A Hands-On Report: Commodore's New 128 Computer

COMPUTEI

The Leading Magazine Of Home, Educational, And Recreational Computing

A pple speed Sertoí
 A Powerful Word Processor
 Complete And Ready-To-Run Program Inside

Webster Dines OutAction Game For Youngsters Programs For Apple, TI, Commodore 64, VIC-20, Atari, IBM PC, PCjr

How To Buy The Right Printer Which Features Do You Really Need?

Commodore 64 Disk Editor Examine And Change Any Disk

IBM Variable Lister A Valuable Programmer's Tool

Page Flipping On The Atari Create Exciting Animation

Apple
Universal INPUT Making BASIC Better

BLAZING NEW

The OKIMATE COLOR

The first affordable

 color printers!The new OKIMATE Personal Color Printers are breaking through in flying colors. They're the first low cost personal printers that let you print in rainbows of dazzling colors.

Now your computer can take on new meaning. Because the OKIMATE Printers can bring the information on your screen to life. In brilliant colors. And for very little green.
Fully equipped for reading,
writing and 'rithmetic.
The OKIMATE word processing capability delivers crisp. clean business letters, term

cal. Lightweight.
ry versatile:
draft quality and 40 cps
per inch. Or compresses
nch.
he okimate 20 can deliver
, elite, italic or fine print
sus....... and under-

n single sheets, computer
overhead projection. papers, financial reports and homework. So now you can print in minutes, instead of typing it in hours. You can even highlight words, addresses, paragraphs and charts. Even underline points you want to emphasize. So you and your information really stand out.
Easy to learn. Easier to use.
"Learn-to-Print" software packages come with your OKIMATE Printers to show you how to start printing. In fact, the OKIMATES come with everything you need for color printing. Including a data cable, interface board, color ribbon, black ribbon and
"color screen print" program on diskette.
Now you're set.
Just plug your new OKIMATE
Printer into your computer with the PLUG 'N PRINT package*. And print. It's that easy. In minutes you'll be printing everything from financial reports to souffle recipes. Home budgets to original drawings. In rainbows of brilliant colors.
Built and backed by the reliability leader.
The new OKIMATE Personal Printers are the latest example of Okidata's technological craftsmanship. Built with the same dedication to quality that has made Okidata the most respected name in computer printers. Specially designed to be small and lightweight. Operating as quiet as a whisper. And beautifully affordable.
So grab onto OKIMATE color printing today. With the new OKIMATE Personal Color Printers.

COLOR ISHERE

PRINTERS have arrived.

The OKIMATE 10

The OKIMATE 20

OKIMATE offers you a colorful choice.

The OKIMATE 10.
Color that brings your computer to life.
The OKIMATE 10 Personal Color Printer prints in over 36 dazzling colors. It's completely compatible with your Atari ${ }^{\circledR}$ and Commodore ${ }^{\circledR}$ personal computers. Comes with a 9 element printhead. And prints a speedy 240 words per minute. For crisp, clean letters, reports, and homework. All this and beautiful color for about $\$ 200$. Available wherever Atari and Commodore computers are sold.

The OKIMATE 20.

The color printer that's all business.
The OKIMATE 20 Personal Color Printer is here to dazzle everyone. With the vibrant impact of over 100 sizzling colors. A 24 element printhead that delivers letter quality characters. And the ability to print 270 words a minute for reports, financial statements and letters. It's completely compatible with IBM^{\circledR} PC and PCjr. And for all you Apple owners, the OKIMATE 20 works wonders with the IIE, ${ }^{\text {® }}$ the IIC ${ }^{\circledR}$ and the Macintosh ${ }^{\circledR}$ It's affordable color printing for under \$268. Available at computer dealers everywhere.

Gone are the glory days for Apple. Because Europe's most successful business computer company is now doing business in America.

Introducing Apricot. A full line of computers specifically designed for business.

Not adapted to it.

In fact, the facts speak for themselves.

Apricots are elegant and compact, true 16-bit computers. They employ the MS-DOS operating system, and a minimum of 256 K memory. One of our models, the Apricot Xi, boasts an incredible 1 Mega-
byte of memory, and features a Winchester hard disk with 20 Megabytes of storage. We also have models that feature speech recognition, full-size LCD, and icon driven menus. In addition, you have a choice between $9^{\prime \prime}$ or $12^{\prime \prime} \mathrm{b} / \mathrm{w}$ or $10^{\prime \prime}$ color monitors. All of

which have a higher screen resolution than Apple.

And as if all that weren't enough, all of our models can be networked from the moment you take them out of the box. They're also capable of running thousands of business software programs like Lotus,",
pfs, and d-Base III."Specially written for Apricot on $31 / 2$ inch disks.

Now, how do you like them Apricots?

Apricot, Inc., 3375 Scott Blvd., Santa Clara, CA 95054. Call 800-227-6703, or in California 800-632-7979.

The Apricot Portable. 512K RAM. 720K diskette. 80×25 line LCD. MS-DOS. $\$ 2495$.

AMAZING DAISY

NOW! FULL SIZE, FULL FEATURE, LETTER QUALITY AT ONLY \$353

If you have been searching for a letter quality printer you have probably found the flood of claims and counterclaims to be a real roadblock in your search. Not long ago we were in the same position. We tried to determine which daisy wheel printer had all the features our customers wanted, yet would not set them back a month's salary. Recently several manufacturers have introduced machines that had features we were seaching for. After a thorough assessment, we eliminated one model after the other for lack of one feature or another until we only had one left.

THE RESULTS ARE IN

We found the printer which has all the features anyone could want. The winner is the Aprotek Daisy 1120, a real heavyduty workhorse printing at 20 characters per second. The manufacturer is Olympic Co. Ltd., a highly respected Japanese firm.

FEATURES GALORE

This printer has it all. To start with, it has a front panel Pitch Selector button with indicators which allows $10,12,15$ characters per inch (CPI) or Proportional Spacing. There is a Select (Online) button (with indicator) and a Line Feed button. You can also set Top-of-Form or Form Feed with the touch of the TOF button. Other front panel indicators include Power and Alarm.
To load a sheet of paper, simply place it in the feed slot and pull the paper bail lever. PRESTO! The paper feeds automatically to a 1 inch top margin and the carriage aligns to the selected left margin. In this manner, each page can have identical margins automatically. You can continue to compute while the Daisy 1120 is
printing. The built in 2 K buffer frees up your computer while printing a page or two allowing you to go to your next job.
To really put your printer to work, the Cut Sheet Feeder option is great for automatic printing of those long jobs. Also available is the adjustable Tractor Feed option. Compare our option prices! Best of all the Daisy 1120 is quiet: only $57 \mathrm{~dB}-\mathrm{A}$ (compare with an average of $62-65 \mathrm{~dB}-\mathrm{A}$ for others).

COMPLETE COMPATIBILITY

The Daisy 1120 uses industry standard Diablo ${ }^{\circ}$ compatible printwheels. Scores of typeface styles are available at most computer or stationary stores. You can pop in a $10,12,15$ pitch or proportional printwheel and use paper as wide as 14 ". At 15 CPI you can print 165 columns-great for spreadsheets.
The Daisy 1120 uses the Diablo Hytype II ${ }^{\text {® }}$ standard ribbon cartridges. Again universally available.
Not only is the hardware completely compatible, the control codes recognized by the Daisy 1120 are Diablo 630° compatible (industry standard). You can take advantage of all the great features of word processing packages like Wordstar ${ }^{\ominus}$, pfs: Write ${ }^{\ominus}$, Microsoft Word ${ }^{\odot}$ and most others which allow you to automatically use superscripts, subscripts, automatic underlining, boldface (shadow printing) and doublestrike.

The printer has a set of rear switches which allow the use of standard ASCII as well as foreign character printwheels. Page length can be set to $8,11,12$, or 15 ". The Daisy 1120 can also be switched to add automatic line feed if required.

THE BEST PART

When shopping for a daisy wheel printer with all these features (if you could find one), you could expect to pay $\$ 600$ or $\$ 700$ dollars. The options would add much more. Not now! We have done our homework. We can now offer this printer for only $\$ 353$. Order yours today!

NO RISK OFFER

Try the Daisy 1120 for 2 weeks. If you are not satisfied for ANY reason we will refund the full price-promptly. A full 1 -year parts and labor warranty is included.

THE BOTTOM LINE

Aprotek Daisy 1120 (Order\#1120) $\$ 353$ w/standard Centronics parallel interface and 2 K buffer.

Options

Auto Cut Sheet Feeder (\#1110) \$188
Tractor Feed (\#1112) \$77

Accessories

8^{\prime} Cable for $\mathrm{IBM} \mathrm{PC}^{\odot}$ and compatibles (\#1103) \$26
Interface with cable: •TI-99/4A (\#106) \$66

- Apple II or IIe (\#1104) \$76
- All Commodore (except Pet) (\#1105) \$44
- All Atari (\#1107) \$66

Shipping is $\$ 11$-UPS continental USA. If you are in a hurry, UPS Blue or Air Parcel Post (second day air) is $\$ 25$. Canada, Alaska, Mexico and Hawaii are $\$ 30$ (air). Other foreign is $\$ 60$ (air). California residents add 6% tax. Prices are cash prices-VISA and MIC add 3% to total. We ship promptly on money orders, cashier's checks, and charge cards. Allow 14 -day clearing for checks. No C.O.D.'s. Pay ment in US dollars only.
TO ORDER ONLY CALL TOLL FREE
(800) 962-5800 USA
(800) 962-3800 CALIF.

Or send payment to address below:
Technical Information \& Customer
Service: (805) 987-2454 (8-5 PST) Dealer Inquiries Invited

1985 APROTEK. All rights reserved.
Trademarks: Diablo, Hytype II, 630 -Xerox
Corp: Wordstar-Micropro Corp. PFSSoftware Publishing Corp; Microsoft Word-Mierosoft Corp.: Apple, II. Ile-Apple Computer, Inc.
IBM PC-IBM Corp IBM PC-IBM Corp PET, CBM.

FEATURES

18 The Commodore 128: A Hands-On Report
30 How to Buy the Right Printer
36 Solving Common Printer Problems
42 Webster Dines Out

Tom R. Halfhill Kathy Yakal Selby Bateman Walter Bulawa

116 SpeedScript 3.0: All Machine Language Word Processor for Apple

Charles Brannon and Kevin Martin

REVIEWS

58 The Hitchhiker's Guide to the Galaxy
Neil Randall

58 Super-Text

65 War in Russia
66 Raid on Bungeling Bay
66 Sundog: Frozen Legacy
67 Enhancements to BASIC for Atari

COLUMNS AND DEPARTMENIS

6 The Editor's Notes
10 Readers' Feedback
68 The Beginner's Page
70 Computers and Society: Expert Systems and the Mass Market Micro
72 On the Road with Fred D'Ignazio: Bits, Bytes, and Black Sheep
73 Telecomputing Today: Inside XMODEM
74 IBM Personal Computing: Escaping on a LaserJet
75 INSIGHT: Atari-Analyzing the BASIC Bug
\qquad Richard Mansfield The Editors and Readers of COMPUTE! Tom R. Halfhill Donald B. Trivette

76 Programming the TI: Multiple Choice Test

THE JOURNAL

78 Housepainter: Inverted Video on the Commodore 64
82 BASIC File Editor for Commodore
84 Page Flipping on the Atari
87 Commodore 64 Hi-Res Quick Clear
88 Unlocking IBM BASIC Programs
89 Fast Atari Circles
91 Apple Universal INPUT
92 Hardcopy Sprites for Commodore 64
93 IBM Variable Lister
96 Apple Ilc RAM Disk Mover, Part 2
98 Commodore Disk Editor
102 Tl SuperFont
106 Apple ProDOS Variable Lister
108 Atari Cassette Filenames

110 COMPUTEI's Guide to Typing In Programs
114 Apple MLX: Machine Language Entry Program
127 CAPUTEI Modifications or Corrections to Previous Articles
128 Advertisers Index

TOLL FREE Subscription Order LIne 800-334-0868 (in NC 919-275-9809)

NOTE: See page 110 before typing in
programs.

Jim Butterfield
Henry A. Doenlen
Clay Stuart
Paul W. Downing
Peter F. Nicholson Owen Sexsmith
William Simpson
Thomas H. White
Peter F. Nicholson
Christopher J. Flynn
Martin Sikes
Patrick Parrish
Paul F. Stuever
Norman Lin

EDITOR'S NOTES

With this issue, COMPUTE! has a new look. Several adjustments to the way we put together the magazine have been made in the past few months, and this issue implements a process which started-on the drawing boards-last year.

The personal computer marketplace is maturing and currently pausing for breath after several ferenetic years in the early 1980s. Many manufacturers, and many computer magazines, have retired from the scene. There are approximately onefifth as many hardware and software companies today as there were a year ago.

For magazine publishers, this greatly diminished universe of advertisers represents a challenge. Fewer ads necessarily mean fewer pages.

While there are dozens of popuar magazines like High Fidelity and Science Digest which have stabilized over the years at fewer pages than COMPUTE! currently prints, there are some economies which we must now effect. In a nutshell, we want to continue to bring our readers an equivalent amount of information in a smaller package every month.

Fortunately, there are several ways to seek painless concision. The first thing we looked at was the size of our typeface, the "point size."

COMPUTE! has always printed larger characters than is traditional for magazines of its class and audience. It may not be too easy to detect, but with this issue we have slightly reduce the type by one point in most of the magazine (one point equals $1 / 72$ inch). "Reviews," "Readers' Feedback," and the "News \& Products" sections have been reduced by two points. These are gentle reductions and bring COMPUTE!'s type in line with most other popular magazines.

However, even though there will be no decrease in readability, this change results in an average of 10 to 15 percent more information per page.

To maintain the ease with which COMPUTE! can be read, we have made additional changes to our layout. For one thing, we have gone to a primarily three-column format, replacing our previous twocolumn design. Program listings, too, have changed from two- to three-column format. Aside from contributing more words per page while still maintaining easy readability, these adjustments give our design staff greater flexibility to create layouts with more variety and eye appeal.

Finally, we have requested that our columnists write within one- or two-page limits each month. With the more economical type size and page layout, they will be able to deliver excellent information each month in less space. Ultimately, that frees the editors to increase the variety and content of COMPUTE!.

In a not entirely unrelated development, Philip Nelson has accepted the position of assistant editor of COMPUTE!. Philip has been on our staff as assistant technical editor for six months and has proven to be an excellent, careful editor and a fine writer as well.

We feel that these changes to COMPUTE! are both necessary and positive. These adjustments will allow us to continue to bring you the greatest number of high quality anticles and programs in the years to come.

Senior Editor

Educational Software That Works:

Spell It!

Spell expertly 1000 of the most misspelled words. Learn the spelling rules. Improve with 4 exciting activities, including a captivating arcade game! Add your own spelling words.

Math Blaster!

Master addition, subtraction, multiplication, division, fractions, decimals and percentages - by solving over 600 problems. Learn your math facts with 4 motivating activities, including a fast-action arcade game! Add your own problems.
ages 6-12 / 2 disks: $\$ 49.95$

Word Attack!

Nord.

Add 675 new words to your vocabulary with precise definitions and sentences demonstrating usage. Build your skills with 4 fun-filled activities, including an arcade game! Add your own words.

Speed Reader II

Increase your reading speed and improve
 comprehension! six exercises designed by reading specialists vastly improve your reading skills. Chart your own progress with 35 reading selections and comprehension quizzes. Add your own reading materials.

The Davidson Best Seller Tradition.

For your Apple, IBM or Commodore 64.
Ask your dealer today.

Davidson.
For more information call: (800) 556-6141
In California call:
(213) $373-9473$

Davidson \& Associates, Inc.
6069 Groveoak Place \#12
Rancho Palos Verdes, CA 90274

Senior Editor

Managing Editor ditor
Assistant Editor Production Director Production Editor Editor, COMPUTEI's GAZETTE Technical Editor Assistant Technical Editors Program Editor Features Editor Assistant Editor, COMPUTEI's GAZETTE
Feature Writer
Research Assistant Programming Supervisor Editorlal Programmers

Submissions Reviewer Programming Assistants Copy Editors
Executlve Assistant Administrative Assistants

Assoclate Editors
Contributing Editor

COMPUTEI's Book Dlvision Editor
Assistant Editors Administrative Assistant Artists
Director, Book Sales \&
Marketing

Marketing Assistant
Production Manager

Typesetting
Illustrator

Gary R. Ingersoll Robert C. Lock
Alice S. Wolfe
Richard Mansfield
Kathleen Martinek
Tom R. Halfhill
Philip Nelson
Tony Roberts
Gail Cowper
Lance Elko
Ottis R. Cowper
John Krause, George Miler
Charles Brannon
Selby Bateman
Todd Heimarck
Kathy Yakal
Sharon Darling
Patrick Parrish
Tim Victor, Kevin Mykytyn, Kevin Martin
Mark Tuttle
David Florance, Susan Doss Joan Rouleau, Ann Davies Susan Young Julia Fleming, Iris Brooks, Jan krelow
Jim Butterfield
Toronto, Canada
Harvey Herman
Greensboro, NC
Fred D'Ignazio
Roanoke, VA
David Thomburg
Los Altos, CA
Bill Wilkinson

Stephen Levy Gregg Kelzer, J. Blake Lambert Laura MacFadden Janice Fary. Debble Bray

Steve Voyatzis
Carol Dickerson

Irma Swain

Janice Fary
Lee Noel
De Potter
Larry Sullivan
Terry Cash, Carole Dunton Harry Blair

Assistant Advertising Manager Production Coordinator

Ken Woodard Bonnie Valentino Patti Stokes Kathleen Hanlon
Caroline Dark
Charles Post
Philippa King
Gall Jones
Debi Goforth, Liz Krusenstjerna, Rhonda Savage
Judy Taylor
Betty Atkins, Gayle Benbow, Chris Gordon, Mary Hunt, Jenna Nash, Chris Patty Lonnie Arden
Harold Ayers, Steve Bowman, Larry O'Connor, David Hensley

Leon Stokes
Chris Cain

Paul J. Megliola
R. Steven Vetter

Robert L. Bean
Karen K. Rogalski
Dale Branch, Jill Pope
Bary L. Beck
Linda Miller, Doris Hall, Anne
Ferguson, Pat Fuller, Sybil
Agee, Jane Wiggs, Mary Waddell

Greg L. Smith
Robert C. Lock, Chief Executive Officer
Gary R. Ingersoll, President
Paul J. Megliola, Vice President, Finance and Planning Debi Nash, Executive Assistant
Anita Armfield, Assistant

2nise

Coming In Future Issues

Apple SpeedScript 3.0
 ProDOS Converter

Softball Statistics For Atari, Commodore 64, VIC-20, Plus/4, 16, PET, Apple, IBM PC, PCjr, TI-99/4A
Chess For IBM PC \& PCjr
Commodore 64 Disk Commander
Adding TIME\$ To Atari BASIC
Apple Fractals
The Last Warrior
Action Game For IBM PC, PCjr, Commodore 64, Atari, Apple

COMPUTEI Publications, Inc. publishes:

COMPUTE! Corporate office:

 COMPUTE!'S

COMPUTE!Books

 COMPUTE'S © 6324 West Wendover Avenue Greensboro, NC 27408 USA Malling address: COMPUTEI Post Office Box 5406 Greensboro, NC 27403 USA Telephone: 919-275-9809

Subscription Orders

COMPUTE! Circulation Dept.

P.O. Box 914

Farmingdale, NY 11737
TOLL FREE Subscription Order Line
800-334-0868
In NC 919-275-9809

COMPUTEI Subscription Rates

 (12 Issue Year):US
(one yr.) \$24
(two yrs.) \$45
(three yrs.) \$65
Canada and Foreign
Surface Mail \$30
Foreign Air
Delivery
$\$ 65$

Advertising Sales

2. Mid Atlantle

John Saval
Eastern Advertising
Manager
212-315-1665
Kathy Hicks
Marsha A. Gittelman
215-646-5700
Brian S. Rogers
212-674-0238

3. Southeast \& Foreign
 Harry Blair

919-275-9809
4. Mldwest

Gordon Benson
312-362-1821
5. Northwest/ Mountaln/Texas Phoebe Thompson 408-354-5553
6. Southwest

Ed Winchell
213-378-8361

Director of Advertising Sales

Ken Woodard
COMPUTEI Home Office 919-275-9809.
Address all advertising materials to: Patti W. Stokes
Advertising Production Coordinator COMPUTEI Magazine
324 West Wendover Avenue,
Greensboro, NC 27408

The COMPUTEI subscriber list is made available to carefully screened organizations with a product or service which may be of interest to our readers. If you prefer not to recelve such mailings, please send an exact copy of your subscription label to: COMPUTEI P.O. BOX 914, Farmingdale, NY 11737 . Include a note indicating your preference to receive only your subscription.

Authors of manuscripts warrant that all materials submitted to COMPUTEI are original materials with full ownership rights resident in said authors. By submitting articles to COMPUTEI, authors acknowledge that such materials, upon acceptance for publication, become the exclusive property of COMPUTE! Publications, Inc. No portion of this magazine may be reproduced in any form without written permission from the publisher. Entire contents copyright © 1985, COMPUTEI Publications, inc. Rights to programs developed and submitted by authors are explained in our author contract. Unsolicited materials not accepted for publication in COMPUTEI will be returned if author provides a selfaddressed, stamped envelope. Programs (on tape or disk) must accompany each submission. Printed listings are optional, but helpful. Articles should be furnished as typed copy (upper-and lowercase, please) with double spacing. Each page of your article should bear the title of the article, date and name of the author. COMPUTEI assumes no liability for errors in articles or advertisements. Opinions expressed by authors are not necessarily those of COMPUTEI.

PET. CBM, VIC-20 and Commodore 64 are trademarks of Commodore
Business Machines. Inc. and/or Commodore Electronics Limited
Apple is a trademark of Apple Computer Company

ATARI is a trademark of Atari, inc.
$T 1-99 / 4 \mathrm{~A}$ is a trademark of Texas instuments, Inc. Radio Shack Color Computer is a trademark of Tandy. Inc.

Trivia Fever is absolutely unique - it's the only software entertainment package that can be enjoyed with or without a home computer! When played on your home computer, Trivia Fever is a refreshing alternative to all those shoot'em up games. An elected "Master of the Game" uses the computer to randomly select subject categories, handicap players, generate questions and answers, keep score automatically, and more! Instructive by its very nature, Trivia Fever can be enjoyed by up to 8 individuals or teams. And when played without a computer, Trivia Fever has all the best features of the "popular" trivia games plus more - all without the cumbersome board, cards, and little game pieces. You can play in a car, on vacation, anytime, anywhere! And Trivia Fever is by far the best Trivia game available anywhere. Here's why:
Trivia Fever offers thousands of challenging questions in 7 interesting categories, so there's something for everyone. Each category has questions with 3 levels of difficulty, which score comparable points. What's more, Trivia Fever allows players to HANDICAP all those so-called "trivia experts" three different ways, giving everyone a chance to win. And players can easily control the length of play from quick thirty minute
 games to multi-hour party marathons!
Trivia Fever is unique, entertaining, educational, and most of all FUN. And at $\$ 39.95$, Trivia Fever is destined to quickly become the best selling software entertainment package of all time. There's even a $\$ 5$ rebate available to any non-computer users who return the computer diskette.
Trivia Fever can be enjoyed on the Commodore 64, IBM PC \& PCjr and compatibles, Apple II series, and others. So don't delay. Catch Trivia Fever at your favorite software retailer today!

For additional information call 617-444-5224, or write to:

If you have any questions, comments, or suggestions you would like to see addressed in this column, write to "Readers' Feedback," compute!, P.O. Box 5406, Greensboro, NC 27403. Due to the volume of mail we receive, we regret that we cannot provide personal answers to technical questions.

Closing The Quality Gap

I thought letter quality was a term used to describe typewriters or daisywheel printers. Now I have seen many dotmatrix printers claiming to be letter quality. How is this possible?

Alex Cutrone

Perhaps you're reading too much into the term letter quality. It simply means "good enough to use in a business letter." Printing of this quality has traditionally been equated with daisywheel printers, which create crisp, solid images by striking an inked ribbon with little character-shaped hammers, just like a typewriter.

Dot-matrix printers use a different technique, forming each character out of many tiny dots. The printhead contains several small pins which can be individually fired, pressing the ribbon against the paper to make a dot. As the printhead moves across the paper, the pins are rapidly fired in various combinations to form different characters.

Early dot-matrix printers left noticeable gaps between the character dots, giving the print a grainy appearance. As dot-matrix technology has improved, these gaps have been all but eliminated, producing print of much higher quality.

One way to improve print quality is to double-strike each character. Printing a character twice in the same spot puts more ink in each dot; since the dots are darker (and a little fatter), the print looks better. Enhanced printing also double-strikes each character, but offsets the printhead very slightly (less than a dot's width) before printing the character a second time. This fills in much of the space between dots.

Most dot-matrix printers have pins that are round in cross section. Since round
dots don't fit neatly together, dot-matrix characters tend to have wavy edges, even in enhanced printing modes. To give the characters crisper edges and further alleviate the gap problem, some manufacturers have switched to pins with a squarer cross section. However, you can obtain high quality print from a machine that uses round pins: The Apple Imagewriter is one example.

By looking closely, you can still distinguish the best dot-matrix print from socalled letter-quality print. A letter produced with a Macintosh and an Apple Imagewriter doesn't look exactly the same as one typed on an IBM Selectric. But that's not to say it doesn't look good enough for "serious" use. Some people would say that the Macintosh-generated letter looks more impressive than one done on a Selectric.

The fact is that many people are already using dot-matrix printers for business correspondence. Judged by that practical standard, the better dot-matrix printers are indeed letter-quality machines. If you're thinking of purchasing a printer, see "How to Buy the Right Printer" elsewhere in this issue.

Runaway IBM Keys

My new PCjr is great except for one irritating feature. When I rest my finger on a key, the computer prints a long line of identical letters. When I press the backspace key to erase the extra letters, it repeats, too. How can I stop this repeating feature, or at least slow it down? Peter Gliewell
You can find the answer to this and many other questions about IBM Personal Computers in the new book from COMPUTE! Publications, Mapping the IBM PC and PCjr by Russ Davies. Most microcomputers supply a repeating function for only a few editing keys such as the cursor controls or space bar. The PCjr has what IBM calls a typamatic keyboard: Nearly every key repeats when you hold it down. (The exceptions are keys such as Enter, which you would never want to repeat.)

Depending on your tastes, the typamatic function is either a godsend or a curse. The following program slows down
or eliminates your PCjr's typamatic function:

```
1øø PRINT "Enter a number to
    adjust typamatic"
11ø PRINT " \varnothing - Return to n
    ormal"
12g PRINT " 1 - Increase in
        itial delay"
130 PRINT " 2 - Half rate o
        f repeat"
140 PRINT " 3 - Both 1 and
    2 above"
1 5 \emptyset ~ P R I N T ~ " ~ 4 ~ - ~ T y p a m a t i c ~ f ~
    unction off"
16\emptyset INPUT X:IF X<\emptyset OR X>4 GOT
        0 160
17\emptyset X=X&2:DEF SEG=\emptyset
18\emptyset Y= (PEEK (&H48B) AND (&HFF-
        &HE))
190 POKE &H488, (Y OR X)
2øø PRINT "PCjr typamatic fun
        ction now adjusted"
```

The typamatic function uses two different time delays. There is a short initial delay between the time you first press a key and the time it begins to repeat. After repeating begins, there is another slight delay between each repetition. The program lets you adjust either or both of these delays. Note that the typamatic function affects the entire keyboard: If you turn it off, none of the keys-including the space bar and cursor controls-will repeat.

Commodore Disk Patterns

I have just finished reading your article about pattern matching on the Commodore disk drive. In the last paragraph of the section labeled "New Patterns," you talk about loading just the disk title, its ID, and the number of blocks free from the directory. Your suggestion is to use a filename not on the disk, such as $0: \# \$ \&!\%$. I have found an easier way : Instead of the usual command LOAD " $\$$ ", 8 , use LOAD " $\$ \$$ " 8 . On a disk with a large number of programs, you cannot use this twice in a row or you'll get a FILE NOT FOUND ERROR. If you load the directory normally (LOAD" $\$$ ",8) after using LOAD" $\${ }^{\prime \prime}, 8$ you may use the latter command again.

George Sherman, Jr
You've stumbled across a curious aspect of Commodore's disk directory system: a few words of explanation might be in order.

First: " $\$$ " is a legitimate filename. Try writing a short program and then saving it with SAVE " $0: \$$ ",8. No problem; the file will save without any errors. You'll find it in the directory, but note that LOAD " $\$$ ", 8 brings in the directory, not the program. But you can still get the program with LOAD " $0: \$$ ", 8 .

Second: You may pattern-match without using the drive designator, although this will give you trouble. If you load a directory with LOAD " $\$ P^{* "}, 8$, you will get all files starting with the letter P. It's much better to command LOAD " $\$ 0: P^{* \prime \prime}, 8$, which specifies the drive number. The reason for this is odd, and relates to the fact that the 1541 DOS (Disk Operating System) software was developed from that found in Commodore's older 4040 dualdrive unit. Single-slot Commodore drives don't know that they are single; they suspect that there's a second drive around somewhere (drive 1, which doesn't exist). So if you use type LOAD " $\$ P^{* \prime \prime}, 8$, the disk drive will correctly get the directory from drive 0 , and then try for a directory from nonexistent drive 1! It won't get it, of course, but it's left in "drive 1 mode," and the next job it gets without a drive specification will try drive 1 first.

Thus, if you enter LOAD " $\$ P^{* "}, 8$ again, the unit will go to drive 1, find no directory, and report FILE NOT FOUND. This won't happen if you command LOAD " $\$ 0: P^{* "}, 8$ since drive 0 is forced.

Let's put these two together. When you type LOAD " $\$ \$$ ", 8 you are really telling the computer to look for a file with a name of " $\$$ ". Normally, it won't exist, so you'll get only the disk header and block count; but if you saved a file with that name as suggested above, you'll see it in the directory.

Illogical Apple Logic?

In the August 1984 issue of COMPUTE!, the ANDing and ORing of numbers was explained in the Readers' Feedback section. I tried doing some of the examples on my Apple IIe but I never got the result I expected. For instance, I POKEd the number 15 into location 7 , then typed POKE 7,PEEK(7) OR 240. When I checked location 7 by typing PRINT $\operatorname{PEEK}(7)$, the result was 1 . This also happened when I tried to AND a number. Why is this happening?

> Michael Kurtz

On most computers, the BASIC statement PRINT 240 OR 15 gives the result 255. However, Apple (and Atari) computers have a different way of doing the logical operations AND and OR.

Instead of doing a separate AND or OR for each bit of the two numbers, Apples do only one logical operation, treating each of the numbers as a single logical value. A number whose value is zero is considered
logically false. Any other value is treated as true.

The result of an $O R$ operation is 0 only if both of the numbers are 0 . An AND operation gives a result of 1 , meaning true, if neither of the numbers is 0. Apple's representation for true is also unusual. Most computers use -1 to represent a true value, but Apple has chosen to use 1.

None of this is important in the situation where logical operators are used the most, conditional statements such as:

10 IF A <B AND A < C THEN PRINT " A IS BIGGEST"

Here, the Apple behaves the same as any other computer. The difference matters only if you want to operate on individual bits of a variable or memory location.

Atari Tape Tribulation

I recently got an Assembler Editor cartridge for my Atari 800. I tried out the example programs in the manual and followed Atari's instructions on entering source code and assembling to cassette using ASM,, \#C:. After replacing the Assembler Editor cartridge with BASIC, I was not able to retrieve the machine language program with CLOAD as specified. I tried several things such as ENTER\#C:, but nothing worked. When I did PRINT PEEK(1536), I always got 0 . Any suggestions? My temporary alternative is to convert the hexadecimal object code from the ML program into decimal DATA statements using a BASIC program.

Doug Wilson

The manual is incorrect. You cannot use CLOAD, ENTER, or any simple Atari BASIC command to read machine language from tape. Your alternative is actually the best way to include short machine language routines in a BASIC program. However, there is a way to read machine language object files produced by the Assembler Editor. Unfortunately, when assembling to cassette the tape keeps going during the first pass of the assembly, creating an excessively long leader tone. This makes the tape quite difficult to read.

Instead of assembling directly to tape, assemble to memory and use the command SAVE \#C:<start,end (where start and end correspond to the hexadecimal starting and ending addresses of your program). This will save the object code from memory to cassette. In BASIC, you can use this program to read and POKE the tape program into memory:

```
1ø\emptyset OPEN #1,4, Ø,"C:"
11\emptyset GET #1,A:GET #1,A
12\emptyset TRAP 14\emptyset:GET #1,A:GET
        #1, B: BEG=A +256*B:GET
        #1,A:GET #1,B:FIN=A+
        256*B
13\emptyset FOR I=BEG TO FIN:GET
    #1,A:POKE I,A:NEXT I:
    GOTO 12g
14ø CLOSE \#1:TRAP 4øøøø
```

This program will also load a disk object file if you change the device specification in line 100 and add the appropriate filename. Beware of loading ML programs that would overwrite the BASIC program.

1540 Disk Drives With A 64

I had a VIC-20 with a 1540 disk drive. Recently I decided to buy the Commodore 64 . This leaves me with a big problem, which I hope you can help me with. Will the 1540 work with the 64 ? So far I haven't been able to get it to work. Dave Lester The best long-term solution is to see if your dealer can get you an upgrade ROM chip that will convert your 1540 to a 1541.

In the meantime, you should be able to save to disk without trouble. To load, you can use a trick to establish communications:

Instead of typing LOAD "filename", 8 to bring a program into the 64 , type POKE 53265,43: LOAD "filename", 8 . The screen will go blank, but the file should load correctly. When everything stops, type POKE 53265,27 (you'll have to do this without being able to see what you're typing) and the screen will return to normal.

The problem arises because the 64 is not able to transfer data to and from the drive as fast as the VIC-20 can. The 64 is slower because more time is required to maintain its 1000 -character video display, as opposed to the VIC's 506-character display. When its screen is blank, the 64 operates at the same speed as the VIC-20, and loading can proceed without timing difficulties.

Garbage Collection And Backups

I have seen several references to "garbage collection" in connection with the operation of the Commodore 64, but I have not seen the same term used in connection with operation of the Apple, Atari, or IBM computers. Is the garbage collection routine peculiar to the Commodore, or does it exist on these machines as well?

I have also seen several programs advertised for the 64 which claim to allow you to copy an entire disk. This command exists in DOS on the IBM and Atari machines. Do these programs have some other purpose? Similarly, some of the software for the 64 says it will allow you to copy files from one disk to another. Does this command also not reside in DOS on the 64 ?

Pat O'Neil

The mysterious-looking term garbage collection has to do with strings. Strings are tricky for a computer to handle. The computer must set aside enough room in memory for all the strings declared in a program. The length of a string can change

CET SERIOUSE Iransform your C-64 into a powerful, serious business computer with these three add-on tools.

Mix and match the hardware peripherals of your preference. Increase you programming power with easier-to-use disk commands and machine language. All with one plug-in module.
lets you use almost any combination of
Commodore-compatible floppy or hard disk drives and Centronics-type parallel printers
all interface functions and device allocations are set by switches on the BusCard II module; errors due to soffware incompatibility are eliminated includes BASIC 4.0, the same powerful language used in Commodore's top of-the-line business computers, plus a machine language monitor

W|BusEardillin
 - Bt:80
 Column Adaptor for
 PaperClip and The Consultant
 between 80 and 40 col-

Double your screen capacity when using your favourite Batteries Included software programs. B. I. -80 turns your 40 -column screen into a crystal-clear, high-visibility 80 -column display. Works with PaperClip word processor and The Consultant database manager maximum readability and minimum eye-strain, even with a screen full of characters. It's the fast, easy, plug-in way to get twice the amount of data onto your monitor screen. And B.I. 80 also gives you the easier-touse disk commands, with BASIC 4.0 language built right into the module

- fully self-initializing, no commands to enter; just plug B.L-80 into the car tridge slot and you're ready to run
- switch back and forth
umn display at any time
- completely eliminates snow, fuzziness, hashing and interference
- easy-to-install module incorporates highest quality hardware com ponents throughout; oneyear manufacturer's warranty is standard
- comes complete with 80. column operating system and comprehensive documentation, including full description of BASIC 4:0 commands
- use with Commodore 1701 and 1702 color monitors, or any monochrome video monitor

ह"mek

Kw. B. $1-80$ Column Adaptor coming soon for Alari XL computers!

pinter utievince

Use the printer of your choice with your Commodore computer-just plug in this compact module, and you're instantly comparible! Take advantage of today's high-speed, high-quality printers with the B.I. Printer Interface.

- works with any

Centronics-type parallel printer, which includes almost all major printers on the market

- completely self-contained and ready to run; no extras to buy, no hardware or soflware modifi. cations to printer or computer are required
- all print functions are con trolled by switches on the module; ;ust set them once, and never worry about it again

How to avoid paying yourbills,

"The other day, a prominent politician in the executive branch of our government phoned me up.

Allan', he said to me, 'the budget is a mess'.
'No joke,'I said.
'Not that budget,'the prominent politician continued. 'My budget. My checking's overdrawn. Theyre threatening to disconnect my phones. I even got into a shouting match with my wife when I tried to lay off the servants.
'Civil?'
'Not very. And I think I'm about to be audited. What would I show them? Who keeps receipts for embassy parties?

At this point, we were disconnected. And although it was too late to teach proper money management to this prominent politician, there is a lesson all of us can learn from his misfortune.

An Apple II will take care of everytbing from your bousebold budget to your taxes with softuare programs like Dollars \& Sense, The Home Accountant, and Tax Preparer:

Everyone has to pay their bills, and nobody likes to do it.
You can keep file folders full of bills, drawers stuffed with grocery receipts, envelopes brimming with cancelled checks, and at the end of the month, it still takes hours to figure out just where your money has gone. Not to mention how long it takes to straighten things out at the end of the year:

Well, atter years of financial consulting, I've discovered a way to avoid paying your bills: let an Apple ${ }^{8}$ II Personal Computer pay them for you.

There are several advantages to letting an Apple handle your finances.

It will save you time.
It will organize everything.
It will tell you, at a glance, exactly what is going on with your money.

It will pay your bills, and never send you any.
And now, I'd like to turn the page over to those nice people at Apple, who will explain, in their own excruciating detail, just what I'm talking about.'

The Apple II and the Home Budget.

With software programs like The Home Accountant ${ }^{\text {m }}$ and Dollars \& Sense,', the Apple II makes it easy to set up household books. First, it will ask you some questions about your home finances. Like how much money you bring in each month, how much rent you pay, and whether you owe money
to credit card companies, mortgage
holders, or any other surly characters. Then, it will ask you to enter some of the bills you receive each month whose prices may vary:
phone, utilities, and the like. Then, it will ask you where you keep your money, and for the numbers of your various checking and savings accounts.

Thats really all there is to it. After that, an Apple II can automatically write checks for all your fixed expenses each month. It will also tell you what other bills you can be expecting, and when you enter their costs, an Apple II will pay them, too.

An Apple II will see to it that your checkbooks remain balanced, and that youll know when your expenses are about to exceed your income. It can even help you plan to buy a new car. Or a home.

Or a fur-lined boat, if your budget permits.

With our Scribe color graphics printer, you can automatically print out your oun checksnot to mention reports, papers, almost anytbing. Except money:

How to avoid your banker.

After the Apple II writes your checks, it can call your bank with the help of your telephone and an Apple modem. And faster than a teller can say "Next window, please," you can find out all your balances, enter deposits, see what checks have cleared, transfer money from one account to another, and even pay off some of your credit cards and other bills electronically - without ever writing a check.

So the only time youll have to go to the bank is when you want to visit with your money, personally.

Which, when

It can manage your entire stock portfolio with programs like Dow Jones Investor's Workshop ${ }^{n}$ and Charles Schuab and Company's The Equalizer." It can even show you what's going on in your bank account.*

A little tax relief.

If you become perturbed everytime the subject of doing taxes comes up, an Apple II can do them for

It can store your records, plan for the next year, and calculate your taxes.

Youill be alerted to payments you've made over the year that may be tax-deductible. It even keeps year-round records, automatically updating totals and making corrections for you. It will even print done in moderation, we can recommend most highly. ed to taxes or this ad. So there's no telling how far

The Apple II and making money.

 An Apple II can do wondrous things for your personal finances. With several different software programs, you can become your own stockbroker. Again, byan Apple II can take you.
"Well, I think that about covers it. And what if, after all of this, you still have some money left over?

Congratulations. You're doing a lot better than the government."

[^0]as a program runs, causing memory allocation problems. Some BASICs, such as Atari BASIC, tackle this problem by making you DIMension every string before using it for the first time. This sets the maximum length of the string. Atari strings always end up at a single spot in memory after the program starts, and do not move.

