## News From The Summer Consumer Electronics Show



The Leading Magazine Of Home, Educational, And Recreational Computing

Animator The Easy Way To Create Your Own Colorful Graphics On IBM, Commodere, Apple, Atari, And II

## Advanced

Commodore 1541 Disk Commands Add Power
To Your Programs
Apple lle Mousor Efficient Editing
With Fast
Cursor Control
Atari Color Mixing
How To Create Dazzling Color Displays

## IBM Filecopy

A Better Way
To Make Backups


# If you own an Apple llc, you'd have to add three more Apple lle's, an Extra Keypad, <br> 30 Block Graphic Sets, Color Sprites, two more voices, four instruments, a Cartridge Port, a Joystick Port, and a Commodore 64... 



## to match the versatility, expandability and higher intelligence of the new Commodore 128 <br> (and it costs less too).

The new Commodore $128^{\text {mm }}$ personal computer is breakthrough technology at a breakthrough price. It outshines the Apple ${ }^{\text {© IIc }}$ in performance capability, performance quality and price. It is expandable to 512 K RAM. The IIc
doesn't expand. Commodore 128 has a numeric keypad built into its keyboard that makes crunching numbers a lot easier. And graphic and sound capabilities that far exceed those of the Apple IIc. But the most important news is that

Commodore 128 jumps you into a new world of business, productivity, education and word processing programs while still running over 3,000 programs designed for the Commodore 64. ${ }^{\text {tm }}$ That's what we call a higher intelligence.

## COMMODORE 128= PERSONAL COMPUTER

# AMAZING DAISY 

NOW! FULL SIZE, FULL FEATURE, LETTER QUALITY AT ONLY \$353

If you have been searching for a letter quality printer you have probably found the flood of claims and counterclaims to be a real roadblock in your search. Not long ago we were in the same position. We tried to determine which daisy wheel printer had all the features our customers wanted, yet would not set them back a month's salary. Recently several manufacturers have introduced machines that had features we were seaching for. After a thorough assessment, we eliminated one model after the other for lack of one feature or another until we only had one left.

## THE RESULTS ARE IN

We found the printer which has all the features anyone could want. The winner is the Aprotek Daisy 1120, a real heavyduty workhorse printing at 20 characters per second. The manufacturer is Olympic Co. Ltd., a highly respected Japanese firm.

## FEATURES GALORE

This printer has it all. To start with, it has a front panel Pitch Selector button with indicators which allows $10,12,15$ characters per inch (CPI) or Proportional Spacing. There is a Select (Online) button (with indicator) and a Line Feed button. You can also set Top-of-Form or Form Feed with the touch of the TOF button. Other front panel indicators include Power and Alarm.
To load a sheet of paper, simply place it in the feed slot and pull the paper bail lever. PRESTO! The paper feeds automatically to a 1 inch top margin and the carriage aligns to the selected left margin. In this manner, each page can have identical margins automatically. You can continue to compute while the Daisy 1120 is
printing. The built in 2 K buffer frees up your computer while printing a page or two allowing you to go to your next job.
To really put your printer to work, the Cut Sheet Feeder option is great for automatic printing of those long jobs. Also available is the adjustable Tractor Feed option. Compare our option prices! Best of all the Daisy 1120 is quiet: only $57 \mathrm{~dB}-\mathrm{A}$ (compare with an average of $62-65 \mathrm{~dB}-\mathrm{A}$ for others).

## COMPLETE COMPATIBILITY

The Daisy 1120 uses industry standard Diablo ${ }^{\circ}$ compatible printwheels. Scores of typeface styles are available at most computer or stationary stores. You can pop in a $10,12,15$ pitch or proportional printwheel and use paper as wide as 14 ". At 15 CPI you can print 165 columns-great for spreadsheets.
The Daisy 1120 uses the Diablo Hytype II ${ }^{\ominus}$ standard ribbon cartridges. Again universally available.

Not only is the hardware completely compatible, the control codes recognized by the Daisy 1120 are Diablo $630^{\circ}$ compatible (industry standard). You can take advantage of all the great features of word processing packages like Wordstar ${ }^{\circledR}$, pfs: Write ${ }^{\ominus}$, Microsoft Word ${ }^{\ominus}$ and most others which allow you to automatically use superscripts, subscripts, automatic underlining, boldface (shadow printing) and doublestrike.

The printer has a set of rear switches which allow the use of standard ASCII as well as foreign character printwheels. Page length can be set to $8,11,12$, or $15^{\prime \prime}$. The Daisy 1120 can also be switched to add automatic line feed if required.

## THE BEST PART

When shopping for a daisy wheel printer with all these features (if you could find one), you could expect to pay $\$ 600$ or $\$ 700$ dollars. The options would add much more. Not now! We have done our homework. We can now offer this printer for only $\$ 353$. Order yours today!

## NO RISK OFFER

Try the Daisy 1120 for 2 weeks. If you are not satisfied for ANY reason we will refund the full price-promptly. A full 1 -year parts and labor warranty is included.

## THE BOTTOM LINE

Aprotek Daisy 1120 (Order\#1120) \$353 w/standard Centronics parallel interface and 2 K buffer.

## Options

Auto Cut Sheet Feeder (\#1110) \$188
Tractor Feed (\#1112) \$77

## Accessories

$8^{\prime}$ Cable for IBM PC® ${ }^{\text {© }}$ and compatibles (\#1103) \$26
Interface with cable: •TI-99/4A (\#106) \$66 - Apple II or IIe (\#1104) \$76

- All Commodore (except Pet) (\#1105) \$44
- All Atari (\#1107) \$66

Shipping is \$11-UPS continental USA. If you are in a hurry, UPS Blue or Air Parcel Post (second day air) is $\$ 25$. Canada, Alaska, Mexico and Hawaii are $\$ 30$ (air). Other foreign is $\$ 60$ (air). California residents add $6 \%$ tax. Prices are cash prices-VISA and M/C add $3 \%$ to total. We ship promptly on money orders, cashier's checks, and charge cards. Allow 14 -day clearing for checks. No C.O.D.'s. Payment in US dollars only.
TO ORDER ONLY CALL TOLL FREE
(800) 962 -5800 USA
(800) $962-3800$ CALIF.
(8-8 PST)

## Or send payment to address below:

Technical Information \& Customer Service: (805) 987-2454 (8-5 PST) Dealer Inquiries Invited

1985 APROTEK. All rights reserved, Software Publishing Corp.; Microsof
Word-Microsoft Com.; Apple II Word-Microsoft Copp; ; Apple, II
He-Apple Computer. Inc.: He-Apple Computer, Inc::
IBM PC-IBM Corn.: IBM PC-IBM Corp PET, CBM.


COMPUTEI The Journal for Progressive Computing (USPS: 537250) is published monthly by COMPUTE! Publications, Inc., P.O. Box 5406, Greensboro, NC 27403 USA. Phone: (919) 275-9809. Editorial Offices are located at 324 West Wendover Avenue, Greensboro, NC 27408. Domestic Subscriptions: 12 issues, $\$ 24$. Send subscription orders or change of address (P.O. form 3579) to COMPUTEI Magazine, P.O. Box 10954, Des Moines, IA 50340. Second class postage paid at Greensboro, NC 27403 and additional mailing offices. Entire contents copyright © 1985 by COMPUTE! Publications, Inc. All rights reserved, ISSN 0194-357X.

The subdued pallor of the personal computer section at the Summer Consumer Electronics Show was somewhat sobering. Dozens of industry vendors simply chose not to exhibit; dozens more have disappeared in the months since the last show. Noticeable in the reduced clutter of exhibitors was the increased level of professionalism and sophistication of presentation among those present. Also noticeable was the lack of industryshaking innovation we've grown accustomed to over the last few years. Among the bright spots were our old friends at Atari, the Tramiels. They highlighted that which is best among us by promising new innovations and continued leadership at the cutting edge of truly con-sumer-oriented electronics. Their demonstration of an Atari/ compact disc interface which allows an entire multi-volume encyclopedia to be stored and quickly retrieved from less than one-quarter of a single compact disc is truly significant. Their proposed pricing for new Atari ST systems promises hope for fall. (See the Consumer Electronics Show article elsewhere in this issue for more information.)

Commodorians are properly pushing the 128 system and reluctantly admitting the coming of the Amiga. We were shocked to discover that apparently some at Commodore still enjoy political magazine games.

Several of our competitors had already received Amiga systems while Commodore public relations personnel were concurrently telling us that all magazines would be treated equally. It makes one wonder what motive Commodore might have for withholding access to the Amiga from the largest Commodore-related publisher in the industry. Ah, well. COMPUTE! always perseveres, and you may rely on us to bring you continuing and timely assessments of the new Amiga. Among our articles this month on the Consumer Electronics Show, you'll find some early information on the Amiga. It looks like a pretty impressive machine.

On this increasingly hopeful note, we'll point out that the traditionally upbeat Christmas season, while viewed with caution, is expected to be a good one for the vendors who have remained in the marketplace. It's a bit of the smaller pie and fewer slices phenomena. That same principle can perhaps be extended to the magazine publishing industry. We have a small group among our competitors whose attacks on us over the years have ebbed and flowed with the success of the
various magazines they launch to compete with ours. As problems arise for whatever flagship they're currently pushing, we can detect a significant increase in the various voices they raise in criticism of us, our style, our policies, our editors, our writing. We have always chosen to remain silent in the face of these rumblings and time has always proven to be our steadfast ally. We suspect such will remain the case. In the meantime, we'll continue our efforts to always provide you with the most balanced magazines of the best quality we can publish. Thank you for your continued support.


Editor in Chief

## The Better Letter Box

Introducing EasyPlex. The new, easy-to-use electronic mail system from CompuServe.

Finally! Electronic Mail that's so easy to use you can start composing and sending messages the first time you get online.
Designed for various experience levels, EasyPlex has a menu mode with simple, easy-to-follow directions for beginners, and it lets experienced users save time by working in the prompt or command modes. With EasyPlex, you can compose, edit, send, file, and take advantage of sophisticated
options previously available only with more expensive services.
CompuServe's EasyPlex lets friends and relatives, associations and club members communicate any time of the day or night. And small business owners, real estate professionals, insurance agents, lawyers, writers, etc. can communicate quickly and simply-either interoffice or interstate. "It's Easy", "Just Plex it!"

Best of all, EasyPlex is available to all CompuServe subscribers. And, along with EasyPlex, you get hundreds of valuable and entertaining computing options. Plus the assurance of belonging to the largest, fastest
growing computer information service in the world and the premier supplier of business information to FORTUNE 500 companies.
Start communicating! To buya CompuServe Subscription Kit, see your nearest computer dealer. To receive our informative brochure or to order direct, call or write:

5000 Arlington Centre Blvd., Columbus, Ohio 43220
800-848-8199
In Ohio, call 614-457-0802

| Publlsher Editor In Chief Director of Administration | Gary R. Ingersoll Robert C. Lock Alice S. Wolfe |
| :---: | :---: |
| Senlor Editor | Richard Mansfield |
| Managing Editor | Kathleen Martinek |
| Editor | Tom R. Halfhill |
| Assistant Editor | Philip Nelson |
| Production Director | Tony Roberts |
| Production Editor | Gail Cowper |
| Editor, COMPUTEI's GAZETTE | Lance Elko |
| Technical Editor | Ottis R. Cowper |
| Assistant Technical Editors | John Krause, George Miler |
| Program Editor | Charles Brannon |
| Features Editor | Selby Bateman |
| Assistant Editor, COMPUTEI's GAZETTE | Todd Heimarck |
| Feature Writer | Kathy Yakal |
| Research Assistant | Sharon Darling |
| Programming Supervisor | Patrick Parrish |
| Editorial Programmers | Tim Victor, Kevin Mykytyn. Kevin Martin |
| Submisslons Reviewer | Mark Tuttle |
| Programming Assistants | David Florance, Susan Doss |
| Copy Editors | Joan Rouleau, Ann Davies |
| Executive Assistant | Susan Young |
| Administrative Assistants | Julia Fleming, Iris Brooks, Jan Kretlow |
| Associate Editors | Jim Butterfield |
|  | Toronto, Canada |
|  | Harvey Herman Greensboro, NC |
|  | Fred D'Ignazio Roanoke, VA |
|  | David Thornburg |
| Contributing Edilor | Bill Wilkinson |
| COMPUTEI's Book Division Editor | Stephen Levy |
| Assistant Editors | Gregg Keizer, J. Blake Lambert |
| Administrative Assistant | Laura MacFadden |
| Director, Book Sales \& Marketing | Steve Voyatzis |
| Assistant | Carol Dickerson |
| Production Manager | Irma Swain |
| Art \& Design Director | Janice R. Fary |
| Assistant Ediltor, Art \& Design | Lee Noel |
| Mechanical Art Supervisor | De Potter |
| Artists | Debbie Bray, Dabney Glick |
| Typesetting | Terry Cash. Carole Dunton |
| Illustrator | Harry Blair |
| Director of Advertising Sales | Ken Woodard |
| Production Coordinator | Patti Stokes |
| Administrative Assistant | Kathleen Hanlon |
| Promotion Assistant | Caroline Dark |
| Customer Service Manager | Philippa King |
| Dealer Sales Supervisor | Gail Jones |
| Assistants | Debi Goforth, Liz Krusenstjerna, |
|  | Rhonda Savage |
| Individual Order Supervisor | Judy Taylor |
| Assistants | Betty Atkins, Gayle Benbow, |
|  | Mary Hunt, Jenna Nash, Chris Patty |
| Warehouse Manager | Lonnie Arden |
| Staff | Harold Ayers, Steve Bowman, Larry O'Connor, David Hensley |
| Data Processing Manager | Leon Stokes |
| Assistant | Chris Cain |
| Vice President, Finance \& Planning | Paul J. Megliola |
| Director, Finance \& Planning | R. Steven Vetter |
| Accountant | Robert L. Bean |
| Financial Analyst | Karen K. Rogalski |
| Staft | Dale Branch, Jill Pope |
| Credit Manager | Barry L. Beck |
| Staft | Sybil Agee, Anne Ferguson, Pat Fuller, Doris Hall, Linda Miller, Mary Waddell, Jane Wiggs |
| Purchasing Manager | Greg L. Smith |

Robert C. Lock, Chief Executive Officer Gary R. Ingersoll, President
Paul J. Megliola, Vice President, Finance and Planning Debi Nash. Executive Assistant
Anita Armfield, Assistant

## Coming In Future Issues

Hands-On Reports:

## Afarl 520St

Commodore Amiga
Atarl 130XE And DOS 2.5
Word Search:
Puzzle Generator For Atarl, Commodore 64, 128, VIC, Plus/4, 16, Apple, IBM PC/PCJr, TI-99/4A
Chess For IBM PC/PCJr
Easy Apple Screen Editing

## Commodore 64 Disk

Commander
The Last Warrior
Action Game For Commodore 64, Atarl, Apple, IBM PC/PCJr

COMPUTE! Publications, Inc. publishes:

| CONPUTE | Corporate office: <br> 324 West Wendover Avenue |
| :---: | :---: |
| COMPUTE'S | Suite 200 |
|  | Greensboro, NC 27408 USA |
| COMPUTE!Books | Malling address: COMPUTEI Post Office Box 5406 |
| COMPUTE!'s | Greensboro, NC 27403 USA |
|  | Tolophone: 919-275-9809 |

## Subscription Orders

COMPUTEI CIrculation Dept.
P.O. Box 914 Farmingdale, NY 11737
TOLL FREE Subscription Order Line 800-334-0868 In NC 919-275-9809

## COMPUTE! Subscription Rates

 ( 12 Issue Year):US
(one yr.) \$24
(two yrs.) \$45
(three yrs.) \$65
Canada and Foreign
Surface Mail $\$ 30$
Foreign Air Delivery
\$65

## Advertising Sales



## 2. Mid Atiantic

John Saval
Eastern Advertising
Manager
212-315-1665
Kathy Hicks
Marsha A. Gittelman
215-646-5700
Brian S. Rogers
212-674-0238

## 3. Southeast \& Forelgn <br> Harry Blair <br> 919-275-9809

4. Midwest

Gordon Benson
312-362-1821

## 5. Northwest/

Mountaln/Texas
Phoebe Thompson 408-354-5553
6. Southwest

Ed Winchell
213-378-8361

## Director of Advertising Sales

Ken Woodard
COMPUTEI Home Office 919-275-9809.
Address all advertising materials to: Patti W. Stokes
Advertising Production Coordinator COMPUTEI Magazine
324 West Wendover Avenue,
Greensboro, NC 27408

The COMPUTEI subscriber list is made available to carefully screened organizations with a product or service which may be of interest to our readers. If you prefer not to receive such mailings, please send an exact copy of your subscription label to: COMPUTEI P.O. Box 914, Farmingdale, NY 11737. Include a note indicating your preference to receive only your subscription.

Authors of manuscripts warrant that all materials submitted to COMPUTEI are original materials with full ownership rights resident in said authors. By submitting articles to COMPUTE!, authors acknowledge that such materials, upon acceptance for publication, become the exclusive property of COMPUTE! Publications, Inc. No portion of this magazine may be reproduced in any form without written permission from the publisher. Entire contents copyright © 1985, COMPUTE! Publications, Inc. Rights to programs developed and submitted by authors are explained in our authof addressed, stamped envelope. Programs (on tape or disk) must accompany each submission. Printed listings are optional, but helpful. Articles should be furnished as typed copy (upper-and lowercase, please) with double spacing. Each page of your article should bear the title of the article, date and name of the author. COMPUTEI assumes no liability for errors in articles or advertisements. Opinions expressed by authors are not necessarily those of COMPUTEI.
PET, CBM, VIC-20 and Commodore 64 are trademarks of Commodore
Business Machines, Inc. and/or Commodore Electronics Limited
Apple is a trademark of Apple Computer Company IBM PC and PCjr are trademarks of International Business Machines, Inc.

ATARI is a trademark of Atari, Inc.
TI-99/4A is a trademark of Texas instruments. Inc. Radio Shack Color Computer is a trademark of Tandy, Inc.

# A SPECIAL OFFER FROM COMPUTE! BOOKS 

Buy any of the new Apple titles listed below before September 15, 1985 and receive a $\$ 1.00$ discount on each book. These information-packed books contain games, applications programs, buying guides, step-by-step instructions, product reviews, special tutorials for kids, and much more for your Apple II, IIt, Ilc, lle, or Macintosh computer.


Mail in the coupon below with your payment by September 15,1985 to receive your special discount from COMPUTE! Books.
To order your Apple titles, call toll-free 800-334-0868 (in NC 919-275-9809), or mail this coupon with your payment to COMPUTE! Books, P.O. Box 5058, Greensboro, NC 27403.

- COMPUTE!'s First Book of Apple, 69-8
- COMPUTEI's Kids and the Apple, 76-0
- Becoming a MacArtist, 80-9
- COMPUTEI's Easy BASIC Programs for the Apple, 88-4
- COMPUTEI's Apple Games for Kids, 91-4
__ COMPUTEI's Guide to Telecomputing on the Apple IIc, 98-1 Subtotal
$\$$
Less $\$ 1.00$ per book discount
NC residents add $4.5 \%$ sales tax
Add \$2.00 PER BOOK for shipping
Total payment enclosed
Please allow 4-6 weeks for delivery. All payments must be in U.S. funds
\$12.95 ALL ORDERS MUST BE PREPAID
$\$ 12.95 \square$ Payment enclosed (check or money order)
$\$ 17.95$
$\$ 14.95$
$\$ 12.95$
\$9.95
$\square$ Charge $\square$ Visa $\square$ MasterCard
Account No. $\qquad$ Exp. Date $\qquad$
Signature
Name
Address
City
State $\underline{\longrightarrow}$ Zip Code $\qquad$


#### Abstract

If you have any questions, comments, or suggestions you would like to see addressed in this column, write to "Readers' Feedback," COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Due to the volume of mail we receive, we regret that we cannot provide personal answers to technical questions.


## Modular Phone Booths

I'm writing a book-not on computers, but on radio news. Like you, we make great use of the telephone for relaying material recorded on cassette. Ours is analog voice material, and the similarity of what we do to computer applications of the phone prompted me to write.

I've tried without success to interest Ma Bell and GTE in installing modular jacks on their pay phones. This would allow us to use a simple patch cord to go from a cassette recorder output without wrenching off the phone handset cover or using an acoustic coupler, which lowers quality.

Are you aware of any attempts by computer users (or manufacturers) to get direct access to phone equipment? I would imagine this would be valuable for both groups, doing away with the need for acoustic couplers, plus their extra cost and size.

I'd appreciate hearing of any efforts you're aware of on pay phone access. It may take the clout of manufacturers, computer users, and computer publications to convince these giant phone utilities to allow direct pay phone access.
F. Gifford

We haven't heard of any such lobbying efforts among computer hobbyists, but your most likely allies would be user groups that cater to portable computer owners. For instance, there's a special interest group (SIG) on the CompuServe Information Service for users of the Radio Shack TRS-80 Model 100. As active members of a commercial telecomputing network, these people are also likely to have encountered the same problems that you have. Battery-powered lap portables with built-in direct-connect modems are wonderfully convenient for traveling journal-
ists and business people, but as you point out, the acoustic cups necessary to link them to pay phones are bulky, clumsy, and less reliable.

However, it seems unlikely that the phone companies will bend to your demands anytime soon. For one thing, portable computer users (and radio journalists) encompass a pretty small minority at this time-too small, we suspect, to justify modifying all the pay phones in the country. More importantly, handsets attached to public phones with modular jacks would be tempting targets for thieves. Anybody could unplug the handset and run off with it. Of course, pay phones could be redesigned with a conventionally attached handset and a modular jack as an accessory. Perhaps this will happen someday when portable computers are built into wristwatches and nearly everybody has one.

By the way, while you're lobbying, you might also want to target hotels and motels-we've found that many of them don't equip their phones with modular jacks, either.

## Fate Of The PCjr

Being the owner of a PCjr and with the recent bad news from IBM, it seems I have to make a decision on my future with the Junior. Hopefully you can give me some insight.

1. I could sell it and then buy a PC, but that would cost a thousand or two more for a system with similar color capabilities.
2. I could move to an Apple IIc, but I would have to start all over with my software.
3. I could make the Junior as PC. compatible as possible.

I would like more help with this third choice. I have heard of two expansion chassis, one by Quadram and another by Racore. Both add a second floppy drive, clock, parallel printer port, etc. And they add a switch to change modes from PCjr to PC. The Racore also adds an optional tenmegabyte hard disk.

Could you test these add-ons? Which is better, a second floppy drive or a hard disk? Will these chassis help
to secure what I've invested in the Junior, or should I bail out altogether?

Bob Hana
There's no reason to get rid of your PCjr as long as it meets your needs-and that's something only you can decide. IBM has not abandoned the PCjr; although production has been halted, IBM promises to continue supporting the computer with service and software. Since the PCjr already is fairly compatible with the PC, a wide selection of software is available and will continue to be available.

According to estimates we've seen, roughly 300,000 PCjrs have been sold. That's not a huge base compared to Commodore, TI, Apple, and Atari computers, but it's large enough to guarantee that software and expansion hardware will remain in supply in the immediate future. Still, in time, PCjr-specific productsparticularly from non-IBM suppliersmay begin to dry up. So if there's anything you think your system might need, you should plan to buy while it remains available.

If you need to make your PCjr more PC-compatible, you must balance the cost of expanding the Junior against the cost of a new PC or compatible. There are several expansion modules on the market in addition to the products you mention which add more RAM, a second floppy disk drive, a realtime clock, parallel printer port, hard disk drive, and so on. Some of them allow more expansion than others and different combinations of options. See the September 1984 issue of COMPUTEI's $\mathrm{PC} \& \mathrm{PCjr}$ magazine for reviews of the Tecmar jrCaptain and Legacy expansion modules.

Be aware, however, that no matter which one you pick, your PCjr won't be 100 percent PC-compatible 100 percent of the time because of some fundamental design differences. (See "PCjr Memory Compatibility," COMPUTE!, March 1985.) Usually this isn't a major concern, but you should test new software on the PCjr before buying, or at least secure return privileges in case the program doesn't work.

The question of whether a hard disk is preferable to a second floppy drive depends on your needs and your pocketbook. A hard disk is much faster and stores much more data than a floppy drive, but it

## WHIEN BATTERIES INCLUDED SET OUT TO DESIGN THE VERY BEST WORD PROCESSOR FOR ATARI'COMPUTERS... THEY FOUND THEY ALREADY HAD IT.



Few word processors have allowed Atari users to tap the full resources of their computer until Atari Paper Clip...
Atari Paper Clip is an extremely powerful, fully featured word processor that will allow your Atari to operate to the limits of its potential, with an ease of operation and speed you've never thought possible.

> PAPERCLIP FOR ATARIAND COMMODORE OWNERS WHO WANT THE VERY BEST IN WORD PROCESSING.
costs a lot more, too. One thing to keep in mind is that some commercial software is copy-protected in such a way that it requires you to boot off the floppy even if you have a hard disk.

## Commodore INPUT Revisited

Your answer to Scott Mefferd's letter about suppressing the Commodore INPUT question mark (COMPUTE!, May 1985) is incorrect. It's quite easy to suppress the question mark that INPUT usually prints. Use POKE 19,64 before the INPUT command to disable it, and POKE 19,0 to bring it back. Here is an example:

## 10 POKE 19,64:INPUT"ENTER WORD";A\$ <br> 20 POKE 19,0:PRINT

You must enter some value when using this method (you can't just press RETURN). Add a PRINT statement after the input, since the cursor doesn't automatically go to the next line. You can also treat the keyboard as a peripheral, reading it with an INPUT\# statement as shown here:

## 10 OPEN 1,0: PRINT"ENTER <br> WORD"';:INPUT\#1,A\$ <br> 20 PRINT: CLOSE 1

David Tucci

A number of readers have written to suggest these methods, both of which work fine. The first method is simple and troublefree provided you always restore things to normal with POKE 19,0. The second method takes advantage of the fact that the keyboard is just another peripheral (device number 0) as far as the computer is concerned. You can OPEN a communication channel to the keyboard and input a string with INPUT\#, the same as with other peripherals.

A third method, suggested by reader Robert Kodadek, bypasses the BASIC INPUT routine and calls CHRIN directly. CHRIN is a machine language routine stored in the computer's Read Only Memory (ROM) which fetches one character from the designated input device every time it is called. Since the keyboard is the computer's default input device (unless you specify otherwise), CHRIN acts much like GET, retrieving one character at a time:

## 10 A $\$=$ '"' $:$ PRINT "ENTER WORD: " <br> 20 SYS 65487: A=PEEK(780): IF $\mathrm{A}<>13$ THEN A $\$=\mathrm{A} \$+$ CHR\$(A):GOTO 20 <br> 30 PRINT: PRINT A\$

CHRIN stores the character's ASCII value in the microprocessor's accumulator register, which is echoed at location 780 in the Commodore 64 and VIC-20. If you have a Plus/4 or Commodore 16, substitute the address 2034 for 780 in line 20. This method is a little slower than the first
two because it has to compile the string one character at a time in BASIC, terminating when it detects a carriage return (CHR\$(13)).

## Missing Atari Memory?

When I run the memory test on my Atari 800 XL , it seems to check only the first 40 K of RAM. There are no red blocks anywhere on the screen, but it refuses to check the last 8 K of user RAM. When I check RAMTOP with $\operatorname{PEEK}(106)$, it returns a value of 160 . If I am not mistaken, 48 K of RAM should return a value of 192. The only other symptom is an above-average amount of keyboard lockup. What's wrong here?

> Dave Nessell

Either you did not disable BASIC on powerup by holding down the OPTION key or you have a cartridge installed. A cartridge or the built-in BASIC uses the top 8 K of your 48 K of memory. To free up this 8 K of RAM, disable BASIC or remove the cartridge when running the memory test.

The keyboard lockups are probably unrelated to the results of the memory test. Instead, BASIC is most likely to blame. The first Atari BASIC cartridge suffered from a lockup bug that was supposedly fixed in revision B BASIC, the version built into the 600XL and 800XL. Unfortunately, the fix only made the problem worse. (See "INSIGHT: Atari," COMPUTE!, May and June 1985.)

Atari has finally eliminated the lockup bug for good in revision C BASIC. This version is built into the new 130XE computer and is available on cartridge for earlier machines. To obtain a cartridge, send $\$ 15$ to:

Atari Corp.
Customer Relations
390 Caribbean Drive
Sunnyvale, CA 94088

## Resetting The SID Chip

Does SYS 64738 completely reset the Commodore 64 to its power-up state? When I use this SYS after running a music program, and then run a game program, I can hear a faint lingering tone. This does not happen when I turn the computer off and on, then run the game program.

Bruce Snider
You've noticed a 64 "feature" that many programmers overlook. Though you might expect system reset to clear the 64's SID (Sound Interface Device) chip, all it does is turn the volume down. This is easy to demonstrate. Turn up the volume on your TV or monitor and enter the following line in direct mode (without a line number):

POKE 54273,20:POKE 54277,15:POKE

54278,240:POKE 54276,33:POKE 54296,15
Press RETURN after typing this line. The SID chip produces a continuous tone. Now type SYS 64738 and press RETURN, or press RUN/STOP-RESTORE. The volume cuts off (you may still hear a faint tone in the background). Enter POKE 54296,15 to turn up the volume again, and the tone comes back loud and clear, proving that the other SID registers retained the values you POKEd in.

SYS 64738 makes the computer jump into ROM and execute several reset routines. One of these ROM routines-called IOINIT - is supposed to reset the system for normal input/output operations (IOINIT also executes when you press RUN/STOP-RESTORE). Unfortunately, rather than putting zeros in all 25 of the SID chip's control registers (as it should do to turn off the whole chip), IOINIT just puts a zero in the volume register (location 54296). If other SID registers are still active, crosstalk signals may leak through to the chip's output wire, producing background noise even though the SID's volume is off.

Besides adding unwanted crosstalk, residual SID values can prevent sounds from being heard. The three low bits of location 54295 control whether any of the SID's three voices are routed through the SID filter. If any of these three bits are left on (set to 1) and the filter cutoff frequency remains at an extreme value, one or more of the voices may be distorted or inaudible.

To eliminate such problems, use the statement FOR J=54272 TO 54296: POKE J,0:NEXT at the beginning of every 64 program that uses sound. You can also execute the statement in direct mode by typing it in without a line number and pressing RETURN. Incidentally, since the Commodore 128 emulates a 64 when running in 64 mode, it suffers from the same problem; however, in 128 mode RUN/ STOP-RESTORE seems to clear the SID chip correctly.

## Hex Keypad For Apple MLX

Like Larry Watkins ("Readers' Feedback," May 1985), I usually enter MLX machine language listings with one hand and follow the code with the other. Is it possible to write a program for the Apple IIc that changes the keys to a numeric keypad? I'd like to see a hexadecimal arrangement and a colon you don't have to shift.

Bill Pearson
Only two line changes are required to redefine part of the keyboard as a 16-key hexadecimal keypad for "Apple MLX" (which first appeared in the June 1985 issue and is published periodically in COMPUTE!). Replace line 410 of MLX and


## WITH NIGHT MISSION



You deserve the best. You've earned it. Now reward yourself with a session of Night Mission PINBALL, the most realistic and challenging arcade simulation ever conceived! a Stunning graphics and dazzling
 sound effects put Night Mission PINBALL in a class by itself. Game features: multiball and multi-player capabilities, ten different professionally designed levels of play, and an editor that lets you create your own custom modes. $\square$ So take a break with Night Mission PINBALL from SubLOGIC. Winner of Electronic Games magazine's 1983 Arcade Award for Best Computer Audio/Visual Effects.

## See your dealer . . . <br> or write or call for more information.

## Order Line: 800 / 637-4983

## add line 415 as shown here;

410 FOR I=1 TO 17: IF $\mathrm{K}<>$ ASC( MID\$( "M,./JKL;UIOP7890", I, 1)) THEN NEXT: GOTO 420
$415 \mathrm{~A} \$=\mathrm{L} \$+\mathrm{MID} \$\left({ }^{\prime} 012345678\right.$ 90ABCDEF" ${ }^{\prime \prime}, 1$ ) $+\mathrm{R} \$: \mathbf{P}=\mathrm{P}+1$
Once these changes are made, Apple MLX accepts 7-8-9-0 for C-D-E-F, U-I-O-P for 8-9-A-B, J-K-L-; for 4-5-6-7 and M-,-.--/ for 0-1-2-3. You can even put stick-on numbers on the front of the redefined keys. Since you don't need to type colons in Apple MLX listings, the colon key has been left alone.

## Better Atari Color Combinations

Please tell me the proper POKE or SETCOLOR command to make my Atari 800XL's text blue on darkest blue, blue on black, white on black, or any other combinations that might be easier on one's eyes. Will leaving the computer in these modes for long periods of time damage anything? Is there any way to make DOS 3.0 work in these altered text colors?

Jeb Branham
It's quite easy to change the Atari screen colors. The statement SETCOLOR 1, color,brightness sets the brightness level of text. The color value is irrelevant, since text is always the same color as the background (simply a different shade). The brightness value must be an even number from 0 (darkest) to 14 (brightest). Use SETCOLOR 2,color,brightness to control the background color. The color value can be any number from 0-15, and the brightness can be any even number from 0-14. You can also set the border color with SETCOLOR 4,color,brightness.

For instance, the statements SETCOLOR 1,0,10: SETCOLOR 2,9,0 produce light blue on dark blue. Blue text on a black background is not possible, since both screen and character color must be the same color. However, some shades of the same color look like different colors. For example, bright red-orange looks like yellow, and white is actually "bright black." Thus, SETCOLOR 1,0,10: SETCOLOR 2,0,0 gives you white text on a black screen.

Many people find it easier to read black text on a white background, since this combination simulates the appearance of type on paper. Use SETCOLOR 1,0,2: SETCOLOR 2,0,10. You may have to fiddle with the brightness numbers to get the contrast right. Unfortunately, these color changes are transient. The normal screen colors return when you press SYSTEM RESET, change graphics modes, or go to DOS. To change the screen colors of the DOS menu, you'd have to disassemble DOS to find the instruction which sets the colors and then alter the
instruction yourself.
No color combination will damage your TV or monitor unless you leave very bright text on the screen for a significant period of time (such as overnight). Atari computers' have a built-in protection feature against burn-in: If you don't press any keys for about nine minutes, the computer automatically enters attract mode, in which the screen colors continually cycle at 50 percent brightness until you press a key.

## Programming The VIC/64 User Port

I have built a breadboard system and interface to the VIC-20 user port, but am having trouble with programs to make use of it. Could you give me more information on how to program the user port?

John W. Farrow, Sr.
The user port, located on the back of the computer on the left side, gives you direct access to the computer and allows control of external parallel and RS-232 serial devices. Access to the user port is through the VIA (Versatile Interface Adapter) chips on the VIC, and the CIA (Complex Interface Adapter) chips on the 64.

Communications with RS-232 serial devices like modems are provided for in the computers' operating system via device 2 , so we assume your homebrew interface makes use of the user port's eight-bit parallel data port. The parallel port can be controlled directly from BASIC with PEEK and POKE commands. When the port is being used for input, the address ( 37136 for the VIC, 56577 for the 64) is PEEKed. When the port is used for output, the address is POKEd.

Before data can be exchanged through the port, the function of the eight data lines must be specified by setting the data direction register for the user port (37138 for the VIC, 56579 for the 64). Each of the eight bits at this address controls the direction of data flow for the corresponding bit of the user port. When a bit in this register is set to 0 , the corresponding bit in the user port is used for input. Setting a bit in the data direction register to 1 indicates that the user port bit will be used for output. Pressing RUN/STOPRESTORE or powering up initializes all bits in the direction register to 0 , setting all lines of the port for input. POKEing a value of 255 into the register will set all lines for output. Any combination of input and output lines can be specified by POKEing the value for the desired pattern of 1's and 0's into the data direction register.

Once the data direction register is set up, the desired lines of the user port can be read from or written to by PEEKing or POKEing the data register. If a line is
selected for data input, the corresponding bit in the data register will hold a 0 if the line is at its low state (0 volts) and a 1 if the line is at its high state (at least 2.4but not more than 5-volts). If the port is set for output, setting a bit in the data register to 0 causes the corresponding line on the port to be set to its low state, 0 volts. Setting a bit to 1 causes the voltage on the line to rise to its high state (usually about +5 volts). For example, the following statements set all eight lines of the VIC's user port for output, then present a high $(+5 \mathrm{~V})$ state on each line:

## 10 POKE 37138,255 <br> 20 POKE 37136,255

Since applying improper voltages to the lines of the user port can damage the VIA and CIA chips-rendering your computer useless-we recommend that you use caution when experimenting with the port. If you're unfamiliar with the basics of electronics, you should connect only circuits designed by knowledgeable technicians.

For more information, and a simple peripheral device which can be controlled by the user port, refer to Chapter 5 in COMPUTE!'s First Book of Commodore 64. Additional information can also be obtained from Mapping the VIC, Mapping the Commodore 64, and Programming the VIC, from COMPUTE! Books.

## COMPUTE! Subscriber Services

Please help us serve you better. If you need to contact us for any of the reasons listed below, write to us at:

## COMPUTE! Magazine

P.O. Box 914

Farmingdale, NY 11737
or call the Toll Free number listed below.
Change Of Address. Please allow us $6-8$ weeks to effect the change; send your current mailing label along with your new address.
Renewal. Should you wish to renew your COMPUTE! subscription before we remind you to, send your current mailing label with payment or charge number or call the Toll Free number listed below.

## New Subscription. Aone year ( 12 month)

 US subscription to COMPUTE! is $\$ 24.00$ (2 years, $\$ 45.00 ; 3$ years, $\$ 65.00$. For subscription rates outside the US, see staff page). Send us your name and address or call the Toll Free number listed below.Delivery Problems. If you receive duplicate issues of COMPUTE!, if you experience late delivery or if you have problems with your subscription, please call the Toll Free number listed below.

COMPUTE! 800-334-0868 In NC 919-275-9809

# close encounters OF THE FANTASY KIND 



QUESTRON: A role-playing game so spell-binding, it suspends reality and conjures up an enchanted world whose only hope against the forces of evil is you.
GEMSTONE WARRIOR." A lightning-fast action strategy game that will leave you breathless with excitement as it takes you through the labyrinths of the Netherworld on a noble quest.

Open them up and step through the gateway to your fantasies come true. At your local computer/software or game store today.

QUESTRON" is available on 48 K diskette for APPLE ${ }^{2}$ II with Applesof ROM, Apple IIt, Ile, and IIC (\$49.95). On 40 K diskette for ATARI® home computers (\$49.95). On 64K diskette for COMMODORE 64* ( $\$ 39,95$ ).


GEMSTONE WARRIOR" is available on 48 K diskette for APPLE II with Applesoft ROM, Apple II+, He, and IIc ( $\$ 34.95$ ).
Also on 64 K diskette for COMMODORE $64^{-}(\$ 34.95)$.
© 1985 by STRATEGIC SIMULATIONS, INC. All rights reserved.

If there are no convenient stores near you, VISA \& M/C holders can order direct by calling 800-227-1617, ext. 335 (toll free). In California, 800-772-3545, ext. 335. Please specify computer format and add $\$ 2.00$ for shipping and handling.

To order by mail, send your check to: STRATEGIC SIMULATIONS INC, 883 Stierlin Road, Bldg. A-200, Mountain View, CA 94043. (California residents, add $7 \%$ sales tax.) All our games carry a "14-day satisfaction or your money back' guarantee.

# Report From The Summer 

# Consumer Electronics 

Show

Tom R. Halfhill, Editor
Considerably less frantic than past Consumer Electronic Shows-at least in the computer section-this summer's CES nevertheless showcased some groundbreaking new products. Foremost was Atari's announcement of a mass storage device that may bring optical memory into homes, schools, and businesses by early 1986.

It would border on the outrageous to describe any Consumer Electronics Show as "quiet"-considering that 80,000 to 100,000 retailers, wholesalers, middlemen, and journalists spend four days jamming their way into convention halls for what is billed as the world's largest industry trade show.

Still, something was noticeably different about this June's CES in Chicago. The annual noise which emanates from the personal computer section in the McCormick West building had dissipated to a muffled roar.

Only two U.S. computer manufacturers were in attendance: Commodore and Atari. IBM and Apple, as is their custom, skipped the show. Atari, which a few weeks earlier had announced it was pulling out of CES, was enticed back by the show management but occu-
pied a couple of meeting rooms instead of its extravagant exhibit of days past. And the lower level of McCormick West, once the exclusive domain of a hundred computer software companies, now was halffilled with videotape exhibits and purveyors of video porn. Rarely have the effects of the muchpublicized industry shakeout been so apparent.

On the bright side, the mood was just slightly more optimistic as both Atari and Commodore moved closer to shipping actual production models of their latest personal computers. In fact, as the show opened, Atari said it had delivered the first 5,000 of its new 520 STs to Canada and Europe and was expecting large-volume shipments to the U.S. by July 8. Commodore said it was only weeks away from shipping the Commodore 128, and was gearing up for a press conference in late July to officially announce its eagerly anticipated Amiga computer (see the accompanying article, "A Tantalizing Peek At The Amiga").

Several software companies announced new products for the Commodore 128, Amiga, and Atari ST series, although most seem to be cautiously hanging back until they see how the machines fare.

On the hardware front, Atari announced a mass-market version of the ST, Commodore exhibited a dual disk drive for the Commodore 128, and a British company announced it would export a 128 K computer to the U.S. But the most interesting news from the show was a revolutionary new peripheral displayed for the first time by Atari:

A very fast mass storage device that uses high-density optical discs. It was a dramatic demonstration that the upcoming generation of personal computers will place much of the power of a mainframe computer on a desktop. It also showed that the personal computer industry is not only far from finished, but is just getting started.

Atari's big announcement was the CD-ROM, which stands for Compact DiscRead Only Memory. If you've never heard of a CD-ROM before, prepare to read dozens of articles about it in coming months, because within two years CD-ROMs will probably be everywhere. (See the accompanying article, "Monster Memory.")

Atari hooked up a working prototype of a CD-ROM to a 520 ST on the second morning of the show, and the Atari exhibit was packed for the next three days. Although the hardware looked rough, the software appeared to be nearly complete. In fact, Atari hopes to have the product ready for sale by late this year or early 1986 for about $\$ 500$.

The software that allows the CD-ROM to work with the 520ST is being developed by an optical typesetting company, Activenture, Inc. of Pacific Grove, California. Activenture has placed an entire 23volume, nine-million-word encyclopedia plus index on a single optical disc-and the disc is still three-quarters empty. The system is so efficient that any entry can be looked up in a matter of seconds.

When the CD-ROM is introduced, Atari and Activenture hope to have other databases available, too. Some examples might be additional encyclopedias, legal and medical references, cookbooks, phone books, and the whole Library of Congress card catalog. In
fact, for reference works, the CDROM may be a significant step toward the paperless information age.
"The ink-on-paper business was fairly restrictive," says Tom Rolander, vice president for engineering of Activenture. "The only way you could look at information was in the way the original publisher had organized and presented it while laying it down on paper. When using reference materialwhich is why we're starting with encyclopedias and things like that-the degree of usefulness is based on how well we can find the information within that material. In other words, how good its indexing system is. What we have here, by connecting the computer with the CD-ROM, is the ultimate indexing tool. We'll know every reference there is to everything that's in the database.'

The paperless information age, however, is encountering some resistance by those whose business depends on putting information on paper-traditional publishers. For example, Atari and Activenture had to delay announcing the name of the encyclopedia on their CD-ROM disc because the publisher didn't want any publicity until the final contract was signed. Rolander says all the publishers will probably fall in line once the first one does, but that many publishers are wary of the new technology.
"They can charge \$1,000 for a shelf-full of books, but how much will people be willing to pay for the same information on one of these?" asks Rolander, spinning a disc on his finger. "To consumers, it doesn't look like they're getting as much. Will people pay $\$ 500$ ? Or $\$ 150$ ? Or \$50? We don't know yet. This may finally determine the true value of information."

Besides the CD-ROM, Atari announced two new variations of its 520ST, the 260ST and 260STD. They're identical to the 520ST except for three features: 256 K RAM instead of 512 K ; a built-in RF modulator so they can be plugged into an ordinary TV set as well as color or monochrome monitors; and the operating system and GEM (Graphics

Environment Manager) in ROM instead of in RAM. Also, the 260STD has a built-in $31 / 2$-inch floppy disk drive. They are scheduled for release this fall for \$399 and \$499, respectively.

Atari says it plans to sell the 260 ST and 260STD through massmarket channels, such as discount stores, while restricting the 520ST to specialty dealers, such as computer shops. This is a reversal of Atari's original plan to sell the 520ST through all types of outlets.

Atari also has been wavering back and forth on whether the operating system and GEM will ever be in ROM on the 520ST. When the 520 ST was first announced in January, Atari said all the system software would be in ROM. But delays in debugging the operating system prompted Atari to release it on disk with initial shipments of the computer. Then there were conflicting statements about whether early 520ST owners would be able to upgrade to a ROM-based operating system later. (A RAM-based operating system takes longer to boot up, but is easier to revise; a ROMbased system boots up instantly, but can be upgraded only by replacing the ROM chips.)

At CES, Atari President Sam Tramiel told COMPUTE! that the operating system will be transferred to ROM for the 260ST/260STD, and then made available at "minimal cost" for 520ST owners with RAMbased systems. "These 18 guys back in Sunnyvale [at Atari's software department] are right now crunching the code to get it into the ROM size [192K]," said Tramiel. "TOS [Tramiel Operating System] now I think is 205 K , or something like that. We feel it's not a big problem, but we've got to get it done fast.'

Commodore was relatively idle at this CES. Its only new hardware announcements for the U.S. market were a dual floppy disk drive for the Commodore 128 and a dot matrix printer. Interestingly, before CES started, Commodore intended to show a hard disk drive for the 64 and 128 , but pulled the product at the last minute for unknown reasons. Commodore also pulled the

LCD portable lap computer first shown at the January CES; reportedly, the machine has been postponed while Commodore concentrates on bringing the 128 and Amiga to market.

The new 1572 dual disk drive combines two 1571 drives in a slimline case designed to sit atop the Commodore 128. It has the same multimode capabilities as the 1571 (Commodore 64, Commodore 128, and $\mathrm{CP} / \mathrm{M}$ formats). Commodore says it should be available this summer, but no price was announced.

The new MPS 1000 is a multimode dot matrix printer. In draft mode, it prints at 100 characters per second (cps); in near-letter quality mode, it prints sharper characters at 16 cps ; and in graphics mode, it has a density of 50 to 240 dots per inch. It can also print in widths ranging from 80 to 160 columns. It's compatible with the Commodore 128, 64 , and many other personal computers. Like the 1572 disk drive, it's scheduled to be available this summer, but no price was announced.

Two products exhibited at the Winter CES were firmed up at this show. The Commodore 1670 directconnect modem, which transfers data at 1200 bits per second, will sell for around $\$ 200$ and has auto dial, auto answer, auto mode selection, and auto speed switching from 300 to 1200 bps. It works with the 128, 64, SX-64, Plus/4, and VIC20. And the Commodore two-button mouse controller first seen in January will sell for $\$ 49.95$ and should be available immediately. It works with the 128,64 , and VIC.

Commodore also showed four interesting computers for foreign markets, but apparently they won't be available in the U.S. in the near future. The Commodore 128D Integral Personal Computer is a variation on the 128 that separates the keyboard from the system unit and includes a built-in disk drive. Commodore says it will be available in Europe late this year. The PC10 and PC20 are IBM-compatible computers recently introduced in Europe. The PC10 has 256 K RAM and two 360K floppy disk drives; the PC20 has 512 K RAM, one floppy drive, and a ten-megabyte hard disk. And finally, the Commodore 900 Business Computer is a multitasking, multiuser workstation that uses a

# Monster Memory 

The CD-ROM, an acronym for Compact Disc-Read Only Memory, is a compact disc audio player which has been slightly modified for generalpurpose data storage and interfaced to a computer.

Compact disc players are the latest rage among audiophiles. Up to 75 minutes of digitally encoded music can be stored in the form of microscopic pits on a 4.7 -inch rigid plastic disc. Inserted in a special player, the disc spins at 300 r.p.m. while a miniature laser reads the pits. The data is decoded by a microprocessor, then converted into standard audio signals which are fed into the auxiliary input or tape monitor jacks on a stereo receiver. The result is exceptionally pure music of unprecedented dynamic range and frequency response, free of surface noise and tape hiss. Furthermore, since the disc is read by a laser, not a diamond stylus, compact discs last virtually forever with no deterioration. They can also tolerate rougher handling than ordinary records and tapes.

But music isn't the only thing a compact disc can store. Any type of information can be digitized and recorded on a disc. That includes text, graphics, and computer programs. And the capacity is enormous: A single compact disc stores about 550 megabytes. A megabyte equals $1,024 \mathrm{~K}$, so that's roughly equivalent to 1,564 floppy disks on an IBM PC, 3,520 disks on a Commodore 1541 drive, 4,022 disks on an Apple II, 4,469 enhanced-density disks on an Atari, or 6,400 singledensity Atari disks. They're cheap, too: compact discs can be massproduced at a manufacturing cost of a few dollars each (audio discs currently retail for about $\$ 15$ ). Because audio CDs and CD players are already in mass production, CDROMs can debut at affordable prices.

A compact disc is a read-only storage medium, so you can't record data on it yourself. But CDs are ideal for storing large databases that don't have to be updated often. At CES, Atari demonstrated a sample disc that contained a 23 -volume, nine-million-word encyclopedia. The encyclopedia was transferred to the CD from magnetic tape, where it was stored in punchcard format-the equivalent of 976,000 punchcards. Yet, it fits on onequarter of the space of a single CD.

To think of a CD simply as an efficient way to store mass amounts of information is to miss the point, however. Like a floppy disk drive, a CD player is a random-access device; it can seek and retrieve any piece of data on the disc in a few seconds without hunting through the information sequentially. Therefore, a CD-ROM can find the slightest, most obscure fact in a massive database in less time than it takes you to pull a book off a shelf and flip it open to the index.

Here's an example: Let's say you're a student researching a report on Thomas Jefferson. On the Atari CDROM, there are two ways to approach the task.

The first way is very similar to the usual method of looking up something in an encyclopedia. First, you boot up the CD-ROM on the Atari 520ST. This takes only a few seconds. A graphics display on the screen shows a bookshelf with a 23 -volume encyclopedia. By rolling the ST's mouse controller, you move the screen pointer to the " J " volume and then click the mouse button. This brings up another screen with a graphics picture of the book you selected, opened to several alphabetical tab entries. You move the pointer to the tab which would include Jefferson-for in-
stance, Japan to Jet. Another click calls up a screen showing all the article titles within that section. When you move the pointer to the title Jefferson, Thomas and click the button again, the computer loads the article (and several preceding and following articles, as well) from the $C D$ into memory. It takes less than four seconds for the CD-ROM to fill the 520 ST 's entire 512 K RAM.

Now you can read the article on the screen, scrolling or flipping pages by clicking the mouse. This method of looking up subjects is recommended for those who aren't familiar with computers, because it requires almost no computer knowledge.

The second method takes greater advantage of the computer's power. Instead of looking up the subject alphabetically by yanking a graphics image of a book off a shelf, you pull down a menu and select the search screen. This screen presents a number of options; to keep it simple, you can just type Thomas Jefferson at the prompt and ask for a general search. In about four seconds, the computer reports how many times the phrase Thomas Jefferson appears in the encyclopedia. You can flip to the first occurrence by clicking the mouse. Again, in less than four seconds, the computer loads the article from the CD into memory and even highlights your search phrase within the text. You can flip to subsequent occurrences merely by clicking the mouse button.

What makes this technique so powerful is that the computer will find references to Thomas Jefferson in articles that may never have been checked using the old-fashioned method. The student may learn that Jefferson was not just a politician, but also an inventor, architect, and connoisseur of wines. Looking up the same references in even the most thoroughly cross-indexed paper encyclopedia would be much more time-consuming.

When the Atari CD-ROM software is finished, it will allow twodimensional searches, too. You could look up every article that contains references to Thomas Jefferson and Thomas Paine, or Thomas


Get the jump on the weatherman by accurately forecasting the local weather yourself!


The beautiful princess is held captive by deadly dragons. Only a knight in shining armor can save her now!


A time-saving organizer for coupons, receipts and more.


A scientifically proven way to develop an awesome memory.


Cut your energy costs by monitoring your phone, electric and gas bills.


School-age and pre-school children are rewarded for right answers, corrected on their wrong ones.


You are trapped in a fivestory, 125 -room structure made entirely of ice. Find the exit before you freeze!


Computerize car maintenance to improve auto performance, economy and resale value.


A real brainflexer. Deflect random balls into targets on a constantly changing playfield.


Take control of your personal finances in less than one hour a month.


Create multi-colored bar graphs with a surprisingly small amount of memory.


A fun way to dramatically increase typing speed and accuracy.

# Get up to 30 new programs and games for less than 15 cents eachevery month in COMPUTEI 

Every month, COMPUTE! readers enjoy up to 30 brand-new, ready-to-run computer programs, even arcade-quality games.

And when you subscribe to COMPUTE!, you'll get them all for less than 15 cents each!

You'll find programs to help you conserve time, energy and money. Programs like Cash Flow Manager, Retirement Planner, Coupon Filer, Dynamic Bookkeeping.

You'll enjoy games like Air Defense, Boggler, Slalom, and High Speed Mazer.

Your children will find learning fast and fun with First Math, Guess That Animal, and Mystery Spell.

Looking for a challenge? You can write your own games. Customize BASIC programs. Even make beautiful computer music and pictures.

It's all in COMPUTE!. All ready to type in and run on your Atari, Apple, Commodore, PET/CBM, TI-99/4A, Radio Shack Color Computer, IBM PC or IBM PCjr.

What's more, you get information-packed articles, product reviews, ideas and advice that add power and excitement to all your home computing.

And when it's time to shop for peripherals or hardware, check COMPUTE! first. Our product evaluations can save you money and costly mistakes. We'll even help you decide what to buy: Dot-matrix or daisy-wheel printer? Tape storage or disk drive? What about modems? Memory expansion kits? What's new in joysticks, paddles and track balls?

Order now! Mail the postpaid card attached to this ad and start receiving every issue of COMPUTE!.


Jefferson or George Washington. Other options let you limit the search for occurrences in adjacent words, single paragraphs, and word groupings of various sizes.

If you're an experienced programmer, you might be puzzled by the search times described above. Even in superfast machine language on the 520ST's 68000 microprocessor, how can the computer search through nine million words in less than four seconds?

The answer is that the computer can't. Instead, it refers to an extremely sophisticated index of search tables on the CD.

The search tables were compiled with a VAX minicomputer by Activenture, Inc., the company which is developing the CD-ROM software for Atari. First, the VAX built a dictionary by identifying every unique word in the encyclope-dia-more than 140,000 words. Then it compiled search tables which cross-reference the dictionary to every occurrence of each word in the encyclopedia. In conventional book form, the finished
index would occupy about 20 volumes. That means the index is nearly as long as the encyclopedia itself.

When you request a search, the 520ST simply consults the index of search tables on the disc and rapidly locates each occurrence of the search phrase. In effect, the searching has already been done for it by the VAX.

Retrieving the information is very fast, too, though not quite as fast as with hard disks. Because CDs were designed for storing music, which is played sequentially, their random-access capabilities are not as good as they could be. Still, they're much faster than most floppy disk drives. Data is stored on a CD in 270,000 records containing 2,048 bytes each; the average access time for a record is about one second. The greatest access timewhich happens when the head must move from an extreme outside track to an inside track or vice versa-is three to four seconds. To keep this from happening very often, data is recorded on a CD on the inside tracks first, moving outward. This takes advantage of the CD-ROM's very rapid track-totrack access time. To read a nearby
track, the player merely tilts a tiny mirror to refocus the laser rather than repositioning the entire head. (Each track of microscopic pits is only two microns-two millionths of a meter-wide).

Once the information is located, the CD-ROM feeds it to the computer at a rate of 75 records ( 150 K ) per second. To make sure the data arrives without errors, the CD-ROM's error-correction capabilities have been improved over that of a regular audio $C D$ player. An audio player can be expected to pass one bad bit for every 10,000 bits-inaudible when listening to Beethoven or the Beatles, but not nearly good enough for computer storage. So CD-ROMs employ an error-checking and correction scheme that allocates an additional 288 bytes for each 2,048 -byte record. That much overhead-more than 14 percent-would be wasteful on a floppy or hard disk, but CDs have room to burn. The improved error rate on a CD-ROM is at least as good as with a hard disk: about one bit error for every $1,000,000,000,000$ to $1,000,000$, $000,000,000$ bits (one trillion to one quadrillion).

Report From Summer CES Continues
Unix-compatible operating system.
Although some of these higherend computers will be available in Canada, Commodore announced no plans at present to market them in the U.S.

Another new personal computer was announced at CES by a British company, Amstrad. Already available in Europe, where several hundred thousand units have been sold, the Amstrad CPC6128 is scheduled to be shipped to the U.S. later this year.

The U.S. version of the Amstrad has an 8 -bit Z80A microprocessor, 128 K RAM, a built-in 3 -inch disk drive, CP/M compatibility, BASIC and Logo, an expansion interface, joystick port, and stereo sound output. It comes packaged in two configurations. One includes a green-screen monitor and WordStar word processor for $\$ 699$, and the other has an RGB color monitor, Amstrad's own word processor, and some entertainment
software for $\$ 799$.
Briefly, here are some other highlights of the Summer CES:

- Abacus Software of Grand Rapids, Michigan announced Super C, a C compiler for the Commodore 64 and 128. It has a full-screen editor with horizontal and vertical scrolling and is compatible with most other versions of C. Source files up to 41 K long can be created.
- Commodore is releasing several titles for the 128, including Jane 2.0, an icon-based integrated package with a word processor, spreadsheet, and filing manager, all of which can be manipulated with the mouse controller; Micro Illustrator, a graphics drawing program formerly available for the 64, which takes advantage of the 128's extra memory and other features; and the Perfect series for the CP/M operating system, consisting of Perfect Writer, Perfect Calc, and Perfect Filer. All three work in the 80 -column mode, are capable of sharing files, and have pop-up menus, split
screens, and automatic formatting for printouts.
- Epyx, Inc. of Sunnyvale, California is releasing Winter Games, a sequel to Summer Games, for the 64, Apple, and Macintosh; two new LucasFilm games for the Atari, The Eidolon and Koronis Rift; The World's Greatest Football Game for the 64, Apple, and Atari; and the Temple of Apshai Trilogy for the 64, Apple, Atari, Macintosh, and IBM. (Prices will range from $\$ 19$ to $\$ 35$.)
- Batteries Included of Richmond Hill, Ontario is releasing its PaperClip word processor for the Apple (\$89.95) and Commodore 128 ( $\$ 119.95$ with SpellPak); the BI80, an 80 -column video adapter on a cartridge for the Atari XL and XE series (\$79.95); an 80 -column version of Atari PaperClip for the BI-80 (\$59.95); new versions of Home-Pak-a combination word processor, filer, and terminal programfor the IBM PC/PCjr, Commodore 128, Apple, and Atari ST (\$49.95); an IBM version of The Consultant


When sorcery ruled, and trolls and minotaurs still walked this Earth,
a party of six intrepid adventurers set out to find the Nine Rings and use them to destroy the Dark Lord. This is your quest.


A MULTIPLE-CHARACTER ROLE-PLAYING ODYSSEY
Look for this new, exciting game at your local computer/software or game store today!
If there are no convenient stores near you, VISA \& Mastercard holders can order direct by calling 800-227-1617. ext. 335 (toll free). In Calfornia, call 800-772-3545, ext. 335.
To order by mail, send your check to: STRATEGIC SIMULATIONS, INC., 883 Stieriin Road, Bldg. A-200, Mountain View, CA 94043 . Please add $\$ 2.00$ for shipping and handiing (California residents. add $7 \%$ sales tax). All our games carry a " 14 -day satisfaction or your money back" guarantee.
WRITE FOR A FREE COLOR CATALOG OF ALL OUR GAMES.

PHANTASIE is \$39.95.
On 48 K diskette for Apple\%il with Applesoft ROM. II +. Ile and Ilc. Also on diskette for Commodore 64
Apple and Commodore 64 are trademarks of Apple Computer. Inc and Cormmodore Rlectronks. Lti, respectively.
O 1985 by Strategic Siroulations, Inc. All nights reserved.

$\qquad$

## A At The Amiga

 Tantalizing PeekA$t$ this writing (early June), Commodore is scheduled to unveil its long-awaited Amiga Lorraine computer at a press conference in New York in late July. Although the machine was substantially ready in June, Commodore evidently kept it off the show floor at CES to avoid stealing attention away from the Commodore 128, which was due to begin appearing on store shelves within weeks. Nevertheless, despite unprecedented secrecy and security, more and more details about the Amiga leaked out at CES press parties. Also, COMPUTE! arranged a peek at the Amiga through a helpful source. We learned that even more capabilities have been added since our first look at the computer a year ago at the June 1984 CES (see "Software Power! The Summer Consumer Electronics Show," August 1984).

The Amiga's final configuration was still subject to change before its official introduction, but here's what it will probably include:

- Motorola 68000 microprocessor for the central processing unit. This is the same $16 / 32$-bit chip found in the Apple Macintosh and Atari ST series. It can address up to 16 megabytes of memory ( 1 megabyte $=1024 \mathrm{~K}$ ).
- 256 K of RAM (Random Access Memory), expandable to at least 512 K on the system unit and more externally.
- 192 K of ROM (Read Only Memory) containing Intuition, a Macintosh-like operating system
with pull-down menus, icons, hierarchical disk directories, multitasking, and mouse support. Unlike the Macintosh's operating system, however, Intuition can be manipulated with keyboard controls as well as the mouse. The keyboard, which is attached to the Amiga system unit with a coiled cord, includes cursor keys and a numeric keypad.
- True multitasking. Thanks to the high-speed 68000 and a number of dedicated chips for input/ output and other vital functions, the Amiga can run several programs simultaneously with no apparent sluggishness, even while simultaneously accessing the disk drive. By opening screen windows of various sizes, you can watch all the programs running at once. This is an especially useful feature for business applications-you could simultaneously work with a word processor, terminal program, database manager, and spreadsheet without stopping one program to start another.
- A built-in double-sided $31 / 2$ inch disk drive that stores about 800 K per disk. These are the same hard-shell microfloppy disks used by the Macintosh and Atari ST series. Up to three external drives can be added to the Amiga by daisychaining.
- Custom chips for graphics and animation. Maximum screen resolution is $640 \times 400$ pixels (screen dots), with additional graphics modes of $640 \times 200$ and $320 \times 200$. Eighty-column text is standard, but the display is adjustable to narrower widths for greater readability on low-resolution screens.
- Composite video/mixer input that allows you to feed standard video signals into the Amiga, display them on the screen, and then superimpose the Amiga's text and graphics. The external video source could be a video camera, videocassette recorder, videodisc player, TV receiver, or even another computer. The potential of this feature is exciting: games and educational programs with superrealistic backgrounds, titles for home videotapes, and so on. Furthermore, a relatively low-cost peripheral called a frame grabber lets the Amiga digitize the incoming video signal so it can be manipulated with graphics utilities, stored on disk, and even dumped to a graphics printer.
- A palette of 4,096 colors, more than any other generalpurpose personal computer on the market. Up to 32 of these colors can be displayed at once without special tricks.
- Video outputs for TV sets, composite color and monochrome monitors, and high-resolution RGB color monitors. Reportedly, the RGB output is analog, like the Atari ST's, so it's not compatible with RGB monitors designed for the Commodore 128 and IBM PC computers. Analog RGB allows more color intensity levels than IBM-type RGB.
- An expansion port that includes every line on the system bus for almost unlimited expansion capabilities. This could include coprocessors, such as an 8088/8086 board for IBM compatibility. Reportedly, the Amiga will be an "open system." That is, to help independent hardware and software designers access the full power of the computer, Commodore is said to be preparing extremely detailed documentation on all aspects of the Amiga for general release. One insider who has seen the preliminary documentation says it's so complete you could almost build the system from scratch using the information it contains.
- Seven-level direct memory access (DMA) controller. Along with the Amiga's many dedicated chips, this lets the machine perform several tasks simultaneously with


## ONLINE 㯖U.S.A.



Be anything you want on American PEOPLE/LINK, where people from across the country get together every night.

They are people with interests in sports, movies, music, games, and just meeting other people . . . people like you. Whatever your interests or fantasies, you'll find someone to share them with on PEOPLE/LINK.

See for yourself why so many men and women are getting together and partying online with us. Not screen after screen of boring data . . . just lots of fun and friendly people.

And our low, low rates won't turn your online dreams into nightmarish monthly charges. To
discover our affordable videotex entertainment, call or write us today.

PEOPLE/LINK . . . the network that says "Thank You."


American PEOPLE/LINK Arlington Ridge Office Center 3215 N. Frontage Road - Suite 1505 Arlington Heights, IL 60004
no apparent slowdown. It also simplifies things for programmers. An independent software developer who attended a recent Amiga symposium sponsored by Commodore in Monterey, California, told COMPUTE! that systems-level programming on the computer is so easy that "it's more like parameter-passing than programming. You just decide what you want to do-pull data off the disk, whatever-and pass the appropriate parameters to the operating system, and the OS passes them along to the DMA controller, and everything happens during the 68000's off-phase cycle so the machine doesn't slow down at all." (The programmer's symposium, incidentally, was open only to independent developers and was sealed off by armed guards. Those who attended had to sign a strict nondisclosure agreement.)

- Built-in printer drivers to dump the Amiga's bitmapped screens onto graphics printers, including color and inkjet printers.
- Four-voice sound chip with stereo output. The Amiga's custom sound chip routes two voices to each stereo channel for high-fidelity reproduction through external stereo systems. In addition, the sound chip is the most advanced in any personal computer, surpassing even the Commodore 64's SID chip. The Amiga can closely simulate a wide variety of musical instruments, and at least a dozen instrument sounds are built insuch as guitar, pipe organ, cymbals, drums, piano, and violin. Sound envelopes (attack-decay-sustainrelease) can be modified simply by pulling down a menu and making selections with the pointer.
- Digital sound sampling. At
this point, it's not clear whether this feature will be standard or optional. Even if it's optional, however, insiders say it will cost much less than anything similar now on the market (the least expensive high fidelity samplers now cost around $\$ 2,000$ ). Digital sound sampling lets you feed sound from an external source into a computer, convert it to digital format, and then play it back, modify the waveforms, or store it on disk. With this capability, programmers and musicians no longer have to spend hours trying to simulate a musical instrument or sound ef-fect-they can just feed the sound directly into the computer from a record player, tape deck, microphone, or instrument, and then manipulate it at will. In fact, some Amiga software developers are taking this approach to cut down development time.
- Built-in speech synthesis. The operating system includes a speech program with text-to-speech conversion. Since this is a standard feature that requires no extra hardware, you can expect many programs to take advantage of the Amiga's speech capabilities-including programs written by home users. COMPUTE! has heard the Amiga talk, and its pronunciation was more understandable than most speech synthesizers now available for personal computers.
- BASIC programming language. Unlike the Macintosh, the Amiga will come with a language for those who want to write their own programs, but it's unclear at this point if BASIC will be built into ROM or loaded from disk into RAM. Pascal and C compilers will be available soon after the computer's release. A 68000 assembler also
will be offered, but it may not be as popular as assemblers on the current generation of personal com-puters-the compilers are so fast that few programmers are using machine language. One software developer says he has yet to see a single program written for the Amiga in machine language.
- Hard disk option. Although Commodore is said to have no immediate plans for a hard disk drive, an independent company known for its IBM peripherals is rumored to be preparing a hard disk with 10 to 20 megabytes of storage. This would probably interface to the expansion port.

If you take the word of those who have worked with the Amiga, it is the most powerful personal computer ever assembled. In terms of performance, they say it's more than a match for any business-oriented machine now on the market, and has the advanced graphics and sound features demanded by home users as well. But how much will it cost?

At the Monterey symposium, Commodore reportedly told developers that the Amiga would be sold with an RGB monitor and some software for about $\$ 2,000$. Since then, however, Commodore has encountered some negative reaction to that figure. Many observers think a lower price is necessary to dramatically undercut the Macintosh and IBM PC, and also to compete with the Atari ST series for a larger share of the intermediatepriced market. At CES, rumor had the price ranging anywhere from $\$ 1,300$ to $\$ 1,900$, possibly without an RGB monitor.

Report From Summer CES Continues.
database manager (\$99.95); BatteryPak, a seven-function desktop accessory for the Macintosh (\$49.95); and Literature Challenge: Introduction to Shakespeare, an educational program for the Apple, Commodore 64, and IBM PC (\$29.95). In addition, Batteries Included announced a new line of integrated programs for the Atari ST, Commodore Amiga, and MS-DOS computers with GEM. Called the IS line, all the programs will have

Macintosh-like graphics in color and a number of powerful features. The first program, Portfolio, is for stock management and will be released for the IBM PC and Atari ST this fall ( $\$ 249.95$ for the IBM). Others in the series will be a word processor with built-in spelling checker, a spreadsheet and graphics package, and a database manager.

- Brøderbund Software of San Rafael, California announced three
new programs to work with The Print Shop, its popular printer utility. They are The Print Shop Graphics Library: Disk One, The Print Shop Graphics Library: Disk Two, and The Print Shop Companion. Other new programs are Bank Street Filer and Bank Street Mailer, sequels to the Bank Street Writer word processor; and Fantavision, a special-effects generator for the Apple that uses animation technology adapted from the movie industry.


# COMPUTE! Books Are More Than Fun \& Games 

They're also challenging. Informative. Full of valuable applications for your home and business. You'll find that our newest top-quality releases contain everything you need for successful word processing, programming, or investment management.

## SpeedScript: The Word Processor for the Atari

Charles Brannon, \$9.95, (Disk, \$12.95) ISBN 0-87455-003-3
SpeedScript, the most popular program ever published by COMPUTE! Publications, is a commercial-quality word processor for the Atari 400, 800, XL, and XE computers with a minimum of 24 K RAM. Included in this book are all the listings and documentation necessary to use Atari SpeedScript. In addition, we've included information and documentation about SpeedScript that have never been published before. For the price of the book, the user receives a commercialquality word processor-an exceptional software bargain. There is a disk available for an additional $\$ 12.95$ which includes programs in the book.



## Mapping the Atari, Revised

Ian Chadwick, \$16.95, ISBN 0-87455-004-1
This classic source book for users of the Atari 400 and 800 has been updated to include the 600/800XL and the new XE series Atari computers. This is the perfect supplement to the owner's manuals, and will prove valuable to both the novice and the expert. As with most COMPUTE! books, Mapping the Atari, Revised also contains useful appendices and indices.

