\}"A\$B\$;:NEXTZ ：PRINT＂\｛YEL\}\{RVS\}"AS
CB 210 POKE646，PEEK（B）AND15：PR INTTMS＂$\{2$ DOWN $\}$＂ $\operatorname{SPC}(X)$＂ \｛RVS \}Q": POKEBC, PC (PL)
SF 220 PRINTTMS＂ 114 DOWN $\}$＂SPC（ 18）＂$\{$ RVS $\}\{$ BLK \} \｛3 SPACES\}"
HR 230 AN＝ $0:$ PRINTTM\＄SPC（7）＂ \｛10 DOWN \}\{BLK \}\{RVS \}HOW \｛SPACE \}MANY TO CHANGE \｛OFF\}"PS(PL)
MA 240 PRINTSPC（17）＂\｛DOWN\} \｛RVS\}(1-A)\{2 DOWN\} \｛3 LEFT\}EI习\{LEFT\}";
BR 25Ø POKE2ø4，Ø：POKE198，\varnothing ：WAI T198，1：GETMT\＄
RB 260 IFASC（MT\＄）＜480RASC（MT $)$ ＜＞65ANDASC（MT\＄）＞57THEN2 50
XR 270 POKE2ø4，1：IFMT\＄＝＂A＂THEN AN＝11：MTS＝＂\｛LEFT\}ALL":G

OTO3øø
 ＂1ø＂：GOTO3øø
HC 290 AN＝VAL（MT\＄）
KM $3 \varnothing 0$ PRINT＂$\{2$ LEFT $\}$
\｛5 SPACES \}\{3 LEFT \}"MT\$
？FS $31 \emptyset$ IFAN＜IORAN＞ 11 THEN 220
FF 320 IFPL $=2$ THENAN $=12-$ AN：GOTO 440
HE 330 IFAN $<$ PSTHENCK $=1$
KQ $34 \emptyset$ FORQ $=1$ TOAN $: \operatorname{IFCL}(Q)=4 \mathrm{THE}$ $\operatorname{NCL}(Q)=1: G O T O 36 \varnothing$
GE $350 \mathrm{CL}(\mathrm{Q})=\mathrm{CL}(\mathrm{Q})+1$
KJ $36 \emptyset$ NEXTQ：PRINTTMS：PRINT＂ \｛BLK\}\{RVS\} \{GRN\}"A\$B\$;: FORZ $=1$ TOll：POKE646，CL（Z ）：PRINT＂$\{$ RVS \}"ASBS;
QD 370 NEXTZ：PRINT＂\｛YEL\}\{RVS\}" AS：POKE646，PEEK（B）AND15 ：PRINT＂\｛HOME \}\{11 DOWN\}" SPC（X）＂\｛RVS \}
FH $38 \emptyset$ IFCK＝1THENCK＝ ：GOTO4 0
MH 39ø ONPEEK（B）AND15GOSUB49ø， 5øø，51ø，52ø
BF 4øØ IFPS＜1THENPL＝1：WC＝5：B＝5 5698：X＝2：GOTO530
DP $41 \varnothing$ IFPS >11 THENPL $=2: W C=7: B=$ 55734：X＝38：GOTO53 \varnothing
KD $42 \varnothing$ IFPL＝1THENPL＝2：GOSUB64 \varnothing ：GOSUB630：GOTO21ø
HE 430 PL＝1：GOSUB640：PRINT＂
\｛1ø UP\}":GOSUB62ø:GOTO2 10
XH 440 FORQ＝ANTOII
DH $45 \emptyset$ IFAN＜IORAN＞ 11 THEN $22 \emptyset$
BD 460 IFAN $>$ PSTHENCK $=1$
GJ $47 \emptyset \operatorname{IFCL}(Q)=4 \operatorname{THENCL}(Q)=1: G O$ TO36
HB $48 \emptyset \mathrm{CL}(\mathrm{Q})=\mathrm{CL}(\mathrm{Q})+1:$ GOTO $36 \emptyset$
JX 49 Ø $\mathrm{B}=\mathrm{B}+6: \mathrm{X}=\mathrm{X}+6: \mathrm{PS}=\mathrm{PS}+2:$ RET URN
PA 5 Øø $\mathrm{B}=\mathrm{B}-3: \mathrm{X}=\mathrm{X}-3: \mathrm{PS}=\mathrm{PS}-1:$ RET URN
$X M 51 \varnothing B=B-6: X=X-6: P S=P S-2: R E T$ URN
BE $52 \emptyset \quad \mathrm{~B}=\mathrm{B}+3: \mathrm{X}=\mathrm{X}+3: \mathrm{PS}=\mathrm{PS}+1:$ RET URN
FF 530 POKE646，PEEK（B）AND15：PR INT＂\｛HOME \} \{11 DOWN \}"SPC （X）＂\｛RVS \}Q": PRINTTMS" $\{10 \text { DOWN }\}^{\frac{\pi}{1 "}}$ ；
PG 54ø FORE＝1TO5：PRINTQS：NEXT： GOSUB640：GOSUB64ø
FM 550 PRINT＂ HOME \} \{11 DOWN \}"S PC（11）PS（PL）＂IS THE WI NNER＂：Z＝WC ：FORI＝1TO11： P OKEBC，Z

CP $56 \emptyset$ IFZ＝ØTHENZ＝WC：GOSUB61 $0:$ NEXT
SJ $57 \emptyset \mathrm{Z}=\emptyset$ ：GOSUB61 0 ：NEXT
BD 580 POKEBC，15：PRINTTM\＄SPC（1 1）＂$\{1 \varnothing$ DOWN $\}\{R V S\} L I K E T$ O PLAY AGAIN\｛2 DOWN\}
\｛11 LEF＇「\}\{RVS\}Y/N"
RA 590 POKE198， $0:$ WAIT198，1：GET MT\＄：IFMT＜＞＂N＂THENRUN
JC 6øØ POKE198，Ø：SYS198
QC 610 FORP＝1TO2øø：NEXTP：RETUR N
CG 620 PRINTTMS＂ 55 DOWN \}\{RVS \} $\{$ BLK $\}\{2$ SPACES \}<C 1
\｛2 SPACES $\} 2\{2$ SPĀCES $\} 3$
\｛2 SPACES $\} 4\{2$ SPACES $\} 5$
$\{2$ SPACES $\} 6\{2$ SPACES $\} 7$
$\{2$ SPACES $\} 8\{2$ SPACES $\} 9$
$\{2$ SPACES $\} \emptyset\{2$ SPACES $\} A^{\prime \prime}$ ：RETURN
AA 630 PRINTTMS＂ 55 DOWN \}\{RVS \} \｛BLK\}\{5 SPACES\}A
$\{2$ SPACES \}ø\{2 SPACES \}9
$\{2$ SPACES $\} 8\{2$ SPACES $\} 7$
\｛2 SPACES $\} 6\{2$ SPACES $\} 5$

From the publishers of COMPUTE!

April 1986 COMPUTE! Disk

All the exciting programs from the past three issues of COMPUTE! are on one timesaving, error-free floppy disk that is ready to load on your Commodore 64 and 128 computers. The April 1986 COMPUTE! Disk contains the entertaining and useful Commodore 64 and 128 programs from the February, March, and April 1986 issues of COMPUTE!.

The April 1986 COMPUTE! Disk costs $\$ 12.95$ plus $\$ 2.00$ shipping and handling and is available only from COMPUTE! Publications.

For added savings and convenience, you may also subscribe to the COMPUTE! Disk. At a cost of only $\$ 39.95$ a year (a $\$ 12.00$ savings), you'll receive four disks, one every three months. Each disk will contain all the programs for your Commodore machine from the previous three issues of COMPUTE!.

This is an excellent way to build your software library while you enjoy the quality programs from COMPUTE!.

Disks and subscriptions are available for Apple, Atari, Commodore 64 and 128, and IBM personal computers. Call for details.

For more information or to order the February 1986 COMPUTE! Disk, call toll free 1-800-346-6767 (in NY 212-265-8360) or write COMPUTE! Disk, P.O. Box 5038, F.D.R. Station, New York, NY 10150.
\｛2 SPACES\}4\{2 SPACES\}3 \｛2 SPACES\}2\{2 SPACES\}1 ［SPACE \}C>": RETURN
AQ 640 PRINTTM $\overline{\text {＂}}$＂ 5 DOWN\}\{RVS \} \｛BLK\}\{39 SPACES\}":RETUR N

This version of＂Tug－a－War＂runs on all Atari 400，800，XL，and XE computers．

Program 2：Tug－A－War For Atari 400／800，XL，XE

Version by Kevin Mykytyn，Editorial Programmer

OC $1 \varnothing$ CB＝PEEK（1Ø6）－8：POKE $1 \emptyset$ 6，CB－4：GRAPHICS 18：DIM C\＄（4），COL（11），MOV（4）， K\＄（1）：C\＄＝＂ZEizF＂
B1 $2 \emptyset \operatorname{MOV}(1)=-1: \operatorname{MOV}(2)=-2: \operatorname{MO}$ $V(3)=1: \operatorname{MOV}(4)=2:$ QPEN \＃ 1，4，8，＂K：＂：GOSUB 19ø：G OSUB 25ø
$\mathrm{KL} 3 \emptyset \quad \mathrm{BP}=6: \mathrm{PL}=\emptyset$
AP 4 Ø $P L=(P L=\varnothing): G O S U B$ 290：PO KE 53248，72＋8＊BP
NK $5 \varnothing$ GET \＃ $1, K: K \$=C H R \$(K): I F$ $K \$=" A "$ THEN SP $=11:$ GOT 090
GBGØ IF K $\$=" \emptyset "$ THEN $S P=1 \varnothing: G$ OTO 9ø
HF 7 7 IF K\＄く＂1＂OR K\＄＞＂9＂TH EN 5ø
OL $8 \varnothing$ SP＝VAL（K\＄）
$C K 9 \emptyset I F \quad(P L=\varnothing$ AND $12-S P>B P)$ OR $(P L=1$ AND $S P\langle B P)$ i HEN $12 \emptyset$
HO $1 \varnothing \square \quad B P=B P+M O V(C O L(B P)): I F$ $\mathrm{BP}>12$ THEN $\mathrm{BP}=12$
HM $11 \varnothing$ IF $B P=-1$ THEN $B P=\varnothing$
KI $12 \emptyset$ GOSUB $32 \emptyset$
LK 130 IF $B P>\varnothing$ AND $B P<12$ THE N $4 \varnothing$
MG $14 \emptyset$ POKE 53248， $72+8 * B P: P O$ SITION 4，9
EN 150 IF BP $=\varnothing$ THEN PRINT \＃ 6 ；＂BLUE WINS！＂：GOTO $17 \varnothing$
DJ 16 D PRINT \＃6；＂RED WINS！
CI 17ヵ POSITION $\varnothing, 11:$ PRINT \＃ 6；＂\｛3 SPACES\}press an y key\｛3 SPACES\}"
BK 18ø GET \＃1，K：GOTO 3ø
JH 190 NS＝CB＊256：POSITION 5， 5：PRINT \＃b；＂PLEASE WA IT＂
NF 2øø FOR $A=\varnothing$ TO 1ø23：POKE $N S+A, \operatorname{PEEK}(57344+A): N E$ $X T A$
FC 210 POKE 756，CB：FOR A＝NS＋ 464 TD NS＋471：POKE A ， 126：NEXT A
CO 22ø FOR A＝NS +1536 TO NS +1 92ø：POKE A，Ø：NEXT A：F OR $A=N S+1596$ TO NS +16 Ø3：POKE A＋256，126：POK E $A+128,126:$ NEXT A

81 230 POKE 559，46：POKE 62J， 1：POKE 5325ø，72：POKE 53249，168：POKE 53277， 3：POKE 54279，CB＋4：PDK E 7ø4，15：POKE 7ø5，52
JB 24 FOR $A=N S+1598$ TO NS＋ 1 GØ1：READ B：POKE A，B：N EXT A：POKE 7ø6，132：RE TURN ：DATA 24，6ø，6Ø，2 4
FP 250 PRINT \＃6；＂ 2 CLEAR $3: P D$ SITION 6，$:$ ：PRINT \＃6；＂ $1212^{\prime \prime}:$ POSITION 6， 1 ：PRINT \＃6；＂Z E z E＂：P OSITION 7，2：PRINT \＃6； ＂KR EX＂
DJ 260 GB＝PEEK（56め）＋256＊PEEK （561）：POKE GB＋1ø，6：PO KE GB＋16， 6
KL $27 \emptyset$ POSITION 4， $6:$ FOR $A=1$ TO 11：Q＝INT（RND（1）＊4＋ 1）： $\operatorname{COL}(A)=Q: P R I N T$ \＃ $C \$(Q, Q) ;: N E X T A$
IN $28 \varnothing$ POSITION $\emptyset, 11:$ PRINT \＃
 ［＂：RETURN
KJ $29 \emptyset$ POSITION 4，9
FG $3 \emptyset \emptyset$ IF $P L=1$ THEN PRINT \＃G ；＂BLUE＇S TURN＂：POSITI ON 4，5：FOR $A=1$ TO 9：P RINT \＃G；A；：NEXT A：PRI NT \＃6；＂ØA＂：RETURN
BH $31 \emptyset$ PRINT \＃6；＂RED＇S TURN ＂：POSITION 4，5：PRINT \＃6；＂Aø＂；：FOR A＝9 TO 1 STEP－1：PRINT \＃6；A；： NEXT A：RETURN
$P D 32 \emptyset$ IF $P L=\emptyset$ THEN $34 \emptyset$
JI $33 \emptyset$ FOR $A=1$ TO SP：GOSUB 3 5ø：NEXT A：RETURN
$P E 34$ FOR $A=11$ TO 12－SP STE P－1：GOSUB 35ø：NEXT A ：RETURN
내 $350 \operatorname{COL}(A)=C O L(A)+1-4 *(C O$ $L(A)=4):$ POSITION $3+A$ ， 6：PRINT \＃6；C\＄（COL（A）， $\operatorname{COL}(A)$ ）：RETURN

＂Tug－a－War＂for the IBM PC and PCjr．

Program 3：Tug－A－War For IBM PC／PCJr

Version by Kevin Mykytyn，Editorial Programmer
GE 1ø GOTO 3ø
GN $2 \emptyset$ FOR ROW $=\emptyset$ TO 2：LOCATE $Y+R O$ W，PS＊3＋X：PRINT B\＄：NEXT：RET URN
NO $3 \emptyset$ KEY OFF：SCREEN $\varnothing, \emptyset:$ WIDTH 4 Ø：B\＄＝CHR\＄（222）＋CHR\＄（219）＋C HR\＄（221）＋CHR\＄（31）
HP $4 \emptyset$ DIM COL（11）：BP＝6：$C(1)=2: C($ 2）$=6: C(3)=3: C(4)=5: P L=\emptyset: R A$ NDOMIZE TIMER
LA $5 \emptyset \operatorname{MOV}(1)=-1: \operatorname{MOV}(2)=-2: \operatorname{MOV}(3)$ $=1: \operatorname{MOV}(4)=2$
LP $6 \varnothing$ GOSUB $19 \emptyset$

CI $70 \mathrm{PL}=(\mathrm{PL}=\varnothing)$ ：GOSUB 230：GOSUB 24ø：GOSUB $18 \emptyset$
LA $8 \emptyset \mathrm{~K} \$=I N K E Y \$$ ：IF K\＄＝＂a＂OR K\＄＝ ＂A＂THEN SP＝11：GOTO 11ø
0J $9 \emptyset$ IF $K \$=" \emptyset "$ THEN SP＝1 \varnothing ：GOTO $11 \varnothing$
HE $1 \varnothing \varnothing$ IF K\＄く＂1＂OR K\＄〉＂q＂THEN $8 \emptyset$ ELSE SP＝VAL（K\＄）
HG $11 \varnothing$ IF（ $P L=\varnothing$ AND 12－SP $>B P$ ）OR （ $\mathrm{PL}=-1$ AND $\mathrm{SP}<\mathrm{BP}$ ）THEN 1 $3 \varnothing$
NL $12 \emptyset \mathrm{BP}=\mathrm{BP}+\mathrm{MOV}(\mathrm{COL}(\mathrm{BP})): I F B P>$ 12 THEN $B P=12$ ELSE IF $B P=$ -1 THEN BP＝ø
NO $13 \emptyset$ GOSUB 26ø：IF BP＞ø AND BP＜ 12 THEN 7ø
IJ 140 GOSUB 23Ø：LOCATE 2ø，15：CO LOR 9：IF BP＝ø THEN PRINT ＂Blue Wins！＂：GOTO 16Ø
GL $15 \emptyset$ COLOR 4：PRINT＂Red Wins！
FA 160 LOCATE 23，8：COLOR 14：PRIN T＂Press any key to play again＂：GOSUB $18 \emptyset$
GJ $17 \varnothing$ A $\$=I N K E Y \$$ ：IF $A \$=" "$ THEN 1 $7 \emptyset$ ELSE RUN
FF $18 \emptyset$ DEF SEG＝ø：POKE 1ø5 1 ，PEEK 1ø52）：RETURN
 PS＝4＋A：COLOR C（A）：GOSUB ？ Ø：NEXT
FE 20ø COLOR 14：PRINT SPC（15）CHR \＄（17）＂＂STRING\＄（2，17）＂＂ CHR\＄（16）＂＂STRING\＄$(2,16)$
E1 210 $Y=13: X=1:$ COLOR 9：PS＝ 1 ：GOS UB 20：FOR $A=1$ TO 11：Q＝INT （RND（1）＊4＋1）： $\operatorname{COL}(A)=Q: \operatorname{COL}$ OR C（Q）：PS＝A：GOSUB 2Ø：NEX T：COLOR 4：PS＝12：GOSUB $2 \emptyset$
IL 220 LOCATE 23，8，$\emptyset:$ COLOR 1ø：PR INT＂Press（ \varnothing－9）or＇A＇f or all＂：RETURN
6F 230 COLOR 15：LOCATE 14，BP＊3＋2 ：PRINT CHR\＄（219）：RETURN
B6 24ø LOCATE 2ø，15：IF PL＝ø THEN COLOR 4：PRINT＂Red＇s Tur ก＂：LOCATE 11，5：PRINT＂A \emptyset＂；：FOR $A=9$ TO 1 STEP－1 ：PRINT A；：NEXT：RETURN
IF $25 \emptyset$ COLOR 9：PRINT＂Blue＇s Tur n＂：LOCATE 11，4：FOR A＝1 TO 9：PRINT A；：NEXT：PRINT \emptyset A＂：RETURN
HI $26 \emptyset$ IF $\mathrm{PL}=\emptyset$ THEN $28 \varnothing$
BO 270 FOR $A=1$ TO SP：GOSUB 290：N EXT：RETURN
FM 28 Ø FOR $A=11$ TO 12－SP STEP－1： GOSUB 290：NEXT：RETURN
$D E 29 \varnothing \operatorname{COL}(A)=\operatorname{COL}(A)+1+4 \pi(\operatorname{COL}(A)$ ＝4）： $\operatorname{COLORC(COL}(A)): P S=A:$ GOSUB 2ø：RETURN

Program 4：Tug－A－War For Apple

Version by Tim Victor，Editorial Programmer

$381 ø \emptyset$ GOSUB 4øø

8 A $11 \varnothing$ HGR ：HOME
SC 120 HCOLOR $=3:$ FOR TD $=-1 T$ 01 STEP 2：FOR TN $=\varnothing$ TO 1：FOR TX $=-1$ TO TN ST EP 2：GOSUB 5øø：NEXT ：N EXT ：NEXT
DC $13 \emptyset \mathrm{VP}=4 \emptyset$
A1 $140 \mathrm{FOR} I=\varnothing \mathrm{TO} 3: \mathrm{HC}=\mathrm{CT}(\mathrm{I})$ ：PS＝4．5＋I：GOSUB 430： NEXT
E8 $15 \emptyset \mathrm{VP}=146: \mathrm{HC}=1: P S=\varnothing: G$ OSUB 43ø：GOSUB 46ø
AE $16 \emptyset$ FOR $I=\emptyset$ TO 1ø：$B C(I)=I$ NT（RND（1）＊4）： $\mathrm{HC}=\mathrm{CT}$ $(\mathrm{BC}(\mathrm{I})): \mathrm{PS}=\mathrm{I}+1:$ GOSUB 430：NEXT

From the publishers of COMPUTE!

April 1986 COMPUTE! Disk

All the exciting programs from the past three issues of COMPUTE! are on one timesaving, error-free floppy disk that is ready to load on your IBM PC and PCjr computers. The April 1986 COMPUTE! Disk contains the entertaining and useful IBM programs from the February, March, and April 1986 issues of COMPUTE!.

The April 1986 COMPUTE! Disk costs $\$ 12.95$ plus $\$ 2.00$ shipping and handling and is available only from COMPUTE! Publications.

For added savings and convenience, you may also subscribe to the COMPUTE! Disk. At a cost of only $\$ 39.95$ a year (a $\$ 12.00$ savings), you'll receive four disks, one every three months. Each disk will contain all the programs for your IBM machine from the previous three issues of COMPUTE!.

This is an excellent way to build your software library while you enjoy the quality programs from COMPUTE!.

Disks and subscriptions are available for Apple, Atari, Commodore 64 and 128, and IBM personal computers. Call for details.

For more information or to order the February 1986 COMPUTE! Disk, call toll free 1-800-346-6767 (in NY 212-265-8360) or write COMPUTE! Disk, P.O. Box 5038, F.D.R. Station, New York, NY 10150.

 cxas's move':Apple "Tug-a-War," a challenging strategy game.

C9 17ø HC = 6:PS = 12: GOSUB 43ø : GOSUB 46ø
F9 $18 \emptyset \mathrm{BP}=5$: GOSUB $47 \emptyset$
69190 VTAB 21: FOR $1=1$ TO 11: HTAB I * $3+2:$ IF I < 1 \emptyset THEN PRINT CHR $\$(48+1$);
$8920 \varnothing$ IF I = $1 \varnothing$ THEN PRINT "ø"; 15216 IF I $=11$ THEN PRINT "A"; E4 220 NEXT : VTAB 23: HTAB 1: P RINT "GREEN'S MOVE:";
$4623 \varnothing$ GOSUB 52ø:A $=A-1$: IF ($B P$ (= A) THEN BP = BP + $\mathrm{JT}(\mathrm{BC}(\mathrm{BP}))$
$9724 \varnothing$ FOR $I=\varnothing$ TO A: $B C(I)=B C$ (I) $+1-4$ * (BC(I) $=3)$: $\mathrm{HC}=\mathrm{CT}(\mathrm{BC}(\mathrm{I})): \mathrm{PS}=\mathrm{I}+$ 1: GOSUB 43ø: NEXT
$5425 \varnothing$ GOSUB $47 \varnothing$
16 $26 \varnothing$ IF BP < \varnothing OR BP > $1 \varnothing$ THEN $36 \varnothing$
67276 UTAB 21: FOR I = 1 TO 11: HTAB (12-I)*3+2: I F I < $1 \varnothing$ THEN PRINT CHR\$ (48 + I) ;
$9928 \emptyset$ IF $1=1 \varnothing$ THEN PRINT " \varnothing "; 25290 IF I = 11 THEN PRINT "A";
89 3øø NEXT : VTAB 23: HTAB 1: P RINT "BLUE'S MOVE: ";
If 310 gosub 520:A $=11-A:$ IF $(B P>=A)$ THEN $B P=B P+$ JT (BC (BP))
5A 320 FOR $1=1 \varnothing$ TO A STEP - 1 : $\mathrm{BC}(\mathrm{I})=\mathrm{BC}(\mathrm{I})+1-4$ * $B C(I)=3): H C=C T(B C(I))$:PS = $1+1$: GOSUB 430: N EXT
$5133 \varnothing$ GOSUB 47ø
$1334 \varnothing$ IF BP < \varnothing OR BP > $1 \varnothing$ THEN 36ø
9F $35 \varnothing$ GOTO $19 \varnothing$
$9236 \varnothing \mathrm{PS}=12$ * (BP>g)-1: H COLOR= 4 * (BP > ø): GOSU B $49 \varnothing$
33 37ø VTAB 23: HTAB 1: IF BP < \varnothing THEN PRINT "GREEN WINS ": GOTO 39ø
$6 C 38 \emptyset$ IF BP $>1 \varnothing$ THEN PRINT "BL UE WINS
8A $39 \varnothing$ GET A\$: GOTO 110
DE 4øø FOR I = \varnothing TO 3: READ CT (I): NEXT
38 $41 \varnothing$ FOR $I=\varnothing$ TO $3:$ READ JT (I): NEXT : RETURN
84420 DATA $3,5,6,2,-1,-2,1,2$
$8 C 43 \varnothing$ HCOLOR $=$ HC: FOR YP $=V P T$ $0 \mathrm{VP}+1 \varnothing$
9A 44ø HPLOT PS $* 21+1, Y P$ TO P S * 21 + 17,YP: NEXT
1E $45 \varnothing$ RETURN
AB $46 \varnothing$ HCOLOR= 3: FOR YP $=V P+$ 1 TO UP + 9 STEP 2: HPLOT PS * $21+1, Y P$ TO PS * 2 $1+17, Y P:$ NEXT : RETURN
$5247 \varnothing$ IF BP < \varnothing OR BP > $1 \varnothing$ THEN RETURN
$1948 \emptyset \mathrm{HCOLOR}=4 *(C T(B C(B P))>$ 3): $P S=B P$

74490 FOR YP $=V P+3$ TO VP + 7 : HPLOT PS * $21+27, Y P T$ O PS * 21 + 32,YP: NEXT : RETURN
$D F 50 \varnothing T P=124+(T D+T N) * 21$ $+T N * T X * 4: T L=T P+$ TD * 3: TR = TP - TD * 3
E5 $51 \varnothing$ HPLOT TR, $6 \varnothing$ TO TL, 57 TO T R,54: RETURN
$8652 \varnothing$ POKE 49168, \varnothing : GET A\$: IF A $\$=$ CHR $\$$ (3) THEN END
B9 53ø IF A $\$=$ CHR $\$$ (3) THEN END CB 54ø IF A\$ < > "A" AND A\$<> "a" AND (A\$ < "D" OR A\$ > "9") THEN 520
36550 IF A\$ $=" A " O R A \$=" a "^{T} T$ HEN A\$ $=$ CHR\$ (59)
$3856 \varnothing$ IF A\$ $=$ "Ø" THEN A\$ $=$ CHR \$ (58)
$5157 \varnothing A=A S C(A \$)-48:$ RETURN

Program 5: Tug-A-War For Atari ST

Version by Kevin Mykytyn, Editorial Programmer
10 fullw 2:clearw 2:color 1,1,1
$20 \mathrm{bp}=6: \mathrm{c}(1)=6: \mathrm{c}(2)=7: \mathrm{c}(3)=10: \mathrm{c}(4)=12: \mathrm{pl}$ $=0$
$30 \operatorname{mov}(1)=-1: \operatorname{mov}(2)=-2: \operatorname{mov}(3)=1: \operatorname{mov}($ 4) $=2$

40 gosub 170:gosub 270
$50 \mathrm{pl}=(\mathrm{pl}=0)$:gosub drawball:gosub play er
60 gosub readmouse:if $y<98$ or $y>127$ o r $x<34$ or $x>273$ then 60
$70 \mathrm{sp}=\operatorname{int}((x-11) / 24)$
80 if ($\mathrm{pl}=0$ and $\mathrm{sp}>\mathrm{bp}$) or ($\mathrm{pl}=-1$ and sp <bp) then 110
$90 \mathrm{t}=\mathrm{c}(\operatorname{col}(\mathrm{bp})):$ color $1, \mathrm{t}, \mathrm{t}$:pcircle $\mathrm{bp}^{*} \mathbf{2 4 + 2}$ 2,91,6
$100 \mathrm{bp}=\mathrm{bp}+\operatorname{mov}(\operatorname{col}(\mathrm{bp})$):if $\mathrm{bp}>11$ the $\mathrm{nbp}=11$ else if $\mathrm{bp}=-1$ then $\mathrm{bp}=0$
110 gosub colchange
120 gosub drawball:if $\mathrm{bp}>0$ and $\mathrm{bp}<11$ th en 50
130 gotoxy 13,14:if $\mathrm{bp}=0$ then color 5:pri nt " Blue Wins! ":goto 150
140 color 2:print " Red Wins! "
150 gotoxy 10,16:color 1:print "Press Mou se Button":gosub readmouse:clear: go to 10
160 drawball: color 1,1,1:pcircle bp*24+2 2,91,6:return
170 for $\mathrm{a}=75$ to 105 step $\mathbf{3 0}:$ linef $\mathbf{1 0}, \mathrm{a}, \mathbf{2 9 8}$, a:next
180 for $\mathrm{a}=10$ to 298 step 24:linef $\mathrm{a}, 75, \mathrm{a}, 10$ 5:next
190 color 1,5:fill 12,77:color 1,2:fill 296,77
200 gotoxy 12,3:print "1 $212^{\prime \prime}$
210 for $\mathrm{a}=100$ to 220 step 24:linef $\mathrm{a}, 19, \mathrm{a}, 3$ 7:next
220 for $a=19$ to 37 step $18: 1$ linef $100, a, 148$, a:linef 172,a,220,a:next
230 color 1,6:fill 101,20:color 1,7:fill 125,20
240 color 1,10:fill 173,20:color 1,12:fill 197, 20
250 gotoxy 13,4:print chr\$(4);" ";chr\$(3)
260 return
270 for $a=1$ to $10: q=\operatorname{int}(\operatorname{rnd}(1) * 4+1): \operatorname{col}(a$)= q:color $1, \mathrm{c}(\mathrm{q})$:fill $25+\mathrm{a}^{*} 24,77$

280 next:return

290 readmouse: poke contrl, 124
300 poke contrl $+2,0$:poke contrl $+6,0$
310 vdisys(0):if peek(intout) $=0$ then 310
$320 x=$ peek(ptsout): $y=$ peek(ptsout +2)
330 return

340 colchange: if $\mathrm{pl}=0$ then 360
350 for a $=1$ to sp:gosub 370:next:return
360 for $\mathrm{a}=10$ to sp step-1:gosub 370:next:r eturn
$370 \operatorname{col}(\mathrm{a})=\operatorname{col}(\mathrm{a})+1+4^{*}(\operatorname{col}(\mathrm{a})=4)$
380 color $1, \mathrm{c}(\operatorname{col}(\mathrm{a}))$:fill $25+\mathrm{a}^{*} 24,77$
390 return
400 player: gotoxy 13,14:if $\mathrm{pl}=0$ then colo r 2:print "Red's Turn ":return
410 color 5:print "Blue's Turn":return

Use the mouse to play the Atari ST version of "Tug-a-War."

Program 6: Tug-A-War For TI-99/4A

Version by Patrick Parrish, Programming Supervisor
$1 \varnothing \varnothing$ GOTO $15 \varnothing$
$11 \varnothing$ FOR $I=1$ TO LEN (A\$)
$12 \varnothing$ CALL HCHAR (R, C+I, ASC (SE G\$(A\$, I, 1)))
$13 \varnothing$ NEXT I
14ø RETURN
$15 \emptyset$ RANDOMIZE
$16 \varnothing \operatorname{CALL} \operatorname{COLOR}(14,1,7)$
$17 \varnothing$ CALL SCREEN(2)
$18 \emptyset \operatorname{PC}(\varnothing)=5$
19ø PC(1)=7
2øø P\$($)=$ "BLUE"
$210 \mathrm{P} \$(1)=$ "RED"
$22 \varnothing Y \$(\varnothing)="<-1 \quad 2 \quad 3 \quad 4 \quad 5$
$230 \quad Y \$(1) \stackrel{7}{=1} 8^{8} 9^{9} 8{ }^{\prime \prime} 7 \quad 6 \quad 5$ $\begin{array}{llll}4 & 3 & 1 & ->"\end{array}$
$24 \varnothing \operatorname{KHAR}(\varnothing)=\varnothing$
$25 \varnothing \operatorname{KHAR}(1 \varnothing)=5$
26 FOR I=96 TO 136 STEP 8
27ø CALL CHAR(I,"øøøøøøøøøø øøøøøø")
$28 \emptyset$ CALL CHAR (I+1, "øFøFØFøF øFøFøFøF")
$29 \varnothing$ CALL CHAR(I $+2, " 3678 F C F C$ FC783ø")
3øø CALL CHAR(I+3,"øø1ø3ø1ø 1ø1ø1ø38")
$31 \varnothing$ CALL CHAR (I + 4, " $\varnothing \varnothing 3844 \varnothing 4$ ø81ø2ø7C")
32ø NEXT I
$33 \varnothing \mathrm{PS}=5$
$34 \varnothing \mathrm{PL}=\varnothing$
$35 \emptyset \quad B P=17$
$36 \varnothing$ CALL CLEAR
$37 \varnothing$ GOSUB 1 øøø
38ø PRINT TAB(11);"TUG-A-WA $\mathrm{R}^{\prime \prime}$
$39 \varnothing$ PRINT : :
4øø B\$=CHR\$(128)\&CHR\$(128)\& CHR\$(129)
41ø PRINT TAB(9);"hhippq $x x$ ${ }^{\prime \prime}$ "; B \$
42ø PRINT TAB(9);"hkiptq x ¢ y";CHR\$(128);CHR\$(132); CHR\$(129)
43ø PRINT TAB(9);"hhippq $x x$ y"; B \$

COMPUTE!'s All New Apple Applications Special

COMPUTE!'s latest Apple Applications Special features in-depth articles and interviews, all the inside news about Apple, clearly written tutorials, software buyer's guides, new product information, and valuable ready-to-type-in programs for all Apple users.

> Apple owners find these special Apple issues the most understandable, complete, and valuable resources available today.

PLUS

All the programs in COMPUTE!'s Apple Applications Special are also available on a timesaving disk, ready to run on your Apple II, II + , IIe, and IIc. The Disk costs only $\$ 12.95$ (plus $\$ 2.00$ shipping and handling) and gives you immediate access to all the great programs in this special issue.

Look for the Spring/Summer 1986 issue of COMPUTE!'s Apple Applications Special on sale where you buy other COMPUTE! publications, or order directly from COMPUTE!. This special issue goes on sale April 8, 1986.
Send in the attached order card or call toll free 800-346-6767 (in NY call 212-887-8525).

Features

- Business Applications
'86 Apple: An Interview with John Scully
A wide-ranging interview with the president of Apple. The company's plans for the coming year, its markets, the new Macintosh, and the viability of the Apple II. Business Software Buyer's Guide

A buyer's guide to the newest Apple II and Macintosh word processors, databases, spreadsheets, and more.
The Expanding Mac

- Education

Apple Rules the Schools
Why does Apple have a lock on educational computing? Comments from teachers, administrators, and Apple.
Computers and the Humanities
Educational Software Buyer's Guide

- The Expanding Apple

It's New II
A multitude of new hardware and software for the Apple II line-from color printers to Mac-like software-is evaluated. Weirdware: Off the Beaten Software Path

Weirdware-out of the ordinary software-can turn the Apple II or Macintosh into a telescope, astrological fortune-teller, baby evaluator, and much, much more.
MacAdds: More for the Macintosh

Applications

- Utilities and Tutorials

Windows
Create Macintosh-style windows on any Apple II-series computer. Set window size, open, close, and retrieve information. Mouse Cursor

A Macintosh BASIC utility for altering the mouse pointer. Design data can be saved, then used in other BASIC programs.

Your Personal Ledger

A complete personal financial application for tracking expenses, income, and assets. Easy to use, and packed with features from report generation to customized category codes.
Personal Publishing With Your Macintosh
Tutorial and guide to using such software as MacPaint and MacWrite to customize letterheads, cards, banners, and more. Keynote

- Education and Recreation

Lexitron
Entertaining word game where players try to beat the clock while finding as many hidden words as possible.
Backgammon
Play the computer in this classic game. This version observes all the rules of standard backgammon.
Apple Automatic Proofreader

```
44g PRINT
45\emptyset PRINT TAB(11);"<-";TAB(
    18);"->"
46\emptyset FOR I=1 TO 15
47g PRINT
48\emptyset NEXT
49\emptyset FOR I=1 TO 9
5øø RANDOMIZE
51\emptyset KHAR(I)=INT(4%RND) +1
52g NEXT I
53\emptyset FOR R=13 TO 15
540 CALL HCHAR(R,2,96,2)
55g FOR I=1 TO 9
560 KH=96+KHAR(I) #B
57\emptyset CALL HCHAR(R,I*3+1,KH)
58g CALL HCHAR (R,I*3 + 2,KH)
59ø CALL HCHAR(R,I*3+3,KH+1
    )
GØD NEXT I
610 CALL HCHAR(R,31,136,2)
6 2 \emptyset ~ N E X T ~ R ~
63ø CALL HCHAR(14,BP,96+KHA
    R(PS)*8+2)
64\emptyset IF (PS=\emptyset) +(PS=1\varnothing) THEN 1
    18\emptyset
65g A$=Y$(PL)
660 R=17
670 C=1
680 GOSUB 110
690 CALL HCHAR (24,17,32)
7\emptyset\emptyset A$=P$(PL)&"'S TURN "
710 R=2\emptyset
720 C=11
730 GOSUB 110
740 R=22
750 C=14
760 A$="(1-9)"
77\emptyset GOSUB 110
78ø GOSUB 1ø20
79\varnothing CALL KEY(\emptyset,K,H)
8\emptyset\emptyset IF H=\emptyset THEN 79\emptyset
81\emptyset IF (K<49)+(K>57) THEN }7
    \emptyset
82\emptyset AN=K-48
83\emptyset CALL HCHAR (24,17,K)
84\emptyset IF PL=\varnothing THEN 89\emptyset
85\emptyset AN=1\emptyset-AN
86\emptysetS=AN
870 E=9
88ø GOTO 91ø
890 S=1
9ø\emptysetE=AN
91\emptyset GOSUB 11ø\emptyset
920 FOR Q=S TO E
930 IF KHAR(Q)<>4 THEN 96\varnothing
940 KHAR (Q)=1
95\emptyset GOTO 97\emptyset
96\emptyset KHAR (Q)=KHAR (Q)+1
97\emptyset NEXT Q
98\emptyset PL=-(PL=\varnothing)
99ø GOTO 53ø
1\emptyset\emptyset\emptyset CALL COLOR (9,1,5)
1\emptyset1\emptyset CALL COLOR(14,1,7)
1\emptyset2\emptyset FOR I=1 TO 8
1ø3\emptyset CALL COLOR(I,PC(PL),2)
1Ø4\emptyset NEXT I
1ø5\emptyset CALL COLOR(1\emptyset,PC(PL),1
    6)
1ø6\emptyset CALL COLOR(11,PC(PL),1
    1)
1070 CALL COLOR(12,PC(PL),8
CALL COLOR(13,PC(PL),1
    4)
1ø9\emptyset RETURN
11\emptyset\varnothing IF ((AN<PS)*(PL=\varnothing)) +(A
        N>PS)*(PL=1)THEN 117\emptyset
111g A = (KHAR (PS)=1) + (KHAR (P
        S)=2)*2-(KHAR (PS)=3)-(
        KHAR (PS)=4)*2
112g BP=BP+A*3
1130 PS=PS+A
114\emptyset IF (PS>\emptyset)*(PS<1\emptyset)THEN
        1176
115\emptyset PS=-(PS=-1)+(PS=11)+PS
```

$116 \emptyset \mathrm{BP}=-(\mathrm{BP}\langle 5) * 3-(\mathrm{BP}>29) * 3$
$117 \emptyset \stackrel{1}{\text { RETURN }}$
$118 \emptyset \mathrm{R}=14$
119 C=7
$12 \emptyset \varnothing$ A $\$=P \$(-(P S=1 \emptyset)) \& "$ IS T
HE WINNER!"
$121 \varnothing$ GOSUB $11 \varnothing$
1220 A\$="LIKE TO PLAY AGAIN
(Y / N)?"
$1230 \mathrm{R}=24$
124 Ø $C=4$
125 GOSUB $11 \varnothing$
$126 \emptyset$ CALL $\operatorname{KEY}(\emptyset, K, H)$
127 IF $H=\emptyset$ THEN $126 \emptyset$
128 IF $(K<>78) *(K<>89)$ THEN
1260
$129 \varnothing$ IF $K=89$ THEN 330

This version of "Tug-a-War" uses several of the Amiga's 4,096 different color shades.

Program 7: Tug-A-War For Amiga

Version by John Krause, Assistant Technical Editor
SAY TRANSLATES('"')-
SCREEN 2,320,200,3,1+
WINDOW 2," Tug-A-War ",,12,2+
FOR i=0 TO 7-
READ $\mathrm{r}, \mathrm{g}, \mathrm{b}+$
PALETTE $\mathrm{i}, \mathrm{r}, \mathrm{g}, \mathrm{b}-$

NEXT

RANDOMIZE TIMER +
DIM a(11) ${ }^{+}$
FOR $\mathrm{i}=1$ TO 11-
$\mathrm{a}(\mathrm{i})=\operatorname{INT}\left(\operatorname{RND}(1)^{*} 4\right)+4+$
NEXT
row $=3$
$\operatorname{col}=3: \operatorname{colr}=4:$ GOSUB frame:GOSUB squ

are ${ }^{-}$

$\operatorname{col}=4:$ colr $=5:$ GOSUB frame:GOSUB squ

are

$\mathrm{col}=8: \mathrm{colr}=6:$ GOSUB frame:GOSUB squ

are ${ }^{+}$

col $=9:$ colr $=7:$ GOSUB frame:GOSUB squ are
row $=10$ -
LOCATE 5,11:COLOR 1,4:PRINT " 2 "
LOCATE 5,14:COLOR 1,5:PRINT " 1 "
LOCATE 5,26:COLOR 1,6:PRINT " 1 " LOCATE 5,29:COLOR 1,7:PRINT " 2 "+
LINE $(64,36)$-STEP $(-16,0), 1+$
LINE -STEP(8,4),1+
LINE $(48,36)-\operatorname{STEP}(8,-4), 1$
LINE $(248,36)-\operatorname{STEP}(16,0), 1+$
LINE -STEP(-8,4),1-
LINE (264,36)-STEP(-8,-4),1+
FOR col $=0$ TO 12-
GOSUB frame ${ }^{+}$

NEXT +

col $=0:$ colr $=3$:GOSUB square ${ }^{+}$
$\mathrm{col}=12: \mathrm{colr}=2:$ GOSUB square ${ }^{-}$
dot $=6$:GOSUB update
SAYTRANSLATE\$("welcome to tugowa r.') ${ }^{+}$
main:-
LOCATE 17,15
IF red THEN-
COLOR 2,0:PRINT "Red's turn " ${ }_{+}$
SAY TRANSLATES("reds turn.")'
ELSE ${ }^{-}$
COLOR 3,0:PRINT "Blue's turn"'
SAY TRANSLATE\$("blues turn.")+
END IF-
WHILE MOUSE(0) $<>1$ OR MOUSE(4) <8
0 OR MOUSE(4)>104 OR MOUSE(3)<2
3 OR MOUSE(3)>276+
WEND -
click $=$ INT(MOUSE(3)/24)-
IF (red AND click $<=$ dot) OR (red $=0$ AN
D click $>=$ dot) THEN +
temp $=$ dot +
IF $a($ temp $)=4$ THEN dot=dot-2
IF $a($ temp $)=5$ THEN dot=dot-1-
IF $a($ temp $)=6$ THEN $\operatorname{dot}=\operatorname{dot}+1+$
IF $a($ temp $)=7$ THEN dot $=\operatorname{dot}+2+$
END IF ${ }^{-}$
IF red THEN
FOR $\mathrm{i}=$ click TO 11-
$a(i)=a(i)+1+$
IF $a(i)=8$ THEN $a(i)=4$ -
NEXT+
ELSE +
FOR $\mathrm{i}=1$ TO click
$a(i)=a(i)+1+$
IF $a(i)=8$ THEN $a(i)=4+$
NEXT ${ }^{+}$
END IF+
IF dot> 11 THEN-
dot = 12:GOSUB update ${ }^{-}$
LOCATE 17,15:COLOR 2,0:PRINT " Re d wins! " ${ }^{+}$
SAY TRANSLATES('red wins.') +
GOTO quit-
END IF+
IF dot<l THEN -
dot $=0:$ GOSUB update +
LOCATE 17,15:COLOR 3,0:PRINT "Blu e wins! " +
SAY TRANSLATE\$("blue wins.")+
GOTO quit-
END IF
GOSUB update
red $=1$-red +
GOTO main ${ }^{-}$
frame:-
$x=24:$ IF 24^{*} col >280 THEN $x=23+$
LINE (24* ${ }^{*}$ col, 8^{*} row)-STEP($\mathrm{x}, 24$), 1, b -
RETURN
square:-
$x=2 ん:$ IF $24^{*} \mathrm{col}+1>280$ THEN $x=21+$
LINE (24* ${ }^{*}$ col $+1,8^{*}$ row + 1)-STEP($\left.\mathrm{x}, 2 \mathrm{Z}\right), \mathrm{c}$
olr,bf-
RETURN+
update:-
FOR col=1 TO 11+
$\operatorname{colr}=\mathrm{a}(\mathrm{col}):$ GOSUB square ${ }^{+}$
NEXT ${ }^{-}$
CIRCLE (24* dot $+11,91$),5,1-
PAINT (24*dot+11,91),1+
RETURN +
quit:*
LOCATE 19,7:COLOR 1,0:PRINT "Clic k mouse to play again." +
SAY TRANSLATE\$("click mouse to pla y again.")
WHILE MOUSE(0) = 0:WEND
RUN
DATA . $5, .5, .5,0,0,0,1,0,0,0,0,1,0,1,0,1,1$,
$0,1,0,1,0,1,1+$

Silent Service

Neil Randall

Requirements: Commodore 64 or 128 (in 64 mode); Apple II-series computer with at least 64 K RAM; Atari $400 / 800, \mathrm{XL}$, or XE with at least 48 K RAM; IBM PC with color/graphics adapter; or an IBM PCjr. A disk drive is also required, and a joystick is recommended. The Commodore version was reviewed.

Silent Service, from Microprose Software, is one of a new type of computer war game. A cross between arcade action games and traditional strategy war games, these new games put you on the battlefield in command of a plane, tank, or submarine. Microprose's F-15 Strike Eagle placed you in a modern jet fighter. In Silent Service, you're the captain of a U.S. submarine in the Pacific during World War II. Your mission is to sink Japanese cargo, troop, and oil shipping. The game includes several scenarios based on actual engagements.

Silent Service employs several graphics screens to relay the information needed to command the sub. The Patrol Navigation Map shows a 150,000 square-mile area of the Pacific Ocean from Midway Island to China (east to west), and Australia to the U.S.S.R. (south to north). This is the strategic map on which you move your sub to find Japanese shipping lanes. Once you've found a convoy, the tactical map kicks in.

The tactical map is actually a series of three differently scaled maps. The Patrol Area Map is described above. You can zoom to the Navigation Map, which shows an area of 2,400 square miles around your sub, and zooming further yields the Attack Plot, a 40 -square-mile area. The detail of land masses and enemy ships changes with the zoom. The Attack Plot displays the wake of each ship, to show which direction it is going. You use the Patrol Area Map to find the enemy convoy, the Navigation Map to close in on it, and the Attack Plot to position your sub for attack.

Superb Graphics

Once you've located your prey, you shift to a view of the conning tower, the captain's station. Using the joystick (the game is joystick- or keyboardcontrolled), you either use the peri-
scope or move the captain to one of the other stations: instruments and gauges, maps and charts, damage reports, quartermaster's log, or the bridge. Like the map screens, each battle station screen is graphically superb and very detailed.

Here are 79 reasons to buy at ElekTek, not to mention the fastest delivery anywhere.

[. MECA BERNOULLI BOX

1. $10 \mathrm{meg} 1 / 2$ height Drive for IBM-PC/XT/AT \&
compatibles \$ 1675
2. $20 \mathrm{meg} 1 / 2$ height Drive for IBM-PC/XT/AT \& compatibles .2335 3. Non-Bootable Interiace Card 104 4. Bootable Interface Card ... 234
3. 10 meg cartridges for above (3 pak special) 125

Save 30\% to 43\%

 off Manufacturer Suggested Ret. prices on America's most wanted Printers

EPSON ${ }^{\circ}$

Huge Discount on TOSHIBA OKIDATA StCQr. UNBELIEVABLEM XEROXIDIABLO D-36 DalsyWheel 35CPS Mrt. Sugg. Ret. \$1495 Elok-Tok Price $\$ 450$
P-38 Dot Matrix 400CPS Mr. Sugg. Ret. $\$ 1995$ Elek-Tek Price $\$ 600$

PRODUCTS FOR IBM-PC
14. Amdek 310A

Amber Monitor
Amber Monitor
Multifunction Board $04 \mathrm{~K} . .135$
16. Generic Multi 384 K

Multifunction Board, 384K . . 175
17. AST SIx Pak +

Multifunction Board, 64K .. 225
18. AST SIx Pak + (loaded) Multifunction Board, 384K . 290
19. Quadram Quadboard Multifunction Board, OK Multi Board 64K1394K ... 195 20. Multi. Bcard, 21. Orchid Tech. PC Turbo 186 22. ECCELL OK.
38. Dysan

Internal H.D. Subsystem
20 Megabyte $\$ 500$
23. ECCELL Daughterboard . . . 135 24. ECCELL I/O Board. 99 25. Hercules

Monochrome Card 299
26. Hercules Color

Color Graphic Card 155
27. Novation 4905921

1200B Int. No Software 150 with MITE Software 165
28. Novation 490605-1 2400BPS inc. Mite Software . 62
29. Novation 490603
$1 / 2$ Card Modem 2400 BPS
No software Novation 490603-1
As above inc. MSDOS Sotwere . . 490
39. I BAR 8-15

8 Outtet Surge Protector . $\$ 50$
31. Hayes 1200

External modem 380
32. Hayes 1200B

Internal modem w/software . 359
33. Hayes 2400

External modem 599
34. Hayes 2400B

Internal modern w/software . 525
35. ATRT 4000

300/1200 Ext. Modem 335
36. US Robotics Courier 2400 Ext. 2400B Smart Modem . 460
37. Toshiba HND O4DT
$1 / 2 \mathrm{ht}$. DSDD Disk Drive 90
40. XIDEX Precision DS/DD Diskette 10pk/\$7.00
5 boxes minimum

$\begin{aligned} & \text { 31/2" SSDD } \\ & \text { DSD } \end{aligned}$	Dysan	maxet	310	mamorex	
	20.00	20.00	23.00	-	
	27.00	26.00	29.00		
$5 \%^{\prime \prime}$ " SSDD	15.00	13.00	12.00	11.50	11.00
DSDD	19.00	15.00	15.00	14.00	12.00
SSDD96TPI	24.00	24.00	24.00		
DSDD96TPI	33.00	29.00	29.00		
	33.00	28.00	30.00	-	24.00
$8{ }^{\text {P SSDD }}$	22.00	29.00	25.00		
	26.00	32.00	29.00	-	

3M DATA

 CARTRIDGES| 73. DC100A 13.17. | |
| :---: | :---: |
| | |
| 75. DC300XL | |
| 76. DC300XL/P 21.50 | |
| 77. DC600A | 23.00 |
| 78. DC1000 14.50 | |
| 79. DC2000 19.50 | |
| for | | cartridges or more.

If the sub is surfaced, you can climb to the bridge. From here you can look around to spot the enemy ships, using your naked eyes or binoculars. The view includes the Japanese ships (several varieties, each graphically different) and the land on the horizon. The landforms correspond exactly to where you are in the Pacific; if you patrol to the coast of New Guinea, you will see the coast of New Guinea. Given the amount of territory covered in the game, the mapping system is obviously very sophisticated.

The binoculars and periscope screens include all the details necessary for firing at the ships: target type, target range and speed, and such data as angle-on-bow. You may fire the deck guns or torpedoes, but only torpedoes are consistently effective.

These screens are the heart of the action, but to keep the sub running you must pay strict attention to your vessel's instruments and gauges. They display information about the battery, the depth of the sub and of the ocean floor beneath you, fuel levels, the status of hull openings, and so on. For instance, the battery allows restricted underwater maneuvering, depending on your speed, and then must be recharged on the surface.

This assortment of screens from Silent Service shows the diversity of the program's graphics.

Attention To Detail

Other facets of the game are equally realistic. If your sub hits the ocean bottom, you hear a scraping sound and the hull may be damaged. You can cruise at four speeds or cut the engines for silent running. More esoterically, once per mission you can get rid of your emergency tanks to stop a fatal dive, or release debris to the surface to fool the Japanese destroyers into thinking you've been sunk. Sound effects range from sonar pings-telling you that destroyers are closing in-to the ominous explosions of nearby depth charges. The sub's hull even creaks if you dive deeper than it was tested for, and you hear a grinding metallic sound if you're
rammed by an enemy ship. Silent Service's detail is astonishing.

But the most impressive part of the detail is that it does not impede play. Detail in the more traditional type of war game frequently hinders understanding and lengthens the game considerably, but Silent Service plays quite easily after only a half-hour or so of practice. Once you learn how to steer the sub and fire torpedoes at a target, you can try a mission. You can learn the rest, such as diving and running silent at the approach of a Japanese destroyer, as the situation demands. At any time, you can pause the game to allow you time to think.

Like F-15 Strike Eagle, Silent Service is both intriguing and addicting. Also like $F-15$, it is highly educational, but there is nothing tedious about the lessons. The excellent manual describes the submarine war in the Pacific, the background to the scenarios, and the tactics used by sub captains. By playing the game, you'll quickly find that these captains knew what they were doing. Silent Service is a superior product.

Silent Service
MicroProse Software Inc.
120 Lakefront Drive
Hunt Valley, MD 21030
\$34.95-\$39.95 (depending on version)

DeluxePaint For Amiga

Lee Noel, Assistant Editor, Art \& Design

Requirements: Amiga with at least 256 K RAM (512K recommended). Printer optional.

Whenever a new computer appears on the market, some of the most important factors affecting its success are the quality and diversity of its software. In the case of the long-awaited and innovative Amiga, questions concerning software support become even more important. Is this computer the powerhouse it's said to be, and can programs be written to take full advantage of its capabilities?

Electronic Arts, a software publisher widely considered to be at the forefront of personal computing, said yes to both questions and threw its considerable weight squarely behind the Amiga. DeluxePaint, by Dan Silva, is one of the first results. Not surprisingly-considering the Amiga's selling point as a computer for those who want a "creative edge"-DeluxePaint is a visual arts program of immense scope and flexibility.

In fact, DeluxePaint is really three different programs of immense scope
and flexibility. Due to differing memory requirements, DeluxePaint includes a separate program for each of the Amiga's three major screen modes: 320 pixels across by 200 down with 32 simultaneous colors; 640×200 with 16 colors; and 640×400 with 16 colors. The number of simultaneous colors in each mode can be selected from a palette of 4,096 possible colors. You can also customize DeluxePaint by restricting it to a smaller palette.

After booting up the program disk, you must type in a command to call up whatever incarnation of DeluxePaint you want. This may sound confusing to nontechnical artists hoping to use the Amiga for their first experiments in computer graphics, but loading the program is fairly straightforward. First you turn on the Amiga and insert the usual Kickstart disk. When the prompt asking for the Workbench disk appears, you insert the DeluxePaint disk instead. AmigaDOS comes up next with its $1>$ prompt, and then you type the appropriate command. For instance, you'd enter dpaint and press RETURN to work in the 320×200 mode.

Best For 320×200

DeluxePaint works best by far in the 320 $\times 200$ mode. In the 640×200 mode, pixels are three times as high as they are wide, and the program slows down considerably. In 640×400, the slowdown is drastic. So much memory is consumed that there's not enough room in a 512 K machine for both the entire program and a screen. Instead, the program is broken into modules that are constantly swapped in and out from disk. (DeluxePaint works this way in all modes on a 256 K Amiga.)

Also, the 640×400 mode suffers from a jittering screen display. The jittering varies depending on the color combinations, and high-contrast combinations are worse. This isn't DeluxePaint's fault-the monitor simply cannot refresh the 256,000 pixels in this mode fast enough to display a stable picture. (Other computers with similar modes get around this problem by using special monochrome monitors driven at higher refresh rates.)

Since DeluxePaint's features are the same in all modes, we'll describe what's available in the 320×200 mode. This is the most color-rich screen, and the program's documentation and all of the sample pictures on the disk are slanted toward it.

kyan pascal (Version 2.0)
$\$ 69.95$

kyan pascal is the ideal system for learning Pascal and developing Pascal programs. It's a full implementation of ISO Pascal and conforms to the standards set by the Federal Software Testing Center. kyan pascal features a menu-driven environment with multiple HELP screens; a full-screen text editor; and, optimized 6502 machine code compiler/assembler. It produces code that runs at the maximum speed possible on the 6502 microprocessor. kyan pascal supports many extensions including string handling, linking, chaining, random files, and included or inline assembly source code. It also supports a line of powerful toolkits which make it possible for even novice programmers to develop sophisticated software. kyan pascal (Version 2.0) requires only one disk drive. It is available for the Apple II (runs in ProDOS and requires 64K); Atari (runs DOS 2.5 and requires 48 K); and Commodore 64/128. kyan pascal is not copy protected and comes with a Pascal tutorial and reference guide.

Programming Utility Toolkit

 Programming is faster and easier with this extensive library of utility programs and file management procedures. The Toolkit includes source code for more than 20 utility programs.
Advanced Graphics Toolkit

\qquad $\$ 49.95$
Add stunning graphics to your Pascal or assembly language programs. With the Toolkit's graphics primitives, you can build a custom graphics library. Or, you can use the Toolkit's library for 2 and 3 dimensional transformations, windows and clipping, shading, and more.

MouseText Toolkit (available for Apple II only) . . $\$ 49.95$ Add Macintosh-like graphics to your Pascal programs. The Toolkit includes routines for pull-down menus, windows, and mouse-controlled cursor events (Toolkit requires Apple IIc or enhanced IIe).

Macro Assembler/Linker $\$ 69.95$ kyan's latest programming tool adds a new dimension to assembly language programming. The Assembler/Linker includes a text editor, 65C02 macro assembler, object module linker, debugger, and librarian.
kyan Software offers you a 15 day money back guarantee. See for yourself . . . kyan is the best programming software. Send Check/Money Order: kyan software, Dept. P • 1850 Union Street, \#183 • San Francisco, CA 94123 Or Call: (415) 626-2080 • Visa/MC Accepted
Please include $\$ 4.50$ /order for shipping/ handling; $\$ 12$ outside North America. CA residents add 6.5% sales tax.

Tons Of Tools

Like virtually all Amiga software, DeluxePaint is a mouse-driven, icon-based program, similar in some ways to MacPaint for the Macintosh. An array of drawing tools is represented by icons on the computer's display (the tools can be hidden when the picture is finished). Tools are selected by moving a pointer to the appropriate icon with the mouse. A click of the mouse button activates the tool, which can then be used in the drawing area.

DeluxePaint has practically all of the tools that have become standard in graphics-design programs. You can draw straight lines and a multiplicity of outlined or filled shapes, paint with different-sized brushes or an "airbrush," print text on the screen, and lots more. But DeluxePaint really shines because it offers unique new tools and novel extensions to the old standbys.

First and foremost, DeluxePaint recognizes the importance of color to the artist. The program has a special palette window where any of the Amiga's thousands of colors can be mixed and used in design work. The palette appears from the program's title bar as a pull-down menu (the menu selections have alternate keyboard commands as well.)

This picture of a paint can and brushincluded on the DeluxePaint diskshows the fine shading possible with 32 simultaneous colors chosen from a palette of 4,096 .

Within the palette is an almost bewildering number of options. For instance, there are two ways to make color adjustments. The first method has three slide controls-manipulated with the mouse-that alter the percentages of red, green, and blue in any color (these are the primary colors for a video display). Another set of three sliders allows changes to the hue, saturation, and value of any selected color. The latter system is much like the tint, color, and contrast controls on a normal color TV. As a result, novice users of Deluxe-

Paint may find this system reassuringly familiar.

If that's not enough flexibility, the artist can also move the palette window to any convenient location, and the relocation will be "remembered" for the rest of the current session.

Flowing Colors

Colors are selected simply by pointing and clicking with the mouse; selection is verified by a highlighted box. Color changes are instantly reflected in the palette window and in the picture. As a consequence, it's delightfully easy to adjust colors relative to each other. The program disk includes two good examples of the effects made possible by this precise control over a diverse palette. "KingTut" displays the hard, gleaming gold coffin mask of the Egyptian boyking Tutankhamen. In contrast, "Venus" faithfully reproduces the soft, almost pearly hues of Botticelli's "Birth of Venus."

Some really amazing special effects are also built into DeluxePaint's palette, such as animated color cycling. This allows the artist to establish three sets of colors that will cycle through a certain range. Each range can be narrow or wide, can include harmonious or clashing colors, and can overlap the

(Premium Quality)

- Built in Speaker \& Audio
- For Video Recorders
- For Small Business Computers
- Apple - Commodore -Atari - Aplus 3000 -etc.
- One Year Free Immediate Replacement Warranty

Super High Resolution

(Premium Qualify)

- Beautiful Color Contrast
- High Resolution
- Sharp Clear Text
- Anti-Glare Screen
- 40 Columns $\times 24$ Lines
- Front Panel Controls

List \$32900
13" Color Computer Monitor
*C64/Atari composite cable $\$ 9.95$ * Cl28 RGB/Composite 80 column cable \$19.95.

13' RGB \& COMPOSITE COLOR MONITOR

Allows use of C-128 and C64 mode - composite and 80 column RGB mode. Must be used to get 80 columns in color with 80 column computers. Specially designed for use with the Cl^{28} 's special composite video output, plus green screen only option switch. (add \$14.50

Sale $\$ 259^{95}$

12" MAGNAVOX (NAP) 80 COLUMN MONITOR

Super high resolution composite green screen monitor. 80 columns \times 24 lines, easy to read, plus speaker for audio sound included. Fantastic value. Limited Quantities.

Turn Your Monitor into a TV Set Without Moving Your Computer
 Elegant TV Tuner with dual UHF/VHF selector switches goes between your computer and monitor. Includes mute, automatic fine tuning and computer-TV selector switches. Inputs included for 300 ohm, 75 ohm, and UHF. Can be used with cable TV and VCR's. Fantastic Value. Limited Quantities.

15 Day Free Trial - 90 Day Immediate Replacement Warranty

- LOWEST PRICES • BEST SERVICE IN U.S.A. •ONE DAY EXPRESS MAIL •OVER 500 PROGRAMS • FREE CATALOGS

[^6]
COMPUTER DIRECT

We Love Our Customers
22292 N. Pepper Rd., Barrington, III. 60010
312/382-5050 to order

240K Apple Compatible - Computer System -

APlus 3000 computer system includes 192K RAM, 48K ROM (32K Microsoft Basic plus 16K ROM Emulator), 160K Laser 51/4" Disk Drive (Runs Apple II Software), Magic Window Wordprocessor, MagiCalc spreadsheet, Magic Memory Database. All for only $\mathbf{\$ 3 9 9 . 0 0}$

Complete System

Double Immediate Replacement Warranty

 If any of the Aplus 3000 computer system equipment fails due to faulty workmanship or material within 180 days of purchase we will REPLACE it immediately with no service charge!!- Over 10,000 existing Apple ${ }^{\circ}$ programs
- Centronics printer interface included - 240K (192K RAM, 48K ROM) - ArtSci's Magic Window II, Magic Memory, and MagiCalc included - 160K Laser 51/4" Disk Drive (Runs Apple II software)
- RGB (80 columns in color) and composite included

SPECIFICATIONS

A plus 3000 is a complete, self-contained computer based on the popular 6502A microprocessor and can tap into the tremendous software library of Apple II. Features include 192K Bytes RAM, 32KB Enhanced Microsoft BASIC, 80 column text, $560 \mathrm{H} \times 192 \mathrm{~V}$ color graphic display, 81 key sculptured keyboard and high efficiency switching power supply. Also included as standard are Centronics bus printer interface, Cassette interface, 4 channel sound generator, and $51 / 4$ Apple Compatible Disk Drive.

- TEXT

- 40 columns $\times 24$ rows or 80 columns $\times 24$ rows software selectable.
-5×7 characters in 7×8 matrix.
- Upper and lower case characters.
- One of Eight colors for characters/graphics and background,

Red, Green, Blue, Cyan, Magenta, Yellow, Black and White.

- Character set with normal, inverse and flashing capabilities.

- GRAPHICS

More Features than Apple ${ }^{\odot}$ for less than Commodore ${ }^{\circ}$

Features

RAM
Runs Apple II Software
Function Keys
4 Voice, 6 Octave Sound
Composite Video
Disk Drive
Numeric Keypad
Video Cable
RGB Color Card
80 Column Card
Centronics Printer Interface Drive Controller
$\$ 150$ Wordprocessor (Magic Window) $\$ 150$ Spreadsheet (MagiCalc) $\$ 60$ Database prg. (Magic Memory)

Your Cost

ess than Commodore	Commodore	
Aplus 3000	Apple lle	C-128
192K	64 K	128 K
Yes	Yes	No
$\mathbf{2 4}$	None	16
Yes	No	Yes
Yes	Yes	Yes
Included	Extra Cost	Extra Cost
included	Extra Cost	Included
Included	Extra Cost	Extra Cost
included	Extra Cost	Included
included	Extra Cost	Included
included	Extra Cost	Extra Cost
included	Extra Cost	Included
included	Extra Cost	Extra Cost
included	Extra Cost	Extra Cost
included	Extra Cost	Extra Cost
$\$ \mathbf{\$ 9 9 . 0 0}$	$\$ 1745.00$	$\$ 1117.90$

- 280 H X 192V 6 colors - Black, White, Violet, Green, Blue, Orange,
- 280 H X 192 V 8 colors bit image - Black, White, Red, Green, Blue, Cyan, Magenta, Yellow.
- 560H X 192 V 6 colors - Black, White, Violet, Green, Blue, Orange. (High resolution color monitor required)
Super Apple Compatible Disk Drive Sale $\$ 149.95$. Quieter, Cooler, Better Disk Drives for your Apple II plus, IIe, IIc (specify when ordering). List $\$ 299.95$. Sale $\$ 149.95$.

15 Day Free Trial - If it doesn't meet your expectafions within 15 days of receipt, just send it back to us UPS prepaid and we will refund your purchase pricell

ACCESSORIES

2nd Disk Drive

2 professional analog joysticks
Z-80 cart. allows CP/M use RS232 adapter R/F Modulator (TV hookup) RGB cable (RGB Monitor hookup) Centronics cable (for Centronics printer) Technical reference manual 80 columns Hi -Res Green Monitor 80 column Hi-Res RGB Monitor
$\$ 399.00 \quad \$ 259.00$

Add $\$ 25.00$ for shipping and handling!!

Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery. 2 to 7 days for phone orders. I day express mail! We accept Visa and MasterCard. We ship C.O.D. to continental U.S. addresses only. Add $\$ 10$ more if C.O.D.

We Love Our Customers
22292 N. Pepper Rd., Barrington, III. 60010

Famous Smith Corona National Brand

10" PRINTRE SALIE

Below Wholesale Cost Prices!!!

- ONE YEAR IMMEDIATE REPLACEMENT WARRANTY

- Speed: 120 or 160 characters per second - Friction Feed/Tractor Feed - Standard
- 80 character print line at 10 CPI - 1 Line Buffer, 2K Buffer on 160 CPS Plus LQM
- Sixpitches - Graphics capability - Centronics compatible parallel interface - Features Bidirectional Print, Shortline Seek, Vertical And Horizontal Tabs

This is a sample of our near-letter-quality print.
italic print. There is standard data There is standard data
processing quality print emphasized List

Size/ Weight

Height 5.04" Width 16.7"
Depth $13.4^{\prime \prime}$ Weight 18.7 lbs .
Internal Char. Coding
ASCII Plus ISO
Print Buffer Size
120 CPS: 132 Bytes (1 line)
120/160 CPS Plus LQM: 2 K
No. of Char. In Char. Set
96 ASCII Plus International
Graphics Capability
Standard 60, 72, 120 DPI
Horizontal 72 DPI Vertical
Pitch
10, 12, 16.7, 5, 6, 8.3, Proportional Spacing
Printing Mothod
Impact Dot Matrix

Check These Features \& Prices

List
$\$ 429.00$
SALE

160 CPS + Letter Quality

 Mode 10'" Printer

120 CPS 10" Printer

 \$ 1 $\$ 499.00$SALE

SPECIFICATIONS

Char. Matrix Size
$9 \mathrm{H} \times 9 \mathrm{~V}$ (Standard) to $10 \mathrm{H} \times 9 \mathrm{~V}$
(Emphasized \& Elongate)
Printing Features
Bi-directional, Short line seeking, Vertical
Tabs, Horizontal Tabs
Forms Type
Fanfold, Cut Sheet, Roll (optional)
Max Paper Width
11"
Feeding Mothod
Friction Feed Std.; Tractor Feed Std. Ribbon
Cassette - Fabric inked ribbon Ribbon Life
4 million characters
(Apple - Atari - Etc.)

Inforfaces

Parallel 8 bit Centronics compatible
120/160 CPS Plus NLQ: RS232 Serial inc.

Character Mode

10×8 Emphasized; 9×8 Standard; 10×8
Elongated; 9×8 Super/Sub Script (1 pass) Character Set
96 ASCII
11×7 International Char.
Line Spacing
6/8/12/72/144 LPI

Character Spacing

10 cpi normal; 5 cpi elongated normal; 12 cpi compressed; 6 cpi elongated compressed; 16.7 cpi condensed; 8.3 cpi elongated condensed; 5.12 .5 cpi elongated proportional
Cartridge Ribbon - List $\$ 19.95$. Sale $\$ 12.95$.

We Love Our Customers
22292 N. Pepper Rd., Barrington, III. 60010
312/382-5050 to order

152K Lowest Price In The USA! 152K Computer System Sale

 - Students - Word Processing • Home • Business

LOOK AT ALL YOU GET FOR ONLY LIMITED QUANTITIES	LIST PRICE	INDIVIDUAL SALE PRICE	SAVE
(1) Atari 130XE 152K Computer SYSTEM Price	\$249.00	\$13495	OVER \$100
(2) Atari 1050 127K Disk Drive	299.00	15995	All 5 ONLY
(3) Atari 1027 Letter Quality 20 CPS Printer	299.00	15995	- 5.00
Atari Writer Plus Word Processer with Spell Checker	59.95	49^{95}	
Atari BASIC Tutorial Manual	16.95	12^{95}	STEM
All connecting cables \& T.V. interface included. \& Monitors sold separetly.	\$923.90	\$517.75	SALE PRICE

CALL FOR 1027 PRINTER REPLACEMENT OPTIONS

| Other Accessoriess | List | Sale | Add $\$ 9.95$ for |
| :---: | :---: | :---: | ---: | ---: |
| m $12^{\prime \prime}$ Hi Resolution Green Screen Monitor | $\$ 199.00$ | $\$ 79.95$ | Connection Cables |
| ir $13^{\prime \prime}$ Hi Resolution Color Monitor | $\$ 399.00$ | $\$ 159.95$ | Add $\$ 10$ for UPs |

15 DAY FREE TRIAL. We give you 15 days to try out this ATARI COMPUTER SYSTEM!! If it doesn't meet your expectations, just send it back to us prepaid and we will refund your purchase price!! 90 DAY IMMEDIATE REPLACEMENT WARRANTY. If any of the ATARI COMPUTER SYSTEM Equipment or programs fail due to faulty workmanship or material within 90 days of purchase we will replace it IMMEDIATELY with no service charge!!