Microsoft BASIC uses a different trick. When a string is created, the actual string is stored at the top of BASIC memory. The string's name, length, and a pointer to the address of the string are stored after your program in memory. If you change the string, the new string is copied to the current top of memory (below any other strings) and the pointer is changed. Sooner or later, the strings fill all memory from the top until they collide with variables, arrays, or the end of your program.

This is where garbage collection steps in. A garbage collection routine in BASIC looks at each string, finds the string data, and repacks each string back to the top of memory, discarding unused strings along the way. This can take a while. It's difficult to predict just when garbage collection will occur, and when it does, the machine appears to lock up (in some cases, for more than 20 minutes).

Garbage collection is also a problem on the Apple and IBM machines (and on most Microsoft BASICs), but you can restrict the size of string space on the IBM. This forces garbage collection to occur

Software That Works For Generations

6 Types of Charts and Sheets Indices
User Fields
Notes, Footnotes and Sources No Limits
Adapts to Your Hardware Comprehensive Easy to Use
And Much, Much More

Send for brochure and sample printouts.
Family Roots includes detailed manual and 2 full diskettes of programs for your Apple II, IBM PC, Commodore 64 and CP/M *
Other genealogy software also available.
Price $\$ 185$. Satisfaction Guaranteed.
American Express, Visa \& Mastercard Accepted

Trademarks for Apple Computer, Inc., International

QUINSEPT, INC.
P.O. Box 216, Lexington, MA 02173
(617) 641-2930
more frequently, and since the size of the string buffer is small, garbage collection never takes very long. If an IBM program uses a lot of strings, it is sometimes necessary to expand the size of the string area, with the resulting garbage collection problem.

Your question about Disk Operating Systems (DOS) points out some differences between the way a Commodore computer implements DOS and the method used by almost every other computer. Most computers use a RAM-resident DOS to control the disk drive, but Commodore's DOS is in ROM within the drive itself. While this saves user memory, it creates some problems. The 64 and the 1541 drive are like separate computers, and must communicate over a slow serial bus. Commands are sent to the drive to scratch, rename, format, etc. There is a built-in copy command, but it can only copy a file to the same disk. The drive has no way to directly communicate with another disk drive, so the computer must act as a go-between.

The programs you mention let you copy files or disks by reading the disk into computer memory, then copying from memory to another disk. Since Commodore DOS is in the disk drive, there are no builtin programs in the 64 to perform transfers between disks-hence the need for the programs you mention. Many disk duplicators also try to defeat copy-protection schemes, since it's otherwise impossible to back up commercial software.

IBM Hidden Files

I have an IBM PC/XT with one floppy disk and a 10 -megabyte hard disk. When I ran CHKDSK on both drives, the computer said I had two hidden files taking up about 22 K . What are hidden files, and are they accessible?

Dennis Heckman
When you power up an IBM personal computer, it performs a complex series of housekeeping operations before turning the system over to you. This process usually involves loading two hidden, read-only system files named IBMBIO.COM and IBMDOS.COM from disk. These are machine language programs which the system needs to operate correctly.

IBMBIO.COM is an extension of the PC's operating system-called BIOS for Basic Input/Output System-most of which is permanently stored in ROM (Read-Only Memory). The IBMBIO.COM program loads and executes when the system boots up, to initialize input/output devices and perform other system tasks. This is done to correct errors (and there are some) permanently "wired into" the ROM BIOS, and to allow for new devices such as the PCjr's cartridges. IBMBIO.COM is about 3.5 K in length.

The PC's DOS (Disk Operating System) is a separate program, roughly 19 K
long, for manipulating disk data. Since none of DOS is stored in ROM, it's also necessary to load the IBMDOS.COM program from disk and install it in memory when the system boots up. After initializing the system for BIOS, IBMBIO.COM moves IBMDOS.COM into the correct memory area and transfers control to DOS, which in turn does its own initialization before turning the system over to the user.

Files ending in .COM are system files (distinguished from user files which you can alter at will). Since IBMBIO.COM and IBMDOS.COM are critical to normal operation, they're made invisible to user commands such as DIR (disk DIRectory). Out of sight, out of mind-if you don't know a file exists, you'll be less likely to erase it. Both files are further protected by making them read-only: If you can't write to a file, you're less likely to corrupt it by accident.

It is possible to access system files. After each filename in the disk directory is a file attribute byte which defines the file type. Using the DEBUG program described in your DOS manual, you can read the disk directory, change a file's attribute byte to remove its protective attributes, and write the modified sector back to the disk. However, few users would have any reason to rewrite a system file, and the risk of inadvertent error is enormous. At best, the error might crash the system; at worst, you might lose an entire disk of data. If you want to try modifying a system file, practice on a disk that doesn't contain any important data. You can find a detailed discussion of system files and the boot process in Chapter 1 of COMPUTE!'s Mapping the IBM PC and PCjr by Russ Davies.

Commodore Monitors

What is the difference between a Commodore 1701 and 1702 monitor? Andy Nagai
There is no appreciable difference between these monitors. The 1701 model changed to 1702 when Commodore began using a different picture tube supplier in late 1983. Cosmetically, it's nearly impossible to tell the two apart. They're virtually identical in appearance, and the electrical connections appear to be the same in both models. We have a number of both models here at COMPUTE!, and we've noticed that the resolution appears slightly sharper on the 1702s, but this is only because they're newer than the 1701s. (The color on a monitor gradually fades after prolonged use.)

Commodore also makes the 141 Color Monitor, essentially a 1702 with a charcoal gray color designed to match the Plus/4 and Commodore 16. It's compatible with the VIC-20 and 64. Commodore's newest monitor entries are the 1901 Monochrome Monitor and the 1902 RGBI/Composite Monitor. Each was announced at the Winter CES in support of the Commodore 128.

Get the jump on the weatherman by accurately forecasting the local weather yourself!

A scientifically proven way to develop an awesome memory.

The beautiful princess is held captive by deadly dragons. Only a knight in shining armor can save her now!

Cut your energy costs by monitoring your phone, electric and gas bills.

School-age and pre-school children are rewarded for right answers, corrected on their wrong ones.

You are trapped in a fivestory, 125 -room structure made entirely of ice. Find the exit before you freeze!

Computerize car maintenance to improve auto performance, economy and resale value.

A real brainflexer. Deflect random balls into targets on a constantly changing playfield.

Take control of your personal finances in less than one hour a month.

Create multi-colored bar graphs with a surprisingly small amount of memory.

A fun way to dramatically increase typing speed and accuracy.

Get up to 30 new programs and games for less than 15 cents eachevery month in COMPUTE!

Every month, COMPUTE! readers enjoy up to 30 brand-new, ready-to-run computer programs, even arcade-quality games.

And when you subscribe to COMPUTE!, you'll get them all for less than 15 cents each!

You'll find programs to help you conserve time, energy and money. Programs like Cash Flow Manager, Retirement Planner, Coupon Filer, Dynamic Bookkeeping.

You'll enjoy games like Air Defense, Boggler, Slalom, and High Speed Mazer.

Your children will find learning fast and fun with First Math, Guess That Animal, and Mystery Spell.

Looking for a challenge? You can write your own games. Customize BASIC programs. Even make beautiful computer music and pictures.

It's all in COMPUTE!. All ready to type in and run on your Atari, Apple, Commodore, PET/CBM, TI-99/4A, Radio Shack Color Computer, IBM PC or IBM PCjr.

What's more, you get information-packed articles, product reviews, ideas and advice that add power and excitement to all your home computing.

And when it's time to shop for peripherals or hardware, check COMPUTE! first. Our product evaluations can save you money and costly mistakes. We'll even help you decide what to buy: Dot-matrix or daisy-wheel printer? Tape storage or disk drive? What about modems? Memory expansion kits? What's new in joysticks, paddles and track balls?

Order now! Mail the postpaid card attached to this ad and start receiving every issue of COMPUTE!.

The Commodore 128: A Hands-On Report

Tom R. Halfhill, Editor

Commodore's new three-in-one machine, the Commodore 128 Personal Computer, should be hitting store shelves in June. In mid-March, COMPUTE! visited Commodore's U.S. headquarters in West Chester, Pennsylvania to more closely examine the 128, which was announced at the Winter Consumer Electronics
Show in January (see "The Next Generation: New
Computers at the Winter CES," April 1985).
Although a few specifications were not finalized, we found the 128 to be a versatile machine with one of the most powerful BASIC programming
languages ever offered in a microcomputer.
Here's our report.

0ne of the most imitated trends in personal computing lately has been "integrated software"-products that are actually three or more programs in one, like Lotus 1-2-3.

Now Commodore is introducing a fresh twist-integrated hardware. With the Commodore 128 Personal Computer, essentially Commodore is wrapping up three computers in one box to sell for under $\$ 300$ retail. The deceptively small package contains:

1. A standard Commodore 64 with 64 K of Random Access Memory (RAM) capable of running virtually all existing 64 soft-ware-estimated at 6,000 to 10,000 programs, mostly home and educational.
2. An enhanced Commodore 64 with 128 K of RAM and an extremely powerful new BASIC that almost makes PEEK and POKE obsolete.
3. A $Z 80$-based 128 K computer designed to run existing software written for the CP/M (Control Program for Microcomputers) operating system-at least 10,000 programs, mostly business/professional.

Expandable to 512 K with a RAM disk option, the Commodore 128 also works with all Commodore 64 peripherals as well as a new line of accessories, such as the much faster 1571 disk drive. Rounding out the package are such features as 80 -column video in the 128 K and CP/M modes, RGB (red-green-blue) high-resolution video output, and all the same ports and interfaces found on the Commodore 64.

Before the Commodore 128 was announced at the Winter CES, rumors indicated it would simply be an expanded Commodore 64. Even after it was unveiled, some people described it as a CP/M computer with a Commodore 64 emulation mode.

But the Commodore 128 truly is the near-equivalent of three computers in a single box. Outside, all three computers share the same sleek plastic case and $92-$ key keyboard. Inside, they share the same RAM chips and power supply, but that's about all. The 128 actually contains three separate central processing units (CPUs), two separate BASICs, two independent video display chips, separate banks of Read Only Memory (ROM), and even different memory maps, depending on which mode is selected. What's more, the machine can be operated in five distinct modes: Commodore 64 mode, 128 mode with 40 -column video and graphics, 128 mode with text-only 80 -column video, CP/M mode with 80 -column video, and CP/M mode with 40 -column video.

CPU chips include the 6510 for 64 mode and the 8502 for 128 mode-both 6502-compatibleand the Z80A for CP/M mode. Video chips include the VIC-II for 64 mode and 40 -column 128 mode, plus an 80 -column chip for 80 -column 128 mode and CP/M mode. A synthesizer chip-the Sound Interface Device (SID)-is shared by all three microprocessors. Programming languages include BASIC 2.0 in 64 mode and BASIC 7.0 in 128 mode, and a machine language monitor is available in 128 mode and CP/M mode.

Does all this sound confusing? Don't feel bad-it is. Even when using the Commodore 128, you can sometimes forget which mode the computer is in. This is especially true of the 64 mode and 40 -column 128 mode, which appear virtually identical on screen.

Furthermore, some modes let you switch to other modes, but not back again without restarting the machine. And speaking of coldstarts, the Commodore 128 can be switched on in any of its five modes, depending on its state at power-up. When you hit the power switch, the computer first checks to see if a CP / M system disk is inserted in the
drive. If so, it defaults to $40-$ or $80-$ column CP/M mode (usually 80 columns). Otherwise, it checks the cartridge slot for a Commodore 64 cartridge program. If it finds one, it automatically switches to 64 mode and runs the cartridge. If there's no 64 cartridge, the computer checks for a 128 cartridge. If it finds one, it comes up in 128 mode (either 40 or 80 columns) and runs the 128 cartridge. If no 128 cartridge is plugged in, the computer checks to see if its 40/80 DISPLAY key is pressed. If so, it starts up in 80 -column 128 mode. Otherwise, it switches to $40-$ column 128 mode.

With so many options, operating the Commodore 128 will take some getting used to.

0ne of the biggest questions about the Commodore 128 is its degree of Commodore 64 compatibility. Stung by criticism and slow sales because of the Plus/4's lack of 64 compatibility, Commodore went to great lengths to make sure the 128 would run all existing 64 software. In fact, Commodore claims the 128 is 100 percent 64 compatible.

Our tests showed the 128 had no trouble with a wide range of Commodore 64 programs written in BASIC and machine language. We ran a number of programs published in recent issues of COMPUTE! and COMPUTE!'s GAZETTE, including SpeedScript 3.0. Only one program failed: "TurboDisk" (COMPUTE!, April 1985). TurboDisk, a machine language utility which speeds up disk loading by as much as 300 percent, ran fine on a 128 hooked up to a 1541 disk drive, but would not work on a 128 connected to the new 1571 disk drive. We weren't particularly surprised, because TurboDisk works by reprogramming the load routines both inside the computer and in the drive. Any drive that isn't completely 1541-compatible cannot handle TurboDisk.

Since the 1571 is designed to be much faster than the 1541, it may seem that utilities such as TurboDisk are superfluous anyway. However, keep in mind that the 1571, like the Commodore 128 , is a multimode device. When the 128 is operating in 64 mode, the 1571 drive behaves just like a 1541-it stores

170 K of data per disk and runs fairly slow. When the computer is switched to 128 mode, the 1571 speeds up about 500 percent. and becomes a double-sided drive, storing about 360 K per disk. And when the computer is in CP/M mode, the 1571 runs about 12 times faster than a 1541 and stores 410 K on a floppy.

In CP/M mode, the 1571 also is supposed to read disks in IBM System 34 format, such as those made for Osborne and Kaypro CP/M computers. However, the 1571 drive we tested would not load our Osborne disk. A Commodore representative told us the 1571 we were using was still a prototype, and that final production models definitely would read CP/M disks. He also said that production 1571s would be fully 1541 compatible, so that programs like TurboDisk should work too.

If the final 1571 s are not completely 1541 compatible, Commodore will run into trouble on another front-commercial copy protection. Some copy-protection schemes depend on precise timing and certain routines within the 1541 disk drive ROMs. If much is changed, the disks won't load. Before acquiring a Commodore 128 and 1571 drive to run 64 software, it would be a good idea to try loading some commercial disks first to make sure they work.

The best news about the Commodore 128 is BASIC 7.0, the powerful BASIC interpreter available in 128 K mode. It is, perhaps, the most powerful BASIC ever offered in a personal computermore complete than even IBM BASIC and MSX BASIC. It contains all the commands in Commodore 64 BASIC 2.0, all the disk and file commands of BASIC 4.0 (as found on the Commodore 8032 and SuperPET), and nearly all the graphics and sound commands of the Super Expander 64 cartridge, Simon's BASIC, and the Plus $/ 4$'s BASIC 3.5 .

BASIC 7.0 makes it possible to draw graphics, define and move sprites, create sound effects, and play music without PEEKs, POKEs, or machine language. Sprite movement is implemented during a ma-chine-level interrupt, so a few BASIC statements can keep up to eight sprites moving simultaneously

May Catch Up WITH Thid Way COUIPUSDRYE'S MDCTRONIC NALL LDTS YU SHOP IODAY.

Presenting the computer shopping service that delivers discount prices, name-brand merchandise, and in-depth product information.

To make your computer even more useful, join CompuServe and shop in our Electronic Mall. Easy enough for beginners, it's open 24 hours a day, 7 days a week. And it offers a wide range of goods and services from nationally known stores and businesses including Bloomingdale's, Waldenbooks, American Express and Commodore.
CompuServe's Electronic Mall ${ }^{\text {TM }}$ lets you shop at your convenience in all these departments:

The Auto Shop, Book Bazaar, Financial Mart, Leisure Center, Merchandise

Mart, Newsstand, On-line Connection, Personal Computer Store, Record Emporium, Specialty Boutique and Travel Agency.

Take the CompuServe Electronic Mall 15-Minute Comparison Test.

What you can do in 15 minutes shopping the Electronic Mall way.

- Access descriptions of the latest in computer printers, for instance.
- Pick one and enter the order command.
- Check complete descriptions of places to stay on your next vacation.
- Pick several and request travel brochures.
- Access a department store catalog and pick out a wine rack, tools, toys...anything!
- Place your order. What you can do in 15 minutes shopping the old way.
- Round up the family and get in the car.

The Electronic Mall-A Valuable Addition to the Vast World of CompuServe.

CompuServe Information Services bring you information, entertainment, personal communications and more.

You can access CompuServe with almost any computer and modem, terminal or communicating word processor.

To buy a CompuServeSubscription Kit, see your nearest computer dealer. To receive our informative brochure, or to order direct, call or write:

CompuServe

while the program performs other tasks-or even stops. To make it easier to define sprites, you can grab any predrawn shape off the screen and store it as sprite data, or design the sprite bit by bit with a built-in sprite editor. Playing music with the SID chip has always been tedious because of the large number of POKEs required, so BASIC 7.0 has ten predefined musical instrument sounds available with a single command.

Because BASIC 7.0 is so extensive, we can't explain every command in detail, but we can cover some highlights. Remember that some specifications or syntax rules may have changed by the time the Commodore 128 entered final production.

The disk and file commands include DLOAD and DSAVE (for loading and saving to disk without adding , 8 to the filename); DVERIFY (compare a disk file with a file in memory); CATALOG and DIRECTORY (for displaying disk directories without erasing a BASIC program in memory); COPY (duplicate a file using dual drives); BACKUP (copy an entire disk with dual drives); APPEND (open a sequential file for updating); COLLECT (reorganize the Block Allocation Map); CONCAT (combine two disk files); HEADER (format a disk); RENAME (assign a new filename to an existing file); SCRATCH (delete a file); DOPEN and DCLOSE (open or close a disk file); DCLEAR (close all disk channels); RECORD (for positioning the relative file pointer); DS and DS\$ (read the error channel); BLOAD (load a binary machine language file); BSAVE (save a block of memory as a binary file); and BOOT (load and run a machine language file).

Note that none of these commands adds new capabilities not available with a Commodore 64 and 1541 drive; they merely simplify the syntax. For example, COLLECT is equivalent to OPEN $15,8,15$, "V0":CLOSE 15. The commands can also be abbreviated, as in D-SHIFT-L for DLOAD or even SHIFTRUN/STOP to automatically load and run. In addition, the special function keys are preprogrammed to execute certain frequently used commands, such as DIRECTORY.

Sprite commands not only replace the old-fashioned POKEs, but also offer more options. And the demo programs we saw proved that BASIC 7.0 can move sprites fast enough for goodquality games without machine language.

SPRDEF

Entered in direct mode, this command activates the built-in sprite editor. An editing window appears on screen, and you're prompted to select sprite 1 through 8 . A number of subcommands let you clear all the sprite data, move a crosshair, turn pixels on and off, and change colors for multicolor sprites. When you're done designing the sprite, you reenter BASIC by pressing SHIFTRETURN, then RETURN again. BASIC 7.0 does not require you to

set aside memory for sprite data; instead, it reserves a 512 -byte block (for eight 64-byte sprites) beginning at location 3584 (\$E00 hex).

SPRITE \#,on/off,foreground, priority, X, Y, mode

Sets up various sprite attributes, including sprite color, foreground/ background priorities, initial X and Y position, and single color/ multicolor.

SPRCOLOR

Defines the multicolor registers shared by all sprites.

SPRSAV sprite\#,string
 SPRSAV string,sprite\#

Moves sprite definition data into a string or vice versa. For example, you can define a sprite by first drawing a shape on the screen with various graphics commands, then copy the shape into a string with the

SSHAPE command, and finally move the string into the sprite data block with SPRSAV. You could also copy the sprite pattern directly to the screen with SPRSAV and GSHAPE.

MOVSPR sprite \#, X, Y

Moves a sprite to the horizontal and vertical screen coordinates specified by X, Y. This is called absolute movement and is like the POKEs used to move sprites to screen positions on the Commodore 64.
MOVSPR sprite\#, $+/-X,+/-Y$ Moves a sprite plus or minus the number of screen coordinates specified by X, Y. This is called relative movement and is useful when you don't know the sprite's current position. For example, you could move sprite 5 seven positions to the left and ten positions down with MOVSPR $5,-7,+10$.

MOVSPR sprite \#, angle \#speed

Moves a sprite continuously in a certain direction at a specified speed via a machine level interrupt, even when the BASIC program is executing other lines or is stopped. When the sprite disappears off the screen, it wraps around and reappears at the opposite end of the screen. This command is useful when you want to send a sprite flying on a predetermined course and speed while your program does other things. For instance, with this command you could quite easily animate the rocks in an Asteroids-type game while your program takes care of checking the joystick and moving the player's ship. The angle parameter specifies the direction in degrees ($0=\mathrm{up}$), and \#speed the velocity. To move sprite 1 continuously along a horizontal path from left to right, you would type MOVSPR 1,90 \#5. To move it vertically from top to bottom a little faster, you would type MOVSPR 1,180 \#5. Of course, the sprite must be positioned somewhere on the visible screen to begin with.

COLLISION type,line \#

Detects sprite collisions and diverts the program to a subroutine starting at the line specified by line\#. The type parameter lets you detect different kinds of collisions. Examples: COLLISION 0,1000 passes control to a subroutine at line 1000 when two sprites collide. (The subroutine must end with a RETURN.)

WITH NIGHT MISSION

You deserve the best. You've earned it. Now reward yourself with a session of Night Mission PINBALL, the most realistic and challenging arcade simulation ever conceived! a Stunning graphics and dazzling
 sound effects put Night Mission PINBALL in a class by itself. Game features: multiball and multi-player capabilities, ten different professionally designed levels of play, and an editor that lets you create your own custom modes. \square So take a break with Night Mission PINBALL from SubLOGIC. Winner of Electronic Games magazine's 1983 Arcade Award for Best Computer Audio/Visual Effects.

See your dealer . . .
 or write or call for more information.

SublocIC Corporation 713 Edgebrook Drive Champaign IL 61820 (217) 359-8482 Telex: 206995

COLLISION 1,2000 passes control to a subroutine at line 2000 when a sprite collides with a screen object. COLLISION 2,10000 diverts the program to a subroutine at line 10000 when a sprite is touched with a light pen.

BUMP(type)

Detects sprite collisions and returns a value corresponding to the sprites involved. This makes it possible to determine which sprites collided or if a collision happened off the visible screen (invisible to COLLISION). BUMP(0) records sprite-to-sprite collisions, and BUMP(1) records sprite-to-screen collisions.

Graphics commands make up for the deficiencies in BASIC 2.0 and complement the sprite commands. They're also fairly fast for a BASIC interpreter. Here's just a sampling:

GRAPHIC mode\#,clear,window

Flips the screen to the graphics mode specified by mode\#. Mode 0 is 40 -column text (default); 1 is hi-res graphics; 2 is hi-res graphics with a text window; 3 is multicolor graphics; 4 is multicolor graphics with a text window; and 5 is 80 -column text (RGB only). The text windows are similar to those on Atari and Apple computers-they allow a few lines of text beneath the graphics window on the upper part of the screen. The text windows start at line 19 , but that can be changed with the window parameter in the GRAPHIC statement. The clear parameter lets you specify whether the screen will be cleared upon entering the new mode ($0=$ no clear, $1=$ clear).

COLOR source \#,color\#

Sets up the color registers. The color\# parameter defines the color from 1 to 16 . The source\# parameter specifies the color register affected - 0 for the 40 -column background, 1 for the graphics mode foreground, 2 for the multicolor graphics mode primary color, 3 for the multicolor graphics mode secondary color, 4 for the 40 -column border, 5 for the character color, and 6 for the 80 -column background color.
BOX source \#,X1,Y1,X2,Y2,angle, paint
Draws a box on the hi-res screen.

Source\# defines the color register (0 to 3), $X 1, Y 1, X 2, Y 2$ are the X and Y coordinates of the opposite corners, angle is the rotation in degrees (default $=0$), and paint specifies whether the box will be filled ($0=$ hollow, $1=$ solid). Example: BOX $1,10,10,60,60,0,1$ draws a filled green box in the upper-left corner of the screen.

CIRCLE source \#, X center, Y center, X radius, Y radius,arc angle1, arc angle2,angle,increment

Draws circles, ellipses, arcs, triangles, octagons, and other polygons on the hi-res screens. Source\# is the color register (0 to 3), X center and Y center are the X and Y coordinates of the centerpoint, X radius and Y radiu s are the X and Y coordinates of the radius, arc angle1 is the starting arc angle in degrees (default $=0$), arc angle 2 is the ending arc angle in degrees (default $=360$), angle is the rotation in degrees (default $=0$), and increment specifies the number of degrees between segments (default $=2$). Examples: CIRCLE $1,160,100,65,50$ draws a green circle; CIRCLE $1,160,100,65,10$ draws a green ellipse; CIRCLE $, 60,40$, $20,18, \ldots, 45$ draws an octagon, and CIRCLE ,260,40,20,,,,,90 draws a diamond.
DRAW source \#,X1,Y1 TO X2,Y2 ...etc.
Draws a dot, line, or figure on the hi-res screens. Source\# is the color register (0 to 3), $X 1$ and $Y 1$ are the starting screen coordinates, X2 and $Y 2$ are the following screen coordinates, and more coordinates can follow, up to BASIC's line length limit. Examples: DRAW 1,100,50 plots a dot at coordinates 100,50 because no endpoint is specified; DRAW 1,100,50 TO 100,75 draws a vertical line from 100,50 to 100,75 ; and DRAW 1,10,10 TO 10,60 TO 100,60 TO 10,10 makes a triangle.

LOCATE X, Y

Positions the invisible graphics cursor at hi-res screen coordinates X, Y. This defines the default starting point for all the drawing commands.

PAINT source \#,Xstart,Ystart, mode

Fills an area on the hi-res screen. Source\# is the color register, Xstart and Y start define the starting coordinates, and mode specifies which area to fill $(0=$ fill the area defined by source\#, $1=$ fill the area defined by
any nonbackground color). Example: CIRCLE , 160,100,65,50: PAINT ,160,100 draws and fills a circle using the default foreground color.

SSHAPE string,corner1,corner 2

Stores shapes drawn on the hi-res screens into string variables. The rectangular area of screen data between coordinates corner1 and corner2 is saved in the string variable string. The area which can be stored is limited by the 255 -character capacity of a BASIC string. SSHAPE is very similar to GET in IBM BASIC.

GSHAPE string,corner1,corner2, mode

Plots the data stored in a string variable as a shape on the hi-res screens. It is the opposite of SSHAPE. Corner1 and corner2 define the rectangular screen coordinates, and mode specifies how the shape will be plotted. If mode $=0$, the shape is placed as it exists; 1 inverts the shape; 2 performs a bitwise OR when the shape is overlapped onto the screen; 3 ANDs the shape with the screen; 4 XORs (exclusive-ORs) the shape with the screen. GSHAPE corresponds to PUT in IBM BASIC.

Sound commands in BASIC 7.0 take much of the tedium out of creating sound effects and music with the versatile but complex SID chip. Together, BASIC 7.0 and the SID chip give the Commodore 128 the best sound capability of any personal computer now on the market. Here are a few examples:
SOUND voice,freq,dur,sweep,min, step,wave,width
Plays a sound with the selected voice, frequency, and duration. Voice can be 1 to 3, freq 0 to 65535, and dur 0 to 32767 jiffies (a jiffy equals $1 / 60$ second). The following parameters are optional. Sweep defines the direction for a sweep (shifting frequencies), with $0=u p, 2=$ down, and $3=$ oscillation. Min sets the minimum frequency for a sweep; step picks the step value for a sweep; wave chooses a SID waveform ($0=$ triangle, $1=$ saw, $2=$ square, $3=$ noise); and width specifies the width for a pulse waveform.
PLAY "O oct,T tune, U vol, V voice, X filter,notes"
Plays one or more notes using a selected octave, envelope, volume,

Sure Summer Games was great, but why stop there? Let Summer Games II take you even farther with eight new events including cycling, fencing, kayaking, triple jump, rowing, high jump, javelin and even equestrian. They can all be played by up to eight players and some, like cycling, rowing and fencing challenge you with realistic head-to-head competition.
First, you decide which of the 18 different countries you're going to represent. Then, in true Olympic fashion, you will need the proper strategy and mental toughness, not just speed and agility to excel in each
event. It's so realistic, there's even an opening and closing ceremony along with medal presentations after each event.
It's not too early to get ready for 1988 . With the right diet, proper training and hours of practice you just might make it. In the meantime, put on your sweatsuit, grab that joystick and let Summer Games II give you eight new ways to Go For The Gold!

Strategy Games for the Action-Game Player

voice, and filter. Oct specifies the octave 1 to 6 ; tune an envelope 0 to 9 (see below); vol the volume 0 to 9 ; voice 0 to 2 ; filter ($0=$ off, $1=$ on); and note can be A, B, C, D, E, F, or G with sharps, flats, dots, and standard durations (quarter notes, half
notes, etc.). An M in this parameter tells the computer to wait for all voices currently playing to end. Any number of notes can be strung together in this field, up to BASIC's line length limit. The predefined envelopes selectable with the tune
parameter are $0=$ piano, $1=$ accordian, $2=$ calliope, $3=$ drum, $4=$ flute, $5=$ guitar, $6=$ harpsicord, $7=$ organ, $8=$ trumpet, and $9=$ xylophone.
ENVELOPE \#,attack,decay,sus, rel,wave,width

Commodore 128 Memory Management And Machine Language Charles Brannon, Program Editor

Using an external memory cartridge, the Commodore 128 can be expanded up to 512 K RAM. This memory is not directly available for programs, though, but is used as a RAM disk-the functions of a disk drive are simulated with the memory chips. This provides faster throughput than a hard disk, but all information is lost when the power is turned off. You need to dump the contents of a RAM disk to a regular disk at the end of each session.

A special memory management unit (MMU), located at \$FF00, controls the 128's complicated memory map. The MMU interprets memory addresses even before the microprocessor sees them. It permits you to swap between banks of 64 K , but can leave a small portion of memory as common memory. You don't always want zero page and the stack to disappear when you change banks. The MMU lets you bank between four 64 K banks, and allows multiple banks of 256 K , up to one megabyte of memory.

The MMU controls whether the VIC chip or 80 -column chip controls the screen display, and even senses the position of the $40 / 80$ DISPLAY switch (though the software must interpret this switch). The MMU controls access to RAM or ROM, allowing either to be visible in the memory map. A programmer can set up a series of preset memory configurations and quickly select them by writing to the MMU. The address of the VIC chip can be relocated anywhere within the virtual 256 K memory space.

The MMU also controls the fast serial port used with the 1571 disk drive (and conceivably with other fast peripherals). It determines the clock speed of the 8502 , and controls which of the three microprocessors ($6510,8502, \mathrm{Z80A}$) is in control.

Although not supported in ROM, it's possible to have all three microprocessors running by quickly switching between them. Maybe someone will find a way to take advantage of this potential multiprocessing capability.

Machine language programmers will appreciate the Commodore 128 's machine language monitor, entered from BASIC with the MONITOR command. It pretends that the 128 K of memory is contiguous and permits five-digit hexadecimal addresses. It makes full use of 80 columns if selected. The monitor works much like 64 Supermon, with commands to assemble, disassemble, fill, go to address, hunt through memory for a hexadecimal string, load, display memory with ASCII equivalents, display registers, save, transfer a block of memory, verify a saved program, exit to BASIC, modify memory, modify registers, and display disk error status.

BASIC commands for machine language include BLOAD and BSAVE to load and save machine language programs or other binary files, and BOOT to load and run a machine language program. The familiar USR, WAIT, POKE, PEEK, and SYS commands can now reference the second 64 K of memory with the BANK command. SYS can be followed by four parameters that are transferred into the accumulator, X register, Y register, and status flag register. After a SYS, the RREG command can transfer the contents of these registers into four variables. This makes it much easier to pass information between BASIC and ML.

The 8502 microprocessor in 128 mode is opcode-compatible with the 6502 and 6510 , but can now run at two megahertz, twice the speed of the VIC-20's 6502 and Commodore 64's 6510 . All VIC/ 64 Kernal routines are supported, making program translation much easier. New Kernal routines support special features of the 128 , including routines for memory management.

A RESET button near the power switch can coldstart the machine. Holding down RUN/STOP with RESET initiates a "lukewarm" start. It's a more thorough reset than RUN/STOP-RESTORE, but still retains your BASIC program. This reset puts you into the machine language monitor, where you can exit back to BASIC with no harm done.

YOUR COMMODORE64"' CAN NOW USE STANDARD APPLE"||+HARDW/ARE AND SOFTMNARE

 SOFTWARE PUBLISHING GAF SOFTWARE SORCIM APPARAT MICROPRO GITAL RESEARCH STONEWARE
IICROSOFT

Redefines any of the ten predefined music envelopes for the tune parameter of the PLAY command．The \＃speci－ fies the envelope（ 0 to 9 ），followed by the values for attack，decay，sustain，and release．Wave sets the SID waveform and width selects the width of a pulse waveform．
FILTER freq，lopass，bandpass，hipass，res
Switches the SID filters for use with the filter parameter of the PLAY command．Freq selects the frequency；lopass the low－pass filter $(0=$ off， $1=$ on $)$ ；bandpass the notch－ reject filter（ $0=$ off， $1=$ on）；hipass the high－pass filter （ $0=$ off， $1=$ on）；and res the resonance（ 0 to 15 ）．

Despite the almost bewildering array of commands listed above，we＇ve barely scratched the surface of BASIC 7．0．Indeed，a preliminary manuscript for the Commodore 128 System Guide is a stack of single－ spaced，typewritten pages two and a half inches thick．

There are commands for windowing，switching 64 K memory banks，renumbering BASIC programs，deleting ranges of BASIC lines，assigning new definitions to the predefined special function keys，entering the machine language monitor，trapping runtime errors and diverting execution to an error－handling routine at a certain line number，resuming execution after a runtime error，high－ lighting errors in BASIC lines，constructing loops with－ out FOR－NEXT，and inserting delay loops．Plus additional commands for sprites，sound，music，and graphics that we didn＇t have room to mention．

Commodore BASIC 7.0 is a predictable step in the evolution of high－level programming languages for per－ sonal computers．It continues the trend away from low－ level instructions such as PEEK and POKE－vestiges of machine language－and further shields users from inti－ mate contact with the bits and bytes of computer circuit－ ry．Yet，unlike some other personal computers introduced in recent years，the Commodore 128 retains its BASIC as a built－in feature and also provides a machine language monitor for those who want to explore the computer at every level．It＇s a welcome combination．

> To receive additional information from advertisers in this issue， use the handy reader service cards in the back of the magazine．

STARPOINT SOFTWARE proudly presents

エアモアエロ
 $\square+\square+\square+\pi+\square+\square=\square$

［say lcepick］，a revolutionary new concept in software de－protection for the Commodore 64．ISEPIC is not a disk duplication system， but an extraordinary hardware／software combination that actually bypasses any disk protection scheme．ISEPIC captures and saves the protected program as it runs in the 64＇s memory，this＂snapshot＂becomes ac－ cessible to the user for complete inspection and alteration．From this image，ISEPIC can automatically create a compact，auto－booting， fast－loading file which is completely un－ protected and self contained．
\＆Copies ALL memory－resident software
\＆ISEPIC＇d programs load many times faster than originals
के ISEPIC is invisible to software－cannot be defeated
is Eliminates drive＇knock＇due to antique protection schemes－adds years of life to your drive
i Automatically＂cracks＂protected pro－ grams into single，auto－booting，super－ fast loading files
\＆Place multiple programs on a single diskette
if Create auto－booting，fast－loading versions of your own programs
～Cracked programs are completely self－ contained and run independently of the ISEPIC adapter
ش 3 Copies software with a flick of a switch
t ISEPIC comes complete and ready－to－ run，just plug into expansion port
\＆Programs cracked by ISEPIC may be used on MSD or 4040 drives as well as hard disks regardless of original pro－ tection schemes

When ordering by mail：
＊$\$ 64.95+3.00$ shipping
＊$\$ 64.95+4.00$ COD orders
＊Calif．residents add 6\％sales tax
＊VISA or Mastercard accepted
＊Shipping out of USA $\$ 6.00$
Please allow 4－6 weeks for delivery．

NEW LOW PRICES FROM THE WORLD'S LARGEST SPORIS SOFTWARE COMPANY

Whether you're a coach, player, computer bug, statistician, dabbler, doer or just a real sports fan. PDS has a package for you...at our lowest prices ever!
Check our line-up below, and then order your first PDS Sports Package.

FOOTBALL STATISTICS. A comprehensive computer software system. You compare teams in over 60 offensive and defensive situations and watch the matchups on the screen. Every team is given a power rating. PDS also provides "year-to-date" data diskettes for a nominal charge.
39.95

FOOTBALL HANDICAPPING. (Includes FOOTBALL STATISTICS Package). Forecasts the outcome of football games based on massive amounts of statistical data, morning lines and point spreads.
49.95

BASKETBALL STATISTICS. The most comprehensive basketball program ever written.
"What-if" your way into every imaginable comparison and formulation.
39.95

BASKETBALL HANDICAPPING. (Includes BASKETBALL STATISTICS). Gives you an inside look into the outcome of games by mathematically equating statistics, lines and point spreads.
BASEBALL STATISTICS. See how opposing baseball teams stack up against each other. See summarizations. Performance stats on every team in the major leagues.
BASEBALL HANDICAPPING. (Includes BASEBALL STATISTICS) Makes you betterprepared to predict the winner of any game. At least, mathematically.

THOROUGHBRED HANDICAPPING. This

"world class" program gives you an edge in predicting winners. A proven system...by PDS and many horseracing enthusi-
asts.
129.00

HARNESS RACE HANDICAPPING. The fast, easy way to find out what races and what horses should be looked at...all summarized in a "power rating" format.
129.00

QUARTER HORSE HANDICAPPING. the computer system actually "rates" the horses in each race of what is the fastest growing segment in the sport of kings.
129.00

TRAINER STATISTICS. Analyzes all local racehorse trainers and gives you a rating for each one.
39.95

JOCKEY STATISTICS. A short time with this software package will show you why the top 15 jockeys at local tracks win over 90% of all races.
39.95

HARNESS DRIVER STATISTICS. A complement to the HARNESS HORSE HANDICAPPING System, this package tells you all you need to know about the man (or woman) behind the horse.
39.95

P.O. BOX E/TORRANCE, CA 90507 / (213) 516-6688 Please send me the following PDS SOFTWARE PACKAGE:

Add $\$ 6.00$ for postage and handling.
Calif. residents add $61 / 2 \%$ sales tax
I have an APPLE () IBM () TRS-80 () COMMODORE-64 ()
DISKETTE()CASSETTE(); MODEL\# \qquad
() Check enclosed
() Charge my credit card: A.E. (), VISA (). M.C. ()

Card No._Expires \qquad
Signature \qquad
(As it appears on credit card)
OR CHARGE BY PHONE...CALL (800) 222-2601
(In Calif: (213) 516-6688)
NAME
ADDRESS \qquad PHONE

CITY \qquad STATE ZIP \qquad

Dealer Inquiries Invited

Choosing a printer may be the most difficult decision you'll make when assembling your computer system. Even if you're planning to use it only for personal letters and program listings, there are more alternatives to consider than with any other peripheral.

0nce you buy a computer, selecting a tape or disk drive and a monitor isn't too tough. There aren't that many choices. Modems are a bit more difficult because of the number available, but their features and
performance don't vary all that much.

Printers, however, are another story. There are dozens of printers which are inexpensive and produce good quality print. And they're complicated pieces of machinery. "As opposed to a computer, which has relatively few mechanical or moving parts, printers are the biggest mechanical piece of your computer system," points out Dave Crowley, corporate communications specialist for Centronics.
"Consumers have to be aware that if there is going to be a problem, it probably will happen in the printer rather than anywhere else in the computer system."

Further, everyone's needs are different. Some people just want to print out program listings. Others want to print school papers or personal letters or business correspondence, or pictures created with light pens or graphics tablets. The goal is to find a printer that has everything you need without spending lots of extra money for features you'll never use.

The first step in buying a printer, then, is to determine exactly what you need. "We always recommend that someone sit down and draw up a list of items that the printer will be used for, and take that with them to the dealer," says Crowley.

Here's a list of questions, compiled with the help of Crowley and Star Micronics Marketing Director Tom Bongiorno, that you might want to ask yourself before visiting computer dealers:

- Will this printer work with my computer? And if it doesn't, is the dealer knowledgeable enough to help you figure out how to make it work? Compatibility should be assured.

Printers for personal computers are designed to work with two general types of interfaces: parallel and serial. For the purposes of hooking up a printer, either works just as well. The most common parallel interface is often referred to as a Centronics-standard interface, and the most common serial interface is called the RS-232. If your computer doesn't have one of these interfaces built in, you may need to buy an interface adapter in addition to a printer. In any case, make sure the printer you buy is compatible with the interface available on your computer.