## Investment Management with Your Personal Computer

 Richard C. Dorf, \$14.95, ISBN 0-87455-005-XCovering the best available investment software for the IBM PC and Apple lines of computers, this valuable guide discusses and evaluates the programs that can help you better manage your investments. This isn't a manual of investment strategies; instead Investment Management with Your Personal Computer introduces all the software you'll find vital. Capsule reviews are given for programs ranging from electronic spreadsheet aids and financial databases to portfolio managers and graphics creators. The most significant software is discussed in great detail and thoroughly evaluated.


For the best in home and office applications, you need COMPUTE! books.
Visit your local computer or book store for best-selling COMPUTE! books, or order directly from COMPUTE!.
Call toll-free 800-334-0868 (in NC 919-275-9809) for more information.

[^0]COMPUTEI Publications,Inc.abc

## FOR-NEXT Loops, Part 4

Over the past few columns, we've covered some of the useful techniques possible with the FORNEXT statement. Even if FOR-NEXT could do nothing else than what we've demonstrated, it would be indispensable. Fortunately, it can do still more-and all it takes is an optional keyword, STEP.

With STEP, you can construct "long-legged" loops and counters by varying the step size by which the counter variable is incremented. You can even make FOR-NEXT loops that count backward. For the sake of illustration, let's say you want to print out all the odd numbers less than 100. Without a FORNEXT loop, you could take this approach:
$10 X=1$
20 PRINT $X$
$30 X=X+2$
40 IF $X<100$ THEN 20

The alternative is a little shorter and easier to follow:

## 10 FOR $X=1$ TO 100 STEP 2 20 PRINT X <br> 30 NEXT $X$

Without the STEP option in the FOR statement at line 10 , this program would just print all the numbers from 1 to 100 because the counter variable $X$ would be incremented by one during each pass through the loop, as usual. STEP 2 simply tells the computer to increment the counter variable $X$ by two during each pass through the loop. That is, when the loop begins, $X$ equals 1. After the first pass, $X$ equals 3 . After the second pass, $X$ equals 5 , and so on.

## No Cause For Alarm

Interestingly, although the FOR statement in line 10 tells the computer to count from 1 to 100, the counter variable $X$ actually reaches 101. You can verify this by typing PRINT $X$ and pressing RETURN or

ENTER after the program finishes. The computer reports the final value of $X$ is 101 . But don't be alarmed-the computer isn't being disobedient. Although the final STEP 2 increases $X$ from 99 to 101, the computer still performs only 50 loops, since the upper limit specified in the FOR statement is 100 and we're stepping by twos. The program works the same if you change line 10 to FOR $X=1$ TO 99 STEP 2.

For even more flexibility, the STEP option lets you loop in steps of any increment, including fractions and negative numbers. All of the following FOR statements are valid:

FOR $X=1$ TO 1000 STEP 10
FOR $X=15$ TO 25 STEP 0.5
FOR $X=100$ TO 1 STEP -1
FOR $X=1$ TO 0 STEP -0.1
It may not be immediately apparent why you'd want to make such strange-looking loops. Mathematical operations are one typical application, but beyond that it's hard to generalize. This kind of loop is generally used to solve certain programming problems. For instance, to make a musical note decay on an Atari, you could gradually reduce the volume parameter of the SOUND statement with a backward loop (FOR X=15 TO 0 STEP -1 : SOUND $0,200,10, X$ : NEXT X). If the note decays too quickly, you could slow it down by reducing the volume by smaller steps (STEP -0.5 or STEP -0.2 ) rather than embedding a second delay loop.

As you write more programs and use FOR-NEXT loops more often, eventually it will come to you in a flash that a fractional- or backward-stepping loop is exactly the solution to your problem.

## BASIC Variations

FOR-NEXT statements don't follow
the same rules on all computers, so you might need to consult your BASIC manual. In general, Microsoft BASICs (built into Commodore computers, the Apple, IBM, and others) let you omit the variable name from the NEXT statement if you want to. Instead of entering NEXT X you can just type NEXT. This makes the loop run faster. You can also close nested loops in Microsoft BASIC with a statement such as NEXT $Z, Y, X$ instead of NEXT Z:NEXT Y:NEXT X or NEXT: NEXT:NEXT. (These options are not available in TI BASIC or Atari BASIC.)

Try to avoid jumping out of FOR-NEXT loops with GOTO and GOSUB statements. It's considered bad programming form, partly because it makes the program hard to follow. Besides that, a program that repeatedly exits loops with GOTO or GOSUB before the loops are finished can eventually cause some computers to crash with an out-ofmemory error or the like. A few versions of BASIC have a special statement that lets you exit a loop with GOTO or GOSUB without causing any problems. In Atari BASIC the statement is POP; it's not available in Microsoft BASIC.

Almost all BASICs require the counter variable in a FOR-NEXT loop to be an ordinary numeric variable; array variables and integer variables are not allowed. An exception is IBM BASIC, which does permit integer variables.

The complete 1541 enhancement system ...

## SI事R Ros <br> 14 <br> MAKES GREAT COFFEE!!

The 1541 is the slowest disk drive on planet earth. Even simple operations seem to take forever. Quickloaders and Fastloaders that software-patch the operating system are vulnerable to being knocked out of memory, rendering them totally useless. Even Flashier products that require permanent modifications to the 64 and 1541 can't compete with the blinding speed of STARDOS.

STARDOS accelerates every (yes, we said every) function of the 1541 disk drive.
Other fast loaders only load PRG files faster. STARDOS also speeds up SEQ, REL, USR and DIRECT ACCESS files. Everything including FORMAT, VERIFY, SCRATCH, VALIDATE, INITIALIZE and COPY are much faster. In addition STARDOS adds a vast array of easy to use commands and utilities all at the touch of a key.

A sampling of STARDOS features:

- Accesses ALL types of files up to $1,000 \%$ faster!
- Saves up to $300 \%$ faster than normal (with extended verity)
- DOES NOT CHANGE THE SPEED AT WHICH THE DRIVE MOTOR SPINS
- Makes your 1541 MORE RELIABLE and LESS PRONE TO BREAK DOWN or OVERHEAT!
- STARDOS is fully expandable for multiple fast disk drives
- Easy ( 5 minute) plug in installation. User friendly manual
- $100 \%$ compatible with software and serial bus peripherals
- Adds years of life to your disks and drive in reduced wear
- Cures a number of bugs in the Commodore 64 and 1541 disk drive including :
- The damaging 'Head Knock' that can mis-align your 1541
- The @: Save with replace bug!!
- The Editor lock-up bug
- Harness the full power of your disk drive with the built in DOS wedge
- Lock/unlock files and protect/unprotect disks from the keyboard
- Powerful sector editor allows direct viewing of diskette
- Upgrades computer and drive to the latest Commodore specifications
- Instant access to the built in mini-wordprocessor for short notes and memos
- Built in copier copies all file types (even relative) easily and effectively
- Built in disk duplicator copies an entire diskette in less than 3 minutes
- Fully expanded machine language monitor, always on line
- Quality hardware. Full 120 day repair or replace warranty
- Satisfaction guaranteed or money back-no questions asked
- (Oh, by the way, we lied, STARDOS makes LOUSY COFFEE)

Simply the best. \$74.95
[Take advantage of our introduction special at \$64.95]

| $M$ | $I$ | $K$ | $E$ |  | $S$ |  | $C$ | $O$ | $M$ | $M$ | $O$ | $D$ | $O$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | R $E$ - 6.4

- $\$ 64.95+3.00$ shipping
- Calif. residents add $6 \%$ sales tax
- $\$ 64.95+4.00$ COD orders - VISA or Mastercard accepted
- Shipping out of USA $\$ 6.00$ Please allow $4-6$ weeks for delivery.


## Compilers, Interpreters, And Flow: Part 2

Last month I argued that one of the reasons Logo isn't used for serious applications programming is because it's not generally available as a compiler. I'm not suggesting that programmers shouldn't have inter-preters-they should. However, I am suggesting that the ideal programming environment might include an interpreter for writing and testing programs, and a compiler so the completed (and mostly debugged) programs can execute much faster.

There are many fine Logo interpreters on the market, but-as this is written-only one Logo compiler: ExperLogo from Expertelligence (for the Apple Macintosh). To illustrate the difference between these two Logo environments, let's examine a program that uses recursion to create a fractal "sponge." (If you're interested in programining fractals, by the way, you might want to explore the subject further in two of my books, Discovering Apple Logo and Beyond Turtle Graphics, both published by Addison-Wesley.)

Here's how the program is written with an interpreter, Apple Logo II, running on a 128 K Apple IIe or IIc:

```
to sponge:size:limit
if:size <:limit [forward:size stop]
sponge:size/3:limit
left }6
sponge:size/3:limit
left }6
sponge:size/3:limit
right }12
sponge:size/3:limit
right }12
sponge:size/3:limit
left }6
sponge:size/3:limit
left }6
sponge:size/3:limit
end
```

Once this procedure has been entered, it can be executed by enter-
ing its name with the appropriate values chosen for the variables. For example, the basic motif for the curve can be seen by entering:
right 90
sponge 8181


To see a more detailed level of this curve, we could clear the screen and enter:
right 90
sponge 813


With the Logo interpreter, this picture takes 223 seconds to complete. However, as soon as the program is written it can be executed; there is no time delay before the program starts to run.

## Interactive Rhythms

To write this program in ExperLogo, you enter the same source code into an edit window on the Macintosh screen. Then the code is selected and compiled. The compilation time for this program is 19 seconds on a 128 K Macintosh (faster on a Fat Mac with 512 K ).

Once the program is compiled, it can be executed with the commands shown above. The compiled program draws the picture in 7 sec-onds-more than 30 times faster than the interpreted Logo. Of course, the compiled program executes faster partly because it's running on a $16 / 32$-bit computer
rather than on an 8 -bit computer; but, as users of Macintosh BASIC will attest, interpreters can run slowly even on the Macintosh.

Is the speed gain important? For small programs, it may not be. But humans are funny creatures. We have certain rhythms in our interactions with each other and with our machines. If our technology is not operating at our pace, we become frustrated. For example, even though most photocopy machines operate pretty quickly, the perceived difference between a copier that takes 10 seconds for a copy and one that takes only 2 seconds is quite large. Those 8 seconds are just long enough to destroy the sense of flow.

In the case of computer programs we use every day, this sense of flow is even more important. When experimenting with graphic images such as those shown above, the sense of interactivity-of being able to tinker with the curves-is lost when each picture can take several minutes to create.

The Logo compiler from Expertelligence is most welcome, since it allows programmers to write commercially useful software with a powerful language-a language that in its interpreted form is often perceived as just a tool for children to draw pretty pictures.

Next month, I'll show that just as a compiler has made Logo a much more useful language, an interpreter is having the same effect on a language for which compilers are the norm-Pascal.

Thornburg welcomes letters from readers, but regrets that he cannot always provide personal answers. Correspondence should be sent in care of COMPUTE!.


## STARPOINT SOFTWARE proudly presents

## $\square$ ए $\square$ 口 $\square$ <br> Tin+

[say Icepick], a revolutionary new concept in software de-protection for the Commodore 64. ISEPIC is not a disk duplication system, but an extraordinary hardware/software combination that actually bypasses any disk protection scheme. ISEPIC captures and saves the protected program as it runs in the 64's memory, this "snapshot' becomes accessible to the user for complete inspection and alteration. From this image, ISEPIC can automatically create a compact, auto-booting, fast-loading file which is completely unprotected and self contained.
is Copies ALL memory-resident software
ش ISEPIC'd programs load many times faster than originals
\& ISEPIC is invisible to software-cannot be defeated
it Eliminates drive "knock" due to antique protection schemes-adds years of life to your drive
\& Automatically "cracks' protected programs into single, auto-booting, superfast loading files
\& Place multiple programs on a single diskette

* Create auto-booting, fast-loading versions of your own programs
* Cracked programs are completely selfcontained and run independently of the ISEPIC adapter
خ Copies software with a flick of a switch
\& ISEPIC comes complete and ready-torun, just plug into expansion port
$\hbar$ Programs cracked by ISEPIC may be used on MSD or 4040 drives as well as hard disks regardless of original protection schemes

When ordering by mail:

> * $\$ 64.95+3.00$ shipping
> * $\$ 64.95+4.00$ COD orders
> * Calif. residents add $6 \%$ sales tax
> * VISA or Mastercard accepted
> Shipping out of USA $\$ 6.00$
> Please allow 4-6 weeks for delivery.

## Buying The Right Educational Software

What types of educational software are people buying? What kind of software do they need?

In the opinion of many educators, the most important use of the computer as a learning tool lies in improving students' thinking skills through the use of programming languages like Logo; simulations and builder kits like The Whatsit Corporation (Sunburst) and Operation: Frog (Scholastic); microworlds like Rocky's Boots and Robot Odyssey I (The Learning Company); and problem-solving software like The Pond, SemCalc, The Factory, and Geometric Supposer (Sunburst).

But the sales of these products are dwarfed by the sales of drill and practice programs and learning games. A quick glance at a recent Billboard chart of the ten bestselling educational packages shows that eight of them are drill and practice programs and the remaining two are learning games. Of the drill and practice programs, two teach how to type, three teach basic math skills, two help students practice for the SAT college-entry exam, and one teaches basic vocabulary and spelling skills.

A look at TESS (The Educational Software Selector), published by the Educational Products Information Exchange and the Consumers Union, shows the same dominance of drill and practice programs. Of the 7,000 programs listed in TESS, almost 70 percent are drill and practice programs, and only 8.3 percent are simulation and problemsolving programs. (For more information about TESS, write to EPIE, P.O. Box 839, Water Mill, NY 11976.)

Most experts in educational computing have been critical of drill and practice programs for years. And most experts agree that
problem-solving and simulation software is the most challenging and interesting software for anyone learning on a computer. If this is true, why are companies producing so much drill and practice software? And, more importantly, why do people prefer it?

## Wary Adults

The answer is that most parents (and many teachers) are not ready for new kinds of software that teach new skills in new, unfamiliar ways. They don't understand how the programs work or what they're supposed to teach, or why it's important, and they don't see where the programs fit into their children's learning. And since they don't see a need for the programs, they don't buy them.

This is a natural reaction. For most people, computers are still a strange, almost alien, new medium. Many parents are still uncomfortable having a computer in their home. And many teachers, too, feel privately fearful of computers. They see the computer as a threata means to automate them out of a job. The more the computer's role in the classroom grows, the more they see their own role being eroded.

In addition, problem-solving and thinking-skill software is an unfamiliar, new application of computers. We have a new medium (computers) trying to teach new concepts (logic and thinking skills) using new methods (microworlds, simulations, etc.). This is too much novelty for the average consum-er-whether that consumer is a parent or a school system. As a result, most consumers are buying drill and practice programs and learning games because at least this way they see the computer teaching practical, necessary, and familiar skills-using a nonthreatening, understandable approach. And in the
classroom, since the skills are familiar, the programs that teach them are more easily integrated into a teacher's lesson plan and curriculum. A program that teaches a child some spelling words can slip effortlessly into a curriculum, but what does a teacher do with a program that teaches a child how to think?

For the present, most parents will be buying and using drill and practice software and learning games, and ignoring problemsolving and simulation software. Does this mean that companies should stop producing these more challenging, yet less successful programs? Hardly. Instead, educators and software companies need to launch a major effort to communicate to parents and teachers the importance of the new kinds of software. To do this, software companies must demonstrate to parents and teachers why learning these skills is important, and how the software fits into their children's learning curriculum.

# For Commodore owners, the latest collections from COMPUTE! Books 

## COMPUTEI's Commodore Collection, Volume 1 Twenty-eight original programs for the VIC and 64 Edited <br> The Commodore Collection, an anthology of 28 previously unpublished programs for the VIC-20 and Commodore 64 , continues the COMPUTE! tradition of practical programs in easy-to-use form. Includes exciting games, stimulating educational programs, valuable utilities, and useful applications to make your Commodore computer an exciting part of every day.

\$12.95 ISBN 0-942386-55-8


## COMPUTEI's Commodore Collection, Volume 2 Programs for the VIC and 64

Edited
Exciting games, sophisticated applications, versatile educational routines, and helpful programming aids for the VIC-20 and Commodore 64 highlight this second volume in COMPUTE!'s Commodore Collection series. Included are some of the best articles and programs from recent issues of COMPUTE! and COMPUTEI's Gazette, as well as many programs published here for the first time. Designed for Commodore computer users of all levels, it's a book that every VIC or 64 owner will want to have.
\$12.95 ISBN 0-942386-70-1

## To charge your order, call toll free 800-334-0868 or send in this coupon with your payment to COMPUTEI Books, P.O. Box 5058, Greensboro, NC 27403.

Please add $\$ 2.00$ shipping and handling per copy ordered.
$\square$ Payment enclosed (check or money order)
$\square$ Charge: $\square$ Visa $\square$ MasterCard $\square$ American Express
Account No. $\qquad$ Exp. Date $\qquad$
Signature
Name


Address $\qquad$
City $\qquad$ State $\qquad$ -
_ copies of COMPUTEI's Commodore Collection, Volume 1 @ \$12.95 ea. _copies of COMPUTE!'s Commodore Collection, Volume 2 @ \$12.95 ea. Shipping \& handling, \$2.00/book Total payment
－THE BEST PRICES ！
－Next day shipping on all in stock items．
Free easy access order inquiry．
Orders from outside
Pennsylvania and Nevada save state sales tax
Free technicial support with our factory trained technical staff
There is no limit and no deposit on C．O．D．orders
There＇s no extra charge for using your credit card．Your card is not charged until we ship．
No waiting period for cashiers checks．
We accept purchase orders from qualified corporations．Subject to approval．
Educational discounts available to qualified institutions．
FREE CATALOG MEMBERSHIP．

## ORDER LINE

1－800－233－8950 In PA 1－800－242－4215

## CUSTOMER SERVICE

\＆TECH SUPPORT
1－717－327－1450 Dept．A208

## MAILING ADDRESS

EAST
Dept．A208， 477 E．Third St． Williamsport，PA 17701 WEST
Dept．A208，P．O．Box 6689
Stateline，NV 89449


Add $3 \%$ ，minimum $\$ 5.00$ shipping and handling on all orders．Larger shipments may require additional charges．
All items subject to availability and price change．
Returned shipments may be sub－ ject to a restocking fee．

## CaNADIAN ORDERS

1－800－268－3974 Ontario／Quebec
1－800－268－4559
Other Provinces
1－416－828－0866 In Toronto

## TELEX：06－218960

2505 Dunwin Drive，
Mississauga，Ontario Canada L5L1T1
All prices shown are for U．S．A． orders．
Call The Canadian Office for Canadian prices．

## APPLE

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |

## MacIntosh Software

Lotus Jazz
CALL
Microsoft Excel．．．
Microsoft Business Pak．．．．．．$\$ 375.00$
Living Videotext
ThinkTank 512.
．$\$ 159.00$
Manhatten Ready，Set，Go．．．．．$\$ 79.99$
Creighton Development
Mac Spell．
．．$\$ 69.99$
Monogram Dollars \＆Sense．．．．\＄99．99
Peachtree Back to Basics－GL $\$ 109.00$
PFS File \＆Report（New Version）$\$ 129.00$
silicon Beach Airborn．．．．．．．．．．．．$\$ 25.99$

## $爪$ atari

130XE（128K）．． ．CALL 520ST（512K）． ．．．．CALL

## ATARI 600XL CLOSEOUT

 \＄49．99WHILE SUPPLIES LAST
$800 \times \mathrm{L} 64 \mathrm{~K}$ ．
850 Interface．．．
．．CALL
1010 Recorder．
1020 Color Printer
inter．．．．．．．．．
1027 Letter Quality Printer．．．．．． Letter Qu Pit Piner．．．．．．．S269．99 1030 Direct Connect Modem．．．．．$\$ 59.99$ 1050 Disk Drive．．．
Touch Tablet．．．．．
．$\$ 179.99$
7097 Atari Logo．．．．．．．．．．．．
4018 Pilot（Home）．．．．．．．．．．．．．．．．．．．．．．．$\$ 57.99$
5049 VisiCalc．．
4011 Star Raiders．
4022 PacMan．．．
$\$ 49.99$

8036 Atari Writer． S16．99

## BOARDS FOR ATARI

Axion 32K．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 39.99$
Axion 48 K （400）．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 69.99$
Axion 128 K ．．． \＄269．99
Microbits 64K（600）．．．．．．．．．．．．．．．．．．$\$ 109.00$ Bit 3 Full View 80．．．．．．．．．．．．．．．．．．．．．．$\$ 229.00$

## GEcommodore

## NEW

Commodore 128，LCD．．CALL SX－64 Portable． $\qquad$ CALL
Commodore Plus
$\$ 199.00$
CBM 64 ．
C1541 Disk Drive．
C1530 Datasette．
M－801 Dot Matrix Printer
M－802 Dot Matrix／Serial．
MCS 803 Dot Matrix
ix．．．．．．．．．．．．．． C1660 Auto Modem．．．．
DPS 1101 Daisy Printe ．$\$ 59.99$

Professional Software
Fleet System II w／Spell－．．．．．．．．．．．$\$ 49.99$ Trivia Fever． $\$ 29.99$ Word Pro 4 Plus／5 Plus each．．．$\$ 239.02$ Info Pro．．
Administrator． ．$\$ 179.00$

Power．
\＄69．99
PS：
File（64）．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 59.99$
Report（64）．．．．．．．．．．．．．．．．．

## Precision Software

Superbase 64．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 54.99$

## batieries Pincudes

PaperClip w／Spell Pack．．．．．．．．．．．．．$\$ 79.99$ The Consultant DBMS．．．．．．．．．．．．．．．$\$ 69.99$

80 Col Display
$\$ 139.00$

| （hp） $\begin{aligned} & \text { HEWLETT } \\ & \text { PACKARD }\end{aligned}$ |
| :---: |
| 41CV．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 189.99$ |
| 41CX ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 249.99$ |
| HP 71B．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 419.99$ |
| HP 11C．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 62.99$ |
| HP 12C／15C／16C．．．．．．．．．．．．．．．．．．．．$\$ 89.99$ |
| HP 75D．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\＄999．99 |
| HPIL Module．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 98.99$ |
| HPIL Cassette or Printer．．．．．．．．．．$\$ 359.99$ |
| Card Reader．．．．．．．．．．．．．．．．．．．．．．．．．．\＄143．99 |
| Extended Function Module．．．．．．．．S63．99 |
| Time Module．．．．．．．．．．．．．．．．．．．．．．．．．．．S63．99 |
| We stock the full line of HP calculator products |

## 

Volksmodem XII．
Mark VII（Auto Ans／Auto Dial）．．．．\＄99．99
Mark XII（1200 Baud）．．．．．．．．．．．．．．$\$ 259.00$
C）Hayes
Smartmodem 300．．．
Smartmodem 1200．．
$\$ 145.00$

Smartmodem 2400
Micromodem Ile．．．．．．．．．．．．．．．．．．．．．．．．$\$ 249.00$
Smart Com II．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 89.99$
Chronograph．
Transet 1000 ．
AST

PC－8401．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
PC－8201 Portable Computer．．．．$\$ 289.00$
PC－8231 Disk Drive．．
\＄599．00
PC－8221A Thermal Printers．．．．．．$\$ 149.00$
PC－8281A Data Recorder．．．．．．．．．．．$\$ 99.99$
PC－8201．06 8K RAM Chips．．．．．．$\$ 105.00$

| SHARP |  |
| :---: | :---: |
| PC－1350， | ．．$\$ 159.99$ |
| PC－1261． | \＄159．99 |
| PC－1260． | \＄109．99 |
| PC－1500A | \＄165．99 |
| PC－1250A | \＄88．99 |
| CE－125 P | Printer／Cassette．．．．．．．．．．$\$ 128.99$ |
| CE－150 | Color Printer Cassette．\＄171．99 |
| CE－161 1 | 6K RAM．．．．．．．．．．．．．．．．．．．$\$ 134.99$ |

DRIVES
HARD
ALOY
PC Stor．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

## 暔Associats

5 meg Removable／Internal．．．．．$\$ 1399.00$
10 meg Fixed／Internal．．．．．．．．．．．．$\$ 1249.00$
15 meg 5 Removable／10 Fixed $\$ 2149.00$
25 meg 5 Removable／20 Fixed\＄2499．00

## C．$M E G A$

10 Meg Bernoulli Box．．．．．．．．．．．．$\$ 2099.00$ 20 meg Bernoulli Box．．．．．．．．．．．．．$\$ 2599.00$ 5 meg＇MacNoulli＇
$\$ 1599.00$



SD1 C－64 Single．．．
SD2 C－64 Dual．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 469.00$
TMndan
320K $5^{1 / 4} \mathbf{4}^{\prime \prime}$（PC）．．．．．．．．．．．．．．．
$\$ 119.00$


## ACCESSORIES

## KEYTRONICS

KB5150，5151，KB5152B，KB5153CALL
5151 Jr．， 5149 Jr．．．．．．．．．．．．．．．．．．CALL
MEMORY CHIPS
4164 RAM Chips．．．．．．．．．．．．．．．．．．．ea．）$\$ 1.99$


Pronounce
Speech Input System

Reach 1200 Baud Half Card．
ח MICROBITS
MPP－1000E AD／AA（Atari）．
$\$ 79.99$
MPP－1064 AD／AA（C－64）．
．$\$ 69.99$
Smart Novation 汤
J－Cat．
$\$ 319.00$
．$\$ 99.99$
\＄369．00
．．．．CALL
212 AutoCat II．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 499.00$
Apple Cat II
212 Apple Cat II．
Apple Cat 212 Upgrade．．．．．．．$\$ 229.00$
Macmodem．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 319.00$

Quadmodem II
300／1200．．
\＄339．00
300／1200／2400．

maxell．

| 3½＂SS／DD．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 39.99$ |  |
| :---: | :---: |
|  | 31／2＂DS／DD．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 54.99$ |
|  | 51⁄4＂MD－1 w／Hardcase ．．．．．．．．．．．$\$ 17.9$ |
|  | 51／4＂MD－2 w／Hardcase ．．．．．．．．．．．$\$ 23.9$ |
|  | 51／4＂MD－2－HD for AT．．．．．．．．．．．．．．．$\$ 44.9$ |
| I／Verbatim． |  |
|  | 51／4＂SS／DD．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 21.9$ |
|  | 51／4＂DS／DD．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 29.9$ |
|  | Disk Analyzer．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 24.9$ |
| Dennison |  |
|  | Elephant 51／4＂SS／SD．．．．．．．．．．．．．．．$\$ 13$. |
|  | Elephant 51／4＂SS／DD．．．．．．．．．．．．．．．$\$ 15$. |
|  | Elephant 51⁄4＂DS／DD．．．．．．．．．．．．．．．$\$ 16.9$ |
|  | Elephant EMSP 51⁄4＂．．．．．．．．．．．．．．．． $\mathbf{\$ 2 4 .}$ |
|  | － 3 |

## DISK HOLDERS

INNOVATIVE CONCEPTS
Flip－in－File 10.
Flip－in－File 50
Flip－in－File 50 w／lock．
Flip－in－File（400／800 ROM）
$\$ 17.99$
$\$ 24.99$
AMARAY
50 Disk Tub $51 / 4$
30 Disk Tub $31 / 2$
．$\$ 9.99$


## AMロEK

$\$ 129.00$

## CND

mber/Green Composite.....S99.99 Amber/Green TTL......(ea.) \$119.00

 X-9E Enhanced XX-12 12" RGB.. R-12 Hi-Res. R-12 P Enhanced.

## (18)KAN

15 12" Green Mono..


22 Amber TTL....
00 Med-Res RG
20 Hi -Res RGB (IBM) 40 Ultra Hi-Res RGB. QUADRAM
400 Quadchrome I..................... $\$ 479.00$
410 Quachrome II............... $\$ 429.00$
420 Amberchrome............... $\$ 1799.00$
500 Quad Screen............ $\$ 1499$

## INTERFACES

-IFPRRAGTICAL
raphcard.
eriall Card
licrobuffer II +
$\$ 79.99$
licrobuffer 32K.............................. $\$ 189.00$

## QUADRAM

|  |  |
| :---: | :---: |
| ..from \$139.00 | KX1090................................ \$199 |
| pson)...............from \$79.99 | KX1091 |
|  | KX1092............................... $\$ 409.00$ |
| range micro | KX1093............................... $\$ 599.00$ |
|  | QUADRAM |
| ler 16K + (Apple)........... $\$ 159.00$ | Quadjet............................... $\$ 399.00$ |
| DIGITAL DEVICES | fill SIER-REED |
| ce (Atari)....................... $\$ 49.99$ |  |
| A (Atari)..................... $\$ 54.99$ | 500 Letter Quality.................. $\$ 279$. |
| Buffer (Atari)................. $\$ 74.99$ | 550 Letter Quality..................... $\$ 419.0$ |
| -Call Interface (Atari).............. $\$ 39.99$ | 770 Letter Quality................... $\$ 759.0$ |
| -Print C (C64)....................... $\$ 4.9$ |  |
| 6 Print Buffer..................... $\$ 74.9$ |  |
|  | SB/SD/SG/SR Series..................CALL |
| S | Powertype Letter Quality............CAL |
| 50 Parallel (Atari)............. $\$ 79.99$ |  |
| 150 Parallel (Atari).......... $\$ 69.99$ | TOSHIBA |
| (Atari 1200XL)........ $\$ 69.99$ | 1340 (80 column)................... $\$ 599.00$ |
| Stuffer 64K Print Buffer...\$109.00 | P351 (132 column)................ $\$ 1299$. |

$\qquad$
169.00
$\$ 189.00$
84, 182, 192, 193, 2410...............CALL
Okimate 10 (Specify C64/Atari)\$199.00
Okimate 20 (IBM).

## OLYMPIA

Needlepoint Dot Matrix............ $\$ 299.00$ Compact RO. $\$ 339.00$ Compact 2.. \$369.00

## Panasonic

Kx1090.................................. $\$ 199.00$
KX1092.................................. $\$ 409.00$
QUADRAM
Quadjet......... $\$ 399.00$
. $\$ 139.00$ . $\$ 169.00$ . $\$ 239.00$ $\$ 389.00$ . $\$ 399.00$ $\$ 499.00$ .$\$ 579.00$

Configured to your specification. Call for Best Price! IBM-PC, IBM-PC II, IBM-XT, IBM-AT
$\qquad$ Elite 5 Letter Quality Elite 5 C64 Interface.
Penman 3-pen.

## CITIZEN

MSP-10 (80 col.)
MSP-15 (132 col.)
MSP-20 ( 80 col .).
MSP-25 (132 col
C.ITOH

Prowriter 7500..
Prowriter 8510P
Prowriter 8510 NLQ
Prowriter 1550P.
F10-40P Starwriter
F10-55 Printmaster
Prowriter 8510-NLQ
. $\$ 189.00$ . $\$ 469.00$ . $\$ 519.00$ . $\$ 469.00$ . 5559.00 . $\$ 599.00$ . $\$ 649.00$
. $\$ 119.00$ . $\$ 119.00$ .. $\$ 139.00$ .. $\$ 149.00$ . $\$ 299.00$ . $\$ 429.00$ .. $\$ 589.00$ . $\$ 479.00$ 429.00 79.00 $\$ 1499.00$

## $\$ 14900$

 . 00 $\$ 279.00$ $\$ 429.00$ . $\$ 459.00$ CALILazer LP.300 Coronc
$\overline{\text { DIABLO }}$
D25 Daisywheel............
$\$ 599.00$
630-109 Daisywheel.
\$1749.00
D801F Daisywheel.

> dosisywriter
2000.
$\$ 749.00$

## EPSON

RX-80, FX-80 + , LX-80, JX-80.....CALL FX-100 + , RX-100, LQ1500..........CALL
Homewriter 10............................CALL
NEW! LX-90, SQ-2000, DX10, DX20, HS-80.

## 

6000 Letter Quality.
CALL
6100 Letter Quality.
CALL
6300 Letter Quality.
-

8027 Transportable. $\$ 299.00$
2000 Series... . $\$ 699.00$
3000 Series.. $\$ 1099.00$
8000 Series... $\$ 1499.00$
ELF 360 ..
. $\$ 449.00$

## OKIDATA

SOFTWARE FOR IBM
QIALPHA
Electronic Desk.


IBM PC SYSTEMS

Enable..........................

| AP/AR/GLINV/OE $\qquad$ (ea). $\$ 295.00$ |
| :---: |
| Supercalc III.......................... $\$ 195.00$ |
| EasyWriter II System............... $\$ 195.00$ |
| Super Project........................ $\$ 195.00$ |
| SI |
|  |
| SSI5oftware |
| ord Perfect........................ $\mathbf{.} 239.00$ |
| symapse |
| File Manager (IBM)................. $\$ 39.99$ |
| thoughtware |
| Trigger................................\$2 |
| Sell, Sell, Sell |
| Training............................S299.00 |
| Application......................... $\$ 179.0$ |

2 IENTH

AST
Six Pack Plus.
Mega Plus II...
I/O Plus II...
Advantage-AT
Graph Pak
Monograph Plus.
Preview Mono...
PC Net Cards.
5251/11 On-line.
5251/12 Remote................................. $\$ 7999.00$
3780 Emulation Card............... $\$ 639.00$
BSC Bisync.
deg
IRMA 3270
IRMA Print
$\$ 879.00$
EaGนE
Mono Card........(Closeout)........ $\$ 99.99$
Color Card (Graphics Edge)..... $\$ 299.00$ Magic Card.
$\$ 199.00$
Graphics...
Color.......
HERCTLLE
Color..................................
IDEAmax - ZPR, 64K, C, S, P. $\$ 229.00$ IDEAmini - YPR, C, S, P.......... $\$ 189.00$ IDEAminimax - MPR 128K........ $\$ 229.00$
IDEAshare Software.............. $\$ 219.00$

MYLEX
The Chairman........................ $\$ 489.00$
Modular Graphics Card............. $\$ 274.00$
Multi Display Card...........................89.00
Five Pack C. S................

|  |
| :---: |
| Write/Graph/File/Plan ..........(ea). $\$ 79.99$ |
| Report.................................. $\$ 74.99$ |
| Proof.................................... 55 |
|  |

## Professional Software

PC Plus/The Boss.................... $\$ 249.00$
SOFTWARE GROUP

PC-151-21 Single Desktop PC-151-52 Dual Desktop.. PC-151-53 10 meg Desktop. PC-161-21 Single Portable. PC-161-52 Dual Portable. Z-200 (AT)..
171 (Portable) 138 (Transportable) 148 (DeskTop)....

## corona

550-2 Single Drive
MBC 555-2 Dual Drive.
MBC 775 Portable.
MBC 51110 meg .
MBC 675 Portable.
NBC 880 Desktop.

## MULTIFUNCTION CARDS

## PPC400 Dual Portable......

 PPCXT 10 meg Portable . 1799.00 . 23399.00 . 1999.00 \$699.00 $\$ 969.00$ 799.00 CALLALL
CALL

Appicai

## Program Your Own EPROMS

## $\rightarrow$ VIC 20 C 64 $\$ 99.50$

PLUGS INTO USER PORT. NOTHING ELSE NEEDED. EASY TO USE. VERSATILE.

- Read or Program. One byte or 32K bytes!
OR Use like a disk drive. LOAD, SAVE, GET, INPUT, PRINT, CMD, OPEN, CLOSE-EPROM FILES!
Our software lets you use familiar BASIC commands to create, modify, scratch files on readily available EPROM chips. Adds a new dimension to your computing capability. Works with most ML Monitors too.
- Make Auto-Start Cartridges of your programs.
- The promenade ${ }^{\text {tw }} \mathrm{C} 1$ gives you 4 programming voltages, 2 EPROM supply voltages, 3 intelligent programming algorithms, 15 bit chip addressing, 3 LED's and NO switches. Your computer controls everything from software!
Textool socket. Anti-static aluminum housing.
- EPROMS, cartridge PC boards, etc. at extra charge.
- Some EPROM types you can use with the promenade ${ }^{\text {ww }}$



## Call Toll Free: 800-421-7731

n California: 800-421-7748



JASON-RANHEIM
580 Parrott St., San Jose, CA 95112

## SwiftCalc

 spreadsheet superiority!

A powerful, easy-to-use electronic spreadsheet for home and small business use

For
Commodore 64
and
IBM
personal
computers

444 Lake Cook Rd. Deerfield, II. 60015 1-800-323-9755


More power for your dollar.


[^1]
## SIGs: Behind The Scenes

It appears that 1985 is rapidly becoming a banner year for electronic Special Interest Groups (SIGs). Unfortunately, rapid growth is not without its problems.

Electronic SIGs (also known as discussion forums) are like computerized clubs where people with a common interest get together online to exchange information, ideas, comments, complaints, and public domain computer programs. Usually they are operated by commercial information services such as CompuServe. Besides computeroriented SIGs, there are groups for doctors, lawyers, educators, and other professionals, not to mention enthusiasts of travel, cooking, literature, rock ' $n$ ' roll, politics, human sexuality, skiing, and ham radio. There are SIGs for every taste, and new ones are added every day.

SIGs are usually divided into three areas. The most active area is a message system subdivided into several sections by topic where users can read and leave messages. The oldest messages are overwritten when a new message is added, so each message tends to have a life of a week or less.

Each topic section also has a file access database where important messages may be stored more permanently as text files, and where users leave free copies of public domain software.

Finally, each SIG also has a conference area so online users can exchange messages in an immediate mode. Everything you type appears on the screens of others participating in the conference.

## Online Bucks

SIGs generate extra income for information services because they encourage more online usage. But how valuable are SIGs to an information service's bottom line?

Frankly, most SIGs generate only a modest amount of revenue, and some don't break even. There are, however, a significant number of SIGs that are monstrous hits, largely due to the work of their sysops (system operators). In fact, each of the top SIGs generates well over a million dollars a year! That can mean big bucks for the head sysop. It's not uncommon to find the sysop (or company sponsoring the SIG) pulling down at least 5 percent of the gross- $\$ 50,000$ a year or more. The assistant sysops generally work for "fame and glory" and get free time on the SIG for their efforts.

Although SIGs used to be the sole province of CompuServe, the revenues that they've been pulling in lately have prompted Delphi, The Source, and other services to get into the act. And the competition is just beginning to heat up. The lure of substantial amounts of SIG-generated money can do funny things to people.

For example, the entire staff of the Commodore SIG on one service recently jumped ship and set up shop with a competitor. The defection wasn't a secret-the sysops used the SIG message base to let members know where they had gone. And within the last year, the head sysop of another popular SIG had to contend with a palace coup staged by his assistant sysops. After the smoke cleared, there were two SIGs instead of one-a SIG headed by the original sysop and another by the rebels. Keeping the SIG peace might soon be a job for the United Nations.

Fortunately, most SIGs are very well run and perform a valuable function, acting as information clearinghouses. But as useful as they may be, there's no point in paying through the nose to enjoy the benefits of regular involvement
in a SIG. Here are some general tips that can help you save money when participating in a SIG.

## Be Selective

Don't try to read every new item in the message area. Many of the more popular SIGs can turn over a thousand messages or more in three or four days. Pick one or two sections with topics that appeal to you and stick with them.

Many SIGs let you read streams of messages without pausing for a response from you between items. To take full advantage of this feature, download the messages you want and read them offline. If you wish to reply to a message or leave a new one of your own, write your text offline as well; you can send the entire message in a matter of seconds rather than pecking away online. (See last month's column for hints on this technique.)

Unless you have a burning question that can't be answered by the folks who access the message section, pass up regularly attending special online conferences. Complete transcripts of the conferences are usually available in the file access areas shortly afterward. Given the speed that most people type, the text of a two-hour conference can usually be downloaded in about five minutes. If you can't resist conferences, don't bother to sign on at 1200 or 2400 bps if the service charges hourly premiums for these higher speeds. Ol' 300 baud is just fine for conferences and will keep the hourly rate you pay at a minimum.

Finally, don't ignore using the public domain program library of your local computer user group as an alternative to downloading files from SIGs. An entire diskful of programs from a user group usually costs no more than an hour of time on a SIG.

## Atari Input/Output

Much of what I'm about to discuss this month has appeared in this column before. And the bulk of this information can also be found in the Atari Technical Reference Man-ual-presuming you can read "techlish." But this intro is necessary so we can start talking about the meat of our subject next month.

Still with me? Let's go. Atari's operating system (OS)-which, like the OS in any eight-bit computer, takes up the bulk of Read Only Memory (ROM)-is really a thing of beauty. In fact, it may be the only consistent OS to be found in any microcomputer, short of those sporting UNIX or its derivatives. CP/M and MS-DOS are such kludges that most commercial programs bypass the OS. (That's why there are so many "almost PCcompatibles.") The Commodore 64's operating system comes close, but its disk input/output is difficult at best. And Apple's ProDOS manual states that "users desiring to perform I/O to devices other than the disk drive are on their own!"

Atari users, on the other hand, enjoy a system with such complete support that, for most programs, all necessary input/output operations can be executed by calling a single subroutine! That subroutine is called, appropriately, Central Input/Output (CIO). By calling CIO with the proper values in certain memory locations and the proper pointer in the 6502's $X$ register, your programs can perform such diverse operations as formatting a disk, drawing a line on the graphics screen, fetching a keystroke from the keyboard, sending output to the printer, or reading 25,000 bytes from a disk file.

Yet, CIO is invisible to most Atari users. For example, many of the capabilities which magazine and newsletter articles attribute to

BASIC are not part of BASIC at all. None of the graphics (including the so-called BASIC graphics modes) in Atari BASIC are actually performed by BASIC. Instead, BASIC simply translates the graphics command into a call to CIO. Atari developed this system in 1978, and it wasn't until the Macintosh appeared that such a revolutionary concept was repeated in a popular computer.

Generally, you have to become a machine language programmer to appreciate and use all the features of CIO. So why read any of this, then? Because calls to CIO can't perform every input/output task possible on Atari computers. What can't CIO do? First, let's take a glance at what it can do.

## Calling ClO

When CIO is called by a program, it expects the $X$ register to contain a pointer to an Input/Output Control Block (IOCB). IOCBs are blocks of memory 16 bytes long which control CIO functions. The pointer value for the $X$ register is easily calculated-it's actually the BASIC file number (as in OPEN \#1,4, $0,{ }^{\prime \prime} \mathrm{K}:{ }^{\prime \prime}$ ) multiplied times 16 , because there are 16 bytes per IOCB. One of the bytes within the IOCB then tells CIO what function the program is requesting.

There are seven fundamental functions available: OPEN, CLOSE, STATUS, PRINT, INPUT, Block PUT, and Block GET. In addition, there are some extended functions. BASIC programmers are familiar with these because of the XIO statement, which allows you to call the functions from BASIC. But several other BASIC statements (including NOTE, POINT, DRAWTO, and LOCATE) access the CIO extended functions, too.

After CIO examines the IOCB and determines which function is being requested, it decides which
device (keyboard, disk, screen, etc.) should service the request. Then it calls an appropriate routine within the device driver for that device. (For example, the Disk Operating System-or more properly, the File Management System-is the device driver for the disk drive.) If the request is for an extended function, it is passed on unchanged to the device driver.

Well, with 256 possible command values, you would think that there isn't any request, however bizarre, which couldn't be serviced via CIO. In theory, true. In reality, you have to stop adding functions somewhere or you run out of memory. Thus Atari's CIO-based graphics have no function for drawing a circle, and DOS provides no command to format a disk without also writing a boot and directory.

If you want to draw a circle, you can write a routine to calculate and PLOT points or change screen memory directly. If you want to mess with the disk drive, though, you have to learn about another routine within the Atari ROMs, Serial Input/Output.

## The Mysterious SIO

SIO-which lets Atari computers talk to devices (such as printers and disk drives) which hook up to the serial bus-has acquired an undeserved aura of mystery. Actually, though, in some ways it is easier to call SIO than it is to call CIO!

For example, there is only one SIO "device" and only one Device Control Block (DCB). So even the $X$ register pointer required by CIO isn't necessary when calling SIO. Intrigued? I hope so, because it's time to sign off for now. But after this brief overview, we're ready for next month's column: We'll show how to write a program to call SIO.
©

## New Life For Aging PCs

This month's COMPUTE! is full of new wares from the Summer Consumer Electronics Show. But most of us can't afford to toss out the old and bring in the new-at least not yearly-so let's look at an interesting alternative.

One way to give new life to an aging PC is with a PCturbo board by Orchid Technology (47790 Westinghouse Drive, Fremont, CA 94539). PCturbo, which installs in one of the PC's expansion slots, contains a whole new computer and a whole new memory. It's like having a new computer inside an old computer. The old computer is the original IBM PC with its memory and Intel 8088 microprocessor. The new computer is completely contained on the PCturbo board; it has an Intel 80186 microprocessor with up to 640 K RAM.

You don't lose your old PC in the bargain-a PC with PCturbo is like two separate computers. In PC mode, the computer runs just as it always did. But in PCturbo mode, the machine zips through most programs three to four times faster. Two new DOS-like commandsTURBO and GOPC-switch from one mode to another.

The PCturbo board executes all the usual program instructions, but handles input/output in a special way. For example, when a disk operation generates an input/output interrupt, the PCturbo's 80186 processor passes the I/O task along to the slower 8088 processor. That means the 80186 can run a program at full speed without stopping to process time-consuming interruptions from the keyboard, screen, disk, and printer.

Nor is the PC's original memory left idle. Software supplied with PCturbo allows that memory to be used as one or more electronic RAM disks and as a disk cache (pro-
nounced like "cash"). Disk caching has been around for years as a way to speed up I/O on mainframe computers. No matter how fast disk drives are, memory is three to four times faster. The PCturbo diskcaching software automatically moves blocks of data (called sectors) from the disk to the cache (the old PC memory) so the data will be there when needed. In fact, the caching software anticipates requests: It moves the next disk sector into memory as well. All this is completely transparent to the application software-it still thinks it's reading and writing data on a floppy disk.

## A Dramatic Speed-Up

How well does disk-caching work? To find out, I plugged a PCturbo board into my three-year-old 320 K PC and invited over a friend.

Henry and his wife own an interior design firm; they use their PC with Lotus 1-2-3 to keep track of chairs, tables, wallpaper, fabrics, taxes, and all the other charges for a job. I had heard Henry complaining about the spreadsheet for a modest residence he is doing for a surgeon. The spreadsheet is 28 columns wide by 389 rows deep-about 170,000 opulent bytes. When something is added-say a Ming vase-it takes the program 15.5 seconds to recalculate. (We all should have to spend a half-million dollars at four items per minute!) With the computer in PCturbo mode, the recalculations were cut to six seconds. That's a speed increase of 250 percent (or six more items per minute).

My own problems more often involve checking the spelling in a manuscript rather than spending money more rapidly. I recalled a 2,049-word article (it took the PC three seconds to count the number of words; PCturbo, one second) and set Word Proof, the IBM spelling
checker, to work. In 41 seconds, PCturbo verified that the article had no errors; in regular PC mode, the job took 107 seconds. To speed things up even more, I moved Word Proof's 125,000-word dictionary from a floppy disk to an electronic RAM disk created in the regular PC memory. PCturbo polished off all 2,049 words in 18 seconds (almost 114 words per second); the PC by itself took 77 seconds-more than four times longer.

And how much does it cost to find spelling errors faster than Superman? The invoice from Orchid Technology is $\$ 747$ for the PCturbo board with 256 K of memory, and $\$ 375$ for the optional 384 K memory module to reach a total 640K. The fully loaded boardPCturbo with 640 K -costs $\$ 1,122$. Not bad for an accessory that almost turns a three-year-old PC into a PC AT.

Almost, that is, because the PC won't do a few things in PCturbo mode. IBM BASIC is an IBM proprietary product built into a chip on the PC's main circuit board; it's not available to PCturbo, so you must switch to PC mode to run BASIC or BASICA. But compiled BASIC runs just fine with PCturbo. Also, the PCturbo board I tested wouldn't run communications programs (it couldn't find the modem). However, Orchid says it has a solution to that in the works. Somehow it's comforting to know there's lots of life left in the old PC.

## Odds And Ends

The second edition of IBM's Directory of Personally Developed Software has been out for several months. To get a free copy, call 1-800-IBM-PCSW (a.k.a. 1-800-4267279). The new directory lists 58 software products ranging in price from $\$ 15$ to $\$ 150$, although most cost about $\$ 20$. There are some real bargains here.

## Trivia Quiz

There has been quite a big fuss about the trivia-type question and answer games-Trivial Pursuit and the various takeoffs. I'm certain that you've also seen ads for computer versions of these board games. Have you ever wanted to buy one? Wait! Write your own. This month's program, "Trivia Quiz," gives you the basic structure for a question and answer game.

The main part of either the board games or the computer versions is the bank of questions. Of course, we can't publish a program with questions already included because it would take up the whole magazine. To make your own game, you must invent your own questions. Teachers can use this program for a basic essay-type quiz on any subject, and families can think up questions that appeal to their interests.

The computer is used to shuffle the questions, or to randomly choose one question at a time and give its corresponding answer. Once a question comes up, it is not used again.

I've previously published programs for a matching quiz and a multiple-choice quiz. This program creates a fill-in-the-answer or essay quiz. You can even print out copies of tests that have the questions in a different order for each person.

## Modifying The Program

In each of the program's DATA statements, first write a question, then type a comma, then put the answer. Remember to adjust the spacing so it looks nice on the screen (no words split across screen boundaries). If you need commas within the question or the answer, you'll need to use quotes. Just to give you an idea, the sample program contains questions from nursery rhymes and fairy tales.

Adjust the DIMension statement for the number of questions you put in your DATA statements. For an example, I've used only 20 questions. You'll probably want many more for a trivia quiz. Also define N in line 120 for the number of possible questions.

After the computer chooses and prints a question, the player inputs the answer. The computer then prints the correct answer. The computer does not keep score, however, because you may want to accept several forms of the answer. For instance, you could accept the answer to the question of what Little Miss Muffet ate as "curds and whey," "her curds and whey,"or even "cottage cheese"-but you would not accept "porridge."

Trivia Quiz simply asks the questions, so any number of people can play. You may want to expand the program to ask questions of each player in turn, to add scoring, or to make a more complex game. Of course, you can add graphics and sound, too.

If you wish to save typing effort, send a blank cassette or disk, a stamped, self-addressed mailer, and \$3 to:

## C. Regena

P.O. Box 1502

Cedar City, UT 84720
Please be sure to specify that you want the TI version of Trivia Quiz.

## Answers To Reader Questions

I cover TI BASIC exclusively in this column because most COMPUTE! readers have console BASIC only. For other programming languages and hardware information, a good newsletter is published by the 99'ers User Group Association, 3535 South H Street, \#93, Bakersfield, CA 93304. This is a nonprofit organization that communicates
with hundreds of local user groups.
User groups are still going strong and are your best source of information and help. Many publish excellent newsletters (sorry, too numerous to mention here, and I wouldn't want to slight anyone).

New software is still being produced for the TI-I guess because there are over two million TIs out there. Most new programs are entertainment and educational titles. And yes, the Extended BASIC module remains available.

Hardware also is abundant. There are separate units for each peripheral, which saves you money if you need only one item. There are also combinations. One attractive unit I've used is CorComp's expansion unit that contains an RS-232 interface, 32 K memory expansion, and a disk controller, all in a box about six inches wide that connects to the side of the console. It works just like the TI Peripheral Expansion Box but without the bulk and the noisy fan. My only complaint is that the disk drive connector isn't the same as the TI disk drive ribbon cable, but I understand Radio Shack has the necessary connections.

Next month I'll discuss how to use peripherals in your programming.

## Trivia Quiz

[^2]$24 \varnothing$ PRINT : : : "PRESS ANY KEY TO START."
$25 \emptyset$ CALL KEY $(\varnothing, K, S)$
26 IF $5<1$ THEN 25 Ø
27 FOR C=1 TO N
$28 \varnothing$ CALL CLEAR
$29 \varnothing$ RANDOMIZE
$3 \emptyset \emptyset \quad R=I N T$ (N*RND) +1
$31 \varnothing$ IF $S \$(R)=" "$ THEN $3 \emptyset \emptyset$
320 PRINT S\$(R): :
$33 \varnothing$ CALL SOUND $(1 \emptyset \emptyset, 1497,2)$
340 INPUT B\$
$35 \emptyset$ PRINT: $A \$(R)$
$36 \emptyset$ CALL $\operatorname{KEY}(\varnothing, K, S)$
$37 \varnothing$ IF Kく>32 THEN $36 \varnothing$
38 S $5(R)=" "$
39 NEXT C
$4 \varnothing \varnothing$ CALL CLEAR
410 REM PUT QUESTIONS HERE
$42 \emptyset$ DATA WHO LOST THEIR MIT TENS?, THE THREE LITTLE KITTENS
$43 \varnothing$ DATA WHO WERE THE THREE MEN IN A TUB?, "THE BUT CHER, THE BAKER, THE CA NDLESTICK MAKER"
$44 \emptyset$ DATA WHEN WILL THE CRAD LE ROCK?, WHEN THE WIND BLOWS
$45 \varnothing$ DATA WHAT DID JACK AND JILL\{6 SPACES\}FETCH?, A PAIL OF WATER
$46 \varnothing$ DATA WHO CUT OFF MICE'S TAILS?, THE FARMER'S WI FE
$47 \emptyset$ DATA HOW MAY BAGS OF WO OL DID THEBLACK SHEEP $H$ AVE?, THREE
$48 \emptyset$ DATA WHO VISITED THE TH REE BEARS' HOME?, GOLDILO CKS
$49 \emptyset$ DATA WHO CHOKED ON AN A PPLE?, SNOW WHITE
$5 \emptyset \emptyset$ DATA WHO SANG FOR HIS S UPPER?, LITTLE TOMMY TUC KER
$51 \varnothing$ DATA WHAT DID THE THREE PIGS USE TO BUILD THEI $R$ HOUSES?, "STRAW, STICK s, bRICKS"
$52 \emptyset$ DATA WHO USED HER LONG HAIR TO\{3 SPACES\}SEE TH E PRINCE?,RAPUNZEL
$53 \varnothing$ DATA WHAT DID JACK FIND IN HIS\{3 SPACES\}CHRIST MAS PIE?,A PLUM
$54 \varnothing$ DATA WHAT DID LITTLE MI SS MUFFET EAT?,CURDS AN D WHEY
$55 \varnothing$ DATA WHO WAS LITTLE RED RIDING\{3 SPACES\}HOOD G OING TO VISIT?,HER GRAN DMOTHER
$56 \varnothing$ DATA WHAT COULDN'T JACK SPRAT\{4 SPACES\}EAT?,FA T
$57 \varnothing$ DATA WHO STOLE A PIG AN D AWAY DIDRUN?,"TOM, TH E PIPER'S SON"
$58 \emptyset$ DATA WHO JUMPED OVER A \{11 SPACES\}CANDLESTICK?, JACK
$59 \emptyset$ DATA WHO SLEPT WITH HIS STOCKINGSON?,MY SON JO HN
6øø DATA WHOSE FOOT FIT THE GLASS\{4 SPACES\}SLIPPER ?, CINDERELLA
61ø DATA WHAT KIND OF MEAT DID ONE OFTHE LITTLE PI GGIES HAVE?, ROAST BEEF
$62 \varnothing$ END

## TI Webster Dines Ouł

In line 480 of this game program from the June issue (Program 6, p. 57), the DISPLAY AT $(3,22)$ should be DISPLAY AT $(23,22)$. Reader Andrew Sonon supplied this correction, which moves the score indication to its proper place on the screen.

## Apple MLX Error Messages

Although there are no errors in the "Apple MLX" listing from the June issue (p. 114), a number of readers have encountered DISK ERROR messages at unusual times. During normal operation of the program, the only errors that should occur are ones involving disk access; line 100 traps these errors. However, a side effect of this error trapping is that typing mistakes you make while entering MLX can also produce the message in line 610. Thus, if MLX gives you a DISK ERROR message when you are not accessing the disk, you need to check for a typing mistake in the MLX program. Lines 330-340 are a common problem area. Make sure you have not confused the letter O (used in the variable names $\mathrm{O} \$$ and O in those lines) with the number zero, which also appears in line 340. In COMPUTE!'s listings, a zero always has a diagonal slash through it.

## Commodore Disk Editor

The POKE 1024, PEEK(254) in line 260 of this disk utility program from the June issue (p. 98) prevents you from changing the value of the first byte in a sector. This is the track number for the next sector in the file, so you may not need to change its value very often. However, you can modify the program to allow editing of the first byte by replacing the GOTO 260 at the end of line 310 with WAIT 198,255: GOTO 280.

## Editing Enhancement For Softball Statistics

This record-keeping program from the July issue (p. 30) works as published for all the listed computers. However, the data input process can be simplified by allowing corrections for each player's statistics. To accomplish this, make the following changes to the general program (Program 1):

```
545 PRINT
546 PRINT "EVERYTHING OK (Y/N)
    ?"
547 INPUT AS
548 IF AS<<>"N" AND AS<<"Y" THE
    N }54
549 IF AS="N" THEN 42ø
```

TI-99/4A users should also make the following additional changes:

548 IF (AS<>"N")*(AS<>"Y") THE N 545

Atari users should also make the following additional changes:

25ø NEXT I:PRINT "\{DOWN\}E verything OK (Y/N)?": GOSUB 63 $6: I F A \$=" N " T$ HEN 210
255 GUSUB 46.

## Mindbusters For Atari DOS 3.0

To use the Atari version of this thinking game from the April issue (p. 50) with DOS 3.0, you must delete the $\operatorname{DIM} \mathrm{K}(255)$ in line 5 and make the following changes to line 1:
$\begin{gathered}\text { 1 DIM K(255):FOR I } \\ \text { NEXT I GOTO } \\ 5\end{gathered}=0$ TO 255: K(I) $=0:$

# Archon II: Adept 

Arthur Leyenberger

Requirements: Commodore 64 or 128; Atari $400 / 800$ or XL with at least 48 K RAM; or an Apple II-series computer with at least 48 K RAM. All versions also require a disk drive and a joystick.

In any entertainment business, whether it is movies, books, or videogames, there is a natural tendency to produce sequels to existing hits. Making sequels can be approached in a number of ways. Often the sequel is just more of the same thing, such as Jaws II and Jaws $3-D$; the hope is that there will be continued demand for more of the same thing. The risk in this approach is that people may eventually grow tired of the old formula.

Another approach is to use the same basic theme of the original, but add something new or better to the sequel-as in the successful Star Wars and Star Trek films. This is also the case with Archon II: Adept, a new game from Free Fall Associates, published by Electronic Arts.

Adept was designed to be a game that has the same mixture of strategy, action, and play mechanics as the original Archon. But it is sufficiently different to please both new players and long-time Archon devotees.

## Casting Magic Spells

Adept is basically a game of magic, focusing on energy and resource management. Unlike Archon, it allows people of different skill levels to compete more equally. The combination of strategic board play and individual combat means that people who don't have fantastic reflexes have a reasonable chance of winning.

Each side starts with four Adepts, similar to the Wizard and the Sorceress pieces in Archon. The game begins with one Adept on each of the four elements: Earth, Water, Air, and Fire. The elements are represented by colored bands on the screen. Your pieces are shown
vertically on each side of the screen, with the more powerful, flexible pieces at the top.

The more powerful pieces require more energy to manipulate. Choosing the beginner level gives you the most energy while choosing the advanced level gives you the least. The play level also affects the speed of the pieces in combat. Each piece can cast spells, and every spell costs magical energy. You can cast as many spells as you want with any piece as long as you can afford it. To gain magical energy, you must occupy "power points." If you occupy all of the power points, you win the game.

You shape your magical army depending on such factors as your skill with a particular piece, a certain strategy, or the pieces you like. Each side has four different elemental pieces that can be called upon. They are strongest in their own element but can be played in any element. Some of the pieces are common to both sides, while others are unique.

When you choose a piece, you are shown the amount of energy you currently have as well as how much energy it costs to use that piece or cast a spell. Although many of the spells are familiar to the experienced Archon player, some have new twists. For example, the Imprison spell lets you trap an enemy piece as long as you have the energy to pay for it. Casting and maintaining this spell costs energy during every turn, so imprisoning everyone in sight would soon drain your resources and lose you the game.

## Apocalypse Now

All of the spells can be cast repeatedly, with one exception: the Apocalypse. You can cast this spell only once, since it begins a battle that ends the game. It is a one-on-one, winner-take-all battle that is shaped by your strategic position: the amount of energy, number of pieces, and surviving Adepts you have left. The result can be either a wellmatched or very one-sided battle.

This go-for-broke spell typically is cast in two situations. One is if you are way ahead and, for some reason, are having trouble occupying the last power
point. The other situation is when you're in danger of losing the game and have no other way out. Since the Apocalypse spell is expensive, casting it in a weak position weakens you still more.

Adept contains a wider variety of creatures than are found in Archon. Each piece has a unique weapon and performs best in a certain element. For example, the Juggernaut is best suited to Air and uses itself as a missile. When fired, it glows and charges across the screen. While in motion, it is invulnerable and destroys anything in its path. Using the Juggernaut in the water, however, significantly slows it down and makes it more vulnerable to attack.

In 1983, Archon ranked at the top of almost every gamer's list. It still belongs in the videogame hall of fame. Archon II: Adept is even better than Archon and should rank even higher with experienced Archon devotees as well as with players new to the world of magic and strategy.
Archon II:Adept
Electronic Arts
2755 Campus Drive
San Mateo, CA 94403
$\$ 33$ (Commodore \& Atari)
\$40 (Apple)

## WordPerfect For IBM

Richard Mansfield, Senior Editor

Requirements: IBM PC or compatible with at least 192 K of RAM, two disk drives, DOS 2.0 or higher, and a printer. Not compatible with the PCjr.

This is an excellent word processor. In addition to performing all the usual tasks with speed and efficiency, WordPerfect includes many features which are either rare or unique.

Perhaps its best single feature is that it gives you a blank screen to write on-no distractions from control codes, command lines, or other clutter. Just a couple of unobtrusive numbers in the lower-right corner to identify the col-

# DISK WORLD! is pleased to announce the lowest-prices ever on brand name diskettes! 

You've seen ads for lower priced diskettes.
But did you ever notice that they usually don't carry or list a brand name. There's a reason for that: there is no brand name to be listed, since these low-cost "generic" diskettes are politely called garbage within the diskette industry
One or two individuals buy reject product from lower-quality manufacturers and put it out in the market place without a label...and without any meaningful quaranty that you're getting good product.

But not at DISK WORLD!.
We deal only with branded merchandise...with diskettes made by people who are proud to have their name known.

## 3M:

Almost every diskette you buy has a little 3M in it. 3M manufactures more blank diskette media than anyone else...and probably produces more computer media in all forms than any other manufacturer. This is factory- fresh 3M product, boxed in 10's, reinforced hubs, user ID labels, write - protect tabs and a 100\% LIFETIME WARRANTY.
5.25" SSDD w/ FREE Flip ' $n$ File 15.
 . 1.42 ea.
5.25 " DSDD w/ FREE Flip 'n File 15 $\qquad$ \$1.74 ea.
(Above FREE offers subiect to limited availability.)

$\$ 2.57 \mathrm{ea}$.
$3.50^{\prime \prime}$ SSDD-135TPI for Mac and others................. \$ 2.86 ea.
BASF: indicated, BASF diskettes are packaged in cardboard boxes of 10, reinforced hubs. Tyyer sleeves user ID labels and write - protect labels. Of course, there's a 100\% LIFETIME

WARRANTY on all BASF product



5.25 SSDD in Bulk Packs of 50 ....................................................................................................................................... ea
5.25 " "FLIPPY" diskettes ub Bulk Packs of 50................................. \$ 1.20 ea

ATHANA:
:The diskette you've used hundreds of times...without knowing it
ATHANA ecializes in producing top-of-the-line diskettes for software ea.manufacturers . ComS ples with Tyvec sleeves, user ID labels, reinforced hubs and write-protect tabs.
$100 \%$ LIFETIME WARRANTY.
$5.25^{\prime \prime}$ iSSDDn Bulk packs of 50 $\qquad$ 0...... \$1.01 ea.

NASHUA
:One of the largest diskette manufacturers in the nation.....and the leader ir rigid disk packs for mainframes. . Of course, there's a $100 \%$ LIFETIME WARRANTY on all NASHUA products.Tyves sleeves, reintorced hubs, user ID labels and write protect tabs are inclluded. $\qquad$
 $\$ .97 \mathrm{ea}$. 5.25 DSDD Bulk Pack in $50^{\circ} \mathrm{s}$. $\$ 1.07 \mathrm{ea}$.
MEMOREX:
Is it real or is it Memorex? Its Memorex, packaged as shown, complete with Tyvec sleeves, reinforced hubs, user ID labels and write - protect tabs. And of course a $100 \%$ LIFETIME WARRANTY>
5.25 ." SSD D in boxes of 10 ...............................
5.25"" DSDD in boxess of 10
in boxes............................. . $\$ 1.27$ ea.
.1 .69 ea.
.$\$ 3.56$ ea.
$\$ 1.86$ ea.
$5.25^{\prime \prime}$ DSDD-HD for IBM PCIAT in boxes of 10
ค7 $\$ 3.86$ ва

## SONY:

The company that invented the $3.50^{\circ}$ drive...and licenses it to every other manufacturer. Boxed in 10's with user ID labels. (There's no need for write-protect tabs or Tyvec sleeves.
3.50 " SSDD for the Macintosh. $\qquad$ \$ 2.55 ea
5.25" DSDD for Data General/Ơne and HP $\qquad$ $\$ 3.89 \mathrm{ea}$

DISKETTE STORAGE:
Amaray 50 ..........\$ 9.69 ea. + \$ 3.00 Shpng Amaray 30........... $\$ 9.22$ ea. $+\$ 2.00$ Shpng. Diskette 70.......... \$ $9.95 .+\$ 3.00$ Shpng.

Disk Kaddies.... $\$ 1.65 \mathrm{ea} .+.25$ Snpng.

Epson MX-70/80....\$3.65 ea. Epson MXFX-100. 4.95 ea. Okidata Micro83....\$ 1.51 ea Okidata Micro84.... $\$ 3.73$ ea. Add .25 each ribbon for shona.

## RIBBONS:

Add $\$ 3.00$ shipping per 100 diskettes or
fraction thereof. All other items, add shipping as shown. VISA, MASTERCARD AND PREPAID orders accepted. COD orders, add $\$ 5.00$ Special Handling fee. APO, FPO, HI, AK and PR orders, add $5 \%$ to cover Parcel Post shipping. No foreign orders. III. residents, add $7 \%$ sales tax.MINIMUM ORDER: $\$$ 35.00 or 30 diskettes.

DISK WORLD! Inc
(In Illinois 1-312-256-7140)

TOLL FREE: 1-800-621-6827 629 Green Bay Rd. Wilmette , Illinois 60091

HOWTO TURN YOUR PERSONAL COMPUTER INTO YOUR PERSONAL BANKER.

Here's how to make the investment in your personal computer really pay off.

With SPECTRUM, ${ }^{\text {sM }}$ the new electronic home banking and information system from The Chase Manhattan Bank, N.A. Teamed up with your PC, SPECTRUM is your direct link to Chase. And the start of a better way to manage your money and your time.

A push of a button lets you pay bills electronically, anywhere; transfer funds; keep records, and more. Even get vital financial information and trade stocks* at discount rates.

Right at home, anytime -with complete security. All, including electronic mail, starting at just \$5 a month. And with our new subscriber rebates and free offers, now's an even better time to get control of your finances. Call today for your free demo diskette.


CALLTOLL FREE


(c) 1985 The Chase Manhattan Corporation. ${ }^{\text {© }}$ Stocks are traded through Rose \& Company, a Chase affiliate.
umn, line, and page. You can call up a screen with control codes, but when you're writing, what you see is what you get: Underlined passages are underlined, bold is bold, indenting looks like it will on paper.

The spelling checker is another extraordinary feature; it's fast and effectively organized. The dictionary comes with 100,000 words (more than most paperback dictionaries), is easily expanded, stunningly quick, and simple to use. It even looks up words phonetically: If you type komitty it will look up committee for you. It checks for double words (such as "Paris in the the spring") and gives a word count as well.

If there are things you do repeatedly, you can create macros, little programs that control the word processor. Then, at the touch of a single key, you can type in a frequently used address, save the file, search for another file, etc. You can also create two screens and switch between them, and instruct the
word processor to automatically save backup copies of your current work every few minutes. And WordPerfect has a sophisticated, efficient footnote capability.

Sophisticated and efficient are good words to describe this program. While it is easy to use, it contains so many features and advanced commands that even the most demanding writers should find what they need. Statistical typing, math calculation, automated outline numbering, automated compilation of tables of con-tents-the list goes on. If you need some arcane function, you're likely to find it in WordPerfect. If you simply need a powerful, sensible writing machine, you owe it to yourself to consider this fine tool.
WordPerfect
SSI Software
325 North State Street
Orem, UT 84057
$\$ 495$

# Adventures In Narnia <br> For Apple And 64 <br> C. Regena 

## Requirements: Commodore 64 with a disk drive; or an Apple II-series computer with at least 48 K RAM and a disk drive.

Adventures in Narnia is an adventure game based on the book The Chronicles of Narnia by C.S. Lewis. When we first opened the package, my son exclaimed, "Hey, I've read that book!" Inside is a paperback entitled The Lion, the Witch and the Wardrobe, a popular story in the Chronicles series which was the inspiration for Adventures in Narnia. The characters in the game are the same as those in the book. You don't have to read the book to play the game, but if you play the game and enjoy it, you'll probably want to read the book.

Adventures in Narnia is actually a combination adventure, arcade, and board game. It even comes with a deck of game cards and a pair of dice. Highresolution computer graphics replace the traditional board, but sometimes during the arcade action you bump into something that requires you to roll the dice or choose a card. Adventures in Narnia was designed to use the computer, but still resemble a board game and bring human interaction into play. As a result, the game is not always machine-controlled. Its authors point out that the computer waits while you "think, discuss, decide." You can "strategize and argue (without penalty) in the middle of the game, allowing the fun and humor of dialogue that is missing in normal videogames.'

Other adventures are available in this series as well-such as Dawn Treader, based on the story The Voyage of the "Dawn Treader."

## Dodging Evil Dwarf's

The game actually is a two-part adventure with two different arcade screens. In the first adventure, you start out in the wardrobe and try to gain points and strength. In the second adventure, you use the strength to reach a character called Aslan the Lion.

You start the game by shuffling the cards and placing them near the computer. Your player is at the right side of the screen among randomly placed bushes, flowers, and beavers. Evil dwarfs dart about, and you have to avoid them. Dwarfs can also hide in the bushes, so you don't want to hit a bush. You can gather flowers to gain points, and you can meet a friendly beaver to gain strengths (indicated by hearts at the top of the screen). The evil dwarfs patrol Narnia and go around stomping on flowers and beavers to prevent your success.