Best Prices• Over 1000 Programs and 500 Accessories Available • Best Service - One Day Express Mail • Programming Knowledge • Technical Support

Add $\$ \mathbf{2 5 . 0 0}$ for shipping and handling!!

Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery. 2 to 7 days for phone orders. 1 day express mail! We accept Visa and MasterCard. We ship C.O.D. to continental U.S. addresses only. Add $\$ 10$ more if C.O.D., add $\$ 25$ if Air Mail.

COMPUTER DIRECT

We Love Our Customers
22292 N. Pepper Rd., Barrington, III. 60010 312/382-5050 to order
ranges for the other two cycles. Once activated, a cycle runs through all the colors in its range in a smooth sequence. The speed of each cycle can be individually controlled with the mouse and a slider. Color cycling is what makes the disk's sample waterfall picture seem to flow. With thought and care, you can create effects otherwise impossible in two-dimensional art.

Closer to traditional art media are tools which smear, shade, and blend. Smearing enables an artist to use the DeluxePaint brush to smudge colors already painted on the display. The effect is similar to running a brush through fresh oil paints. Shading and blending work on a defined color range, like the ranges for color cycling. Both operate best on a range of closely related shades and affect only the colors in the selected range.

The action of shading is difficult to explain in print, but blending does pretty much what it describes-it produces smooth gradations like those found in watercolor washes or airbrushing. There are also tools for exchanging colors and an undo feature to recover from mistakes.

Anything Is A Brush

All that's fine for the colors, but what of the brushes that apply them? Once again, DeluxePaint offers abundant options. There are, of course, some builtin brushes. These are various useful shapes, and they can all be adjusted in size with one of the program's easy-touse tools. But, as might be expected, other brush manipulations range into some wild and unexplored regions.

The essence of DeluxePaint brushes is this: Anything can be a brush, so you can paint with a single pixel, a pictorial element, a whole screen, or anything in-between. And if that's not enough, the artist can grab the brush, resize it, rotate it to any angle, flip it, or drag it into a completely new shape. This last feature allows a brush that looks flat to be made to appear three-dimensional. To get an idea of the effect, imagine a flag lying flat on a table. Suddenly, it's bent into a stiff billow and paints in an arc across the sky-stars and stripes and colors and all.

Brushes, like complete pictures, can be saved to previously prepared data disks. There are also some esoteric possibilities involving the exchange of transparent and solid colors within a brush, plus a different way to "hold" the current brush, and a way to speed up response time to certain types of brushes. Analogies are hard to come by for these features, but they open up fascinating possibilities not available to

Another sample picture on the DeluxePaint disk is this reproduction of Botticelli's "Birth of Venus."

This photo demonstrates a zoom window, just one of the many features in DeluxePaint.
artists working in traditional media.
The basis for all the brush transformations is the designer's ability to reach out and capture any area of the screen with a special brush selection tool. This is much like the copy, cut, and paste functions found in other graphics programs, and it can be used for those purposes as well as brush design.

Room To Zoom

A full description of DeluxePaint's myriad features would run on for many pages (the manual is 31 pages long), but highlights of some of the major ones not covered so far bear mentioning.

DeluxePaint has a special magnification tool that allows the artist to zoom closer and closer to the area under inspection, and then back away in similar increments. Great mobility within the magnify mode is provided with the cursor keys.

There's fairly complete printer support, plus the ability to add text to designs and manipulate it in numerous ways. A skewing feature even lets you turn ordinary text into italics.

For precision design work, one option gives a constantly updated display of the cursor's screen coordinates, another provides a grid that can be modified, and still another allows unusual mirror-like symmetry effects.

Virtually anything that anyone ever wanted in a personal computer graphics program is included in Deluxe-Paint-and it's all easy to use and easy to learn. It's fortunate that the program is fairly intuitive because the documentation is not. The basic tone of the manual is that experimentation and playfulness are the best methods for coming to grips with the program. A step-by-step approach might have been more helpful. And, ironically, the manual's graphics are almost nonexistent.

Another problem with the manual is that it lacks completeness. DeluxePaint cannot create data disks by itself, so the artist must refer to Chapter 4 of the Amiga User's Guide for the information. Also, hardly any program commands are summarized in DeluxePaint's command summary.

On the other hand, in the few places where you might get really stuck, the documentation comes through with some solid tutorials.

Bottom line: Will DeluxePaint and an Amiga give you that creative edge? That depends-in the end, it's still the artist that has to pull the rabbit out of the hat.
DeluxePaint
Electronic Arts
2755 Campus Drive
San Mateo, CA 94403
$\$ 79.95$ (Introductory price)
$\$ 99.95$ (Regular price)

S'More For Commodore 64

Art Hunkins

Requirements: Commodore 64 or a Commodore 128 in 64 mode.

Commodore 64 owners who wish to upgrade their computers have two main options: Buy a Commodore 128 or install a S'more cartridge from Cardco. Each choice has its advantages. If money is no object (and you aren't overly attached to your 64), you might consider the 128. But the choice isn't that clear-cut. For those who write their own BASIC programs, S'more has some significant advantages of its own. Frankly, it's difficult to know which to compare S'more to-the 64 without S'more, or the 128.

Of course, the 128 does have some things going for it: twice the available user memory (122,365 bytes) as the 64; BASIC 7.0, with powerful commands for graphics, sprites, sound, and windowing; and a FAST mode for doublespeed operation. So if it's raw computer
power and extra memory you want, the 128 is hard to beat.

On the other hand, S'more BASIC is more comprehensive than BASIC 7.0 in its utilities; it defaults to disk LOAD, offers a greater variety of input options as well as more flexible screen formatting, and includes varied reset options. The built-in utilities are a real boon: MERGE, AUTO, HEX, DEC, FIND, CHANGE, reNUMBER, DUMP, and OLD-all familiar to BASIC AID users. The LIST command can scroll up and down, not true of BASIC 7.0. On the 128, only AUTO, RENUMBER, and a disk file APPEND are implemented.

Compared to the unenhanced 64, S'more frees up 57 percent more user memory-61,183 bytes instead of 38,911 bytes. The memory is contiguous and can be used in any way you desire. (As we'll see, there are other protected locations where machine language routines up to 512 bytes long may be stored.)

Improved Disk Commands

S'more BASIC and BASIC 7.0 come out about even when it comes to disk commands (a notable weakness with the unexpanded 64); only the approach is different. Whereas 7.0 gives a wealth of specific commands, S'more uses only one-DISK, an all-purpose "wedge" followed by the traditional disk access symbols. Both BASICs also offer numerous enhancements of standard commands (such as a RUN that LOADs and RUNs a BASIC program from disk). Both permit the SHIFT-RUN key combination to LOAD/RUN the first program on disk.

Both BASICs offer about the same range of programming structures (DOLOOP, WHILE-UNTIL, IF-THENELSE). Both implement error-trapping and HELP, and both have programmable function keys, though 7.0 sets aside almost twice the buffer (246 bytes versus 128) for key definitions.

S'more is also handy in that its LOAD and SAVE commands default to disk (there is no DLOAD or DSAVE), and that it includes a disk CATALOG/ directory option. In fact, due to the way the disk default option works, you can display the CATALOG, cursor to the program you want, type LOAD (or RUN), and hit RETURN-without worrying about what is displayed after the program name.

ML Limitations

For BASIC programs, S'more is superb. But let's look at ML applications. Here the picture is not so clear.

Although S'more has a MONITOR command, it doesn't have a built-in monitor; MONITOR just links you to a
monitor if you've loaded one into memory. S'more comes with a disk of software that includes a version of Micromon called Smon. (Other programs on the disk illustrate applications of the more noteworthy S'more BASIC extensions.)

Cardco's manual is thorough, clear, instructive, and particularly forthright when it describes S'more's limitations with memory addressing and machine language. Here's the catch: To make so much contiguous BASIC memory available, Cardco had to change a lot of memory locations and reconfigure memory. Cardco did what it could to maintain compatibility with Commodore 64 BASIC (BASIC 2.0), but there were limits on what was possible.

It's remarkable that low memory with S'more is so highly compatible with BASIC 2.0. Only two differences will be noticed by the average programmer. First, and most importantly, the cassette buffer has been moved. ML programs designed to reside there will have to be transported to the new location. Also, some of the previously free bytes (which you may have used for flags or temporary data storage) are free no longer (zero page 251-254 remain available, however). There is a bonus, though-a 512-byte RS-232 input/output buffer, protected from BASIC, which can be utilized for ML routines in most cases.

The most critical low memory locations for the BASIC programmer, the keyboard buffer and its corresponding character counter, remain intact. As the manual clearly states, however, ML routines that access ROM are in for major rewrites. The only ROM routines that are safe to use are the Kernal routines when they are accessed through the vectors in low memory (these vectors are unchanged in location). You cannot access ROM subroutines directly. This is a problem particularly with the SID, VIC, and CIA chips-that is, when working directly with screen, sound, and input/output peripherals.

The S'more Solution

To get around these limitations, the manual suggests that perhaps most ML routines are best written in S'more BASIC, then compiled with the (not-yet-released) S'more BASIC Compiler. This suggestion indicates the degree of potential difficulty in converting most ML programs for use with S'more.

But there's another alternative, too. S'more establishes a set of CIA, VIC, and SID reserved variables (DIMensioned arrays). Each variable corresponds to a CIA, VIC, or SID chip location you might wish to PEEK or POKE. To POKE the location, just assign the variable the
desired value; presto, the POKE is done. To PEEK the location, just use the reserved variable in an expression. It works fine and is simpler than actually PEEKing and POKEing. For sound and the SID chip, for example, it is not too far from the convenience of using BASIC 7.0's new sound commands (PLAY, FILTER, ENVELOPE, etc.)

Of course, this technique works only from BASIC, not machine language. There are times when, for speed and efficiency, ML is required. Although conversion of ML routines accessing the support chips is possible, it is apparently far from trivial. (The manual does not attempt to explain; it only hints that RAM/ROM bank-switching is involved, and that the banking system is similar to that of the Commodore Plus/4.)

There is but one other limitation I've noticed with S'more. When writing or editing a BASIC program, the enhanced BASIC often responds slowly, particularly with long programs. The cursor can take 1.5 to 2.5 seconds to reappear after you hit RETURN to enter a new line; it takes longer toward the beginning than at the end of a program. On the other hand, garbage collection purportedly is speeded up dramatically over 2.0 BASIC.

And your Earls and Viscounts. If you've got royal ancestors, we have the noble software that can help you trace them down.
Family Roots and your Apple, IBM, Commodore, Kaypro*, and many others, offer individual and group sheets, charts, name indices, general search and text
capabilities. Adapts
Put up to most disk drives, printers, and screens. You get more utility programs, plus lots of personal control. A comprehensive (new) manual is included.
All for just $\$ 185$.
Write or call today for more information and a free brochure.

Quinsept, Inc.

P.O. Box 216
Lexington, MA 02173
(617) 641-2930

American Express,
Visa, and MasterCard gladly accepted.
-Trademarks for Apple
Trademarks for Apple
Computer Inc., Intemational Computer Inc., Intemational
Business Machines, CBM, Inc. Business Machines, CBM, Inc.
and Digital Research.

Works With 128, Too

These are the only problems I've experienced working with the S'more cartridge. Overall, S'more maintains a high degree of compatibility with BASIC 2.0 (and its associated memory configuration), offers more than 50 percent additional memory accessible to BASIC, and a greatly enhanced language. It makes working with the screen and sound a simpler task for BASIC programmers.

In short, S'more is a cost-effective alternative to a Commodore 128 upgrade. (Cardco's literature describing S'more as a "bridge to the 128 " is on target.) And even if you do decide later to acquire a 128 , S'more works identically on the 128 in 64 mode.
S'more
Cardco, Inc.
300 S. Topeka
Wichita, KS 67202
\$69.95

Heart Of Africa

Neil Randall

Requirements: Commodore 64 or 128 in 64 mode; Apple II-series computer with at least 64K RAM; or an Atari 400/800/ XL/XE with at least 48 K RAM. Disk only.

One of the truths in the entertainment industry is that anything popular will spawn many imitators. The field of computer games is certainly no exception. The first hits were Space Invaders, then Pac-Man, and then Donkey Kong. Each of these games begat a host of imitations, few of which approached the quality of the original. Imitations are rarely as good as the things they imitate.

Still, for every imitator trying to capitalize on the popularity of someone else's game, there's a designer trying to improve upon his own original design. This is not imitation-at least not what we normally think of as imitation. Instead, the designer is making an honest effort to improve on a game concept. Much like an artist, who chooses a medium and produces work after work trying to perfect his use of that medium, the game designer invents a system, then produces game after game to develop the system to its fullest. As long as the system keeps improving, the enterprise is justified.

Such is the case with Ozark Softscape's Heart of Africa, published by Electronic Arts. Heart of Africa is an extension of the system pioneered in Ozark's own Seven Cities of Gold (re-
viewed in the September 1984 issue of COMPUTE!). Far from an imitation, it improves on the original game and offers a fresh approach to a system that many people considered near-perfect already. Both games deal with exploration, but Heart of Africa gives us something more: a quest.

In Search Of A Tomb

Your quest in Heart of Africa is to find the lost tomb of Ankh Ankh, somewhere in the middle of the Dark Continent. You travel alone, buying supplies and tools wherever you can. As you cross the continent, you make discoveries and try to obtain clues about the lost tomb from tribal chiefs. It's not hard to get information, but it's very hard to get useful information, and just as hard to stay alive. The perils are constant, from dying of thirst in the Sahara Desert to suffering a fatal bite by a poisonous snake.

Like Seven Cities of Gold, Heart of Africa is entirely joystick-driven. You can put your feet up, lean back in your easy chair, and play the game without touching the keyboard. For further playability, the game offers a diary that continually updates itself. The diary is a graphically attractive series of pages that records special events. On the surface, it seems only a nice addition to the game, but in play it greatly eases record-keeping. Any exploration game, be it a text or graphics adventure, demands some keeping of records: mapmaking, recording conversations, jotting down clues. But Heart of Africa takes most of these out of your hands. The map is produced for you on the screen, and your observations, even conversations, are recorded in the diary. You can read the diary at any point simply by loading it from disk. It makes the game extremely playable, especially for those who loathe keeping records.

The Heart of Africa game screen shows a solitary figure marching across the map. As you walk, the map scrolls north, south, east, or west, shedding light on more and more of the Dark Continent. The map is constantly updated, and you can check it at any point during the game to see what you've already discovered. As you travel, you discover villages, mountain ranges, rivers, lakes, and, of course, if you work hard enough, the source of the Nile.

Random events are sometimes positive, such as finding valuable caches left behind by previous explorers, as well as negative, such as encounters with crocodiles, poisonous snakes, or rhinoceri. If you're equipped with the right weapons, you can normally stave off an attack, but you may become ill, fatigued, or very thirsty. You
can paddle a canoe along the rivers and lakes, and you can even go over waterfalls. The entire continent is yours to discover.

Tribal Relations

Perhaps the most impressive part of the game is the interaction with the tribes. As in Seven Cities of Gold, where cooperating with the natives established your reputation, working with the tribes in Heart of Africa is difficult. Each tribe is different and each chief reacts differently to you. For some tribes, a few gifts will yield helpful information. For others, all the gold in the world seems insufficient. You can steal supplies by wielding your gun, but your reputation will suffer. Or worse, you may catch a blow dart. The only way you can know how a tribe will react is to visit each village. If you do well and reward the chief, he'll tell you what else you might bring for more information. If you do poorly, you'll be drummed out of the village.

The Heart of Africa manual consists primarily of the notes written by your predecessor, the person sending you on this mission. It describes each of the areas of Africa and the tribes therein. An impressive document for its sheer information, it is also vital for gaining clues about where you should go. It gives, for instance, translations of the tribal names for geographical points. To the natives, after all, Victoria Falls is not Victoria Falls.

There is nothing easy about the game, but the difficulty comes from the situation, not in trying to learn the system. It is extremely easy to get across Africa, buying things, finding things, and giving things away, but it is very hard to gain useful information. Still, this is the game's strength. A poor game is difficult to learn and offers few rewards. A good game is easy to learn and offers endless rewards. Heart of Africa, in this sense, is a very good game.

Like Seven Cities of Gold, Heart of Africa is professional in every way. An excellent program, filled with surprises, the game is even more addicting than its predecessor. In Seven Cities of Gold, your rewards were the excitement of discovery and the favors of your monarch. Heart of Africa duplicates the excitement of discovery, but adds a desperate search for a lost tomb. This quest makes Heart of Africa an adventure as well as a simulation.

Only One World To Explore

One of the superb features of Seven Cities of Gold was its ability to create new worlds to explore. Players could never exhaust the game because the

APPLE
PRACTICAL PERIPHERALS
We carry the complete line of products

Call for Current Prices APPLE PRINTER INTERFACES AND BOARDS
 Apricorn Parallel w/Graphics .
 Apricorn 16K Expansion Board Apricorn 80 Column Board Apricorn RS232 Interface
 U-Print-Apple IIC w/16K APPLE SOF

APPLE SOFTWARE BRODERBUND SIMON \& SCHUSTER

\section*{P
 | Prin |
| :--- |
| Prin |
| Prin |
| I |
| Prin |
| Kara |
| Cari |
 | Prin |
| :--- |
| Prin |
| Prin |
| I |
| Prin |
| Kara |
| Cari |

 }

 }

1. II, Print Karate Carme Saine Siank Fantav FLEC Fin
 Carmen Sandiego
 Science Tool Kit Bank Street Fantavision

 ELECTRONIC ARTS AdventureArchon II.
Bard's Bard's Tale ...
Imagic Footbal Auto-Duel Skytox.

Lords of Con One on One

Ultima III.
Uitima IV
Ultima IV
Mobius EPYX
Ballblaze Ballblazer ...
Winter Games Summer Games il.
Wordd's Great/ Eidoolon. Eidolon
Apshai irilogy
Koronis Rift . Koronis Rift
INFOCOM See Atari 520 ST section for items and prices. MICROPROSE See Atari 130XE section for items and price MINDSC
Color Me. Crossword Magic. Halley Project
A View To Kill Racter. Racter...
Perfect Score...
Voodoo Island Voodoo I
American Challenge .

Goldfinger.

es.
P.O. Box 17882, Milwaukee, WI 53217

We stock hundreds of $\begin{aligned} & \text { Multiplan } 134.95 \\ & \text { MINDSCAPE } \\ & \text { See Apple Section for }\end{aligned}$ programs for the Apple, Atari, C-64 and IBM. If you don't see it listed here, don't hesitate to call.
NO SURCHARGE
5 FOR

SIERRA

King's Quest 34.95
King's Quest II 34.95
Ultima II 39.95
THOUGHTWARE

COMMODORE
128

Multiplan 64 WARE Consultant 52.95 Paper Clip .Spell. 54.95
Wordwriter

Data Manager Fleet System II .. 49.95 | Superbase $128 \ldots 69.95$ |
| :--- |
| Mach $\mathrm{V} / 128 \ldots$. |

COMMODORE

64
C-64 Computer . . Call
1541 Disk Drive . Call
1660 Modem ... 49.95
1670 Modem 169
C-64 SUPER
PRINTER PKGS.
SG-10 \& Xetec
Supergraph.

Supergraph.... 279	PRINTER BUFFERS
Panasonic 1091	MicrofazerFrom 169
\& Xetec	U-Buff 16K 79.95
Supergraph.... 315	U-Buff 64K 99.95

Call for current

 prices
IBM PC SOFTWARE

\section*{Print Shop.}
 Bank Street Writer. Ancient Art of War
 BORLAND Sidekick.

Turbo Pascal
BLUE CHIP

Baron

Millionaire

For Technical Info., Order Inquiries, or for Wisc. Orders

Lyse Computer Marketing $\&$ Consultants

DRIVES

INDUS
Indus GT Atari. 195
209

TANDON
320K \% 1/4" Drive.......... 11
TYMAC
MOD .640 Si: ADPLE DoNe G40K.... 289

PRINTER INTERFACING

AXIOM

MICROBITS

MPP. 1150 (Atari) MP. $1150 \times$ XL (Atari) Microprint (Atari)
64 K RAM Board 64 K RAM Board ($600 \times \mathrm{xi}$)..... ${ }^{35}$

DIGITAL DEVICES

Ape face XLP (Atari) $\quad .49$
Ape race 12xLP (20 xi) 49
SPrint A Atari) U-Print C C. 64 U.Print A16K Butter U.Print A64K Buffer U. Print AP 16 K (Apple U. Print AP64K (Apple) U-CALL RS232 (Afari)......37

MICROTEK

 Dumpling GX (Apple)Dumpling
16 K (Apple) AV. 611 C (Apple)

TYMAC

Connection (C-64) PRC- 100 (Apple)

ORANGE MICRO

GRAPPLER + (Apple Grappler ${ }^{16 K}$ (Apple) ORANGE (Apple)

CARDCO

G-Wiz(C.64)
ClIPS (C-64)
C/วB (C-64)
C/ PAT (Atari)
C/ PAP (AD Ole)

DISKETTES

DENNISON

ELEPHANT $51 / 4 "$ SSSD ... 11.99
ELEPHANT 51/4" SSDD... 12.99
ELEPHANT 51/4" DSDD... 14.99
REMIUM 5 $1 /{ }^{\prime \prime}$ ESD.... 13.99
PREMIUM $5 \mathrm{Y} \mathrm{a}^{*}$ BSD..... 15.99
SUNKYONG
SKC $51 / 4^{\prime \prime}$ SUD
.11 .99
MAXELL
MAXELL 13.99

> VERBATIM

51/4" SSDD

$\begin{array}{r} \\ \hline .13 .99 \\ \\ \hline\end{array}$

BONUS

51/4" SSDD
5 $1 / 4^{\prime \prime}$ DSDD
NO LABEL DISKETTES
NL $51 / 4$, BSD... 10.99 (Box 10) - Free Diskette Writer Pen! - Free Storage Case!

IBM-PC

SOFT-WARE

*LOTUS

Lotus 1-2-3.
Symphony... 309.00
439.00

*QUADRAM

Quad Jr. Exp. Chassis.... $519: 00$ Quad ir. Exp. Memory.... 209.00 Quad Memory Jr.......... 209.00 ITT XTRA XP Personal Computer! -256K. 10 Meg. Hard Systern..Call

IBM-PC

COMPATABLE

*LEADING EDGE

Nutshel.....................69.95
LEWP Merge font 65.00
LE Spell Correction 169.00

SYNAPSE (IBM)

Synstoc
Essex................................ 28.95 Wizard of Wall St................ 28.95

SUB LOGIC (IBM)
Jet Simulator

BRODERBUND (IBM)
 Bank St. Writer 48.95 The Print Shop The Print Shop 34.95 Graphics Library I......... 22.95 Graphics Library I 22.95 Ancient Art of War 27.95 Champ Lode Runner 22.95

MICROPROSE (IBM)

 Spitfire Ace.

AT\&T
Safari
AT\&
6300
TOLL FREE 1-800-233-8760

TO ORDER

CALLTOLLFREE 1-800-233-8760
In PA 717-494-1030
Customer Service 717-494-1670

RISK FREE POLICY

In-slock items shipped within 24 hours of order No deposit on C.O.D. orders. Free shipping on prepaid cash orders within the continental U.S. Volume discounts $\$ 5.00$ plus 3% for priority mail service Advertised prices show 40 discors add cash, add 4% for Mastercard or Visa. Personal checks require 4 weeks' clearance before shipping. Ask about UPS Blue and Red label shipping. All merchandise carried under manufacturer's warranty. Free catalog with order. All items subject

Lyco Computer Marketing \mathscr{C} Consultants

爪 ATAR \mathbb{N}

apple
COMMODORE

Help your children learn the basics of computer programming with these two new entertaining and educational books from COMPUTEI.

Each book contains easy-to-follow instructions, programming examples, quick reviews, and colorful illustrations. Written in COMPUTEI's clear, easy-to-understand style, the books offer hours of entertainment while helping kids (and adults) learn to program in BASIC.

If you're acquainted with BASIC, you can easily write your own games and applications on Atari's ST or Commodore's 128 computers. Over 30 sections-all with instructor notes, lessons, assignments, and lively illustrations-entertain and amuse as you learn to use these powerful computers. COMPUTEI's KId's and the Atari ST and COMPUTEI's Kids and the Commodore 128, in the bestselling series from author Edward Carlson, are gentle introductions to programming your new computer. Clear writing and concise examples, both trademarks of this series, make it easy for anyone-child or adult-to learn BASIC painlessly.

Look for these and other books from COMPUTE! at your local book store or computer store. Or order directly from COMPUTEL.

To order, call toll free in the US 1-800-346-6767 (in NY 212-265-8360) or mail the attached coupon with your payment to COMPUTEI Books, P.O. Box 5038, F.D.R. Station, New York, NY 10150.
Please send me the following COMPUTEI books. My payment is enclosed.

\square Charge \square MasterCard \square Visa \square American Express
Account No. \qquad Exp. Date
(Required)
Name \qquad
Address
City
State
\qquad

Please allow 4-6 weeks for dellivery.
Zip \qquad
36412011
puotshers of COMPUTE, COMPUTE's Gazette. COMPUTE's Gazette Dak, compute sooks, and computer's apple appications. Holt, Rinehart, \& Winston, 55 HOrner Avenue, TOIONtO, ON M8Z 4 X 6.
program could make the world different each time. Surprisingly, Heart of Africa offers no such option. There are very good reasons for this-the time limit, and the quest itself-but perhaps the game would be even more complete if each Africa could be a new one. Discoveries are less exciting when you know about them beforehand. Furthermore, the desperate feeling of being hopelessly lost, which Seven Cities of Gold presented so well, cannot happen here. If the game has a flaw, this is it.

But the flaw is easily overcome. The romance of uncovering the Dark Continent captures the imagination today as much as ever, perhaps because there remain no large, unexplored land masses anywhere in the world. Heart of Africa lets you canoe down the Congo, meet a Zulu chief, and even get caught in a whirlpool near Stanley Falls. Khartoum, Timbuktu, the Zambesi, Lake Tanganyika, Tangier-they're all there, waiting for you, ready to throw you many surprises.

An almost flawless development of an already excellent game system, Heart of Africa should excite anyone who found Seven Cities of Gold even remotely interesting. Now, if only I could find Dr. Livingstone.
Heart of Africa
Electronic Arts
2755 Campus Drive
San Mateo, CA 94403
\$32.95

Hacker

Todd Heimarck, Assistant Editor

Requirements: Commodore 64 or 128; Apple II-series computer with at least 64 K RAM; Atari 400/800, XL, or XE with at least 48 K RAM; IBM PC/PCjr with at least 128 K RAM; Atari ST; Amiga; or Apple Macintosh. Disk only.

When the first thing you see is the prompt LOGON PLEASE:, you want to reach for the rule book. But apart from a card that tells you how to load and run this game, there are no instructions. None at all.

The premise behind Hacker is that you have stumbled across a telecommunications system about which you know nothing. Being a good hacker (if that's not an oxymoron), you feel the urge to break in and explore. Try a few passwords; unless you're very lucky, none of them will work. After several failures, the system logs you off and the game ends. Or does it?' Some random characters appear on the screen, and

On the trail of corporate skullduggery in Activision's Hacker (Commodore 64 version).
the computer indicates that a security malfunction has occurred. You're in.

The logon sequence is very realistic. Once, at the beginning of a game, someone walked into the room and watched me guess at a few passwords. Hearing that we were trying to get into an unknown system, which might be a government computer, and then seeing the security malfunction message, he got worried and reminded us that it's illegal to do what we were doing. That's the great appeal of Hacker, the feeling that you're doing something wrong and that you might get caught. Who knows, the FBI might even show up at your door and confiscate your computer.

After you enter the system, the game becomes less realistic. On an actual telecommunications system, everything would be straight text. The author of Hacker, in the interests of playability, has inserted some high-resolution graphics-unlike anything you'd see on a true bulletin board system or information service. However, the graphics do add a lot to the game.

Remote-Control Robots

You soon discover that you've come across a company involved in some sort of top-secret illegal project. This makes you feel less guilty about breaking into someone's system; you can seek out more information about this project and bring the culprits to justice.

The company owns a vast network of subterranean tunnels, and their computer (to which you've gained access) controls robots that travel through the tunnels. By using the robot to explore the tunnel network and occasionally coming to the surface, you can accumulate more details about the project. I'll say no more about the most effective techniques for winning because an important part of the game is figuring out what's going on.

The game play is almost identical in the versions I tried on the Commodore 64, Atari 520ST, and Amiga. The newer 16-bit machines (Amiga and ST) displayed slightly better graphics than
the 64 because their screens have higher resolution and more colors. The ST version works on both monochrome and color monitors.

All things considered, Hacker is a worthy addition to your software collection, especially if you enjoy adventure games that require a bit of thought and an investment of time.
Hacker
Activision, Inc.
2350 Bayshore Frontage Road
Mountain View, CA 94043
\$24.95 (Atari 400/800/XL/XE)
$\$ 29.95$ (Commodore 64/128)
$\$ 39.95$ (Apple and IBM)
\$44.95 (ST, Amiga, and Macintosh)

MasterType's Writer For Apple

Stephen Levy, Book Editor

Requirements: Apple IIc or Apple IIe with 128K RAM and a printer. A Commodore $64 / 128$ version is scheduled for release this spring.

Does the world really need another word processor? After all, MasterType's Writer does all the things most word processors do. Using direct commands or on-screen menus, you can write, edit, save, search, move, change, find and replace, and print just as you can with most full-featured word processing programs.

So what makes MasterType's Writer special? If you're using it with an Apple IIc/IIe and an Imagewriter or Imagewriter II printer, and if you need multiple fonts-including some very large print styles-Writer is worth a closer look, even if you already have a word processor. With an Imagewriter or Imagewriter II, Writer can dump an exact copy of what's on the screen to the printer. Writer comes with eight fonts which can be loaded from disk and saved with your text. Among the styles are fonts that print very large type to the screen, quite suitable for use by young children just learning to read; proportionally spaced fonts of various sizes; and a style that is quite suitable for use on a monochrome monitor.

Each font can be edited, so you can modify those provided or design your own completely new font. And once created, you can use the screen dump feature to duplicate text written with the new font on paper.

If you have an Imagewriter II with a color ribbon, it's a simple matter to print text in color-simply underline
the text to be printed in green with a green line, blue text with the blue line, and so on. Again, you get an exact copy on paper.

Some Nice Touches

In addition to the fancy printing features, MasterType's Writer includes a few other extras. For example, the ondisk tutorial is well done and is a good introduction to using the program. Many people will return to the tutorial a second or third time even after they've started creating documents.

With Writer's dual windows, you can work on two documents at the same time. You can have an outline in one window and the text you're writing in the other. If you've never used this kind of feature before, you might not miss it; but once you've tried it, you'll wonder how you got along without it. Writer's dual windows have the added advantage of allowing you to decide how much of the screen each window will occupy at any time.

The manual is arranged in alphabetical order with entries for most of the terms you're likely to look up. Usually a term refers you to the appropriate instructions. If you're the type who likes to jump right in, you may find the manual a bit frustrating. But if you've tried the on-disk tutorial, you'll find the manual easy to use. And once you've been using Writer for awhile, an alphabetically arranged manual makes locating information a snap.

Another powerful feature of MasterType's Writer is keyboard macros-you can recall a series of instructions with one or two keystrokes. Macros are especially handy for storing a series of often-used words. If you're writing a book report, for example, you might need to type the author's name or the book's title many times throughout the report. By defining these phrases as macros, you can type them simply by pressing two keys.

Since macros can include program commands as well as ordinary characters, you can create macros for such purposes as saving your document on disk. Then, whenever you want to save the current copy of your work, you just press two keys.

Ease Of Use

MasterType's Writer gives you the choice of using direct commands-usually accessed by pressing CONTROL and one other key-or menus. Moving through the menus is easy and fast and saves you the trouble of memorizing commands. The menus are ideal for those new to word processing. Direct commands are faster for some functions, but for others save little more than one or two keystrokes. Most people will probably use a
combination of both menus and direct commands.

If you revise text often, one aspect of MasterType's Writer you may find annoying is its text entry and editing line. Writer doesn't allow full-screen editing; all text must be entered and edited on the bottom line of the current window. That means you must press the cursor keys to move the line you wish to edit to the bottom of the window. This isn't a problem when first entering text, but later, when editing, you can't see what comes immediately after the line you're trying to alter without continuously moving the text up and down.

For whom is MasterType's Writer most suitable? It should be strongly considered by those who have never used a word processor, teachers or students who plan to use it in schools, Apple users with an Imagewriter printer, or anyone who is unhappy with their current word processing program.
MasterType's Writer
Scarborough Systems, Inc.
55 South Broadway
Tarrytown, NY 10591
\$69.95

HabaWriter For The Atari ST

George Miller
Assistant Technical Editor
Requirements: Atari ST with at least 512 K RAM and a compatible printer.

If you've been using ST Writer, the free word processor from Atari, but have been wishing for a program that supports the drop-down menus and windows of GEM, then HabaWriter is for you.

HabaWriter takes advantage of the GEM environment and includes all the features we've come to expect in a good word processor. Even more important, HabaWriter is easy to use. The instruction manual isn't very long-only 46 pages. If you're accustomed to other word processors, this may seem strange. Many programs have entire books devoted to their use, and sometimes it's necessary to enroll in special classes to become really proficient. Even though the size of the HabaWriter manual is small, all the information you'll need is there.

When you start up HabaWriter, you see a menu bar at the top of the screen with seven headings: Desk, File, Edit, Search, Format, Style, and Print. Just as on the GEM desktop, each menu instantly drops down when you point to it with the mouse. A click of the mouse button picks any selection on the current menu. Happily, HabaWriter is an intuitive program-the way you want to do something is probably the way HabaWriter requires you to do it. And the commands on the menus allow you to do just about everything you can think of.

If you prefer not to use the mouse, the ST's ten special function keys let you access most of HabaWriter's features. If you can't remember which key

does what, just press the Help key. A window opens on the screen to display a convenient chart of the function key commands.

You can even use the Style menu to change the on-screen typeface from plain text to boldface or underline. Underlined text, however, is displayed with true underlining only on the monochrome monitor in high-resolution mode; it won't be underlined on the color monitor in medium resolution. But when you print your document, the text is underlined. (If you're using a printer that's capable of underlining, of course.)

Multiple Windows

HabaWriter lets you use the mouse for most functions that would require special commands with other word processors. For instance, you can define a block of text simply by dragging the mouse cursor over it. To delete the block, you would then select the Cut option from the Edit menu. Even though the text is erased off the screen, it's still kept temporarily in a clipboard and may be pasted back into the document wherever you wish.

HabaWriter uses screen windows for other purposes, too. You can open up to six windows to display more than one document at a time. Moving text between the windows is as easy as moving text within a document. And the size of the windows can be changed, just as with any GEM window. Files can even be combined, allowing you to work with longer documents by using the Paste Document option.

On-screen rulers let you easily set tab stops anywhere you want, and horizontal scrolling lets you create documents as wide as 132 columns. (Only 80 columns are displayed on the screen at a time.)

Using options on the Format menu, you can center text on the screen, align it to the right or left margins, or "justify" the text, just as professionally typeset pages appear.

HabaWriter's use of the GEM environment and its wide range of features make it one of the most attractive application programs to date for the Atari ST. You'll find it's a snap to give your correspondence and club newsletters a polished look-without much of the strain that's usually involved in learning how to use a new word processor. HabaWriter HabaSystems, Inc. 6711 Valjean Avenue Van Nuys, CA 91406 $\$ 74.95$

Loading And Linking Commodore Programs Part 2

Jim Butterfield, Associate Editor

Are you running out of memory for your programs? You don't necessarily have to buy a bigger computer. This month's installment shows how a technique called chaining lets you break up a large program into smaller parts to work on a common task. The technique applies to all Commodore computers, with either disk or tape.

There are three major ways of connecting programs together. Chaining allows several, programs to perform a job, each program continuing the work that a previous program has started. Load linking lets one program load another program, with the new program starting fresh on a new task. Overlaying lets a main program call in additional subroutines, data tables, or graphics information. This month we'll discuss chaining.

When one of a series of programs has completed its share of the work, it may chain to a following program to continue processing the data. In effect, several programs group together to create a bigger program. On Commodore computers, chaining works with disk or tape. It's more common with disk because the various programs can be brought in more quickly. If used with tape, you can arrange the programs sequentially on the cassette so little time is lost in searching for the next program. We'll use disk for the following examples, but they can be readily converted'to tape.

Why Chaining?

The most obvious reason to chain programs is to save memory space. On small computers, there isn't enough room for big jobs. So the program is broken up into "chunks." Each chunk is small enough to fit into memory, each does a specific task, and together they do the whole job. Even on computers that seem to have lots of memory, you may need to resort to chaining to relieve congestion. For instance, even though the Commodore 64 begins with 38,911 bytes of free memory, arrays of data can quickly fill up much of this work area.

Sometimes program flow is an important reason for chaining. If a statistical program has been processing some data, it might ask the user to choose from several options (draw a graph, print the data, etc.). Depending on which option is chosen, it may be convenient to call in a selected program to do the next job. In this way, the original program needn't be cluttered with code to cover all the possible options; instead, the options are handled by programs called in as required.

Likewise, it's possible to write a program that starts up in several different ways. In one case, it might collect the data it needs from DATA statements. Another time, it might require input from the keyboard. On still other occasions, it might compute the data, read it from a file, or detect it by external sensors. No matter. We'll start up whatever "acquisition" program is appropriate, and when the data is ready to be
processed, the computer can chain to a common processing program.

Chaining is also a worthwhile exercise which can force you to break your programs into well thought-out modules. Your program can't leap about at will, since it can only reach whatever is in the current module; and you must tie up loose ends before you go to the next unit. Each time you chain, FOR-NEXT loops are scrapped, subroutine RETURNs are canceled, and the DATA pointer is RESTOREd. You must make sure that these program areas are tidy before you chain, since they will otherwise be lost.

Program Architecture

A major advantage of chaining is that you don't lose variables between programs. Values, strings, and arrays that have been worked out by a previous program are carried through to the next program segment. This is useful, but it also calls for careful handling-we don't want to mash these values inadvertently.

Figure 1 shows how programs, variables, and arrays lie in memory. The point marked start-of-BASIC is where the program starts in memory. Behind the program is a point called start-of-variables; beyond this point the computer stores variables and arrays.

You usually don't need to know the exact addresses of these memory points; the computer takes care of the housekeeping for you. String variables go into this area, too-although not the strings themselves, just three-byte descriptors
that say where the strings are located and how long they are. (More on this later.)

Suppose you have a large program that chains to a smaller program. Figure 2 shows this happening.

The variables don't move; behind the second program is wasted space that isn't used. This creates no problem when you run the program. However, after this kind of chaining has taken place, you should not SAVE the second program or you'll save the wasted area too (SAVE always stores from the start-of-BASIC point to just before start-of-variables).

Here comes the problem. Let's take the reverse situation: a small program that chains to a larger one. Figure 3 shows the difficulty that results.

The big program overwrites and destroys the variables created by the first, smaller program. To keep this from happening, our first program must be the biggest of the two, or at least the same size.

If several programs are chained together, this rule always applies. The first program must be as big or bigger than any other program. It sets the start-of-variables point, and it must set it high enough so that all following programs won't run into trouble (for more information on this point, see "Commodore Program Chaining," COMPUTE!, December 1985). The Commodore 128 in 128 mode doesn't need to worry about this problem. Since it keeps variables in a separate memory bank, loading a new BASIC program can't harm them.

Figure 1. BASIC program storage

Program text	Variables	Arrays
4	4	
Start of BASIC	Start of Variables	

Figure 2. Chaining a smaller program from a large one.

Program 1		Variables
Chains \vdots		
Program 2		
	Unused	
Program text		Variables
Start of BASIC		
Start of Variables		

Figure 3. Chaining a larger program from a smaller one.

Program 1	Variables	
$\xrightarrow{\text { Chains }}$		
Program 2		
${ }_{\text {Start of BASIC }}$		Start of Variables ${ }^{4}$

Strings And Descriptors

As noted earlier, the variable and array area holds string information (the descriptors), but not the strings themselves. There are two places where the actual strings might be, and it's important to know about them. Say that your program contains a line like this:
370 A $\$=$ "GORILLA"
When this line executes, the computer makes an entry in the variable table showing that there is now a variable called $\mathrm{A} \$$, that its length is seven characters, and that it is located at its present position in the program text itself. Except on the 128 , the string is used from where it lies within the program. The computer decides that there's no point in making an extra copy of GORILLA; when it needs this string, it takes it from the BASIC program line. This type of string is called static because it never moves from its original location. Static strings can mean trouble if you chain programs: Since chaining replaces the original program text with a second program, all static strings-which exist only in the first program's text-are destroyed.

There's a second kind of string, and that's the one we must use here. If a program contains a statement like INPUT A\$, the string which is typed by the user must be stored somewhere. This is called a dynamic string; the computer stores it in a safe place where it won't be disturbed by chaining.

Dynamic strings are created in two ways: by INPUT or GET statements and by string manipulations (LEFT\$, RIGHT\$, STR\$, concatenation, and so on). It's simple to change a static string into a dynamic one. The statement A $\$=$ "GORILLA" + "'" concatenates (adds together) the strings "GORILLA" and ""'. Since ""' is a null (empty) string, this statement really means "add nothing to the string GORILLA." Though the contents of the string don't change, the computer is convinced that we now have a new string which must be stored elsewhere in memory.

Again, the Commodore 128 in 128 mode doesn't need to worry about this problem. Strings are kept in a separate memory bank, and
there's no such thing as a static string in 128 mode.

Chaining Rules

Let's summarize the rules for wellchained programs:

- The first program in the chain must be as big or bigger than all subsequent programs.
- Any strings you need to pass from program to program must be dynamic, not static.
- If you use DEF FN definitions, redefine them in each program.
- Arrays should be DIMensioned only once, preferably in the first program.

A Short Example

Let's write a small series of programs to demonstrate how this works. Our first program is called MAIN:

$1 \emptyset \emptyset$ IF $N>\emptyset$ GOTO 2øø

The variable N can only be zero when we start, so we won't jump ahead. But if we ever chain back to this program, we'll take the branch to line 200.

```
11\varnothing PRINT "SIMPLE GRADEBOOK DE
    MO"
120 DIM NS(15),M(15)
130 N=8
```

For simplicity, we'll assume eight students. When the program runs, you can invent their names and numeric grades.

```
140 FOR J=1 TO N
150 PRINT "STUDENT";J;
160 INPUT "NAME";N$(J)
17\emptyset INPUT "GRADE";M(J)
18\emptyset NEXT J
```

Running the program at this point gives you data on eight students. If you ever chain back to this original program, it will branch to line 200 (remember the IF test in line 100).

```
2Ø0 PRINT
21\emptyset PRINT "DO YOU WANT TO--"
220 PRINT "1. CALCULATE AVERAG
    E"
23| PRINT "2. CALCULATE HIGH/L
    OW SCORES"
24\emptyset PRINT "3. QUIT"
25\emptyset PRINT
26\emptyset INPUT "YOUR CHOICE (1-3)";
    C
27ø ON C GOTO 3øø,31ø,32\emptyset
28\emptyset GOTO 26Ø
3ø\emptyset LOAD "C.AVG",8
31\varnothing LOAD "C.HIL",8
32ø END
```

Note that line 300 will not run
into line 310, nor 310 into 320 . The moment you perform LOAD within a program, the new program loads and runs immediately. Type this program and then save it as MAIN (don't save it under any other filename). Now type NEW and enter program C.AVG as follows:
$1 \varnothing \emptyset$ PRINT
$11 \varnothing \mathrm{~A}=\varnothing$
$12 \varnothing$ FOR J=1 TO N
$130 \mathrm{~A}=\mathrm{A}+\mathrm{M}(\mathrm{J})$
140 NEXT J
$15 \emptyset$ PRINT "AVERAGE SCORE,";N;" STUDENTS="; A/N
160 PRINT
170 LOAD "MAIN", 8
That's it. Check it closely and save it as C.AVG (again, the filename is important; don't change it). Now type NEW and enter program C. HIL as follows:

```
1Ø\emptyset PRINT
11\varnothing H=M(1):L=M(1)
120 FOR J=1 TO N
130 IF H<M(J) THEN H=M(J)
140 IF L>M(J) THEN L=M(J)
150 NEXT J
16\emptyset PRINT "HIGH SCORE:";H;" BY
    ..."
17\emptyset FOR J=1 TO N
18Ø IF H=M(J) THEN PRINT N$(J)
190 NEXT J
2ø\emptyset PRINT "LOW SCORE:";L;" BY
    ..."
21\varnothing FOR J=1 TO N
22ø IF L=M(J) THEN PRINT N$(J)
230 NEXT J
240 PRINT
250 LOAD "MAIN",8
```

Again, check your typing closely and save the program as C.HIL to complete the set. Now load program MAIN and you're ready to try out chaining. Note that MAIN is definitely larger than the other two. If there's any doubt in your mind, add some extra REM statements to MAIN to make it bigger.

Side Effects

We mentioned earlier that the act of chaining causes certain things to happen. FOR-NEXT loops are scrapped, subroutine RETURNs are canceled, and the DATA pointer is RESTOREd. That makes sense: You can't RETURN to a program that has disappeared, for example. And occasionally, these side effects can be useful. For instance, can a program ever chain to itself? The answer is yes, but at first it's hard to see why you'd want to do so. What's the point of loading a program that's already there? The answer lies in these side effects.

Sometimes a program gets stuck deep in a subroutine and can't find its way out. With good programming, this should never happen. All subroutines should RETURN neatly, and if there's an error or similar anomaly, the information should be logged into a flag and detected at the appropriate program level. It's easy to give that sort of advice-but sometimes a program is deep within several nested levels of subroutines when the user commands, "Forget all this and take me back to the menu." Sensible programmers know that you can't jump directly out of these subroutines back to the main menu, and it's a long, long trail to backtrack the whole way.

In case of emergency, you can chain the program to itself. As it loads itself back in, it shakes off all the FOR-NEXT loops and subroutine levels and surfaces cleanlywith all variables in place-at the first statement. Just to show it can be done, we'll write a dreadful program that does just that. Please don't write programs this way: It's here just to illustrate a point. Remember to type NEW before entering this program.

Check the program and save it with the filename DEMO; be sure to use that filename, since the program uses it to load itself.

DEMO is a program turned bad, and you should try not to get yourself into a similar problem. By the time this program reaches line

210 , it's in a subroutine; at line 260 , it's nested within a second subroutine. When line 270 discovers that the user wants to exit, the poor programmer doesn't know how to get out. GOTO 130 would be a very bad solution: Jumping out of the routine with GOTO instead of RETURN leaves unprocessed subroutine information on the computer's stack (which can eventually cause an OUT OF MEMORY error). What to do?

The second-best solution (shown here) is to clean up the program with a chain to itself. The best solution is not to get yourself into this kind of mess in the first place.

Chaining can be a useful and powerful technique. There are some rules to remember-especially that of making sure the first program is the biggest-but in general it works quite well. Don't confuse chaining with loading, where one program loads and starts another. In this case, there's no passing of variables; the new program starts clean. We'll talk about loading in next month's installment.

CONVERSE WITH YOUR COMPUTER

AT LASTI A FULL IMPLEMENTATION of the original ELIZA program is now available to run on your personal computer!
Created at MIT in 1966, ELIZA has become the world's most celebrated artificial intelligence demonstration program. ELIZA is a non-directive psychotherapist who analyzes each statement as you type it in and then responds with her own comment or question - and
her remarks are often amazingly appropriate! her remarks are often amazingly appropriate!
Designed to run on a large mainframe, ELIZA has never before been available to personal computer users except in greatly stripped down versions lacking the sophistication which made the original program
so fascinating so tascinating
Now, our new personal computer version possess sing the FULL power and range of expression of the original is being offered at the introductory price of only $\$ 45$. And to let you find out how she does it (or teach her to do more) we have included the complete SOURCE
PROGRAM (written in BASIC) at no extra cost. PROGRAM (written in BASIC) at no extra cost.
Order your copy of ELIZA today and you'll never again wonder how to respond when you hear someone say, "Okay, let's see what this
computer of yours can actually dol" computer of yours can actually do!"
read what the experts say about our version of eliza: "Much more than a mere game...You"ll be impressed with ELIZA...A Much more than a mere game... Yout be mpressed
convincing demonstration of Artificial Intelligence.
-PC MAGAZINE
"Delightful entertainment...An ideal medium for showing off your system."

- MICROCOMPUTING MAGAZINE
"ELIZA is an astounding piece of software...A fascinating program to use and study." -BARON'S MICROCOMPUTER REPORTS "ELIZA is a great way to introduce your friends to computers...A very funny party game." -PETER A. MCWILLIAMS "ELIZA is an exceptional program, one that's fun to use, shows off your machine, and has great historical interest.
- POPULAR COMPUTING MAGAZINE
"This version of ELIZA is the best we have seen. As a party game, it is unmatched." -HOME APPLICATIONS FOR THE C-64

ELIZA IS AVAILABLE IN THE FOLLOWING FORMATS: - IBM PC, PCir, PC-XT and all compatibles. - All Apple II computers (II, II Plus, Ile, Ilc) - Apple Macintosh (Microsoft BASIC required) - Commodore 64 (specily disk or cassette) - 5% inch or 8 inch disk for all CP/M systems

All versions are $\$ 45$ and include a six page users manual. Please add $\$ 2.00$ shipping and handling to all orders (California residents please add $61 / 2 \%$ sales tax)

921 North La Jolla Avenue, Dept. M
Los Angeles, CA 90046 (213) 656-7368 (213) 654-2214 MC, VISA and checks accepted

Adding System Power To ST BASIC

 Part 1Kevin Mykytyn, Editorial Programmer

Atari ST BASIC lacks commands for certain operations such as reading the mouse pointer, but it's possible to fill in these gaps by calling system routines with the VDISYS command. In Part 1 of this series, we'll examine the basics of calling VDI routines from BASIC and demonstrate a useful graphics routine. Part 2 will show how to read the mouse pointer with VDISYS and present a program for creating your own custom mouse pointers.

If you own an Atari ST, you've probably heard at least two of the three-letter acronyms associated with the computer: TOS stands for Tramiel Operating System-a huge system program which, at the most fundamental level, allows the computer to function. And GEM stands for Graphics Environment Manager, a separate system program that handles the ST's graphics-oriented desktop. GEM, in turn, consists of three separate parts: the VDI (Virtu-
al Device Interface), a low-level graphics interface that also handles mouse input; the AES (Application Environment Services), which uses the VDI to manage data and the desktop; and GEMDOS, which handles disk operations.

Interesting, you may say, but what's the point? For most BASIC programming, you needn't worry about TOS, GEM, VDI, AES, or GEMDOS, any more than the average driver needs to know exactly how an auto engine works. These system programs are the invisible machinery that makes everything else happen.

However, as you may have discovered, ST BASIC lacks commands to do certain tasks, such as drawing a circle or sensing the position of the mouse pointer. That's what makes one of these strangesounding programs-the VDI-an invaluable asset for the BASIC programmer. The VDI holds a treasure trove of system routines which can do everything from drawing boxes
and circles to rotating character fonts and manipulating raster blocks. With ST BASIC's VDISYS command, you can access all of these routines-which compensates in large part for the missing ST BASIC commands.

VDISYS To The Rescue

In simplest terms, the VDISYS command calls (activates) a VDI system routine to do a task that would be difficult or impossible to perform in BASIC. Furthermore, these system routines execute very quickly-a real plus when you're working with graphics. Whether executed in immediate or program mode, the VDISYS command always takes this general form:

VDISYS(x)

In this example a simple variable named x appears in the parentheses. It doesn't matter what value this variable represents; it's a dum$m y$ parameter, needed only to satisfy the syntax of the command. Don't try to enter this command yet-if you do, there's a good chance you'll see the mushroom cloud symbol that signals a system crash. A certain amount of preparation is always needed before you execute VDISYS.

When a VDISYS command is executed, control passes from your BASIC program to an internal VDI handler, which eventually passes control to the VDI routine itself. But first the VDI handler looks at certain sections of the computer's memory, called parameter blocks. The data in the parameter blocks tells the handler which particular VDI routine you want to execute. There's also other information that the VDI routine itself will need. If you don't supply all the information needed to call a routine, the VDI handler can't carry out your request.

VDI Opcodes

The first thing you must tell the computer is which VDI routine you want to call. Each VDI routine is identified by a unique opcode number. For instance, the VDI routine used in the program below has the opcode 11. This is a generalized shape-drawing routine. (There are hundreds of VDI opcodes and associated parameters, so we don't have
room in this article for a listing. But you can find a 42 -page list of selected VDI opcodes in COMPUTE!'s $S T$ Programmer's Guide, available from COMPUTE! Publications.)

Once you know a VDI routine's opcode number, that value must be POKEd into a special place in memory defined by the reserved variable CONTRL. Try typing PRINT CONTRL in immediate mode; even if you haven't given this variable any value, the computer prints a number on the screen. ST BASIC always predefines CONTRL along with several similar variables. The CONTRL variable represents an actual location in memory.

Since the system automatically substitutes this location for the keyword CONTRL, you don't have to memorize a series of numbers or worry about where this parameter block really resides. To select VDI routine 11 , for instance, you simply execute POKE CONTRL,11.

How Many Corners?

Once you've POKEd the VDI opcode 11 into CONTRL, you must tell the computer how many vertices (corners) are needed to define the graphic shape you want to draw. Regular geometric shapes require different numbers of vertices. A triangle, for instance, requires a minimum of three corners. A rectangle, on the other hand, can be defined with only two-the upper left corner and the lower right one. Of course, a rectangle has a total of four corners, but the total is not what we're looking for. The computer cares only about the minimum number of vertices it takes to draw the shape in question. After you determine how many vertices are needed, that value is POKEd into the location defined by CONTRL +2 . For example, in line 30 of the program below, the statement POKE CONTRL $+2,2$ tells the computer that you want to draw a rectangle (defined by only two corners).

Notice that the second POKE is directed two bytes higher in memory than the first. Now you can see the parameter block begin to take shape: It's simply a segment of memory where you place a collection of values. The first byte of the
parameter block is defined by CONTRL, and the remaining locations are defined as even-numbered offsets above that starting spot (CONTRL+2, CONTRL+4, and so forth).

The particular routine used in this program (termed a generalized drawing primitive) contains several subroutines (also called subfunctions), each of which performs a different drawing task. To choose a subroutine, you must POKE its identifying number (called the primitive $I D$) into the location defined by CONTRL+10. In this case we want to use the bar-drawing subroutine, whose primitive ID happens to be 1 . So in line 40 of the program, we POKE CONTRL+10,1.

PTSIN And INTIN

The next step is to tell the VDI handler where to place the graphic shape. Recall that you told the computer earlier how many vertices it takes to define the shape. To position the shape on the screen, you must now tell VDI where to put each vertex. This is done by POKEing horizontal (X) and vertical (Y) coordinate values into a second parameter block area.

The second parameter block begins at a memory location defined by the reserved variable PTSIN (Points Input). Again, you don't need to know the actual memory locations involved, since the computer keeps track of them for you. All you need to do is POKE the correct numbers into PTSIN (and even-numbered adjacent locations, in some cases).

Lines $50-80$ of the example program perform this job by POKEing the bar's X and Y coordinates into memory. The X coordinate of the first point is POKEd into PTSIN; the first point's Y coordinate goes into PTSIN +2 ; the X coordinate of the second point goes into PTSIN+4, and so on. Keep in mind that you must supply a pair of coordinate values for every point that you defined in CONTRL+2.

A third parameter block, beginning at the address defined by the reserved variable INTIN, is used to pass attribute values, if any are required by the current subroutine. The term attribute is a catch-all that can include many different pa-
rameters-colors, rotation values, a style index, or whatever-depending on which subroutine is called. Since the subroutine used in this program requires no attributes, we don't need to POKE any values in this segment of memory. As a signal to the VDI handler that no attributes are involved, we must also POKE a zero into location CONTRL +6 ; this location tells the system how- many attribute values to read from the INTIN parameter block.

After all of the required values have been POKEd into memory, line 90 of the example program executes the VDISYS command, which calls the VDI routine and draws a bar on the screen. This may seem like an enormous amount of preparation for such a simple task (which some other computers can do with a single BASIC statement). On the other hand, it's better than not being able to draw a bar at all. You can cut down on the bulkiness of the code by writing setup subroutines that contain all the necessary overhead.

Bar Drawing

10 fullw 2:clearw 2:color 2,2,2
20 poke contrl, 11 'VDI opcode
30 poke contrl $+2,2$ 'number of vertices
35 poke contrl $+6,0$ ' number of attributes
40 poke contrl $+10,1$ 'primitive ID of bar command
50 poke ptsin, 50 ' x coordinate of top left corner
60 poke ptsin $+2,50$ ' y coordinate of top left corner
70 poke ptsin $+4,100$ ' x coordinate of bottom right corner
80 poke ptsin $+6,100$ ' y coordinate of bottom right corner
90 vdisys (0)

General Drawing Routine

Though every VDI call requires several preparatory steps, each individual step is easy to perform. As should be apparent by now, there's nothing mystical about the pro-cess-all you need to do is leave the right pieces of information in places where the computer can find them, then signal that you want the job done. The real work is done by the system itself.

Though the general procedure is the same in every case, each VDI routine requires different types and amounts of information. One of the
most useful VDI routines is the generalized drawing primitive used in the example program. Table 1 summarizes the POKEs you need to call this routine.

Table 1: Generalized Drawing Primitive

POKE CONTRL, 11
POKE CONTRL+2, number of vertices POKE CONTRL +6 , number of attributes POKE CONTRL +10 , subfunction number (primitive ID)

Again, CONTRL receives the opcode number of the VDI routine; CONTRL +2 the number of vertices in the desired shape; CONTRL +6 the number of attributes (if any); and CONTRL+10 the primitive ID for the subroutine you want. This particular VDI routine is extremely versatile and can draw pie-shaped segments, ellipses, filled or empty rounded rectangles, and other graphic images, including text. Table 2 lists the primitive IDs for each of this routine's subroutines.

Table 2: Drawing Subroutines

Primitive ID	Subroutine
1	bar
2	circle
3	arc
4	pie
5	ellipse
6	elliptical arc
7	elliptical pie
8	rounded rectangle
9	filled rounded rectangle
10	justified graphics text

To select a specific subroutine, find its primitive ID in the leftmost column of Table 2, then POKE that value into location CONTRL +10 . Table 3 summarizes the POKEs needed to set up the second and third parameter blocks (PTSIN and INTIN). Remember, the value POKEd into CONTRL+2 (number of vertices) determines how many X-Y coordinate pairs you must POKE into the PTSIN parameter block. The X and Y coordinates for the first vertex go into PTSIN and PTSIN+2; the second $X-Y$ coordinate pair goes into PTSIN+4 and PTSIN+6, and so forth.

Table 3: PTSIN And INTIN Parameter Blocks

POKE PTSIN, X coordinate of first vertex (rectangle)
X coordinate of center (circle, ellipse)
POKE PTSIN $+2, \mathrm{Y}$ coordinate of first vertex (rectangle) Y coordinate of center (circle, ellipse)
POKE PTSIN $+4, X$ coordinate of second vertex (rectangle) X radius for ellipse
POKE PTSIN $+6, Y$ coordinate of second vertex (rectangle)
POKE PTSIN +8 , radius (circle only)
POKE PTSIN +12 , radius (circular arc or pie only)

POKE INTIN, start angle for arcs and pies POKE INTIN +2 , end angle for arcs and pies

To draw a circle, ellipse, arc, or pie-shape segment, POKE X and Y coordinates for the shape's center point into PTSIN and PTSIN+2. A simple circle requires a radius value in PTSIN+8; arcs and pie shapes built from a part of a circle require a radius value in PTSIN +12 . To draw an ellipse, or an arc or pie shape built from part of an ellipse, POKE the shape's X radius in PTSIN+4 and its Y radius into PTSIN+6.

Most of these subfunctions don't require any attribute values. To draw arcs or pie shapes, however, you must POKE two attribute values into INTIN and INTIN +2 to define starting and ending angles, respectively. Since the angle values are specified in tenths of a degree, not in whole degrees, these parameters can range from $0-3600$. The starting angle specifies where you want the rounded portion of the arc or pie segment to begin, and the ending angle shows where that portion should stop. The statement POKE CONTRL+6,2 signals that you're passing two attribute values to the VDI.

As you'll learn from experimenting with these routines, VDISYS opens the gateway to a wide variety of graphics capabilities. Once you become familiar with the setup process, you'll probably find yourself using VDISYS more and more. In part 2 of this article, we'll look at VDISYS in more detail, and present a program that lets you create a custom shape for your ST's mouse pointer. ©

Mousify Your Applesoft Programs Part 2

Lee Swoboda

Part 1 of this series (COMPUTE!, March 1985) provided an Applesoft program allowing an AppleMouse, joystick, or game paddles to point to text on the screen. This month, Part 2 demonstrates more advanced mouse operations such as defining a text area and deleting, copying, or restoring the defined text. The example programs run with either DOS 3.3 or ProDOS. Although a mouse works best, you can substitute a joystick or game paddles.

Mouse-controlled programs must perform a number of functions in addition to simple pointing. The programs following this article provide several of these important capabilities:

- Define Text. Use the mouse to highlight a block of text, which can then be copied or deleted (typical word processing operations).
- Copy Text. Copy highlighted text to a buffer without deleting it from the screen.
- Delete Text. Delete highlighted text and save it in a buffer.
- Insert Text. Restore previously copied or deleted text at a new point on the screen.
- Cancel. Undo highlighting if you wish to abort a copy or delete operation.
- Delete a Character. Delete the character under the cursor.
- Delete to End of Line. Delete text from the cursor to the end of the line.
- Find Mouse. Locate the mouse interface.

Getting Started

Enter and save Program 1, which is an expanded and modified version
of the program published in Part 1. It works in either DOS 3.3 or ProDOS; if you're using ProDOS, change line 115 as shown here:

115 HIMEM: 36352

Program 2 creates a binary file named MOUSEY which contains machine language routines used by Program 1. The MOUSEY file created by Program 2 must be present on disk whenever you run Program 1. (It's not necessary to have Program 2 itself on the disk with Program 1, just a copy of the binary file created by Program 2.) Be sure to save a copy of Program 2 so you'll be able to create new copies of MOUSEY whenever needed.

Program 3 creates a short text file which we'll use in the following example. If you're using a joystick instead of a mouse, refer to the additional instructions under "Joystick Modifications" below. When you are ready to proceed, your disk should contain a copy of Program 1, a file named MOUSEY (created by Program 2), and a file named TEXT (created by Program 3).

When you run Program 1, the screen looks like this:

ENTER INFORMATION

FIRST NAME	COMPUTE!
LAST NAME	READER SERVICE
ADDRESS	P.O. BOX 50950
CITY	DES MOINES
STATE	IA 50950
ZIP	
TELEPHONE	1-800-346-6767
COPY DELETE	INSERT CANCEL
ERASE QUIT	DONE HELP

This screen simulates what you might see in a simple address book program. We have introduced an intentional error by putting the zip code entry on the same line as the
state entry. Let's correct the error for a quick demonstration of a few mouse features. Move the mouse cursor to the first number in the zip code, then press and hold the mouse button down while moving the mouse to the right. The computer highlights the zip code in inverse video. Keep moving the mouse until all the numbers in the zip code are highlighted, then release the mouse button.

At this point, the highlighted text area has been defined. Now move the mouse pointer to the word DELETE in the strip menu at the bottom of the screen and press the mouse button. The computer erases the highlighted zip code from the screen. Don't worry-the information hasn't been lost. Whenever you delete text, the program stores it in a temporary memory buffer.

Now let's put the zip code data back where it belongs. Move the mouse pointer to the beginning of the next screen line (directly under the I in IA), then press the mouse button. The computer moves the cursor to that line. Next, move the mouse pointer to the word INSERT and press the button again. The zip code data reappears in the desired screen area.

Mouse Editing Functions

Here is a more detailed description of the mouse-editing functions demonstrated in Program 1:
Mouse pointer and text cursor. The rapidly blinking caret symbol ${ }^{(}$) is the mouse pointer, which you can move around the text screen with the mouse. When the pointer passes over a character, the character blinks rapidly. The flashing rect-
angle shows the position of the text cursor. When the cursor passes over a character, the character changes temporarily to flashing uppercase. There are three different ways to move the text cursor:

- Move the mouse pointer to the spot where you want the text cursor to go, then press the mouse button.
- Use the arrow keys as you would in Applesoft BASIC (the Apple II uses CTRL-J and CTRL-K to move up and down, respectively).
- Press RETURN to move the cursor to the beginning of the next screen line. If the cursor is already on the bottom line, it moves to the top. Pressing RETURN does not erase the text to the right of the cursor.
Enter text. Text is entered as usual, by pressing any letter, number, or punctuation key. Lowercase letters are automatically converted to uppercase.
Define text. Before text can be copied or deleted, you must define it. Move the mouse pointer to the upper-left corner of the text you want to define, then press and hold the mouse button. While pressing the button down, drag the mouse pointer to the lower-right corner of the desired area. The computer marks the defined area by highlighting every character with inverse video. Now release the button: The area is defined, and you may proceed to the Cancel, Delete, or Copy options.
Delete text. To delete a text area that you previously defined, move the mouse pointer to DELETE in the strip menu at the bottom of the text screen, then press the button. The computer blanks out the highlighted portion of the screen and stores the first 200 characters of the defined area in a temporary buffer for later use.
Copy text. To copy a text area that you have previously defined, move the pointer to COPY in the strip menu, then press the button. The computer stores the first 200 characters of the defined area in a temporary buffer. Unlike the Delete operation, Copy does not blank out the defined area.
Insert text. To insert text that you previously copied or deleted, move
the pointer to the spot where you want to insert text, then press the button to locate the cursor at that spot. Now move the pointer to INSERT in the strip menu and press the button again. The computer inserts the text, using the text cursor position as a starting point. Note that the inserted text overwrites whatever else was in the affected area. You can insert only the most recently copied or deleted text.
Cancel. If you define a block of text and then decide not to copy or delete it, move the pointer to CANCEL in the strip menu and press the button. The highlighting disappears, and the text is no longer defined.
Editing keys. Press CTRL-D (or DELETE on the Apple IIc and IIe) to delete the character under the cursor. The remaining characters in that line move one space to the left. You can also press CTRL- X to delete every character from the present cursor position to the end of the line.

Try out the various editing functions. When you've tried everything, move the mouse pointer to DONE in the strip menu and press the button. The demonstration program ends with a routine that reads the current data directly from the video screen.

Since the Copy, Delete, Insert, and Cancel commands are written in BASIC, they may take a second or two to complete if you define a large text area. Though BASIC can't perform such operations very fast, these routines are far easier for you to customize than if they had been written in machine language. If the slowness bothers you, just imagine how long it would take to delete the same amount of text with your trusty pink eraser.

Joystick Modifications

If you don't own a mouse, you can substitute a joystick. Delete lines 120, 130, 10001-10090, 10200, 20220, and 44000-44050 from Program 1 ; then add or modify the lines in Program 4. The joystick moves the mouse pointer around the screen, and the joystick button substitutes for the mouse button.

Since the joystick was designed for a different purpose, its
performance doesn't equal that of a mouse. But it costs a lot less.

How The Program Works

The machine language routine contained in the MOUSEY file simply highlights text by changing every character between the text cursor and mouse pointer to inverse video. All the other functions are carried out by the BASIC routines in Program 1.

After you define a block of text, lines 35000-44050 act on the highlighted area. The Copy routine (36000-36180) converts each character in the defined area to normal video and stores it in a temporary text buffer. This buffer lies in locations 775-1000 (\$307-\$3E8), a normally unused region.

The Delete routine (3700037180) is similar to Copy and uses the same temporary buffer, but replaces each character in the defined area with a blank space.

The Insert routine (3800038100) moves text from the temporary buffer back to the video screen, beginning at the current location of the text cursor.

Lines 39000-40000 contain the Cancel routine, which aborts copy or delete operations. You can also cancel a definition by pressing any key.

The routine at lines 4100041070 deletes a single character; lines 42000-42060 erase all or part of the current line.

Here are some other useful entry points in the program (note that each of these routines ends with a GOTO rather than GOSUB):

Line	Purpose
10120	read mouse
10300	position mouse pointer
10420	keyboard input
10570	position cursor

For instructions on entering these listings, please refer to "COMPUTEI's Guide to Typing In Programs" in this issue of COMPUTEI.