Many printer manufacturers offer cables that connect directly to, say, a Commodore 64 or an Atari. Buying such a printer frees you from compatibility worries for now, but may also restrict its future use if you someday buy a different system. Some printers allow interfacing through either a standard or a machine-specific port; these provide greater flexibility for use with other computers.

Consider software compatibility, too. Even if you're going to use

Modern Tools for Modern Minds...

GROLIER ELECTRONIC PUBLISHING INC.

Grolier presents the first and only series of productivity tools with a built-in tutorial and practice. ${ }^{\text {neww }}$ EduCalc ${ }^{\text {m }}$

...the first electronic spreadsheet program that also teaches beginning users to understand and use a spreadsheet!

- Self-paced, menu-driven tutorial lets you determine the amount of help you need at any one time, and then return later for additional instruction.
- Practice template, for creating a personal budget, enables you to become familiar with a standard spreadsheet before developing your own.
- No need to memorize commands; directions appear on each screen.
- Makes it easy to create, edit, save and print a spreadsheet up to 26 columns wide by 99 rows deep.
- Enter text, numbers or formulas, define constants, and sort information alphanumerically.
...there's never been a more simple solution for creating budgets, charts, schedules and tables for school and home use!
0NLY $\$ 49^{95}$ Suggest Retail Price

Friendly Filer ${ }^{\text {TM }}$

\ldots...a great database management learning experience that's also great fun!

- Teaches database management through the use of an entertaining tutorial and stimulating questions.
- Researches the answers by searching out and sorting a built-in "animals" database.
- Uses simple, self-explanatory menus, to lead the user step-by-step into creating files by entering, selecting, sorting and printing data.
...a marvelous learning experience that stresses imagination, creativity and fun. And it's productive, too!

ONLY $\$ 39^{95}$ Suggest Retail Price

Available for the Apple ${ }^{\otimes}$ II family of computers. Also available for the Commodore $64^{T M}$ and IBM ${ }^{\circledR}$ PC and PCjr. in Fall 1985.
See your computer software dealer today. Or call Grolier Electronic Publishing Toll-Free. 800-858-8858.

Grolier Electronic Publishing, Inc.

Legend, The Clear

You can choose from several types of printers. They're available from more than 50 manufacturers. With and without graphics. In high speed and low speed models at prices ranging from less than $\$ 200$ to well over $\$ 2,000$.

How do you know you made the right choice?

Heres some easy-to-understand facts from Legend to help you make a "clear choice."

Legendary Legibility.

There are trade offs in buying printers. Simply stated, within a given

How Do You Know You Chose The Right Printer?

price range, quality, or legibility, decreases as speed increases.

The object is to find the printer that gives the the speed
legibility you want at
Legend printers have "full nine wire" heads for better legibility.

Many dot matrix printers produce type that is acceptable for about 95% of all correspondenceinvoices, letters, and the like.

Daisy Wheel or "letter quality" printers run one fifth as fast and cost twice as much as a Legend. So a Legend dot matrix printer makes better sense. Why? Read on.
Easy to Switch.
you need and at the price you can afford, like a Legend.

Dot matrix type printers are the most popular and lowest cost printers. Most combine high speed with acceptable quality and legibility. They're extremely versatile and very dependable.
Legendary Head.
Dot matrix printers have print heads containing tiny pins that "fire" against a ribbon to make a series of dots that combine to form letters, numbers and graphics. Generally, the more pins or "wires," the closer together the dots, and the better the legibility.
capability (Legend calls it "damn near letter quality") is at the operator's fingertips. And machine speed stays at a

Square dots are 25% bigger than round dots. very productive 50% of normal speed.
Square Vs. Round.

In addition to speed, the shape of the dot affects the legibility of type, too.

Most printers use round dots. Legend printers use square dots because they butt better and fool the eye into thinking that lines are continuous.

Think of it this way. Imagine you stack a series of baseballs next to a series of equal sized blocks. Now move back 20 paces and look at the two
stacks. Which one would look most like a straight line? Legendary Graphics.

A picture is indeed worth a thousand words. And today's sophisticated software packages are making it easier to translate data into graphics that communicate quickly and clearly.

Legend $880-100 \mathrm{cps} / 80 \mathrm{col}$.

Legend $1080-140 \mathrm{cps} / 80 \mathrm{col}$.

Legend $1380-160 \mathrm{cps} / 80 \mathrm{col}$.

the printer only to print out correspondence and home records, make sure the printer will accept your word processor's formatting commands.

- How good does your printed copy need to look? Different kinds of printers offer varying type qualities.

Impact printers (daisy wheel and dot-matrix) strike the paper through an inked ribbon to form characters and graphics. Daisy wheel printers are capable of producing letterquality type because the characters are stamped onto the paper by a print wheel that works much like the strikers on a typewriter. Dotmatrix printers, on the other hand, have printheads with dozens of tiny metal pins that reproduce characters and graphics by printing tightly packed patterns of dots. Some dotmatrix printers, depending on the numbers and placement of pins, can produce near letter-quality print.

Thermal printers don't use an ink ribbon-they burn characters and graphics onto special paper coated with a heat-sensitive film. They're relatively inexpensive and quiet compared to other printers, but the special paper costs more. Thermal transfer printers, however, can print on any kind of paper.

Ink-jet printers, the third kind found in the under- $\$ 1,000$ price range, spray ink through tiny holes to reproduce characters.
"You should always look at the output of the printer-get a demobecause draft mode or near-letter quality from three different printers will always differ," says Bongiorno. "If you like the typeface on one printer better than another, then to you the quality will be better, and that's the one you should buy."

- Are there hidden costs? Printers that require special paper or additional interface cables can make that under- $\$ 300$ printer move closer to the $\$ 400$-plus range. If the printer uses a ribbon, what is its average life? Can it be re-inked?
- What type of paper handling does the printer use? Printers can move paper around the platen in two different ways. Friction-feed printers work like typewriters; they grip one sheet at a time and roll it through. Tractor-feed printers use a pair of cogged wheels to grip holes punched into the edges of special
printer paper. The paper comes as a long, continuous form with perforated pages, and the holes along the edges are also perforated for removal. The tractor wheels can be adjusted to accommodate different paper sizes and special forms, such as mailing labels. (A printer with nonadjustable tractors is called a pinfeed printer.)

Some printers offer both fric-tion- and tractor-feed by including snap-on tractors. This gives you the option of printing correspondence on letterhead stationery, or printing continuous forms.

- How easy is it to obtain parts? Daisy wheels, for example, sometimes break after heavy use. Can you run down to a local office supply store to replace the wheel, or will you have to order it by mail and wait six weeks for delivery? If the printhead on a dot-matrix printer burns out, can it be replaced without exchanging the entire printing mechanism? How economical are replacement ribbons? If you buy a thermal printer, is the special paper readily available?
- How good is the warranty? Opinions vary on what constitutes a fair warranty period, but, in all cases, find out what it is. Bongiorno believes that one year is fairest. "If something is going to go wrong, it will go wrong within the first year," he says. "Sometimes the warranty on the printhead is different than the printer, which you have to be careful of."
- Can the printer produce the kind of graphics you need? You may not need graphics at all, of course, but if you do, there are basically two types of graphics that printers can produce. With block graphics, the printer recognizes a block of dots as a symbol or special character. It constructs the picture by assembling these symbols. With dot-addressable graphics, each tiny dot can be individually printed, so the printer isn't limited to a set of predefined block graphics patterns. If you need to reproduce high-resolution drawings, charts, or diagrams, you'll probably need a printer with dotaddressable graphics. It will also have to be a dot-matrix printer, because daisy wheel printers aren't capable of producing detailed graphics.

A1though these are the major concerns, there are myriad other questions you'll want answered when shopping for a printer:

How fast is it? Printer speeds are usually measured in characters per second, abbreviated cps. Dot-matrix printers are generally much faster than daisy wheel printers in the same price range, but remember that speeds can vary in different printing modes.

How noisy is it? For home use, this might be critically important if your computer shares a family room with the TV.

Does it have a buffer? How large? A printer buffer is an area of memory inside the printer that lets it print your material while freeing up the computer for other tasks. To be useful, a printer buffer should be at least as large as the files you need to print. For instance, if you'll frequently be printing documents about 16 K long-roughly eight double-spaced pages-the printer buffer should contain at least 16 K of memory. To keep initial costs down, you can often buy a printer without a buffer and add the memory later. Also, printer buffers are available as separate devices that connect between a computer and any standard printer.

Can the printer produce special type styles, like italics, boldface, condensed, expanded? Keep in mind that even though a printer offers special fonts, your software may not be capable of sending the proper codes to take advantage of these features. This is a tricky problem that can only be solved by carefully comparing the software manual with the printer manual.

Can I afford it? The bottom-line question.

A good computer dealer, says Crowley, will take the time to answer all of your questions and run the printer through its paces, just as a good car dealer will take you out for a test drive. "I've actually gone in to buy a car and gotten a salesman who couldn't tell me whether it had six or eight cylinders," he says. "If you run up against somebody who's not willing to take the time, then take your business someplace elsebecause there are plenty of people who are willing."

COMPUTE! Books brings you the companion volume to the best

 seller, Machine Language for Beginners, about which the critics have said:"If you know BASIC and want to learn machine language, this is the place to start Building on your experience as a BASIC programmer, Mansfield very gently takes you through the fundamentals of machine language." -Whole Earth Software Catalog
"Understandable"-The New York Times
"Presents the machine language novice with a very good tutorial in simple, understandable terms."-Antic
"I highly recommend Machine Language for Beginners as your first introduction to the world of machine language."-Commodore Power/Play

The Second Book of Machine Language for the Commodore 64, VIC-20, Apple, Atari, and PET/CBM

15\% Discount Buy both books for $\$ 25.00$ and save \$4.90! That's 15\% off the retail price! Offer Expires July 15, 1985.

The Second Book of Machine Language picks up where Machine Language for Beginners left off. This new book contains one of the most powerful machine language assemblers currently available. The LADS assembler is a fullfeatured, label-based programming language which can greatly assist you in writing machine language programs quickly and easily.
It's also a clear, detailed tutorial on how large, complex machine language programs can be constructed out of manageable subprograms.

There are powerful computer languages and there is good documentation, but rarely has a sophisticated language been so completely documented as it is in this book. When you finish with this book, you'll not only have a deeper understanding of machine language-you'll also have one of the most powerful machine language assemblers available. And since everything is thoroughly explained, you can even add custom features to the assembler to create a custom language that does just what you want it to (the book shows you precisely how to modify the assembler).

For Commodore 64, Apple ((\|I, II+, \|e, and \|lc, DOS 3.3), VIC-20 (8K RAM expansion required). Atari (including XL, 40K minimum), and PET/CBM (Upgrade and 4.0 BASIC). Disk drive recommended.

[^1][^2]-The Second Book of Machine Language, \$14.95 Machine Language for Beginners, \$14.95 LADS Disk (Apple) \$12.95 LADS Disk (Atari) \$12.95 LADS Disk (Commodore), \$12.95
\square Payment Enclosed (check or money order) \square Charge \square MasterCard \square Visa \square American Express Acct. No. \qquad -
Signature \qquad
Name \qquad Address \qquad
City
State \qquad Zip

Solving Common Printer Problems Selby Bateman, Features Editor

Few things in computing are as frustrating as a recalcitrant printer. Here are some tips on how to find relief.

At one time or another, every computer user looks at the paper rolling out of a printer and sees something that seems to have been sent from an alternate universe. That's not what I told my computer to print!

Your neatly formatted doublespaced letter is being printed all on one line. Or your beautiful fourcolor screen illustration is appearing on paper as a series of capital E's. The italics and underlining you've added for emphasis in a report have changed the rest of the words to an unknown foreign language. Or, perhaps most depressing, the paper is simply rolling out of your printer completely blank.

Nine times out of ten, your printer problems won't be mechanical in nature. More likely, they'll fall into one of two major areas, which we may call interface/configuration mistakes and special effects errors.

Problems with interfacing and configuring your computer and printer usually happen during your first attempts to connect everything together. But confusion over special effects-such as boldfacing, underlining, super- and subscripting, and graphics-can happen even to the most advanced computer user.

No matter what the cause of a printer problem, it is a frustrating experience. Yet, with some patience and a thorough understanding of
how the computer, printer, software, and printer interface work together, you can unleash all of the power and high-quality performance packed into today's printers.

Whether your computer is a Commodore, IBM, Apple, Atari, TI, or other brand, you should become familiar with how it connects to a printer. Often an extra interface is required to allow an otherwise incompatible printer and computer talk to each other.

A thorough discussion of the many printer interfaces for microcomputers could fill a book. But basically, your data will be sent from computer to printer either in a serial or parallel stream, one bit at a time or eight bits at a time. Most printers use the parallel method. Your computer and printer manuals will tell you which kind of interface to use. But you should also know that some computers require additional accessories to work with certain printers.

For example, the Apple II needs an interface cable and either a parallel or serial interface card. IBM PCs need either the standard printer interface card for parallel connection or an asynchronous serial card. A Commodore 64 can hook directly to Commodore printers to make use of the special graphics symbols and reverse-video characters, but if you want to print special character sets, different type fonts, or foreign language characters, you'll need other printers and appropriate interfaces. Similarly, Atari computers hook up
directly to Atari printers, but require the 850 Interface Module or a substitute to work with other printers.

That super-low-priced printer might not look like such a bargain when you arrive home and find that you not only need an additional $\$ 35$ cable but also a $\$ 100$ add-on interface. Although most stores selling printers have salespeople to help answer your questions, you should still do your homework with computer manuals, magazines, and books.

To add to the confusion, the application software you want to use-such as a word processor or graphics program-can add its own complications. Unless you configure your system correctly, what you end up with may be quite different from what you want.

- or example, let's say your interface automatically sends a linefeed instruction which tells the printer to advance the paper. Your word processing program may already contain a similar command. And the printer, unless adjusted, may automatically add a linefeed as well. As a result, when you try to print out a single-spaced letter, the printer may be following instructions to put two or three linefeeds between each line of print. Conversely, you could also end up with no linefeeds at all. The entire letter might be printed on a single line.

The solution, of course, is to enable or disable the linefeeds, depending on the problem. This may involve opening up the printer or interface to flip a switch, or issuing the appropriate command with the word processor program. The answers are buried somewhere in the manuals.

Once you've got the printer and computer connected properly, you'll eventually want to take advantage of the advanced options which printers now offer. The special effects which turn your system into so much more than a typewriter are theoretically quite easy to control. The complexity stems, once again, from all the configuration possibilities. Versatility has a price.

Let's consider an example using the SpeedScript 3.0 word processor recently published in COMPUTE! for Commodore, Atari, and Apple computers. To underline a word with

2 1985 by STRATVECIC STMULARIONS, INC. Al moth ineengh

It thare are no convenient stores near you, VISA \& M/C hoiders can order directly by calling 800-227-1617, ext 335 (tol (ree), In Califorili call 800-772-3545, ext -335. Please specily compteer format, and aud $\$ 2.00$ ror shipping and thanding?

To order by mail send your cheok to. STRATEGIC SIMULATIO NS, INC. 883 Stierin Road, Blog. A-200 Mountain View. CA 94043 . (Califomia residents, add 7% sales (ax.) All our games carty a "14-day satistaction or your money back" guatantce.

Ampek

300 Green. 300 Amber... 310 Amber IBM-Plug. 300 Color/Audio. Color 500 Composite/RGB... Color 600 Hi -Res (640×240). Color 700 Hi -Res (720×240).. Color 710 Long Phosphor......... $\$ 579.00$

9191U Color.......................... $\$ 179.00$	
	(AAD
	Amber............................ $\$ 69.99$
	Amber/Green TTL.....(ea.) \$119.00
NEC	
	1260 Green....................... $\$ 99.99$
JB 1	1201 Green..................... $\$ 129.00$
	1205 Amber..................... $\$ 129.00$
JC 1	1215 Color.......................\$229.00
JC 1	1216 RGB....................... $\$ 379.00$
JC 1	1460 Color.......................\$269.00
JC 1	1410 RGB....................... $\$ 669.00$
PRINCETON	
MAX	X-12 Amber...................... $\$ 189.00$
HX-1	12 RGB.......................... $\$ 469.00$
SR-1	12 RGB.......................... $\mathbf{\$ 6 2 9 . 0 0}$
Scan	a Doubler Board............... $\$ 199.00$
(3)TXN	
115	12" Green Mono............... $\$ 99.99$
116	12" Amber Mono............... $\$ 99.99$
	Green TTL..................... $\$ 139.00$
122	Amber TTL...................... $\$ 149.00$
	Color RGB...................... $\$ 239.00$
	Med-Res RGB................. $\$ 299.00$
	Hi-Res RGB.................... $\$ 339.00$
420	Hi-Res RGB (IBM)............ $\$ 429.00$
	Ultra Hi-Res RGB............. $\$ 589.00$
QUADRAM	
8400	O Quadchrome................. $\$ 479.00$
8410	0 Quadchrome II............... $\$ 469.00$
8420	O Amberchrome................ $\$ 179.00$
7enut	
ZVM	122 Amber...................... $\$ 89.99$
ZVM 123 Green...................... $\$ 89.99$	
ZVM 124 IBM Amber.............. $\$ 149.00$	
ZVM 131 Color...................... $\$ 299.00$	
ZVM 133 RGB $\$ 429.00$	
ZVM 135 RGB/Color............... $\$ 459.00$	
ZVM	M 136 RGB/Color.............. $\mathbf{\$ 5 9 9 . 0 0}$

$\$ 129.00$. $\$ 139.00$.$\$ 169.00$ $\$ 239.00$ $\$ 389.00$ $\$ 399.00$ $\$ 499.00$ $\$ 179.00$ $\$ 69.99$ 12" Amber/Green TTL.....(ea.) $\$ 119.00$

$\$ 189.00$
$\$ 469.00$
. $\$ 629.00$
199.00

8420 Amberchrome..........

ZVM 122 Am
-ง
ZVM 124 IBM Amber -................99.99
ZVM 131 Color.......................... $\$ 299.00$
ZVM 133 RGB $\$ 429.00$

ZVM 136 RGB/Color
$\$ 599.00$

Gra
Seri
Mic
Mic

Microfazer.
from $\$ 139.00$
Efazer (Epson).................from $\$ 79.99$

SOrange micro

Grappler CD (C64)..................... $\$ 99.99$
Grappler + (Apple).................... $\$ 89.99$
Grappler $16 \mathrm{~K}+$ (Apple)............ $\$ 169.00$

DIGITAL DEVICES

Uprint (C-64)...9999
Printer Buffer P-16........

me MICROBITS

MB1150 Parallel (Atari)............... $\$ 79.99$ MPP-1150 Parallel (Atari)........... $\$ 69.99$ MP-1150XL (Atari 1200XL)......... $\$ 69.99$ MicroStuffer 64K Print Buffer... $\$ 109.00$
\rightarrow

Son of Starwriter A10P.............. $\$ 459.00$
Hot Dot Matrix................... $\$ 459.00$
F10-40P Starwriter.............. $\$ 869.00$

RX-80, FX-80 + , LX-80, JX-80.....CALL FX-100 + , RX-100, LQ1500..........CALL Homewriter 10.............................CALL

6100... $\$ 399.00$
6300... $\$ 749.00$
MANNESMANN TALLY	
Spirit 80... $\$ 229.00$
160L..... $\$ 499.00$

NEC
2010/15/30/50.........
$\$ 319.00$
2010/15/30/50 $\$ 699.00$ 3510/15/30... $\$ 1369.00$
3550 IBM........... 8810/15/30............................ $\$ 1679.00$
8850 IBM... . $\$ 1699.00$
ELF 360/370... ...CALL

OKIDATA

82, 83, 84, 92, 93, 182 ,
2350, 2410, Okimate-20

1340 (80 column).................
1351 (132 column)....................... $\$ 1259.00$
AT-100 Atari Interface Printer... $\$ 159.00$
AT-550 Atari Dual Mode. $\$ 259.00$ GP-100 Parallel Interface......... $\$ 189.00$ GP. 700 Atari Color Printer........ $\$ 489.00$
GP-550 Parallel Printer...
BMC
BX-80 Dot Matrix.
CITIZEN

C. TTOH

ComWriterII Letter Quality........ $\$ 399.00$ DIABLO

Symphony....................... $\$ 429.00$
1-2-3....................................... $\$ 299.00$

Please (Data Base).................. $\$ 199.00$
(8) Enturns

Professional Software

PC Plus/The Boss

symapse

File Manager
…..................... $\$ 49.99$
FAELECTRONIC ARTS*
Cut -n. Paste.
. 669.99
.
Financial Cookbook.......................... $\$ 344.99$
CSALPHA
Electronic Desk..................... $\$ 199.00$
BORLAND
Turbo Pascal..................................... $\$ 399.99$
Sidekick.................................. $\$ 379.00$

* Harvard Software Inc.

Harvard Project Manager.......... $\$ 209.00$
Total Project Manager......... $\$ 269.00$
Total Project Manager........

 Access (NEW)........Write/Graph/File.... Report.
Plan....
Proof................
Mac Software.
Word Perfect sSI

Human Edge ${ }^{\text {TM }}$

Communication Edge
... $\$ 99.99$
Management Edge
Negotiation Edge.
. $\$ 119.00$
Negotiation Edge.. $\$ 119.00$
Sales Edge..........

IBM PC SYSTEMS Configured to your specifications. Call for Best Price!

AMDEK	
MAI.	.. $\$ 249.00$
AST	
Six Pack Plus..	.. $\$ 239.00$
Mega Plus II..	.. $\$ 269.00$
I/O Plus II.....	.. $\$ 139.00$
Memory MBII.	.. $\$ 249.00$
Advantage-AT.	.. $\$ 399.00$
Preview Monograph...	. $\$ 299.00$
Graph Pak Mono/64K...	.. $\$ 599.00$
MonoGraph Plus........	.. $\$ 399.00$
5251/11..CALL
5251/12.	... $\$ 579.00$
3780.	... $\$ 639.00$
BSC..	. $\$ 499.00$

IRMA Print Eacle
Color.
EVEREX
Color Card (Graphics Edge)..... $\$ 299.00$ Magic Card..
Graphics HERCULES
Color.
. $\$ 319.00$
Wêalssociates
IDEAmax - ZPR, $64 \mathrm{~K}, \mathrm{C}, \mathrm{S}, \mathrm{P} . \$ 229.00$ IDEAmini - YPR, C, S, P........... $\$ 189.00$ IDEAminimax - MPR 128K........ $\$ 229.00$ IDEAshare Software.................. $\$ 219.00$ IDEA 5251.

PARADISE
Modular Graphics Card..
.. $\$ 279.00$
Multi Display Card.... $\$ 299.00$
Five Pack C, S....................
PLANTRONICS
Color Plus..
$\$ 369.00$

KEYBOARDS

Keytronics Keyboards 5150, 5151,
5151 Jr, $5149 \mathrm{Jr} ~$
MEMORY CHIPS
4164 RAM Chips.
(ea.) $\$ 2.39$

SpeedScript, you send a control code to the printer which backspaces and underlines after each character. But to Commodore 1525 or 801 printers, the code that most other printers understand as backspace is read as a command to enter graphics mode. Such conflicts are unavoidable, because there are so many different printers and control codes.

Whether you're just getting started with printers or are moving on to advanced printing features, there are a few basic concepts you should understand. If you're having printer problems, check this list to be sure you're familiar with each item. If you're not, invest some time exploring your computer, printer, software, and interface manuals to find a solution.

- ASCII (pronounced "ASkey"). American Standard Code for Information Interchange. A code that uses numbers from 0 to 127 to represent letters, numbers, punctuation symbols, and special control codes. Each code number consists of seven bits (binary digits). An eighth bit may be added for parity (see below). The first 32 ASCII numbers are control codes which can tell your printer to perform actions such as linefeeds, carriage returns, backspaces, and vertical and horizontal tabs.

Commodore and Atari computers use a slightly different form of ASCII which can cause translation problems with some interfaces and printers unless they are correctly configured.

- Baud rate. A measure of data transmission speeds, synonymous at lower speeds with bits per second. Computers can send data much faster than printers can produce images on paper. Consequently, the printer and interface must tell the computer to send data in bursts short enough for the printer to handle.
- Buffer. In a printer or interface, the memory area in which data is held after being sent from the computer. Printer buffers can be as small as one line of characters or range upward to thousands of bytes of data. If the buffer is large enough, it can hold all of the data you want to print, thus freeing the computer for other tasks while the printer goes about its work. The printer controls
the speed at which the data leaves the buffer and is printed on the paper.
- Centronics-standard parallel connection. A printer interface which allows data to be sent along separate wires eight bits at a time in a parallel flow. Most printers use a parallel interface to receive data from the computer. Some computers, however, must transmit data through a serial interface (see RS232 -standard serial connection). The Centronics interface, named after the printer company which popularized it, is the most common type of parallel interface on personal computers.
- Character set. The letters, numbers, and symbols which a printer or computer can produce. Note that many computers can display characters which the printer cannot reproduce, and vice versa. Some printers are capable of printing foreign character sets when you change the DIP switch settings. (See DIP switches).
- Control codes. Nonprintable commands sent from the computer to a printer for special actions, such as backspacing, carriage returns, linefeeds, tabs, and margin settings.
- DIP switches (Dual In-line Package). Small switches located on a printer or interface which can control a variety of options, such as baud rates, automatic/manual linefeeds, printing impression levels, international character sets, types of paper, form lengths, line spacing, and other parameters. Some printers and interfaces allow easy access to DIP switches, while others require you to take apart the case.
- Emulation. In terms of printers, a mode of operation which mimics another type of operation. For instance, some printer interfaces let a non-Commodore printer emulate a Commodore printer, allowing you to print the computer's special graphics symbols and reverse-video characters.
- Escape codes. Control code sequences which let you print certain characters not included in ASCII codes, or which activate special printer features such as boldfacing, italics, expanded or condensed type, and so on. Escape sequences are preceded by the escape character, ASCII 27. These sequences can be
sent to the printer in BASIC from your computer keyboard, or by the application software (such as a word processor). For example, ESC H might represent a British pound sign, ESC P might turn on or off the proportional spacing option on your printer, and ESC BS may determine the amount of space between characters in backspacing.
- Firmware. Software permanently burned into a ROM chip (Read Only Memory)-a cross between hardware and software. Printers contain firmware to control their printing options. Sometimes you can replace this chip with another to add more printing features.
- Parity. A way for your computer and printer to check the accuracy of the data being sent. An extra bit is added to the end of a seven-bit ASCII code representing a particular character. The computer checks the extra bit to verify that the data was not scrambled during transmission.
- Proportional spacing. Many printers today can vary the spacing between characters, as typesetters do. Typewriters have fixed spacing between all letters. For example, proportional spacing allows more room for a capital M or W and less room for a lowercase i or 1 .
- Protocol. All the rules and instructions controlling the way in which data is sent and received between the computer and printer.
- RS-232-standard serial connection. A type of interface that transmits data along a single wire one bit at a time, or serially. Although most printers use a parallel interface to receive data from a computer, some computers and printers require a serial interface. When all other factors are equal, a serial interface is slower than a parallel inter-face-but this is rarely important with printers, whose speeds are determined by mechanical limitations anyway.
- Tractor-feed. A pair of cogged wheels and guide wires that helps continuous-form paper roll through a printer. Some computers have built-in tractors, and others offer them as options.
- Transparency. A mode of operation for printer interfaces in which serial data is changed to parallel data without converting the original values of the data.

Compurters kids and the lom PC
 Cowpuret's Cornmodore $64 / 120$

Edward H. Carlson
If you are acquainted with BASIC, you can easily write your own games and applications. Thirtythree sections are included, with instructor notes, lessons, assignments, and lively illustrations to entertain and amuse you. Kids and the IBM PC and PCjr is also a good tutor on programming your PC or PCjr that will offer the best possible introduction to BASIC.

Edited

Now for the Commodore 64 and the Commodore 128, this collection brings together some of the best games, applications, and utilities from COMPUTEI Publications. All programs run on the 64 and the 128 running in 64 -mode. Additionally, there are sections detailing the advanced special features of the powerful, new 128 computer. Disk available which includes programs in the book.
compurels tolecompuling on
Arlan R. Levitan and Sheldon Leemon

Learn the ins and outs of telecomputing on your IBM PC or PCjr. From selecting a modem to evaluating terminal software, COMPUTEI's Telecomputing on the IBM will guide you through the steps in clear, everyday language. Getting online with a local bulletin board or an information service such as Dow Jones, The Source, or CompuServe is made easy by the explanations offered in this book. There's a world of information available to you through your IBM, and COMPUTEI's Telecomputing on the IBM will help get you online quickly and easily.

Compurters auldo to
Thomas E. Enright, Joan Nickerson, and Anne Wayman This informative and easy-tounderstand book shows the beginner how to use the Apple llc to communicate with other computers over the phone. Bulletin boards and informational services such as The Source, CompuServe, and Dow Jones are fully explored. Other useful information describes, in plain English, everything a buyer needs to know before selecting a modem or telecommunications software for the lic.

The Orsatoll Games; The 93 sat Dan Gutman and Shay Addams

With hundreds of computer games available for every home computer, how's a game enthusiast to decide which ones to buy? The Greatest Games, written by the founders and editors of Computer Games magazine, has the answers. It contains lively. in-depth reviews of the 93 greatest computer games. Eighteen different types of games are reviewed, including role-playing games, graphic adventures, sports games, and classic arcade games. This is a book every computer game lover will want to own.

Christopher Flynn

A complete home applications system of 25 integrated programs that truly put the speed and power of the PC or PCjir to work in the home. The system includes a spreadsheet, appointment calendar, electronic filing system, graph creation programs, and much more. Each program is clearly explained, welldocumented, and will run on the PC, with or without the Color/Graphics Monitor Adapter, as well as on any PCji. Disk available which includes programs in the book.

These titles are available at your local book or computer store, or you may order directly from COMPUTEI Books. To order, call toll free 800-334-0868, or send your check or money order (including $\$ 2.00$ per book for shipping and handling) to COMPUTE! Books, P.O. Box 5058, Greensboro, NC 27403.

Walter Bulawa

Tired of blasting invaders from outer space? This whimsical game is set in a very different world-the miniature jungle in your own backyard. The original version was written for the Atari. We've added versions for Apple, TI, Commodore 64, VIC-20, and IBM PC and PCjr computers. A joystick is required for the Atari and Commodore 64 versions.

Guide Webster, the hungry tree spider, in his endless search for a square meal. Roving back and forth across his tree limb, he watches for bugs to appear in the grass below. When the time is right, he drops down on a strand of silk for a light snack, then climbs back up his web to look for more.

Unfortunately, this backyard paradise isn't quite perfect. The more Webster eats, the faster the bugs move, making it harder to find the next meal. Even worse, he's not the only one with an appetitethere's a speedy scorpion sharing the same hunting ground, stealing bugs when he can and giving Webster a sting whénever he drops too close.

Atari Version

Program 1-the Atari version of "Webster Dines Out"-will run on any Atari computer with at least 32 K memory. Use the joystick to move Webster left or right at the top of the screen. When a bug passes below,
press the button to make him drop down.

Your goal is to score points as quickly as possible. Each bug is worth 25 points and you get 50 bonus points for snaring two bugs in a single drop. Webster has three lives in each game; getting stung by the scorpion costs you a life but does not reduce your score. The scorpion is a tough competitor: When Webster drops down, the scorpion speeds up to increase his chances of stealing a bug.

There are six skill levels, each harder than the last. As you advance to higher levels, the bugs and scorpion speed up, the grass grows longer, and a grey rock appears in the lawn. The other creatures hide behind these objects, but Webster can drop behind them too. The game ends when you lose all three lives or exhaust your time at the highest skill level.

Commodore 64 And VIC-20 Versions

Both Commodore versions of Webster Dines Out are scored like the Atari game- 25 points for each bug, with a 50 point bonus for capturing two at once. You begin with three lives, and lose one each time you collide with the scorpion.

The 64 version (Program 2) is played with a joystick in port 2 . The bugs and scorpion move across a sloping, multicolored lawn; at higher skill levels, colorful objects grow up to obscure your view of the ground. Play ends when your lives

Lookslikea Ferrari. Drives like a Rolls. Parks likeaBeetle.

Ask your computer dealer to let you test drive the all new Indus GT. ${ }^{\text {m }}$

The most advanced, most handsome disk drive in the world.

Flip its power switch and...
Turn your Atari into Ferrari.
Unleash your Apple.
And now turbocharge your Commodore.

Looks like a Ferrari.

The Indus GT is only $2.65^{\prime \prime}$ high. But under its front-loading front end is slimline engineering with a distinctive European-Gran flair.

Engaging its AccuTouch ${ }^{\text {™ }}$ buttons lets you control the LED-lit CommandPost." Marvel at how responsive it makes every Commodore, Apple and Atari personal computer.

Drives like a Rolls.

Nestled into its soundproofed chassis is the quietest and most powerful disk drive system money can buy. At top speed, it's virtually inaudible...whisper quiet.

Built into each Indus GT is a perfect combination of craftsmanship and advanced engineering. Luxurious styling reflects the personal tastes of each GT owner.

And each GT comes with the exclusive GT DrivingSystem ${ }^{\text {TM }}$ of software programs.* Worldclass word processing is a breeze with the GT Estate WordProcessor.'. Your dealer will describe the two additional programs that allow GT owners to accelerate their computer driving skills.

Also, the Indus GT is covered with the GT PortaCase.'. A stylish case that conveniently doubles as a 80 -disk storage file.*

Parks like a Beetle.

The GT's small, sleek, condensed size makes it easy to park.

A WarrantyPlus ${ }^{T M}$ package is included with every Indus GT, featuring full year parts and labor on the complete drive train.

Drive home a winner and park an Indus GT next to your personal computer.

The all-new Indus GT Disk Drive.
The most advanced, most handsome disk drive in the world.

We offer you six best-selling books designed especially for your home, educational, and recreational computing. Each book is filled with step-by-step instructions, helpful tutorials, and creative hands-on applications. COMPUTE! books are carefully written so that any computer user can easily understand and enjoy them to the fullest. This industry-leading selection includes:

The Second Book of Machine Language
Richard Mansfield
\$14.95
The follow-up to the best-selling Machine Language for Beginners, this book shows how to construct significant, effective machine language programs. It includes a high-speed, professional-quality, label-based assembler, and everything that's needed for optimized programming on the Commodore 64, Apple, Atari, VIC-20, and PET/CBM computers.

COMPUTEI's Third Book of Commodore 64 Edited \$12.95
The third in a collection of informative, entertaining, and educational games, applications, tutorials, and utilities for Commodore 64 users.

COMPUTE's Commodore Collection, Volume 2

Edited

\$12.95
This second volume in COMPUTEI's Commodore Collection series includes exciting games, sophisticated applications, versatile educational routines, and helpful programming aids for VIC-20 and Commodore 64 owners.

COMPUTEI's First Book of Apple
Edited
\$12.95
A collection of 35 exciting games, educational programs, home applications, and graphics routines for owners of Apple II, lle, and lic computers.

MAPPING THE

A completensive memory guiae tor beginning and advanced procorammees of ine
Commodore o4 petional computer
a connure mots hackero

You'll find these and other best-selling following pages. Visit one of these
stores today to find COMPUTE! books, the best in personal computer publications.

Puotshers of COMPUTE, COMPUTE's Garette. COMPUTE's Gozette Dak, COMPUTE Books, and COMPUTE's Apple Applications

Look for COMPUTEI Books
 at the following stores.

Alabama

Madison Books and Computers Madison Mall
8006-S Madison Pike
Madison, AL 35758

Arlzona

Books Etc.
901 S. Mill Ave.
Tempe, AZ 85281
Calliornia
Aztec Shops, Ltd.
San Diego State University
San Diego, CA 92182
Associates Students UCLA
General Book Dept.
308 Westwood Plaza
Los Angeles, CA 90024
Bookmania
25590 Seaboard Lane
Hayward. CA 94545
Computer Literacy
520 Lawrence Expressway \#310 Sunnyvale, CA 94086
M. T. S. Inc.

Tower Books Div.
7830 Macy Plaza Dr
Citrus Heights, CA 95610
M. T. S. Inc.