The game action is quick. If you hit a dwarf (or a moving bush), you're sent to a dwarf battle. The dwarf thinks of a random number, and you must roll the dice to beat his number. If you win, you get 500 points, but if you lose, you sacrifice one strength.

From time to time, Edmund and the Witch appear on the screen. Your
job is to intercept Edmund to prevent him from reaching the Witch. The first adventure ends if the Witch captures Edmund, or if you get ten heart strengths, or if your time runs out. Then the next adventure starts.

## Inside The Ice Maze

The second adventure takes place in the Ice Maze with your character at the lower-right corner of the screen and Aslan the Lion at the upper left. Your object is to get to Aslan, but the Witch sends evil crystals through the maze to stop you. If you get hit by a crystal, you're sent back to the beginning and you lose one heart. If you lose all the hearts and get hit again, you lose the game.

The gravity chutes are another hazard. Snow is falling inside these chutes, and if you step into one, you'll tumble to the bottom and find yourself sealed inside the maze.

If you run into a door, you're sidetracked to a subadventure. Since the game action is fast, you'll probably run into some doors by accident. Once in a subadventure, you're directed to pick a card. Then you enter the card's code into the computer. If your card is Aslan the Lion, you automatically gain one heart strength. If you draw a Zap card, you're automatically sent back to the beginning of the maze and you lose one strength. Other cards-such as Fenris Ulf the Wolf, Cair Paravel the Castle, and Jadis the Witch-require you to roll the dice to determine your consequences, which can be good or bad. After the subadventure, you return to the maze for another crack at Aslan the Lion.

You lose the game if the Witch steals all your hearts with her ice crystals or if time runs out. You win the game by reaching Aslan the Lion. Your final score is determined by the running score on the screen plus 1000 points for foiling the Witch, 1000 points for each remaining heart, and the remaining time multiplied by 10 .

The instruction booklet that comes with this package is very good. It presents all aspects of the game so you can identify each object and recognize whether it is good or bad. Color screen photos are accompanied with explanations for each possibility. And as you play the game, the screen instructions also are easy to understand.

If you own more than one computer, note that the Apple and 64 versions of this program are on flip sides of the same disk.
Adventures in Narnia
Word, Inc.
4800 W. Waco Drive
Waco, TX 76796
$\$ 39.95$

## COMPUTE! Classified is a low-cost way to tell over $\mathbf{3 5 0 , 0 0 0}$ microcomputer owners about your product or service.

Rates: $\$ 25$ per line, minimum of four lines. Any or all of the first line set in capital letters at no charge. Add $\$ 15$ per line for boldface words, or $\$ 50$ for the entire ad set in boldface (any number of lines.)
Terms: Prepayment is required. Check, money order, American Express, Visa, or MasterCard is accepted.
Form: Ads are subject to publisher's approval and must be either typed or legibly printed. One line equals 40 letters and spaces between words. Please underline words to be set in boldface.
General Information: Advertisers using post office box numbers in their ads must supply permanent address and telephone numbers. Orders will not be acknowledged. Ad will appear in next available issue after receipt.
Closing: 10th of the third month preceding cover date (e.g., June issue closes March 10th). Send order and remittance to: Harry Blair, Classified Manager, COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. To place an ad by phone, call Harry Blair at (919) 275-9809.

Notice: COMPUTE! Publications cannot be responsible for offers or claims of advertisers, but will attempt to screen out misleading or questionable copy.

## SOFT WARE

TI99 LOTTO PICKER. Go for Million Dollar Jackpots! Picks LOTTO, Daily Numbers, \& Win-4. All USA Lotto games are programmed in. \$25. RIDGE, 170 Broadway, \#201-C, NYC, NY 10038. 718-833-6335. Free Catalog.

IBM PCjr OWNERS: We have the software you want. We also have kits for easy 2nd drive addition. Free catalog. OOWL SOFTWARE, 1435 Burnley Sq. N., Columbus, OH 43229.

PRINT USR - Formatted numeric output. Use with your BASIC program. ML speed. $48 \mathrm{~K}+$ Apple or C64. Send $\$ 9.95$ to: MAK Ent., 1702 W. Lender, Mesa, AZ 85202.

AMCUP, AN ORIGINAL sailboat racing game. 1 or 2 players. C-64 w/ $1541+$ joystick. $\$ 14.95 \mathrm{ch}$./m.o. SASE for info. Dream Dog Software, P.O. Box 1724, Eugene, OR 97440.
"CRAPSMAN!" The C-64 casino craps tutor! Learn all bets. Test systems. Up to four players. $\$ 31.95 \mathrm{pp}$, disk. EMCEE SOFT CORP., P.O. Box 402124, Miami Beach, FL 33140.

SHOPPING LIST PROGRAM for C-64 with 1541 disk and printer. It prepares a shopping list for meals you select, organized by your market sections. Send $\$ 42$ to 4955 Woodman Ave., Sherman Oaks, CA 91423

SOFTWARE PROTECTOR 64. Copy and list protect your valuable Basic programs.
Only $\$ 10$ (disk only). Systems Software, 44 Rte 25A \#209, Smithtown, NY 11787.

PINOCHLE for Commodore 64, PC and PCjr. Real, double-deck, partnership pinochle gives you a partner and two opponents! On disk, $\$ 25$ postpaid. Jim Bernard, 8018 Sunset Path Ct., Springfield, VA 22153.

TI CHECKWRITER Letter code and dollar amount are all that's necessary to print a complete check. Provides yearly totals for taxes. Disk $\$ 24.95$. R.I.P. Software 248 Purisima Rd., Woodside CA 94062.

SCIENCE SOFTWARE with graphics for the Commodore 64. Astronomy programs, etc. Catalog and demo disk \$3. David Eagle, 7952 W. Quarto Dr, Littleton, CO 80123.

FIXED ASSET DEPRECIATION on C64. Handles acrs and pre-acrs methods. \$39.95. For free info write: MPM Software Prods., P.O. Box 3522, Glendale, CA 91201.

ATARI USERS. 4 games on cassette, $\$ 25$. Saucers + monsters, poker, sea finder, pinball. Write or call Keith Anderson, 8435 12th Ave., Silver Spring, MD 20903 (301) 434-0285.

## HARDWARE

REPLACEMENT POWER SUPPLIES FOR C-64 or VIC-20. $\$ 29$ ea. plus $\$ 3$ shipping. 64 parts list $\$ 5$-refundable w/1st order. AA Computer, 2726 Park St., JAX, FL 32205.

NUMERIC KEYPAD with joystick CURSOR control, gold contact $\$ 75$. Centronics interface $\$ 40$. Autodos cartridge automatically loads programs from easy-to-use menu $\$ 40$. All C-64 fully compatible. SS 64 RF Mod. $\$ 40$. Battery Back-up with best available protection for C-64 \$50, Apple/IBM \$150 (U.S.) APPLIED COMPUTING, Box 1566, PTBO, ONT. K9J 7H7. Send $\$ 2$ for cat. Call (705) 745-8617 anytime.

## MISCELLANEOUS

Trade in your used Cọmmodore or Atari on a brand new C-128 or Atari ST. This offer may not be available through retail outlets. Brochure $\$ 1.50$ and SASE. NEW WEST TECHNOLOGY, 4B Monroe Pkw., Box 200, Ste. 134, Lake Oswego, OR 97034
FLYING COMPUTERS but stuck on the ground? Learn requirements to fly aircraft, with or without license. $\$ 3.00$ to: Aviation Resource, P.O. Box 369-C, Lancaster, NY 14086.

Super 99 Monthly-quality info for TI-99/4A $\&$ compatibles since $09 / 84$. US $\$ 12 / y r$. Other $\$ 16 /$ yr. Bytemaster Computer Svces., 171 Mustang, Sulphur, LA 70663.

FREE! SHOP BY MODEM in our revolutionary electronic shopping mall. We even accept credit cards! We have products YOU want! Call 1-818-840-8066 with your modem NOW!

BUY-SELL-TRADE computers, hardware, software. Announce clubs, BBS's, etc. Send for free sample of Micro-Swap, the computer classifieds. P.O. Box 24, Esmond, IL 60129.

COMPUTER OWNERS!!! Earn dollars and save money with your computer. Write C\&D Associates, Box 851, Mt. Prospect, IL 60056 Specify computer type. No Investment!!

TI-99/4A Software/Hardware bargains. Hard to find items. Huge selection. Fast Service. Free Catalog. D.E.C., Box 690, Hicksville, NY 11801

LOWEST DISK PRICES-SS/DD with sleeve \& label-10/\$8.80, bulk $100 / \$ 78$. Ds/DD with sleeve \& label-10/\$10.90, bulk 100/\$99. Prime quality major mfr's overstock! Money-back satisfaction guarantee! Min order $\$ 15$. Pay by MC/Visa/AE, UNITECH 20 Hurley St., Cambridge, MA 02141 (800) 343-0472, in Mass (617) 864-8324.

## HELP IS ON THE WAY!

Just call 1-800-334-0868 to get your free copy of the latest COMPUTE! Books Catalog If you need help in getting information on all of the latest COMPUTE! book titles available plus all COMPUTE! backlist titles, call us today!

SAFEGUARD YOUR COMPUTER KEYBOARD from contaminants with OVERBYTE molded keyboard covers. $\$ 24.95$ xparent \& durable. Call (213) 866-2583/send $\$ 2$ further info. OVERBYTE-P.O. Box 10652, Burbank, CA 91510.

PHONEMARK DATASETTES: C64, Plus4, Vic20.
$\$ 25.00$ plus shipping. We are direct importers.
American Mercantile Co., 2450 1st Ave., South,
Seattle, WA 98134 (206) 624-6141.
DISK SERVICE MANUAL. Service floppies without special software or equipment.
FREE information. Consumertronics-DSM, P.O. Drawer 537, Alamogordo, NM 88310.

MAXELL MD1, \$1.39 - MD2, \$1.99. Dysan 104/1D, \$1.79-104/2D, \$2.39. Shipping \$3.75. Also Verbatim, IBM, 3M, BASF. TAPE WORLD, 220 Spring St., Butler, PA 16001, 1-800-245-6000, Visa, MC.

## \$\$ MONEY MAKER \$\$

Increase your income by hundreds and even thousands of dollars. Money back guarantee! (Apple, Macintosh, IBM) Free brochure: 1-800-223-5838 (305-771-6498).
 tion sequences on the computer screen. The original version is for the IBM PC with BASICA and color/graphics adapter, or Enhanced Model PCjr with Cartridge BASIC. We've added versions for the Atari 400/800, XL, and XE with at least 32 K RAM for disk or 24K RAM for tape; Commodore 64 and 128 (in 64 mode); TI-99/4A with Extended BASIC; and Apple II-series computers with at least $48 K$ RAM. The Atari and 64 versions also require a joystick.

Computer animation can be marvelous to behold but a drudge to produce. Whether you're working in BASIC or machine language, creating objects and manipulating them on the screen can mean fumbling for hours with PEEKs, POKEs, bits, bytes, and other tedious details.
"Animator" goes a long way toward automating this process. It works much like a cartoonist's sketchpad, letting you draw a series of similar images which are then displayed in rapid sequence to create the illusion of movement. Your finished cartoons can be saved on disk or tape and reloaded for viewing later.

## What every Apple II + and IIe user should ask before buying the "Sider" 10 MB hard disk:

When a company offers a superior quality 10 megabyte Winchester hard disk for only $\$ 695$, it's bound to raise a few eyebrows... and a lot of questions. The fact is, you're probably already wondering "Can I really get a 10 megabyte hard disk that's reliable for only $\$ 695$ ?" The answer is: ABSOLUTELY...when you choose the Sider from First Class Peripherals.

## What's so great about the Sider?

For starters, the Sider lets you boot your Apple II + or IIe directly off the hard disk-unlike some other Winchester subsystems. Rebooting is also troublefree. And the disk is partitionable, allowing you to allocate space to four operating systems on the same disk. The Sider supports: Apple DOS 3.3; Pro DOS ${ }^{\text {ru }}$; Apple Pascal; and CP/M .

What's more, a small "footprint" lets you incorporate the compact Sider into your existing computer set-up with ease.

In addition, with the Sider, you not only pay far less for the subsystem, you also save money on installation. Because, unlike other 10 MB systems that require the purchase of expensive "extras," the Sider is plug and play. Everything you need is provided, including cables, host adaptor, installation software and manual.

## What makes it so reliable?

To start, the Sider is manufactured, and sold exclusively, by First Class Peripherals, an innovative computer company which is backed by Xebec. The computer industry's leading manufacturer of disk controllers, Xebec has over a decade of experience serving customers like IBM, Toshiba, Texas Instruments and Hewlett Packard. It's this kind of expertise that helps assure the Sider's performance.

Special design features further enhance reliability. The Sider's controller is the field-proven, industry standard Xebec Sl410A. And Xebec's 3200 drive tester, the


## "Onlys 695 ?"

 toughest in the industry, ensures that the Sider will operate reliably. One more assurance of the $\$ 695$ Sider's quality: it's UL Approved and FCC Class B rated.
## But why is it only $\mathbf{\$ 6 9 5}$ ?

You pay less for the Sider than for other 10 MB hard disks simply because you're paying for the superior quality components inside the unit, not for a lot of retail overhead costs. Since First Class Peripherals sells direct, you avoid dealer and dis-
tribution expenses, and pay only for the product.

## What about a guarantee?

Like many experienced Apple users, you may be reluctant to buy a hard disk priced at only $\$ 695$ without first seeing for yourself how it performs. That's why First Class Peripherals offers you a reassuring, money-back guarantee that eliminates any risk on your part. Simply order the Sider and use it for 15 days. Then, if you're not entirely satisfied, return it and receive a full refund-no questions asked.

The Sider also comes with a full one-year limited warranty. Plus, there's a convenient, toll-free hotline you can call anytime you have a technical or service question, or need help.

## Don't delay. Order the Sider now.

To receive the Sider 10 megabyte Winchester hard disk subsystem for only $\$ 695$, simply order using the coupon below. For faster service, order by phone and charge to your VISA, MasterCard or American Express. (You can also call us if you have any questions or technical concerns about the Sider. We'll see you get the help you need.) Call toll-free:

## 1800 538-1307

Extension 709


Yes, please send me the Sider, including half-height 10 megabyte Winchester hard disk drive, Apple adaptor board, cable, complete installation software and documentation.

I prefer to pay as follows:
$\square$ I've enclosed my check or money order for $\$ 695^{*}+\$ 15$ shipping and handling, payable to First Class Peripherals.
$\square$ Please bill the following credit card account for $\$ 695^{*}+\$ 15$ shipping and handling:
$\square$ VISA $\square$ MasterCard $\square$ American Express
Card \# Exp. Date
Signature
*Residents of CA, NV and PA, please add appropriate sales tax.

| Name |  |
| :---: | :---: |
| Address |  |
| City |  |
| State | Zip |
| Telephone (area code) Mail to: |  |
|  | 3579 Highway 50 East Carson City, NV 89701 709 |

If you're using the IBM PC/PCjr version of Animator, type in and save Program 1, then run it and follow the instructions below. If you have an Atari, 64, TI, or Apple, you should also read the following instructions as a general guide to using Animator. Then refer to the typing instructions and programming notes specific to your computer for additional details.

## Drawing An Image

When you run Animator, it displays an editing screen with 20 numbered frames. You can draw as many as 20 pictures, one in each frame, then flip rapidly through the frames to create animation. The frame number displayed at the upper left of the screen shows which frame you're currently working on. Normally, Animator begins the animation with frame 1 and ends with frame 20. But you can start and end the animation wherever you like. For example, a short sequence might start with frame 1 and end with frame 3 . To view only part of a long sequence, you might start at frame 12 and end at frame 18, and so on. The frame number is controlled by pressing the right and left arrow keys.

The frame number also determines which frame you'll be working on when you go to the editing screen. Let's start with a simple example. Make sure the frame number is set to 1 , then press the 2 key to select the editing function and press Enter at the next prompt.


FREE CATALOG!
Features Precision Tools and Equipment for Computers


Jensen's new catalog features hard-tofind precision tools, tool kits, tool cases, test equipment and computer accessories used by sophisticated hobbyists, scientists, engineers, laboratories and government agencies. Call or write for your free copy today.
JENSEN
TOOLS INC.
7815 S. 46th Street Phoenix, AZ 85040 (602) 968-6231

After a brief pause, Animator displays a drawing grid with a blinking cursor. Edit mode has three main functions, selected by pressing different keys. Press $D$ to draw with the cursor, E to erase, and M to move the cursor without disturbing anything on the screen.

Draw a simple shape on the grid to become familiar with these basic functions. As you'll see, Animator displays the shape in its actual size to the left of the drawing grid. An inverse function lets you reverse everything on the gridevery dot becomes a blank, and vice versa (be patient-it takes Animator about a minute to complete this process).

Once the picture is finished, you can press $S$ to save it and return to the main screen. Note that you must save a picture with $S$ to put it in the frame. If you exit the edit mode by pressing $Q$, the new picture is lost and Animator uses whatever that frame previously contained. Try drawing a simple shape and saving it with $S$ (since this is just for practice, any scribble will do). When you return to the main screen, Animator displays the picture in frame 1.

## Frame By Frame

Now you're ready to draw the next frame in the sequence. In most cases you'll want to make only slight changes from one frame to the next, to simulate smooth motion. To save time, Animator lets you copy a picture from one frame to another. Let's demonstrate this by copying the picture from frame 1 to frame 2 . Set the picture number to 1 with the arrow keys, then press 2 to edit. Animator displays a prompt, inviting you to enter a frame number. To edit the current picture number, you would just press Enter. However, by entering a different number you can copy the current picture into a different frame, then change that picture to make the next frame in your cartoon.

When you enter 2 at the prompt, Animator copies the picture from frame 1 into the drawing grid. When the drawing grid appears, make some change in the picture to distinguish it from frame 1. Now press $S$ to save the picture in frame 2 and return to the main
screen. Animator displays both pictures in their respective frames.

After drawing a few frames, you're ready to bring them to life. The first step is to specify the starting and ending frame numbers. The starting number determines which frame begins the animation, and the ending number tells Animator where the series ends.

Set the starting number first. Use the arrow keys to set the frame number to 1 , then press the 3 key. Now use the arrow keys to make the frame number match the last frame that contains a picture, then press the 4 key. This sets the ending number. You must always set the starting and ending numbers before selecting animation (if you don't, Animator flips through all 20 frames whether they contain pictures or not). Once these numbers are set, press the 1 key to view the sequence. Press the space bar to pause and Enter to stop it.

By selecting different speed and pause values, you can move the animated figure across the screen. The speed value can range from -15 to 15. When it is 0 , the figure is animated in place; positive values move the figure from left to right, and regative values move it from right to left. The greater the value, the faster the figure moves. Press the 5 key to decrease the animation speed, and 6 to increase it.

The pause value controls the time delay between each frame of the animation. A small pause value makes the pictures change very quickly, while larger values slow down the process.

## Macro Editing Features

Animator provides a few macro (large-scale) editing features to help you work with longer cartoons. The insert function lets you insert a blank frame anywhere in the series. To use it, set the frame number to the number of the frame where you want to insert a blank, then press the I key. The designated picture (and all those following it) are bumped forward one frame. Note that the picture in frame 20 is always lost when you insert.

The delete function lets you delete any frame in the series. Change the picture number to the frame you want to eliminate, then press D . All the higher numbered

## 88k Lowest Price In The USA! 152k Computer System Sale

 - Students • Word Processing • Home • Business

LOOK AT ALL YOU GET FOR ONLY Y 4.4 Atari 800XL 88K Computer Atari 1050 127K Disk Drive
Atari 1027 Letter Quality 20 CPS Printer
Atari Writer Word Processer
Atari BASIC Tutorial Manual All connecting cables \& $T$. V. interface included. Monitors sold separetly.

TOTALS

12" Hi Resolution Green or Amber Screen Monitor 13" Hi Resolution Color Monitor

* ATARI 130XE 152K Computer

| LIST PRICE | INDIVIDUAL SALE PRICE | SAVE \$100 |
| :---: | :---: | :---: |
| \$179.00 | \$10900 | All 5 ONLY |
| 299.00 | 19900 | $\$ 1.40^{00}$ |
| 299.00 | 19900 | SYSTEM |
| 59.95 | $39^{95}$ | SALE PRICE |
| 16.95 | $12^{95}$ |  |
| \$852.90 | \$559.90 | $152 K ~ S Y S T E M$ S49900 |
| List | Sale Add | \$ 59.95 for |
| \$199.00 | 69.95 Conne | ction Cables |
| \$399.00 | 169.95 | Id. Qty) |
| \$249.00 | 159.00 Add | S10 for UPS |


| ORHer Accessories | List | Sale | Add $\$ 9.95$ for <br> Connection Cables |
| :---: | :---: | :---: | :---: | :---: |
| 12" Hi Resolution Green or Amber Screen Monitor | $\$ 199.00$ | $\mathbf{6 9 . 9 5}$ | (Monitors Only) |
| 13" Hi Resolution Color Monitor | $\$ 399.00$ | $\mathbf{1 6 9 . 9 5}$ | (Ltd. Qty) |
| * ATARI 130XE 152K Computer | $\$ 249.00$ | $\mathbf{1 5 9 . 0 0}$ | Add Sio for UPS |

15 DAY FREE TRIAL. We give you 15 days to try out this ATARI COMPUTER SYSTEM! ! If it doesn't meet your expectations, just send it back to us prepaid and we will refund your purchase price!! 90 DAY IMMEDIATE REPLACEMENT WARRANTY. If any of the ATARI COMPUTER SYSTEM Equipment or programs fail due to faulty workmanship or material within 90 days of purchase we will replace it IMMEDIATELY with no service charge!!
Best Prices • Over 1000 Programs and 500 Accessories Available • Best Service - One Day Express Mail • Programming Knowledge - Technical Support

[^3]
## COMPUTER DIRECT

We Love Our Customers
22292 N. Pepper Rd., Barrington, III. 60010
312/382-5050 ?o order
pictures move down one frame, deleting the picture in the designated frame. Frame 20 is always blank after a deletion.

The inverse function (press 9) works just like inverse in editing mode, but inverts all 20 frames at once.

To clear all 20 frames, press Q to quit or C to clear. Since these last two functions can have drastic results, Animator lets you abort either one without harm.

When you finish a sequence, press $S$ to save it on disk. The screen clears and displays three options: You can Press A to abort the save, F to list the picture files on that disk, or any other key to continue with the save. Picture filenames are limited to eight characters (the first character cannot be a number). Do not add a three-character extension; Animator automatically appends the extension. ANI when you save or load a picture file.

Finally, Animator's program option (available only in the IBM PC/PCjr version) can write a separate BASIC program to display your cartoon. Press P to select this option, and sit back while Animator writes the new program to disk under the filename PRG.BAS. Afterward, Animator ends with a reminder to reload PRG.BAS and save it with a new filename. This prevents the program from being overwritten if you select this option again.

## Commodore 64 Version

The 64 version of Animator is written entirely in machine language, but you can use it without understanding machine language at all. Type in and save Program 2 using the "MLX" machine language entry program printed elsewhere in this issue. Here is the information you'll need:

## Starting address: 49152 <br> Ending address: 52991

After you've saved " 64 Animator," plug a joystick into port 2 and load the program with LOAD"filename ${ }^{\prime \prime}, 8,1$ for disk or LOAD" filename ${ }^{\prime \prime}, 1,1$ for tape. Type SYS 49152 and press RETURN to run the program.

64 Animator's main screen consists of 21 picture frames instead of 20 as found in the IBM
version. It also uses sprites to animate the frames. Although the Commodore 64 normally is limited to displaying eight sprites at once, 64 Animator employs as many as 22 simultaneous sprites with the raster interrupt technique described in COMPUTE!'s First Book of Commodore 64.

When you begin the program, the frames may contain random data; Press $C$ to clear them out. Most program functions are controlled with the joystick. Near the bottom of the screen you'll see a list of several functions (frame numbers, options, and so on, as described above in the general instructions). As you move the joystick up or down, the function you select is highlighted in reverse video. To increase or decrease the selected value, move the joystick left or right.

Press the E key to enter edit mode. The joystick moves the blinking cursor around the drawing grid, and the fire button toggles the space under the cursor on or off. To draw or erase more than one space at a time, hold the joystick button down and move the stick in the direction you want.

The current picture number is displayed to the right of the screen. You can move to a different picture within edit mode: Press the + key to increase the picture number, and the - key to decrease it. Animator always displays the current picture in actual size above the picture number. Above and to the right of the current picture is the next picture in the series, and above to the left is the previous picture. (If you haven't drawn any pictures yet, these frames may be blank or contain random shapes.)

Press I within edit mode to invert the shape (change dots to blanks, and vice versa). The cursor keys shift the entire shape one space inside the grid, either left, right, up, or down. You can also expand the picture horizontally (press X ) or vertically (press Y). Expansion is toggled off by pressing the same keys, and can be used on the main screen as well.

Edit mode lets you copy a picture from one frame into another. Press the f7 function key to store the current shape in the picture buffer. Then change the picture
number with + or - and press f8 (SHIFT-f7) to copy the picture from the buffer into the new frame. In this way you can quickly draw a series of shapes without leaving edit mode. The R key returns you from edit mode to the main screen.

## Animating On The 64

Before watching the animation, set the starting and ending frame numbers to the appropriate range. The joystick button turns animation on and off. To change the speed during animation, move the joystick left or right. Press the f1 function key to clear everything but your animated figure off the screen ( f 1 also brings back the main screen). You can change the picture color by pressing the CTRL key and one of the number keys from $1-8$. The colors are the same as those printed on the front of the keys. For example, press CTRL-0 to color every figure black.

Insertions and deletions work as in the IBM version, except that an insertion retains the original picture in the selected frame rather than inserting a blank. To quickly fill several frames with the same picture, press I several times.

64 Animator can save and load picture files with either disk or tape. Be sure to set the starting and ending numbers before saving, since nothing is saved outside that range. The prefix ANI. is added to picture files on disk; do not type this prefix when loading or saving. To abort a save or load, press RETURN.

It's possible to merge pictures from different files if the two files use different frame numbers. Simply load the second file after the first. The main screen now contains pictures from both files. If the files have overlapping frame numbers, the second file has priority. For example, say that you load ANI.A, which uses frames $1-3$, then load ANI.B, which uses frames 3-5. Frame 3 will contain the picture from the ANI.B file.

64 Animator also lets you add sound effects in edit mode. Press D to add or clear the drum sound. Animator displays a small drum on the screen when the sound is present. To add musical notes in edit mode, press one of the number keys from 1-8 for low notes, and SHIFT plus 1-8 for high notes. A

small note is displayed when a note is present．Clear a note by pressing 9．Control the duration of sounds from the main screen．

Press $Q$ to exit 64 Animator．If you want to restart the program， you must load it again as described above．Don＇t reenter with SYS 49152.

## Atari Version

＂Atari Animator＂is in two parts． First type in and save Program 3， then Program 4．If you＇re using cas－ sette，substitute the following line for line 2 of program 3：

## 062 PRINT＂（DOWN\}PRESS RETU RN＂：RUN＂C：PART2＂

Cassette users must also save Program 4 on the same tape immedi－ ately after Program 3．After both programs have been saved，plug in a joystick and read the general in－ structions above．When you＇re ready to continue，load and run Program 3 （be sure to rewind the tape to the beginning if you＇re us－ ing cassette）．Program 3 loads the machine language portion of Ani－ mator，then automatically loads and runs Program 4.

The main screen provides 21 picture frames．Move the joystick up or down to select any of the values displayed at the bottom of the screen，and move it right or left to increase or decrease the selected value．Press E to go to the editing screen．In edit mode，move the blinking cursor around the drawing grid with the joystick．The fire but－ ton acts like a toggle：If you press it while the cursor is on a blank square，the cursor begins drawing； if you press it while the cursor is on a filled square，the cursor begins erasing．

To the right of the drawing grid is the current frame number and the picture in actual size．You can change to a different frame while in edit mode：Press the + key to in－ crease the frame number and the－ key to decrease it．Atari Animator also lets you copy a picture from one frame to another via the picture buffer．Press the G key to get（copy） the current picture into the buffer． Then change the frame number with the + or - key and press $P$ to put（move）the picture from the buffer into the new frame．

Press the E key to exit the edit
mode and return to the main screen．After setting the starting and ending frame numbers，press the fire button to begin the anima－ tion．To stop the animation，press the fire button again．While the car－ toon is moving，you can change the figure＇s color by pressing any key （shifted keys provide additional colors）．

The clear function（press C） clears the current frame in edit mode or all frames on the main screen．Atari Animator does not have automatic insert or delete functions，but you can accomplish the same thing with a series of indi－ vidual get and put operations．You can save sequences on disk or tape， using any appropriate filename for disk．

## Apple Version

＂Apple Animator＂runs on any Ap－ ple II－series computer with DOS 3.3 or ProDOS．The program requires two files on disk：the main BASIC program and a binary file（ANIMA－ TOR2）that contains graphics data． Type in and save Programs 5 and 6， then run Program 5 to create ANI－ MATOR2 on disk．You must run Program 5 before running Program 6 for the first time．However，you don＇t need to run Program 5 each time you want use Program 6－ only once to create the ANIMA－ TOR2 file．

After running Program 5，read the general instructions above，then load and run Program 6．The pro－ gram works much like the IBM PC／PCjr version，and most of its functions are self－prompting．Use the right and left arrow keys to pick the correct frame number before editing．For instance，if the frame number is 3 when you choose the edit function，frame 3 appears on the editing screen．To copy the pic－ ture in frame 3 into a different frame，enter the desired frame number when prompted．

When the editing screen ap－ pears，move the blinking cursor left， right，up，or down by pressing the J， L，I，and K keys，respectively．To put your drawing in the current frame，exit the edit mode with the save option（the quit option restores whatever that frame previously held）．The remaining functions （load，save，insert，delete，invert， etc．）work as described in the gener－
al instructions above，except that Apple Animator uses no filename extenders for picture files．

## II Version

＂TI Animator＂is very similar to the IBM version．Be sure TI Extended BASIC is plugged in before typing and saving Program 7.

Since the TI－99／4A screen can display only 10 frames at once，the 20 frames are divided into two groups（1－10 and 11－20）on alter－ nate screens．Press the N key to switch back and forth．You can change the color of the screen back－ ground or foreground drawing color by pressing the B or F keys．

TI Animator can save anima－ tion files on disk or tape．When saving on tape，enter CS1 for the filename．When saving or loading from disk，be sure to type the prefix DSK1．at the beginning of each filename．

## Program 1：Animator for IBM PC／PCjr

Please refer to＂COMPUTE！＇s Guide to Typing In Programs＂before entering this listing．
OP 5 DEF SEG $=\emptyset$ ：POKE $1 ø 47$ ，PEEK（ $1 \varnothing$ 47）OR 64
PK $3 \emptyset$ KEY DFF：CLS：SCREEN 1：DEF 5 EG：POKE \＆H4E， 1
CL $11 \varnothing$ DEF SEG：POKE \＆H4E， 2

AF 16Ø CLS：SCREEN 2：KEY OFF：FOR I＝1 TO 1ø：KEY I，＂＂：NEXT
DJ 170 REM \＆事宗豈
6D $18 \emptyset$ DIM A\％（144），B\％（144），D\％（14 4）$, E \%(144), F \%(144), C \%(144$ ）， $\mathrm{G} \%$（144）， $\mathrm{H} \%$（144）， $\mathrm{I} \%$（144） $, J \%(144), K \%(144), L \%(144)$ ， $M \%(144), N \%(144), 0 \%(144), P$ \％（144）， $\mathrm{Q} \mathrm{\%}$（144）， $\mathrm{R} \mathrm{\%}$（144）， $\mathrm{S} \mathrm{\%}$ （144），T\％（144），U\％（144），A（2 Ø，54）：$N U M=1: S T A=1: E N=2 \emptyset: S$ P＝ø： $\mathrm{PL}=1: \operatorname{GET}(1,1 \varnothing)-(54,3 \varnothing$ ），U\％
QL 19ø $X=9: Y=31:$ LOCATE 1，39：PRIN T＂SPEED＝＂；SP；：LOCATE 1，1 ：PRINT＂NUMBER＝＂；NUM；：LOCA TE 1，14：PRINT＂START＝＂；STA ；：LDCATE 1，26：PRINT＂STOP＝ ＂；EN；：LOCATE 1，55：PRINT＂C HANGE PAUSE $=$＂；FAST
BE 2øø REM \＆SE SET UP SCREEN＊䒠豈
PB $21 \emptyset$ LOCATE 22，1 ：PRINT＂1－ANIM ATE 2－EDIT 3－STA RT PIC．4－END PIC．＂：LOCATE 23，1：PRINT＂5 －SLOWER 6－FASTER 7－FASTER PIC．SWITCH B －SLOWER PIC．SWITCH＂；：LOC ATE 24，1：PRINT＂9－INVERSE ALL THE PICTURES＂；
FK 22ø LOCATE 21，1：PRINT＂（S）AVE

；I；a NEXT：LOCATE 13，79： FOR I＝11 TO 26aPRINT＂ ；I；a NEXT
IH 236 LDCATE 20，1：PRINT＂（I）NSER T PIC．
（D）ELE TE PIC．＂
DK 24．FOR T＝1 TO 2：FOR I＝1 TO 5 ILINE $(A, X)-(A+55, Y), B i L I$ NE $(A+6 \emptyset, X)-(A+115, Y), B: A$ $=A+126: N E X T: A=\varnothing: X=8 \%: Y=1 \emptyset$ 2：NEXT
OD 25 R REM 事事 READ PICTURES身原
DK 26 GET $(1,16)-(54,3 \varnothing), A \chi: \operatorname{GET}($ $61,16)-(114,3 \varnothing), \mathrm{B} \mathrm{\%}$ GET（12 $1,15)-(174,36)$, C $\%$ GET（181 ，1ஜ）－（234，3ஜ），D\％：GET（241， 1g）－（294，3ø），E\％：GET（3ஜ1， 1 ஏ）$-(354,36), \operatorname{F\% }, \operatorname{GET}(361,16$ ）－（414，3छ），G\％，GET $(421,1 \hbar)$ $-(474,36), \operatorname{HK} 1 \operatorname{GET}(481,16)-$ （ 534,36 ），I \％G GET（541，16）－ 594，3ø），J\％
EB 27ø GET（1，81）－（54，101），K\％：GET （61，B1）－（114，1ø1），L\％，GET（ $121,81)-(174,161)$, M\％GET（ $181,81)-(234,191)$, N\％GET（ $241,81)-(294,1 ఐ 1), 0 \%$ GET（ $3 \varnothing 1,81)-(354,101)$, P\％GET（ 361，81）－（414，161），Q\％：GET（ $421,81)-(474,1 \boxminus 1)$, R\％：GET（ $481,81)-(534,101), 5 \% 1$ GET（ 541，81）－（594，161），T\％
高
CI 296 A $\$=$ INKEY ${ }^{2}$ ：IF $A \$=" "$ THEN 2 96 ELSE IF LEN（A ${ }^{(1)}=$ ？THEN 83ø ELSE IF VAL（A $)>\varnothing$ AN D VAL $(A \$)<16$ THEN 436
OL 3øø IF A\＄＝＂P＂THEN 368ø
JO $31 \varnothing$ IF $A \$<>" Q "$ THEN $35 \emptyset$
PA 32g LOCATE 18，1：PRINT＂ARE YOU SURE YOU WANT TO QUIT？ （ $Y / N$ ）＂
 $3 \varnothing$ ELSE IF A $=$＂Y＂THEN SC REEN $\varnothing, \emptyset_{,} \varnothing_{2}$ CLS：END ELSE L OCATE 18，1：PRINT STRING（ 50，32）：BOTO 29ø
 H
CC $35 \emptyset$ IF $A \$<>" C "$ THEN $38 \emptyset$
HM $36 \emptyset$ LOCATE 17，1：PRINT＂ARE YOU SURE（Y／N）＂：DEF SEG：PDK E 106， 0
DD $37 \emptyset$ A $\$=$ INKEY $\$$ IF A $\$="$ THEN 3
 SaGOTO $19 \emptyset$ ELSE LDCATE 17 ，1：PRINT STRING（66，32）：© OTD 29ø
Ph $38 \emptyset$ IF $A \$=" S$＂THEN $87 \emptyset$ ELSE I F A $=$＂L＂THEN 99ø
$0039 \varnothing$ IF $A \$=" D$＂THEN 28øø ELSE IF As＝＂I＂THEN 236
HK 4øø GOTO 29ø
DF $41 \emptyset$ IF FAST $=\varnothing$ THEN BEEP：GOTO $29 \varnothing$ ELSE FAST＝FAST－1：LOCA TE 1，68：PRINT FAST；：GOTO 29ø
JL 426 IF FAST $=15 \emptyset$ THEN BEEP：GO TO 29\％ELSE FAST＝FAST +1 ：L OCATE 1，6B：PRINT FAST；：GO TO 29ø
KP $43 \emptyset$ ON VAL（A\＄）GOTO 52ø， $1 \emptyset 8 \emptyset$ ， $47 \emptyset, 5 \emptyset \emptyset, 48 \emptyset, 45 \emptyset, 41 \emptyset, 42 \emptyset, 3$ 64ø

CI 45 IF $S P=15$ THEN BEEP ELSE $S$ $\mathrm{P}=\mathrm{SP}+1:$ LOCATE 1，46：PRINT SP
11 46ø GOTO 290
DJ $47 \emptyset$ STA＝NUM：LOCATE 1，20：PRINT STA：GOTD 29ø
PP $48 \emptyset$ IF $S P=-15$ THEN BEEP ELSE

＂Animator for IBM PC／PCjr＂takes ad－ vantage of extended BASIC graphics fea－ tures such as GET and PUT．

SP＝SP－1：LOCATE 1，46：PRINT SP
10490 GOTO 290
HP 5øø EN＝NUM：LOCATE 1，31：PRINT ENz GOTO 29ø
LJ $51 \varnothing$ REM 事事 ANIMATE PICTURES高年童
BL 520 LOCATE 17，1：PRINT＂PRESS S PACE BAR TO PAUSE MOVEMEN T＂：LOCATE 18，1：PRINT＂USE ARROW KEYS FOR SPEED＂：IF STA $\ E N$ THEN $Q Q=-1$ ELSE $Q Q$ $=1$
6B 530 FOR $I=S T A$ TO EN STEP QQ
C1 540 PL1＝PL：IF PL＋SP＜1 THEN PL $=57 \%$ ELSE IF PL＋SP＞58ø TH EN PL＝1
ON 55.1 PLmPL＋SP
OK 56ळ LOCATE 1，8：PRINT I：ON I G OTD 63ø，64ø，65ø，66ø，67ø，6 8ஜ，69פ，7פஜ，71Ф，72ø，73ø， 74 ஏ，75ø，76ஏ，77ø，78ø，79ø，8øø ，815，820
CH $57 \emptyset$ FOR $N=\curvearrowleft$ TO FAST 4 ：NEXT：A\＄
 4ø ELSE IF A乡く＞＂＂AND LEN （A）$\langle>2$ THEN LDCATE $1, B: P$ RINT NUM：LOCATE 17，1：PRIN T STRING（15פ，32）：GOTO 29 $\emptyset$

DG $58 \emptyset$ IF LEN（A\＄）$\langle>2$ THEN $62 \emptyset$
FA 590 C＝ASC（RIGHT\＄（A\＄，1））：IF C＝ 77 THEN SPmSP＋1 ELSE IF C $=75$ THEN SPmSP－1
EN $6 \boxed{1}$ IF $S P=-16$ THEN SP $=-15$ ELS $E$ IF $S P=16$ THEN $S P=15$
EL 61ø LDCATE 1，46：PRINT SP
EJ 620 NEXT：GOTO 530
MO $63 \emptyset$ PUT（PL1，52），U\％，PSET ：PUT（P L，52），A\％：GOTO 57®
OE $64 \varnothing$ PUT（PL1，52），U\％，PSET：PUT（ $P$ $\mathrm{L}, 52), \mathrm{B} \% 2$ GOTO 57．
BK 65 I PUT（PL1，52），U\％，PSET：PUT（P L，52），C\％：GOTO 57ஜ
DA $66 \emptyset$ PUT（PL1，52），U\％，PSET ：PUT（P L，52），D\％\＆GOTO 57ø
FG 67ø PUT（PL1，52），U\％，PSET：PUT（P L，52），E\％ 2 GOTO 57ø
If $68 \emptyset$ PUT（PL1，52），U\％，PSET：PUT（P L，52），F\％ 8 GOTD 57．
KC 696 PUT（PL1，52），U\％，PSET：PUT（P L，52）， $6 \%$ G $\mathrm{GOTO} 57 \emptyset$
LF 7øø PUT（PL1，52），U\％，PSET：PUT（P L，52），H\％\＆GOTD 57ø
OL 71 ® PUT（PL1，52），U\％，PSET：PUT（P L，52），I\％：GOTO 57\％
$A B$ 72＠PUT（PL1，52），U\％，PSET：PUT（ $P$ L，52），J\％：GOTD 576
CH $73 \emptyset$ PUT（PL1，52），U\％，PSET：PUT（P L，52），K\％：GOTO 57ø
FM 749 PUT（PL1，52），U\％，PSET：PUT（P L，52），L\％：GOTO 57\％
HD 750 PUT（PL1，52），U\％，PSET：PUT（P L，52），M\％，GOTO 57\％
KJ $76 \emptyset$ PUT（PL1，52），U\％，PSET：PUT（P

L，52），N\％：GOTO 57ø
MP 776 PUT（PL1，52），U\％，PSET：PUT（ $P$ L，52），0\％GOTO 57ø
OF $78 \emptyset$ PUT（PL1，52），U\％，PSET：PUT（P L，52），P\％，GOTO 57ø
BL $79 \emptyset$ PUT（PL1，52），U\％，PSET：PUT（P L，52），Q\％：GOTO 57ø
CO Bøø PUT（PL1，52），U\％，PSET：PUT（P L，52），R\％：GOTO 57ø
EE $81 \emptyset$ PUT（PL1，52），U\％，PSET：PUT（P L，52）， $8 \% 1$ GOTO 57
HK 826 PUT（PL1，52），U\％，PSET：PUT（ $P$ L，52），T\％：GOTO 57！
 77 THEN NUM $=N U M+1$ ELSE IF $C=75$ THEN NUM $=$ NUM -1
FO 84ø IF NUM $=\varnothing$ THEN NUM $=2 \varnothing$ ELSE IF NUM＝21 THEN NUM＝1
If 85ø LOCATE 1，8：PRINT NUM：GOTO 290
 （
LO 87ø CLS：ON ERROR GOTO 25ø1ø
HF 88ø LOCATE 1ø，1の：PRINT＂F－FILE 5 A－ABORT SAVE AN $Y$ OTHER KEY TO CONTINUE＂
BH 89ø A\＄＝INKEY\＄：IF A\＄＝＂＂THEN 8 9ø ELSE IF $A \$=" F "$ THEN FI
 THEN GOSUB 231ø：GOTO 19ø
CJ 9øø PRINT：PRINT：PRINT：INPUT＂N AME OF FILE TO SAVE＂；A $\$$ I F A\＄m＂＂THEN GOSUB 231ø：G OTO 19Ø
JH 910 IF INSTR（A\＄，＂．＂）＜$>\varnothing$ THEN CLS：LOCATE 9，1ø：PRINT＂NO EXTENSION PLEASE．．＂：GOTO 88ø
11 920 IF LEN（A\＄）＞8 THEN CLS：LOC ATE 9，15：PRINT＂NO MORE TH AN 8 CHARACTERS PLEASE＂：G OTO 88פ
CD 930 IF VAL $(\operatorname{RIGHT} \$(A \$, 1))>\varnothing$ OR RIGHT\＄$(A \$, 1)=" \varnothing "$ THEN CL S：LOCATE 9，16：PRINT＂THE F IRST CHARACTER CAN＇T BE A NUMBER．．＂：GOTO B8ø
BE 940 GOSUB $231 \emptyset$
BL 950 A\＄＝A\＄＋＂．ANI＂
Q1 $96 \emptyset$ DEF SEG＝\＆HBEøø：BSAVE A $\$$ ，$\varnothing$ ，\＆H4Øøछ：PRINT＂IT HAS BEEN SAVED．PRESS ANY KEY TO CONTINUE＂：PRINT：PRINT ：PRINT
Q $97 \emptyset$ A $\$=$ INKEY $\$:$ IF $A \$=" "$ THEN 9 7ø ELSE CLS：GOSUB 231ø：G0 TO 19ø
AE 980 REM \＆LOAD PICTURE $\%$ ＋
KJ 99ø CLS：ON ERROR GOTO 25øøø
ID 1 Øøø LOCATE 1ø，1ø：PRINT＂F－FIL ES A－ABORT LOAD ANY OTHER KEY TO CONTINU E＂
CD $1 \varnothing 1 \emptyset A \$=I N K E Y \$:$ IF $A \$=" "$ THEN 1ø1ø ELSE IF A $\$=" F "$ THEN FILES＂童．ANI＂ELSE IF A\＄ ＝＂A＂THEN GOSUB 231ø：GOT － 196
PI 1 ø2ø PRINT：PRINT：PRINT：INPUT＂ NAME OF FILE TO LOAD＂；A ：IF A\＄＝＂＂THEN GOSUB 231 D：GOTO 196
HI $1 \emptyset 3 \emptyset$ IF INSTR（A\＄，＂．＂）$<>\emptyset$ THEN CLS：LOCATE 9，1ø：PRINT＂N －EXTENSION PLEASE．．＂：GO TO 1øפぁ
6D 1ø4ø IF LEN（A\＄）＞8 THEN CLS：LO CATE 9，1ø：PRINT＂NO MORE THAN 8 CHARACTERS PLEASE ＂：GOTO 1øøø
PK $165 \emptyset$ IF VAL（RIGHT（ $(\mathrm{A} \$, 1))>\emptyset \quad 0$ R RIGHT $(A \$, 1)=" \emptyset "$ THEN CLS：LOCATE 9，1．7：PRINT＂TH

E FIRST CHARACTER CAN＇T BE A NUMBER．．＂：GOTD 1 Ggg KE 1 Ø6 6 $A \$=A \$+"$ ．ANI＂：DEF SEG＝\＆HB
 GOTD ø：GOTO 19g
L6 $107 \varnothing$ REM＊

Jo 1 1ø8ø LOCATE 16，1：PRINT＂TYPE I N 21 TO ABORT＂：PRINT＂NUM BER SET AT THE TOP OF TH E SCREEN IS PIC．TO READ FROM RETURN FOR SAME＂：L OCATE 18，1：INPUT＂EDIT PI CTURE NUMBER＂；B：IF B＜ळ 0 R B＞21 THEN BEEP：GOTO 16 Bø
JC $1 \varnothing 90$ IF $B=21$ THEN CLS：GOSUB 2 31ø：GOTO 19ø
IA $11 \varnothing \emptyset$ IF $B=\emptyset$ THEN $B=N U M$
ED $111 \varnothing$ REM＊＊PUT PICTURE TO EDIT ON SCREEN 章音家
PB $112 \emptyset$ CLS：LOCATE 1，24：PRINT＂WA IT．．．＂：ON NUM GOTO 113ळ， $114 \varnothing, 115 \varnothing, 116 \varnothing, 117 \varnothing, 11$ 日ぁ ，119ø，12øø，121ø，122ø，123 ø，124ø，125ø，126ø，127ø， 12 8ø，129ø，13øø，131ø，132ø
M6 $113 \emptyset$ PUT（ $1,5 \emptyset$ ），A\％：GOTO $134 \emptyset$
PJ $114 \varnothing$ PUT $(1,5 \emptyset)$, B\％：GOTO $134 \emptyset$
OH $115 \emptyset$ PUT $(1,5 \varnothing), C \% 2$ GOTO $134 \varnothing$
BP $116 \emptyset \operatorname{PUT}(1,5 \varnothing)$, D\％：GOTO $134 \emptyset$
CC $117 \emptyset$ PUT（ $1,5 \emptyset$ ），E\％：GOTO $134 \varnothing$
DF $118 \emptyset$ PUT $(1,5 \emptyset), F \%:$ GOTO $134 \emptyset$
FI $119 \varnothing$ PUT（ $1,5 \varnothing$ ），G\％：GOTO $134 \varnothing$
EP 1260 PUT（ $1,5 \varnothing$ ），H\％：GOTO $134 \varnothing$
FC $121 \emptyset \operatorname{PUT}(1,5 \emptyset), I \%:$ GOTO $134 \emptyset$
6F $122 \emptyset$ PUT（ $1,5 \emptyset$ ），J\％：GOTO $134 \emptyset$
II 1230 PUT（ $1,5 \emptyset$ ），K\％：GOTO $134 \emptyset$
JL $124 \emptyset$ PUT（ $1,5 \emptyset$ ），L\％：GOTO $134 \emptyset$
KO $125 \emptyset$ PUT（ 1,56 ），M\％：GOTO $134 \emptyset$
LB $126 \emptyset$ PUT（ $1,5 \varnothing$ ），N\％ 2 GOTO $134 \emptyset$
HE $127 \emptyset$ PUT $(1,5 \emptyset), 0 \%:$ GOTO $134 \emptyset$
NH $128 \emptyset$ PUT（ 1,56 ），P\％：GOTO $134 \varnothing$
PK $129 \varnothing$ PUT（ $1,5 \varnothing$ ），Q\％ 2 GOTO $134 \varnothing$
OB 13øø PUT（ $1,5 \emptyset$ ），R\％：GOTO $134 \varnothing$
PE 131ø PUT（ $1,5 \emptyset$ ），S\％：GOTO $134 \emptyset$

PO 1330 REM tat GET ON－OFF POIN TS 重事童
So 1340 FOR $I=1$ TO 20：FOR $X=1$ TO 54：$A(I, X)=\operatorname{POINT}(X, I+49)$
PL $135 \emptyset$ NEXT：NEXT
KB 136 R REM＊\＆DRAW EDITING SC REEN 童安室
IB 1379 FOR I＝1 TO 20：LOCATE 3＋I ，14：PRINT＂．．．．．．．．．．．．．．．．．．
．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
$J=1$ TD 54：IF $A(I, J)=1$ TH EN LOCATE $3+1,13+J:$ PRINT ＂舞＂
PE $138 \emptyset$ NEXT：NEXT
CP 139ø LOCATE 1，3ø：PRINT＂（Q）UIT （D）RAW（M）OVE（E）
RASE（C）LEAR（S）AVE （ I ）NVERSE＂
PL $14 \emptyset \emptyset$ GOTO $155 \varnothing$
高官
KO $142 \emptyset$ BLINK\％＝（BLINK $\%+1)$ MOD 26 ：IF BLINK\％＜1ø THEN $147 \varnothing$ ELSE $144 \varnothing$

6H $144 \emptyset$ IF $A($ ROW，COLUMN $)=\emptyset$ THEN CH ${ }^{(1)}="$ ．＂ELSE IF A（ROW，CO LUMN）$=1$ THEN CH ${ }^{(1)}=$＂半＂
BF $145 \emptyset$ GOTO $148 \emptyset$
6K $146 \emptyset$ REM \＆
LO 1470 IF CURS $=-1$ THEN CH $=$＂- ＂
ELSE IF CURS $=\varnothing$ THEN CH $=$ ＂事＂ELSE IF CURS＝1 THEN CH ${ }^{2}={ }^{\prime \prime}+{ }^{\prime \prime}$
E1 1480 LOCATE 3＋ROW， $13+$ COLLHMN：P RINT CH $\$$ ：：RETURN

DC 1490 REM＊＊REMOVE CURSOR高を
6N $15 \emptyset \emptyset$ IF $A(R O W, C O L U M N)=\varnothing$ THEN CH\＄m＂．＂ELSE IF A（ROW，CO LUMN）$=1$ THEN CH ${ }^{2}=$＂\＃＂
CF $151 \emptyset$ LOCATE $3+$ ROW， $13+$ COLUMN：$P$ RINT CH\＄；RETURN
QP 1520 LOCATE 24，18：PRINT＂wait ＂；：FOR I＝1 TO 2ø：LOCATE 3＋I，14：PRINT STRING\＄（54， 46）；
EM 1530 NEXT：ERASE A：DIM A $(20,54$ ）：LOCATE 24，18：PRINT＂
＂；：PUT（ $1,5 \varnothing$ ），U\％，PSET：RE TURN

If $155 \emptyset$ ROW＝1：COLUMN＝1：CURS $=\varnothing$
MF 1560 REM＊斿 MAIN LOOP＊＊
EH $157 \boldsymbol{\square}$ BLINK $\%=\varnothing_{2}$ IF CURS $=-1$ THEN $A(R O W$, COLUMN $)=\boldsymbol{g}_{2}$ PSET（CO LUMN，ROW＋49），© ELSE IF C URS $=+1$ THEN A（ROW，COLUMN ）$=1$ ：PSET（COLUMN，ROW＋49）， 1
IL 158ø GOSUB 1420
PG $159 \varnothing$ A $\$=$ INKEY \＆：DEF SEG：POKE 1 ø6，$\varnothing$ ：IF LEN（A $)=\varnothing$ THEN 1 58\％ELSE IF LEN（A ）$=1 \mathrm{TH}$ EN 16 あぁ ELSE IF $\operatorname{LEN}(A \$)=$ 2 THEN $172 \varnothing$
OH $16 \varnothing \varnothing$ CODE1＝ASC（A\＄）AND \＆H5F
FC $161 \varnothing$ REM＊童 READ KEYS＊
DF 1620 IF CODE1＝ASC（＂E＂）THEN 2 ©4■
PH 1630 IF CODE1＝ASC（＂M＂）THEN 2 $05 \varnothing$
6F $164 \emptyset$ IF CODE1＝ASC（＂D＂）THEN 2 ©6』
JC 1650 IF CODE1＝ASC（＂C＂）THEN 2 ø日ぁ
QL 1660 IF CODE1＝ASC（＂S＂）THEN 2 100
60 1670 IF CODE1＝ASC（＂Q＂）THEN G OSUB 231ø：GOTO 19ø
PP 168 IF CODE1＝ASC（＂I＂）THEN 1 71ø
DB $169 \varnothing$ GOTO 1580
KG $17 \boldsymbol{1}$ の REM＊＊ RE＊
LF $171 \emptyset \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing)$ ，U\％．PUT （ $1,5 \varnothing$ ），U\％，PRESET：GET（ 1,7 5）－（54，95），U\％：GOTO $134 \varnothing$
EL 1720 IF ASC（A $\$$ ）＜$>\varnothing$ THEN $157 \emptyset$ ELSE CODE2＝ASC（RIGHT\＄（A\＄ ，1））：GOSUB 15øø
HB 1730 REM \＆隼隹
IC 1746 IF CODE2 $=71$ THEN $184 \varnothing$
PA $175 \emptyset$ IF CODE2 $=73$ THEN $187 \varnothing$
M $176 \emptyset$ IF CODE2 $=79$ THEN $19 \emptyset \emptyset$
KJ $177 \emptyset$ IF CODE2 $=81$ THEN $193 \emptyset$
PI $178 \emptyset$ IF CODE2 $=72$ THEN $196 \emptyset$
FN $179 \emptyset$ IF CODE $2=75$ THEN $198 \emptyset$
NL $18 \emptyset \emptyset$ IF CODE $2=77$ THEN $2 ø \emptyset \emptyset$
KP 181ø IF CODE2＝8ø THEN $2 \emptyset 2 \emptyset$
CA $182 \emptyset$ GOTD 158ø
OK 1830 REM \＆MOUE THE CURSDR事事
EJ 184ø IF ROW $=1$ THEN ROW $=21$
FH $185 \emptyset$ IF COLUMN $=1$ THEN COLUMN $=$ 55
LE 186 ROW $=$ ROW－1： COLUMN $=$ COLLIMN 1：BOTO 157ø
EC $187 \emptyset$ IF ROW＝1 THEN ROW＝21
MM 188ø IF COLUMN＝54 THEN COLUMN $=\varnothing$
（D） 1890 ROW＝ROW－1：COLUMN $=$ COLUMN + 1：GOTO 157ø
LH 1960 IF ROW $=20$ THEN ROW $=\varnothing$
FM 1910 IF COLUMN＝1 THEN COLUMN＝ 55
JA 1920 ROW＝ROW＋1：COLUMN＝COLUMN－ 1：GOTO 1576
MA $193 \varnothing$ IF ROW $=2 \emptyset$ THEN ROW $=\varnothing$

LD $194 \varnothing$ IF COLUMN $=54$ THEN COLUMN
GP 195ø ROW＝ROW＋1：COLUMN＝COLUMN＋ 1：GOTO 157ø
EB $196 \emptyset$ IF ROW＝1 THEN ROW＝21
KH 1970 ROW＝ROW－1：GOTO 157ø
6C $198 \emptyset$ IF COLUMN＝1 THEN COLUMN＝ 55
OH $199 \emptyset$ COLUMN＝COLUMN－1：GOTO 157 D
JG 20øの IF COLUMN＝54 THEN COLUMN $=\varnothing$
Jo 2919 COLUMN＝COLUMN＋1：GOTO 157 $\emptyset$
LH 2629 IF ROW $=2 \varnothing$ THEN ROW $=\varnothing$
6F 2ø3Ø ROW＝ROW＋1：GOTO 157ø
DJ 204ø CURS＝－1：GOTD 157ø
KB 265ø CURS＝ø：GOTO 157ø
CJ 266 CURS $=+1$ ：GOTO 1570
NG $297 \emptyset$ REM＊部 CLEAR THE PICTU RE＊
BN 268ø GOSUB 152ø：GOTO $155 \emptyset$
HE 2990 REM \＆S SAVE THE PICTUR E＊
PD 21øø LOCATE 1，24：PRINT＂WAIT．． ．＂：ON B GOTO 2119，2120，2 13ø，214 $215 \varnothing, 216 \varnothing, 217 \varnothing$ ， 218ø，219ø，226ø，221ø，222ø ，223ø，224ø，225ø，226ø， 227 ø，228ø，229ø，23øø
JB $211 \emptyset \operatorname{GET}(1,5 \emptyset)-(54,7 \emptyset), A \%: G 0 S$ UB 231ø：GOTO 19ø
LH $212 \emptyset \operatorname{GET}(1,5 \varnothing)-(54,7 \emptyset), B \%: G 0 S$ UB 231ø：GOTO 196
肘 $213 \emptyset \operatorname{GET}(1,5 \emptyset)-(54,7 \emptyset), C \%, \operatorname{GOS}$ UB 231ø：GOTO 19ø
OC $214 \varnothing \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), D \%:$ GOS UB 231ळ：GOTD 19ø
QN 215ø GET（1，5ø）－（54，7ळ），E\％：GOS UB 231ø：GOTD 19ø
C1 $216 \emptyset \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), F \%$ GOS UB 231ø』 GOTO 190
DD $217 \emptyset \operatorname{GET}(1,5 \varnothing)-(54,76), G \%: G O S$ UB 231ø：GOTO 19ø
FO $218 \emptyset \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), \mathrm{H} \% \mathrm{~g}$ GOS UB 231ø：GOTO 19ø
HJ $219 \emptyset \operatorname{GET}(1,56)-(54,76), 1 \%$ ：GOS UB 231．5：GOTO 19ø
HI 22øø GET（ $1,5 \varnothing$ ）$-(54,7 \varnothing), \mathrm{J} \%:$ GOS UB 231ø：GOTO 19ø
ID 221ø $\operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), K \%: G 0 S$ UB 231．
KO $222 \emptyset \operatorname{GET}(1,5 \varnothing)-(54,7 \emptyset), L \%: G O S$ UB 231ø：GOTO 19ø
HJ $223 \emptyset \operatorname{GET}(1,5 \varnothing)-(54,76), \mathrm{M} \%$ GOS UB 231ø：GOTO 19ø
NE $224 \varnothing \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), N \%: G 0 S$ UB 231ø：GOTO 19ø
PP 225ø $\operatorname{GET}(1,5 \varnothing)-(54,7 \emptyset), 0 \%: \operatorname{GOS}$ UB 231ø：GOTO 19ø
BK 226 GET $(1,5 \varnothing)-(54,7 \varnothing), P \%$ GOS UB 231ø：GOTO $19 \varnothing$
CF 227ø $\operatorname{GET}(1,5 \emptyset)-(54,7 \varnothing)$, Q\％：GOS UB 231\％：GOTO 196
EA 228ø $\operatorname{GET}(1,5 \varnothing)-(54,76), R \%:$ GOS UB 231ø：GOTO 19ø
6L $229 \varnothing \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), 5 \%:$ GOS UB 231．：GOTO 19\％
6K $23 \varnothing \varnothing \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), T \%$ GOS UB 231ø：GOTO 19ø
6K 231ø CLS：PUT（1，1ø），A\％ 2 PUT（61，
 T（181，1ø），D\％：PUT（241，1 $\ddagger$ ） ，E\％ 2 PUT（ $3 \varnothing 1,16$ ）， $\mathrm{F} \%_{3}$ PUT（ 3 $61,16)$, G\％：PUT $(421,1 \hbar), \mathrm{H} \%$ ：PUT（481，16），I\％：PUT（541， 1ஏ），J\％
CA 2326 PUT（ 1,81 ），K\％：PUT（ 61,81 ）， LK：PUT（121，81），M\％：PUT（18 1，81），N\％：PUT（241，81），0\％： PUT（3ळ1，81），P\％\＆PUT（361，B 1）， $\mathbf{0 \%}$ ：PUT（421，B1），RX：PUT （481，81），S\％2 PUT（541，81）， T\％，PSET

JL 233ø RETURN
OH 234\％IF INKEY $\$=0$＂THEN 2340 E LSE $62 \varnothing$
PL 235ø REM $\ddagger$ ： PICTURE＊＊：
JH 236 LOCATE 18， $1:$ PRINT＂ARE YO U SURE？THIS WILL MOVE $2 \varnothing$ OFF THE END＂
HC 237ø A $\$=I N K E Y \$: I F A \$="$＂THEN 237』 ELSE IF A\＄く＞＂Y＂THE N LOCATE 18，1：PRINT STRI NG $(5 \varnothing, 32)$ ：BOTO 19ø
EF 238ø ON NUM GOTO 239ø，2490， 24 1ø，242ø，243ø，244ø，2459， 2 46ø，247ø，248ø，249ø，25øø， 251ø，252ø，253ø，254ø，255ø ，256ø，257ø，282ø
HH $239 \varnothing \operatorname{GET}(1,1 \varnothing)-(54,3 \varnothing), B \%$
LO $24 \varnothing \varnothing \operatorname{GET}(61,1 \varnothing)-(114,3 \varnothing), \mathrm{C} \%$
F6 $241 \varnothing \operatorname{GET}(121,1 \varnothing)-(174,3 \varnothing), \mathrm{DF}$
if $242 \varnothing \operatorname{GET}(181,1 \varnothing)-(234,3 \varnothing)$ ，E\％
PN $243 \varnothing \operatorname{GET}(241,1 \varnothing)-(294,3 \varnothing)$ ，F\％
LH $244 \varnothing \operatorname{GET}(3 \varnothing 1,1 \varnothing)-(354,3 \varnothing)$ ， $6 \%$
HP $245 \varnothing \operatorname{GET}(361,1 \varnothing)-(414,3 \varnothing), \mathrm{H} \%$
ED $246 \varnothing \operatorname{GET}(421,1 \varnothing)-(474,3 \varnothing), 1 \%$
$66247 \varnothing \operatorname{GET}(481,1 \varnothing)-(534,36), 3 \%$
OK 248Ø $\operatorname{GET}(541,1 \varnothing)-(594,3 \varnothing), K \%$
PO $249 \varnothing \operatorname{GET}(1,81)-(54,1 ø 1), L \%$
FA $25 \emptyset \emptyset \operatorname{GET}(61,81)-(114,1 \varnothing 1), M \%$
EK $251 \varnothing \operatorname{GET}(121,81)-(174,161), N \%$
$60252 \emptyset \operatorname{GET}(181,81)-(234,1 \varnothing 1), 0 \%$
ND $253 \varnothing \operatorname{GET}(241,81)-(294,1 \varnothing 1), \mathrm{P} \%$
JD $254 \varnothing \operatorname{GET}(301,81)-(354,1 ø 1), 0 \%$
내 $255 \emptyset \operatorname{GET}(361,81)-(414,1 \varnothing 1), \mathrm{R} \%$
DH $256 \emptyset \operatorname{GET}(421,81)-(474,1 ø 1), 5 \%$
FA $257 \varnothing \operatorname{GET}(481,81)-(534,1 \varnothing 1), T \%$
AB 258ø CLS：ON NUM GOTO 259ø，26ø ø，261ø，262ø，263ø，264ø，26 5ø，266ø，267ø，2689，2699，2 7øø，271ø，272ø，273ø，2749， 2759，276ø，277ø，278ø
LB 259ø $\operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), A \%: G O S$ UB 231ø：GOTO 19ø
LA $26 \emptyset \varnothing \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), B \%: G O S$ UB 231ø： $\operatorname{GOTO}$ 19ø
ML $261 \varnothing \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), C \%: G 0 S$ UB 231ø：GOTO 19ø
$06262 \emptyset \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing)$ ，D\％：GOS UB 231ø：GOTO 19ø
AB $263 \varnothing \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), E \%: G O S$ UB 231ø：GOTO 19ø
CH 264ø $\operatorname{GET}(1,59)-(54,7 \varnothing), F \%: G O S$ UB 231ø：GOTO 19ø
DH $265 \emptyset \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing)$ ，G\％：GOS UB 231ø：GOTO 19ø
FC $266 \emptyset \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing)$ ，H\％：GOS UB 231ø：GOTO 19ø
HN 267ø $\operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), 1 \%$ ：GOS UB 23102GOTO 19ø
J1 268ø $\operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), 3 \%: G O S$ UB 231ø：GOTO $19 \varnothing$
KD $269 \varnothing \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), K \%: G 0 S$ UB 231ø：GOTO 19ø
KC 27øø $\operatorname{GET}(1,56)-(54,7 \varnothing), L \%: G 0 S$ UB 231ø：GOTO 19ø
NN 271ø $\operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), M \%: G O S$ UB 231ø：GOTO 19ø
01 $272 \varnothing \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), N \%: G 0 S$ UB 231ø：GOTO 19ø
PD 273ø $\operatorname{GET}(1,5 ø)-(54,7 \varnothing), 0 \%: G 0 S$ UB 231ø：GOTO 19ø
BO 274ø GET（1，5ø）－（54，7ø），P\％：GOS UB 231ø：GOTO 19ø
DJ $275 \varnothing \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing)$, Q\％：GOS UB 231ø：GOTO 19ø
EE 276 ® $\operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), R \%: G 0 S$ UB 2316：GOTO 19ø
GP $277 \emptyset \operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing)$ ， $5 \%$ ：GOS UB 231ø：GOTO 19ø
IK 278ø $\operatorname{GET}(1,5 \varnothing)-(54,7 \varnothing), T \%: G O S$ UB 2316：вOTO 19ø
EH 2796 REM＊＊＊DELETE A PICTUR E
BM 28øø LOCATE 18，1：PRINT＂ARE YO
u sURE YOU WANT TO DELET E THIS NUMBER＂
EF 2810 A $\$=1 N K E Y \$$ ：IF A $\$="$＂THEN 281ø ELSE IF A\＄＜＞＂Y＂THE N LOCATE 18，1：PRINT STRI NG $(50,32)$ ：GOTO 19ø
NH 282ø ON NUM GOTO 283ø，284ø，28 5ø，286ø，287ø，288ø，289ø， 2 9øø，291ø，292ø，293ø，294ø， 295ø，296ø，297ø，298ø，299ø ， $3 \varnothing \varnothing \varnothing, 3 \varnothing 1 \varnothing, 3 \varnothing 2 \varnothing$
JL $283 \varnothing \operatorname{GET}(61,1 \varnothing)-(114,3 \varnothing), A \%$
DB 284の $\operatorname{GET}(121,1 \varnothing)-(174,3 \varnothing), B \%$
FE $2850 \operatorname{GET}(181,1 \varnothing)-(234,3 \varnothing), \mathrm{C} \%$
MI 286』 $\operatorname{GET}(241,1 \varnothing)-(294,3 \varnothing)$ ，D\％
IH 287の GET $(361,1 \varnothing)-(354,36)$ ，E\％
LK 288＠GET $(361,1 \varnothing)-(414,3 \varnothing)$ ， $\mathrm{F} \mathrm{\%}$
CO $289 \varnothing \operatorname{GET}(421,1 \varnothing)-(474,3 \varnothing)$ ， GK
CF $29 \varnothing \varnothing \operatorname{GET}(481,1 \varnothing)-(534,3 \varnothing)$ ， $\mathrm{H} \%$
KJ $291 \varnothing \operatorname{GET}(541,1 \varnothing)-(594,3 \varnothing), 1 \%$
LB $2926 \operatorname{GET}(1,81)-(54,1$ 1 1$)$ ， $\mathrm{J} \mathrm{\%}$
DL $2930 \operatorname{GET}(61,81)-(114,1 \varnothing 1), \mathrm{K} \mathrm{\%}$
BD $294 \varnothing \operatorname{GET}(121,81)-(174,1 \varnothing 1), L \%$
DH $2959 \operatorname{GET}(181,81)-(234,1$ ®1），M\％
Lh $2960 \operatorname{GET}(241,81)-(294,191), N \%$
HH $297 \emptyset \operatorname{GET}(361,81)-(354,101), 0 \%$
JA $298 \emptyset \operatorname{GET}(361,81)-(414,1 \varnothing 1)$ ，PX
AF 299ø $\operatorname{GET}(421,81)-(474,101)$ ， $2 \%$
QK $3 \varnothing \varnothing \varnothing \operatorname{GET}(481,81)-(534,1 \varnothing 1), R \%$
HP 3ø1ø $\operatorname{GET}(541,81)-(594,1 ø 1), 5 \%$
IP $3 \varnothing 2 \varnothing$ CLS： $\operatorname{GET}(1,1 \varnothing)-(54,36)$ ，T\％ ：GOSUB 231ø：GOTO 196
PI 3 g3ø REM＊＊＊INVERSE ALL THE PICTURES＊＊
IN 3ø4ø CLS：PUT（1，1ø），A\％，PRESET： PUT（61，1ø），B\％，PRESET：PUT （121，1ø），C\％，PRESET；PUT（1 81，1ø），D\％，PRESET：PUT（ 241 ，1ø），E\％，PRESET：PUT（361，1 ø），F\％，PRESET：PUT（361，1ø） ，$日 \%$ ，PRESET：PUT（ 421,10 ），H \％，PRESET：PUT（481，1\％）， $1 \%$ ， PRESET：PUT（541，1ø）， $\mathrm{J} \mathrm{\%}$ ，PR ESET
MH $3 \boxminus 5 \rrbracket$ PUT（ 1,81 ），K\％，PRESET：PUT（ 61，81），L\％，PRESET：PUT（121 ，81），M\％，PRESET：PUT（181，8 1），N\％，PRESET：PUT（ 241,81 ） ，0\％，PRESET：PUT（3 121,81 ），$P$ \％，PRESET：PUT（ 361,81 ），日\％， PRESET：PUT（ 421,81 ），R\％，PR ESET：PUT（481， 81 ）， $5 \%$ ，PRES ET：PUT（541，81），T\％，PRESET
E6 366® GOTO $19 \varnothing$
If 367 REM $\mathbf{i z}$ ：MAKE A PROGRAM撞童
BM $3 ø 8 \emptyset$ LOCATE 18， $1:$ PRINT＂ARE YO u SURE YOU WANT TO MAKE
this set－up into a progr AM？＂
PJ $369 \varnothing$ A $\$=$ INKEY $\$$ ：IF A $\$="$＂THEN 3ø9ø ELSE IF A\＄＝＂Y＂THEN 31 gø ELSE LOCATE 18， $1: P$ RINT STRING $(66,32):$ GOTO 29ø
NN 3100 G＝3ø：OPEN＂ 0 ＂，＂1，＂PRG．BA 5＂
PL $311 \varnothing$ PRINT \＃1，＂ $1 \varnothing$ CLS：KEY OFF ：SCREEN 2：SP＝＂＋STR\＄（SP）＋ ＂：PL＝1＂
JL $312 \emptyset$ IF STADEN THEN $Q Q=-1$ ELS E QQ＝1
EP 3130 A $\$=$＂ $2 \emptyset$ DIM＂：FOR I＝STA T 0 EN STEP QQ：IF I＜＞STA T HEN A\＄＝A\＄＋＂，＂
KE 3146 ON I GOTO 315 $10,316 \varnothing, 317 \varnothing$ ，3186，319ø，32øø，3219， 322 ø，323ø，324ஜ，325ø，326ø， 32 7ø，329ø，329ø，33øø，331ø， 3 32ø，333ø，334ø
BM $315 \emptyset$ A $\$=A \$+" A \%(144) ":$ GOTO 335 ®
Ch 316 A $\$=A \$+$＂B\％（144）＂：GOTO 335