Program 1: Advanced Mousification

```
B1 115 HIMEM: 37375
DF \(12 \emptyset\) GOSUB \(44 \emptyset 1 \emptyset\)
D7 \(130 \mathrm{MI}=20\) : REM MOUSE SENSIT
        IVITY
5A 14 D D \(=\) CHR \(\$\) (4)
E8 145 PRINT D\$"BLOAD MOUSEY"
\(8 \mathrm{C} 15 \emptyset\) REM
\(0716 \emptyset\) REM READ DATA FILE
96179 REM
CB \(18 \emptyset\) PRINT D\$"DPEN TEXT"
```

```
32 19ø PRINT D$"READ TEXT"
60 2øø INPUT NF$,NL$,AD$,CI$,ST$
    ,ZI$,TE$
CD 210 PRINT D$"CLOSE TEXT"
87 226 REM
2523ø REM DATA ENTRY SCREEN
88 24ø REM
4F 25ø HOME
40 260 Y1 = 4: X1 = 15:Cø = 160
35 27ø INVERSE
D7 28ø PRINT "" ENTER
    INFORMATION
24285 UTAB 23: PRINT " COP
    Y DELETE INSERT CANCEL
9829\varnothing VTAB 24: PRINT "" E
    RASE QUIT DONE HELP
        ";
```

C6 3 Øø NORMAL

31310 VTAB 4：HTAB 1
F4 326 PRINT＂FIRST NAME
C6 330 PRINT＂LAST NAME
3C 34ø PRINT＂STREET
D6 35ø PRINT＂CITY
If 36 PRINT＂STATE ．．．．．．．．．．．
36 $37 \emptyset$ PRINT＂ZIP \qquad
17 38ø PRINT＂TELEPHONE
HONE ．．．．
उA 39ø VTAB 19：HTAB 1ø：INVERSE ：PRINT＂＾＂；：NORMAL
81 4øø PRINT＂IS MOUSE POINTER＂
उC $41 \varnothing$ UTAB 21：HTAB 14：INVERSE ：PRINT＂＂；：NORMAL
$3842 \varnothing$ PRINT＂IS CURSOR＂
26430 VTAB 4
5E 446 HTAB 15：PRINT NF\＄
$6645 \varnothing$ HTAB 15：PRINT NL $\$$
09460 HTAB 15：PRINT AD\＄
E1 $47 \varnothing$ HTAB 15：PRINT CI\＄
F6 489 HTAB 15：PRINT ST\＄
$1149 \varnothing$ HTAB 15：PRINT ZI\＄
59 5øø HTAB 15：PRINT TE $\$$
739999 REM \＃1øøøø
191 10øø REM
E6 1 صøø1 REM
$291 \emptyset \emptyset 1 \varnothing$ REM MOUSE ROUTINES
E6 $1062 \varnothing$ REM
37 16．646 REM
A4 1øø5ø REM TURN MOUSE＂ON＂
49 1øø6Ø REM
A8 1 øø7ø PRINT D\＄＂PR\＃＂Sø：PRINT CHR\＄（1）
CB 1 Øø 8 PRINT D\＄＂PR\＃Ø＂
69 1 1øø9 PRINT D\＄＂IN\＃＂Sø
$17101 \varnothing \varnothing$ GOTO $1 \varnothing 59 \varnothing$
2519110 REM
65 1ø12ø REM DETERMINE POSITION
$911013 \varnothing$ REM OF MOUSE
$301014 \varnothing$ REM
ic $1 \varnothing 15 \varnothing$ VTAB 1：HTAB $4 \varnothing$
71 1ø16ø INPUT＂＂；Xø，Yø，Bø
$701617 \varnothing$ IF Bø＜\varnothing THEN 1ø44ø：R EM KEY PRESSED？
D0 $1 \varnothing 18 \emptyset Y \emptyset=$ INT $(Y \emptyset / M I)+1$
$781619 \varnothing$ IF Yø >24 THEN Yø $=24$
$641 \varnothing 2 \varnothing \varnothing \times \varnothing=$ INT $(X \varnothing / M I)+1$
$751 \varnothing 21 \varnothing$ IF $X \varnothing>4 \varnothing$ THEN $X \varnothing=4 \varnothing$
6 A $1 \varnothing 215$ IF $B \emptyset=2$ AND $X \emptyset>2 \varnothing \mathrm{~A}$ ND $X \varnothing<27$ AND $Y \varnothing=23$ THEN 38ø1ø
$601 \varnothing 216$ IF $B \emptyset=2$ AND $S W=\varnothing \mathrm{TH}$ EN X2＝Xø：Y2＝Yø：POK E 768，Y2：POKE 769，X2：X $3=X \varnothing: Y 3=Y \emptyset$
$981 ø 217 \mathrm{IF} \mathrm{B} \emptyset=3 \mathrm{AND} \mathrm{SW}=2 \mathrm{TH}$ $E N S W=3$
$311 ø 218$ ON SW GOTO 35ø1ø，35ø2ø， 10315
QB 1ø22ø IF Bø＞ 1 THEN 1ø32ø：R EM BUTTON PRESSED？
D9 10225 IF $\times 2$＜＞$X \varnothing$ OR Y2＜＞ Yø THEN SW＝1：GOTO 35 $\varnothing 1 \varnothing$
B9 1 ø23ø IF $Y \emptyset=24$ THEN $2 \emptyset \emptyset 3 \varnothing$
$631 \emptyset 24 \emptyset Y_{1}=Y \emptyset: X_{1}=X \emptyset$
$781 ø 25 \emptyset$ POKE V ，CØ
E $1 \emptyset 255$ IF C $\varnothing 128$ THEN POKE V Ø，СØ +128
$4 B 1 \emptyset 26 \emptyset C \emptyset=C 2$
「2 1ø27ø GOSUB 1ø8øø
F2 1ø28ø GOTO 1ø62ø
6910290 REM
ED 1ø3Øø REM POSITION MOUSE POIN TER
2D 10310 REM
$D D 1 \emptyset 315$ IF $B \emptyset=2$ AND $Y \emptyset=23 \mathrm{~T}$ HEN $20 \emptyset 81$
8610320 IF $V \emptyset=V 1$ THEN C2＝C1
$881033 \varnothing$ POKE V1，C2
A2 $10340 V_{1}=1 \emptyset 23+128 *(Y \emptyset-$ 1）$+X \emptyset$
3F $1 ø 35 \emptyset$ IF Yø >8 THEN V1 $=V 1$ － 984
9 C 1 1ø36ø IF Yø >16 THEN V1 $=V 1$ － 984
271 1037ø C2＝PEEK（V1）
64 1ø38ø POKE V1，16ø
8A 1ø39ø IF C2 $=16 \emptyset$ THEN POKE V 1，3ø
C2 1ø4øø GOTO 1ø15ø
31 $1 ø 41 \varnothing$ REM
01 1ø42ø REM KEYBOARD INPUT
41 1ø43Ø REM
F9 1 （644ø C3 $=$ PEEK (-16384)
71 1ø45Ø POKE－16368，\emptyset
DC 10455 IF C3 >223 THEN C3 $=C$ 3－32：REM CONVERT TO UPPER CASE
7C $1 \varnothing 456$ IF $S W>\emptyset$ THEN GOSUB 39 の1ロ
$481046 \emptyset$ IF C3 >159 THEN $1071 \emptyset$
6310465 IF C3 $=132$ OR C3 $=225$ THEN IF $\mathrm{X} 1>14$ AND Y1
>3 AND $Y 1<11$ THEN G OSUB 41ø1ø
©A 10466 IF C3 $=152$ THEN IF X1 >14 AND $Y 1>3$ AND Y_{1} ＜ 11 THEN GOSUB 42ø1ø
CD $1947 \emptyset$ IF C3 $=141$ THEN X1 $=1$ 5：Y1＝Y1＋1：IF Y1＞ $1 \varnothing$ THEN Y1 $=4:$ REM RET URN KEY
$591048 \emptyset$ IF C3 $=138$ THEN $Y 1=Y$ 1 ＋1：REM DOWN ARROW
C2 $1049 \emptyset$ IF C3 $=139$ THEN $Y 1=Y$ 1 －1：REM UP ARROW
BF 1ø5øø IF C3 $=149$ THEN X1 $=X$ 1 ＋1：REM RIGHT ARROW
71 1g51ø IF C3 $=136$ THEN X1 $=X$ 1－1：REM LEFT ARROW
561052 IF $Y 1>24$ THEN $Y 1=24$
DC 10530 IF $\mathrm{Y} 1<1$ THEN $\mathrm{Y} 1=1$
IC $1 \varnothing 54 \varnothing$ IF $X 1>4 \emptyset$ THEN X1 $=4 \emptyset$
EB $1 \emptyset 55 \emptyset$ IF X1＜ 1 THEN X1＝ 1
50 1056 REM
$661657 \emptyset$ REM POSITION CURSOR
6D 1958ø REM
A4 1 1ø59ø POKE Vø，CØ
CA 1ø6øø GOSUB 1ø8øø
$421061 \emptyset$ Cg $=$ PEEK（Vg）
$9 E 1062 \emptyset$ IF $V \emptyset=V 1$ THEN $C \emptyset=C 2$
$441 ø 63 \emptyset$ REM CHANGE TO FLASHING CHARACTER
871 1664Ø C1 $=C \emptyset$
231 665ø IF C1 >127 THEN C1 $=\mathrm{C}$ $1-64$
7F 10669 IF C1 >64 THEN C1 $=C 1$ -64
D9 10679 IF C1 >95 THEN C1 $=C 1$ -32
481 1668 IF C1＜ 64 THEN C1 $=$ C1 $+64$
C8 1 1ø69ø POKE Vø，C1
CE 1ø7øø GOTO 1ø15Ø
6B $1671 \emptyset$ IF X1＜ 15 OR Y1＜ 4 OR Y1 $>1 \varnothing$ THEN $1 \varnothing 15 \emptyset$
DE 1972 GOSUB 1 1ஏ8øø

DC $1 \boxed{67}$（ POKE Vø，C3
$5!1 \emptyset 74 \emptyset \mathrm{C}=\mathrm{C}=\mathrm{C}$
CE $1075 \emptyset$ IF $V \varnothing=V 1$ THEN $C 2=C 3$
 THEN $\mathrm{XI}_{1}=39$
67 1ø77Ø GOTO 1ø59ø
$161078 \emptyset$ REM CALCULATE Vø
6E $1 \emptyset 79 \emptyset$ REM（VIDEO BUFFER ADDRE SS）
611 1øøø $V \emptyset=1 \emptyset 23+128 *(Y 1-$ 1）$+X_{1}$
$2 B 1$ 1ø81ø IF $Y 1>8$ THEN $V \emptyset=V \emptyset$ -984
7F 1 Ø82ø IF $Y 1>16$ THEN $V \emptyset=V \emptyset$ － 984
8B 1083ø RETURN
9A 19999 REM \＃2øøøø
1A 2øøøø REM
AE $2 \emptyset \emptyset 1 \emptyset$ REM STRIP MENU
2A 2øø2の REM
C2 $2 ø \emptyset 3 \emptyset$ PRINT D\＄＂IN\＃ø＂
CB 2øø4ø IF Xø >8 AND $X \emptyset<14$ T HEN NF $=$＂＂：NL $\$=" ": A$ $\mathrm{D} \$=\mathrm{n}=\mathrm{CI} \$=\mathrm{n}=\mathrm{ST}$ ：＝ ＂＂：ZI\＄＝＂＂：TE\＄＝＂＂：G OTO 25ø
IF 2øø5の IF Xø＞ 15 AND $X \emptyset<2 \emptyset$ THEN HOME ：END
73 2øø6Ø IF Xø＞ 21 AND $X \emptyset<26$ THEN $3 \emptyset \emptyset 3 \emptyset$
7A 2øø7ø IF Xø＞ 27 AND $X \emptyset<32$ THEN 2ø1øø
71 2øø8ø VTAB 1：HTAB 4ø：PRINT D\＄＂IN\＃＂SØ：GOTO 1ø15Ø
50 2øø81 IF $X \emptyset>6$ AND $X \emptyset<11$ T HEN GOSUB 36ø1ø：GOTO 1 ø59ø
B2 $2 \emptyset \emptyset 82$ IF $X \emptyset>12$ AND $X \emptyset<19$ THEN GOSUB 37ø1ø：GOTO $1659 \varnothing$
 THEN GOSUB 39ø1ø：GOTO 1659ø
$3420 \emptyset 84$ GOTO 1ø15Ø
17 2øø9ø REM HELP TEXT
CD 2ø1øø VTAB 12：HTAB 1
8A $2 \emptyset 11 \emptyset$ PRINT＂THE FLASHING REF LEX（＾）IS THE MOUSE＂
75 2ø12Ø PRINT＂POINTER AND THE FLASHING RECTANGLE IS＂
$482013 \emptyset$ PRINT＂THE CURSOR．TO MOVE THE CURSOR TO THE＂
$362 \emptyset 14 \emptyset$ PRINT＂ENTRY YOU WANT T 0 CHANGE，USE THE ARROW

4E 2ø15ø PRINT＂KEYS OR USE THE mouse to move the mouse
$472016 \emptyset$ PRINT＂POINTER，THEN PR ESS THE MOUSE BUTTON TO

E6 $2617 \emptyset$ PRINT＂MOVE THE CURSOR TO THAT POINT．TYPE＂
EA $2 \emptyset 18 \emptyset$ PRINT＂NEW OR CORRECTED DATA，THEN MOVE THE＂
$312019 \emptyset$ PRINT＂MOUSE CURSOR TO ＇DONE＇IN THE MENU＂
4A 2ø2øø PRINT＂BELOW AND PRESS THE MOUSE BUTTON TO＂
D4 $2621 \emptyset$ PRINT＂ACCEPT THE ENTRI ES ABOVE．＂
D9 $2 ø 22 \emptyset$ PRINT D\＄＂IN\＃＂Sø
D3 2ø23ø GOTO 1ø15Ø
90 29999 REM \＃Зøøøø
1B 3øøøø REM
28 3øø1ø REM EXAMPLE
28 3øø2ø REM
A1 $3 ø \emptyset 3 \emptyset$ Y1 $=4$ ：GOSUB 63ø5ø：NF\＄ $=A$ \＄
2C $3 \emptyset \emptyset 4 \emptyset$ Y1 $=5$ ：GOSUB 63Ø5ø：NL $\$$ ＝A\＄
91 3 6ø5ø Y1 $=6$ ：GOSUB 63ø5ø：AD $\$$ ＝A $\$$

IC $3 \varnothing \varnothing 6 \emptyset$ Y1 $=7$ ：GOSUB 63ø5ø：CI\＄ ＝A\＄
ह9 3øø7ø Y1＝8：GOSUB 63ø5ø：ST\＄ ＝A\＄
11 3øø日ø Y1＝9：GOSUB 63ø5ø：ZI\＄ $=A \$$
$173 \emptyset \emptyset 9 \emptyset$ Y1 $=1 \emptyset:$ GOSUB 63ø5ø：TE $\$=A \$$
2E $3 \varnothing 1 \emptyset \emptyset$ REM GO TO REMAINDER OF YOUR PROGRAM
IC $3 \varnothing 11 \emptyset$ REMं FOR EXAMPLE ．．．
$363612 \emptyset$ HOME
5E 3ø13ø VTAB $1 \varnothing$
EE 3ø14ø PRINT NF\＄＂＂NL\＄
38 3ø15ø PRINT AD\＄
B6 3ø16ø PRINT CI\＄＂，＂ST\＄＂＂ZI\＄
9C $3 ø 17 \emptyset$ PRINT TE\＄
CA 3ø18ø CALL－198：CALL－ 198
$893 \boxed{19 \emptyset}$ END ：REM END OF EXAMPL E
EC 35øøø REM HIGHLIGHT TEXT
AD 35ø1ø POKE Vø，C1－64：SW $=2$
AC $35 \emptyset 2 \emptyset$ IF $B \emptyset>1$ THEN $1 \varnothing 15 \emptyset$
$4035 \emptyset 3 \emptyset$ IF $X 3<X \emptyset$ THEN $X 3=X \emptyset$
$0535 \emptyset 4 \emptyset$ IF $Y 3<Y \emptyset$ THEN $Y 3=Y \emptyset$
BB 35ø5ø POKE 77ø，Y3：POKE 771，X
3 POKE 772，Yø：POKE 773，X
80 35ø6ø POKE 772，Yø：POKE 773，X
FC $3507 \emptyset$ CALL 37376
28 35ø8ø Y3 $=Y$ Y：$X 3=X \emptyset$
$673509 \emptyset$ GOTO $1 \emptyset 15 \emptyset$
9C $36 \emptyset \emptyset \emptyset$ REM COPY
$6136010 \mathrm{P3}=775$
$3836 \emptyset 2 \emptyset$ FOR II $=Y 2$ TO Y3
BA $36 \emptyset 3 \emptyset$ FOR JJ $=\times 2$ TO $\times 3$
AC 36ø4ø GOSUB 4øø2ø
$3936 \emptyset 50$ C3 $=$ PEEK $(V 2)+128$
$963666 \emptyset$ IF C3 $<16 \emptyset$ THEN C3 $=$ C $3+64$
3736676 IF C3 >223 THEN C3 $=$ C 3－64
FE 36ø8ø POKE V2，C3
CD $36 \emptyset 9 \emptyset$ IF P3 $>1 \emptyset \emptyset \emptyset$ THEN $3612 \emptyset$
BA 361øØ POKE P3，C3
$D A 36110 \mathrm{PJ}=\mathrm{P} 3+1$
D5 $3612 \emptyset$ NEXT JJ
3E $3613 \emptyset$ POKE P3，141
EE $3614 \emptyset$ IF P3＜ 1 Øø1 THEN P3 $=$ $P 3+1$
E7 36156 NEXT I I
87 3616Ø POKE P3， 255
明 $3617 \emptyset$ SW $=\varnothing$
A5 $3618 \emptyset$ RETURN
E6 37øøø REM DELETE
62 37ø1ø P3 $=775$
3A $37 \emptyset 2 \emptyset$ FOR II $=Y 2$ TO Y3
BC $37 \emptyset 3 \emptyset$ FOR JJ $=X 2$ TO X3
AE $37 \emptyset 4 \emptyset$ GOSUB 4øø2ø
3 B $3765 \emptyset$ C3 $=$ PEEK $(V 2)+128$
98 37ø6ø IF C3＜16の THEN C3＝C $3+64$
$3937 \emptyset 7 \emptyset$ IF C3 >223 THEN C3 $=\mathrm{C}$ 3－64
6C 37ø日ø POKE V2，16ø
D7 37ø9ø IF P3＞ $10 \emptyset \emptyset$ THEN $3712 \emptyset$
BC 371 Øø POKE P3， C 3
DC $37110 \mathrm{PS}=\mathrm{PJ}+1$
D7 $3712 \emptyset$ NEXT JJ
$403713 \emptyset$ POKE PJ， 141
F6 $3714 \emptyset$ IF P3＜ $1 \varnothing \emptyset 1$ THEN P3 $=$ $P 3+1$
E9 37156 NEXT I I
8937160 POKE P3，255
D4 3717ø SW＝Ø：C $=16 \emptyset$
A7 3718ø RETURN
07 38øøø REM INSERT
64 38ø10 P3 $=775$
65 38ø2ø II $=Y 1: J J=X 1$
00 38ø3ø C3 $=$ PEEK（P3）
F1 $38 \emptyset 4 \emptyset$ IF $C 3=141$ THEN II $=I$ $I+1: J J=X 1: P 3=P 3+$ 1：GOTO 38ø3ø

72 38ø5ø IF II >22 OR JJ $>4 \emptyset \mathrm{~T}$ HEN 38Ø9ø
D9 38ø6ø IF C3 $=255$ THEN SW $=\varnothing$ ：CØ＝PEEK（VØ）：GOTO 1 ø59ø
C8 38ø7ø GOSUB 4øø2ø
63 38ø8ø POKE V2，C3
$4 E 38 \emptyset 9 \emptyset \mathrm{JJ}=\mathrm{JJ}+1: \mathrm{PJ}=\mathrm{PJ}+1$
C4 3816ø GOTO 38ø3ø
CJ 39øøの REM CANCEL
$3639 \varnothing 1 \emptyset$ FOR II $=Y 2$ TO Y3
B8 39ø2ø FOR JJ $=\times 2$ TO X3
AA $39 \emptyset 3 \emptyset$ GOSUB 4øø2ø
$3739 \emptyset 4 \emptyset \mathrm{C}=$ PEEK $(V 2)+128$
94 39ø5ø IF C3＜ $16 \emptyset$ THEN C3 $=\mathrm{C}$ $3+64$
35 39ø6の IF C3 >223 THEN C3 $=\mathrm{C}$ 3－64
FC 39ø7ø POKE V2，C3
43 39ø8ø NEXT JJ，II
C2 $39 \emptyset 9 \emptyset$ SW $=\emptyset$
56 4øøøØ RETURN
24 4øØ1ø REM
784 毋ø $2 \emptyset \mathrm{~V} 2=1 \emptyset 23+128 *(I I-$ 1）+JJ
$484 \emptyset \emptyset 3 \emptyset$ IF II >8 THEN V2 $=V 2$ -984
A6 4øø4ø IF II >16 THEN V2 $=$ V2 -984
7E 4øø5ø RETURN
7F $41 \emptyset \emptyset \emptyset$ REM DELETE A CHARACTER
83 41ø1の GOSUB 43ø1ø
$9641 \varnothing 2 \emptyset$ FOR II $=V \emptyset$ TO V2－ 1
$8841 \emptyset 3 \emptyset$ POKE I I，PEEK（II＋1）
D2 $41 \emptyset 4 \emptyset$ NEXT I I
$494165 \emptyset$ POKE V2，160
5741 Ø6 5 C $=$ PEEK（Vø）
$984107 \emptyset$ RETURN
8F 42øøø REM DELETE TO END OF LI NE
$8542 ø 1 \emptyset$ GOSUB 43ø1ø
76 42ø2ø FOR II＝Vø TO V2
$704203 \emptyset$ POKE II，16ø
D4 4204の NEXT II
FA $4265 \emptyset \mathrm{C}$ C $=16 \emptyset$
8A $4266 \emptyset$ RETURN
22 430øø REM
CF $43 \emptyset 1 \emptyset V 2=1 \emptyset 63+128 *(Y 1$
1）
2E $43 \emptyset 2 \emptyset$ IF $Y 1>8$ THEN $V 2=V 2$ － 984
$9443 \emptyset 3 \emptyset$ IF $Y_{1}>16$ THEN $V 2=V_{2}$ － 984
7C 43ø40 RETURN
DB 44øøø REM FIND MOUSE
$5644 \emptyset 1 \emptyset$ FOR $5 \emptyset=\varnothing$ TO 6
AA $4462 \emptyset$ IF PEEK $(4942 \emptyset+(256$＊
Sø））$=32$ AND PEEK（49
$659+(256$ Sø）$)=214$
THEN $5 \emptyset=5 \emptyset+1:$ RETU RN
$8644 \emptyset 3 \emptyset$ NEXT Sø
$824464 \emptyset$ PRINT＂I CAN＇T FIND A M OUSE INTERFACE CARD＂CH R\＄（7）CHR\＄（7）
68 44ø5ø END
A5 62999 REM \＃63øøØ
24 63øøø REM
2C 63010 REM SUBROUTINE TO＂READ
IF $63 \emptyset 2 \emptyset$ REM STRINGS FROM THE
B3 $63 \emptyset 3 \emptyset$ REM VIDED BUFFER
44 63940 REM
㫙 63ø5ø VTAB 24：FLASH ：PRINT WORKING ．．．
＂；：NO
RMAL ：UTAB 1：HTAB 1
C9 $63 \emptyset 6 \emptyset$ A\＄$=" "$
FC $6307 \emptyset$ REM CALCULATE V \emptyset
55 63øBø REM（VIDEO BUFFER ADDRE SS）
A5 $6369 \emptyset V \emptyset=1 \emptyset 37+128 *\left(Y_{1}-\right.$ 1）

12 631øø IF $Y 1>8$ THEN $V \emptyset=V \emptyset$ -984
$666311 \emptyset$ IF Y1 >16 THEN Vø $=V \varnothing$ -984
$2 F 63120$ FOR I $=1$ TO 25
$676313 \emptyset C \emptyset=$ PEEK $(V \emptyset+I)$
AD 63135 IF $C \emptyset<128$ THEN $C \emptyset=C$ $\emptyset+128$
7663136 IF C $<16 \emptyset$ THEN C $\quad=$ C $\varnothing+64$
1963137 IF Cø >223 THEN C $=C$ ø－ 64
DD $6314 \emptyset$ IF CD $=16 \emptyset$ AND PEEK $(V$ $\emptyset+I+1)=16 \emptyset$ THEN 6 319ø：REM END IF TWO BL ANKS
F9 $6316 \emptyset$ IF Cg >128 THEN C $=C$ ø－128
F5 $6317 \emptyset A \$=A \$+C H R \$$（Cø）
D5 $6318 \emptyset$ NEXT I
C2 6319 IF RIGHT\＄$(A \$, 1)=$ CHR $\$$ （32） THEN A $=$ LEFT $\$$（ A\＄，LEN（A\＄）－1）：GOTO 63190：REM REMOVE TRAI LING BLANKS
4263195 IF $A \$=$ CHR $\$$（96）THEN $A \$=" "$
66 632øø RETURN

Program 2：MOUSEY Filemaker

3410 REM BASIC PROGRAM FOR
7C $2 \emptyset$ REM GENERATING THE
$4 A 3 \emptyset$ REM BINARY FILE
9A $4 \varnothing$ REM＇MOUSEY＇
4E $5 \emptyset$ HOME
36 $6 \emptyset$ VTAB 12：PRINT＂WORKING ．． ．＂
$217 \emptyset$ FOR $I=\emptyset$ TO 872
B8 $8 \emptyset$ READ A
1990 POKE $37376+I, A$
BF 1øØ UTAB 12：HTAB 13：PRINT I $+1$
OF $11 \varnothing$ NEXT I
2A $12 \emptyset$ PRINT CHR\＄（4）＂BSAVE MOUS EY，A37376，L873＂
2B $13 \emptyset$ PRINT ：PRINT＂DONE！＂
77 1øøøø DATA $173,89,17 \emptyset, 72,165$ ， 217，72
9B $1 \emptyset \emptyset 1 \emptyset$ DATA $165,118,72,169,2,1$ 33， 118
8410629 DATA $169,255,133,217,16$ 9，191， 133
B7 1 øø3ø DATA $51,169, \emptyset, 133,243,7$ 6， 41
6E 1øø4ø DATA $146,4, \emptyset, 15, \emptyset, 7, \emptyset$
AB 1øø5Ø DATA 21，Ø，7，Ø，21，Ø，169
D6 1 1066б DATA 29，133，133，169，146 ，16Ø，Ø
84 1øø7Ø DATA $162,11,32,77,149,7$ 6，69
$571 \emptyset \emptyset 8 \emptyset$ DATA $146,2 \emptyset, 7,32, \emptyset, 8, \emptyset$
18 1øø9ø DATA 22，Ø，8，Ø，22，Ø，169
AB 1ø1øø DATA 57，133，133，169，146 ，16ø，Ø
35 1ø11ø DATA $162,11,32,77,149,1$ 73，\varnothing
FE $1 \varnothing 12 \emptyset$ DATA $3,141,29,146,169$ ， ， 141
FE $1 \emptyset 13 \emptyset$ DATA $3 \emptyset, 146,173,1,3,141$ ， 31
81 1ø14ø DATA $146,169, \emptyset, 141,32,1$ 46， 173
F8 1 1ø15ø DATA 2，3，141，33，146， 169 ，\varnothing
$681 \emptyset 16 \emptyset$ DATA $141,34,146,173,3,3$ ， 141
ID $1 \emptyset 17 \emptyset$ DATA $35,146,169, \emptyset, 141,3$ 6， 146
D7 1 1ø18Ø DATA $173,4,3,141,37,146$ ， 169

5C $1 ø 19 \varnothing$ DATA $\emptyset, 141,38,146,173,5$
2C 1ø2øø DATA $141,39,146,169, \emptyset, 1$ 41，4ø
83 1ø21ø DATA $146,173,29,146,141$ ，61， 146
C8 $1 ø 22 \emptyset$ DATA $173,3 \emptyset, 146,141,62$ ， 146，173
$181 ø 23 \emptyset$ DATA $62,146,2 \emptyset 5,34,146$ ， 48， 15
15 1ø24ø DATA 2ø8，1ø，173，61，146， 265，33
22 1ø25ø DATA 146，144，5，24ø，3， 76 ， 134
D5 1ø26ø DATA $147,173,31,146,141$ ，63， 146
$751 ø 27 \emptyset$ DATA $173,32,146,141,64$ ， 146， 173
881 1ø28ø DATA $64,146,265,36,146$ ， 48， 15
IF $1 ø 29 \varnothing$ DATA 2ø8，1ø，173，63，146， 265，35
9D 1ø3øø DATA $146,144,5,24 \emptyset, 3,76$ ， 123
FB $1 \emptyset 31 \emptyset$ DATA $147,24,173,37,146$ ， 1ø5， 1
39 1ø32ø DATA $141,65,146,173,38$ ， 146， 105
2A 1 Ø33Ø DATA $\varnothing, 141,66,146,24,17$ 3，39
$8 E 1 \emptyset 34 \emptyset$ DATA $146,1 \emptyset 5,1,141,67,1$ 46，173
63 1 1ø35ø DATA $4 \emptyset, 146,1 ø 5, \emptyset, 141,6$ 8， 146
$811 \emptyset 36 \emptyset$ DATA $173,62,146,265,66$ ， 146，48
43 1ø37ø DATA $1 \varnothing, 2 ø 8,29,173,61,1$ 46，2ø5
FJ 1 1ø38Ø DATA 65，146，176，21，173， 64，146
6E $1 \emptyset 39 \emptyset$ DATA $2 \emptyset 5,68,146,48,1 \emptyset, 2$ ØB， 11
821 1ø4øØ DATA $173,63,146,265,67$ ， 146， 176
9C 1 ஏ41ø DATA $3,76,112,147,32,12$ 2，148
EF 1 1ஏ42ø DATA $173,57,146,141,51$ ， 147，173
A2 1 1ø43Ø DATA $58,146,141,52,147$ ， 173， 144
A4 1 1644ø DATA 7，141，59，146，169，\varnothing ， 141
291 1ஏ45ø DATA 6ø，146，173，6Ø，146， 2ø1，\varnothing
D2 1ø46Ø DATA 48，9，268，24，173，54 ， 146
9B 1ø47Ø DATA 2ø1，128，176，17，24， 173，59
91 1 1ø48ø DATA $146,1 ø 5,128,141,59$ ，146， 173
EA 1 1ø49Ø DATA 6ø，146，1ø5，Ø，141，6 Ø， 146
$481 \emptyset 5 \emptyset \emptyset$ DATA $173,57,146,141,11 \varnothing$ ，147，173
5A 1ø51ø DATA 58，146，141，111，147 ，173，59
5D 1ø52ø DATA $146,141,144,7,238$ ， 63，146
9F 16536 DATA $268,3,238,64,146,7$ 6，195
8E 1654ø DATA $146,238,61,146,2 ø 8$ ，3，238
A8 $1955 \emptyset$ DATA $62,146,76,169,146$ ， 173，29
9B 1 Ø56ø DATA $146,141,61,146,173$ ， $3 \varnothing, 146$
21 1ø57ø DATA $141,62,146,173,62$ ， 146，265
D8 1 1ø58g DATA $38,146,48,15,268,1$ Ø， 173
$181 ø 59 \emptyset$ DATA $61,146,2 \emptyset 5,37,146$ ， 144，5
43 1ø6øø DATA 24ø，3，76，119，148， 1

73， 31
BF 1ø61ø DATA $146,141,63,146,173$ ，32，146
81 1ø62ø DATA $141,64,146,173,64$ ， 146，265
$961 ø 63 \emptyset$ DATA $4 \varnothing, 146,48,15,2 \emptyset 8,1$ D， 173
3C 1ø64ø DATA 63，146，2ø5，39，146， 144，5
AJ $1 ø 65 \emptyset$ DATA $24 \varnothing, 3,76,1 \emptyset 8,148,3$ 2，122
FF 1 Ø66ø DATA $148,173,57,146,141$ ，220， 147
CB 1 Ø67ø DATA $173,58,146,141,221$ ，147，173
2C 1ø68ø DATA 2ø，7，141，59，146， 16 9，\emptyset
A7 1ø69ø DATA $141,6 \emptyset, 146,173,6 \emptyset$ ， 146，201
57 1ø7øø DATA $\emptyset, 48,28,268,9,173$ ， 59
B4 1ø71ø DATA 146，2ø1，127，144， 19 ，24ø， 17
B5 1ø72の DATA 56，173，59，146，233， 64，141
B7 1ø73Ø DATA 59，146，173，6ø，146， 233，\emptyset
$831674 \varnothing$ DATA $141,6 \emptyset, 146,173,6 \emptyset$ ， 146，2ø1
7F 1 1ø75 DATA $\emptyset, 48,28,2 ø 8,9,173$ ， 59
（1）1676 DATA $146,201,64,144,19$ ， 24ø， 17
DD 1677ø DATA 56，173，59，146，233， 64，141
DF $1678 \emptyset$ DATA $59,146,173,6 \emptyset, 146$ ， 233，\varnothing
AB 1 1ø79Ø DATA $141,6 \emptyset, 146,173,6 \emptyset$ ， 146，201
5B 1ø8øø DATA $\varnothing, 48,28,2 \emptyset 8,9,173$ ， 59
E7 1ø81ø DATA $146,2 ø 1,64,144,19$ ， 24D， 17
B9 1 ø82の DATA $56,173,59,146,233$ ， 64，141
BB 1 1ø83Ø DATA $59,146,173,66,146$ ， 233， 1
18 1ø84ஜ DATA $141,6 \emptyset, 146,173,57$ ， 146， 141
381 1ø85ø DATA $95,148,173,58,146$ ， 141，96
5月 1ø86ø DATA $148,173,59,146,141$ ，2ø， 7
92 1ø87ø DATA $238,63,146,2 ø 8,3,2$ 38，64
ID 1ø88ø DATA $146,76,181,147,238$ ，61，146
FA 1689ø DATA 2ø8，3，238，62，146，7 6，146
43 1ø9øø DATA $147,76,11,149,56,1$ 73，61
ED $1991 \emptyset$ DATA $146,233,1,141,57,1$ 46，173
OA 1 1ø92g DATA 62，146，233，ø，141，5 8，146
4C $1693 \emptyset$ DATA $169, \emptyset, 133,138,169$ ， 128， 174
E9 $1694 \varnothing$ DATA $58,146,172,57,146$ ， 32， 31
$451695 \emptyset$ DATA $149,142,58,146,14 \varnothing$ ，57，146
381 1696Ø DATA 24，169，255，1ø9，57， 146， 141
9716976 DATA $57,146,169,3,169,5$ 8， 146
F8 1998 DATA $141,58,146,24,173$ ， 57，146
5B 1ø99ø DATA $169,63,146,141,57$ ， 146， 173
日F 11 øøø DATA $58,146,1 \emptyset 9,64,146$ ， 141,58
C4 11016 DATA $146,173,62,146,2 \emptyset 1$ ，$\varnothing, 48$

CE 11 D2ø DATA $28,2 ø 8,9,173,61,14$ 6，2ø1
$1111 ø 3 \emptyset$ DATA $8,144,19,24 \varnothing, 17,56$ ， 173
9611.96 DATA $57,146,233,216,141$ ，57，146
DF 11 ø5 \emptyset DATA $173,58,146,233,3,1$ 41，58
EC 11 Ø6 1 DATA $146,173,62,146,2 ø 1$ ，$\varnothing, 48$
F6 $1167 \emptyset$ DATA $28,268,9,173,61,14$ 6，2ø1
EF 11 Ø8ø DATA $16,144,19,24 \varnothing, 17,5$ 6，173
BE $1169 \emptyset$ DATA $57,146,233,216,141$ ，57， 146
BB 111 øø DATA $173,58,146,233,3,1$ 41，58
B5 $1111 \varnothing$ DATA $146,96,1 ø 4,133,118$ ，164， 133
IC $1112 \emptyset$ DATA $217,1 \emptyset 4,141,89,17 \emptyset$ ，169，141
$671113 \emptyset$ DATA $141,1,2,169,1,133$ ， 52
9A 11140 DATA $96,133,137,132,135$ ，134， 136
B6 $1115 \emptyset$ DATA $169, \emptyset, 133,133,133$ ， 134，7ø
$811116 \emptyset$ DATA $136,162,135,144,13$ ，24，165
BE $1117 \emptyset$ DATA $137,1 \emptyset 1,133,133,13$ 3，165， 138
EC 1118Ø DATA $1 \emptyset 1,134,133,134,6$ ， 137，38
B5 $1119 \emptyset$ DATA $138,165,136,5,135$ ， 2ø8，227
$58112 \emptyset \emptyset$ DATA $164,133,166,134,96$ ，133， 134
FE $1121 \emptyset$ DATA $132,135,16 \emptyset, \emptyset, 169$ ， Ø， 145
BB $1122 \emptyset$ DATA $133,2 \emptyset \emptyset, 2 \emptyset 8,2,23 \emptyset$ ， 134，138
2C $1123 \emptyset$ DATA $2 ø 8,4,198,135,48,4$ ，2ø2
$581124 \varnothing$ DATA 76，83，149，96， $9, \varnothing ~$
Program 3：TEXT Filemaker
$5110 \mathrm{D} \$=$ CHR\＄（4）
67 2ø PRINT D\＄＂OPEN TEXT＂
CF $3 \varnothing$ PRINT D\＄＂WRITE TEXT＂
EA $4 \emptyset$ PRINT＂COMPUTE！＂
$7 E 5 \emptyset$ PRINT＂READER SERVICE＂
89 6ø PRINT＂P．O．BOX 5095ø
E3 $7 \emptyset$ PRINT＂DES MOINES＂
6A 8ø PRINT＂IA 5ø95ø＂
9490 PRINT＂＂
E9 $1 \varnothing \varnothing$ PRINT＂1－8øø－346－6767＂
DA 110 PRINT D\＄＂CLOSE＂

Program 4：Joystick Modifications

FC $265 \mathrm{~B} \emptyset=4$
CB 1 1 $15 \emptyset \times \varnothing=$ PDL（（Ø）
$641 \varnothing 16 \emptyset \mathrm{Y} \square=\mathrm{PDL}$（1）
$7816161 \mathrm{~B} 1=\operatorname{PEEK}(-16287)$
211 10162 IF $B 1<128$ AND $B \emptyset=3$ THEN Bø $=4$
2110163 IF $B 1<128$ AND $B \emptyset=2$ THEN B $\emptyset=3$
2910164 IF $B 1<128$ AND $B \emptyset=1$ THEN BD $=3$
2516165 IF $B 1>127$ AND $B \emptyset=2$ THEN $B \emptyset=1$
$4 D 10166$ IF B1 >127 AND $\mathrm{B} \emptyset=4$ THEN Bø $=2$
$211 \varnothing 17 \emptyset$ IF PEEK $(-16384)>12$ 7 THEN 1ø44ø
A9 $1 \varnothing 18 \emptyset Y \emptyset=I N T(Y \emptyset / 1 \emptyset)+1$ $881 \varnothing 19 \emptyset X \emptyset=$ INT $(X \emptyset / 6)+1$ 32 2øø3ø REM

IBM Variable Snapshot

Tony Roberts, Production Director

This programming utility lets you list the current values of all active variables in any BASIC program-an invaluable aid for debugging. It works on any IBM PC with BASICA or PCjr with Cartridge BASIC.

When things go haywire with a BASIC program, my first inclination is to check the variables: PRINT A\$, PRINT SCORE, PRINT UPPERLIMIT, and so on. Comparing what's actually stored in a variable with what you expected often helps to isolate programming problems.

Printing variable values over and over, however, quickly becomes tedious, especially when arrays are involved. "IBM Variable Snapshot" takes the work out of this process.

After temporarily appending the Variable Snapshot utility to your program, you can activate it with a simple GOTO command whenever your program stops with an error or you press the BREAK key. Once activated, Variable Snapshot sifts through memory, printing out first the scalar variables, then the array variables it finds there. Within seconds, you can see the values of all the variables your program has used. This kind of analysis has many benefits:

- By frequently checking the
variable list, you reduce the possibility of "forgotten" variables.
- You can quickly spot typographical errors in variable names. If the list contains both FILENAME and FILENAM\$, you'll realize something is wrong.
- By checking variable types as well as names, you'll notice if the list contains both TOTAL\% (an integer variable) and TOTAL! (a single-precision variable)-another common source of errors.

How To Take Snapshots

Type in Program 1 below and save it on disk in ASCII format. If you type it in with the "IBM Automatic Proofreader," published elsewhere in this issue, the program is saved in ASCII format automatically. Otherwise, use the command SAVE "SNAPSHOT.ASC",A.

Program 2 lets you test Variable Snapshot to verify that it's working properly before using it with your own programs. To run a test, type in Program 2 and save it on disk in ASCII format. Then append Snapshot to it with the command MERGE "SNAPSHOT.ASC." Now type RUN. The test program initializes several variables, then stops. When you type GOTO 1000 (the starting line number of Variable Snapshot), the name and value of each variable is printed on the screen. You can press CTRL-NUM LOCK on the PC or $\mathrm{Fn}-\mathrm{Q}$ on the PCjr to pause the display, or stop it
at any time by pressing CTRLBREAK on the PC or Fn-BREAK on the PCjr.

If the variable values are not what you expected, recheck your typing, paying close attention to the type declaration symbols (\%, \$, !, \#) attached to the variables. If even one of these symbols is incorrect or missing, you'll have problems.

The test program initializes integer, string, single-precision, and double-precision variables as well as a full set of array variables. If everything prints out as expected, you can be pretty sure that Variable Snapshot is working well.

Friendly Filename And Quick Start

When Snapshot begins its work, the first thing it prints is the active disk filename, which the IBM stores in the 11 memory locations beginning at 4F1h (1265 decimal). This has nothing at all to do with variables, but simply provides an answer to the question "What did I call this program the last time I saved it?"'

If you want to get started with Snapshot quickly, you can omit the entire array processing section (lines $1590-2220$) and change line 1280 to read:

1280 IF QARRAYON\% THEN END

This abbreviated version of Snapshot lists only simple variables, but you can go back later and add the lines to handle the array
Variable
Q\%,QQ\%,QQQ\%
QTYPE\%
QLENLEFT\%
QDIMS\%
QARRAYON\%
QSTRLEN\%
QBASE\%
Q\$
QCHAR\$
QFILE\$
QNAME\$
QVAR!
QARRAY!
QFREE!
QASIEE!
QVALUE!
QSTRPTR!
QPTR!
QDIMSIZE()

Description

loop counters
variable type
number of characters left in variable name
number of dimensions in array
flag indicating if array boundary passed
length of string variable
status of OPTION BASE command
for single- and double-precision conversions
builds active filename
active filename
name of variable being processed memory pointer to current variable start of array space
start of free space
size of current array temporary storage for integer values points to location of actual string points to start of next element in array size of array dimensions
variables. The REMs in the program listing are not referenced by other lines, so you can safely omit them when typing the program.

After you have Snapshot working, edit line 1000 to suit your preferences for screen color, width, and so on.

You may want to renumber Snapshot so its line numbers won't interfere with those of your own programs. (Low line numbers were used in the listing to make entering the program easier.) Load the program into memory and use the command RENUM $x x x x x$, where $x x x x x$ is Snapshot's new starting line number. Then save the program back to disk, again using the ASCII option so Snapshot can be merged other programs.

The version I use begins at line 60000 , and I've programmed a function key to execute the command GOTO 60000. Whenever a program halts, I simply press Fn-6 to see the value of every variable.

Array Bases

IBM BASIC includes the OPTION BASE statement for defining the lowest-numbered element in an array. If a program contains the statement OPTION BASE 0, or if no OPTION BASE statement is included, all arrays start with a 0 element. An OPTION BASE 1 statement means that arrays begin with element 1.

Variable Snapshot must know which OPTION BASE is in effect to
display array values properly Memory location 45 Ch (1116 decimal) provides this information. PEEKing that address yields either a 0 or 1 , indicating which base is selected.

The adjacent memory location, 45Dh (1117 decimal), is related but a little more specific. If no OPTION BASE command has been issued, 45Dh contains a 0 ; if OPTION BASE 0 has been executed, 45Dh contains a 1 ; and if OPTION BASE 1 has been executed, the location contains a 2.

Try changing line 10 in Program 2 to read OPTION BASE 0 and observe the effect when running Variable Snapshot.

Although IBM BASIC allows arrays of up to 255 dimensions, few programs make use of more than one or two. For this reason, Variable Snapshot does not include provisions for arrays with more than two dimensions. Additional loops can be added to handle more complex arrays, if necessary.

A Few Cautions

To be truthful, Snapshot does not list every variable-it ignores those
that begin with the letter Q . The Snapshot routine itself, you'll notice, uses only variables beginning with the letter Q . That keeps Snapshot's own variables from being printed along with those of your program.

If you're inclined to tinker with this routine, you must be careful about introducing new variables. Lines 1020-1040 initialize every variable used by the routine, effectively reserving space for them in the variable table.

Lines 1120-1140 determine the boundaries of the variable table, reference points the program cannot do without. If a new variable is added to the program after the boundary measurements are taken, confusion results; the boundaries move and Snapshot loses its way.

Although Snapshot works with most programs, there can be complications. If you've written your program to make use of all available memory, there won't be room in the variable table for Snapshot's own variables. You'll need to leave Snapshot about 300 bytes of workspace.

How Snapshot Works

As mentioned above, Snapshot reads the boundaries of the scalar variable area, the array variable area, and the free space area, then works its way through the variable areas byte by byte deciphering the information stored there. Once it reaches free space, its work is finished.

The IBM stores scalar variables as shown below.

Following the last character of the variable name is the value of the variable.

- An integer variable is stored in two bytes in the standard low byte/high byte format. The high bit of the second byte indicates the sign of the integer. If it is set, the integer is a negative number.

Byte $1=$ type $(2=$ integer, $3=$ string, $4=$ single precision, $8=$ double precision)
Byte $2=$ first character of variable name
Byte $3=$ second character of variable name
Byte $4=$ number of characters remaining in variable name
Byte 5
$=$ rest of variable name (high bit set)
－String variable pointers are stored in three bytes．The first is the number of bytes in the string，and the second and third point to the address（either in the string pool or in the BASIC program area）where the string is stored．
－Single－precision variable val－ ues are stored in four bytes．The values of these bytes can be concat－ enated into a string，then converted into a single－precision number using the CVS function．
－Double－precision variables occupy eight bytes，which can be concatenated and converted as above using the CVD function．

Array variables are stored sim－ ilarly，but there＇s some additional information between the end of the variable name and the actual begin－ ning of the variable values．

Following the variable name are two bytes that indicate the total size of the array．The next byte holds the number of dimensions． That is followed by two bytes de－ scribing the number of elements in the last dimension．Then two bytes describe the number of elements in the next to last dimension，and so on，until each dimension in the ar－ ray has been defined．

Finally，the values of the array variables follow，and are stored in the same manner as values for sca－ lar variables．

Using this information，the program listing，the description of Snapshot variables found in the ac－ companying table，and the actual program output，you should be able to develop a good understanding of how BASIC treats your variables．

For instructions on entering these listings， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTE！．

Program 1：IBM Variable Snapshot

CK 1 Øøø DEF SEG：SCREEN $\emptyset, \varnothing: W I D T H$ 8ø：CO LOR 7，ø：
$061 \varnothing 1 \emptyset$ REM initialize variables
C6 $1 \oslash 2 \emptyset \quad Q \%=\emptyset: Q Q \%=\emptyset: Q Q Q \%=\emptyset:$ QLENLEFT $\%=\varnothing$ ： QTYPE $\%=\varnothing$ ：QD IMS $\%=\emptyset:$ QARRAYON $\%=\varnothing$ ： QSTRLEN\％$=\varnothing$ ：QBASE $\%=\varnothing$ ：QDIMSI ZE\％（ 1）$=\emptyset: \operatorname{QDIMSIZE}(2)=\varnothing$
LN 1030 Q $\$=" ":$ QCHAR $\$=" ":$ QFILE $\$=" ":$ QNAM E\＄＝＂＂
MJ $104 \varnothing$ QVAR！$=\varnothing$ ：QARRAY！$=\varnothing$ ：QFREE $!=\varnothing:$ QAS IZE！$=\emptyset:$ QVALUE $!=\varnothing:$ QSTRPTR！$=\varnothing:$ QP IZE！＝
TR！$=\varnothing$
661059 REM Get active filename
Q．166Ø FOR $Q \%=\emptyset$ TO $1 \varnothing$
BA $107 \emptyset$ QCHAR $\$=$ CHR $\$($ PEEK（ $\& H 4 F 1+Q \%)$ ）
PA $198 \emptyset$ IF ASC（QCHAR\＄）＞96 AND ASC（QCHA

R\＄）＜ 123 THEN QFILE\＄＝QFILE\＄＋CHR \＄（ASC（QCHAR\＄）－32）ELSE QFILE\＄＝ QFILE\＄＋QCHAR\＄
AH 1996 NEXT
LI $119 \varnothing$ PRINT：PRINT＂Active disk filen ame is：＂；MID\＄（QFILE\＄，1，8）；＂． ＂；MID\＄（QFILE\＄，9）：PRINT
CK 1110 REM get addresses of scalar va riables，array variables，and free space
FH 1129 QVAR！＝PEEK（ \＆H358）＋PEEK（ \＆H359）\＆ 256
HI $113 \mathscr{D}$ QARRAY！＝PEEK $(\& H 35 A)+$ PEEK $(\& H 35 B$ ） ＊256
HD $114 \varnothing$ QFREE！＝PEEK（ $\& H 35 C)$＋PEEK（ $\& H 35 D)$ \＄256
HF $115 \emptyset$ QBASE\％＝PEEK（ $\& \mathrm{H} 45 \mathrm{C}$ ）
㫙 $116 \emptyset$ REM Start of variable processi ng
CH $117 \emptyset$ QTYPE\％＝PEEK（QUAR！）
Jo 1189 IF（ $Q T Y P E \%<2$ OR QTYPE\％＞4）AND QTYPE\％＜＞8 THEN END
L6 1198 QLENLEFT\％＝PEEK（QVAR！＋ 3 ）
PH $12 \emptyset \emptyset$ REM get variable name
OK 1210 QNAME $\$={ }^{\prime \prime}$＂
LL 1220 IF PEEK（QUAR！＋ 1 ）>127 OR（PEEK（ QVAR！+1 ）$=81$ AND QARRAYON\％$=\varnothing$ ）T HEN 224ø
EC 1238 FOR $Q \%=1$ TO QLENLEFT\％
HJ 1240 QNAME $=$＝QNAME $\$+$ CHR $\$$（PEEK（QVAR！＋ 3＋Q\％）AND 127）
Q $125 \emptyset$ NEXT
ME 126 QNAME $\$=$ CHR $\$($ PEEK（QVAR！+1$)$ ）＋CHR \＄（PEEK（QVAR！+2 ））＋QNAME\＄
011270 REM branch to appropriate rout ine depending on variable type
E6 $128 \emptyset$ IF QARRAYON\％THEN $16 \varnothing \varnothing$
CF $129 \emptyset$ ON QTYPE $\%$－ 1 GOTO 132ø，137פ， 146
NP $13 \varnothing \varnothing$ GOTO $153 \varnothing$
FM 1318 REM inteters
EC $132 \emptyset$ QVALUE！＝PEEK（QVAR！＋QLENLEFT\％＋4 ）＋PEEK（QVAR！＋QLENLEFT\％＋5） 256
DP 1336 IF QVALUE！>32768 ！THEN QVALUE！ ＝QUALUE！－65536！
PH 1349 PRINT QNAME $\$$＂$\%$＂；,$="$ ；QVALUE！
NC 1359 GOTO 224g
FE 1368 REM strings
PH $137 \varnothing$ PRINT QNAME $\$$ ；$\$$＂，＂$=" ;$ CHR\＄（34 ）；
BM $138 \emptyset$ QSTRLEN\％$=$ PEEK（QVAR！＋QLENLEFT $\%+$ 4）
MC 1390 QSTRPTR！＝PEEK（QVAR！＋QLENLEFT $\%+$ 5）＋PEEK（QVAR！＋QLENLEFT\％＋6）$\$ 256$
6J $14 \emptyset \emptyset$ FOR $Q \%=\emptyset$ TO QSTRLEN $\%-1$
PM $141 \emptyset$ PRINT CHR $\$($ PEEK（QSTRPTR！＋Q\％））；
QK $142 \emptyset$ NEXT
61 1436 PRINT CHR\＄（34）
NB $144 \emptyset$ GOTO $224 \varnothing$
PJ $145 \emptyset$ REM single precision
PL 1460 Q $\$={ }^{\prime \prime \prime}$
FG $147 \varnothing$ PRINT QNAME $\$; "!", "="$ ；
CM $148 \emptyset$ FOR $Q \%=\emptyset$ TO $3: ~ Q \$=Q \$+C H R \$$（PEEK （QUAR！＋QLENLEFT $\%+4+Q \%$ ））
BP 1490 NEXT
B8 15Øø PRINT CVS（Q\＄）
NK 1510 GOTO 224ø
KB 152 REM double precision
OE $153 \emptyset$ Q $\$="$＂
HH 1540 PRINT QNAME $\$$ ；＂耤＂，＂$=$＂；
6N $155 \emptyset$ FOR $Q \%=\emptyset$ TO 7：$Q \$=Q \$+$ CHR\＄（PEEK （QVAR！＋QLENLEFT\％＋4＋Q\％））
BI 1569 NEXT
FE $157 \emptyset$ PRINT CUD（Q\＄）
OP 158ø GOTO 224ø
AC $159 \varnothing$ REM array routines
IM $16 \emptyset \emptyset$ QASIZE！＝PEEK（QVAR！＋4＋QLENLEFT\％ ）＋PEEK（QVAR！＋5＋QLENLEFT\％）$\ddagger 256$
111610 IF ASC（QNAME $\$$ ）$=81$ THEN 2240
BA $162 \varnothing$ QDIMS\％＝PEEK（QVAR！＋6＋QLENLEFT\％）
I8 1630 IF QDIMS\％>2 THEN 224ø
\＆L 1649 QPTR！＝QVAR！＋7＋QLENLEFT\％
MA 165 FOR Q\％＝QDIMS\％TO 1 STEP -1
IN 1660 QDIMSIZE\％（Q\％）＝PEEK（QPTR！）＋PEEK （QPTR！＋1） ： 256
ME 1670 QPTR！＝QPTR！＋2
BA $168 \emptyset$ NEXT
J6 1690 ON QTYPE\％－1 GOTO 1720，183 198 GOTO $211 \emptyset$
$\begin{array}{lll}\text { K1 } & 17 \emptyset \emptyset & \text { GOTO } 211 \emptyset \\ \text { QL } & 171 \emptyset \text { REM integer arrays }\end{array}$
AB 1720 PRINT
BL 1730 IF QDIMS\％$=2$ THEN FOR QQQ\％$=$ QBAS E\％TO QDIMSIZE\％（2）＋（QBASE\％＝ø）
61 1740 FOR Q\％＝QBASE\％TO QDIMSIZE\％（1）＋ （QBASE\％＝ø）
DN 1750 QVALUE ！＝PEEK（QPTR！）＋PEEK（QPTR！ ＋1）$: 256$
AA 1768 IF QVALUE！>32768 ！THEN QVALUE！ $=$ QVALUE！$=65536$ ！

If 1770 IF QDIMS\％$=1$ THEN PRINT QNAME $\$$ $" \%(" ; \operatorname{MID}(S T R \$(Q \%), 2) ; ") ", "=$ ；QUALUE！ELSE PRINT QNAME ${ }^{\text {；}}$＂$\%$（ ＂；MID\＄（STR\＄（Q\％），2）；＂，＂；MID\＄（ST R\＄（QQQ\％），2）；＂）＂，＂＝＂；QUALUE！
of 178 QPTR！＝QPTR！＋2
JM $179 \varnothing$ NEXT Q\％
EH $18 \emptyset \emptyset$ IF QDIMS\％$=2$ THEN NEXT QQQ\％
NA 1810 GOTO 224ø
HA 1820 REM string arrays
A6 1839 PRINT
BA 184g IF QDIMS\％＝2 THEN FOR QQQ\％＝QBAS E\％TO QDIMSIZE\％（2）＋（QBASE\％＝ø）
6K 1859 FOR Q\％＝QBASE\％TO QDIMSIZE\％（1）＋ （QBASE\％＝ø）
IE $186 \emptyset$ QSTRLEN\％＝PEEK（QPTR！）
KA 1879 QSTRPTR！mPEEK（QPTR！＋1）＋PEEK（QP TR！＋2）$\ddagger 256$
CD 188g IF QDIMS\％＝1 THEN PRINT QNAME $\$$ ； ＂\＄（＂；MID\＄（STR\＄（Q\％），2）；＂）＂，＂＝＂ ；CHR\＄（34）；ELSE PRINT QNAME\＄；＂ \＄（＂；MID\＄（STR\＄（Q\％），2）；＂，＂；MID\＄（ STR\＄（QQQ\％），2）；＂）＂，＂＝$"$ ；CHR\＄（34 ）；
CI 1890 FOR QQ\％＝ø TD QSTRLEN\％－1
MF $19 \emptyset \emptyset$ PRINT CHR\＄（PEEK（QSTRPTR！＋QQ\％）） ；
KJ 1910 NEXT QQ\％
1920 PRINT CHR\＄（34）
OA $193 \emptyset$ QPTR！＝QPTR！＋3
IB 1940 NEXT Q\％
61 1959 IF QDIMS\％＝2 THEN NEXT QQQ\％
OB 1968 GOTO 224ø
EL 1970 REM single precision arrays
8H 198 19 PRINT
CB 1990 IF QDIMS\％$=2$ THEN FOR QQQ\％＝QBAS E\％TO QDIMSIZE\％（2）＋（QBASE\％＝ø）
EP 2øøø FOR Q\％＝QBASE\％TO QDIMSIZE\％（1）＋ （QBASE\％＝ø）
＊F 2016 Q\＄＝＂＂
IH 2626 FOR QQ\％＝6 TO 3
CB 2636 Q\＄$=$ Q\＄＋CHR\＄（PEEK（QPTR！＋QQ\％））
GB 2940 NEXT QQ\％
AH 265 IF QDIMS\％$=1$ THEN PRINT QNAME ； ＂！（＂；MID\＄（STR\＄（QY），2）；＂）＂，＂＝ ；CVS（Qs）ELSE PRINT QNAME ${ }^{(1)!~!~(~}$ ＂；MID\＄（STR $(Q \%), 2)$ ；＂，＂MID\＄（STR （（QQQ\％），2）；＂）＂，＂＝＂；CVS（Q\＄）
PK 266 QPTR！＝QPTR！＋4
if $2 ø 7 \%$ NEXT Q\％
FA 2ø日g IF QDIMS\％＝2 THEN NEXT QQQ\％
OS $269 \varnothing$ GOTO $224 \varnothing$
M6 21 ®g REM double precision arrays
PD 2110 PRINT
QN 2120 IF QDIMS\％$=2$ THEN FQR QQQ\％＝QBAS E\％TU QDIMSIZE\％（2）＋（QBASE\％＝ø）
FK $213 \emptyset$ FOR Q\％＝QBASE\％TO QDIMSIZE\％（1）＋ （QBASE\％＝ø）
OA 214 Q Q $^{2}="$＂
002150 FOR QQ\％＝ø TO 7
DH 2169 Q\＄＝Q\＄＋CHR\＄（PEEK（QPTR！＋QQ\％））
HK 2170 NEXT QQ\％
CJ 2180 IF QDIMS\％$=1$ THEN PRINT QNAME $\$$ ＂暼（＂；MID\＄（STR\＄（Q\％），2）；＂）＂，＂＝＂ ；CVD（Q\＄）ELSE PRINT QNAME\＄；＂掛 ＂；MID\＄（STRS（Q\％），2）；＂，＂；MID\＄（ST R\＄（QQQ\％），2）；＂）＂，＂＝＂；CVD（Q\＄）
E） 219 QPTR！＝QPTR！＋8
HI 22øg NEXT Q\％
EP 221ø IF QDIMS\％$=2$ THEN NEXT QQQ\％
NI 2220 GOTO 2240
6H 2230 REM Get address of next variab 1 1e
Mh $224 \varnothing$ IF QARRAYON\％$<>1$ THEN QVAR！＝QVA R！＋QLENLEFT\％＋QTYPE\％＋4 ELSE QVA R！＝QVAR！＋QASI ZE！＋QLENLEFT\％＋ 6
HH 2250 IF QVAR！＝＞QARRAY！THEN QARRAYO $N \%=1$
M6 2260 IF QUAR！＝＞QFREE！THEN END
OH $227 \varnothing$ GOTO 117ø

Program 2：Snapshot Demo

BL $1 \varnothing$ REM Snapshot demo program
OK $2 \emptyset$ OPTION BASE 1
LF $3 \emptyset A \%=2: A \$="$ This is a string．＂：$A!=1$ Øøøø1！：A\＃＝345692811誹
LA 4 D DIM INTEGER\％（5），STRIN\＄（5），SINGLE ！（5），DOUBLE（5）
6K 50 DIM IGR\％$(5,3), \operatorname{STN} \$(5,3), \operatorname{SNG}!(5,3$ ），DBL $(5,3)$
If $6 \emptyset$ FOR $I=1$ TO 5：INTEGER\％（I）$=I$ ：STRIN $\$(I)=\operatorname{CHR} \$(64+I):$ SINGLE！（I）$=1 * 3 \varnothing \varnothing$ Øø：DOUBLE（I）＝I $\ddagger 1.5 E+\varnothing 7$ ：NEXT I
MG 70 FOR $I=1$ TO 5：FOR $J=1$ TO 3：IGR\％（I $, J)=I+J: \operatorname{STN} \$(I, J)=\operatorname{CHR} \$(I+64)+C H R$ $\$(J+48): S N G!(I, J)=1 \varnothing \varnothing \# I * J: D B L \#(I$ ，J）$=\mathrm{I} / \mathrm{J}:$ NEXT J, I
OK $8 \varnothing$ END

ATARI TEXTDUMP

Ralph Johnson

Here's a short, simple utility that quickly dumps a GRAPHICS 0 screen to a printer. It works with all 400/800, XL, and XE computers.

I've always wanted the capability to dump a copy of a text screen to my printer. I also wanted this capability available from BASIC. My efforts to find such a program were fruitless. So, the only solution was to write one myself.

There were several requirements I established: 1) It should be fast-written in machine language. 2) It should sit in a relatively safe location in memory, surviving system resets. 3) It should always be ready to do its job, whether called in direct mode or from within a program. 4) It should be easy to use.

The result is "Atari Textdump." You can make your own copy of Textdump by typing in the program listing below. It creates an AUTORUN.SYS file on disk that automatically loads Textdump into memory page 6 (address 1536) when you boot the system from that disk. To call the routine, make
sure your printer is online and enter this statement:

A=USR(1536)

This works in both direct mode or within a program.

If you don't have a disk drive, or if you don't want Textdump to load as an AUTORUN.SYS file, delete lines 10-1000 in Program 1 and substitute this new line 10 :

10 FOR A=1536 TO 1724:READ B:POKE A,B:NEXT A

Again, you can call Textdump as described above in either direct or program mode. You can also convert this version of the program into a module for use in your own programs.

If you like, you can modify Textdump to print a smaller portion of the GRAPHICS 0 screen. Simply POKE the desired number of rows you want to dump into memory location 1613.

For instructions on entering this listing, please refer to "COMPUTE!'s Guide to Typing In Programs" in this issue of COMPUTEI.

Atari Textdump

$\begin{array}{lll}\text { CL } 1 \varnothing \text { CLOSE \# } 1 \\ \text { PB } 2 \emptyset & \text { OPEN \# } 1,8, \varnothing, " D: A U T O R U N ~\end{array}$

EJ $3 \emptyset$ FQR $A=1$ TO 6:READ B:PR INT \#1;CHR\$ (B) ; : NEXT A
IA 40 FOR $A=1536$ TO 1724:REA D B:PRINT \#1;CHR\$(B);: NEXT A
CP 5 Ø CLOSE \# 1
CM 1 øøø DATA $255,255, \emptyset, 6,188$, 6
D6 1 øø2 DATA $1 \emptyset 4,162,8 \varnothing, 169$, $3,157,66,3,169,8,157$, 74,3,169,144
IN 1 øø3 DATA $157,68,3,169,6$, $157,69,3,169, \varnothing$
6F 1 Øø4 DATA $141,143,6,157,7$ 3, 3, 169, 255, 157, 72, 3 , 32, 86, 228, 165
KC 1 øø5 DATA 88, 133, 2ø3, 165, 89, 133,2ø4,162, Ø, 160
㫙 1 ØøG DATA $\emptyset, 24,177,2 \emptyset 3,1 \emptyset$ $5,32,157,147,6,232,2$ 4,165,203,1ø5
EP 1 Øø7 DATA $1,133,203,165,2$ Ф4, 1ø5, $\varnothing, 133,2 \emptyset 4,173$, 143
OB 1 øø DATA $6,2 \emptyset 1,24,24 \emptyset, 52$, 224,4ø, 24ø,4,224,4ø , 208, 217, 169
OL 1 øø9 DATA $155,157,147,6,2$ $38,143,6,162,89,169$, 9

NP $1 \varnothing 1 \emptyset$ DATA $157,66,3,169,14$ $7,157,68,3,169,6,157$, 69,3,169, 9
OL 1 Ø11 DATA $157,73,3,169,25$ $5,157,72,3,32,86$
EJ $1 \emptyset 12$ DATA $228,162, \emptyset, 224$, \emptyset , $24 \varnothing, 173,162,8 \varnothing, 169$, $12,157,66,3,32$
BE 1013 DATA $86,228,96, \varnothing, 8 \varnothing$, $58,155, \emptyset, \emptyset, \emptyset$
LA $1 \varnothing 14$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$ $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$ $, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
CI 1 Ø15 DATA $\varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$, $, \varnothing, \varnothing, \varnothing, 155, \emptyset$

AmigaDOS Batch Files

Charles Brannon Program Editor

AmigaDOS is more than a consoledriven disk operating system. By executing a sequence of AmigaDOS commands stored in a file, AmigaDOS takes on some of the characteristics of a programming language. Whether you want to simplify repetitive disk commands or create personalized custom commands, batch files further extend the range and flexibility of AmigaDOS.

No matter how easy it is to use a program, the most popular programs are those that give users more power. And although a program may have scads of powerful commands, the most powerful programs are those which let users put the commands together in new ways-in effect, to write programs.

Instead of forcing you to always issue commands one at a time, a programmable application lets you create a script of commands to customize the behavior of the program. Whether we're talking about word processing macros, spreadsheet templates, relational database languages, or advanced machine language, programmability is the real key to software power. If you feel limited by a certain range of commands, you can combine the commands in new ways to create personalized features, just as we combine the vocabulary of English words to create a wealth of literature. Why just read when you can write?

Scripis, Sequences, And Batches

AmigaDOS is more than just a disk operating system-it's a programmable system that can process lists of its own commands as well as individual commands. In effect, AmigaDOS is a simple disk-oriented programming language.

A list of AmigaDOS commands can be stored in a disk file variously known as a script, a sequence, or a batch file. The term "batch file" is most commonly used by those who work with PC-DOS, MS-DOS, and CP/M, which are also programmable disk operating systems. To keep things straight, we'll use "batch files" synonymously with "scripts" or "sequences."

Even if you don't program in BASIC or any other language, you may be interested in learning about AmigaDOS batch files. The batch file "language" is simply made up of the same AmigaDOS commands you've probably been using all along (see "Introduction to AmigaDOS," Parts 1 and 2, in the February and March 1986 issues of COMPUTE!). There are also a few AmigaDOS commands designed especially for batch files.

Creating and running batch files is easy. Using a text editor, you just type in a list of AmigaDOS commands. Then you save the list on disk under a filename. To run the batch file, you type EXECUTE filename at an AmigaDOS prompt. AmigaDOS reads the batch file and executes the list of commands, just as if you had typed them one by one yourself.

We won't cover some of the
more advanced features of batch files, useful only to advanced C and machine language programmers. Instead, we'll concentrate on the everyday utility of batch file programming.

A Quick Example

In a moment, we'll show how to create batch files with ED, the AmigaDOS full-screen text editor, but first there's a simpler way to create a short batch file. Enter this line at an AmigaDOS prompt:
copy * to Hello
(Note that AmigaDOS commands can be entered in uppercase or lowercase.)

Although nothing seems to happen, AmigaDOS is waiting for you to enter some lines. We'll use the ECHO command to display a friendly message. ECHO displays any text that follows it within quotation marks, just like the PRINT statement in BASIC. One difference is that if you want to ECHO only a single word, the quotes aren't necessary.

At an AmigaDOS prompt, enter the following text, pressing RETURN after each line:
echo "Hello!"
echo "I am your friend, the Amiga" echo "personal computer."

After the last line, press CTRL\. This key is the one to the left of the BACKSPACE key. CTRLtells AmigaDOS that you're finished, and that it should finish writing and close the file. This key represents EOF, for End Of File.

To confirm that you've typed the file correctly, enter:
TYPE Hello

You should see the same lines you typed. Now you can start this simple program:

EXECUTE Hello

This should print on the screen:
Hello!
I am your friend, the Amiga personal computer.

Using ED

It would be nice to have the Amiga actually speak this greeting. Rather than type in a whole new file, we'll use ED, the screen editor, to make the simple changes we're interested in. Enter:

ED Hello

This runs ED and also loads the batch file named Hello. When you start ED, you can give it the name of any file to edit. If the filename doesn't exist, it will be created; otherwise the file is automatically displayed on the editor screen. (Incidentally, AmigaDOS has another text editor called EDIT, but it's not as easy to use as ED.)

We'll make the Amiga speak the ECHO messages aloud by taking advantage of the system's builtin speech synthesis via the AmigaDOS SAY command (added to AmigaDOS version 1.1). To learn more about SAY, just enter SAY by itself to enter an interactive mode with on-screen instructions.

After you start ED by typing ED Hello, the batch file we previously entered should be on the screen, with the cursor at the beginning of the first line. ED is a fullscreen text editor, so you can move the cursor anywhere within the file (but not past the last line). To insert some text, just start typing. The DEL and BACKSPACE keys-can be used to delete characters.

Move the cursor to the second ECHO line and press RETURN. This inserts a blank line. Cursor up to the blank line and enter:

SAY HELLO!

You don't need to press RETURN at the end of the line, since you already did this to open up a line for typing.

Now cursor to the end of the file and type:
SAY I am your friend, the Amiga personal computer.
(Notice that SAY is the only Amiga-

DOS command that doesn't require you to enclose text containing spaces with quotes.) This is how your screen should look:
echo "Hello!"
say Hello!
echo "I am your friend, the Amiga"
echo "personal computer."
say I am your friend, the Amiga personal computer.

With the cursor at the end of the file, press the ESC key. An asterisk (*) should appear. Press the X key, then RETURN. This exits ED and saves your changes back to disk.

Finally, type EXECUTE Hello to try out your talking batch file.

Although these techniques are sufficient for simple editing, ED has dozens of editing commands. For example, CTRL-B (press CTRL and B at the same time) blanks out and deletes the line the cursor is on. ESC-J-RETURN joins two lines together. Space doesn't permit a discussion of all these commands, but if you like to experiment, refer to the abbreviated ED reference chart accompanying this article.

Starłup-Sequence

A special AmigaDOS batch file, called the startup-sequence, is executed automatically when you boot up an AmigaDOS or Workbench disk by inserting it at the Workbench prompt. Startup-sequence normally just displays a message, then launches the Workbench and ends the command line interface.

To edit this batch file, enter:

ed $s /$ startup-sequence

This runs ED and calls up the file "startup-sequence" from the S subdirectory. This subdirectory, which can also be accessed as the S: device, is a convenient place for batch files. Just as AmigaDOS by default searches for AmigaDOS commands in the C subdirectory, the EXECUTE command first looks for a batch file in the S subdirectory. If AmigaDOS can't find the batch file in this subdirectory, it looks for it in the current directory. So no matter what your current directory is, you can always use your batch file if you place it in the S directory on your startup disk.

When you first load startupsequence into ED, you'll see something like this:

Common ED Commands

Immediate Commands (hold down CTRL and press key):
CTRL-A Insert line at cursor position
CTRL-B Delete current line
CTRL-D Scroll text downward
CTRL-E Move cursor to top or bottom of screen
CTRL-N Delete character at cursor
CTRL-O Delete word or series of spaces
CTRL-U Scroll text upward
CTRL-Y Delete to end of current line
Extended Commands (precede by pressing and releasing ESC):

B	Move cursor to bottom of file		
E/string1/string2/	Exchange string1 to string2		
EQ/string1/string2/	Exchange, but query first		
F/string/	Find string Join current line with		
Q	next line		
T Quit without saving			
text		\quad	Move cursor to top
:---			
of file			

echo "Workbench disk. Release 1.1" echo ""
echo "Use Preferences tool to set date" echo ""
LoadWb
endcli > nil:
Since this message appears every time you start up your disk, you may want to change the ECHO statements for a personalized message. Likewise, if you'd rather use AmigaDOS instead of the Workbench, delete the last two lines. The " $>$ nil:" sequence makes AmigaDOS throw away the output of a command; here, the message "CLI task 1 ending."

Startup-sequence is a good place to put personalized commands. For example, if you like to keep your command directory in RAM for speed and convenience, you could insert these lines above the LoadWb line:
makedir ram:c
copy c to ram:c all quiet
cd ram:c
This copies all of the AmigaDOS commands from the C subdirectory on the floppy disk into a C subdirectory on the RAM disk. It also changes the current directory to the C subdirectory in RAM:, so any AmigaDOS commands you type from then on will be loaded
from RAM: instead of from the floppy. In effect, this turns AmigaDOS into a memory-resident DOS, with all commands intrinsic instead of extrinsic. AmigaDOS responds much faster this way. However, this also uses up quite a bit of memory, so you may want to copy only the commands you use frequently.