Tower Books \#14
2538 Watt Ave.
Sacto, CA 95821
University Bookstore, Q008
University of California, San Diego
La Jolla, CA 92093
(619) 452-3149

University Bookstore
University Avenue East
P.O. Box 5800

Riverside, CA 92507
University Bookstore
University Center
University of California
rvine, CA 92717
(714) 856-7412

Palomar College Bookstore
1140 W. Mission
San Marcos, CA 92069
Titan Bookstore
4999 Casa Loma Ave.
Yorba Linda, CA 92686

Connecticut

Klein's of Westport
44-50 Main Street
Westport, CT 06880
UConn Co-op
61 Faiffield Road
Storrs, CT 06268

Delaware

Castle Video, Inc. 27 Chestnut Hill Plaza
Newark, DE 19713
McMahon's
101 Christiana Mall
Newark. DE 19702
Encore \#8122
Talleyville SC
Silverside Rd., Rt. 202
Wilmington, DE 19810

District of Columbla

Reiter's Scientific and Professional Books
2120 Pennsylvania Ave., N.W Washington, DC 20037

Florida

Paperback Booksmith
400 Northlake Blvd
North Palm Beach, FL 33408
Dubeys News Center 115 S. Monroe Stree Tallahassee. FL 3230
The Book Nook 4345-2 University Blvd. S. Jacksonville, FL 32216
Book Trek
3734 Blanding Blvd.
Jacksonville, FL 32210
Monocle Book Store
Tamp Int. A.P.
Tampa, FL 3360

Georgia

Oxford Books Inc
2345 Peachtree Rd., N.E. Atlanta, GA 30305

Hawal

Honolulu Book Shops, Ltd.
287 Kalihi Street
Honolulu, HI 96819
Illinols
Krochs \& Brentanos
1028 Lake St.
Oak Park, IL 60301
Krochs \& Brentanos
J-6 Evergreen Plaza
Evergreen Park, IL 60642
Krochs \& Brentanos
18 River Oaks Center Calumet City, IL 60409
Krochs \& Brentanos
159 Lincoln Mall
Matteson, IL 60443
Krochs \& Brentanos
E-108 Cherry Vale Mall
Rockford, IL. 61112
Krochs \& Brentanos
Randhurst S/C
999 Elmhurst Rd
Mt. Prospect, IL 60056
Krochs \& Brentanos 2284 Fox Valley Center Aurora, IL 60505
Krochs \& Brentanos
100 Orland Square
Orland Park, IL 60462
Krochs \& Brentanos
1711 Sherman Ave.
Evanston, IL 60201
Krochs \& Brentanos
36 Old Orchard Ctr., N. Mall
Skokie, IL 60077
Krochs \& Brentanos
80 Oakbrook Ctr.
Oakbrook, IL 60521
Krochs \& Brentanos
106 Hawthorne Ctr.
Vernon Hills, IL 60061
Krochs \& Brentanos
J-108 Woodfield Mall
Schaumburg, il 60195
Krochs \& Brentanos
516 N. Michigan Ave.
Chicago, IL 60611
Krochs \& Brentanos
835 N. Michigan Ave.
45th Floor Water Tower Plaza
Chicago, Il 60611
Krochs \& Brentanos
105 W. Jackson
Chicago, IL 60604
Krochs \& Brentanos
29 S. Wabash
Chicago, IL 60603

Indiana

Von's Bookshop Computer
Center
315 W. State St.
W. Lafayette, IN 47906

Book World
92 University Park Mall
Mishawaka, IN 46545

Loulsiana

SoundTrek Audio
5703 Read Blvd.
New Orleans, LA 70127
SoundTrek Audio
4420 1-10 Service Rd.
Metarie, LA 70001
SoundTrek Audio
00 Lapalco Blva
Gretna, LA 77053

Maryiand

R. W. Electronics \& Computer Ctr.
8070 A Jumpers Mall
Pasadena, MD 21122
Collins Brothers Enterprises
Computer Corner
29 N. Patomac S
Hagerstown, MD 21740

Rockville Sales
11807 lidewood Rd
Silver Spring. MD 20906
Software Store
842-A Rockville Pike
Rockville, MD 20852
Software Store
7315 Wisconsin Ave
Bethesda, MD 20814
Maryland Book Exchange
4500 College Ave
College Park, MD 20740

Massachusetts

Boston Univ. Bookstore
660 Beacon Street
Boston, MA 02215
Northeastern University Bookstore
360 Huntington Avenue
Boston, MA 02115
Michigan
Chi Town Records
228 State St.
Oscada, MI 48750
I. O. Software

3600 South Dort Hwy.
Flint, MI 48507
Little Professor Book Center
8387 W. Grand Rive
Brighton, MI 48116
Little Professor Book Center
22174 Michigan Avenue
Dearborn, Mi 48124
Little Professor Book Center
37115 Grand River
Farmington, Ml 48024
Merit Books
22425 Kelly Road
East Detroit, Ml 48021
Metro News
6608 Telegraph
Birmingham, Mi 48010
Town Center Bookstore
3000 Town Center
Southfield, MI 48075

Now Hampshire

Marjen Books, Inc., dba
Paperback Booksmith/Musicsmith
Newington Mall
Portsmouth, NH 03801
The Colonial Bookshoppe
Upper Valley Plaza
West Lebanon, NH 03784

New Jersey

Village Computer \& Software
Center
Morris County Mall
Ridgedale \& Hanover Aves.
Cedar Knolls, NJ 07927
Encore Books \#8104
The Market Place SC
1990 Mariton Pike
Cherry Hill NJ 08003
Encore Books \#8117
Eagle Plaza SC
34 Berlin Rd
Voorhees, NJ 08043
Encore \#8121
Village at Taunton Forge
Tuckerton Tauton Rds
Medford, NJ 08055
The Princeton University Store
30 University Place
Princeton, NJ 08540
The Program Store
Rt. 35 \& Wycoff Road
Monmouth Mall
Eatontown, NJ 07724
The Program Store
1344 Willowbrook Mal
Wayne, NJ 07470

New York

Software City
134 Village Landing
Fairport, NY 14450
Village Green Bookstore
766 Monroe Ave.
Rochester, NY 14607
McGraw Hill Bookstore
135 W. 48th St.
New York, NY 10020
Book Revue
313 New York Ave.
Huntington, NY 11743
Macy's
Book Dept.
Herold Square
New York, NY 10001

North Carolina

The Book Collection Inc.
117 North Greene St.
Greensboro, NC 27410

News \& Novels
West Market St. Center
Greensboro, NC 27407
Wills Books
Friendly Shopping Center
Greensboro, NC 27401
Wills Books
Four Seasons Mall
Greensboro, NC 27403

Ohio

Wit \& Wisdom, Inc.
dba Booksellers
24031 Chagrin Blvd.
Barnes \& Noble Bookstore, Inc.
dba Cleveland State Univ.
2400 Euclid Avenue
Cleveland, OH 44115
The Inside Story
8535 Tanglewood Mall
Chagrin Falls, OH 44022
Bookstore at the University of

Akron

Barnes \& Noble
303 E. Carroll St
Akron, Ohio 44325
Cuyahogo Community College
Western Campus Book Center
11000 Pleasant Valley Road
Parma, OH 44130
University Bookstore
Bowling Green State University
Bowling Green, OH 43403

Oregon

Book Vault
Mall
3125 S.W. Cedar Hills Blvd.
Beaverton, OR 97005

Pennsylvania

Computer Corner
Bazaar of all Nations
Store \#201 Baltimore Park
Clifton Hts., PA 19018
Encore Books \#8101
1413 Walnut St.
Philadelphia, PA 19102
Encore Books \#8103
205 South 38th St.
Penn Campus
Philadelphia, PA 19104
Encore Books \#8107
609 Chestnut St.
Philadelphia, PA 19106
Encore Books \#8112
34 South 17th St.
United Engineers Bldg.
Philadelphia, PA 19103
Encore Books \#8115
Chestnut Hill/Top of Hill
55 Bethlehem Pike
Philadelphia. PA 19118

- Encore Books \#8118

Cottman Bustieton SC
2119 Cottman Ave.
Philadelphia, PA 19149
Encore Books \#8119
Tremont Shopping Center
2536-38 Welsh Road
Philadelphia, PA 19152
Encore Books \#8105
205 West Lancaster
Wayne, PA 19087
Encore Books \#8106
457 Germantown Pike
Plymouth Meeting. PA 19462
Encore Books \#8108
23 Manoa Shopping Center
Eagle Rd. West Chester Pk.
Havertown, PA 19083
Encore Books \#8109
Ardmore West SC
139 W. Lancaster Ave
Ardmore, PA 19003
Encore Books \#8115
Media Shipping Center
519 Baltimore Pike
Media, PA 19063
Encore Books \#110
are used up or time runs out at the last skill level．

The VIC－20 version of Webster Dines Out is written in machine lan－ guage（ML）for the unexpanded VIC．Program 3 is a BASIC loader that saves the ML program on disk or tape．Since the loader won＇t fit in an unexpanded VIC，you＇ll need at least 8 K memory expansion to run it （a Commodore 64 can also be used； see instructions below）．Type in and save Program 3，but don＇t try to run it yet．Enter this line in direct mode （without a line number）：

POKE6609，0：POKE43，209：POKE44，25： NEW

Now reload Program 3 and run it． Press D to save the game on disk，or T to save it on tape．The finished program will be named WEBSTER （replacing any other program of that name on your disk）．If you don＇t have memory expansion，you can use a Commodore 64 to create the VIC game（of course，the game itself runs only on a VIC）．To run the loader on a 64，change the 57809 to 57812 ，and 63109 to 62957 in lines $9-11$ of Program 3．Then follow the procedure described above．

Once the game is saved，re－ move any memory expansion and load and run it like a BASIC pro－ gram．Move Webster with the＜and ＞keys，and drop him down by pressing the space bar．As you pro－ gress to higher skill levels，the speed increases，and rocks appear below， blocking your vision．You can snare bugs from behind the rocks，but be careful not to drop onto a hidden scorpion．Play continues until you lose all three lives．

IBM Version

Program 4 runs on any PCjr with cartridge BASIC and any IBM PC with BASICA and a color／graphics adapter card．Press the left and right cursor keys to move Webster，and the space bar to drop．

Webster＇s lifeline is displayed at the top of the screen．When you drop to get a bug，your energy level is drained and your lifeline shrinks． Capturing a bug restores your ener－ gy and expands your lifeline．You＇ll score 10 points for catching a beetle， and 20 for each bug，with bonus points for multiple captures．Extra bonus points are awarded at the $1,000,5,000$ and 10,000 point marks．As your score increases，the
bugs speed up and become more scarce；your energy will drain faster， too．The game ends when you hit the scorpion or your energy drains to zero．

Apple Version

This version of Webster Dines Out will run on any Apple II series com－ puter．Since it＇s written entirely in machine language（ML），it must be entered using the＂Apple MLX＂ma－ chine language editor found else－ where in this issue．MLX will greatly simplify the usually tedious job of accurately entering the many num－ bers that make up a ML program． But be sure that you read the MLX article and understand how to use MLX before you begin entering the data from Program 5.

When you run MLX，it will ask for a starting and ending address． Use the values indicated in Program 5：

START ADDRESS？ 1100
 END ADDRESS？
 1 F14

MLX will then give you a menu of options．Choose E for enter and give 1100 as the starting address．A prompt for the first line will appear， and you can begin entering the data from Program 5．If you don＇t type the entire listing in one sitting，fol－ low the instructions in the MLX arti－ cle for saving a partially complete version and reloading it later．When you＇re finished typing，MLX will prompt you for a filename for the completed machine language pro－ gram．To load and run the game， simply type BRUN＂WEBSTER＂（or whatever name you used for the completed program）and press RETURN．

The scoring is identical to the Atari version．Use the left and right arrow keys to move on the branch， and press the space bar to drop to the ground．Avoid colliding with the giant grasshopper－when that hap－ pens，Webster loses a life（and is carried bodily off the screen）．The grass in the lawn grows higher as the game progresses，making your job more difficult．You can drop into the grass to snare a hidden bug，but be sure to keep track of the giant hopper，who might be lurking there as well．

TI Version

This version of Webster（Program 6） uses sprites for the spider，bugs，and
scorpion，and thus requires TI Ex－ tended BASIC．You can use either joystick or keyboard controls．For the keyboard，press the S key to move left，the D key to move right， and the space bar to make Webster drop．Scoring is identical to the Atari version：You have three lives in each game，and six possible levels．Bugs are worth 25 points，with a 50 point bonus for catching two at once．

At the bottom of the screen you＇ll see Webster＇s lifeline．Drop－ ping for a bug drains your energy and shrinks the lifeline；catching a bug restores your energy to normal． You lose a life whenever your ener－ gy drains to zero or you hit the scorpion．The game will not end until you lose all three lives．

Growing grass and grey rocks make it tough for Webster to find a meal in Atari ＂Webster Dines Out．＂

Program 1：Webster Dines Out For Atari

Please refer to＂COMPUTEI＇s Guide to Typing in Programs＂before entering this listing．

KI $1 \varnothing$ GOSUB $7 \emptyset \varnothing \varnothing$
KK $2 \emptyset$ GOSUB $71 \emptyset \emptyset$
LA 3 G GOSUB 76のの
0050 LEVEL＝LEVEL＋ 1
CL $8 \varnothing$ ON LEVEL GOSUB 85， 1 Øøø $\emptyset, 1 \emptyset 1 \emptyset \emptyset, 1 \emptyset 2 \emptyset \emptyset, 1 \emptyset 3 \emptyset \emptyset, 1 \emptyset$ 4øø，19øøø
PL 85 POKE 656，2：POKE 657，8： ？LEVEL
LH $9 \varnothing$ POKE 53248，XPOS：PDø\＄（Y POS，YPOS＋LEN（SPIDER\＄）） ＝SPIDER $\$$
PO 98 COUNTER $=\varnothing$
DP99 REM＊＊＊MAIN LOOP STAR T＊＊＊
CA 1 Øの S＝STICK（ø）
NC $11 \varnothing \mathrm{XPOS}=\mathrm{XPOS}+4$＊$(S=7)-4$＊（ $S=11$ ）
OC 144 IF XPOS $>X M A X$ THEN XPO $S=X M A X$
NO 146 IF XPOS $X X M I N$ THEN XPO $S=X M I N$

COMPUTEI's Apple Applications

COMPUTEI's Apple Applications issue features applications, tutorials, and in-depth feature articles for owners and users of Apple personal computers. From software to hardware to the state of the industry, this special issue serves as a useful tool and handy reference. It's filled with home, business, and educational applications and purchasing information.

Like COMPUTE! and COMPUTEI's Gazette, COMPUTEI's Apple Applications issue contains ready-to-type-in programs, easy-to-understand tutorials, and useful information. This special issue includes something for everyone:

ON SALE: April 9, 1985
PRICE: $\$ 3.95$ (in Canada, $\$ 4.75$)

FEATURES

Business Appllcations Software: A Buyer's Guide Word processing, spreadsheets, databases, and more
Telecommunicating on the Apple II and the Macintosh
"Is Anyone Out There? Getting Started with Telecommunications," a handy reader introduction to the first few hours of telecommunications, plus "Exploring Databases" by computer
A Game-Lover's Choice
"The Ten Best-Ever Apple Games"
Apple in the Coming Years,
"Up and Coming Apple," watchers and prognosticators reveal their best crystal-ball impressions of the market, the manufacturer, and the future development of our industry
Apple in Education
"The State of Educational Computing," plus "A Software Overview: What's Available in Education?" and "What Makes Superior Educational Software?"

APPLICATIONS

Uafabase Managemenf Program A small, working program for the Apple II series
Chess
A significant user-ready program with five levels of challenging play
Softsearcher
A machine language search routine
Inside a MacArtist
A major applications feature on the inner workings of MacPaint, MacDraw, and MacWrite with tutorials
Stargazer
Guess the constellation
Spelling Bee
Word-guessing game for youngsters
Heat Seeker
A fast-paced arcade style game

The programs published in COMPUTEI's Apple Applications are available on disk, ready to run on your Apple $\| c$, Apple $\|+$, and lle. The Disk will save you hours of typing time and give you easy access to the programs in this special issue of COMPUTEI's Apple. The Disk is only $\$ 12.95$ and is available only through COMPUTE! Publications. So order your Disk today!
Look for the Spring/Summer issue of COMPUTEI's Apple Applications on sale where you buy COMPUTE! and COMPUTE!'s Gazette, and at Apple computer retailers. Or order directly from COMPUTE!.
Send in the attached card with your payment or call toll-free 1-800-334-0868.

EB 150 POKE 53248，XPOS
CH $2 \varnothing \varnothing$ S＝STRIG（ 0 ）
OC 210 IF $S<>\varnothing$ THEN 400
FN 211 REM＊＊WEBSTER LEAPS
C． 212 POKE 53278， 0
OC 214 VEL＝XB3VEL：XB3VEL＝VEL 12
FL 220 FOR I＝YPOS TO YB－4 ST EP 4

LF 244 SOUND Ø，I，1ø，4
KN 246 IF XB3 $=\varnothing$ © THEN FOR $D=1$ TO 6：NEXT D：GOTO 25ø
（J 248 GOSUB $83 \varnothing$
BP 25 П NEXT I
P1 260 HIT＝PEEK（53260）：IF HI T＜＞め THEN GOSUB 1 øøの
1028 D FOR $I=Y B-4$ TO YPOS ST EP－4
HM 3øD PDø\＄（I，I＋LS）＝SPIDER $\$$
LC $3 \varnothing 4$ SOUND $\varnothing, I, 1 \varnothing, 4$
NH 3 Ø6 IF $X B 3=\emptyset$ THEN FOR $D=1$ TO 6：NEXT D：GOTO $31 \varnothing$
L6 3 g8 GOSUB 83ø
M 310 NEXT I
6C $32 \varnothing$ SOUND $\varnothing, \varnothing, \varnothing, \varnothing$
6P $322 \times B 3 V E L=V E L$
FH 399 REM＊＊BUG 1 MOVEMENT
FO 4øø IF XB1＜＞ø THEN $43 \varnothing$
OP 41 Ø $\mathrm{X}=\mathrm{INT}$（ 51 ＊RND（ $\varnothing)-25$ ）
BG 414 IF ABS $(x)<>1$ THEN $5 \varnothing \varnothing$
PJ 418 XB1＝XMIN＊$(X=1)+X M A X *$（ $X=-1$ ）
EL 419 XB1VEL $=X * X B 1$ SPEED
NC 424 PD $1 \$(Y B, Y B+L E N(B U G \$))$ ＝BUG
NB 43ø SOUND $1,3 \varnothing, 14,4$
E1 440 XB1 $=$ XB $1+$ XBIVEL
LL 442 IF XB1＜XMIN OR XB1〉XM $A X$ THEN $\times B 1=\varnothing$
M6 45 （ POKE 53249，XB1
6L $49 \varnothing$ SOUND 1 ，ø，Ø，Ø
FJ 499 REM＊＊BUG 2 MOVEMENT
6B5ø IF XB2＜＞ø THEN 530
PA 51 日 $\mathrm{X}=\mathrm{INT}(51$＊RND（ \varnothing ）-25 ）
BI 514 IF ABS $(x)<>1$ THEN $6 \varnothing \varnothing$
PL 518 XB2 $=X M I N *(X=1)+X M A X *($ $\mathrm{X}=-1$ ）
E0 $519 \times \mathrm{B} 2 \mathrm{VEL}=\mathrm{X} * \times \mathrm{B} 2$ SPEED
NE 524 PD2\＄（YB，YB＋LEN（BUG\＄）） ＝BUG\＄
NC 53ø SOUND 2，11，14，4
EK $540 \times$ B $2=X B 2+X B 2 V E L$
LP 542 IF XB2＜XMIN OR XB2＞XM AX THEN XB2＝\varnothing
MA 550 POKE 5325＠，XB2
6N59ø SOUND 2， $1, \varnothing$ ，ø
FL 599 REM＊＊BUG 3 MOVEMENT
6E 6øø IF XB3＜$>\varnothing$ THEN $63 \varnothing$
BD $61 \varnothing \mathrm{X}=\mathrm{INT}(F 1$＊RND（ $\varnothing)-\mathrm{F} 2$ ）
BE 614 IF ABS $(x)<>1$ THEN 1 Øø
PJ 616 COUNTER＝COUNTER＋ 1 ：IF COUNTER＞15 THEN POP ： GOTO 5ø
PN618 XBZ＝XMIN＊$(X=1)+X M A X *($ $\mathrm{x}=-1$ ）
FB619 XB3VEL＝X＊XB3SPEED
NG 624 PD3\＄（YB，YB＋LEN（BUG\＄）） ＝BUG\＄
LE 630 GOSUB 830
6B7の日 GOTO 1øø
EE 7 ø2 REM＊＊＊END OF MAIN L OOP＊＊＊
CD 829 REM＊＊MOVE BUG 3
HM 830 SOUND 3，5，8，4
FC $84 \varnothing \times B 3=X B 3+X B 3 V E L$
MF 842 IF XB3＜XMIN OR XB3＞XM AX THEN XB3＝ø
MF 850 POKE 53251 ，XB3
DF $86 \varnothing$ IF $\times B 3=X B 1$ THEN $\times B 1=\varnothing$ ：POKE 53249，

DB 862 IF $\times B 3=X B 2$ THEN $\times B 2=\varnothing$ ：POKE 53250，\varnothing
HB $89 \varnothing$ SOUND $3, \varnothing, \varnothing$ ，
IK 899 RETURN
HD 1 ØD．REM SPIDER HIT A BUG （WHICH？）
GJ $10 \varnothing 4 \mathrm{HIT}=\mathrm{INT}(\mathrm{HIT} / 2)$
CP $1 \varnothing 1 \varnothing$ ON HIT GOSUB $11 \varnothing \varnothing, 12$ øø，13ø日，14の日，150日， 16 øø，17ø日
KD 1 ø11 RETURN

GC $111 \varnothing$ XB1＝ $9:$ POKE 53249，XB1
H 1120 SCORE＝SCORE +25
BC 1125 GOSUB $18 \varnothing \varnothing$
KF $113 \varnothing$ RETURN

FN 121 Х $122=\varnothing$ ：POKE 5325の，XB2
IN 1230 SCORE＝SCORE +25
BE 1235 GOSUB $18 \varnothing \varnothing$
KH 124 Ø RETURN

AH $131 \varnothing$ GOSUB 11 øø
AJ 1320 GOSUB 1200
If $133 \varnothing$ SCORE＝SCORE $+5 \emptyset$
BF 1335 GOSUB 1808
k！ 1340 RETURN

DK $141 \varnothing$ FOR $I=2 \varnothing$ TO $2 \emptyset \varnothing$ STEP 4
OK $142 \varnothing$ SOUND $\varnothing, I, 14,8$
EA 1430 SETCOLOR 4，I， 8
DH 144 F FOR $N=1$ TO $1 \varnothing:$ NEXT N
FC 1450 NEXT I
6B 1455 POKE 656，1：POKE 657， LIVES＊2＋16：？＂＂
CJ $146 \varnothing$ SOUND $\varnothing, \varnothing, \varnothing, \varnothing:$ SETCOL OR 4，\varnothing, \varnothing
6K $147 \varnothing$ LIVES＝LIVES－ 1
KO 148 I IF LIVESく 1 THEN GOTO 19øøø
KO $149 \varnothing$ RETURN

66151 Ø XB1＝ø：POKE 53249，XB1 AN 152 g GOSUB $140 \varnothing$
KJ 1530 RETURN

68 $161 \varnothing \times B 2=\varnothing$ ：POKE 53250，XB2
AO 1620 GOSUB $140 \varnothing$
kK 1630 RETURN
DH 17 Øø REM BPTDA： ［18：
61 $171 \varnothing \times B 1=\varnothing:$ PDKE 53249，XB1
$601720 \times B 2=\varnothing:$ POKE 5325ø，XB2
BA 1730 GOSUB 14 Øø
KM 1740 RETURN

JE 181ø POKE 656，2：POKE 657， 32
NE $182 \emptyset$ PRINT SCORE
KN $183 \varnothing$ SOUND $\varnothing, 4 \varnothing, 12,8: F O R$ $I=1$ TO 1ø：NEXT I：SOU ND $\varnothing, \varnothing, \varnothing, \varnothing$
LL 1899 RETURN

KA $7 \varnothing 1 \varnothing$ DIM X\＄（1）
0． 7 ø2の $A=\operatorname{ADR}(x \$)$
BP $7 \emptyset 3 \emptyset \quad B=I N T((A-512) / 1 ø 24+1$ ）＊1 $\varnothing 24$
NC 7 © 4 D DIM $F \$(B-A+511)$
IA 7 Ø5 5 DIM PDø\＄（128），PD1\＄（1 28），PD2\＄（128），PD3\＄（1 28）
HN 7 Ø6 6 POKE 54279 ，INT（B／256
LJ 7099 RETURN
 पनह：3

EF711ø DIM SPIDER\＄（15）
HB 712 FOR $\mathrm{I}=1$ TO 15
OF 713 Ø READ $X: S P I D E R \$(I)=C H$ R（ X ）
FE 7140 NEXT I
GE $715 \emptyset$ DATA $8,8,8,8,137,74$ ， 6ø，255，6ø，74，129，ø， ，,\varnothing
ME 7152 LS＝LEN（SPIDER $\$$ ）
CO 716の DIM BUG\＄（3）
ED 717 FOR $\mathrm{I}=1$ TO 3
AB718ø READ $X: B U G \$(I)=C H R \$($ X）
FJ $719 \varnothing$ NEXT I
HD 7200 DATA $28,62,42$
KE $730 \varnothing$ REM＊＊INTRO DISPLAY
LB 731 D POKE 53248， $9:$ POKE 53 249，Ø：POKE 5325ø，ص：P OKE 53251， 9
OB 732ø GRAPHICS $2+16$
CE 7330 ？\＃6：？\＃6：？\＃6；＇

PE 7340 ？\＃6：？\＃6：？\＃6；＂ \｛5 SPACES\}DINES OUT

내735＠？\＃6：？\＃6：？\＃6：？\＃6； ＂\｛4 SPACES\}press st art＂
PK 7379 REM＊＊PLAY MUSIC－AW AIT START
PB738の RESTORE 191 øの
HD 7384 POKE 53279， 8
J6 739 FOR I＝1 TO 73：READ X ：SOUND 2，X，1の， 8
117392 IF $\operatorname{PEEK}(53279)=6$ THE N POP ：SOUND 2，\varnothing, \varnothing ，\varnothing ：RETURN
NF 7394 FOR J＝1 TO 7：NEXT J： NEXT I
EB 7395 FOR J＝1 TO 4 ص：NEXT J
OE 7396 GOTO 738の
LC 76 Øø REM KAME IE
FE $761 \emptyset$ GRAPHICS 5
CL 7620 REM CLEAR COLLISION REGISTER
6E 763ø POKE 53278，\varnothing
NH 764 Ø REM SET PLAYER SIZES （2X）
MH 7650 POKE 53256，\varnothing ：POKE 53 257，Ø：POKE 53258，Ø：Р OKE 53259， 1
EC 766 （ REM SET PLAYER COLOR s
J6767ø POKE 794，1ø：POKE 7ø5 ，255：POKE 7ø6，148：PO KE 7ø7，255
HN 768 ® REM ENABLE P／M GRAPH ICS
6M 7690 POKE 53277，3
HG77øø REM SET 2－LINE GRAPH ICS
DH 771ø POKE 559，46
L6772の REM TURN OFF CURSOR
PM 7722 POKE 752,1
FP 774ø REM ZERO OUT CHARS
明 $775 \varnothing$ PD $\varnothing=$ CHR $\$(\varnothing):$ PD $\varnothing \$(12$ $8)=\operatorname{CHR} \$(\varnothing): P D \varnothing \$(2)=F$ Dø\＄
HF776の PD1 $\$=P D \varnothing \$: P D 2 \$=P D \varnothing \$:$ PD3\＄＝PDø\＄
DK 78 g9 REM＊＊INITIAL SPIDE R LOCATION
AN $781 \varnothing \times P O S=1 \varnothing \varnothing: Y P O S=21$
BC7811 YB＝9の
607812 REM＊＊INIT BUG POS \＆VELS
PD $7814 \times \mathrm{B} 1=\varnothing: \times B 2=\varnothing: \times 83=\varnothing$
KK． $7816 \times B 1 \mathrm{VEL}=\varnothing: \times \mathrm{B} 2 \mathrm{VEL}=\varnothing: \times \mathrm{B}$ $3 V E L=\varnothing$
FB $7817 \times B 1 \mathrm{SPEED}=1: \times \mathrm{B} 2 \mathrm{SPEED}=$ 1：XB3SPEED＝6

PO $7818 \mathrm{XMIN}=42: \times M A X=2 \emptyset \varnothing$
EB 782ø F1＝51：F2＝25

LJ 7912 SETCOLOR $9,12,6:$ SETC OLOR 1，14，2：SETCOLOR 2，, 6
6M 7913 REM＊＊DRAW LAWN
IF 7914 COLOR 1
DO 792 ค PLOT $\emptyset, 38:$ DRAWTO 79 ， 38：PLOT ø，39：DRAWTO 79，39
J0 7928 COLOR 2：PLOT 44，7：DR AWTO 6ø，2
BP 793ø COLOR 2：POKE 765，2：R ESTORE $794 \varnothing$
ND 7932 FOR $I=1$ TO 4：READ X ， $Y: P L O T \quad X, Y$
6K 7933 FOR $N=1$ TO 3：READ X ， Y ：DRAWTO X, Y
LC 7934 NEXT N：READ $X, Y: P O S I$ TION $X, Y: X I O 18, \# 6, \varnothing$ ，\varnothing ，＂S：＂：NEXT I
JA 7940 DATA $74,39,79,30,79$ ， 37，71，37，74，3ø，74，7， $79,7,79,39,74,39,74$ ， $7,7 \emptyset, \emptyset, 73, \emptyset, 79,7,74$ ， 7，7ø，Ø，77，Ø，79，ø
LE 7942 DATA 79，7，77，5，77，\varnothing
EG 7946 PLOT $\varnothing, \varnothing:$ DRAWTO $\varnothing, 2$ ： POSITION $\varnothing, \varnothing: X I D 18$ ， \＃6，$, ~ \emptyset, " S: " ~$
EE 7949 REM＊＊PLOT TREE LEA VES
IF $795 \emptyset$ COLOR 1
AA 7952 RESTORE 7954 ：FOR $I=1$ TO 24：READ $X, Y: P L O T$ $X, Y: N E X T$ I
LD 7954 DATA $1,3,1,4,2,3,3,4$ $, 3,5,7,2,2,2,7,3,8,4$ $, 3,2,6,2,1 \emptyset, 2,3, \emptyset, 4$ ， Ø，4，1，4，2，5，ø，6，ø，6， $2,7,2,45,8,44,5,45,6$ ，58，4
AC 798の POKE 623， 4
AO 799 LIVES $=3$ ： $\mathrm{LEVEL}=\varnothing$ ：SCOR $E=\varnothing$
FO 7992 POKE 656，1：POKE 657， 1ø：？＂LIVES
\｛3 SPACES\}* * *"
JL 7996 POKE 656，2：POKE 657， 2：？＂LEVEL：
\｛17 SPACES\}SCORE:"
CJ 7997 GOSUB $189 \varnothing$
HC 7999 RETURN
JB 1 Øのøの REM［ BCID
Jo 1 Øø $1 \emptyset$ XB1SPEED＝3
KD 1 Øø 19 REM＊ ＊DRAW A BIG R OCK
KF 1 ØG2g COLOR 3
JD 1 Øø 5 D PLOT 11，37：DRAWTO 2 5，37：PLOT 12，36：DRA WTO 25，36：PLOT 13，3 5：DRAWTO 2ø，35：PLOT 22，35：DRAWTO 24，35
DD 1 Øø4の PLOT 14，34：DRAWTO 1 8， 34
6010050 F1＝31：F2＝15
OD 19099 RETURN
OH 1 Ø1 1 の REM＊＊ HMantis
NH 1 D 1 D 4 REM＊＊DRAW GRASS
PF $10117 \mathrm{~N}=2$ の：HEIGHT＝1：GOSUB 12 Øøの
EL 1 Ø119 REM＊DRAW A SMALL ROCK
KH 1912の COLOR 3：PLOT 6ø，37： DRAWTO 65，37：PLOT 6 2，36：DRAWTO 64，36
KB $1 \nsupseteq 13 \emptyset \times B 2 S P E E D=2$
OE 10199 RETURN

01102 Øø REM＊＊ HME：TIS
PD $1 \varnothing 2 \emptyset 5 \mathrm{~N}=1 \emptyset: \mathrm{HEIGHT}=2$ ：GOSUB 12のøの
PA1921の $N=1 \emptyset:$ HEIGHT＝3：GOSUB $12 \emptyset \varnothing \varnothing$
OF 1 ø299 RETURN
 TManis
FM 1ø31ø F1＝21：F2＝1ø
PC $1 \varnothing 32 \emptyset N=1 \varnothing: H E I G H T=3: G O S U B$ $12 \emptyset \emptyset \emptyset$
OG 19399 RETURN

H1 $1 \emptyset 41 \emptyset$ XB1SPEED $=4$ ：XB2SPEED ＝4：XB3SPEED＝8
KM 1ø42の $N=1 \emptyset:$ HEIGHT＝3：GOTO $12 \emptyset \varnothing \emptyset$
DL 1 Ø43 5 F1＝17：F2＝8
OH 10499 RETURN
NN 12 Øのø REM＊＊TO DRAW SOME TALL GRASS
KE 12010 COLOR 1
IE 12 פ20 FOR $I=1$ TO N
LO $12939 \mathrm{X}=\mathrm{INT}(89 * \operatorname{RND}(\varnothing))$
AD 1294 ® PLOT $X, 37:$ DRAWTO X ， 37－HEIGHT
IA $12 \boxed{50}$ NEXT I
WJ 12060 RETURN

OF 19 פø5 POKE 53248，Ø：POKE 5 3249，$:$ POKE 5325の， 0 ：POKE 53251，\emptyset
BJ $19 \boxed{1}$ פ GRAPHICS $2+16: ?$ \＃6； ＂\｛5 SPACES\}game ove r＂：？\＃6：？\＃6；＂
\｛4 SPACES\}SCORE : " ；SCORE：？\＃6

FP 19ø3ø ？\＃6：？\＃6：？\＃6：？\＃6 ；＂\｛6 SPACES\}[Bumade R．E＂
BN 1994 RESTORE $191 \emptyset \emptyset$
FI 19 פ5 FOR $I=1$ TO 73：READ
X
$6619 \emptyset 6 \emptyset$ SQUND $2, x, 1 \varnothing, 8: F O R$
$\mathrm{J}=1$ TQ 5：NEXT J：NEX TI
IL 19999 REM MUSIC DATA
HK 191 D．DATA $162, \emptyset, 121, \varnothing, \emptyset$ ， 96，Ø，121，Ø，Ø，162，Ø， $121, \emptyset, \emptyset, 96, \emptyset, 121, \emptyset$ ， Ø，162， $0,121, \varnothing, \varnothing, 1 \varnothing 8$ ，96，ø，1ø8， $1,121, \varnothing, 1$ 28，$, \emptyset, 121$
DF $1911 \emptyset$ DATA $198, \emptyset, \emptyset, 162, \emptyset$ ， $128, \emptyset, \emptyset, 1 \varnothing 8, \varnothing, 128, \emptyset$ ，Ф，162，ந，128，Ø，Ø， 1 Ø B，$\boxed{\square}, 128, \varnothing, \varnothing, 162, \varnothing, 8$ $1,72,81,91,96,198,1$ 21，ø，ஏ
MH 19120 DATA 1 Ø8， 121 ，\varnothing
JP 192 פø GRAPHICS $2+16$ ：SETCO LOR 4，4，2：SETCOLOR Ø，12，6：SETCOLOR 1，8 ，4：SETCOLOR 2，, 8
Ch 1921 Ø POSITION 4，4：？\＃6；＂ PlAy AgAiN 回＂
AO 1922の ？\＃6：？\＃；＂
〔7 SPACES\} (曼/[)"
JH 1923 P POKE 764,255
LN 1924 g $I=\operatorname{PEEK}(764)$ ：IF $I<>3$ 5 AND I＜＞43 THEN 19 24.0

NI 1925 IF $I=35$ THEN GOTO 2 ØワØワ
HA 1926』 POKE 764，255：GOTO 3
H 2 Øøøø END

Program 2：Webster Dines Out For Commodore 64

Translation by Jeff Hamdani
Please refer to＂COMPUTEI＇s Guide to Typing in Programs＂before entering this listing．

10ø GOSUB1130：GOSUB1150：GOSUB1 19ø：GOSUB1580：GOSUB137ø
：rem 233
$11 \varnothing \mathrm{LV}=\mathrm{LV}+1: \mathrm{CR}=\varnothing:$ IFLV＝7THEN149 Ø ：rem 135
$12 \emptyset$ ONLVGOSUB1 $3 \varnothing, 140 \emptyset, 1450,146$ $\emptyset, 1470,1480:$ IFCR $>1 \varnothing$ THEN $11 \varnothing$
：rem 115
130 POKE214，6：PRINT：POKE211，35 ：PRINTLV
：rem 125
140 POKE214， $20:$ PRINT：POKE211，3
3：PRINTSC
：rem 156
$160 \mathrm{P}=\operatorname{PEEK}(5632 \emptyset): \mathrm{D}=15-($ PAND15
）：rem 194
$17 \emptyset \times P=X P+8 *(D=4)-8 *(D=8)$
：rem 81
$18 \emptyset \mathrm{YP}=\operatorname{INT}((-.2 \emptyset 8) \star \mathrm{XP}+227.2)$
：rem 249
190 IFXP >226 THENXP $=226$ ：rem 87
200 IFXP <25 THENXP＝25 ：rem 231
210 POKEV，XP：POKEV＋1，F：rem 121
220 FR＝PAND16 ：rem 243
230 IFFR＜＞ØTHEN4øø ：rem 41
$240 \mathrm{VE}=\mathrm{V} 3: \mathrm{V} 3=\mathrm{VE} / 2:$ POKET1，17
：rem 117
$250 \mathrm{XX}=\mathrm{INT}(\mathrm{XP} / 8)-1: \mathrm{FORI}=\mathrm{FTOYPS}$ TEP8：POKEV，XP：POKEV $+1, I$
：rem 253
$260 \mathrm{O}=1 \varnothing 64+\mathrm{XX}+\mathrm{Z}$ ：POKEH1，I：POKEL 1，（I／3）
：rem $18 \emptyset$
$27 \emptyset$ POKEO，66：POKEO＋CL ， 6
：rem 131
28 IFB3＝øTHEN3øø ：rem $2 \varnothing 5$
290 GOSUB750 ：rem 183
$3 \varnothing \varnothing \mathrm{Z}=\mathrm{Z}+40: \mathrm{NEXTI}$ ：rem 213
$31 \varnothing \mathrm{~A}=\operatorname{PEEK}(\mathrm{V}+3 \varnothing)$ AND15：IF（AAND1 ）＝1 THENGOSUB86 $:$ IFLS $=\emptyset$ THEN POKET1，16：GOTO1Ø3Ø：rem 65
$32 \emptyset$ FORI＝YPTOFSTEP－8：POKEO， 32
：rem 126
$33 \varnothing$ POKEV，XP：POKEV＋1，I：POKEH1， （I／3）：POKELI，I ：rem 228

35 GOSUB 750 ：rem 180
$36 \emptyset$ O＝O－4 $:$ NEXTI： $\mathrm{Z}=\varnothing$ ：POKETl, 16
：rem 73
370 REM MUSI ：rem 188
$38 \emptyset$ V3＝VE
：rem 252
$39 \emptyset$ REM BUG1 MOVEMENT ：rem 25Ø
$4 \emptyset \emptyset$ IFBl＜＞ 0 THEN460 ：rem 9
$41 \varnothing$ POKEV＋21，PEEK（V＋21）OR2
：rem 1
$42 \varnothing \mathrm{X}=\operatorname{INT}(\mathrm{F} 1 * \operatorname{RND}(\varnothing)-\mathrm{F} 2):$ rem 18
430 IFABS $(X)<>1$ THEN52 0 ：rem 22
$44 \varnothing \mathrm{Bl}=(-1)$＊$(\mathrm{MI} *(\mathrm{X}=1)+\mathrm{MA}$＊$(\mathrm{X}=-1$ ））
：rem 112
$450 \mathrm{Vl}=\mathrm{X}$＊Sl ：rem 99
$460 \mathrm{Bl}=\mathrm{Bl}+\mathrm{Vl}:$ POKETl，17：rem 241
$47 \varnothing$ IFB1＜MIORB1＞MATHENB1＝\varnothing ：POK ET1，16
：rem 223
48Ø Yl＝INT（（－．2Ø8）＊Bl＋233．2）
：rem 165
$49 \varnothing$ POKEV $+2, \mathrm{Bl}: \mathrm{POKEV}+3, \mathrm{Yl}: \mathrm{POKE}$ $\mathrm{V}+40,2$
：rem 157
5øø POKEH1，INT（RND（ $\varnothing) * 3+19):$ PO KEL1，INT（RND（ $\varnothing) * 1+9$ ）：POKET 1，16
：rem 239
$51 \varnothing$ REM BUG2 MOVEMENT ：rem 245
$52 \emptyset$ IFB2＜＞ØTHEN58 \quad rem 16
530 POKEV＋21，PEEK（V＋21）OR4
：rem 6

50 COMPUTEI June 1985
$54 \varnothing \mathrm{X}=\mathrm{INT}(\mathrm{F} 1 * \operatorname{RND}(\varnothing)-\mathrm{F} 2)$: rem 21 $55 \emptyset$ IF ABS (X) <>1THEN640: rem 28 560 B2 $=(-1)$ * $\left(\mathrm{MI} *(\mathrm{X}=1)+\mathrm{MA}^{*}(\mathrm{X}=-1\right.$))
$57 \varnothing \mathrm{~V} 2=\mathrm{X} *$ S 2
:rem 116
:rem 104 2:POKE12,17:rem 248 $59 \varnothing$ IFB2<MIORB2>MATHENB2= \varnothing : POK ET2,16
:rem 230
$6 \varnothing \varnothing \mathrm{Y} 2=\operatorname{INT}((-.2 ø 8) * \mathrm{~B} 2+233.2)$
:rem 161
610 POKEV+4,B2:POKEV+5,Y2:POKE $\mathrm{V}+41,3$
:rem 159
$62 \varnothing$ POKEH2,INT(RND ($\varnothing) * 3+25)$: PO KEL2, INT (RND (\varnothing)* $1+9$) : POKET 2,16
:rem 242
630 REM BUG 3 MOVEMENT :rem 249
640 IFB3<>めTHEN710 :rem 15
$65 \varnothing \mathrm{X}=\mathrm{INT}(\mathrm{F} 1 * \operatorname{RND}(\varnothing)-\mathrm{F} 2)$: rem 23 $660 \operatorname{IFABS}(\mathrm{X})<>1$ THEN 160:rem 27 $67 \varnothing \mathrm{CR}=\mathrm{CR}+1:$ IFCR>10ANDLV=1THEN $85 \emptyset$:rem 12
$68 \varnothing$ IFCR> 1 1ØANDLV> 1 THENGOSUB85 \varnothing :GOTOI1ø
:rem 150
$690 \mathrm{~B} 3=(-1)$ * $(M I *(X=1)+M A *(X=-1$))
:rem 121
$700 \mathrm{~V} 3=\mathrm{X} * \mathrm{~S} 3$
:rem 101
$71 \varnothing$ GOSUB75 ${ }^{7}$
:rem 180
720 GOTO160 :rem 105
$73 \varnothing$ REM END OF MAIN LOOP
:rem 73
740 REM MOVE BUG3 :rem 199
750 POKET3,129 :rem 26
760 B3=B3+V3 :rem 126
$77 \emptyset$ IFB3 <MIORB3>MATHENB3 $=\varnothing$
:rem 103
$780 \mathrm{Y} 3=\operatorname{INT}((-.208) * \mathrm{~B} 3+233.2)$
:rem 172
790 POKEV+6, B3: POKEV+7,Y3: POKE V+42,6
:rem 178
8øØ POKEH3,17:POKEL3,5:POKET3, 128
:rem 214
810 IFB3=BlANDFR<> 1 THENB1= : PO KEV $+40, \varnothing$: POKEV $+2, \mathrm{Bl}:$ POKET1 , 16
:rem 87
$82 \varnothing$ IFB3=B1 ANDFR= $=$ THENB1 $=\varnothing:$ POK $\mathrm{EV}+4 \varnothing, \varnothing$: POKEV $+2, \mathrm{Bl}:$ rem 154
$83 \varnothing$ IFB3=B2THENB2= \varnothing : POKEV $+41, \varnothing$: POKEV +4, B2 : POKET2, 16
:rem 75
840 REM MUSIC :rem 1
85 Ø RETURN :rem 125
$86 \varnothing \mathrm{BN}=\varnothing$: $\mathrm{FORX}=1$ TO3: $\mathrm{BG}=2 \uparrow \mathrm{X}$
:rem 64
$87 \varnothing$ IF (AANDBG) THENGOSUB9øø
:rem 106
$88 \varnothing$ NEXT $:$ IFBN $=2$ THENSC $=S C+5 \varnothing$
:rem 207
885 IFBN $=3$ THENSC $=S C+1 \varnothing \varnothing$
:rem 136
$89 \varnothing$ POKE $214,20:$ PRINT:POKE211,3 3:PRINTSC:RETURN :rem 194
$9 \emptyset \emptyset$ IFBG=8THENGOSUB960:RETURN
:rem 142
$910 \operatorname{IFPEEK}\left(\mathrm{~V}+2^{*} \mathrm{X}\right)>=\mathrm{XP}-24$ ANDPEE $\mathrm{K}(\mathrm{V}+2$ * X$)<=\mathrm{XP}+24$ THENGOSUB95 $\varnothing: S C=S C+25:$ POKEV $+2 * X, \varnothing$

$$
\text { : rem } 54
$$

$92 \varnothing \operatorname{IFPEEK}(\mathrm{~V}+2)=\varnothing$ THENB1=Ø
:rem 207
$93 \varnothing \operatorname{IFPEEK}(\mathrm{~V}+4)=\varnothing$ THENB $2=\varnothing$: POKE T2,16
:rem 85
940 RETURN :rem 125
$950 \mathrm{BN}=\mathrm{BN}+1: \operatorname{POKEV}+21$, $\operatorname{PEEK}(\mathrm{V}+21$)AND15-BG:RETURN :rem 51
$960 \operatorname{IFPEEK}(\mathrm{~V}+2 * \mathrm{X})>=\mathrm{XP}-24$ ANDPEE $\mathrm{K}(\mathrm{V}+2 * \mathrm{X})<=\mathrm{XP}+24 \mathrm{THENLS}=\mathrm{LS}-1$:GOTO $98 \varnothing$:rem 219 970 RETURN :rem 128 $98 \emptyset$ REM SPIDER HITS BIG BUG
:rem 52