DM 317 © A $=A \$+$＂C\％（144）＂：GOTO 335 E月 $318 \emptyset$ A ${ }^{\text {® }}=A \$+" D \%(144) ":$ GOTO 335 ■
FH 3199 A $\$=A \$+" E \%(144) ":$ GOTO 335 ø
EA 32 gø A\＄＝A\＄＋＂F\％（144）＂：GOTO 335 ø
FA 321ø A\＄＝A\＄＋＂G\％（144）＂：GOTO 335 ø
6A 322ø A $\$=A \$+" H \%(144) ":$ GOTO 335 ø
HA 3236 A $\$=A \$+" I \%(144)$＂：GOTO 335 $\varnothing$
IA 324ø A\＄＝A\＄＋＂J\％（144）＂：GOTO 335 g
JA $325 \varnothing$ A $\$=A \$+" K \%(144) ":$ GOTO 335 ■
KA 326 A $=A \$+" L \%(144) ":$ GOTO 335 LA 327 ® A $\$=A \$+" M \%(144) ":$ GOTO 335 ø
MA 328ø A\＄＝A\＄＋＂N\％（144）＂：GOTO 335 ø
МА $329 \varnothing$ A $\$=A \$+$＂O\％（144）＂：GOTO 335 g
ME 33øø A\＄＝A\＄＋＂P\％（144）＂：GOTO 335 ME 331 A ${ }^{(\$=A \$+" Q \%(144) ": ~ G O T O ~} 335$

OE $332 \varnothing$ A $\$=A \$+$＂R\％（144）＂：GOTO 335 ．
PE $333 \varnothing$ A\＄＝A\＄＋＂S\％（144）＂：GOTO 335 g
AE 334ø A\＄＝A\＄＋＂T\％（144）＂：GOTO 335 ■
AD 3359 NEXT
N1 336® A\＄＝A\＄＋＂，UX（144）＂：PRINT 1，A \＆PRINT W1，＂3ø BET（1， 1）－（54，26），U\％＂
KO 337 I IF STA SEN THEN QQ $=-1$ ELS E QQ＝1
KG 3380 FOR P＝STA TO EN STEP QQ CE $339 \varnothing$ CLS：ON P GOTO $34 ø \varnothing, 341 \varnothing$ ， 342ø，343ø，3446，3456，346ø ，347ø，348ø，349ø，35øø， 351 ø，352ø，353ø，354ø，355ø， 35 69，357ø，358ø，359ø
PI $34 \varnothing \varnothing$ PUT $(1,5 \varnothing)$ ，AK：GOTO $36 \varnothing \varnothing$
al 341ø PUT（1，5ø），B\％：GOTO 36øø

СВ $343 \varnothing$ PUT $(1,5 \varnothing)$ ， $\mathrm{DK}:$ GOTO $36 \varnothing \varnothing$ DE 3440 PUT $(1,5 \varnothing)$ ，E\％：GOTO $36 \varnothing \varnothing$
 6K $346 \varnothing$ PUT $(1,59)$ ， $6 \%:$ GOTO 3699 HK 3479 PUT（ 1,59 ），H\％：GOTO 36aø 1A 348ø PUT（1，5ø），1\％：GOTO 36øø JD 3496 PUT（ 1,56 ），J\％：GOTO 36øø
 KN 351ø PUT（ $1,5 \varnothing$ ），L\％：GOTO 36øø LA $352 \varnothing$ PUT（ 1,56 ），M\％：GOTO 3669 MD 3536 PUT（1，5ø），N\％：GOTO 3669 N6 354ø PUT（ 1,59 ），0\％：GOTO 36øø PJ $355 \emptyset$ PUT $(1,5 \varnothing)$, P\％：GOTO $36 \varnothing \emptyset$ Q 3569 PUT（ 1,59 ），Q\％：GOTO 369ø BP $357 \varnothing$ PUT（1，5ø），R\％：GOTO $36 \varnothing \varnothing$ CC $358 \emptyset$ PUT $(1,5 \varnothing), 5 \%:$ GOTO $369 \emptyset$
DF 3599 PUT（ 1,56 ），T\％：GOTO 3606
NH $369 \varnothing$ FOR $X=1$ TO 54：$G=G+1 \varnothing: A \$=$ STR （A（ $)-1$ ）：FOR I＝1 TO 2ø：IF $\operatorname{POINT}(\mathrm{X}, \mathrm{I}+49)=1$ THEN A ＝A $\$+$＂$:$ PSET（＂：B $\$=$ STR $(X)$ ： A\＄＝A\＄＋RIGHT\＄（B\＄，LEN（B\＄）－ 1）：A $\$=A \$+", ": B \$=S T R \$(I+4$ 9）：$A \$=A \$+$ RIGHT $\$$（B\＄，LEN（B \＄）－1）：$A\left(=A \$+{ }^{\prime \prime}\right) "$
FH 3610 NEXT：IF LEN（A\＄） 86 THEN B \＄＝LEFT（A\＄，LEN（STR（G））－ 1）：A $=$ RIGHT $\$(A \$$ ，（LEN（A $\$)$ －LEN（B\＄））－1）：A\＄＝B\＄＋＂＂＋A \＄IPRINT \＃1，A ■
AA 3626 NEXT

BD $363 \emptyset G=G+16: A \$=S T R \$(G): A \$=R I G$ HT \＄（A\＄，LEN（A\＄）－1）：ON P G OTO 364币，365ø， $366 \emptyset, 367 \varnothing$ ， 368ø，369ø，3796，371ø，3729 ， $3739,3749,3759,3769,377$ ø，378ø，379ø，38øø，381ø， 38 20，3836
Q 1 364Ø A\＄＝A\＄＋＂ $\operatorname{GET}(1,5 \emptyset)-(54,7 \emptyset$ ），$A \%$＂：GOTO 384ஜ
CP 365ø A\＄＝A\＄＋＂GET $(1,5 \emptyset)-(54,7 \emptyset$ ），B\％＂：GOTO 384ø
EC 366の A\＄＝A\＄＋＂GET $(1,5 \emptyset)-(54,7 \varnothing$ ），C\％＂：GOTO 384．
6F 367ø A\＄＝A\＄＋＂GET $(1,5 \emptyset)-(54,7 \emptyset$ ），D\％＂：GOTO 384ø
J1 $368 \emptyset$ A $\$=A \$+" \operatorname{GET}(1,5 \varnothing)-(54,7 \emptyset$ ），E\％＂：GOTO 384ø
LL $369 \emptyset$ A $\$=A \$+" \operatorname{GET}(1,5 \emptyset)-(54,7 \emptyset$ ），F\％＂：GOTO 384D
LC 37פの A\＄＝A\＄＋＂GET $(1,5 \emptyset)-(54,7 \emptyset$ ），G\％＂：GOTO 384ø
MF $371 \emptyset$ A $\$=A \$+" \operatorname{GET}(1,5 \emptyset)-(54,7 \emptyset$ ），H\％＂：GOTO 384Ø
Q1 $372 \emptyset$ A\＄＝A\＄＋＂ $\operatorname{GET}(1,5 \emptyset)-(54,7 \emptyset$ ），I\％＂：GOTO 384ø
CL 373ø A\＄＝A\＄＋＂GET $(1,5 \emptyset)-(54,7 \emptyset$ ），J\％＂：GOTD 384D
EO 374ø A\＄＝A\＄＋＂GET（1，5ø）－（54，7ø ），K\％＂：GOTO 384ः
6B 375ø A\＄＝A\＄＋＂GET $(1,56)-(54,7 \emptyset$ ），L\％＂：GOTO उ84ஜ
IE 376 A $\$=A \$+" \operatorname{GET}(1,5 \emptyset)-(54,7 \emptyset$ ），M\％＂：GDTO 384ஜ
KH 377Ø A\＄＝A\＄＋＂GET（1，5ø）－（54，7ø ），N\％＂：GOTO 384ஜ
NK 378ø A\＄＝A\＄＋＂ $\operatorname{GET}(1,56)-(54,7 \emptyset$ ），0\％＂：GOTD 384ø
PN $379 \emptyset$ A\＄＝A\＄＋＂ $\operatorname{GET}(1,5 \emptyset)-(54,7 \emptyset$ ），P\％＂：GOTO 384ø
PE 38øø A\＄＝A\＄＋＂GET（1，5ø）－（54，7ø ），Q\％＂：GOTO 384．
BH 381ø A\＄＝A\＄＋＂GET（1，5ø）－（54，7ø ），R\％＂：GOTO 384D
EK 382ø A $\$=A \$+" \operatorname{GET}(1,5 \emptyset)-(54,7 \emptyset$ ），S\％＂：GOTO 384ø
6M 383Ø A $\$=A \$+" \operatorname{GET}(1,5 \emptyset)-(54,7 \emptyset$ ），T\％＂：GDTO 384ø
PN 384ø A\＄＝A\＄＋＂：CLS＂：PRINT \＃1，A\＄ ：NEXT
K6 385ø IF STA＝EN THEN STN＝1：EA＝ 1：GOTO 388ø
NK 3B6ø IF STA $\triangle E N$ THEN STN＝STA－E $N_{2} E A=1$ ELSE EA＝EN－STA：ST $N=1$
EO $387 \emptyset$ IF $E A+Q Q=\emptyset$ THEN EA＝EA－QQ
of 388ø G＝G＋1ø：R＝G：A\＄＝RIGHT\＄（STR \＄（G），LEN（STR（G））－1）＋＂F OR I＝＂＋RIGHT\＄（STR\＄（STN）， $\operatorname{LEN}(S T R(S T N))-1)+"$ TQ＂+ STR ${ }^{(E A+Q Q)+" S T E P "+S T R \$ ~}$ （QQ）：PRINT \＃1，A ${ }^{(Q) G=G+1 \emptyset}$
ON 389の A\＄＝RIGHT\＄（STR\＄（G），LEN（ST
 A $\$=A \$+S T R \$$（INT（FAST\＄4．2） ）＋＂：NEXT：PL1＝PL：IF PL＋SP ＜1 THEN PL＝57ø ELSE IF P L＋SP＞5日ø THEN PL＝1＂
MJ $39 \emptyset \emptyset \mathrm{G}=\mathrm{G}+1 \varnothing$ ：PRINT \＃1，A\＄
FG $391 \emptyset$ A\＄＝RIGHT\＄（STR\＄（G），LEN（ST $R(G))-1)+" P L=P L+S P ": P R$ INT \＃1，A\＄： $\mathrm{G}=\mathrm{G}+1 \varnothing$
CK $392 \emptyset$ A $\$=$ RIGHT\＄（STR $\$(G)$ ，LEN（ST R（ $(G))-1)+"$ ON I GOTO＂：$X$ $=G+1 \varnothing: A \$=A \$+S T R \$(X): F O R$ I＝STA TO EN＋（QQ亲－1）STEP QQ：$X=X+1 \varnothing: A \$=A \$+", "+R I G$ HT\＄（STR\＄（X），LEN（STR\＄（X）） －1）：NEXT：PRINT算1，A\＄
KL $393 \emptyset$ IF STA I EN THEN $Q=S T A: W=E$ N ELSE IF EN＞STA THEN $Q=$ EN：W＝STA
DL 394ø FOR P＝W TO Q
PP 395ø G＝G＋1ø：A\＄＝RIGHT\＄（STR\＄（G） ， $\operatorname{LEN}(\operatorname{STR} \$(G))-1):$ ON P GO

TO 396ø，397ø，398ø，399ø， 4 øøø，4ø1ø，4ø2ø，4ø3ஜ，4ø4ஜ， 4ø5ø，4ø6ஏ，4ø7ø，4ø8ø，4ø9ø ，41øø，411ø，412ø，413ø，414 ஏ，415ø
IE 396ø A\＄＝A\＄＋＂PUT（PL1，52），U\％，P SET：PUT（PL，52），A\％：＂：GOTO $416 \varnothing$
LE $397 \emptyset$ A\＄＝A\＄＋＂PUT（PL1，52），U\％，P SET：PUT（PL，52），B\％：＂：GOTO $416 \emptyset$
 SET：PUT（PL，52），C\％：＂：GOTO 416あ
BE $399 \emptyset$ A $\$=A \$+"$ PUT（PL1，52），U\％，P SET：PUT（PL，52），D\％：＂：GOTO $416 \emptyset$
BF $4 \varnothing \emptyset \emptyset \quad A \$=A \$+"$ PUT（PL1，52），U\％，P SET：PUT（PL，52），E\％：＂：GOTO $416 \emptyset$
EF 4ø1ø $A \$=A \$+"$ PUT（PL1，52），U\％，P SET：PUT（PL，52），F\％：＂：GOTO $416 \square$
HF 4ø2ø A\＄＝A\＄＋＂PUT（PL1，52），U\％，P SET：PUT（PL，52），G\％：＂：GOTO 4160
KF 4ø3ø A\＄＝A\＄＋＂PUT（PL1，52），U\％，P SET：PUT（PL，52），H\％：＂：GOTO $416 \emptyset$
NF 4ø4ø A\＄＝A\＄＋＂PUT（PL1，52），U\％，P SET：PUT（PL，52），I\％：＂：GOTO 4160
AF $4 \varnothing 5 \emptyset$ A $\$=A \$+"$ PUT（PL1，52），U\％，P SET：PUT（PL，52），J\％：＂：GOTO 4160
DF 4ø6ø A\＄＝A\＄＋＂PUT（PL1，52），U\％，P SET：PUT（PL，52），K\％：＂：GDTD $416 \square$
6F $467 \emptyset$ A\＄＝A\＄＋＂PUT（PL1，52），U\％，P SET：PUT（PL，52），L\％：＂：GOTO $416 \emptyset$
JF 4ø8ø A\＄＝A\＄＋＂PUT（PL1，52），U\％，P SET：PUT（PL，52），M\％：＂：GOTO $416 \emptyset$
MF 499 A $\$=A \$+"$ PUT（PL1，52），U\％，P SET ：PUT（PL，52），N\％：＂：GOTO 4160
OJ 41 øø A\＄＝A\＄＋＂PUT（PL1，52），U\％，P SET ：PUT（PL，52），0\％：＂：GOTO 4169
BJ $411 \emptyset$ A $\$=A \$+"$ PUT（PL1，52），U\％，$P$ SET：PUT（PL，52），P\％：＂：GOTO 4160
EJ 412 A $\$=A \$+"$ PUT（PL1，52），U\％，P SET：PUT（PL，52），Q\％：＂：GOTO $416 \square$
HJ 4130 A $\$=A \$+"$ PUT（PL1，52），U\％，P SET：PUT（PL，52），R\％：＂：GOTO 4160
KJ $414 \emptyset$ A $\$=A \$+"$ PUT（PL1，52），U\％，P SET ：PUT（PL，52），S\％：＂：GOTO $416 \emptyset$
NJ 4150 A $\$=A \$+"$ PUT（PL1，52）， $4 \%, P$ SET：PUT（PL，52），T\％：＂：GOTO 416も
D0 $416 \emptyset$ A $\$=A \$+" G O T O "+S T R \$(x+1 \emptyset):$ PRINT \＃1，A\＄：NEXT：$G=X+1 \varnothing$
Lh $417 \emptyset$ A $\$=$ RIGHT $\$(S T R \$(G)$ ，LEN（ST $R \$(G))-1): A \$=A \$+"$ NEXT：$G$ ＂OTQ＂＋STR\＄（R）：PRINT笈1，A\＄
NA $418 \emptyset$ CLOSE \＃1：CLS：PRINT＂BEFOR E YOU DO ANYTHING ELSE L OAD THE PROGRAM＜PRG＞AN D THEN SAVE IT UNDER THE NAME YOU WANT＂：END
60 25øøø GOSUB 25ø2ø：RESUME 99ø
BH 25ø1ø GOSUB 25ø2ø：RESUME 87ø
PJ $\mathbf{2 5 6 2 6}$ PRINT：PRINT＂
DIS
K ERROR \＃＂ERR
QP $25 \emptyset 3 \emptyset$ PRINT：PRINT＂
HIT SPACE
BAR TO CONTINUE＂

Ch 25ø4ø A\＄＝INKEY\＄：IF EN 25ø4ø ELSE 1

## Program 2： 64 Animator

Version by Kevin Mykytyn，Editorial Programmer
Please refer to the＂MLX＂article in this issue before entering the following listing．

49152 ： $032,238,2 ø 3, \boxed{62}, 142,203,082$ 49158 ： $166,127,185,123,266,153,192$ 49164 ： $064, \varnothing \emptyset 3,136,016,247,076,042$ 49170 ： $046,192, \varnothing \varnothing \varnothing, \varnothing 01, \varnothing 01, \varnothing 15, \varnothing 17$
 49182 ：øøø，øøø，øøø，øøø，øøø，øøø，ØЗб
 49194 ：øøø，øøø，Øøø，Øøø，Ø32，Ø77，151 $492 \emptyset \emptyset: 192,169$ ，øøø，141，ø28，192，øø2 492 Ø6 ： $032, \varnothing 7 \varnothing, 193, \varnothing 32, \varnothing 44,193,106$ 49212 ： $032, \boxed{6} 0,194,032,215,193,028$ 49218 ：Ø32，033，197，162，255，032，ø09 49224 ：265，194，ø76，060，192，120，151 49230 ：169，127，141，013，220，169，149 49236 ：105，141，Ø2ø，Øø3，169，192，2ø2 49242 ：141，ø21，øø3，169，129，141，182 49248 ：$\varnothing 26,208,169,027,141,017,172$ 49254 ：2ø8， $088, \boxed{6}, 169, \varnothing 01,141, \varnothing 37$ 49260 ： $025,2 \varnothing 8,173, \boxed{64}, 192,2 \varnothing 8,190$ 49266 ：$\varnothing 69,173, \varnothing 18,208,2 \varnothing 1, \varnothing 10, \varnothing 25$ 49272 ：176，Ø11，162，225，160，059，145 49278 ：169，ø83，141，ø18，2ø8，208，185 49284 ：$\varnothing 29,2 \varnothing 1, \varnothing 85,176, \varnothing 11,162, \varnothing 28$ 49290 ：232，16ø， $099,169,130,141,045$ 49296 ： $018,208,208,014,162,239,225$ $493 \varnothing 2$ ： $160,139,169$ ，øøø，141，018，øø9 $493 \varnothing 8$ ：2ø8，24ø，øø3，14ø，ø18，2ø8，205 49314 ：152，16ø，012，153，ø01，2ø8，ø80 49320 ： $136,136,016,249,160$, øø0， 097 49326 ： $138,153,248,007,206,232,128$ 49332 ：192，Ø07，208，246，173，Ø13，251 49338 ：220，ø41，øø1，240，ø81，164，165 49344 ：203，204， $043,192,240,056,1 \varnothing 6$ 49350 ： $140,043,192,185,129,235,098$ 49356 ：2ø1，ø88，2ø8，øø8，173，Ø29，143 49362 ：208， $073,128,141,029,2 ø 8,229$ 49368 ：201， $089,208,008,173,023,150$ 49374 ：208， $073,128,141,023,208,235$ 49380 ：201，ø49，144，022，201，057，134 49386 ：176，Ø18，056，174，141，0ø2，Ø33 49392 ：224，øб4，2ø8， $10,233,049,2 ø \emptyset ~$ 49398 ：160，007，153，039，208，136，181 49404 ： $016,250,201,133,208,011,047$ 49410 ：173，ø45，192，240，ø06，032，178 49416 ： $019,193,032,238,203,076,001$ 49422 ： $049,234,076,188,254,173,220$ 49428 ：136，ø02， $073, \varnothing 12,141,136, \varnothing 08$ 49434 ：ø62，173，Ø24，2ø8，ø73，Ø48，ø42 49440 ：141，ø24，208，173，ø21，2ø8，ø39 49446 ： $073,127,141,021,208,096,192$ 49452 ：169，127，141，021，208，169，111 49458 ： $064,141,016,208,160,066,133$ 49464 ：162，ø12，185，047，204，157，055
 $49476: 245,096,169,147,032,210,199$ 49482 ：255，169， $015,141,033,208,127$ 49488 ：162，001，160，002，024，032，205 $49494: 240,255,032,197,193,162,141$ 495 øø ：øø6，16ø，øø2，ø24，ø32，24ø，ø44 49506 ：255，032，197，193，162，011，18б 49512 ：16б，Øб2，б24，б32，24б，255， 049 49518 ： $632,197,193,162, \varnothing 64,160, \varnothing 9 \varnothing$ 49524 ：øø $2,024, \varnothing 32,240,255,169,070$ 49530 ：Ø85，160，204，Ø32，Ø3б，171，036 49536 ： 162, ， $09,160,002, \varnothing 24,032, \varnothing 05$ 49542 ： $240,255,169,12 \emptyset, 16 \emptyset, 2 \varnothing 4$, ，ø2 49548 ： $032, \boxed{60}, 171,162,014,160,197$ 49554 ：øø2，ø24，ø32，240，255，169，1øø 49560 ： $155,160,204, \varnothing 32, \varnothing 36,171,136$ 49566 ： $032,165,193,032,181,193,186$ 49572 ： $096,162,019,160,001,024,114$ 49578 ： $632,240,255,169,196,160,192$ 49584 ：204， $032,030,171,096,162,103$ 49590 ：ø22，160，ø01，ø24，ø32，240，149 $49596: 255,169,116,160,265,032,101$ $496 \emptyset 2$ ： $036,171,096,169,007,141,04 \varnothing$ 49608 ： $620,192,169,054,160,204,231$ 49614 ：032，03ø，171，206，020，192，089 $49620: 208,244,096,162,019,160,077$ 49626 ：$\varnothing 18, \varnothing 24, \varnothing 32,24 \varnothing, 255,169,188$

49632 $49638: 000,174,021,192,032,061,192$
 $4965 \emptyset$ : $024,192,032,061,194,162,139$ 49656 : $\emptyset 2 \emptyset, 16 \emptyset, \varnothing 18, \varnothing 24, \varnothing 32,24 \emptyset, 23 \varnothing$ 49662 : 255,169, øøø,174, Ø22,192, ø42 49668 : $032,061,194,032,164,196,171$ 49674 : $162,021,160,018,024,032,171$ 49680 : $240,255,169$, ø00,174, ø23,109 49686 : $192,202,032,061,194,162,097$ 49692 : $021,160,038,024,032,240,031$ 49698 : $255,169, \varnothing \varnothing \varnothing, 174,026,192,082$ 49704 : $224,016,144,062,162,015$, 091 49710 : $142,038,192,032,061,194,193$ $49716: 173,038,192, \varnothing 09,016,141,109$ 49722 : ø12,212, ø96, Ø32,205,189, ø36 $49728: 169, \emptyset 32, \emptyset 32,21 \varnothing, 255, \varnothing 96$, ø9ø 49734 : 174, 028, 192,173, øø0,220, 089 49740 : $074,176,014,032,159,194,213$ 49746 : 202, ø16, øø2,162, øø6, ø32,246 49752 : $159,194,076,154,194,074,171$ 49758 : $176, \varnothing 16, \emptyset 32,159,194,232,135$ 49764 : 224, øø7,144, øø2,162, ø01,128 49770 : $032,159,194,076,154,194,147$ 49776 : $074,176,013,189, \varnothing 2 \emptyset, 192$, øø8 49782 : 201, øø1,24ø, øø3,222, Ø2ø, ø37 $49788=192,076,154,194,074,176,222$ 49794 : Ø13,189, ø2ø,192,2ø1, Ø21,254 49800 : 24ø, øø3, 254, б2б, 192, 076,153 $49866: 154,194,074,176,067,138,117$ 49812 : $072,032,225,194,164,17 \varnothing, 177$ 49818 : $142,028,192,096,096,072,012$ 49824 : 138, ø72, ø10,170,189, 051, ø22 49830 : 265,133,251,189,052,205,177 49836 : $133,252,160,015,177,251,136$ 49842 : $073,128,145,251,136,016,159$ 49848 : 247,104,170,104,096,169, 050 49854 : Øø1,141, ø28,192,169, øøø,2ø9 49860 : 160, øø4,153, 021,192,136,094 49866 : $016,25 \emptyset, 096,160,1 \varnothing 0,136,192$ 49872 : $208,253,202,208,248,096,143$ 49878 : ø $32,205,194,173,006,220,014$ 49884 : ø41, ø16,240,246,096,032,123 49890 : $214,194,169,255,141,045,220$ 49896 : 192,141, ø21,208,169, øø0,195 49902 : 141, 029, 192,169,18Ø,141, Ø66 49968 : $615,208,173,896,192,141,241$ 49914 : $046,2 \emptyset 8,173,024,192,205, \varnothing 74$ 4992 : $021,192,176, ø \emptyset 3,238,029,147$ 49926 : 192, 173, ø21,192,141, ø22,235 49932 : 192,169,000,141,037,192,231 49938 : $169,021,056,237,023,192,204$ 49944 : 141, ø32,192,201, ø21,208, 051 49950 : øø $3,238, \varnothing 37,192,173,025,186$ 49956 : 192,141, Ø34,192,173, Ø32, ø32 49962 : $192,240,020,173,037,192,128$ 49968 : 208,113,206, 033,192,208,24ø 49974 : 108,169,100,141,033,192, 029 $4998 \emptyset$ : 2ø6, ø32,192,208, Ø98,169,197 49986 : Ø21, 056, 237, 023,192,141,224 49992 : Ø32,192,173, Ø21,192,205,119 49998 : Ø $24,192,24 \emptyset$, 041,173, , 22 , øø $50064: 192,2 \emptyset 5,024,192,208, \varnothing \varnothing 8,145$ 5øø10 : 173, Ø21,192,141, ø22,192,ø63 50016 : 208, ø25,173, Ø29,192,240,195 $5 ø \emptyset 22$ : Ø11,173,ø22,192, Ø56,233,ø21 5 5ø28 :øø1,141, Ø22,192,208, Øø9,169 $50034: 173, \varnothing 22,192, \boxed{24,1 ø 5,001,119}$ 50040 : $141, \varnothing 22,192,168,185,220,024$ $5 \emptyset \emptyset 46$ : $055,24 \emptyset, 01 \emptyset, 169,128,141,101$ 5 5ø52 : Øø $4,212,169,129,141, \varnothing 04, \emptyset 23$ $50058: 212,185,250,055,240,019,075$ 50064 : 141, øø8,212,185, ø24, ø56, øø2 $50070: 141, \varnothing 07,212,169, \varnothing 32,141, \varnothing 84$ 50076 : $011,212,169,033,141,011,221$ 50082 : $212,169,000,141,030,192,138$ $50 \emptyset 88: 173,034,192,24 \varnothing, \varnothing 05,2 \emptyset 6,25 \emptyset$ 50094 : $034,192,208,060,173,025,098$ 5ø1ø0 : 192, ø56,233,011, Ø16, øø8,184 $50106: 238,03 \varnothing, 192,073,255,024,23 \varnothing$ 50112 : $105, \varnothing 01,141, \varnothing 34,192,173,070$ 50118 : $034,192,170,240,007,024,097$ 50124 : 109, 034, 192,202,208,249,174 $50130: 141,035,192,173,036,192,205$ 50136 : 240, ø58,173,031,192,056,198 50142 : $237,035,192,141,031,192,026$ $50148: 173,014,208,233,000,141,229$ 50154 : $014,208,201,255,208,09 \varnothing, 186$ 50160 : 173, $016,208,041,128,208,246$ 50166 : $015,169,085,141,014,208,110$ $50172: 173,016,208,009,128,141,159$

"64 Animator" uses raster interrupt
techniques to display up to 22 sprites at once.

50178 : $016,208,208,068,173,016,179$ 50184 : 208, $041,127,141,016,208,237$ $50190: 206,014,208,076,074,196,02 \varnothing$ 50196 : 173, Ø31,192,024,109, 035,072 $502 \emptyset 2$ : $192,141,031,192,173,014,001$

 50220 : $128,141, \varnothing 16,208,208,024,001$ 50226 : 201, Ø85, 208, 020, 173, 016,241 $50232: 208,041,128,240,013,169,087$ 50238 : $016,141,014,208,173,016,112$ 50244 : 208, 041,127,141,016,208,041 $50250: 234,173,000,220,074,074,081$ 50256 : $074,176,016,173,025,192,224$ $50262: 240,054,206,027,192,208,245$ $5 \emptyset 268$ : $\varnothing 49,206,025,192,076,142,014$ $5 \emptyset 274$ : $196,074,176,018,173,025,248$ $50280: 192,201, \emptyset 21,240,033,238,005$ 50286 : $027,192,208,028,238, \boxed{65}, 060$ 56292 : $192,076,142,196,074,176,204$ $5 ø 298$ : $019,169, \varnothing \varnothing \varnothing, 141, \varnothing 45,192,176$ $50304: 173,136,002,201,004,240,116$ 50310 : $003,032,019,193,032,214,115$ $5 \emptyset 316: 194, ø 96, \emptyset 32,164,196$, ø 32, , 86 $50322: 235,196,173, \emptyset 22,192,168,108$ 50328 : $024,105,224,141,255,007,14 \varnothing$ $50334: 141,255,011,076,040,195,108$ 50340 : 169, øøø,141, Ø69,219,141,135 50346 : $070,219,141,071,219,173,039$ 50352 : $025,192,056,233,011,072,253$ 50358 : $016,014,169,045,141,069,124$ 50364 : Øø7,104, Ø73,255,024,105,244 50370 : øø1, 076,204,196,169, 032,104 50376 : 141, ø69, Øம் $7,104,201,010,220$ $5 ø 382: 144,016,072,169,049,141,029$ 50388 : $070,007,104,056,233,01 \varnothing, 180$ 50394 : $009,048,141,071,007,096,078$ 5ø4øø : $\varnothing \emptyset 9, \varnothing 48,141,07 \varnothing, 007,169,156$ $56406: \boxed{2} 2,141,071,067,096,173,238$ 50412 : $622,192,201, \emptyset 2 \emptyset, 144,016, \boxed{6} 3$ 50418 : $072,169,050,141,050,007,219$ 50424 : 104, 056,233, 020, ø09, 048,206 50430 : 141, 051, ø07, 096,201, 010,248 $50436: 144,016,072,169,049,141,083$ 50442 : $050,007,104,056,233,010,214$ 50448 : $009,048,141,051,007,096,112$ 50454 : $009,048,141,050,007,169,190$ 50460 : $032,141,051,007,096,032,131$ $50466: 228,255,201, \emptyset 69,2 \emptyset 8$,øø3,230 50472 : $076,184,199,201,067,208,207$ 50478 : $038,032, \varnothing 02,204,176,033,019$ 50484 : $169,064,133,251,169,056,126$ $5 \emptyset 490$ : $133,252, ø 32,126,2 \emptyset 3,198,234$ $50496: 252,032,126,203,160,021,090$ 5ø5ø2 : 169, øøø,153,22の, 055,153, ø52 565 ஏ8 : 25 Ø, Ø55,153, Ø24, 656,136,238 50514 : $016,244,096,2$ Ø1, $073,208,152$ 50520 : $696,169,128,133,251,169, \varnothing 10$ 56526 : Ø61,133,252,169, Ø64,133,138 $5 \emptyset 532$ : $253,169, \boxed{61}, 133,254,169,115$ 56538 : $622,656,237,622,192,176,637$ 56544 : $240,071,160,063,177,253,052$ 56550 : $145,251,136,016,249,165,656$ 50556 : 251, $056,233,064,133,251, \varnothing 88$ 50562 : $165,252,233$, øøø,133,252,141 50568 : $165,253,656,233,064,133,016$ 56574 : $253,165,254,233$, øøб, 133,156 50580 : 254,2ø2,208,218,162,620,188 50586:189,250, 655, 672,189, 624,165 $5 \emptyset 592$ : $656, \boxed{62,189,22 \emptyset, 655,232,216}$
$: 157,22 \varnothing, 655,164,157,624,115$ 5ø6ø4 : $656,104,157,25 \emptyset, 655,202,228$ 50610 : 2б2,236, ø22,192,176,226,2ø8
 56622 : ø22,192, $632,165,199,165,197$ $56628: 251, \boxed{24}, 165,064,133,253,062$ $50634: 165,252,165$, øø0,133,254, 087 $5 \emptyset 64 \varnothing$ : $169, \boxed{22, ø 56,237, ø 22,192,138}$ 50646 : $176,246, \boxed{6} 2,16 \varnothing, \varnothing 63,177, \varnothing 72$ 56652 : 253,145,251,136,016,249,246 50658 : $165,251,024,165,064,133,2 ø \varnothing$ 50664 : $251,165,252,165$, øøø,133,114 50670 : 252,165,253, $624,165,064,077$ $5 \emptyset 676$ : $133,253,165,254,165, \varnothing \varnothing \varnothing, 13 \varnothing$ $5 \emptyset 682$ : $133,254,262,016,218,174,223$ 50688 : $\varnothing 22,192,232,189,256,055,172$ $5 \emptyset 694$ : $\varnothing 72,189,624,056,072,189,096$ 50798 : 220, $855,262,157,226,655,153$ $5 \emptyset 766=164,157,624,656,1 \varnothing 4,157,1 \varnothing 8$ $5 \emptyset 712$ : 25 Ø, Ø55,232,232,224, Ø21,ø14 56718 : $144,227,696,201,083,268,221$ 50724 : $644,032,146,199,032,063,04 \varnothing$ 56736 : 199, 169, 220, 133,253,169,161 50736 : $055,133,254,173,024,192,111$ 50742 : $632,165,199,165,251,624,122$ 56748 : $165,064,170,165,252,165,153$
$5 \emptyset 754$ : øøø,168,169,253, ø32,216,136
50760 : 255, $632,233,198,164,164,230$ 50766 : $\varnothing 76, \varnothing 46,192,2 ø 1, \boxed{6} 6,2 ø 8,1 \emptyset 9$ 50772 : $619, ø 32,146,199, ø 32, ø 63, ø 63$
 50784 : $632,233,198,164,164,676,075$ 50790 : $046,192,261, \varnothing 36,268,099,116$ 56796 : ø32,146,199,169, ซ61,162,ø49 $5 \varnothing 862$ : ø68,16ø, øøø, ø32,186,255,243 50808 : $169,608,162,659,160,206,116$ 5 5814 : $632,189,255,032,192,255,657$ 5ø82ø : ø32,233,198,162, øø1, ø32, $622 ~$ 5ø826 : 198,255, ø32,267,255, ø32, 093
5ø832 : 207,255,169, ø13, ø32,21ø, $066 ~$
$50838: 255,632,267,255,032,267,114$
5ø844 : 255, ø32,233,198,176,032,058 5ø85ø : Ø32,2ø7,255,17ø, ø32,2ø7, ø41 $5 ø 856$ : 255 , ø32,2ø5,189,169,ø32,ø26
5ø862: : $32,21 \varnothing, 255$, , $32,207,255,141$
50868 : 246, 22б,632,21б,255,165,622
$5 ø 874$ : 2ø3,2ø1, ø64,2ø8,25ø, 676,164
5ø880 : 177,198,169, øø1, ø32,195,196
5 5886 : 255, ø32,2ø4,255,164,164,128 50892 : $676,046,192,261,081,268,24 \varnothing$
50898 : $666,632,062,264,176,661,119$


50916 : 261, $613,268,249,696,141,112$
56922 : $638,192,624,165,144,246,613$
56928 : $674,641,128,24 \varnothing, 62 \emptyset, 169,144$
56934 : $699,160,266,632,636,171,176$
56946 : 169, $661,632,195,255,632,168$
$50946: 218,198,104,164,076,262,136$
56952 : $198,169,015,162, \varnothing 68,168,216$
56958 : $632,186,255,169$, øøø, ø32,176
$56964: 189,255,632,192,255,162$, 681
$5697 \emptyset$ : $615, \varnothing 32,198,255,169,613,196$
50976: $632,216,255,632,267,255,255$
56982 : $672,632,210,255,164,261,144$
$5 \emptyset 988$ :ø13,2ø8,244,169,ø15,ø32,213
56994 : 195, 255, 632,264,255, 632,255
51 Øøø : 218,198, $656,173,638,192,163$
51 б66 : $696,169,210,160,265,632,166$
51012 : $030,171,032,249,171,173,126$
$51 \varnothing 18$ : øøø, øø2,2ø8, Ø65,104,1ø4,241
$51 ø 24: 076,076,198,160,255,2 ø 0,621$
51ø3ø : 185, øøø, øø2,153,ø38, øø2,21ø
$51 ø 36$ : 2ø8,247,162, 065,189, 660,195
$51042: 266,157,632,602,260,262,129$
$51 ø 48: 616,246,152,162,632,160,164$
51654 : øб2, ø32,189,255,169,229,218
$51060: 160,265,032,030,171,032,234$
$51 \varnothing 66: 228,255,261,684,268,604,678$
51072 : 162, øø1,2ø8, ø06,201, ø68,øø6
$51 ø 78: 268,241,162$, ø68,169, $6 \varnothing 2,156$
51084 : 160, $061, ~ \boxed{32,186,255,096,162 ~}$
51ø9б : 632, $091,255,632,138,255,181$
51696 : $169,624,141,624,268,169,119$
511ø2 : 251,16ø,265, 632, 630,171,239
511 : $696,624,165,224,133,251,229$
51114 : 169, øøø,133,252,162, бø6,124

$51126: 249,096,169,061,141,644,114$
$51132: 192,169,655,141,611,208,196$
51138 : $141,613,268,169,635,141,133$

51144 : $\varnothing 12,2 \varnothing 8,169,255,141,616,227$ 51150 : 2 ఠ8, 169, 224,141, $621,2 ø 8,153$ 51156 : $169,195,141,616,2 \varnothing 8,169, ø 86$ 51162 : $62 \varnothing, 141,614,268,169,685,687$ 51168 : $141,615,268,169,684,133,266$ 51174 : 247,169, $664,133,248,169,176$

51186 : 2ø8,169,165,141, Øø1,2ø8,110 51192 : $169,19 \varnothing, 141$, Øб $3,208,169,164$ $51198: 613,141,248,067,169,614,678$ 51204 : 141,249, øø7, $032,17 \varnothing, 202, \boxed{77}$ $5121 \emptyset$ : 172, $622,192,185,22 \varnothing, \varnothing 55, \varnothing 88$
 51222 : $6 \emptyset 1,141,621,268,169,128,178$ 51228 : 141, øø4,212,169,129,141, 656 51234 : øø4,212,2ø8, Øø8,173, Ø21,148 51246 : 2 Ø8, $041,254,141,621,208,145$ 51246 : 172, ø22, 192, 185, 250, 055,154 51252 : 24ø, Ø3ø,141, øø8,212,185,1øø 51258 : $\varnothing 24,056,141, \varnothing 07,212,169,155$ 51264 : $632,141, \varnothing 11,212,169, \varnothing 33,150$ 51270 : $141,011,212,173,021,208,068$ 51276 : $\emptyset \emptyset 9, ø ø 2,141, \varnothing 21,2 \varnothing 8, \varnothing 76, \boxed{1}$ 51282 : $692,2 ø \varnothing, 173,621,2 \varnothing 8, \boxed{1} 1, \varnothing 49$ 51288 : 253,141, 621,2ø8, $632,194,169$ 51294 :262, $632,118,203,169,684,134$ 51300 : 133,253,133,141,169,216,121 51366 : $133,254,133,142,173,622,195$ 51312 : 192, $024,105,224,141,255,629$ 51318 : $067,056,233,061,141,253,641$ 51324 : øø7, ø24,105, øø2,141,254,145 $5133 \emptyset$ : $667,173,622,192, \boxed{62}, 165,269$ 51336 : $199,165,251,133,139,165,164$ $51342: 252,133,140,169,66 \emptyset, 141,269$ 51348 : $638,192,169, ø 63,141, \boxed{29}, 218$ 51354 : 192,172, $638,192,177,251,152$ 51360 : 140, $038,192,16 \varnothing, \varnothing \varnothing \varnothing, 162, \boxed{64}$
 51372 : $6 \varnothing 1,145,253,164,236,253,134$ 51378 : 2ø8, øø2,23ø,254,2ஏ2,2ø8, $6 \varnothing 2 ~$ 51384 : $238,238, \varnothing 38,192,173,638,677$ 5139 : 192,2 Ø1, Ø64,24ø, ø21,2ø6, б9ø 51396 : $039,192,2 ø 8,211,165,253,240$ $514 \emptyset 2$ : $624,1 \emptyset 5,616,133,253,165,136$ 514ø8:254,165,øøø,133,254, $76, ø ø 6 ~$ 51414 : $15 \emptyset, 2 ø \emptyset, 165,247,133,249, \varnothing 78$ 51420 : $165,248,133,25 \varnothing, 16 \emptyset, 6 \emptyset \emptyset, 152$ 51426 : $177,247,673,128,145,247,219$ 51432 : $162,128,632,265,194,673,662$ 51438 : $128,145,247,173$, , $6 \varnothing, 226,127$ 51444 : $674,176,615,672,165,247,225$ $5145 \emptyset$ : $656,233,640,133,247,165,160$ 51456 : 248,233 , øøø,133,248,1ø4,198 51462 : $674,176,615,672,165,247,243$ 51468 : $624,165,646,133,247,165,214$
 51486 : $674,176,015,672,165,247,605$ 51486 : 656,233, , $61,133,247,165,697$ 51492 : $248,233,860,133,248,164,234$ 51498 : $674,176,615,672,165,247,623$ 51564 : $624,165,661,133,247,165,211$ 51510 : 248,165, $6 \varnothing, 133,248,164,124$ 51516 : $674,176,038,165,249,624,618$ 51522 : $165, \varnothing 6 \emptyset, 133, \varnothing 78,165,25 \emptyset, 629$ 51528 : $165,212,133,679,173,641,647$ 51534 : 192,2ø8, $012,169,061,141,633$ 51546 : $641,192,177,678,673,661,134$ 51546 : 141, $04 \varnothing, 192,173,64 \varnothing, 192,1 \varnothing 6$ 51552 : $145,078,076,166,201,169,163$ 51558 : øøø,141, ø41,192,177,247,132 51564 : 2ø1, ø32,2ø8, øø8,165,249,263 51570 : $133,247,165,256,133,248,610$ 51576 : $632,228,255,2$ 261, $682,2 ø 8,1$ 62 51582 : ø13,169, øøø,141, ø44,192,173 51588 : $169,129,141,626,268,676,113$ 51594 : $649,192,261,147,2 ฮ 8,663,176$ 516øø : ஏ32,17ø,2б2,2ø1,643,2ø8,232 51606 : $613,173,622,192,261,621, \boxed{1} 4$ 51612 : $24 \varnothing, 666,238,022,192,676,162$ 51618 : $616,260,261,645,268,613,671$ 51624 : $173, \varnothing 22,192,261,661,246,229$ 5163 : $\varnothing \varnothing 6,266,622,192,676,61 \varnothing, 174$ 51636 : 2øø,2ø1, $673,268,614,16 \varnothing, 612$ 51642 : $\varnothing 63,177,139,673,255,145,614$ 51648 : $139,136,616,247,676,092,130$ 51654 : 2øø,2ø1,136,268, $616,160,689$ $5166 \emptyset$ : $663,177,139,153,122,266,64 \varnothing$ 51666 : $136,016,248,261,146,208,135$ 51672 : $613,16 \varnothing, \varnothing 63,185,122,266,197$ 51678 : $145,139,136,616,248,676,214$ 51684 : $692,2 ø \emptyset, 2 \emptyset 1,145,2 \sigma 8, ø 11, \varnothing 61$

5169ø : 162, øø3, ఠ32, ø61, 2б3,2ø2,129 51696 : 2ø8,250, $076,692,260,261,243$ 51762 : $\varnothing 17,268,611,162,663,632,167$
 51714 : $692,266,261,629,268,627,247$
51726 : 160, $662,177,139,166,136,216$
51726 : 136,162 , 663,177,139,166,225
51732 :145,139,26б,2б2,2б8,247,137
51738 : 26ø,2øø,192,066,144,234,038 51744 : $076,692,26 \varnothing, 2 \varnothing 1,157,268,198$

51756 : 20ø,206,162, $063,177,139,157$
51762 : $642,145,139,136,262,268,154$
51768 : 247 ,2бб,2øø,2бø,2øб,192, 1515
51774 : $664,144,232, \varnothing 76,692,2 ø \emptyset, 1 ø 2$
51780:2ø1, ø68,2ø8, 014,172,622,241

51792 : 153,22ø, $055, \varnothing 76, \varnothing 10,2 \varnothing \varnothing, \varnothing 26$
51798 : 173,141, øø2,2ø1, $664,240,079$
51864 : $662,164,203,185,129,235,046$
51810 : 265, $660, \varnothing 03,24 \varnothing, 052,141, \varnothing 31$
51816 : $660, \varnothing 63,261,049,144,045,094$
$51822: 2 \varnothing 1,658,176,041,174,022,014$
51828 : 192, $056,233,049,168,185,231$
51834 : $\emptyset 5 \emptyset, 266,157,25 \emptyset, \emptyset 55,185, \varnothing \emptyset 1$
51840 : $041,266,157, \varnothing 24,656,173, \varnothing 17$
51846 : 141, $602,240,014,189,624,232$
51852 : $656, \emptyset 1 \varnothing, 157, \varnothing 24,056,189,12 \emptyset$
51858 : 25Ø, Ø55, $042,157,25 \emptyset, 655,187$
51864 : $076, ø 1 \varnothing, 2 \varnothing 0,201,692,208,171$
$5187 \emptyset$ : Øø $, 076,61 \varnothing, 20 \emptyset, 032,225,192$
51876 : 2ø2,16ø,øøø, ø76,216,2øø,25ø
51882 : $169,065,16 \varnothing, 205,032,030,063$
51888 : $171,169,621,141,626,192,122$
51894 : 169, ø68,16ø,2ø5, ø32, ø3ø, 078
$519 \emptyset \emptyset: 171,206,62 \emptyset, 192,208,244,2 \varnothing 5$
$51906: 162,012,160,033,024,032,105$
51912 : 240, 255,169, øøø,174, ø22, ø36
51918 : 192, ø32,2ø5,189,169, Ø32, øø1
51924 : Ø32,21ø,255, Ø96,160, Øø0,197
51930 : 177,139,641,127,145,139,218
51936 : $96,165,141,133,163,165, \varnothing 63$
51942 : $142,133,164,169, \varnothing 6 \varnothing, 141,211$
51948 : $038,192,169,003,141,039,050$
51954 : 192,16ø, øб7,169, øøø,141,143
51960 : $\varnothing 42,192,624,177,163, \varnothing 41,119$
51966 : $\varnothing 15,24 \varnothing, \varnothing \varnothing 1,056,110,042,2 \varnothing 6$
51972 : 192, 136, ø16,242,172, 038,032
51978 : $192,173,042,192,145,139,125$
51984 : $165,163,024,105,068,133,102$
51990 : $163,165,164,165, \varnothing \varnothing \varnothing, 133,24 \varnothing$
51996 : 164,238, $038,192,173,038,103$

52øø8 : 2б6, б39,192,2ø8,198,165, б24
52014 : $163,624,165,016,133,163,138$
52ø2ø: $165,164,1 \varnothing 5$, øø, 133,164, ø15
$52 ø 26$ : $676,238,2 \varnothing 2,160, \varnothing 6 \emptyset, 177,143$
52632 : $139,141,038,192,136,200,142$
52038 : 200,192,064,2ø8,068,173,147
$52 ø 44$ : $038,192,136,136,145,139,694$
$5205 \emptyset: 696,177,139,136,145,139,146$
$52 ø 56$ : $\varnothing 76, \varnothing 69,2 \varnothing 3,16 \varnothing, \boxed{62,177, \varnothing 67}$
52062 : $139,141,638,192,260,136,172$
$52 ø 68$ : $136, \varnothing 16, ø 07,173, \varnothing 38,192,15 \emptyset$
52074 : 2øø,145,139, $996,177,139,234$
52ø8ø : 2øø,145,139,076,099,203,206
$52 ø 86$ : $169,06 \emptyset, 133,251,169,216,032$
52092 : 133,252,162, ø04,160, øøø, ø67
52698 : 152,145,251,136,208,251,249
$521 \varnothing 4$ : $23 \varnothing, 252,2 \varnothing 2,2 \varnothing 8,243,096,087$
$5211 \varnothing$ : 12ø, 165, øø1, ø41, 251,133, ø85
52116 :øø1,169,øøø,133,251,169,1ø3
52122 : ø32,133,252,169, øøø,133,1ø5
521.28 : $253,169,2 ø 8,133,254,162,059$

52134 : $\varnothing \varnothing, 16 \emptyset$, øøø,177,253,145,141
52140 : 251, 136, 268,249,230,252,218
52146 : 236, 254, 2б2, 2ø8, 24б, 165,197
52152 :øø1, øø9,øø4,133,øø1, ø88,164
52158 : 160, $607,185,1 \varnothing 0,205,153,232$
52164 : øø8, ø33,185,1ø8,2ø5,153,12ø
$5217 \emptyset$ : $\varnothing \varnothing 8, \varnothing 37,136,016,241,169,041$
52176 : ø24,141, ø24,2ø8,16ø, ø23, ø2ø
52182 : 169, øøø, 153, øø $, 212,136,116$
52188 : $616,25 \emptyset, 169,015,141,624,067$
52194 : 212,169, 650,141, øø1,212,243
522 бø : 169, ø19,141, øø5,212, Ø96,1ø6
$522 \emptyset 6$ : 169, $632,160,06 \emptyset, 153, \boxed{0}, 24 \varnothing$
52212 : øø8,153, øøø, øø9,153, øøø, 655

52224 : 241, $696,632, \boxed{68}, 264,169, \varnothing 12$
$5223 \varnothing$ : $667,16 \emptyset, 2 \varnothing 6,032,03 \varnothing, 171,16 \emptyset$

52236 52242 , 249, $095,291,978,208,244,226$ 52248 : $656, ø \varnothing 8, \varnothing 32, \varnothing 38,264,169, \varnothing 19$ 52254 : $\varnothing 83,160,266, \varnothing 32, \varnothing 3 \varnothing, 171,2 \varnothing \varnothing$ 52260 : $\boxed{6} 4, \boxed{6}, 162,015,160,014,011$ 52266 : 624, , $32,24 \varnothing, 255,096,048,225$ 52272 : $688,128,168,2$, $68,248, ø 33,153$ 52278 : $144,182,163,163,163,181$, , 26 52284 : 617,157,157,157,157,157,894 52290 : $182, \varnothing 32, \varnothing 32,032,181, \varnothing 17,030$ 52296 : $157,157,157,157,157,182,615$ 52362 : $175,175,175,181,145,145,050$ 523ø8 : $060,144,032,032,049,032,117$
 5232б : ø32, ø32,ø51,ø32,ø32,ø32,ø51 52326 : $632, \varnothing 52, \varnothing 32, \varnothing 32, \varnothing 32, \varnothing 32, \varnothing 58$ 52332 : $053, \boxed{ } 02, \varnothing 32,032, \varnothing 32,054, \varnothing 87$ 52338 : $032, \varnothing 32, \varnothing 32, \varnothing 32, \varnothing 55, \varnothing \varnothing 0, \varnothing 41$ 52344 : $\varnothing 32, \varnothing 32, \varnothing 56$, $032, \varnothing 32, \varnothing 32, \varnothing 86$ 52350 : $032,057,032,032,032,032,087$ 52356 : $049, \varnothing 48, \varnothing 32, \varnothing 32,032,049,118$ 52362 : $\varnothing 49, \varnothing 32,032,032, \varnothing 49,050,126$ 52368 : $\boxed{62, ø 32, ø 32, \varnothing 49, ø 51, ø 32,116 ~}$ 52374 : $\varnothing 32, \varnothing 32, \varnothing 49, \varnothing 52, \varnothing \varnothing \varnothing, \varnothing 32, \varnothing 91$ 52380 : $049, \varnothing 53, \varnothing 32, \varnothing 32, \varnothing 32, \varnothing 32,130$
 52392 : $055, \boxed{62, ø 32,032,049,056,168}$ 52398 : $032, \varnothing 32, \varnothing 32, \varnothing 49,657,032,152$ $524 \varnothing 4$ : ø32, ø32, $05 \varnothing, \varnothing 48, \varnothing 32, \varnothing 32,15 \emptyset$ 52410 : $032, \varnothing 5 \emptyset, \varnothing 49, \varnothing \varnothing \varnothing, 144, \varnothing 18,223$ 52416 : Ø83, $084,065, \varnothing 82, \varnothing 84,073,151$ 52422 : $678,671, \boxed{62,080,673,667, ~} 087$
52428 : $084, \varnothing 85, \varnothing 82,069,146,144,046$ 52434 : $032, \varnothing 32, \varnothing 32,032,069, \varnothing 78,229$ 52440 : $668, \boxed{6} 3,678,671,632,080,106$ 52446 : $073,067, \varnothing 84, \varnothing 85, \varnothing 82,069,17 \emptyset$ 52452 : Ø32, $632, \varnothing 13,629,08 \varnothing, 673,231$ 52458 : $667, \varnothing 84, \varnothing 85, \boxed{2}, \boxed{6}, 632,141$
 52470 : $632, \boxed{2} 2,032,032,032,032,182$ 52476 : $079, \varnothing 86,069,082,065,076,197$ 52482 : $\varnothing 76, \varnothing 32, \varnothing 83, \varnothing 8 \varnothing, \varnothing 69, \varnothing 69,155$ 52488 : $668, \varnothing 32, \varnothing 32, \varnothing 32, \varnothing 13, \varnothing 29,214$ 52494 : $083, \varnothing 87, \varnothing 73,084, \varnothing 67,072,224$
 $525 ø 6$ : $\varnothing 69, \varnothing 69, \varnothing 68, \varnothing 32, \varnothing 32, \varnothing 32, \varnothing 72$ 52512 : $032, \varnothing 32, \varnothing 78, \boxed{79, ø 84,069,150}$ 52518 : $\varnothing 32, \varnothing 68, \varnothing 85, \varnothing 82,065,084,198$ 52524 : $073, \varnothing 79, \varnothing 78, \varnothing 32, \varnothing 32, \varnothing 32,114$ $5253 \emptyset$ : øøø,249, øø6,249, ø06, ø33, ø81 52536 : Øø7, Ø73, ø07, Ø13, Ø67, Ø53,216
 52548 : Ø13,146,144,ø29,ø29,ø29,2ø2 52554 : $\varnothing 29, \varnothing 33, \varnothing 33, \varnothing 33, \varnothing 33, \varnothing 33, \varnothing 12$ 52560 : $033, \varnothing 33, \varnothing 33, \varnothing 33, \varnothing 33,033, \varnothing 22$ 52566 : ø 33 , ø 33 , ø 33 , ø 33, ø 33 , ø 33 , ø 28 52572 : Ø33, ø33, ø33, ø33,ø33,ø33, ø34 52578 : $633,060, \varnothing 6 \varnothing, 126,126,126,253$ 52584 : 126,126,126, øøø,255,129, 098 5259ø : 129,129,129,129,129,255,242 52596 : ø17, ø28, ø18, $669,146,068,206$ $526 \varnothing 2$ : $673, \varnothing 84,032,032,032,032,151$ $526 ø 8$ : $032, \varnothing 32, \varnothing 18,076,146,079,255$
 $5262 \emptyset$ : $\varnothing 32, ø 32, \varnothing 18,083,146,065, \varnothing \varnothing 4$ 52626 : $086,069,032, \varnothing 32,032,032,173$ 52632 : $032,032,018,067,146,076,011$
 52644 : $076, \varnothing 32, \varnothing 18, \varnothing 36,146,067, \varnothing 27$
 52656 : $\varnothing 32, ø 32, \varnothing 18, \varnothing 73,146, \varnothing 78, \varnothing 43$
 52668 : $632, \varnothing 32, \varnothing 18,068,146,069, \varnothing 41$ 52674 : $676, \varnothing 69, \varnothing 84, \varnothing 69, \varnothing 32, \boxed{2}$, , 644 $5268 \emptyset$ : ø $32, \varnothing 32, \varnothing 18, \varnothing 81,146, \varnothing 85, ø 82$ 52686 : $\varnothing 73, \varnothing 84,144, \varnothing \varnothing \varnothing, \varnothing 17, \varnothing 17, \varnothing 29$ 52692 : $029,069, \boxed{6}, 084,069,082,111$ 52698 : $032,07 \varnothing, 673,076,069,678,104$
 52710 : $\varnothing 17, \varnothing 32,018,084,146,065, \varnothing 80$ 52716 : $\varnothing 8 \varnothing, \varnothing 69, \varnothing 32,079, \varnothing 82, \boxed{62, \varnothing 98}$ 52722 : $618,668,146,673,683,675,193$ 52728 : $613, ø 13, \varnothing 6 \emptyset, 147, \varnothing 65, \varnothing 17,187$ 52734 : $617,606,613,017,632,672,149$ 52740 : $673, \varnothing 84,632, \boxed{62}, 669,084,172$ 52746 : $\varnothing 85, \varnothing 82, \boxed{6} 8,632, \boxed{6} 4,679,194$ 52752 : $632,667,679,678,684,673,173$ 52758 : $078,685,069,060,068,682,148$ 52764 : $\varnothing 85, \boxed{67}, \boxed{6}, \boxed{6}, 68,079,084,175$
 52776 : øøø, $997,164,143,048,143,663$

52782 ： $024,210,195,060,068,069,236$ 52788 ：$\emptyset 1 \varnothing, \varnothing 11, \varnothing 12,014,015, \varnothing 16,13 \varnothing$ 52794 ：øøø， $66, \varnothing 48,658,665, \boxed{6} 8, \varnothing 87$ $528 \emptyset 6$ ： $073,046,042,028,065,082,144$ $528 \emptyset 6$ ： $669, \boxed{2} 2,089,079,085,632,200$ 52812 ：$\varnothing 83, \varnothing 85, \varnothing 82, \varnothing 69, \varnothing 63,144, \varnothing 9 \varnothing$
 52824 ： $032,032,032,032,032,032,024$ $5283 \varnothing$ ： $032, \varnothing 32, \varnothing \varnothing \varnothing, \varnothing 73, \varnothing 48, \varnothing 13, \varnothing 36$ 52836 ： $013, \boxed{62, \boxed{6}, 069,086,073,185}$
 52848 ： $032,080,082,069,083,069,015$ 52854 ： $078,084,013,006, \boxed{0}, 032,069$
 52866 ：$\varnothing \varnothing \varnothing, \varnothing 16, \varnothing \varnothing 4, \varnothing \varnothing \varnothing, \varnothing 32, \varnothing \varnothing 3,185$ 52872 ：255，192，Ø13，øøø，176，048，052 52878 ：129， $12, \varnothing 64,066, \varnothing 02,112, \varnothing 15$ 52884 ：$\varnothing \emptyset \emptyset, \varnothing 14,124, \varnothing \varnothing \varnothing, \varnothing 62,127,219$ $5289 \emptyset: 255,254,127,255,254,127,146$ 52896 ：255，254，127，255，254，127，152 529 g2 ：255，254，ø63，255，252，ø15，236


 52926 ：øøø，øø6，øø ，øøø，ø 5 ，øøø，2ø1 52932 ：$\varnothing \varnothing \varnothing, \varnothing \varnothing 4,128, \varnothing \varnothing \varnothing, \varnothing 04, \varnothing 64,14 \varnothing$
 52944 ：øøø，øø4，øøø，Øøø，øø4，øøø，216


 52968 ：øø7，248，øøø，øø3，24ø，øøø，218 52974 ：øø1，224，øøø，øøø，øøø，øøø，207
 52986 ：$\varnothing \varnothing 2, \varnothing 13, \varnothing 13, \varnothing 13, \varnothing 13, \varnothing 13, \varnothing 61$

## Program 3：Atari Animator， Part 1

Version by Kevin Mykytyn，Editorial Programmer
Please refer to＂COMPUTE！＇s Guide to Typing In Programs＂before entering these listings．
It $\varnothing$ GRAPHICS 6 ：POKE 752， 1 ：$P$ RINT＂\｛CLEAR\}\{5 DOWN\}
\｛12 SPACE8\}PLEABE WAIT": PRINT＂\｛DOWN\}
\｛7 8PACES\}THE BCREEN WI LL BLANK
OL 1 CH＝छ：FOR A＝29छळぁ TO 293 66：READ B：POKE A，B： $\mathrm{CH}=\mathrm{C}$ $\mathrm{H}+\mathrm{B}:$ NEXT A IF $\mathrm{CH}\langle>43815$ THEN PRINT＂ERRDR IN D ATA＂：END
FC 2 RUN＂D：PART2＂
EO 4 DATA 169，3， $141,242,6,16$ 9，B，141，243，6
CB 5 DATA $165,88,133,265,165$ ，89， $133,266,169,5$
DP 6 DATA 141，241，6，169， 6,14 $1,246,6,165,7$
HJ 7 DATA 56，177， $265,261,12$, 245，1，24，115，24\％
HN B DATA $6,136,16,242,173,2$ 4 6，6，174，241，6
If 9 DATA $157,8,96,32,190,11$ 3，173， $241,6,24$
WF 15 DATA 1 ©5， $8,141,241,6,2$ 61，96，176，47，266
HI 11 DATA 242，6，2 $28,39,169$ ， 3，141，242，6，32
DH 12 DATA 19由， $113,32,196,11$ 3，173，241，6，56，233
NI 13 DATA 23，141，241，6，266， 243，6，2ø8，14，169
HD 14 DATA $8,141,243,6,173,2$ 41，6，24，165， 16
DP 15 DATA $141,241,6,24,144$ ， $163,154,96,165,265$
AA 16 DATA $24,165,8,133,265$ ， $165,266,165,5,133$
HK 17 DATA 266，96，165，26， 197 ，2\％，246，252，164，169
IB 18 DATA 17 g， $141,49,114,16$ 9，34，141，59，114，169

＂Atari Animator＂lets you create car－ toons in 128 different colors．

KA 19 DATA 154，141，71，114，15 $4,164,16,175,189,139$
PI 25 DATA 114，133，203，232，1 89，139， $114,133,254,164$
KA 21 DATA $141,242,6,48,26,1$ Б4，24，1月9，244，6
岆 22 DATA $141,244,6,173,246$ ，6，199，242，6， 141
HD 23 DATA $246,6,24,144,31,7$ 3，255，24，195， 1
㫙 24 DATA 141，242，6， 1 月4， 141 ，245，6，173，244，6
LI 25 DATA 56，237，245，6，141， 244，6，173，246，6
HK 26 DATA $237,242,6,141,246$ ，6，162，3，169，7
H 27 DATA 177，263，153，176，9 $4,136,16,248,168,15$
FJ 28 DATA $177,263,153,42,95$ ，136，192，B，176， 246
HM 29 DATA $165,23,177,263,15$ 3，176，95，136，192，16
JO 36 DATA $176,246,165,293,2$ $4,165,24,133,263,165$
CN 31 DATA $294,165,6,133,204$ ，173，49，114，24，165
NP 32 DATA $8,141,49,114,173$ ， 59， $114,165,8,141$
ILL 33 DATA 59，114，173，71， 114 ，24，195，B，141，71
 $73,246,6,141,1,298$
6035 DATA $24,165,8,141,2,26$ B，24， $165,8,141$
PG 36 DATA $3,298,96,8,72,8,7$ 2，85，72，152
If 37 DATA 72，224，72，46，73， 1 $12,73,184,73,8$
KK 38 DATA Bø， $8 \varnothing, 8 \varnothing, 152,8 历, 2$ $24,8 \oplus, 4$ ， 11,112
KB 39 DATA B1，184，81，8，88， $8 \varnothing$ ，88，152，8B， 224
MO 4 DATA 88,4 ，89， $112,89,1$ 84，89

## Program 4：Atari Animator，

 Part 2 EOSUB 73\％：EOSUB 94\％：GR APHICS 6：POKE 752，1： 10 SUB 285：A＝USR（1535）
 T0 2 g
JK $3 \varnothing$ R＝ø：TRAP $12 \%$ 日



PG 5\％TRAP 126： $\mathrm{X}=\mathrm{NUMBER(1):G}$ QSUB 16历：FA＝SA：$X=$ NUMBE R（4）＋1：GOBUB 16末
$D P 6$ G $F A H=I N T(F A / 256): F A L=F A$ - FAH 256：BAH＝INT（SA／25 6）：SAL $=$ SA－8AH 256
 EN 110

DF 75 IF DEV象＂C：＂THEN PRIN T＂$C D O W N\} P R E S B$ RECDRD AND PLAY ON TAPE＂
 ，FAL：PUT 1, FAH：PUT＊1 ，SAL』PUT \＃1，SAH
If $9 \varnothing$ FOR $A=F A$ TO SA
HP 1 ■g PUT 1，PEEK（A）：NEXT A ：CLDSE 1
PK $11 \%$ EOSUB 1679 ：RETURN
M 12 TR TRAP 32767：IF PEEK（19 5）＜＞136 THEN PRINT＂ （3 DOWN\}SYSTEM ERROR BPEEK（195）
BC 13\％PRINT＂〔DOWN\}HIT ANY KEY TO CONTINUE＂：POKE 764，255
WI 148 IF PEEK $(764)=255$ THEN 148
AC 150 GOSUB 167פ：CLOSE 1：R ETURN
HC 16 ．$Y=X-1: 8 A=(X-(I N T(Y / 7)$ （7））\＆ $72+(I N T(Y / 7))$ \＆ 26 48＋18368：RETURN
AB 17月 DN 65月：PRINT＂\｛4 DOWN\}EN TER FILENAME
KE 18ヵ INPUT DN ：IF DN\＆＝＂＂T HEN 24 ■
IK 19\％PRINT＂\｛3 DOWN\}TAPE 0 R DIBK＂：POKE 764，255
B6 2פg IF PEEK（764）$=45$ THEN DEV象玉＂C：＂：
明219 IF PEEK（764）$=58$ THEN DEV象＝＂D：＂：GOTO 23ø
FP 22\％GOTO 2 末日
 $\because \operatorname{FN}(1,2)=\mathrm{DEV}$
H 24 R RETURN
H6 25\％TRAP 125：BOSUB 17月：IF FN $=$＝＂ THEN $11 \%$
ND 255 IF DEV象＂＂C：＂THEN PRI NT＂CDOWN\}PREBS PLAY DN TAPE＂
 1，FAL：GET 1，FAH：GET 1，SAL：GET 1，SAH：FA＝ $F A L+256$ क $F A H: 8 A=8 A L+25$ 6＊8AH
KF 276 FOR $A=F A$ TO 8A＋64：GET （1，B：POKE $A, B:$ NEXT A ：GOSUB 1675：CLOSE 1： RETURN
OA 28छ BOX象＝＂\｛3 N\}\{DOWN\} \｛4 LEFT\}\{B\}
（3 BPACES\} \{V\} \{DOWN\}
\｛5 LEFT\}\{B\}
（3 SPACES\} \{V) \{DOWN\} （5 LEFT\}\{B\}
\｛3 BPACES\}\{V\} \{DOWN\}
\｛4 LEFT\}\{3 M\}\{4 UP\} （RIEHT\}"
0J 296 PRINT＂\｛CLEAR\}"
 POSITIDN 2，A
HP 31 F FOR B＝1 TO 7：PRINT BO X：B NEXT B
BF 32\％NEXT A
BH36 POSITIDN 4，5：PRINT＂ 1 \｛4 BPACE8\}2
（4 BPACES\} 3
（4 BPACES\} 4
\｛4 SPACE8\}5
（4 SPACES\} 6
\｛4 SPACES\}7"
DJ 34 POSITION 4，11：PRINT＂ 8\｛4 SPACE8\}9 （4 BPACES\}1g （3 SPACES） 11
（3 SPACES\}12
（3 8PACES\}13
\｛3 SPACE8\}14"
KN 35\％PQSITIDN 4，17\＆PRINT＊ 15\｛3 SPACES\}16
（3）SPACES） 17
（3 SPACES\}18
\｛3 SPACES\} 19
（3 SPACES\}2 $2 \boldsymbol{m}$
（3 SPACE8）21＂
CM 36ø E＝－9：FOR B＝ø TO 3ø ST EP 5：E＝E＋9
KE 37ø FOR $A=1$ TO 13 STEP 6： CHAR $=33$
DD 3日ø FOR D＝ø TO 2：POSITION $3+B, A+D$
FI 39ø FOR C＝ø TO 2：PRINT CH R＊（CHAR + C＋E）；
OE 4 Øø NEXT C：PRINT＂${ }^{\text {（DDOWN }}$ \｛3 LEFT\}":1:CHAR=CHAR+ 3
IM 410 NEXT D：NEXT A：NEXT B
HK 42פ POSITION 1，19：PRINT＂ START PICTURE \｛7 SPACES\}END PICTURE