Another useful startup action is to set the date and time. You can always do this with the Preferences tool or by opening a CLI and using the DATE command. However, it can be more convenient to enter the date when you first turn on your Amiga, allowing all files subsequently saved to be stamped with the current date and time. Just insert this line into startup-sequence:

date?

The ? operator can be used in place of the parameter of a command. Instead of specifying the date, ? prompts the user to enter the date. It also displays the template for the date command (TIME,DATE, $\mathrm{TO}=\mathrm{VER} / \mathrm{K}:$). If you like, use ECHO to display your own prompt, and > nil: to discard the template:
echo "Please enter the date and time." echo "DD-MMM-YY HH:MM:SS"
date $>$ nil: ?
From then on, whenever you boot up from this disk, you'll respond to the prompt by typing something like this:

27-jan-86 15:12

which automatically sets the system clock.

Variable Parameters

You can also send special options to your batch file. You enter these options on the command line along with the EXECUTE command. Just as with variables in BASIC, you can manipulate these parameters symbolically.

Let's say you'd like a batch file that gives you complete information on a file. It uses LIST to display the information about the file, and TYPE to display the file. You would use a command like EXECUTE SHOW RODEO to display the file RODEO. Use ED SHOW or COPY * TO SHOW to create this batch file:

.KEY name

LIST <name>
TYPE <name>
.KEY (don't forget the leading period) sets up a name for substitution text. Whatever you typed on the same line with EXECUTE is substituted wherever you use <name>. You must use the angular brackets, or LIST and TYPE would look literally for the file "name."

After creating this batch file, type this at an AmigaDOS prompt: EXECUTE SHOW S/STARTUP-
SEQUENCE
The result is the same as if you had typed LIST S/STARTUPSEQUENCE followed by TYPE S/STARTUP-SEQUENCE.

Other AmigaDOS commands let you check to see if the user has entered a specific string and check to see if a file exists. To prevent an error message, we can check to see if the file exists before we use LIST and TYPE:

.KEY name

IF EXISTS <name>
LIST <name>
TYPE <name>
ELSE
ECHO "<name> does not exist!"
ENDIF
Notice the use of IF, ELSE, and ENDIF. Looks like Amiga BASIC, doesn't it? In fact, the AmigaDOS IF-ELSE-END IF commands function very much like BASIC's. When the IF condition is true, AmigaDOS executes the following statements; otherwise the following statements are ignored. ELSE executes the statements following it only if the preceding IF was false. ENDIF cancels conditional processing and returns to executing all commands.

Any Parameters Missing?

Here's how to use the IF EQ option to test for the existence of a com-mand-line parameter. If there is no parameter, <name> is null, so " $<$ name $>$ " " is simply " z ". We use NOT to reverse the test. If the parameter "<name>z" is NOT equal to " z ", then we must have a command line parameter. (We can't just test IF <name> NOT EQ ${ }^{\prime \prime \prime}$ ', since EQ wants two parameters, and the null string "'" is not a parameter, but the lack of one.)

.KEY name

IF <name>z NOT EQ z
LIST <name>
TYPE <name>
ELSE
ECHO "You didn't give me anything to

SHOW."
ENDIF
Although you can't use leading spaces in the actual batch file, it's easier to follow the IF-ENDIF structures when you use indentation. Just don't type in the leading spaces. This version of the batch file SHOW checks both for the existence of the filename and for the presence of the filename parameter:

.KEY name

IF <name>z NOT EQ z
IF EXISTS <name> LIST <name>
TYPE <name>
ELSE
ECHO "<name> does not exist!"
ENDIF
ELSE
ECHO "You didn't give me anything to SHOW."
ENDIF
You can use more than one parameter in the .KEY statement, just as many commands, such as DATE, accept two inputs.

If the user doesn't enter anything for the parameter, you can assign a default value using either .DEF or \$. If you use .DEF, the default phrase is used throughout the batch file. In this example, SHOW displays itself if you don't give it a filename.

.KEY name

.DEF s/show
LIST <name>
TYPE <name>
You can use \$ to substitute a default value only for the current substitution. Several batch commands may use the value in different ways, so each command may have its own default value. In the following example, LIST displays the whole directory if <name> is null, but TYPE types the file "TEMP" if <name> is null:
.KEY name
LIST <name>
TYPE <name\$temp>

Labels And Branching

You can jump forward to a label with the SKIP command. You'd typically use SKIP along with an IF condition if you want to skip over a block of statements that shouldn't be executed if the IF was true. You declare the label with LAB. SKIP can't skip backward, only forward to a LAB statement. You can usually use IF and ELSE to accomplish the same thing, though.
.KEY name
IF exists <name>
TYPE <name>
SKIP ToMyLou
ENDIF
ECHO "<name> doesn't exist."
LAB ToMyLou
echo "Finished."
An EXECUTE command can execute another batch file, or even itself. This permits backward looping to some degree. Nested batch files can be quite handy. You can test and debug individual batch programs, then execute them together from a master execute script:
EXECUTE Greeting
EXECUTE GetDate
EXECUTE Assignments
The individual files could themselves contain other EXECUTE references.

ASSIGNing Shortcuts

If you're using EXECUTE a lot, you may grow weary of typing it. You can always rename EXECUTE to something short like x , but other batch programs may contain EXECUTE statements, requiring you to rename it back. Instead, you can use the ASSIGN command to assign any filename to a device name.

ASSIGN x: sys:c/EXECUTE

You can now use x : whenever you want to use the EXECUTE command. (The prefix sys:c/ makes sure that EXECUTE can be found no matter what directory you're in.)

The device name you create should not conflict with an existing one. To get a list of the current assignments, just type ASSIGN. You may want to ASSIGN d: c:list for a convenient and quick shorthand for directories (c: is synonymous with the C directory). You can then just type d: to get a LIST.

ASSIGN can be so handy for this kind of thing that you'll probably want to include your own sequence of ASSIGN commands within startup-sequence. If you put your ASSIGN statement within startup-sequence, you'll get these assignments for every session. Just remember that ASSIGN can only be used to attach a device name to a particular filename. ASSIGN d: "c:list quick" doesn't seem to work. Although LIST is a filename in the c directory, the "quick" parameter is not part of the filename.

Apple Disk Duper

Jason Coleman

Here's a program that lets you duplicate Apple disks quickly and conveniently. Though it can copy disks formatted for either DOS 3.3 or ProDOS, it must be run with ProDOS. It also requires 128 K RAM.

Everyone knows the value of backing up disks. But how many of us take the time to make archive copies of important disks on a regular basis? "Apple Disk Duper" simplifies the process by making it possible to copy an entire disk in only two passes. It works on one- or two-drive systems with at least 128 K RAM.

After typing in the program and saving a copy, simply run it and follow the instructions on the screen. Apple Disk Duper prompts you every step of the way.

Although the program runs only under ProDOS, it can copy DOS 3.3 disks as well as ProDOS disks. It works with any Apple Disk II-compatible drive, but not with the new $31 / 2$-inch UniDisk.

Apple Disk Duper

For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing in Programs" in this issue of COMPUTE!.
74 1øø FOR $X=768$ TO 785: READ Y: POKE X,Y: NEXT
AA $11 \varnothing$ DATA $32, \varnothing, 191,129,9,3,176$, 249, 96, 3, 96, ஜ, 32, ந, ஜ, ஜ, ஜ , \varnothing,
$5812 \emptyset$ TEXT : HOME
47 13ø VTAB 12: HTAB 12: PRINT " DISK DUPLICATOR"
AA 140 VTAB 20: HTAB 9: PRINT " (HIT ANY KEY TO BEGIN) "; : POKE - 16368, Ø: GET ST\$

4E $15 \emptyset$ HOME
IC $16 \emptyset$ VTAB 12: INPUT "ENTER NUM BER OF DRIVES: "; ND\$:ND = VAL (ND\$)
CB 17ø IF ND < > 1 AND ND < > 2 THEN 39ø
F1 18ø HDME : VTAB 12: PRINT "PU T SOURCE DISK IN DRIVE $1 "$
7A $19 \emptyset$ IF ND $=2$ THEN VTAB 17: P RINT "PUT DESTINATION DIS K IN DRIVE2"
D6 2øø VTAB 2ø: POKE - 16368, ø: PRINT "PRESS ANY KEY TO M AKE COPY.": GET AK\$
$9121 \varnothing \mathrm{FB}=\varnothing: M X=3$
91220 FOR $N=1$ TO MX
C4 230 POKE 771,128
11 24ø POKE 78ø, 32: POKE 778,96
1E $25 \emptyset$ FOR I $=F B T O F B+55$
$2526 \emptyset \mathrm{P} 2=\mathrm{INT}(\mathrm{I} / 256): \mathrm{P} 1=\mathrm{I}$ -256 P2
DE $27 \emptyset$ POKE 782,P2: POKE 781,P1
$5028 \emptyset$ CALL 768: POKE 78ø, PEEK (78Ø) + 2: NEXT I
$3429 \varnothing$ IF N < MX THEN PRINT CHR $\$$ (4) "BSAVE/RAM/COPY"N", A\$ 2øøø, L\$6FFF":FB $=F B+56$
62 3øø NEXT N
28 31ø IF ND $=1$ THEN VTAB 12: P RINT "PUT DESTINATION DIS K IN DRIVE 1": GET AK\$
ED $32 \emptyset$ FOR $N=M X$ TO 1 STEP - 1
F8 33Ø POKE 771, 129: POKE 78Ø, 14 2
$1534 \varnothing$ IF ND $=2$ THEN POKE 778, 2 24
$6835 \emptyset$ IF N < MX THEN PRINT CHR\$ (4) "BLOAD/RAM/COPY"; N

79 36ø FOR I $=F B+55 \mathrm{TO} \mathrm{FB}$ STE $P-1: P 2=I N T(I / 256):$ $P 1=I-256$ * $P 2$
DF $37 \emptyset$ POKE 782, P2: POKE 781,P1
71 38ø CALL 768: POKE 78Ø, PEEK (78Ø) - 2: NEXT I
0B $39 \emptyset \mathrm{FB}=F B-56$
63 4øø NEXT N
IB 419 IF $M X=2$ THEN $44 g$
$60420 \mathrm{MX}=2: F B=168$: $\mathrm{IF} N D=$ 1 THEN VTAB 12: PRINT "PU T SOURCE DISK IN DRIVE 1 ": GET AK\$
16430 GOTO 220
67 44ø HOME : UTAB 12: HTAB 15: INVERSE : PRINT "COPY COM PLETE": NDRMAL : END ©

Smooth-Scrolling Billboards For IBM

Paul W. Carlson

Do you want to leave a message on your computer screen that's sure to be noticed? Or would you like to create an eye-catching display in a shop window that effectively communicates your message to the public? The programs presented here let you easily produce smooth-scrolling billboards on the 40- or 80-column screen of your IBM PC (with color/graphics adapter and BASICA) or PCjr (with Cartridge BASIC).

To be really effective, a billboard program must smoothly scroll its message across the screen. Programs that jerk the letters across the screen are very hard on the eyes. The speed necessary for smooth scrolling can be achieved only by avoiding the routines in the BIOS (Basic Input/Output System) and writing directly to video memory. However, this can cause a problem when text is used in graphics modes-writing directly to video memory disrupts the character generator. As a result, small flickering lines appear on the screen (for more details, see COMPUTE! Books' Mapping the IBM PC and PCjr, pages 193-198).

This problem can be solved by writing to video memory only during the time when the monitor's raster beam is in vertical retrace, while the display is idle. On some IBM-compatible computers (the

Compaq, for example), the problem can be avoided by writing to an inactive page of video memory and then making it the active page. The programs following this article make use of both methods.

With some computer and graphics card combinations, a few flickering lines remain at the very top of the screen when running the 80 -column billboard program. These could have been eliminated, but only at the expense of speed and smoothness. About 300 characters can be written to video memory during the vertical retrace period, and 640 characters (eight lines of 80) need to be written for each screen update. Therefore, to eliminate the flickering lines entirely, we'd have to wait for three vertical retrace periods. These lines are less objectionable than the loss of smoothness caused by waiting for an extra retrace period.

Creating Billboards

Program 1 is for creating billboards on the 40 -column screen, and Program 2 is for the 80 -column screen. Both programs are extremely easy to use. After typing RUN, simply enter any text string at the prompt. If you want your message to contain a comma, enclose the entire text string in double quotes. When you press ENTER, the message enlarges and begins scrolling. It can be stopped at any time by pressing the Q key.

The programs can be customized to suit your taste. The character that forms the large letters can be changed from a solid block to another character by changing the DATA statement identified in the listing. For example, to change the solid block to a smiling face, change the $D B$ to 02 in line 300 . You can also modify the scrolling speed by changing the two bytes identified in the listing (the second byte has 256 times the effect of the first byte).

How It Works

The techniques used here can be applied to any program that must update a text screen very rapidly, so a brief description of the steps involved may be useful.

1. Set up a buffer in memory equal in size to the block of characters to be written to the screen (8×80 for the 80 -column billboard).
2. For each input character, access the character PEL map in ROM at FFA6:OE. By columns, depending on whether or not a bit is set, put the code for a solid block or a space into the rightmost column of the buffer array.
3. When a column is complete, scroll the whole buffer one column to the left.
4. Wait for the beginning of a vertical retrace period, then copy the buffer to the inactive screen.
5. Make the inactive screen the active screen.

6．Do the next column in step 2 ．

For instructions on entering these listings，
please refer to＂COMPUTE！＇s Guide to Typing In Programs＂in this issue of COMPUTEI．

Program 1：40－Column Billboards

En $1 \emptyset$ ，Forty Column Scralling Billboard
J0 20，
LJ $3 \emptyset$＂Press the＂Q＂key to qu it．
JA 4の，
DI $5 \emptyset$ DEF SEG：CLEAR，\＆H3FFø：$N=\& H 4$ 6øA
Q $6 \emptyset$ FOR $J=\emptyset$ TO 249：READ A $\$$
BB $7 \emptyset$ POKE $N+J$ ，VAL（＂$\& H$＂$+A \$$ ）：NEXT
FA $8 \emptyset$ KEY OFF：CLS：SCREEN ø：WIDTH $8 \emptyset$
6L 96 INPUT＂Text string＂；T\＄：T\＄＝T \＄＋＂＂ $\mathrm{N}=\& \mathrm{H} 4$ Øøø：$K=L E N(T \$):$ FOR $J=$ 1 TO K
LP 11ø POKE N ，ASC（MID\＄（T\＄，J，1））： $\mathrm{N}=\mathrm{N}+1$
OA $12 \emptyset$ NEXT：POKE N，Ø：CLS：WIDTH 4 Ø
JL $13 \emptyset$ LOCATE，，$\emptyset: N=\& H 46 \emptyset A:$ CALL N
CC 14ø WIDTH 8ø：CLS：KEY ON：END
E6 $15 \emptyset$ DATA Ø6，8B，EC，8C，D8，8E，Cø ，B9
EN $16 \emptyset$ DATA $8 \emptyset, \emptyset 2,8 D, 3 E, \emptyset 8,41,1 E$ ，BB
KK $17 \emptyset$ DATA øø，B8，8E，D8，BE， $3 \varnothing, \emptyset 2$ ，F3
BB $18 \emptyset$ DATA A4， $1 F, B 8, A 6, F F, 8 E, C \emptyset$ ，BD
$6619 \varnothing$ DATA $36, \emptyset \emptyset, 4 \varnothing, 8 A, 1 C, 46,8 \emptyset$ ，FB
JK 2 Øø DATA Øø，74，F4，B7，Øø，D1，E3 ，D1
KI $21 \varnothing$ DATA E3，D1，E3，83，C3，øE，B9 ，$\varnothing 8$
FK $22 \emptyset$ DATA $\curvearrowleft \varnothing, 33, F F, 26,8 A, 67,88$ ， 85
6s $23 \emptyset$ DATA $ø \emptyset, 41,47,43, E 2, F 5,56$ ，$\varnothing 6$
DK $24 \varnothing$ DATA $\mathrm{B9}, \varnothing 9, \varnothing \varnothing, 51,33, F F, B 9$ ，$\square 8$
FI 25ø DATA øø，BB，4E，øø，Dø，A5，øø ， 41
MK $26 \emptyset$ DATA $72, \emptyset 4, B \emptyset, 2 \emptyset, E B, \varnothing 2, B \emptyset$
DF 279 ，The following value is the
JF 28ø ，ASCII code of character that
HE 290，forms the large text．
HP $3 \emptyset \emptyset$ DATA DB
JH $31 \emptyset$ DATA 88,87, ø8，41，83，C3， $5 \emptyset$ ， 47
DN 32ø DATA E2，EA，EB，$\varnothing 2, E B, B 5,8 C$ ，DB
CF $33 \varnothing$ DATA $8 E, C 3, F C, B 8, \emptyset 8, \emptyset \emptyset, 8 D$ ， 36
EK 34ø DATA øA，41，8D，3E，øB，41，B9 ，4E
FC 35ø DATA øø，F3，A4，46，46，47， 47 ， 48
MF $36 \emptyset$ DATA 75，F4，Aø，Ø8，46，34，Ø1 ，A2
 ， 75
60 38ø DATA ø5，B8，øø，B8，EB，Ø3，B8 ， $8 \varnothing$
6E $39 \varnothing$ DATA $B 8, B E, C \emptyset, B 9, A \emptyset, \emptyset \emptyset, B F$ ，3
HK 4 ■ø DATA Ø2，8D，36，ø8，41，BA，DA ， 03
OK $41 \varnothing$ DATA EC，$A 8, \varnothing 8,75, F B, E C, A 8$ ，$\varnothing 8$

6C $42 \emptyset$ DATA $74, F B, F 3, A 5, E B, ~ Ø 4, E B$ ，8B
JE $43 \varnothing$ DATA EB，AA，B9，$A \emptyset, \emptyset \emptyset, B A, D A$ ， 93
OA 44 D DATA EC，$A B, \emptyset 8,75, F B, E C, A 8$ ，ø8
IJ $45 \emptyset$ DATA $74, F B, F 3, A 5,58, C D, 1 \emptyset$ ，B9
FF 46ø ，The following two value 5 are the
FJ $47 \emptyset$ ，time delay constant in the order
KH $48 \emptyset$ ，least sig．byte，most s ig．byte．
CP $49 \varnothing$ DATA Ø1，øø
AG $5 \emptyset \emptyset$ DATA E2，FE，59，E2，DF，$\varnothing 7,5 E$ ，B4
AG $51 \emptyset$ DATA $\emptyset 6, B 2, F F, C D, 21,3 C, 71$ ， 74
MN $52 \emptyset$ DATA $\emptyset 6,3 C, 51,74, \emptyset 2$ ，EB，CF ，8B
 ，CB

Program 2：80－Column Billboards

KF 1ø ，Eighty Column Scrolling Billboard
Ј0 2ø ，
IJ $3 \varnothing$ ，Press the＂Q＂key to qu it．
JA $4 \varnothing$ ，
DI $5 \varnothing$ DEF SEG：CLEAR，\＆H3FF $\curvearrowleft: N=\& H 4$ 6ஏA
HC 6Ø FOR J＝ø TO 25ø：READ A\＄
BB $7 \varnothing$ POKE $N+J$ ，VAL（＂\＆H＂＋A\＄）：NEXT
FA $8 \emptyset$ KEY OFF：CLS：SCREEN $\emptyset: W I D T H$ $8 \emptyset$
6L $9 \varnothing$ INPUT＂Text string＂；T\＄：T\＄＝T \＄＋＂$=$ H4øøø：$K=L E N(T \$):$ FOR $J=$ 1 TO K
LP 116 POKE $N, \operatorname{ASC}(M I D \$(T \$, J, 1)):$ $\mathrm{N}=\mathrm{N}+1$
HD $12 \emptyset$ NEXT：POKE N，$\square: C L S$
JL $13 \emptyset$ LOCATE，，$\emptyset: N=\& H 46 \emptyset A:$ CALL N
CC $14 \emptyset$ WIDTH 日ø：CLS：KEY ON：END
E6 $15 \emptyset$ DATA Ø6，8B，EC，8C，D8，8E，Cø ，B9
BH $16 \emptyset$ DATA øø，ø5，8D， $3 E, ~ Ø 8,41,1 E$ ，B8
CP $17 \emptyset$ DATA $\emptyset \emptyset, B B, 8 E, D 8, B E, 6 \emptyset, \emptyset 4$ ，F3
BB $18 \emptyset$ DATA A4， $1 F, B 8, A 6, F F, 8 E, C \emptyset$ ，BD
$6619 \emptyset$ DATA 36，øø，4ø，8A，1C，46， $8 \varnothing$ ，FB
JK 2øø DATA øø，74，F4，B7，øø，D1，E3 ，D1
KI $21 \varnothing$ DATA E3，D1，E3，83，C3， $\operatorname{bE}, \mathrm{B} 9$ ，$\varnothing 日$
FK $22 \emptyset$ DATA $\boxed{ } 2,33, F F, 26,8 A, ~ 67,88$ ， 85
6S 236 DATA $\boxed{6}, 41,47,43, \mathrm{E} 2, \mathrm{~F} 5,56$ ，$\square 6$
 ，$\boxminus 8$
KI $25 \emptyset$ DATA øø，BB， $9 E, \varnothing \varnothing, D \varnothing, A 5, \emptyset \varnothing$ ， 41
HK $26 \emptyset$ DATA $72, \emptyset 4, B \emptyset, 2 \emptyset, E B, \emptyset 2, B \emptyset$
DF $27 \emptyset$ ，The following value is the
JF 28ø，ASCII code of character that
HE 290，forms the large text．
HP $3 \varnothing \square$ DATA DB
6N $31 \varnothing$ DATA $88,87, \varnothing 8,41,81, C 3, A \varnothing$ ，$ø \varnothing$
J0 $32 \emptyset$ DATA $47, E 2, E 9, E B, \emptyset 2, E B, B 4$ ，BC
$6 E 33 \varnothing$ DATA DB，BE，CЗ，FC，BB，øB，øø ，BD

NE $34 \emptyset$ DATA 36, ØA， $41,8 D$, ЗE，ø8， 41 ，B9
CP 35ø DATA 9E，Øø，F3，A4，46，46， 47 ，47
PJ $36 \emptyset$ DATA $48,75, F 4, A \emptyset, 08,46,34$ ， 01
JD $37 \emptyset$ DATA $A 2, ø 8,46, B 4, \varnothing 5,5 \emptyset, A 8$ ，Ø1
6 K 38ø DATA 75， $55, \mathrm{BB}, \emptyset \emptyset, \mathrm{B8}, \mathrm{~EB}, \emptyset 3$ ，B8
쌔 39 DATA $\boxed{\square}, \mathrm{B9}, 8 \mathrm{BE}, \mathrm{C}, \mathrm{B9}, 4 \emptyset, \emptyset 1$ ，BF
NG 4øø DATA 6ø，Ø4，8D，36，ø8，41，BA ，DA
DF $41 \emptyset$ DATA $93, E C, A 8, ~ \emptyset 8,75, F B, E C$ ，AB
KO $42 \emptyset$ DATA $\varnothing 8,74, F B, F 3, A 5, E B, \emptyset 4$ ，EB
HC $43 \emptyset$ DATA $8 A, E B, A A, B 9,4 \varnothing, \emptyset 1, B A$ ，DA
EL $44 \varnothing$ DATA $93, E C, A 8, ~ ø 8,75, F B, E C$ ，AB
FI $45 \emptyset$ DATA $68,74, F B, F 3, A 5,58, C D$ ，1ø
AF $46 \emptyset$ DATA B9
FH 479 ，The following two value s are the
FL 48ø，time delay constant in the order
LJ 490 ，least sig．byte，most s ig．byte．
BO $5 \emptyset \emptyset$ DATA $\emptyset 1$ ，øø
BI 51ø DATA E2，FE，59，E2，DF， $67,5 E$ ，B4
BI $52 \emptyset$ DATA $\emptyset 6, \mathrm{~B} 2, \mathrm{FF}, \mathrm{CD}, 21,3 \mathrm{C}, 71$ ， 74
MP $53 \emptyset$ DATA $\boxed{66}, 3 C, 51,74, \boxed{ } 2, E B, C F$ ，BB
FB 54ø DATA E5，Ø7，B8，Øø，Ø5，CD， $1 \varnothing$ ，CB

COMPUTE！ TOLL FREE
 Subscription Order Line 1－800－247－5470

In IA 1－800－532－1272

	STATE－OF－THE－ART MAGNETIC MEDIA			
	5 $1 / 4^{\prime \prime}$ DISKETTES			
OTY	50	100	500	1000
SSD	． 59	． 56	． 52	49
DD	64	61	． 57	． 54
Library Case Holds 15 Diskettes，Only ．．$\$ 1.00$ ！ plus 50 S SH 100\％ERROR FREE－LIFETIME WARRANTY Min．order $\$ 25.00$ ．Add 10% for less than 50 diskettes．Shipping and Handling：$\$ 4.00$ per 100 ties．C．O．D．add $\$ 4.00$ Cash or certified check．				
Precision Data Products Outside Michigan $1-800-25 \mathrm{~K}-002 \mathrm{x}$				

Commodore 64 Screen Genie

James A. Ledger

This thoughtfully designed utility helps you draw complete screens using character graphics. When you're finished, it writes a complete BASIC routine to recreate the graphics screen. The program runs on any Commodore 64 (or 128 in 64 mode) with either disk or tape.
"Commodore 64 Screen Genie" is both a screen editor and a program generator. With it, you can quickly and easily draw backgrounds for games, colorful title screens, or just pages of instructions. It offers a wealth of editing commands for designing a text or graphics character screen in normal, multicolor, or extended background mode. Then, almost instantly, it can write a BASIC routine to recreate that screen. This new routine is merged with whatever program is in memory. Since Screen Genie takes up no BASIC program space, it can be used with many other utilities such as the DOS Wedge, "TurboDisk," or "MetaBASIC."

Screen Genie is written entirely in machine language, so you'll need to enter it with the MLX machine language entry program found elsewhere in this issue. Follow the MLX instructions closely; here are the addresses you'll need for MLX:
Starting address: 0801
Ending address: 1D10

Built-In Help Screen

Screen Genie loads and runs like a normal BASIC program. Once you run it, however, the program
breaks into several modules which move to various places, leaving the BASIC program space completely free (more on this process later).

The first thing you'll see is a help screen showing all of the Screen Genie commands. Fortunately, you don't have to memorize all the commands shown here. Since the help screen is always available, the only key sequence you need to remember is CTRL-H (hold down CTRL and press H). Selecting any command from the help screen returns you to the work screen and performs that command. Pressing any other key simply returns you to the work screen. Of course, all of the commands are also available directly from the work screen.

The help screen serves another purpose by indicating which modes and cursor functions are selected. For instance, if you select the Paint cursor function by pressing the f3 function key, a white arrow appears next to that option on the help screen.

Once you enter the work screen, almost all of the keys work as they normally do-text and graphics characters can be typed in whatever color you like. However, you may not type a quotation mark, insert a character by pressing SHIFT-INST/DEL, or break out of the program by pressing RUN/ STOP-RESTORE. The delete key (DEL) is not disabled, but works in a slightly different way: It erases the character at the cursor position and moves the cursor one space left, but it doesn't drag any characters on the right with it.

Finally, to prevent the screen from scrolling, you are not allowed to type anything in the bottom right corner. Instead, this space is used to show the current color for the characters you're typing. That's a handy feature, since the cursor itself is no longer a blinking box. Instead, it's a blinking black and white underline.

Immediate Commands

Screen Genie's commands are divided into four groups: immediate commands, cursor functions, screen modes, and color selection. Here is an explanation of the immediate commands:
CTRL-H (Help). Display help screen.
CTRL-T (Top clear). Clear from the top of the screen to the current cursor position.
CTRL-B (Bottom clear). Clear from the bottom of the screen to the current cursor position.
CTRL-M (Move). Move a block of characters from one screen location to another. Before you can move a block, you must first define its upper-left and lower-right corners. Press CTRL-M, then place the cursor on the upper-left corner of the block you want to move, and press RETURN. Move the cursor to the lower right corner of the block, then press RETURN a second time. Now the block is defined. To move it elsewhere on the screen, move the cursor to the place where you want to put the upper-left corner of the new block, then press RETURN. The contents of the new area are replaced by the contents of the defined block (note that the original
area is not disturbed). The Move command does not permit you to place the new block in any position that would overlap a screen border; all of the new block must fit inside the screen.
CTRL-Z (Memorize). Memorize the current screen by saving its contents in a memory buffer. A saved screen can be restored with CTRL-O.
CTRL-O (Oops). Swap the current screen with whatever is stored in the buffer. Pressing it again swaps it back. Besides restoring the screen after a manual save (CTRL-Z), this command can also undo any screen clear or move command.
CTRL-P (Program). Write a series of BASIC program lines to recreate the screen you've designed. These lines, beginning with the line number you choose, are merged with whatever BASIC program is in memory, if any. This feature performs a true merge, rather than simply tacking program lines onto the end of the current program. However, it does not replace any existing lines. If the merge operation would replace an existing program line, Screen Genie displays a message and gives you a chance to choose a new beginning line number.

The Program option also lets you add a line to set specific background and border colors. Likewise, if you're in extended background or multicolor mode when you choose this feature, you're given the option of adding lines that perform the setup for the current mode.

Finally, you have the option of adding a program line that waits for the user to press any key. This is useful for multiple pages of instructions, and so forth. Just be sure to include a prompt such as PRESS ANY KEY TO CONTINUE somewhere on the screen. If you choose this option while in extended background or multicolor mode, you may also add a line to turn the mode off after a key is pressed.

The default setting for all Program options is yes. Pressing any key other than Y or RETURN at the prompt selects no. If you have two or more sequential screens that use the same colors or mode, then you need only set these up on the first screen and turn the respective
mode off on the last screen.
CTRL-X (Exit to BASIC). This lets you save, load, and edit BASIC programs as usual. Screen Genie is designed so that you can exit to BASIC and later reactivate the utility without disturbing a BASIC program in memory. To reactivate Screen Genie, just type GENIE and press RETURN.

Under ordinary circumstances, pressing RUN/STOP-RESTORE does not disable Screen Genie. If you disable it in some other way, type SYS 50800 and press RETURN to start it up again. When you reenter Screen Genie, the work screen contains whatever was on the screen when you left BASIC: Press CTRL-O immediately to recall what you were working on at the time of your last exit.

Since the GENIE command works in program mode as well as direct mode, you can edit a previously designed screen by inserting the word GENIE just after the last PRINT statement, and then running only that portion of the program that displays the screen. For example, if the routine that recreates your screen uses lines 500-525, then you could add GENIE to the end of line 525 (or the beginning of line 526) and type RUN 500. You'll need to give the new screen a different beginning line number, and then delete the old routine when you exit. (Don't forget to remove the GENIE command from the program when it's finished.)

Modes

In addition to ordinary text mode (what you see when you turn on the 64), Screen Genie lets you work in extended background color mode or multicolor mode, or replace the usual character set with a custom-defined character set of your own. Consult the Commodore 64 User's Guide for additional information on how to use these modes.
CTRL-K (Extended background). This mode permits each character to have any of four different background colors, but lets you use only the first 64 characters of the character set.
CTRL-C (Multicolor). Since the ordinary character set looks quite strange in multicolor mode, this
mode will most likely require a custom character set. It cannot be used at the same time as extended background mode; selecting one mode turns the other off.
CTRL-U (User-defined characters). Selecting this mode causes the 64 to use a custom character set. Only the uppercase/graphics character set is available in this mode. Before choosing this option, you must store the character definitions in memory beginning at location 61440. Note that this configuration is only needed while you're editing the screen with Screen Genie. Once the screen design is done, and you have generated a BASIC routine to recreate the screen (see the Program option above), you can change your program to use whatever character set and memory locations you want.

Custom character mode demands a little more effort on your part. As in other cases, Screen Genie's Program option generates a complete routine with all of the necessary PEEKs, POKEs, and PRINTs needed to reproduce the screen. However, it's your job to put the custom character definitions in memory, decide on a location for the screen, and perform the extra POKEs needed to set everything up.

Cursor Functions

This group of options gives you additional control over the drawing cursor. They are selected by pressing one of the odd-numbered function keys. Any or all of these may be turned on at one time; however, if the Draw function (f1) is active, it takes precedence over the other three.
f1 (Draw with the cursor). This option lets you draw with any character. There are two ways to select the drawing character. You can either move the cursor to the desired character and press f1, or press f1 and type the character you want to use. To erase, press the space bar.
f3 (Paint with the cursor). Select a painting color just as you would normally change the cursor color in BASIC. Press CTRL or the Commodore key along with a number key from 1-8.
f5 (Change case with the cursor). This is very useful in extended
background mode where a shifted character has a different background color.
f7 (Reverse characters with cursor). This option is also handy in extended background mode, where reversing a character gives it a different background color. When you reverse a space character in normal mode, it has whatever color happens to be stored in color mem-ory-unless the color happens to be the same as the background color, in which case it is changed to the current text color in order to make it visible. You can guarantee the color of reversed spaces by turning on the Paint function at the same time.

Color Control

The even-numbered function keys provide you with complete color control as follows:
f2. Cycle the border color (memory location 53280).
f4. Cycle the normal background color (location 53281).
f6. The menu lets you cycle background color registers one, two, and three (these color registers are used only in extended background or multicolor mode).
f8. Cycle the color of every character that is the same color as the character under the cursor. If you continue to press f8, Screen Genie remembers which characters you started changing and cycles only those characters, rather than switching to new ones each time. As soon as you press any other key, however, these characters are forgotten.

Compatibility

Screen Genie is designed to coexist with other Commodore 64 utilities as peacefully as possible. To minimize memory conflicts, nearly all of its program code and workspace areas reside in the hidden RAM under the 64's BASIC ROM, Kernal ROM, and I/O address space. Even so, some not-so-hidden RAM had to be used. The memory locations from 50800-52223 (\$C670-\$CBFF) are used for links to the system, interrupt-driven routines, sprite shapes, and screen memory. This still leaves locations 49152-50799 (\$C000-\$C66F) free for programs such as "TurboDisk," and locations

52224-53247 (\$CC00-\$CFFF) free for programs such as the DOS Wedge. Programs which reside in the upper BASIC program area, such as "MetaBASIC," will not be affected at all.

If you want to use other utilities with this program, install them before you load Screen Genie. There is one minor quirk when using Screen Genie with MetaBASIC. Screen Genie wedges itself in through the BASIC error vector at 768-769, which is reset by some of the commands in MetaBASIC. No harm is done when this occursyou'll just have to reenter Screen Genie with SYS 50800 rather than the more convenient GENIE command.

The "Screen Genie" screen editor/ program generator makes it easy to create graphic screens like this and incorporate them in your own Commodore 64 BASIC programs.

Screen Genie For Commodore 64

Please refer to the "MLX" article in this issue before entering the following listing.
Ø801:18 Ø8 ØA Øø 9E 32 3Ø 37 B5 ø8ø9:34 $\begin{array}{llllllll} & 3 A & 53 & 43 & 52 & 45 & 45 & 4 \mathrm{E} \\ \mathrm{E} \varnothing\end{array}$ Ø811:2Ø $47 \begin{array}{llllllll}45 & 4 \mathrm{E} & 49 & 45 & \text { øø Øø } & \mathrm{EF}\end{array}$ Ø819:øØ A9 Ø4 85 ØE A9 ØD $85 \quad 23$ Ø821: ØF A9 Øø 85 10 A9 AØ 8569 Ø829:11 A2 ØF AØ ØØ 88 B1 ØE E9 Ø831:91 1Ø CØ ØØ DØ F7 E6 ØF 69 Ø839:E6 11 CA 30 Ø6 DØ EE AØ 4F Ø841:88 DØ EA AØ 8Ø B9 8B 1C 4 F Ø849:99 6F C6 88 DØ F7 AØ ØØ ØB Ø851:98 99 Øø C7 88 DØ FA A9 B7 Ø859:FF 8D 15 C7 AØ 3 F 99 4061 Ø861:C7 88 1Ø FA AØ 15 A9 CØ 96 Ø869:99 8Ø C7 $88 \quad 88 \quad 88$ 10 $\mathrm{F} 8 \quad 67$ Ø871: A9 FF 8D 8Ø C7 8D 83 C7 53 Ø879:8D D2 C7 8D D5 C7 AØ ØF F4 ஏ881:A9 Ø3 99 CØ $\mathrm{C7} 188 \quad 88 \quad 88 \quad 60$ Ø889:10 F8 78 A9 $22 \quad 85$ Ø1 A9 5C Ø891: DØ AØ EØ A2 1020 EF AA Ø4 Ø899: A9 $26 \quad 85 \quad 01 \quad 58 \quad 2 \sigma \quad 78$ AB A8 Ø8A1:18 20 92 A4 A9 Ø1 $2 \emptyset$ CF C3 Ø8A9: AA A9 ØØ AD 11 DØ 4829 D9 Ø8B1: EF 8D 11 Dø A9 Ø9 A2 ø9 øC Ø8B9:2Ø 9B A5 38 2Ø 92 A4 68 F5 Ø8Cl:85 48 2ø C9 AA A9 17 A2 14 Ø8C9:ØA $2 \emptyset$ 9B A5 A9 C8 AØ B8 1F Ø8D1:A2 Ø4 2Ø EF AA A9 D8 AØ 85

Ø8D9: BC A2 Ø4 $2 \emptyset$ EF AA A9 E1 D2 Ø8E1:A2 Ø9 $2 \emptyset$ 9B A5 A9 ØØ 8D A4 Ø8E9:Ø1 Ø8 8D Ø2 Ø8 A9 Ø3 85 Cø Ø8F1:2D 85 2F 85 31 A9 $\emptyset 8 \quad 85 \mathrm{FD}$ Ø8F9:2E 85 3Ø $8532 \mathrm{AD} 11 \mathrm{D} \mathrm{\emptyset} 1 \mathrm{C}$ Ø9ø1:ø9 10 8D 11 DØ 4C 39 A4 2D Ø9ø9:93 ØD ØD $2 \varnothing$ 2Ø 1C 12 Ø2 63 9911:ø8 2Ø 2A 2A 2A $20 \quad 57$ 4F E6 Ø919:52 $4 \mathrm{4B}$ 2D $53 \quad 43 \quad 5245$ Ø921:4E 2Ø 2A 2A 2 A Ø2 ø8 $2 \emptyset$ D3 Ø929:92 Ø2 Ø5 ØD Ø2 Ø4 2Ø 1E F4
 Ø939:54 $45 \begin{array}{llllllll}52 & 2 \emptyset & 41 & 46 & 54 & 45 & 24\end{array}$ Ø941:52 20 2ø $45 \quad 58 \quad 49 \quad 54 \quad 2 \emptyset \quad 54 ~ E 2$ Ø949:4F $2 \emptyset \quad 42$ 41 $53 \quad 49 \quad 43$ ØD \quad BA Ø951: ØD Ø2 $\quad \emptyset 4 \quad 2 \emptyset \quad 54 \quad 59 \quad 5 \emptyset \quad 45 \mathrm{DA}$ Ø959:2Ø 212 2ø $47 \quad 45 \quad 4 \mathrm{E} \quad 49 \quad 45$ B3 Ø961:2Ø 92 2ø 41 4E $44 \quad 2 \emptyset \quad 5 \emptyset \quad 54$ Ø969:52 $45 \begin{array}{llllllll}53 & 53 & 20 & 52 & 45 & 54 & \mathrm{BE}\end{array}$ Ø971:55 52 4E ØD ØD Ø2 Ø4 $2 \emptyset \quad \mathrm{~F} 5$

 Ø989:3Ø 2 2Ø 92 2Ø 29 Ø2 Ø6 ØD 7A
 Ø999:53 $2012 \quad 12 \quad 53 \quad 48 \quad 49 \quad 46 \quad 54 \quad 1 \mathrm{D}$ Ø9A1:2D 43 4C 52 92 20054 ø9A9:2Ø 243 4C 45
 Ø9B9:ø2 \quad Ø 42 2Ø 1 F ø9Cl:45 $4 \mathrm{AE} 54 \quad 2 \emptyset \quad 43$ 4F $4 \mathrm{C} \quad 4 \mathrm{~F}$ D5 Ø9C9:52 20.49 Ø9D1:54 4544 ø9D9:2D 2D 2D 2D 2D 3E 13 øø CE ø9E1:98 13 1D 1D 43 4F 4D 5ø BC ø9E9:55 $5445 \quad 21$ 1D $50 \quad 5542$ 8D ø9F1: $4 \mathrm{C} \quad 49 \quad 43 \quad 41 \quad 54 \quad 49 \quad 4 \mathrm{~F} 4 \mathrm{E} A D$ Ø9F9:53 1D $50 \quad 52 \quad 45 \quad 53 \quad 45 \quad 4 \mathrm{E} ~ 7 \mathrm{C}$ ØAØ1:54 53 Ø2 $0411 \quad \emptyset 2$ Ø8 9D 112 ØAø9:1D 1D 1D 1D 1D 1D 1D 1D 1D ØAll:1D 1D 1D 1D 1D øø 93 9E 1F ØA19:75 Ø2 $266636962 \quad 20 \quad 20 \quad 98$ ØA21:75 $63 \begin{array}{lllllllll}69 & 75 & 63 & 69 & \text { Bø } & 63 & \text { D2 }\end{array}$ ØA29:69 $\quad 75 \quad 63 \quad 69 \quad 75 \quad 63 \quad 69$ B2 11 ØA31:2Ø $\begin{array}{lllllllll}\text { B2 } & 2 \emptyset & 2 \emptyset & 75 & 63 & 69 & 75 & 89\end{array}$ ØA39:63 69 B2 $2 \emptyset$ B2 $2 \emptyset$ B2 75 A2 ØA41:63 $69 \begin{array}{llllllll}69 & 2 \emptyset & 2 \emptyset & 62 & 62 & 2 \emptyset & 2 \emptyset & 64\end{array}$ ØA49:6A $636962 \begin{array}{lllllll}62 & 69 & 2 \emptyset & 62 & 63 & 68\end{array}$ ØA51:6B AB B3 $2 \emptyset$ AB B3 $2 \emptyset \quad 62$ 4D ØA59:6D 62 2Ø 206263 B2 AB 74 ØA61: B3 $20 \quad 62$ 6D 62 2ø 62 AB 7 E
 ØA71:6A 6Ø 6B 6A 63 6B B1 $2 \emptyset \quad 33$ ØA79:6D 6A 63 6B 6A 63 6B B1 6B ØA81:2Ø B1 $2 \emptyset$ 2ø 6A 63 6B 6A 3 A ØA89:63 6B B1 $2 \emptyset$ B1 20 B1 6A 3 E ØA91:63 6B $2 \varnothing$ 2Ø 62 6A Ø2 26 1F ØA99:63 6 BB $99 \quad 75 \quad$ Ø2 $12 \begin{array}{llllll}12 & 60 & 69 & 47\end{array}$ ØAA1:9C $75 \quad$ Ø2 $12 \begin{array}{lllllll}60 & 69 & 99 & 62 & \emptyset 1\end{array}$ ØAA9:12 $43 \quad 4 \mathrm{~F}$ 4D $4 \mathrm{D} \quad 41$ 4E 44 A6 ØAB1:53 $3 \mathrm{~A} \quad 92 \quad 2 \emptyset \quad 2 \emptyset \quad 43 \quad 54 \quad 52 \quad 5 \mathrm{~B}$ ØAB9:4C $2 \emptyset \quad 26 \quad 2 \varnothing \quad 62$ 9C $62 \quad 12 \quad 1 \mathrm{~F}$ ØACl:2Ø 243 ØAC9:46 555 $\begin{array}{lllllllll}\text { ØAD1:53 } & 2 \emptyset & 92 & 62 & 99 & 62 & \text { Ø2 } & 12 & 7 C\end{array}$ ØAD9:2Ø $2629 \mathrm{C} \quad 62$ Ø2 $12 \begin{array}{llllll}12 & 2 \emptyset & 62 & 4 B\end{array}$ ØAE1:99 $\begin{array}{lllllllll}62 & 48 & 2 D & 48 & 45 & 4 C & 5 \emptyset & 77\end{array}$ ØAE9:2Ø 208154 ØAFl:45 4 E 55 $29 \begin{array}{llllll}62 & 9 \mathrm{C} & 62 & 46 & \text { ØA }\end{array}$
 ØBø1:2Ø $2 \mathrm{5F} \quad 62 \quad 99 \quad 62 \quad 42$ 2D 43 9E ØВø9:4C $4541 \quad 52 \quad 2 \emptyset \quad 544 \mathrm{~F} \quad 2 \emptyset \quad \mathrm{~F} 4$ ØB11:42 $4 \mathrm{~F} \quad 54 \quad 544 \mathrm{~F} \quad 4 \mathrm{D} \quad 2 \emptyset \quad 62 \quad 3 \mathrm{E}$ ØB19:9C $\begin{array}{lllllllll}62 & 46 & 33 & 2 D & 50 & 41 & 49 & 88\end{array}$ ØB21:4E 54 ØB29:62 $54 \quad 2 \mathrm{D} \quad 43 \quad 4 \mathrm{C} 45 \quad 41 \quad 52 \mathrm{AB}$ ØB31:2Ø 254 ØB39:ø4 20.62 9C $62 \begin{array}{lllllll}62 & 46 & 35 & 2 D & 33\end{array}$ ØB41:43 4841
 ØB51:99 62 4D 2D 4D $4 \mathrm{~F} \quad 5645$ E2 ØB59: 02 ØC $2 \emptyset \quad 62 \quad 9 \mathrm{C} \quad 62 \quad 46 \quad 37 \mathrm{CF}$

ØB61：2D 5245 ØB69：Ø2 \quad Ø7 2 2Ø $5 \mathrm{FF} 6299625 \mathrm{~A} \quad \mathrm{D} 4$ ØB71：2D $4 \mathrm{D} \quad 45$ 4D $4 \mathrm{~F} \quad 52$ 49 5 A 9 F ØB79：45 $20.53143 \quad 52 \quad 45 \quad 45$ ØB81：2Ø 62 9C 6A \quad Ø2 12 6Ø 6 6B FE ØB89：99 62 4F 2 D 4 F 4 F 50 53 6D
 ØB99：52 $45 \quad 29 \quad 2 \emptyset \quad 62$ 9A $75 \quad \emptyset 2 \quad \mathrm{BB}$ ØBA1：12 $6069 \begin{array}{lllllll}69 & 62 & 5 \emptyset & 2 D & 43 & 91\end{array}$ ØВA9：52 $45 \begin{array}{llllllll}41 & 54 & 45 & 2 \emptyset & 50 & 52 & 45\end{array}$ ØBB1：49 $4 \mathrm{EE} 54 \quad 2 \emptyset \quad 50 \quad 47$ 4D $62 \quad 29$ ØBB9：9A $62 \begin{array}{llllllll}62 & 12 & \text { Ø2 } & \text { Ø6 } & 2 \emptyset & 43 & 4 \mathrm{~F} & 9 \mathrm{E}\end{array}$ ØBC1：4C $4 \mathrm{~F} \quad 52$ Ø2 \quad Ø7 $20 \quad 92 \quad 62$ 7C ØBC9：99 $62 \begin{array}{llllllll}68 & 2 D & 45 & 58 & 49 & 54 & 95\end{array}$ ØBD1：2Ø $254 \quad 4 \mathrm{~F} \quad 2 \emptyset \quad 42 \quad 41 \quad 5349 \mathrm{FF}$ ØBD9：43 $2 \emptyset \quad 2 \emptyset \quad 2 \emptyset \quad 62$ 9A 62 Ø2 E3 ØBE1：12 $2 \emptyset \quad 62 \quad 99 \quad 6 \mathrm{~A} \quad \emptyset 2 \quad 12 \quad 6 \emptyset \quad \mathrm{CE}$ ØBE9：6B $9 \mathrm{~A} \quad 62 \quad 46$
 ØBF9：96 75 Ø2 12 60 69 9A 62 5A øCø1：46 34 2D 42 41 43 4B 47 ø8
 ØC11：62 96 ØC19：45 53 3A 20102 2Ø $43 \quad 54$ El ØC21：52 $4 \mathrm{C} \quad 2 \emptyset \quad 26 \quad 2 \emptyset \quad 2 \emptyset \quad 2 \emptyset \quad 62 \mathrm{FF}$ ØC29：9A $62 \begin{array}{lllllllll} & 46 & 36 & 2 D & 42 & 41 & 43 & 8 B\end{array}$
 ØC39：2Ø 20 21 $2 \mathrm{D} \quad 33 \quad 62 \quad 96 \quad 62 \quad \emptyset 2 \quad \mathrm{BA}$ øC41：12 206162 9A $62 \quad 46$ ØC49：43 48 ØC51：2Ø $2531414 \mathrm{D} 45 \quad 2 \emptyset \quad 2 \emptyset \quad 62 \quad 98$ ØC59：96 62 4B $2 \mathrm{D} \quad 45 \quad 5854 \quad 45$ ØВ ØC61：4E $44 \begin{array}{llllllll}45 & 44 & 2 \emptyset & 42 & 41 & 43 & 6 \mathrm{E}\end{array}$ ØC69：4B $47 \quad 44 \quad 5 \mathrm{~F} \quad 62$ 9A 62 2ø $\quad \mathrm{D} 9$
 ØC79：41 $53 \begin{array}{llllllll}50 & 2 \emptyset & 43 & 48 & 41 & 52 & 2 \emptyset & 4 B\end{array}$ ØC81：2Ø $262 \begin{array}{llllllll}62 & 62 & 43 & \text { 2D } & 4 D & 55 & \text { F9 }\end{array}$ ØC89：4C $54 \quad 49 \quad 43$ ØC91：Ø2 Ø5 2 2Ø 5 F 62 9A 62 2Ø 48 ØC99：20 20 2Ø 4 F ØCA1：55 $52 \begin{array}{llllllll}53 & 4 \mathrm{~F} & 52 & \text { Ø2 } & \text { Ø4 } & 2 \emptyset & 1 \mathrm{~B}\end{array}$ ØСА9：62 96 ØCB1：52 $20044 \begin{array}{lllllll}45 & 46 & 49 & 4 \mathrm{E} & 45 & 11\end{array}$ ØCB9：44 $2 \emptyset \quad 2 \emptyset \quad 2 \emptyset \quad 5 \mathrm{~F} \quad 62$ 9A 6 A 26 ØCCl：ø2 1266 6B 96

 ØCD9 ： $62 \begin{array}{lllllllll} & 98 & 2 \emptyset & 20 & 50 & 52 & 45 & 53 & \mathrm{~F} 8\end{array}$
 ØCE9 ： 59 ØD 96 6A Ø2 12 6Ø 6B EF ØCF1：98 20 2Ø 2046 ØCF9：4F 52 4B $2 \mathrm{D} \quad 53 \quad 43 \quad 52 \quad 45$ 1C ØDØ1：45 4E ØØ AD 86 Ø2 8D 2C AF ØDø9：DØ 20 C3 A5 $24 \begin{array}{llllll}55 & 1 \varnothing & 19 & 16\end{array}$ ØD11：AØ 12 D9 37 AF FØ $05 \quad 88 \quad 82$ ØD19：10 F8 3Ø ØD 98 ØA A8 B9 48 ØD21：4A AF 48 C8 B9 4A AF 48 8 ØD29：6Ø C9 94 F （ 6 C9 14 D C 5 E ØD31：ØA A9 95 A2 AC $2 \emptyset$ 9B A5 5 A ØD39：4C ØØ AØ C9 22 FØ C4 C9 52 ØD41：93 DØ Ø6 18 2Ø 92 A4 A9 D9 ØD49：93 48 2Ø Ø8 AB $68 \quad 86$ ØD51：84 2A EØ 18 DØ ØC C9 ØD 2D ØD59：FØ A9 C9 8D FØ A5 C9 11 2B ØD61：FØ Al 24 ØC $5 \emptyset \quad 21$ C9 9D D9 ØD69：FØ 1D C9 1D FØ 19 C9 91 5F ØD71：FØ 15 C9 11 FØ 11 20 AC 4 C ØD79：AØ A6 29 A4 2A 18 2Ø FØ DF ØD81：FF 20 C3 Al 4C 9A Aø $2 \emptyset 64$ ØD89：AC AØ $2 \emptyset$ Ø8 AB EØ 18 DØ 88 ØD91：ØC CØ 27 DØ Ø8 A4 2A A6 A1 ØD99： $2918 \quad 20 \mathrm{~F} \emptyset \mathrm{FF} 20$ 3ø A6 E8 ØDA1：2Ø F5 AØ $2 \emptyset$ BF AØ $2 \emptyset$ DC FC ØDA9：AØ $2 \emptyset$ E8 AØ 4 C Øø AØ C9 B ØDB1：ØD FØ Ø4 C9 8D DØ Ø8 E8 54
 ØDC1：D2 FF 24 ØD $5 \emptyset 18$ Aø ØØ $\quad \mathrm{BE}$ ØDC9：B1 ØE 49 8Ø 91 ØE 29 3F C7 ØDD1：C9 2Ø DØ ØA AD 21 DØ 29 5 ØDD9：ØF CD 89 AF FØ Ø7 $60 \quad 24$ A3

ØDE9： 91 10 6024 ØC 10 Ø8 Aの 70
 ØDF9：24 ØС 5Ø ØA AØ ØØ A5 ØA 2E ØEØ1：91 ØE A5 ØB 91 1Ø $6018 \quad 74$ ØEø9：20 92 A4 20 3Ø A6 A9 E7 C7 ØE11：85 10 A9 CB 85 11 20 88 lF ØE19：A6 4C Øø AØ 18 2Ø 92 A4 $\mathrm{B} \emptyset$ ØE21：2Ø 3Ø A6 A5 ØE 85 1Ø A5 D4 ØE29：ØF 8511 A9 Øø 85 ØE A9 C6 ØE31：C8 85 ØF $2 \emptyset 88$ A6 4 C Øø 6E ØE39：AØ EE 2Ø DØ 4C Øø AØ EE Ø5 ØE41：21 DØ 4C ØØ AØ A5 ØD 49 AA ØE49：8Ø 85 ØD $2 \emptyset$ 3Ø A6 $2 \emptyset$ DC E3 ØE51：AØ 4C ØØ AØ A5 ØD 49 4Ø ØF ØE59： 85 ØD 2Ø $3 \emptyset$ A6 $2 \emptyset$ BF AØ 58 ØE61：4C ØØ A $\varnothing 18$ 2の 92 A4 4C 1 A ØE69：Øø AØ AD 11 DØ 49 4の 8D 2 E ØE71：11 DØ 2940 F Ø Ø8 AD 16 8C ØE79：DØ 29 EF 8D 16 DØ 4C ØØ AB ØE81：AØ AD 16 DØ 49 1Ø 8D 16 E4 ØE89：DØ 29 1Ø $\mathrm{F} \emptyset$ Ø8 AD $11 \mathrm{D} \emptyset 53$ ØE91：29 BF 8D 11 DØ 4C Øø AØ 4D ØE99：AD 18 DØ 49 Ø4 29 FC 8D 8D ØEA1：18 DØ 4C ØØ AØ A5 ØC 4984 ØEA9：8Ø 85 ØC $2 \emptyset \quad 3 \emptyset$ A6 20 E8 $3 \emptyset$ ØEB1：AØ 4C Øø AØ A5 ØC 49 4Ø 6B ØEB9 ： 85 ØC $2 \emptyset$ 3Ø A6 $2 \emptyset$ C3 A1 81 ØEC1：2Ø F5 AØ 4C ØØ AØ AØ ØØ Ø8 ØEC9：B1 ØE 85 ØA $\mathrm{B} 110 \begin{array}{lllll} & 10 & \emptyset B & 77\end{array}$ ØED1： $60 \quad 38 \quad 20 \quad 92$ A4 20 30 A6 06 ØED9：AØ ØØ B1 ØE 29 BF 2 C 11 ØF ØEE1：DØ 50 Ø2 29 3F C9 20 DØ 7 F ØEE9：Ø3 4C ØØ AØ B1 1Ø 29 ØF D3 ØEF1：85 4A A9 Øø 85 ØE 85 1Ø 18 ØEF9：A9 D8 8511 A9 FC 85 ØF 3 E ØFØ1：AØ ØØ A2 Ø4 $2 \emptyset 81$ AA B1 12 ØFø9：ØE $2 \emptyset \quad 87 \mathrm{AA} 29$ ØF C5 4A 2D ØF11：DØ $\varnothing 9$ B1 $1 \varnothing 18 \quad 18961029$ A2 ØF19：ØF 91 1Ø C8 DØ E6 E6 11 B2 ØF21：E6 ØF CA DØ DF $2 \emptyset$ C3 A5 89 ØF29：C9 8C Fø C6 4C Ø9 Aø 38 D9 ØF31：2Ø 92 A4 $2 \emptyset$ CD AA A9 A9 Bø ØF39：A2 AE $2 \emptyset$ 9B A5 A9 3185 CD ØF41：10 8D F9 AE A9 D6 A2 AE 91 ØF49：20 9B A5 E6 10 A5 10 C9 82 ØF51：34 DØ EE A9 ØD A2 AF $2 \emptyset$ A8 ØF59：9B A5 A9 1C 8D 15 Dø Aø A8 ØF61：Ø2 B9 43 øø 9929 Dø 88 F2 ØF69：1Ø F7 20 F3 A9 C9 20 DØ 56 ØF71：øC A9 øø 8D 15 DØ 3820155 ØF79：ED A4 4C øø AØ C9 $31906 \emptyset$ ØF81：E9 C9 34 BØ E5 38 E9 $3 \emptyset$ AC ØF89：A8 B6 42 E8 8A 9942 Øø BF ØF91：4C 5C A2 18 2Ø 92 A4 $2 \emptyset 77$ ØF99：AC A3 A9 $18 \quad 85$ 3B A9 2741 ØFAl：85 3C A9 1E 8D F8 CB $2 \emptyset$ Bø ØFA9：B6 A3 $\begin{array}{llllllll}86 & 29 & 86 & 39 & 84 & 2 A & B B\end{array}$ ØFB1：84 3A A5 ØE 85 4C A5 ØF ED ØFB9：85 4D A5 $1 \varnothing 85$ 4E A5 1165 ØFCl：85 4F AD ØØ DØ 8D ØC DØ D1 ØFC9：AD Ø1 DØ 8D ØD DØ AD 1ø Ø9 ØFD1：DØ $29 \mathrm{BF} 8 \mathrm{D} 1 \emptyset \mathrm{D} \emptyset 29$ Ø1 8A ØFD9：4A 6A 6A ØD 1ø DØ 8D $1 \varnothing$ C4 ØFE1：DØ A9 Ø2 8D 2D Dø 8D 2E El ØFE9：DØ A9 60 8D 15 DØ A9 1 F 1E ØFF1：8D F8 CB $2 \emptyset$ B6 A3 8A $38 \quad 22$ ØFF9：E5 $29 \quad 85$ 3D $98 \quad 38$ E5 2A 75 1øø1：85 3E A9 18 38 E5 3D 8583 1009：3B A9 $27 \quad 38$ E5 3 E 85 8 CC Ø9 1ø11：AD Øø $D \emptyset 8 D$ ØE $D \emptyset A D$ Ø1 ØB 1Ø19：DØ 8D ØF DØ AD 1Ø DØ 29 6C 1ø21：7F 8D 1ø DØ 29 Ø1 4A 6A BF 1Ø29：ØD 10 DØ 8D 10 D 0 A9 EØ BE 1ø31：8D 15 Dø A6 29 A4 $2 \mathrm{~A} ~ 18 ~ 2 \mathrm{~A}$ 1ø39：20 FØ FF A9 1E 8D F8 CB 25 1ø41：2Ø AC A3 $2 \emptyset$ B6 A3 A5 ØE Bø $1 \varnothing 49: 85$ 5Ø A5 $\emptyset \mathrm{F} 85$ 51 A5 1ø B2 $1051: 85 \quad 52$ A5 $1185 \quad 53$ A5 4 C 9 F 1Ø59：85 ØE A5 4D 85 ØF A9 ØØ Ø5 1ø61：85 10 A9 F8 8511 2Ø E7 A5 1069：A3 A5 4E 85 ØE A5 $4 \mathrm{~F} 85 \quad 12$

1071：øF A9 Øø 8510 A9 FC 8582 1ø79：11 $2 \emptyset$ E7 A3 A9 Øø 85 ØE C7 1ø81：A9 F8 85 ØF A5 $5 \emptyset 85$ 1ø DF 1089：A5 $51 \quad 851120$ E7 A3 A9 24 1ø91：Øø 85 ØE A9 FC 85 ØF A5 31 1ø99：52 85 1ø A5 $53 \quad 85$ 11 2093 10A1：E7 A3 A9 $2 \emptyset$ 8D 15 Dø A9 E1 10A9：1C 8D F8 CB 4C ØØ Aø A9 64 1øB1：øØ 85 10B9：FF 20 C3 A5 $48 \quad 20 \quad$ Ø8 AB 33 1øCl：68 C9 91 DØ Ø6 E4 39 DØ CE 1øC9：ED FØ EE C9 11 DØ Ø6 E4 54 1ØD1：3B DØ E3 FØ E4 C9 9D DØ A9 10D9：Ø6 C4 3A DØ D9 FØ DA C9 94 1ØEl：1D DØ Ø6 64 3C DØ CF FØ 87 1ØE9：DØ 60 A6 3D $2 \emptyset 81$ AA A4 34 1ØF1：3E B1 ØE 91 1ø A9 $2 \emptyset 9171$ 10F9：ØE 88 1Ø F5 2087 AA A5 BE 11Ø1：ØE $186968 \quad 85$ ØE 9060267 11ø9：E6 ØF A5 $1018 \quad 69 \quad 28 \quad 85 \quad 54$ 1111：1Ø 9Ø 02 E6 11 CA 10 D4 B6 1119：6Ø $18 \quad 2 \emptyset$ ED A4 4C Øø AØ 4 B 1121：20 $78 \mathrm{AB} 38 \quad 20 \quad 92 \mathrm{~A} 4201 \mathrm{~F}$ 1129：C9 AA A9 B8 AØ C8 A2 Ø4 ØD 1131：2 0 EF AA A9 BC AØ D8 A2 ØC 1139：Ø4 2Ø EF AA A5 ØC 29 CØ 7E 1141：ØA AA 2A 8D B6 D9 8A ØA 6D 1149：2A 8D 66 D9 A5 ØD 29 Cø C2 1151：ØA AA 2A 8D 8E D9 8A ØA 3C 1159：2A 8D DE D9 A5 4829 4ø 4 E 1161： 0 A 0 A $2 A ~ 8 D ~ 32 ~ D B ~ A 5 ~ 47 ~ B C ~$ 1169：29 1Ø Fø Ø2 A9 Ø1 8D 5A 29 1171：DB A5 $46 \quad 29 \quad 044 \mathrm{~A} 4 \mathrm{~A} ~ 8 \mathrm{D}$ Bl 1179：82 DB A9 øø 85 C6 2ø DC 6D $\begin{array}{llllllllll}1181: A 5 & 24 & 55 & 30 & 07 & 38 & 20 & E D & 74\end{array}$ 1189：A4 4 C ØØ AØ $48 \quad 38$ 2Ø ED 6C 1191：A4 68 4C Ø9 Aø Bø ØD A9 C5 1199：88 85 ØE A9 AF 85 ØF A9 19 11A1：BØ 48 DØ ØB A9 $41 \quad 85$ ØE 64 11A9：A9 ØØ 85 ØF A9 F8 48 AØ A4 11B1： 07 AD 11 D 91 ØE 88 AD 75 11B9：16 Dø 91 ØE $88 \mathrm{AD} 18 \mathrm{D} \emptyset 2 \mathrm{~A}$ 11Cl：91 ØE 88 B9 $2 \emptyset$ DØ 29 ØF 82 llC9：91 ØE 88 10 F6 AD 86 Ø2 C7 $\begin{array}{lllllllll}11 \mathrm{Dl}: 85 & 49 & \mathrm{~A} 5 & \mathrm{C} 7 & 85 & 4 \mathrm{~B} & 2 \emptyset & \emptyset 8 & \mathrm{DB}\end{array}$ 11D9： $\mathrm{AB} \quad 86$ llEl：C8 A2 0420 EF AA A4 1118 11E9：A9 D8 A2 94 2Ø EF AA $6 \emptyset \quad 22$ 11Fl：ø8 B $\emptyset 11 \quad 38 \quad 2 \emptyset \quad 92$ A4 A9 28 11F9：88 85 ØE A9 AF 85 ØF A9 79 12ø1：BØ 48 DØ 1C A9 4185 ØE D6 1209：A9 ØØ 85 ØF A9 F8 48 A5 ØB 1211：4B 85 C7 A5 49 8D 86 Ø2 1 F 1219：A6 29 A4 $2 \mathrm{~A} \quad 18 \quad 20$ FØ $\begin{array}{llllll} & \mathrm{FF} & 35\end{array}$ 1221：AØ Ø7 B1 ØE 8D 11 DØ 8849 1229：B1 ØE 8D 16 DØ 88 B1 ØE D6 1231：8D 18 Dø 88 Bl ØE 9920 DD 1239：DO 88 1Ø F8 2081 AA AD 76 1241：C8 A2 Ø4 68 2ø EF AA A5 35 1249：ØF AØ D8 A2 Ø4 $2 \emptyset$ EF AA 8D $1251: 2 \emptyset 87 \mathrm{AA} 28 \mathrm{~B} \emptyset 1 \mathrm{~A} 2081 \mathrm{EE}$ 1259：AA A9 F8 AØ BØ A2 Ø8 $2 \emptyset$ A6 1261：EF AA $2 \emptyset 87$ AA AØ 07 B9 44 1269：41 Øø 9988 AF 88 10 F7 Al 1271：A9 2Ø 8D 15 DØ 6Ø AØ ØØ BE 1279：A6 1Ø Dø Ø2 C6 11 C6 1047 1281：A6 ØE DØ Ø2 C6 ØF CA 8645 1289：øE 2Ø 31 AC B1 ØE $2 \emptyset 39$ EC 1291：AC 91 1Ø E4 5F DØ E1 A6 69 1299：ØF E4 6Ø DØ DB $6 \emptyset 85$ ØE 11 12A1：86 ØF AØ ØØ B1 ØE FØ ØE 96 12A9：C9 Ø2 Fø ØB $2 \emptyset$ D2 FF C8 17 12B1：DØ F2 E6 ØF Dø EE 60 C8 94 12B9：B1 ØE AA C8 B1 ØE $2 \emptyset$ D2 F4 12Cl：FF CA Dø FA FØ E9 $2 \emptyset 10$ Ø 12 12C9：A6 A9 Ø1 ØD 15 Dø 8D 15 B8 12D1：DØ $\mathrm{AD} \quad 27$ DØ 49 Ø1 8D 27 4C 12D9：DØ A9 $14 \begin{array}{lllllll}145 & 13 & 85 & 12 & 2 \emptyset & 9 E\end{array}$ 12E1：F3 A9 AA A5 9149 FB Dø 94 12E9：ø6 A9 8Ø $85 \begin{array}{llllll}55 & 3 \emptyset & \text { ØC EØ } 48\end{array}$ 12F1：85 9Ø Ø4 Eø 8D 9Ø F2 A9 C9
 13Ø1:FE 2D 15 Dø 8D 15 Dø 8A 8E 1309:60 182092 A4 A2 22 BD 44 1311:9ø AF 95 ø8 CA 10 F8 A2 C9 1319:22 BD B3 AF $95 \quad 39$ CA 1068 1321:F8 78 A2 D6 Aø AF 1820 B7 1329:8D FF A9 ©4 8D 88 ø2 5876 1331:4C 76 C6 A9 Øø 85 ØF 8548 1339:10 3820 Fø FF 98 C9 28 A6 1341:90 Ø3 E9 28 A8 ØA ØA ØA BB 1349:26 106918 8D øø Dø 9ø D3 1351: ø2 E6 10 AD 1ø Dø 29 FE 24 1359:ø5 10 8D 1ø DØ 8A ØA ØA 87 1361:øA 85 10 69 32 8D ø1 Dø 21 1369:A5 10 øA 26 øF ØA 26 ØF ø6 1371:18 65 1ø $9 \varnothing$ Ø2 E6 ØF 8456 1379:10 18651085 øE 8510 DA 1381:A9 C8 65 øF 85 øF 691097 1389:85 11 6ø Аø Øø А9 $2 \varnothing 9145$ 1391: ØE A6 ØE E4 10 Dø Ø6 A6 EE 1399:ØF E4 ll Fø ø8 E6 ØE Dø 7A 13A1:EE E6 $\varnothing \mathrm{F}$ Dø EA 60 A9 $2 \emptyset 34$ 13A9: 8D E7 CB $38 \quad 2 \varnothing 92$ A4 $2 \varnothing 42$ 13B1:CD AA A9 9320 D2 FF A9 CD 13B9:øØ $85 \quad 1485158540$ A9 05 13Cl:FF A2 AC $2 \emptyset$ 9B A5 A9 15 ø4 13C9:A2 AF $2 \varnothing$ 9B A5 $2 \varnothing$ C3 A5 C5 13D1:4C E8 A6 3820 ED A4 4C FE 13D9: $\varnothing \varnothing$ Aø A9 B6 A2 AC $2 \emptyset$ 9B 6C 13E1:A5 4C B4 A6 $2 \emptyset$ C3 A5 C9 14 13E9:øD Fø 43 C9 $2 \emptyset$ FØ E4 C9 3ø 13Fl:3ø 9ø E7 C9 3A Bø E3 2ø 6A 13F9:D2 FF 29 ØF A8 A5 14 A6 4A 14ø1:15 ø6 $14 \begin{array}{lllllll}14 & 15 & \text { Bø } & \text { D3 } & \text { Ø6 } & 33\end{array}$ 1409:14 2615 Bø CD $\begin{array}{lllll}65 & 14 & 85 & 24\end{array}$ 1411:14 8 8A 6515 Bø C4 $85 \quad 15$ 9C 1419:ø6 $14 \begin{array}{lllllll}14 & 26 & 15 & \text { Bø } & \text { BC } & 98 & 65 \\ 6 E\end{array}$
 1429:B1 $85 \quad 15$ 4C E1 A6 A5 14 FB 1431:85 1C A5 15 C9 FA $9 \varnothing$ Ø7 8B 1439:A9 DC A2 AC 4C DB A6 8531 1441:1D A9 øø 85 1A A9 Dø 8559 1449:1B A5 4729 10 FØ ID 2082 1451:15 AB $2 \varnothing 53$ AB $2 \varnothing$ 6D AB 8C 1459: Dø 3ø A9 øø 8D B7 AD $2 \varnothing$ Fl 1461: ØE AA A9 D6 A2 AD 2041 2B 1469:AA $4 \mathrm{C} \quad 87$ A7 $24 \begin{array}{lllll} & 48 & 5 \emptyset & 1 A & 62\end{array}$ 1471:2ø 15 AB $2 \varnothing 53 \mathrm{AB} 206 \mathrm{D}$ 5D 1479: AB Dø $\emptyset F$ A9 3A 8D B7 AD 4D 1481:20 øE AA A9 FD A2 AD 2023 1489:41 AA $2 \varnothing$ ØE AA A5 $41207 \varnothing$ 1491:5B AA 8D 7E AD 8E 7D AD FB 1499:A5 4220 5B AA 8D 88 AD 29 14A1:8E 87 AD A5 $46 \quad 29 \quad 02 \mathrm{~F} \quad \mathrm{CE}$ 14A9:ø4 A9 FF Dø Ø2 A9 32 8D F3 $14 \mathrm{Bl}: 8 \mathrm{~F}$ AD $2 \varnothing 53 \mathrm{AB}$ A9 72 A 2 D 1 14B9:AE $2 \varnothing$ 9B A5 20 F9 A9 Dø 1C 14Cl:ø7 A9 76 A2 AD 4C C9 A7 AA 14C9:A9 8A A2 AD $2 \varnothing 41$ AA $2 \varnothing 14$ 14D1:6C AA $24 \begin{array}{lllllll}48 & 7 \varnothing & 26 & 20 & \text { EØ } & 21\end{array}$ 14D9:A9 AØ 2720 CC A9 C9 $6 \varnothing$ E6
 14E9:Dø ØB $2 \varnothing$ D5 A9 C5 42 Dø 58 14Fl:ø4 A9 $2 \varnothing 911688$ 1ø E3 7A 14F9:C6 26 Dø DD $2 \emptyset$ Eø A9 A9 88 15ø1:1の 85 ø8 Аの øø $2 \varnothing$ CC А9 63 15ø9:85 994 4C ØE A8 A9 $9285 \quad 39$ 1511: $\emptyset 9$ A. 2 øø 8654 CA 8624 CF 1519:20 øE AA $2 \varnothing$ 8F AA Aø 27 BD 1521:20 CC A9 C9 20 Dø 128851 1529:10 F6 A9 1120 2E AA $2 \varnothing$ 8E 1531:9A AA C6 26 Dø E8 4C D5 27 1539:A8 $84 \quad 25$ E6 24 A4 24 2ø ø8 1541:CC A9 AA 30 ØE 24 Ø9 $3 \varnothing$ D7 1549:15 A9 9285 ø9 2ø 2E AA E2 1551:4C 5B A8 24 ø9 1ø 07 A9 $1 \varnothing$ 1559:12 85 ø9 2ø 2E AA 8A 2466 1561:48 50 Ø2 29 3F C9 $2 \emptyset$ FØ $\begin{array}{ll}\text { E8 }\end{array}$ 1569:12 A4 $24 \quad 2 \emptyset$ D5 A9 C5 $\begin{array}{ll}15 & 35\end{array}$ 1571:FØ 9985 ø8 А8 B9 $7 \varnothing$ AF 44 1579:20 2E AA 8A 297 F C9 $2 \varnothing \quad 38$
$\begin{array}{lllllllll}\text { 1581:9ø } & \text { Ø8 } & \text { C9 } & 4 \emptyset & 90 & \text { ØA } & \text { C9 } & 6 \emptyset & \text { D3 } \\ \text { 1589:9ø } & \text { Ø3 } & 18 & 69 & 2 \emptyset & 18 & 69 & 2 \emptyset & \text { AA }\end{array}$ 1591:2ø 2E AA A5 24 C5 25 FØ 7A 1599:16 A5 54 C9 47 9ø 9 C 2ø 35 15Al:AA AA $2 \varnothing$ ØE AA $2 \varnothing 8 \mathrm{~F}$ AA $5 \varnothing$ 15А9: A9 $\varnothing \emptyset 85 \quad 544 \mathrm{C} 38$ A8 $2 \varnothing 53$ 15Bl:9A AA C6 $26 \mathrm{~F} \quad 1 \mathrm{C}$ A5 2476 15B9:C9 27 Dø $\varnothing 62 \varnothing$ AA AA 4 C 5A 15Cl:øE A8 A9 2220 2E AA A9 2D 15C9: \varnothing 2ø 2 E AA $2 \emptyset 6 \mathrm{C}$ AA 4 C Cø 15D1:øA A8 $2 \varnothing$ AA AA $2 \emptyset 6 \mathrm{C}$ AA 33 15D9:A5 $2 \varnothing 85$ 1A A5 2185 1B 99 15E1:A9 22 A2 AD $2 \varnothing$ 9B A5 $2 \varnothing 73$ 15E9:F9 A9 Dø 46 A5 278514 E2
 15F9:6C AA A9 96 A2 AD $2 \varnothing 41$ Fø 16ø1:AA A5 $47 \quad 291 \emptyset$ Fø $15 \quad 20$ F5 16ø9:5B AB Dø 26 2ø øE AA $2 \varnothing$ F8 1611:6C AA A9 E9 A2 AD $2 \varnothing 41$ 3F 1619:AA 4C 2F A9 $24485012 \quad 23$ 1621:2ø 5B AB D \emptyset ØD $2 \emptyset$ ØE AA 66 1629:20 6C AA A9 C2 A2 AD 20 8C 1631:41 AA A5 3F Fø 1F A9 36 DE 1639:A2 AD 2ø 9B A5 A6 1C A5 85 1641:1D $2 \varnothing$ 41 AC A9 53 A2 AD 84 1649:2ø 9B A5 A6 27 A5 28 2ø CB 1651:41 AC 4C B4 A6 A5 27 Dø ø9 1659:02 C6 28 C6 27 A5 28 C9 93 1661:FA $9 \varnothing 6620$ B5 AA 4 C 3518 1669:A7 A5 1A 38 E9 øø 85 1ø ø4 1671:A5 1B E9 Dø 8511 A5 2D 6A 1679:85 øЕ $18651 \varnothing 8510$ A8 A4 1681:A5 $2 \mathrm{E} \quad 85 \quad \emptyset F \begin{array}{llllll}65 & 11 & 85 & 11 & 39\end{array}$ 1689:C5 38 9ø 1A DØ ø4 C4 37 B1 1691:90 14 A9 57 A2 AD 20 9B 5D 1699: A5 A9 15 A2 AF $2 \varnothing$ 9B A5 AA 16A1:2Ø F3 A9 4C D \varnothing A6 A2 $\varnothing 54 \varnothing$ 16A9:95 2D CA 94 2D CA 10 F8 3C 16B1:2ø 73 A5 A5 1A 85 ØE A5 82 16B9:1B 85 øF A9 øø 85 5F A9 CF 16Cl:D $\begin{array}{lllllll} & 85 & 6 \emptyset & 2 \varnothing & 73 & \text { A5 } & 2 \varnothing \\ 7 C & \text { B4 }\end{array}$ 16C9:C6 $2 \emptyset$ B5 AA 4C 96 A9 $2 \varnothing$ F2 16D1:81 AA B1 162087 AA 60 D5 16D9:20 81 AA Bl 182087 AA El 16El:29 ØF 60. A9 1985 26 A9 E1 16E9:øø $85 \quad 16 \quad 8518$ A9 F8 8571 16Fl:17 A9 FC $85 \quad 1960 \quad 20$ E4 7B 16F9:FF Fø FB 6ø $2 \varnothing$ E4 FF FØ 6D 17ø1:FB C9 59 Fø ØB C9 øD FØ 64 17ø9: 07 ø8 A9 4 E 2ø D2 FF 28 4B 1711:6ø A9 FF $2 \emptyset$ 2E AA $2 \emptyset$ 2E 66 1719:AA A5 $14 \begin{array}{lllllll}14 & 2 \mathrm{E} & \text { AA A5 } & 15 & 97\end{array}$ 1721:2ø 2E AA $2 \emptyset 85$ C6 $9 \varnothing$ Ø2 AC 1729:E6 4Ø E6 14 DØ Ø2 E6 15 6A 1731:60 $2 \varnothing 31$ AC Aø Øø 91 1A CA 1739:2ø 39 AC E6 1A Dø ø2 E6 C8 1741:1B E6 546085108611 D1 1749: AØ Øø Bl 10 C9 FF FØ Ø3 32 1751:2ø 2E AA E6 1ø Dø ø2 E6 8D 1759:11 C9 øø Dø EB 6ø A2 FF B5 1761:29 ØF C9 ØA 9ø Ø6 A2 31 D4 1769:18 $69 \quad 266069 \quad 3060$ A5 3B 1771:1A 8520 A5 1B 8521 A5 43 1779:14 $85 \quad 27$ A5 $1585 \quad 28$ A5 97 1781:40 85 3F 6078 A9 $25 \quad 85 \quad 59$ 1789:ø1 60 48 A9 2685 Ø1 68 A5 1791:58 60 A9 99202 EAA A9 8B 1799:22 20 2E AA 60 A9 $2818 \quad 63$
 17A9:E6 17 E6 19 60 A9 93 A2 F2 17B1:AD $2 \emptyset \quad 41$ AA $2 \varnothing 6 \mathrm{C}$ AA $6 \emptyset \mathrm{~F} 9$ 17B9:A9 99 A2 AC $2 \varnothing$ 9B A5 A5 A2 17Cl:28 A6 27 20 41 AC A9 ØD B1 17C9:20 D2 FF $6 \emptyset$ A9 $\varnothing \varnothing$ Fø $\varnothing 2$ F3 17D1:A9 ØF 8D 21 DØ 8D $2 \varnothing$ DØ 2A 17D9:A9 28 8D 18 Dø A9 C8 8D 66 17E1:16 Dø AD 11 Dø $291 \varnothing$ ø9 6A 17E9:øB 8D 11 Dø A9 øø 8D 15 AD 17Fl:Dø 6085 ØF 8411 Aø øø EB 17F9:84 ØE $841 \varnothing$ B1 ØE 911078 18ø1:88 Dø F9 E6 ǿF E6 11 CA 58