990 FORI=8TO2STEP-2: POKE53281, I:POKE53280,I :rem 120
løøø PRINT" \{HOME \} (WHT \}
\{9 RIGHT\}LIVES REMAINING \{SPACE\}";LS:NEXT :rem 31
1010 FORI=1TO7øб:NEXT:FORI=1ø2 4TOIø55: POKEI+CL, 5:POKEI, 160:NEXT :rem 170
1ø2ø POKE53280, ø:POKE53281, ø:R ETURN
:rem 50
$1 \varnothing 3 \varnothing$ REM SPIDER LOST ALL LIVES :rem 13
$1 \varnothing 40 \mathrm{O}=\varnothing: \mathrm{XX}=\varnothing: \mathrm{Z}=\varnothing:$ FORI= $=$ TO3: PO KEV + $21, \operatorname{PEEK}(\mathrm{~V}+21)$ AND ($15-2$ $\uparrow I): P O K E V+2 * I, \varnothing: N E X T$
:rem 77
$1 ø 5 \emptyset$ PRINT" $\{$ CLR $\}$ \{6 DOWN $\}$ "SPC(1 5) "GAME OVER" : rem 199
$1060 \mathrm{~B}=13-\mathrm{LEN}(\mathrm{STR}(\mathrm{SC})) / 2:$ PRIN T"\{2 DOWN \}"SPC(B)"YOUR SC ORE IS ";SC :rem 142
1070 PRINT"\{2 DOWN\}"SPC(12)" \{RVS\}TRIGGER\{OFF\} TO STAR T"
:rem 13ø
$1 \varnothing 8 \emptyset$ PRINT" $\{2$ DOWN $\}$ " $\operatorname{SPC}(15)$ "
\{RVS\}N\{OFF\} TO STOP"
:rem $12 \varnothing$
$109 \varnothing$ FR=PEEK (5632ø)AND16:GETAS :IFAS=" "ANDFR<> ØTHEN1ø9Ø
$11 \varnothing \varnothing$ IFFR=øTHEN1 $\varnothing \varnothing$
1110 IFAS="N"THENEND :rem $14 \varnothing$
1120 GOTO 1ø9ø :rem 199
$113 \varnothing$ PRINT"\{CLR\}":XP=1øø:CL=54 272 : V=53248:SC= \varnothing :LV= $\varnothing: L S=$ $3: B 1=\varnothing: B 2=\varnothing: B 3=\varnothing: F=56$
:rem 254
$114 \varnothing \mathrm{Vl}=\emptyset: \mathrm{V} 2=\varnothing: \mathrm{V} 3=\varnothing: \mathrm{Sl}=4: \mathrm{S} 2=4:$ $\mathrm{S} 3=12: \mathrm{MI}=\varnothing$: $\mathrm{MA}=255: \mathrm{Fl}=51: \mathrm{F}$ 2=25: RETURN
:rem 122
$1156 \mathrm{SD}=\mathrm{CL}:$ FORL=SDTOSD +24 : POKE L, $\varnothing:$ NEXT:Tl=SD+4:Dl=SD+5: $\mathrm{Rl}=\mathrm{SD}+6: \mathrm{Hl}=\mathrm{SD}+\mathrm{l}: \mathrm{Ll}=\mathrm{SD}$:rem 245
$1160 \mathrm{~T} 2=\mathrm{T} 1+7: \mathrm{T} 3=\mathrm{T} 2+7: \mathrm{D} 2=\mathrm{D} 1+7: \mathrm{D}$ $3=\mathrm{D} 2+7: \mathrm{R} 2=\mathrm{Rl}+7: \mathrm{R} 3=\mathrm{R} 2+7: \mathrm{H} 2$ $=\mathrm{H} 1+7: \mathrm{H} 3=\mathrm{H} 2+7: \mathrm{L} 2=\mathrm{L} 1+7$:rem 18
1170 L3=L2+7:POKE54296,15:POKE D1,17:POKER1,241:POKED2,1 7:POKER2, 241:POKED3,17 :rem 34
1180 POKER3,241:RETURN :rem 91
1190 POKE53281, $0:$ POKE5328ø, Ø:F ORI=1ø24TO1ø56: POKEI+CL,5 :POKEI,160:NEXT :rem 184
1206 FORI=1984TO1743STEP-36:PO KEI+CL, 1:POKEI, 233 :NEXT
:rem 2
1210 FORI=1985TO1733STEP-36:PO KEI+CL, 2:POKEI,160:NEXT :rem 3
1220 FORI $=1986 \mathrm{TO} 1744 \mathrm{STEP}-36$: PO KEI+CL, $3:$ POKEI, $160:$ NEXT. :rem 8
1230 FORI=1987TO17ø5STEP-36:PO KEI+CL, 4:POKEI,160:NEXT :rem 8
1240 POKE1692+CL,7:POKE1692,2ø 1:FORI=1693TO1696: POKEI+C L, 7: POKEI, 160:NEXT
:rem 143
1250 POKE1732+CL,7:POKE1732,22 1:FORI=1733TO1736:POKEI +C L, 7: POKEI, 160:NEXT
:rem 126
1260 POKE1772+CL,7:POKE1772,22 1:FORI $=1773$ TOI776: POKEI $+C$ L, 7:POKEI, 160:NEXT
:rem 143

1270 FORI=1988TO2ø16: POKEI+CL, 15:POKEI,160:NEXT:FORI=19 52TO1976: POKEI+CL, 15:
:rem 147
1280 POKEI, 160:NEXT:FORI=1916T O1936:POKEI+CL,15:POKEI,1 60: NEXT:FORI=188øTO1896:
:rem 134
1290 POKEI+CL,15:POKEI,160:NEX T:FORI $=1844$ TOl856:POKEI + C L, 15: POKEI, 160:NEXT
:rem 89
$13 \varnothing 0$ FORI=18ø8TO1816:POKEI+CL, 15:POKEI,160:NEXT :rem 97
1310 FORI=1ø56TO1ø63:POKEI+CL, 12: POKEI, 1ø2: POKEI +96 $\varnothing+$ CL ,12: POKEI+960,1ø2:NEXT
:rem $8 \varnothing$
1320 FORI $=1056 \mathrm{TO} 2016 \mathrm{STEP} 40:$ POK EI+CL, 12:POKEI, 1ø2: POKEI+ 7+CL, 12: POKEI $+7,1 \varnothing 2$:NEXT
:rem 32
1330 RESTORE:FORI=11øøTO126øST EP40:READA: POKEI+CL, 1:POK EI, A:
:rem 88
1340 FORI=166øTO1820STEP40:REA DA: POKEI + CL, 1:POKEI, A:NEX T :rem 8 1350 DATA12,5,22,5,12,19,3,15, 18,5 :rem 164 1360 RETURN :rem 17ø
1376 POKEV+21,9:POKE53275,14
:rem 67
$138 \emptyset$ FORI=ØTO3:POKEI+2ø4ø,192+ I:NEXT :rem 151 1390 RETURN :rem 173
$14 \varnothing 0$ REM LEVEL 2 ADJUSTMENTS
:rem 165
$141 \varnothing$ Sl=5:F1=31:F2=15 :rem 99
1420 FORI=19ø4TO1907:POKEI+CL, INT(RND(\varnothing) * $15+1$): POKEI, 16 Ø: NEXT
:rem 137
1430 FORI=1944TO1947:POKEI+CL, $\operatorname{INT}(\operatorname{RND}(\varnothing) * 15+1)$: POKEI, 16 Ø:NEXT
:rem 146
1440 FORI=1984TO1987:POKEI+CL, INT(RND(\varnothing)*15+1): POKEI, 16 Ø:NEXT:RETURN : rem 181 $1450 \mathrm{Sl}=6: \mathrm{Fl}=31: \mathrm{F} 2=15:$ RETURN
:rem $13 \varnothing$
1460 S2=6:RETURN :rem 221
$147 \varnothing$ Sl=8:S3=16:Fl=21:F2=10:RE TURN : rem 228
$148 \emptyset \mathrm{Sl=1} \mathrm{\varnothing:S2=1} \mathrm{\varnothing:S3=2} \mathrm{\varnothing:F1=17:F}$ 2=8:RETURN :rem 66
$149 \varnothing$ FORI $=\emptyset$ TO $3:$ POKEV +21 , PEEK (V $+21)$ AND ($15-2 \uparrow I$): POKEV+2*I , $\varnothing:$ NEXT
$15 \emptyset \emptyset \operatorname{PRINT"\{ CLR\} \{ 6~DOWN\} }$
\{9 RIGHT\}YOU WON THE GAME
:rem 129
$151 \varnothing$ PRINT" $\{2$ DOWN\} \{9 RIGHT\}YO UR SCORE IS "; SC :rem 247
$152 \emptyset$ PRINT"\{2 DOWN \} \{9 RIGHT \} \{RVS\}TRIGGER\{OFF\} TO STAR T" :rem 169 $153 \emptyset$ PRINT" $\{2$ DOWN $\}$ \{9 RIGHT \} \{RVS\}N\{OFF\} TO STOP"
:rem 156
$1540 \mathrm{FR}=\operatorname{PEEK}(5632 \emptyset)$ AND16:GETAS :IFAS=""ANDFR<>øTHEN154ø
:rem 139
1550 IFFR=ØTHEN1 $\varnothing \varnothing$:rem 31
$156 \emptyset$ IFA $=$ "N"THENEND :rem 149
1570 GOTO 1540 :rem 2ø8
$1580 \mathrm{I}=12288$:rem 89
1590 READ A:IF A=256 THEN RETU RN :rem 31
16øØ POKE I,A:I=I+1:GOTO 1590
:rem 83
$161 \emptyset$ DATA $224,126,7,96,255,6$ 8 1630 DATA $1,255,128,193,255,13$ 1 :rem 246 1640 DATA $199,255,227,63,255,2$ 52 :rem 57 165 DATA $1,255,128,7,255,224$:rem 149
1660 DATA $31,255,252,33,255,13$ Ø : rem 242 1670 DATA $97,255,134,225,255,1$ 34 : rem 53 $168 \emptyset$ DATA $15,255,243,31,255,24$ 8 :rem 254 $169 \emptyset$ DATA $16,6 \emptyset, 4,24,126,4$:rem $25 \emptyset$
$17 \emptyset \emptyset$ DATA $24,219,6,120,219,7$:rem 92 $171 \varnothing$ DATA $\varnothing, 126, \varnothing, \varnothing, \varnothing, \varnothing:$ rem 72 $172 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, 3,255:$ rem 79 1730 DATA $192,31,255,248,127,2$ 55 :rem 49 1740 DATA $254,151,255,233,32$, \varnothing :rem 189 $175 \emptyset$ DATA $4,64, \varnothing, 2,128, \varnothing$

:rem 142

1760 DATA $1,192, \varnothing, 3,192, \varnothing$
:rem 192
$177 \emptyset$ DATA $3,192, \varnothing, 3,192, \varnothing$
:rem 195
178 DATA 3,192, $0,3,192, \varnothing$
:rem 196
$179 \emptyset$ DATA $3,128, \varnothing, 1,64, \varnothing$
: rem 144
$18 \emptyset \emptyset$ DATA $2,32,0,4,16, \emptyset:$ rem 81 1810 DATA $8,24,0,24,252, \varnothing$
:rem 189
$182 \emptyset$ DATA 63, $, \varnothing, \varnothing, \varnothing, \varnothing$:rem 26 $183 \emptyset$ DATA $\emptyset, \emptyset, 3,255,192,31$
:rem 241
1840 DATA $255,248,127,255,254$, 151
:rem 101
1850 DATA $255,233,32,0,4,64$
:rem 43
$186 \emptyset$ DATA $\varnothing, 2,128, \emptyset, 1,192$
:rem 191
$187 \emptyset$ DATA $\varnothing, 3,192,0,3,192$
: rem 196
1880 DATA $\varnothing, 3,192,0,3,192$
: rem 197
1890 DATA $\varnothing, 3,192,0,3,128$
: rem 197
$190 \emptyset$ DATA $\varnothing, 1,64, \varnothing, 2,32:$ rem 82 $191 \emptyset$ DATA $\varnothing, 4,16, \varnothing, 8,24:$ rem $9 \emptyset$ $192 \emptyset$ DATA $\varnothing, 24,252, \varnothing, 63, \varnothing$
:rem 186
$193 \emptyset$ DATA $15, \varnothing, 24 \emptyset, 24,129,24$: rem 87
$194 \emptyset$ DATA $48, \varnothing, 12,24 \varnothing, \varnothing, 15$
1950 DATA $152,129,25,201$: rem 239
:rem 194
$196 \emptyset$ DATA $96,0,6,31,255,248$
:rem 57
1970 DATA $63,255,254,127,255,2$
54 :rem 56
1980 DATA $255,255,255,127,255$,
254 :rem 109
1990 DATA $49,129,140,99,0,198$
:rem 171
2øøø DATA $66, \varnothing, 66,132, \varnothing, 33$
:rem 236
$2 ø 1 \emptyset$ DATA $132, \varnothing, 33,132,0,33$: rem 17
$202 \emptyset$ DATA $66, \varnothing, 66,99, \varnothing, 198$: rem 6
203Ø DATA 247,129,239,0,0,256
:rem 143

Commodore 64 "Webster Dines Out" takes advantage of sprite graphics.

"Webster Dines Out" for the VIC-20, a fast machine language game.

Program 3: Webster Dines Out For VIC-20

Translation by Kevin Mykytyn, Editorial Programmer
Please refer to "COMPUTEI's Guide to Typing In Programs" before entering this listing.
Ø PRINTCHR\$ (147) "VIC-2の WEBSTE R MAKER": PRINT
:rem 179
$1 \operatorname{IFPEEK}(43)+256$ * $\operatorname{PEEK}(44)=6609$ THEN3
:rem 225
2 PRINT"POKE66ø8, Ø: POKE43,2ø9: POKE44, 25 : NEW":PRINT" \{DOWN\}E NTER POKES, LOAD AGAIN": END
:rem 9ø
3 INPUT" \{RVS\}D\{OFF\} ISK OR \{RVS\}T\{OFF\}APE"; DS:IFDS="D"T HEND=8: GOTO6 : rem 111
4 IFD $\langle>$ "T"THEN3 : rem 159
$5 \mathrm{D}=1$: REM FOR 64 CHANGE 57809 \{SPACE\}TO 57812 AND 63109 TO 62957
:rem 57
$6 \mathrm{X}=\emptyset$: PRINT:PRINT"READING DATA ‥" : rem $1 \varnothing 7$
7 READA:IFA $=256$ THEN9 : rem 224
8 POKE46ø9+X, A: X=X+1:GOTO7
:rem 87
9 PRINT"\{DOWN\}SAVING WEBSTER": IFD=8THENSYS578ø9"@Ø:WEBSTER ", 8, Ø
: rem 134
10 IFD=1THENSYS578の9"WEBSTER", 1, \varnothing
:rem 246
11 POKE193,1:POKE194,18:POKE17 4,65:POKE175, 23:SYS63109:PR INT"\{DOWN\}OK": END : rem 93 12 DATA $11,8,1 \varnothing, \varnothing, 158,52,49,48$,57, $0, \varnothing$:rem 10
13 DATA $\emptyset, 169,147,32,210,255,1$ 62,8,160,2,24
:rem 54
14 DATA $32,249,255,169,189,133$ $, 170,169,153,160,20$: rem 113

15 DATA $32,30,203,120,173,4,14$ $4,9,8,141,15 \quad$:rem 253
16 DATA $144,166,17 \emptyset, 202,208,25$ 3,32,159,255,32,228: rem 112
17 DATA $255,201,13,208,233,88$, $32,197,20,169,1 \varnothing$:rem 216
18 DATA $141,174,2,169,25,141,1$ $76,2,169,0,133:$ rem 115
19 DATA $2,133,252,133,253,165$, 162,133,254,169,1 :rem 7
$2 \emptyset$ DATA $133,3,169,23,133,5,169$ $, 30,133,6,160:$ rem 54
21 DATA $2,169,5,153,100,3,169$, $10,153,119,3$:rem 248
22 DATA $136,16,243,169,2,141,1$ Ø3,3,141,104,3: rem 93
23 DATA $169,4,141,113,3,141,11$ $4,3,162,4,32$:rem $25 \emptyset$
24 DATA $17,19,202,16,250,169,1$ 5,141,14,144,32:rem 155
25 DATA $81,19,32,188,16,32,173$,16,32,56,17:rem 24
26 DATA $174,176,2,32,160,18,32$ $, 173,18,32,136$:rem 115
27 DATA $18,32,251,19,76,149,16$,165,2,2ø8,84 :rem 81
28 DATA $165,197,201,64,240,78$, $72,32,6,17,104 \quad$:rem 124
29 DATA $2 \emptyset 1,29,208,24,166,3,22$ $4,1,240,18,198$:rem 117
$3 \emptyset$ DATA $3,165,5,56,233,1,133,5$, 165,6,233
:rem 163
31 DATA $\varnothing, 133,6,76,6,17,201,37$ $, 2 ø 8,24,166$:rem 210
32 DATA $3,224,17,246,18,230,3$, $165,5,24,105$:rem 254
33 DATA $1,133,5,165,6,105,0,13$ 3,6,76, \varnothing
34 DATA $17,201,32,208,8,169,1$, 133,2,169,16 :rem 12
35 DATA $133,251,169,0,32,20,17$ $, 96,162,3,189$:rem 69
36 DATA $174,17,168,169,32,145$, $5,262,16,245,96:$ rem 183
37 DATA $141,175,2,165,5,24,105$, $0,133,247,165$:rem 110
38 DATA $6,105,120,133,248,162$, $3,189,174,17,168$:rem 226
39 DATA $189,178,17,145,5,173,1$ $75,2,145,247,202$:rem 236
$4 \varnothing$ DATA $16,239,96,165,2,24 \varnothing, 94$,32,155,17,176 :rem 129
41 DATA $3,32,6,17,165,251,16,5$,73,255,24
:rem 169
42 DATA $105,1,24,105,220,141,1$ 2,144,198,251,48 :rem 199
43 DATA $22,160,0,169,39,145,5$, $165,5,24,105 \quad$:rem 12
44 DATA $22,133,5,165,6,105,0,1$ 33,6,76,144
:rem 213
45 DATA $17,165,251,201,255,208$ $, 3,32,182,17,201:$ rem 206
46 DATA $239,208,9,169,0,133,2$, $141,12,144,240 \quad:$ rem 11ø
47 DATA $13,165,5,56,233,22,133$ $, 5,165,6,233 \quad:$ rem 15
48 DATA $\varnothing, 133,6,32,155,17,176$, 5,169, 0,32
:rem 171
49 DATA $2 \emptyset, 17,96,162,4,202,48$, $12,189,174,17$
:rem 78
$5 \emptyset$ DATA $168,177,5,201,40,144,2$ $43,56,96,24,96$:rem 130
51 DATA $22,23,1, \varnothing, 36,35,34,33$, $169,0,141:$ rem 102
52 DATA $178,2,162,4,165,3,221$, $9 \varnothing, 3,24 \emptyset, 4 \emptyset \quad:$ rem $21 \emptyset$
53 DATA $24,1 \emptyset 5,1,221,90,3,240$, $32,2 \boxed{2}, 16,238:$ rem 43
54 DATA $173,178,2,201,3,144,4$, $169,1 \varnothing \emptyset, 2 \emptyset 8,6$, rem 6ø

55 DATA $201,2,144,13,169,50,24$ ，101，252，133，252 ：rem 196 56 DATA $165,253,1 \varnothing 5, \varnothing, 133,253$ ， 96，142，177，2，224 ：rem 217 57 DATA $3,144,56,169,127,141,1$ $7 \varnothing, 2,141,12,144$ ：rem 161 58 DATA $32,131,17,198,251,173$ ， $170,2,24,105,127$ ：rem 214 59 DATA $141,13,144,173,170,2,3$ 2，20，17，165，162：rem 156 $6 \emptyset$ DATA $197,162,24 \varnothing, 252,206,17$ ø，2，16，23日，32，6：rem 154 61 DATA $17,2 ø 6,242,31,173,242$ ， 31，201，48，208，3：rem 152 62 DATA $76,1 \varnothing 1,2 \varnothing, 96,238,178,2$ 32，17，19，169：：rem 80 63 DATA 231，133，4，165，4，141，12 144，230，252，208 ：rem 198
64 DATA $2,23 \varnothing, 253,32,251,19,23$ Ø，4，2ø8，238，174 ：rem 16ø 65 DATA $177,2,206,174,2,240,3$ ， 76，2ø4，17，169 ：rem 72
66 DATA $10,141,174,2,173,225,3$ $1,2 \emptyset 1,54,24 \varnothing, 41:$ rem 146
67 DATA $32,71,19,74,74,74,74,1$ 68，185，141，31：：rem 89
68 DATA $2 ø 1,32,208,241,185,142$ ，31，2ø1，32，2ø8，234 ：rem 45
69 DATA 169，40，153，141，31，153， $142,31,169,0,153$ ：rem 213
$7 \varnothing$ DATA $141,151,153,142,151,23$ 8，225，31，96，162，2 ：rem 1
71 DATA $189,90,3,205,93,3,208$ ， $10,32,71,19 \quad:$ rem 224 72 DATA $2 ø 1,15,176,3,32,17,19$ ， $2 ø 2,16,235,96 \quad$ ：rem 64 73 DATA $152,72,160,0,136,268,2$ $53,2 \varnothing 2,2 \varnothing 8,248,1 \varnothing 4$ ：rem 51 74 DATA 168，96，162，4，189，90，3， 168，222，60，3
：rem 36
75 DATA 208，66，189，7ø，3，157，6ø ，3，185，140，31 ：rem 77
76 DATA $201,40,176,5,169,32,15$ $3,14 \varnothing, 31,189,8 \varnothing$ ：rem $17 \varnothing$
77 DATA $3,2 ø 8,23,192,22,208,12$ ，165，162，2ø1，5：rem 1ø8
78 DATA $176,3,32,17,19,76,13,1$ 9，254，90，3
：rem 187
79 DATA $2 \varnothing 0,76,250,18,192,0,20$ 8，12，165，162，2ø1：rem 210
$8 \emptyset$ DATA $5,176,3,32,17,19,76,13$ ，19，222，9ø ：rem 177
81 DATA $3,136,185,140,31,2 \varnothing 1,4$ Ø，176，12，189，61 ：rem 160
82 DATA $19,153,140,31,189,66,1$ 9，153，14С，151，2ø2 ：rem 9
83 DATA $16,159,96,173,36,145,1$ 6，9，169， $0,157 \quad:$ rem 93
84 DATA $80,3,169,1,2 ø 8,7,169,1$ ，157，80，3 ：rem 132
85 DATA $169,21,157,90,3,32,71$ ， 19，221，1ø日， $3:$ rem 11
86 DATA $144,248,221,110,3,176$ ， 243，157，60，3，157 ：rem 219
87 DATA $76,3,96,37,37,37,38,38$ ，4，4，4 ：rem 250
88 DATA $6,6,165,254,10,10,56,1$ Ø1，254，133，254 ：rem 113
89 DATA $96,169,30,141,15,144,1$ 69，147，32，210，255 ：rem 26 $9 \varnothing$ DATA $169,28,32,210,255,169$ ， Ø，133，247，169，21 ：rem 224 91 DATA $133,248,166,247,164,24$ 8，24，32，240，255，169：rem 129 92 DATA $42,32,21 \varnothing, 255,198,248$ ， 16，239，169，20，133：rem 21 93 DATA $248,169,19,133,247,166$ ，247，164，248，24，32 ：rem 88 94 DATA $240,255,169,42,32,210$ ， $255,198,247,16,239$ ：rem 79 95 DATA $23 \varnothing, 248,165,248,201,22$
，208，227，160，43，169：rem 119 96 DATA $5,153,162,151,169,42,1$ 92，22，176，2，169：rem 181 97 DATA $41,153,162,31,136,16,2$ 37，169，40，160， 0 ：rem 165 98 DATA $153,140,31,169,0,153,1$ 40，151，162，21，160 ：rem 253 99 DATA $1,24,32,240,255,169,21$ 3，160，19，32，30 ：rem 113
$10 \varnothing$ DATA $203,169,43,141,159,31$ ，169，2，141，159，151 ：rem 54
101 DATA $96,28,83,67,79,82,69$ ， 32，48，32，32 ：rem 249
$1 \varnothing 2$ DATA $32,32,32,76,69,86,69$ ， $76,32,49,13$ ：rem $24 \varnothing$
103 DATA $32,32,32,32,32,32,32$ ， $32,31,76,73,:$ rem $2 \not 1$
104 DATA $86,69,83,32,51,0,165$ ， $252,141,168,2$ ：rem $7 \varnothing$
105 DATA $165,253,141,169,2,169$ ， $0,141,17 \varnothing, 2,141:$ rem 204
106 DATA $171,2,141,172,2,141,1$ $73,2,162,15,14$ ：rem 93
107 DATA $168,2,46,169,2,120,24$ 8，173，170，2，109：rem 167 $1 \varnothing 8$ DATA $17 \varnothing, 2,141,17 \varnothing, 2,173,1$ 71，2，109，171，2 ：rem 96 109 DATA $141,171,2,173,172,2,1$ 09，172，2，141，172 ：rem 2ø2 $11 \varnothing$ DATA $2,216,88,2$ ø2，16，216，1 $60,0,162,2,189$ ：rem $1 \varnothing 3$
111 DATA $176,2,72,74,74,74,74$ ， 32，86，20，104 ：rem 14
112 DATA $41,15,32,86,20,202,16$ ，236，96，205，173 ：rem 157
113 DATA $2,240,9,9,48,141,173$ ， 2，153，213，31 ：rem 3
114 DATA $2 \varnothing \varnothing, 96,1 \varnothing 4,104,162,11$ ，160，3，24，32，240 ：rem 185
115 DATA $255,169,137,160,20,32$ ，3ø，2ø3，32，228，255 ：rem 51
116 DATA $201,89,2 ø 8,3,76,62,16$ ，2ø1，78，2ø8，242 ：rem 171
117 DATA $169, \varnothing, 133,198, \varnothing, 31,8 \emptyset$ ，76，65，89，32 ：rem $3 \varnothing$
118 DATA $65,71,65,73,78,32,89$ ， $47,78,0,144 \quad$ ：rem 252
119 DATA $87,69,66,83,84,69,82$ ， $32,68,73,78$ ：rem 19
$12 \emptyset$ DATA $69,83,32,79,85,84,13$ ， 13，13，13，31 ：rem 225
121 DATA $32,32,72,73,84,32,82$ ， 69，84，85，82 ：rem $24 \varnothing$
122 DATA $78,32,84,79,32,80,76$ ， 65，89，, $160 \quad$ ：rem 244
123 DATA $\varnothing, 185, \varnothing, 128,153, \varnothing, 28$ ， 185，0，129，153 ：rem 55
124 DATA $\varnothing, 29,136,2 ø 8,241,169$ ， 255，141，5，144，16ø ：rem 6
125 DATA $95,185,231,20,153,8,2$ 9，136，16，247，96：rem 183
126 DATA $32,24,135,79,63,159,1$ 59，95，8，48，193 ：rem 149
127 DATA $242,252,249,249,250,2$ 52，240，232，196，226，162 ：rem 11
128 DATA $192, \varnothing, 63,15,23,35,71$ ， 69， $3, \varnothing, \varnothing$
：rem 63
129 DATA $\emptyset, 124,214,254,254,17 \emptyset$ ，170，126，129，153，231
：rem $15 \varnothing$
$13 \emptyset$ DATA $219,255,36,195,1,1,1$ ， 1，1，1，1 ：rem 253
131 DATA $1, \varnothing, 60,126,255,255,25$ $5,126,60,170,187$ ：rem 210
32 DATA $255,255,255,255,255,2$ 55，255，255，255，255，255
：rem 28
133 DATA $255,255,255, \varnothing, \varnothing, 1,3,7$ ，15，63，255，256：rem 108

Multicolored bugs scurry across the lawn in＂Webster Dines Out＂for the IBM PC／PCjr．

Program 4：Webster Dines Out For IBM PC／PCjr

Translation by Charles Brannon， Program Editor
Please refer to＂COMPUTEI＇s Guide to Typing in Programs＂before entering this listing．

IG 1 ＇Webster Dines Out for IBM PC with Color／Graphics Adap tor and BASICA or Expanded PCjr
162 PLAY＂mb
EE 1 ＠DEFINT A－Z：KEY OFF：WIDTH $4 \emptyset: \operatorname{SCREEN} \varnothing, 1, \varnothing: \operatorname{COLOR} 7, \varnothing$ ，Ø：CLS：RANDOMIZE TIMER
NO 110 FOR $\mathrm{I}=1$ TO $11:$ COLOR ， $\mathrm{I}: \mathrm{LO}$ CATE $I, 1, \emptyset:$ PRINT SPACE $\$(3$ 9）：COLOR ，15－I：LOCATE 24－ I，1：PRINT SPACE $\$$（39）：NEXT
FD 120 LOCATE 12， $1:$ COLOR $\emptyset, 15: \mathrm{PR}$ INT SPACE $\$(12)+$＂Webster D ines Out＂＋SPACE\＄（1曰）
00125 LOCATE 16，1：PRINT＂
Do you want sound？（ Y / N ）＂ ；：A\＄＝INPUT\＄（1）：IF A\＄＝＂y＂
OR $A \Phi=" Y$＂THEN SOUNDFLAG＝
NJ $13 \varnothing$ IF SOUNDFLAG THEN FLAY＂ 1 $1602 c c c d$ cfffg faaa ba＞18d 116 ggged ccc ＜ag fffdc $14<f$
kF 135 GOSUB $55 \emptyset$
6A $15 \emptyset$ SCREEN 1：CLS：COLOR 1，Ø：LI NE（ø，18ø）－（319，199），1，BF
NK 169 LINE（ 259,189$)-(319,189)$ ，
2：LINE $(250,180)-(260,175$
），2：LINE－（28ø，150），2：LIN
E $-(283,13 \emptyset), 2:$ LINE -1285
，80），2：LINE－（283，50），2：L
INE $-(27 \emptyset, 2 \emptyset), 2:$ LINE $-(\varnothing$ ，
20），2：：LINE $(310,5 \varnothing)-(285$
，13），2：LINE $(310,5 \emptyset)-(310$
$, 13), 2: \operatorname{LINE}(0,13)-(285,1$
3）， 2
QN 161 LINE $(310,38)-(295,13), 2:$
LINE $(319,28)-(3 \varnothing \emptyset, 13), 2$ ：
LINE（ $31 \varnothing, 37$ ）－（319，3＠）， $9:$
LINE（295，13）－（399，13），2：
LINE（319，13）－（319，13），2：
PAINT（ 9,14$), 2,2:$ PSET（3＠ $3,28), 1$
D1 $162 \mathrm{~A}=$＝＂c113ululumuurdrdrdrd rdllulu＂：DRAW A\＄：PSET（27 2,29 ），1：DRAW A $\$$ ：PSET（ 278 $, 4 \emptyset), 1:$ DRAW $A \$: F O R \quad I=1$ TO 5：PSET（250＊RND（1），15）：D RAW A\＄：NEXT

AA 165 FOR $I=\emptyset$ TO 15 STEP 2：CIRC LE（ $3 \emptyset \emptyset, 1 \emptyset \emptyset$ ），I，Ø，，，8／5：NE XT
DB $17 \emptyset$ BEETSPEED＝2：BEET2SPEED＝2： BUGSPEED＝2：BUG2SPEED＝2：SC DRPSPEED＝4
LC 180 BEETSCORE＝10：BUGSCORE＝20： MISSLIFE＝10：BUGLIFE＝10：BE ETLIFE＝15：DRAINLIFE！$=.5: P$ ROBABILITY $=2 \sigma$
KC 19Ø WEBX＝1ØØ：WEBY＝21：PUT（WEB X，WEBY），WEB，PSET：LIFE！＝ 18 Ø：GOSUB 1ø3ø：LOCATE 1，1：P RINT＂Score：＂；
0K．2øø LIFE！＝LIFE！－DRAINLIFE！：SO UND 4ø，．1＊SOUNDFLAG：GOSUB 1930
NP 210 IF SCORPFLAG THEN PUT（SC ORPX，SCORPY），SCORP，PSET：S CORPX＝SCORPX－SCORPSPEED：I F SCORPX＜ø THEN SCORPFLAG ＝$\emptyset:$ PUT（SCORPX + SCORPSPEED ，SCORPY），SCORP
ME 220 IF BEETFLAG THEN PUT（BEE TX，BEETY），BEET，PSET ：BEETX ＝BEETX＋BEETSPEED：IF BEETX >231 THEN BEETFLAG＝$\square:$ PUT （BEETX－BEETSPEED，BEETY），B EET
kF $23 \emptyset$ IF BEET2FLAG THEN PUT（BE ET2X，BEET2Y），BEET2，PSET：B EET $2 \mathrm{X}=$ BEET $2 \mathrm{X}-$ BEET2SPEED： I F BEET $2 X<\varnothing$ THEN BEET2FLAG ＝$:$ ：PUT（BEET2X＋BEET2SPEED ，BEET2Y），BEET2
CH 24ø IF BUGFLAG THEN PUT（BUGX ，BUGY），BUG，PSET ：BUGX＝BUGX －BUGSPEED：IF BUGX＜\varnothing THEN BUGFLAG＝\varnothing ：PUT（BUGX＋BUGSP EED，BUGY），BUG
BN 250 IF BUG2FLAG THEN PUT（BUG 2X，BUG2Y），BUG2，PSET ：BUG2X ＝BUG2X + BUG2SPEED ：IF BUG2X >226 THEN BUG2FLAG＝g：PUT （BUG2X－BUG2SPEED，BUG2Y），B UG2
AG $269 \mathrm{~K} \$=\mathrm{INKEY} \$$ ：IF $K \$=" \mathrm{THEN} 4$ $2 \emptyset$
FG 27 IF $\mathrm{K} \$=\mathrm{CHR} \$(\emptyset)+\mathrm{CHR} \$$（75）TH EN PUT（WEBX，WEBY），WEB：WE $B X=W E B X+1$ Ø＊$(W E B X>\emptyset):$ PUT（ WEBX，WEBY），WEB：GOTO 2øø
FE $28 \emptyset$ IF $K \$=C H R \$(\emptyset)+C H R \$(77) \mathrm{TH}$ EN PUT（WEBX，WEBY），WEB：WE BX＝WEBX -1 Ø＊（WEBX＜22の）：PUT （WEBX，WEBY），WEB：GOTO $2 \emptyset \varnothing$
ED 290 IF $K \$<>"$＂THEN $42 \varnothing$
PL 3øø FOR I＝WEBY TO 145 STEP 3： PUT（WEBX，I），WEB，PSET
LJ $31 \varnothing$ SOUND 5øø＋I＊2の，1＊SOUNDFL $A G$
KP 329 NEXT：WBX＝WEBX +15 ：NUMHIT $=\emptyset$
DH 339 IF BEETFLAG THEN IF ABS $(W$ $\mathrm{BX}-(1 \varnothing+\mathrm{BEETX}-\mathrm{BEETSPEED}))<$ $1 \varnothing$ THEN PUT（BEETX－BEETSP EED，BEETY），BEET ：BEETFLAG＝ 6：LIFE！＝LIFE！＋BEETLIFE：SC ORE ！＝SCORE ！＋BEETSCORE：GOS UB 979：NUMHIT＝NUMHIT＋ 1
EK $34 \emptyset$ IF BEET2FLAG THEN IF ABS $($ WBX－（ $1 \emptyset+$ BEET $2 X+$ BEET2SPEED ））$<1 \emptyset$ THEN PUT（BEET $2 X+B E$ ET2SPEED，BEET2Y），BEET2：BE ET2FLAG＝ ：LIFE！＝LIFE！＋BEE TLIFE：SCORE！＝SCORE！＋BEETS CORE：GOSUB 979：NUMHIT＝NUM $\mathrm{HIT}+1$
$6135 \emptyset$ IF BUGFLAG THEN IF ABS（WB $X-(12+B U G X+$ BUGSPEED $))<1 \emptyset$ THEN PUT（BUGX＋BUGSPEED，B UGY），BUG：BUGFLAG＝ø：LIFE！＝ LIFE！＋BUGLIFE：SCORE！＝SCOR

E！＋BUGSCORE：GOSUB 970：NUM HIT $=$ NUMHIT +1
NJ 360 IF BUG2FLAG THEN IF ABS（W BX－（12＋BUG2X－BUG2SPEED））＜ $1 \emptyset$ THEN PUT（BUG2X－BUG2SP EED，BUG2Y），BUG2：BUG2FLAG＝ Ø：LIFE！＝LIFE！＋BUGLIFE：SCO RE ！＝SCORE ！＋BUGSCORE ：GOSUB 970：NUMHI T＝NUMHIT＋ 1
MN $37 \varnothing$ IF SCORPFLAG THEN IF ABS（ WBX－（ $16+$ SCORPX + SCORPSPEED ））＜1ø THEN WEBY＝145：GOTO $197 \emptyset$
FD $38 \emptyset$ IF NUMHIT $=\emptyset$ THEN LIFE！＝LI FE！－MISSLIFE：IF LIFE！＜1 T HEN WEBY＝145
FL 390 GOSUB 1ø3ø：IF NUMHIT＞1 TH EN SCORE $!=$ SCORE $!+1 \emptyset^{\wedge} N U M H I$ T：GOSUB 98ø：FOR $W=1$ TO $5 \emptyset$ ：SOUND 3øøø＋1ø末（W AND 1）， ． $65 * S D U N D F L A G: N E X T: L I N E$（ Ø，17ø）－ 249,179$), \emptyset$, BF
Mg 4øø FOR I＝14の TO WEBY STEP－3： PUT（WEBX，I），WEB，PSET：SOU ND I＊2の＋5øø，． 1 ＊SOUNDFLAG： NEXT：PUT（WEBX，WEBY），WEB， PSET
CG $4 \emptyset 5$ IF INKEY\＄く＞＂＂THEN 4ø5
BL $41 \varnothing$ GOTO 2øø
$1042 \emptyset$ IF 1øø＊RND（1）＞PROBABILITY THEN $2 \emptyset \emptyset$
BK． 430 ON 5 ＊RND（1）+1 GOSUB 44の， 4 6ø，48Ø，5øø，526：GOTO 2øø
FC 44ø IF BEETFLAG＝ø THEN BEETFL $A G=1$ ：$B E E T X=\varnothing$
NI $45 \emptyset$ RETURN
KA $46 \varnothing$ IF BEET2FLAG $=\varnothing$ THEN BEET2 FLAG＝1：BEET $2 \mathrm{X}=231$
NK 479 RETURN
FD 48 Ø IF BUGFLAG＝ø THEN BUGFLAG ＝1：BUGX＝226