EB430 POSITION 1，2曰：PRINT＂ PICTURE NUMBER
\｛6 SPACES\} OVERALL SPE ED＂
PJ 44 © POSITION 1，21：PRINT SWITCHING SPEED＂
HJ 45g RETURN
HI 46
BK 479 ON JOY－4 GOTO 56ø，56＠
 56ぁ，52\％，54\％，56\％
EJ 48ø IF NUMBER（ARRPOS）$=21$ THEN NUMBER（ARRPOS）$=\varnothing$
C8 49ø NUMBER（ARRPOS）$=$ NUMBER （ARRPOS）+1 ：GOTO 56
EE 5øø IF NUMBER（ARRPOS）＝1 T HEN NUMBER（ARRPOS）$=22$
CB 51 NUMBER（ARRPOS）＝NUMBER （ARRPOS）－1：BOTO 56g
DI 52\％GOSUB 66末：IF ARRPOS＝5 THEN ARRPOS＝ø
ON 53 5 ARRPOS＝ARRPOS＋1：GOTO 56ø
DH 54 © BOSUB 660：IF ARRPOS＝1 THEN ARRPOS $=6$
0055 ARRPOS＝ARRPOS－1
DF 56® POSITION COORD（ARRPOS ，1），COORD（ARRPOS，2）
KL 57！PRINT＂＞＂
B 58 IF IF STRIG（ $\varnothing$ ）$=\varnothing$ THEN EO SUB $154 \%$
KH 59＠KEY＝PEEK（764）：POKE 76 4，255
CC 6øø IF KEY＝42 THEN GOSUB 11 øø
HI 61 If KEY＝62 THEN gOSUB 50
MD 62 IF $\mathrm{IF} \mathrm{K}=\mathrm{g}$ THEN GOSUB 2 5ø
MH 63® IF KEY＝58 THEN GOSUB 30
PD 64® IF KEY＝18 THEN FOR $A=$ g TO 511：POKE A＋CHAR1 ，6：POKE A＋CHAR2，©：POK E A＋CHAR3，©iNEXT A
HL 65 © RETURN
$0666{ }^{0}$ POSITION COORD（ARRPOS ，1），COORD（ARRPOS，2）
H 67 © PRINT＂＂：RETURN
AL 68® FOR $A=1$ TO 4
朋 69 © POSITION $\operatorname{COORD}(A, 1)+1$ $6+(A<4), \operatorname{COORD}(A, 2)$
PO 7 gg PRINT NUMBER $(A) ; "$
OH 710 NEXT A：POSITION 36，2 20 ：PRINT NUMBER（A）－1息；＂

HJ 72ø RETURN
OB 730 RESTORE 766：$A=1535$
LO 74 G READ B：IF $B=256$ THEN A＝USR（1535）：RETURN
W 75 © POKE $A, B: A=A+1:$ GOTO 7

01765 DATA $194,173,48,2,141$ ，2ø3，
CK 77® DATA 173，49，2，141，2ø4 ，$\curvearrowleft$
JH 78 D DATA $160,28,169,2,145$ ，293
HD 79® DATA 136，192，5，208， 24 9，162
6川 日øø DATA 5，189， $1 \oplus 2,6,168$ ， 177
U 810 DATA 2ø3，9，128，145，20 3，2ヵ2
6A 82ø DATA $16,243,169,64,14$ 1，${ }^{\text {B }}$
JC 836 DATA 2，169，6，141，1，2
HO 84ø DATA 169，255，141，198， 6，173
PI 85ø DATA 11，212，208，251，1 69，192
J186® DATA $141,14,212,96,72$ ， 138
J0 87® DATA 72，238，168，6，173 ， 1 ®B
AE 日8® DATA 6，201，6，2ø8，5，16 9
 189
F69øø DATA 96，6，141，1ø，212， 141
IK 91ø DATA 9，212，1ヵ4，17ø，1ø 4，64
JK 92ø DATA 72，224，8ø，224，88 ， 224
FH 930 DATA $3,8,11,14,17,20$ ， 256
FL 946 ORIGINAL＝57344：CHAR1＝ 18432：CHAR2＝2ø4日ø：CHA R3＝22528：CHARg＝24576
EC 950 FOR A＝ORIGINAL TO ORI GINAL＋1024
6H $960 \mathrm{D}=\mathrm{A}$－ORIEINAL： $\mathrm{V}=\mathrm{PEEK}$（ $A$ ）
M6 97® POKE CHAR1＋D，V：POKE C HAR2＋D，VIPOKE CHAR3＋D ，VIPOKE CHARפ＋D，V：NEX $T$ A
DO 98．RESTORE 99g：FOR $A=246$ 64 TO 24687：READ B：PO KE A，B：NEXT A：RETURN
EG 99ø DATA $48,48,48,255,255$ $, 48,48,48, \mathscr{}, 126,126,1$ 26，126，126，126，6，255， 129，129，129，129，129，1 29，255
H1øøぁ DIM BOX（5ぁ）：DIM NUM BER（5）：DIM B\＆（5）：DIM BINARY（64）：DIM FN （15）：DIM DEV象（2）：DIM DN（17）：DIM COORD（5 ，2）
FP 1ø1』 POKE 752，1：RESTORE 1 g3g：FOR $A=1$ TO 5：NUM $\operatorname{BER}(A)=1:$ FOR $B=1$ TO 2
HI 1 ø2ø $\operatorname{READ} \operatorname{C:~} \operatorname{COORD}(A, B)=C:$ NEXT B：NEXT A
 20，19，20，29
KE 1ø4ø ARRPOS＝1：RESTORE 1 1ø6 ©IFOR A＝1 TO 64：READ B
CH 1050 BINARY $(A, A)=C H R \$(B *$ 1＋44）：NEXT A
BB 1 פ6ø DATA $1,1,1,1,1,1,1, \varnothing$ $, 1,1, \varnothing, 1,1,1, \varnothing, \varnothing, 1, \varnothing$ $, 1,1,1, \infty, 1, \infty, 1, \varnothing, \infty, 1$ $, 1, \varnothing, \varnothing, \varnothing, \varnothing, 1,1,1, \varnothing, 1$ $, 1, \varnothing, \varnothing, 1, \varnothing, 1, \varnothing, 1, \varnothing, \varnothing$
HK $1 \oplus 7 \varnothing$ DATA $\varnothing, \varnothing, 1,1, \varnothing, \varnothing, 1$ ，$\varnothing$ ，$, \varnothing, \varnothing, 1, \varnothing, \varnothing, \varnothing, \varnothing$
 EK（561）：ODL＝PEEK（DLI ＋4）：ODH＝PEEK（DLI＋5）

## KK 1 ©9


PD 111 g NU＝NUMBER（2）－1：POKE 756，96
炈112g SA＝（NUMBER（2）－（INT（N （17）\＆7））\＆72＋（INT（NU／ 7）） $2848+18368$
BB 113 g GO8UB $165 \%$
 A TO SA＋71：P＝PEEK（A）
LE $1150 \mathrm{HB}=\mathrm{INT}(\mathrm{P} / 16)+1: \mathrm{LB}=\mathrm{P}-$ 16 （ $\mathrm{HB}-1$ ）+1
OB 116 I POSITION E\＆S，RIPRINT BINARY（HB\＆4－3，HB\＆4 ）B BINARY（LB\＆4－3，LB 4）：
EN 117 © $\mathrm{R}=\mathrm{R}+1: \mathrm{IF} \mathrm{R}=\mathrm{NR}$ THEN R $=N R-8: S=S+1: I F S=3 T$ HEN $R=R+8: N R=N R+B: S=$
©
EK118g NEXT A
KL 1196 RETURN
EC 12øø POSITION 31，16：PRINT NUMBER（2）
ND 1210 FOR $A=\varnothing$ TO 2：FOR $B=\varnothing$ TO 2
LJ 122 （ POSITION 30＋B， $11+A_{1} P$ RINT CHR $\left.{ }^{(33+B+A} 3\right)$
AB $123!$ NEXT B：NEXT A
 THEN LOCATE DX，DY，Z
If 1250 OX＝DX：OY＝DY：POSITION DX，DY：PRINT＂＋＂；
Fl 1260 JOY＝STICK（ 10 ）-4
06127 ON JOY GOTO 128®， 129
 6，1336，1366，1345，135 ロ， $136 \%$
06 128ø $D X=D X+1: D Y=D Y+1:$ ВоTO 1360
 136 ．
NC 13ø $D X=D X+1:$ BOTO $136 \varnothing$
OC 131g DX＝DX－1：DY＝DY＋1： 180 1360
OF 132 $10 \mathrm{DX=DX-1:DY=DY-1:} \mathrm{BOTO}$ 136 פ
WH 1330 DX＝DX－1：GOTO 136
MI 134 g DY＝DY $+1:$ GOTO 1360
ML 135 1 DY＝DY－1：GOTO 136』
NA $136 \varnothing$ IF DX＞23 THEN DX $=\varnothing$
ND 1379 IF DY＞23 THEN DY $=\varnothing$
WA 1389 IF DX $<\emptyset$ THEN DX $=23$
ND 139 IF $D Y<g$ THEN DY $=23$
ML $14 \boldsymbol{1}$ IF $\operatorname{STRIG}(\varnothing)=\varnothing$ AND FL $=\emptyset$ THEN FL＝1：Z＝（Z＝44 ）${ }^{2} 1+44$
DH $141 \boldsymbol{1}$ IF STRIE（ $\boldsymbol{I})<>$ THEN $F L=\emptyset$
6F 1420 POSITION OX，OY：PRINT CHR（Z）：
NH 1430 KEY＝PEEK（764）：POKE 7 64，255
BL 144 I IF $K E Y=18$ THEN FOR $A$ ＝ø TO 23：FOR B＝ø TO 23：POSITION A，B：PRIN T CHR（45）；：NEXT B：N EXT A
ML 145 IF KEY＝42 THEN $151 \curvearrowleft$
IL 146 IF IF KY＝6 AND NUMBER $($ 2）＜21 THEN GOSUB 152 g： $\operatorname{NUMBER}(2)=\operatorname{NUMBER}(2$ ）＋1：GOTO 11 øø
IN 147 $1 F$ KEY＝14 AND NUMBER （2）＞1 THEN BOSUB 152 g：NUMBER（2）＝NUMBER（2 ）－1：GOTO 11 øø
If 148 g IF KEY＝61 THEN $S H P=N$ UMBER（2）
BC 149 Ø IF KEY＝1ø THEN TEMP＝ NUMBER（2）：TEMP2＝SA：N $\operatorname{UMBER}(2)=S H P:$ GOSUB 1 11月：NUMBER（2）$=$ TEMP：S

A＝TEMP2：GOTO 12øø
K6 150
LB 1519 GOSUB 1670 GOSUB 152 ©：RETURN
KA 152．FOR $A=\emptyset$ TO 71：POKE 8 $A+A$ ，PEEK $(24584+A)$ ：NE XT A
KJ 153 R RETURN
 54 \％
DD 155\％GOSUB 165\％：POKE 559， 46：POKE 623，1：PDKE 7 65，B：POKE 7曰6，B：POKE 7＠7，8：POKE 53277，3： POKE 54279，92
KF 156 © $8 P=$ NUMBER（1）：EP＝NUMB ER（4）：DIR＝SGN（EP－SP） ：SS＝NUMBER（3）： $08=$ NUM BER（5）－ 1 ©
OB 1579 S＝ABS（08）／3年256：IF 0 S＜THEN Q＝255－INT（S ／256）：$R=S-(255-Q)$（ 25 6： $\mathrm{S}=\mathrm{Q}$ 象256＋R
AA $1580 \quad 08=8$
IH 1590 FOR $P N=S P$ TO EP STEP DIR
CJ 16 ．$\quad A=\operatorname{USR}(29132, P N, 08)$
PE 1616 TD＝TD－1：IF TD $6 \varnothing$ THEN TD＝22－8S：NEXT PN：GO TO 159ø
FH 1620 KEY＝PEEK（764）：POKE 7 ©5，KEY：POKE 786，KEY： POKE 7 © 7 ，KEY
AD $163 \boldsymbol{6}$ IF STRIG（ 5 ）$\langle>$ THEN 16 Øあ
JP 1640 FOR $A=53248$ TO 53251 ：POKE A，22\％：NEXT A： DSUB 1679：RETURN
HC 165 ． POKE 54286，64：POKE B 8， $5:$ POKE 89， 1 あぁ：POKE $\mathrm{DLI}+4,6 \mathrm{~F}$ POKE DLI＋5， 1 ロロ
HH 166 T＝PEEK（196）：POKE 196 ，104：PRINT CHR黾（125） BPOKE 1 月6，T：RETURN
JJ 167 ．$A=$ USR（ 1535 ）：POKE DLI ＋4，ODL：POKE DLI＋5，OD H：POKE BB，ODL ：POKE 8 9，ODH：RETURN

## Program 5：Apple ANIMATOR2 Maker

Version by Tim Victor，Editorial
Programmer
Please refer to＂COMPUTEI＇s Guide to Typing In Programs＂before entering these listings．
26 Bg FOR $\mathrm{I}=126 * 256 \mathrm{TO} \mathrm{I}+1$ 455：READ A：POKE I，A：NEX T
F5 90 PRINT CHR\＄（4）；＂BSAVE ANIM ATOR2，A\＄7Eøø，L\＄5Bø＂：END
17 1øø DATA Ø，Ø，Ø，$, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, ~$ Ø
$8211 \emptyset$ DATA $\varnothing, \emptyset, \varnothing, \varnothing, \varnothing, 216,12 \emptyset, 13$ 3，69，134，79
$7612 \emptyset$ DATA $132,71,166,7,1 \emptyset, 10,1$ 76，4，16，62，48
$1313 \emptyset$ DATA $4,16,1,232,232,10,13$ 4，27，24，1ø1，6
$5514 \emptyset$ DATA $133,26,144,2,23 \emptyset, 27$ ， $165,4 \emptyset, 133,8,165$
63150 DATA $41,41,3,5,230,133,9$ ， 162，B，16． 9
7B $16 \emptyset$ DATA $177,26,36,59,48,2,73$ ，127，164，36，145
IC 179 DATA $8,236,26,268,2,236,2$ 7，165，9，24，1ø5
$6618 \emptyset$ DATA $4,133,9,292,298,226$ ， $165,69,166,79,164$
8B $19 \emptyset$ DATA 71，88，76，24ø，253， 128 $, 128,128,128,19 \varnothing, 128$
$5529 \square$ DATA $128,128,128,128,128$ ， 19ø，128，19Ø，12日，12B， 128
11210 DATA $188,23 \varnothing, 176,152,128$ ， $152,128,128,188,236,246$
63229 DATA 238，23ø，188，128，128， $152,156,152,152,152,188$
E8 $23 \emptyset$ DATA $128,128,188,23 \varnothing, 176$ ， 14ø，23ø，254，128，128， 188
7E 24ø DATA 23ø，176，224，23ø，188， 128，128，176，184，189， 254
EC $25 \emptyset$ DATA $176,176,128,128,254$ ， $134,19 \emptyset, 224,23 \emptyset, 188,128$
6426 DATA 128，188，134，196，239， $236,188,128,128,254,224$
B1 $27 \emptyset$ DATA $176,152,14 \emptyset, 14 \emptyset, 128$ ， 128，188，23ø，188，23ø， $23 \emptyset$
FJ $28 \emptyset$ DATA $188,128,128,188,23 \emptyset$ ， 23ø，252，176，152，128， 128
98290 DATA $152,176,254,254,176$ ， $152,128,128,19 \emptyset, 19 \emptyset, 19 \emptyset$
21 3øø DATA 19Ø，19Ø，19Ø，128，Ø，Ø， $\emptyset, \varnothing, \varnothing, \varnothing, \varnothing$
IB $31 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$, $\emptyset$
$1032 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$ ， D
A7 $33 \emptyset$ DATA $\varnothing, \emptyset, \varnothing, 128,128,152,18$ B，188，152，128， 128
64 34ø DATA 128，252，23Ø，23Ø，254， $236,236,128,128,196,236$
A2 $35 \emptyset$ DATA $23 \emptyset, 19 \emptyset, 23 \emptyset, 254,128$ ， $128,188,239,134,134,23 \varnothing$
F1 36ø DATA 19ø，128，128，19ø，23Ø， $23 \varnothing, 23 \varnothing, 23 \varnothing, 19 \varnothing, 128,128$
AD $37 \emptyset$ DATA $254,134,134,19 \emptyset, 134$ ， 254，128，128，254，134， 134
F4 389 DATA $19 \varnothing, 134,134,128,128$ ， 188，23ø，134，246，23ø， 190
BA 390 DATA $128,128,230,230,230$, $254,23 \emptyset, 239,128,128,152$
JC $4 ⿹ 勹$ DATA $152,152,152,152,152$ ， $128,128,224,224,224,224$
$8741 \emptyset$ DATA $23 \emptyset, 188,128,128,23 \emptyset$ ， 23ø，182，158，23ø，23ø， 128
2B 429 DATA $128,134,134,134,134$ ， 134，254，128，12B，230， 254
97430 DATA 230，239，239，230，128， 128，19ø，23ø，23ø，23ø，23ø
69 44ø DATA 23ø，128，128，188，23ø， $23 \emptyset, 23 \emptyset, 23 \varnothing, 188,128,128$
$8845 \emptyset$ DATA 19ø，23ø，23ø，19ø，134， $134,128,128,188,23 \emptyset, 23 \emptyset$
8A $46 \emptyset$ DATA 23ø，182，236，128，128， $199,23 \emptyset, 239,19 \emptyset, 239,239$
$6247 \emptyset$ DATA $128,128,188,239,14 \emptyset$ ， 176，23ø，19ø，128，128， 254
5 5 $48 \emptyset$ DATA $152,152,152,152,152$ ， 128，128，23ø，236，23ø，230
$5049 \emptyset$ DATA 23ø，19ø，128，128，230， $239,23 \emptyset, 23 \emptyset, 23 \emptyset, 152,128$
3C $5 \emptyset \emptyset$ DATA 128，23ø，23Ø，23ø，230， $254,23 \varnothing, 128,128,23 \emptyset, 23 \emptyset$
$2751 \emptyset$ DATA 23ø，188，23ø，23ø，128， $128,23 \varnothing, 23 \varnothing, 23 \emptyset, 188,152$
F4 $52 \emptyset$ DATA $152,128,128,254,176$ ， $152,14 \varnothing, 134,254,128, \varnothing$
$9453 \emptyset$ DATA $\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 16 \emptyset, \emptyset$ ， 162，7
D7 54Ø DATA $169,196,133,254,169$ ， $132,133,255,177,254,73$
$4455 \emptyset$ DATA 127，145，254，2øø，2ø8， 247，23ø，255，2ø2，2ø8， 242
3B $56 \emptyset$ DATA 96，Ø，Ø，Ø，Ø，Ø，76，21，1 28，76，85
B5 579 DATA $128,76,130,128,76,23$ 9，128，76，6，139， 76
$1458 \emptyset$ DATA $148,129,76,21 \emptyset, 129,1$ 69，2，141，189，131， 169
$8259 \emptyset$ DATA $24,141,181,131,32,31$ ，13Ø，176，48，32， 71
3B 6øØ DATA $131,176,43,32,156,13$ $1,176,38,173,178,131$
4C 610 DATA $133,252,173,179,131$ ， $133,253,32,223,139,32$

40620 DATA 95，130，32，168，130， 23 B，184，131，165，252， 24
㫙 $63 \emptyset$ DATA $165,3,133,252,144,2$ ， 23ø，253，2ø6，181， 131
D4 64ஏ DATA 268，228，96，169，2，141 ，189，131，169，24，141
E $65 \emptyset$ DATA $181,131,32,71,131,17$ 6，29，32，156，131，176
DE 669 DATA 24，169，3，169， $9,153,1$ 96，131，136，16，25ø
CD 679 DATA $32,223,13 \varnothing, 32,168,13$ ■，238，184，131，296， 181
$5268 \emptyset$ DATA $131,268,242,96,165,5$ $6,164,57,261,186,2 ø 8$
FE $69 \varnothing$ DATA 4，192，128，24ø，14， 141 ，190，131，140，191，131
EC 7øØ DATA $169,186,133,56,16 \emptyset, 1$ 28，132，57，32，121，129
© $71 \emptyset$ DATA $169,9,141,194,131,32$ ，31，136，176，13，173
$4272 \emptyset$ DATA $178,131,141,197,128$ ， $173,179,131,141,198,128$
DC $73 \emptyset$ DATA 96，32，6，13Ø，$\varnothing, 145,4 \varnothing$ ，169，48，141，$\varnothing$
$3674 \varnothing$ DATA $2,141,1,2,173,255,25$ 5，201，105，144，7
2A $75 \emptyset$ DATA 233，1øø，238，ø，2，2ø8， 245，261，16，144，7
 45，165，48，141， 2
FC $77 \emptyset$ DATA 2，162，3，169，141，238， $197,128,298,3,238$
F7 78ø DATA 198，128，96，32，121， 12 $9,169,255,141,194,131$
$3779 \emptyset$ DATA $32,31,13 \emptyset, 176,23,173$ ，178，131，141，84， 129
CC $8 \emptyset \emptyset$ DATA $173,179,131,141,85,1$ 29，169，196，141，116， 129
98810 DATA $169,131,141,111,129$ ， $96,32,6,139,9,44$
$5482 \emptyset$ DATA $194,131,48,3,76,246$ ， $253,261,176,144,4$
$3283 \emptyset$ DATA 2ø1，186，144，76，72，14 $5,195,131,56,173,116$
3D $84 \emptyset$ DATA $129,233,196,24 \emptyset, 53,1$ 41，182，131，169， 6,168
22 85ø DATA $2 \emptyset 1,26,176,214,1 \varnothing, 14$ $1,68,129,1 \varnothing, 1 \varnothing, 165$
B2 $86 \emptyset$ DATA $255,176,294,121,196$ ， $131,56,233,176,2 \emptyset \boxed{2}, 264$
B8 $87 \emptyset$ DATA 182，131，2ø日，23ø，141， 255，255，238，84，129，208
31889 DATA 3，238，85，129，169， 196 ，141，118，129，169， 131
ED 890 DATA 141，111，129，172，195， 131，194，96，141，255，255
$9 \mathrm{9} 9 \varnothing$ DATA $238,116,129,2 \emptyset 8,3,23$ B， $111,129,96,165,54$
4F $91 \emptyset$ DATA $164,55,261,23,268,4$ ， $192,129,24 \varnothing, 14,141$
CC 920 DATA $192,131,14 \emptyset, 193,131$ ， $169,23,133,54,169,129$
E4 930 DATA $132,55,96,32,31,130$ ， $176,56,173,178,131$
63940 DATA $141,198,129,208,3,20$ $6,179,131,266,198,129$
IE $95 \emptyset$ DATA $173,179,131,141,294$ ， $129,169,227,133,252,169$
B2 $96 \emptyset$ DATA $142,133,253,16 \varnothing, \emptyset, 17$ 7，252，16 $, 72,145,252$
27970 DATA 165，252，2ø8，2，198， 25 3，198，252，169，255， 197
$9398 \emptyset$ DATA 252，2ø8，234，169，255， $197,253,298,228,96,32$
69990 DATA $31,136,176,46,173,17$ 8，131，133，252，173， 179
6C 1 øøø DATA $131,133,253,169,228$ ，141，25ø，129，169，142， 141
291 1ø1Ø DATA $\emptyset, 13 \emptyset, 16 \emptyset, 72,177,25$ 2，16ஏ，Ø，145，252，23ø
E7 102ø DATA 252，2ø8，2，23ø，253， 1 69，255，197，252，298， 236
6D 1 Ø3Ø DATA $169,255,197,253,2 \emptyset 8$ ，230，96，173，190，131， 172

FC $194 \varnothing$ DATA $191,131,240,4,133,5$ 6，132，57，173，192， 131
491 195の DATA $172,193,131,24 \varnothing, 4,1$ 33，54，132，55，96， 169
C6 1ஏ6ந DATA 196，141，178，131， 169 ，132，141，179，131，32，165
$98167 \varnothing$ DATA $131,261,21,144,1,96$ ，141，176，131，169，ø
861 1ø日ø DATA $141,177,131,160,3,3$ 2，64，136，160，3， 173
AB $199 \emptyset$ DATA $176,131,19,46,177,1$ 31，136，298，249，141， 176
E6 11 פø DATA $131,24,199,178,131$ ， $141,178,131,173,179,131$
$44111 \varnothing$ DATA $199,177,131,141,179$ ，131，24，96，172，186，131
C4 $112 \emptyset$ DATA 2 $29,149,182,131,169$ ， $5,153,196,131,136,177$
$2 E 113 \emptyset$ DATA 252，153，196，131， 136 ，16，248，173，196，131，9
$76114 \varnothing$ DATA $127,141,183,131,172$ ，187，131，24ø，21，162，ø
$72115 \emptyset$ DATA $14,196,131,189,196$ ， 131，10，62，197，131， 232
B8 1169 DATA 236，182，131，268， 243 ，136，298，235，172，182， 131
C9 117 D DATA $185,196,131,9,128,4$ 5，183，131，153，196， 131
5C $118 \emptyset$ DATA $136,16,242,96,172,1$ 87，131，185，299，139， 172
771196 DATA $182,131,49,254,25,1$ 96，131，145，254，136， 185
BE 1296 DATA 196，131，145，254，136 ，2ø8，248，172，187，131， 185
$4 \mathrm{~L} 121 \varnothing$ DATA $216,13 \varnothing, 16 \varnothing, \varnothing, 49,25$ 4，13，196，131，145， 254
OD $122 \varnothing$ DATA $96,127,126,124,126$ ， 112，96，64，$\varnothing, 1,3$
6C 1236 DATA $7,15,31,63,173,184$ ， 131，41，63，168，185
FA $124 \varnothing$ DATA $7,131,5,23 \varnothing, 133,255$ ，173，184，131，41，8
9A $125 \emptyset$ DATA $24 \varnothing, 2,169,128,24,44$ ，184，131，112，4，16
BF $126 \varnothing$ DATA $4,165,4 \varnothing, 165,4 \varnothing, 199$ ，186，131，133，254，96
$78127 \emptyset$ DATA $9,4,8,12,16,26,24,2$ 8， $6,4,8$
$69128 \emptyset$ DATA $12,16,29,24,28,1,5$ ， 9，13，17，21
26 129ø DATA 25，29，1，5，9，13，17，2 1，25，29，2
Bf $13 ø \varnothing$ DATA $6,1 \varnothing, 14,18,22,26,3 \varnothing$ ，2，6，19， 14
$70131 \varnothing$ DATA $18,22,26,36,3,7,11$ ， 15，19，23， 27
$49132 \emptyset$ DATA $31,3,7,11,15,19,23$ ， 27，31，169，ø
781330 DATA $141,186,131,141,187$ ，131，32，165，131，141，185
DB 1349 DATA $131,192,1,144,18,24$ g，1，96，261，24，144
E9 1359 DATA $1,96,169,36,141,186$ ，131，169，4，141，187
CA $136 \emptyset$ DATA $131,169, \varnothing, 141,188,1$ 31，169，224，141，189， 131
F2 $137 \varnothing$ DATA $173,185,131,265,189$ ，131，144，4，237，189， 131
B7 138 Ø DATA $56,46,188,131,78,18$ 9，131，144，239，24，199
6E $139 \varnothing$ DATA $187,131,141,187,131$ ，24，173，188，131，199，186
AC 14øø DATA $131,141,186,131,24$ ， 96，32，165，131，141， 184
F6 1419 DATA $131,2 \not 1,192,96,32,1$ 77， $6,32,5,225,165$
861429 DATA $161,164,169,96$

## Program 6：Apple Animator

FD 1 gø DIM E\％$(2,23), M \$(8), C M \$(7)$ ，MM $\$(14): D \$=$ CHR $\$$（4）：$P$ RINT D\＄；＂BLOAD ANIMATOR2＂


In this demonstration of＂Apple Anima－ tor，＂a motorcyclist performs a daring wheelstand．

AF $11 \varnothing$ FOR I $=\varnothing$ TO 8：READ M\＄（I ）：NEXT ：FOR I＝$\varnothing$ TO 7： READ CM（I）：NEXT ：FOR $\mathrm{I}=\varnothing$ TO 14：READ MM\＄（I）： NEXT
46120 GOSUB 530
D6 130 A\＄$=$＂＂：FOR I＝ 1 TO 72： $A \$=A \$+" \emptyset ": A=\operatorname{FRE}(\varnothing$ ）：NEXT
16 140 GOSUB 650：GOSUB 59ø
$16159 \mathrm{~F}=1: A B=1: A E=29: A S=$ ø：$A P=1 \varnothing$
B5 $16 \emptyset$ ONERR GOTO $139 \varnothing$
6C $17 \emptyset$ GOSUB 71ø：IF MQ $=1$ THEN HOME ：TEXT ：END
$44189 \mathrm{C}=\operatorname{PEEK}$（49152）：IF C＜ 128 THEN 189
45190 POKE 49168， $0:$ IF C $=136$ THEN $F=F-1+2 \varnothing$（ $F$ ＝1）：GOTO $17 \varnothing$
CF $2 ø \varnothing$ IF C $=149$ THEN $F=F+1$ －2ø（F＝29）：GOTO 17 $\emptyset$
$69210 \mathrm{C}=\mathrm{C}-175$ ：IF C＜ 1 OR C $>22$ THEN 180
CB 220 IF C＜ 11 THEN $25 \varnothing$
75230 IF C＜ 18 THEN 180
$98240 \mathrm{C}=\mathrm{C}-7$
6A $25 \varnothing$ MQ＝ $9:$ ON C GOSUB 269， 11 2ø，121の，15øø，151の，152ø，16 69，1679，1689，1699，1379，12 5ø，147ø，146ø，1440：T＝FRE （ø）：GOTO $17 \varnothing$
$6226 \varnothing$ GOSUB 56ø：GOSUB 7øの：VTA B 19：HTAB 14：PRINT＂EDI TING BOX＂；$A$
$5127 \emptyset$ PRINT＂PRESS ESC TO CANCE L＂：HTAB 7：PRINT＂RETURN FOR SAME＂：PRINT ：PRINT ＂STORE RESULT IN BOX＂；： R\＄＝＂＂
98289 XC $=21+$ LEN（R\＄）：VTAB 23：HTAB XC：PRINT＂；＂；
71296 C $=\operatorname{PEEK}$（49152）：IF C＜ 128 THEN $29 \varnothing$
$2530 \varnothing$ POKE 49168，$\varnothing$ ：IF C $=141$ OR $C=155$ THEN VTAB 23： HTAB XC：PRINT＂＂；：GOTO $36 \varnothing$
JA 310 IF C＜＞ 136 AND C＜＞ 25 5 THEN 349
AE 326 VTAB 23：HTAB XC：PRINT＂ ＂；：IF LEN（R\＄）＜ 2 THEN R\＄＝＂＂：вOTO 28ø
46330 R\＄＝LEFT\＄（R\＄，LEN（R\＄） －1）：GOTO 28ø
AD 349 IF C＜ 176 OR C＞ 185 THE N 296
93350 UTAB 23：HTAB XC：PRINT C HR\＄（ $\mathrm{C}-12 \mathrm{C}$ ）；：R\＄＝R\＄＋ CHR（ $\mathrm{C}-128$ ）： $\mathrm{Q}=$ FRE（ $\varnothing$ ）：GOTO 28פ
$4 E 366$ IF C $=155$ THEN GOSUB 669 ：RETURN
F6 37 （ IF R\＄$=$＂＂THEN AA $=A: G$

66 $38 \varnothing A A=$ VAL $(R \$):$ IF $A A>2 \varnothing$ THEN GOSUB 660：RETURN
$9 \mathrm{~A} 39 \varnothing$ HGR2 ：HOME ：GOSUB $107 \varnothing$
F2 $400 \mathrm{XP}=184: Y \mathrm{P}=44: \mathrm{DX}=65$ ：
DY＝89：GOSUB 989
उA 41ø VTAB 7：FOR $Q=\varnothing$ TO 8：H TAB 28：INVERSE ：PRINT M ID\＄（＂123456789＂，Q＋1，1） ；：NORMAL ：PRINT＂＂；M\＄ Q）：NEXT
BC 426 CALL $32768, A, 206,12: \times C=$ Ø：YC＝Ø：QF＝$=$ ：GOSUB 87 IF QF THEN GOSUB 59ø：RET $4443 \varnothing$ IF QF THEN GOSUB 596：RET 32 44ø SC＝INT（YC／B）：$S A=1 \varnothing$ $24+Y C \geqslant 128-S C * 984$ $+\mathrm{XC}: \mathrm{CC}=$
$8445 \varnothing$ OC $\$=C C \$: C C \$=C H R \$(P E$ EK（SA）－128）：HTAB XC＋ 1：VTAB YC＋1：PRINT OC \＄；
C4 460 C $=\operatorname{PEEK}$（49152）：IF C＜ 128 THEN $T=$ FRE（ $\varnothing$ ）：GOT 0459
2E $47 \varnothing$ POKE 49168，$\varnothing$ ：IF OC $\$="$
＂THEN HTAB XC＋1：VTAB
YC＋1：PRINT CC
91480 FOR Q $=1$ TO 13：IF C＜＞ ASC（ MID\＄（＂JLIK1234567 89＂，$Q, 1) 1+128$ THEN NEXT
B6 $49 \varnothing$ ON Q GOSUB 75ø，769，779，78 Ø，84ø，85ø，87ø，889，89ø，99ø ，1ø2ø，1ø5ø，1ø6ฮ：GOTO 43ø
BB 506 $I=A * 28-24-28 \varnothing *($ $A>1 \varnothing): J=26+B \emptyset:(A$ $>16):$ CALL $32768, A, I, J$
EB 51ø $\mathrm{X}=$ FRE（ $\varnothing$ ）：RETURN
AD 529 FOR $A=1$ TO 20：GOSUB $5 \varnothing$ g：NEXT ：RETURN
17530 POKE 6， $6:$ POKE 7，126：IF PEEK（48649）$=76$ THEN 55 ø
6f 54ø POKE 54，16：POKE 55，126： CALL 1øø2：RETURN
3E 559 PRINT ：PRINT CHR\＄（4）；＂P R＊＊\＄7E1ø＂：RETURN
6B $56 \varnothing A=F$ ：RETURN
E 570 GOSUB 589：HTAB 1：INPUT ＂WHICH BOX？＂；A：$A=$ INT $(A$ ）：IF $A<1$ OR $A>2 \varnothing$ THE N $57 \varnothing$
2F 58ø VTAB 22：HTAB 1：PRINT SP C（ 39）：RETURN
6F 59ø HOME ：HGR2 ：HCOLOR＝ 3
8A $6 \boxed{ }$ FOR $\mathrm{J}=25$ TO 165 STEP $8 \varnothing$ ：FOR I＝ 3 TO I＋ 9 \＃ 28 STEP 28：FOR $P=\emptyset$ TO 1 90610 HPLOT I－P，J－P TO I＋ $22+P, J-P$ TO $1+22+$ $P, J+25+P$ TO I－P，J＋ 25 ＋P TO I－P，J－P
FB $62 \emptyset$ NEXT ：NEXT ：NEXT
1B 636 FOR $J=\varnothing$ TO 1：FOR $I=1$ TO 1ø：HTAB I＊ $4-2: V$ TAB J $\ddagger 1 \varnothing+3:$ PRINT I＋ J＊1ø：NEXT ：NEXT
90640 GOSUB 52ø：GOTO 660
87650 PDKE 242， $0:$ CALL 32777，$\varnothing:$ FOR I＝ 0 TO 29：PRINT A \＄：NEXT ：CALL 3278ø：RET URN
3A 669 GOSUB 790：$X P=2: Y P=140$ ：$D X=275: D Y=48:$ GOSUB 989
AA 670 VTAB 19：FOR $I=\varnothing$ TO 4： HTAB 2：INVERSE ：PRINT I ；：NORMAL ：PRINT＂＂；MM\＄ （I）；：HTAB 17：INVERSE ： PRINT I＋5；
DR $68 \emptyset$ NORMAL ：PRINT＂＂；MM\＄（I + 5）：：HTAB 32：INVERSE ： PRINT CHR\＄$(65+1) ;:$ NO

RMAL ：PRINT＂＂；MM（I＋ 1ø）：NEXT
28690 RETURN
93 700 HTAB 1：UTAB 18：FOR $Q=$ 1 TO 7：PRINT SPC（ 4ø）：N EXT ：RETURN
$0771 \varnothing$ VTAB 1：HTAB 1：PRINT＂FR AME＂；F；＂＂；
$7672 \emptyset$ HTAB 1ø：PRINT＂RANGE＂；A B；＂＂；：HTAB 18：PRINT＂： ＂；AE；＂＂；
FD 736 HTAB 22：PRINT＂SPEED＂；A S；＂＂；：HTAB 32：PRINT＂ PAUSE＂；AP；＂＂；
$1 F 740$ RETURN
IB $75 \emptyset \times C=X C-(X C>\varnothing):$ GOTO $79 \varnothing$
47769 XC＝XC＋（XC＜2ø）：GOTO 796
6B $77 \emptyset$ YC＝YC－（YC＞ø）：GOTO 790
$58789 \mathrm{YC}=\mathrm{YC}+(\mathrm{YC}<23):$ GOTO 790
D1 $79 \varnothing \mathrm{XB}=$ INT $(X C / 7): P M=2$人（XC－7 XB）：T＝INT（ $E \%(X B, Y C) / P M): O N D F G O$ TO 89ø，82ø：RETURN
㫙 日øø IF $T=2$＊INT（ $T / 2$ ）TH $E N E \%(X B, Y C)=E \%(X B, Y C)$ ＋PM：HTAB XC＋1：VTAB Y C＋1：PRINT＂；＂；

## IA 810 RETURN

5B 82g IF T＜＞ 2 ＊INT（ $T$／2） THEN E\％（XB，YC）$=E \%(X B, Y C$ ）－PM：HTAB XC＋1：VTAB YC＋1：PRINT＂．＂；

## 1E 836 RETURN

C8 84ø QF＝1：RETURN
$58859 \mathrm{DF}=1$ ：GOSUB 869：HTAB 2 9：VTAB 8：PRINT＂จ＂；：GO TO 79ø
85860 UTAB 8：FOR $1=1$ TO 3：H TAB 29：PRINT＂＂：NEXT ： RETURN
7B 87ø DF＝Ø：GOSUB 86ø：HTAB 2 9：VTAB 9：PRINT＂ə＂；：RE TURN
CD $889 \mathrm{DF}=2$ 2：GOSUB 86ø：HTAB 2 9：VTAB 1ヵ：PRINT＂ə＂；：G OTO 79の
DJ $899 \mathrm{XP}=149: \mathrm{YP}=149: \mathrm{DX}=12$ 8：DY $=40$ ：GOSUB 98ø
48 9øø FOR I＝ 9 TO 3：VTAB $19+$ I：FOR $J=\varnothing$ TO 1：HTAB $23+9$ J：INVERSE ：PRI NT I＋J 4；：NORMAL ：P RINT＂＂；CM\＄（I＋J（4）；： NEXT ：NEXT
DD 91ø C＝PEEK（49152）：IF C＜ 128 THEN 91ø
69 92ø UTAB 18：FDR $I=\emptyset$ TO 5： HTAB 22：PRINT SPC（ 19）： NEXT ：PDKE 49168， $\boldsymbol{D}$ ： $\mathrm{C}=\mathrm{C}$ － 176
E1 $930 \mathrm{IF} \mathrm{C}<\varnothing$ OR $\mathrm{C}>7$ THEN RE TURN
$22940 \mathrm{~T}=\mathrm{C}-4 *$ INT（ $\mathrm{C} / 4$ ）： P $g=42 T+(T>1): P_{1}=$ Pø：$I F P g=42 \mathrm{OR} P \emptyset=8$ 5 THEN P1 $=127-P \emptyset$
6 6 950 IF C $>3$ THEN $P \emptyset=P \emptyset+1$ 28：P1 $=P_{1}+128$
2B $966 \mathrm{~T}=\mathrm{T}+(\mathrm{T}>2):$ FOR $\mathrm{I}=$ © TO 23：VTAB I＋1：HTAB $1: E \%(\mathscr{}, I)=P \emptyset: E \%(1, I)=$ P1：E\％（2，I）＝Pg
$5297 \varnothing$ FOR $J=1$ TO 1ø：PRINT MI D\＄（＂．．；－；；＂，$T+1,2$ ）；：N EXT ：PRINT MID\＄（＂．；＂，（T ＞1）＋1，1）；：NEXT ：RET URN
44 98g FOR $P=\varnothing$ TO 1：HPLOT XP $+P, Y P+P T O X P+D X-P$ $, Y P+P T O X P+D X-P, Y P$
＋DY－P TO XP＋P，YP＋ $D Y-P$ TO XP＋P，YP＋P： NEXT ：RETURN
TC 99ø QF＝1：GOSUB 1øøø：RETUR N
7F 1øøø POKE 242，ø：CALL 32777，A A
$70101 \varnothing$ FOR I $=\varnothing$ TO 23： $\operatorname{FOR} \mathrm{J}=$ ø TO 2：PRINT E\％（J，I）： NEXT ：NEXT ：CALL 32789 ：RETURN
F9 1ø2ø HOME ：FOR $I=\varnothing$ TO 23： FOR J＝$\varnothing$ TO 2：O＝ $127-$ E\％（J，I）：IF $0<\varnothing$ THEN $0=0+256$
9E $113 \varnothing$ GOSUB 7øø：IF $A<2 \varnothing$ THE N CALL 32783，A
B6 1140 POKE 242，$\varnothing:$ CALL 32777，A ：PRINT A\＄：CALL 32789： FOR $A=A$ TO 2ø：GOSUB 5 øの：NEXT
F6 1150 GOSUB 66ø：RETURN
ED $116 \emptyset$ PRINT＂－REALLY／＂；
AB $117 \varnothing$ C $=\operatorname{PEEK}$（49152）：IF C＜ 128 THEN $117 \varnothing$
IF 1189 POKE 49168，ø：IF C $=266$ THEN PRINT＂NO＂：RETURN
$82119 \varnothing$ IF C $=217$ THEN PRINT＂$Y$ ES＂：RETURN
6C $12 ø \varnothing$ GOTO $117 \varnothing$
$76121 \varnothing$ GOSUB 56ø：GOSUB 7øの：VT AB 19：HTAB 19：PRINT＂D ELETE BOX＂；A；：GOSUB 11 69：IF C $=296$ THEN 124ø
IE 122ø GOSUB 7øø：IF $A<2 \varnothing$ THE N CALL 32786，A
AF $123 \varnothing$ POKE 242， $0:$ CALL 32777， 2 ø：PRINT A\＄：CALL 3278ø： FOR $A=A$ TO 20：GOSUB 5øø：NEXT
EE 124ø GOSUB 66ø：RETURN
$981250 \mathrm{~F} \$=$＂SAVE＂：GOSUB 127ø： IF LEN（N\＄）＜＞$\emptyset$ THEN PRINT ：PRINT D\＄；＂BSAVE ＂；N\＄；＂，A\＄84C4，L\＄5EB＂
F6 $126 \varnothing$ GOTO 59ø
52 127ø HOME ：TEXT ：VTAB 2：PR INT＂ESC TO CANCEL，RETU RN FOR CATALOG＂
A1 $128 \emptyset$ PRINT ：PRINT F\＄；＂FILEN AME：＂； $\mathrm{N} \$=\mathrm{M}$
48 1290 EOSUB 1320：IF C $\$=$ CHR $\$$ （27）THEN $\mathrm{N} \$=" \mathrm{n}:$ RETU RN
CE $13 \varnothing \varnothing$ IF $N \$=" n$ THEN PRINT ： PRINT D\＄；＂CATALOG＂：GOTO $128 \varnothing$

## DB 1310 RETURN

AC $132 \varnothing$ T＝FRE（ø）：GET C $\$:$ IF $\mathrm{C} \$=\mathrm{CHR} \$(13) \mathrm{OR} \mathrm{C} \$=\mathrm{C}$ HR\＄（27）THEN RETURN
BA 1330 IF $\mathrm{C} \$<>$ CHR $\$$（127）AND C $\$$＜＞CHR $\$$（ 8 ）THEN N $\$$ ＝N\＄＋C\＄：PRINT C\＄；：G OTO $132 \varnothing$
CE $134 \varnothing$ IF $N \$=" "$ THEN $132 \varnothing$
291359 HTAB LEN（N $\$$ ）＋14：PRIN T＂＂；：HTAB LEN（N\＄）＋ 14：IF LEN（N\＄）$=1$ THEN $N \$=$＂＂：GOTO $132 \varnothing$
$8 \mathrm{~A} 1360 \mathrm{~N} \$=$ LEFT\＄（N\＄，LEN（N\＄） －1）：GОTO $132 \varnothing$
© 137 © $\$=$＂LOAD＂：GOSUB 1276： IF LEN（N\＄）＜＞$\varnothing$ THEN PRINT ：PRINT D\＄；＂BLOAD ＂；N\＄；＂，A\＄84C4＂
011389 GOTO 59ø
EA 1390 PRINT ：PRINT＂AN ERROR HAS OCCURRED＂
$5 E 14 ø \varnothing$ PRINT＂MAKE SURE THAT YO U HAVE A FORMATTED＂
F9 $141 \varnothing$ PRINT＂DISK IN THE DRIV E＂
$49142 \varnothing$ PRINT ：PRINT＂PRESS ANY

KEY TO CONTINUE＂
C2 143ø GET W\＄：GOSUB 59ø：GOTO 17ø
BE 144の GOSUB 7øの：UTAB 19：HTAB 19：PRINT＂QUIT ANIMATO R＂；：GOSUB 1169：IF C＝ 217 THEN MQ $=1$ ：RETURN
F6 1459 GOSUB 66ø：RETURN
A7 1469 CALL 32736：GOTO 520
BD $147 \varnothing$ GOSUB 7øø：UTAB 19：HTAB 9：PRINT＂CLEAR ALL BOX ES＂；：GOSUB 116ø：IF C＝ 296 THEN $149 \varnothing$
76 148ø GOSUB 7øø：GOSUB 65ø：GO SUB 520
97 1490 GOSUB 66ø：RETURN
$361509 \mathrm{AB}=\mathrm{F}:$ RETURN
9A $1519 \mathrm{AE}=\mathrm{F}:$ RETURN
$45152 \varnothing A=A B: Q F=\varnothing: A R=\varnothing: A X$ $=\varnothing$
BD 1530 CALL 32771, AD，6ø：CALL 3 2768，A，AX， $6 \varnothing$ ：AO＝AX：IF QF $=1$ THEN RETURN
GB 154ø C $=$ PEEK（49152）：IF C＞ 128 THEN POKE 49168，$\varnothing:$ GOSUB $160 \square$
E3 155ø FOR I＝$\emptyset$ TO AP＊5：NEX $T: A R=A R+A S: I F A R>$ 259 THEN AR $=\varnothing$
5C 1560 IF AR $<\varnothing$ THEN AR $=259$
BA $157 \emptyset$ AX $=2$＊INT（AR／2）：I F AE $>A B$ THEN $A=A+1$ ：IF $A>A E$ THEN $A=A B$
3B 158ø IF $A E<A B$ THEN $A=A-$ 1：IF $A<A E$ THEN $A=A B$ 8E 1590 GOTO 1530
61 169ø IF C＜＞ 169 THEN 1630
961610 IF PEEK $(49152)$＜ 128 TH EN 161ø
a3 1620 POKE 49168，$\varnothing$ ：RETURN
361630 IF C $=136$ THEN GOSUB 16 78：GOTO 71ø
88 164ø IF C $=149$ THEN GOSUB 16 60：GOTO 71ø
43 165ø QF $=1$ ：RETURN
IB 1660 AS $=A S+(A S<15):$ RET URN
D2 1670 AS $=A S-(A S>-15): R$ ETURN
$5 A 168 \emptyset A P=A P-(A P>\varnothing): R E T U$ RN
01 169ø $A P=A P+(A P<159): R E$ TURN
BC $17 \varnothing \varnothing$ DATA QUIT，DRAW，MOVE，ERAS E，CLEAR，SAVE，INVERT，UPDA TE，REVERT
$96171 \varnothing$ DATA BLACK1，GREEN，PURPLE ，WHITE1，BLACK2，ORANGE，BL UE，WHITE2
Bf $172 \emptyset$ DATA EDIT FRAME，INSERT F RAME，DELETE FRAME，RANGE BOTTOM，RANGE TOP
E6 $173 \varnothing$ DATA ANIMATE，FASTER SPEE D，SLOWER SPEED，LESS PAUS E
AG $174 \varnothing$ DATA MORE PAUSE，LOAD，SAV E，CLEAR，INVERT，QUIT

## Program 7：TI Animator

Version by Patrick Parrish，
Programming Supervisor
1 © FORE＝2 ：：BACK＝12：：REM REQUIRES EXTENDED BASIC
$2 \varnothing$ CALL CLEAR ：：GOSUB $48 \varnothing$ ：：$F=1:: L=1 \varnothing:=N=1$ ：： $\mathrm{BE}=1$ ：： $\mathrm{E}=2 \varnothing$ ：： $\mathrm{SP}=\varnothing$ ：： $\mathrm{DL}=\varnothing$ ：：FOR $\mathrm{I}=1 \varnothing 4$ TO 14 $3:$ ：CALL CHAR（I，RPT\＄（＂ø ＂，16））：：NEXT I
$3 \varnothing$ CALL MAGNIFY（4）：：DIM B（ 16，16），C\＄（15），E\＄（2g），IFL AG（2ø）：：Q\＄＝＂DEVICE（DSK

1．FILE OR CS1）？＂：：GOSU B 910：：CALL SCREEN（BAC K）：：GOSUB 97ø
4ø CALL $\operatorname{KEY}(\varnothing, K, S):$ ：IF S＝ø THEN $4 \varnothing$
5 （ IF K＞48 AND K＜57 THEN K＝ K－48：：ON K GOTO 179，5 ø，22ø，22の，24の，24の，25の，25 ø
6 I IF $K=66$ THEN GOSUB 268
$7 \varnothing$ IF $K=7 \varnothing$ THEN GOSUB $27 \varnothing$
89 IF $K=73$ THEN GOSUB $28 \varnothing$
$9 \varnothing$ IF K＝69 THEN GOSUB $3 \varnothing \varnothing$
1 1ø IF K＝65 THEN GOSUB 330
110 IF $K=76$ THEN GOSUB 379
120 IF $K=67$ THEN GOSUB $39 \varnothing$
$13 \varrho$ IF $K=81$ THEN END
$14 \emptyset$ IF $K=78$ THEN GOSUB 419
15 （ IF $K=68$ OR $K=83$ THEN $N=$ $\mathrm{N}-((\mathrm{N}<>1)-(\mathrm{N}=1) * 19) *(K=$ $83)+((N<>26)-(N=20)$＊19） ＊$(\mathrm{K}=68):=\mathrm{DISPLAY}$ AT（4， 1）： N ；
$16 \emptyset$ GOTO $4 \varnothing$
$17 \emptyset$ CALL CLEAR ：：GOSUB 48ø ：：FOR I＝5 TO 8 ：：CAL L COLOR（I，FORE，1）：：NEX T I ：：FOR I＝1 TO 2ø ： CALL CHAR（6ロ＋I＊4，E\＄（I） ）：：NEXT I
18ø GOSUB 49ø ：：CALL SPRIT E（\＃1， $6 \emptyset+$ BE＊4，FORE， 1 Фの， 1 øø）：：CALL MOTION（\＃1，, SP＊6）
190 FOR I＝BE TO E ：：CALL $P$ ATTERN（\＃1， 6 Ф＋I＊ 4 ）：：DIS PLAY AT $(1,1): I::$ FOR J ＝1 TO DL ：：NEXT J ：：N EXT I
2øø CALL $\operatorname{KEY}(\varnothing, K, S):$ ：IF $S=$ Ø THEN 19ø ELSE CALL DE LSPRITE（\＃1）：：CALL CHAR SET
210 FORE＝FORE－1 ：：GOSUB 27 Ø ：：FOR $I=5$ TO 8 ：：CA LL COLOR（I，2，1）：：NEXT I ：：LF＝1：：GOSUB 91. ：：GOSUB 97ø ：：GOTO $4 \varnothing$
220 IF $K=3$ THEN BE $=N$ ELSE E ＝N
23ø GOSUB 1ø6ø ：：GOTO 4ø
$240 \mathrm{SP}=\mathrm{SP}-(\mathrm{SP}\langle \rangle-15) *(\mathrm{~K}=5)+($ SP＜＞15）＊（K＝6）：：GOSUB 1 Ø6ø ：：GOTO 4ø
25 D DL＝DL－（DLく＞の）＊（K＝7）＋（DL $=$ の）＊（K＝7）＊ 15 の $+(\mathrm{DL}\langle>15$ ） ＊$(K=8)-(D L=15 D) *(K=8) * 1$ 5ø ：：GOSUB 1ø6ø ：：GOT $04 \varnothing$
$26 \varnothing$ BACK $=$ BACK $+1+($ BACK $=16) * 1$ 4 ：：CALL SCREEN（BACK）： ：RETURN
27 © FORE＝FORE $+1+($ FORE $=16) * 1$ 5 ：：FOR I＝1ø TO 14 ：： CALL COLOR（I，FORE，1）：： NEXT I ：：CALL COLOR（9， FORE，16）：：RETURN
280 GOSUB $320:$ ：IF $A \$=" N "$ THEN RETURN
$29 \varnothing$ FOR $I=2 \varnothing$ TO $N+1$ STEP -1 ：：E\＄（I）＝E\＄（I－1）：：NEX
 4）：：GOSUB 45D ：：GOSUB $44 \varnothing$ ：：RETURN
$3 \varnothing \varnothing$ GOSUB $32 \varnothing$ ：：IF $A \$=" N "$ THEN RETURN
$31 \varnothing$ FOR $I=N$ TO 19 ：：E\＄（I）$=$ E\＄（I＋1）：：NEXT I ：：E\＄（ 2の）＝RPT\＄（＂g＂，64）：：GOSU B 45ø ：：GOSUB $44 \varnothing$ ：：R ETURN
$32 \emptyset$ DISPLAY AT（12，4）：＂ARE Y OU SURE（Y／N）？＂：：ACCE PT AT（12，24）VALIDATE（＂Y

＂TI Animator＂makes extensive use of redefined character graphics．

N＂）：A\＄：：IF A\＄＝＂Y＂THE N RETURN ELSE GOSUB $44 \varnothing$ ：：RETURN
$33 \emptyset$ GOSUB $42 \emptyset:$ ：OPEN \＃1：D\＄ ，INTERNAL，OUTPUT，FIXED 8® ：：PRINT \＃1：FORE ：
PRINT \＃1：BACK ：：FOR I＝ 1 TO $2 \emptyset:$ ：PRINT \＃1：E\＄（ I）
$34 \varnothing$ PRINT \＃1：IFLAG（I）：：NEX T I
$35 \emptyset$ CLOSE 1 ：：FOR $I=1 \varnothing$ TO 14 ：：CALL COLOR（I，FOR E，1）：：NEXT I ：：CALL 5 CREEN（BACK）
36 IF ASC（D\＄）$=67$ THEN GOSU B 97ø ：：RETURN ELSE GO SUB 44ø ：：RETURN
37ø GOSUB 42ø：：OPEN \＃1：D\＄ ，INTERNAL，INPUT，FIXED 8ø ：：INPUT \＃1：FORE ：： INPUT \＃1：BACK ：：FOR I＝ 1 TO 2ø ：：INPUT \＃1：E\＄（ I）
38ø INPUT \＃1：IFLAG（I）：：NEX T I ：：GOSUB 45ø ：：GOT 0 35ø
$39 \varnothing$ GOSUB $32 \varnothing$ ：：IF $A \$=" N "$ THEN RETURN
4のø FOR I＝1 TO 2ø ：：E\＄（I）＝ RPT\＄（＂Ø＂，64）：：NEXT I ： ：GOSUB 45ø ：：GOSUB 44 $\varnothing$ ：：RETURN
$41 \varnothing F=F-(F=1) * 1 \varnothing+(F=11) * 1 \varnothing$ ：：L＝F＋9 ：：GOSUB 45ø ： ：GOSUB 46ø ：：RETURN $42 \emptyset$ DISPLAY AT（12，1）：Q ACCEPT AT $(13,1): D \$:: I$ F D $\$="$＂THEN GOSUB 44ø
430 RETURN
44ø CALL $\operatorname{HCHAR}(12,1,32,64)$ ： ：RETURN
$45 \emptyset \mathrm{~J}=\varnothing$ ：：FOR I＝F TO L ：： CALL CHAR（1ø4＋J＊4，E\＄（I） ）：：J＝J＋1 ：：NEXT I ：： RETURN
$46 \emptyset \operatorname{CALL} \operatorname{HCHAR}(9,2,32,2)::$ $\mathrm{J}=\mathrm{F}+1$ ：： $\mathrm{FOR} \mathrm{I}=2$ TO 26 STEP 3 ：：DISPLAY AT 19 ， I）： $\mathrm{J}:: \mathrm{J}=\mathrm{J}+1$ ：：NEXT I ：：F\＄＝STR\＄（F）：：DISPLA Y $A T(4,1): N$ ；
$47 \emptyset$ FOR $I=1$ TO LEN（F\＄）：：CA LL HCHAR（9， $1+\mathrm{I}$ ，ASC（SEG\＄ （ $\mathrm{F} \$, \mathrm{I}, 1$ ）））：：NEXT I ：： RETURN
48』 DISPLAY AT（1，7）：＂PLEASE WAIT．．．＂：：RETURN
49ø CALL $\operatorname{HCHAR}(1,9,32,14):=$ RETURN
5øø DISPLAY AT（12，1）：＂TYPE 21 TO ABORT，A \＃1－2ø， OR＜ENTER＞FOR CURRENT \＃：＂
$51 \varnothing$ ACCEPT AT $(13,27): A \$:=$ IF $A \$="$＂THEN PN＝N ：：G 78g CALL LOCATE（\＃28，B＊R＋41，

B＊$(+25):$ ： $1 F$ FLAG＝1 THE N 8øø
$79 \varnothing$ DFLAG $=\varnothing$ ：：CALL HCHAR $(6$ $+\mathrm{R}, 4+\mathrm{C}$, KHAR）
日øø CALL SOUND（2ø，2øの，5）：： GOTO 63ø
B1ø GOSUB 48ø ：：FOR R＝1 TO 16：：FOR C＝1 TO 16 ：： CALL GCHAR（ $6+R, 4+C, G C$ ） ：：GC＝GC－1 $\Phi$ D ：：$B(R, C)=$ GC ：：NEXT C ：：NEXT R
$82 \varnothing \mathrm{~F} \$=" \mathrm{n}$ ：：IF IFLAG（PN）$=\varnothing$
 BCDEF＂ELSE HEX $\$=$＂FEDCB A9876543219＂
830 FOR $R=1$ TO 16 ：：$L O W=B($ $R, 5) * 8+B(R, 6) * 4+B(R, 7) *$ $2+B(R, 8)+1$
B4ø $\operatorname{HIGH}=B(R, 1) * B+B(R, 2) * 4+$ $B(R, 3) \& 2+B(R, 4)+1$
B5ø F\＄＝F\＄\＆SEG\＄（HEX\＄，HIGH，1） \＆SEG\＄（HEX\＄，LOW，i）：：NEX T R ：：FOR R＝1 TO 16
$86 \emptyset L O W=B(R, 13) * 8+B(R, 14) * 4$ $+B(R, 15) * 2+B(R, 16)+1$
$87 \emptyset$ HIGH＝B $(R, 9) * 8+B(R, 1 \emptyset) * 4$ $+B(R, 11) * 2+B(R, 12)+1$
 \＆SEG\＄（HEX\＄，LOW，1）：：NEX T R ：：IF $K=54$ THEN DFL $A G=1$
89の IF $K=55$ THEN $E \$(P N)=F \$$ ：：LF＝1 ：：GOSUB $910:$ GOSUB 979 ：：GOTO $4 \varnothing$
$9 \emptyset \varnothing$ CALL MAGNIFY（4）：CALL CHAR（36，F\＄）：：GOSUB 49ø ：：CALL SPRITE（\＃1，36，F ORE，8ヵ，175）：：GOTO 62ø
91ø CALL CHAR（33，RPT\＄（＂81＂， 8），36，RPT\＄（＂g＂，14）\＆＂FF＂ ，37，＂FF＂\＆RPT\＄（＂g＂，14）， 3 8，RPT\＄（＂ø1＂，8），39，RPT\＄（ ＂ 8 （＂， 8 ））：：IF LF＝1 THEN LF＝ø ：：RETURN
$92 \varnothing$ U $=$ RRPT $\$(" F ", 16):$ ：CALL CHAR（19ீ，＂＂， 1 ） 1, U\＄，96，＂ Fø9ø9øF＂\＆RPT\＄（＂פ＂，57））： ：CALL COLOR（9，FORE，16） ：：IF GF＝1 THEN GF＝ø ：： RETURN
 øø1ø1ø11øø1111øøø1øø11ø 1ø1ø1111øø11ø1111ø1111＂ 940 FOR $I=\varnothing$ TO $15: 2 \mathrm{Z}=$ SEG \＄（F\＄，I＊4＋1，4）：：D\＄＝＂＂

95 （ FOR J＝1 TO 4 ：：T＝VAL（S EG\＄（Z\＄，J，1））＋1øD：：$D=$ D\＄\＆CHR\＄（T）：：NEXT J ：： $\mathrm{C} \$(\mathrm{I})=\mathrm{D} \$$ ：：NEXT I
96 FOR $I=1$ TO 2ø：：E\＄（I）$=$ RPT\＄（＂g＂，64）：：NEXT I ： ：RETURN
$97 \emptyset$ CALL CLEAR ：：DISPLAY A T（1， $1 \varnothing$ ）：＂ANIMATOR＂：：C ALL $\operatorname{HCHAR}(4,2,35):=\mathrm{DIS}$ PLAY AT $(4,5): " B=$
\｛4 SPACES\}E=\{4 SPACES\}S $P=\{4$ SPACES $\}="$
$98 \emptyset$ GOSUB 1 ø6ø ：：CALL VCHA $R(6,1,38,2):$ ：CALL VCHA R（6，31，39，2）：：FOR $I=2$ TO 29 STEP 3 ：：CALL HC HAR（5，1，36，2）：：CALL HC $\operatorname{HAR}(8,1,37,2)$
99ø NEXT I ：：FOR I＝4 TO 28 STEP 3 ：：CALL VCHAR16 ， $1,33,2$ ）：：NEXT I ：：GO SUB 46ø ：：GOSUB 450 ：： $J=1 ø 4$
1 øøø FOR I＝2 TO 29 STEP 3 ： ：CALL $\operatorname{HCHAR}(6, I, J)::$ CALL $\operatorname{HCHAR}(6, I+1, J+2)$ ： ：CALL $\operatorname{HCHAR}(7, I, J+1):$ ：CALL HCHAR $(7,1+1, \mathrm{~J}+3$ ）：：J＝J＋4 ：：NEXT I
$1 ø 1 \emptyset \operatorname{CALL} \operatorname{HCHAR}(15,1,49)::$ CALL $\operatorname{HCHAR}(16,1,52):=$ CALL $\operatorname{HCHAR}(17,1,55)$
1 ø2ø DISPLAY AT $(15,1): " A N I M$ ATE 2 EDIT\｛3 SPACES\}3 START PIC＂：：DISPLAY AT（16，1）：＂END PIC 5 － 5 PEED 6 ＋SPEED＂
$1 ø 3 \varnothing$ DISPLAY AT $(17,1): "-S W I$ TCH 8 ＋SWITCH＂
$1 ø 4 \varnothing$ DISPLAY AT $(2 \varnothing, 1): "(I) N$ SERT PIC D（E）LETE PIC ＂：：DISPLAY AT（21，1）： ＂S（A）VE（L）OAD（C）LE AR ALL＂
1 105ø DISPLAY AT $(22,1): "(N) E$ XT GROUP\｛6 SPACES\} ( $Q$ ）U IT＂：：RETURN
1ஏ6』 DISPLAY AT（4， 7 ）：BE；：： DISPLAY AT $(4,13): E ;:$ DISPLAY AT（4，2g）：SP；： DISPLAY AT $(4,26):$ STR $\$$ （DL）\＆SEG\＄（＂\｛3 SPACES\}" ，1，3－LEN（STR\＄（DL）））；： RETURN

## Learn Computer Programming The ICS Way．．．



Train at home in spare time！No previous experi－ ence needed！Now you can learn it all！Computer programming．．．computer applications．．．computer games．．．everything you ever wanted to know about computer operation！Write your own computer pro－ grams or use hundreds of programs already available．．．budgeting，real estate，bookkeeping． expenses，investments，interest，taxes，shopping lists，vacation planning，addresses，phone numbers， routing．．．even foreign languages and graphics．
Youll know what really happens when you have a computer problem with a bank，store，loan company，oil company，util－ ity or anyone else．You＇ll be able to talk their language understand why and how things happen．You＇ll be able to take the offensive when youre the victim of a computer error．Experts explain everything in easy－to－understand lan－ your training．．．plugs into your TV．SEND FOR FREE FACTS

## 臬四 COMPUTER TRAINING，Dept．ozo75

SINCE 1891 Scranton，Pennsylvania 18515
Rush me free facts that tell how I can learn computer appli－ cations，programming and operation at home in spare time． No cost．No obligation．No salesman will visit you！
Name
Age
Address
City／State／Zip
Phone No．（

## We wrote the book on the ATARI－ST

First there was the fabulously successful VIC－20．Then came the record－ breaking Commodore－64．
Now Jack Tramiel has launched his third home computer，the ATARI ST． The ST promises to shatter all exciting price－performance barriers and become a leader in the home－computer market．
This book，PRESENTING THE ATARI ST gives you an in－depth look at this sensational new computer that promises to bring you．．．＂Power without the Price．＂Some of the topics include：• History of Atari • Overview of the ST •Construction，Operating System • Peripherals •Languages －User Programs，and more．
PRICE $\$ 16.95$ to ORder：SEND CHECK，MONEY ORder OR CHARGE NO．TO： Abacus（1）．itititware


# Archive: Two-Drive Backup 

 for Commodore 64Philip I. Nelson, Assistant Editor

Now you can copy entire disks at machine language speed with this convenient backup program for the Commodore 64 with two 1541 disk drives. It also works on the new Commodore 128 in 64 mode.

Sooner or later it's bound to happen. You'll make an unconscious error, or lightning may strike while you're resaving a program, or the family dog will chew a few disks for dinner-and an important disk will be utterly destroyed. If you have a backup copy, of course, such accidents aren't fatal. You take a moment to pat yourself on the back, pull out the archive disk, and go back to work.

If you don't have a backup, it's like watching a gold ring slip off your finger and go clanking down the drain. In the long hours spent reconstructing what you've lost, you have plenty of time to reflect on the wisdom of archiving your work on a regular basis.

Archiving is one of those grim tasks that's easy to postpone. BASIC programs (like COPY/ALL on your 1541 Test/Demo disk) are slow, and may not copy machine language (ML) programs or sequential files. Even good single-drive backup programs keep you tied to the computer, tapping your fingers until it's time for the next disk swap.

## Fast And Convenient

"Archive" offers a better way: It links two drives together to take the
misery out of backing up important disks. To speed things up, it's written entirely in machine language and copies only those disk sectors which actually contain data. But because it loads and runs just like a BASIC program, it's easy for anyone to use, even beginners.

You may find this program valuable even if you don't own two disk drives. Put your drive together with a friend's and swap several disks during one session. Or bring it to a user group meeting to speed up the duplication of public domain library disks. Since 1541 -format disks work with other Commodore computers, Archive running on a Commodore 64 can also copy disks that will be used with the Commodore 128, VIC-20, Plus/4, 16, and 4040 -format PET/CBM. (Of course, a program written for one of these machines may not work on another. Also, Archive cannot copy Commodore $128 \mathrm{CP} / \mathrm{M}$ disks.)

Archive has been tested successfully on the Commodore 128 in 64 mode with two 1541 drives. If the new 1571 drives are truly 1541compatible, Archive will work with them as well, since it uses standard Commodore disk commands. However, the 1571 was not available for testing when this article was written.

Incidentally, Archive cannot duplicate commercially protected software. Protected disks invariably contain deliberate errors (which shut down the program) or data hidden in unused sectors (which Archive does not copy).

## Getting Started

Enter and save Archive using the MLX machine language entry program published elsewhere in this issue. Here's the information you need:

## Starting address: 49152 <br> Ending address: 51185

After you save Archive, activate it like a BASIC program by typing LOAD"ARCHIVE",8 followed by RUN. (For this program, do not use , 8,1 after the LOAD; just use ,8.) If you're already comfortable using two drives, you needn't read any further, since Archive prompts you at each step. Just pop a disk in each drive as instructed, press the $f 7$ special function key, and relax while Archive does its work. (If you've never used two drives before, see "Setting Up Your System" below.)

Archive displays your source disk's Block Availability Map (BAM) graphically on the screen, updating the display as copying proceeds. Thus, you can tell at a glance how much of the disk is used and how much has been copied. The number at the lower right of the screen shows the sector being copied; the graphic display shows which sectors have already been copied.

If you want to abort the copy for any reason, press the f1 special function key to return to BASIC. (When you abort the copy process, the archive disk is incomplete and may be garbled. You can reuse it immediately with Archive, but do not use it for anything else without reformatting it as explained below.)

Once the copy is done, press the f3 function key to copy another disk, or press fl to quit. Whenever you exit Archive, it clears the screen and reports the status of each drive.

## Quick Formatting

Since Archive always makes a complete disk copy, it formats the archive disk with a NEW command. Formatting renames the disk and erases everything it contained

Figure 1 shows how to daisy-chain two drives to your computer. Connect the first drive as usual, then plug the serial cable from the second drive into the extra serial port connector on the first drive.

When more than one disk drive is active, each drive must be given a different device number so the computer can tell them apart. The 1541 is factory-set as device 8, but it can also have device numbers

```
OPEN 15,8,15
PRINT#15,"M-W"CHR$(119)
    CHR$(0)CHR$(2)CHR$(32+9)
    CHR$(64+9)
CLOSE15
```

2. It's a good idea to verify the device number change. Put a disk in the drive, then type LOAD" $\$$ ", 9 and press RETURN to load its directory. After the blinking cursor returns, type LIST and press RETURN. If you see the directory, the

## Daisy-Chaining Two Disk Drives



The second drive is plugged into the first drive's extra serial port connector (rear view).
before. You'll notice that the archive disk is formatted in only a few seconds rather than the usual couple of minutes, and without the usual knocking sound. To save time and minimize wear on the drive, Archive uses a shortened NEW command: the equivalent of OPEN $15,8,15$,"N0:filename" without a disk ID.

The abbreviated NEW command works only on a disk that has been previously formatted. To use a brand new disk, you must prepare it first with a full NEW command: OPEN 15,8,15,"N0:filename,ID". The filename can be up to 16 characters long. The ID can be any two letters or numbers and should be unique for each disk. The 1541 User's Manual contains more information about formatting disks.