18ø9:DØ F2 6ø 38 2ø Fø FF Cø 73 $\begin{array}{lllllllll}18 \varnothing 9: D 6 & \text { 182 } & 611: 28 & 9 \varnothing & \emptyset 4 & 98 & \text { E9 } & 28 & \text { A8 } \\ 60 & 25\end{array}$ 1819:2ø 53 AB A9 55 A2 AE $2 \varnothing$ Fø 1821:9B A5 $2 \varnothing$ F9 A9 Dø 2E $2 \varnothing 39$ 1829: $\emptyset E$ AA $2 \varnothing$ 6C AA A5 $43 \quad 2 \varnothing 68$ 1831:5B AA 8D AC AD 8E AB AD E2 1839:A5 $442 \varnothing$ 5B AA 8D B6 AD AD 1841:8E B5 AD A5 $45 \quad 2 \varnothing$ 5B AA 42 1849:8D Cø AD 8E BF AD A9 A4 BB 1851:A2 AD 2041 AA 60 A9 $1 \varnothing 9 \varnothing$ 1859:A2 AE $2 \varnothing$ 9B A5 60 A9 91 D7 1861:A2 AE $2 \emptyset$ 9B A5 A9 26 A2 ØF 1869: AE $2 \varnothing$ 9B A5 $2 \varnothing$ F9 A9 6063 1871:A9 26 A2 AE 2ø 9B A5 $2 \varnothing$ 1A 1879:F9 A9 6ø A2 22 B5 Ø8 9D DC 1881:9ø AF CA $1 \varnothing$ F8 A2 22 B5 8C 1889:39 9D B3 AF CA 10 F8 A2 5A 1891: D6 Aø AF $38 \quad 2 \varnothing$ 8D FF 78 7E 1899:2ø 8A FF A9 EF 8D 18 Ø3 FF 18A1:A9 C6 8D 19 Ø3 A9 9A 8D 1D 18A9:14 Ø3 A9 C6 8D 15 Ø3 $58 \quad 65$ 18B1:A9 øø 8D 27 Dø 85 øD 8517 18B9:12 85 øC 8D 17 Dø AD Ø1 $\varnothing 7$ 18C1:ø3 C9 C6 Fø 13 8D C2 C6 E8 18C9:AD øø ø3 8D C1 C6 A9 BC 43 18D1:8D øø ø3 A9 C6 8D ø1 ø3 35 18D9: A9 ø4 Aø C8 A2 Ø4 $2 \varnothing$ EF D5 18E1:AA AD ø2 DD ø9 ø3 8D ø2 62 18E9:DD A9 øø 8D øø DD AD 1837 18F1:Dø 29 ø2 ø9 28 8D 18 Dø 1E 18F9: A9 C8 8D 88 Ø2 A9 1C 8D E7 19ø1:F8 CB Aø 64 A9 1D 99 F9 E5 19ø9:CB 88 Dø FA A9 1E 8D FE EC 1911: CB A9 1F 8D FF CB Aø 07 C 7 1919: B9 8ø AF 99 Ø4 Dø 88 10 5C 1921:F7 A9 3C 8D 10 Dø A9 1C 4D 1929:8D 1D Dø 8D 1B Dø A9 13 DE 1931:20 D2 FF 607848 A9 24 8A 1939:85 Ø1 $68 \quad 6048$ A9 $26 \quad 85$ 3C 1941:ø1 $685860865685 \quad 57 \quad$ øF 1949:A2 ø3 A9 øø 9558 CA 1076 1951:FB AØ ØF Ø6 56265778 5E 1959:F8 A5 $58 \quad 65 \quad 5885$ 58 A5 \quad ø2 1961:59 65598559 A5 5A 6598 1969:5A 85 5A D8 5888 1ø E3 EB 1971:A2 $\begin{array}{lllllll} & \text { B5 } & 58 & 48 & 4 A & 4 A & 4 A \\ \text { FB }\end{array}$ 1979:4A 2ø 8A AC 6829 øF $2 \varnothing$ 1B 1981:8A AC CA $1 \varnothing$ ED A5 5B Dø øC 1989: Ø3 2ø 8E AC $6 \emptyset$ C5 5B FØ A3 1991:FB 993085 5B 4C D2 FF 14 1999:2ø 9D 9D øø 93 1F Ø2 ØA 1E 19Al:øD 4C $4153 \quad 54204 \mathrm{C} 49 \mathrm{CF}$ 19A9:4E 45 2ø 4 E 554 D 4245 E6 19Bl:52 $2 \varnothing 65 \begin{array}{llllll}53 & 45 & 44 & 3 A & 2 \varnothing & C 4\end{array}$ 19B9:øø $93121 C 2 A 2 A 2 A 2 \varnothing 43$ 19Cl:49 $4 \mathrm{E} \quad 56$ 19C9:45 $4 \mathrm{E} \quad 54$| 52 | 59 | $2 \varnothing$ | 2 A | $2 \mathrm{~A} A B$ |
| :--- | :--- | :--- | :--- | :--- | 19D1:2A $92205452592 \varnothing 418 \varnothing$ 19D9:47 41494 E 2 E øD øø ØD Cø 19El:1C 4C $494 \mathrm{E} 45 \quad 204 \mathrm{E} 55 \mathrm{DF}$ 19E9:4D $4245 \begin{array}{llllll}52 & 2 \varnothing & 45 & 58 & 43 & 2 B\end{array}$ 19Fl:45 $4544 \begin{array}{lllllll}53 & 2 \varnothing & 36 & 33 & 39 & 4 \mathrm{~F}\end{array}$ 19F9:39 39 20 4C 49 4D 495446 1Aø1:øD Øø ØD ØD $97454 \mathrm{E} 54 \mathrm{~F} \varnothing$ 1Aø9:45 52 2ø $424547494 \mathrm{E} ~ \mathrm{C} 4$ 1All:4E 49 4E $47 \begin{array}{llllll} & 2 \varnothing & 4 \mathrm{C} & 49 & 4 \mathrm{E} & 1 \varnothing\end{array}$ 1A19:45 2ø $4 \mathrm{E} \quad 554 \mathrm{AD} 4245 \quad 5267$ 1A21:2ø 4F 52 ØD øø ØD ØD 41 E3 1A29:44 $442 \varnothing \begin{array}{lllllll}57 & 41 & 49 & 54 & 2 \varnothing & \text { ø2 }\end{array}$ 1A31:4C 4 F 4F 5 Ø 1A39:øø 93 1C Ø2 ØA ØD 4558 5D 1A41:49 $53 \begin{array}{lllllll}54 & 49 & 4 \mathrm{E} & 47 & 20 & 4 \mathrm{C} & 2 \mathrm{~A}\end{array}$ 1A49:49 4E $45 \begin{array}{lllllll}53 & 2 \varnothing & 42 & 45 & 54 & 7 C\end{array}$ 1A51:57 $45454 \mathrm{E} 2 \varnothing$ Øø $2 \varnothing 1677$ 1A59:2ø Øø 93 Ø2 ØA øD 1C 12 FE 1A61:2A $2 \mathrm{~A} \quad 2 \mathrm{~A} \quad 2 \varnothing 4 \mathrm{~F} 55 \begin{array}{lllll}54 & 2 \varnothing & 15\end{array}$ 1A69:4F 46 2ø 4D 454 D 4 F 52 FF 1A71:59 2ø 2A 2A 2A 92 øD ØD 05 1A79:øø $\begin{array}{llllllll}97 & 35 & 33 & 32 & 38 & 3 \varnothing & 2 C & 6 C\end{array}$ 1A81:30 30 3A $97 \begin{array}{llllll}35 & 33 & 32 & 38 & \text { AD }\end{array}$ 1A89:31 2C $3 \varnothing$ 3ø 3 A 99 C7 28 5A 1A91:31 $\begin{array}{llllllll}34 & 32 & 29 & 22 & 93 & 22 & 3 B & 23\end{array}$

lAAl:92 31
lAA9: $\begin{array}{lllllllll}35 & 33 & 32 & 38 & 32 & 2 \mathrm{C} & 3 \emptyset & 30 & \mathrm{E} 1\end{array}$
1ABl:3A $97 \quad 35 \quad 33 \quad 32 \quad 38 \quad 33 \quad 2 \mathrm{C} C 7$
lAB9:30 $30 \quad 3 \mathrm{~A} \quad 97 \quad 35 \quad 33 \quad 32 \quad 38$ E5

1AC9:32 36
1AD1:32 $\begin{array}{llllllllll}36 & 35 & 29 & \mathrm{AF} & 31 & 39 & 31 & \mathrm{CB}\end{array}$
lAD9: ØØ $97 \begin{array}{llllllll}95 & 33 & 32 & 37 & 3 \emptyset & 2 C & C 8\end{array}$
1AE1:C2 28.35
1AE9: BØ $\begin{array}{llllllllll}31 & 36 & \emptyset \emptyset & 97 & 35 & 33 & 32 & \text { B3 }\end{array}$
$\begin{array}{lllllllll}1 \mathrm{AF} 1: 37 & 30 & 2 \mathrm{C} & \mathrm{C} 2 & 28 & 35 & 33 & 32 & 2 \mathrm{E}\end{array}$
lAF9: 37 3Ø 29 AF $32 \quad 33 \quad 39$ Øø C6
1Bø1:97 $35 \begin{array}{llllllll}35 & 32 & 36 & 35 & 2 C & C 2 & 7 B\end{array}$
1Bø9:28 $\begin{array}{lllllllll}35 & 33 & 32 & 36 & 35 & 29 & \mathrm{~B} \emptyset & \mathrm{~B} 3\end{array}$
1B11:36 34 ØØ ØD ØD 414444 7A
1B19:20 4 C 49
1B21:20 $5345 \quad 54$ 2の 55 50 ØD 2E
1B29: $\varnothing \emptyset \quad 45 \quad 58 \quad 54 \quad 45 \quad 4 \mathrm{E} \quad 44 \quad 45 \quad 32$
1B31:44 20.42 41 43 4B $47 \begin{array}{llllll}16 & 16\end{array}$
1B39:4F $55 \quad 4 \mathrm{E} \quad 44 \quad 2$ Ø $4 \mathrm{AD} 4 \mathrm{~F} 44 \quad 93$
1B41:45 20 4F 52 日D 4D 55 4C C5

1B51:4F $44 \quad 45$ 3F $20 \quad 59$ 9D Øø 7 E
1B59: 42 41 43 4B $47 \begin{array}{llllll}52 & 4 \mathrm{~F} & 55 & 95\end{array}$

1B69:54 $45 \quad 5253$ 20 312 D 33 ED
1B71:3F 20.59 9D Øø 42 41 43023
1B79:4B $47524 \mathrm{~F} 554 \mathrm{E} 44 \quad 20$ F2
1B81:26 20.42 FF 5244
1B89:20 $43 \quad 4 \mathrm{~F} 4 \mathrm{C} 4 \mathrm{~F} \quad 52 \quad 53 \quad 3 \mathrm{~F}$ F8
1B91:20 59 9D ØØ ØD ØD 414445
1B99:44 20 4C 49 4E 45
1BAl:4F $20 \quad 54 \quad 55 \quad 52 \quad 4 \mathrm{E} \quad 2 \emptyset \quad 4 \mathrm{~F} \quad \mathrm{C} 2$
1BA9:46 46 ØD Øø 93 ØD 1C 1251
1BB1:ø2 Ø5 2 2Ø 5015245
1BB9:20 $4 \mathrm{AB} 45 \quad 59 \begin{array}{llllll}53 & 2 \emptyset & 31 & 2 \mathrm{D} & \mathrm{BB}\end{array}$
1BCl:33 $206544 \mathrm{~F} \quad 20 \quad 43 \quad 59 \quad 43$ 1D
1BC9:4C $45 \quad 2 \emptyset \quad 434 \mathrm{~F} 4 \mathrm{C} 4 \mathrm{~F} 524 \mathrm{C}$
lBD1:53 Ø2 Ø5 $2 \emptyset 92$ Ø2 Ø3 ØD 84
1BD9: Øø ØD 97 Ø2 1D $2 \emptyset 6 \mathrm{~F}$ Ø2 BØ

l BE9: $41 \quad 434 \mathrm{~B} \quad 47 \quad 524 \mathrm{~F} 554 \mathrm{E} \quad 38$
1BFl:44 $20.52 \begin{array}{lllllll}15 & 47 & 49 & 53 & 54 & 4 \mathrm{~B}\end{array}$
1BF9:45 52 2ø $2 \emptyset \begin{array}{llllll} & 3 \emptyset & 2 \emptyset & 2 \emptyset & \text { A5 } & 55\end{array}$
1CØ1:Ø2 Ø4 2Ø A7 ØD Ø2 1D $2 \varnothing 84$
1Cø9:6C Ø2 Ø4 AF BA ØD ØD ØØ 97
1C11:øD ØD ØD 12 1F Ø2 Ø6 20 Ø3
1C19:50 52 45 53 53 20 27 53 A8
1C21:50 $41 \quad 43 \quad 45 \quad 27 \quad 2046$
1C29:52 $20 \quad 574 \mathrm{~F} 524 \mathrm{~B} \quad 2 \mathrm{D} 53 \mathrm{DF}$

1C39:92 Øø 89 8A 8B 8C 8586 B4
1C41:87 88 Ø2 14 ØD ØF 08 1ø A5
1C49:18 1A ØB Ø3 15 Al 35 Al EØ
1C51:3B A2 2B A1 CD A1 Bø A1 47
1C59:41 Al Al Al 50 Al ø3 Al 99
1C61:18 A2 8F A4 15 A4 1F A6 AA
1C69:A2 A6 65 A1 5F Al 66 Al 47
1C71:7D Al $949 \emptyset \emptyset 5$ 1C 9F 9C EØ
1C79:1E $1 \mathrm{~F} \quad 9 \mathrm{E} 81 \quad 95 \quad 96 \quad 97 \quad 9843$
1C81:99 9A 9B Øø 63 øø 8B Øø D2
1C89: B3 50 F2 20 8E C6 4C 1D 55
1C91:A4 $20 \quad 93$ C6 4C 69 FE 20.29
1C99:93 C6 $20 \quad 33$ A5 4C 8E C6 C6
1CA1:20 93 C6 20 13 A6 4 C 8E \quad Ø4
1CA9:C6 A9 2685 Ø1 6Ø 48 A9 90
1CB1:27 85 Ø1 $68 \quad 60$ A5 12 Fø 34
1CB9: 1B C6 13 Dø 17 A9 1485 AD
1CCl:13 AD 27 DØ 49 Ø1 8D $27 \quad 71$
1CC9: DØ AD 2D Dø 49 Ø1 8D 2D 1F
1CD1: DØ 8D 2E DØ 4C 31 EA EØ 86
1CD9:ØB FØ Ø3 4C 8B E3 A5 7A AA
1CE1:8D DB C6 A5 7B 8D DC C6 9D
1CE9:AØ Ø4 AD DB C6 DØ Ø3 CE 35
1CF1:DC C6 CE DB C6 AD 91 Ø8 D8
1CF9:D9 EA C6 DØ DE 88 10 EA E3

Here are two fast, useful routines for storing and retrieving high-resolution graphics screens with a disk drive. They work with the Commodore 64 or Commodore 128 in 64 mode.

Taking advantage of the Commodore 64's high-resolution graphics can be a time-consuming process at best. Even with extra commands such as those found in Simons' BASIC, it may take many minutes or even hours to plot a detailed screen. Utilities for dumping a high-resolution screen to your dotmatrix printer are readily available. At times, however, you may wish to save your graphics screen in a disk file so you can display it later without rerunning the program that created it. And if you own an Okimate 10 or similar color printer, the ability to save multicolor graphics screens is particularly useful.
"Screen Saver 64" provides two machine language (ML) routines that let you quickly save and retrieve hi-res graphics screensboth standard and multicolor-
from disk. Though they're written in ML, you can use them without knowing the ins and outs of ML yourself. And we've included two demonstration programs that show exactly how to use the ML routines for real applications.

To get started, type in and save Programs 1 and 2. Program 1 puts the screen save routine into memory, and Program 2 creates the screen retrieval routine. Since both ML routines go into the same memory area, they must be used separately. If you have an ML monitor and wish to examine the routines, note that each is broken into two parts, located from memory locations 679-738 and 828-1023 (decimal).

Saving A Graphics Screen

Here are the steps for saving a graphics screen with Screen Saver 64:

1. Run Program 1 to place the ML screen save routine in memory.
2. Create your hi-res or multicolor screen as usual. If you don't know how to do this, the Commodore 64

Programmer's Reference Guide and many other books explain the required steps. Program 3 (see below) contains a simple demonstration.
3. Execute a statement like OPEN 2,8,2,"filename, P, W " to open a disk file for writing (replace filename with the name of your own file). You must open the file as a PRG (program format) file using the , P suffix as shown above. The, W suffix indicates that you're opening the file for a write operation, and the first numeral 2 sets the logical file number (2 in this case) for that file.
4. Execute SYS 1007 to activate the ML save routine. This must be done while you are in hi-res or multicolor mode. The ML routine finds the currently defined graphics screen and associated color memory, and stores their contents in the disk file.
5. Execute a statement like CLOSE 2 to close the file. It is very important that you end the procedure by CLOSEing the file, specifying the same logical file number (2 in this case) which was used to open it. If you omit this vital step, you may end up with a poison (unclosed) file on the disk that could damage other files or render the whole disk unreadable.

Retrieving A Graphics Screen

Once you have saved the screen to disk, it's easy to retrieve. Here are the steps to follow for bringing a graphics screen back into memory:

1. Run Program 2 to put the ML retrieval routine in memory.
2. Perform the steps needed to enter the appropriate hi-res or multicolor graphics mode.
3. Execute a statement like OPEN $2,8,2, "$ filename, $\mathrm{P}, \mathrm{R}^{\prime \prime}$ to open the disk file for reading (input). Again, the , P suffix specifies a PRG file, and the ,R suffix opens the file for reading.
4. Execute SYS 881. The ML routine loads the graphics data back into the right memory locations.
5. Execute a statement like CLOSE 2 to close the disk file. Again, you should use the same logical file number (2 in this case) used when opening the file.
6. At this point you can continue
with a BASIC program or do whatever else you like.

Graphics Demonstrations

Programs 3 and 4 contain practical demonstrations of how to use these two routines from BASIC. Type in and save both programs, then load and run Program 1 to put the ML save routine in memory. Now load and run Program 3. This program uses the hi-res drawing example from pages 123-126 in the Commodore 64 Programmer's Reference Guide. Lines 110-140 define the hires screen and color memory to start at locations 8192 and 1024, respectively, then clear the graphics screen. Lines 150-230 draw a simple sine wave pattern. (Be patient; it takes a few minutes to complete the drawing.) Line 270 opens the disk file using 2 as the logical file number and SINEWAVE.HIRES as the filename. After checking the disk error channel, the program calls the ML save routine.

The sine wave disappears as the hi-res memory is moved temporarily to a new location and stored in the disk file. Then the routine moves the picture back to its original location, saves color memory, and returns control to BASIC. After checking the error channel again, the BASIC program restores the normal screen display and ends.

Program 4 shows how to use the ML retrieval routine. Since it looks for a file named SINEWAVE.HIRES on the disk, you can run it only after you've used Program 3 to create the file. Run Program 2 to put the ML retrieval routine in memory, then load and run Program 4. Lines 110-130 define the hi-res screen starting at location 24576, a different area than the one it was saved from. Lines $140-150$ fill the screen with a uniform pattern. (Note that this is done only for the purpose of demonstration, to confirm that the retrieval routine puts new information on the screen. It is not necessary to clear the graphics screen before using this routine.)

Lines 160-190 open a disk file for reading, using the same name as Program 3 (SINEWAVE.HIRES). After checking the error channel (180-190), the retrieval routine is called with SYS 881 . The hi-res
screen is restored right before your eyes: First the graphics information appears, then color memory is brought in as well. After a brief pause, the program restores the screen to normal and ends.

Inside The ML Routines

The ML save routine saves the currently defined graphics screen and its associated color memory wherever they are located-even if the hi-res screen is stored in the RAM underneath a ROM area. The ML retrieval routine brings the stored screen back into whatever area you have currently defined as the graphics screen, even if that's a different location from the area from which it was saved. This lets you create and store a complex graphics display using one particular graphics aid (Simons' BASIC, etc.) and retrieve it for use by any other program.

Since sprites are independent of other graphics, these routines can't store or retrieve sprite shapes that appear on the screen.

To make this routine compatible with as many programs as possible, memory usage is restricted to three areas. It uses memory locations 679-738 (normally unused) and 828-1023 (the cassette buffer) to store the routines, and also zeropage locations 2 and 251-254. To save a screen, the ML routine first looks in locations 56576 and 53272 to locate the graphics screen and normal screen memory (which becomes the hi-res color memory). It then swaps the 8 K bytes of hi-res RAM memory with the contents of locations 24576-32767 (\6000\$ 7 \mathrm{FFF})$. This is done by "turning off" the computer's ROM chips temporarily so the swapping routine can see hi-res memory no matter where it's located. Then the routine switches the Kernal ROM back in to write the 8,000 bytes of hi-res information to the disk file, and moves the hi-res screen back to its original location. The 1,000-byte screen memory area is written directly to the disk file.

Note that since no memory swapping is done for color memory, this part of your screen must be located in a memory area that's not normally hidden by ROM.

Finally, the normal color mem-
ory at 55296－56295（used in multi－ color mode）as well as the screen background byte at 53281 is written to disk．The final disk file is 10,003 bytes（ 40 blocks）long．Two extra bytes are added at the beginning of the file to make it compatible with version 3.0 of the Okimate Color Print program．

The retrieval routine works in reverse，finding where the graphics screen and color memory are locat－ ed in the current configuration， then restoring everything to the correct memory locations．Since RAM can be POKEd even if it＇s under ROM，no memory swapping is required and the contents of the disk file are moved directly into the appropriate memory areas．

For instructions on entering these listings， please refer to＂COMPUTEI＇s Guide to Typing In Programs＂in this issue of COMPUTE！．

Program 1：Screen Saver 64

CS 1øØ REM PROGRAM 1 SCREEN SA VER 64
PE $11 \varnothing \mathrm{SU}=\varnothing: \mathrm{FORI}=688 \mathrm{TO} 738:$ READ $X: S U=S U+X: P O K E I, X: N E X T$
CK 120 IFSU＜ 4855 THENPRINT＂ERR OR IN DATA IN LINES $17 \emptyset$ －22の＂：STOP
QX $130 \mathrm{SU}=\varnothing: \mathrm{FORI}=828 \mathrm{TO} \emptyset 22:$ REA $\mathrm{DX}: \mathrm{SU}=\mathrm{SU}+\mathrm{X}: \mathrm{POKEI}, \mathrm{X}: \mathrm{NEXT}$
PQ 140 IFSU＜＞31598THENPRINT＂ER ROR IN DATA IN LINES 24 Ø－47の＂：STOP
SR 150 PRINT＂SCREEN SAVE INSTA LLED＂：END
MS $17 \emptyset$ DATA173， $0,221,41,3,73,3$ ，10，10，1ø
QP 180 DATA10，10，10，133，254，17 3，24， 2 Ø8
QJ 190 DATA41，8，10，10，101，254， 133，2，105
DA $2 \emptyset \emptyset$ DATA31，141，169，2，173，24 ，2ø8，41，24ø
DB 210 DATA $74,74,234,234,101,2$ 54，141，168
XM $22 \emptyset$ DATA2，1Ø5，3，141，167，2，9 6
KB 240 DATAl6ø，$\varnothing, 132,251,132,2$ 53，165，2，133
PH 250 DATA $252,169,96,133,254$ ， $120,165,1,72$
MG 260 DATA41， $253,133,1,177,25$ 1，17ø，177
DA 270 DATA253，145，251，138，145 ，253，2øø
RK 28 DATA2ø8，243，230，252，230 ，254， 165
HK 290 DATA254，201，122，2ø8，233 ，104，133，1
JH 3 Øø DATA88，234，234，234，96，1 62，2，32，2Ø1
MD 310 DATA $255,169, \varnothing, 32,210,25$ 5，165，2，32
SX 320 DATA210，255，160， $0,132,2$ 51，169，96
RK 330 DATA133，252，234，234，177 ，251，32，21ø
XS 340 DATA $255,165,252,201,127$ $, 24 \varnothing, 7,2 \varnothing \varnothing$

PX 350 DATA2ø8，242，230，252，2ø8 ，238，2øб
MX 360 DATA152，2ø1，64，208，232， 96，160，$\varnothing ~$
FC 370 DATAl 32，251，173，168，2，1 33，252， 177
FA $38 \emptyset$ DATA251，32，210，255，165， 252，205，167
SH $39 \emptyset$ DATA2， $240,7,2 \emptyset 0,208,241$ ，230，252
MD 40ø DATA2の8，237，200，152，201 ，232，2ø8
JB $41 \emptyset$ DATA2 $31,160,0,132,251,1$ 69，216，133
XS $42 \emptyset$ DATA252，177，251，32，210， 255，165，252
JD $43 \emptyset$ DATA2Ø1，219，240，7，2ø日，2 Ø8，242，230
XE $44 \emptyset$ DATA $252,2 \varnothing 8,238,200,152$ ，2ø1，232
XC 45 D DATA2ø8， $232,173,33,2$ ø8， 32，210，255
PH 460 DATA32，204，255，96，32，17 6，2，32，60
MX $47 \emptyset$ DATA3， $32,113,3,32,60,3$ ， $32,163,3,96$

Program 2：Screen Retriever 64

PR 1 Øø REM PROGRAM 2 SCREEN RE TRIEVE
PE 110 SU＝Ø：FORI $=688 \mathrm{TO} 738:$ READ $\mathrm{X}: \mathrm{SU}=\mathrm{SU}+\mathrm{X}:$ POKEI， $\mathrm{X}:$ NEXT
HE 120 IFSU＜＞4855THENPRINT＂ERR OR IN DATA IN LINES 160 －18の＂：STOP
JQ $13 \emptyset \mathrm{SU}=\emptyset: \mathrm{FORI}=881 \mathrm{TOl} \emptyset \emptyset 4$ ：REA $\mathrm{DX}: \mathrm{SU}=\mathrm{SU}+\mathrm{X}: \mathrm{POKEI}, \mathrm{X}: \mathrm{NEXT}$
XK 140 IFSU＜＞2129ØTHENPRINT＂ER ROR IN DATA IN LINES 19 Ø－250＂：STOP
HM 150 PRINT＂SCREEN RETRIEVE I NSTALLED＂：END
KB $16 \emptyset$ DATA173， $0,221,41,3,73,3$ $, 10,10,10,10,10,10,133$, 254，173，24，208
PD $17 \emptyset$ DATA41， $8,10,10,101,254$ ， $133,2,105,31,141,169,2$ ， 173，24，2ø8，41，24ø
KP 180 DATA74， $74,234,234,101,2$ 54，141，168，2，105，3，141， 167，2，96
PC $19 \emptyset$ DATA $32,176,2,162,2,32,1$ 98，255，32，2Ø7，255，32，2Ø 7，255，234，160，Ø，132，251
AH 2 Øø DATAl65，2，133， $252,32,2 \emptyset$ $7,255,145,251,165,252,2$ Ø5，169，2，24ø，7，2øø，2ø8
QK $21 \emptyset$ DATA241，230，252，2ø8，237 ，2øø，152，2ø1，64，2ø8，231 $, 160, \varnothing, 132,251,173,168$ ， 2
FR 220 DATAl $33,252,32,207,255$ ， $145,251,165,252,205,167$ ，2，240，7，200，208，241，23 \emptyset
AB 230 DATA $252,208,237,200,152$ ，201，232，2ø8，231，160，Ø， $132,251,169,216,133,252$ ， 32
JE 240 DATA $207,255,145,251,165$ ，252，2ø1，219，240，7，2øø， 2 ø8，242，230，252，208，238 ， 2 Øø
SH $25 \emptyset$ DATAl52，2ø1，232，2ø8，232 ，32，207，255，141，33，208， 32，2ø4，255，96，999

Program 3：Screen Saver Demo

DG $1 \emptyset \emptyset$ REM PROGRAM 3 SCREEN SA VE DEMO
HS 11Ø BASE＝2＊4096：POKE53272，P EEK（53272）OR8
BH $12 \emptyset$ POKE53265，PEEK（53265）OR 32
BK $13 \emptyset$ FOR I＝BASE TO BASE +7999 ：POKEI，$\varnothing: N E X T$
KD 140 FOR $\mathrm{I}=1 \varnothing 24 \mathrm{TO} 2 \varnothing 23: \mathrm{POKEI}$ ， 3：NEXT
MS $15 \emptyset$ FOR $X=\emptyset$ TO 319 STEP． 5
RF $16 \emptyset \mathrm{Y}=\operatorname{INT}(9 \varnothing+8 \emptyset * \operatorname{SIN}(\mathrm{X} / 1 \varnothing))$
KR $170 \quad \mathrm{CH}=\operatorname{INT}(\mathrm{X} / 8)$
QC $180 \mathrm{RO}=\operatorname{INT}(\mathrm{Y} / 8)$
RF 190 LN＝YAND7
AR 2 Øø $\mathrm{BY}=\mathrm{BASE}+\mathrm{RO} * 32 \emptyset+8^{*} \mathrm{CH}+\mathrm{LN}$
GX $210 \mathrm{BI}=7-$（XAND7）
BX 220 POKEBY，PEEK（BY）OR（ $2 \uparrow B I$ ）
AP 230 NEXT X
EG 240 POKELØ24，16
GR $25 \emptyset$ FOR $I=1\{2$ SPACES $\}$ TO $1 \varnothing \emptyset$ Ø：NEXT\｛2 SPACES\}I
BM 260 OPEN15，8，15
JK $27 \varnothing$ OPEN2，8，2，＂SINEWAVE．HIR ES，P，W＂
RJ $28 \emptyset$ INPUT\＃ $15, \mathrm{z} 1, \mathrm{Z} 2 \$, \mathrm{z} 3, \mathrm{z} 4$
AG 290 IF $\mathrm{Zl}<>\emptyset$ THEN CLOSE2：CL OSE15：PRINT Z1；Z2S；Z3；Z 4：GOTO35Ø
MX $30 \emptyset$ SYS $1 \varnothing 07$
AS 310 CLOSE2
AM 320 INPUT\＃ $15, \mathrm{Z} 1, \mathrm{Z} 2 \$, \mathrm{Z} 3, \mathrm{Z} 4$
RS $33 \emptyset$ IF $\mathrm{Zl}\langle>\emptyset$ THEN CLOSE15： P RINT Z1；Z2S；Z3；Z4
MH 340 FOR $\mathrm{I}=1$ TO 1øøø：NEXT I
MM $35 \emptyset$ POKE53265，PEEK（53265）AN D 223
DF $36 \emptyset$ POKE53272， $\operatorname{PEEK}(53272)$ \｛2 SPACES \}AND 247
DR $37 \varnothing$ END

Program 4：Screen Retriever Demo

XF l 1 Ø REM PROGRAM 4 SCREEN RE TRIEVE DEMO
PH 110 POKE56578，PEEK（56578）O R 3：POKE 56576，（PEEK（56 576）AND252）OR 2
HD 120 BASE $=6$＊ 4096 ：POKE53272， P EEK（53272）OR8
FG 130 POKE53265，PEEK（53265）OR 32
FM $14 \emptyset$ FOR I＝BASE TO BASE +7999 ：POKE I， 66 ：NEXT
CS 150 FOR $I=16384+1 ø 24$ TO 163 $84+2023:$ POKE I， $77:$ NEXT
GE 160 OPEN15，8，15
QJ 170 OPEN2，8，2，＂SINEWAVE．HIR ES，P，R＂
CC 180 INPUT\＃15，Z1，Z2\＄，Z3，Z4
GG 190 IF $\mathrm{Z} 1<>\emptyset$ THEN CLOSE2：CL OSE15：PRINT Z1； $\mathrm{Z} 2 \$; \mathrm{Z} 3 ; \mathrm{Z}$ 4：GOTO23Ø
RS $20 \emptyset$ SYS 881
PJ 210 CLOSE2
MC 220 FOR I＝1 TO 25øø：NEXT I
DF 230 POKE56576，（PEEK（56576）A ND252）OR 3
FR 240 POKE53272，PEEK（53272）AN D247
HD 250 POKE53265，PEEK（53265）AN D223

Atari FontMaker

Charles Brannon, Program Editor

"FontMaker" simplifies the design of character sets for all text modes on Atari 400/800, XL, and XE computers. Although programmers will find FontMaker a valuable addition to their utility library, nonprogrammers can also benefit. Next month, we show how to use FontMaker to customize Atari SpeedScript's special character set. Whether you want Old English or a computer age font, FontMaker has the tools you need to express your creativity. It requires at least 16 K RAM; disk drive recommended.
"FontMaker" is a sophisticated character editor written completely in machine language to work with all Atari text modes. Even though a character set (or font) editor is a handy utility for programmers, you don't need to know anything about machine language or programming to have fun with it. We include a simple subroutine that lets you load and merge character sets with your own BASIC programs. And next month, we'll show how to use the special ANTIC 3 character sets with the Atari version of our SpeedScript word processor (COMPUTE!, March 1986).

Since FontMaker is written in machine language for speed and compactness, you need to type it in with MLX, our machine language editor. See the MLX article elsewhere in this issue for instructions on typing in and using MLX to enter machine language programs.

When you run MLX, answer
the first three screen prompts like this:
Starting Address: 12288
Ending Address: 14887
Run/Init Address: 12288
Next you'll be asked "Tape or Disk?". Although FontMaker can load as a boot tape, it's much easier to use with a disk drive. If you press D for Disk, you'll be asked "Boot Disk or Binary File?". Press F to select binary file. FontMaker will run from a boot disk, but without DOS, there's no way to save or load character sets. So make sure you select F , since MLX can't convert from a boot disk to a binary file.

At the first screen prompt, 12288:, start typing the data from Program 1. See the MLX article for a list of commands that let you type in a program in several sessions. When you've typed the last line, MLX prompts you for a disk filename. This will be the name under which FontMaker is saved to disk. If you're using Atari DOS 2.0S, 2.5, or 3.0 , you may use the filename AUTORUN.SYS. This allows FontMaker to automatically load and run when you turn on the computer with the disk in the drive. Be sure this disk also contains the DOS files.

If you want to prevent loading FontMaker automatically (especially if you haven't finished typing it but want to save your preliminary typing), you can rename AUTORUN.SYS to some other name. You can also load FontMaker from DOS 2.0 S or 2.5 with menu selection L . If you're using another DOS, such as OS/A+ or DOS XL, you may be able to save FontMaker with a different name, such as FONT.COM
and type the command FONT to run FontMaker.

Editing Characters

Assuming you've typed in and saved FontMaker, run it and follow along with this article. You'll see a screen with a colorful 8×8 grid, a list of brief instructions, and four rows of characters at the bottom of the screen (see screen photo).

When FontMaker starts, it asks you to pick a character. You can edit one character at a time. When you're asked to select a character, you can use the joystick to move a cursor around in the four rows of characters, then press the fire button to select the character highlighted by the cursor. Or you can simply press the keyboard key corresponding to the character. Action then shifts to the 8×8 character editing grid.

Within the grid, you can move the editing cursor (a hollow white box) with either the joystick or the cursor keys. You don't need to use CTRL with the cursor keys to move the cursor-CTRL-cursor up/ down/ left/right and SHIFT-cursor up/down/left/right are reserved for other features. When drawing in the character grid, press the fire button or the space bar to reverse (toggle) the dot at the cursor position. Previously set dots are turned off, and blank spaces are turned on. You can hold down the fire button while you move the joystick to draw lines and figures.

As you change the grid, you can see the character in actual size in the character set window. The cursor highlights (reverses) the selected character, but a row of the

"Atari FontMaker" lets you design your own custom character fonts for any Atari text mode.
character you're editing is also displayed. In addition, there's a sample of text ("The quick brown fox jumped over the lazy dogs") so you can judge relative character height and spacing.

To create an entirely new character, you may want to start by pressing SHIFT-CLEAR to erase the existing character pattern. This gives you a clean canvas for your design.

Undo Your Mistakes

If you don't like a change you've made, press U to undo all the changes made since you've selected the character. Press U again to undo the undo, restoring the change you've made. You can press F to fix a character, recopying its image from the standard character set stored in the computer's Read Only Memory (ROM). It's important to distinguish between these options: U reverts to the previous character image, F always gives you the ROM image. If you change the letter A to a spaceship, change B to a rocket, then go back to A and change the spaceship to an alien, U switches between the alien and the spaceship; F gives you the pattern for the letter A. Beware that you can't undo the Fix command.

If you hold down the OPTION button while pressing F, the entire character set is fixed, recopied from ROM. This wipes out any changes you have made to the character set, so be careful.

To select another character to edit, press P and use the joystick or keyboard to pick the new character. In some text modes (see the G command below), the joystick cursor may seem to move strangely. It
consistently moves up or down between rows of 32 characters. Since there are only 20 characters per line in modes 1 and 2, these rows wrap around the right margin. You move left and right within a row of characters, and up and down between rows of 32 characters.

FontMaker can display the character set in all Atari text modes. These are GRAPHICS 0 (the default text mode), "GRAPHICS $01 / 2$ " (technically known as ANTIC 3, a nine-line true-descender mode), multicolor ANTIC mode 4, multicolor ANTIC mode 5, GRAPHICS 1, and GRAPHICS 2. Press G to cycle through these modes.

The SpeedScript Character Mode

If you've never heard of the ANTIC text modes, don't fret; they're not normally accessible from BASIC. The Atari SpeedScript word processor (and, incidentally, the PaperClip word processor from Batteries Included) uses the ANTIC 3 mode for large, readable characters. ANTIC 3 , nicknamed GRAPHICS $01 / 2$, is a special 40 -column mode that lets you define characters within an $8 \times$ 10 character space. Other Atari text modes have only an 8×8 character grid. This means that ANTIC 3 characters can have true descenders. (A descender is the part of a character that drops below the line of type, such as the tail on a lowercase y or j.)

You still use just eight rows to define a character in ANTIC 3, but the character is positioned within ten screen scan lines. For uppercase characters, the eight rows of the character grid are displayed in rows 1-8 of the character matrix, with two blank lines at the bottom of each character, reserving space for lowercase descenders. For lowercase characters, the first two lines of the character grid are forced blank. The first two rows of the character definition are actually displayed at lines 9 and 10 of the character space, making it easy to reserve space for the descenders. The third through eighth rows of the character are displayed starting at the third line of the character space.

This may sound confusing, but fortunately FontMaker lets you design ANTIC 3 characters without
having to mentally translate what you see on the grid to what the character should look like. (However, the Rotate option seems to work strangely in this mode due to the unusual memory configuration used by ANTIC 3 characters.) Just be aware that lowercase characters are actually written two lines lower on the screen than uppercase characters. If you start with the normal character set, you'll need to use the roll and shift options to align the characters. Using the roll or shift commands (see below), roll the lowercase characters down two lines and all the uppercase characters down by one line. While you work, refer to the "quick brown fox" sentence to see that all the characters line up properly.

Since there are forced blank lines for uppercase characters, you can use the lower seven lines to define a large character. Leave the top line blank if you want two-line descenders. The normal Atari character set only uses six columns for a character, giving two pixel spaces between each character on the screen. A larger character can use up to seven columns, leaving the last column blank to keep characters from running into each other. When designing some character sets, though, such as a cursive script, you may want characters to connect together, so you can use the full horizontal space.

You can press the CTRL-cursor keys to roll the character within the grid. Pixels that are pushed off the edge of the grid wrap around to the opposite side. This is especially useful for those ANTIC 3 characters. If you press SHIFT with the cursor keys, the pixels that are shifted off the edge of the grid are lost. This can be used to crop a character, or quickly erase a certain column or row. Just roll the character until the column or row you want to erase is at the edge of the grid, then shift the character to push away the pixels.

Other special commands: Press I to invert the character, reversing all the pixels within the grid. R rotates the characters 90 degrees (turns the pattern on its side). Press R twice to turn a character upside-down. M gives you a left-toright mirror image of the character, as if you picked up the character,
flipped it on its back，and put it back down．

Press C to copy the character you＇re editing to a new position in the character set．The current char－ acter replaces the character you se－ lect with the joystick or keyboard． Be careful with this，since you can unintentionally erase a cherished character．After the copy，the char－ acter you copied to is selected for editing．

Saving And Loading

When you＇re ready to save your character set，just press S，then type in a legal Atari filename at the prompt：
Save（Device：Filename＞
Include the D ：for disk or C ：for cassette．You can＇t save to the E： （screen editor）or S：（screen）de－ vices，so if you forget the drive specification and your filename be－ gins with E or S，FontMaker cancels the save．If you selected the save command by mistake and want to cancel it，just press RETURN when asked for the filename．

To load a character set into FontMaker，press L and enter the filename you used to save the char－ acter set．This will replace the char－ acter set in memory，so be sure to save the one you＇re working on if you want to keep it．Again，if you select this command by mistake， press RETURN at the prompt to cancel the load．

FontMaker is compatible with character sets created with＂Super－ Font＂（originally published in COM－ PUTE！，January 1982，and also found in the First Book of Atari Graphics）． FontMaker sets are also compatible with many other Atari character editors．We found that a FontMaker set can be loaded into the popular Instedit editor if you use a filename extension of ．SET．Character sets created with the Iridis Fontedit also work with FontMaker．

If FontMaker can＇t save or load a character set due to a bad file－ name or problem with the disk，it displays the message I／O ERROR： PRESS RETURN．Press RETURN and try the save again，after you＇ve figured out what went wrong．

When you＇re done editing characters，press the ESC（escape） key to exit FontMaker to DOS．Be sure you＇ve saved the character set
you＇re working on if you want to keep it．

Using Fonts With BASIC

The Bytes option in FontMaker is primarily for programmers who want a list of the eight numbers that define a character，handy for changing just a single character in a program．But if you want to include an entire character set in your pro－ gram，copying down these numbers can be tedious．Instead，you can use the two BASIC programs below， Programs 1 and 2，to add redefined character sets to BASIC．

Program 2，＂Fontloader，＂is a subroutine you can merge with your BASIC program to load the character set into memory from disk．Just change the filename in line 1010 to the filename of your character set．The program loads the character set at the memory lo－ cation CHSET，which is defined as eight pages back from the top of memory（location 106）．Change this if you want to put your charac－ ter set somewhere else．If a GRAPHICS command resets the character set，you can use POKE 756 ，CHSET／ 256 to re－point the character set vector to your RAM character set．Use POKE 756，224 to display the ROM character set，lo－ cated at memory location 57344 （\＄E000）．

If you＇re using a Translator type of program on XL and XE com－ puters，you can change CHSET （line 1030）to 57344 to load the character set directly into the RAM space corresponding to the position of the ROM character set．This keeps the character set in memory until you turn off the machine．

Use Program 3，＂Character Set Datamaker，＂if you＇d rather store your character set as part of your program in DATA statements．The Datamaker actually creates another program that you can merge with your own program．It creates DATA statements for only those characters that have been changed from the ROM image．Datamaker asks for the filename of your char－ acter set and a filename you＇d like to use for the program it creates．

After using Datamaker，type NEW and use ENTER to load the program created by Datamaker．As with Program 2，you can change

CHSET in the program created by Datamaker if you want to deter－ mine yourself where the character set should go in memory．The pro－ gram created by Datamaker copies the ROM set down to RAM（at CHSET），POKEs in the new charac－ ters，and switches the character pointer at 756 to the new set． Again，you can use POKE 756， CHSET／256 to reenable the set if your program somehow resets this pointer．

Next month we＇ll provide a program that lets you install an ANTIC 3 character set into your copy of SpeedScript，along with tips for creating readable characters and for using special characters for printer effects．

Program 1：FontMaker

Please refer to the＂MLX＂article in this issue before entering the following listing．
12288： $169,125, \emptyset 32, \emptyset 96,654, \emptyset 32,252$
 123øø： $062, \emptyset 5 \emptyset, \emptyset 32,108, \emptyset 5 \emptyset, \emptyset 32, \emptyset 9 \emptyset$ $12306: 045,048,169, \varnothing 01,141,194,104$ $12312: 048, \emptyset 32,242, \emptyset 48, \emptyset 32,113, \emptyset 27$ $12318: \varnothing 48, \varnothing 32, \varnothing 17, \varnothing 49, \varnothing 76, \varnothing 83, \varnothing 79$ 12324： $651,169, \emptyset 64,169, \emptyset 48, \emptyset 32, \emptyset 48$ $12330: 136,654, \varnothing 96, \varnothing 32, \varnothing 37, \varnothing 48,183$ $12336: 169,612,133,682,169,137,238$ 12342 ： $16 \emptyset, \emptyset 52, \emptyset 32,145,654,169,154$ 12348 ：øø2，133，ø82，ø96，ø7ø，111，ø42 12354：110，116，Ø77， $997,107,1 \emptyset 1,162$ 12360： $114, \varnothing 32, \varnothing 98,121, \emptyset 32, \varnothing 67, \emptyset 24$ 12366 ： $184,697,114,108,101,115,205$ 12372 ： $032,066,114,997,110,110,101$ $12378: 111,11 \varnothing, \emptyset \emptyset \emptyset, 173,2 \emptyset 2, \emptyset 48,222$ $12384: 261, \emptyset 63,268, \varnothing 10,173,194,117$ $12390: 648,201,996,144,603,169,251$ 12396： $06 \varnothing, \varnothing 96,169, \varnothing 61,096,032,246$
 24ø日： $954, \varnothing 32,202,054,169,128,247$ 12414 ： $699,624,133,263,173,198,698$ $1242 \emptyset: \varnothing 48, \varnothing \varnothing 9, \varnothing \varnothing 2,133,2 \emptyset 4,162,178$ 12426 ：$\varnothing \varnothing \varnothing, 16 \varnothing, \varnothing \varnothing \varnothing, 189,169, \varnothing 48,192$ $12432: 145,2 \varnothing 3,2 \varnothing \varnothing, 152$ ， $641, \varnothing \varnothing 3,12 \varnothing$ $12438: 208,245,232,224,668,208,251$ 12444：246， $632,693,648,268,066,615$ 12450： $632,252,054, \emptyset 32,252, \varnothing 54, \varnothing 7 \emptyset$ 2456：ஏ96，øøø，øøø，øøø，øøø，øøø，øø日
 $12468: \varnothing \varnothing \varnothing, 1 日 \varnothing$ 12474 ：$\varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing \varnothing \emptyset, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \emptyset \varnothing \varnothing, 186$ $1248 \varnothing$ ：$\varnothing \varnothing, \varnothing \varnothing \varnothing, 192$

 $12498: 133,264,173,194,648,616,2 \varnothing 4$ 125ø4：ø38，2ø4，ø1ø，ø38，2ø4，ø1ø，2ø日 12510 ： $038,264,624,133,267,169,169$ $12516: 195,648,133,263,165,284,152$ 12522： $133,268,169,196,648,133,637$ 12528：2ø4， $696,632,268,648,16 \varnothing, 22 \emptyset$ 12534 ：$\varnothing \boxed{1}, 177,2 \emptyset 3,153,169,648,235$ $12548: 153,177,648,136,616,245,603$ 12546：696， $632,208,648,166,607,841$ 12552： $185,169,648,145,203,136,126$ 12558： $616,248,096,165,088,624,139$ $12564: 195,228,133,263,165,089,175$ $1257 \varnothing$ ： $105, \varnothing \varnothing 1,133,2 \varnothing 4,169, \varnothing \varnothing \varnothing, 126$ 12576：141，193， $048,162,964,173,241$ 12582：262，Ø48，2ø1，Øø6，144，øø2， 129 12588：162，Ø62，160，øøø，173，193，222 12594：$\varnothing 48,205,194, \varnothing 48,208, \varnothing 62,243$ 1260ø： $099.128,145,203,238,193,294$ 12606： $648,200,192,632,208,236,210$ $12612: 624,165,203,165,646,133,226$ 12618：263， $165,264,105,606,133,116$ 12624：2ø4，2ø2，2ø日，218，173，2ø2， 097 12630： $048,2 \emptyset 1, \varnothing \varnothing 5,176, \varnothing 14,16 \varnothing, 178$ 12636：Øø日，185，119，Ø49，2ø1，Ø1ø， 144 12642 ： $249,607,145,203,206,208,677$ $12648: 244,16 \varnothing, \varnothing \varnothing \sigma, 260,173,194,951$

12654： $048,145,203,200,192, \varnothing 7 \varnothing$ ，2ø0 12660：144，245， $096, \varnothing 52,194,161, \varnothing 90$ 12666：$\varnothing 90,113,117,105,899,187,151$ 2672： $060, \varnothing 98,114,111,119,110,168$ 12678：øøø，1ø2，111，12ø，øøø，1ø6，ø61 12684： $117,189,112,181,100,060,167$
$12690: 111,118,101,114, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing 78$ 12696：øøø，øøø，øøø，øøø，øøø，øø ，152 127ø2：øøø，116，1ø4，1ø1，øøø，188，ø75 127ø日： $697,122,121, \varnothing \varnothing \varnothing, 1 \varnothing \varnothing, 111,203$ 12714：1ø3，115，ø14，ø1ø，øø日，øøø， 156 1272ø：øøø，øøø，øøø，ø33，225，ø๐1，179 12726：øøø，ø31，223，255，øøø，ø32，211 12732：224，øøø，ø88，105，ø99，107，ø35 $12738: 832,897,832,699,164,897,143$
$12744: 114,997,999,116,101,114,973$ 12744：114， $997, \varnothing 99,116,161,114, \varnothing 73$
$12750: ø 46, \varnothing 46, \varnothing 46, \varnothing \varnothing \varnothing, 169,196,191$ 12756：16ø，ø49，ø32， 130, ， $54, \boxed{2} 2,157$ 12762：ø17，ø49，ø32，242，ø48，ø326126 12768：113， $648,173,132, \varnothing 02,240,164$ 12774：ø42，173，252，øø2，201，255，131 12780：2ø8，ø43，174，120，øø2，189，2ø4 12786： $174,649,240,236,632,112,661$
$12792: ø 53,142, \varnothing 31,268,624,109, \varnothing 47$ 12798：194，ஜ48，ø41，127，174，2ø2，Ø16 128ø4：ø48，224，øø6，144，øø2，ஜ41， 213 1281ø：$\varnothing 63,141,194, \varnothing 48, \varnothing 76,217,237$ 12816： $649,173,132,962,240,251, \emptyset 95$ 12822： $076,659,650,832,629,658,676$ $12828: \varnothing 41,127,261,996,176, \varnothing 13,17 \varnothing$
$12834: 201, \varnothing 32,176,966,924,105, \varnothing 66$
 12846： $632,141,194, \varnothing 48, \boxed{2} 2, \emptyset 17,254$ 12852： $649, \emptyset 32,242, ø 48, ஜ 32,113$ ， 056 12858： $048,076,037,048,165,106,026$ $12864: ø 56,233, \varnothing 16,133,2 \varnothing 4,141,979$
$12879: 196, \varnothing 48,169, ø 06,133,203,951$ 12870：196， $648,169, \varnothing 00,133,203,651$
$12876: 141,195,648,141,194,948,675$ 12882： $133,205,169,224,133,206,128$ 12888： $16 \emptyset, \emptyset \varnothing \varnothing, 177,2 \emptyset 5,145,203,21 \varnothing$ 12894：200，208，249，230，204，236，135 12900：206，165，206，201，229，201，035 $12906: 239,696,169,846,141,647,076$
$12912: \boxed{0} 2,169,003,141,029,208,152$ $12918: 169, \varnothing \varnothing 1,141,111, \varnothing \varnothing 2,173,2 \varnothing 3$ 12924：196，ø48， $656,233, \varnothing 64,141, \varnothing 34$ 12930：198， $648,141,997,212,169,137$
 $12936: 606,141,197,648,162,611,183$
$12942: 157,255,267,262,268,256,141$ 12942：157，255，297，2ø2，268，256，141
$12948: 173,198,948,133,264,173, ø 53$ 12954：197， $948,133,263,162,964,133$ 12960：169，øø日，152，145，2ø3，2ø0，252 12966：2ø日，251，23ø，2ø4，2ø2，2ø日， 189 12972：246， $624,169,128,133,269$ ， 657 12978：169，øøø，133，2ø3， 173 ，198，ø30 12984： 48 ，øø9，øø3， $133,264,133,202$ 12984： $248,689,603,133,264,133,202$
$1299 \varnothing: 21 \varnothing, 169,17 \varnothing, 133,207,16 \varnothing, 215$ 12990：219，169，176，133，267，169，215
$12996: 624,165,267,145,263,873,245$ 13ø日2：255，145，2ø9，2ø日，152， 841,180 13098： $603,268,606,165,267,673,162$ 13ø14：255，133，2ø7，192，ø56，2ø8，241 13ø2ø：232，169，ø56，141，øø1，2ø日，øø3 13026：141， $962,298,141,963,268,161$ 13932：169， $893,141,969,298,141,135$ 13ø3日：ø1ø，2ø8，141， $11,2 ø 日, 169,217 ~$
$13644: ø 14,141,192,6 \varnothing 2,169,69 \varnothing, 984$ $13644: \varnothing 14,141,192,662,169,699,984$
$13650: 141,193,9 \varnothing 2,169,296,141,972$ 13656：194， $602,169,938,141,195,227$ 13662： $602,696,173,206,648,141,154$ 13ø68：øøø，2ø日， 173,198 ， 848 ，øø9， 136 $13674: ø \varnothing 2,133,264,16 \varnothing, \varnothing \varnothing \varnothing, 152,157$ 13ø日ø： $176,133,263,145,263,26 \varnothing, 654$ $13686: 176,133,263,145,263,266,654$
$13686: \varnothing 16,251,172,199, \varnothing 48,189,137$ 13092： $847,651,145,293,206,232,146$ 13698：224， $964,268,245,996,240,935$

 13116：255，255，255，ஜøø，øøø，øøø，ø57 13122：øøø，øøø，øøø，øøø，øøø，øøø，ø 6 $13122: \varnothing \varnothing \varnothing, \varnothing 66$
$13128: \varnothing \varnothing 1,255, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing \varnothing 1,255, \varnothing 72 ~$ $13128: \varnothing \varnothing 1,255, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing \varnothing 1,255, \varnothing 72$
$13134: \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing \varnothing 1,255, \varnothing \varnothing \varnothing, 169,247$
 13146：141，199，948， $932,968,951,957$ 13152： $174,12 \varnothing, \varnothing \varnothing 2,142,2 \varnothing 1, \varnothing 48, \varnothing 15$ 13158：224， $615,246,864,169,864$ ， $85 \varnothing$ $13164: 133,267,141,631,268,165,225$ 13164：133，267，141， $631,268,165,225$
$1317 \varnothing: 62 \varnothing, 197,626,24 \varnothing, 252,174,249$ 13176： $620,197,626,246,252,174,249$
$13176: 261,948,189,651,951,924,172$ 13182：109，2ø日， $948,261,956,144,116$ 13188： $967,2 \varnothing 1,985,176$, ø日3， 141,233 13194：2øø，ø48，189， $667,051,624,2 ø 5 ~$ 132øø：1ø9，199，ø4日，2ø1，ø24，144， 191 132ø6： $967,291,653,176,963,141,219$ 13212：199， $648,632,698,651,198,189$ $13218: 297,165,297,208,262,932,159$
$13224: 112,953,173,252,962,201,193$ 13224：112， $953,173,252,9 \varnothing 2,2 ø 1,193$
$13230: 255,298, ø 85,173,132,962,965$ $13236: 298,176,956,173,199,948,810$ 13242：233， $624,674,674,168,932,623$ 13248： 993 ， $848,298,814,192$ ， 606,241

13260： $951,152,856,233,906,168,192$ 13266：173，206， $848,856,233,856,208$ 13272： $674,874,179,232,656,169,223$ 13278：øøø，1ø6，292，268，252，689， 655 13284：169， $848,153,169,648,632,879$ 13290：167， $854,632,816,655,173,219$
 133ø2：162，2øø，ø32，114，ø53， 676,115 133ø日： $993, \varnothing 51,169, \varnothing \varnothing \varnothing, 141$, øøø， 194 13314：298， $876,637,648,932,829,176$ 1332ø： $658,2 \varnothing 1,697,144, \varnothing \varnothing 7,2 \varnothing 1,2 \varnothing 4$ 13326：123，176，øø3， $656,233, ~ 632,125 ~$ 13332：174， $658,652,221$ ， $658,652,123$ 1उ338：24ø， $666,2 \varnothing 2,298,248,676,238$ 13344： $696,851,262,138,61 \varnothing, 176,187$ 1335ø：169， $651,672,169,992,672,151$ 13356：189， $886,952, \boxed{62}, 189, \boxed{65,205}$ $13362: 952,972,169,606,141,966,228$
$13368: 208,996,926,945,861,943,923$ 13368：268， $996,626,945,961,943,923$ 13374： $942, \varnothing 28, \varnothing 29, \varnothing 3 \varnothing, \varnothing 31, \varnothing 32,254$

 13392： $982, ~ \boxed{83}, 976,967,966,992, \boxed{64}$ $13398: 655,699,655,166,955,113,957$
$13494: 955,194,954,244,854,868,241$ $13494: 955,194,954,244,954,666,241$
$13410: 655,676,855,181,951,121,125$ $13416: 955,209,849,142,055,173,019$ 13422：654，223， 854 ， $636,655, \varnothing 48$ ， 668 13428： $855,155,853,156,955,173,251$
 13440： $656,183,856,246,056,185,142$ $13446: 857,218,657,155,155,627,635$
$13452: 828,927,629,827,630,627,05$ $13452: ø 28, \varnothing 27, \varnothing 29, \varnothing 27, \varnothing 30, \varnothing 27, \varnothing 52$
$13458: ø 31, \varnothing 32,195,212,210,204, \varnothing \varnothing 6$ 13458： $031,632,195,212,210,204$ ， 066 13479： $635, \boxed{67}, 628, \varnothing 27,629, \boxed{67,679}$ 13476： $030,627,031,932,211,280,177$
 $13482: 927,829,627,936,627,831,085$
$13488: 155,211,268,193,195,197,655$ 13494： $632,984,111,193,193,168,211$
 13506：264，197，193，219，932，666， 972 13512：1ø8， $997,11 \varnothing, 167,155,199,2 ø 8$ 13518： $932,671,114,697,112,164,224$ 13524：195， $999,115,932,677,111,239$ 13530：1øø，1ø1，ø32，2ø8，ø32，ø8ø，øø $13536: 195,699,167,155,281,932,155$
$13542: 973,119,118,191,14,15,893$ $13542: 973,118,118,161,114,115,993$
$13548: 101,932,832,832,932,632,241$ 13554：ø32，ø32，213，ø32，ø85， 110,234 13560： $106,111,155,198,632,876,146$ 13566：105，120， $632,032,032,032, \varnothing 95$ 13572： $932,932,297,208,212,201,128$
 13584：195，126， $1832,997,198,168,974$ 13590：155，210， $932,982,111,116,216$ 13596： $997,116,161,932,932,932,182$ 136ø日：ø32，$\varnothing 77,1 ø 5,114,114,111, ø 81$ $13608: 632,677,165,114,114,111,681$
$13614: 114,155,195,632,667,111,2 ø 8$
 13626： $932,832,832,832,632,932,250$ $13632: 194,832,666,121,116,161,182$ $13638: 115,155,211,832,883,697,251$ $13644: 118,191,932,192,111,119,138$ 13650：116， $632,632,832,632,632,102$ 13656：204， $932,976,111,897,106,196$ 13662：155，197，211，195，832，869，185 13668：120，165，116， $032,116,111,188$ $13674: \varnothing 32, \varnothing 68, \varnothing 79, \varnothing 83, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, 112$
$13689: 162, \varnothing 9 \varnothing, 16 \varnothing, \varnothing \varnothing \varnothing, 136,2 \varnothing 8,1 \varnothing \varnothing$ $13689: 162,899,169,9 \varnothing 0,136,298,1 \varnothing \varnothing$
$13686: 253,262,268,256,696,624,127$ 13692：165， $888,165,228,133,263,622$ 13698： $133,269,165,889,105,801,664$ 13794：133，264，133，219，162， 692,212 13716：169， $6 \varnothing \varnothing, 168,145,263,2 ø 6,063 ~$ $13716: 298,251,236,264,292,268,171$
$13722: 246,696,632,123,953,238,174$ 13728：202， $648,173,262,948,2 \varnothing 1, \varnothing 10$ 13734： $6 \boxed{ }$ 1374ø：2ø2，ø48，ø32，187，ø53，ø32， 214 13746：242， $848,832,113,648,632,181$ 13752：ø17，ø49，ø96，173，ø48，øø2，ø57 13758：133，293，173， $649,962,133,115$ $13764: 264,169,863,169,194,145,647$
$13779: 263,169,916,169,134,145,665$ 13776：203，2øø，169，ø66，145，203， 110 13782：260， $173,262,648,145,263,161$ 13788：200，192， $622,208,249,281,612$ 13日øб： $17,169,616,145,263,173,187$ 13日ø6：2ø2，ø48，2øø，145，2ø3，2øø， 212
 13818：169， $865,145,293,165,293,176$ 13824：260，145，263，165，264，260， 693 13830：145，263， $696,169,664,141,656$ 13836：614，212，169， 636,141 ， 609,666 13848：169，192，141，141， 212, ， 96 ，ø日ø 13854：ø72，138，ø72，173， $111,212,196$
13866：201， $632,176,611,169,606,113$