NA 490 RETURN
CF 5øø IF BUG2FLAG＝ø THEN BUG2FL $A G=1: B U G 2 X=\varnothing$
MB $51 \emptyset$ RETURN
JL $52 \emptyset$ IF SCORPFLAG $=\emptyset$ THEN SCORP FLAG＝1： $\operatorname{SCORPX}=218$
MF $53 \emptyset$ RETURN
L6 540 END
LJ 559 BOTSCR＝18の
PK 560 READ $X, Y: E=(4+\operatorname{INT}((X+7) / 8$ ）＊Y）／2：DIM WEB（E）：WEB（ $g)=$ $X: W E B(1)=Y: W E B Y=B O T S C R-Y$ ： FOR I＝2 TO E：READ WEB（I）： NEXT
OH 570 READ $X, Y: E=(4+I N T((X+7) / 8$ ）＊Y）／2：DIM BEET（E）：BEET（ \varnothing ）$=\mathrm{X}: \operatorname{BEET}$（ 1 ）$=\mathrm{Y}: \operatorname{BEETY}=\mathrm{BOTSC}$ $R-Y: F O R \quad I=2$ TO E：READ BEE T（I）：NEXT
FK． 58 Ø READ $X, Y: E=(4+\operatorname{INT}((X+7) / 8$ ）＊Y）／2：DIM BEET2（E）：BEET2 （Ø）$=X: B E E T 2(1)=Y: B E E T 2 Y=B$ OTSCR－Y：FOR $I=2$ TO E：READ BEET2（I）：NEXT
HC 590 READ $X, Y: E=(4+$ INT $((X+7) / 8$ ）＊Y）／2：DIM BUG（E）：BUG（Ø）＝ X ：BUG（ 1 ）$=Y$ ：BUGY＝BOTSCR－Y ： FOR $I=2$ TO E：READ BUG（I）： NEXT
EA 6øø READ $X, Y: E=(4+\operatorname{INT}((X+7) / 8$ ）＊Y）／2：DIM BUG2（E）：BUG2（■ ）$=X$ ：BUG2（1）$=Y:$ BUG2 $Y=B O T S C$ $\mathrm{R}-\mathrm{Y}:$ FOR $\mathrm{I}=2$ TO E：READ BUG 2（I）：NEXT
CD 610 READ $X, Y: E=(4+\operatorname{INT}((X+7) / 8$ ）＊Y）／2：DIM SCORP（E）：SCORP （ \varnothing ）$=X: \operatorname{SCORP}(1)=Y: \operatorname{SCORPY}=B$ OTSCR－Y：FOR I＝2 TO E：READ SCORP（I）：NEXT
ME 629 RETURN
LF 630 END
$1064 \varnothing$ DATA \＆H3C，\＆H1a，\＆HØ，\＆H5 \＆$H \varnothing, \& H \varnothing, \& H \emptyset, \& H 5 \emptyset \emptyset$
E1 $65 \emptyset$ DATA \＆HØ，\＆HØ，\＆HØ，\＆H5øø，\＆H Ø，\＆HØ，\＆HØ，\＆HFFøø
C6 669 DATA \＆HFØ，\＆HØ，\＆HØ，\＆HFFØF， \＆HFF，\＆HØ，\＆HØ，\＆HBFØA
HE $67 \emptyset$ DATA \＆HEA，\＆HØ，\＆HØ，\＆HBF $\emptyset A$ ， \＆HEA，\＆HØ，\＆H $\varnothing, \& H B F \emptyset 2$
L．B $68 \emptyset$ DATA \＆HE8，\＆HØ，\＆HØ，\＆H3FØØ， \＆HCØ，\＆HØ，\＆HØ，\＆HFFØF
61690 DATA \＆HCøFF，\＆HØ，\＆HØ，\＆HFFF F，\＆HFCFF，\＆HD，\＆H57 $1, \& H F 5 D$ F
HC 7øø DATA \＆H7DFF，\＆H54，\＆HF $14, \& H$ D5F5，\＆HFF75，\＆H4øø1，\＆HF49， \＆H75FF
JP 710 DATA \＆HFFDF，\＆H1øøø，\＆H5F 1 ，\＆H55F7，\＆HFF5D，\＆H54，\＆H314 ，\＆HF5SF
NO 729 DATA \＆HSCFF，\＆H4のØ1，\＆H1549 ，\＆HD5FF，\＆HF57F，\＆H1 \＆4ø，\＆H4 Gロ1，\＆HDSFF
EL 73Ω DATA \＆HF＠7F，\＆H14，\＆H1＠4，\＆H F543，\＆H14FC，\＆H1，\＆H1419，\＆H Ø
81 740 DATA \＆ $\mathrm{H} 19 \emptyset, \& H 4 \emptyset 4 \varrho, \& H 4 \varrho \varrho \varnothing$, \＆ $\mathrm{H} \varnothing, \& H \varnothing, \& H 1 \varnothing, \& H 1, \& H \emptyset$
OL $75 \emptyset$ DATA \＆HØ，\＆H4，\＆HØ，\＆HØ，\＆HD， \＆HØ，\＆HØ，Ø，Ø，Ø，Ø，Ø，Ø，Ø，Ø，Ø ，$, \varnothing, \varnothing$
PP $76 \emptyset$ DATA \＆H26，\＆H5，\＆HØ，\＆HABAA， \＆HAD，\＆HAA2A，\＆H5BAA，\＆HAAØC
｜］ 770 DATA \＆HABAA，\＆HAC，\＆H11＠1，\＆ H1ø，\＆HØ，\＆HØ，\＆HØ，\＆HFFØø
EL $78 \emptyset$ DATA \＆H24，\＆H5，\＆HAA28，\＆HAB ，\＆H96ØØ，\＆HAAAA，\＆HBØ，\＆HAA2 8
if 790 DATA \＆HAØAA，\＆HØ，\＆H4110，\＆H Ø，\＆HD，\＆HØ，\＆HØ，\＆Hゅ
KP $8 \emptyset \emptyset$ DATA \＆H3Ø，\＆HA，\＆H3，\＆HØ，\＆HØ ，\＆ $\mathrm{H} 3 \emptyset \emptyset \mathrm{C}, \& \mathrm{H} \emptyset, \& H \emptyset$
NI $81 \varnothing$ DATA \＆HCØø5，\＆HØ，\＆HØ，\＆H437 5，\＆HFFFF，\＆HCØ，\＆HSF5A，\＆HFF FF
FI 820 DATA \＆HF4，\＆H55A，\＆H5555，\＆H 55，\＆H7øø，\＆H5A5A，\＆H54，\＆H26 Øロ
$1083 \emptyset$ DATA \＆H2Ø2ø，\＆HØ，\＆H2の日ø，\＆H $2 \emptyset 2 \emptyset, \& H \emptyset, \& H \emptyset, \& H \emptyset, \& H \varrho$
NC $84 \varnothing$ DATA \＆HØ
KB 85 DATA \＆H3Ø，\＆HA，\＆HØ，\＆HØ，\＆HC Øøø，\＆HØ，\＆HØ，\＆HЗØøС
OA 86ø DATA \＆HØ，\＆HØ，\＆H5øØ3，\＆H3ळø ，\＆HFFFF，\＆H56C1，\＆H1Fפø，\＆HF FFF
LO 870 DATA \＆HA5F5，\＆H550ø，\＆H5555 ，\＆HA5S $\&$ ，\＆ $15 \emptyset \emptyset, \& H A 5 A 5$, \＆H6 Ø，\＆ H Ø
K6 $88 \emptyset$ DATA \＆H8ø8，\＆H8，\＆HØ，\＆H8＠8， \＆ $\mathrm{HB}, \& H \emptyset, \& H \emptyset, \& H \emptyset$
01 89 DATA \＆HØ
LL 9øळ DATA \＆H4＠，\＆HD，\＆HØ，\＆Hפ，\＆H2 АØØ，\＆Н8ø，\＆HØ，\＆HØ
OH $91 \varnothing$ DATA \＆HA2Ø2，\＆HAD，\＆HØ，\＆HØ， \＆HB2ø2，\＆HAØ，\＆HBøC ，\＆HØ
HD 929 DATA \＆H26A，\＆H8＠，\＆H2633，\＆H Ø，\＆HA，\＆HCØ，\＆HE6øø，\＆HA882
BP $93 \emptyset$ DATA \＆H32A，\＆HØ，\＆HA63 ，\＆HA AAA，\＆HAB，\＆HD，\＆HAAC,$\& H A A A$ A
$1094 \emptyset$ DATA \＆HAØ，\＆HØ，\＆H2A3C，\＆HAA 2A，\＆H8Ø，\＆HØ，\＆HØ，\＆HAAØA
PF $95 \emptyset$ DATA \＆H8Ø，\＆Hळ，\＆HØ，\＆H1111， \＆HØ，\＆HØ，\＆HØ，\＆H4444
CL $96 \emptyset$ DATA \＆HØ，\＆HØ，\＆HØ，\＆HØ，\＆HØ， \＆ $\mathrm{H} \emptyset$, \＆ HF 4 －
IN 970 LOCATE 1，1：PRINT＂Yummy！＂： SOUND 11ø，2＊SOUNDFLAG：FOR I＝6øø TO 5øø STEP－2：SOUN D I，．1＊SOUNDFLAG：NEXT I
JE 98ø LOCATE 1，1：PRINT＂Score：＂； SCORE！

JB 990 IF SCORE！＞5めø THEN BUGSPE ED＝3：BUG2SPEED＝3：SCORPSPE $E D=5:$ PROBABILITY＝18：DRAIN LIFE！＝．6：MISSLIFE＝15
FA 1 פøØ IF SCORE！>1 פøØ THEN BUGS PEED＝4：BUG2SPEED＝4 ：BEETS PEED $=3$ ： BEET 2SPEED $=3$ ：SCOR PSPEED＝6：PROBABILITY＝17： DRAINLIFE！＝1
LL $1 \varnothing 1 \varnothing$ IF SCORE！＞5øøø THEN BEET SPEED $=4$ ：BEET2SPEED $=4$ ：DRA INLIFE！$=2$ ：PROBABILITY＝15 ：MISSLIFE＝2の
IB $1 \varnothing 2 \emptyset$ RETURN
JG $1 \emptyset 3 \emptyset$ IF LIFE！$>18 \emptyset$ THEN LIFE $=$ 180
IB $1 \varnothing 4 \varnothing$ LINE $(136,5)-(136+$ LIFE！， 5），－2＊（LIFE！く3＠）－3＊（LIFE $!>3 \varnothing)+2$＊（LIFE！$>=6 \emptyset$ ）：LINE （137＋LIFE！，5）－（319，5），\varnothing
01 $105 \emptyset$ IF LIFE！＜1 THEN 1119
JN 1060 RETURN
EA 1070 FOR $J=1$ TO 5
If $108 \emptyset$ FOR $I=145$ TO 139 STEP－3： PUT（WEBX，I），WEB，PSET：NE XT：SOUND $5 \emptyset$, SOUNDFLAG
I6 1 ø9の FOR $\mathrm{I}=13 \varnothing$ TO 145 STEP 3： PUT（WEBX，I），WEB，PSET：NE XT：SOUND 6ø，SOUNDFLAG
GM 11 ■の NEXT J
AF 1119 FOR $I=1$ TO $1 \emptyset:$ PUT（WEBX＋ 5＊RND（1）＋5＊RND（1）＊（WEBX＞ 5），WEBY＋5＊RND（1）-5 ＊RND（1 ）），WEB：SOUND 4ஜ，．1＊SOUND FLAG：NEXT
ND $112 \emptyset$ IF INKEY\＄くン＂＂THEN 1120
JL 1130 LOCATE 13， $13:$ PRINT＂Play Again？$(Y / N) " ;: A \Phi=I N P U T \$$ （1）：IF $A \$=" Y$＂OR $A \$=" Y "$ THEN RUN
HH $114 \varnothing$ SCREEN $\varnothing, \varnothing, \varnothing$
HC $115 \emptyset$ END

Program 5：Webster Dines Out For Apple

Translation by Tim Victor，Editorial Programmer
Please refer to the article＂Apple MLX＂else－ where in this issue before entering this listing．
START ADDRESS： $11 \varnothing \varnothing$
END ADDRESS：1F14
11øø：29 AC 19 A9 øø BD øD ø8 73 11ø8：8D øE ø8 A9 20 8D 1E ø8 8B 111ø： 85 E6 29 F2 F3 2C 57 Cø A1 1118：2C 52 Cの 2C $5 \emptyset$ CØ 2C 1の AD 112の：Cの A9 4の 85 E6 20 F2 F3 FE 1128：A9 60 85 E6 20 F2 F3 A9 B4 1130： 5085 FC A9 9685 FD A9 92 1138： 20 Aø 2791 FC 8819 FB B6 114ø：E6 FD AS FD C9 98 Dø 94 FD 1148：A9 ФA 85 FD C9 ØC Dø E7 5A 1150：A5 FC 69 7F 99 DB 2C 5349 1158：CØ Aø Ø4 A9 Ø1 $2 \emptyset 7819 \mathrm{~B} \mathrm{\emptyset}$ 116ø：Ag 79 A9 1A A2 $9 B 2998$ DF 1168： 19 Aø $\emptyset 4$ A9 ø2 207819 F4 117ø：Aø 7B A9 1A A2 ØB 2998 B2 1178： 19 AØ 19 A9 91207819 9F 118ø：AØ 86 A9 1A A2 øB 299885 1188： 19 A 1919 A9 $02 \quad 297819 \quad \mathrm{B7}$ 119ø：Aø 91 A9 1A A2 øB 209858 1198： 19 А9 Øø АВ 99 ВВ ø8 СВ С4 11Ag：Cg 78 DG FB 29 AS 1620 C6 11AB： $\begin{array}{lllllllll}17 & 17 & 29 & 5 A & 16 & \text { A9 } & \text { Øø } & \text { 日D } & 21\end{array}$ 11Bø： 18 g8 8D 19 g8 2C 2 E g8 79 11BE： 3966296912 4C FG 11 3F
 11C8： $1 \varnothing 13 \quad 2 \emptyset 3 B 149 \emptyset 98 \quad 2 \emptyset 82$
 11D8：E9 1420 A7 15 2C 2 EE g8 31 11EØ： $19 \quad 99203915 \quad 29721699$ 11EB：4C FG 11 A9 $\emptyset \emptyset$ 8D 21 Ø9 2D 11Fg：8D 28 g9 8D 2E g8 29 DD 8D

11FB： 12 AD 18 g8 Fg 1729 9F D6 12øø： 16 AD 18 g8 18 6D 11 g8 BE 1298：8D 11 g8 $9 \varnothing$ g8 $29 \quad 4 \mathrm{~F} \quad 13 \mathrm{~B}$ 1219：9ø $934 C$ gB 11 AD 19 ø8 Fg 1218：$F \emptyset \quad 93 \quad 29$ 9B 16 AD פの Cg 5B 122の： $1 \varnothing$ 3B 2C $1 \varnothing$ Cø C9 8D Dg BA 1228：ஏ3 2ஏ 9B 15 2C 2E øB $3 \emptyset$ F4 123פ：2C C9 88 Dछ פA AD 279959 1238：Fø 23 CE 27 ø9 1ø 1E C9 78 1246： 95 Dø øC AD 27 פ9 C9 23 D3 1248：Fg 13 EE 27 ø9 1ø øE C9 68 125ø：Aø Dø ØA A9 8ஏ 8D 2E ø8 73 1258：A9 ø8 8D 39 g8 4C A7 11 D9 126ø：A2 ஏø Aஏ ஏø 8C $2 \emptyset$ ø8 BD 9C 1268：ø日 99 Dg 29 20 6F 152991 127ø：DE DG 5C 29 6F 151 1．曰B Cø 1278：A9 $\varnothing 19932$ ø日 AØ B5 A9 DF 128ø：1A Dø 99 A9 FF $99 \quad 32$ ø8 74 1288：AØ BA A9 1A 29 7C 15 EE BE 129ø： 18 ø8 4C CF 12 B9 32 ø8 2D 1298：2C 1E ø8 Fø $\emptyset 3 \quad 7 \emptyset 12$ 2C 94 12Aの： 59 ØF 18 7D $99 \emptyset 9$ 9D 99 3C 12AB： 99 C9 FD $301 \mathrm{DC9} 2810 \mathrm{FG}$ 12Bg： $1938 \mathrm{BD} 99 \quad 99 \mathrm{ED} 2 \mathrm{C} 9919$ 12B8：9ø 15 C9 øJ Bø 11 AD 2B 24 12Cø： 99 Fg gC 296 F 1529 g3 4E 12C8：DØ ø5 A9 Øø 9D 98 Ø9 8A 75 12Dø： 1869 פ5 AA AC $2 \varnothing$ ø日 C8 65 12DB：C $\emptyset 4 \mathrm{Dg} 886 \emptyset \mathrm{AD} 2 \mathrm{~B} \quad 991 \mathrm{~A}$ 12Eø：Dの 2B 2C 2E ø日 3ø 3D 2ø 3C 12E8： $6 F 1529$ DC D 153 A9 Øø AF 12Fの： 38 ED 31 ø8 8D 31 ø日 30 C4 12FB：$\emptyset 6$ AØ AB A9 1A Dø 14 AØ 15 13פø：Bø A9 1A A2 23 2פ 7C 15 FD 13ø日：EE 19 ø8 Dø 17 AD 2 C Ø9 CA 1319： 18 6D 31 ø8 8D 2C 99 C9 3D 1318：F9 3ø 94 C9 28 3ø 95 A9 1A 1329：øø 8D 2B $996 \emptyset$ AD 28 99 B2 1328：Dø ஏ8 AD $3 \varnothing$ פ8 $1093 \quad 38$ 3ø 133ø：Bø 1C C9 $789 \emptyset$ ø8 Aø FB 55 1338：8C $3 \varnothing$ ø8 Aの 8ø 2C AØ øの B1 134ø：8C $2 F$ g8 $18 \mathrm{AD} 2899 \quad 6 \mathrm{D} 88$ 1348： 3098 8D 28 ø9 18 6ø A9 CF
 1358：B6 Dø 934 C B1 14 CB 8C 2 F 136 ： 19 g8 204916 A9 28 日D 5E 1368： 17 פ8 A9 47 日D 17 18 A9 68 1379： 18 8D 1818 A9 1485 FC 36 1378：A9 1B 85 FD 20 6F 15 8D 41 1389： 16 g8 C9 Ag Bø F6 4A 4A 37 1388： 29 FE 日D 97 ø8 AD 16 ø8 50 1390： $29 \quad 97$ C9 97 FØ E6 $18 \quad 6973$ 1398：ø2 8D 16 ø8 29 Ø1 FØ ø6 9B 13AØ：EE $\varnothing 7$ ø8 Aø Ø6 2C AØ ø2 2F 13AB：B1 FC 85 EE CB B1 FC 8513 13Bפ：EF C8 B1 FC 85 FE C8 B1 72 13B8：FC 85 FF A9 92 8D 12 ø8 CB 13CØ：A9 $\boxed{18 ~ 8 D ~} 13$ ø8 A9 78 日D 94 13C8： 14 g8 A9 7F 8D 15 g8 AC A5 13Dg： 16 g8 Fg 24 פE 12 ø8 10 3D 13D8：øB AD 12 g8 69 89 8D 12 AB 13Eg：ஏ8 $2 E 13$ g8 38 2E 14 ø8 24 13E8： 10 ø8 AD 14 ø8 69 8ø 8D 84 13Fg： 14 ø8 2E 15 g8 88 Dø DC 1B 13F8：$A \emptyset$ פB AD 13 g8 91 EE AD 2B 14øø： 15 ø8 91 FE 88 AD 12 øB FD 14ø8： 91 EE AD 14 ø8 91 FE 88 BB 141ø：1ø E8 A9 87 8D ø8 ø8 $2 \emptyset$ E4 1418：DC 17 AD 19 g8 C9 B4 9ø 8C 1420：10 A9 1485 FC A9 1B 85 DF 1428：FD A9 81 8D 98 ø日 $2 \emptyset$ DC $4 \emptyset$ 143Ø： 17 CE 17 Ø8 Fø 173 4C 74 9B 1438： $1318 \quad 6 \emptyset$ AD $27 \quad \emptyset 9$ 2C 31 BD 144ø：ø8 3ø $\emptyset 3 ~ 38 ~ E 9 ~ \emptyset 7 ~ C D ~ 2 C ~ 8 F ~$ 1448：ஏの Fø øC 9ø Ø3 18 9ø 97 5C 145ø： 69 Ø4 CD 2C $999 \emptyset 9 \varnothing 6 \emptyset 95$ 1458：A9 ஏø 8D 21 99 A9 78 8D 86 146ஏ： 28 g9 18 AD 2C $99 \quad 6 \mathrm{D} \quad 314 \mathrm{AE}$ 1468：ஏ8 8D 2C ø9 C9 F9 3ø 2B CF
 1478：ஏ3 A9 ø5 2C A9 FE 18 6D D6 1489：2C 998 D 27 Ø9 C9 FC $3 \emptyset \mathrm{BE}$
 149ø： 26 g9 29 9の $16 \quad 209417$ 6B

1498：4C 58 14 AD C9 A9 1A A2 55 14Aの：1E 2の 7C 15 CE $6 F$ Ø8 29 A3
 14Bg： 36 Ag ØD A9 ø3 297819 FA 14B8：Aø 9C A9 1A A2 ØF 209859
 14C8：FB 2C 10 Cø C9 CE Fø $\varnothing 477$ 14DØ：C9 EE Dg $93 ~ 4 C$ F1 16 A9 E3 14DB：2の AØ øの 99 Dの 9799 Dø 79 14EØ：ØB CB Cの 28 Dø FS $6 \emptyset 1892$ 14E8：6ø A2 øø 8E 21 ø8 BD øB 7F 14Fg： 99 Fg ЗC BD 9999 38 E9 94 14F8：$\emptyset 4 \mathrm{CD} 27 \quad 9910103118 \quad 69$ EA 15øø：ø6 CD 27 פ9 3929 A9 øø 8F 15ø8：9D ø8 ø9 AD 21 gB Fø פE 18 151ø： 18 AD øB $98 \quad 69 \quad 32$ 8D øB CD 1518：ø8 9ø øЗ EE øC ø8 EE 2139 152の：ஏ8 18 AD ØB $98 \quad 6919$ 8D 60 1528：ஏВ ஏ8 9ஏ ø3 EE øC ஏ8 8A 5E 153ø： $18 \quad 69 \quad 95$ AA C9 14 D 9 B6 93 1538：69 AD 1E ø8 29 29 FØ øC F9 154ø：AD 28.99 8D $\emptyset \emptyset 1 B A \emptyset B F B 2$
 1559：ஏA 1B Aø C4 A9 1A A2 19 BA 1558：20 7C 15 AD $27 \quad 9918 \quad 69 \quad 26$ 1569： 92 8D 22 פ9 AD 2899 Fg D4 1568：ஏ2 A9 ஏ1 日D $21 \quad 99 \quad 6 \emptyset$ AD 92 157ø： 23 ø8 ØA ØA 38 6D 23 ø8 D5 1578：8D 23 ø8 6ø 8C 8A 15 日D 7F 1589：8B 15 AD 948 8A $18 \quad 69 \quad 9495$ 1588：AA B9 FF FF 9D 9899 CA $6 \emptyset$ 159ø： 88 10 F6 E8 AC 8 A 15 AD D7 1598：8B $15 \quad 60$ 2C 10 Cø 2C $\emptyset \emptyset 78$ 15AØ：Cの 10 FB 2C 1ø CØ $6 \emptyset 2 \emptyset$ D5 15AB：C5 15 AE øB øB EC øD ø8 97 15Bø：AD øC øB ED ФE ø8 9ø ØC 52 15BB： $8 E$ øD øB $A D$ øC øB BD øE F2 15CØ：Ø8 29 D8 $15 \quad 69$ AC $9 B \quad \varnothing 8 \quad 37$ 15C8：AD ØC ஏ8 $2 \emptyset$ F2 15 Aø ØA 97 15Dの：A9 $\quad 1 \quad 207819$ 4C E8 15 7C 15D8：$A C$ ØD ø8 AD gE ø8 20 F2 3C 15Eg： 15 Ag 1F A9 O1 $_{15} 297819 \mathrm{CE}$ 15E8：AØ 29 A9 $\boxed{~ 15 ~ A 2 ~} 65209865$ 15Fø： $19 \quad 6 \emptyset$ BC 27 Ø8 $8 \mathrm{DD} 28 \quad \emptyset 892$ 15FB：A2 94 A9 Bø 9D 29 ด8 CA 22 16øø： 10 FA E8 AD 27 gB DD 3434 1698： 16 AD 28 g8 FD 30169090 1610： 11 8D 28 g8 AD 27 ø8 FD C5 1618： 3416 8D 27 פ8 FE 29 ø8 9E 1620：Dの E1 E8 EØ 94 DØ DC AD 23 1628： 27 ø8 69 AF 9D 29 ø8 6014 163Ø： 27 ØЗ øø øø 1ø E8 64 ØA A7 1638：Aø ØC A9 ø2 2ø 7819 AØ C2 1640：øF A9 ø8 A2 11209819 5C 1648：6ø AØ 21 A9 $\emptyset 2 \quad 207819 \quad 26$ 1659：Ag 10 A9 פ8 A2 11209878 1658： 19 6Ø A9 80 8D 6B 1A A9 5E 1669： 97 8D øA ø8 8D ஏ9 ø8 A9 7F 1668： 39 BD 6D 1 A A9 g8 8D $6 E$ DA 167פ： $1 A \quad 6 \emptyset A D \quad 28994 A \quad 4 A \quad 4 A \quad 4 A$ 1678： 69 פ6 8D ØA 98 8D 99 ø8 BD 1680：A9 89 8D 6B 1A A9 38 8D 7F 1688：6D 1A A9 98 8D 6E 1A 6062 1690：AD 1E $98 \quad 29 \quad 20$ FØ C3 A9 A4 1698：ØA DØ DF A9 24 DØ DB A9 5A 16AØ：Ø6 DØ D7 A9 B3 BD פF 9893 16A8： $2 \emptyset \quad 3816$ A9 B1 BD 10 Ø8 3 C
 16B8：A9 øø 8D øB ø8 8D øC ø8 B2 16CØ： 29 C5 1520 DB 15 AD Øの 6 F 16CB： 9899 ø8 ø9 CB CØ 28 DØ AЗ 16DØ：FB A9 Øロ Ag 7F 99 38 ø日 CB 16D8：88 Dø FA A9 8Ø 8D 38 ø8 2A 16Eg： 20 5A 16 A9 01 日D 31 ø8 B9 16EB：AØ C9 A9 1A A2 1E 4C 7C 51 16FØ： 15 2C 54 CD 2 C 51 C C AD 1F 16FB：ஏの BE C9 4C FD פ3 4C Dø CF 17øø：ஏ3 4C øø BE AD 1E 9849 ED 1798：6ø 8D 1E ø8 2929 Fø 62 BB 1710：A9 0_{1} AA BD 54 C C A9 38 B5 1718：8D 1718 A9 18 8D 1818 AF 1729：A9 ஏø 8D 1F øB 日D 22 ø日 89 1728：ØA פA 6D 22 ต8 8D 22 ø8 7ø 1730：AD 1E ø8 29 4ø Fø $\emptyset 2$ A9 C3

1738： 2818 6D 22 ø8 AA BD B8 $6 F$ 1749：øB Fg 1E BD BB øB B5 FC 54 1748：BD BC øB 85 FD BD B9 ø8 $4 \varnothing$ 175ø：8D $ø 7$ ø日 BD BA øB 8D øB FC 1758：ø8 29 DC 17 A9 øø 9D B8 Eø 1769：ø8 29 8C 18 Dg BF A9 1F A5
1768：8D 17 18 A9 18 8D 1818 FF 177ø：A9 øø 8D 1F ø8 8D 22 ø8 D9 1778：$\emptyset A$ øA 6D 22 ø日 $A A B D$ øB $6 C$ 178ø：$\varnothing 9$ Dø $ø 3$ 4C D6 17 BD øB 26 1788： 9985 FC BD øC 9985 FD A5
 1798： 99 8D ø8 ø8 AD 1F ø8 8D B7 17Aの： 22 øB øA ØA 6D 22 øB 8D 55 17AB： 22 øB AD 1E øB 29 4ø Fø D7 17Bø： 62 A9 2818 6D 22 øB AA 7F 17B8：A9 01 9D B8 øB A5 FC 9D A9 17CØ：BB ø8 A5 FD 9D BC 98 AD $\varnothing 1$ 17C8： 97 ø8 9D B9 ø8 AD 98 ø8 DA 17Dø：9D BA ø8 29 DC 17298 Cl 8 F 17D8： 18 D 9 9A $6 \varnothing \mathrm{~A} \varnothing \varnothing \mathrm{~B} 1 \mathrm{FC}$ Ø6 17EØ：8D 1B ø8 C8 B1 FC 8D 1C E2 17E8：ø8 8D 1D ø日 AD øB ø日 8D CD 17Fø：1A ø8 AD $\varnothing 7$ ø8 29 Ø1 ØA 45 17F8：ØA 69.02 AB B1 FC $85 \mathrm{EE} C \mathrm{C}$ 18ø日：C8 B1 FC 85 EF C8 B1 FC FB 18ø8： 85 FE C8 B1 FC 85 FF 29 øD 181ø：CF 18 AC 1D 988820 FF 38 1818：FF $206 \mathrm{D} 18 \mathrm{D} 日 \mathrm{~F}_{1} 60 \mathrm{B1} 4 \varnothing$ 1829：EC 11 FE 31 FC 日D 2F 1892 1828：B1 EC 49 7F 31 EE 9900 E4 1830： $91 \mathrm{FC} 209518881 \varnothing \mathrm{E7} \mathrm{~B} \varnothing$ 1838：B1 EC 11 FE 31 FC 91 FC 2 C 1849： 209518 88 10 F2 60 AS 24 1848：FC 8D 5C 18 AS FD $49607 F$ 1859：8D 5D 18 B1 FC 31 EC 1154 1858：EE 91 FC 99 FF FF B1 FE FF 1860： 49 7F 11 EC 91 EC 2095 1C 1868： 188810 E7 6018 AD 1C 22 1879：ø8 $65 \mathrm{EE} 85 \mathrm{EE} 9 \varnothing$ ø2 E6 D8 1878：EF 18 AD 1C 9865 FE 8577 1889：FE $9 \varnothing$ Ø2 E6 FF EE 1 A ø8 FA 1888：CE 1B ø8 6ø EE 1F ø8 AD 9F 189ø：1F ø8 C9 ø8 $6 \varnothing 206 A 1 A$ TE 1898：$F \varnothing$ Ø3 $2 C 3 \varnothing C \varnothing 4 A 9 \varnothing$ ØA E4 18AD：EE 6D 1A Dø $\emptyset 3 \mathrm{EE}$ GE 1 A BE 18A8：A9 8® 8D 6B 1A CE 99 ø8 5C 18Bø：Dø 1C A9 8ø 8D 6B 1A AD 89 18B8：øA ø8 8D $\emptyset 9$ øB 4A 4A 4A 7A 18Cg： 3849 FF 6D 6D 1A 8D 6D 92 18C8： 1 A Bø $\emptyset 3$ CE $6 E 1 A G \emptyset$ AD C9 18Dø： 97 ø8 10 27 AS EE 38 ED 42 18D8： 97 ø8 $85 \mathrm{EE} 9 \varnothing$ ø2 E6 EF 78 18Eg：A5 FE 38 ED 979885 FE EB 18E8：9ø ø2 E6 FF AD 1D ø8 18 CB 18Fø：6D 97 ø8 8D 1D øB A9 øø CF 18F8： 8 D 97 gB 38 A9 28 ED 9797 19øø：ø8 CD 1D ø8 Bø 93 8D 1D 97 19ø8：øB AD $1 A$ gB $293 F A B$ B9 BE 191ø： 3819 øD 1E ø8 85 FD 9983 1918： 6085 ED AD 1 A g8 29 g BF 1920：C9 ø8 A9 øø 6A 2C 1A øB AE 1928： 10 Ø2 $695959 \emptyset 269289 A$ 1930：6D 97 פ8 85 FC 85 EC 68 6C 1938：øの ø4 ø日 øC 10 1418 1C 4A 194ø：øூ ø4 ø8 ロC 18 1418 1C 52 1948：ø1 ø5 ø9 øD 111519 1D 5A 1950： 11 ø5 99 gD 111519 1D 62 1958：Ø2 Ø6 ØA øE 1216 1A 1E $6 A$ 1960： 92 Ø6 פA gE 12 16 1A 1E 72 1968： 93 g7 øB øF 1317 1B 1F 7A
 1978：8C A3 1918 6A 6A øB 18 A3 1980： 69 50 6D A3 19 8D A3 19 C2 1988：8D A6 1928 A9 93 2A 8D $9 C$ 1990：A4 $1969 \quad 94$ 8D A7 196866 1998：CA 8C Ag 19 8D A1 19 BD DB 19AD：FF FF 9D FF FF 9D FF FF FC 19AB：CA 10 F4 $6 \varnothing$ A9 CE 85 FC 79 19Bø：A9 1 A 85 FD A9 9085 FE 26 19B8：A9 øC 85 FF A9 øB 8D 2622 19Cø： 98 A $9 \varnothing$ B1 FC 8D 1B 9896 19C8：C8 B1 FC 8D 1C ø日 C8 A5 7C 19Dの：FE 91 FC C8 A5 FF 91 FC $6 \varnothing$

19D8：AD Ø6 B1 FC 85 EE CB B 1 øE 19Eg：FC $85 \mathrm{EF} \mathrm{AC} \mathrm{1C} 9888 \mathrm{~B} 17 \mathrm{~F}$ 19E8：EE 4A 91 FE $8830 \emptyset 32072$ 19Fg：5D 1A $20441 A$ CE 1B ø8 EA 19F8：Dø E9 Aø øD B1 FC 8D 1B D9 1Aøの：ø8 AD 94 AS FE 91 FC C8 $3 C$ 1AøB：AS FF 91 FC Aø 98 B1 FC 96 1A1D： 85 EE C8 B1 FC 85 EF AC 81 1A18：1C 9888 B1 EE $99804 A \quad 6 F$ 1A2の： 91 FE 88309320 5D 1 A 5 SE 1A28： $2 \varnothing 44$ 1A CE 1B 98 Dø E7 3Ø 1A3の： 18 A5 FC 69 ØA 85 FC $90 \varnothing_{1}$ 1A38：ø2 E6 FD CE 26 ø8 Fø ø3 øA 1A40：4C C1 19 6ロ 18 AD 1C 98 EB 1A48： $65 \mathrm{EE} 85 \mathrm{EE} 9 \varnothing$ ø2 E6 EF D4 1A59： 18 AD 1C 9865 FE 85 FE 31 1A58： $9 \varnothing 02 \mathrm{E}$ FF $6 \emptyset \mathrm{~B} 1 \mathrm{EE} 9 \varnothing 6 \mathrm{~A}$ 1A6Ø： $92998 \varnothing 4 A 91$ FE 881036 1A68：F4 69 A9 $9 \varnothing 2 C$ FF FF $6 \varnothing 26$ 1A79：D3 C3 CF D2 C5 BA Aø AØ A1 1A78：Aø Aø Aø CC C9 D6 C5 D3 øF 1ABø：$B A A \varnothing A \varnothing A \varnothing A \varnothing A \varnothing C B C 9$ उB 1AB8：C7 CB Aø BA Aø Aø Aø Aø FB 1A99：Aの CC C5 DG C5 CC BA AD E5 1A98：AD AD AD AD Dø D2 C5 D3 94 1AAD：DS AD CE AD D4 CF Aø D1 C3 1 AAB：D5 C9 D4 $\varnothing 1$ F9 $8 \varnothing$ CE 1 A $6 E$ 1ABg： $012789 \mathrm{DB} 1 \mathrm{~A} \mathrm{~g}_{1} \mathrm{FD} 8523$ 1ABB：E2 1A $\|_{1} 2785 \mathrm{EC} 1 \mathrm{~A} \emptyset_{1} 8 \mathrm{C}$ 1ACø：øø ø4 øø 1B ø1 øø ø4 øA C1 1ACB：1B $\varnothing 112$ øø F6 $1 A \emptyset D g B 4 F$

 1AE8：BE 1C DE 1C ø日 $\varnothing 4$ øの øの 71

 1Bø8：7C 1E $8 \varnothing$ Ø1 øø øの øの øø 24
 1B18：øø øø FC 1E ø日 1F øø øø 8C
 1B28：øø øø øø øø øø ø2 øの øø 66
 1B38：7F 7F 7F 7F 13 øø øø 7E øD 1B4の：7F 7F 7F 7F 95 øø øø 78 9E 1B48：7F 7F 7F 7F 1D Øの øø 2A 19
 1B58： $757 F 7 F 3 F 7 D$ のø $9 \varnothing$ のø F8 1B60： 55 7E 7F 2F 75 ø2 $9 \varnothing \emptyset 077$ 1B68： $4 \varnothing 2 A 552 A 55 \emptyset 2$ øø øø 49
 1878： $5 \varnothing$ Øø Ø5 øA øø øø øø øø 18 1B89： $142 \varnothing$ Ø1 28 øの øø 7F 7F E9 1B88：7F 7F 7F 7F 7F 63 7F 7F 4E 1899：7F 7F 7F 7F 7F 78 7F 7F AA 1898：7F 7F 7F 7F 1F 7E øF gø 67
 1BAB：Øø øø øø øø 7ø 7F 7F 9362

 1BD8：1F $387 \emptyset 6 \emptyset$ Ø1 7E 7F 7F 41 1BEg： 97 3E $7 \varnothing$ 6』 7E 7E 7F 7F AA

 1BFB：øø øø øø øø øø øø øø ø8 37
 1Cø日：7E 7F 7F 7F 7F 1F øø øø BF 1C19：7D 7F 7F 7F 7F 93 øø 6ø 37 1C18：7D 7F 7F 7F 7F øø øの 7ø 43 1C29： 75 7F 7F 7F 57 ø2 907816 1C28： 757 FF 7 F 3F 55 øø $\emptyset \varnothing$ ЗA C3

 1C58：7F 7F 7F 7F 7F 7F 7F 78 89 1C6日：7F 7F 7F 7F 7F 7F 7F 63 7C 1C68：7F 7F 7F 7F 7F 7F 7F øF 3ø

 1CAB： $183870607 F$ 7F 7F 7F 87 1CBg：1F 387893 7F 7F 7F 7F 3D 1CB8：$\varnothing 7$ 7E 41 פF 7C 7F øø øの ØF 1CCの：øø $2 \varnothing$ øø øの øø ø日 58 3B øD 1CC8： 77 Ø6 4の 3 B 77 פE $9 \varnothing$ 3A 28 1CDの： 77 פE Øの 294429 Øø ø日 F4 1CD8： 44 øø øø $\varnothing 2$ ø1 $027 F 7 F E 1$ 1CED：7F gF 7F 7F 7F 63 g3 øø 14

 1CF8： 11 7F 7F 387 C 78 ø4 øø DA
 1Dø8：5D 1B $7 \varnothing$ 6E SD 9379 6E F2
 1D18： 10 øの $4 \varnothing$ øの 41 øの $717 F \mathrm{CE}$ 1D2g：7F 7F 47 7F 7F 7F ØF Ø6 F2
 1D30：98 7E 71 g8 71 7F 7F ø8 49 1D38： 47 7F 1F $3 F$ 1C $7 E$ øø $4 \varnothing$ E8 1D40： 93 1C 9090699636 øø 8A 1D48：øø $3 \varnothing$ øC 63 øの øø 1E 38 BA 1D5ø： $43 \quad 97 \quad 60$ 3B $6 E \quad 65 \quad$ øD $4 \varnothing$ Ø5 1D58：6D 3 A 37 1B 40 4D $6 E \quad 1599$
 1D68：6E 4537 øの 37 3A 67 ØE 91 1D79： $4061 \quad 6 \mathrm{E} \quad 3518$ 4ø 41 3A C2 1D78： 17 18 69 øø 6E 95306998
 1D88：Ø1 øの øC 28 Ø1 ø3 øø ø6 61
 1D98： $4 \varnothing$ Ø1 g8 $91187 F \quad 1 F 78$ B9 1DAの： 41 7F 7F gF 7ø øø 7F 7F 3E

 1DC8： $1 \varnothing$ øの $3 F$ øø øø øø $\emptyset 1 F \mathrm{D} 2$ 1DDø：øC øø øø 43 1F 1C øø $4 \varnothing$ EE 1DD8： 43 פF $7 E$ פの $7 \varnothing$ Ø7 פF ØE 14