## Setting Up Your System

Although the Commodore 64 has only one serial port connector, the 1541 disk drive has two, letting you hook up more than one drive at a time. Since the drives are chained together in a series, this arrangement is often called daisy-chaining.

9-15. Archive uses device numbers 8 and 9 , reading from drive 8 and copying to drive 9. You must always put the source disk (the original) in the drive that's device 8 and the archive disk (the copy) in the drive that's device 9 .

If both of your drives are device 8 , don't despair. You can easily change one of them to device 9 . The change is temporary; the drive reverts to device 8 when you turn off the power. Here's the procedure:

1. Turn on the drive that you want to change to device 9. Make sure the other drive is turned off. Now you can change the device number either by running the DISK ADDR CHANGE utility program on your 1541 Test/Demo disk, or by typing in direct statements.

To use DISK ADDR CHANGE, load the program from the 1541 Test/Demo disk and enter RUN. Follow the program's instructions, then skip to Step 2 below.

You can also change the device number by entering the following statements in direct mode (with no line numbers). Press RETURN after you type each line:
change worked and you may proceed to step 3. If you get an error (probably ?DEVICE NOT PRESENT), turn off the drive and repeat step 1.
3. Turn on the other drive. This drive will remain device 8 (the source drive). Now load and run Archive, inserting the disks as explained in the instructions. The source (original) disk goes in device 8, and the archive (copy) disk goes in device 9. As an additional precaution, you may want to writeprotect the source disk by taping over the notch in the sleeve.

In theory you can daisy-chain several drives to a 64 , but in fact the 1541 doesn't enjoy sharing the serial bus. The drives should always be turned on one at a time, not simultaneously (as would happen with a power strip). Printer interfaces that draw power from the 64's cassette port are notorious for causing disk errors, and other peripherals can affect system voltage levels even if they're not turned on. Depending on your system, you may need to unplug other peripherals before using Archive.

# Trusted Software and LANGUAGE SOFTWARE 

## ADA TRAINING COURSE

Teaches you the language of the future. Comprehensive subset of language. Includes: editor; syntax checker, compiler; assembler; disassembler, handbook.
$\$ 59.95$


ASSEMBLER/MONITOR-64
Macro assembler and extended monitor. Supports all standard functions plus floating point constants Monitor supports bank switching, quick trace, single step, more.
$\$ 39.95$

## BASIC COMPILER 64

Compiles complete BASIC language into either fast 6510 machine language and/or compact speedcode. Supports overlays and many extended BASIC commands.
\$39.95

## C LANGUAGE COMPILER

Full compiler per Kernighan \& Ritchie standard, but without bit fields. Includes powerful editor ( 41 K source file); compiler ( 6510 code), library (supports many functions) and linker.

NEW! \$79.95


## FORTH-64 LANGUAGE

Based on Forth 79 (+ parts of '83). Supports hires graphics and sound synthesizer. Full screen editor, programming tools, assembler, samples, handbook.

NEW! \$39.95

## MASTER-64

Professional development package for serious applications. Indexed file system, full screen \& printer management, programmer's aid, multiprecision math, royalty-free runtime, more.
$\$ 39.95$


## PASCAL-64

Full Pascal supports graphics, sprites, file management, more. Supports pointers, dynamic memory management, machine language. Compiles to fast 6510 machine code.
$\$ 39.95$


## VIDEO BASIC-64

Add $50+$ graphic, sound and utility commands to your programs with this super development package. Free distribution of RUNTIME version - no royalties!
$\$ 59.95$
XREF-64 Basic cross-reference Indispensible tool for BASIC programmer. Cross-references all references to variables, constants and line numbers. Sorts them into alphabetical order for convenient uses.
$\$ 17.95$

## REFERENCE BOOKS



ANATOMY OF C-64 Insider's guide to the ' 64 internals. Graphics, sound, I/O, kernal, memory maps, more. Complete commented ROM listings. 300pp $\$ 19.95$

ANATOMY OF 1541 DRIVE Best handbook on floppy explains all. Many examples and utilities. Fully commented 1541 ROM listings. $\quad 320 \mathrm{pp} \quad \$ 19.95$

MACHINE LANGUAGE C-64 Learn 6510 code write fast programs. Many samples \& listings for complete assembler, monitor, simulator. 200pp $\$ 14.95$

GRAPHICS BOOK C-64 - best reference covers basic and advanced graphics. Sprites, animation, Hires, Multicolor, lightpen, 3D-graphics, IRQ, CAD, projections, curves,more. $\quad 350 \mathrm{pp} \quad \$ 19.95$

TRICKS \& TIPS FOR C-64 Colection of easy-to-use techniques: advanced graphics, improved data input, enhanced BASIC, CP/M, more. 275pp $\$ 19.95$

1541 REPAIR \& MAINTENANCE Handbook describes the disk drive hardware. Includes schematics and techniques to keep 1541 running. 200pp $\$ 19.95$
ADVANCED MACHINE LANGUAGE Not covered elsewhere: - video controller, interrupts, timers, clocks, I/O, real time, extended BASIC, more. 210pp \$14.95

PRINTER BOOK C-64/VIC-20 Understand Commodore; Epson-compatible printers; 1520 plotter. Packed: utilities; graphics dump; 3D-plott; commented MPS801 ROM listings, more. $\quad 330 \mathrm{pp} \quad \$ 19.95$

## PRODUCTIVITY TOOLS

## CHARTPAK-64

MAKE YOUR OWN Charts... Professional quality charts and graphs instantly. Easy-to-use menus. 8 chart formats. Two size hardcopy. Accepts data from Multiplan, CalcResult. Supports statistical functions. $\$ 39.95$ Also available:
CHARTPLOT- 1520 fine output to inexpensive 1520 plotter.
$\$ 39.95$ CHARTPLOT-64 unsurpassed quality charts on most XY-plotters.
$\$ 84.95$


## POWER PLAN-64

POWER PLAN is our top-rated, full-featured spreadsheet for both your business and personal needs. All menu selections are clearly displayed on screen. Builtin HELP screens guide you through this powerful package. Immediately make 2 D or 3D pic, bar, line and point to point graphs from your spreadsheet using up to 8 windows. Features cell protection and formatting, split screen, all major math functions, 25 K worksheet space, 255 rows X 63 columns. 200 page handbook. $\$ 49.95$

Super Spreadsheet with Graph


## CADPAK-64

DETAIL YOUR DESIGNS.... Superb lightpen design tool. Exact placement using Accu-Point positioning; 2 complete screens; draw LINEs, BOXes, CIRCLEs, ELLIPSEs; pattern FILLing; freehand DRAW; screen COPY; ZOOM for detail. Two size hard-copy. Requires good quality lightpen.
$\$ 49.95$


# AUinorititue oocize 

 FROM ABACUS SOFTWARE ... A NAME YOU CAN COUNT ON

SCIENCE/ENGINEERING ON C-64 In depth intro to computers in science. Topics: chemistry, physics, biology, astronomy, electronics, others. 350 pp $\$ 19.95$

CASSETTE BOOK C-64/VIC-20 Comprehensive guide; many sample programs. High speed operating system-fast file loading and saving. 225pp $\$ 14.95$

IDEAS FOR USE ON C-64 Themes: auto expenses, calculator, recipe file, stock lists, diet planner, window advertising, others. Includes listings. 200pp $\$ 12.95$

COMPILER BOOK C-64/C-128 All you need to know about compilers: how they work; designing and writing your own; generating machine code. With working example compiler.

## Optional Diskettes for books

For your convenience, the programs contained in each of our books are available on diskette to save you time entering them from your keyboard. Specify name of book when ordering
$\$ 14.95$ each

PEEKS \& POKES - Programming quickies that will amaze you. Includes indepth explanations of PEEK, POKE, USR and other commands. 200pp $\$ 14.95$

ADVENTURE GAMEWRITER's Handbook Step-by-step guide to designing and writing your own adventure games. With automated adventure game generator. 200pp $\$ 14.95$

CAD BOOK for C-64/C-128 Introduction to computer aided design. 2D and 3D, reflection, zooming, macros. Samples use-SIMON's Basic. 250pp $\$ 19.95$

MORE TRICKS \& TIPS Dozens of more helpful programming techniques: software protection; new BASIC commands; interrupts; ROM routines; the KERNAL, hardware tids. etc. $\quad 250 \mathrm{pp} \quad \$ 19.95$

## SPECIAL FEATURE

## XPER - Software that Learns


on what kind of cer to buy
XPER is the first expert system for the C-64 and C-128. Ordinary data bases are good for reproducing facts, but XPER lets you derive knowledge from a mountain of facts and helps you make expert decisions. Scientists, doctors and professionals are currently using XPER in their research projects.

The XPER system puts your information into a knowledge base. A knowledge base cconsists of a variable number of objects - such as trees; features - such as "what kind of leaf does it have?"; and attributes - such as 6 inch needles. After describing your knowledge base, you can casily enter your information using XPER's complete entry/maintenance facilities.

Then, XPER's very efficient searching techniques will guide you through the most complex decision making criteria. You'll also benefit from XPER's full reporting capabilitics and case of use.
$\$ 59.95$

Other Books Coming Soon!!

## ORDERING INFORMATION

Call now for the name of your nearest dealer Abacus
P.O. Box 7211 Grand Rapids, Michigan 49510


For postage and handling include $\$ 4.00$ per order. Foreign orders include $\$ 8.00$ per item. Money order and checks in U.S. Dollars only. Mastercard, VISA and American Express accepted. Michigan residents please include $4 \%$ sales tax.
For fast service call (616) 241-5510
Telex 709-101
For free catalog, please return this coupon to Abacus Software, P.O. Box 7211, Grand Rapids, MI 49510

PHONE: (616) 241-5510
Name
Address
Clity
State

## Initialization

Before it starts copying, Archive initializes each disk to test whether devices 8 and 9 are active and if each contains a formatted disk. The initialization command transfers information (disk name, ID, etc.) from the disk into the drive's memory to prepare it for handling the disk.

If this step fails, it means one of the drives is not ready to go. Archive displays the status of both drives and returns you to BASIC. (If you forget to change one of the drives to device 9, Archive can't read its status; press RUN/STOP -RESTORE and proceed as explained below). Enter these lines in direct mode (without a line number) to retry the initialization:

## OPEN 15,8,15," 10 ": CLOSE 15 OPEN 15,9,15," 10 ":CLOSE 15

When you enter each line, the drive motor should run and its red light should glow. After one or two seconds the red light should go off and stay off, and you should be able to run Archive. If one or both of the red lights blink continuously, turn off both drives and repeat the setup process. The drive makes a knocking sound if you forget to insert a disk or try to use an unformatted disk for the archive.

## Is Your Drive Healthy?

In ordinary use your drive works intermittently. It may spend $30 \mathrm{sec}-$ onds loading a game for you, then sit idle for 30 minutes while you play. Copying a full disk with Archive is far more demanding work, requiring several minutes of continuous running. If one of your drives is misaligned, tends to overheat, or has other mechanical problems, don't be surprised if you experience occasional errors. When an error occurs during the copy process, Archive stops copying, reports the status of both drives, and returns to BASIC.

Such errors are especially likely to crop up when the source disk is nearly full. For mechanical reasons it's harder for the drive to access the disk's outer area than the area near the middle. To make things easy on itself, the drive always starts storing programs in the middle of the disk, leaving the outer tracks empty until there's no
room left elsewhere.
Archive's BAM display lets you observe this storage scheme. When the source disk contains only a few programs, they'll all be stored in middle tracks (near track 18). The outermost tracks (1 and 35) are usually the last to be used. If your drive consistently has trouble accessing outer tracks, it's probably misaligned. The same problem can result if the disk was formatted on a badly misaligned drive.

## 1541 ML Programming

To shorten and speed up the program, all of Archive's 21 variables and pointers are located in the zero page (lowest 256 bytes) of memory. Zero page machine language instructions run faster and use less memory than instructions that reference higher memory addresses. The computer can find what it needs by checking only one byte, rather than wading through a twobyte address in search of the same information. In time-critical programs like Archive, which execute certain routines many thousands of times a minute, the microseconds you save can add up to a significant difference in running time.

Many programmers have trouble learning to handle disk files in machine language. For those who are interested, here's an outline of Archive's main routines.

| \$0852-0863 | Initialize device 8 |
| :--- | :--- |
| \$0864-0878 | Initialize device 9 |
| \$0879-0918 | Error-report status |
| \$0919-0981 | Read BAM from source disk |
| \$0982-0A32 | Display BAM and disk name |
| \$0A33-0A7E | Short NEW destination disk |
| \$0A7F-0A8F | OPEN 3,8,15 command channel |
| \$0A90-0AA0 | OPEN 5,9,15 command channel |
| \$0AA1-0AB4 | OPEN 4,8,4,"\#" buffer channel |
| \$0AB5-0AC8 | OPEN 6,9,6,"\#" buffer channel |
| \$0B94-0C42 | Subroutine-copy a block |
| \$0BCE-0C04 | Read block from source disk |
| \$0C05-0C42 | Write block to archive disk |
| \$0C43-0C5C | Subroutine-initialize disk |
| \$0C94-0CA4 | Subroutine-check error channel |
| \$0CC0-0CCB | String-BAM Block Read (U1) |
| \$0CCC-0CDF | String buffer-short NEW |
| \$0CE0 | String-"\#" for buffer channel |
| \$0CE1-0CE2 | String-"I0" to initialize |
| \$0F04-0F0F | String buffer-Block Read (U1) |
| \$0F10-0F1B | String-Block Write (U2) |
| \$0FF3 | 256-byte data buffer starts here |

First the program maps the source disk's BAM on the screen to record which sectors contain data. Then it copies each used sector in turn, reading it from the source disk and writing it to the archive disk. Note that to read a disk sector, you
should always use the U1 direct access command rather than B-R (Block Read). Likewise, the U2 command must be used in place of B-W (Block Write). Despite what your user's guide says, the B-R and B-W commands are defective and should never be used.

## Archive: Two-Drive Backup

Please refer to the "MLX" article in this issue before entering the following listing.
49152 : ø27, øø8, øøø, øøø,158, ø50,243 49158 : $048,055,055,058,143,034,143$ 49164 : $\varnothing 2 \varnothing, \varnothing 32,144$ 49170 : $065, \varnothing 82,067,672, \boxed{6} 3,086,2 \boxed{ }$
 49182 : 142, ø33,268,142, $632,208,027$ 49188 : 232,142,134, øб2,169,028,231 49194 : $160,015,032,030,171,169$,107 49200 : 124,133,176,133,178,169,193 49206 : $064,133,177,169,216,133,118$ 49212 : $179,165,197,2 \varnothing 1, \varnothing \varnothing 4,24 \varnothing, 022$ 49218 : $\varnothing \emptyset 6,2 \emptyset 1, \varnothing \varnothing 3,2 \varnothing 8,246,24 \varnothing, 2 \varnothing 2$ 49224 : $008,169, \varnothing \emptyset 9,032,210,255,243$ 49230 : $076,121,068,169,227,160,071$ 49236 : $\varnothing 12, \varnothing 32, ø 30,171,169, \varnothing 08,250$ 49242 : $133,062,032,067,012,165,245$ 49248 : $144, \varnothing 48, \varnothing 21,169, \varnothing \varnothing 8,16 \emptyset, 134$ 49254 : $013,032,030,171,169,009,014$ 49260 : $133, \varnothing 02, \varnothing 32, \varnothing 67, \varnothing 12,165, \varnothing 07$ 49266 : $144,648,003,076,025,069,163$ 49272 : 169, øб3, ø32,195,255,169,175 49278 : $064, \boxed{62}, 195,255,169,065,018$ 49284 : ø32,195,255,169, ø66, 032, 053 4929 : $195,255,169,013, \varnothing 32,195,229$ 49296 : 255,169, ø15, ø32,195,255, ø41 $493 \varnothing 2$ : $\varnothing 32,204,255,169,2 ø 6,16 \varnothing, 152$ 49308 : $015, \boxed{62,03 \emptyset, 171,169,015,076}$ 49314 : 168, 162, øø8, $032,186,255,205$ 4932ø:169, ø0ø, ø32,189,255, ø32, 077 49326 : 192,255,162,015, ø32,198, ø04 49332 : 255, 032,207,255,201,013,119 $49338: 240,014,201,032,240,064,149$ 49344 : 2ø1, ø65,144,241,ø32,210,061 49350 : 255, 076,182,008,169,015,135 49356 : $632,195,255,632,204,255,153$ 49362 : ø32,231,255,169,224,16ø, øø1 49368 : $015,032, \varnothing 3 \varnothing, 171,169,015,136$ 49374 : 168, 162, $069,032,186,255,01 \varnothing$ 49380 : 169 , øøø, ø $32,189,255, \varnothing 32,137$ $49386: 192,255,162,015,032,198,064$ 49392 : 255, Ø32,207,255,201,013,179 49398 : 24б, 014,201, 032,240,064,209 49404 : 201, 065,144,241, 032,210,121 49410 : 255, $076,242,068,169,015,255$ 49416 : $632,195,255, \varnothing 32,204,255,213$ 49422 : 169, 013, ø32,210,255,162, 087 49428 : 128,1ø8, øøø, øø3,169,ø87, øø3 49434 : 160, 013,032, 030,171,169,089 $4944 \varnothing$ : $\varnothing 15,168,162, \varnothing \varnothing 8, \emptyset 32,186, \varnothing 91$ 49446 : 255,169, $6 \varnothing$, $632,189,255,17 \varnothing$ 49452 : $032,192,255,169,013,168,165$ 49458 : 162, øø8,032,186,255,169,094 49464 : $\varnothing ø 1,162,224,160, \varnothing 12, \varnothing 32,135$ 49470 : $189,255,632,192,255,162,123$ 49476 : $615, ø 32,2 ø 1,255,162$, øøø, 221 49482 : 189,192,012, $032,210,255,196$ 49488 : $232,224,013,208,245,632, \varnothing 10$ 49494 : 264,255,162, $613, \varnothing 32,198,182$ 49506 : 255,162, øøб, ø32,2ø7,255,235 49506 : 157,243, 015,232,268,247,176 49512 : ø $32,2 ø 4,255,162, \varnothing 15, \varnothing 32, \varnothing 36$ $49518: 148,012,165,167,240,063,077$ 49524 : $076,121,008,169,013,032,023$ 49530 : 195,255,169,015,032,195,215 49536 : $255,169,123,160,013,032,112$ 49542 : $030,171,169,018,032,210,252$ 49548 : 255,162,144,189,243, 615,124 49554 : $632,216,255,232,224,164,239$ 49560 : 208,245,169, ø13, ø32,210, ø05 $49566: 255,169,146,160,013, \varnothing 32,165$ 49572 : $036,171,160,000,132,066,151$ 49578 : 169 , øø4,133,165,165,176,214 49584 : $133,251,165,177,133,252,067$

|  |  | 50 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 49 | :133,004,832,165,012,162,184 |  |  |  |  |
| 49662 | : 088,169,001 |  |  |  |  |
| 49688 | :166,037,805,246 |  | : 224,012,268,245, $632,254,173$ |  |  |
| 49614 |  |  | :237,162,664, $332,198,255,692$ |  |  |
| 28 | : 88 | 50154 | :162,069,032,173,241,157,231 | 50688 | :ø32 |
| 49626 | :202 |  | : $243,815,232,288,247,832,193$ |  | - |
| 9632 | :16 |  |  |  |  |
| 49638 | :165,166, 037, $05,240,006,081$ |  | :012,165,167,240, $063,076,147$ | 50766 | : |
|  |  |  |  | 5 | :221, ${ }^{\text {d }}$ |
| 49650 | :169 | 50 | : $066, \boxed{32,261,255,162, \boxed{1,153}}$ |  |  |
| 49656 | : $012,202,208,234,032$ | 50190 | :189,243, $015,632,221,237,183$ | 50724 | : $049,851,013,221,032,049,195$ |
| 49662 | : 012 |  |  | $5673 \varnothing$ |  |
| 49668 | :ø05 | 5 | : 632,221 |  |  |
| 74 | : 066,169 | 56208 | :162, $605,832,261,255,162, ø 81$ | 56742 | :øøø,221, 03 |
| 49680 | : |  |  | 58748 |  |
| 49686 | : 693, 012,28 | 5022. | :255,232,224, $012,288,245,19$ | 5875 | : 02 |
|  | :165,236,176,230,178,230,213 | 58226 | : 632,204,255,162,065 | 58 | : 629.82 |
| 49698 | : 006,165,006,201,035,176,111 |  |  |  |  |
| ¢ 4 | :ø02,144,131,169,056,160,199 | 5 | :170,104,16 | 50 | : 029,82 |
|  | : $614,632,636,171,168$ |  | :168,166, $682,032,186,255,169$ |  | 195,195,195,195,01 |
| 16 | :162, øбø,18 | 5825 | :169, $662,162,225,160,012,03$ |  | : 63 |
| 22 | : 207,012,232,200, 224,016,181 |  | : 032,189,255, $632,192,255,011$ | 58799 | : 6 |
|  | : 2ø8,244, $632,284,255,169,152$ |  | :169,015, $632,195,25$ |  | :629,829,829 |
|  | : 015 |  | 169 |  | : 62 |
|  | : 25 | 5827 | :251 | 50868 | : 629 , 629 |
|  | : $632,192,255$ |  |  |  |  |
| 49752 | : 201,255,162 |  |  |  | : 0 |
| 49758 | : 012,032,210,255 |  |  | 56826 | : 6 |
|  | : $019,208,245$ | 5 | : 066,065 | 2 | : 6 |
| 49776 | : 162, ø15, 日32,148, $12,165,128$ | 50364 |  |  |  |
|  | :167,240,003,076,121,008,215 |  |  | 50844 | :21 |
|  | : 169, $015,832,195,255,032$ |  | :165,252,105,000,133,252,023 | 50850 | :191 |
|  | 3,162,068,15 | 50322 | : 966,169, ø60,133,167, 132,231 |  | - |
| 49794 | :160,015,032,186,255,169,17 |  |  | 50862 | : 61 |
|  | : $006,032,189,255,032,192, \boxed{68}$ | 5 | : 656,144, , 62,23 |  | : 0 |
|  | : 255,169,005,162,069,160,134 | 50346 | -23 |  |  |
| 49812 | :015,032,186,255,169,000,037 |  | : $15,133,166,096,162, \varnothing 48, \varnothing 22$ |  | : 6 |
|  | : Ø32,189,255, Ø32,192,255, 085 |  | :056,233,010,144,ø63 |  | :66 |
|  | :169,084,168,162,008, 132,191 | 50358 | :176,249,165 |  |  |
|  | :186,255,169,001,162,224,139 |  |  |  |  |
|  | :160,012,032,189,255,032,084 | 5 | :849,851,832,848,832,849,199 |  |  |
|  |  |  | : 856, $032,848,878,848,858,068$ |  | :195,195,195,195,195,195,112 |
| 49848 | :ø09,032,186,255,169,001 | 5 | : 63 |  | :195,195,195,195,195,195,118 |
|  | : 162,224,160, $012,032,189$ | 5 | : $032, \boxed{22,832, \boxed{32,03}}$ |  |  |
|  | :255, 032,192 |  | : 632, $032,632,832,632,835,157$ |  |  |
|  | :132 |  | : 07 |  | : $669,676,883,679,678,632,151$ |
|  | :169 |  | :201,678, 073,88 |  |  |
|  | :1 |  |  |  |  |
| 49884 | :169,000,133 |  |  | $\begin{aligned} & 50952 \\ & 5 ø 958 \end{aligned}$ |  |
|  | :133,251,165,177,133 |  |  |  |  |
|  |  |  |  |  |  |
|  |  | 5 |  |  |  |
|  | $: 011$ |  | : $676,873,890,873,878,871,221$ |  | :2ø0,201,214,197, $032,042,156$ |
| 49920 | : 082 |  | 6 |  |  |
| 49 | :227,165,249,201, $018,144,242$ |  | : $078,065,08$ |  |  |
|  | : $014,201,025,144,614,201,099$ |  | : $032, \boxed{68,882,073, ~} 086,069,188$ |  |  |
|  | - |  | 882,152 |  | : 208 , $085,0134,032,632,032,226$ |
| 49 | : $014,246,056,162,965,2 ø 8,197$ |  |  |  |  |
|  |  |  |  | 51624 | : $073, \varnothing 83, \varnothing 75,632,673, \boxed{8} 8,238$ |
|  | : 251,201 | 50496 | : $884,872, \boxed{69,082,844, \boxed{22,191}}$ |  |  |
|  | :197,2ø1, $064,2 ø 8, \varnothing \varnothing 2,24 \varnothing, 132$ |  | : $078,849,832,884,879,832,160$ | 51836 | : $032,069,073,071,072,084,237$ |
| 49974 | : 828,832,148,011,165,167,693 |  | : $081,085,673,084,046,846,235$ |  |  |
|  | : 240, $082,208,819,832$ |  | 846,809 |  |  |
|  | : ø12,2ø2,2ø8,227,23 |  | :032,210,0 |  |  |
| 49992 | : 231, 249,165,249,201, 036,178 |  |  |  |  |
|  |  |  | ,644,832,87, ${ }^{\text {, }}$ | 51872 | : $078,669,646,613,013,632,123$ |
| $5 ø \varnothing 1 \varnothing$ | $: \boxed{0} 2$ | 538 | : $665,084, \boxed{4} 4,073,678,671, \boxed{49}$ |  |  |
|  | :195 |  |  | 51084 |  |
| 59622 | : $255,632,264,255,165,167,156$ |  |  |  |  |
| 50928 | :2ø8, $031,169, \boxed{68,133,6 \varnothing 2,147}$ |  | 213,204 |  |  |
| 50 | : 632,067, $012,169,869,133,824$ |  | 195,195,195,195,195,026 |  |  |
| 50640 | :062,632,867, $012,169,644,190$ | 58574 |  |  | : $032, \varnothing 18,67 \varnothing, \boxed{49,146, \varnothing 32, \varnothing \varnothing 5}$ |
| 5 | :160, $1913,832,03 \varnothing 1,171,165,185$ |  | : $032,832,632, \boxed{22,632,632, \boxed{4}}$ |  |  |
|  | : $\varnothing 64,2 ø 8,246, ø 76,121$, øø8, ø33 |  |  | 51126 | : $032,665, \boxed{66, ~} 779,682,084,078$ |
| 56664 | : $076, \boxed{29,6 \varnothing 8,152,872,138,107}$ |  | : Ø32, $332,050, \boxed{22,032,032,120 ~}$ |  | :ø32,878, $79, \boxed{77,832, \boxed{9, ~} 063}$ |
| 56878 58876 | : $672,165,249,632,175,612,687$ | 58684 |  |  | :ø82, $046,646,846,080,147,055$ |
| $\begin{aligned} & 50676 \\ & 5 ø ø 82 \end{aligned}$ |  |  | : $651,632,632,632,632,632,133$ | 51150 | :ø18, $683,679, \varnothing 85, \boxed{22, ø 67,1 ø 8}$ |
| $56 \varnothing 88$ | : $176,141, \boxed{12,} 151,141, \varnothing 24,159$ |  |  |  | : 669, $032,868, \boxed{22,873, \boxed{66,118}}$ |
| 50694 | : $015,141,156$, ø67,165,25ø,134 |  |  |  | ø2 |
| 56100 | : 632,175,012,165,169,141,106 |  |  |  |  |
|  |  | 59640 | 649,65ø, $051,652,853,255$ |  |  |
| 12 | 89, $067,165,176,141,615,111$ |  | 4,655,656,857,848,649,621 |  |  |
|  | 215 |  |  |  |  |

# Atari Color Mixing 

Karl E. Wiegers

This informative tutorial demonstrates the principles of color mixing on Atari 400/800, XL, and XE computers.

Advertisements for home computers often tout the number of different colors that a particular machine can produce. But little is said about how these colors are generated on your TV or monitor screen. Knowing some theory behind these techniques can help you produce more colorful graphics displays.

Atari computers manufactured after early 1982 can generate 256 color variations, based on 16 different hues which each can have 16 luminances (brightnesses). Ataris made before early 1982 can display only 8 luminances per hue for a total of 128 colors, but can be upgraded by replacing the CTIA chip with a GTIA chip. Atari colors are represented by a number from 0-255 using this formula: color number $=$ hue number * $16+$ luminance number.

The "Atari Color Mixing" program listed below demonstrates additive color mixing and lets you try your hand at subtractive color mixing as well. We'll explain these terms in detail in a moment. For now, enter and save Color Mixing, then run. it. The program is quite simple and contains all the instructions you need. Just follow the prompts and refer to the rest of this article for additional information.

The colors may look better if you adjust your TV's brightness control somewhat higher than usual. The exact hues may also vary depending on the tint setting. Adjust the tint for good green and red,
and the other colors should be pretty close.

## Additive Color Mixing

As every child discovers when painting with watercolors, the three primary colors-red, green, and blue-can be added together in various combinations to make many different colors. Thus, red, green, and blue are known as the additive primary colors.

When primary colors are combined, new colors appear. White light is a balanced combination of red, green, and blue light. Equal intensities of blue and green light produce a greenish-blue color called cyan. Red and blue light mix to create magenta, a reddish-purple. And, believe it or not, mixing red and green light together produces yellow. Many more colors can be produced if the primaries are of different intensities. For instance, combining a given intensity of green with twice that intensity of red is equivalent to yellow plus red, or orange.

Additive color mixing works with pigments as well as lights. However, pigment mixing often results in different colors than those described above. For example, mixing red and green paints usually produces brown, not yellow.

In fact, the brown color really is a yellow. But red and green pigments usually have far less intensity than red and green lights. Besides having a particular hue (light frequency), a color can have different levels of luminance (intensity). The effect we usually call color is actually the combined effects of hue and luminance. Because red and green pigments are quite dark
(have little luminance), mixing them together produces the dark yellow we commonly call brown.

A color TV or monitor creates different colors by the additive process using colored light sources. The screens of color TV tubes contain thousands of tiny red, green, and blue dots (phosphors) which glow when struck by electrons from a gun at the back of the tube. If you examine a color screen with a magnifying glass, you'll see individual red, green, and blue phosphors. At normal viewing distances the colored dots merge together and create additive colors. For instance, adjacent red and blue dots look like magenta. When no phosphors are lit, the result is black.

## Subtractive Color Mixing

Recall that if red and blue lights are combined, the resulting color is magenta. There's also another way to produce magenta-you can shine white light through a magentacolored filter. White light contains all the primary colors, but the filter absorbs the green light, allowing only the red and blue light to pass. In other words, a magenta filter subtracts or blocks out green light. If you place a green filter and a magenta filter in front of a white light source, all light should be blocked out: The green filter blocks red and blue, and the magenta filter blocks green. The final result is black. For this reason, green and magenta are termed complementary colors (magenta is also sometimes called minus green).

Similar logic applies to the other primary colors: A cyan (blue + green) filter subtracts red light, and a yellow (red + green) filter sub-
tracts blue light．Red and cyan（mi－ nus red）are complementary，as are blue and yellow（minus blue）．

Cyan，magenta，and yellow are called subtractive primary colors． Just like the additive primaries（red， green，blue），the subtractive prima－ ries can be mixed into virtually any combination of hue and luminance． But the process is reversed．Addi－ tive color mixing works by sending specific colors to your eye，while the subtractive process removes spe－ cific colors from a color－rich light source，leaving only complemen－ tary colors．Most color photograph－ ic systems are subtractive，using cyan，magenta，and yellow film dyes．

Color Mixing uses color num－ bers which－on my system－come closest to producing the six additive and subtractive primary colors（see lines 270－280）．Of course，colors can vary greatly from one TV or monitor to the next．Cyan is a little difficult to display；my choice for cyan would look a bit greener，but my computer won＇t cooperate．The blue is also darker than you might expect，but blue in a color mixing sense is actually quite dark．

## Additional Techniques

Note that each display screen in Color Mixing uses several different Atari graphics modes．The heading is displayed in graphics mode 1， other text is in mode 0 ，and the color squares are drawn in mode 3 ． Mixed－mode screens like this are created by modifying the comput－ er＇s display list，a set of instructions which tells the computer how to put data on the screen．The Color Mixing program modifies display lists in lines 210，1010－1020， $1210-1240$ ，and 4010－4020．（You can read more about modifying dis－ play lists in COMPUTE！＇s First Book of Atari and COMPUTE！＇s First Book of Atari Graphics．）

Atari computers can ordinarily display up to five çolors at a time． But some of the screens in Color Mixing show nine colors．This is accomplished with a display list in－ terrupt（DLI）．A DLI is a short ma－ chine language routine that，among other things，can change the con－ tents of color registers while the computer is displaying each video frame．This technique lets you cre－
ate graphics with extra colors on various parts of the screen．（For more information，consult De Re Atari，published by Atari，Inc．）

The program＇s colored boxes are drawn in graphics mode 3 using character strings for graphics stor－ age（lines $310-320$ ）．Here is the text equivalent of this display：

| AAAAA | CCCCC | BBBBB |
| :--- | :--- | :--- |
| AAAAA | CCCCC | BBBBB |
| AAAAA | CCCCC | BBBBB |
| AAAAA | CCCCC | BBBBB |

When the computer displays a string in a nontext graphics mode with the PRINT\＃6 statement，the letters A，B，and C show up as different－colored pixels．The letter A appears as a pixel with the color taken from color register 0 ；the let－ ter B uses color register 1 ；and the letter C uses register 2．A SET－ COLOR or POKE statement which changes the value in color register 0 ，for example，would change the color of the A box．This technique is used in lines 4170 and 4210－4220． Line 4270 erases the boxes by set－ ting all their colors to black．As Color Mixing demonstrates，it＇s far more convenient to store these graphics in strings than to use PLOT，DRAWTO，or XIO fill statements．

## Atari Color Mixing

Please refer to＂COMPUTEI＇s Guide to Typing In Programs＂before entering this listing．
AJ $1 \emptyset \mathrm{DIM} A \$(5), B \$(5), C \$(5)$ ，
 $S(6,6), B L(35)$
KH 15 DIM RED（1），GREEN\＄（1）， BLUE（1），CYAN\＄（1），MAGE NTA\＄（1），YELLOW\＄（1），BLA CK\＄（1）
6J $2 \varnothing$ A $=$＝＂AAAAA＂：B $\ddagger=$＂BBBBB＂： C $==$＂CCCCC＂
IB 25 BL $\$(1)=$ CHR $\$(32): B L \$(35$ ）＝BL $\$: B L \$(2)=B L \$$
F6 3 G GRAPHICS $\emptyset: ?: ?$＂ONE M OMENT．．．．＂
HB 4 F FOR $I=1$ TO $3 \varnothing$ ：READ A：D 1 （ $(I, I)=\operatorname{CHR} \$(A): \operatorname{NEXT} I$ ：D1事（31）＝D1＊
FH 50 DATA $72,138,72,169,66$ ， $162,189,141,16,212,141$ ，23，298
L $6 \emptyset$ DATA $142,24,268,169,0$ ， $141, \emptyset, 2,169, \emptyset, 141,1,2$
$D B 7 \emptyset$ DATA $1 \emptyset 4,17 \emptyset, 1 \emptyset 4,64$
CB Bø D1 $\$(35,35)=\operatorname{CHR} \$(1 \varnothing): D 1$身 $(37,37)=$ CHR $\$(\emptyset)$
 \＄（121）$=\mathrm{D} 1$ \＄
IE 1 Фந $S T=A D R(D 1 \$)$ ：GOSUB $4 \varnothing \varnothing$
OK 11 D D $1 \$(48,48)=\mathrm{CHR} \$(L \mathrm{~L}): \mathrm{D}$ 1 \＄$(53,53)=$ CHR $\$(\mathrm{HI})$
PK $12 \boldsymbol{5}$ ST＝ST＋3ø：GOSUB $4 \emptyset \emptyset$
OA $13 \varnothing \mathrm{D} 1 \$(18,18)=\mathrm{CHR} \$(L O): D$ $1 \$(23,23)=\operatorname{CHR} \$(\mathrm{HI})$
IJ $14 \varnothing 5 T=A D R(D 2 \$): G O S U B \quad 4 \emptyset \emptyset$

LH 15 D 2 （ $16 \mathrm{~B}, 168$ ）$=$ CHR （LO） ：D2 $\$(173,173)=$ CHR $\$(\mathrm{HI}$ ）
EL 169 FOR $I=18$ TO 138 STEP $3 \equiv$
PP $17 \boldsymbol{1 7} \quad \mathrm{ST}=\mathrm{ST}+3 \varnothing:$ GOSUB $4 \emptyset \varnothing$
 $(I+5, I+5)=$ CHR $(\mathrm{HI})$
CC 19 D NEXT I
HI 2 D 2 （ $(132,132)=$ CHR $\$(22)$
HF 21 g DL＝PEEK $(56$ ）$)+256$ \＆PEEK （561）
LB 22．RESTORE 24月：FOR I＝1 T 0 6：FOR $J=1$ TO 6
BJ 23 READ $A: \operatorname{KOLORS}(I, J)=A$ ： NEXT J：NEXT I
NC 246 DATA $66,26,86,4,82,4 \emptyset$ ，26，186，116，164，4，2øø
HE 256 DATA 86， $116,146,156,1$ 62，4，4，164，156，116， 14 6，189
ND $26 \emptyset$ DATA $82,4,1 \emptyset 2,146,86$ ， 66，4ø，2øø，4，18ø，66， 26
DK $27 \emptyset$ RED $\$=$ CHR $\$(66)$ ：GREEN $\$=$ CHR $\$(18 \emptyset): B L U E \$=C H R \$($ 146）
BD 289 CYAN\＄＝CHR\＄（116）：MAGEN TA\＄$=$ CHR $\$(86)$ ：YELLOW\＄$=$ CHR $\$(26)$ ：BLACK $\$=$ CHR $\$$（ ■）
J6 29 G GOTO 2øøø
NP 3øø POKE 87，3：GOSUB 5øø
NB 31 FOR I＝ø TO 3：POSITION 5，I：？\＃6；A\＄：POSITION 16，I：？\＃ 6 C $\mathbf{C}$
DC 320 POSITIUN 31，I：？\＃6；B\＄ ：NEXT I：RETURN
PL $35 \emptyset$ POKE 87，Ø：GOSUB 5øø：R ETURN
6J 4 gø HI＝INT（ST／256）：LO＝ST－ 256＊HI：RETURN
JH 5øø HMEM $=256 *$ HMEM＋LMEM + BY TE
E151ø LMEM＝HMEM－256＊INT（HME M／256）
CK 52 D $\mathrm{HMEM}=\mathrm{INT}(\mathrm{HMEM} / 256)$
NF $53 \emptyset$ POKE 88，LMEM：POKE 89， HMEM：RETURN
HG Gøø OPEN \＃1，4，Ø，＂K：＂：GET \＃1，A：CLOSE \＃1：RETURN
FD 1 Øøø POKE 559，Ø：POKE 752， 1
NP $1 \emptyset 1 \varnothing$ POKE DL＋ $3,7 \emptyset:$ POKE DL ＋6，134：PDKE DL＋14，13 6
AB 1ø2の FOR I＝7 TO 13：POKE D L＋I，B：NEXT I
DO 1 Ø3ø ST＝ADR（D1\＄）：GOSUB $4 \emptyset$ פ：POKE 512，LD：POKE 5 13，HI
EJ $1 \emptyset 4 \emptyset$ LMEM＝PEEK（ 88 ）：HMEM＝P EEK（89）：POKE 71ø，ஜ：P OKE 54286，192：RETURN

HI 12 Øø POKE 559， $0:$ POKE 752， 1：RESTORE $122 \emptyset$
KD 121 g FOR I＝6 TO 24：READ A ：POKE DL＋I，A：NEXT I
BE 122 D DATA $134,8,8,8,136,2$ ，2，13 $, 8,8,8$
01123 DATA $136,2,2,139,8,8$ ，8， 136
HH $124 \emptyset$ POKE DL $+3,7 \emptyset$
ED 125 © ST＝ADR（D2\＄）：GOSUB $4 \emptyset$ न：POKE 512， 1 OIPDKE 5 $13, \mathrm{HI}$
EN $126 \emptyset$ LMEM＝PEEK（88）：HMEM＝P EEK（89）：POKE $71 \varnothing, \emptyset:$ P OKE 54286，192：RETURN

BP $2 \emptyset \emptyset \emptyset$ GRAPHICS $\emptyset:$ GOSUB $1 \emptyset \emptyset$ Ø：POKE 7ø8，146：POKE 711，40

K0 2 ø1のD1 $\$(5,5)=$ GREEN $\$: D 1 \$($ 7，7）＝RED\＄：POKE 559，3 4
0ง 2ø2ø POKE 87，1：BYTE＝ø：G0S UB $5 \emptyset \emptyset$
8А 2ø3ø POSITION 6，Ø：？\＃6；＂E CdEEFUS＂：？\＃6；＂
\｛3 SPACES\} सम Findryice TOMESM＂
CB 2ø4の POKE 87，3：BYTE＝4ø：GO SUB $5 \emptyset \varnothing$
MF 2ø5ø FOR I＝2 TO 5：POSITIO N 5，I：？\＃6；A\＄：POSITI ON 17，I：？\＃6；B\＄：POSI TION 3ø，I：？\＃6；C\＄：NE XT I
CE 2ø6の POKE 87，Ø：BYTE＝8ø：G0 SUB 5øø
AA $2 \emptyset 7 \emptyset$ POSITION 5， $0: ?$＂BLUE \｛8 SPACES\}GREEN \｛9 SPACES\}RED"
NB 2ø8ø POSITION 2，4
LD 2ø9ø ？＂These are the GIDE
 lors．The eye sees $t$ he combination＂
6L 21øø ？＂of blue，green，a nd red as white．＂： ＂Pairs of these prim aries are＂
KI $211 \emptyset$ ？＂perceived as new colors，the＂：？＂Eسुy
 rs．＂
BK 212 P POSITION 5，13：？＂REM ロIE TO GD ON，EFETO QUIT＂；
LE 213 G GOSUB 6øø：IF $A=155$ T HEN 25øø
PO 214 I IF $A=27$ THEN GRAPHIC S Ø：END
MH215の GOTO $213 \varnothing$
C6 25øø GRAPHICS $\varnothing$ ：GOSUB $12 \varnothing$ Ø：POKE 7ø8，146：POKE 711，4ø
FH 253 D 2 （5，5）＝MAGENTA\＄：D2 \＄（7，7）＝RED\＄：D2\＄（65；6 5）$=$ CYAN $\$$
EL 254ø D2\＄（67，67）＝GREEN\＄：D2 \＄$(125,125)=$ RED $\$$
FD 255＠D2\＄（95，95）＝YELLOW\＄：D 2\＄（127，127）＝GREEN
DC 256ø POKE 559，34
PD 257ø POKE 87，1：BYTE＝ø：GOS UB 5øø
JK 258の POSITION 3，め：？\＃6；＂E dCFEFUE mixine．＂
EE 259の BYTE＝4の：GOSUB 3øø：G0 SUB 350
11 26øの POSITION 5，1：？\＃6；＂B LUE\｛3 SPACES\} +
\｛4 SPACES\}RED
\｛5 SPACES\} $=$
〔4 SPACES\}MAGENTA"
HL 261ø BYTE＝12ø：GDSUB 3øø：B YTE＝4ø：GOSUB 35ø
EO 262の POSITION 5，1：？\＃6；＂B LUE\｛3 SPACES\}+
\｛3 SPACES\}GREEN
\｛4 SPACES\}=
\｛5 SPACES\}CYAN'
HN 263Ø BYTE＝12ø：GOSUB 3øø：B YTE＝4ø：GOSUB 35ø
LF 264 （ POSITION 6，1：？\＃6；＂R ED\｛3 SPACES\}+
$\{3$ SPACES\}GREEN
\｛4 SPACES\} =
\｛5 SPACES\}YELLOW"
IB 266 D POSITION 5，3：？＂REIN EN TO GO ON，ESE TO REVIEW＂；
LJ 267 GOSUB 6øø：IF $A=155 \mathrm{~T}$ HEN 3øøø

DH 268 IF $A=27$ THEN 2 Øøの NJ 269 G GOTO $267 \emptyset$
ON Зøøø GRAPHICS ø：GOSUB 1 Øø Ø：POKE 7ø8，26：POKE 7 11，4D
H $3 \varnothing 1 \emptyset$ D $1 \$(5,5)=$ MAGENTA $\$: D 1$ \＄（7，7）＝CYAN\＄：POKE 55 9，34
OK 3ø2ø POKE 87，1：BYTE＝ø：GOS UB 5øø
PC ЗøЗø POSITION 5，$:$ ：\＃6；＂E Mbtractive＂：？\＃6；＂ \｛3 SPACES\} PRintis ［OTESM＂
CC $3 \emptyset 4 \emptyset$ POKE 87， $3: B Y T E=4 \emptyset: G 0$ SUB 5øø
H6 3ø5ø FOR I＝2 TO 5：POSITIO N 5，I：？\＃6；A\＄：PGSITI ON 17；I：2 \＃6；B\＄：POSI TION 3ø，I：？\＃6；C\＄：NE XT
CF Зø6ø POKE 87，Ø：BYTE＝8ø：G0 SUB 5øø
JA $3 \varnothing 7 \emptyset$ POSITION 4，Ø：？＂YELL OW\｛G SPACES\}MAGENTA \｛B SPACES\}CYAN"
NC 3 Ø8の POSITION 2，4
In $3 \varnothing 9 \varnothing$ ？＂These are the BIUE
 ＂colors．A yellow fi lter subtracts＂
LI $310 \emptyset$ ？＂the blue componen $t$ out of white＂：＂l ight，only passing $t$ he red and＂
EC 3110 ？＂green components． Yellow and blue＂： ＂are thus called［cD mplamanurify colodis．＂
kk 312ø POSITION 5，13：？＂RET ［JF TO GO ON，ESSE TO REVIEW＂；
L6 313 GOSUB $6 \emptyset \emptyset:$ IF $A=155$ T HEN $350 \emptyset$
DE 314 IF $A=27$ THEN 25øø
HJ 315 G GOTO $313 \varnothing$
CE $35 \emptyset \emptyset$ GRAPHICS $\varnothing$ ：GOSUB $12 \emptyset$ Ø：POKE 7ø8，116：POKE $711,4 \varnothing$
OL 353 D D $\$(5,5)=$ BLUE $\$: D 2 \$(7$ ，7）$=$ MAGENTA\＄：D2\＄$(65$ ， 65）$=$ GREEN $\$$
NJ 354ø D2\＄（67，67）＝YELLOW\＄：D 2\＄（125，125）＝MAGENTA\＄
10 355の D2\＄（95，95）＝YELLOW\＄：D 2\＄（127，127）＝RED\＄
DD 3569 POKE 559，34
PE 357ø POKE 87，1：BYTE＝ø：GOS UB $5 \varnothing \varnothing$
HL 358の POSITION 1， $0: ?$ \＃ 6 ；＂E川btractive mixtinc．＂
EF 359ø BYTE＝4ø：GOSUB 3øø：Gロ SUB 35の
NJ 36øØ POSITION 5，1：？\＃6；＂C YAN\｛3 SPACES\} + MAGE NTA\｛4 SPACES\}= \｛4 SPACES\} BLUE"
HH 361の BYTE＝12の：GOSUB 3øの：B $Y T E=4 \varnothing$ ：GOSUB $35 \emptyset$
AD 3620 POSITION 5，1：？\＃6；＂C YAN\｛3 SPACES\}+ \｛3 SPACES\}YELLOW \｛4 SPACES\} $=$ \｛4 SPACES\}GREEN"

AD 363Ø POKE 87， $3: B Y T E=12 \emptyset: G$ OSUB 5øø：FOR I＝ø TO 3
BN 3634 POSITION 5，I：？\＃6；A ：POSITION 16，I：？\＃6； B\＄：POSITION 31，I：？\＃ 6；C\＄：NEXT I
PL 3638 BYTE＝49：GOSUB 359
EA 3640 POSITIDN 4，1：？\＃6；＂M

AGENTA＋YELLOW
\｛4 SPACES\}=
（5 SPACES\}RED"
IC 366の POSITION 5，3：？＂RITM EF TO GO ON，ESE TO REVIEW＂；
LL 367ø GOSUB 6øø：IF $A=155$ T HEN $4 \varnothing \varnothing \varnothing$
DJ $368 \emptyset$ IF $A=27$ THEN $3 \varnothing \varnothing \emptyset$
NL 369 G GOTO 367
MA 4øøø GRAPHICS ø：GOSUB $1 \varnothing \varnothing$ Ø
PF 4ø1ø FOR I＝6 TO 8：POKE DL ＋I，G：NEXT I：POKE DL＋ 9，134
HP 4ø2ø FOR I＝1の TO 14：POKE DL＋I，8：NEXT I：POKE D L＋15， 136
ID 4ø3Ø POKE 711，40：PDKE 7ø日 ，$\emptyset$
IC 4 ø4の D1 $\$(5,5)=$ BLACK $\$: D 1 \$($ $7,7)=B L A C K \$$
CO 4ø5ø PDKE 559，34
OP 4ø6Ø POKE 87，1：BYTE＝ø：GOS UB 5øø
PD 4ø7ø POSITION 2，1：？\＃6；＂E णदसmactive color＂：PO SITIDN 3，2：？\＃6；＂FIE EInE Prectick＂
НО 4ø8ø BYTE＝1øø：GOSUB 3øø：B YTE＝6ø：GOSUB 35ø
HM 4ø9の POSITION 12，ø：？\＃6；＂ ＋＂：POSITION 24，$:$ ？\＃ 6；＂＝＂
OJ 41øø POSITION 9，4：？\＃6；＂1 －RED\｛7 SPACES\}4-CYAN

FF 411ø POSITION 9，5：？\＃6；＂2 －GREEN\｛5 SPACES\}5-MA GENTA＂
OP 412の POSITION 9，6：？\＃6；＂3 －BLUE\｛6 SPACES\}6-YEL LOW＂
KC 414ø POSITION 2，9：？\＃6；＂E NTER A COLOR NUMBER： ＂；

KJ 4145 GOSUB 6øD：C1＝A－48
J 415 IF C1＜1 OR C1＞6 THEN ？CHR $\$(253)$ ；：GOTO 4 145
EJ 417ø ？\＃6；C1：POKE 7ø日，KOL ORS（C1，C1）：POSITION 7， 1 ：？\＃6：C1
N6 418 MIX IT WITH COLOR NU MBER：＂；
KO 4185 GOSUB 6øø：C2＝A－4B
KD 419 IF C2＜1 OR C2＞6 THEN ？CHR\＄（253）；：GOTO 4 185
JD 421 甲 ？\＃；C2：D1\＄$(7,7)=$ CHR \＄（KOLORS（C2，C2））：POS ITION 18，$:$ ？\＃6；C2
BH 422 D $1 \$(5,5)=$ CHR $\$(K O L O R S$ （C1，C2））
AK 423ø POSITIDN 6，12：？\＃6；＂ REIDRE TO DO MORE，E ETE TO QUIT＂
L0 424ø GOSUB 6øø：IF $A=155$ T HEN 427 ø
AC 425ø IF $A=27$ THEN GRAPHIC S $\varnothing:$ END
MP $426 \emptyset$ GOTO $424 \emptyset$
OL 427 POKE 7 の日，ø：D $1 \$(5,5)=$ BLACK\＄：D1\＄（7，7）＝BLAC K
OH 428ø POSITION 7，Ø：？\＃6；＂ ＂：POSITION 18，ø：？\＃6 ；＂＂
16430ø FOR I＝9 TO 12：POSITI ON 2，I：？\＃6；BL\＄：NEXT I：GOTO 414g

# Mousor: Escape Mode Cursor For The Apple llc <br> J. Blake Lambert, Assistant Editor Tim Victor, Editorial Programmer 

This short, fast utility makes it simple to use your Apple IIc mouse controller for editing in BASIC or the machine language monitor in escape mode.

Despite all the improvements Apple incorporated into the IIc, the screen editing features when using BASIC or the machine language monitor are not much better than those available on the IIe. Without an editing support package, it is difficult to copy and correct program lines. And there is no way to use the mouse controller to make editing easier.

In BASIC, usually you end up making corrections by just typing the incorrect line all over again. This wastes time and effort. The alternative is to use what is called escape mode editing.
"Mousor" makes using escape mode easy. By rolling the mouse over an area of the desk smaller than a $3 \times 5$-inch index card, you can cursor (mousor) anywhere on the screen.

## How To Use Mousor

To start mousing around with Mousor, type in and save the program below. It's a BASIC loader which creates the Mousor machine language routine in memory. (Note: Save the BASIC loader on disk before running it for the first time.) When you run Mousor, it automatically checks to see if you're using DOS 3.3 or ProDOS and then adjusts itself accordingly. When the BASIC prompt reappears, you'll have a mouse-driven escape mode cursor. If you don't understand escape mode editing, see the instructions below.

The mouse is trained to work like this:

1. Click the mouse button to activate escape mode.
2. While holding the button down, roll the mouse across the desk to move the escape mode cursor.
3. Release the mouse button to exit escape mode.

Mousor locks out keypresses while it is in escape mode, so if you want to use the escape editing functions (like ESC-E to erase the end of a line), press the ESC key.

## Getting A Line Of BASIC

When you type a line of BASIC on the Apple IIc, a routine called GETLN puts the characters into a special area of memory called the input buffer. The first character on the line is stored at the start of the input buffer, and subsequent characters are added to the end of the buffer. This continues until you press the RETURN key to enter the line (with a few important exceptions). The computer clears the rest of the current screen line and stores the carriage return character into the input buffer to mark the end of the line.

When you make a mistake while entering the line, like typing the wrong character, it's easy to fix. For example, if you are entering a line such as 10 PRINT "HELLP" and notice you pressed $P$ instead of O, you can press the left-arrow key (also called backspace) to back up and change the letter. Instead of storing the backspace in the buffer like other keypresses, GETLN treats it differently.

GETLN keeps track of the length of the input buffer by pointing to the end. When GETLN re-
ceives a backspace character, it lowers the value of the pointer by one. This removes the last character in the buffer, so all you need to do is continue typing.

If you don't notice your mistake until you've typed in several more characters, you can use the left- and right-arrow keys to make the correction. Press the backspace key until the cursor is on the letter you want to change. Type the correct letter, and then press the rightarrow key (also called retype) until the cursor returns to the end of the line.

Each time you press the retype key, the character currently under the cursor is added to the input buffer and the cursor is moved to the right. In effect, you have removed several characters from the buffer, changed the character you wanted to correct, and retrieved the rest of the characters one by one from the screen.

## Now For The Tricky Stuff

Unfortunately, you can't always catch your typing errors before you press RETURN. Often, you don't even know there's a problem in a line until you've run the program. Since the retype key allows you to pick up characters from the screen and add them to the input buffer, it would be handy if you could copy most of the bad line and type only the characters you want to change. This requires a way to move the cursor around the screen without affecting the input buffer.

Pressing the ESC key puts the IIc into escape mode. In this mode, the arrow keys move the cursor but don't change the input buffer. The IIc indicates escape mode by displaying a different cursor-an inverse plus sign. To leave escape mode, press ESC again.

Suppose you want to edit the following line in escape mode:

## 100 PRINT "THIS IS A TEDT"

If the line is not on the screen, you'll need to LIST 100. Press ESC to enter escape mode and move the cursor up to the 1. At this point, the input buffer is empty. Press ESC again and use the retype key to place the cursor on the D. This enters all but the last three characters into the input buffer. Now type the
letter S, and press retype twice, followed by RETURN. If you like, LIST 100 to verify the correction.

To edit the same line with Mousor, you would LIST the line, click the mouse button and drag the cursor to the 1 , and release the mouse button. After this, follow the same editing procedure.

## Mouse Moves

You can also use escape mode to grab pieces of program lines. Mousor is especially adept at this, since movement is so easy and quick. Just keep in mind that when the mouse button is down no characters are added to the buffer.

To copy a line, first LIST it. Then enter the number for the new line you want to create, click the mouse button and drag the escape mode cursor to just beyond the original line number, and release the button. Copy the line by pressing the right-arrow key until you reach the last character, and then press RETURN.

Inserting is another useful technique. LIST the line first, then
mousor (click and drag the escape mode cursor) to the beginning of the line number. Release the mouse button and right-arrow across the line until you reach the point where you want to insert characters. Press the mouse button and mousor to a blank line on the screen, then release the button and type the insert characters. Click and drag up to the listed line again, release the button, and right-arrow to the end. After making any changes, don't forget to press the RETURN key to enter them.

## Mousor For Apple IIc

Please refer to "COMPUTEI's Guide to Typing in Programs" before entering this listing.

DE 1ø IF PEEK (191 * 256) $=76 \mathrm{~T}$ HEN GOSUB 4ø: GOSUB 5ø: GO TO 3ø
AC $2 \emptyset$ GOSUB 5ø: GOSUB $4 \varnothing$
$2 E 3 \emptyset$ FOR I $=11$ TO 2ø7: READ A: POKE I + 768, A: NEXT : CA LL 768: END
69 4ø FOR I = Ø TO 1ø: READ A: P OKE I + 768, A: NEXT : RETU RN
1350 FOR I $=\varnothing$ TO 1ø: READ A: $N$ EXT : RETURN
E7 $6 \emptyset$ DATA $216,169,67,141,5 \emptyset, 19 \emptyset$
$4 E 7 \emptyset$ DATA $169,3,141,51,19 \emptyset$

BE Bø DATA $169,67,133,56,169,3$
7B 9ø DATA $133,57,32,234,3$
F7 1 1øø DATA $12 \emptyset, 162,196,16 \varnothing, 64,3$ 2
$1711 \emptyset$ DATA 28,196,169, $19,141,129$
TC $12 \emptyset$ DATA $4,141,12 \emptyset, 5,141,248$
EA $13 \emptyset$ DATA $5,169,8,141,248,4$
©F 14 DATA $169,0,162,196,160,64$
4C 159 DATA $32,176,196,169,1,162$
1616 DATA $196,32,176,196,162,1$ 96
EF 170 DATA $32,132,196,169,1,162$
$5218 \emptyset$ DATA $196,16 \emptyset, 64,32,61,196$
D6 190 DATA $88,96,145,46,32,76$
66 2øø DATA 2ø4,44,99,192,16,8
$5121 \emptyset$ DATA $32,112,2 \emptyset 4,16,246,76$
28220 DATA 37, 253, 218, 9ø, 72, 169
$7423 \emptyset$ DATA 4, 141, 124, 4, 141, 252
FC $24 \emptyset$ DATA $4,32,187,3,32,195$
FB $25 \emptyset$ DATA $3,44,99,192,16,9$
6A $26 \emptyset$ DATA $164,32,179,195,122,2$ $5 \emptyset$
B2 27 DATA $76,69,3,173,124,4$
B4 $28 \emptyset$ DATA $24 \emptyset, 7,2 \emptyset 1,8,144,25$
5C 29 DATA $162,156,44,162,136,1$ $\emptyset 4$
E5 360 DATA $32,179,195,138,32,88$
JA 31ø DATA 265,32, 195, 3, 72, 169
AJ $32 \emptyset$ DATA $4,141,124,4,32,187$
45336 DATA $3,173,252,4,24 \emptyset, 7$
DA $34 \emptyset$ DATA $2 \emptyset 1,8,144,25,162,138$
5F 35ø DATA 44, 162, 159, 194, 32, 17 9
$8236 \emptyset$ DATA 195, 138, 32, 88, 2ø5, 32
UB 37ø DATA 195,3,72, 169,4, 141
C7 38ø DATA 252,4,32,187,3,76
IF $39 \emptyset$ DATA $1 ø 2,3,162,196,160,64$
C9 4 ■曰 DATA $32,197,196,96,32,29$
b) 410 DATA $264,72,41,128,73,171$

15426 DATA $32,179,195,164,96$ ()

# Commodore 64 Headliner 

## Robert F. Lambiase

Create attention-getting headlines and titles with this oversized alphabet for the Commodore 64.

Nearly every program uses titles or headlines of some sort, and you ordinarily want titles to look as impressive as possible. But the standard Commodore character set doesn't permit much variety. You can use different character colors or print in reverse video, but the letters are still pretty small. "Commodore 64 Headliner" lets you create truly striking titles and headlines with an alphabet that's four times bigger than normal.

Enter and save Headliner from the listing below, then run it. After a short pause to form the new char-
acters, the program prints the alphabet in giant, quadruple-size characters. The letters can be any color, and the standard-size alphabet is available, too. The only thing you give up are reverse video characters, since Headliner redefines them as large characters.

## Using Headliner

Headliner is easy to incorporate in your own programs. The first step is to include lines 100-350 (they can be renumbered, of course) to create the new character set. The program begins storing the new character definitions at memory location 12288. The statement POKE 53272,29 (see line 240) tells the computer to look at this memory area for character definition data. Use POKE 53272,21 to switch back
to normal characters.
After defining the new characters, Headliner prints the expanded alphabet (lines 400-405) and a title (lines 410-430). Whenever a string of large characters is to be printed, the characters are defined as a string ( $X \$$ ). Then two important variables (SL and CC) are defined. Finally, the statement GOSUB 500 calls the subroutine that puts the big characters on the screen. The subroutine analyzes each character in $X \$$; if it is not a space character, its pattern is POKEd into screen memory.

The variable SL sets the position of the large characters on your screen. The 64's screen is divided into 25 rows and 40 columns, giving a total of 1,000 different loca-
tions. Each screen memory location has a different address, and they are numbered in order, beginning at the upper-left corner of the screen. The upper-left screen position is location 1024; the next location to the right is 1025 , and so on. Color memory is a second $1,000-$ byte memory area that corresponds to screen memory. By POKEing the right number into color memory, you can control the color of any screen memory location. Your Commodore 64 User's Guide has maps that show the numbers for every screen memory and color memory location, as well as a list of all the color numbers.

To place large characters on the screen, find the location you want using the screen memory map in your user's guide, then set SL to that value. The upper-left corner of the first large character appears at the location defined by SL, and the others follow in order. For example, to start printing large characters at the upper-left corner of the screen, use the statement $\mathrm{SL}=1024$.


Note that the title above the alphabet uses a large character to begin a line of standard characters, somewhat like a super-capital letter. Line 420 of the program sets the computer to start printing again at the next location after the last expanded character.

## Pick Your Colors

The variable CC sets the color of the large characters using the color numbers listed in your user's guide. Line 410 of Headliner uses the statement $\mathrm{CC}=3$ to print in cyan. Use the statement $C C=1$ to print in white, and so on.

There may be times when you want to print large characters in the current character color. Line 400 of Headliner does this with the state-
ment $\mathrm{CC}=\operatorname{PEEK}(646)$. Location 646 always contains the current color number for PRINTing characters.

The 64 actually has two alternate character sets: One is used in uppercase/graphics mode, and the other is used in lowercase/uppercase mode. You can switch from one mode to another by pressing SHIFT-COMMODORE. Since Headliner works only in uppercase/ graphics mode, you should disable the SHIFT-COMMODORE key combination to prevent the user from accidentally destroying the display. To do this, insert PRINT CHR\$(8) at the beginning of your program. When the program ends, type PRINT CHR\$(9) to restore things to normal.

## Building Giant Characters

Each large character is actually four redefined characters placed together. (To see this more clearly, type POKE 53272,21 and press RETURN after the program has run.) The standard Commodore 64 character set contains 256 characters, numbered from 0-255. Characters $0-127$ are the "normal" characters and characters 128-255 are the same characters in reverse video. Since each character definition takes eight bytes, a full set of character definitions requires 2,048 (8*256) bytes.

The first step in redefining characters is to copy the standard character set from ROM (Read Only Memory) into RAM (Random Access Memory) where it can be altered. The program does this in lines 200-240. The new character set begins at location 12288. Since we only want characters $0-127$ from the standard set, only those character definitions are copied.

Next the program POKEs the expanded character definitions into the memory area that would otherwise store reverse video character data (see lines $300-350$ ). The bit pattern of each standard character is mapped into a four-charactersized memory area, using conversion values stored in the T() array.

Since each large character definition takes four times the memory of a standard definition, we have room for a maximum of $32(128 / 4)$ expanded definitions. That's
enough for 26 letters, but not enough space to hold ten numeral definitions, too. However, you could squeeze in six more charac-ters-perhaps punctuation or other symbols.

By sacrificing all the standard characters, you can get as many as 64 large characters-but remember to define a space character so you can still clear the screen. The Commodore 64 Programmer's Reference Guide contains much more information about using redefined characters.

## Headliner

Please refer to "COMPUTEI's Guide to Typing In Programs" before entering this listing.
$1 \varnothing \emptyset$ DIMT (15):POKE53281, Ø:POKE5 328ø, Ø: PRINTCHR\$ (8): G=5427 2 :rem 24
$11 \varnothing$ POKE646,1:FORJ=ØTO15:READT (J) :NEXT
:rem 93
$12 \emptyset$ DATA $\varnothing, 3,12,15,48,51,60,63$ $, 192,195,204,2 \emptyset 7,24 \emptyset, 243,2$ 52,255
: rem 22ø
$2 ø \emptyset$ PRINTCHRS (147)TAB (125) "DOW NLOADING THE CHARACTER SET ": G=53248: GN=12288: rem 118
220 POKE 56333,127:POKE1,51:FO R $Q=\emptyset T O 1 \varnothing 23$ :POKEGN+Q,PEEK ( $\mathrm{G}+\mathrm{Q})$ : NEXT :rem 89
240 POKEl,55:POKE56333,129:POK E53272,29: :rem 196
3 Øø PRINTCHRS (147) TAB (125) "FOR MING THE LARGE CHARACTERS" :POKE13312, $\sigma \quad$ : rem 15
$32 \emptyset$ FORR= $=$ TO212STEP8: $\mathrm{Bl}=12288+$ $\mathrm{R}: \mathrm{B} 2=13312+4$ * R : rem 19
330 FORI= 0 TO4STEP4:FORK=ØTO3: J $=\operatorname{PEEK}(\mathrm{Bl}+\mathrm{K}+\mathrm{I}): \mathrm{N}=\mathrm{B} 2+2$ * $(\mathrm{K}+\mathrm{I})$ $+1 \quad:$ rem 233
$34 \emptyset \mathrm{Xl}=\mathrm{T}(($ JAND24ø $) / 16): \mathrm{X} 2=\mathrm{T}$ (JA ND15)
: rem 197
$35 \emptyset$ POKEN,X1:POKEN +1, XI:POKEN+ 16, X2: POKEN+17, X2:NEXTK, I, R : rem 72
360 PRINTCHR\$(147) :rem $2 \emptyset$
$4 \emptyset \emptyset \mathrm{X} \$=$ "ABCDEFGHIJKLM": SL=127 : CC=PEEK (646): GOSUB 5øø
: rem 11ø
405 XS="NOPQRSTUVWXYZ": SL=135 : CC=PEEK (646) : GOSUB5øø
: rem 27
$410 \mathrm{X} \$={ }^{\prime \prime} \mathrm{H}^{\prime \prime}: \mathrm{SL}=1158: \mathrm{CC}=3:$ GOSUB \{SPACE\}5øø :rem 62
$42 \varnothing$ NS=SL+4ø: POKE21ø, INT(NS/25 6) : POKE 209, NS AND 255
:rem 179
$43 \varnothing$ POKE646, 7:PRINT"EADLINER": FORJ=1TO1 $\varnothing$ :PRINT:NEXT: END
: rem 7ø
5øø FORP=1TOLEN (X\$) : L= (ASC (MID $\$(X \$, P, 1))-64) * 4+128:$ I FL= $\varnothing$ THEN55ø
: rem 111
$53 \emptyset$ POKESL+G,CC:POKESL+1+G,CC: POKESL+4б+G, CC : POKESL+41+G ,CC
: rem 137
$54 \varnothing$ POKESL, L: POKESL+1, L+2: POKE SL $+4 \emptyset, \mathrm{~L}+1$ : POKESL $+41, \mathrm{~L}+3$
: rem 241
550 SL=SL+2:NEXT:RETURN :rem 5

# Using The Commodore USR Function 

Keith R. Bergerstock

The USR function provides a convenient way for BASIC programs to call machine language subroutines-and it's more versatile than the SYS statement. Although this article is oriented toward the Commodore 64, the general principles apply to all Commodore computers. A demonstration program shows how to add five new functions to Commodore 64 BASIC.

It's often overlooked, but the USR function is a powerful and convenient tool for accessing machine language (ML) routines from BASIC. In its simplest form, USR works just like the more familiar SYS command. SYS makes the computer halt BASIC program execution and jump to an ML routine at a specified address. When the ML routine is done, BASIC resumes what it was doing. SYS lets you jump anywhere in the computer's memory, to a system routine stored in Read Only Memory (ROM) or a user-written ML program stored in free memory.

To see an example on the Commodore 64, move the cursor to a blank line somewhere near the middle of the screen, type SYS 59626, and press RETURN. SYS 59626 jumps to the computer's ROM scrolling routine: The screen scrolls up and the blinking cursor reappears.

Although USR requires a little preparation, it's much easier to use after the preparation is done. Let's call the same scrolling routine with USR. Type the following line in direct mode (without a line number) and press RETURN.

## POKE 785,234: POKE 786,232: <br> A = USR(0)

The screen scrolls upward, just as it did when you typed SYS
59626. The POKEs set up the routine's address for USR. This method looks cumbersome, but the POKEs are needed only once. Afterward you can call the scrolling routine whenever you like, just by entering $A=U S R(0)$. Program 1 below contains a formula that automatically performs the correct POKEs to prepare any address for USR.

Like PEEK and other BASIC functions, USR must be followed by a value in parentheses. However, in the simplest case (when you just want to jump to an ML routine), the value and the preceding variable name are both irrelevant: You get the same result with $A=\operatorname{USR}(X Y Z)$ or $G G=U S R(123456$ 78). You can even use PRINT $\operatorname{USR}(X)$, though that usually prints something on the screen.

## Parameter Passing

The real value of USR lies in its ability to pass parameters (values) back and forth between BASIC and machine language. To see how this works, type in and save Programs 1 and 2 below. Then run Program 1; it puts a short, multipurpose ML program in memory and sets up the USR address vector (a pair of memory locations that point to the ML routine).

The variable SA in line 10 defines the starting address of the ML routine. This ML program is relocatable, so you can put it elsewhere if you like. For instance, to put the routine at 49152, change line 10 so that $\mathrm{SA}=49152$ and rerun Program 1.

The rest of line 10 converts the address into low byte/high byte format for the USR vector. Since 255 is the largest number any single memory location can hold, the
computer must use two adjacent locations to store addresses like 59626. Program 1 stores the high byte of the address in the variable $\mathrm{HI} \%$ and the low byte in LO.

Line 20 POKEs LO and HI\% into vector locations 785 and 786. You must always put the target address in these locations before using USR. The rest of Program 1 POKEs the ML into the computer's memory. To use this technique in your own programs, just duplicate the method shown in Program 1.