13872：976． $087.954 \cdot 141.610 .212,116$ 13878：173，262， $648,261, \varnothing 64,144,658$
$13884: ø 69,173,198,962,141,624,995$ 3896：2ø8， $676,981,854,162,895,14 \varnothing$ 13896：189， $99.854,157, \varnothing 21,2 \varnothing 8, \varnothing 23$ 139ø2：262，2ø日，247，173，196，648，128
139ø日：141，ø69，212，104，170，104， 056 13914：ø64，ø76，øø2，ø1ø，254，øø8，248 13920：14ø，2ø3，ø48，162，øøø，142，ø23
 13932： $111,146,666,603,632,686,199$ 13938：228，172，203， $848,896,166,253$ 13944：øøø，152，145，888，2øø，192，129 1395ø： $64 \varnothing, 2 ø 8,249,696, \varnothing 72,152,175$ 13956： $972,169,962,133, \varnothing 85,632,113$ 13962：119， $654,133,984,164,168,932$ 13968： $164,133,263,132,264,169,665$
$13974: ø \varnothing 1,141,24 \varnothing, \varnothing 62,16 \varnothing, \varnothing \varnothing \varnothing, 182$ 13980：177，203，240，ø66，032，696，142 13986： $654,269,208,246,696,632,236$ 13992： $693,849,832,113,848,896,253$ 13998： $632,262,654,162,697,632,151$ $14 \varnothing \varnothing 4: \varnothing 93, \varnothing 48,2 \varnothing 8, \varnothing \varnothing 2,162, \varnothing \varnothing 1,182$
$14 \varnothing 1 \varnothing: 169, \varnothing \varnothing \varnothing, 157,169,848, \varnothing 32,249$ 14616：167， $054,096,032,262,054,629$ 14622： $032,167,054,696,173,169,121$ 14ø2日： $648,672,162,6 \varnothing \varnothing, 189,179,677$ 14934： $648,157,169,648,232,224, \varnothing 64$
$14 \varnothing 4 \varnothing$ ：$\varnothing \varnothing 7,2 ø 8,245,1 ø 4,141,176,973$ 14646： $948,996, \varnothing 32,252,954,162,998$ 14652： $606,632,693,648,268,662,699$ 14958：162， $9 \varnothing 2,169,900,157,169, ~$
$14964: ø 48,932,167,954,996,932$, 14676：252， $654,932,167,654,696,133$ 14876：173，176， $148,972,162, \varnothing 07,122$
$14 \varnothing 82: 189,168, \varnothing 48,157,169,848, \varnothing 13$ 14ø88：262，208，247，184，141，169， 255 $14994: ø 48, \varnothing 96,169,920,141, \varnothing \varnothing \varnothing, 232$
$14100: 216,162,175,142,901,216,152$ 14106：16ø，128，136，208，253，262， 689 14112：224，159，2ø8，243，ø96，162， 1 øø 14118： $6 \boxed{ }$ ， $636,169, ø 48,2 ø 2,268,190$
 14136：250，032，167，654，696，162，049 14142：ø67，189，169，ø48，ø1ø，ø62，ø35 14148：169， $648,262, \varnothing 16,246,632, \varnothing 13$ $14154: 167,654,696,162,667,189,237$
$14160: 169,648,674,126,169,648,262$ $14166: 262,616,246,632,167,654,935$
$14172: 696,164,164,162,614,876,136$ 14178： $999,651,164,164,162,813,119$ 14184： $676,999, \varnothing 51,1 \varnothing 4,164,162,188$ $14196: 811,676, \varnothing 99,851,194,164,843$
$14196: 162, \varnothing 67,676,899, \varnothing 51,896,695$ 142ø2：169， $644,141, \varnothing 14,212,169,123$ 142ø8：$\varnothing 60,141,929,268,162, \boxed{6}, 159$ 14214：157， $668,268,262,016,250,199$
 14226： $6 \varnothing 7,157,169,648,262,016,233$
$14232: 25 \varnothing, ø 32,167,654, ø 96,162,145$ 14238： $667,189,169,848,673,255,131$ 14244： $157,169,648,262,616,245,233$
$14250: ø 32,167,654,696,162, ø \varnothing 7,176$ 14256：189，169， $848,672,189,177,252$ 14262： $948,157,169,848,164,157,697$ 14268： $177,648,262,616,239,932,134$
$14274: 167,954,996,169,968,141,961$ 14280： $631,268,173,631,268,641,124$ 14286： $067,2 \varnothing 1,693,208,618,932,163$ 14292：ø62， $056,169, \varnothing \varnothing 1$ 14298： $948, \varnothing 32,242, \varnothing 48, \varnothing 32, \varnothing 17,125$ 143ø4： $949, \varnothing 32,113,648,696, \varnothing 32, \varnothing 82$ 14310：208， $648,165,267,133,263,17 \varnothing$ 14316：165，208，624，195，224，133， 671 14322：294，162， $669,168,960,177,177$
$14328: 293,157,169,948,266,232,233$ 14334：224， $008,208,245,032,167,114$
 14352： $136,268,249,157,169,848,215$ 14358：2ø2， $16,239,632,167,854,226$ 14364： $696,16 \varnothing, \varnothing \varnothing 6,162,607,169,11 \varnothing$
 14376： $616,249,153,185,648,260,123$
$14382: 192, ø \varnothing 8,268,237,162, ø \varnothing 7,692$ 14388：189，185， $948,157,169,948$ ， $88 \varnothing$ 14394：202，616，247， $032,167,654,868$ 144øø： $996,16 \varnothing, \varnothing \varnothing \varnothing, 14 \varnothing, 24 \varnothing, \varnothing \varnothing 2,19 \varnothing$ 144ø6：169， $932, \varnothing 32,996,054,169,116$ 14412：126， $932,996,854,146,264,216$ 14418： $148,932,929, \varnothing 58,172,264,113$
$14424: 948,2 \varnothing 1,155,24 \varnothing, 647,2 \varnothing 1,212$ 14436：126，246， $632, ~ ø 41,127,261,693$ 14436： $632,144,233,261,697,144,183$ 14442： $667,261,123,176,693,656,169$ 14448：233， $632,166,685,224,639,123$ 14454：240，216，153，128，ø65，ø32， 124 1446ø： $996,654,2 ø \varnothing, 268,267,192$ ，657 $14466: ø 69,24 \varnothing, 293,932,996,654,243$
$14472: 136,976,98 \varnothing, 956,162,961,135$

14478：142，240，002，032，096，054，196 14484：169，90日，153，128，ø95，140， 231 1449ø：2ø4， $448,173,128, \varnothing \varnothing 5,696, \varnothing 4 \varnothing$ 14496： $983,997,118,101,932,948,119$ 145ø2： $668,101,118,165,999,1 \varnothing 1,246$ 145ब8： $058,67 \emptyset, 165,1$ ब8， $101,110,212$ 14514：ø97，199，1ø1，ø41，ø62，ஜøø， 076 14520：169，160，169， $656,632,139,123$ 14526：654， $632,865,856,246,624,149$ 14532：201，ø69，249，ø2の，201，ø83，242 14538：240， $616,032,111,657,169,059$ 14544： $698,141,205,848,169,611,622$ 1455ø：141，2ø6， 48 ， $832,63 \varnothing, 957,216$ 14556： $676,637,648,676,111,697,153$ 14562： 1 øø，ø32，ø4ø，ø68， $1 \varnothing 1,118,173$ 14568：1ø5， $699,1 \varnothing 1,658,676,165, \varnothing \varnothing 2 ~$ 14574：108，1ø1，11ø， $097,109,101,096$ 1459ø： $941, \varnothing 62, \varnothing \varnothing \varnothing, 169,223,160,131$ 14586： $056, ~ ø 32,139,054,932, ø 65,107$ 14592： $656,24 \varnothing, 624,261,669,24 \varnothing, 962$ 14598： $626,2 \varnothing 1,683,24 \varnothing, 616, \varnothing 32$ ， 686 14684：111， $857,169,964,141,265,187$ 14610： $648,169,697,141,296,648,125$ 14616： $032,636,057,676,037,648,048$ 14622：169，128，157，ø68，øø3，169， 212 14628：ø05，157，ø69，øø3，173，204，135 14634：ø48，157，ø72，øø3，169， 1690,235 1464ø：157，ø73，øø3，169，øø3，157，ø9日 14646：866， $803,173,265,848,157,194$

 14664：173，195， $648,157,668,603,204$ 14676：173，196， $648,157,869,903,212$ 14676：169，øøø，157，ø72，øø3，169，142 14682：øø4，157，ø73，øø3，173，2ø6， 194 14688： $948,157,966$, øø3，ø32，ø86， 232 14694：228，ø48，ø17，ø32， 111 ，ø57，ø日 147øø：$\varnothing 48,812, \varnothing 96,162, \varnothing 16,169, \varnothing 99$ 147ø6： $1212,157,966,903, \varnothing 32,986,214$ 14712：228， $696,932,111,657,169,645$ 14718：136，169，657， $632,136,654,183$ 14724：ø32，ø29，ø58， $96, ø 73, \varnothing 47,211 ~$ 14730： $679, \varnothing 32, \varnothing 69, \varnothing 82, ø 82,679, \varnothing 49$ 14736：ø日2，ø58，253，ø32，ø8ø，ø82， 219 14742：ø69，ø日3，ø日3，ø32，21ø，197，ø56 14748：212，213，21ø，2ø6，øøø，ஜ67，ஜ4ø 14754：111，112，121，ø32，116，111， 253 14760： $032,119,104,105,699,104,219$
 14772：ø99，116，161，114，ø63，øøø， 161 14778：162， $667,189,169,648,157,156$ 14784：185， $848,2 \varnothing 2, \varnothing 16,247,169, ø 35$ 14790：161，16ø， $657,632,214,649,1 ø 3$ 14796：162， $687,189,185,648,157,184$ 148ø2：169，ø48，2ø2， $616,247,632,156$ 14808：167， $654,096,032,119,054,226$ 14814：162， $969,134,985,142,297,184$ 1482ø： $648,189,169,648, \varnothing 32,250,196$ 14．826： $057,174,207,048,232,224,152$
 14838： $032,837,848,696,133,212,036$ 14844：169， $900,133,213,932,170,261$ 14850：217， $032,236,216,16 \varnothing, ஜ \varnothing \varnothing, 089$ 14856： $177,243, \emptyset 48,006,632, \varnothing 96$ ， 998 14862： $054,200,298,246,941,127,122$ 14868： $932,696,954,169,932,932,179$ 14874： $696,654,696,173,637,228,198$ 14880：672，173， $036,228,072,162,007$ 14886：øøø，ø96，224，ø02，225，ø02，ø75

Program 2：Fontloader

For instructions on entering this listing，please refer to＂COMPUTE！＇s Guide to Typing in Programs＂in this issue of COMPUTE！．

JD 1 Øøø REM FONTLOADER FH $1 \varnothing 1 \emptyset$ OPEN \＃1，4，$\emptyset, " D: S E R I F$ SET＂：REM YOUR FILEN AME HERE
HO $1929 \mathrm{X}=16$ ：REM FILENUM＊ 16 HO 1 Ø25 DIM CIO\＄（7）：CIO\＄＝＂hh h＂：CIO\＄（4）＝CHR\＄（176） ：CIO\＄（5）＝＂LV＂：CIO\＄（7 ）＝CHR\＄（228）
$00103 \emptyset$ CHSET $=($ PEEK $(1 \varnothing 6)-8)$＊ 256：POKE 756，CHSET／2 56：REM ADDRESS OF CH ARACTER SET．TRY 57 344 ON XL＇S WITH TRA NSLATOR
IJ 164 I ICCOM $=834:$ ICBADR $=836$ ：ICBLEN＝84の
NF 1 Ø5 0 POKE ICBADR $+X+1$ ， CHSE T／256：POKE ICBADR $+X$ ，

NH 1ø6 1 POKE ICBLEN＋X＋1，4：PO KE ICBLEN $+x, \varnothing$
PG 1 פ7ø POKE ICCOM $+X, 7: A=U S R$ （ADR（CIO\＄），X ）
JD 1 ø日g CLOSE \＃ 1
MB $199 \emptyset$ RETURN ：REM REMOVE T HIS LINE TO USE THIS AS A STAND－ALONE PR GGRAM

Program 3：Character Set Datamaker

For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing In
Programs＂in this issue of COMPUTEI．
PB $1 \varnothing \varnothing$ OPEN \＃1，12，Ø，＂E：＂
KH $1 \emptyset 2$ GRAPHICS $1+16$
H！ $1 \varnothing 5$ DIM F\＄（14），OF $\$(14)$ ，T $\$$ （12），A（7）
OA $11 \varnothing$ POSITIION 3，Ø：？\＃6；＂ch aracter set＂
M1 120 POSITION 5，2：？\＃6；＂［0：

FJ $13 \varnothing$ ？\＃6；＂THIS UTILITY CR EATES＂；
HB 140 ？\＃G；＂A SET OF DATA S TATE－＂；
BM 15ø ？\＃6；＂MENTS FROM A SA VED＂
PC 16 ？$\# 6$ ；＂CHARACTER SET． IT＂
FA $17 \emptyset$ ？\＃6；＂OPTIMIZES BY ON ？ ？\＃${ }^{\prime}$ ；＂LISTING CHARACT ERS＂
DL $19 \varnothing$ ？\＃6；＂NOT PRESENT IN THE＂
IH $2 \emptyset \emptyset$ ？\＃6；＂STANDARD CHARAC TER＂
ME 210 ？\＃b；＂SET．＂
KD 220？\＃6：？\＃6；＂PRESS Dस्य ［12＂
BF $23 \varnothing$ IF PEEK（53279）＜>3 THE N $23 \varnothing$
KK 24 GRAPHICS $1+16$
LB $25 \varnothing$ ？\＃6；＂THE DATA STATEM ENTS＂
DO 26ø？\＃6；＂WILL BE WRITTEN TO＂
IM 27 ？？$\#$ ；＂DISK AS A list FILE＂
MP 28ø ？\＃6；＂USE enter TO ME RGE＂
DI 290 ？\＃；＂THE DATA WITH Y QUR＂
JB 3øø ？\＃6；＂PROGRAM．＂：？\＃6：

搞＂
MB $3 \varnothing 5$ POKE 82， $9:$ POKE 87，\varnothing
66310 ？CHR\＄（28）；CHR\＄（156）；
 T\＄＝＂＂THEN $31 \varnothing$
NP 315 F $\$=" D: ": F \$(3)=T \$$
PP 320 ？CHR $\$(125)$ ；＂ENTHAR IOII
巨＂：？：
6 K 336 ？CHR\＄（28）；CHR\＄（156）； ＂民R＂；：INPUT \＃1；T\＄：IF T\＄＝＂＂THEN $33 \varnothing$
HM 332 OF $\$=$＂D：＂：OF $\$(3)=T \$$
AH 335 ？CHR\＄（125）；＂RCIHAR［15

KC 34 I INPUT SLINE
66345 CLOSE \＃1
AH 35 GRAPHICS $2+16$ ：POSITIO N 5，6：？\＃6；＂working \｛3 N\}": SETCOLOR 4,3,4
HC $37 \varnothing$ OPEN \＃ $1,4, \varnothing, F \$$
DD 38ø TRAP 6øØ：OPEN \＃2，8， ，

OF\＄：TRAP $4 \emptyset ø \emptyset \emptyset$
BG 381 ？\＃2；SLINE；＂CHSET＝（PE EK（1ø6）－8）＊256：FOR I＝ \emptyset TO 1ø23：POKE CHSET＋ I，PEEK $(57344+I):$ NEXT I＂
PM 382 ？\＃2；SLINE＋1；＂RESTORE ；SLINE＋5
NF 383 ？\＃2；SLINE＋2；＂READ A： IF $A=-1$ THEN RETURN＂
CK 384 ？\＃2；SLINE＋3；＂FOR J＝
TO 7：READ B：POKE CHS $E T+A * B+J$ ，$B: N E X T J^{\prime \prime}$
BE 385 ？\＃2；SLINE＋4；＂GOTO＂； SLINE＋2
08387 LINE $=$ SLINE +4
GD $39 \emptyset$ FOR I $=\emptyset$ TO 127：$F=\emptyset$
AM 4øø FOR J＝ø TO 7
MK $41 \emptyset$ GET \＃ $1, A: A(J)=A$
IL $42 \emptyset$ IF $A<>P E E K(57344+$ I＊8 + J）THEN $F=1$
CA $43 \emptyset$ NEXT J
CH $44 \varnothing$ IF NOT F THEN $46 \varnothing$
I6 445 LINE＝LINE＋ 1
PP 45Ø ？\＃2；LINE；＂DATA＂；：？ \＃2；I；：FOR $\mathrm{J}=\varnothing$ TO 7：？ \＃2；＂，＂；A（J）；：NEXT J： ？\＃2
KG 46D NEXT I：？\＃2；LINE＋1；＂D ATA－1＂
CN $47 \varnothing$ POKE 82，2：GRAPHICS $\varnothing:$ ？＂All finished！Use ENTER＂；OF\＄
CB $48 \varnothing$ ？＂to merge the file．
HE 490 END
FL $6 \emptyset \varnothing$ POKE 82，2：GRAPHICS $\varnothing:$ ？：？＂ERROR TRYING TO OPEN＂；OF\＄；＂．
$6061 \emptyset$ END

COMPUTEI

Subscriber Services

Please help us serve you better．If you need to contact us for any of the reasons listed below，write to us at：

COMPUTEI Magazine
 P．O．Box 10954

Des Moines，IA 50340
or call the Toll Free number listed below．
Change Of Address．Please allow us 6－8 weeks to effect the change；send your current mailing label along with your new address．
Renewal．Should you wish to renew your COMPUTEI subscription before we remind you to，send your current mailing label with payment or charge number or call the Toll Free number listed below．
New Subscription．A one year（12 month）US subscription to COMPUTEI is $\$ 24.00$（2 years，$\$ 45.00 ; 3$ years，$\$ 65.00$ ． For subscription rates outside the US， see staff page）．Send us your name and address or call the Toll Free number listed below．
Dellvery Problems．If you receive dupli－ cate issues of COMPUTEI，if you experi－ ence late delivery or if you have prob－ lems with your subscription，please call the Toll Free number listed below．

COMPUTE

1－800－247－5470
In IA 1－800－532－1272

Hi-Res Graphics Aid Routines

Jon Hylands

This handy utility makes it easy to perform sophisticated operations on Apple high-resolution graphics screens: inverting screens, copying screens, superimposing one screen on another, and more. It works on any Apple II-series computer with DOS 3.3 or ProDOS.

Like most personal computers, Apple II-series machines can display high-resolution color graphics. There are many commercial programs that let you draw, save, and reload hi-res screens. But few of them let you easily perform complex operations such as inverting an entire hi-res screen or superimposing one screen on another. "Hi-Res Graphics Aid" fills that gap. Though the program uses machine language for speed, you don't need to know ML to use it.

Type in and save the program below, then run it. The screen prompts are self-explanatory. Keep in mind that this is not a generalpurpose drawing or design program; it performs large-scale tasks on existing graphics screens. Since the Apple can store two hi-res screens in memory at a time, most operations let you act on either screen 1 or screen 2.

When you run Graphics Aid, it displays a main menu of six selections. From this menu you can display a screen, edit a screen, load a screen, save a screen, display a disk catalog, or quit. The current selec-
tion is highlighted in inverse video. To choose a different selection, press the up-arrow or down-arrow keys (CTRL-K or CTRL-J on the Apple II +) and then press RETURN. Here's a brief description of the options:
Display screen. Enter 1 to display screen 1; 2 for screen 2.
Edit screen. This option displays a second menu with the following options:

- Display screen. Enter 1 or 2.
- Invert screen. Enter 1 or 2.
- Copy screen. Enter 1 to copy screen 1 to screen 2 , or vice versa.
- Superimpose screen. Enter 1 to superimpose screen 1 on screen 2, or vice versa. Then choose the mode by pressing a number key from 1-3. Mode 1 is ORA mode; every pixel that's turned on in either screen remains on. Mode 2 is AND mode; only pixels that are on in both screens remain on. In Mode 3 (XOR), every pixel that's turned on in both screens will be turned off, and vice versa.
- Color screen. Choose screen 1 or 2 , then enter a color number from 0-7.
- Flip high bits. Choose screen 1 or 2 , then choose the mode by pressing a number key from 1-3. Mode 1 sets the high bits, mode 2 clears them, and mode 3 inverts them (on bits are turned off, and vice versa).
- Swap screens. Swap the contents of screen 1 and screen 2.
- Return to command menu.

Load to screen. Choose screen 1 or 2, then select drive 1 or 2 and enter the filename of the graphics file you wish to load.
Save screen. Choose screen 1 or 2, then select drive 1 or 2 and enter the filename you wish to use when saving the graphics screen to disk. Catalog. Displays a disk catalog. Quit. Exit to BASIC.

Hi-Res Graphics Aid

For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing In Programs" in this issue of COMPUTEI.

B2 $10 \mathrm{BA}=32768:$ FOR $I=B A$ TO $B A+212:$ READ A: CK $=C K+$ A: POKE I, A: NEXT : REM L OAD HR.CODE
CA 20 IF CK < > 31397 THEN PRINT "ERROR IN DATA STATEMENTS .": STOP
F4 $3 \emptyset$ DATA $76,18,128,76,33,128,7$ 6,55
A $4 \emptyset$ DATA $128,76,8 \emptyset, 128,76,115$, 128,76
E1 $5 \emptyset$ DATA $151,128,166,255,173,8$ Ø, 192,173
E7 GØ DATA 82, 192, 173, $87,192,189$, 83, 192
$707 \emptyset$ DATA 96, 166, 255, 189, 195, 12 8,133,251
$358 \emptyset$ DATA $32,186,128,177,25 \emptyset, 73$, 255, 145
5F $9 \emptyset$ DATA $256,32,177,128,268,24$ 5,96, 166
$681 \emptyset \emptyset$ DATA $255,189,195,128,133$, 251, 189, 198
F9 110 DATA $128,133,253,32,186,1$ 28,177,25ø
㫙 $12 \emptyset$ DATA $145,252,32,177,128,2$ 68,247,96
FD 136 DATA $166,255,189,195,128$, 133,251, 189
07140 DATA $198,128,133,253,166$, 254, 189, 2ø1
$0515 \emptyset$ DATA $128,141,165,128,32,1$ 86, 128, 177
$4516 \emptyset$ DATA $25 \emptyset, 17,252,145,252,3$ 2，177， 128
21170 DATA 268，245，96，166，255， 1 89，195， 128
$8718 \emptyset$ DATA $133,251,166,254,189$ ， 2ø5，128， 141
ED $19 \varnothing$ DATA $141,128,189,269,128$ ， 141，142， 128
CA $2 \emptyset \emptyset$ DATA $32,186,128,177,250,9$ ，128，145
$7921 \emptyset$ DATA $25 \emptyset, 32,177,128,2 \emptyset 8,2$ 45，96， 169
B2 226 DATA $32,133,251,10,133,25$ 3，32，186
$9223 \emptyset$ DATA 128，177，250，72，177，2 52，145，25ø
88 $24 \emptyset$ DATA $1 \emptyset 4,145,252,32,177,1$ 28，2ø8，241
DE $25 \emptyset$ DATA 96，2øø，2ø8，5，23ø， 251 ，236， 253
$7326 \emptyset$ DATA 2Ø2，96，16Ø，Ø，132，25Ø ，132， 252
EA $27 \emptyset$ DATA $162,32,96, \emptyset, 32,64, \emptyset$ ， S？
$2328 \emptyset$ DATA $32, \emptyset, 17,49,81, \emptyset, 9,41$
$3829 \emptyset$ DATA $73, \emptyset, 128,127,128$
16 3øø TEXT ：HOME ：PRINT ：PRI NT CHR\＄（4）；＂PR\＃Ø＂：PRINT ：REM INITIALIZATION
$2 \mathrm{~A} 310 \mathrm{D} \$=\mathrm{CHR} \$(4): \mathrm{BE} \$=\mathrm{CHR} \$$ （7）：E\＄$=$ CHR $\$(27): L \$=\cdots$ －－－－－－－－－－＂：$D=1$
F4 320 READ L：DIM $X(L), T I \$(L, 13$
52330 FOR $J=1$ TO L：READ $X(J)$ ：FOR I＝ 1 TO $X(J):$ READ TI\＄（J，I）：NEXT ：NEXT
$5734 \emptyset$ DATA 2,6 ，DISPLAY SCREEN， 5 CREEN EDITOR，LOAD SCREEN， SAVE SCREEN，CATALOG，QUIT
E4 35 DATA 8，DISPLAY SCREEN，INV ERT SCREEN，COPY SCREEN，SU PERIMPOSE SCREEN，COLOR SC REEN，FLIP HI BITS，SWAP SC REENS，COMMAND MENU
$1836 \emptyset$ READ X ：DIM ER $\$(X)$ ：FOR I $=1$ TO $X:$ READ ER\＄（I）：N EXT
CC $37 \emptyset$ DATA 13, ，，WRITE PROTECTE D，，FILE NOT FOUND，VOLUME MISMATCH，I／O ERROR，DISK F ULL，FILE LOCKED，SYNTAX ER ROR，，FILE TYPE MISMATCH
B9 $38 \emptyset$ REM COMMAND MENU
81 39ø HOME ：TEXT ：J $=1: M \$="$ HI．RES COMMAND MENU＂：GOS UB $64 \varnothing$
5！4øø IF $I=X(J)$ THEN VTAB $1 \varnothing$ $+X(J):$ END
$5641 \emptyset$ ON I GOSUB 890，840，129Ø， 1 360， 1430
98420 GOTO 390
$4843 \emptyset$ REM GET A KEYSTROKE
$2244 \emptyset A=\emptyset$ ：GET A\＄：IF A $\$=E \Phi$ THEN POP ：RETURN
$2345 \emptyset A=$ VAL（A\＄）：RETURN
63 460 REM CENTER MESSAGE
C\＆ 479 VTAB V ：HTAB（ INT（ $40-$ $\operatorname{LEN}(M \$))(2)+1):$ PRI NT M\＄：RETURN
F6 $48 \varnothing$ REM DRAW A LINE
tt 490 VTAB V ：FOR $I=1$ TO 4：P RINT L\＄；：NEXT ：RETURN
39 5ดの REM GET DRIVE
84519 PFINT＂DRIVE ：＂；D；CHFiま （8）；
10520 GOSUB 44ø：IF $A \$=$ CHR $\$$（ 13）THEN $A=1$
B2 530 IF $A<1$ OR $A>2$ THEN 52
7E $54 \emptyset \mathrm{D}=\mathrm{A}:$ RETURN
7D 550 REM GET PAGE
ED $56 \emptyset$ GOSUB 440：IF $A<\emptyset$ OR A
>2 THEN $56 \emptyset$
E4 $57 \emptyset \mathrm{P}=\mathrm{A}$ ：RETURN
BA $58 \emptyset$ REM ASK＇ARE YOU SURE ？
D6 $59 \emptyset$ PRINT＂ARE YOU SURE ？Y＂； CHR\＄（8）；
67 bøø GET A\＄：IF $A \$=$＂N＂－OR A\＄ $=E \$$ THEN PRINT A\＄；：POP ：RETURN
24610 IF $A \$=$ CHR $\$$（13）OR A\＄$=$ ＂Y＂THEN RETURN
$1662 \emptyset$ GOTO 6øø
$2163 \emptyset$ REM CUSTOM MENU ROUTINE
F1 $64 \emptyset V=2$ ：GOSUB $49 \varnothing$
F3 $65 \emptyset v=4$ ：GOSUB 47ø
$7666 \emptyset V=6$ ：GOSUB 49Ø
21670 PRINT ：VTAB 9
AB 680 FOR $I=1$ TO $X(J):$ HTAB 2 ：PRINT TI\＄（J，I）：NEXT
3A 690 I $=1:$ VTAB 24：CALL -86 8

E7 $7 \emptyset \emptyset$ VTAB I＋8：HTAB 2：INVER SE ：PRINT TI\＄（J，I）：NORM AL
$54710 \mathrm{~A}=\mathrm{PEEK}(-16384)$ ：IF A ＜ 128 THEN $71 \varnothing$
C4 720 POKE－ $16368, \emptyset: A=A-12$ 8
CF $73 \emptyset$ IF $A=21$ OR $A=1 \emptyset$ THEN 77ø
CE 74 I IF $A=8$ OR $A=11$ THEN 8 Øロ
A9 $75 \emptyset$ IF $A=13$ THEN RETURN
Ag $76 \emptyset$ GOTO 716
$8977 \emptyset$ VTAB I $+8:$ HTAB 2：PRINT TI\＄（J，I）
C8 78 I IF $\mathrm{I}+1>X(\mathrm{~J})$ THEN $\mathrm{I}=$ 1：GOTO 7øø
BD $79 \emptyset \mathrm{I}=\mathrm{I}+1:$ GOTO $7 \emptyset \emptyset$
7 7 $8 \emptyset \emptyset$ VTAB $1+8:$ HTAB 2：PRINT TI\＄（J，I）
AE $81 \emptyset$ IF $I=1$ THEN $I=X(J): G$ OTO $76 \emptyset$
$3182 \emptyset$ I＝I－1：GOTO 7øø
99830 REM SCREEN EDITOR
8E 84ø HOME ：TEXT ：$J=2: M \$="$ SCREEN EDITOR＂：GOSUB $64 \emptyset$
EE $85 \emptyset$ IF $I=X(J)$ THEN RETURN
DJ $86 \emptyset$ ON I GOSUB $89 \emptyset, 93 \emptyset, 97 \emptyset, 1 \emptyset$ $2 \emptyset, 11 \emptyset \varnothing, 119 \emptyset, 126 \varnothing$
27 87ø GOTO 84ø
$6588 \emptyset$ REM DISPLAY SCREEN
JA $89 \emptyset$ VTAB 23：PRINT ：PRINT＂D ISPLAY SCREEN ：＂；
$769 \emptyset \emptyset$ GOSUB 56ø：IF $A=\varnothing$ THEN RETURN
90910 POKE 255，P：CALL BA：GOTO 9Øロ
60920 REM INVERT SCREEN
86930 VTAB 23：PRINT ：PRINT＂I NVERT SCREEN ：＂；
78940 GOSUB 56ø：IF $A=\emptyset$ THEN RETURN
$2895 \emptyset$ POKE 255，P：CALL BA +3 ： RETURN
$2896 \emptyset$ REM COPY SCREEN
14 970 VTAB 22：PRINT ：PRINT＂C OPY SCREEN＂；：GOSUB 56ø： IF $A=\emptyset$ THEN RETURN
$7398 \emptyset$ POKE 255，P：PRINT P；＂TO ＂；3－P
68990 GOSUB 59ø
AC 1G2Z CALL RA＋E：PSTURN
C5 $101 \emptyset$ REM SUPERIMPOSE SCREEN
14 1ø2ø VTAB 21：PRINT ：PRINT＂ SUPERIMPOSE SCREEN＂；：G OSUB 56ø：IF $A=\varnothing$ THEN RETURN
721 103Ø POKE 255，P：PRINT P；＂TO ＂； $3-P$
6C 1040 PRINT＂1 ：ORA 2 ：AND 3 ：EOR CHOOSE：＂；
4A $195 \emptyset$ GOSUB $44 \emptyset$

IF 1 Ø6Ø IF $A<1$ QR $A>3$ THEN 1 Ø5Ø
$311 \emptyset 7 \emptyset$ PRINT A：POKE 254，A：GOS UB 59ø
E4 1ø8ø CALL BA＋9：RETURN
AA $1 \emptyset 9 \emptyset$ REM COLOR SCREEN
£2 11øの VTAB 21：PRINT ：PRINT＂ COLOR SCREEN ：＂；：GOSUB 56ø：IF $A=\varnothing$ THEN RETU RN
F1 $111 \emptyset$ PRINT P：PRINT＂COLOR ： ＂；
A4 $112 \emptyset$ GET $A \$$ ：IF $A \$=E \$$ THEN RETURN
$98113 \emptyset$ IF $A \$=" \emptyset "$ THEN $C=\emptyset:$ GOTO $115 \emptyset$
$681140 \mathrm{C}=$ VAL $(A \$):$ IF $C<10$ $R C>7$ THEN $112 g$
$72115 \emptyset$ PRINT C：GOSUB 59ø
$98116 \emptyset$ POKE 23ø， 32 ＊P：HCOLOR＝ C：HPLOT \varnothing, \varnothing ：CALL 6245 4
EF $117 \emptyset$ RETURN
C9 $118 \emptyset$ REM FLIP HI BITS
$87119 \emptyset$ UTAB 21：PRINT ：PRINT＂ FLIP HI BITS ON SCREEN ： ＂；：GOSUB 56ø：IF $A=\emptyset$ THEN RETURN
46 12øø PRINT P：POKE 255，P：PRI NT＂1 ：SET 2 ：CLEAR 3 ：FLIP CHOOSE ：＂；
3E 1210 GOSUB 44Ø
$43122 \emptyset$ IF $A<1$ OR $A>3$ THEN 1 $21 \varnothing$
34 123Ø PRINT A；：POKE 254，A：GO SUB $59 \emptyset$
5C $124 \varnothing$ CALL BA +12 ：RETURN
$55125 \emptyset$ REM SWAP SCREENS
3A 1269 VTAB 23：PRINT ：GOSUB 5 $9 \varnothing$
$98127 \emptyset$ CALL $B A+15$ ：RETURN
FD 1280 REM LOAD SCREEN
AE $129 \emptyset$ VTAB 2ø：PRINT ：PRINT＂ LOAD TO SCREEN ：＂；：GOS UB 56ø：IF $A=\emptyset$ THEN RE TURN
8C 13øø PRINT P：GOSUB 51ø：IF A $=\varnothing$ THEN RETURN
15 131ø PRINT D：INPUT＂FILENAME ：＂；F\＄
C3 1320 IF $F \$=" "$ THEN RETURN
$35133 \emptyset$ VTAB 1：PRINT ：PRINT D\＄ ；＂BLOAD＂；F\＄；＂，D＂；D；＂，A＂； P＊ 8192
E7 134ø RETURN
971350 REM SAVE SCREEN
$21136 \emptyset$ VTAB 20：PRINT ：PRINT
SAVE SCREEN ：＂；：GOSUB
56ø：IF $A=\varnothing$ THEN RETUR N
A8 $137 \emptyset$ PRINT P：GOSUB 51ø：IF A $=\varnothing$ THEN RETURN
$31138 \emptyset$ PRINT D：INPUT＂FILENAME ：＂；F\＄
DF $139 \emptyset$ IF $F \$=" "$ THEN RETURN
11 14øØ VTAB 1：PRINT ：PRINT D $\$$ ；＂BSAVE＂；F\＄；＂，D＂；D；＂，A＂；
P＊8192；＂，L8192＂
DD $141 \emptyset$ RETURN
F6 $142 \emptyset$ REM CATALOG DISK
36 1430 VTAB 23：PRINT ：GOSUB 5 1ø：IF $A=\emptyset$ THEN RETURN
221440 HOME $: M \$=$＂CATALOG OF D RIVE＂＋STR\＄（D）：$V=1$ ： GOSUB 47ø
$95145 \emptyset v=2$ ：GOSUB $49 \emptyset$
CA $146 \emptyset$ POKE 34，2：PRINT ：PRINT D\＄＂CATALOG，D＂D
$91147 \emptyset V=2: M \$="$ PRESS A KEY ．．．＂：GOSUB $47 \emptyset$
3B $148 \emptyset$ VTAB 2：HTAB 27：GET T\＄： POKE 34，Ø：RETURN

COMMODORE 64 Key Phantom

Melvin Baker

By expanding the 64's internal keyboard buffer, you can use the dynamic keyboard technique for very powerful effects. This machine language utility does all the hard work for you, even if you know nothing about machine language. A disk drive is required.

If you've been following Jim Butterfield's recent series on dynamic keyboard programming (COMPUTE!, October-December 1985), you know that this technique is a powerful programming tool. By making the computer "type on its own keyboard," you can write programs that modify themselves as they run, enter direct mode commands, and do many other things that ordinarily are difficult or impossible from within a program.

The dynamic keyboard technique works by POKEing the desired character codes into an area of memory called the keyboard buffer, which normally starts at location 631. This is where the computer receives keystrokes, so POKEing character codes into the buffer makes the computer think those keys have been pressed. Next, you POKE the number of characters in the buffer into the keyboard buffer counter at location 198. When the program ends, the computer types the codes in the buffer, just as if you pressed the same keys yourself.

However, the dynamic keyboard technique suffers from one major limitation. Since the keyboard buffer can't hold more than ten characters, you're limited to fairly short commands. If your command takes more than ten characters to type (including a carriage return), it simply won't fit into the buffer.
"Commodore 64 Key Phantom" overcomes this limitation by relocating and expanding the 64 's keyboard buffer in a free memory area. When the machine language (ML) portion of Key Phantom is active, the 64 has a keyboard buffer 3,758 characters in length-enough to permit very elaborate command sequences.

A Phanfom Typist

Before we get into the details of how Key Phantom works, let's try a short demonstration. Type in and save the program listed below. When you run it, the program automatically POKEs the ML code into memory and then displays a threeoption menu on the screen. By pressing a number key from 1-3 you can create a new commands file, execute an existing commands file, or exit the program.

To get started, press 1 to create a new commands file. This file will be called COMMANDS on the disk, so if your disk already contains a sequential file of that name, you should exit the program and copy the old file to another disk before proceeding.

Option 1 is a simple text editor which lets you store a series of character codes in the file named COMMANDS. Later on, the Key Phantom can read the character codes from this file and type them with the dynamic keyboard technique. When you choose Option 1, the screen clears and displays a message indicating which line of the commands file is being edited. The line number is solely for your information-it won't become part of the file. Type in the following lines exactly as shown. Where you see the name of a key enclosed in curly braces \{ \} you should press
the key indicated inside the braces. For example, press RETURN when you see $\{$ RETURN $\}$. Press the cursor-down key when you see \{DOWN\}.
Key£01 Phantom£02 Demonstration£03 \{DOWN\} \{RETURN\}
Watch me type in a line 001 \{DOWN\} \{RETURN\}
that changes the screen colors...£02 \{DOWN $\}$ \{RETURN $\}$
f£010 $001 \mathrm{r} £ 01 \mathrm{j}=1 £ 02$ to $£ 02200: £ 02$ poke £0253280,£02j:£02n£01e£01x£01t£03 \{RETURN\}

Use the DEL key to erase any mistakes within a line. When all four lines have been entered, press any key at the prompt to write the commands file to disk. At this point, the program returns you to the main menu. Press the 2 key to execute the commands file. After a brief pause while the ML code is placed in memory, the program loads the commands file.

Now the Key Phantom begins typing the characters from your commands file directly on the screen. Although the READY prompt and blinking cursor appear on the screen, you are not in BASIC ready mode. The Key Phantom has control of the computer until it reaches the end of the commands file. You should see the following display:
Key Phantom Demonstration
Watch me type in a line
that changes the screen colors...
forj $=1$ to200:poke53280,j:next
Note the time delays of various durations that are used at different points in the printing sequence. These result from the characters £01, £02, and $£ 03$ that you typed when creating the file. The $£$ character tells the Phantom to pause the printing for the number of seconds specified in the following number.

The delay number must be expressed in hexadecimal (base 16). Thus, $£ 01$ pauses the printing for one second; $£ 0 \mathrm{~F}$ pauses for 15 sec onds, and so on. By including delays in the character sequence, you can print information at any speed you like.

Pseudo-Keys

The $£$ character is an example of a Key Phantom pseudo-key. Instead of printing something on the screen, a pseudo-key performs a certain action. A second pseudokey is the back-arrow key, located at the upper-left corner of the keyboard. When you include this character in a command sequence, Key Phantom waits for you to type a line from the keyboard. The input terminates when you press RETURN, just like INPUT in a BASIC program.

Since Key Phantom essentially types every character from the command file, you must keep in mind what would happen if you were typing those characters yourself. For instance, it's necessary to print a cursor down character before printing RETURN at the ends of the first three example lines. Otherwise you'd get a SYNTAX ERROR, since those lines don't contain BASIC commands. But no cursor down is used at the end of the last line: In this case you want to press RETURN at the end of the line to make the computer perform those actions.

Cursor control characters can be used for a variety of different effects. Just as in BASIC, you can move left, right, up, or down, go to the home position, clear the screen, and so on. The editor accepts any keys except DEL, CTRL, RUN/ STOP, and RESTORE. Since control characters would garble the editor's screen display, it generally displays a reverse video $<$ or $>$ symbol to show that a control character was typed. If you need to perform an action not available from the keyboard, you can always execute a short PRINT statement. For instance, PRINT CHR\$(14)CHR\$ (8) locks the keyboard into lowercase/uppercase mode.

Advanced Applications

Because the ML portion of Key Phantom is driven by the comput-
er's hardware interrupt routine, it can operate while a BASIC program is running. This means you can use it to feed input directly to a running BASIC program.

When would this be useful? To take a simple example, let's say you use a certain BASIC program frequently: It could be a checkbook program, an events calendar, or whatever. The program may begin by asking you to choose from several different options, input various items of information, and so on. By writing an appropriate command file for Key Phantom, you could make the computer load and run the BASIC program, select the option or options you want, and input as many items of information as needed. If you need to input new information at any point, the back arrow pseudo-key lets you do so. And when automatic control is no longer needed, the command file can terminate, leaving you in the BASIC program as usual.

If you're the type who likes to have several programming aids active at once, why not write a Key Phantom command file that automatically loads and activates all your favorite utilities at once? When you begin using Key Phantom, you'll probably think of many more uses as well.

Of course, since it uses memory from locations 49152-53247, this program is not compatible with utilities that use the same memory area. And you must be careful not to activate any other ML routines that disturb the 64's hardware interrupt vector at locations 788-789 (\$0314-\$0315). You should also look out for BASIC programs that begin by clearing the computer's keyboard buffer-to avoid losing information from the command file, you should pause Key Phantom for a few seconds (with the £ pseudo-key) when the program begins.

When feeding input to a program, you must keep in mind what sort of input the program expects. If the program accepts data with INPUT, you should terminate the corresponding data item with a carriage return. On the other hand, if the program accepts data with GET, you should not end the data with a carriage return. GET usually
takes a single keypress, not a keypress plus a carriage return.

Occasionally you may find a program that needs to use Key Phantom pseudo-keys for its own purposes. Then you'll have to change the pseudo-keys to some other character. This can be done by substituting different character codes in lines 570 and 590. The REMs in the program indicate which value belongs to which pseudo-key.

Commodore 64 Key Phantom

For instructions on entering this listing, please refer to "COMPUTE!'s Guide to Typing in Programs" published in this issue of COMPUTE!.

JH 1øø ZZ=53368
HJ 110 CLOSE15:PRINT" $\{C L R\}$
$\{2$ DOWN $\}$ KEY PHANTOM \{2 DOWN $\}$ "
GQ $12 \emptyset$ PRINT"1] EDITOR\{DOWN\}": PRINT"2] EXECUTE\{DOWN\}" :PRINT"3] EXIT\{DOWN\}"
CH 130 GOSUB82ø:K=VAL (QS):IFKく 1ORK>3 THEN1 $3 \varnothing$
AP 140 ON K GOTO15 $10,460,51 \emptyset$
FB 150 OPEN15,8,15, "I"
XG 160 GOSUB52 2 :PRINT:PRINTD\$
FK $17 \emptyset$ OPEN5,8,5," \varnothing :COMMANDS, S , W": GOSUB52の
HR 180 PRINT:PRINTD\$:IF Al<2øT HEN26 2
BK 190 CLOSE5
QG $2 ø$ IF Al <>63THEN11 \emptyset
JQ $21 \varnothing$ PRINT" \{DOWN\}1] SCRATCH \{DOWN \}": PRINT"2] APPEND \{DOWN\}":PRINT" 3] MENU \{DOWN \}"
RQ $22 \emptyset$ GOSUB82ø:K=VAL(QS):IFK< IORK > 3 THEN22 2
CF $23 \varnothing$ ON K GOTO240,25 $2,11 \varnothing$
XD 240 PRINT\#15,"S:COMMANDS": G OTO160
MK $25 \emptyset$ OPEN5,8,5, " $\emptyset:$ COMMANDS, S , A": GOSUB52ø:GOTO18ø
QF 260 FOR LN=1TO4øøø:NEXT:LN= 1
PG 270 PRINT" $\{$ CLR $\}\{$ RIGHT \}KEY P HANTOM "DS"\{DOWN\}": PRIN T"LINE - "LN"\{DOWN\}":L\$ =""
HC 280 PRINT"\{RVS\} \{OFF\}\{LEFT\} ";
MP 29ø GOSUB820:K=ASC(QS):IF K <32THENQS="\{RVS\}<\{OFF\}"
XQ 3 30 IF K>127AND K<16ØTHENQ\$ $="\{$ RVS $\}>\{O F F\} "$
HA 310 IF $K=34$ THENQ $\$="\{$ RVS $\}$ ' \{OFF\}"
CA 32 Ø IF K=2øTHENPRINT" \{2 LEFT $\}^{\prime \prime}$; : K=LEN (L\$)-1: LS=LEFTS $(L \$, K-(K<\emptyset /-2))$:GOTO28
RK 33ø PRINTQ\$;
AQ $34 \varnothing$ IF $\mathrm{K}<>13$ THENL $\$=L \$+$ CHR $\$($ K) : GOTO28 \varnothing

DF 35Ø PRINT: PRINT " \{DOWN\}[RET] FOR NEXT LINE\{DOWN\}"
JC 360 PRINT"[DEL] TO REDO LIN E\{DOWN\}"
SR $37 \emptyset$ PRINT"ANY OTHER TO EXIT \{DOWN \}"
GP $38 \varnothing$ GOSUB82ø

DH 39の IFQS＝CHR\＄（13）THENLN＝LN＋ 1：PRINT＊5，L\＄：GOSUB52ø：G OTO27の
FQ 4øø IFQS＝CHRS（2Ø）THEN27Ø
DQ $41 \varnothing$ PRINT：PRINT＂ARE YOU SUR E［Y／N］？＂；
GB 42の GOSUB82ø：IFQ\＄＜＞＂Y＂ANDQ\＄ ＜＞＂N＂THEN42 ${ }^{\text {N }}$
JS $43 \varnothing$ PRINTQS：IFQS＝＂N＂THEN35б
QF 446 PRINT\＃5，L\＄：GOSUB52の：PRI NT：PRINTDS
HE $45 \emptyset$ CLOSE5：GOSUB52の：PRINT：P RINTDS：PRINT：CLOSE15：GO TO110
XR $46 \emptyset$ RESTORE：CS $=\varnothing$ ：READ LB，HB ：Al＝HB＊256＋LB：A2＝A1：PRI NT＂LOADING AT＂Al；
MC 470 READK：PRINT＂＞\｛LEFT $\}^{n}$ ；： IFK＜øTHEN49の
QH 48 Ø CS＝CS $+\mathrm{K}:$ POKEA2， $\mathrm{K}: \mathrm{A} 2=\mathrm{A} 2+$ 1：GOTO47ø
KC 490 IF CS＜＞ZZ THENPRINT＂ \｛RVS\} CHECKSUM ERROR \｛OFF\}";CS:GOTO11ø
JG 50ø SYS Al
FH $51 \varnothing$ PRINT＂$\{C L R$ \}": END
PQ $52 \emptyset$ INPUT\＃15，A1，DS，A2，A3
EJ 53ø IF Al＜ $2 \emptyset T H E N R E T U R N$
CB 54ø DS＝＂$\{$ RVS \} " $+\mathrm{D} \$+$＂$\{O F F\} "$ ：RETURN
RH 55ø DATA $\varnothing, 192,76,81,193,17$ 3，183，192，2ø1，ø，208，79， 173，185，192，2ø1，б
QF 560 DATA 2ø8，34，173，198，0，2 Ø1，$\varnothing, 2 \varnothing 8,24,32,154,192$ ， 2ø1，0，246，41，2ø1

GE 57ø DATA 92：REM COMMAND ONE （£）
AP 580 DATA $240,75,201$
PR 59ø DATA 95：REM COMMAND TWO （4）
GA 6øø DATA 240，27，141，119，2，2 $38,198,6,32,158,192,76$
DM $61 \emptyset$ DATA 226，252，173，197， 0, 2ø1，1，2ø8，246，169， 0,141 ，185，192，76，48，192
RP $62 \emptyset$ DATA $238,185,192,76,45$ ， 192，120，173，49，192，141， $20,3,173,50,192,141$
FC $63 \emptyset$ DATA $21,3,88,76,48,192$ $238,184,192,173,184,192$ 2ø1，6ø，2ø8，8，169
EA $64 \emptyset$ DATA $\varnothing, 141,184,192,206$ ， 183，192，76，48，192，32，13 $2,192,10,10,10,1 \varnothing$
PB 650 DATA $141,183,192,32,132$ ，192，13，183，192，141，183 ，192，76，45，192，32，158
BB 660 DATA 192，32，154，192，162 ，Ø，221，186，192，24ø，7，23 $2,224,16,2$ ø8， 246,162
CR $67 \emptyset$ DATA $\varnothing, 138,96,173,81,19$ 3，96，238，155，192，2ø8，5， $238,156,192,240,160$
BC 680 DATA $173,156,192,201,2 \emptyset$ 7，2ø8，7，173，155，192，2ø1 ，255，240，146，96，0， 0
MF $69 \emptyset$ DATA $\varnothing, 48,49,5 \emptyset, 51,52,5$ 3，54，55，56，57，65，66，67， 68，69，7ø
FK $7 \emptyset \emptyset$ DATA $48,58,67,79,77,77$ 65，78，68，83，32，207，255，
$176,74,145,253$
CM $71 \varnothing$ DATA $230,253,2 \varnothing 8,2,230$ ， 254，165，254，201，207，208 ，6，165，253，2ø1，255，240
FM $72 \emptyset$ DATA $54,32,183,255,41,6$ $4,24 \emptyset, 224,169, \varnothing, 145,253$ ，169，5，32，195，255
BM 730 DATA $32,51,193,169,15,3$ $2,195,255,176,28,32,204$ ，255，12ø，173，20，3
CF 740 DATA $141,49,192,173,21$ ， 3，141，50，192，169，3，141， 2ø，3，169，192，141
BK $75 \emptyset$ DATA $21,3,88,96,169,5,3$ $2,195,255,169,15,32,195$ ，255，32，138，255
SS 760 DATA $76,131,164,176,238$ ，162，15，32，198，255，176， 231，32，207，255，176，226
SB $77 \emptyset$ DATA $72,32,2 \emptyset 7,255,176$ ， 220，2ø1，13，2ø8，247，104， 201，48，2ø8，211，96，169
GR $78 \emptyset$ DATA $15,162,8,160,15,32$ ，186，255，169， $0,32,189,2$ $55,32,192,255,32$
HH 790 DATA $51,193,169,5,162,8$ ，160，5，32，186，255，169，1 Ø，162，2ఠ2，16Ø，192
JR 8øØ DATA 32，189，255，32，192， $255,32,51,193,162,5,32$ ， $198,255,176,159,169$
ES 810 DATA 81，133，253，169，193 ，133，254，160， $6,76,212,1$ 92，255，－1
KG 820 GETQS：IFQS＝＂＂THEN820 GP $83 \emptyset$ RETURN

Screen Clock For IBM

Marc Sugiyama

Have you ever become submerged in a project while working on your computer and suddenly discovered it is hours past your bedtime? Or maybe you need to keep a detailed log of your worktime on the computer for business or tax purposes. If so, this utility is the answer-it constantly displays all this information and more on your monitor screen. It works with IBM PC and PCjr computers using DOS 2.0 or higher.

Large mainframe computers generally provide a sysline on the terminal screen which tells you the current date and time, who has logged on or off, and whether you've received any new electronic mail. Obviously, not all of these things apply to single-user personal computers, but some of the features would be nice to have.
"Screen Clock" is a short machine language program that prints the day of the week, date, current time, and log-on time at the top of the screen. This information appears no matter what else your computer is doing. You can be running a word processor, copying files, programming, or whateverthe day, date, and time will always be visible.

You might be wondering how it's possible to keep Screen Clock active while running another program; an IBM PC with PC-DOS isn't capable of multitasking. Screen Clock gets around this restriction by not using any PC-DOS function calls, relying instead on the BIOS (Basic Input/Output System) to handle the screen. This has several fortunate consequences:

- Sysline updates are not redirected to a file if you're using DOS file redirection.
- Sysline updates are not printed if you're echoing output to the printer. (But the sysline is printed if you press PrtSc for a screen dump.)
- Screen Clock always updates the current "active" screen. It doesn't matter if you switch from the monochrome monitor to the color monitor, change pages in the color screens, or even enter a graphics mode-the date and time are always there.

Winding Up The Clock

Type in the program listing below, save a copy on disk, then type RUN. The program is a BASIC loader that creates a machine language file on your disk with the filename CLOCK.COM. To start the clock, simply type CLOCK (upperor lowercase is fine) at the A> DOS prompt. A sysline similar to this should appear on the top line of your screen:

Wed Jan 01, 1986 12:01A (00:37)
The day of the week, date, and current time are self-explanatory. The figure in parentheses is the elapsed time (in hours and minutes) since Screen Clock was started or reset. This "log-on" time runs up to 23 hours and 59 minutes, then rolls over to 00:00.

When you run Screen Clock from DOS, you can select various options by appending commands after typing CLOCK. Each command consists of a slash (/) symbol, a character, and sometimes a number. Here are the commands and options:
/ C n (Chime) where n is an integer from 0 to 3 . / C0 means no chiming; /C1 makes the clock chime hourly; /C2 chimes every half-hour; and /C3 chimes every 15 minutes. A chime is a low beep
which lasts for less than one second. Even if the screen updates are turned off, Screen Clock always chimes if you have told it to. The default is no chiming.
/Un (Update) where n is an integer from 1 to 9 . This sets how often screen updates are to take place- n is the number of halfseconds between updates. The more frequent the updates, the more often the date and time are refreshed on the screen. However, more frequent updates also make other programs run more slowly. The default is equivalent to /U2 (one second between updates).
/M (Military time). This selects military (24 -hour) time.
/S (Standard time). This selects standard 12-hour time with an a.m./p.m. marker. Screen Clock defaults to standard time.
/R (Reset). This resets the logon timer. Screen Clock automatically resets itself to 00:00 when first run.

For example, typing CLOCK /U3/M/C1 at the DOS prompt loads and runs Screen Clock, sets updates every $11 / 2$ seconds, sets military time, and makes the clock chime every hour.

The Disappearing Clock

Occasionally, the Screen Clock sysline may get in the way. For example, it may hide text printed on the top line of the screen. You can make it disappear by pressing CTRL and both SHIFT keys simultaneously. Pressing this combination again turns the sysline back on.

Since Screen Clock maintains its own clock, it might not agree precisely with the DOS clock. Generally, it's never more than half a minute off.

Note that the day, date, and
time are reset every time you run Screen Clock. If you change the system date and time, you can reset Screen Clock by running it again. For example, the following would reset the display to $8: 00$ p.m. on February 14 (the A> prompts are supplied by DOS):

A> time 20:00:00
$\mathrm{A}>$ date 02-15-86
A> clock
The log-on time is not reset unless you append the $/ \mathrm{R}$ command to CLOCK.

Although Screen Clock makes it appear that your computer is doing more than one thing at a time, it's important to remember that computers can really perform only one task at a time (a factor of the basic architecture of all personal computers to date). If the computer spends some if its time updating the sysline, that's time away from running the main program. Thus, the more often the sysline is updated, the more time it steals from the computer, and the slower the main program seems to run. However, the part of Screen Clock that takes the most time is printing the sysline on the screen. If screen updates are turned off, there is virtually no slowdown. So during heavy number crunching you might want to turn the sysline updates off.

I've been using Screen Clock quite a bit and haven't noticed much loss of performance at all. It seems that the computer spends a lot of its time waiting for input (from the keyboard, the disk drives, and so on); all we're doing is giving it something else to do in its "spare time." I have yet to find a program which doesn't work with Screen Clock.

As the power of personal computers increases, it becomes possible to include features once found only on large mainframe computers. A sysline such as Screen Clock is another step in this direction.

How It Works

Mainframe syslines are generally on the bottom row of the screen. The Screen Clock sysline, however, must be on the top row because there's no way via PC-DOS to keep the bottom row from scrolling. The sysline would keep traveling up the screen every time the screen was
scrolled. By placing the sysline on the top row, it can be refreshed each time it scrolls off the top of the screen.

The program itself is broken into two sections, resident and nonresident. The resident portion updates the internal counters, sounds the chimes, and updates the screen display. It's driven by the user interrupt 1 Ch and is executed about 18 times a second. The nonresident part sets the initial date and time and changes the program's options.

When you execute CLOCKCOM, the program first checks to see if the resident portion is already installed. This is important only when the program returns control to DOS. Then it sets the current date and time and checks for any optional parameters. After this, the program is ready to return to DOS. If the program was already installed, it simply returns to DOS and does nothing else. If it needs to be installed, it first deallocates the environment space, then returns to DOS with the "terminate but stay resident" call to store the resident portion of the program safely in memory.

For instructions on entering this listing, please refer to "COMPUTE!'s Guide to Typing in
Programs" in this issue of COMPUTEI.

IBM Screen Clock

EF $1 \emptyset \emptyset$ CLS:LOCATE $1 \varnothing, 1 \emptyset: P R I N T " W r$ iting file...'
DH $11 \emptyset$ DPEN "cl ock. com" FOR QUTP UT AS \#1
EL 120 FOR $I=1$ TO $1310: R E A D$ BYTE : CKSUM=CKSUM+BYTE: IF BYTE $\angle \emptyset$ THEN FOR $J=1$ TO ABS (BY TE) : PRINT\#1, CHR\$ (Ø) ; : NEXT J: GOTO 14Ø
GH $13 \varnothing$ PRINT\#1, CHR\$ (BYTE);
6014σ NEXT I : CLOSE 1
FJ $15 \emptyset$ IF CKSUM $\langle>124185$ THEN P RINT"** Error in DATA sta tements 象象": KILL "clock.c om": STOP
HJ $16 \emptyset$ PRINT:PRINT"File for cloc k.com has been created.": END
KN $2 \emptyset \emptyset$ DATA $233,51,4,74,97,11 \emptyset$, $32,79,161,98,32,77$
DG $21 \emptyset$ DATA $97,114,32,65,112,11$ $4,32,77,97,121,32,74$
EB $22 \emptyset$ DATA $117,11 \varnothing, 32,74,117,1$ $\varnothing 8,32,65,117,1 \emptyset 3,32,83$
NP $23 \emptyset$ DATA $101,112,32,79,99,11$ $6,32,78,111,118,32,68$
NJ $24 \emptyset$ DATA $1 \emptyset 1,99,32,31,28,31$, $3 \varnothing, 31,3 \varnothing, 31,31,3 \emptyset$
FP $25 \emptyset$ DATA $31,3 \varnothing, 31,83,117,11 \emptyset$,32,77,111,116,32,84
JK $26 \varnothing$ DATA $117,101,32,87,101,1$ øø,32, 84, 1ø4, 117, 32,7ø
PH $27 \varnothing$ DATA $114,1 \varnothing 5,32,83,97,11$
$6,32,-6,1, \varnothing, 1,8 \varnothing$
AE $28 \emptyset$ DATA $19,2,-5,24 \emptyset, 18, \varnothing, 1$, $-86,13,255,89,97$
$29 \varnothing$ DATA $117,108,89,83,81,82$, 86, 87, 85, 3ø, 6, 14ø
GK उøø DATA $2 \emptyset \emptyset, 142,216,142,192$, 232, 198, 1, 232, 45, ø, 232
DP $31 \emptyset$ DATA $133, \emptyset, 16 \emptyset, 1 \emptyset 8,1,58$, 6, 1ø9, 1, 114, 23, 187
BH $32 \emptyset$ DATA $91,1,232,158,1,137$, $14,95,1,232,144, \varnothing$
CJ $33 \emptyset$ DATA $128,62,111,1, \emptyset, 116$, 3, 232, 25ø, ø, 7, 31
$6134 \emptyset$ DATA $93,95,94,9 \emptyset, 89,91,8$ 8, 2ø7, 18ø, 2, 2ø5, 22
NC $35 \emptyset$ DATA $36,7,6 \emptyset, 7,116,6,198$, 6, 115, 1, Ø, 195
DN $36 \emptyset$ DATA $128,62,115,1, \emptyset, 117$, $67,128,54,111,1,1$
BJ 379 DATA $198,6,115,1,1,128,6$ $2,111,1,5,116,4$
PE $38 \emptyset$ DATA 232, 197, ø, 195, 189, 1 5, 205, 16, 136, 62, 114, 1
CN $39 \emptyset$ DATA $18 \emptyset, 3,2 \emptyset 5,16,137,22$, 112, 1, 18ø, 2, 186,-2
DH 4 Øø DATA $2 \emptyset 5,16,185,31, \varnothing, 176$, 32, 189, 14, 265, 16, 226
HO $41 \emptyset$ DATA $25 \emptyset, 18 \emptyset, 2,138,62,11$ $4,1,139,22,112,1,265$
PM $42 \emptyset$ DATA $16,195,128,62,199,1$, 255, 116, 25, 16ø, 199, 1
HA $43 \emptyset$ DATA $58,6,198,1,119,5,25$ 4, 6, 199, 1, 195, 198
JA 44 DATA $6,199,1,255,228,97$, 36, 252, 23ø, 97, 195, 138
EA $45 \emptyset$ DATA $22,197,1,128,25 \emptyset, \emptyset$, $117,1,195,128,62,95$
DO $46 \emptyset$ DATA $1, \varnothing, 117,8,128,62,19$ 6, 1, $\emptyset, 116,62,195$
DC $47 \emptyset$ DATA $128,25 \emptyset, 1,116,5 \emptyset, 12$ 8, 62, 95, 1, 3ø, 117, 8
PN $48 \emptyset$ DATA $128,62,196,1, \emptyset, 116$, $42,195,128,256,2,116$
KK $49 \emptyset$ DATA $36,128,62,95,1,15,1$ $17,8,128,62,196,1$
BF $5 \emptyset \emptyset$ DATA $\emptyset, 116,22,195,128,62$, 95, 1, 45, 117, 8, 128
OH $51 \emptyset$ DATA $62,196,1, \varnothing, 116,7,19$ $5,198,6,196,1, \emptyset$
PD 520 DATA $195,198,6,196,1,1,1$ 98, 6, 199, 1, ø, 176
JJ 530 DATA $182,23 \emptyset, 67,184,1 \emptyset 2$, $1 \varnothing, 236,66,138,196,236,66$
$6 f 54 \emptyset$ DATA $228,97,12,3,23 \emptyset, 97$, $195,198,6,1 ø 8,1, \emptyset$
DI 550 DATA $191,116,1,252,139,5$ 4, 1ø2, 1, 2ø9, 23ø, 2ø9, 23ø
PJ $56 \emptyset$ DATA $129,198,63,1,185,4$, $\emptyset, 243,164,139,54,97$
6C $57 \emptyset$ DATA $1,2 \varnothing 9,23 \varnothing, 2 \emptyset 9,23 \emptyset, 1$ 29, 198, 255, Ø, 185, 4, Ø
OB $58 \emptyset$ DATA $243,164,16 \emptyset, 99,1,23$ 2, 22, 1, 184, 44, 32, 171
FH $59 \emptyset$ DATA $16 \emptyset, 101,1,232,12,1$, 16ø, 1øø, 1, 232, 6, 1
FO GøØ DATA $176,32,17 \emptyset, 139,14,9$ $5,1,138,38,11 \varnothing, 1,232$
CE $61 \emptyset$ DATA $1,1,184,32,4 \varnothing, 171,1$ 87, 1ø4, 1, 232, 58, \emptyset
IP $62 \emptyset$ DATA $18 \emptyset, 1,232,242, \emptyset, 176$, 41, 17 18 , $18,15,2 \emptyset 5,16$
NO $63 \emptyset$ DATA $136,62,114,1,18 \emptyset, 3$, 205, 16, 137, 22, 112, 1
FP $64 \emptyset$ DATA $18 \emptyset, 2,186,-2,295,16$, 199, 116, 1, 139, 267,43
KH 65Ø DATA 266, 172, 18ஏ, 14, 265, $16,226,249,189,2,138,62$
IH 66 D DATA $114,1,139,22,112,1$, 265, 16, 195, 139, 87, 2
NB $67 \emptyset$ DATA $139,7,187,69,4,247$, 243, 179, 69, 246, 243, 138
CK $68 \emptyset$ DATA $232,138,2 \emptyset 4,195,187$ $, 91,1,232,16, \varnothing, 115,3$

AD 690 DATA $232,43, \emptyset, 187,194,1$, $232,5, \emptyset, 254,6,1 \varnothing 8$
JL $7 \emptyset \emptyset$ DATA $1,195,255,7,117,3,2$ $55,71,2,131,127,2$
710 DATA $24,114,17,129,63,17$ $6, \emptyset, 114,11,199,7,-2$
726 DATA $199,71,2,-2,249,195$ $, 248,195,255,6,1 \emptyset 2,1$
$73 \emptyset$ DATA $131,62,162,1,6,118$, $6,199,6,1 \varnothing 2,1,-2$
$74 \overline{5}$ DATA $254,6,99,1,139,22,9$ $7,1,232,49, \varnothing, 58$
IM $75 \emptyset$ DATA $22,99,1,115,42,198$, $6,99,1,1,255,6$
$76 \emptyset$ DATA $97,1,131,62,97,1,12$ $, 118,26,199,6,97$
PL $77 \emptyset$ DATA $1,1, \varnothing, 254,6,1 \emptyset \emptyset, 1,1$ $28,62,1 \sqsubseteq ந, 1,99$
FA $78 \emptyset$ DATA $118,9,198,6,1 \emptyset \emptyset, 1, \emptyset$ $, 254,6,161,1,195$
$79 \emptyset$ DATA $138,218,50,255,138$, $151,5 \varnothing, 1,128,251,2,117$
8øØ DATA $16,246,6,1 \emptyset \emptyset, 1,3,11$ $7,9,128,62,1 \emptyset \emptyset, 1$
JH $81 \emptyset$ DATA $\varnothing, 116,2,254,194,195$ $, 212,1 \varnothing, 5,48,48,134$
826 DATA $196,171,195,182,32$, $128,252,1,116,18,182,65$
$83 \emptyset$ DATA $128,253,12,114,5,18$ $2,8 \emptyset, 128,237,12,16,237$
$84 \emptyset$ DATA $117,2,181,12,138,19$ $7,232,217,255,176,58,17 \emptyset$
B5פ DATA $138,193,232,269,255$ $, 128,254,32,116,3,138,198$
$86 \emptyset$ DATA $17 \emptyset, 195,82,1 \emptyset 1,113$, $117,165,114,1 \varnothing 1,115,32,68$
87ø DATA 79, 83, 32,56, 46, 48, 3 $2,111,114,32,97,98$
889 DATA $111,118,161,46,13,1$ ø, 36, 78, 111, 119, 32, 165
896 DATA $116,115,116,97,188$,
$198,195,119,193,32,114,19$ 1 Dด DATA $115,165,16 \emptyset, 101,110$
FI $\begin{array}{r}9 \emptyset \emptyset \text { DATA } 115,1 \emptyset 5,1 \emptyset \emptyset, 1 \emptyset 1,11 \emptyset \\ , 116,32,112,111,114,116,1\end{array}$, 11
BH $91 \emptyset$ DATA $111,119,32,111,1 \emptyset 2$, $32,67,76,79,67,75,46$
OK 920 DATA $13,1 \emptyset, 36,39,32,117$, $11 \varnothing, 1 \varnothing 7,11 \varnothing, 111,119,11 \varnothing$
CH 930 DATA $32,112,97,114,97,10$ $9,1 \varnothing 1,116,1 \varnothing 1,114,46,13$
PH $94 \emptyset$ DATA $19,36,83,112,191,99$ $, 195,162,121,32,97,32$
ED $95 \emptyset$ DATA $11 \varnothing, 117,1 \emptyset 9,98,1 \emptyset 1$, $114,32,162,114,111,169,32$
JK $96 \emptyset$ DATA $49,45,57,32,1 \emptyset 2,111$ $, 114,32,39,85,39,32$
KG $97 \emptyset$ DATA $115,119,1 \emptyset 5,116,99$, $164,13,15,36,83,112,1 \emptyset 1$
JE 986 DATA $99,1 \emptyset 5,162,121,32,9$ $7,32,11 \varnothing, 117,169,98,1 \varnothing 1$
FO 990 DATA $114,32,1 \varnothing 2,114,111$, $1 \varnothing 9,32,48,45,51,32,1 \varnothing 2$
DP $1 \emptyset \emptyset \emptyset$ DATA $111,114,32,39,67,3$ $9,32,115,119,195,116,99$
J6 1ø1Ø DATA $1 \varnothing 4,13,1 \varnothing, 36,-2,47$ $, 18 \emptyset, 48,2 \emptyset 5,33,6 \emptyset, \emptyset$
KI 1ø2Ø DATA $117,9,186,125,4,18$ Ø, 9, 265, 33, 265, 32, 184
CC 1 1 6 D DATA $6,55,265,33,136,22$ $, 53,5,187,125,4,177$
PF $1 \emptyset 4 \emptyset$ DATA $4,211,235,67,137,3$ Ø, 51, 5, 184, 28,53, 2ø5
HH 1956 DATA $33,196,266,1,141,1$ $27,252,185,4, \emptyset, 252,243$
IE $1 \varnothing 65$ DATA $166,131,249, \varnothing, 116$, $41,18 \emptyset, 9,186,154,4,265$
$10167 \emptyset$ DATA $33,184,28,37,186,2$ Ø4, 1, 2ø5, 33, 3Ø, 7, 232
JE 1 J日ø DATA $32,9,232,87,6,161$, $44, \emptyset, 142,192,18 \emptyset, 73$
$\mathrm{KP} 1 \emptyset 9 \emptyset$ DATA $2 \emptyset 5,33,184,9,49,13$ $9,22,51,5,265,33,232$
NJ $11 \emptyset \emptyset$ DATA $8, \emptyset, 232,63, \emptyset, 184, \emptyset$ $, 76,265,33,6,31$
KK $111 \emptyset$ DATA $1 日 \emptyset, \emptyset, 265,26,137,2$ $2,91,1,137,14,93,1$
BD $112 \emptyset$ DATA $18 \emptyset, 42,2 \emptyset 5,33,5 \emptyset, 2$ $28,163,1 \varnothing 2,1,138,198,163$
JD $113 \emptyset$ DATA $97,1,136,22,99,1,1$
$98,6,1 \varnothing 1,1,19,129$
BI $114 \emptyset$ DATA $233,168,7,128,249$, $99,118,7,128,233,1 \varnothing \emptyset, 254$
$115 \emptyset$ DATA $6,1 \varnothing 1,1,136,14,1 \emptyset \emptyset$ $, 1,195,3 \varnothing, 14,31,19 \varnothing$
BF $116 \emptyset$ DATA $129, \emptyset, 252,172,6 \varnothing, 3$ 2,116, 251, $60,13,116,51$
BN $117 \emptyset$ DATA $58,6,53,5,116,241$, $138,224,36,223,6 \emptyset, 82$
IL $118 \emptyset$ DATA $116,39,6 \emptyset, 77,116,5$ $1,6 \varnothing, 83,116,55,66,85$
OG $119 \emptyset$ DATA $116,59,6 \emptyset, 67,116,9$ Ø, 8ø, 178, 39, 18Ø, 2, $2 \emptyset 5$
LP $12 \emptyset \emptyset$ DATA $33,88,138,212,18 \emptyset$, $2,2 \emptyset 5,33,186,198,4,18 \emptyset$
KC $121 \emptyset$ DATA $9,295,33,31,195,38$ $, 199,6,1 \emptyset 4,1,-2,38$
CI $122 \emptyset$ DATA $199,6,166,1,-2,235$ $, 178,38,198,6,11 \varnothing, 1$
KE $123 \emptyset$ DATA $1,235,17 \emptyset, 38,198,6$ $, 11 \emptyset, 1, \emptyset, 235,162,172$
OD 124Ø DATA $6 \emptyset, 49,114,21,6 \emptyset, 57$ $, 119,17,44,48,177,3$
FN 125 DATA $138,224,21 \emptyset, 228,2$, $224,38,136,38,199,1,235$
GC $126 \emptyset$ DATA $136,186,221,4,189$, $9,265,33,235,187,172,66$
LB $127 \emptyset$ DATA $48,114,13,6 \varnothing, 51,11$ 9,9, 44, 48, 38, 162, 197
1289 DATA $1,233,199,255,186$, $8,5,189,9,295,33,235$
$129 \emptyset$ DATA $16 \emptyset, \emptyset$

SpeedCalc Fixes

There are two errors in the DOS 3.3 listing for Apple SpeedCalc in the February 1986 issue (Program 1, p. 95). Lines 0FE2 and 11 F 2 from the listing cannot be entered as shown because smudged characters were inadvertently changed when retouched. The lines should read as follows:
0FE2: CA 10 EB CA 9D 0002 E8 6E
11F2: F5 2485 1E 2022 0B 60 AB
These changes are not necessary if you have the February 1986 Apple COMPUTE! DISK; the program on disk is correct.