 1DFg：7C 79 3F 78 gF 7F 61 1F 4D 1DF8：7C ø3 7C 4320202020 D7 1Еøø： 202020202020202010 1Еø日： $2 \varnothing 2020202020202044$ 1E1の： $2 \varnothing 2 \varnothing 202 \varnothing 2 \varnothing 2 \varnothing 20204 C$ 1E18： 202020202020202054 1E29： 292029292020202050 1E28： 292029202020202064 1Е3の： 292929202020202060 1E38： $2 \varnothing 2020202020202074$ 1E40： 202020202020202070 1E48： 202020202020202084 1E59： 292020202020292080 1E58： 202020202020202094 1E69： 292929292929292990 1E68： 2920202020202020 A4 1E79： 2929292020202020 AC 1E78： $2 \varnothing 2 \varnothing 2 \varnothing 2 \varnothing$ פF פF פF פF B4 1EBg：gF פF gF gF gF gF gF gF BC 1E88：פF פF פF gF פF פF gF פF C4
 1ЕAg：פF gF gF gF gF gF gF gF DC 1EAB：פF פF פF פF פF פF פF פF E4 1EBØ：ØF פF gF gF gF gF gF gF EC
 1ECG： $\mathscr{}$ 1EDø：$\emptyset F$ פF פF gF פF gF פF פF gD 1EDB：פF פF øF פF פF פF פF פF 15 1EEの：ØF gF gF gF gF gF gF gF 1D 1EEB：פF פF פF פF פF פF פF פF 25 1EFØ：ØF gF gF gF gF gF gF gF 2D

 1Fge： 47 7F 47 7F 47 7F 47 7F Fg 1F1ø： 47 7F 47 7F FF FF øø øø B2

Avoid the mammoth grasshopper in Apple＂Webster Dines Out．＂

＂Webster Dines Out＂for TI uses sprites for the spider，scorpion and bugs．

Program 6：Webster Dines Out For TI

Translation by Patrick Parrish， Programming Supervisor
1 øø RANDOMIZE ：：CALL CLEAR ：：GOSUB 6øø ：：CALL S CREEN（2）：：CALL MAGNIFY （3）
$11 \varnothing \operatorname{CALL} \operatorname{HCHAR}(1,1,114,32):$ ：FOR T＝3の TO 32 ：：CAL $L \operatorname{VCHAR}(1, T, 114,20):: N$ EXT T ：：CALL VCHAR 3,2 9，114，2）
$12 \varnothing \operatorname{CALL} \operatorname{HCHAR}(19,29,114,2)$ ：：CALL HCHAR $(2 \varnothing, 28,114$ ，3）：： $\operatorname{CALL} \operatorname{HCHAR}(3,28,1$ 17）：：CALL $\operatorname{HCHAR}(4,29,1$ 17）
$130 \operatorname{CALL} \operatorname{HCHAR}(2,29,114)::$ CALL $\operatorname{HCHAR}(2,27,114,2)$
$140 \operatorname{CALL} \operatorname{HCHAR}(2,1,115,25):$ ：CALL HCHAR $(2,26,117)$
$15 \emptyset \operatorname{CALL} \operatorname{HCHAR}(19,28,112)::$ CALL $\operatorname{HCHAR}(19,29,113):$ ：CALL $\operatorname{HCHAR}(29,26,112)$ ：：CALL HCHAR $(29,27,113$
$16 \emptyset$ CALL VCHAR（5，30，118）：： CALL $\operatorname{VCHAR}(6,39,116,13)$ ：：CALL HCHAR $(21,1,1 \varnothing 4$ ， 32）：：$\quad \mathrm{XX}=117$ ：： $\mathrm{OY}=9$
$17 \varnothing$ LEVEL＝1 ：$:$ LIVES＝3 ：$: ~ S$ CORE＝ø ：：E＝ø ：：BUGFL（ 3）$=\varnothing$ ：： $\operatorname{BUGFL}(4)=\varnothing$
$18 \varnothing$ CALL SPRITE（\＃2，1ø日，5，14 $5,1+$ RND＊256，$\varnothing,-15 * R N D+1$ Ø）
190 DISPLAY AT $(22,9): " L I V E S$ ：＂；LIVES ：：DISPLAY AT（

23，21：＂LEVEL：＂；LEVEL ：： DISPLAY AT $(23,16):$＂SCO RE：＂；SCORE
$2 ø \varnothing$ YPOS＝OY ：：XPOS＝OX ：：C ALL VCHAR（YPOS／8＋2，XPOS ／8＋1，32，16）
210 CALL SPRITE（\＃1，136，14，Y POS，XPOS）： $\mathrm{CCOL}=25$ ：： CALL HCHAR（24，4，120，25）
220 FOR L＝3 TO 4 ：：IF BUGF $L(L)=\varnothing$ AND RND $<.5$ THEN CALL SPRITE（\＃L，96，－（L＝ 3 ）＊11－（L＝4）＊5，145，1＋198＊ RND，,$-5+$ RND＊ $1 \varnothing):$ ：BUGF $L(L)=1$
230 NEXT L ：：CALL MOTION（\＃ 2，$\varnothing,-15 * R N D+1 \varnothing * L E V E L / 2)$
$24 \varnothing \operatorname{CALL} \operatorname{KEY}(\varnothing, K, S):$ ：IF S＝ \varnothing THEN CALL JOYST（ $1, X R$ ， YR）：：$X R=S G N(X R) E L S E \quad X R$ $=(K=83)-(K=68)$
25 Ø COUNT $=$ COUNT + LEVEL ：：IF COUNT＜1ø THEN $33 \varnothing$
260 CALL $\operatorname{HCHAR}(24,4+C C O L, 32$ ）：：COUNT＝ø ：：CCOL＝CCO L－1 ：：IF CCOLく＞3 THEN 289
$27 \varnothing$ FOR K＝1 TO $3 \varnothing$ STEP 2 ：： CALL SOUND（5ø，1175，K）： ：NEXTK
$28 \emptyset$ IF CCOL $\rangle-1$ THEN 330
290 LIVES＝LIVES－1 ：：CALL S PRITE（\＃1，14の，14，YPOS，XP OS）：：FOR I＝3 TO 17
$3 \varnothing \varnothing$ CALL LOCATE（\＃1，YPOS＋ 1 ＊ 8 ，XPOS）：：CALL SOUND（25， $(23-1) * 2 \varnothing, 3):=I F I<>17$ THEN 320
$31 \varnothing$ FOR L＝1 TO 8øD ：：NEXT
$32 \emptyset$ NEXT I ：：IF LIVES $=\emptyset \mathrm{TH}$ EN 710 ELSE $19 \varnothing$
330 PPOS $=X P O S-S G N(X P O S-5) * X$ R＊$(X R=-1) * 16-S G N(197-X P$ OS）$\# \times R *(X R=1) * 16$
34の CALL LOCATE（\＃1，YPOS，XPO S）
35 F FOR L＝3 TO 4 ：：CALL MO TION（\＃L，$\varnothing,-5+R N D * 1 \varnothing)::$ NEXT L
36 © CALL $\operatorname{KEY}(1, K, 5):$ ：CALL $\operatorname{KEY}(\varnothing, K 1, S):=1 F(K<>18$ ）：（K1＜＞32）THEN 228 ELSE COUNT＝1 \varnothing
$37 \emptyset$ FOR $I=3$ TO $18:=$ CALL H CHAR（ $($ YPOS $+(I-1) * 8) / 8, X$ POS／8＋1，128）：：CALL LOC ATE（\＃1，YPOS＋I＊B，XPOS）
380 IF $I=18$ THEN CALL COINC （ALL，C）ELSE $51 \varnothing$
$39 \varnothing$ IF $C=\varnothing$ THEN $51 \varnothing$
$4 ø \varnothing$ FOR L＝2 TO $4:$ ：CALL MO TION（\＃L，,$\varnothing): ~: ~ N E X T L$
$41 \varnothing$ FL＝ø ：：FOR L＝2 TO 4 ： CALL COINC（\＃1，\＃L，1ヵ，C）
$42 \emptyset$ IF $\mathrm{C}=\varnothing$ THEN $47 \varnothing$
430 IF L＝2 THEN 450
440 FOR K＝9 TO 21 STEP 3 ：： CALL SOUND（1の，$-1, K$ ）：： NEXT K ：：CALL DELSPRIT $\mathrm{E}(\# \mathrm{~L}): \mathrm{E}=2:=\mathrm{FL}=\mathrm{FL}+1$ ：：BUGFL（L）＝ø ：：GOTO 4 $7 \emptyset$
$45 \varnothing$ CALL SPRITE（\＃1，140，14，1 44，XPOS）：：LIVES＝LIVES－ 1 ：：$E=1$ ：：CALL SOUND（ 5ø，－6，4）：：FOR K＝5 TO 1 5 STEP 5 ：：EALL SOUND（ $1 \varnothing,-5, K):$ ：NEXT K
460 FOR $T=1$ TO $6 \varnothing \varnothing:=$ NEXT T ：：L＝4
$47 \varnothing$ NEXT L ：：IF $E=\varnothing$ OR $E=1$ THEN $51 \varnothing$
48 の $P T S=F L * 25$ ：：PTS＝－$(P T S=$

25）＊25－（PTS＝5ø）＊1øø ：： SCORE $=$ SCORE + PTS ：：DISP LAY AT $(3,22)$ ：SCORE
$49 \emptyset$ IF SCORE $>=1 \varnothing \varnothing *$ LEVEL THE N LEVEL＝LEVEL＋ $1+$（LEVEL $=$ 6）：：DISPLAY AT $(23,8): L$ EVEL；
$5 \emptyset \emptyset$ CCOL＝25 ：：CALL HCHAR $(2$ 4，4，12ø，25）：： $\mathrm{E}=\varnothing$
$51 ø$ NEXT I
$52 \varnothing$ IF $E=1$ THEN CALL DELSPR ITE（\＃1）：：CALL VCHAR（YP OS／8＋2，XPOS／8＋1，32，16）：

IF LIVES＝ø THEN $71 \varnothing$ E LSE E＝ø ：：GOTO 19ø
530 FOR I＝17 TO 2 STEP－ 1 ： ：CALL LOCATE（\＃1，YPOS＋I ＊8，XPOS）：：CALL HCHAR（ YPOS＋I＊8）／8，XPOS／8＋1，32 ）：：NEXT I ：：CALL LOCA TE（\＃1，YPOS，XPOS）
$54 \varnothing$ CALL COINC（ALL，C）：：IF $C=\emptyset$ THEN $22 \emptyset$
55 （ FOR $I=2$ TO 4 ：：CALL MO TION（\＃I，Ø，Ø）：：NEXT I
$56 \mathscr{0}$ FOR L＝3 TO 4 ：：CALL CO INC（\＃2，\＃L，1ø，C1）
579 IF C $1=\varnothing$ THEN $59 \varnothing$
589 FQR I＝5 TO 15 STEP 5 ：： CALL SOUND（ $19,-5, \mathrm{I}$ ）：：
NEXT I ：：CALL DELSPRIT E（\＃L）：：BUGFL（L）＝\varnothing
59ø NEXT L ：：GOTO $22 \varnothing$
6øø FOR T＝112 TO 118 ：：REA D A\＄：：CALL CHAR（T，A\＄） ：：NEXT T
61ø CALL CHAR（96，＂øDøDDøøDø

 øFøF84848＂）：：REM BUG

 4øøøøøøøøøøø日10382の4EFA FEFBF52291＂）：：REM SCOR PION
$63 \varnothing$ CALL CHAR（ $1 \varnothing 4$ ，＂FFFFFFFF FFFFFFFF＂，128，＂1ø1ø1ø1ø $1 \varnothing 1 \varnothing 1 \varnothing 1 \varnothing ", 12 \varnothing, " \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing \varnothing$ øのøøFFFF＂）
64ø CALL CHAR（136，＂ 93079597 の3 16397 のC3E4E1C6F87øB3 ØCøEØAのEのCø8øC6E9307C72 38F6E1DのDC＂）：：REM WEBS TER
$65 \varnothing$ CALL CHAR（14の，＂øøøøøøøø 204448482F1F3F7B787B3F1 Føøøøøのロの1ø884848DのEのF7 7D7F77EøCめ＂）：：REM WEBS TER2
 ØøF 1F1FFFFFFFFF，FFFFFFF FFFFFFFFFF，FFFFFFFFのøøøø øøø，$\curvearrowleft F \emptyset F$
$67 \emptyset$ DATA FFFFFFSF1FפF $\emptyset F \emptyset 7, \varnothing$ FøFøF97ø7ø7ø7ø7
68ø FOR $I=2$ TO $8:$ ：CALL CO $\operatorname{LOR}(1,15,1):=$ NEXT I
69ø CALL COLOR（1，15，2，1ø，3， $1,11,7,1,12,5,1,13,16,1$

7 7ø RETURN
$71 \varnothing$ DISPLAY AT $(22,15): L I V E S$ ：：DISPLAY AT（19，9）：＂G AME QVER＂；：：DISPLAY AT （12，5）：＂PLAY AGAIN（Y／N ）？＂；
$72 \emptyset \operatorname{CALL} \operatorname{KEY}(\varnothing, K, S):$ ：IF S＝ \square THEN $72 \varnothing$
73ø IF $K=7 B$ OR $K=11 \varnothing$ THEN E ND
74 IF $K=89$ OR $K=121$ THEN C $\operatorname{ALL} \operatorname{HCHAR}(1 \varnothing, 9,32,11)::$ CALL HCHAR（12，7，32，19） ：：GOTO 17ø ELSE 72の ©

The Hitchhiker's Guide To The Galaxy

Neil Randall

Abstract

Requirements: Commodore 64 with a disk drive; Atari $400 / 800$, XL, or XE with at least 48 K RAM and a drive; Apple II-series computer with at least 48 K RAM and a drive; Apple Macintosh; IBM PC, PCjr, or MS-DOS 2.0 compatible computer with at least 48 K RAM and a drive; TI-99/4A with 48K RAM, a disk drive, and Extended BASIC or Mini-Memory or Editor/ Assembler cartridge; or a Kaypro II with $C P / M$. Versions for the Apricot and Epson QX-10 are forthcoming.

The Hitchhiker's Guide to the Galaxy may well be Infocom's best effort to date. There are several reasons for this. First, the comic absurdity of Douglas Adams' popular radio/television/novel series translates well to Infocom's style of interactive fiction. Second, the story has a built-in sense of humor, which increases the player's enjoyment and reduces frustration. Third, the story itself is fascinating.

A best-selling novel and hit BBC radio series, later adapted for TV, The Hitchhiker's Guide to the Galaxy follows the hilarious adventures in space of Arthur Dent. Dent is an ordinary Englishman who one day witnesses the destruction of Earth (to make room for an Intergalactic Bypass). He eventually gets caught in the problem of finding the ultimate question to Life, the Universe, and Everything. The story is filled with absurd characters and wonderfully illogical events.

The narrative nature of The Hitchhiker's Guide is well suited to Infocom's text-only adventure format. In addition, Infocom's software boasts the industry's most advanced parser, that part of an adventure program which interprets the commands you enter. This means you can enter commands as normal English sentences and generally the computer will understand you. Infocom adventures take a long time to play, mainly because each contains several major puzzles you must figure out.

Comic Relief

Infocom's version of the story begins like the original series. Playing the role of Arthur Dent, you awaken to the sight of a bulldozer about to demolish your home. Solving this puzzle is quite easy, but the next major puzzle, aboard the Vogon spacecraft, is more difficult. In order to understand all alien languages, you have to find a way to get a Babel Fish into your ear (honest!). Although somewhat frustrating, this puzzle is entirely true to the humor of the radio series, and even if you don't solve it, you'll get several good laughs.

Humor, in fact, is the game's saving grace. It distinguishes The Hitchhiker's Guide from several other Infocom adventures. Most Infocom games take a long, long time to play, and for the most part you are simply solving puzzles. After awhile the puzzles may become frustrating, and in desperation you may begin seeking out other people to assist you in your struggles.

Not so with The Hitchhiker's Guide. I am committed to solving the thing myself, since I believe I have as small a grasp on logic as did the original series. I am far enough into the adventure to report that the game's humor consistently prevents you from becoming too frustrated. Adams' humor is sprinkled throughout, in descriptions (one object you find is "the thing which your aunt gave you which you don't know what it is ${ }^{\prime \prime}$) and in the actions of the characters and robots (Marvin the Paranoid Android never fails to elicit a laugh). For Infocom's version of The Hitchhiker's Guide to be successful, it had to be consistently funny and consistently absurd. Happily, it is both.

It also had to diverge from the series in one major respect: Arthur Dent's role had to change from spectator to major participant. In the original story, Dent is swept along by the strange happenings around him. But interactive fiction is strongest when your character can, to some degree, affect those happenings.

The role of passive observer does not translate well to an adventure program.

If it ever does, The Hitchhiker's Guide to the Galaxy may be redone with a different emphasis. But until then, Infocom has given us a thoroughly enjoyable rendition of a delightfully bizarre story. Recommended for all adventure gamers.
The Hitchhiker's Guide to the Galaxy Infocom, Inc.
55 Wheeler Street
Cambridge, MA 02138
$\$ 34.95$ (Atari \& Commodore 64)
$\$ 39.95$ (all other versions)

Super-Text

Arthur Leyenberger

Requirements: Commodore 64 with a disk drive; Atari 400/800, XL, or XE with at least 48 K RAM and a drive; Apple II-series computer with at least 48 K RAM and a drive (80-column card optional); IBM PC with at least 48 K , a drive, and DOS 1.1 (not compatible with the PCjr). A printer is highly recommended. The version reviewed was for the Atari; other versions are similar.

According to recent surveys, word processing is second only to entertainment as the primary application for most home computers. Whether you're jotting a short letter to Aunt Viola or compiling a term paper, word processing can make your writing less painful and even enjoyable.

There are scores of word processors available for computers these days. Your chief criterion for selecting one should be that it has the functions you require to accomplish your writing tasks. It is also important to consider your future needs so you won't outgrow your word processor.

COMPUTE! Classified

COMPUTE! Classified is a low-cost way to tell over 350,000 microcomputer owners about your product or service.

Rates: $\$ 25$ per line, minimum of four lines. Any or all of the first line set in capital letters at no charge. Add $\$ 15$ per line for boldface words, or $\$ 50$ for the entire ad set in boldface (any number of lines).
Terms: Prepayment is required. Check, money order, American Express, Visa, or MasterCard are accepted.
Form: Ads are subject to publisher's approval and must be either typed or legibly printed. One line equals 40 letters and spaces between words. Please underline words to be set in boldface.

General Information: Advertisers using post office box numbers in their ads must supply permanent address and telephone numbers. Orders will not be acknowledged. Ad will appear in next available issue after receipt.
Closing: 10th of the third month preceding cover date (e.g., June issue closes March 10th). Send order and remittance to: Harry Blair, Classified Manager, COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. To place an ad by phone, call Harry Blair at (919) 275-9809.

Notice: COMPUTE! Publications cannot be responsible for offers or claims of advertisers, but will attempt to screen out misleading or questionable copy.

SOFTWPDE

FDEE EDUCPTIONPL SOFTWPDE CPTPLOGFdp, Conjkdoy 64, Pnnle IIO, TDS-80-Islbnd Soltwbre, PO Pox 300, Dent. G, Lbke Grove, NY 11755. (516)585-3788.

PTTENTION POPLE, IPM, Cofhodpve, Ptbrx, TI 99/4P ysers, Extensxve selection ol soltwhSend $\$ 1.00$ lor cbtblog, snecxly model -
Gnternrxses, 3687 Mexxco. Wect
43081. (604) 880-7725 h'

Wrxte lor Fr^{-}
P. $O^{~}{ }^{\text {r }}$

- PTIONPL SOFTWPDE CPTPLOG, vonmmfyre 64, Pnnle II+, TDS-80-Islbnd Soltwbre, PO Pox 300, Dent. G, Lbke Korove,

Wrxte lor FDEE 120 nbge cbtblog, DYNPCOMP, P.O. Pox 18129. Flichsdter, NY 14618. Stbte Comnyter.
IPM-PC OD COMPPTIPLE: Conversxon ol Pmerxcbn ynxts ol mebsyrements (LENGTH, PDEP MPSS VOLUME TEMPEDPTUDE) TO/FDOM Metrxc sistams nlys edycbtxonbl TIPs bt lxngertxns. Snecxly Mono or color bdbnter. Send $\$ 14.95$ nlys $\$ 2.00$ lor shxnnxng/hbndlxng to Lbndmbrk Soltwbre, INC., PG Pox 490,
Prooylyn, NY 11230.

CDPPS SIMULPTOD-Soystxck centpklled bettxng, dxce bnd lbyoyt dxbnlby; nbse dynt's, odds, hbrdwbys, etc. Pth\$16.00. Symsolt Enternrur
07012.

PTTF ${ }^{-}$

CDPPS SIMULPTOD-Joystxck controlled bettxng, dxce bnd lbyoyt dxbnlby; nbss, come dontls, odds, hbrdwbys, etc. Ptbrx 800 dxsk. $\$ 16.00$. Symsolt Enternrxses, Pox 634, Clxiton, NJ 07012.

FDEE EDUCPTIONPL SOFTWPDE CPTPLOGPet, Commodore 64, Pnnle II +, TDS-80-Ihlbnd Soltwdxe, PO Pox 300, Dent. G, Lbke Grgke, AY 11755. (566)255-3755.

PTTENTION PPPLE, QPM, Cohhilmore, Ptbrx, TI 99/4P ysers, Extensxve selectxon ol soltwbre. Send $\$ 1.00$ lor cbtblog, snecxly model. Celjxm Enternrxses, 3687 Mexxco. Westervxlle, Ohxo, 43081. (614) 890-7725 blter 4:30.

Wrxte lor FDEE 120 nbge cbtblog, DYNPCOMP, P.O. Pox 18129. rochester, NY 14618. Stbte Comnyter.
IPM-PC OD COMPPTIPLE: Conversxor
Pmerxcbn ynxts ol mebsyremente "
PDEP MPSS VOLUME TFN
TO/FDOM Metrxc c-
TIPs bt lxnpo
bdbnt-
.axonbl 40 or color ..ys $\$ 2.00$ lor ang to Lbkdmbrk Soltwbre, ء ox 490, Poroklyn, NY 11230.

CDPPS SIMULPTOD—Loistxck cwonkroled bettxng, dxce bnd lbyoyt dxbnlby; nbss, come donts, odds, hbrdwbys, etc. Ptbrx 800 dxsk. $\$ 16.00$. Symsolt Enternrxses, Pox 634, Clxiton, NJ 07012.

BOEDINESS KPODTRNITIES

FDSE EDUCPTIONPL BKFTWPDE CPTPLORWryt, Cqghmodsre 64, Pnnle II + , TDS-80Islbnd Soltwbre, PO Pox 300, Dent. G, Lbce Zrmve, NB 12755. (316)589-3755.

PTTENTION PPPLE, IXM, Cqcvodorx, Ptbrx, TI 99/4P ysers, Extensxve selectxon ol soltwbre. Swpd $\$ 1.00$ lor cbtblog, snecxly model. Celjxm Enternrxses, 3687 Mexxco. Westervxlle, Vhxo, 43081. (610) 890-7725 blter 4:30.

Zrxte lor FDEE 120 nbge cbtblog, DYNPCVMP, W.O. Pox 18129. rochester, NY 14618. Stbte Comnyter.
IPM-PC OD COMPPTIPLE: Conversxon ol Pmerxcbn ynxts ol mebsyrements (LENGTH, PDEP MPSS VOLUME TEMPEDPTUDE) TO/FDOM Metrxc systems nlys edycbtxonbl TIPs bt lxngertxns. Snecxly Mono or color

- 170K Disk Drive $\$ 149.00$ *
- Tractor Friction Printer $\$ 169.00$
- 13" Hi-Res Color Monitor $\$ 189.00$ * * See Page 13

CALL BEFORE YOU ORDER

SPECIAL SOFTWARE COUPON

* COMMODORE 64 COMPUTER $\$ 139.00$

You pay only $\$ 139.00$ (with the $\$ 19.95$ software purchase, see below) when you order the powerful 84 K COMMODORE 64 COMPUTER! LESS the value of the SPECIAL SOFTWARE DISCOUNT COUPON we pack with your computer that allows you to SAVE OVER $\$ 500$ off software sale prices!! With only $\$ 100$ of savings applied your net computer cost is $\$ 39.00$!!

* 170K DISK DRIVE $\$ 149.00$

You pay only $\$ 149.00$ (with the $\$ 19.95$ software purchase, see below) when you order the 170K Disk Drive! LESS the value of the SPECIAL SOFTWARE DISCOUNT COUPON we pack with your disk drive that allows you to SAVE OVER $\$ 500$ off software sale prices!! With only $\$ 100$ of savings applied, your net disk drive cost is $\$ 49.00$.

* $13^{\prime \prime}$ HI-RES COLOR MONITOR $\$ 189.00$ You pay only $\$ 189.00$ (with the $\$ 19.95$ software purchase, see below) when you order this $13^{\prime \prime}$ COIOR MONITOR with sharper and clearer resolution than any other color monitors we have tested! LESS value of the SPECIAL SOFTWARE DISCOUNT COUPON we pack with your monitor that allows you to save over $\$ 500$ off software sale prices!! With only $\$ 100$ of. savings applied, your net color monitor cost is only \$89.00. (16 Colors).

80 COLUMN 80 CPS

TRACTION/FRICTION PRINTER $\$ 169.00$ You pay only 5169.00 when you order the Comstar T/F deluxe line printer that prints $8^{1 / 2 \times 11}$ full size, single sheet, roll or fan fold paper, labels, etc. Impact dot matrix, bidirectional. LESS the value of the SPECIAL SOFTWARE DISCOUNT COUPON we pack with your printer that allows you to SAVE OVER $\$ 500$ off software sale prices!! With only $\$ 100$ of savings applied your net printer cost is only $\$ 69.00$.

$\mathbf{8 0}$ COLUMN BOARD $\$ 79.00$

Now you program 80 COLUMNS on the screen at one time! Converts your Commodore 64 to 80 COLUMNS when you plug in the 80 COLUMN EXPANSION BOARD!! PLUS 4 slot expander! Can use with most software.

80 COLUMNS IN COLOR

EXECUTIVE WORD PROCESSOR $\$ 39.00$
This EXECUTIVE WORD PROCESSOR is the finest available for the COMMODORE 64 computer! The ULTIMATE FOR PROFESSIONAL Word Processing. DISPLAYS 40 or 80 COLUMNS IN COLOR or black and white! Simple to operate, powerful text editing with 250 WORD DICTIONARY. complete cursor and insert delete key controls line and paragraph insertion, automatic deletion, centering, margin settings and output to all printers! Includes a powerful mail merge.
List $\$ 99.00$ SALE $\$ 39.00$ Coupon $\$ 29.95$
We pack a SPECIAL SOFTWARE DISCOUNT COUPON with every COMMODORE 64 COMPUTER, DISK DRIVE, PRINTER, or MONITOR we sell! This coupon allows you to SAVE OVER $\$ 500$ OFF SALE PRICES!!
(Examples)

\section*{PROFESSIONAL SOFTWARE COMMODORE 64
 | Name | List | Sale | Coupon |
| :---: | :---: | :---: | :---: |
| Executive Word Processor | 599.00 | \$39.00 | \$29.95 |
| Executive Data Base | \$69.00 | \$29.00 | 519.95 |
| 20.000 Word Dictionary | \$24.95 | \$14.95 | 510.00 |
| Practicale II | \$69.95 | 549.95 | \$44.95 |
| Print Shop (Disk) | \$44.95 | \$32.95 | \$26.95 |
| Practicalc | \$59.95 | \$24.95 | \$19.95 |
| Programmers Reference Guide | \$20.95 | \$16.95 | \$12.50 |
| Programmers Helper (Disk) | 559.95 | \$29.95 | 519.95 |
| 80 Column Screen (Disk) | \$59.95 | \$29.95 | \$19.95 |
| Disk Filer (by Flip-N.File) | 539.95 | \$14.95 | \$12.95 |
| Deluxe Tape Cassette | \$89.00 | \$44.95 | \$34.95 |
| Pro Joy Stick | 519.95 | 512.95 | \$10.00 |
| Light Pen | 539.95 | \$14.95 | 5 9.95 |
| Dust Cover | S 8.95 | 56.95 | \$ 4.60 |
| Simon's Basic | \$29.95 | \$22.95 | \$19.95 |
| Pitstop II Epyx | \$39.95 | \$24.95 | \$19.95 |
| Super Graphics Expander | 529.95 | \$22.95 | \$19.95 |
| Music Calc 1 | \$59,95 | \$29.95 | \$24.95 |
| Filewriter | 559.95 | \$29.95 | \$24.95 |
| (See over 100 coupon items in our catalog) | | | |

EXECUTIVE QUALITY PROFESSIONAL BUSINESS SOFTWARE The Cadillac of Business Programs for Commodore 64 Computers			
Item	List	- Sale	Coupon
Inventory Management	\$79.95	\$29.95	\$24.95
Accounts Receivable	S79.95	\$29.95	\$24.95
Accounts Payable	579.95	\$29.95	\$24.95
Payroll	\$79.95	\$29.95	\$24.95
General Ledger	\$79.95	\$29.95	\$24.95

(Best communications package in USA)

PRICES MAY
BE LOWER

- Computer Learning Pad $\$ 37.95$
- New Voice Synthesizer $\$ 49.00$
- 12" Green or Amber Monitor $\$ 79.95$
- 12' Daisy Wheel Printer $\$ 199.00$

SUPER AUTO DIAL MODEM $\mathbf{\$ 5 9 . 0 0}$
Easy to use. Just plug into your Commodore 64 computer and you're ready to transmit and receive messages. Easier to use than dialing your telephone. just push one key on your computer! Includes exclusive easy to use program for up and down exclusive easy to use program
loading to printer and disk drives.
loading to printer and disk
List $\$ 129.00$ SALE $\$ 59.00$.
NEW COMPUTER LEARNING PAD $\$ 37.95$ Makes other graphics tablets obsolete. This new TECH SKETCH LEARNING PAD allows you to draw on you T.V. or Monitor and then you can print whatever you draw on the screen on your printers. FANTASTIC!! List \$79.95 SALE \$37.95.

NEW VOICE SYNTHESIZER \$49.00
For Com. 64 or VIC- 20 computers. Just plug it in and you can program words and sentences, adjust volume and pitch make talking adventure games, sound action games and customized talkies!! FOR ONLY S19.95 you can add TEXT TO SPEECH. just type a word and hear your computer talk - ADD SOUND TO "Zork". SCOTT ADAMS AND AARDVARK ADVENTURE GAMES!! (Disk or tape.)

12" GREEN OR AMBER MONITOR $\$ 79.95$

Your choice of green or amber screen monitor, top quality. 80 columns $\times 24$ lines, easy to read, antiglare! PLUS 59.95 for connecting cable. Com 64 or VIC-20.

12' DAISY WHEEL PRINTER $\$ 199.00$
"JUKI" Superb letter quality daisy wheel printer, 12" extra large carriage, up to 12 CPS bi-directional printing, drop in cassette ribbon, centronics parallel or RS232 serial port built in! (Specify) List \$299.00 SALE $\$ 199.00$

CARDCO G + INTERFACE $\mathbf{\$ 9 . 0 0}$

For Commodore 64 and Vic 20 computers. Lets you use other printers with Centronics interfaces. This interface lets the printer act like a Commodore printer including printing the Commodore graphics (Dot matrix with graphic capability printers). List \$109.00 SALE $\$ 59.00$.

PROTECTO WARRANTY

All Protecto's products carry a minimum 90 day warranty. Therefore, if anything fails within 90 days from the date of purchase, you simply send your product to us via United Parcel Service prepaid. We will IMMEDIATELY send you a replacement at no charge via United Parcel Service prepaid. This warranty proves once again that We Love Our Customers.

- LOWEST PRICES • 15 DA Y FREE TRIAL
- BEST SERVICE IN U.S.A. © ONE DAY EXPRESS MAIL

PHONE ORDERS
$8 \mathrm{a} . \mathrm{m} .-8$ p.m. Weekdays
$9 \mathrm{a} . \mathrm{m} .-12$ noon Saturdays

- 90 day free replacement warranty
- OVER 500 PROGRAMS • FREE CATALOGS

Add $\$ 10.00$ for shipping, handling and insurance. Illinois residents please add 6% tax. Add $\$ 20.00$ for CANADA, PUERTO RICO HAWAII, ALASKA APO.FPO orders. Canadian orders must be in U.S. dollars. WE DO NOT EXPORT TO OTHER COUNTRIES EXCEPT CANADA. Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery. 2 to 7 days for phone orders, I day express mail! VISA - MASTER CARD - C.O.D. No C.O.D. to Canada, APO.FPO

We Love Our Customers
Box 550, Barrington, Illinois 60010

Premium Quality
130-150 CPS 10X COM-STAR

Printer \$199

$10^{\prime \prime}$ carriage, prints $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ standard single sheet or continuous feed paper, Bi-directional, impact, dot matrix, 130 150 CPS, 9×9 dot matrix with double strike capability for 18×18 dot matrix (near letter quality), high resolution bit image, underlining, back spacing, true lower descenders with super and subscripts, prints standard, italic, block graphics, and special characters. It gives you print quality and features found on printers costing twice as much!! (Centronics Parallel Interface) (Better than Epson FX80). List $\$ 499.00$. Sale \$199.00.
Premium Quality 150-170 CPS 15 $1 / 2$ X COM-STAR Business Printer $\$ 319.00$
Has all the features of the 10X COMSTAR PRINTER plus $151 / 2^{\prime \prime}$ carriage and more powerful electronics components to handle large ledger business forms! (Better than Epson FX 100). List $\$ 599$. Sale $\$ 319.00$.

12', DAISY WHEEL PRINTER $\$ 199.00$ "JUKI" Superb letter quality daisy wheel printer, $12^{\prime \prime}$ extra large carriage, up to 12 CPS bi-directional printing, drop-in cassette ribbon, (90 day warranty) centronics parallel or RS232 serial port built in! (Specify). List $\$ 299.00$. Sale $\$ 199.00$.

IILKi

Printer/Typewriter

 Combination $\$ 279.00$"JUKI" Superb letter quality, daisy wheel printer/typewriter combination. Two machines in one - just a flick of the switch. 12"' extra large carriage, typewriter keyboard, automatic margin control and relocate key drop in cassette ribbon! (90 day warranty) centronics parallel or RS232 serial port built in (Specify). List $\$ 399.00$. Sale $\$ 279.00$

(1) Olympia

Executive Letter Quality $\$ 339.00$ 15 " Daisy Wheel Printer This is the world's finest daisy wheel printer. Fantastic letter quality, up to 20 CPS bi-directional, will handle 14.4' forms width! Has a 256 character print buffer, special print enhancements, built in tractor-feed (Centronics Parallel and RS232C Interface) (90 day warranty). List $\$ 649.00$. Sale $\$ 339.00$

(1) Olympia

Printer/Typewriter Combination \$439.00 Better than IBM Selectric. Superb computer printer combined with the world's finest electronic typewriter. Two machines in one, just flick the switch for up to 20 CPS printing (300 Words per minute) on a $15^{\prime \prime}$ carriage that handles up to $141 / 8^{\prime \prime}$ in. paper. Drop in cassette ribbon - express lift off correction, Centronics parallel interface (90 day warranty). List $\$ 749.00$. Sale $\$ 439.00$.

- 15 Day Free Trial - 1 Year Immediate Replacement Warranty

PARALLEL INTERFACES

For VIC-20 and COM-64 - \$59.00. Apple - \$79.00. Atari - \$59.00.

[^3]

We Love Our Customers Box 550, Barrington, Illinois 60010
312/382-5244 to order

COM-STAR PLUS AECDEFEHITKLMNOPGFETUUW KYZ Print Example: ABCDEFGHI JKLMNDPGRTTUVWXYZ i Z34 ©

Call (312) 382-5050 To Order

All Software Is On Disk Unless Stated Otherwise.

ATARI A567 STAR VOYAGER A544 STAR RAIDERS A545 MISSILE COMMAND (CART.) A546 GALAXIAN (CART.) A547 DEFENDER (CART.) A548 DIG DUG (CART.) A549 DONKEY KONG (CART.) A550 ROBOTRON (CART.) A57I POLE POSITION (CART.) A570 DONKEY KONG JR. (CART.) A569 MS. PAC MAN (CART.) A595 JOUST (CART.) A555 PENGO (CART.) A556 MILLIPEDE (CART.) A557 JUNGLE HUNT (CART.) A558 MARIO BROS. (CART.) A559 MOON PATROL (CART.) A560 FINAL LEGACY (CART.) A561 FOOTBALL (CART.) A562 TENNIS (CART.) A563 TRACK \& FIELD (CART.) A564 EASTERN FRONT (CART.) A 565 GALAHAD \& THE HOLY GRAIL A566 ADVENTURE WRITER A568 SARGON II FIRST STAR A510 SPY VS. SPY A511ILOVE MY ALPHABET A5I2 U.S. ADVENTURE IMAGIC A5I3 CHOPPER HUNT BRODERBUND A514 MASK OF THE SUN A515 OPERATION WHIRLWIND A516 SPELUNKER A517 LODE RUNNER A518 WHISTLERS BROTHERS A501 SERPENT'S STAR A502 STEALTH EPYX A519 TEMPLE OF APSHAI A520 JUMPMAN A521 DRAGON RIDERS OF PERN A522 SUMMER OLYMPIC GAMES A523 PITSTOP II A 524 BALL BLAZER A525 RESCUE ON FRACTULUS SSI A526 KNIGHTS OF THE DESERT A527 FIELD OF FIRE A528 FORTRESS A529 THE COSMIC BALANCE A530 IMPERIUM GALACTUM A531 RAILS WEST A532 TIGERS IN THE SNOW A533 50 MISSION CRUSH A590 BROADSIDES A591 COMPUTER QUARTERBACK A592 COMPUTER AMBUSH A593 COMPUTER BASEBALL A594 QUESTRON MUSE A583 CASTLE WOLFENSTEIN A584 BEYOND CASTLE WOLFENSTEI MICROPROSE A581 SOLO FLIGHT A582 HELLCAT ACE SYNAPSE A534 ENCOUNTER A535 BLUE MAX 2001 A536 QUASIMODO/AIR SUPPORT A537 N.Y.C./ELECTRICIAN A538 RAINBOW WALKER/COUNTD A539 FORT APOCALYPSE A540 BLUE MAX		SALE $\$ 14.95$ $\$ 14.95$ $\$ 14.95$ $\$ 14.95$ $\$ 14.95$ $\$ 16.95$ $\$ 14.95$ $\$ 14.95$ $\$ 29.95$ $\$ 14.95$ $\$ 14.95$ $\$ 19.95$ $\$ 16.95$ $\$ 20.95$ $\$ 24.95$ \$24.95 $\$ 14.95$ $\$ 24.95$ $\$ 24.95$ $\$ 18.95$ $\$ 18.95$ $\$ 24.95$ $\$ 18.95$ $\$ 24.95$ $\$ 24.95$ \$24.95 $\$ 24.95$ $\$ 24.95$ $\$ 22.95$ $\$ 24.95$ $\$ 24.95$ $\$ 24.95$ $\$ 24.95$ $\$ 24.95$ $\$ 24.95$ $\$ 24.95$ $\$ 2$ \$27.95 $\$ 18.95$ $\$ 22.95$ $\$ 22.95$ $\$ 18.95$ $\$ 14.95$ $\$ 19.95$ $\$ 19.95$ $\$ 19.95$ $\$ 19.95$ $\$ 20.95$ \$20.95

ACCESS
 A589 BEACHHEAD

AV ALON HILL

A572 TELENGARD
A573 T.G.I.F.
A574 FLYING ACE
A575 MIDWAY CAMPAIGN
A576 B-1 NUCLEAR BOMBER
A577 LEGIONAIRE
A578 T.A.C
A579 MARKET FORCES
A580 PANZER JAGD
A504 GALAXY
A505 ANDROMEDA CONQUEST
A 506 COMPUTER STOCKS AND BOND
$\$ 25.00 \quad \$ 18.95$
COSMI
A507 FORBIDDEN FORREST (TAPE/DISK)
$\$ 16.95 \quad \$ 12.95$
A508 AZTEC CHALLENGE (TAPE/DISK)
$\$ 16.95 \quad \$ 12.95$
A509 CAVERNS OF KHAFKA (TAPE/DISK)
$\$ 16.95 \quad \$ 12.95$
DATASOFT
A585 BRUCE LEE
A586 PAC MAN
A587 CONAN
A588 MR. DO
$\$ 39.95 \quad \$ 20.95$
$\$ 29.95 \quad \$ 18.95$
$\$ 39.95 \quad \$ 22.95$
$\$ 29.95 \quad \$ 24.95$

ACCESSORIES \& PROGRAMMING AIDS

A096 SURGE PROTECTOR 6 PLUG A007 DATA CASSETTE RECORDER A093 MONITOR CABLE
A015 BOX $/ 10$ ECONOMY DISKS A018 BOX/10 FUJI FLOPPY DISKS A025 50 FLOPPY DISK FILE BOX A022 FLOPPY DISK CLEANER
A 442 ATARI GRAPHICS TABLET A 105 BASIC TUTORIAL (BOOK) $\$ 49.95 \quad \$ 29.95$ $\$ 91.00 \quad \$ 44.95$ $\$ 14.95 \quad \$ 9.95$ $\$ 29.95 \quad \$ 12.95$ $\$ 39.95 \quad \$ 14.95$ $\begin{array}{ll}\$ 39.95 & \$ 14.95 \\ \$ 29.95 & \$ 19.95\end{array}$ 99.00 $\$ 16.95 \quad \$ 12.95$ A 106 ADVANCED BASIC TUTORIAL (BOOK) $\$ 16.95 \quad \$ 9.95$ A107 PROGRAMMERS REFERENCE GUIDE (BOOK) $\$ 24.95 \quad \$ 12.95$

BUSINESS

ATARI
A201 ATARI WRITER (CART.) $\$ 49.95$ \$39.95
A202 PROOFREADER $\$ 19.95 \$ 16.95$
A 203 VISICALC
A204 HOME FILE MANAGER
A215 TIME WISE
CODEWRITER
A206 FILE WRITER
A207 REPORT WRITER
A 208 MENU WRITER
A209 FAMILY FINANCE
A210 HOME INTEGRATOR
A211 SMALL BUSINESS INVENTORY A 212 SALESMAN'S EXPENSE A213 ACCOUNTS RECEIVABLE \& PA

A214 RETAIL INVOICE
PEACHTREE
A216 GENERAL LEDGER $\$ 99.00 \quad \$ 49.00$
A217 ACCOUNTS RECEIVABLE
A218 ACCOUNTS PAYABLE

EDUCATION

FISHER PRICE

A444 LINKING LOGIC (CART.) A445 DANCE FANTASY (CART.) A 446 MEMORY MANOR (CART.) A447 LOGIC LEVELS (CART.)
SCHOLASTIC
A 407 BANNER CATCH
A408 SQUARE PAIRS
A409 SPELLAKAZAM
A410 SPELL DIVER
A411 AGENT U.S.A.
$\$ 29.95 \quad \$ 22.95$
$\$ 29.95 \quad \$ 22.95$
$\$ 39.95 \quad \$ 24.95$
\$29.95 \$22.95
$\$ 99.00 \quad \$ 49.00$
$\$ 99.00 \quad \$ 49.00$
$\$ 24.95 \quad \$ 16.95$ $\$ 24.95 \quad \$ 16.95$ $\$ 24.95 \quad \$ 16.95$ \$24.95 \$16.95
$\$ 39.95 \quad \$ 29.95$
$\$ 24.95 \quad \$ 19.95$
$\$ 19.95 \quad \$ 14.95$
$\$ 29.95 \quad \$ 24.95$
$\$ 29.95 \quad \$ 24.95$
$\$ 29.95 \quad \$ 24.95$
$\$ 29.95 \quad \$ 19.95$
$\$ 24.95$ \$19.95
$\begin{array}{ll} & 19.95 \quad \$ 12.95\end{array}$
$\$ 19.95 \quad \$ 12.95$
$\$ 19.95 \quad \$ 12.95$ $\$ 19.95 \quad \$ 12.95$
$\$ 4.00$ 10

451 GRANDMA'S HOUSE A 452 KIDWRITER A 453 FRACTION
A454 IN SEARCH OF THE MOST AM

A 455 TRAINS

A456 ALPHABET ZOO
A457 AEROBICS
A458 MATH BUSTERS
A460 GRAMMAR WORD USE SKILLS $\$ 24.95$ \$16.95 A461 WORD GEOGRAPHY FACTS $\$ 24.95$ \$16.95 A462 SPANISH VOCABULARY SKILLS

A463 FRENCH VOCABULARY SKILLS $\$ 24.95 \quad \$ 16.95$
A464 WORLD HISTORY FACTS $\$ 24.95 \quad \$ 16.95$
A465 U.S. HISTORY FACTS
A466 U.S. GEOGRAPHY FACTS
A 467 U.S. GOVERNMENT FACTS
A468 AEC SPELLING $2-8$
READING COMPREHENSION SKILLS
A 485 WORDS IN READING VOCABULARY

SPINNAKER
A448 KINDERCOMP $\$ 20.95 \quad \$ 16.95$
A449 FACEMAKER $\$ 20.95$ \$16.95
A450 KIDS ON KEYS $\quad \$ 20.95 \quad \$ 16.95$

LIST SALE
ATARI
A 316 LOGO (CART.) A318 ASSEMBLER/EDITOR (CART.) A315 PILOT (CART.) A319 MACRO ASSEMBLER (CART.) A420 ATARI MUSIC I
A421 ATARI MUSIC II
A 422 INTRO TO BASIC I (TAPE) A 423 INTRO TO BASIC II (TAPE) A 424 INTRO TO BASIC III (TAPE) A 433 TYPE ATTACK (CART.) A 436 SAT SAMPLE TESTS A 437 SAT MATH MODULE A 435 SAT VERBAL MODULE A 434 THE LEARNING PHONE (CART.)