If you get an ?ILLEGAL QUANTITY error message when experimenting with USR, it probably means that you forgot to put a vector address in 785-786. When you turn the computer on, the vector in 785-786 points to 45640, the BASIC routine that prints that message.

USR works virtually the same on all Commodore computers; the only difference is the location of the USR vector. You'll find it at locations 1-2 on the VIC-20 and 812-813 on the Commodore Plus/4 and 16. The other vectors mentioned below also are located in different places on various machines.

## Using USR

Program 1 provides five handy functions which you select by inserting a number from $0-4$ in the parentheses after USR. For an illustration, plug a joystick in port 2, then load and run Program 2 after running Program 1 to install the ML. As you move the joystick, the program prints the joystick directions on the screen. To exit the program, press the fire button.

Line 50 of Program 2 does the important work. The statement
$\mathrm{JV}=\mathrm{USR}(3)$ calls the ML routine and selects function 3 (read joystick). Each time the ML routine performs this function, it gives the variable JV a numeric value representing the joystick position. JV is 0 when the joystick is centered, 9 when the fire button is pressed, and so on.

Note that Program 2 passes information in both directions. The value in parentheses-USR(3)sends information to the ML routine (telling it to perform function 3). And the ML routine passes other information back in the form of a variable (JV).

The other four functions work in similar fashion. Function 4 returns the size of the BASIC program currently in memory. Whenever you want to know your program size, use the statements $A=\operatorname{USR}(4)$ : PRINT A. Function 2 changes the screen background and border colors. To activate this function, use $\mathrm{A}=\mathrm{USR}\left(\mathrm{C}^{*} 256+2\right)$, replacing C with the number of the screen color you want (your 64 User's Guide lists the color numbers).

Function 1 reads the Y and N keys, returning the value of 1 when Y is pressed, and 2 when N is pressed. The ML routine waits until you press Y or N , ignoring all other keys. This function is useful in the common case where a program asks the user a Yes/No question. Combining USR with ON-GOTO or ONGOSUB is a very efficient technique. For instance, type in and run the following program (make sure the ML routine is in memory):

```
10 PRINT"ENTER Y/N":ON USR(1)
        GOSUB 100,200
20 GOTO 10
100 PRINT"YES":RETURN
200 PRINT"NO":RETURN
```

Function 0 is similar to Function 1, but reads the eight special function keys. Enter and run this program to see how it works:

```
10 A=USR(0)
20 PRINT A: GOTO }1
```

In this case USR returns a number from 1-8 in the variable A. (But note that the numbers returned don't correspond directly to the function key numbers. Keys f1, f3, f5, and f7 return values $1-4$ respectively, while the shifted keys, f2, f4, f6, and f8, return values 5-8.) In your own pro-
grams, of course, you can use any variable name you like; this function could also be used with ON-GOTO or ON-GOSUB to select as many as eight different options.

## The Facts About FACI

If you simply want to use the new functions provided by Program 1, you needn't read any further. If you're ready to write your own ML routines for USR, here are a few additional tips. First, when you pass a value from BASIC, the value is converted into a different number format (floating point) and placed in the computer's floating point accumulator (locations 98-101).

The floating point accumula-tor-usually called FAC1 to distinguish it from the secondary accumulator-is a special numberprocessing area used internally for many purposes. Since floating point numbers are quite difficult to handle, it's helpful to convert the floating point value into an integer (whole number) before using it in your ML routine. Fortunately, the 64 has built-in routines to convert floating point numbers to integers and vice versa. These routines can be accessed directly with JSR, or indirectly through the vectors in locations 3-4 and 5-6.

The routine at location 45482 (\$B1AA) converts a floating point number in FAC1 to an integer. Use this routine when passing a value from BASIC to ML. At the point where you want to retrieve the passed value, use JSR \$B1AA to do the conversion. The computer returns the low byte of the integer in the Y register and the high byte in the A register. If you'd rather use the vector, use LDA \#\$4C: STA \$02: JSR \$0002.

Passing a value from ML back to BASIC often requires the opposite conversion. The routine at 45969 (\$B391) converts an integer to floating point format and stores the resulṭ in FAC1. At the point where you want to return to BASIC, load the low byte of your integer value in the Y register and the high byte in A . Then call the integer-tofloating point conversion routine with JSR \$B391: RTS (you can also compress these two instructions into JMP \$B391). The value is converted and stored in FAC1, and

RTS returns you to BASIC. If you prefer to use the vector, JMP (\$0005) accomplishes the same thing.

Like other vectors, the vectors at 3-4 and 5-6 will presumably be safe to use even if the actual ROM addresses of the routines change after a ROM update. However, there's one danger in using them. Since BASIC never uses locations 2-6, many ML programmers use them as free zero page space. If your routine jumps through these vectors after some other ML program overwrites them, it may send the computer into never-never land.

## Program 1: USR Loader For Commodore 64

$1 \varnothing \mathrm{SA}=53 \varnothing 88: \mathrm{HI} \%=\mathrm{SA} / 256: \mathrm{LO}=\mathrm{SA}-\mathrm{H}$ I\%*256 :rem 23
$2 \varnothing$ POKE785,LO: POKE786, HI\%: CK= Ø
:rem 33
$3 \varnothing$ READQ : IFQ>-1 THENPOKESA, $Q: S A$ $=S A+1: C K=C K+Q: G O T O 3 \emptyset$
:rem 213
4 I IFCK=14485THENP RINT"OK" : NEW
: rem 130
$5 \emptyset$ PRINT"ERROR IN DATA STATEME NTS" :rem 121
$6 \varnothing$ DATA $169, \varnothing, 133,198,169,76,1$ $33,2,32,2, \varnothing, 132,2=$ rem 254
61 DATA $192,0,24 \varnothing, 19,192,1,24 \varnothing$ $, 35,192,2,240,50 \quad$ :rem 197
62 DATA $192,3,240,71,192,4,240$ $, 54,1 \varnothing 8, \varnothing, 3,32,228$ :rem 43
63 DATA $255,2 \boxed{1}, 133,144,249,20$ $1,141,176,245,56$ :rem 218
64 DATA $233,132,168,169,6,1 \emptyset 8$, 5, ø, 32,228,255,2ø1 :rem 51
65 DATA $89,24 \emptyset, 8,201,78,208,24$ 5,160,2,208,236 :rem 177
66 DATA $160,1,208,232,141,32,2$ 68,141,33,2ø8 :rem 54
67 DATA $169, \varnothing, 168,1 \varnothing 8,5, \varnothing, 56,1$ $65,45,229,43,168$ :rem 235
68 DATA $165,46,229,44,1 \varnothing 8,5, \varnothing$, $173,0,220,73,31$ :rem 162
69 DATA $41,31,168,2 \emptyset 1,3,144,12$ $, 136,2 \emptyset 1,8,144,7$ :rem 204
$7 \emptyset$ DATA $136,2 \emptyset 1,16,144,2,16 \emptyset, 9$ $, 169, \varnothing, 1 \varnothing 8,5, \varnothing,-1$ :rem 236

## Program 2: Joystick Demo For Commodore 64

$1 \emptyset$ DATA NONE,UP, DOWN, LEFT,UP/L EFT :rem 98
$2 \emptyset$ DATA DOWN/LEFT, RIGHT, UP/RIG HT :rem 54
$3 \emptyset$ DATA DOWN/RIGHT,FIRE BUTTON : rem 144
4 ( PRINTCHRS (147):FORJ=ØTO9:RE ADAS (J) : SPS=SPS+CHR\$ (32) :NE XT
:rem 73
50 JV=USR(3):PRINTCHRS (19)JV,A \$(JV)SPS
:rem 44
60 IFJV=9THENE=E+1 :rem 93
$7 \emptyset$ IFE<2のTHEN5 $\quad$ :rem 1 99

# Sound And Music On The Commodore 128 Part 1 

Philip I. Nelson, Assistant Editor

The Commodore 128's advanced BASIC makes it easy and fun to create music or sound effects. Part 1 of this two-part series shows how to use the VOL, TEMPO, and ENVELOPE statements. Part 2 explores the FILTER, SOUND, and PLAY commands and includes three short tutorial programs.

If you've heard much about the new Commodore 128, you probably know that it contains a very powerful music maker: the SID (Sound Interface Device) chip, exactly as found in the Commodore 64 and still the best sound chip in any personal computer. The SID chip provides three independent voices (tone generators) for playing up to three notes at once, and four different waveforms to simulate virtually any sound.

Although both computers use the SID chip, the comparison ends there. Since Commodore 64 BASIC has no sound commands, even simple 64 sound effects require several POKE statements. The 128's BASIC eliminates the POKEs by adding six new music and sound commands: PLAY, SOUND, VOL, TEMPO, ENVELOPE, and FILTER.

## Simplicity And Power

The PLAY command is both powerful and easy to use. If you have access to a 128, type in and run the
following one-line program. (The spaces make the statement more readable, but are not necessary.)

## 100 PLAY "C DEFGFEDC"

The 128 plays nine notes, going up the scale and down again. It would take a lot more work to play the same nine notes on the 64you'd need at least three preliminary POKEs (to set the volume and sound envelope), plus four POKEs for each note (one to turn on the voice, two to set the pitch, and one to turn off the voice).

Interestingly, you can control the SID chip in 128 mode with the same POKEs as on the 64. That's usually a waste of time, since the 128 's BASIC commands are more convenient than POKEs. However, 128 BASIC has certain limitations (SOUND statements can't use ring modulation or synchronization, for example). If you already know sound programming on the 64 , you may still find uses for old-fashioned 64 programming techniques.

The PLAY command is so versatile that it's almost a minilanguage in itself. In addition to playing notes, you can insert rests, change octaves, choose any of ten different instrument voices, use filtering, and even play multivoice music. This month we'll stick to simple PLAY statements and examine the VOL, TEMPO, and ENVELOPE commands in detail. In Part 2, we'll look at the FILTER and SOUND commands and more advanced uses of PLAY.

## VOL Means Volume

The 128 's VOL command affects all three voices at once and accepts values from 0 (silence) to 15 (maximum). Add the following line to the example program and run it again:

10 VOL 15
Since the song plays at the same volume, it seems VOL had no effect. In fact, VOL just duplicated the default volume setting that PLAY uses when no volume is specified. When you turn on the 128, it establishes several music and sound settings (parameters) in advance. For instance, the PLAY statement above plays the notes at maximum volume with a sound envelope and waveform that simulate a piano. Other default sound parameters, too, remain in effect until you change them.

In many cases you can set the volume at the beginning of a program and leave it alone. However, gradual changes in volume can add to the dynamics of a song. Since drastic volume changes make the SID chip "pop," don't use VOL to turn individual notes on and off. (To hear the pop, turn up the volume on your monitor or TV set, enter the following line without a line number, and press RETURN: VOL 15:VOL 0:VOL 15.)

Unlike PLAY statements, SOUND statements (to be discussed in Part 2) default to a volume of 0 . Before using SOUND you must always use VOL to set the volume to some nonzero value.

## TEMPO

TEMPO is another command that affects all voices equally, setting the speed at which a song plays. TEMPO is followed by one number in the range $0-255$. The default tempo setting is 15 , a pedestrian speed. Add the following line to the example program and run it again:

20 TEMPO 50
At a tempo of 50 , the song plays much faster. Try several different TEMPO values in line 20. As you'll find, the highest tempos are exceedingly fast-too speedy for playing whole songs, but handy for simulating trills and grace notes. Change the TEMPO value back to 15 when you're done experimenting with line 20.

Don't confuse tempo-the overall speed of the music-with the individual duration of each note (quarter note, sixteenth, etc.). In conventional music a quarter note lasts one "beat," an eighth note lasts one-half beat, and so on. Tempo defines how many beats are played in a minute. At faster tempos every note plays faster, but quarter notes still last twice as long as eighth notes The default note duration for PLAY is a quarter note.

## A Built-In Orchestra

The ENVELOPE command is more versatile than VOL or TEMPO. It is used to create customized instrument sounds for your songs. ENVELOPE takes the following general form:

## ENVELOPE $i, a, d, s, r, w, p$

In the above example, $i$ stands for the instrument number, $a$ for the attack rate, $d$ for decay rate, $s$ for sustain rate, $r$ for release rate, $w$ for waveform, and $p$ for pulsewidth. Naturally, in a program these letters are replaced with appropriate numbers.

The first number in an ENVELOPE statement chooses one of the 128 's instrument voices. There are ten predefined instruments, numbered $0-9$ as shown here:

| Instrument | ENVELOPE \# |
| :--- | :---: |
| Piano | 0 |
| Accordion | 1 |
| Calliope | 2 |
| Drum | 3 |
| Flute | 4 |
| Guitar | 5 |


| Harpsichord | 6 |
| :--- | :--- |
| Organ | 7 |
| Trumpet | 8 |
| Xylophone | 9 |

Since PLAY commands use the same instrument numbers, you'll want to become familiar with this list. To pick an instrument within PLAY, add a $T$ (for tune) followed by the desired instrument number. For instance, PLAY "T5 C D T3 E F" selects instrument 5 (guitar) and plays notes $C$ and $D$, then selects instrument 3 (drum) and plays notes E and F . The same numbering scheme identifies customized instruments, as you'll see in a moment. The default instrument for PLAY statements is instrument 0 (piano); if you don't specify an instrument, PLAY always produces a piano sound.

## Sound Envelopes

To create new instrument sounds, you'll need to learn about sound envelopes and waveforms. Every natural sound has a distinctive envelope or sound pattern. Consider the difference between a snare drum and a violin. Drum sounds begin and end very sharply. The drumhead starts vibrating the instant you strike it, and fades quickly. Violin sounds start out more softly, as the string gradually picks up vibrations from the bow, and fade softly as the vibration dissipates.

The 128 defines different sound envelopes in terms of four values: attack, decay, sustain, and release (ADSR). The attack value defines how quickly the sound rises from silence to its peak volume. Decay defines how quickly the sound fades from peak volume to the volume at which it will be sustained (held). Sustain sets the volume level for the sound's main duration. Release defines how quickly the sound fades from its sustained volume back to silence again. Figure 1 illustrates a typical sound envelope.

In ENVELOPE statements, the four numbers after the instrument number define the ADSR envelope. ADSR numbers can range from 0-15.

## Waveforms

ENVELOPE also lets you pick different waveforms. Each of the SID
chip's three voices can produce four different waveforms, diagrammed in Figure 2. The triangle waveform (used for the flute, instrument 4) is soft and rich. The sawtooth wave (used for the guitar, instrument 5) creates a louder, harsher sound.

The pulse waveform (used for the organ, instrument 7) is the most versatile of all. It's louder than the triangle wave and can be adjusted to make sounds that are rich and full or thin and faint. The noise waveform (used for the drum, instrument 3 ) is a random mish-mash of frequencies that make a hissing or rushing sound. ENVELOPE uses the following waveform numbers:

| Number | Waveform |
| :---: | :--- |
| 0 | Triangle |
| 1 | Sawtooth |
| 2 | Pulse |
| 3 | Noise |
| 4 | Ring Modulation |

Ring modulation is a special effect, different from the other waveforms. The SID chip creates ring modulation by combining the frequencies of two voices into one complex sound. Note that ENVELOPE cannot use synchronization, another SID effect familiar to 64 programmers.

Finally, ENVELOPE lets you choose different pulsewidth values for the pulse waveform (2). The pulsewidth number can range from 0-4095. Look again at the pulse wave diagram in Figure 2. The top portion of each wave is wider than the bottom portion. The pulsewidth value defines the ratio between these two parts of the wave. Medium pulsewidth values (roughly from 1000-3000) produce fairly symmetrical waves and full, solid tones. Very small or very large pulsewidth values produce assymetrical waves and thin, hollow tones.

## envelope With PLAY

To see what ENVELOPE can do, add line 30 to the example program and insert T1 in line 100 as shown below:

30 ENVELOPE $1,7,0,0,0,2,2000$
100 PLAY "T1 C D E F G F E D C"
Run the program again and notice how different the new instrument sounds. Line 30 selects instrument 1 , sets attack at 7 , decay, sustain, and release at 0 , waveform
at 2 (pulse), and pulsewidth at 2000.

The T1 in line 100 might seem redundant at first: If ENVELOPE selects instrument 1 , why specify instrument 1 again in the PLAY statement? This is necessary because of the default system. Until you specify otherwise in a PLAY statement, PLAY always uses instrument 0 , the piano. Thus, whenever you define a new instrument with ENVELOPE, you must use the same instrument number after T in the appropriate PLAY statement. If you forget, PLAY ignores the ENVELOPE statement and uses instrument 0 or whatever instrument you last selected with T.

Redefining an instrument with ENVELOPE replaces the predefined instrument of that number. Thus, you can never have more than ten instruments at once. However, new instruments can be introduced at any time with new ENVELOPE statements.

ENVELOPE can be tricky to handle, since it gives you total control over the ADSR envelope and
must be properly integrated with other sound commands. For instance, an envelope that sounds fine at slow tempos may be unsuitable at faster tempos. Don't be discouraged if your first experiments sometimes fail. Remember, ENVELOPE is necessary only for customized instrument sounds. If you're happy with the predefined instruments, just use T in a PLAY statement to choose the one you want.

## Figure 1. Typical Sound Envelope



Figure 2. Commodore 128 Waveforms


Sawtooth


## Pulse



Noise


# Colorful Text For IBM Graphics 

Peter F. Nicholson, Jr.

IBM personal computers provide a wealth of graphics modes. Here's a method of printing text on graphics screens with different foreground colors to brighten up your screen displays. The technique works on the IBM PCjr with Cartridge BASIC or the PC with BASICA and color/ graphics adapter card.

The IBM PCjr and the PC with a color/graphics adapter both have the ability to print different-colored foreground characters on the same colored background. Mediumresolution graphics mode gives you a choice of 16 different background colors and two different foreground color palettes (red/brown/green or cyan/magenta/white). According
to page I-9 of the BASIC reference manual for the PC, the following statement changes character colors (substitute 1, 2, or 3 for color number):

## DEF SEG:POKE \&H4E,color number

Although this changes the character color, it also replaces the background color with color 0
（black）．It＇s not mentioned in the manual，but there is a way to change the foreground color with－ out losing the background color． Simply add 128 to the color number in the above statement．This per－ forms a bit manipulation called an exclusive OR（XOR）of the color val－ ue，allowing you to print any fore－ ground color on the background．

To see a demonstration，type in and save the program below，then run it．The program illustrates the difference between normal and XOR printing and lets you experi－ ment with many different back－ ground and foreground color combinations．

## Character Colors For

XOR Printing
Color Where Resulting Character Character Will Be Color
XOR PRINTed
$\& H 4 \mathrm{E}=\& \mathrm{H} 4 \mathrm{E}=\& \mathrm{H} 4 \mathrm{E}=$

|  | 129 | 130 | 131 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | 3 |
| 1 | 0 | 3 | 2 |
| 2 | 3 | 0 | 1 |
| 3 | 2 | 1 | 0 |

Remember to restore the value in memory location \＆H4E to either 1,2 ，or 3 when you＇re editing．Oth－ erwise anything you type is XORed with whatever is on the screen．The easiest way to avoid this problem is to clear the screen（press CTRL－ HOME）and press function key 10 to edit in SCREEN 0 ．The table shows the values you can POKE into \＆H4E to generate various color combinations．

## XOR Printing

JB 1øØ SCREEN 1：KEY DFF：PAL＝ø：BA CK＝ø：GOSUB 15øø：COLOR BAC K，PAL
㫙 11 CLS：COL＝3：X 1 ＝4Ø：Yø＝28：GOS UB 1øøø：COL＝ந：GOSUB 1øøø
FN $120 \mathrm{COL}=3: \mathrm{X} \emptyset=4 \emptyset: Y \emptyset=116$ ：GOSUB 1øøø：COL＝Ø：GOSUB 1øøø
6A 13Ø GOSUB 2øøø：POKE \＆H4E，1：LO CATE 3，B：PRINT＂\＆H4E＝1＂
DL 140 FOR $\mathrm{I}=5$ TO 9 STEP 2：LOCAT E 1，8：PRINT PAL\＄（PAL，1）；： NEXT I
KC $15 \emptyset$ POKE \＆H4E，2：LOCATE 3，18：$P$ RINT＂\＆H4E＝2＂
LN $16 \emptyset$ FDR I＝5 TO 9 STEP 2：LOCAT E I，18：PRINT PAL\＄（PAL，2）； ：NEXT I
Q1 170 POKE \＆H4E，3：LOCATE 3，28：$P$ RINT＂\＆H4E＝3＂

AH 18 Ø FOR I＝5 TO 9 STEP 2：LOCAT E I，28：PRINT PAL\＄（PAL，3）； ：NEXT I
NH $19 \varnothing$ POKE \＆H4E，1：LOCATE 14，7：P RINT＂\＆H4E＝129＂：POKE \＆H4E ， 129 ．
BJ 2øø FOR I＝16 TO 20 STEP 2：LOC ATE I，B：PRINT COL1\＄（FIX（ （－16）／2））；：NEXT I
BH $21 \varnothing$ POKE \＆H4E，2：LOCATE 14，17： PRINT＂\＆H4E＝13ø＂：POKE \＆H4 E， $13 \emptyset$
Li 220 FOR I＝16 TO 20 STEP 2：LOC ATE I，18：PRINT COL2\＄（FIX（ （I－16）／2））；：NEXT I
내 230 POKE \＆H4E，3：LOCATE 14，27： PRINT＂\＆H4E＝131＂：POKE \＆H4 E， 131
AA 240 FOR $\mathrm{I}=16$ TO $2 \emptyset$ STEP 2：LOC ATE I，28：PRINT COL3\＄（FIX（ （I－16）／2））；：NEXT I
LA 259 POKE \＆H4E，3：LOCATE 1，1：PR INT＂Normal Printing＂；
PL 260 LOCATE 12，1：PRINT＂XOR Pr inting＂；
KL 270 LOCATE 22，1：PRINT STRING\＄ （4D，CHR $\$(32)$ ）；
DN 28ø LOCATE 22，1：PRINT＂Backgr ound＂；BACK\＄（BACK）；：LOCAT E 22，25：PRINT＂Palette＂； PAL；
BE 29 LOCATE 23，1：PRINT＂Press Q To Quit＂＋STRING\＄（24，CHR （32））；
FA 3øø LOCATE 24，1：PRINT＂Press Esc To Change Palette＂；
11 $31 \emptyset$ LOCATE 25，1：PRINT＂Press Space Bar To Change Backg round＂；
JH $32 \emptyset \mathrm{~KB} \$=$ INKEY $\$:$ IF $\mathrm{KB} \$="$＂THEN $33 \varnothing$ ELSE 320
ED 330 KB\＄＝INKEY\＄：IF KB\＄＝＂＂THEN 336
06340 IF KB $\$=" q$＂$O R K B \$=" Q$＂THE N CLS：END
AG $35 \emptyset$ IF ASC $(\mathrm{KB} \$)=32$ THEN $38 \emptyset \mathrm{E}$ LSE IF ASC（KB\＄）＞＜27 THEN 33ø
N1 $36 \emptyset$ IF PAL $=1$ THEN PAL $=\varnothing$ ELSE PAL＝1
NF 370 COLOR BACK，PAL：GOTO 130
KG $38 \emptyset$ LOCATE 25，1：PRINT STRING\＄ （38，CHR\＄（32））；
KL 39ø LOCATE 24，1：PRINT STRING\＄ （38，CHR\＄（32））；
LL 4 Øø LOCATE 23，1：INPUT＂Enter Color Number（ $\varnothing-15$ ）＂；BAC K
NK $41 \varnothing$ COLOR BACK，PAL：GOTO $13 \emptyset$
DO 1 1øø $\operatorname{PRESET}(X \emptyset, Y \emptyset)$
AC 1 101ø FOR I＝1 TO 3
BN $1 \varnothing 2 \emptyset$ LINE $\operatorname{STEP}(\varnothing, \varnothing)-\operatorname{STEP}(24 \varnothing$ ， 16），COL，B
OL $1 \emptyset 3 \varnothing$ PRESET STEP $(-24 \varnothing, \emptyset)$
6L $104 \emptyset$ NEXT I
EN 1 1ø5ø PRESET（Xø，Yø）
BB 1 Ø6 $\operatorname{FOR} \mathrm{I}=1$ TO 3
HL $1 \varnothing 7 \emptyset$ LINE STEP（ $\varnothing, \varnothing)-\operatorname{STEP}(8 \emptyset, 4$ 8），COL， B
AF 1 ø8 1 PRESET STEP $(\varnothing,-48)$
NK $1 \varnothing 9 \emptyset$ NEXT I：IF COL＝ø THEN GOT O $113 \square$
HO 11øø FOR I＝1 TO 3：FOR $J=1$ TO 3
PP $111 \emptyset$ PAINT（ $\mathrm{X} \emptyset+2 \emptyset+8 \emptyset$ 家 $(\mathrm{I}-1)$ ，Y $\emptyset+$ B＋16京（J－1）），J，3
IA $112 \emptyset$ NEXT J：NEXT I
I6 $113 \emptyset$ RETURN
BK 15øø DIM PAL $\$(1,3)$
KH 151ø FOR I＝ø TO 1：FOR $J=1$ TO 3：READ PAL\＄（I，J）：NEXT J： NEXT I
JB $152 \emptyset$ DATA＂GREEN＂，＂RED＂，＂BROW

N＂，＂CYAN＂，＂MAGENTA＂，＂WHI TE＂
NH $153 \emptyset$ DIM BACK\＄（15）
$66154 \varnothing$ FOR $I=\emptyset$ TO 15：READ BACK $\$$ （I）：NEXT I
PG $155 \emptyset$ DATA＂BLACK＂，＂BLUE＂，＂GRE EN＂，＂CYAN＂，＂RED＂，＂MAGENT A＂，＂BROWN＂
AA $156 \emptyset$ DATA＂WHITE＂，＂GRAY＂，＂L B LUE＂，＂L GREEN＂，＂L CYAN＂， ＂L RED＂，＂L MAGTA＂
OI $157 \emptyset$ DATA＂YELLOW＂，＂HI WHITE＂
OL $158 \emptyset$ BLOCK $\$=$ STRING $\$$（ 8 ，CHR\＄（ 25 5））：A\％＝PEEK（VARPTR（BLOCK \＄）＋1）：B\％＝PEEK（VARPTR（BLO CK（\＄）+2 ）
NG $159 \emptyset$ DEF SEG＝ø：POKE 124，A\％：PO KE 125，B\％：POKE 126，PEEK（ \＆H510）：POKE 127，PEEK（\＆H5 11）
NN $16 \emptyset \emptyset$ DEF SEG：RETURN
EC $2 \boxed{1}$ COL $1 \$(\varnothing)=$ BACK $\$(B A C K):$ COL 1\＄（1）＝PAL\＄（PAL，3）：COL1\＄（ 2）$=$ PAL $\$(P A L, 2)$
CK $2 \boxed{1 \emptyset} \operatorname{COL} 2 \$(\varnothing)=\mathrm{PAL} \$(\mathrm{PAL}, 3): \mathrm{COL}$ 2\＄（1）$=$ BACK $\$$（BACK）：COL2\＄（ 2）$=$ PAL \＄（PAL, 1 ）
E6 $262 \emptyset$ COL $3 \$(\varnothing)=$ PAL\＄$(P A L, 2): C O L$ 3\＄（1）$=$ PAL\＄（PAL，1）：CDL3\＄（ 2）$=$ BACK $\$$（BACK）
IH $2 \emptyset 3 \emptyset$ DEF SEG：POKE \＆H4E， 1
HE 2040 FOR I $=8$ TO 28 STEP 10：LO CATE 5，I：PRINT STRING\＄（ 8 ，CHR（ 128 ））；：NEXT I
KJ $265 \emptyset$ FOR I＝8 TO 28 STEP 1ø：LO CATE 16，I：PRINT STRING\＄（ B，CHR（128））；：NEXT I
MC $2 ø 6 \emptyset$ POKE \＆H4E， 2
MD 2970 FOR $I=8$ TO 28 STEP 1ø：LO CATE 7，I：PRINT STRING\＄（8 ，CHR\＄（128））；：NEXT I
PK 2ø日g FOR I＝8 TO 28 STEP 1ø：LO CATE 18，I：PRINT STRING\＄（ B，CHR\＄（128））；：NEXT I
OL 2690 POKE \＆H4E， 3
PG 21 Fg FOR $\mathrm{I}=8$ TO 28 STEP 19：LO CATE 9，I：PRINT STRING\＄（8 ，CHR\＄（128））；：NEXT I
OK $211 \varnothing$ FOR I＝8 TO 28 STEP 1ø：LO CATE 2ø，I：PRINT STRING\＄（ B，CHR $\$(128)$ ）；：NEXT I
IE $212 \emptyset$ RETURN
Copies of articles from this publication are now available from the UMI Article Clearinghouse．
Yes！I would like to know more about UMI Article Clearinghouse．I am interested in electronic ordering through the following system（s）：
$\square$ DLALOG／Dialorder $\square$ ITT Dialcom $\square$ OnTyme $\square$ OCLC ILL Subsystem
$\square$ Other（please specify）
$\square 1$ am interested in sending my order by mail．
$\square$ Please send me your current catalog and user instruc－ tions for the system（s）I checked above．
Name
Title．
Institution／Company
Department
Address
City＿＿State＿＿Z＿＿＿
Phone（

## TiNTTITICle

## Clearnghouse

Mail to：University Microfilms Internationa
300 North Zeeb Road．Box 91 Ann Arbor，MI 48106

# Advanced 1541 Disk Commands 

Dave Straub


#### Abstract

If you want to go beyond the basics of Commodore disk programming, you'll need to learn direct access disk commands. These powerful commands allow you to read and write individual blocks on a disk. However, since improper use can irretrievably scramble a disk, they are recommended for intermediate and advanced programmers only. You should experiment with them on a scratch disk before attempting to manipulate any important files. The techniques work on any Commodore computer with a 1541 disk drive.


The 1541 disk drive is a complex device, often called an intelligent peripheral because it contains its own microprocessor and operating system. With most computers (such as Apple, Atari, and IBM), the Disk Operating System (DOS) is a program you must load into the computer before using the disk drive. Commodore's DOS, on the other hand, is permanently stored in Read Only Memory (ROM) inside the drive itself.

The Commodore system has some real advantages: DOS does not take up any of the computer's memory, and it's available the instant you turn on the drive. It also makes the 1541 drive independently programmable. By sending direct access commands to the drive, you can read or write to any area on the disk, read or write to the drive's internal memory, and even run your own ML programs in the drive.

In this article we'll cover three commands used to manipulate individual disk blocks. A block, also called a sector, is a small area on the
disk that stores 256 bytes of data. As shown in your 1541 User's Manual, each disk is divided into 35 separate tracks, with each track subdivided into anywhere from 17 to 21 individual blocks or sectors. This yields a total of 683 blocks, each with its own track and block number. For example, the first part of the disk directory is stored in track 18, block 1.

## The Command Channel

The first step in most Commodore disk programs is to open the command channel to the drive. This is a special channel used to send instructions to the drive and check for errors. Open it with a line similar to this:

## 10 OPEN 3,8,15

This opens communications on channel number 3 to device number 8 (the drive) with a secondary address of 15. The channel (sometimes called a logical file) number can be anything from 1-15. Once a channel is open, GET\#, INPUT\#, and PRINT\# statements are used with the channel number to send or retrieve information on that channel. The number following the \# character in these statements must match the channel number used in the OPEN statement. For example, if the channel is opened with OPEN $3,8,15$, then PRINT\#3,"IO" sends an initialization command to the drive on the command channel.

The device number specifies which drive is being accessed. The device number of the 1541 drive is always 8 unless you change it through software or by modifying the drive.

A secondary address of 15 has a
special meaning: It activates the command channel regardless of what channel number is used. For example, OPEN $1,8,15$ or OPEN $15,8,15$ both activate the command channel, using channel numbers 1 and 15 , respectively.

In this article the command channel is used only to send direct access commands to the drive. However, the command channel also serves the important function of relaying drive error messages to the computer, as explained in your 1541 User's Manual.

## Buffer Channels

The command channel's abilities are vital but limited: It can only transmit commands and error messages. To transfer data (information stored on the disk), you must open a second channel. When this is done, the drive sets aside a 256 byte buffer area within its internal memory. It's no coincidence that the buffer is exactly the right size for storing a block of disk data. Since all data moves through the drive's buffers, this type of channel is often called a buffer channel, although data channel might be a more descriptive term. To open a buffer channel, use "\#" as a filename in an OPEN command:

## OPEN 2,8,2,"\#"

This statement tells the 1541 to open buffer channel 2 to device number 8 with a secondary address of 2 , and the special filename "\#" reserves a buffer in the drive. The secondary address can be any number from 2-14.

Now that the channel is open, you can find out which buffer the 1541 has reserved. Use GET\# to
retrieve the first character available from that channel:

## 10 OPEN 2,8,2,"\#":GET\#2,X\$ <br> 20 PRINT "BUFFER"ASC(X\$+CHR\$ (0))"USED" <br> 30 CLOSE 2

This program opens a data channel and retrieves the number of the buffer reserved for that channel. The 1541 has five 256-byte buffers located at these addresses:
Buffer 0 \$0300-03FF (786-1023)
Buffer 1 \$0400-04FF (1024-1279)
Buffer 2 \$0500-05FF (1280-1535)
Buffer 3 \$0600-06FF (1536-1791)
Buffer 4 \$0700-07FF (1792-2047)
In most cases you needn't worry about which buffer is reserved for your data. The 1541 manages the buffers by itself and always reserves one for you unless none is available. However, by adding a number after the \# character, you can force the drive to reserve a specific buffer. For instance, the statement OPEN 2,8,2,"\#1" makes the drive set aside buffer number 1 for channel number 2.

To avoid needless errors, don't specify a buffer unless you really need to do so. The buffers are also the 1541's main data area, and at any given time one or more of them may already be in use. For instance, buffer 4 stores the Block Availability Map (BAM) of the current disk and is almost never available. The 1541 generates a NO CHANNEL error message when you try to use a buffer that's already reserved or try to access a channel that wasn't properly opened.

## Block-Read

The Block-Read command does exactly what the name implies, reading a block of information from the disk and storing it in a data buffer in the drive. Once the block has been read, you can transfer all or part of it to the computer's memory with GET\# or INPUT\# statements.

Block-Read has two alternate forms, one that works as expected and another that doesn't. Despite what your 1541 User's Guide says, don't use the $B-R$ form of BlockRead. Use the alternate form (U1) instead. U1 always reads an entire block in correct order, beginning with the first byte of the block and ending with the last. To see how U1 works, type in and save Program 1
below. Program 1 works as listed on the Commodore 64 and the 128 in 64 mode. For the unexpanded VIC, change line 0 to:
$\begin{array}{llr}\text { Ø POKE } & 36879,30: \mathrm{Xl}=7680 & : \mathrm{X} 2=384 \\ \text { Øø } & : \text { rem } 212\end{array}$
For the Commodore 16 or Plus/4, ignore the :rem numbers at the end of each line (they are for the VIC/64 "Automatic Proofreader" program) and change line 0 to:

Ø $\mathrm{Xl}=3 \varnothing 72$ : $\mathrm{X} 2=2 \varnothing 48:$ COLORø, 2
Before running Program 1, put an unimportant disk in the drive. $\mathrm{Di}-$ rect access commands are very powerful; even a slight typing error in these programs can garble an entire disk, destroying all of its data. Until you have gained some experience with these commands, it's best to practice on a disk that doesn't contain important programs or data.

When you run Program 1, it displays the 256 bytes stored in track 18 , block 0 of your disk. Among other things, this disk block contains the disk name and ID. Line 10 of the program opens the command channel (to send commands to the drive) and line 20 opens the buffer channel to reserve a data buffer. Line 30 contains the BlockRead command (U1). Note that line 30 uses PRINT\#3 to send the U1 command. Block-Read is an instruction to the drive; like other instructions it must be sent via the command channel (in this case channel 3).

The actual command is enclosed in quotation marks. First comes the command itself, followed by several parameters separated by spaces. The first number after U1 is 2, telling the drive to read the block into the buffer reserved for channel 2.

The next parameter must always be 0 to indicate drive number 0 . (This is a holdover from the old Commodore PET dual drives that are numbered 0 and 1 . The 1541 drive is always drive 0 , even when two 1541s with different device numbers are daisy-chained together.) The last two parameters inside quotes are the track and sector numbers of the block you wish to read. In this case, 18 and 0 are used
to read block 0 of track 18 from the disk.

In line 50 of Program 1, GET\#2 retrieves data from the buffer channel. (Since GET\# reads incoming zero bytes as null characterswhich would crash the ASC function with an error message-it's always necessary to concatenate $\mathrm{X} \$$ with CHR\$(0).) Line 70 ends the program by closing both channels. Since channel 2 was the last channel opened, it is the first one closed. Always end a program of this type by closing every channel you opened.

## Buffer-Pointer

U1 always reads a whole block, but in some cases you'll be interested in only part of the block. For example, you might want one program name from a directory block. The BufferPointer command (abbreviated B-P) is designed for just such occasions. It points the drive to a designated byte within the data buffer, allowing you to read only the bytes you want. The general procedure is to read a block into the buffer with U 1 , set the pointer with B-P, then retrieve the desired bytes with GET\#.

Type in and save Program 2, then run it. The program first reads the block from track 18 , block 1 into a buffer. Then B-P sets the buffer pointer to byte 5 . Like other direct access commands, B-P is also enclosed in quotes. The second parameter in the command is 2 , telling the drive to use buffer channel 2 . After 2 comes 5, the number of the byte you want to point at. The remainder of the program simply prints the name of the first program stored on the disk.

## Block-Write

The Block-Write command is the opposite of Block-Read, letting you write a block of data from a buffer to any block on the disk. BlockWrite also comes in two forms, good and bad. Skip the B-W command; it has the same defects as B-R. Use U2 whenever you want to write a block of data to disk.

To see Block-Write at work, first load Program 2, then add the lines listed below as Program 3. Note that line 80 of Program 3 replaces line 80 of Program 2, and be sure to save a copy of this program
before you run it. This program combines all three of the commands discussed so far. First it reads the name of the first program in the disk directory from block 1 of track 18 , then it asks you to type in a new program name. If the new name is less than 16 characters, line 110 "pads" the end of the name with SHIFTed space characters.

You're almost ready to write the new name back to the data buffer. But first it's necessary to set the buffer pointer back to the spot where the old name begins in the buffer (line 120). This step is critical, because GET\# affects the buffer pointer much as PRINT affects the cursor on the screen. Every time GET\# fetches a character from the buffer, the pointer automatically moves one byte forward. Lines 50-70 repeated GET\# 16 times, moving the pointer 16 bytes forward. Thus, before writing the new name back into the buffer, it's necessary to reset the pointer with a second B-P command.

Line 130 writes the new name to the buffer; since the name is data (not an instruction), it's transmitted over the data channel with PRINT\#2. Line 140 sends the U2
command over channel 3 to complete the process, telling the drive to write the entire contents of the buffer back to track 18, block 1 of the disk.

As you've probably gathered by now, the 1541 drive handles disk data in block-sized chunks. Though you may want to change only one or two bytes in a block, it's necessary to read the whole block into the drive, make the changes, then write the altered block back to disk again. There's much more to direct access programming, of course, but you can do a great deal with these few commands, moving freely around the disk to examine or modify whatever you find.

Please refer to "COMPUTEI's Guide to Typing In Programs" in this issue before entering the following listings.

## Program 1: Block-Read Demo

Ø POKE53281,1:X1=1Ø24: X2=55296
:rem 146
5 PRINTCHRS (147)CHR\$ (9)CHR\$ (14 ):FORJ=1TO1 $0:$ PRINT:NEXT
:rem 15
10 OPEN3,8,15 :rem 188
$2 \emptyset$ OPEN2,8,2,"\#" :rem 27
3 Ø PRINT\#3,"U1 2 Ø 18 ø"
: rem 55
$4 \emptyset$ FOR X=Ø TO 255 :rem 79
$5 \emptyset$ GET\# $2, \mathrm{X} \$: \mathrm{Y}=\mathrm{ASC}(\mathrm{X} \$+\operatorname{CHR}(\varnothing))$
:rem 99
$6 \varnothing$ POKEXI $+\mathrm{X}, \mathrm{Y}:$ POKEX $2+\mathrm{X}, \varnothing:$ NEXT
70 CLOSE2:CLOSE3 :rem 242

## Program 2: Buffer-Pointer Demo

| 10 | OPEN3,8,15 | : rem 188 |
| :---: | :---: | :---: |
| $2 \emptyset$ | OPEN2,8,2,"\#" | : rem 27 |
| 30 | PRINT\#3,"U1 2 Ø 18 | $1 "$ |
|  |  | : rem 56 |
| 40 | PRINT\#3, "B-P 2 5" | :rem 221 |
| 50 | FORX=øTO15:GET\#2, X\$ | :rem 49 |
| 60 | IFXS <> CHRS ( 160 ) THEN | PRINTX\$+ |
|  | CHRS ( $\varnothing$ ) ; | : rem 244 |
| 70 | NEXT | :rem 166 |
| 80 | CLOSE2:CLOSE3 | :rem 243 |

## Program 3: Block-Write Demo

$8 \emptyset$ PRINT: PRINT "WHAT IS THE NEW NAME?" :rem 251
90 INPUT $\mathrm{C} \$ \quad$ :rem 96
$1 \varnothing \varnothing$ FORJ=1TO16: DS=DS+CHRS (160) :NEXT :rem 14
$110 \mathrm{C}=\mathrm{LEFT}(\mathrm{C} \$+\mathrm{D} \$, 16)$ : rem 99
$12 \emptyset$ PRINT\#3,"B-P 2 5" :rem 12
$13 \emptyset$ PRINT\#2,C\$ :rem 9
14 (PRINT\#3,"U2 2 Ø 18 1"
:rem 107
2øø CLOSE2:CLOSE3 :rem 29 IBM Filecopy

John Klein and Jeff Klein

Here's a fast and easy way to backup multiple files on your disks for safekeeping. It works on any IBM PC, PCjr, or compatible with at least 64 K RAM and one or two floppy disk drives.

What is rule number one when you use a computer? Always make backup copies of all important files.

But despite one of the most powerful disk operating systems in personal computing, that rule isn't always easy to follow on the IBM. DOS's DISKCOPY utility indiscriminately copies the entire disk, while the COPY command backs up only individual files. Neither allows you to copy groups of specific files from disk to disk or directory to directory very easily. Even if you
have two drives, it's time-consuming to combine files from several disks onto a single backup disk, or to backup a group of updated files. As a result, many of us don't make backups as often as we should.
"IBM Filecopy" offers a solution to this problem. It's a utility program that works on any IBM PC, PCjr, or true compatible with one or two disk drives. Filecopy lets

## Table 1: Using IBM Filecopy

Type of copy wanted:
Same drive, directory "TEST"
Drive B, same directory
Drive B, directory "TEST"

Target path to enter:
|TEST (DOS 2.1 only)
B:
B: \TEST
you backup disks, directory by directory, or selectively backup individual files. These files can be of any type: BASIC, binary, command, etc. The files can be copied to any subdirectory on any other disk or the same disk.

## Using Filecopy

Filecopy is a BASIC program which creates a temporary DOS batch file to copy the specified files to the backup destination. When run, the program first asks you to insert the source disk. This is the disk which contains the files you want to backup. Then the program asks for the source directory of the source disk. If you're not copying from a subdirectory, just type N at this prompt. In either case, Filecopy reads the filenames from the source directory and stores them in an array for later use.

Next the program asks you for the target path, the destination for the backups. Type B: for drive B or A: for drive A (be sure to type the colon after the drive designator- B : instead of B). Then type |directory name if you're copying the files to a subdirectory on the destination disk. You don't have to specify a directory if you're copying the files to the root (default) directory. If you're using a one-drive system, type B: for the target path as if you really have two drives. Never specify the same drive and directory as the source drive and directory, because the program won't copy files onto themselves. (See Table 1 for sample copy procedures.)

Filecopy then displays each filename from the source directory and asks if you want a copy. Simply type $Y$ for each file you want copied, or N for those you don't want
copied. Note: When Filecopy encounters a subdirectory name on your source disk, it's fooled into thinking the subdirectory is a regular file. Since it can't copy subdirectory names, you must answer N when the program asks if you want to backup the subdirectory.

After Filecopy queries you on all of the filenames, it asks for confirmation: "Is this all okay?" If you accidentally typed a wrong Y or N at a previous prompt, type N at this one to get another chance. When you confirm your choices by typing Y, Filecopy stores the names of the files you want copied in a temporary batch file on the source disk. (If the source disk is write-protected, an error message appears and the program halts.) Then it returns you to DOS.

The next step is to type FILECOPY at the DOS prompt. This commands the batch file to copy each of the files you selected from the source disk to the target disk and directory. If you're using a onedrive system, DOS asks you to swap disks as it copies each file.

After the backup is complete, the temporary batch file erases itself off the source disk. This brings up an unavoidable DOS error message, "Insert disk with batch file and press any key when ready.' When this message appears, just press CTRL-BREAK on the PC or $\mathrm{Fn}-\mathrm{B}$ on the PCjr. Another DOS message asks if you want to terminate the batch job. Answer yes. The backup process is now complete. (Table 2 shows the screen messages and responses that should appear during this phase.)

## Additional Tips

If you have another BASIC program in memory before running

Filecopy, remember to save it on disk. Otherwise it will be replaced when you load and run Filecopy.

Filecopy works with all versions of DOS, but subdirectories are supported only in DOS 2.1 or higher. Do not specify directory changes in the target or source paths if you're using an earlier version of DOS.

If you have two drives and generally use the first drive for the DOS disk and the second for your programming disk, change the first statement in line 100 from $\mathrm{P} \$=$ "A:" to $\mathrm{P} \$=$ " $\mathrm{B}: "$. This lets you keep the source disk in drive $B$ and put the target disk in drive $A$.

## IBM Filecopy

Please refer to "COMPUTEI's Guide to Typing In Programs" before entering this listing.


```
CK 190 FOR Z=ø TO FILENUM
EE 2\emptyset\emptyset PRINT "COPY> ";FILE$(Z);
    TAB(24);"?";: COLOR 31,ø
HN 21ø GOSUB 7øø
OA 220 A$=INPUT$(1):IF A$<>"Y" A
    ND A$<>"Y" AND A$<>"N" AN
    D A$<>"n" THEN 220
LC 23ø PRINT SPC (2);A$:COLOR 7,\emptyset
0J 240 IF A$="Y" OR A$="Y" THEN
    TY(Z)=1 ELSE TY (Z)=\emptyset
If 250 NEXT Z
60 26ø INPUT "Is this all okay (
    Y/N) ";A$
DG 270 IF A$="N" OR A$="n" THEN
    CLS:GOTO 19\emptyset
NF 280 IF A$<>"Y" AND A$<>"Y" TH
    EN 26@
LC 29\emptyset '*** batch file creation
    ***
PF 3ø\emptyset OPEN "FILECOPY.BAT" FOR O
    UTPUT AS #1
6J 31\varnothing PRINT #1,"VERIFY ON"
BO 320 FOR Z=\emptyset TO FILENUM
IH 33Ø IF TY (Z)=\varnothing THEN 35\emptyset
HO 34ø PRINT #1,"COPY ";FILE$(Z)
    ;" ";PATH$
IN 35@ NEXT Z
DO 36@ PRINT #1,"REM **% COPY CO
    MPLETE"
66 370 PRINT #1, "ERASE FILECOPY.
    BAT"
AF 38\emptyset CLOSE #1
```


HN 4øの CLS: SYSTEM
AA 410 ' 3 郎 directory read in ar

IK 420 DEF SEG=ø
OK $43 \varnothing$ CLS: COLOR 31, $\varnothing$ : PRINT"One moment please"
LA 44ø COLOR 7, Ø: ON ERROR GOTO 4 60
AD $45 \emptyset$ FILES P\$: ON ERROR GOTO $\varnothing:$ GOTO 47ø
HM 460 BEEP:COLOR 31:CLS:PRINT"C annot read directory":COL OR 7:ON ERROR GOTO Ø: END
BD $47 \emptyset$ DIM TEM\$ (48): LOCATE 3, 1:C OLOR 7:ROWS=ø
LL 48ø POKE 1ø5ø, 3ø: POKE 1ø52,34 :POKE 1ø54, $6:$ POKE 1055,79 :POKE 1ø56,13:POKE 1ø57,2 8
EI $49 \emptyset$ LINE INPUT TEM\$ (ROWS)
PG 5øø IF TEM\$ (ROWS) <>"" THEN RO WS=ROWS+1: GOTO 48D
OE 51ø DIM FILE\$(ROWS*4-1), TY (RO WS:4-1)
HE $52 \emptyset$ ROWS=ROWS-1
6J 53ø FOR $Z=\varnothing$ TO ROWS
FC 54ø FOR Z1=ø TO 3
OE 55ø T\$=MID\$ (TEM\$ (Z), Z1 $\ddagger 18+1,1$ 7)

DD 56 IF T\$<>"" THEN FILE (FILE NUM) $=$ T $\$$ : FILENUM=F ILENUM +1

EA $57 \emptyset$ NEXT $Z 1, Z$
HB $58 \emptyset$ ERASE TEM\$:FILENUM=FILENU M-1
EN $59 \varnothing$ DEF SEG
OF 6øØ * * * ilename **
BP $61 \varnothing$ FOR $Z=\varnothing$ TO FILENUM
CK $62 \emptyset$ A $\$=0$ ": PERIOD= $\varnothing$
CJ $63 \varnothing$ FOR $Z 1=1$ TO 17
EA 64 IF MID\$(FILE $\$(Z), Z 1,1)="$
" THEN 66ø ELSE IF MID\$(F ILE $(Z), Z 1,1)=" . "$ THEN PE RIOD=1
LN 650 A $=$ =A\$+MID\$ (FILE\$ (Z), Z1, 1) KN 660 NEXT 21
EB 67ø FILE $\$(Z)=A \$:$ IF PERIOD $=\varnothing$ T HEN FILE $(Z)=$ FILE $(Z)+" . "$
EO $68 \emptyset$ NEXT Z:RETURN
DD 690 '** r *
FL 7øø DEF SEG=ø:POKE 1ø5ø,PEEK ( 1ø52): RETURN

BM 720 BEEP: COLOR 31, Ø: PRINT "Di rectory does not exist":C OLOR 7,ø:RESUME 5ø
MN 730 BEEP: COLOR 31, $0:$ PRINT:PRI NT: PRINT "Cannot create d irmetory -- reenter path" :COLOR 7, Ø: RESUME $12 \%$

# Apple Text Windows 

Daniel L. Joynt

If you use an Apple II-series computer, you may have cast longing eyes at the flashy windowing capabilities of the Macintosh. What you may not realize is that the Apple II has a builtin windowing feature of its own-the text window. The following techniques work on any Apple II-series computer with at least 48 K RAM.

While it's difficult for an Apple IIseries computer to emulate the slick graphics of the Macintosh, the Apple II does have a simple windowing capability known as the text window. Basically, a text window is a section on a low- or high-resolution graphics screen where text can be printed. The text window is easily controlled, too.

You're probably already famil-
iar with some aspects of the Apple II text window. When the computer is in text mode, in effect the text window covers the entire screenyou can print characters wherever you like. In graphics modes, the text window is confined to four lines at the bottom of the screen. When the four-line window fills up, text scrolls off the top of the window to make room for new text at the bottom. Ordinarily the computer manages the text window automatically. However, with a few simple POKEs you can manipulate the text window on your owncontrolling its size and screen location.

To see a demonstration of four different text windows, type in, save, and run Program 1. To add windowing to your own BASIC
programs, you can use the subroutine in Program 2 (see instructions below).

## Open Your Own Windows

As you know, the Apple text screen is 40 columns wide and 24 rows tall. Any screen location can be defined in terms of an $X$ (column) coordinate and a $Y$ (row) coordinate. $X$ coordinates range from 0 (far left) to 39 (far right). Y coordinates range from 0 (top) to 23 (bottom).

The Apple text window is controlled with four memory locations at decimal addresses $32,33,34$, and 35. By POKEing values in these locations, you can set the boundaries of the window anywhere on the screen. Location 32 defines the left boundary of the text window; it
takes any value from $0-39$ ，corre－ sponding to $X$ coordinate values． Location 33 defines the maximum length of text lines inside the win－ dow，which effectively sets the right boundary；it accepts any value from 1－40．

Memory location 34 defines the top boundary of the text win－ dow．It takes any value from $0-23$ ， corresponding to Y coordinates．Lo－ cation 35 defines the window＇s bot－ tom boundary；it accepts values from 1－24，where 24 is the bottom row of the screen．

To keep a program from crash－ ing，you must keep all the bound－ aries on the screen．For instance， the values in locations 32 and 33 when added together must not ex－ ceed 40．Otherwise，the right boundary would be off the screen． Illogical configurations－such as setting the top boundary below the bottom boundary－also cause a crash．

## Give The Cursor A Home

Once the window is opened，you＇ll want to fill it with text．Unfortu－ nately，resetting locations 32－35 does not automatically relocate the cursor inside the new window．The HOME command sends the cursor to the upper－left corner，but also erases everything inside the win－ dow．To move the cursor less de－ structively，you can use the HTAB and VTAB commands．

HTAB and VTAB set the screen location where all following text will be printed．HTAB moves the text pointer to a specified column $(1-40)$ ，and VTAB moves the text pointer to the designated row （1－24）．Note that HTAB and VTAB act differently when used outside of a text window．

## An Easy Window Routine

Program 2 is a subroutine that cre－ ates a text window of any size and shape and even surrounds it with a border if you like．It uses line num－ bers 10000－10070，but you can re－ number the lines when adding the routine to your own programs． Note that this is a subroutine，not a complete program；certain steps must be followed when using the routine after it has been added to another program．

Before calling the subroutine with GOSUB 10000，you must give each of the following variables a value within the range indicated．In addition to setting these variables， your program should not use the variables $W X$ and $W Y$ ，which the routine uses to draw borders．
Variable Range

| WL | $2-39$ |
| :--- | :--- |
| WR | $2-39$ |
| WT | $2-22$ |
| WB | $2-22$ |
| W\＄ | any single character |
| WI | $0-2$ |

Line 10000 resets the text win－ dow to the size of the entire screen． This insures that HTAB and VTAB place the border properly．In lines 10010－10030 the variable WI de－ fines the print mode of the border． A value of 0 maintains NORMAL mode， 1 sets the mode to INVERSE， and 2 sets it to FLASH．

The variable W\＄defines the character used for the border，which is drawn in lines $10040-10050$ ．If you don＇t want a border，define W\＄ as a null string（ $\mathrm{W} \$={ }^{\prime \prime \prime \prime}$ ）．Line 10060 locates the new text window， setting the left，right，top，and bot－ tom boundaries with the variables WL，WR，WT，and WB，respective－ ly．Note that the left and right boundaries（WL and WR）must be in the range 2－39 to allow room for a border．For the same reason，WT and WB（top and bottom bound－ aries）should be in the range $2-22$ ． Once the window is defined，line 10070 resets the Apple to NORMAL mode，clears the inside of the new text window，and ends the routine．

## Program 1：Window Demonstration

[^4]$6925 \varnothing \mathrm{~W}=$ VAL（Y\＄）
84260 ON W GOSUB 10øø，200ø，3000
，4ø日6
EC 27ø FOR $Z=1$ TO 1øøø：NEXT $Z$
$9928 \varnothing$ LIST
51296 HIME
BF $3 \varnothing \varnothing$ PRINT ：PRINT ：PRINT
CA $31 \varnothing$ PRINT TAB（ 3）；＂WINDOW（＂； CHR\＄$(64+W) ; ")$
E3 320 FOR $Z=1$ TO 1øøø：NEXT Z
$8633 \varnothing$ REM－－DRAW RETURN WINDDW
$68340 \mathrm{WL}=6: W R=34: W T=12: W B$ $=12: W \$=$ CHR $\$(32): W I=$ 1
D4 35 GOSUB 1 1øøøø
62369 PRINT TAB（ 5）；＂PLEASE PRE SS ANY KEY＂；
E3 370 GET Y\＄
9F 38ø GOTO 130
C8 1 øøø REM－－DRAW WINDOW（A）
FA $1 \varnothing 1 \varnothing \mathrm{WL}=2: W R=15: W T=2: W B$ $=\mathrm{B}: \mathrm{W} \$=$ CHR $\$(32): W I=$ 1
49 1ø2ø GOSUB 1 1øøø
DD $103 \varnothing$ RETURN
D9 20øø REM－－DRAW WINDOW（B）
3E $201 \varnothing \mathrm{WL}=26: \mathrm{WR}=39: \mathrm{WT}=2: \mathrm{W}$ $B=B: W \$=" \# ": W I=1$
4A $262 \varnothing$ GOSUB 1 øøøø
DE $2 ø 3 \varnothing$ RETURN
EA 3øøø REM－－DRAW WINDOW（C）
D8 $3 \varnothing 1 \varnothing \mathrm{WL}=2: \mathrm{WR}=15: \mathrm{WT}=16: \mathrm{W}$ $B=22:$ W\＄$=$＂さ＂：WI＝
48 $362 \varnothing$ GOSUB 1 1øøø
DF 3636 RETURN
FB $4 \varnothing \varnothing 6$ REM－－DRAW WINDOW（D）
$94401 \varnothing \mathrm{WL}=26: \mathrm{WR}=39: \mathrm{WT}=16:$ WB $=22: W \$="+": W \bar{I}=1$
4C 4ø2ø GOSUB 1ø0．0
Ef 4036 RETURN
84 1øøøø POKE 32，ø：POKE 33，4ø： POKE 34， 12 POKE 35，24
DB $1 \varnothing \varnothing 1 \varnothing$ IF WI $=\varnothing$ THEN NORMAL
FD $10 \varnothing 2 \varnothing$ IF WI $=1$ THEN INVERSE
$4 E 1$ 1øø3ø IF WI $=2$ THEN FLASH
$891004 \varnothing$ FOR $W Y=W T-1$ TO $W B+$ 1：VTAB WY：HTAB WL－
1：PRINT W\％；：HTAB WR＋ 1：PRINT W\＄：：NEXT
C9 $1005 \emptyset$ FOR WX＝WL TO WR：UTAB WT－1：HTAB WX：PRINT W\＄；：VTAB WB $+1 \%$ HTAB WX：PRINT W\＄；：NEXT
6F 1øø6ø POKE 32，WL－1：POKE 33 ，WR－WL＋1：POKE 34，W T－1：POKE 35，WB
96 $1 \varnothing \varnothing 7 \varnothing$ NORMAL ：HOME ：RETURN

## Program 2：Window Subroutine

```
84 1øøøø POKE 32,ø: POKE 33,4ø:
    POKE 34,ø: POKE 35,24
DB 1øø1\emptyset IF WI = G THEN NORMAL
FD 1øø2\emptyset IF WI = 1 THEN INVERSE
4E 1øø3g IF WI = 2 THEN FLASH
89 1.0ø4ø FOR WY = WT - 1 TO WB +
        1: VTAB WY: HTAB WL -
        1: PRINT W&;: HTAB WR +
        1: PRINT W%;: NEXT
C9 1øø5\emptyset FOR WX = WL TO WR: UTAB
        WT - 1: HTAB WX: PRINT
        W%;: VTAB WB + 1: HTAB
        WX: PRINT W%;: NEXT
6F 1ø\emptyset6\emptyset POKE 32,WL - 1: POKE 33
        ,WR - WL + 1: POKE 34,W
        T - 1: POKE 35,WB
96 1øø7\emptyset NORMAL : HOME : RETURN
```


# COMPUTEI＇s Guide To Typing In Programs 

Before typing in any program，you should familiarize yourself with your computer．Learn how to use the key－ board to type in and correct BASIC programs．Read your manuals to un－ derstand how to save and load BASIC programs to and from your disk drive or cassette unit．Computers are precise－ take special care to type the program exactly as listed，including any neces－ sary punctuation and symbols，except for special characters as noted below． To help you with this task，we have implemented a special listing conven－ tion as well as a program to help check your typing－the＂Automatic Proof－ reader．＂Please read the following notes before typing in any programs from COMPUTE！．They can save you a lot of time and trouble．

Commodore，Apple，and Atari programs can contain some hard－to－ read（and hard－to－type）special charac－ ters，so we have developed a listing system that indicates the function of these control characters．（There are no special control characters in our IBM or TI－99／4A listings．）You will find Com－ modore and Atari special characters within curly braces；do not type the brac－ es．For example，\｛CLEAR \} or \{CLR\} instructs you to insert the symbol which clears the screen on the Atari or Commodore machines．For Commo－ dore，Apple，and Atari，a symbol by itself within curly braces is usually a control key or graphics key．If you see $\{A\}$ ，hold down the CTRL key and press $A$ ．This will produce a reverse video character on the Commodore（in quote mode），a graphics character on the Atari，and an invisible control char－ acter on the Apple．Commodore com－ puters also have a special control key labeled with the Commodore logo． Graphics characters entered with the Commodore logo key are enclosed in a special bracket that looks like this： KA $>$ ］．In this case，you would hold down the Commodore logo key as you type A．Our Commodore listings are in uppercase，so shifted symbols are un－ derlined．A graphics heart symbol （SHIFT－S）would be listed as S．One exception is \｛SHIFT－SPACE\}. When you see this，hold down SHIFT and press the space bar．If a number pre－ cedes a symbol，such as $\{5$ RIGHT $\},\{6$
$\underline{S}\}$ ，or $[<8 Q>]$ ，you would enter five cursor rights，six shifted S＇s，or eight Commodore－Q＇s．On the Atari，inverse characters（printed in white on black） should be entered after pressing the inverse video key．

Since spacing is sometimes impor－ tant，any more than two spaces will be
listed．For example，$\{6$ SPACES $\}$ means to press the space bar six times．Our listings never leave a space at the end of a line，instead moving it to the next printed line as $\{S P A C E\}$ ．For your convenience，we have prepared this quick－reference chart for the Commo－ dore and Atari special characters：

## Atari 400／800／XL／XE

| When you see | Type |  | See |  |
| :---: | :---: | :---: | :---: | :---: |
| \｛CLEAR \} | ESC | SHIFT＜ | 6 | Clear Screen |
| \｛UP\} | ESC | CTRL－ | ＋ | Cursor Up |
| \｛DOWN\} | ESC | CTRL＝ | ＊ | Cursor Down |
| \｛LEFT\} | ESC | CTRL＋ | $\leftarrow$ | Cursor Left |
| ［RIGHT \} | ESC | CTRL | $\rightarrow$ | Cursor Right |
| \｛BACK S\} | ESC | DELETE | 4 | Backspace |
| \｛DELETE\} | ESC | CTRL DELETE | $\underline{1}$ | Delete character |
| 〔INSERT\} | ESC | CTRL INSERT | 1】 | Insert character |
| \｛DEL LINE\} | ESC | SHIFT DELETE | 5 | Delete line |
| \｛INS LINE\} | ESC | SHIFT INSERT | 5 | Insert line |
| 〔TAB） | ESC | TAB | － | TAB key |
| \｛CLR TAB\} | ESC | CTRL TAB | E1 | Clear tab |
| \｛SET TAB\} | ESC | SHIFT TAB | E | Set tab stop |
| \｛BELL\} | ESC | CTRL 2 | （1） | Ring buzzer |
| \｛ESC\} | ESC | ESC | E | ESCape key |

Commodore PET／CBM／VIC 64／128／16／＋4

| When You Read： | Press： |  | See： | When You Read： | Press： |  |  | See： |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \｛CLR \} | SHIFT | CLR／HOME | $\xrightarrow{7}$ | ［1］ | COMMODORE |  | 1 |  |
| \｛HOME \} |  | CLR／HOME | \％ | ［23 | COMM | DORE | 2 |  |
| \｛UP\} | SHIFT | $\dagger$ CRSR $\downarrow$ |  | ［ 3 妇 | COMMODORE |  | 3 |  |
| \｛DOWN \} |  | $\dagger$ CRSR $\downarrow$ | ［ | $\mathrm{E}_{4}$ 习 | COMM | DORE | 4 | ［ |
| \｛LEFT\} | SHIFT | $\leftarrow \text { CRSR } \rightarrow$ |  | 区 5 习 | COMMODORE |  | 5 | ？ |
| \｛RIGHT \} | $\leftarrow \text { CRSR } \rightarrow$ |  | － | 区6日 | COMMODORE |  | 6 |  |
| \｛RVS\} | CTRL | 9 | ［ | $\begin{aligned} & \mathrm{K} \\ & 7 \end{aligned}$ | COMMODORE |  | 7 |  |
| \｛OFF\} | CTRL | 0 |  |  | COMMODORE |  | 8 | － |
| \｛BLK \} | CTRL | 1 |  | \｛ F1 \} |  | $f 1$ |  |  |
| \｛WHT\} | CTRL | 2 | E | \｛ F2 \} | SHIFT | $f 1$ |  |  |
| \｛RED $\}$ | CTRL | 3 | $\pm$ | \｛ F3 \} |  | ${ }_{6}$ |  |  |
| \｛CYN \} | CTRL | 4 |  | \｛ F4 \} | SHIFT | ${ }^{6} 3$ |  |  |
| \｛PUR\} | CTRL | 5 | 炎 | \｛ F5 \} |  | $f 5$ |  |  |
| \｛GRN \} | CTRL | 6 |  | \｛ F6 \} | SHIFT | f5 |  |  |
| \｛BLU\} | CTRL | 7 |  | \｛ F7 \} |  | 77 |  |  |
| \｛YEL\} | CTRL | 8 | TII | \｛ F8 \} | SHIFT | 97 |  |  |
|  |  |  |  | 4 | $\longleftarrow$ |  |  | 艋 |

## The Automatic Proofreader

We have developed a series of simple， yet effective programs that can help check your typing．Type in the appro－ priate Proofreader program listed be－ low，then save it for future use．On the VIC，64，or Atari，run the Proofreader to activate it，then enter NEW to erase the BASIC loader（the Proofreader remains active，hidden in memory，as a machine language program）．Pressing RUN／ STOP－RESTORE or SYSTEM RESET deactivates the Proofreader．You can use SYS 886 to reactivate the VIC／64 Proofreader，or PRINT USR（1536）to reenable the Atari Proofreader．On the Apple，the Proofreader automatically erases the BASIC portion of itself after you activate it by typing RUN，leaving only the machine language portion in memory．It works with either DOS 3.3 or ProDOS．Disable the Apple Proof－ reader by pressing CTRL－RESET before running another BASIC program．The IBM Proofreader is a BASIC program that simulates the IBM BASIC line edi－ tor，letting you enter，edit，list，save，and load programs that you type．Type RUN to activate．

Once the Proofreader is active，try typing in a line．As soon as you press RETURN，either a decimal number（on the Commodore），a hexadecimal num－ ber（on the Apple），or a pair of letters （on the Atari or IBM）appears．The number or pair of letters is called a checksum．Try making a change in the line，and notice how the checksum changes．

All you need to do is compare the value provided by the Proofreader with the checksum printed in the program listing in the magazine．In Commodore listings，the checksum is a number from 0 to 255 ．It is set off from the rest of the line with rem．This prevents a syntax error if the checksum is typed in，but the REM statements and checksums need not be typed in．It is just there for your information．

In Atari，Apple，and IBM listings， the checksum is given to the left of each line number．Just type in the program one line at a time（without the printed checksum）and compare the checksum generated by the Proofreader to the checksum in the listing．If they match， go on to the next line．If not，check your typing：You＇ve made a mistake．On the Commodore，Atari，and Apple Proof－ readers，spaces are not counted as part of the checksum，so be sure you type the right number of spaces between quote marks．The Commodore and Atari Proofreaders do not check to see that you＇ve typed the characters in the right order，so if characters are trans－ posed，the checksum still matches the listing．Because of the checksum meth－
od used，do not type abbreviations， such as ？for PRINT．The IBM Proof－ reader is the pickiest of all；it will detect errors in spacing and transposition．Be sure to leave Caps Lock on，except when typing lowercase characters．

## IBM Proofreader Commands

Since the IBM Proofreader replaces the computer＇s normal BASIC line editor，it has to include many of the direct－mode IBM BASIC commands．The syntax is identical to IBM BASIC．Commands simulated are LIST，LLIST，NEW， FILES，SAVE，and LOAD．When listing your program，press any key（except Ctrl－Break）to stop the listing．If you type NEW，the Proofreader prompts you to press $Y$ to be sure you mean yes．

Two new commands are BASIC and CHECK．BASIC exits the Proof－ reader back to IBM BASIC，leaving the Proofreader in memory．CHECK works just like LIST，but shows the checksums along with the listing．After you have typed in a program，save it to disk． Then exit the Proofreader with the BASIC command，and load the pro－ gram in BASIC as usual（this replaces the Proofreader in memory）．You can now run the program，but you may want to resave it to disk．The version of your program that you resave from BASIC will take up less space on disk and will load faster，but it can no longer be edited with the Proofreader．If you want to convert a program to Proof－ reader format，save it to disk with SAVE ＂filename＂，A．

## Special Proofreader Notes For Commodore Cassette Users

The Proofreader resides in a section of memory called the cassette buffer， which is used during tape LOADs and SAVEs．Therefore，be sure to press RUN／STOP－RESTORE to get the Proof－ reader out of the way before saving or loading a program．If you want to use the Proofreader with tape，run the Proofreader，then enter these two lines exactly as shown，pressing RETURN after each one：

## A $\$=$＂PROOFREADER．$T^{\prime \prime}:$ B $\$="\{10$ SPACES $\}^{\prime \prime}: F O R X=1$ TO $4: A \$=A \$$ ＋B\＄：NEXT <br> FOR $X=886$ TO 1018：A\＄$=A \$+$ CHR $\$$ （PEEK（X））：NEXT：OPEN 1，1，1，A\＄： CLOSE1

Then insert a blank tape and press RE－ CORD and PLAY to save a special ver－ sion of the Proofreader．Anytime you need to reload the Proofreader after it has been erased－for example，after you reload a paritally completed pro－ gram－just rewind the tape，type OPEN1：CLOSE1，then press PLAY．

You＇ll see the message FOUND PROOFREADER．T，but not the familiar LOADING message．Don＇t worry；the Proofreader is in memory．When READY comes back，enter SYS 886.