ProDOS users will very likely encounter the message ERROR \#56 when they attempt disk operations with that version. To correct this, you need to convert the binary (BIN) format file created by "Apple MLX" into a system (SYS) format file. To do this, first use the RENAME command to give the copy of SpeedCalc you entered with MLX the name SPEEDCALC.MLX. (Make sure that there is no file called just SPEEDCALC on the disk.) Then enter the three commands below, each on a separate line and each followed by pressing RETURN:

BLOAD SPEEDCALC.MLX
 CREATE SPEEDCALC,TSYS
 BSAVE SPEEDCALC, A\$2000,E\$3D67, TSYS

The new SPEEDCALC file now on the disk should function properly. Simply enter -SPEEDCALC to start it running. SpeedCalc already appears as a SYS file on the COMPUTE! DISK for February, so this change is not necessary if you have the disk.

Speedy Strings For Commodore

The "Fast Disk Catalog" utility (Program 3, p. 66) from this article in the February issue does not work as listed. The SYS addresses assume that the machine language has been appended to the end of the program, as was done for Program 2. There are two possible solutions. You can change the lines below so that the machine language is POKEd in and addressed properly:

GM $5 \emptyset$ DIMF $(M M): A=\varnothing$
CF 1øØ OPEN1,8, $\varnothing, " \$ \emptyset ": S Y S(A A):$ CLOSE1:CLOSE15
EC 120 PRINTXS: PRINT"\{CYN\} "R

IGHT\$(F\$(C-1), 2), C-B,C, $\mathrm{MM}-\mathrm{C}: \mathrm{B}=\mathrm{C}: A A=A A+16: \mathrm{GOTO} \varnothing$
XG 2øø POKE987,7ø:POKE988, Ø:SY S(AD)
Alternatively, you can append the machine language to the end of the program as was done for Program 2. This results in a shorter program that runs faster. To do this, don't change any lines in the program as listed. Instead, add the lines shown below, then type RUN 500 . When the program ends, delete line 25 and all lines above 330 , then immediately save a copy of the revised program.
GJ 5øø POKE 45, (PEEK (45) +117)A ND 255: POKE 46, PEEK (46) $+1-(\operatorname{PEEK}(45)<117)$
KC $51 \varnothing$ POKE 47, PEEK (45): POKE 4 8, PEEK (46):POKE 49, PEEK (45): POKE 50, PEEK (46)

GJ $52 \emptyset$ RESTORE: $A D=\operatorname{PEEK}(45)+256$ *PEEK (46)-373:FOR I=ø T - 367: READ D: POKE AD +I , D: NEXT
GK 53ø PRINT"\{2 DOWN\}DELETE LI NE 25 AND ALL LINES ABO VE 33ø, THEN SAVE NEW V ERSION": END
KC $11 \emptyset 5$ DATA \emptyset

The Robot Inside You

Why are children so fascinated with robots? For that matter, why is everyone so fascinated with robots? The answer is that robots seem the most lifelike of all machines, and the most like real people.

When we see a little robot "toddler" like HEROjr sing songs to a trashcan, or when we watch a Movit robot like the WAO (pronounced "Wow") skitter crablike around the kitchen floor, avoiding tables and gargantuan human feet, we feel an uncanny thrill, as if we are watching a minor miracle. We know that these little machines are not alive. But they are sending visual cues of "aliveness" to the deepest parts of our brain. And these visual processing centers are flashing the message "Alive! Alive!" to the higher-level, rational center of our brain. We can deny that the machines are alive, but we will continue to feel that somehow they really are.

Young children most strongly and visibly reflect this sense of the aliveness of robots. Children's unfettered imaginations and their incomplete mastery of the scientific view of the world (so ingrained in us adults) cause them to see all sorts of objects as being alive-including teddy bears, dolls, shadows, imaginary friends, and, of course, robots. For them, the logic is simple: If it seems alive and acts alive, then it must be alive.

Not only do children ascribe the quality of aliveness to an object based on its behavior, but they also project a psychology-a personality or character-into the object. The object's personality stems partly from its behavior (if a robot sings to a trashcan, it must be a "silly" robot), but also as a projection of children's own personalities-their wishes, dreams, fears, and subconscious feelings. It would be impossible for children to articulate what these feelings and attributes are,
but they sense them immediately in a teddy bear, a beloved blanket, or an animated little robot.

The being that children see in these objects is very real, since it is a part of themselves. It may be their dark side, light side, or their happy or sad side, but it is an expression of a dimension of their own personality. Collectively these dimensions form children's complex, often contradictory humanity. In a real sense, then, there is a robot-a multitude of robots-inside every child; indeed, there are robots inside every one of us.

It is interesting to watch children struggle with the "Is it alive or not?" dilemma presented by today's robots and lifelike computer programs because we will all soon be facing this dilemma. In the coming years we adults will find our rational, scientific view of machines and other nonliving objects challenged by their increasingly lifelike characteristics. Their speech, mobility, sense of the world around them, and lifelike response are improving rapidly. All these traits will soon offer compelling evidence to our subconscious that the machines are really alive.

Kids feel this way already. For example, one little neighborhood boy of COMPUTE! staffer Debi Nash played the new Activision game "Modern Computer People" in which little beings live inside the computer and interact with the world outside. The boy believed in the little creatures, and came by the Nash's house every day to talk with them and watch them live their lives. Unfortunately, one of the little people began to overeat. No matter what Debi and her family did, he kept stuffing himself. Suddenly the program crashed, and the person disappeared. Debi told me that telling the boy about the person's demise was as hard to do as
telling him that one of his friends had died.

Here in Birmingham, my six-year-old son Eric recently spent a couple days with A.G. Bear from Axlon Corp. A.G. talks in bear language but mimics human speech tones and rhythms with a little microchip in a voice box inside his chest. When Eric took A.G. to bed the first night, he had to take the voice box out of A.G. and leave it on the coffee table in the living room. Otherwise, A.G. would have begun talking every time Eric rolled over in bed or muttered something in his sleep. Eric happily took the bear to bed with him, but before he did he rushed over to the coffee table and wished the voice box good night. As I watched this little ritual from across the living room, I had the weird feeling that, for Eric, the voice box somehow held the little bear's electronic soul.

Last week, my nine-year-old daughter Catie and I were at the Bits \& Bytes Computer Show for Children in Dallas, Texas. Together, she and I spoke to almost 400 schoolchildren about "Robot Pets \& Friends." We demonstrated several popular robots, including Omnibot 2000, the Movit Family, and HEROjr, and we held a "Design Your Own Robot" contest which Catie judged.

The children's robot designs were original, diverse, and complex. To some extent, they resembled the robots that Catie and I had demonstrated and the robots of popular movies and TV shows. To a much greater extent, however, they were reflections of the children's own personalities. They were a revealing glimpse of the robots that dwell inside all of us.
©

Pat Computers and Society

Humanizing The User Interface, Part 2

Last month I wrote about several ways to make software easy to use. Now let's look at a model of human behavior that may hold the key for those who want to make computer programs that really stand apart from the crowd.

Psychologists and sociologists have spent a lot of time trying to figure out why people perform activities like rock climbing, playing chess, and performing other tasks for which the motivation appears to be internal (or autotelic). One behavioral scientist who has studied this area in some depth is Mihaly Csikszentmihalyi, whose book, "Beyond Boredom and Anxiety" (Josey-Bass, Inc., 1975), makes some observations that are of great value to those of us involved with the design of user interfaces.

I believe that a good user interface makes the computer transparent to the user so he or she is free to interact purely with the application. Now look at some comments (typical of many) that Csikszentmihalyi collected from people involved with activities like playing chess: "The game is a struggle, and the concentration is like breathingyou never think of it. The roof could fall in and, if it missed you, you would be unaware of it."

A rock climber said: "You are so involved in what you are doing that you aren't thinking of yourself as separate from the immediate activity. You don't see yourself as separate from what you are doing."

The people described above are in "flow"-a state where action and awareness have merged. In this state the connection between the participant and the activity is so close that everything else seems to disappear.

Each of us has experienced flow at one time or another-perhaps while playing a game or watching a movie. But flow is a
hard state to maintain. For example, a computer user might experience flow with a video game, only to be bumped out of this state by the computer not responding fast enough, or by requiring the entry of a complex command that needs to be thought about consciously.

People who are not in a state of flow are often in a state of boredom or anxiety. Flow appears as a narrow band between the two.

When a person feels that the complexity of a task is too great for his or her skill level, a state of anxiety is produced. On the other hand, someone who has a lot of skill will be bored if the challenges are not great enough. Flow exists when the complexity of a task is appropriate for the skill of the participant.

As many readers will attest, good video games provide a nice model of the flow state. Most games allow the player to progress through a series of levels. The first level may induce anxiety in the novice player, but the player then acquires enough skill to enter a state of flow. The trick in good game design is to progressively increase the challenge level so that, as the player becomes more skilled, boredom doesn't set in.

This same model could be applied to the design of other types of programs. For example, a fullfeatured word processor might start out by encouraging the user to work with only a limited set of features, making the product easy to learn. As the user's skill increases more and more features can be revealed until the product is mastered.

This model of the flow state can help us understand another aspect of program design that seems to be misunderstood by some people. There is a difference between making a product easy to learn and making it easy to use. Ideally the
product should have both of these features. Instead we often encounter programs that provide a tremendous amount of hand-holding for the neophyte, but which are cumbersome to use once the product is mastered. Ease of learning, in this case, makes the product cumbersome to the proficient user.

Many of the complaints that have been lodged against the early releases of Macintosh software can be traced to this conflict. The use of pull-down menus is wonderful to the first-time user, since various options and commands can be presented in plain English. However, the physical act of moving the mouse to the menu bar, opening the menu, moving the mouse to the desired selection, and selecting this item, is cumbersome to the user who already knows what choice he or she wants to make. This is why an increasing number of Macintosh programs have single keystroke equivalent commands for menu selections. For example, a menu item named SAVE is a more obvious command than Ctrl-S, but the latter is an easier command to give, once the user knows its meaning.

Ideally, programs should provide a seamless transition from being easy to learn to being easy to use. Each computer user should be free to learn at his or her own rate.

In the past, such programs were hard to create, given the limitations of the computers on which they were running. Now that the Macintosh and the Amiga have entered the scene, computer horsepower is no longer an issue. The time has come for computers to become as easy to use as any other appliance we have at home.

More String-Slicing

Last month we saw how you can copy pieces of character strings using the LEFT\$ and RIGHT\$ functions found in versions of Microsoft BASIC. For even more flexibility, most Microsoft-style BASICs include a third function for extracting sections of strings. Called MID $\$$ ("mid-string"), this function lets you copy a section from the middle of a string.

The basic format is MID\$ (string $\$, n 1, n 2$), where string $\$$ is a string variable or literal string; $n 1$ is a number representing the beginning character position of the substring you want to extract; and $n 2$ is a number representing the number of characters in the substring you want to extract. For example:
10 A $\$=$ "JAMES FENIMORE COOPER" 20 PRINT MID\$(A\$,7,8)
$30 \mathrm{~B} \$=\mathrm{MID}(\mathrm{A} \$, 11,4)$
40 PRINT B $\$$
50 PRINT A\$
When you run this program, the result is:
FENIMORE
MORE

JAMES FENIMORE COOPER

Line 20 prints the eight characters starting at position seven in $\mathrm{A} \$$, resulting in the substring FENIMORE. (Remember that spaces count as characters.) Lines 30 and 40 do much the same thing, but copy the four characters starting at position 11 into the string variable $B \$$ before printing them out. This method is useful if you need to print $\mathrm{B} \$$ later in your program or manipulate $\mathrm{B} \$$ in some other way. Line 50 shows that the MID\$ function, like LEFT\$ and RIGHT\$, does not disturb the original contents of A\$.

MID\$ is handy for so many different things that it's hard to come up with a generalized example. It can even be used to replace LEFT\$ and RIGHT\$-for instance, $\operatorname{MID} \$(A \$, 1,10)$ is equiva-
lent to LEFT\$(A\$,10), and MID\$(A$\$, \operatorname{LEN}(\mathrm{~A} \$)-9, \operatorname{LEN}(\mathrm{~A} \$))$ is the same as RIGHT\$(A\$,10). One useful application of MID\$ is to store a bunch of short strings as a single long string, then pick out the substring you want with MID\$. For example, let's say you're writing some sort of program that needs to print out the months of the year, perhaps as labels for a budget or chart. You could abbreviate the names of the months as equallength substrings within one large string, like this:
$10 \mathrm{MS}=$ "JANFEBMARAPRMAYJUNJUL AUGSEPOCTNOVDEC"

Now suppose that the numeric variable M contains the number of the month you need to print outmaybe as a result of an INPUT statement:
20 PRINT "WHICH MONTH TO PRINT";

30 INPUT M

40 PRINT MID\$(M\$, $\mathrm{M}^{*} 3-2,3$)
Depending on the user's response (1 for January, 2 for February, etc.), line 40 prints out the proper month name. Or you could print out all the months with a loop-FOR M=1 TO 12:PRINT MID\$(M\$, $\mathrm{M}^{*} 3-2,3$) :NEXT M.

Storing all the months in a single string and extracting the one you want with MID\$ is more efficient than using 12 separate strings for the same purpose. It's also more efficient in some ways than a string array (a subject we'll cover in a future column).

Atari And TI Strings

There are no LEFT\$, RIGHT\$, or MID $\$$ functions in TI BASIC or the Atari BASIC found on Atari $400 / 800$, XL, and XE computers. These BASICs handle strings a little differently than Microsoft BASIC does. (Note that Microsoft BASIC is available on cartridge for Atari computers, and some BASICs available from independent suppliers
also support Microsoft-style strings.)

TI BASIC's statement for segmenting strings is SEG\$. It works exactly like MID\$ in Microsoft BASIC-the statement $\mathrm{B} \$=$ SEG $\$$ (A\$,11,4) is equivalent to $\mathrm{B} \$=\mathrm{MID} \$(\mathrm{~A} \$, 11,4)$. You can simulate LEFT\$ with a statement in the form SEG $\$($ string $\$, n 1, n 2$), where string $\$$ is the string you wish to manipulate, $n 1$ is the starting character position of the segment within the string, and $n 2$ is the number of characters you wish to print or copy. For example, the statement $\mathrm{B} \$=\operatorname{LEFT} \$(\mathrm{~A} \$, 6)$ can be replaced with $B \$=\operatorname{SEG}(\mathrm{A} \$, 1,6)$.

Simulating RIGHT\$ is a bit more complicated. You need a statement in the form SEG\$(string$\$, \operatorname{LEN}($ string $\$)-n 1, n 2$), where $n 2$ is the number of characters you wish to print or copy, and $n 1$ is $n 2-1$. For example, $\mathrm{B} \$=\operatorname{RIGHT} \$(\mathrm{~A} \$, 6)$ can be replaced with $\mathrm{B} \$=\mathrm{SEG} \$$ (A\$,LEN(A\$)-5,6).

Atari BASIC requires the same sort of manipulations. To print or copy any substring in Atari BASIC, simply specify the starting and ending character positions of the substring within the larger string. To translate $\mathrm{B} \$=\operatorname{LEFT} \$(\mathrm{~A} \$, 6)$, use $\mathrm{B} \$=\mathrm{A} \$(1,6)$. To simulate RIGHT\$, use a statement in the form string\$(LEN(string\$) - n,LEN(string\$)), where string is the string you're manipulating and n is the number of characters you wish to print or copy minus one. For instance, to translate $\mathrm{B} \$=\operatorname{RIGHT} \$(\mathrm{~A} \$, 6)$, use $\mathrm{B} \$=\mathrm{A} \$(\operatorname{LEN}(\mathrm{~A} \$)-5, \operatorname{LEN}(\mathrm{~A} \$))$. To simulate MID\$, use the statement string $\$(n 1, n 2)$, where $n 1$ is the starting character position (just like MID\$), and $n 2$ equals $n 1$ plus the number of characters you wish to print or copy minus one. Thus, the Microsoft statement $\mathrm{B} \$=$ MID $\$$ $(\mathrm{A} \$, 11,4)$ is translated as $\mathrm{B} \$=\mathrm{A} \$$ $(11,14)$.

An April Trade Show Report

While most of the computer press converged on Lost Wages, Nevada in November of 1985 to attend yet another humdrum computer trade show, this columnist packed up his gear and headed for a counterculture communications fest held on the multileveled U.S.S. Flotsam, an ex-petro supertanker converted for use as a floating convention facility. Dubbed COMMDECKS 85 by show sponsor Aski Blok, it provided a fresh look at the lunatic fringe of computer communications.

There had been some doubt as to whether the show would get off the ground at all. Picket lines were set up by angry labor protesters who had been written bad redundancy checks by the show sponsor. The strikers were demanding even parity for all data transmitted to and from the show, making it almost impossible for exhibitors to set up their tables in the days preceding the show's opening. In the end, the demonstrators dropped their parity demands in exchange for 14 percent more than they had been receiving, plus additional time off in the form of one extra data bit and two stop bits.

It's hard to pinpoint the most memorable products of the show (since I spent most of my time recovering from the hors d'oeuvres and beverages served at evening press conferences), but I owe it to the readers of this column (and to the IRS) to take a shot at it.

Don't Just Ask For A Light

For the health-minded telecomputerist, Natural Language's line of optical wave modems are the first of the new "light" modems, transmitting 30 percent fewer characters than their wire-based counterparts. The new units are also said to aid the digestion of serial data (a.k.a. "number crunching") due to their high fiber optic content.

Setting a hard standard to beat
for intelligent modems is Thought System's new Kreskin 2400. How smart is it? The Kreskin reportedly can detect a busy signal before a call is actually made. Some recent prototypes also refuse to dial a remote Bulletin Board System if the unit's advanced circuitry senses there is nothing interesting to read or download on the BBS. The heart of the Kreskin is a superfast proprietary CPU chip capable of executing an infinite loop in 37 seconds. It translates the incoming stream of data into your choice of French, Italian, or Chinese (English is an extra-cost option).

No trade show would be complete without the obligatory raft of seminars and workshops, and COMMDECKS was no exception. Things did get off to a confusing start, however, when the kickoff session "The Future of VideoTex" turned out to be a panel discussion on merchandising VCRs and TVs in Dallas, Fort Worth, Austin, and Houston.

The highlight of the show's conference schedule had to be "Null Modems-Threat or Men-ace?"-a discussion of the trend toward violence in data communications hardware. The introduction of the Ninja, Terminator, and Rambo class of modem eliminators at the show further fueled the controversy to new heights.

Micro Telecomputing

With the price of mobile telephones dropping faster than a brick, Phylum Systems of Paramecium, California figures to cash in big with a $\$ 14.95$ limited-distance mobile modem dubbed the Amoeba. Phylum's vice president of marketing, Ernest Flagella, says the single cellular unit will be shipping either "(1) real soon now, (2) in two weeks, (3) when the manual comes back from the printer, or (4) when Atari ST and Amiga owners stop
bickering over who bought the better machine."

Meanwhile, the Arapaho Indian Nation is entering the packetswitching network race to serve the communications needs of telecomputerists in the remote West. Bowing to the pressure of environmentalist groups, the Arapaho elders have agreed to house their telecommunications equipment inside structures disguised as totem poles. The job of cabling the poles has been awarded to RS-232 ace Louie "Bent Pin" Carson. Although Carson anticipates a high degree of difficulty in routing the cables within the highly confined spaces of the totems, he feels that a shot at everlasting fame is worth all of the headaches. When the job is done, Carson will have become the first man to wire a head for a reservation.

After-hours entertainment got physical on Friday night as anybaudy who is anybaudy attended a sports competition for manufacturers of multiuser LANs dubbed "Battle of the Network Stars." Over 50 teams vied for the coveted "Lord of the Rings" title, and the highly favored New York Subcarriers were disqualified in the early rounds for passing bad tokens in the relay.

To be perfectly honest, attendance at COMMDECKS 85 was far below the anticipated crowd of $25,000+$. While hanging over the quarterdeck railing on the third day of the show, I bumped into promoter Aski Blok once more and quizzed him about the low number of attendees. "Well, it's really not too bad if you take everything into account," he said. "Our current location is kind of hard for people to get to. I think it would have been a lot more crowded if we hadn't cast off from the docks for the open C-the C programming workshop, that is."

Creating Rhythms

A year ago, in the March 1985 issue of COMPUTE!, I published a program called "Drum Practice" for the TI99/4A. That program was limited to quarter notes and quarter rests and the rhythms listed in DATA statements. This month, I'm offering a more complex program.You can create the rhythm for one measure by choosing notes and rests, and then the computer will play the rhythm for eight measures.

Lines $110-190$ print the instructions. The different kinds of notes and rests available will appear at the bottom of the screen. You can use the arrow keys (on S and D) to move the red marker left or right to make your selection, then press the ENTER key. Your choice will then be printed on the staff above.

The available notes are a quarter note, two eighth notes together, one eighth note, two sixteenth notes, a dotted eighth note with a sixteenth note, a quarter rest, and an eighth rest.

Line 200 sets the time T equal to 75 . If you want the rhythm to play faster decrease this number which represents the duration of a sixteenth note. Lines 210-240 read in from data (lines 260-330) the definitions for the graphic characters and define the characters from numbers 91 to 128 . Line 340 defines R for a row number for the staff. Lines 350-360 define the red arrow used as a marker under the notes to be selected.

Lines 370-390 define variables in an array for the seven possible choices. Line 400 contains the data for this loop. For each of the choices from 1 to $7, D(C)$ is a value representing the counts- 4 for one count, 2 for a half count. This variable is used to make sure the user makes a valid choice. For example, the computer will not allow a quarter note to be chosen if only a half
of a count is left in the measure. $\operatorname{COL}(\mathrm{C})$ is the column and is used to place the red marker.

The Rhythm Track

S\$(C) represents the durations when the rhythm is played. A sixteenth note factor is 1 , so the quarter note is 4 . Two eighth notes are 22 , and one eighth note is 2 . The two sixteenth notes are 11, and a dotted eighth with a sixteenth are 31. The rests are W and H. As the notes and rests are chosen, the string RHY\$ will add on values of S\$ (line 870).

Lines 1250-1390 play the rhythm. Line 1270 finds the length L of the string RHY\$. Line 1280 starts the loop for L number of times. Line 1290 looks at one character at a time of RHY\$. If the character A\$ is a letter, a rest is indicated so a frequency of 9999 with a volume of 30 is used. If $A \$$ is a number, that number is used as a factor times the previously defined T for the duration in the CALL SOUND statement, line 1310 . If you prefer a different sound, change the frequency numbers in line 1310. I used the noise of -5 plus the frequency of 330 . Line 1370 stops the sound so you can hear the different notes. The measure is played eight times.

Lines 420-440 wait for you to press ENTER before the program continues. Lines 460-500 clear the screen and print the notes using the redefined symbols. The lowercase y and z are typed by releasing the ALPHA LOCK key. Most of the symbols are typed by using the function key. Lines 510-630 draw the staff.

Lines 650-690 initialize variables for choosing the notes. COUNT and CHECK are used to determine how many notes and rests can be used in the measure. This measure is $4 / 4$ time. A sixteenth note has a value of 1 , so the

COUNT will go up to 16 . CHECK is how many points are remaining in the measure. These numbers are used to verify which notes and rests can be used in the measure.

PLACE is the column number where the note or rest will start being drawn on the staff. The first note will start in column 8. PLACE is incremented depending on which note or set of notes is chosen. Lines 690-820 are the lines to get the user's choice. Line 730 makes sure the left arrow key (S), the right arrow key (D), or the ENTER key is chosen; all other keys are ignored by branching back to the CALL KEY statement. C is the choice number, and $\operatorname{COL}(C)$ is the column where the red marker appears for the choice.

It's Timing That Counts

Line 830 makes sure the choice is valid. The D timing value must be less than or equal to the number of sixteenth counts available. If the choice is not valid, the program plays an "uh-oh" sound and branches back to line 720, which is the CALL KEY statement to get another choice. Line 870 increments the RHY\$ string with the appropriate timing factors. Line 880 branches to the proper place for drawing the notes or rest and incrementing PLACE.

Lines $1220-1240$ increment the COUNT and recalculate the CHECK time. If the measure is not full, the program goes back to get another choice. Lines 1250-1390 play the measure eight times. To stop the program, press FCTN BREAK.

If you have trouble running this program and get an error message in 220,230 , or 380 , the actual cause of the error is most likely in the DATA statements of lines $260-330$ or line 400 .

All notes are placed at the E space of the staff, representing a
snare drum rhythm．You may add to the program by including bass drum notes，cymbal rhythms，and tom－toms．To use this program for a melody instrument，you can use the up and down keys to move the note on the staff，then use a variable frequency to play the note．

You may use the general idea of this program in choosing items to go with a different theme of graph－ ics，not music－perhaps building a game or drawing a picture by choosing different shapes．

Rhythms

$1 \emptyset \emptyset$ REM RHYTHMS
110 CALL CLEAR
$12 \emptyset$ PRINT TAB（1ø）；＂RHYTHMS＂
$13 \emptyset$ PRINT ：：＂CHOOSE THE NOT ES FROM THE＂
$14 \emptyset$ PRINT ：＂BOTTOM OF THE S CREEN BY＂
$15 \emptyset$ PRINT ：＂USING THE LEFT AND RIGHT＂
$16 \emptyset$ PRINT ：＂ARROW KEYS TO M QVE AND＂
$17 \emptyset$ PRINT ：＂THE ENTER KEY T O SELECT．＂
$18 \varnothing$ PRINT ：：＂WHEN THE MEASU RE IS COMPLETE＂
$19 \emptyset$ PRINT ：＂YOU WILL HEAR T HE RHYTHM．＂
2øの T＝75
210 FOR C＝91 TO 128
$22 \emptyset$ READ C\＄
230 CALL CHAR（C，C $\$$ ）
240 NEXT C
$25 \emptyset$ REM DATA FOR CHARACTER 5
$26 \emptyset$ DATA ØøøøøFø8øFø8ø8ø8，Ø øøøF8ø8F8ø8ø8ø8，ø8ø8ø83 8F9E8，øøøøFFø1ø7ø1ø1ø1， 1øø8øС183ø3øø8ø4，1C2ø2ø $1 \varnothing \varnothing 8$
$27 \emptyset$ DATA øøøøøøøøøøøøFFDø，D ØDøFFDøD4DøFFDø，D4DøFFD ØDøDøFF，ØøøøøøøøøøøøFF， ØøøøFFøøøøøøFF，Øøøøøøøø ØøøøFFのB
$28 \emptyset$ DATA $\emptyset B \emptyset B F F \emptyset B 2 B \emptyset B F F \emptyset B, 2$ BøBFFøBøBøBFF，øøøøøøøøø ØøøFF1 $\emptyset, 2424447 E \emptyset 4 \emptyset 4 F F 1$ ，1ø2424447Eø4FF，øøøøø8ø 8ø8ø8FFø日
$29 \varnothing$ REM
3øø DATA Ø8ø8FF78F87øFF，øøø ØøFø日ø日ø8FFø日，øøøøF8ø8ø 8ø8FFø日，Øøøøø8øCøAø9FFの 8，ØøøøøFø日øFø8FFø日
$31 \emptyset$ DATA ØøøøF8øBFBø日FFøB， ØøøFFø1ø7ø1FFØ1，ØøøøFF6 27Eø4FF1，1ø2øFFØøøøøøFF ，ø8ø8FF78F978FF， 1 øø8øC1 83øろøø8ø4
32ø DATA 1C2ø2ø1øø8，øøøøø8ø 8ø8ø8ø8ø8，ø8ø8ø878F87，Ø øøøø下ø8ø8ø8ø8ø8，øøøø下8ø 8ø8ø8ø8ø8，øøøøø8øСøАø9ø $8 \varnothing 8$
$33 \emptyset$ DATA 627Eø2ø4ø81ø2，Ø1ø1 FFøF1FøEFF，Ø1ø1ø1øF1FøE
$340 \mathrm{R}=5$
$35 \emptyset$ CALL CHAR（136，＂ $1.6387 C F E$ 1ø1ø1ø1＂）
36ø CALL COLOR（14，7，1）
$37 \emptyset$ FOR C＝1 TO 7
$38 \emptyset$ READ D（C），COL（C），S\＄（C）
$39 \emptyset$ NEXT C
4øø DATA $4,4,4,4,8,22,2,12$ ， $2,2,15,11,4,19,31,4,24$ ， W，2，28，H
$41 \emptyset$ REM
$42 \emptyset$ PRINT ：：＂PRESS 〈ENTER〉 TO START．＂
$43 \emptyset$ CALL $\operatorname{KEY}(\varnothing, K, S)$
440 IF $K<>13$ THEN $43 \varnothing$
45ø REM DRAW NOTES
$46 \emptyset$ CALL CLEAR
47ø PRINT＂y \｛：\} [\
〔＾＂
$48 \emptyset$ PRINT＂＂$z \quad z z z z z$ $2 z$
$49 \varnothing$ CALL HCHAR $(23,2 \emptyset, 128)$
$5 \emptyset \emptyset$ PRINT
$51 \emptyset$ REM DRAW STAFF
$52 \emptyset$ CALL HCHAR（R，3，97）
530 CALL HCHAR（R ，3，98）
540 CALL HCHAR（R ，3，99）
$55 \emptyset$ CALL $\operatorname{HCHAR}(R, 4,1 \emptyset \emptyset, 22)$
$56 \emptyset$ CALL HCHAR（R＋1，4，1ø1，22
$57 \emptyset$ CALL HCHAR（R＋2，4，1ø1，22
$58 \emptyset$ CALL $\operatorname{HCHAR}(R, 26,1 \emptyset 2)$
$59 \emptyset$ CALL $\operatorname{HCHAR}(R+1,26,1 \emptyset 3)$
$6 \emptyset \emptyset$ CALL $\operatorname{HCHAR}(R+2,26,1 \emptyset 4)$
$61 \emptyset \operatorname{CALL} \operatorname{HCHAR}(R, 5,1 \emptyset 5)$
$62 \emptyset$ CALL $\operatorname{HCHAR}(R+1,5,1 \emptyset 6)$
$63 \emptyset \operatorname{CALL} \operatorname{HCHAR}(R+2,5,1 ø 7)$
64Ø REM CHOOSE NOTES
$65 \emptyset$ COUNT＝ø
66Ø CHECK＝16
670 PLACE $=8$
680 RHY\＄＝＂＂
$690 \mathrm{C}=1$
$7 \emptyset \emptyset$ CALL $\operatorname{HCHAR}(23, C O L(C), 13$ 6）
$71 \emptyset$ CALL SOUND（1øø，14øø，2）
$72 \emptyset$ CALL $\operatorname{KEY}(\emptyset, K, S)$
73 1F $(K<>13) *(K<>83) *(K<>$ 68）THEN $72 \emptyset$
$74 \emptyset$ CALL $\operatorname{HCHAR}(23, C O L(C), 32$
$75 \emptyset$ IF $K<>83$ THEN $78 \emptyset$
76 Ø C＝C－1
$77 \emptyset$ IF $C>=1$ THEN $7 \emptyset \emptyset$ ELSE 6 $9 \varnothing$
$78 \emptyset$ IF $K<>68$ THEN $83 \emptyset$
$79 \emptyset \mathrm{C}=\mathrm{C}+1$
8øø IF $C<=7$ THEN $7 \emptyset \emptyset$
$81 \emptyset \mathrm{C}=7$
$82 \emptyset$ GOTO $7 \emptyset \varnothing$
$83 \emptyset$ IF $D(C)<=C H E C K$ THEN $87 \emptyset$
$84 \varnothing$ CALL SOUND（ $15 \varnothing, 33 \varnothing, 2$ ）
$85 \emptyset$ CALL SOUND（ $15 \varnothing, 262,2$ ）
86Ø GOTO 7øø
$87 \emptyset$ RHY $\$=R H Y \$ \& S \(C)
88ø ON C GOTO 89ø，93ø，99ø， 1 Ø3ø，1ø9ø，115ø， $119 \emptyset$
$89 \emptyset$ CALL $\operatorname{HCHAR}(R, \operatorname{PLACE}, 1 \emptyset 8)$
$9 \emptyset \emptyset$ CALL HCHAR（R＋1，PLACE， $1 \emptyset$ 9）
$91 \varnothing$ PLACE＝PLACE +3
$92 \emptyset$ GOTO 122ø
$93 \emptyset$ CALL $\operatorname{HCHAR}(R, \operatorname{PLACE}, 11 \varnothing)$
$94 \emptyset$ CALL HCHAR（R＋1，PLACE， $1 \emptyset$ 9）
959 CALL HCHAR（R，PLACE＋1， 11 1）
$96 \emptyset$ CALL $\operatorname{HCHAR}(R+1, P L A C E+1$ ， 109）
$97 \emptyset$ PLACE＝PLACE +3
98ø GOTO $122 \emptyset$
$99 \varnothing$ CALL HCHAR（R，PLACE，112）
1 øøø CALL HCHAR（R＋1，PLACE， 1 Øの）
$1 \varnothing 1 \varnothing$ PLACE＝PLACE＋2
$1 \varnothing 2 \emptyset$ GOTO 122ø
$1 ø 3 \emptyset$ CALL HCHAR（R，PLACE， 113 ，
$1 \emptyset 4 \emptyset$ CALL HCHAR（R＋1，PLACE， 1

ø9）

$1 \varnothing 5 \emptyset$ CALL HCHAR（R，PLACE $+1,1$ 14）
1 Ø6 CALL HCHAR（R＋1，PLACE＋ 1 ，1ø9）
$1 \varnothing 7 \varnothing$ PLACE＝PLACE +2
1 Ø8ø GOTO 122ø
$1 \emptyset 9 \varnothing$ CALL HCHAR（R，PLACE， $11 \varnothing$ ）
$11 \emptyset \emptyset$ CALL HCHAR（R＋1，PLACE， 1 18）
$111 \emptyset$ CALL HCHAR（R，PLACE＋1， 1 15）
$112 \emptyset$ CALL HCHAR（R＋1，PLACE＋1 ，127）
$113 \emptyset \mathrm{PLACE}=\mathrm{PLACE}+3$
1140 GOTO 122の
$115 \emptyset$ CALL HCHAR（R＋1，PLACE， 1 19）
$116 \emptyset$ CALL HCHAR（R＋2，PLACE， 1 2ø）
1170 PLACE＝PLACE＋3
$118 \emptyset$ GOTO $122 \emptyset$
$119 \varnothing$ CALL HCHAR（R＋1，PLACE， 1 16）
$12 \emptyset \varnothing$ CALL HCHAR（R＋2，PLACE， 1 17）
1210 PLACE＝PLACE＋ 2
122 COUNT＝COUNT＋D（C）
1230 CHECK＝16－COUNT
124 IF COUNT 16 THEN $7 \emptyset \emptyset$
$125 \emptyset$ REM PLAY RHYTHM
126 FOR TIME＝1 TO 8
1276 L＝LEN（RHY\＄）
$128 \emptyset$ FOR $M=1$ TO L
$129 \emptyset A \$=S E G \$(R H Y \$, M, 1)$
$13 \emptyset \emptyset$ IF $(A \$=" W ")+(A \$=" H ") T H$ EN 133ø
$131 \emptyset$ CALL SOUND（T＊VAL（A\＄），－ 5，2，33, 4 ）
$132 \emptyset$ GOTO 137ø
1330 REST＝T
1340 IF $A \$=" H$＂THEN $136 \emptyset$
135 R REST＝REST＊2
1360 CALL SOUND（REST，9999，3 Ø）
$137 \emptyset$ CALL SOUND（1，9999，3ø）
$138 \emptyset$ NEXT M
139ø NEXT TIME
$14 \varnothing \emptyset$ FOR DEL＝1 TO 5øø
$141 \varnothing$ NEXT DEL
$142 \emptyset$ GOTO 46ø
143 END
©

Attention Programmers

COMPUTE！magazine is currently looking for quality articles on Commodore，Atari，Apple， and IBM computers（including the Commodore Amiga and Atari ST）．If you have an interesting home application， educational program，
programming utility，or game， submit it to COMPUTE！，P．O． Box 5406，Greensboro，NC 27403．Or write for a copy of our＂Writer＇s Guidelines．＂

Two Checkers And A Manager

Anyone who spells as badly as I do is bound to love spelling check-ers-and here are two new products that are getting a lot of attention.

Borland, the folks who brought you Turbo Pascal and the popular SideKick, have come up with another product headed for the best-seller's shelf. Turbo Lightning is a memoryresident spelling checker-it monitors every word you type and instantly beeps when you've made a mistake. Then, by pressing a key, you can call forth (in a box superimposed over your text) a list of the most likely correct words. It uses the 83,000 -word Random House dictionary as its spelling authority. Lightning also has a thesaurus option which lets you select just the right word from a 50,000 -word Random House thesaurus. All of this from within any programword processor, spreadsheet, data management, or communica-tions-just by pressing a few keys.

Here's how it works. Lightning stores a small dictionary in RAM. When installing the program, you must select one of three sizes: 6,000 words, 12,000 words, or 16,000 words. The larger the dictionary, the larger Lightning's vocabulary, and the less often it beeps for a word that is really correct. The trade-off, as always, is memory. As you type a word, Lightning consults the in-memory dictionary and beeps if there is no match. At this point, you may press the Alt-F9 keys to make the program consult the larger disk-based dictionary. Lightning then either confirms your spelling as correct or lists possible choices based on sound-alike words.

Two different disk-based dictionaries are available: one for hard disk systems and a smaller one for floppy disk computers. Since most of us have a small working vocabulary, the scheme of a RAM dictio-
nary supplemented by one on disk is quite workable.

A Flexible Engine

If you're thinking that a poor speller would be beeped to distraction, you are right. Fortunately, Lightning allows the auto-proof mode to be turned off; checking may then be requested on individual words or a screen at a time.

Borland plans to issue additional dictionaries and databases for use with the Lightning engine. In fact, any text-type data-even your own files-could be indexed and made accessible. Turbo Lightning is a sophisticated program with more potential than just a spelling checker. (Turbo Lightning, \$99.95, Borland International, 4585 Scotts Valley Drive, Scotts Valley, CA 95066.)

The second new spellingchecker is Reference Set from Reference Software. It too uses the Random House dictionary and thesaurus (what happened to Webster's?). Reference Set doesn't check each word as you type, but rather waits for you to request a spelling check by pressing Alt-D for dictionary or Alt-T for thesaurus. A window pops up over your text showing possible correct spellings (or alternate words); pressing a key deletes the old word and inserts the new one.

Although the dictionary is referenced from disk, the program maintains an index in memory so the time to locate a word, even with floppy disk, is typically less than a second. Reference Set includes two different sized dictionaries and thesauri for floppy and hard disk systems. The modest Reference Set engine-the memory-resident program that accomplishes the look-up-uses about 20 K ; by comparison, Lightning uses about 83K. (Reference Set Version 1, \$89.95, Reference Software, 2363

Boulevard Circle, Walnut Creek, CA 94595.) Both programs work best with a hard disk, but either may be used with a two-drive floppy system.

Aułomatic Słock Quotes

The "Manager" referred to in the title of this column alludes to a new program that works with the popular Andrew Tobias' Managing Your Money (see "IBM Personal Computing," December 1985). Called Managing the Market, it's a communications program that dials the Dow Jones News/Retrieval service, collects quotations, and updates the prices for the securities in an MYM portfolio. Pushing three or four keys dials the number, enters the password, selects the service, requests the quotes, updates the files, and disconnects. One nifty feature allows quotes to be ordered either by the percent change or by the absolute change-a real timesaver for those who monitor a lot of stocks. Output can be printed or saved for later analysis in a file readable by Lotus 1-2-3.

If you think this program would be too expensive to use with a modest portfolio, you may be pleasantly surprised. I've been updating about a dozen stocks, five days a week, after 6 p.m. when the rates are lowest, and the bill from Dow Jones is less than $\$ 10$ a month. Managing the Market comes with a temporary password and one hour of free time with Dow Jones, so you can begin using it right away. Of course, you must have a modem; the program supports all Hayes and Hayes-compatible modems as well as a dozen or so other makes. (Managing the Market, \$79.95, MECA, 12 Saugatuck Ave., Westport, CN, 06880.)

Bill Wilkinson

Binary Files, Unite!

I've had several people write me that various programs designed for use with binary (machine language) files don't work with Atari's Macro Assembler (AMAC), OSS's MAC/65, or a couple of other assemblers. Or possibly a program will work with a small binary file produced by these assemblers, but not with a larger one. Why all these problems when the simple Atari Assembler/Editor cartridge works so well?

The root of the problem is the Atari Disk Operating System definition of a binary file, so let's examine that first. (Besides, maybe we'll learn a few extra goodies on the way.) A legal Atari binary file has the following format:

1. A header of two bytes, each with a value of 255 (hex \$FF).
2. Two more bytes indicating the starting address of a segment of the binary file. The two bytes are in standard 6502 low-byte/high-byte order.
3. Two more bytes indicating the ending address of that same file segment.
4. A sequence of bytes which constitute the actual binary code to be loaded into memory for the segment defined by the preceding four bytes. The number of bytes may be determined by subtracting the starting address from the ending address and then adding one.
5. If there are no further segments, there should be no more bytes in the file.
6. If there are more segments, then repeat this sequence of steps starting at either step 1 or step 2.

And that's it. A really neat, clean, format. Watch out for that last step, though. First, it says that the number of segments is theoretically unlimited. Second, it says that header bytes (dual hex \$FF bytes) may occur at the start of any segment. It also implies that there is no
particular order necessary to a binary file; it's perfectly OK to load the segment(s) at higher memory addresses before the one(s) at lower addresses.

RUN And INIT Vectors

Before moving on, there are two other niceties about DOS binary files worth knowing. When DOS loads a binary file (including an AUTORUN.SYS file at powerup), it monitors two locations. The simpler of the two is the RUN vector. Before DOS begins loading the binary file, it puts a known value into the two bytes at locations 736-737 (hex $\$ 2 \mathrm{E} 0-\$ 2 \mathrm{E} 1$). When the file is completely loaded (i.e., when DOS encounters the end of the file, step 5 above), if the contents of location 736 have been changed, then DOS assumes the new contents specify the address of the beginning of the program just loaded. DOS then calls the program (via a JSR) at that address.

The second monitored location is the INIT vector at address 738 (hex \$2E2). This vector works much the same as the RUN vector, but DOS initializes and checks it for each segment as the segments are loaded. If the INIT vector's contents are altered, then DOS assumes the user program wants to stop the loading process for a moment, long enough to call a subroutine. So DOS calls (via a JSR) at the requested address, expecting that the subroutine will return so the loading process can continue. This is a very handy feature. Most of you have probably seen it at work, such as when you run (or boot) a program which puts up an introductory screen (maybe just a title and a PLEASE WAIT message) and then continues to load.

The other important difference between the RUN and INIT vectors is that DOS leaves channel number one open while the INIT routine is
called. (DOS always opens and loads the binary file via this channel.) I suppose a really tricky program could close channel one, open up a different binary file, and then return to DOS. DOS would proceed to load the new file as if it were continuing the load of the original one. Most of the time, though, INIT routines should not touch channel one.

More On Segmented Files

Back to the main subject: Why do some programs have problems with binary files produced by some assemblers? Well, if all programs followed the complete binary file format as given by steps 1 through 6 above, there would probably be no incompatibilities. Unfortunately, many people who have used no assembler except the old cartridge have ignored segmented files. They have assumed that a binary file consists of steps 1 through 4, one time only, with a single large segment. Perhaps this is because many programmers first worked with Apple DOS, CP / M , and other operating systems with not-so-intelligent binary file formats. Or perhaps it is because the supposedly simple assembler cartridge is, in some ways, smarter than more advanced assemblers. In particular, the assembler cartridge will not produce multiple segments unless the programmer specifically asks for them (via an * $=$ directive to force a change to the location counter).

Yet other assemblers (including $A M A C$ and $M A C / 65$) never produce a segment longer than a particular size (usually a page- 256 bytes-or less). If the programmer coded a longer segment, these assemblers automatically break it up into smaller pieces. Why? Probably to gain speed and lessen the work of assembly, since the assembler cartridge is doing a lot of work remembering the ending addresses
of segments.
Now, if my only concern were those few programs which don't properly load all binary files, I would simply have showed their authors the way to fix them. But there is a secondary advantage to programs which consist of larger segments: They load faster! Sometimes much faster. So this month I give you the BASIC program below, which takes any binary file and attempts to "unify" it. In particular, if the start address of one segment directly follows the end address of the preceding segment, they are consolidated into a single segment. And so on, so far as the space in BUF\$ allows.

And, last but not least, there's another minor bonus. Often, someone who writes an assembly language program purposely leaves space to be filled in later (e.g., by a filename, counter, etc.). If this reserved space occurs in the midst of code (probably not good practice, but it happens), it forces even the assembler cartridge to break the file into segments. But if the reserved space is significantly less than a sector (say under 50 bytes or so), it may be faster to let DOS load filler bytes. So you can change the value of the variable FILL in line 1160 (to 40 , perhaps), and this program will automatically generate up to the specified number of fill bytes in an effort to better unify the file.

Whew! Was this month's topic too heavy for you? Then write me (P.O. Box 710352, San Jose, CA 95071-0352) with your suggestions
for a topic. No treatises please. One or two pages works best. Thanks.

Binary File Unifier

For instructions on entering this listing, please refer to "COMPUTEI's Guide to Typing In
Programs" in this issue of COMPUTE!
$66111 \varnothing$ REM allocate buffer
K! 1120 REM
D! $113 \emptyset$ BUFSIZE=FRE $(\varnothing)-3 \varnothing \varnothing$
AK $114 \varnothing$ DIM BUF $\$$ (BUFSIZE)
If $115 \emptyset$ DIM FILEOLD $\$(40)$, FIL ENEW\$ (4ø)
KH $120 \emptyset$ REM
CJ 1210 REM get file name
r.J 1220 REM

NO $123 \emptyset$ PRINT "I need two fi le names: An existin g"

EA 124 Ø PRINT " object file and a new fille whic h"
६E $125 \emptyset$ PRINT " will get th e 'unified' object c ode."
FG $126 \emptyset$ PRINT
AA $127 \emptyset$ PRINT "Existirn'g file ? ";
DE $128 \emptyset$ INPUT \#16,FILEOLD $\$$
OB $129 \emptyset$ PRINT "\{5 SPACES\}New file? ";
DI $13 \varnothing \varnothing$ INPUT \#16,FILENEW\$
KJ $14 \emptyset \emptyset$ REM
JC $141 \emptyset$ REM open files, vali date existing one
KL $142 \emptyset$ REM
FJ $143 \emptyset$ OPEN \#1, 4, \varnothing, FILEOLD $\$$
JD 144 GET \#1,SEGLOW: GET \#1 , SEGHIGH
KD $145 \emptyset$ IF SEGLOW $=255$ AND $S E$ GHIGH=255 THEN 15øø
PI 146 Ø PRINT : PRINT "Existi ng file: invalid for mat"
KD 1470 END
DF $148 \emptyset$ REM input file okay
LC 1490 REM
GH $15 \emptyset \emptyset$ OPEN \#2, $8, \emptyset$, FILENEW\$
MF $151 \varnothing$ PUT \#2,SEGLOW:PUT \#2 , SEGHIGH
KL $16 \varnothing \varnothing$ REM
NO 161 R REM process a new or igin
KN $162 \emptyset$ REM
AK $163 \emptyset$ BUFPTR=ø

Write computer programs at home.. BE SUCCESSFUL WITH COMPUTERS
Self-paced, one-on-one instruction

Unique study program includes word-processing. bookkeeping. data base management, mailing lists inventories, and all about personal computers.

Mo experience needed! Learn even before you decide on a computer.
Professional, home and business applications.

HALIX INSTITUTE
CENTER FOR COMPUTER EDUCATION DEPT. 614
1543 W. OLYMPIC, \#226
LOS ANGELES. CA 90015-3894
YES! Send me tree information on how I can learn about computers and programming at home!
Name
Address
City_

Made by top USA makers, not low-end or seconds
We buy truckloads of major makers
. Overproduction. We can't print the maker, but
 Uaranteed 100\% érror troe. MOE Cer BACK ATISFACTION GUARANTE

Prites are per disk.

INCREDIBLE PRICES ON COMPUTER ACCESSORIES! UNIFILE-100 holds 100 disks, with lock \& ker, removeable top. 513.88 UNIFLE- 70 Holds 70 disks, like "Flip-n-file." \#FiLE70 58.88
UNIFFE-10 UBRARY CASES, holds 10 disks, dear plastic. सFILE10 990 UNIPAK 5\%" DISK MALLERS, ripid cardboard, up to 3 disks \#UMIPAK 10 for $\$ 5$ DRAFT QUAL COMPUTER PAPER, 3300 , sheets, i5" sid

HOW TO ORDER: Pay by MC. Vias-Amex.COD, or send check with order, We can shio ogen account to schoops with good credit, minimum purchase order S100, FOB Unitech. All orders must hclude daytime phone and
STREET adrose
M
STREET Addross Money-back 30 day satisfaction guar antee. Send
FREE CATALOG listing 100° of discount computer suppleey
飄 (800)343-0472 UNITECH

Interactive Science Fiction Game For Commodore, Apple

PSI-5 Trading Company, from Accolade Software, is a science fiction "minidrama," whose plot and outcome are contingent on the player's relationship with the story's characters. The game features detailed graphic depictions of 30 different characters who interact with the player through conversational text.

The story revolves around the PSI5 Trading Company, a space freighter setting off on a mission to save the inhabitants of the Parvin Frontier from alien invaders. As captain of the ship, you must choose a crew of 5 from 30 applicants, each possessing special skills and a unique personality. The success of the mission hinges on the confidence you have in your crew to handle its responsibilities.

Suggested retail price for the Commodore 64 version is $\$ 29.95$. The Apple version retails for $\$ 34.95$.

Accolade Software, 20863 Stevens Creek Blvd., Cupertino, CA 95014.
Circle Reader Service Number 212.

Epyx Games Available For Amiga And Atari ST

Epyx has announced that two of its most popular computer games, and a microcomputer version of a classic mainframe adventure game, will be available for the Amiga and Atari ST this spring. In Winter Games, up to eight people can compete in seven events from the Winter Olympics. The original Commodore version of the game featured excellent graphics and sound. Rogue was originally a mainframe computer adventure game often played on college campuses. And the Temple of Apshai Trilogy offers a wide range of multiple dungeon levels, featuring 1400 separate chambers, plus enhanced high-resolution graphics.

Both versions of all three games are expected to retail for between $\$ 19-\$ 39$.

Epyx, Inc., 1043 Kiel Ct., Sunnyvale, CA 94089.
Circle Reader Service Number 213.

Bantam Software Promotions

Bantam Electronic Publishing is offering software promotional deals for purchasers of Sherlock Holmes In "Another Bow," The Fourth Protocol, and The Complete Scarsdale Medical Diet. Through April 15, special rebate coupons can be used to take $\$ 5$ off the price of each of those programs. And, through March 31, Bantam will take entries in its Mystery Weekend contest, the winner of which will get a weekend for two in Boston to participate in a "mystery weekend" at the famous Parker House hotel. Special Holmes mystery pamphlets are available in many participating software stores. The pamphlets contain a mystery which you solve, and then submit to Bantam for a drawing in mid-April.
Bantam Electronic Publishing, Bantam Books, 666 Fifth Ave., New York, NY 10103.

Circle Reader Service Number 214.

Sports Tutorials Designed By The Pros

Avant-Garde has enlisted the help of three famous professional athletes in developing a line of sports tutorials. Joe Theismann's Pro Football offers advice on training and strategy to help develop quarterbacking techniques; improves overall football skills; and helps you understand the finer points of the game. Plays are illustrated through live-action diagrams. Dave Winfield's Batter Up! advises on pitchers, batting stance, swing height, grip and hitting strategy to help you develop expert batting techniques. The package also includes Winfield's book, Batter Up! The Act of Hitting, and a four-player batting game, Slugfest!. Chris Evert-Lloyd Tennis provides animated demonstrations of grip, stroke, game strategy, and specialized exercises. The program helps you learn the rules and choose the best equipment, and teaches concentration techniques to prepare you mentally for a match.

The Commodore 64 version of each program retails for $\$ 34.95$. The Apple II version (64 K RAM minimum) and IBM-PC/PCjr version (128K RAM
minimum) retail for $\$ 39.95$.
Avant-Garde, 37B Commercial Blvd., Novato, CA 94947.
Circle Reader Service Number 215.

Infocom At The Big Top

In Ballyhoo, Infocom's new interactive mystery, you are a small-town circusgoer who sticks around after the show to explore the exotic back lot. What you discover is a mysterious underworld of crime and corruption, into which the circus owner's daughter has been kidnapped. In order to find her, you must solve a series of puzzles that are hidden among the circus folk.

Ballyhoo, one of Infocom's standardlevel, all-text adventure games, is available for the Apple II-series and Macintosh; Atari XL/XE and ST series, Commodore 64/128 and Amiga, and the IBM PC and PCjr, for a list price of \$39.95.

Infocom, Inc., 125 Cambridge Park Dr., Cambridge, MA 02140.
Circle Reader Service Number 216.

New From Better Working

Word Processor with Spellchecker is the third product to be released in Spinnaker's Better Working line of home productivity software. The program is a full-function word processor, with a 50,000-word American Heritage Dictionary to catch spelling mistakes. It also features a 750 -word personalized user dictionary, preview mode, microcommands for alternative print styles, and window-based menus and help screens.

The other titles in the Better Working series are Spreadsheet and File and Report. Word Processor with Spellchecker can perform mailmerge with Better Working File and Report. Each program is available for the Apple II series (\$59.95) and the Commodore $64 / 128$ (\$49.95).

Better Working, Spinnaker, One Kendall Square, Cambridge, MA 02139.
Circle Reader Service Number 217.

SOFTWARE

TI-99/4A Software/Hardware bargains Hard-to-find items. Huge selection. Fast service. Free catalog. D.E.C. Box 690, Hicksville, NY 11801

LOTTO PICKER. Improve your chances for those Million Dollar Jackpots! Picks LOTTO, WIN-4, \& Daily Numbers. All USA \& Can. games incl. Expandable! IBM/C64/TI99 \$29.95. Order Now! 1-800-341-1950 Ext. 77. Mail Orders: Ridge, 170 Broadway, \#201-C, NYC, NY 10038. Catalog.
PROJECT PLANNING/MANAGEMENT using the C64, SX, or C128. Data sheet for SASE Prgm for $\$ 106.95$ (CA res. add 6% sls $t x$). LAWCO, Dept. C, Box 2009, Manteca, CA 95336

Genealogy Program for the C64. "FAMILY

 TREE" will produce Pedigree Charts, Family Group Records, Individual Files, Indexes, Searches of Ancestors. LDS version available. "The Best" genealogy program for the 64. $\$ 49.95$, GENEALOGY SOFTWARE, POB 1151, PORT HURON, MI 48061, (519) 344-3990.Animal Records maintained with "PETIGREE" for the C64. Produces Litter, Awards, Breeding Show, Individual Records, Pedigree Charts. \$69.95. GENEALOGY SOFTWARE, POB 1151, PORT HURON, MI 48061, (519) 344-3990.

FREE SOFTWARE CATALOG!

Call Toll-Free 1-800-554-1162, Tevex, Inc. Save $1 / 3$ off retail prices. We carry SSI, Elect. Arts, Infocom, and many more!

COMMODORE: TRY BEFORE YOU BUY. Top 25 best-selling games, utilities, new releases. Visa, MasterCard. Free brochure. Rent-A-Disk, 908 9th Ave., Huntington, WV 25701 (304) 522-1665

DISCOUNT SOFTWARE: Amiga/Apple/ Atari/C64-128/IBM PC-PCjr/TRS-80/Timex/ Sinclair. Free Catalog: WMJ DATA SYSTEMS, 4 Butterfly Dr., Hauppauge, NY 11788

3 GAMES-PHOBOS-Destroy a falling moon. 10101 - Play 21 against your computer. STALACTITE ATTACK-Try to survive in a cave with attacking stalactites-requires joystick. ALL THREE for 32 K ATARI, ON DISK, $\$ 5$ check or M.O. to: M. A. Grossman, W205 N6844 Woodward Ct., Menomonee Falls, WI 53051
Dr. T's MUSIC SOFTWARE
A music composition system with true word processing capabilities for APPLE and COMMODORE computers. Also algorithmic composition programs for computer generation of sequences. Fully editable Bach, Keyboard, Bass and Drum disks. Patch librarians available for Yamaha and Casio synthesizers. Reviewed in Jan ' 85 COMPUTE! (617) 244-6954, Dr. T's, Dept. C, 66 LOUISE RD., CHESTNUT HILL, MA 02167

DATA BASE 130 FOR THE ATARI 130 XE

Data files up to 64 K . Sort on any field.
Print address labels or listings. $\$ 25$. Bill Von Sennet, P.O. Box 14585 , Pittsburgh, PA 15234 . Specify 810 or 1050.

IBM PCjr OWNERS: We have the software you want. We also have complete 2 nd drive additions or kits. FREE CATALOG. OOWL SOFTWARE, 1435 Burnley Sq. N., Columbus, OH 43229

FREE SOFTWARE for C64, C128, IBM \& CPM. For info send large stamped (39c) return envelope to: PUBLIC DOMAIN USERS GROUP, PO Box 1442-A1, Orange Park, FL 32067

TI-99/4A QUALITY SOFTWARE for Business, Home and Entertainment * * BONUS Software Offer! * * Send for FREE catalog to MICRO - BIZ HAWAII, BOX 1108, Pearl City, HI 96782

TAX SPREADSHEET FOR C64, ATARI, TI:
$\$ 19.95$. $+\$ 2 \mathrm{~s} / \mathrm{h}$. Includes $1040,2106,2441$,
A,B,C,D,E,G,SE,W,1040A. Yearly updates $\$ 10$. TI-99/4A w/ExtBasic, Atari w/48K or more. Specify disk or tape. Steve Karasek, 855 Diversey, St. Louis, MO 63126 (314) 961-2052

ATTENTION TI99/4A OWNERS !!!

 See our ad in Product Mart.The 99/4A National Assistance Group (305) 583-0467
** ATARI USERS ** QUEST FOR LIFE!!
Realistic Adventure with weapons, killers and traps. $\$ 14.95$ tape/disk. FREE CATALOG. Octavian Software, Box 174, Republic, OH 44867
GAMES FOR C-64!...ANY CHOICE $\$ 19.95$ T/D. Navy War, Startrek, Football, Risk. Free game w/each buy. RK Games, 420 W. Central, Medicine Lodge, KS 67104. (316) 886-5097

MISCELL ANEOUS

HELP IS ON THE WAY!
Just call 1-800-334-0868 to get your free copy of the latest COMPUTE! Books Catalog! If yoù need help in getting information on all of the latest COMPUTE! book titles available plus all COMPUTE! backlist titles, call us today!
Maxell MD1, \$1.29-MD2, \$1.99. Dysan 104/1D, $\$ 1.79-104 / 2 \mathrm{D}, \$ 2.39$. Shipping $\$ 3.75$. Also Verbatim, IBM, 3M, BASF. TAPE WORLD, 220 Spring St., Butler, PA 16001, 1-800-245-6000. Visa, MC.

EARN MONEY, PART OR FULL TIME, AT HOME with your computer-manual \& forms\$9.95. Write Computer Programs for Profit! How-to guide with forms, letters, tips-\$7.95 Also-Computer Consultant Handbook. How to earn $\$$ consulting with business- $\$ 7.95$. JV Tech, P.O. Box 563, Ludington, MI 49431

Discount computer printer ribbons for all makes/models Ex: Epson 1500 Nylon \$6.99. Catalog: TWS 1314 4th Ave., Coraopolis, PA 15108 (412) 262-1482 Visa or MasterCard.

NEED THAT CIRCUIT DESIGNED

into artwork, or that artwork fabbed into circuit boards, and the PCB's assembled? Then send requirements for free quote to the PC Master, 10221 Slater Ave.,
Suite 103-329, Fountain Valley, CA 92708
1985 INDEX TO ALL COMMODORE MAGAZINES. C64/128 disk with search/ browse/print of articles, programs, reviews. Send $\$ 16.95 \mathrm{ck}$ or m.o. to: PCdex, Box 563, Dayton, OH 45409

IBM PCjr REPORT: THE NATIONAL NEWSLETTER. PCjr-specific articles, reviews, Public Domain from across the nation. $\$ 18$. $/ \mathrm{yr}$. PCjr CLUB, POB 95067, Schaumberg, IL 60195

RIBBONS for MOST PRINTERS at LOW PRICES! DELTA MICRONICS
BOX 10933, ERIE, PA 16514-0933
(814) 455-5667

ROBOT KITS - The MOVIT family of computer robots that you have been reading about. PEPPY - navigates by two-way sound sensor, zips around on three wheels, $\$ 24.99+\$ 2 \mathrm{~s} / \mathrm{h}$. AVOIDER - infra-red obstacle avoidance system,, walks on six legs, $\$ 44.99+\$ 2 \mathrm{~s} / \mathrm{h}$.
MR. BOOTSMAN - Wired remote control six leg robot. Two motor control, $\$ 34.99+\$ 2 \mathrm{~s} / \mathrm{h}$. Catalog $\$ 1.00$. Send orders to: CompuTek, 530 South 6th St., Sunnyside, WA 98944

COMPUTE! Classified is a low-cost way to tell over 350,000 microcomputer owners about your product or service.

Rates: $\$ 25$ per line, minimum of four lines. Any or all of the first line set in capital letters at no charge. Add $\$ 15$ per line for boldface words, or $\$ 50$ for the entire ad set in boldface (any number of lines.)
Terms: Prepayment is required. Check, money order, American Express, Visa, or MasterCard is accepted. Make checks payable to COMPUTE! Publications.
Form: Ads are subject to publisher's approval and must be either typed or legibly printed. One line equals 40 letters and spaces between words. Please underline words to be set in boldface.
General Information: Advertisers using post office box numbers in their ads must supply permanent address and telephone numbers. Orders will not be acknowledged. Ad will appear in next available issue after receipt.
Closing: 10th of the third month preceding cover date (e.g., June issue closes March 10th). Send order and remittance to: Harry Blair, Classified Manager, COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. To place an ad by phone, call Harry Blair at (919) 275-9809.
Notice: COMPUTE! Publications cannot be responsible for offers or claims of advertisers, but will attempt to screen out misleading or questionable copy.

MLX Machine Language Entry Program For Atari

to accept the next number．If you enter fewer than three digits，you can press the comma key，the space bar，or the RETURN key to advance to the next number．The checksum automatically appears in inverse video for emphasis．

MLX Commands

When you finish typing an ML listing （assuming you type it all in one ses－ sion），you can then save the completed program on tape or disk．Follow the screen instructions．If you get any errors while saving，you probably have a bad disk，or the disk is full，or you＇ve made a typo when entering the MLX program itself．

You don＇t have to enter the whole ML program in one sitting．MLX lets you enter as much as you want，save it， and then reload the file from tape or disk later．MLX recognizes these commands：

CTRL－S Save
 CTRL－L Load
 CTRL－N New Address
 CTRL－D Display

To issue a command，hold down the CTRL key（CONTROL on the XL models）and press the indicated key． When you enter a command，MLX jumps out of the line you＇ve been typ－ ing，so we recommend you do it at a new prompt．Use the Save command （CTRL－S）to save what you＇ve been working on．It will save on tape or disk， as if you＇ve finished，but the tape or disk won＇t work，of course，until you finish the typing．Remember to make a note of what address you stop at．The next time you run MLX，answer all the prompts as you did before－regardless of where you stopped typing－then in－ sert the disk or tape．When you get to the line number prompt，press CTRL－L to reload the partly completed file into memory．Then use the New Address command to resume typing．

To use the New Address com－ mand，press CTRL－N and enter the ad－ dress where you previously stopped． The prompt will change，and you can then continue typing．Always enter a New Address that matches up with one of the line numbers in the MLX－format listing，or else the checksum won＇t work．The Display command lets you display a section of your typing．After you press CTRL－D，enter two addresses within the line number range of the listing．You can break out of the listing
display and return to the prompt by pressing any key．

Atari MLX：Machine Language Entry

For instructions on entering this listing，please refer to＂COMPUTEI＇s Guide to Typing in
Programs＂in this issue of COMPUTEI．
DA $1 \varnothing \emptyset$ GRAPHICS $\emptyset: D L=P E E K(56 \emptyset$ ）＋256＊PEEK（561）＋4：PQKE DL－1，71：POKE DL $+2,6$
N 110 POSITION 8， $0: ? ~ " M L X ": P$
 fixarnayt＂：POKE $71 \varnothing, \emptyset: ?$
Jk $12 \varnothing$ ？＂Starting Address＂；： INPUT BEG：？＂Ending Address＂；：INPUT FIN：？
＂Run／Init Address＂；：IN PUT STARTADR
$D D 13 \emptyset$ DIM $A(6)$ ，BUFFER\＄（FIN－B $E G+127), T \$(2 \emptyset), F \$(2 \emptyset)$ ， CIO\＄（7），SECTOR\＄（128），D SKINV\＄（6）
Jง 140 OPEN \＃ $1,4, \varnothing, " K: ": ?$ ？ ，＂झape or Eisk：＂；
B 150 BUFFER $\$=$ CHR $\$(\emptyset)$ ：BUFFER $\$(F I N-B E G+3 \emptyset)=$ BUFFER $\$$ BUFFER $\$(2)=$ BUFFER $\$$ ：SEC TOR $\$=$ BUFFER $\$$
GC $16 \emptyset$ ADDR＝BEG：CIO\＄＝＂hhh＂：CI O\＄（4）＝CHR\＄（170）：CIO\＄（5 $)=" L V ": C I O \$(7)=C H R \$(22$ 8）
EN $17 \varnothing$ GET \＃1，MEDIA：IF MEDIAく >84 AND MEDIA $\langle>68$ THEN $17 \varnothing$
$018 \emptyset$ ？CHR\＄（MEDIA）：？：IF ME DIA $\langle>$ ASC（＂T＂）THEN BUF FER $\$=$＂＂：GOTO 256
PL $19 \varnothing$ BEG $=$ BEG－24：BUFFER $9=$ CHR $\$(\varnothing)$ ：BUFFER $\$(2)=$ CHR $\$$（I NT（（FIN－BEG＋127）／128））
KF 2 のø $H=I N T(B E G / 256): L=B E G-H$ ＊256：BUFFER $\$(3)=$ CHR $\$(L$ ）：BUFFER\＄（4）＝CHR\＄（H）
EC 210 PINIT＝BEG＋8： $\mathrm{H}=\mathrm{INT}$（PINI T／256）：L＝PINIT－H＊256：B UFFER $\$(5)=$ CHR $\$(L):$ BUFF ER\＄（ 6 ）$=$ CHR $\$(H)$
PB 220 FQR $I=7$ TO 24：READ A：B UFFER $\$(I)=$ CHR $\$(A):$ NEXT I：DATA $24,96,169,6 \varnothing, 1$ $41,2,211,169, \emptyset, 133,1 \varnothing$ ， $169, \emptyset, 133,11,76,9, \emptyset$
DP $230 \mathrm{H}=\mathrm{INT}($ STARTADR／256）：L＝ STARTADR－H＊256：BUFFER\＄ （15）$=$ CHR\＄（L）：BUFFER\＄（1 9）$=$ CHR\＄（ H ）
KL 24 ． 2 BUFFER $\$(23)=$ CHR $\$(L): B U$ FFER $\$(24)=$ CHR $\$(H)$
HI 250 IF MEDIA $\langle>A S C$（＂D＂）THE N 360
$0026 \emptyset$ ？？＂Boot Disk or Bin ary 百ile：＂；
LI 27 G GET \＃1，DTYPE：IF DTYPES >68 AND DTYPE $\langle>7 \emptyset$ THEN $27 \varnothing$
6H 28の ？CHR\＄（DTYPE）：IF DTYPE $=7 \emptyset$ THEN $36 \emptyset$
PJ $29 \emptyset \mathrm{BEG}=\mathrm{BEG}-3 \varnothing: \mathrm{BUFFER} \$=\mathrm{CHR}$ \＄（ \varnothing ）：BUFFER $\$(2)=$ CHR $\$(I$

NT（（FIN－BEG＋127）／128））
KG 3øø $H=I N T(B E G / 256): L=B E G-H$ ＊256：BUFFER\＄（3）＝CHR\＄（L 1：BUFFER\＄（4）＝CHR\＄（H）
HH 310 PINIT＝STARTADR：$H=I N T(P$ INIT／256）：L＝PINIT－H＊25 6：BUFFER $\$(5)=$ CHR $\$(L): B$ UFFER $\$(6)=C H R \(H)
AO 320 RESTORE $330:$ FOR $I=7$ TO 3ø：READ A：BUFFER\＄（I）＝ CHR \＄（A）：NEXT I
6 6 330 DATA $169, \varnothing, 141,231,2,1$ $33,14,169,6,141,232,2$ ， $133,15,169, \varnothing, 133,10,16$ 9， $0,133,11,24,96$
OB $340 \mathrm{H}=\mathrm{INT}(\mathrm{BEG} / 256): \mathrm{L}=\mathrm{BEG}-\mathrm{H}$ ＊256：BUFFER $\$(B)=C H R \$(L$ ）：BUFFER $\$(15)=$ CHR $\$(H)$
DO $350 \mathrm{H}=\mathrm{INT}($ STARTADR $/ 256$ ）：L＝ STARTADR－H＊256：BUFFER\＄ （22）＝CHR\＄（L）：BUFFER\＄（2 6）$=$ CHR $\$(H)$
JP $36 \emptyset$ GRAPHICS $\emptyset:$ POKE 712,10 ：POKE $71 \varnothing, 1 \varnothing:$ POKE $7 \emptyset 9$ ， 2 ？ADDR；＂：＂；FOR $J=1$ TO 6
NF 380 GOSUB 576：IF $N=-1$ THEN $\mathrm{J}=\mathrm{J}-1$ ：GOTO $38 \varnothing$
8F $39 \varnothing$ IF $N=-19$ THEN 720
01 $40 \varnothing$ IF $N=-12$ THEN LET READ $=1$ ：GOTO 720
AI 410 TRAP 410 ：IF $N=-14$ THEN ？：？＂New Address＂；：I NPUT ADDR：？：GOTO $37 \varnothing$
HO 42 TRAP 4 Øøøの：IF $N\rangle-4$ TH EN 489
AJ $43 \varnothing$ TRAP $43 \emptyset: ?$ ：？＂Display ：From＂；：INPUT F：？，＂To ＂；：INPUT T：TRAP 32767
M． 440 IF $F<B E G$ OR $F>F I N$ DR T〈BEG OR $T>F I N$ OR $T \angle F T$ HEN ？CHR\＄（253）；＂At le ast＂；BEG；＂，Not More Than＂；FIN：GOTO $43 \varnothing$

MH 450 FOR I＝F TO T STEP 6：？ ：？I；＂：＂；：FOR K＝\quad TO 5 ：$N=$ PEEK（ADR（BUFFER\＄）+1 ＋K－BEG）：T\＄＝＂øの日＂：T\＄（4－ $\operatorname{LEN}(S T R \$(N)))=S T R \$(N)$
MA $46 \emptyset$ IF PEEK $(764)<255$ THEN GET \＃1，A：POP ：POP：？： GOTO $37 \emptyset$
FM $47 \varnothing$ ？T\＄；＂，＂；：NEXT K：？CHR \＄（126）；：NEXT I：？：？：G OTO $37 \varnothing$
6A $48 \varnothing$ IF $N<\emptyset$ THEN ？：GOTO 37 \varnothing
IH $49 \emptyset \quad A(J)=N: N E X T \quad J$
JH 5 øø CKSUM＝ADDR－INT（ADDR／25 6）$* 256$ ：FOR $I=1$ TD $6: C K$ SUM＝CKSUM＋A（I）：CKSUM＝C KSUM－256＊（CKSUM＞255）：N EXT I
KK $51 \emptyset \mathrm{RF}=128:$ SQUND $\varnothing, 2 \emptyset 0,12$ ， 8：GOSUB 57ø：SQUND \emptyset, \varnothing ， $\emptyset, \emptyset: R F=\varnothing:$ ？CHR $\$(126)$
CN 520 IF $\mathrm{N}\langle>$ CKSUM THEN ？：？ ＂Incorrect＂；CHR\＄（253）； ：？：GOTO $37 \varnothing$
EK 536 FOR $W=15$ TO \emptyset STEP -1 ： SOUND $\varnothing, 5 \emptyset, 1 \varnothing$ ，W：NEXT W
FL 540 FOR $I=1$ TO 6：POKE ADR（ BUFFER $\$$ ）＋ADDR－BEG $+\mathrm{I}-1$ ， A（I）：NEXT I
HB 55 Ø ADDR $=A D D R+6$ ：IF $A D D R<=F$ IN THEN $37 \varnothing$
6156 GOTO 710
f1 $579 \mathrm{~N}=\varnothing: \mathrm{Z}=\varnothing$
PH $58 \emptyset$ GET \＃1，$A:$ IF $A=155$ OR A $=44$ QR $A=32$ THEN 670
FB 59 Ø IF $A<32$ THEN $N=-A:$ RETU RN
EB6øの IF $A<>126$ THEN $63 \emptyset$
M 610 GOSUB 690 ：IF $I=1$ AND T
$=44$ THEN $N=-1$ ：？CHR\＄（ 1 26）；：GOTO 69ø
6N 620 EOTO $57 \varnothing$
81630 IF $A<48$ QR $A>57$ THEN 5 $8 \varnothing$
AN 640 ？CHR\＄$(A+R F) ;: N=N \$ 1 \varnothing+A$ -48
EB 650 IF $N>255$ THEN ？CHR $\$(2$ 53）；：$A=126$ ：GOTO $6 \emptyset \emptyset$
EH $669 \mathrm{Z}=\mathrm{Z}+1$ ：IF $Z<3$ THEN 580
JH $67 \varnothing$ IF $Z=\varnothing$ THEN ？CHR $\$ 1253$ ）：：GOTO $57 \varnothing$
KC 680 ？＂，＂；：RETURN
NO 690 PQKE 752，1：FOR I＝1 TO 3：？CHR $\$(3 \emptyset)$ ；：GET \＃6，T ：IF $T<>44$ AND $T<>58$ TH EN ？CHR\＄（A）；：NEXT I
PI 7 Øの POKE 752，Ø：？＂＂；CHR\＄ 126）：：RETURN
KM $71 \varnothing$ GRAPHICS $0:$ POKE 710,26 ：POKE 712，26：POKE 799， 2
FF 72. IF MEDIA＝ASC（＂T＂）THEN 890
of 730 REM DDISTK
OK $74 \varnothing$ IF READ THEN ？？＂Loa dFile＂：？
16750 IF DTYPE $\langle>7 \varnothing$ THEN $104 \varnothing$
AE 760 ？？＂Enter AUTORUN．SY S for automatic use＂：？ ：？＂Enter filename＂：I NPUT T\＄
6F $77 \emptyset \mathrm{~F} \$=\mathrm{T}$ \＄：IF LEN $(T \$)>2$ THE N IF $T \$(1,2)\rangle$＂D：＂THE N F $\$=$＂$D: ": F \$(3)=T \$$
NJ 780 TRAP $870:$ CLOSE \＃2：OPEN \＃2，8－4 \＃READ，$\varnothing, F \$: ? ~: ? ~$ ＂Working．．．＂
JM 790 IF READ THEN FOR $I=1 \quad T$ 0 6：GET \＃2，A：NEXT I：GO T0 820
PO 8øの PUT \＃2，255：PUT \＃2， 255
DJ $810 \mathrm{H}=\mathrm{INT}(\mathrm{BEG} / 256): \mathrm{L}=\mathrm{BEG}-\mathrm{H}$ ＊256：PUT \＃2，L：PUT \＃2，H ： $\mathrm{H}=\mathrm{INT}(\mathrm{FIN} / 256): L=F I N-$ H＊256：PUT \＃2，L：PUT \＃2， H
NF 820 GOSUB 970 ：IF PEEK（195） >1 THEN $87 \emptyset$
IF 830 IF STARTADR $=\varnothing$ OR READ THEN $85 \emptyset$
FD B4ø PUT \＃2，224：PUT \＃2，2：PU T \＃2，225：PUT \＃2，2：H＝IN T（STARTADR／256）：L＝STAR TADR－H＊256：PUT \＃2，L：PU T \＃2，H
$6 C 850$ TRAP $4 \varnothing \sigma \varnothing \sigma: C L O S E$ \＃2：？ ＂Finished．＂：IF READ TH EN ？：？：LET READ＝ø：GO TO 360
HF $86 \varnothing$ END
F0 870 ？＂Errar＂；PEEK（195）；＂ trying to access＂： F \＄：CLOSE \＃2：？：GOTO $76 \emptyset$
MC $88 \varnothing$ REM FBODT TIRE
HN $89 \varnothing$ IF READ THEN ？？＂Rea d Tape＂
HI $9 \varnothing \varnothing$ ？？：？＂Insert，Rewin d Tape．＂：＂Press PLAY ＂；：IF NOT READ THEN ？＂\＆RECARD＂
 n ready：＂；
JH 920 TRAP $960:$ CLOSE \＃2：OPEN \＃2，8－4＊READ，128，＂C：＂： ？：？＂Working．．．＂
NH 930 GOSUB 970 ：IF PEEK（195） >1 THEN $96 \varnothing$
$6 C 94 \varnothing$ CLOSE \＃2：TRAP $4 \varnothing \varnothing \varnothing \varnothing: ?$ ＂Finished．＂：？？：IF R EAD THEN LET READ $=\varnothing: G O$ TO $36 \emptyset$
HF 950 END
CD960？：？＂Error＂；PEEK（195 ）；＂when reading／writi
ng boot tape＂：？CLOSE \＃2：GOT0 89ø

EA $980 \mathrm{x}=32$ ：REM File\＃2，$\$ 29$
EF990 ICCOM＝834：ICBADR＝836：I CBLEN＝840： ICSTAT $=835$
MD 1 øøø $H=I N T(A D R(B U F F E R \$) / 25$ 6）：L＝ADR（BUFFER\＄）$-\mathrm{H} * 2$ 56：POKE ICBADR $+X$ ，L：PO KE ICBADR $+X+1, H$
FH 1010 ＝FIN－BEG＋1：H＝INT（L，2 56）：$L=L-H * 256$ ：POKE IC BLEN $+X$ ，L：POKE ICBLEN + $\mathrm{X}+1, \mathrm{H}$
KD 1 ø $2 \emptyset$ POKE ICCOM $+x$ ，11－4＊REA $D: A=\operatorname{USR}(A D R(C I O \$), X)$
B6 $103 \emptyset$ POKE 195，PEEK（ICSTAT） ：RETURN

$6 C 195 \varnothing$ IF READ THEN $11 \varnothing \varnothing$
HE $1 \emptyset 6 \emptyset$ ？？＂Format Disk In Drive 1？（Y／N）：＂；
FC $197 \emptyset$ GET \＃ 1 ，A：IF $A<>78$ AND $A<>89$ THEN $107 \emptyset$
EC 1 ø8 ？CHR\＄$(A):$ IF $A=78$ THE N $110 \square$
CP 1 1ø9ø ？：？＂Formatting．．．＂： XIO 254，\＃2，$\varnothing, \varnothing, " D: ": ~$ ＂Format Complete＂：？
AC 11 ■ 1 NR＝INT（（FIN－BEG＋ 127 ）／ 128）：BUFFER\＄（FIN－BEG + 2）$=$ CHR $\$(\varnothing):$ IF READ TH EN ？＂Reading．．．＂：GOT － 1120
LE $111 \varnothing$ ？＂Writing．．．．＂
II 1120 FOR $I=1$ TO NR：$S=I$
101130 IF READ THEN GOSUB 12 2ø：BUFFER\＄（I＊128－127） ＝SECTOR\＄：GOTO $116 \emptyset$
PL 1140 SECTOR $\$=$ BUFFER $\$(I * 128$ －127）
AM 1150 GOSUB 1220
DN $116 \emptyset$ IF PEEK（DSTATS）$\langle>1$ TH EN $12 \varnothing \varnothing$
FB 1170 NEXT I
GK $118 \varnothing$ IF NOT READ THEN END
DH $119 \varnothing$ ？？：LET READ $=\varnothing$ ：GOTO $36 \emptyset$
JJ $120 \emptyset$ ？＂Error on disk acce ss．＂：？＂May need form atting．＂：GOTO $1 \varnothing 4 \varnothing$
KI $121 \emptyset$ REM

I6 $123 \varnothing$ REM Drive ONE
IH 1240 REM Pass buffer in SE CTOR $\$$
Mf $125 \emptyset$ REM sector \＃in varia ble 5
E6 $126 \emptyset$ REM READ＝1 for read，
KJ $127 \emptyset$ REM READ $=\varnothing$ for write
BM 1280 BASE $=3 * 256$
6L $129 \emptyset$ DUNIT＝BASE $+1:$ DCOMND $=B$ ASE＋2：DSTATS＝BASE＋ 3
NL $13 \emptyset \emptyset$ DBUFLO＝BASE +4 ：DBUFHI $=$ BASE +5
AI 1310 DBYTLO＝BASE $+8:$ DBYTHI $=$ BASE＋9
JA 1320 DAUX1＝BASE $+1 \varnothing:$ DAUX2 $=$ B ASE＋ 11
PN 1330 REM DIM DSKINV\＄（4）
CA 1340 DSKINV\＄＝＂hLS＂：DSKINV\＄ （4）$=$ CHR $\$(228)$
PF $135 \varnothing$ POKE DUNIT， $1: A=A D R(S E$ CTOR\＄）：$H=I N T(A / 256): L$ ＝A－256＊H
8P $136 \emptyset$ POKE DBUFHI，H
CO 137 P POKE DBUFLO，L
PD $138 \varnothing$ PQKE DCOMND， $87-5 *$ READ
AA 1390 POKE DAUX2，INT（S／256） ：POKE DAUX1，S－PEEK（DA UX2）＊256
KJ $1400 \quad A=U S R(A D R(D S K I N V \$))$
KG 1410 RETURN

MLX Machine Language Entry Program For Commodore 64 Chares Brannon．Progiam Editor

MLX is a labor－saving utility that al－ lows almost fail－safe entry of machine language programs published in СОМ－ PUTE！．You need to know nothing about machine language to use MLX－it was designed for everyone．At least 8 K ex－ pansion memory is required．

MLX is a new way to enter long machine language（ML）programs with a mini－ mum of fuss．MLX lets you enter the numbers from a special list that looks similar to BASIC DATA statements．It checks your typing on a line－by－line basis．It won＇t let you enter illegal char－ acters when you should be typing num－ bers．It won＇t let you enter numbers greater than 255 （forbidden in ML）．It won＇t let you enter the wrong numbers on the wrong line．In addition，MLX creates a ready－to－use tape or disk file．

Using MLX

Type in and save the appropriate ver－ sion of MLX（you＇ll want to use it in the future）．When you＇re ready to type in an ML program，run MLX．MLX for the 64 asks you for two numbers：the starting address and the ending address．These numbers are given in the article accom－ panying the ML program．

When you run MLX，you＇ll see a prompt corresponding to the starting address．The prompt is the current line you are entering from the listing．It in－ creases by six each time you enter a line． That＇s because each line has seven num－ bers－six actual data numbers plus a checksum number．The checksum verifies that you typed the previous six numbers correctly．If you enter any of the six numbers wrong，or enter the checksum wrong，the computer rings a buzzer and prompts you to reenter the line．If you enter it correctly，a bell tone sounds and you continue to the next line．

MLX accepts only numbers as in－ put．If you make a typing error，press the INST／DEL key；the entire number is deleted．You can press it as many times as necessary back to the start of the line． If you enter three－digit numbers as list－ ed，the computer automatically prints the comma and goes on to accept the next number．If you enter less than three digits，you can press either the space bar or RETURN key to advance to the next number．The checksum automatically appears in inverse video for emphasis．

To simplify your typing，MLX rede－ fines part of the keyboard as a numeric keypad（lines 581－584）：

64 MLX Commands

When you finish typing an ML listing （assuming you type it all in one session）， you can then save the completed pro－ gram on tape or disk．Follow the screen instructions．If you get any errors while saving，you probably have a bad disk，or the disk is full，or you＇ve made a typo when entering the MLX program itself．

You don＇t have to enter the whole ML program in one sitting．MLX lets you enter as much as you want，save it，and then reload the file from tape or disk later．MLX recognizes these commands：

SHIFT－S：Save
 SHIFT－L：Load
 SHIFT－N：New Address
 SHIFT－D：Display

When you enter a command，MLX jumps out of the line you＇ve been typ－ ing，so we recommend you do it at a new prompt．Use the Save command to save what you＇ve been working on．It will save on tape or disk，as if you＇ve fin－ ished，but the tape or disk won＇t work， of course，until you finish the typing． Remember what address you stop at． The next time you run MLX，answer all the prompts as you did before，then insert the disk or tape．When you get to the entry prompt，press SHIFT－L to re－ load the partly completed file into mem－ ory．Then use the New Address command to resume typing．

To use the New Address command， press SHIFT－N and enter the address where you previously stopped．The prompt will change，and you can then continue typing．Always enter a New Address that matches up with one of the line numbers in the special listing，or else the checksum won＇t work．The Dis－ play command lets you display a section of your typing．After you press SHIFT－ D，enter two addresses within the line number range of the listing．You can abort the listing by pressing any key．

64 MLX：Machine Language Eniry

$1 \varnothing$ REM LINES CHANGED FROM MLX \｛SPACE\}VERSION 2. $2 \emptyset$ ARE $75 \emptyset$ ，765，77ø AND $86 \emptyset$ ：rem 5 0 $2 \emptyset$ REM LINE CHANGED FROM MLX V ERSION $2 . \emptyset 1$ IS $3 \emptyset \varnothing$ ：rem 147 100 PRINT＂\｛CLR\} E6ヨ"; CHRS (142); CHRS（8）；：POKE53281，1：POKE5 3280，1
：rem 67

1 101 POKE 788，52：REM DISABLE RU N／STOP ：rem 119
$11 \varnothing$ PRINT ${ }^{\prime \prime}\{$ RVS $\}\left\{39\right.$ SPACES ${ }^{\prime \prime}$ ；
：rem 176
120 PRINT＂$\{$ RVS $\}\{14$ SPACES $\}$
\｛RIGHT\} \{OFF \} $\left.\varepsilon^{*}\right\} £\{$ RVS $\}$
\｛RIGHT\} \{RIGHT\} \{2 SPACES \} E＊$\exists\{$ OFF $\} \mathbb{E} * \exists £\{$ RVS $\} £\{$ RVS $\}$ $\{14 \text { SPACES }\}^{\pi} ; \quad$ ：rem $25 \emptyset$
130 PRINT＂\｛RVS \}\{14 SPACES\} \｛RIGHT\} KG \｛RIGHT\} $^{\text {\｛ }}$
\｛2 RIGHT\} \{OFF\}£\{RVS\}£
［ $\star \exists\{O F F\} \mathbb{E} *\}\{R V S\}$
\｛14 SPACES\}"; :rem 35
140 PRINT＂\｛RVS\}\{41 SPACES\}" ：rem $12 \varnothing$
$2 \emptyset \emptyset$ PRINT＂\｛2 DOWN\} \{PUR\}\{BLK\} M ACHINE LANGUAGE EDITOR VER SION 2．ø2\｛5 DOWN\}": rem 238 $21 \varnothing$ PRINT＂ 85 § $\{2$ UP $\}$ STARTING $A D$ DRESS？$\{8$ SPACES $\}$ \｛9 LEFT $\}$＂；
：rem 143
215 INPUTS： $\mathrm{F}=1-\mathrm{F}: \mathrm{C} \$=\operatorname{CHR} \$(31+11$. 9＊F）
：rem 166
220 IFS＜256OR（S＞4096ØANDS＜4915 2）ORS >53247 THENGOSUB3øøø：G OTO21の
：rem 235
225 PRINT：PRINT：PRINT ：rem $18 \emptyset$
23ø PRINT＂ $\mathrm{E} 5 \exists\{2$ UP $\}$ ENDING ADDR ESS？$\{8$ SPACES $\}$ \｛ 9 LEFT $\}$＂；：I NPUTE：F＝1－F：C\＄＝CHRS $(31+119$ ＊F）
：rem 20
24 IFE＜256OR（E＞4096のANDE <4915 2）ORE $>53247 \mathrm{THE}$ NGOSUB3øøø：G OTO23Ø ：rem 183
250 IFE＜STHENPRINTCS；＂\｛RVS\}END ING＜START $\left\{2\right.$ SPACES ${ }^{\prime \prime}:$ GOS UBIØØØ：GOTO 23Ø：rem 176 $26 \varnothing$ PRINT：PRINT：PRINT ：rem 179
$3 \varnothing \varnothing$ PRINT＂\｛CLR\}"; CHR\$ (14):AD=S
：rem 56
$31 \varnothing \mathrm{~A}=1$ ：PRINTRIGHT\＄（＂Øøø日＂＋MID \＄（STRS（AD），2），5）；＂：＂；
：rem 33
315 FORJ＝ATO6
：rem 33
$32 \emptyset$ GOSUB57 \varnothing ：IFN $=-1$ THENJ $=J+N$ ：G OTO32ø ：rem 228
390 IFN $=-211$ THEN 710 ：rem 62
$4 \varnothing \varnothing$ IFN $=-204$ THEN 790 ：rem 64
41σ IFN $=-2 \emptyset 6$ THENPRINT ：INPUT＂ \｛DOWN\} ENTER NEW ADDRESS"; Z Z
：rem 44
415 IFN＝－2ø6THENIFZZ＜SORZZ＞ETH ENPRINT＂\｛RVS\}OUT OF RANGE" ：GOSUB1øøø：GOTO41の：rem 225
417 IFN $=-266$ THENAD $=\mathrm{ZZ}:$ PRINT $: G O$ TO31の
：rem 238
42 IF $N<>-196$ THEN 48 Ø
：rem 133
436 PRINT：INPUT＂DISPLAY：FROM＂； F：PRINT，＂TO＂；：INPUTT＂
：rem 234
$44 \emptyset$ IFF＜SORF＞EORT＜SORT＞ETHENPR INT＂AT LEAST＂； S ；＂\｛LEFT\}, N OT MŌRE THAN＂；E：GOTO43Ø
：rem 159
450 FORI $=$ FTOTSTEP6：PRINT：PRINT RIGHT\＄（＂øøøø＂＋MID\＄（STR\＄（I） ，2），5）；＂：＂
：rem $3 \varnothing$
451 FORK＝øTO5：N＝PEEK（ $I+K$ ）：PRIN TRIGHT\＄（＂øø＂＋MIDS（STRS（N）， 2），3）；＂，＂；
：rem 66

460 GETAS：IFA\＄＞＂＂THENPRINT：PRI NT：GOTO310
470 NEXTK：PRINTCHRS（20）：NEXTI ：PRINT：PRINT：GOTO31
：rem 50
480 IFN $<\theta$ THEN PRINT：GOTO $31 \varnothing$
$490 \mathrm{~A}(\mathrm{~J})=\mathrm{N}: \operatorname{NEXTJ}$ ：rem 199
50Ø CKSUM＝AD－INT（AD／256）＊256：F ORI＝1TO6： $\mathrm{CKSUM}=(\mathrm{CKSUM}+\mathrm{A}$（I） ）AND255：NEXT
：rem 200
510 PRINTCHRS（18）；：GOSUB570：PR INTCHRS（146）；
：rem 94
511 IEN $=-1$ THENA $=6$ ：GOTO 315
：rem 254
515 PRINTCHR\＄（20）：IFN＝CKSUMTHE N530
：rem 122
520 PRINT：PRINT＂LINE ENTERED W RONG ：RE－ENTER＂ ：$\overline{\mathrm{PR}} \mathrm{RNT}: \mathrm{GOS}$ UB1øøø： $\bar{G} O T O 31 \varnothing:$ rem 176
530 GOSUB2øøø ：rem 218
540 FORI $=1$ TO6：POKEAD $+I-1, A(I):$ NEXT：POKE54272， 0 ：POKE54273 ， 0
－rem 227
$550 \mathrm{AD}=\mathrm{AD}+6:$ IF $\mathrm{AD}<\mathrm{E}$ THEN 310
560 GOTO 710
：rem 212
$57 \varnothing \mathrm{~N}=\varnothing: \mathrm{Z}=\varnothing$
：rem 1 ø8
580 PRINT＂E£ヨ＂；
：rem 88

581 GETAS：IFAS＝＂＂THEN58
$582 \mathrm{AV}=-(\mathrm{A} S=" \mathrm{M} ")-2^{\star}(\mathrm{A} S=", ")-3^{*}$ （AS＝＂．＂）$-4^{*}(A S=" J ")-5 *(A S=$ ＂K＂）$-6^{*}(A S=" L ")$
：rem 41
$583 \mathrm{AV}=\mathrm{AV}-7^{*}\left(\mathrm{~A} S=" \mathrm{U}^{\prime}\right)-8^{*}(\mathrm{~A} S=" \mathrm{I} "$ $)-9^{\star}(\mathrm{A}=" \mathrm{O} "):$ IFAS＝＂H＂THENA \＄＝＂ロ＂
：rem 134
584 IFAV $>$ ØTHENAS $=\operatorname{CHR} \$(48+\mathrm{AV})$
：rem 134
585 PRINTCHRS（20）；：A＝ASC（AS）：I $\mathrm{FA}=130 \mathrm{RA}=440 \mathrm{RA}=32$ THEN $67 \emptyset$
：rem 229
590 IFA >128 THENN $=-$ A $:$ RETURN
：rem 137
60 IFA $\langle>20$ THEN 630 ：rem 19
610 GOSUB690：IFI＝1ANDT＝44 THENN $=-1:$ PRINT ${ }^{\prime \prime}\left\{\right.$ OFF＇$\left.^{\prime}\right\}$ \｛LEFT $\}$
\｛LEFT\}";:GOTO690 :rem 62
620 GOTO57ø
：rem 109
630 IFA $<480 R A>57$ THEN $58 \varnothing$
：rem 105
640 PRINTAS；$: N=N^{\star} 10+\mathrm{A}-48$
：rein 106
650 IFN >255 THEN $A=20$ ：GOSUB1 00 Ø：GOTO6ØØ
：rem 229
$660 \mathrm{Z}=\mathrm{Z}+1$ ： IFZ ＜3THEN 580 ：rem 71
670 IFZ $=\varnothing$ THENGOSUB1 $\emptyset \varnothing \emptyset: G O T O 57 \varnothing$
：rem 114
$68 \emptyset$ PRINT＂，＂；：RETURN ：rem 240
690 S\％$=\operatorname{PEEK}(209)+256 * \operatorname{PEEK}(210)$ $+\operatorname{PEEK}(211):$ rem 149
691 FORI $=1 \mathrm{TO} 3: \mathrm{T}=\operatorname{PEEK}(\mathrm{S} 8-\mathrm{I})$
：rem 67
695 IFT＜＞44ANDT＜＞58THENPOKES：－ I， 32 ：NEXT ：rem 205
$7 \emptyset 0$ PRINTLEFTS（＂\｛3 LEFT\}", I-1) ；：RETURN ：rem 7
710 PRINT＂$\{$ CLR \} \{RVS \}*** SAVE * ＊＊\｛3 DOWN $\}$＂：rem 236
715 PRINT＂\｛2 DOWN\}(PRESS \{RVS\} RETURN\｛OFF\} ALONE TO CANCE L SAVE）\｛DOWN\}" :rem 1 Ø6
$720 \mathrm{~F} \$="$＂：INPUT＂${ }^{2}$ DOWN\} FILENAM E＂；FS：IFES＝＂＂THENPRINT：PRI NT：GOTO310
：rem 71
730 PRINT：PRINT＂\｛2 DOWN\}\{RVS \}T \｛OFF\}APE OR \{RVS\}D\{OFF\}ISK ：（T／D）＂
：rem 228
740 GETAS：IFAS＜＜＂T＂ANDAS＜＞＂D＂T HEN740
：rem 36
 ＋FS：CLOSE15
：rem 212
$760 \mathrm{~T}=\mathrm{FS}: \mathrm{ZK}=\operatorname{PEEK}(53)+256$＊PEEK （54）－LEN（T\＄）：POKE782，ZK／25 6 ：rein 3
762 POKE 781, ZK－ $\operatorname{PEEK}(782) * 256: \mathrm{P}$ OKE78も，LEN（T\＄）：SYS65469
：rem 109
763 POKE780，1：POKE781，DV：POKE7 82，1：SYS65466
：rem 69
$765 \mathrm{~K}=\mathrm{S}:$ POKE254，K／256：POKE253， $\mathrm{K}-\operatorname{PEEK}(254) \star 256$ ：POKE780， 25 3
：rem 17
$766 \mathrm{~K}=\mathrm{E}+1$ ： POKE 782 ， $\mathrm{K} / 256$ ：POKE78 $1, \mathrm{~K}-\operatorname{PEEK}(782)$＊ 256 ：SYS65496
：rem 235
$776 \operatorname{IF}(\operatorname{PEEK}(783)$ AND1）OR（191AND ST）THEN780 ：rem 111
775 PRINT＂\｛DOWN\}DONE . \{DOWN \}": G OTO310 ：rem 113
780 PRINT＂\｛DOWN\}ERROR ON SAVE. \｛2 SPACES \}TRY AGAIN. ":IFDV $=1$ THEN72の \quad rem 171
781 OPEN15，8，15：INPUT\＃15，E1\＄，E 2S：PRINTE1\＄；E2S：CLOSE15：GO TO720
：rem 103
790 PRINT＂\｛CLR\}\{RVS\}*** LOAD * ＊＊\｛2 DOWN $\}^{\prime \prime}: r \bar{e} m 212$
795 PRINT＂\｛2 DOWN\} (PRESS \{RVS\} RETURN\｛OFF\} ALOÑE TO CANCE L LOAD＂＂
：rem 82
$8 \emptyset 0$ FS＝＂＂：INPUT＂\｛2 DOWN \} FILEN AME＂； $\mathrm{FS}: \mathrm{IFF}$＝＂＂＂THENPRINT：G OTO310
：rem 144
810 PRINT：PRINT＂\｛2 DOWN \}\{RVS \}T \｛OFF\}APE OR \{RVS\}D\{OFF\}ISK ：（ $\mathrm{I} / \underline{D})^{\prime \prime}$
：rem 227
820 GETAS：IFAS $\langle>$＂T＂ANDAS $\langle>$＂D＂T HEN82の ：rem 34
$830 \mathrm{DV}=1-7^{*}(\mathrm{AS}=$＂ $\mathrm{D} "): I F D V=8 \mathrm{THEN}$ $\mathrm{FS}=$＂$\varnothing: " \mathrm{~F}$ ：\quad rem 157
$840 \mathrm{~T} \$=\mathrm{FS}: \mathrm{ZK}=\operatorname{PEEK}(53)+256^{*}$ PEEK （54）－LEN（TS）：POKE782，ZK／ 25 6
：rem 2
841 POKE781，ZK－PEEK（782）＊256：P OKE780，LEN（T\＄）：SYS65469
：rem 107
845 POKE780，1：POKE781，DV：POKE7 82，1：SYS65466 ：rem 70
850 POKE780， $0: S Y S 65493$ ：rem 11
$860 \operatorname{IF}$（PEEK（ 783 ）AND1）OR（ 191 AND ST）THEN870 ：rem 111
865 PRINT＂\｛DOWN\}DONE. ": GOTO310
：rem 96
$87 \varnothing$ PRINT＂$\{$ DOWN \}ERROR ON LOAD \｛2 SPACES \}TRY AGAIN. \{ $\bar{D} O W N\}$ ＂：IFDV＝1THEN8Øロ ：rem 172
$88 \emptyset$ OPEN15， 8,15 ：INPUT $\# 15$ ，E1 \＄，E 2\＄：PRINTE1\＄；E2\＄：CLOSE15：GO T0800
：rem 102
1 10ø REM BUZZER ：rem 135
1001 POKE54296，15：POKE54277，45 ：POKE54278，165
：rem 207
1002 POKE54276，33：POKE 54273，6 ：POKE54272，5
：rem 42
1003 FORT＝1TO200：NEXT：POKE5427 6,32 ：POKE54273，Ø：POKE5427 2，\varnothing ：RETURN
：rem 202
$200 \emptyset$ REM BELL SOUND ：rem 78
$20 \varnothing 1$ POKE54296，15：POKE54277，0： POKE54278，247 ：rem 152
2002 POKE 54276，17：POKE54273，4 Ø：POKE54272， 0 ：rem 86
2003 FORT＝1TOIØ0：NEXT：POKE5427 $6,16:$ RETURN
：rem 57
$300 \emptyset$ PRINTCS；＂\｛RVS\}NOT ZERO PA GE OR ROM＂：GOTOIøøஜ
：rem 89

Save Your Copies of COMPUTE！

Protect your back issues of COMPUTE！in durable binders or library cases． Each binder or case is custom－made in flag－blue binding with embossed white lettering．Each holds a year of COMPUTEI．Or－ der several and keep your issues of COMPUTE！ neatly organized for quick reference．（These binders make great gifts，too！）

Binders

$\$ 8.50$ each； 3 for $\$ 24.75$ Cases： \＄6．95 each； 3 for $\$ 20.00$ 6 for $\$ 48.00 \quad 6$ for $\$ 36.00$
（Please add $\$ 2.50$ per unit for orders outside the U．S．）

Send in your prepaid order with the attached coupon

Mail to：Jesse Jones Industries P．O．Box 5120 Dept．Code COTE Philadelphia，PA 19141
Please send me \qquad COM－ PUTE！\square cases \square binders． Enclosed is my check or money order for \＄ ．（U．S．funds only．）
Name
Address
City
State Zip
Satisfaction guaranteed or money refunded．
Please allow 4－6 weeks for delivery．

COMPUTE！＇s Guide To Typing In Programs

Computers are precise－type the pro－ gram exactly as listed，including neces－ sary punctuation and symbols，except for special characters noted below．We have provided a special listing conven－ tion as well as a program to check your typing－＂The Automatic Proofreader．＇

Programs for the IBM，TI－99／4A， and Atari ST models should be typed exactly as listed；no special characters are used．Programs for Commodore， Apple，and Atari $400 / 800 /$ XL／XE computers may contain some hard－to－ read special characters，so we have a listing system that indicates these con－ trol characters．You will find these Commodore and Atari characters in curly braces；do not type the braces．For example，\｛CLEAR\} or \{CLR\} instructs you to insert the symbol which clears the screen on the Atari or Commodore machines．A complete list of these sym－ bols is shown in the tables below．For Commodore，Apple，and Atari，a single symbol by itself within curly braces is usually a control key or graphics key．If you see $\{A\}$ ，hold down the CONTROL key and press A．This will produce a reverse video character on the Commo－ dore（in quote mode），a graphics char－ acter on the Atari，and an invisible control character on the Apple．

Graphics characters entered with the Commodore logo key are enclosed in a special bracket：$K A>]$ ．In this case， you would hold down the Commodore logo key as you type A．Our Commo－ dore listings are in uppercase，so shifted symbols are underlined．A graphics heart symbol（SHIFT－S）would be listed as \underline{S} ．One exception is \｛SHIFT－ SPACE $\}$ ．When you see this，hold down SHIFT and press the space bar．If a number precedes a symbol，such as $\{5$ RIGHT \}, $\{6 \underline{S}\}$ ，or $K 8 Q>$ ，you would enter five cursor rights，six shifted S＇s， or eight Commodore－Q＇s．On the Atari， inverse characters（white on black） should be entered with the inverse video

Atari 400／800／XL／XE

When you see	Type	See	
［CLEAR）	ESC SHIFT＜	\cdots	Clear Screen
（UP）	ESC CTRL－	＋	Cursor Up
［DOWN3	ESC CTRL	\pm	Cursor Down
\｛LEFT $\}$	ESC CTRL＋	$+$	Cursor Left
［RIGHT）	ESC CTRL＊	\rightarrow	Cursor Right
CBACK S 3	ESC DELETE	4	Backspace
（DELETE）	ESC CTRL DELETE	4	Delete character
［INSERT］	ESC CTRL INSERT	1	Insert character
［DEL LINE 3	ESC SHIFT DELETE	5	Delete line
\｛INS LINE	ESC SHIFT INSERT	5	Insert line
［TAB）	ESC TAB	－	TAB key
（CLR TAB）	ESC CTRL TAB	因	Clear tab
［SET TAB）	ESC SHIFT TAB	F	Set tab stop
（BELL ${ }^{\text {a }}$	ESC CTRL 2	－	Ring buzzer
（ESC）	ESC ESC	E	ESCape key

Commodore PET／CBM／VIC／64／128／16／＋4

When You Read： \｛CLR\} \｛HOME \}	Press：		See：	When You Read： ［1］ E2日	Press：			See：
	SHIFT	CLR／HOME			COMM	DORE	1	
		CLR／HOME			COMM	DORE	2	
\｛UP\}	SHIFT	\dagger CRSR \dagger		区 3 习	COMM	DORE	3	
\｛DOWN \}		\dagger CRSR \downarrow	迵	E4 ${ }^{\text {E }}$	COMM	DORE	4	回
\｛LEFT\}	SHIFT	\leftarrow CRSR \rightarrow	－	E 5 习	COMM	DORE	5	돔
\｛RIGHT］		\leftarrow CRSR \rightarrow	1	［6）	СОмM	DORE	6	
\｛RVS\}	CTRL	9	［ B $^{\text {c }}$	［7习	COMM	DORE	7	4
\｛OFF\}	CTRL	0		［8习	COMM	DORE	8	
\｛BLK \}	CTRL	1		\｛ F1 \}		$f 1$		
\｛WHT\}	CTRL	2	E	\｛ F2 \}	SHIFT	$f 1$		
\｛RED \}	CTRL	3	＋	\｛ F3 \}		$f 3$		
\｛CYN \}	CTRL	4		\｛ F4 \}	SHIFT	${ }_{6}$		
\｛PUR\}	CTRL	5	＊	\｛ F5 \}		${ }^{5}$		
\｛GRN \}	CTRL	6		\｛ F6 \}	SHIFT	${ }^{6} 5$		
\｛BLU\}	CTRL	7		\｛ F7 \}		87		
\｛YEL\}	CTRL	8	III	\｛ F8 \}	SHIFT	7		
				4	\longleftarrow			哑

key（Atari logo key on 400／800 models）．
Whenever more than two spaces appear in a row，they are listed in a special format．For example，$\{6$ SPACES\} means press the space bar six times．Our Commodore listings never leave a single space at the end of a line， instead moving it to the next printed line as \｛SPACE \}.

Amiga program listings contain only one special character，the left ar－ row $(-)$ symbol．This character marks the end of each program line．Wherever you see a left arrow，press RETURN or move the cursor off the line to enter that line into memory．Don＇t try to type in the left arrow symbol；it＇s there only as a marker to indicate where each pro－ gram line ends．

The Automatic Proofreader

Type in the appropriate program listed below，then save it for future use．The Commodore Proofreader works on the Commodore 128，64，Plus／4，16，and VIC－20．Don＇t omit any lines，even if they contain unfamiliar commands or you think they don＇t apply to your com－ puter．When you run the program，it installs a machine language program in memory and erases its BASIC portion automatically（so be sure to save sever－ al copies before running the program for the first time）．If you＇re using a Commodore 128，Plus／4 or 16，do not use any GRAPHIC commands while the Proofreader is active．You should disable the Commodore Proofreader before running any other program．To do this，either turn the computer off and on or enter SYS 64738 （for the 64），SYS 65341 （128），SYS 64802 （VIC－20），or SYS 65526 （Plus／ 4 or 16）．To reenable the Proofreader，reload the program and run it as usual．Unlike the original VIC／ 64 Proofreader，this version works the same with disk or tape．

On the Atari，run the Proofreader to activate it（the Proofreader remains active in memory as a machine lan－ guage program）；you must then enter NEW to erase the BASIC loader．Press－ ing SYSTEM RESET deactivates the Atari Proofreader；enter PRINT $\operatorname{USR}(1536)$ to reenable it．

The Apple Proofreader erases the BASIC portion of itself after you run it， leaving only the machine language por－ tion in memory．It works with either DOS 3.3 or ProDOS．Disable the Apple Proofreader by pressing CTRL－RESET before running another BASIC program．

The IBM Proofreader is a BASIC program that simulates the IBM BASIC line editor，letting you enter，edit，list， save，and load programs that you type． Type RUN to activate．Be sure to leave Caps Lock on，except when typing low－ ercase characters．

Once the Proofreader is active，try typing in a line．As soon as you press RETURN，either a hexadecimal number （on the Apple）or a pair of letters（on the Commodore，Atari，or IBM）appears． The number or pair of letters is called a checksum．

Compare the value displayed on the screen by the Proofreader with the checksum printed in the program list－ ing in the magazine．The checksum is given to the left of each line number． Just type in the program a line at a time （without the printed checksum），press RETURN or Enter，and compare the checksums．If they match，go on to the next line．If not，check your typing； you＇ve made a mistake．Because of the checksum method used，do not type abbreviations，such as ？for PRINT．On the Atari and Apple Proofreaders， spaces are not counted as part of the checksum，so be sure you type the right number of spaces between quote marks．The Atari Proofreader does not check to see that you＇ve typed the char－ acters in the right order，so if characters are transposed，the checksum still matches the listing．The Commodore Proofreader catches transposition er－ rors and ignores spaces unless they＇re enclosed in quotation marks．The IBM Proofreader detects errors in spacing and transposition．

IBM Proofreader Commands

Since the IBM Proofreader replaces the computer＇s normal BASIC line editor，it has to include many of the direct－mode IBM BASIC commands．The syntax is identical to IBM BASIC．Commands simulated are LIST，LLIST，NEW， FILES，SAVE，and LOAD．When listing your program，press any key（except Ctrl－Break）to stop the listing．If you enter NEW，the Proofreader prompts you to press Y to be especially sure you mean yes．

Two new commands are BASIC and CHECK．BASIC exits the Proof－ reader back to IBM BASIC，leaving the Proofreader in memory．CHECK works just like LIST，but shows the checksums along with the listing．After you have typed in a program，save it to disk． Then exit the Proofreader with the BASIC command，and load the pro－ gram as usual（this replaces the Proof－ reader in memory）．You can now run the program，but you may want to re－ save it to disk．This will shorten it on disk and make it load faster，but it can no longer be edited with the Proofread－ er．If you want to convert an existing BASIC program to Proofreader format， save it to disk with SAVE＂filename＂，A．

Program 1：Atari Proofreader

By Charles Brannon，Program Editor

```
1ø\emptyset GRAPHICS \emptyset
11\emptyset FOR I=1536 TO 17\emptyset\emptyset:REA
        D A:POKE I,A:CK=CK+A:N EXT I
120 IF \(\mathrm{CK}\langle>19972\) THEN ？＂E rror in DATA Statement 5．Check Typing．＂：END
\(139 \quad A=U S R(1536)\)
\(14 \varnothing\) ？？＂Automatic Proofr eader Now Activated．＂
150 END
\(16 \emptyset\) DATA \(194,16 \emptyset, \emptyset, 185,26\) ， 3，2ø1，69，24の，7
\(17 \emptyset\) DATA \(2 \emptyset \emptyset, 2 \emptyset \emptyset, 192,34,2 \emptyset\) 8，243，96，200，169，74
\(18 \emptyset\) DATA \(153,26,3,206,169\) ， \(6,153,26,3,162\)
\(19 \emptyset\) DATA \(\varnothing, 189, \varnothing, 228,157,7\) \(4,6,232,224,16\)
200 DATA \(208,245,169,93,14\) \(1,78,6,169,6,141\)
\(21 \emptyset\) DATA \(79,6,24,173,4,228\) ，105，1，141，95
\(22 \emptyset\) DATA \(6,173,5,228,1 \emptyset 5, \emptyset\) ，141，96，6，169
236 DATA \(6,133,203,96,247\) ， \(238,125,241,93,6\)
240 DATA \(244,241,115,241,1\) 24，241，76，205，238
\(25 \emptyset\) DATA \(\emptyset, \emptyset, \emptyset, \varnothing, \emptyset, 32,62,2\) 46，8， \(2 \varnothing 1\)
260 DATA \(155,240,13,201,32\) ，24ø，7，72，24，161
\(27 \emptyset\) DATA \(263,133,263,104,4\) Ø，96，72，152，72，138
\(28 \emptyset\) DATA \(72,16 \emptyset, 6,169,128\) ， \(145,88,200,192,40\)
290 DATA \(208,249,165,203,7\) \(4,74,74,74,24,105\)
300 DATA \(161,166,3,145,88\) ， \(165,203,41,15,24\)
310 DATA \(165,161,260,145,8\) \(8,169, \emptyset, 133,2 \emptyset 3,1 \emptyset 4\)
\(32 \emptyset\) DATA \(17 \emptyset, 1 \emptyset 4,168,1 \emptyset 4,4\) D， 96
```


Program 2：IBM Proofreader

By Charles Brannon；Program Editor
10 ＇Automatic Proofreader Vers ion 3． 0 （Lines 205，206 adde d／190 deleted／470，49ø chang ed from V2．ø）
1のø DIM L\＄（5øø），LNUM（5のø）：COLO R $\varnothing, 7,7:$ KEY OFF：CLS：$M A X=\varnothing$ ： $\operatorname{LNUM}(\varnothing)=65536$ ！
$11 \varnothing$ ON ERROR GOTO 120：KEY 15，C HR\＄（4）＋CHR $\$$（7Ø）：ON KEY（15） GOSUB 64の：KEY（15）ON：GOT －130
120 RESUME $13 \varnothing$
$13 \emptyset \mathrm{DEF}, \mathrm{SEG}=\& \mathrm{H} 4 \emptyset: \mathrm{W}=\mathrm{PEEK}(\& \mathrm{H} 4 \mathrm{~A})$
140 ON ERROR GOTO 65 ：PRINT：PR INT＂Proofreader Ready．＂
$15 \emptyset$ LINE INPUT L $\$: Y=$ CSRLIN－INT （LEN（L\＄）／W）－1：LOCATE $Y, 1$
160 DEF SEG＝ $0:$ POKE 1050，30：POK E 1ø52，34：POKE 1ø54，ø：POKE 1055，79：POKE 1ø56，13：POKE 1ø57，28：LINE INPUT L\＄：DEF SEG：IF L $\$="$＂THEN $15 \emptyset$
170 IF LEFT $\$(L \$, 1)=" n$ THEN L $\$$ $=$ MID $\$(L \$, 2):$ GOTO $17 \emptyset$
$18 \emptyset$ IF VAL（LEFT $\$(L \$, 2))=\emptyset$ AND MID $\$(L \$, 3,1)="$＂THEN $L \$=M$ ID\＄（L\＄，4）
200 IF ASC $(L \$)>57$ THEN 266° no line number，therefore co －mmand
$265 \mathrm{BL}=\operatorname{INSTR}(\mathrm{L} \$, "$＂）：IF BL＝ø T HEN BL\＄＝L\＄：GOTO 206 ELSE B L\＄＝LEFT\＄（L\＄，BL－1）
$2 \emptyset 6$ LNUM＝VAL（BL $\$$ ）：TEXT\＄＝MID\＄（L \＄，LEN（STR\＄（LNUM））＋1）
210 IF TEXT $\$=" \because$ THEN GOSUB 540 ：IF LNUM＝LNUM（P）THEN GOSU B 56ø：GOTO 150 ELSE 15ø
$22 \emptyset$ CKSUM＝ 1 ：FOR $I=1$ TO LEN（L\＄） ：CKSUM＝（CKSUM＋ASC（MID $\$$（L\＄， I））＊I）AND 255：NEXT：LOCATE Y，1：PRINT CHR\＄（ $65+$ CKSUM／1 6）+ CHR\＄$(65+$（CKSUM AND 15）） ＋＂＂＋L\＄
230 GOSUB 54ø：IF LNUM（P）$=$ LNUM THEN L\＄$(P)=$ TEXT\＄：GOTO $15 \emptyset$ ＇replace line
240 GOSUB 58ø：GOTO 150 ＇insert the line
260 TEXT\＄＝＂＂：FOR I＝1 TO LEN（L\＄ ）：$A=\operatorname{ASC}(M I D \$(L \$, I)):$ TEXT\＄$=$ TEXT\＄＋CHR\＄$(A+32 *(A>96$ AND A＜123））：NEXT
$27 \emptyset$ DELIMITER＝INSTR（TEXT\＄，＂＂） ：COMMAND $\$=$ TEXT $\$:$ ARG $\$=" n:$ IF DELIMITER THEN COMMAND $\$=L$ EFT\＄（TEXT\＄，DELIMITER－1）：AR G\＄＝MID\＄（TEXT\＄，DELIMITER＋1） ELSE DELIMITER＝INSTR（TEXT \＄，CHR\＄（34：）：IF DELIMITER T HEN COMMAND $\$=$ LEFT $\$$（TEXT $\$$ ，D ELIMITER－1）：ARG\＄＝MID\＄（TEXT \＄，DELIMITER）
280 IF COMMAND\＄く〉＂LIST＂THEN 4 $1 \varnothing$
290 DPEN＂scrn：＂FOR QUTPUT AS \＃1
$3 \varnothing \emptyset$ IF ARG $\$=" "$ THEN FIRST $=\varnothing: P=$ MAX－1：GOTO 340
$31 \emptyset$ DELIMITER＝INSTR $(A R G \$, "-"):$ IF DEL IMITER＝\varnothing THEN＇LNUM $=V$ AL（ARG\＄）：GOSUB 540：FIRST $=\mathrm{P}$ ：GOTO $34 \varnothing$
320 FIRST $=$ VAL（LEFT $\$$（ARG $\$$ ，DEL IM ITER））：LAST $=V A L(M I D \$(A R G \$$ ， DELIMITER＋1））
330 LNUM＝FIRST：GOSUB 54の：FIRST $=P:$ LNUM $=$ LAST：GOSUB 54ø：IF $P=\varnothing$ THEN $P=M A X-1$
$34 \emptyset$ FOR $X=F$ IRST TO $P: N \$=M I D \$(S$ $\operatorname{TR} \$(\operatorname{LNUM}(X)), 2)+" \quad "$
$35 \emptyset$ IF CKFLAG $=\varnothing$ THEN $A \$=" ":$ GOT － $37 \emptyset$
$36 \emptyset$ CKSUM $=\varnothing$ ：$A \$=N \$+L \$(X)$ ：FOR $I=$ 1 TO LEN $(A \$): C K S U M=(C K S U M+$ ASC（MID\＄（A\＄，I））＊I）AND 255 ：NEXT：A\＄＝CHR\＄$(65+$ CKSUM／16） + CHR\＄$\left(65+(\right.$ CKSUM AND 15）$)+{ }^{\prime \prime}$
$37 \emptyset$ PRINT \＃1，$A \$+N \$+L \$(X)$
380 IF INKEY $\$\rangle " "$ THEN $X=P$
$39 \emptyset$ NEXT ：CLOSE \＃1：CKFLAG＝ø
$4 \emptyset \varnothing$ GOTO $13 \varnothing$
$41 \emptyset$ IF COMMAND $\$=$＂LLIST＂THEN 0 PEN＂lpt1：＂FOR OUTPUT AS \＃1：GOTO 3øø
420 IF COMMAND $\$=$＂CHECK＂THEN C KFLAG＝1：GOTO $29 \varnothing$
$43 \emptyset$ IF COMMAND\＄＜＞＂SAVE＂THEN 4 $5 \varnothing$
$44 \emptyset$ GOSUB $6 \emptyset \emptyset:$ OPEN ARG\＄FOR OU TPUT AS \＃1：ARG\＄＝＂＂：GOTO $3 \emptyset$ \emptyset
450 IF EOMMAND $\langle<>$＂LOAD＂THEN 4 90
$46 \emptyset$ GOSUB $6 \emptyset \emptyset:$ OPEN ARG\＄FOR IN PUT AS \＃1：$M A X=\emptyset: P=\varnothing$
$47 \emptyset$ WHILE NOT EOF（1）：LINE INPU T \＃1，L\＄：BL＝INSTR（L\＄，＂＂）：B $L \$=L E F T \$(L \$, B L-1): \operatorname{LNUM}(P)=$ VAL（BL $\$$ ）：L $\$(P)=M I D \$(L \$, L E N$ （STR\＄（VAL $(B L \$)))+1): P=P+1$ ： WEND
48ø MAX＝P：CLOSE \＃1：GOTO 13ø
49の IF COMMAND $\$=$＂NEW＂THEN INP UT＂Erase program－Are yo u sure＂；L\＄：IF LEFT\＄（L\＄，1）＝ ＂y＂OR LEFT\＄（L\＄，1）＝＂Y＂THE N MAX $=\varnothing$ ：LNUM $(\varnothing)=65536$ ：：GOT O 130：ELSE 130
$5 \emptyset \emptyset$ IF COMMAND $\$=$＂BASIC＂THEN C OLOR $7, \varnothing, \varnothing:$ ON ERROR GOTO \varnothing ：CLS：END
510 IF COMMAND\＄＜＞＂FILES＂THEN 52ø
515 IF ARG $\$="$ THEN ARG $\$=" A: "$ ELSE SEL＝1：GOSUB $6 \emptyset \emptyset$
517 FILES ARG\＄：GOTO $13 \emptyset$
520 PRINT＂Syntax error＂：GOTO 1 $3 \varnothing$
$54 \emptyset P=\varnothing$ ：WHILE LNUM 1 LNUM（ P ）AND $P<M A X: P=P+1$ ：WEND：RETURN
560 MAX $=$ MAX -1 ：FOR $X=P$ TO MAX：L $\operatorname{NUM}(x)=\operatorname{LNUM}(x+1): L \$(x)=L \$($ $X+1)$ ：NEXT：RETURN
$58 \emptyset$ MAX $=\mathrm{MAX}+1$ ：FOR $X=M A X$ TO $P+1$ STEP $-1: \operatorname{LNUM}(x)=\operatorname{LNUM}(x-1)$ $: L \$(X)=L \$(X-1): N E X T: L \$(P)=$ TEXT $\$: \operatorname{LNUM}(P)=$ LNUM：RETURN
$6 \emptyset \varnothing$ IF LEFT\＄（ARG\＄，1）$\langle>$ CHR\＄（34） THEN $52 \emptyset$ ELSE ARG\＄＝MID\＄（A RG $\$, 2)$
$61 \emptyset$ IF RIGHT\＄（ARG $\$, 1$ ）$=$ CHR $\$$（34） THEN ARG\＄＝LEFT\＄（ARG\＄，LEN（ ARG\＄）－1）
$62 \emptyset$ IF SEL $=\varnothing$ AND INSTR（ARG $\$, "$. ＂）$=\varnothing$ THEN ARG $\$=A R G \$+" . B^{\prime \prime}$
$63 \emptyset$ SEL $=\varnothing$ ：RETURN
64ø CLOSE \＃1：CKFLAG＝σ ：PRINT＂St opped．＂：RETURN $15 \varnothing$
650 PRINT＂Error \＃＂；ERR：RESUME $15 \varnothing$

Program 3：Commodore Proofreader

By Phillip Nelson，Assistant Editor
$10 \mathrm{VEC}=\operatorname{PEEK}(772)+256$＊ $\operatorname{PEEK}(773)$ ： $\mathrm{LO}=43$ ： $\mathrm{HI}=44$
20 PRINT＂AUTOMATIC PROOFREADE R FOR＂；：IF VEC＝42364 THEN \｛SPACE\}PRINT "C-64"
30 IF VEC $=50556$ THEN PRINT＂VI $C-2 \theta^{\prime \prime}$
40 IF VEC $=35158$ THEN GRAPHIC C LR：PRINT＂PLUS／ 4 \＆ 16 ＂
50 IF $\mathrm{VEC}=17165$ THEN $\mathrm{LO}=45: \mathrm{HI}=$ 46 ：GRAPHIC CLR：PRINT＂ 128 ＂
$60 \mathrm{SA}=($ PEEK $($ LO $)+256$＊ $\operatorname{PEEK}($ HI $))+$ $6: A D R=S A$
$7 \varnothing$ FOR $J=\varnothing$ TO $166:$ READ BYT ：POK E ADR，BYT ：ADR＝ADR $+1: C H K=C H K$ ＋BYT：NEXT
$8 \emptyset$ IF CHK $<>20570$ THEN PRINT＂＊ ERROR＊CHECK TYPING IN DATA STATEMENTS＂：END
90 FOR J＝1 TO 5 ：READ RF，LF，HF ： $R S=S A+R E: H B=I N T(R S / 256): L B=$ RS $-\left(256^{*} \mathrm{HB}\right)$
$100 \mathrm{CHK}=\mathrm{CHK}+\mathrm{RF}+\mathrm{LF}+\mathrm{HF}: \mathrm{POKE} \mathrm{SA}+\mathrm{L}$ F，LB：POKE SA＋HF，HB：NEXT
110 IF CHK $<>22054$ THEN PRINT＂ ＊ERROR＊RELOAD PROGRAM AND
\｛SPACE\}CHECK EINAL LINE": EN D
120 POKE $\mathrm{SA}+149$ ，PEEK（ 772 ）：POKE SA +150 ， $\operatorname{PEEK}(773)$
130 IF VEC $=17165$ THEN POKE SA＋ 14,22 ：POKE SA $+18,23$ ：POKESA + 29，224：POKESA $+139,224$
140 PRINT CHRS（147）；CHRS（17）；＂ PROOFREADER ACTIVE＂：SYS SA
150 POKE HI，PEEK（HI）+1 ：POKE（ P $\operatorname{EEK}(\mathrm{LO})+256^{*}$ PEEK（HI））$-1, \varnothing: \mathrm{N}$ EW
160 DATA $120,169,73,141,4,3,16$ $9,3,141,5,3$
170 DATA $88,96,165,20,133,167$ ， $165,21,133,168,169$
180 DATA $0,141,0,255,162,31,18$ $1,199,157,227,3$
190 DATA $202,16,248,169,19,32$ ， $210,255,169,18,32$
200 DATA $210,255,160,0,132,180$ $, 132,176,136,230,180$
210 DATA $2 \emptyset \varnothing, 185, \varnothing, 2,240,46,2 \emptyset$ $1,34,208,8,72$
220 DATA $165,176,73,255,133,17$ $6,104,72,201,32,208$
230 DATA $7,165,176,208,3,104,2$ 08，226，104，166，180
240 DATA $24,165,167,121,0,2,13$ $3,167,165,168,105$
250 DATA $\emptyset, 133,168,202,208,239$ $, 240,202,165,167,69$
260 DATA $168,72,41,15,168,185$ ， $211,3,32,210,255$
$27 \emptyset$ DATA $1 \varnothing 4,74,74,74,74,168,1$ $85,211,3,32,210$
$28 \emptyset$ DATA $255,162,31,189,227,3$ ， $149,199,202,16,248$
290 DATA $169,146,32,210,255,76$ $, 86,137,65,66,67$
300 DATA $68,69,70,71,72,74,75$ ， $77,80,81,82,83,88$
310 DATA $13,2,7,167,31,32,151$ ， $116,117,151,128,129,167,136$.137

Program 4：Apple Proofreader

By Tim Victor，Editorial Programmer
$1 \varnothing C=\varnothing: F O R I=768 \mathrm{TO} 768+$ 68：READ A：C＝$C+A:$ POKE I ，A：NEXT
20 IF $\mathrm{C}<>7258$ THEN PRINT＂ER ROR IN PROOFREADER DATA STAT EMENTS＂：END
$3 \emptyset$ IF PEEK（ $190 * 256$ ）＜$\langle 76 \mathrm{~T}$ HEN POKE 56， $0:$ POKE 57，3：CA LL 1øø2：GOTO 5の
$4 \varnothing$ PRINT CHR\＄（4）；＂IN\＃A\＄30の＂
$5 \emptyset$ POKE 34，\varnothing ：HOME ：POKE 34， 1 ： VTAB 2：PRINT＂PROOFREADER INSTALLED＂
$6 \emptyset$ NEW
1 1ø DATA $216,32,27,253,201,141$
$11 \emptyset$ DATA $2 \emptyset 8,66,138,72,169, \varnothing$
120 DATA $72,189,255,1,201,16 \emptyset$
$13 \emptyset$ DATA $24 \varnothing, 8,104,10,125,255$
$14 \emptyset$ DATA $1,1 \emptyset 5, \emptyset, 72,2 \emptyset 2,2 \emptyset 8$
$15 \emptyset$ DATA $238,1 \emptyset 4,17 \emptyset, 41,15,9$
$16 \emptyset$ DATA $48,201,58,144,2,233$
176 DATA $57,141,1,4,138,74$
$18 \emptyset$ DATA $74,74,74,41,15,9$
$19 \emptyset$ DATA $48,261,58,144,2,233$
$2 \emptyset \emptyset$ DATA $57,141, \emptyset, 4,1 \emptyset 4,17 \emptyset$ 210 DATA $169,141,96$

THE AMAZING VOICE MASTER ${ }^{\circledR}$

Speech and Music Processor
Your computer can talk in your own
voice. Not a synthesizer but a true digitizer that records your natural voice quality-and in any language or accent. Words and phrases can be expanded without limit from disk.
And it will understand what you say. A real word recognizer for groups of 32 words or phrases with unlimited expansion from disk memory. Now you can have a two way conversation with your computer!
Easy for the beginning programmer with new BASIC commands. Machine language programs and memory locations for the more experienced software author.
Exciting Music Bonus lets you hum or whistle to write and perform. Notes literally scroll by as you hum! Your composition can be edited, saved, and printed out. You don't have to know one note from another in order to write and compose!
Based upon new technologies invented by COVOX. One low price buys you the complete system-even a voice controlled black-jack game! In addition, you will receive a subscription to COVOX NEWS, a periodic newsletter about speech technology, applications, new products, up-dates, and user contributions. You will never find a better value for your computer.
ONLY $\$ 89.95$ includes al hardware and sottware.
For telephone demonstration or additional information, call (503) $342-1271$. FREE audio demo tape and brochure available.

Available from your dealer or by mail. When ordering by mail add $\$ 4.00$ shipping and handling ($\$ 10.00$ for foreign, $\$ 6.00$ Canada).
The Voice Master is avallable for the C64, C128, all Apple II's, and Atari 800, 800 XL and 130XE. Specify model when ordering.
vish mowicorg For Faster Service on Credit Card Orders only:
ORDER TOLL FREE 1-800-523-9230
-
(503) 342-1271

675-D Conger Street, Eugene, OR 97402 Telex 706017 (AV ALARM UD)

를Advertisers Index

Reader Service Number/Advertiser
102 Abacus Software
103 Abacus Software
104 Artificial Intelligence Research Group
105 Atari
C. O.M.B. Direct Marketing Corp.

Commodore
106 CompuServe
ComputAbility
The Computer Book Club
Computer Direct
107 Computer Mail Order
Covox inc.
108 Duplicating Technologies, Inc.
109 Electronic Arts
110 Electronic Arts
111 Elek-Tek, Inc.
112 EPYX
Halix Institute
113 J\&R Music World
114 Kyan Software
Lyco Computer
5 Merdyne Publishers, Inc.
116 99/4A National Assistance Group NRI Schools
117 Precision Data Products
118 Professor Jones
119 Puma
120 Quinsept. Inc.
121 sublOGIC Corporation
122 Timeworks, Inc.
122 Unitech
124 White House Computer

COMPUTEI Classifieds

COMPUTEI Disk Subscription
COMPUTEI Subscription
COMPUTEI's Apple Applications Special
COMPUTEI's Elementary Amiga BASIC and Elementary ST BASIC
COMPUTEI's IBM Books Collection
COMPUTEI's Kids and the Atari ST and Kids and the 128
COMPUTEI's Programmer's Guide
40 Great Flight Simulator Adventures
128 Machine Language for Beginners

A WORTHWHLLE INVESTMENT

The Leoding Mogazine Ot Home, tducationol, And Aecrectional Computing

You may have easily spent thousands on your computer. Whatever you spent, it was a wise and worthwhile investment! Now make your computer even more valuable by subscribing to Compute!, the leading magazine of home, educational and recreational computing.
$\square 1$ Year/\$242 Years/\$45
J1320

Name
Address
City \qquad State \qquad Zip \qquad
\square Payment EnclosedBill Me Later
\square Check Here If Renewal Please indicate the computer you use:
APPLE $\square 01$ IBM $\square 05$

ATARI $\square 02$
TEXINS $\square 06$

$64 \square 03$	VIC 20ロ04
OTHER_	99

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS
POSTAGE WILL BE PAID BY ADDRESSEE
COMPUTE!
PO BOX 10954
DES MOINES, IOWA 50347

YES! I want to save time and money. Please enter my quarterly subscription to the following COMPUTE! Disk:

Save 33% off the single issue price. 1 year subscription, $\$ 39.95$
\square Save even more! 2 year subscription, $\$ 69.95$

All Disk orders must be prepaid.Payment enclosed (check or money order)ChargeMasterCard \square Visa

Acct. No. \qquad Exp. Date \qquad
Signature \qquad
Name \qquad
Address \qquad
City \qquad State \qquad Zip

||III|

```
NO POSTAGE NECESSARY
IF MAILED
IN THE
UNITED STATES
```


POSTAGE WILL BE PAID BY ADDRESSEE

COMPUTEI's DISK

P.O. BOX 10036 DES MOINES, IA 50347

COMPUIE'S APPLE APPLICAIIONS SPECLAL

\square COMPUTE!'s Apple Applications Special, Spring 1986 \$3.95
(In U.S. add \$1.00 shipping and handling charges; outside U.S. add $\$ 2.00$)
\square Companion Disk to COMPUTE!'s Apple Applications Special, Spring 1986 \$16.95
(Add $\$ 2.00$ shipping and handling charges)

To order, send in this card with your payment or call toll-free 800-346-6767.
ALL ORDERS MUST BE PREPAID IN U.S. FUNDS.
(in NY 212-887-8525.)
\square Payment enclosed (check or money order).
\square Charge: \square Visa \square MasterCard
AccountNo. \qquad Exp. Date \qquad
Signature \qquad (Required when using credit card.)
Name

```
(Please print)
```

```
(Please print)
```

```
(Please print)
```

Address
City State Zip

COMPUTE!'s APPLE APPLICATIONS SPECIAL 6th FLOOR SALES DEPARTMENT 825 Seventh Ave. New York, N.Y. 10019

COMPUTEI'S

FREE Reader Information Service

Use these cards to request FREE information about the products advertised in this issue. Clearly print or type your full name and address. Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.
Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTE! cannot be responsible if advertisers do not provide literature to readers.

Please use these cards only for subscribing or for requesting product information. Editorial and customer service inquiries should be addressed to: COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.

Use these cards and this address only for computer's Reader Information Service. Do not send with payment in any form.

COMPUTE!

101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117
118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134
135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151
152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168
169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185
186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202
203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219
220	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236
237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253

Please print or type name and address. Limit one card per person.

Name
Address
City

State/Province	Zip	
Country		
Phone		
Please Include ZIP Code	Expiration Date 5/31/86	CO486

SUBSCRIBE TO COMPUTE!

My Computer Is:	
$01 \square$ Apple	$02 \square$ Atari $\quad 03 \square$ Commodore 64
$04 \square$ VIC-20	$05 \square$ IBM
	$06 \square$ TI-99/4A
$9 \square \square$ Other	

$\square \$ 24.00$ One Year US Subscription
$\square \$ 45.00$ Two Year US Subscription

Name
Address

COMPUTE! Reader Service P.O. Box 2141
 Radnor, PA 19089

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ADDRESSEE

PO BOX 10954
DES MOINES, IOWA 50347

Flight Simulator II Scenery Disks

The Challenge of Accomplished Flight

With a realism comparable to (and in some ways even surpassing) $\$ 100,000$ aircraft flight simulators, Flight Simulator II includes full flight instrumentation and avionics, and provides a full-color out-thewindow view. Instruments are arranged in the format standard to modern aircraft. All the radios needed for IFR flight are included.
Front, rear, left, right, and diagonal views let you look in any direction. Program features are clearly documented in a 96-page Pilot's Operating Handbook.

For training in proper flight techniques. Flight Simulator II includes another 96 -page instruction manual, compiled by two professional flight instructors with over 8,000 hours flight time and 12,000 hours of aviation teaching experience. You'll learn correct FAA-
recommended flight procedures, from basic aircraft control through instrument approaches. To reward your accomplishments, the manual even includes a section on aerobatic maneuvers.

The Realism and Beauty of Flight

Go sight-seeing over detailed, realistic United States scenery. High-speed graphic drivers provide an animated out-the-window view in either day, dusk, or night flying modes.

Flight Simulator II features over 80 airports in four different scenery areas: New York, Chicago, Seattle, and Los Angeles. Six additional Scenery Disks covering the entire Western half of the United States are now available in IBM and C64/I 28 disk formats.

Apple and Atari versions will be released soon. Each disk covers a geographical region of the country in detail, and is very reasonably priced.

The Pure Fun of "World War I Ace"

When you think you're ready, you can test your flying skills with the "World War I Ace" aerial battle game. This game sends you on a bombing run over heavily-defended enemy territory. Six enemy fighters will attempt to engage you in combat as soon as war is declared. Your aircraft can carry five bombs, and your machine guns are loaded with 100 rounds of ammunition.

See Your Dealer. Flight Simulator II is available on disk for the Apple II. Atari XL/XE, and Commodore 64/128 computers for $\$ 49.95$. Scenery Disks for the C64 and IBM PC (Jet or Microsoft Flight Simulator) are $\$ 19.95$ each. A complete Western U.S. Scenery six-disk set is also available for $\$ 99.95$. For additional product or ordering information, call (800) 637-4983.

Apple II is a trademark of Apple Computer. Inc. Atari XL and XE are trademarks of Atari Corp. Commodore 64 and 128 are trademarks of Commodore Electronics Ltd. IBM PC is a registered trademark of International Business Machines Corp.

All you need to do this

graph a spreadsheet

Write a novel

fix an engine

compose a song

paint a picture

learn to fly

organize a data base

tell a story

forecast sales

When it comes to personal computers, you want the smartest, at a price that makes sense. The new Commodore $128^{\text {™ }}$ system has a powerful 128 K memory, expandable by 512 K . An 80 -column display and 64,128 and $\mathrm{CP} / \mathrm{M}^{\oplus}$ modes for easy access to thousands of educational, business and home programs. And a keyboard, with built-in numeric keypad, that operates with little effort.

Or if the Commodore 128 is more machine than you had in mind, you can pick up the

Commodore 64. The Commodore 64 is our lower-priced model geared to more fundamental, basic needs.

Discover personal computers that do more for you. At prices you've been waiting for. From the company that sells more personal computers than IBM ${ }^{\oplus}$ or Apple.

COMMODORE 128 AND 64= PERSONAL COMPUTERS

[^0]: An H\&R Block Company

[^1]: Remember - this offer is good only on these 12 products for the Apple // family, C-64 and 128, Atari, and IBM PC, PCjr, and compatible computers. No substitutions will be accepted. For details, see the accompanying coupon.

[^2]: The COMPUTEI subscriber list is made available to carefully screened organizations with a product or service which may be of interest to our readers. If you prefer not to receive such malings, please send an exact copy of your subscription label to: COMPUTEI P.O. Box 10955, Des Moines, IA 50950. Include a note indicating your preference to receive only your subscription.

 Authors of manuscripts warrant that all materials submitted to COMPUTE! are original materials with full ownership rights resident in said authors. By submitting articles to COMPUTE1, authors acknowledge that such materials, upon acceptance for publication, become the exclusive property of COMPUTEI Publications, Inc. No portion of this magazine may be reproduced in any form without written permission from the publisher. Entire contents copyright © © 1986, zine may be reproduced in any form without written permission from the pubisher. Entire contents copynght er ath, COMPU EI Publications, Inc. Rights to programs developed and submitted by authors are explained in our author contract. Unsolicited materials not accepted for publication in COMPUTEI will be returned if author provides a self-
 addressed, stamped envelope. Programs (on tape or disk) must accompany each submission. Printed listings are opaddressed, stamped envelope. Programs (on tape or disk) must accompany each submission. Printed listings are op-
 tional, but helpful. Articles should be furnished as typed copy (upper-and lowercase, please) with double spacing. tional, but helpful. Articles should be furnished as typed copy (upper-and lowercase, please) with double spacing.
 Each page of your article should bear the title of the article, date and name of the author. COMPUTEI assumes no liablity for errors in articles or advertisements. Opinions expressed by authors are not necessarily those of COMPUTEI.
 PET, CBM. VIC-20 and Commodore 64 are trademarks of Commodore ATARI is a trademark of Atari, Inc.
 Business Machines. Inc. and/or Commodore Electronics Limited
 Apple is a trademark of Apple Computer Company
 T1-99/4A is a trademark of Texas instruments, Inc. IBM PC and PCjr are trademarks of international Business Machines, inc. Tandy, Inc.

[^3]: Strategy Games for the Action-Game Player ${ }^{\circ}$

[^4]: COMPUTE! books are available in the U.K., Europe, the Middle East, and Africa from Holt Saunders, Ltd., 1 St. Anne's Road, Eastbourne, East Sussex BN21 3UN, England and in Canada from Holt, Rinehart, \& Winston, 55 Horner Avenue, Toronto, ON M8Z 4X6.

[^5]: t's appropriate that in this age of video one of the most promising fields of development is computer control of video images that originate from video cameras,

[^6]: Add $\$ 10.00$ for shipping, handling and insurance. Illinois residents please add $61 / 4 \%$ tax. Add $\$ 20.00$ for CANADA, PUERTO RICO HAWAII, ALASKA, APO-FPO orders. Canadian orders must be in U.S dollars. WE DO NOT EXPORT TO OTHER COUNTRIES, EXCEP CANADA. Enclose Cashier Check. Money Order or Personal Check Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! Prices \& Availability subject to change without notice. VISA - MASTER CARD - C.O.D. No. C.O.D. to Canada, APO-FPO