## Program 1：VIC／64 Proofreader

By Charles Brannon，Program Editor
$1 \varnothing$ PRINT＂\｛CLR\}PLEASE WAIT...": FORI $=886 \mathrm{TO} 1 \varnothing 18$ ：READA： $\mathrm{CK}=\mathrm{CK}+$ A：POKEI，A：NEXT
2ø IF CK＜＞ 17539 THEN PRINT＂ \｛DOWN\} YOU MADE AN ERROR": PR INT＂IN DATA STATEMENTS．＂：EN D
$3 \varnothing$ SYS886：PRINT＂$\{$ CLR \} \{2 DOWN\}P ROOFREADER ACTIVATED．＂：NEW
$4 \varnothing$ DATA $173, \varnothing 36, \varnothing \varnothing 3,2 \varnothing 1,15 \varnothing, 2 \varnothing$ 8，øø1，Ø96，141，151，Øø3，173
50 DATA Ø37，øб3，141，152，øø3，16 9，15ø，141，ø36，øø3，169，øø3
60 DATA 141， $037, ø ø 3,169, ø ø \varnothing, 13$ 3，254，Ø96， $032,087,241,133$
70 DATA 251，134，252，132，253，00 8，2ø1，ø13，24ø，ø17，2ø1，ø32
$8 \varnothing$ DATA $240, \varnothing \varnothing 5, \varnothing 24,1 \varnothing 1,254,13$ 3，254，165，251，166，252，164
$9 \varnothing$ DATA $253, \varnothing 4 \varnothing, \varnothing 96,169, \varnothing 13, \varnothing 3$ 2，21ø，255，165，214，141，251
1 1ø DATA øø3，206，251，øø3，169，ø øø，133，216，169， $019, ~ ø 32,21 \varnothing$
$11 \varnothing$ DATA $255,169,018,032,210,2$ $55,169,58, \varnothing 32,21 \varnothing, 255,166$
$12 \varnothing$ DATA $254,169, \varnothing \varnothing \varnothing, 133,254,1$ 72，151，øø3，192，ø87，2ø8，øø6
$13 \varnothing$ DATA $\varnothing 32,2 \varnothing 5,189,076,235, \varnothing$ Ø3，Ø32，2ø5，221，169，Ø32，Ø32
$14 \varnothing$ DATA $21 \varnothing, 255, \varnothing 32,21 \varnothing, 255,1$ 73，251，øø3，133，214，076，173 150 DATA øø3

## Program 2：Atari

## Proofreader

By Charles Brannon，Program Editor
$1 \varnothing \sigma$ GRAPHICS $\varnothing$
110 FOR I＝1536 TO 17001 RE AD A：POKE I，A：CK＝CK＋A I NEXT I
12ø IF CK＜＞19ø72 THEN ？＂ Error in DATA Stateme nts．Check Typing．＂： END
13ø $A=U S R(1536)$
140 ？？＂Automatic Proof reader Now Activated．
$15 \varnothing$ END
$16 \mathscr{}$ DATA $194,160,0,185,26$ ，3，2ø1，69，24日，7
17ø DATA 2øø，2øø，192，34，2由8，243，96，2ø日，169，74
1日® DATA $153,26,3,260,169$ ， $6,153,26,3,162$
19ø DATA $\emptyset, 189, \varnothing, 228,157$, 74，6，232，224，16
2øø DATA 26B，245，169，93，1 $41,78,6,169,6,141$
21 DATA 79，6，24，173，4，22 B，105，1，141，95

226 DATA 6，173，5，228， 165 ， 6． $141,96,6,169$
23．DATA $6,133,263,96,247$ ．238，125，241，93，6
24 DATA $244,241,115,241$ ， 124，241，76，255，238
 246，B，2ø1
269 DATA $155,245,13,2 \oplus 1,3$ $2,24 \varnothing, 7,72,24,1 \varnothing 1$
276 DATA 2ø3，133，2ø3，104， $45,96,72,152,72,138$
2日月 DATA 72，168，$, 169,128$ $, 145,8 \mathrm{BE}, 29,192,46$
29 DATA 26B，249，165，263， $74,74,74,74,24,165$
3ヵD DATA $161,169,3,145,8 \mathrm{~B}$ ，165，263，41，15， 24
31 DATA $195,161,289,145$ ， $8 B, 169,9,133,263,164$
326 DATA $176,164,168,164$ ， 49，96

## Program 3：IBM Proofreader

By Charles Brannon，Program Editor
1ø＇Automatic Proofreader Ver sion 2．øø（Lines 27ø，51ø，5 $15,517,62 \emptyset, 63 \emptyset$ changed fro m V1．$\varnothing$ ）
$1 \varnothing \varnothing$ DIM L\＄（5øø），LNUM（5øø）：COL OR $\varnothing, 7,7:$ KEY OFF：CLS：$M A X=$ Ø： $\operatorname{LNUM}(\varnothing)=65536$ ！
110 ON ERROR GOTO 120：KEY 15， CHR $\$$（4）+ CHR $\$(7 \emptyset)$ ：ON KEY（1 5）GOSUB 64Ø：KEY（15）ON： GOTO $13 \emptyset$
$12 \emptyset$ RESUME 13Ø
$13 \varnothing$ DEF SEG＝\＆H4Ø：W＝PEEK（\＆H4A）
$14 \emptyset$ ON ERROR GOTO 65Ø：PRINT：P RINT＂Proofreader Ready．＂
$15 \emptyset$ LINE INPUT L $\$: Y=C S R L I N-I N$ T（LEN（L\＄）／W）－1：LOCATE $Y, 1$
 KE 1ø52，34：POKE 1ø54，Ø：PO KE 1ø55，79：POKE 1ø56，13：P OKE 1ø57，28：LINE INPUT L\＄ ：DEF SEG：IF L\＄＝＂＂THEN 15 $\emptyset$
$17 \emptyset$ IF LEFT $\$(L \$, 1)="$＂THEN L \＄＝MID\＄（L\＄，2）：GOTO 17ø
$18 \emptyset \operatorname{IF} \operatorname{VAL}(\operatorname{LEFT} \$(L \$, 2))=\emptyset$ AND MID $\$(L \$, 3,1)="$＂THEN L $\$$ $=$ MID\＄（L\＄，4）
$19 \emptyset$ LNUM＝VAL（L\＄）：TEXT\＄＝MID\＄（L \＄，LEN（STR $\$($ LNUM $))+1$ ）
2øø IF ASC（L\＄）$>57$ THEN $26 \square^{\prime} n$ －line number，therefore command
21ø IF TEXT $\$=" "$ THEN GOSUB 54 Ø：IF LNUM＝LNUM（P）THEN GO SUB 56ø：GOTO 15ø ELSE 15ø
220 CKSUM＝ø：FOR I＝1 TO LEN（L\＄ ）：CKSUM＝（CKSUM＋ASC（MID\＄（L \＄，I））\＆I）AND 255：NEXT：LOC ATE Y，1：PRINT CHR $\$(65+$ CKS UM／16）＋CHR\＄$(65+$（CKSUM AND 15））＋＂＂＋L\＄
236 GOSUB 54ø：IF LNUM（P）$=$ LNUM THEN L\＄$(P)=$ TEXT $\$$ ：GOTO 15 g＇replace line
24ø GOSUB 58ø：GOTO 15ø＇inser $t$ the line
26 TEXT $\$=$＂＂：FOR I＝1 TO LEN（L \＄）：$A=\operatorname{ASC}(M I D \$(L \$, I)):$ TEXT $\$=$ TEXT $\$+$ CHR $\$(A+32$ 亩 $(A) 96 A$ ND $A(123)$ ）：NEXT

27ø DELIMITER＝INSTR（TEXT\＄，＂＂ ）：COMMAND $\$=T E X T$ क：ARG $\$="$＂： IF DELIMITER THEN COMMAND \＄＝LEFT\＄（TEXT\＄，DELIMITER－1 ）：ARG\＄＝MID\＄（TEXT\＄，DELIMIT ER＋1）ELSE DELIMITER＝INST R（TEXT\＄，CHR\＄（34））：IF DELI MITER THEN COMMAND $\$=L E F T \$$ （TEXT\＄，DELIMITER－1）：ARG\＄＝ MID\＄（TEXT\＄，DELIMITER）
$28 \emptyset$ IF COMMAND\＄＜＞＂LIST＂THEN $41 \varnothing$
290 OPEN＂scrn：＂FOR DUTPUT $A$ S \＃1
3øø IF ARG $\$="$＂THEN FIRST $=\varnothing$ ：$P$ ＝MAX－1：GOTO 34Ø
310 DELIMITER＝INSTR（ARG\＄，＂－＂） ：IF DELIMITER＝$\varnothing$ THEN LNUM ＝VAL（ARG\＄）：GOSUB 54ø：FIRS T＝P：GOTO $34 \varnothing$
320 FIRST＝VAL（LEFT\＄（ARG\＄，DELI MITER））：LAST＝VAL（MID\＄（ARG \＄，DELIMITER＋1））
33ø LNUM＝FIRST：GOSUB 54ø：FIRS T＝P：LNUM＝LAST：GOSUB 54ø：I F $P=\varnothing$ THEN $P=M A X-1$
$34 \varnothing$ FOR $X=F$ IRST TO P：N $\$=M$ ID $\$($ STR $\$(\operatorname{LNUM}(X)), 2)+"$＂
350 IF CKFLAG＝ø THEN A $\$=" n: G 0$ TO 370
$36 \emptyset$ CKSUM $=\varnothing: A \$=N \$+L \$(x):$ FOR I $=1$ TO LEN $(A \$):$ CKSUM $=$（CKSU $M+A S C(M I D \$(A \$, I)) * I)$ AND 255：NEXT：A $\$=$ CHR $\$$（ $65+$ CKSUM ／16）＋CHR\＄（65＋（CKSUM AND 1 5））＋＂＂
$37 \emptyset$ PRINT \＃1，A\＄＋N\＄＋L\＄（X）
$38 \emptyset$ IF INKEY $\oint\rangle " "$ THEN $X=P$
39Ø NEXT ：CLOSE \＃1：CKFLAG＝ø
$4 \varnothing \varnothing$ GOTO $13 \varnothing$
$41 \emptyset$ IF COMMAND $\$=$＂LLIST＂THEN OPEN＂lpt1：＂FOR OUTPUT $A$ S \＃1：GOTO $3 \varnothing \varnothing$
$42 \emptyset$ IF COMMAND $\$=$＂CHECK＂THEN CKFLAG＝1：GOTO 29ø
$43 \emptyset$ IF COMMAND\＄＜＞＂SAVE＂THEN 45ø
$44 \emptyset$ GOSUB 6øø：OPEN ARG\＄FOR D UTPUT AS \＃1：ARG\＄＝＂＂：GOTD $3 \varnothing \varnothing$
$45 \emptyset$ IF COMMAND\＄＜＞＂LOAD＂THEN $49 \varnothing$
$46 \varnothing$ GOSUB 6øø：OPEN ARG $\$$ FOR I NPUT AS \＃1：MAX＝ø：P＝ø
47ø WHILE NOT EOF（1）：LINE INP UT \＃1，L\＄：LNUM $(P)=$ VAL（L\＄）： $L \$(P)=M I D \$(L \$, L E N$（STR $\$$（VA $\left.\left.L\left(L()^{\prime}\right)\right)+1\right): P=P+1$ ：WEND
$48 \emptyset$ MAX＝P：CLOSE \＃1：GOTO 13Ø
$49 \varnothing$ IF COMMAND $\$=$＂NEW＂THEN IN PUT＂Erase program－Are you sure＂；L\＄：IF LEFT\＄（L\＄， 1）$=$＂$Y$＂OR LEFT $\$(L \$, 1)=" Y$＂ THEN MAX＝ø：GOTO 13Ø：ELSE $13 \varnothing$
$5 \emptyset \emptyset$ IF COMMAND $\$=$＂BASIC＂THEN COLOR 7，Ø，Ø：ON ERROR GOTO Ø：CLS：END
510 IF COMMAND\＄＜＞＂FILES＂THEN 52ø
515 IF ARG $\$="$＂THEN ARG $\$=" A: "$ ELSE SEL＝1：GOSUB 6øø
517 FILES ARG\＄：GOTO 13ø
$52 \emptyset$ PRINT＂Syntax error＂：GOTO $13 \varnothing$
$54 \varnothing \mathrm{P}=\emptyset:$ WHILE LNUM $>$ LNUM（P）AN D $P$＜MAX：$P=P+1$ ：WEND：RETURN 56の $\operatorname{MAX}=M A X-1: F O R \quad X=P$ TO MAX： $\operatorname{LNUM}(X)=\operatorname{LNUM}(X+1): \operatorname{L} \$(x)=L$ \＄$(X+1)$ ：NEXT：RETURN
58 ．$M A X=M A X+1: F O R \quad X=$ MAX TO $P+$ 1 STEP－1：LNUM $(X)=\operatorname{LNUM}(X-$
 $P)=T E X T \$: \operatorname{LNUM}(P)=$ LNUM：RET URN
6øø IF LEFT\＄（ARG\＄，1）＜＞CHR\＄（34 ）THEN 52ø ELSE ARG\＄＝MID\＄ （ARG\＄，2）
$61 \varnothing$ IF RIGHT\＄（ARG\＄，1）＝CHR\＄（34 ）THEN ARG $\$=$ LEFT $\$$（ARG $\$$ ，LE $N(A R G \$)-1)$
62ø IF SEL $=\varnothing$ AND INSTR（ARG\＄，＂ （＂）$=\varnothing$ THEN ARG $=$ ARG $\$+$＂．BA S＂
$63 \emptyset$ SEL＝ø：RETURN
64ø CLOSE \＃1：CKFLAG＝ø：PRINT＂S topped．＂：RETURN 150
650 PRINT＂Error＂＂；ERR：RESUM E 15\％

## Program 4：Apple Proofreader

## By Tim Victor，Editorial

 Programmer$1 \varnothing \mathrm{C}=\varnothing$ F FOR I $=768 \mathrm{TO} 768+$ 68：READ A：C $=C+A:$ POKE I ，A：NEXT
$2 \emptyset$ IF $C<>7258$ THEN PRINT＂ER ROR IN PRODFREADER DATA STAT EMENTS＂：END
$3 \emptyset$ IF PEEK（ $19 \emptyset * 256$ ）＜$>76 \mathrm{~T}$ HEN POKE 56，$\varnothing: ~ P O K E ~ 57,3: ~ C A ~$ LL 1øø2：GOTO 5ø

## $4 \varnothing$ PRINT CHR\＄（4）；＂IN\＃A\＄3øø＂

$5 \emptyset$ POKE 34，$\varnothing$ ：HOME ：POKE 34，1： VTAB 2：PRINT＂PROOFREADER INSTALLED＂
6ø NEW
$1 \emptyset \varnothing$ DATA 216，32，27，253，2ø1，141
$11 \varnothing$ DATA 2ø8，6ø，138，72，169，$\varnothing$
$12 \emptyset$ DATA $72,189,255,1,261,160$
$13 \emptyset$ DATA $24 \varnothing, 8,1 \emptyset 4,1 \varnothing, 125,255$
$14 \emptyset$ DATA $1,1 \emptyset 5, \varnothing, 72,2 \emptyset 2,2 \emptyset 8$
$15 \emptyset$ DATA $238,1 \varnothing 4,17 \emptyset, 41,15,9$
$16 \emptyset$ DATA $48,2 \emptyset 1,58,144,2,233$
$17 \emptyset$ DATA $57,141,1,4,138,74$
$18 \emptyset$ DATA $74,74,74,41,15,9$
$19 \emptyset$ DATA $48,2 \emptyset 1,58,144,2,233$
$2 \emptyset \emptyset$ DATA 57，141，Ø，4，1ø4，17ø
210 DATA $169,141,96$

# 1 Machine Language Entry Program For Commodore 64 <br> Charles Brannon, Program Editor 

MLX is a labor-saving utility that allows almost fail-safe entry of machine language programs published in COMPUTE!. You need to know nothing about machine language to use MLX-it was designed for everyone. At least 8 K expansion memory is required.

MLX is a new way to enter long machine language (ML) programs with a minimum of fuss. MLX lets you enter the numbers from a special list that looks similar to BASIC DATA statements. It checks your typing on a line-by-line basis. It won't let you enter illegal characters when you should be typing numbers. It won't let you enter numbers greater than 255 (forbidden in ML). It won't let you enter the wrong numbers on the wrong line. In addition, MLX creates a ready-to-use tape or disk file.

## Using MLX

Type in and save the appropriate version of MLX (you'll want to use it in the future). When you're ready to type in an ML program, run MLX. MLX for the 64 asks you for two numbers: the starting address and the ending address. These numbers are given in the article accompanying the ML program.

When you run MLX, you'll see a prompt corresponding to the starting address. The prompt is the current line you are entering from the listing. It increases by six each time you enter a line. That's because each line has seven num-bers-six actual data numbers plus a checksum number. The checksum verifies that you typed the previous six numbers correctly. If you enter any of the six numbers wrong, or enter the checksum wrong, the computer rings a buzzer and prompts you to reenter the line. If you enter it correctly, a bell tone sounds and you continue to the next line.

MLX accepts only numbers as input. If you make a typing error, press the INST/DEL key; the entire number is deleted. You can press it as many times as necessary back to the start of the line. If you enter three-digit numbers as listed, the computer automatically prints the comma and goes on to accept the next number. If you enter less than three digits, you can press either the space bar or RETURN key to advance to the next number. The checksum automatically appears in inverse video for emphasis.

To simplify your typing, MLX redefines part of the keyboard as a numeric keypad (lines 581-584):
$\begin{array}{lllllllll} & \text { H } & \text { I } & \text { O } & & & 7 & 8 & 9 \\ & \text { J } & \text { K } & \text { L } & \text { become } & 0 & 4 & 5 & 6 \\ & \text { M } & , & . & & & 1 & 2 & 3\end{array}$

## 64 MLX Commands

When you finish typing an ML listing (assuming you type it all in one session), you can then save the completed program on tape or disk. Follow the screen instructions. If you get any errors while saving, you probably have a bad disk, or the disk is full, or you've made a typo when entering the MLX program itself.

You don't have to enter the whole ML program in one sitting. MLX lets you enter as much as you want, save it, and then reload the file from tape or disk later. MLX recognizes these commands:

## SHIFT-S: Save <br> SHIFT-L: Load <br> SHIFT-N: New Address <br> SHIFT-D: Display

When you enter a command, MLX jumps out of the line you've been typing, so we recommend you do it at a new prompt. Use the Save command to save what you've been working on. It will save on tape or disk, as if you've finished, but the tape or disk won't work, of course, until you finish the typing. Remember what address you stop at. The next time you run MLX, answer all the prompts as you did before, then insert the disk or tape. When you get to the entry prompt, press SHIFT-L to reload the partly completed file into memory. Then use the New Address command to resume typing.

To use the New Address command, press SHIFT-N and enter the address where you previously stopped. The prompt will change, and you can then continue typing. Always enter a New Address that matches up with one of the line numbers in the special listing, or else the checksum won't work. The Display command lets you display a section of your typing. After you press SHIFTD, enter two addresses within the line number range of the listing. You can abort the listing by pressing any key.

## 64 MLX: Machine Language Entry

$1 \varnothing$ REM LINES CHANGED FROM MLX \{SPACE\}VERSION $2 . \emptyset \emptyset$ ARE $75 \emptyset$ ,765,77ø AND 86Ø :rem 50 $2 \emptyset$ REM LINE CHANGED FROM MLX V ERSION $2 . \emptyset 1$ IS $3 \varnothing \varnothing$ : rem 147
 CHR\$ (8) ; : POKE53281, 1:POKE5 3280,1
:rem 67
$1 \emptyset 1$ POKE 788,52:REM DISABLE RU N/STOP
: rem 119
110 PRINT"\{RVS\}\{39 SPACES $\}$ ";
:rem 176
120 PRINT" $\{$ RVS $\}\{14$ SPACES $\}$
\{RIGHT\} \{OFF $\} \mathbb{E} *\} £\{R V S\}$
\{RIGHT\} \{RIGHT\}\{2 SPACES\} K* $\ddagger\{$ OFF $\}$ K* $\ddagger £\{$ RVS $\} £\{$ RVS $\}$ \{14 SPACES $\}^{\overline{\prime \prime}}$ : rem 250
130 PRINT"\{RVS\} \{14 SPACES \}
\{RIGHT\} EGB\{RIGHT\}
$\{2$ RIGHT $\}\{O F F\} £\{R V S\} £$ [ ${ }^{*} \exists\{$ OFF $\} \mathbb{E} * \exists\{$ RVS $\}$
\{14 SPACES\}": :rem 35
$14 \emptyset$ PRINT"\{RVS\}\{41 SPACES \}"
:rem 120
200 PRINT" $\{2$ DOWN\} \{PUR\} \{BLK \} M ACHINE LANGUAGE EDITOR VER SION 2.ø2\{5 DOWN\}": rem 238
210 PRINT" $\mathrm{K} 5 \exists\{2 \mathrm{UP}\}$ STARTING AD DRESS? $\{8$ SPACES $\}\{9$ LEFT $\} "$;
: rem 143
215 INPUTS: $\mathrm{F}=1-\mathrm{F}: \mathrm{C} \$=\operatorname{CHR} \$(31+11$ 9*F)
: rem 166
220 IFS<2560R(S>4096øANDS<4915 2) ORS $>53247$ THENGOSUB3øøø:G OTO21ø :rem 235
225 PRINT: PRINT:PRINT : rem 180
23 Ø PRINT" $\{5 \exists\{2$ UP $\}$ ENDING ADDR ESS? $\{8$ SPACES $\}$ \{ 9 LEFT\}"; : I NPUTE: $\mathrm{F}=1-\mathrm{F}: \mathrm{C} \$=\mathrm{CHR} \$(31+119$ *F) :rem 20
240 IFE<256OR (E>4096øANDE<4915 2) ORE $>53247$ THENGOSUB 3 Øøø:G OTO23Ø
:rem 183
250 IFE<STHENPRINTCS; " \{RVS \}END ING < START $\{2$ SPACES $\}$ ": GOS UBIøøø:GOTO $23 \varnothing$ :rem 176
$26 \emptyset$ PRINT:PRINT:PRINT : rem 179
3øø PRINT" $\{C L R\} "$; CHR\$ (14):AD=S
: rem 56
$31 \varnothing \mathrm{~A}=1$ : PRINTRIGHT\$("Øøøø"+MID \$(STRS (AD), 2), 5);": ";
:rem 33
315 FORJ=ATO6 :rem 33
$32 \sigma$ GOSUB570:IFN $=-1$ THENJ $=J+N: G$ OTO32б
: rem 228
39 IFN $=-211$ THEN 710 :rem 62
4 IF $=-2 \varnothing 4$ THEN $79 \varnothing$ :rem 64
410 IFN $=-2 \emptyset 6$ THENPRINT:INPUT" \{DOWN \}ENTER NEW ADDRESS"; Z Z
:rem 44
415 IFN $=-2 \emptyset 6$ THENIFZZ < SORZZ > ETH ENPRINT"\{RVS\}OUT OF RANGE" :GOSUB1øøø:GOTO41の: rem 225
417 IFN $=-206$ THENAD $=\mathrm{ZZ}$ : PRINT: GO TO310
: rem 238
420 IF $\mathrm{N}<>-196$ THEN $48 \emptyset$
: rem 133
43ø PRINT:INPUT"DISPLAY:FROM"; F: PRINT, "TO" ; : INPUTT"
:rem 234
$44 \varnothing$ IFF < SORF > EORT < SORT > ETHENPR INT"AT LEAST"; $\mathrm{S}^{\prime \prime}$ \{LEFT\}, N OT MŌRE THAN"; E:GOTO43ø
:rem 159
450 FORI=FTOTSTEP6:PRINT:PRINT RIGHT\$("Øøøø" +MID\$ (STRS (I) ,2),5);":";
: rem $3 \varnothing$
451 FORK=øTO5:N=PEEK (I+K):PRIN TRIGHT\$("øø"+MID\$(STR\$(N), 2), 3);",";
:rem 66

460 GETAS：IFAS＞＂＂THENPRINT：PRI NT：GOTO310 ：rem 25
$47 \varnothing$ NEXTK ：PRINTCHR\＄$(20)$ ；：NEXTI ：PRINT：PRINT：GOTO310
$48 \varnothing$ IFN $<\varnothing$ THEN PRINT ：GOTO $31 \varnothing$
490 A $(J)=N:$ NEXTJ ：rem 199
5øø CKSUM＝AD－INT（AD／256）＊256：F ORI＝1TO6： $\mathrm{CKSUM}=(\mathrm{CKSUM}+\mathrm{A}$（I） ）AND255：NEXT
：rem 200
510 PRINTCHR\＄（18）；：GOSUB570：PR INTCHRS（146）；
：rem 94
511 IFN $=-1$ THENA $=6$ ：GOTO315
rem 254
515 PRINTCHRS（2ø）：IFN＝CKSUMTHE N53 $\quad$
：rem 122
520 PRINT：PRINT＂LINE ENTERED W RONG ：RE－ENTER＂$: \overline{\text { PRINT }: G O \bar{S}}$ UB1øøø：$\overline{\text { GOTO31 }}$ ：rem 176
530 GOSUB2Øøø ：rem 218
540 FORI $=1$ TO6：POKEAD $+I-1, A(I)$ ： NEXT：POKE54272，$\varnothing$ ：POKE54273 ，$\varnothing$
：rem 227
$550 \mathrm{AD}=\mathrm{AD}+6:$ IF $\mathrm{AD}<\mathrm{E}$ THEN $31 \varnothing$
560 GOTO 710
：rem 1 ø8
$57 \emptyset \mathrm{~N}=\emptyset: \mathrm{Z}=\varnothing$
：rem 88
$58 \emptyset$ PRINT＂E£き＂；：rem 81
581 GETAS：IFAS＝＂＂THEN581
：rem 95
$582 \mathrm{AV}=-(\mathrm{A} S=" \mathrm{M} ")-2 *\left(\mathrm{~A}={ }^{\prime \prime}, "\right)-3 *$ （AS＝＂．＂）－4＊（AS＝＂J＂）－5＊（AS＝ ＂$K$＂）$-6 *(A \$=" L "):$ rem 41
$583 \mathrm{AV}=\mathrm{AV}-7 *(\mathrm{~A} \$=" \mathrm{U} ")-8 *(\mathrm{~A} \$=" I "$ ）$-9 *(A S=" O "):$ IFAS＝＂H＂THENA \＄＝＂g＂
：rem 134
584 IFAV $>$ ØTHENA $\$=\operatorname{CHR} \$(48+A V)$
：rem 134
585 PRINTCHR\＄（ $2 \emptyset$ ）；：A＝ASC（A\＄）：I $\mathrm{FA}=130 \mathrm{RA}=440 \mathrm{RA}=32 \mathrm{THEN} 670$
：rem 229
59 （IFA＞ 128 THENN $=-$ A $:$ RETURN
：rem 137
$60 \emptyset$ IFA $<>20$ THEN 630 ：rem 10
610 GOSUB690：IFI＝1ANDT＝44THENN ＝－1：PRINT＂$\{O F F\}\{L E F T\}$
\｛LEFT\}";:GOTO699 :rem 62
620 GOTO57ø ：rem 1 Ø9
630 IFA $<480 R A>57$ THEN58 $\varnothing$
rem 105
$64 \emptyset$ PRINTAS；$: N=N^{\star} 1 \varnothing+\mathrm{A}-48$
：rem 106
$65 \emptyset$ IFN $>255$ THEN $A=2 \emptyset$ ：GOSUB1ø $\varnothing$ Ø：GOTO6øØ
rem 229
$660 \mathrm{Z}=\mathrm{Z}+1$ ：IFZ＜3 THEN5 8 Ø ：rem 71
67 IFZ＝øTHENGOSUB1 $\varnothing \varnothing$ ：GOTO570
：rem 114
680 PRINT＂，＂；RETURN ：rem 240
$69 \varnothing$ S\％$=\operatorname{PEEK}(2 \emptyset 9)+256 * \operatorname{PEEK}(210)$ ＋PEEK（211）
：rem 149
691 FORI $=1 \mathrm{TO} 3: \mathrm{T}=\operatorname{PEEK}(\mathrm{S} \%-\mathrm{I})$
：rem 67
695 IFT＜＞44ANDT＜＞58THENPOKES？－ I，32：NEXT ：rem 205
$7 \emptyset 0$ PRINTLEFT $\$("\{3$ LEFT $\} ", I-1)$ ；：RETURN ：rem 7
$71 \varnothing$ PRINT＂$\{$ CLR \} \{RVS\}*** SAVE * ＊＊\｛3 DOWN ${ }^{\prime \prime}$ ：rem 236
715 PRINT＂\｛2 DOWN\} (PRESS \{RVS \} RETURN\｛OFF\} ALOÑE TO CANCE $\bar{L}$ SAVE $)\{D O W N\} ":$ rem 106
720 F ＝＂＂＂：INPUT＂\｛DOWN\} FILENAM E＂；FS：IFFS＝＂＂THENPRINT：PRI NT：GOTO31 $\varnothing$
：rem 71
730 PRINT：PRINT＂\｛2 DOWN \}\{RVS \}T \｛OFF\}APE OR \{RVS\}D D OFF\} ISK （T／D）＂
：rem 228
740 GETASS：IFAS＜＜＂T＂ANDAS＜＞＂D＂T HEN $74 \varnothing$
：rem 36
$750 \mathrm{DV}=1-7$＊（ $\mathrm{A} S=" \mathrm{D} "):$ IFDV＝8THEN F\＄＝＂Ø：＂＋F\＄：OPEN15，8，15，＂S＂ ＋F\＄：CLOSE15
：rem 212
$760 \mathrm{~T}=\mathrm{FS}: \mathrm{ZK}=\mathrm{PEEK}(53)+256$＊PEEK （54）－LEN（T\＄）：POKE782，ZK／ 25 6
762 POKE $781, \mathrm{ZK}-\operatorname{PEEK}(782) * 256: \mathrm{P}$ OKE780，LEN（TS）：SYS65469
：rem 109
763 POKE78Ø，1：POKE781，DV：POKE7 82，1：SYS65466
：rem 69
$765 \mathrm{~K}=\mathrm{S}:$ POKE 254 ，K／256：POKE253， K－PEEK（254）＊＊ 256 ：POKE780， 25 3
：rem 17
$766 \mathrm{~K}=\mathrm{E}+1$ ：POKE782，K／256：POKE78 $1, \mathrm{~K}-\operatorname{PEEK}(782) * 256: \operatorname{SYS} 65496$ ：rem 235
$770 \operatorname{IF}(\operatorname{PEEK}(783)$ AND1）OR（191AND ST）THEN780
：rem 111
775 PRINT＂\｛DOWN\}DONE. \{DOWN\}": G OTO31ø
：rem 113
$78 \emptyset$ PRINT＂$\{$ DOWN \}ERROR ON SAVE. \｛2 SPACES \}TRȲ AGAIN. ":IFDV $=1$ THEN 720
：rem 171
781 OPEN15，8，15：INPUT\＃15，E1\＄，E 2\＄：PRINTE1\＄；E2\＄：CLOSE15：GO TO72ø
：rem 103
790 PRINT＂$\{$ CLR \} \{RVS \}*** LOAD * ＊＊\｛2 DOWN $\}$＂：rem 212
795 PRINT＂\｛2 DOWN\} (PRESS \{RVS\} RETURN\｛OFF\} ALONE TO CANCE L LOAD）＂：rem 82 8øø FS＝＂＂：INPUT＂\｛2 DOWN \} FILEN AME＂；FS：IFFS＝＂＂THENPRINT：G OTO31の
rem 144
$81 \emptyset$ PRINT：PRINT＂$\{2$ DOWN \}\{RVS \}T \｛OFF\}APE OR \{RVS\}D\{OFF\}ISK （T／D）
：rem 227
820 GETAS！IFAS＜＜＂T＂ANDAS＜＜＂D＂T HEN82 0
：rem 34
$83 \varnothing \mathrm{DV}=1-7$＊（ $\mathrm{A} \$=$＂D＂）：IFDV＝8THEN $F \$=" \varnothing: "+F \$ \quad$ ：rem 157
$840 \mathrm{~T} \$=\mathrm{F}$ ：$: \mathrm{ZK}=\mathrm{PEEK}(53)+256$＊PEEK （54）－LEN（T\＄）：POKE782，ZK／ 25 6 ：rem 2
841 POKE781，ZK－PEEK（782）＊256：P OKE780，LEN（T\＄）：SYS65469
：rem 107
845 POKE780，1：POKE781，DV：POKE7 82，1：SYS65466 ：rem 7ø
850 POKE78の，Ø：SYS65493 ：rem 11
860 IF（ $\operatorname{PEEK}(783)$ AND 1 ）OR（ 191 AND ST）THEN870
：rem 111
865 PRINT＂\｛DOWN\} DONE. ": GOTO31ø ：rem 96
870 PRINT＂\｛DOWN \}ERROR ON LOAD. \｛2 SPACES \}TRY AGAIN. \{D ＂：IFDV＝1THĒN8øø ：rem 172 $88 \emptyset$ OPEN15， 8,15 ：INPUT\＃15，E1S，E 2\＄：PRINTE1\＄；E2\＄：CLOSE15：GO T08øø
：rem 102
1 1øø REM BUZZER ：rem 135
1øø1 POKE54296，15：POKE54277，45 ：POKE54278，165 ：rem 207
1 Øø2 POKE54276，33：POKE 54273，6 ：POKE54272，5 ：rem 42
10ø3 FORT＝1TO2øø：NEXT：POKE5427 6，32：POKE54273， 0 ：POKE5427 2，$\varnothing$ ：RETURN
：rem 202
2øøø REM BELL SOUND ：rem 78 $2 ø \emptyset 1$ POKE54296，15：POKE54277，ø： POKE54278，247：rem 152
2002 POKE 54276，17：POKE54273，4 $\emptyset:$ POKE54272，$\varnothing:$ rem 86
2 Øø3 FORT＝1TOIØØ：NEXT：POKE5427 6，16：RETURN：：rem 57
3øøø PRINTCS；＂\｛RVS\}NOT ZERO PA GE OR ROM＂：GOTOIøøø
：rem 89

## from COMPUTER HOUSE Specialties．．．

## American Covers

Leather Look－Durable
for all Drives，Computers \＆ Monitors－CALL
Axiom Interfaces
Parallax－AT
69.95

Parallax－Ti
Parallax－CD

## Discwasher Spike Masters

FP－1000
59.95

P－1000
49.95

P－500．

## Cari Battery Pack Caring Case 199.95 MPP Modems

1000
89.95

1064
79.95

Video 7 C－64 Modem 39.95

MPP
Interface 1150
Print Buffer 119.95

1200 Baud MPP Modem

## Indus Disk Drives

GT－Atari
259.95

GT－C－64 269.95

GT－Apple
179.95

## Intronic Kameleon

Apple 2C M－100 Interface 69.95

AB Switch Box w／cables 99.00

## Jasco Printer Cable

IBM Printer Cable

## MTR Monitor

IBM－TLL Green or Amber w／swivel \＆tilt base

## Star Micronics，Inc．

SG10
sG10C
SD10
Call
Call
SD15
SR10．
SR15．
SB． Call

## COMPUTER HOUSE Specialties

 P．O．Box 26Belton，MO 64012 Call Toll Free to Order
Outside Kansas call
1－800－255－0390 then 454457
In Kansas Call
1－800－332－0274 then 454457
We accept checks，money order．Visa \＆Master－ Card（include \＃\＆expiration date）．Please add $31 / 2 \%$ for credit card purchases．Personal \＆
Company checks allow 2 weeks to clear．School orders accepted．Price subject to change withou notice．Dealer inquiries invited．Missouri residents add $6: \%$ sales tax．Visa，MasterCard，Cashier＇s Checks or Money Orders．Orders will be shipped next day．Due to our low prices all sales are final． All returns must have return authorization number． Call to obtain one

> COMPUTER House
> Specialifies





| BRODERBUND |  | INFOCOM |  |
| :---: | :---: | :---: | :---: |
| Print Shop-D | 33.95 | Hitchiker |  |
| Karateka-D | 21.95 | Zork I, Il or III |  |
| Champ Loderunner-D | 21.95 | Enchanter | 29.95 |
| Bank Street Writer-D | 44.95 | Deadine | 34.95 |
| Print Shop Graphics-D | 17.95 | Wisbringer | 29.95 |
| Dazzle Draw | 39.95 | ELECTRO | RTS |
| SSI |  | Skytox | . 95 |
| Gemstone W | 21.95 | One on One |  |
| Kamptgrup | 39.95 | Seven Cities | 29.95 |
| Phantasie | 25.95 | Archon | . 95 |
| Questron | 33.95 | Adv. Construction K |  |
| APPLE MISCELLANEOUS |  |  |  |
| Ghostbusters | 25.95 |  |  |
| Flight Simulator II | 34.95 | Sargon III | 33.95 |
| F-15 Strike Eagle | 21.95 | Dollars \& Sen |  |
| Summer Games | 25.95 | PFS File |  |
| Micro League Baseball | 29.95 | PFS Write | 79.95 |
| Star League Baseball | 23.95 | PFS Report | 79.95 |
| Wizardry/Proving | 33.95 | Multiplan | 84.95 |
| Ultima III | 39.95 | Supercalc III | 124.95 |
| Bruce Lee | 25.95 | Sideways | 39.95 |
| Millionaire | 33.95 | Crosstalk | 129.95 |
| Death/Carribean | 21.95 | Jane w/Mouse |  |
| Felony | 21.95 | BPI Sotware |  |

## Computatbility

P.O. Box 17882, Milwaukee, WI 53217 ORDER LINES OPEN Mon-Fri 11 a.m. -7 p.m. CST • Sat. 12 p.m. -5 p.m. CST To Order Call Toll Free

## 800-558-0003

For Technical Info, Order Inquiries, or for Wisc. Order 414-351-2007
ORDERING INFORMATION: Please specify system. For fast delivery send cashier's check, money order or direct bank transters. Personal and company checks allow 2 weeks to clear. transters. Personal and company checks aliow 2 weeks to clear.
Charges for COD are $\$ 3.00$. School Purchase Orders welcome. In Charges for
CONTINENTAL USA, include $\$ 3.00$ shipping per software order. CONIINENTAL USA, include $\$ 3.00$ shipping per software order.
Include $4 \%$ shipping on all Hardware orders, minimum $\$ 4.00$. Include 4\% shipping on all Hardware orders, minimum \$4.00.
Mastercard \& Visa please include card \# and expiration date. WI Mastercard \& Visa please include card \# and expiration date. W
residents please add 5\% sales tax. HI, AK, FPO, APO, Canadian orders - add $5 \%$ shipping, minimum $\$ 5.00$. All other foreign orders, please add $15 \%$ shipping, minimum $\$ 10.00$. All goods are new and include factory warranty. Due to our low prices, all sales are final. All defective returns must have a return authorization number. Please call 414-351-2007 to obtain an RA\# or your return will NOT be accepted for replacement or repair. Prices and return will
availability are subject $n$ n change without notice.
0

## SUPER PRINTER PACKAGES

SG-10 \& G-WIZ
Panasonic 1091 \& G-WIZ
Panasonic 1090 \& G-WIZ
Legend 880 \& G-WIZ
Legend 1080 \& G-WIZ
Citoh 8510AP \& G-WIZ
Super Printer Packages have no extra 364
added when shipped in Continental USA
MODEMS
Westridge AA/AD 69.95 for C-64
Total Tele Modem 49.95 PRINTER
Mighty Mo ...... 69.95
1660 Modem ... 49.95 INTERFACES
INDUS
Indus GT for C-64 239 Data Share PPI .. 49.95
Cardco G +
C-O4 SUPER SPECIALS

## Slap Shot Hockey-D . . 14.95 Mastering The Sat-D 49.95 The Perfect Score-D . . 43.95 Mirage Database Manager Report Generator-D . 49.95 <br> Mirage Professional Word Processor-D . . . 49.95 Super Spectial Prices Eilective Now Thin Aupust 31 . 1985

## COMMODORE SOFTWARE

## ACCESS

Beachhead-D/T
Raid/Moscow-D/
Raid/Moscow-D/T
Scrolls of Abadon- $\mathrm{D} / \mathrm{T}$
Mach V-Cart $\quad 23.95$
Mach V-Cart ......... 23.95 Mastertype-D/Cart
Beachead II-D ....... 27.95 Strip Poker-D

## BATTERIES INCLUDED

## Consultant-D 64

Paperclip w/Spellpak-D 79.9
Papercip W/Spellpak-D 79.95 Stealth-D
Super Busscard II 129.95 Bungling Bay-D
Home Organizer Iterns-D 16.95 Dr. Creep-D
B.I. 80 Card 109.95 On-Field Tennis-D/T

Cal-Kit ............ 34.95 F-15 Strike Eagle-
VIP Terminal-D
COMMODORE Doodle-D
Easy Calc-Cart ...... 34.95 Ghost Busters-D
Easy Mail-D ......... 19.95 Koala Printer-D
Easy Script-D ....... 44.95 Karateka-D
Easy Spell-D . . . . . . . . 19.95 Print Shop-D
Logo-D . . . . . . . . . . 49.95 Amazon-D
$\begin{array}{llll}\text { The Manager-D } & \ldots & 34.95 & \text { Rendezvous/Rama-D } \\ \text { Suspended-D } & & 29.95\end{array}$
Suspended-D $\ldots . . . .29 .95$ Farenhelt 451-D
Starcross-D
Deadline-D . ......... 29.95 Dragonworld-D
Cutthroats-D ......... 29.95 Shadow Keep-D
The Suspect-D . . . . . 29.95 Spy vs. Spy-D Zork I.II or III-D ..... 29.95 Stress Relax $\begin{aligned} & \text { Blux Max } \\ & \text { B/T }\end{aligned}$

## ELECTRONIC ARTS Ultima IV-D

Sky Fox-D ......... 24.95 Ulitima II-D
Mail Order Monster-D 24.95 Micro-League Adv. Construction-D 29.95 Baseball-D Racing Destruction-D 24.95 Home Pak-D See Atari Section for Rest of
Items and Prices
INFOCOM
Enchanter-D
Planetfall-D
Sorcerer-D
Hitchiker-D
Wisbringer-D
SSI
Carrier Force-D
Questron-D .
Broadsides-D
Comp. Quarterback-D
Computer Ambush-D Kampfgruppe-D ..... 41.95
Oper. Market Garden-D 34.95 Gemstone Warrior-D 23.95 Imperium Galactium-D 27.95
Phantasie-D

## Lyco Computer Marketing \& Consultants



## OVER 2000 SOFTWARE TITLES IN STOCK

## COMPUTER CARE

## BIB

disk drive
CLEANER............ $\$ 12.75$
COMPUTERCAREKIT .. $\$ 1975$

## NORTRONICS DISK DRIVE

 CLEANER with softwareREG. 49.95 NOW 19.95
software tor IBM-PC. Atan. Vic Apple. TI.
DISK CLEANER
REFILL.
s29
.51475
CASSDRIVECLEANER... $\$ 995$ MEDIA BULKERASER ... $\$ 4675$

## NEC

PC8201 Portable
NECB1 64 K Computer
System ............... NECB2 128 K Computer
System
C8221 Thermal Pan
SC822 PC82018K RAMChip...s 99 PC820632K RAM Cart... S 299 PC300 Modem.......... S 65 PC8801 MSDOS

16 Bit Card..

## PRINTING PAPER

3000 SHEETS FANFOLD.. 1000 SHEETS
FANFOLD............ $\$ 19.75$ 1000 SHEETLETTER... $\$ 21.95$ 200 SHEETS LETTER.... 58.99 150 RAG STATIONARY... 510.99 MAILING LABELS $(1, n)$... $\$ 9.95$ $14 \times 111000$
FANFOLD
$\$ 2475$

## INNOVATIVE CONCEPTS

Flip-n-File 10
Flip-n-File 15
Flip-n-File 15 -n-
Flip-n-File 50
Filp-n-File 50 Loock
Flip-n-ile Rom
Flip-n-File Rom

## DRIVES

MSD
SD1 Drive
SD2 Drive
.229

INDUS
GT Atari........ 219
GT Commodore............... 239
GT Apple w/ Controller.................... 169

## DISKETTES



5/4": SKC-DSDD $\quad 15.99$

## ELEPHANT <br> 

MAXELL
$51 / 4$." MD-1.................. 16.99
$51 / 4$. MD-2...........
(Box 10)

## IBM-PC <br> SOFT-WARE

*LOTUS
$\begin{array}{ll}\text { Lotus } 1-2 \cdot 3 . . . . . . . . . . . . . . . .309 .00 ~ \\ \text { Symphony } & 439.00\end{array}$
*ASHTON-TATE
Framework................. 385.00
d Base II
d Base $11 i$
d Base il upgrade......... 1385.00
*PARADISE
5.Pak Multifunction.... 179.00
Modular Graphics...... 289.00

Modular Graphics......... 289.00
Modular Graphics Card..... 315.00

IBM-PC COMPATABLE

CORONA
PPC 22A
Portable 256K-Amber............1f99 PPC 22G
Portable 256-K-Green............ 1699
Portable 256K-10Meg............ 2899 Portable $256 \mathrm{~K}-10 \mathrm{Meg}$............ 2899
CORI 28K 128K RAM....... 1599

Zenith
2-150.
Call
Leading Edge
PC Compatable
Call
*LEADING EDGE Nutshell...................... 65.95 LEWP Merge Print........... 65.00 LE Spell Correction...... 169.00

## *QUADRAM

Quad Jr. Exp. Chassis.... 519.00 Quad Jr Exp. Memory.... 209.00 Quad Memory Jr......... 209.00
Quadcolor L

## *STB

Super R10-64K
$\begin{array}{ll}\text { Super R10-64K } & \\ \text { Super R....... } 279.00 \\ 10.192 \mathrm{~K} & 399.00\end{array}$
Super R10-256K............. 4499.00 Graphics Plus II ........... 339.00
*PARADISE
Multi-Display Card....... 335.00
CONTINENTAL

## TOLL FREE 1-800-233-8760



## RISK FREE POLICY

In-stock items shipped within 24 hours of order. No deposit on C.O.D. orders. Free shipping on prepaid cash orders within the continental U.S. Volume discounts available. PA residents add sales tax. APO. FPO and international orders add $\$ 5.00$ plus $3 \%$ for priority mail sevvice. Advertised prices show $4 \%$ discount for cash, add $4 \%$ for MasterCard or Visa. Personal checks require 4 weeks' clearance before shipping. Ask about UPS Blue and Red label shipping. All merchandise carried under manufacturer's warranty. Free catalog with order. All items subject

## 1 ATARI $\pi$

 CALL
.. .169
.44
. .555
.285
. .109

SYNAPSE


## SCARBOROUGH Net Worth. <br> Mastertype Mastertype <br> Mastertype's Filer

## SPINNAKER

Delta Drawing Room ..... 19.95
Cosmic Life Room Cosmic Life Room........ 19.95
Up for Grabs Room...... 19.95

SSI
Baseball.
Question.
50 Mission Crush Broadsides
Computer Ambush

| TrilliumShadowkeep $\ldots . . . . . .$$\$ 26.75$ <br> Fahrenheit 451$.. . . .$$\$ 6.75$ |
| :---: |
|  |  |
|  |  |
|  |  |

## MICROPOSE

 Solo Fli Spitfire Ace. F-15 Strike Eagle 22.7522.75
19.95
22.75

CONTINENTAL
Home Accountant..........44.75
1985 Book of Atatri Software... 16.95
SUBLOGIC
Flight Simulator II......... 32.75
Night Mission Pinbail.... 18.75
PERSONAL
PERIPHEIALS
Super Sketch-Atari....... 32.95

## BRODERBUND

 Stealth..

## BUSINESS

## VIICCALC $\quad \$ 15975$

 Lemter perfectr 5900 data perfect sb9.75 FLLE MANAGER $\quad$ S69 75 HOME FILE MGR ..... $\$ 69.75$
## ADVENTURE

Uishee ${ }^{\text {is isassembier.........29.95 }} 29$

|  |
| :---: |
|  |  |

## EASTERN HOUSE <br> Monkey Wrench $11800{ }^{24}{ }^{24.95}$

## CONTINENTAL




| $\underset{\substack{\text { WICO } \\ \text { Soyticks) } \\ \text { 15.97 } \\ \text { Bat Hande }}}{\text { S. }}$ |
| :---: |
|  |  |
|  |  |

## HAYES

Smartmodem 300.
Smartmodem ${ }^{12000}$
Micromodem IIE
Chronograph
Smart Com ili.

TELE LEARNING AP-250 (ApP(e) ............ 10.9595


## appo

## COMMODORE

## Scarborough <br> Songwriter <br> Picturewrit <br> Phi Beta F Mastertype Run $/$ Money Run $f$ Mone <br> Microprose Solo Flight <br> NATO <br> Spittire <br> F. 15 Strike <br> Air Rescue <br> Baseball <br> Questron <br> Germany 1985 <br> 50 Missions <br> Spinnaker Alphabet <br> Story Machine Kids on Keys <br> Grandma <br> Snooper Troop

## Broderbund

Bank St Writer
Bank St. Filer
Bank St Mailer
Bank St. Spell
Mask of Sun
Print shop Lode Runner

## Graphics Tablet

## Supersketch

Kolala

## ${ }^{189}$ MODEMS

## MICROBITS <br> MPP $\left.1000 E^{(A A B A}\right)^{49}$ MPP 1064 C.644 6995

ANCHOR Molksmodem Mark VII.............. auto ans/dial) Mark VII...<br>(1200 band)<br>259.00

## $\star$ SUPER SPECIAL! $\star$

## AMDEK

300 Green....
300
310 Amber
310 Amber IBM
Color 500 Composite
Color 600
Color 700

PANASONIC
DT 1300 RG1 composite

125
139
155
245
369
429
495
569
SAKATA SC. 100 Color STS 1 Stand.... SG 1000 Green

PRINCETON GRAPHICS MAX-12 Amber
329 SR-12 RGB

| 2 |
| ---: |
|  |
| 219 |
| .29 |
| .99 |
| 109 |
|  |
| 1 CS |
| 189 |
| 475 |
| 599 |

## COMMODORE

Simons Basic
Assembler 64..
Loger $64 \ldots$
Pilot 64
Easy Cale...
Easy Script......
C 1541 Disk Drive
C 1541 Disk Drive
C 1702 Monitor
C 1531 Datasette
C 1660 Auto Moderm.
C 1660 Auto Modem ............ 85

SS1
(C-64)
Computer Baseball......
Field of Fire.................. Field of Fire. Computer Quarterback Questron .................... 24.7

## Scarborough

Songwriter
Phi Beta F
Mastertype
Run f Money
Net Worth .

## $\$ 42.75$

$\$ 42.75$
$\$ 42.75$ $\$ 42.75$
$\$ 24.95$
32.95
$\$ 22.95$

## SUBLOGIC

Flight Simulator II. 32.75
Night Mission Pinball.....22.75

PERSONAL PERIPHERALS
Super Sketch $64 \ldots \ldots . . .32 .75$ Printer Utility .................... 18.75

KOALA
(C-64)

## CARDCO

## C/01 Write Now

29.95

C/O2 Write Now - 64
D/01 Mail Now - 64.
D/04 Spell Now - 64 D/02 Utility Desk
CSD-1 Disk Drive (new) . MOD-1 Modern (new) D/03 Tax Payer (new) . D/07 Calc Now/64 (new) . . D/08 SUper Printer Utility D/08 Super Printer
Utility.
CK/1 Numeric KeyPad ... 34.95
DC/ 1 Data Cassette .... 39.95
CB/5 5 Slot
Board C-64
CR/1 Light Pen .......... 29.75
CE/1 Cassette Interface . . 29.75 CB/3 3 Slot Board Vic-20 CB/6 6 Slot Board Vic-20.

HES Games 84
22.95

Omni Writer/Spell ....... 34.95 HES Mon 64. Microsoft Multiplan ...... 55.00
Type N Write ........... 19.95
Turtle Graphics II ....... 23.95
Cell Defense ............ 22.95
Paint Brush . ............. 12.95

Tri Math ................ 22.95
Graphics Basic ......... 27.95
HES Kit ................ 29.95
Millionaire
64 Forth
HES Writer 64

## NOVATION

## Smart Cat Plus <br> Smart Cat Plus

Smart Cat 103/212 Auto Cat. 212 Auto Cat
Apple Cat II...
Apple Cat 212

CARDCO MOD. 1 (C.64) CALL
NESTRIDGE (C-64) MITEY MO (C-64) 1660 AUTO MODEM (C.64) $\begin{array}{r}\text { CALL } \\ \hline\end{array} \quad 85$
COMPUSERVE ............ 23.95

BATTERIES INCLUDED Paper Clip
Spell Pak..
Consultant
Paper Clip
w/Spell Pa
Home Pak
Bus Card
Bus Card............
80 Column Board

Microprose
Solo Fligh
$\$ 22.75$

NATO
F-15 Strik
Air Rescue


TAXAN
210 Color
115 Green
400 Color RG 410 Color RGB 420 Color IBM
121 Green IBM
122 Amber IBM

Comcolor 1 Composite Green. 199

AMERICA'S MAIL ORDER HEADQUARTERS LYCO COMPUTER
WORLD'S LEADER IN SALES \& SERVICE


# COMPUTER WAREH:OUSE 

(In FL) 305-274-3680; 1-800-372-0214 7222 S.W. 117th Avenue, Miami, FL 33183

Add $3 \%$ for shipping and handling charges. Ad prices reflect $3 \%$ cash discount Credit card orders should add $3 \%$. Prices subject to change without notice

Professional Handicapping Systems
by Irofessor Gones

## GLD. Thoroughbred "Gold" EditionTM

A "Full" featured thoroughbred analysis designed for the professional and serious
EGLD. Enhanced "Gold" EditionTM
Gold" Editon with complete Master Bettor TM system integrated onto the same disk. This powertul program will transter all horses and scores to the bet analysis with a "single keystroke." (Master BettorTM included) \$199.95 complete
GLTD. Limited "Gold"TM
Enables Protessional Handicappers to assign specific values to the racing variables "they" feel are important. Create program weight based on a particular rack and fine tune it for maximum win percentage. This program is designed tor "ease of use" The user needs no programming experience. (contains integrated Bettor $\mathbf{T M}$ ) $\$ 299.95$ complete

GD. Gold Dog Analysis ${ }^{\text {TM }}$
The only protessional dog handicapper on the market, includes
$\begin{array}{lll}\text { 1) Speed } & \text { 4) Post Last } & \text { 7) Running Style } \\ \text { 2) Post Today } & \text { 5) Distance } & \text { 8) Weight } \\ \text { 3) Kennel } & \text { 6) Condition } & \text { 9) All new internal weighting }\end{array}$
If you are near a greyhound track, you can't afford not to use this program.
$\mathbf{\$ 1 4 9 . 9 5}$ complete (with integrated Master BettorTM) \$199.95
Limited Dog ${ }^{\text {TM }}$ \$299.95
PPX. Professor Jones' Football Predictor, Prof. Pix ${ }^{\text {TM }}$ Complete Football Analysis with Data-Base.
$\begin{array}{lll}\text { 1) Overlays } & \text { 3) "Super Plays" } & \text { 5) Data Base Stats }\end{array}$ 2) Point Spreads 4) "Over/Under" bets 6) Holds "100" teams \$49.95 complete Highest percentage of winners 1984

MHH. Master Harness Handicapper ${ }^{\text {TM }}$
Protessional software designed to provide a thorough analysis of all trotter and pacer races in North America and Canada
\$159.95 complete
with integrated Master BettorTM $\$ 199.95$
NBA. Basketball ${ }^{T M}$
This data base managed analysis will provide the user with "AlL" betting situations while storing relevant information on the disk.
$\mathbf{\$ 9 9 . 9 5}$ complete w/Manual $\quad \$ 129.95$ NBA/College Version
LOT. LOTTERY ANALYSISTM
Statistical comparison program designed to detech subtie patterns in wining lottery number.
$\$ 79.95$ complete w/Manual
$\$ 99.95$ with Lotto

## BROCHURE AVAILABLE

IBMTM APPLETM TRS-80 ${ }^{\text {TM }}$ CPM ${ }^{\text {™ }}$ COMMODOREIM

Prof. Jones 1940 W. State St. Boise, ID 83702

## 릉 <br> 48 HR. FREE SHIPPING

## CALL

208-342-6939
TERMS: FREE SHIPPING ALL SOFTWARE. Add $\$ 6.00$ hardware / $\$ 6.00$ C.O.D. I UPS Blue $\$ 6.00$ / Out of Country $\$ 9.00$ ID Residents $4 \% / 3$ weeks per sonal checks / Cash price only add $2 \%$ Visa, MC / Prices sub ject to change.

## WHITE HOUSE 1-717-322-7700 



# What the world really needs is a 99 cent Double Sided, Double Density Diskette with a LIFETIME WARRANTY! 

 And DISK WORLDI has it. Introducing Super Star Diskettes: the high quality diskette with the lowest price and the best LIFETIME WARRANTY!In the course of selling more than a million diskettes every month, we've learned something: higher prices don't necessarily mean higher quality.
In fact, we've found that a good diskette manufacturer simply manufactures a good diskette...no matter what they charge for it. (By way of example, consider that none of the brands that we carry has a return rate of greater than 1/1,000th of 1 percent!)
In other words, when people buy a more expensive diskette, they aren't necessarily buying higher quality.
The extra money might be going toward flashier advertising, snazzier packaging or simply higher profits

But the extra money in a higher price isn't buying better quality.

All of the good manufacturers put out a good diskette. Period.

## How to cut diskette prices

....without cutting quality.
Now this discovery posed a dilemma: how to cut the price of diskettes without lowering the quality.
There are about 85 companies claiming to be "diskette" manufacturers.
Trouble is, most of them aren't manufacturers
Rather they are fabricators or marketers, taking other company's components, possibly doing one or more steps of the processing themselves and pasting their labels on the finished product.
The new Eastman Kodak diskettes, for example, are one of these. So are IBM $51 / 4^{\prime \prime}$ diskettes. Same for DYSAN, Polaroid and many, many other familiar diskette brand names. Each of these diskettes is manufactured in whole or in part by another company!
So, we decided to act just like the big guys. That's how we would cut diskette prices...without lowering the quality.
We would go out and find smaller companies to manufacture a diskette to our specifications...specifications which are higher than most... and simply create our own name brand" diskette.

Name brand diskettes that offered high quality at low prices.

## DISKETHESTORAGE

PERFECTDATA DIAL 'N FILE
Terrific! Holds $105 \%$ diskettes. Just flip the lever and they all slide up for easy access and identification. Grey with smoked plastic front
\$2.75 Ea. + . 35 Shpng.
DISK CADDIES
The original flip-up holder for $105 \%{ }^{\prime \prime}$ diskettes. Beige or Grey only.
\$1.65 ea. + . 20 Shpng.
DISKETTE 70 STORAGE
Dust-free storage for $705 \%{ }^{2}$ " diskettes. Six dividers included. An excellent value. \$11.95 ea. + \$3.00 Shpng.


HOURS:
Human: 8AM-6PM Central Time, Monday through Friday Answering Machine: 6PM-8AM, All Times MCI MAIL: 24 hours a day.


Super Star diskettes are sold in multiples of 50 only. Diskettes ar shipped with white Tyvec sleeves, reinforced hubs, user ID labels and write-protect tabs

## Boy, did we get lucky. Our Super Star

 Diskettes are the same ones you've been using for years... without knowing it.In our search for the low priced, high quality diskette of our dreams, we found something even more interesting.
We found that there are several manufacturers who don't give a hoot about the consumer market for their diskettes. They don't spend millions of dollars in advertising trying to get you, the computer user, to use their diskettes.
Instead, they concentrate their efforts on turning out the highest quality diskettes they can...because they sell them to the software publishers, computer manufacturers and other folks who (in turn) put their name on them...and sell them for much higher prices to you!

After all, when a software publisher or computer manufacturer or diskette marketer puts their name on a diskette, they want it to work time after time, everytime. (Especially software publishers who have the nasty habit of copyprotecting their originals!)

## HOW TO ORDER:

## ORDERS ONLY

 1-800-621-6827(In Illinois: 1-312-944-2788)
INQUIRIES:
1-312-944-2788
FOR FASTEST SERVICE, USE NO-COST MCI MAIL: Our address is DISKWORLD. It's a FREE MCI MAIL letter. No charge to you. (Situation permitting, we'll ship these orders in 24 hours or less.)
SHIPPING: $5 \%^{*} \& 31 \mathrm{~h}^{*}$ DISKETTES-Add $\$ 3.00$ per each 100 or fewer diskettes. OTHER ITEMS: Add shipping charges as shown in addition to other shipping charges. PAYMENT: VISA, MASTERCARD and Prepaid orders accepted. COD ORDERS: Add additional $\$ 3.00$ special handling charge. APO, FPO, AK, HI \& PR ORDERS: Include shipping charges as shown and additional $5 \%$ of total order amount to cover PAL and insurance. We ship only to United States addresses, except for those listed above. TAXES: Illinois residents, add $8 \%$ sales tax.

MINIMUM ORDER: $\$ 35.00$ or 20 diskettes.

Super Star Diskettes. You already know how good they are. Now you can buy them...cheap.
Well, that's the story.
Super Star diskettes don't roll off the boat from PagoPago or emerge from a basement plant just east of Nowhere.

Super Star diskettes have been around for years...and you've used them for years as copy-protected software originals, unprotected originals. Sometimes, depending on which computer you own, the system master may have been on a Super Star diskette. And maybe more than once, you've bought a box or two or more of Super Star diskettes without knowing it. They just had some "big" company's name on them

Super Star Diskettes are good. So good that a lot of major software publishers, computer manufacturers and other diskette marketers buy them in the tens or hundreds of thousands.

We buy them in the millions.
And than we sell them to you.
Cheap.

## When every little bit counts,

it's Super Star Diskettes.
You've used them a hundred times...under different names

Now, you can buy the real McCoy, the same diskette that major software publishers, computer manufacturers and diskette marketers buy...and call their own.

We simply charge less.

## Super Special!

Order 50 Super Star Diskettes and we'll be happy to sell you an Amaray Media-Mate 50 for only \$8.75, shipping included...a lot less than the suggested retail price of $\$ 15.95$.

Regular DISK WORLD! price: \$10.95 ea.
$+\$ 2.00$ Shpng.

## The Super Star <br> LIFETIME UARRANTY!

Super Star Diskettes are unconditionally warranted against defects in original material and workmanship so long as owned by the original purchaser. Returns are simple: just send the defective diskettes with proof of purchase, postage-paid by you with a short explanation of the problem, and we'll send you the replacements. (Incidentally, coffee stained diskettes and diskettes with staples "driven through them don't qualify as "defective".)

WE WILL MEET OR BEAT ANY NATIONALLY
ADVERTISED PRICE
ON THE SAME PRODUCTS AND QUANTITIES SUBJECT TO THE SAME TERMS AND CONDITIONS.


## Shift your computer into overdrive with COMPUTE! <br> Add COMPUTE! to your personal-computer operations, and discover how

 much more you can do-and enjoy!-with up to 30 new games and programs each month!$\square$ Enjoy 1 year ( 12 issues) for only \$24. Save 32\% off the cover price!
$\square$ Save even more! Enjoy 2 years (24 issues) for only \$45.

Name
(please print)
Address
City
State $\qquad$Payment enclosed $\square$ Bill me later

Indicate make and model of computer you use:
APPLE $\square 01 \quad$ ATARI $\square 02 \quad 64 \square 03 \quad$ VIC $20 \square$ IBM $\square 05$ TEXINS $\square 06$ OTHER $\qquad$ 04
9999

# BUSINESS REPLY MAIL 

POSTAGE WILL BE PAID BY ADDRESSEE

COMPUTE!<br>P.O. Box 914<br>Farmingdale, NY 11737

## COMPUTEI's

## FREE Reader Information Service

Use these cards to request FREE information about the products advertised in this issue. Clearly print or type your full name and address. Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.
Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTE! cannot be responsible if advertisers do not provide literature to readers.

Please use these cards only for subscribing or for requesting product information. Editorial and customer service inquiries should be addressed to: COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.

## Use these cards and this address only for Computel's Reader Information Service. Do not send with payment in any form.

COMPUTE!

| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 |
| 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 |
| 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 |
| 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 |
| 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 |
| 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 |
| 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 |
| 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 |

Circle 101 for a one year new U.S. subscription to computel: you will be billed for $\$ 24$.


Please print or type name and address. Limit one card per person.

Name
Address
City
State/Province
Zip
Country
Please include zip code. Expiration 9/30/85.
C 0885

## SUBSCRIBE TO COMPUTE!

My Computer Is:


For Fastest Service, Call Our Toll-Free US Order Line 800-334-0868
In NC call 919-275-9809
\$45.00 Two Year US Subscription
(Readers outside of the US, please see our foreign readers subscription card or inquire for rates).

Name
Address

| City | State | Zip |
| :--- | :---: | :---: |
| $\square$ Payment Enclosed $\square$ Bill me |  |  |
| Charge my: $\square$ VISA $\square$ MasterCard |  |  |
| Account No. $\quad \square$ American Express |  |  |

[^5]
# COMPUTEI Reader Service P.O. Box 2141 Radnor, PA 19089 



## BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 2312 GREENSBORO, NC
POSTAGE WILL BE PAID BY ADDRESSEE

## COMPUTE!

P.O. Box 914

Farmingdale, NY 11737

## Technical



## Price anda performance

 no other printer interface ean touch:Only CARDCO would dare improve on its own best seller (the $+G$ has far out-sold any other printer interface, and has set the industry standard by which competitors are judged). The G-Wiz is even better - and costs $30 \%$ less. * Our 27th major innovation in Commodore accessories has all the + G's features, and more...

## Built-In Buffer for More Speed

The G-Wiz buffer dumps high-resolution screens up to 18 times faster than competitive interfaces without buffers. No more waiting! A complex 50 -minute printout now takes just 2.5 minutes with the G-Wiz.

Micronics, Prowriter, Smith Corona, C-ITOH, Gorilla Banana, and many other dot matrix printers. Now you can perfectly align high resolution graphics characters within text blocks, or in columns.
CARDCO excellence triumphs again! The G-Wiz is the "best bang for the buck" on the printer interface market today - and it's backed by CARDCO'S exclusive lifetime warranty! / vir another distant target for the competiti
CARDCS
$-$



Being \#1 is an education. Picking the right Monitor for your Apple takes an educated guess, tool

At TAXAN we keep it simple. Our Apple line of Monitors combines many of the great features of our IBM line. Super High-Res and High-Res capabilities allow for the

MODELL 42012 inch Super High-Res RGB Color Monitor. Fully compatible with Apple, IBM and most other personal computers. $640 \times 262$ line resolution. Unlimited colors available through analog video circuit. Black face, non-glare tube.

MODPL $22014^{\text {" }}$ Composite Color Monitor with Audio Standard NTSC composite video signal input
Chrominance and luminance inputs available for Commodore,
Atari, and other computers
Extremely low geometric distortion
Switchable to green or amber display. Built-in 2 watt audio
Optional: Tilt/Swivel Base available (Model 110-12)
 Atari, and other computers pus avaliable for Commodore,
finest in business graphics. Video games look better, tool And your children will love you for choosing TAXAN instead of Brand $X$.


FODELST12 12 inch High-Res RGB Color Monitor. Fully compatible with Apple, IBM and most other personal computers. $510 \times 262$ line resolution. Unlimited colors available through analog video circuit.


MODELL 11612 inch High-Res Amber Monitor. Long Persistance Phosphor with non-glare screen. Fully comoatible with Apple, IBM and most other personal computers. 1000 line resolution. More than 20 MHz bandwidth. 2000 character display. Optional Tilt/Swivel Base available Model 110-12. Green Phosphor available (Model I15).

## MODEL 500 PRINTER BUFFER

 Centronics compatible parallel interface with 64 K memory expandable to 256 K . Four function modes include: Manual, Double. Free and Command. Compatible with most printers.
## OPTIONS-

Model 599-01 64 K Extra Memory Add-on



[^0]:    COMPUTE! Books are available in the U.K., Europe, Middle East, and Africa from Holt Saunders, Ltd., 1 St. Anne's Road, Eastbourne, East

[^1]:    Copyright 1985 by Billboard Publications, Inc. Complled by the Billboard Research Department and reprinted by permission. Data as of $6 / 08 / 85$.

[^2]:    $1 \emptyset \emptyset$ REM TRIVIA QUIZ
    $11 \emptyset$ DIM $5 \$(2 \varnothing), A \$(2 \emptyset)$
    $12 \emptyset \mathrm{~N}=2 \emptyset$
    130 CALL CLEAR
    $14 \emptyset$ PRINT TAB(8);"TRIVIA QU IZ"
    15ø PRINT : : "A QUESTION WIL L BE SHOWN."
    $16 \emptyset$ PRINT : : "TYPE THE ANSWE R (WITHOUT"
    $17 \emptyset$ PRINT : "COMMAS) THEN PR ESS 〈ENTER〉."
    $18 \emptyset$ PRINT : : "THE CORRECT AN SWER IS SHOWN."
    $19 \emptyset$ PRINT :: "PRESS THE SPAC E BAR TO"
    $2 \emptyset \emptyset$ PRINT : "CDNTINUE."
    210 FOR C=1 TO N
    $22 \emptyset$ READ $S \$(C), A \$(C)$
    $23 \varnothing$ NEXT C

[^3]:    Add $\mathbf{\$ 2 5 . 0 0}$ for shipping and handling!!
    Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery. 2 to 7 days for phone orders. I day express mail! We accept Visa and MasterCard. We ship C.O.D. to continental U.S. addresses only. Add S 10 more if C.O.D.

[^4]:    $291 \varnothing \varnothing$ TEXT
    46 11ø HOME
    F1 120 REM－－DRAW MENU WINDOW
    F7 $130 \mathrm{WL}=1 \varnothing: \mathrm{WR}=3 \varnothing \mathrm{WT}=5: \mathrm{WB}$ $=18: W=$＂言＂：WI＝Ø
    D1 $14 \varnothing$ GOSUB $1 \emptyset \emptyset \varnothing \varnothing$
    EA $15 \varnothing$ PRINT
    Fi $16 \emptyset$ PRINT TAB（4）；＂$=x===$ MENU $=\equiv={ }^{\prime \prime}$
    6C $17 \varnothing$ PRINT：PRINT
    69 18ø FOR $Y=1$ TO 4
    $3419 \varnothing$ PRINT TAB（ 4）；Y；＂－WINDOW （＂；CHR $\left.{ }^{\prime \prime}(64+Y) ; "\right) "$
    E6 2øø NEXT Y
    C $21 \varnothing$ PRINT：PRINT ：PRINT
    C5 $22 \varnothing$ PRINT＂CHOOSE WINDOW（1－4 ）＂；
    DA $23 \varnothing$ GET Y\＄
    DD 24D IF $Y \$<" 1 "$ OR $Y \$>" 4 " T$ HEN $\operatorname{sOTO} 100$

[^5]:    Your subscription will begin with the next available issue. Please allow $4-6$ weeks for delivery of first issue. Subscription prices subject to change at any time.
    The COMPUTEI subscriber list is made available to carefully screened organizations with a product or service which may be of interest to our readers. If you prefer not to receive such malings, please check this box $\square$.