S RAINBOW
A443 PAINT
$\$ 19.95 \quad \$ 16.95$
$\$ 19.95 \quad \$ 16.95$
$\$ 24.95 \quad \$ 19.95$
A 425 ATARI LAB STARTER SET (CART.)
$\$ 69.95 \quad \$ 49.95$
A426 ATARI LAB LIGHT MODULE (CART.)
$\$ 49.95 \quad \$ 39.95$
A427 SCRAM $\$ 24.95 \quad \$ 19.95$
A 428 SKYWRITER (CART.) $\$ 19.95$ \$16.95
A429 CONVERSATIONAL FRENCH (TAPE)
$\$ 19.95 \quad \$ 16.95$
A 430 CONVERSATIONAL SPANISH (TAPE)
$\$ 19.95 \quad \$ 16.95$
A431 MY FIRST ALPHABET $\$ 19.95 \quad \$ 16.95$
A 432 SPEED READING (TAPE) $\$ 24.95 \quad \$ 19.95$
DESIGNWARE
A401 CRYPTO CUBE $\quad \$ 39.95 \quad \$ 24.95$
A402 SPELLAGRAPH $\$ 39.95 \$ 24.95$
A403 MATH MAZE $\$ 39.95$ \$24.95
A 404 SPELLICOPTER $\$ 39.95 \$ 24.95$
A 405 CREATURE CREATOR $\$ 39.95 \quad \$ 18.95$
A406 TRAP-A-ZOID $\$ 39.95$ \$24.95

WEEKLY READER
A412 STICKYBEAR BOP $\$ 39.95 \quad \$ 24.95$ A413 STICKYBEAR NUMBERS $\$ 39.95$ \$24.95 A414 STICKYBEAR BASKETBOUNCE $\$ 39.95$ \$24.95 A415 STICKYBEAR OPPOSITES $\quad \$ 39.95$ \$24.95 A416 STICKYBEAR ABC $\quad \$ 39.95$ \$24.95 A 417 STICKYBEAR SHAPES $\$ 39.95 \$ 24.9$
AMERICAN EDUCATIONAL COMPUTER
A418 BIOLOGYFACTS $\$ 24.95 \quad \$ 16.95$
A419 ELEMENTARY SCIENCE FACTS \$24.95 \$16.95 A 459 VOCABULARY WORD BUILDER
$\$ 24.95 \quad \$ 16.95$
$\$ 24.95$
$\$ 16.95$
$\$ 24.95 \quad \$ 16.95$
$\begin{array}{ll}\$ 20.95 & \$ 16.95 \\ \$ 20.95 & \$ 16.95\end{array}$
\$26.95 \$22.95
$\$ 24.95 \quad \$ 18.95$
AZING THING
$\$ 26.95 \quad \$ 22.95$
\$26.95 \$22.95
$\$ 20.95 \quad \$ 16.95$
$\$ 34.95 \quad \$ 24.95$
$\$ 26.95 \quad \$ 22.95$

Add 5300 tor shipping handing and insulance illinors residents
please add 0%, tax Add 5000 tor CANADA PUERIO RICO HAWAll please odd 0°. 'ax. Add So 00 tor CANADA PUERTO RICO HAWAll
ALASKA APO FPO Orders Candian orders must be in US dollors ALASKA APO FPO orders Conadian orders must be in U S do
WE DO NOI EXPORT IO OIHER COUNIRIES EXCEPT CANADA Enclose Coshiers Check Money Order or Personal Check Allow
daystor deliwery 2107 daystor phone orders I day express mail VISA MASIERCARD COD

Lowest Price In The USA!
 ATARI

- Students - Word Processing

Home - Business

Rated "Best Buy" by Consumers Digest Buyers Guide, January 1985

LOOK AT ALL YOU GET FOR ONLY (1) Atari 800XL 64K Computer

(2) Atari 1050 127K Disk Drive
(3) Atari 1027 Letter Quality 20 CPS Printer Atari Writer Word Processer Atari BASIC Tutorial Manual All connecting cables \& T.V. interface included. Monitors sold separetly.

MONITOR OPTIONS:

12" Hi Resolution Green or Amber Screen
13" Hi Resolution Color

INDIVIDUAL
LIST PRICE
SALE PRICE
$\$ 179.00 \quad \$ 109^{\circ 0}$ $299.00 \quad 18900$
299.00 59.95
16.95
$\overline{\$ 852.90} \overline{\$ 549.90}$

SAVE $\$ 100$ All 5 ONLY $\$ 44^{00}$

SYSTEM SALE PRICE

List	Sale	Add $\$ 9.95$ for
$\$ 199.00$	99.00	Connection Cables
$\$ 399.00$	$\mathbf{1 9 5 . 0 0}$	and $\$ 10$ for UPS

15 DAY FREE TRIAL. We give you 15 days to try out this ATARI COMPUTER SYSTEM!! It it doesn't meet your expectations, just send it back to us prepaid and we will refund your purchase price!!
90 DAY IMMEDIATE REPLACEMENT WARRANTY. If any of the ATARI COMPUTER SYSTEM equipment or programs fail due to faulty workmanship or material within 90 days of purchase we will replace it IMMEDIATELY with no service charge!!

Best Prices• Over 1000 Programs and 500 Accessories Available • Best Service - One Day Express Mail - Programming Knowledge - Technical Support

Add $\mathbf{\$ 2 5 . 0 0}$ for shipping and handling!!

Enclose Cashiers Check, Money Order or Personal Check Allow 14 days for delivery. 2 to 7 days for phone orders. 1 day express mail! We accept Visa and MasterCard. We ship C.O.D. to continental U.S. addresses only.

COMPUTER DIRECT

We Love Our Customers Box 1001, Barrington, III. 60010
312/382-5050 to order

Super-Text, from Muse Software, is a word processing program that can satisfy your writing needs even as they grow and become more sophisticated. Billed as a "professional" word processor, Super-Text was first released for the Apple computer more than two years ago and is now available for the Commodore 64, Atari, and IBM. The Commodore 64 version produces an 80column display without any additional hardware.

The package consists of two identical program disks (a considerate policy), a comprehensive manual, and a quick reference card. The Atari program disk contains a special version of the Atari Disk Operating System (DOS) which permits access to all DOS commands from within the program. The disk also contains some predefined files which allow you to print your text on various printers-including those from Epson, Okidata, Atari, and NEC-and generic parallel and serial files so you can customize output to any other printer.

Special Printing

In addition to all the usual printing parameters, such as margin widths, page lengths, and lines per page, Super-Text also lets you define control key se-
quences for special printer features. A printer sequence code can be assigned to any of ten characters. You can then embed these nonprinting codes within your text to select such functions as superscripting, subscripting, ribbon colors, and alternate type styles. The manual contains several examples of how to set up your printer for these kinds of features.

In use, Super-Text is very similar to other word processors. To type, you enter a special "add mode." Word-wrapping and vertical-scrolling are automatic. To save text, you must exit the add mode and specify a filename; Super-Text adds the extender .TXT. Atari Super-Text files are in ASCII, so they can be read by other word processors or spellingchecker programs. Program files in ASCII format are also readable, as long as they have the .TXT extender.

To load a file, Super-Text first displays a numbered file directory of the disk. You can select a file by either its filename or number. This catalog screen also displays the name of the file in memory (if any), the current drive number, and the number of free pages remaining in memory. (On a 48 K Atari, the maximum file size is 15 K -about 15,000 characters.)

COMPARE LINE CONDITIONERS! You'll Choose Tripp Lite.

Automatically adjusts varying input voltages up or down to protect computers from brown-outs and high voltage surges.

- Maintains load voltage 120 V $\mathrm{AC}(\pm 5 \%)$ from 96 V AC to 138 V AC input range.
- Built in spike and R.F.I. filters.
- 98% efficient. Load regulation is 2% for no load to full load.
- Indicator light for monitoring high and low voltage conditions.

These stepped transformer systems are higher in efficiency, lower in wave form distortion, and lower in cost than C.V.T.'s (constant voltage transformers).

Retail Prices: | $\$ 119.00$ | (600 watt $)$ |
| :--- | :--- |
| $\$ 219.00$ | (1200 watt) |
| $\$ 299.00$ | (1800 watt) |

Dealers and Distributorships Available
Call 1-312-329-1777
500 North Orleans St., Chicago, IL 60610
Est. 1922

Super-Text contains a large number of flexible features. For example, the typical search-and-replace works either individually or globally, but also lets you specify wild cards, search for multiple strings, and search through any number of linked files on disk. The program even tells you how many occurrences were replaced. This lets you estimate the number of words in your document by globally searching for single spaces.

Programmable Keys

Another very useful feature is the ability to assign up to 30 characters to a single key. For instance, to write this review, I defined the string "Super-Text" as a programmable key. A single keypress then saved me from typing the phrase each time. This feature can be toggled on or off.

We can't list all the many features of Super-Text here because it's such a powerful program. It offers block operations, onscreen formatting and print previewing, soft and hard tab stops, headers, footers, auto page numbering, paragraph identation, centering, underlining, and much more.

Super-Text is easy to use, has excellent documentation with numerous examples, and contains just about all the features a novice or serious writer might need.

I cannot think of any serious faults or omissions in Super-Text. If you are looking for your first word processor or want to upgrade to one with more horsepower, Super-Text is definitely worth considering.
Super-Text
Muse Software
347 North Charles Street
Baltimore, MD 21201
$\$ 79.95$

This Publication is available in Microform.

University Microfilms International

Please send additional information
for
Name
Institution
Street
City
State
_ Zip_
300 North Zeeb Road. Dept. P.R., Ann Arbor, Mi. 48106

War In Russia

Neil Randall

Requirements: Atari 400/800, XL, or XE with at least 48 K RAM and a disk drive; or an Apple II-series computer with at least 48K RAM and a disk drive (the Apple II + requires Applesoft ROM).

The most important thing that can be said of a war game, whether it is simulated on a board or on a computer, is that it "feels right." For a war game to feel right, it must reflect the historical conditions and the scope of the battle it simulates, and it must make the player understand the difficulties encountered by the actual commanders as they made their decisions. Computerized war games have an inherent advantage over board games in this respect because of their ability to handle the nuts-and-bolts details of supply, equipment repair, and so forth. Unfortunately, computerized war games seem to rarely exploit this advantage. But War in Russia, an ad-vanced-level game from Strategic Simulations, does much to correct that problem.

Played on a scrolling hex-map of the Soviet Union, War in Russia is a oneor two-player game dealing with the German invasion of 1941-45. War in Russia includes three scenarios (along with a campaign game) which cover the entire war and take many hours to play. Maneuverable units are battle groups of up to six divisions, with the distinction between tank and infantry formations. This allows you to reenact the breakthrough/encirclement tactics which characterized the blitzkriegs of World War II.

Several features contribute to a detailed but surprisingly easy-to-play system. The Reinforcement/Experience/ Fatigue system provides the feel of combat on a divisional level, yet is handled simply. Prolonged combat increases the fatigue of a unit until it stops to rest. At the same time, units gain experience during combat, increasing their battle efficiency. When you reinforce a depleted unit, though, its experience level drops to reflect the addition of the "green" troops. Learning to exert some control over these processes gives you the feel of making real command decisions. If you don't make the proper adjustments, your offensive quickly grinds to a halt.

The Production Factor

Some of the fascinating aspects of War in Russia are watching the combat effectiveness of your units wax and wane,
resting your panzer divisions just long enough to prepare them for the next battle, and conserving your units' strength during battles in the winter. The German player, as happened historically, watches initial successes stopped by the coming of the first winter, while the Russian player must build an effective defense using weak and inexperienced troops. Both players must plan well ahead to keep their units fresh and at the highest possible strength and effectiveness. For both it is a great challenge.

Production is a major facet of the game, just as it was in World War II. Each nation may use its production capacity to build artillery, vehicle, or aircraft factories, or divert some capacity to increase the overall production level of the country. These economic decisions are difficult because their effects will not be apparent for months to come, and because they have a strong impact on strategy. This feature is quite easy to
use, and is another indication of the game's concern with the war as a whole.

War in Russia provides as accurate a model of the Russo-German campaign as any game I've seen, on board or on computer. Its duration and the size of its map lend a sense of the war's scope, while the production and combateffectiveness systems provide you with the ability to make major decisions which change the course of the game.

Anyone who enjoys a solid analytical challenge will find hours of enjoyment here, and war-gamers should consider War in Russia a must. It operates not only on the operational level of military command, but also in the realms of strategic and economic policy. And above all, it feels right.
War in Russia
Strategic Simulations Inc.
883 Stierlin Road
Building A200
Mountain View, CA 94043
$\$ 79.95$

PET/CBM MULTI USER DISK SYSTEM

- ALLOWS UP TO SIXTEEN USERS TO SHARE DISK DRIVES

AND/OR PRINTERS
-WORKS WITH ALL PET/CBM EQUIPMENT

- 100% HARDWARE INTERFACED
- NO ALTERATIONS TO SOFTWARE ORSPECIALSOFTWAREREQUIRED
- SOFTWARE TRANSPARENT - WORKS WITH ALL PET/CBM SOFTWARE
- LANGUAGE TRANSPARENT - WORKS IN ANY LANGUAGE - PROTECTS AGAINST SYSTEM LOCKUP

COMMODORE 64 MULTI USER DISK SYSTEM - ALLOWS UP TO EIGHT USERS TO SHARE DISK DRIVES - WORKS WITH ALL $64 /$ VIC EQUIPMENT - BUILT IN IEEE AND 64/VIC SERIAL PORTS (WORKS WITH ALL IEEE DEVICES)

- 100\% HARDWARE INTERFACED - 100% HARDWARE INTERFACED - NOALTERATIONS TO SOFTWARE OR SPECIAL - NO SPECIAL COMMANDS USED - BUILT IN $16 K$ PRINT BU

GREATER PRODUCTIVITY \& LOWER COST FOR BUSINESS AND EDUCATIONAL USE

COMMODORE E4. PET. AND CBM ARE ALL TRADEMARKS OF COMMODORE BUSINESS MACHINES. INC.

MANUFACTURED BY: COMSPEC COMMUNICATIONS INC.
153 BRIDGELAND AVE., UNIT 5 , TORONTO, ONTARIO M6A 2 Y6 (416) 787.0617

Raid On Bungeling Bay

James V. Trunzo

Requirements: Commodore 64, a disk drive, and a joystick.

Home arcade games face a tough fight in today's software wars. After two years of being saturated with a variety of shoot-em-ups and maze games, a more sophisticated-and somewhat jadedgame player has emerged. And that player is a difficult customer to satisfy. But Raid on Bungeling Bay possesses all the virtues necessary to appease the demanding gamer.

The theme is simple. The Bungeling Empire is preparing the ultimate weapon of war for conquering the world. Its six war factories, each located on an industrialized island, are preparing for the invasion. Only you, a highly skilled helicraft pilot, have a chance to prevent the unthinkable. You must bomb the war factories and destroy the Bungeling war machine.

But your mission is about the only thing in Raid on Bungeling Bay that is
ordinary. From the moment your highly mobile, heavily armed helicraft takes off from its aircraft carrier, there's enough action to please even the hardest-core arcade addict. Flying over beautifully rendered, 360 -degree scrolling screens, you attack the Bungeling factories. They are guarded (of course) by tanks, boats, fighter planes, bombers, and radar. In addition, somewhere among the islands, the Bungelings are building a battleship complete with heat-seeking missiles that, if launched, are sure to spell your doom.

Is it necessary to destroy everything or just the factories? Everything! All elements have their purpose in this game. Radar, for example, helps enemy planes locate your position and attack. Tanks and artillery defend the factories. Boats carry supplies to help rebuild what you have destroyed.

The graphics are amazingly detailed. Smoke pours from the stacks atop the factories, helicraft blades whirl, heat-seeking missiles are propelled on
shafts of flame, and radar installations explode like fireworks. If you're skilled enough to complete your mission (I never was), you are rewarded with more graphics-a hero's welcome in the form of a victory parade and a newspaper account of your raid.

Learning to control your helicraft takes some practice, as it is extremely sensitive and maneuverable. You are given five helicrafts at the beginning of the game. Each craft can absorb 100 points in damage before being destroyed, and the craft can return at any time to its carrier for a new bomb load and repairs-that is, if the carrier isn't under attack. Didn't I mention that possibility before? Well, it doesn't matter. You'll find out about this and other surprises when you play Raid on Bungeling Bay yourself.
Raid on Bungeling Bay Brøderbund Software Inc. 17 Paul Drive
San Rafael, CA 94903
\$29.95

Sundog: Frozen Legacy

James V. Trunzo

Requirements: Apple II-series computer with at least 64 K RAM, a disk drive, and a two-button joystick.

First, take equal portions of Star Wars and Star Trek, mix in a dash of mystery and the unknown a la Infocom's Planetfall, and add just a hint of arcade action. Next, pour these ingredients onto a $51 / 4$ inch floppy. Finally, boot the disk as often as you like, and enjoy for months one of the most entertaining and absorbing role-playing games on the market today.

Sundog: Frozen Legacy is a refreshingly different, graphics-oriented space game. It seems simple enough at first. You have inherited a serviceable but rundown one-man star freighter named the Sundog from a little-known uncle who has died (mysteriously). You have also inherited his obligation: to help build a colony for a religious group. You must establish the colony somewhere on the planet Jondd; find, buy, and de-
liver all goods needed for construction; and locate and deliver cryogenically preserved colonists who are being kept in warehouses in various cities somewhere within the Drahew Region.

But to complicate matters, you have no knowledge of trading, little knowledge of piloting the spacecraft, and the Drahew Region is huge. The designers of Sundog were ambitious, to say the least. The Drahew Region consists of 12 star systems with 18 inhabited planets-and those 18 planets are dotted with more than 900 populated cities.

Perhaps the most innovative aspect of Sundog is its liberal use of screen windows. The graphics range from excellent to adequate depending on which screen is in play (pilotage, tactical, onland travel, etc.), but the windowing makes this program truly enjoyable to play.

Another nicety in Sundog is the variety of responses and interplay among the various people you meet. Bartenders can be very friendly when you are
spending money, but curt when they feel you are wasting their time. Merchants (and even local toughs) can be bargained with, threatened, and so on, and each approach produces different results. This brings a feeling of individuality to your encounters and adds flesh to the body of the game.

Sundog allows you to save up to eight games on a disk and displays the status of each game (suspended, in play, or completed). You may, of course, delete entire games from the disk to begin new adventures. Written in Apple Pascal 1.1, the program handles its many sophisticated features quickly and reliably. Sundog is a game that can be played over and over again, even after the initial tasks have been solved.

Sundog: Frozen Legacy

FTL Games
7907 Ostrow, Suite F
San Diego, CA 92111
$\$ 49.95$

Enhancements To BASIC For Atari

Tom R. Halfhill, Editor

Requirements: Atari $400 / 800$ with 48 K RAM, a disk drive, and Atari BASIC cartridge; or a 1200XL with a disk drive and Atari BASIC cartridge; or a 600XL/800XL with 64 K RAM and a disk drive.

Enhancements to BASIC is an impressive utility that provides more than 40 new commands for BASIC programming. It isn't an "extended BASIC"-that is, it doesn't add any special keywords for inclusion in your programs. Rather, it's a tool kit utility that makes programming and debugging easier and more efficient. Best of all, it frees you from worrying about the infamous lockup bug which has haunted Atari BASIC programmers for years.

Before using Enhancements to BASIC, you must follow a 25 -step setup procedure carefully described in the manual. First, Enhancements copies your Atari BASIC cartridge ($400 / 800 /$ $1200 \times \mathrm{L}$) or built-in BASIC (600XL/800XL) into Random Access Memory (RAM). Then it modifies BASIC, adding the new commands and fixing the bug which can unpredictably lock up the Atari during program editing. Finally, Enhancements copies itself onto another disk for future use. From then on, you simply boot up the modified BASIC from this disk, either removing the BASIC cartridge if you have a 400,800 , or 1200 XL , or holding down OPTION to disable the built-in BASIC on the $600 \mathrm{XL} / 800 \mathrm{XL}$.

Most of the new features are fairly standard for utilities of this type. There are commands for automatic linenumbering and renumbering, deleting blocks of lines, listing all variables, searching for lines containing a certain variable, globally changing variable names, and sending screen output to a printer. There are disk commands which lessen the need to exit BASIC to DOS: You can call disk directories, rename files, lock and unlock files, delete files, format disks, and run a machine language program at a certain address.

That would be enough for most tool kit utilities. But Enhancements adds some more exotic features. There are commands to restore, rename, and call directories of deleted disk files. Another command protects BASIC programs by making the listings unreadable but executable. You can lock the keyboard to prevent tampering until a personal authorization code is entered. You can change screen margins and the delay period before keys begin repeating. On a $600 \mathrm{XL} / 800 \mathrm{XL}$, you can change the key-
repeat rate and turn the keyboard click on and off. You can display numeric values in decimal or hexadecimal (try renumbering a BASIC program in hex!). There are even programmable function keys-for example, pressing CTRL-4 automatically prints LOAD"D: or anything you like.

But perhaps the most powerful enhancement is the tracer/debugger. Most TRON/TROFF (trace on/off) utilities simply display the line numbers being executed as the program runs. Enhancements displays the entire line, and lets you flip back and forth between the scrolling listing and the actual program running simultaneously on an alternate screen. Implementing this feature on a computer with only 48 K or 64 K of RAM is quite impressive. Memory conflicts sometimes prevent you from tracing very large or complex programs, but nevertheless, the tracer does a remarkable job of handling such memoryjuggling challenges as player/missile graphics, custom character sets, and machine language subroutines. You can also disable the tracer to conserve memory.

There are still more features we don't have room to cover, such as a handy help screen. Enhancements is an exceptional product.
Enhancements to BASIC
First Byte
P.O. Box 32

Rices Landing, PA 15357
$\$ 14.95$ (includes shipping \& handling)

> To receive additional information from advertisers
> in this issue, use the handy reader service cards
> in the back of the magazine.

> COMPUTE! TOLL FREE Subscription Order Line 800-334-0868 In NC 919-275-9809

INCREASE YOUR DISK CAPACITY 100\%
 DOUBLES DISKETTES INSTANTLY!

Now, the back of $51 / 4^{\prime \prime}$ diskettes can be used, even in a single-head disk drive. Double all your present diskettes safely... without disturbing the existing data!
 Apple, Franklin, and Commodore
 only
ALSO

DISK OPTIMIZER SYSTEM ${ }^{\text {c }}$

SOFTWARE FOR APPLE II, II+, IIe, III, AND FRANKLIN CERTIFIES YOUR NEW DISK 100\% ERROR-FREE!

- Locks out bad sectors • Adds 36th track • Performs disk
drive speed check • Adds DOS
- And More!

INQUIRE ABOUT OUR ALL-NEW MULTILINGUAL DISK OPTIMIZER!

* On all orders add $\$ 2$ for postage δ_{x} handling ($\$ 5$ Foreign). Florida res. add 5% Sales Tax
SATISFACTION GUARANTEED OR YOUR MONEY BACK!

TOLL FREE 1-800-642-2536 FLORIDA 305-493-8355

4211 NW 75th Terrace • Dept. 661 Lauderhill, FL33319

FOR-NEXT Applications

Last month we covered the basics of looping with the FOR-NEXT statement. Now let's take a look at some practical applications of this essential technique.

FOR-NEXT is such a generalpurpose structure, it has numerous uses. Here's an example of how you might apply it in part of a check-book-balancing program that sums the amounts for a month's worth of checks:

```
10 PRINT "HOW MANY CHECKS
    THIS MONTH";
20 INPUT CH
30 FOR X=1 TO CH
40 PRINT "AMOUNT OF CHECK";
5 0 ~ I N P U T ~ A M ~
60 SUM = SUM + AM
70 NEXT X
80 PRINT "TOTAL AMOUNT IS
    $";SUM
```

Let's take a careful look at this program. Try running it. Line 10 prompts the user to enter the number of checks to be added; line 20 stores the response in the variable CH. Line 30 is a little tricky. It marks the beginning of the loop with a FOR statement as shown in last month's examples, but the number of repetitions specified is a variable, not a number.

The variable, CH , contains the number of checks the user entered in response to the prompt. Therefore, the number of times the FORNEXT loop will repeat depends on the user's response. In effect, the program adapts itself to the user's needs. Think of what would happen if you specified the number of loops with a certain number, say 10 . If the user has only 7 checks, the program would make too many loops, demanding amounts for 3 checks that were never written. If the user has 23 checks, the program would add only 10 of them together, ignoring the remaining 13.

Line 40 prompts the user to enter the dollar amount of the first check (do not type a dollar sign). Line 50 stores the response in the variable AM. Line 60 creates the variable SUM to keep track of the total and adds AM to SUM (when the first pass through the loop begins, SUM equals 0).

Line 70 marks the end of the loop. It circles back to the FOR statement on line 30 . Now the loop begins its second pass. Again, a prompt asks the user to input a check amount. Again, the response is stored in the variable AM (replacing the previous amount for the first check). Again, AM is added to SUM, so SUM now contains the cumulative amounts of the first and second checks. And again, at line 70, NEXT X circles back to line 30 for the third pass.

This continues until the number of loops specified by CH is reached. Then the loop is done and the program proceeds to line 80 . The program prints the total amount held in SUM and ends.

This example shows two things: first, the usefulness of FORNEXT loops when combined with other techniques, such as INPUT statements; and second, the flexibility of FOR-NEXT loops when modified slightly, such as specifying the number of loops with a variable instead of a particular number.

Speed READing

One of the most common applications of FOR-NEXT loops is to combine them with the READ and DATA statements. (If you aren't familiar with READ-DATA, don't worry; it's a subject for a future column.) By embedding a READ statement within a loop, you can efficiently fill an array with DATA, or POKE numbers for custom character sets or machine language subroutines into memory.

Let's try a simple example. Say you're writing some sort of calendar program that requires the computer to print a column of numbers representing the number of days in each month of the year. Without looping, you could take this approach:

> 10 PRINT " 31 "
> 20 PRINT $288^{\prime \prime}$
> 30 PRINT " $311^{\prime \prime}$
> 40 PRINT " 30
> 50 PRINT " 31 "
> 60 PRINT " 30
> 70 PRINT " 31 "
> 80 PRINT " $311^{\prime \prime}$
> 90 PRINT " 30
> 10 PRINT " 31 "
> 110 PRINT " " 30 "
> 120 PRINT " 31 "

But a FOR-NEXT loop with READ-DATA is much more efficient:

10 FOR X=1 TO 12
20 READ A
30 PRINT A
40 NEXT X
50 DATA $31,28,31,30,31,30$, 31,31,30,31,30,31
Line 10 sets up a FOR-NEXT loop with 12 passes (the number of elements in the DATA statement at line 50). Line 20 reads a number from the DATA statement and stores it in the variable A.

Line 30 prints the value of A , which changes after each pass through the loop. During the first pass, A equals 31 (the number of days in January) because 31 is the first DATA element. During the second pass, A equals 28 (the number of days in February) because 28 is the second DATA element. This continues for all 12 passes, concluding when A is assigned the value 31 for the twelfth month, December.

Next month, we'll continue our discussion of FOR-NEXT by showing how to put loops within loops, and even why you might want to create a loop that does absolutely nothing. We'll also cover some variations of FOR-NEXT in different versions of BASIC.

You never know who you will meet or what will be said when you're on American People/Link.

AMERICAN PEOPLE/LINK ${ }^{\text {™ }}$ users meet a lot of different people. That's because PEOPLE/LINK - the nation's first all entertainment videotex network - allows anyone with a word processor, personal computer or terminal, and a modem to communicate with other users throughout the country from the privacy of their own homes.

Sometimes these electronic conversations are serious...sometimes they're outrageous...but they will always keep your interest as you talk to friends and make new ones. PEOPLE/LINK's recreational programs include:
PARTYLINE - Meet people and talk live with other PEOPLE/LINK members throughout the country in groups or privately.

CLUB-LINK - Join or start a club or group devoted to a favorite hobby, rock group, lifestyle, etc.
WHO-IS-WHO - locate other users with similar interests.
And there's much more with programs like NETMAIL, our person-to-person electronic mail, PEOPLESCAN, the national bulletin board system, and play games such as poker, blackjack, checkers, chess, backgammon, and bridge (color graphics are available for most popular computers).
And the greatest thing is that you don't have to be a computer whiz or even know how to type to use PEOPLE/LINK...just be smart enough to subscribe now!

Use your Visa, Mastercard, or American Express. Call Us Toll Free: 1-800-524-0100

Illinois Residents Call: 1-312-870-5200
American PEOPLE/LINK
Arlington Ridge Office Center
3215 N. Frontage Road-Suite 1505
Arlington Heights, IL 60004

Computers And Society

David D. Thornburg, Associate Editor

Expert Systems And The Mass Market Micro

A few months back I raised the controversial notion that, contrary to the views of the pundits, the home computer industry hadn't died. In fact (and here's where the criticism came), I argued that the true "home" computer market had yet to be born.

My point was that personal computers are unlikely to penetrate much more than 10 percent of American homes until they become as easy to use as much of the other technology we find in our homes. I agree it is silly to expect a personal computer to be as easy to use as a clothes dryer. On the other hand, why should it be any harder to use than a video disc player, especially when the video player contains more complex technology than is found in most personal computers?

Before home computers become commonplace, we must also create home software applications that will allow the computer to advance beyond the stage of being a tool for writing or record-keeping. Imagine sitting at your computer in the middle of the night and engaging in the following dialog with your home computer:

What seems to be the problem?
My child just woke up and says he itches. He has red splotches on his face.

Red splotches can indicate many things. Please call your child's doctor now. If the doctor has to call you back, please continue to answer my questions while you are waiting for the call to be returned. Are the red splotches located on other areas of the body as well?

Yes, there are some small ones on the chest.

Did your child eat any of the following foods in the last eight hours: oranges, strawberries, chocolate?

Yes, we had ham with an orange peel sauce for dinner.

Has your child ever displayed an allergic reaction to orange juice?
[And so on.]

Applying Artificial Intelligence

This hypothetical interaction could help save a family member's life, or at least reduce discomfort. Such pro-grams-which can help solve problems ranging from diagnosing an illness to selecting the correct wine for dinner-are called expert systems.

Expert systems are one of the current commercial applications of research in the field of artificial intelligence. Up to this point, most expert systems have been run on fairly large computer systems, and they have been applied to massive computational tasks such as choosing the correct location for offshore oil wells.

Creating an expert system requires close interaction with human experts who are able to express their own decision-making process in terms of rules. Each rule is generally expressed in the form: IF (conditions are true) THEN (result is likely). Many of the more sophisticated expert systems have ways of dealing with imprecise information-assigning likelihoods to various results depending on the certainty with which the conditions are known.

The expert system program contains this set of rules (which can range in number to well over 100). The program also contains another part called an inference engine. The inference engine decides which rule to apply to the various information that has been entered, knows when to ask for more information, and infers a result. Once an expert sys-
tem has drawn a conclusion, the user can usually enter a command such as WHY?, and the system outlines the various rules and information it used to get its result. Mathematically speaking, such programs can prove themselves.

Ferns Versus Roses

Anyone can probably list several applications for expert systems: home medicine, car problems, plant choices for the garden, choosing the right stereo, and even picking the right computer!

As home computers acquire more memory and disk storage, expert systems will become commonplace. Artificial intelligence languages such as PROLOG and LISP are now being readied for the personal computers many of us already have, so there is no technological reason that expert systems won't become a reality in our country in the next two years.

Consider that in Britain, PROLOG is available on the inexpensive Sinclair Spectrum + for under $\$ 40$. According to Sinclair, this language is selling well, and is being taught to school children who are using it to build their own expert systems. The current interest in teaching database skills in our country is a refreshing step in the right direction.

The birth of the true consumer market for computers (a market in which computers will become as commonplace as televisions) will come very soon. We who have used personal computers since the 1970s and early 1980s will be fondly remembered as the pioneers of the true information revolution.

And, to the extent that we create useful applications for these machines, we may become shapers of the revolution as well.

It's easy to make copy. It's quick. It's illegal. It's wrong.

It's hard to believe.

People who wouldn't think of shoplifting a software product on their lunch hour don't think twice about going back to the office and making several illegal copies of the same software.

Making unauthorized copies of software is a violation of U.S. Copyright Law. Yet, the problem has reached epidemic proportions because many people are unaware, or simply choose to ignore the law. The software industry is urging decision-makers and software users to take steps to stop software piracy in their organizations. In the meantime, the industry has been forced to prosecute willful copyright violators.

There are legal, moral and economic imperatives forbidding theft of copyrighted software.

There is a free pamphlet on the subject. Call or write for a copy. A copy. A copy. A copy for everyone you know. Please ask for Priscilla.

ADAPSO
1300 North Seventeenth Street
Arlington, Virginia 22209
(703) 522-5055

On The Road With Fred D'lgnazio

Bits, Bytes, And Black Sheep

Late last fall I attended the Bits \& Bytes Show at the Disneyland Hotel in Anaheim, California. Bits \& Bytes was the first national computer conference for kids, and I was there to cover it for COMPUTE! and for two PBS shows-"The New Tech Times" and "Educational Computing.'

The show was a terrific suc-cess-especially for children. Thousands of kids came, played with the newest computers and robots, and got a chance to tell the bigwigs of the computer industry what they thought about their products. For example, one little girl, Kimberly Williams, returned from the show and wrote to the conference organizers: "Thank you for inviting my class to the computer show. It taught me and my friends a lot about computers. The computers were very learningful to my brain.'

At the show, I gave a presentation on a favorite topic of mine: the ways in which a computer could become a "sandbox" for little children. I also made a few critical remarks about the programming language Logo. I said that although I enjoy programming in Logo, I don't think computer languages are especially appropriate for younger children because the rewards are not commensurate with the amount of effort required. Also, I said that the Logo environment is somewhat artificial, abstract, and not meaningful to a small child.

Angry Reaction

I had made similar remarks at other conferences, so I didn't expect the kind of reaction I got. What a shock! Ten minutes into my talk, people in the front row rose to their feet and furiously denied that anything I had said was true. They were teachers who had been teaching Logo to their classes at school, and they said their experiences had been exactly the opposite of my own.

After listening to their point of view for a few minutes, I asked other members of the audience if they agreed. By the end of the session (which turned into a free-for-all debate), I learned that there are many different points of view about Logo and very few points of universal agreement.

However, my feelings about the Logo controversy were strengthened the other night when I picked up a copy of an excellent Canadian magazine, Computers in Education, and read an article by Elias Leousis, a teacher and the founder of the first full-time computer literacy program at the elementary level in the province of Quebec. In the article, entitled "Black Sheep and Logo," Leousis wrote that "Logomania" is starting to become a cult. Leousis himself uses Logo to teach programming skills, but he worries about the absurd claims made by some of Logo's admirers. "As a result of such claims," he wrote, "disillusioned educators, having followed the 'Logo route,' may cause an anticomputer backlash, destroying all advances made in the area of introducing computer literacy in the education field."

People Inside The Machine

A few years ago, I wrote a book introducing computers to children. I interviewed dozens of computer pioneers, including J. Presper Eckert, who along with John W. Mauchley invented the ENIAC, the granddaddy of today's electronic digital computers.

I wanted to call the book The People Inside the Machine because I concentrated on the inventors and the excitement and joy they had received from working on computers. The book showed youngsters how real people with hopes, dreams, and frailties had built computers, step by step, over many, many years. By showing the people inside the ma-
chine, I hoped to encourage young readers to see a reflection of themselves inside machines of the future. The book's message was that inventions like the computer may require a dash of genius, but even more important are hard work, a playful imagination, devotion, and stubborn, mulelike persistence in following through with your own ideas and magnificent obsessions.

As it turned out, the book was retitled Messner's Introduction to the Computer (Simon \& Schuster, 1983), but it's still oriented to young people. If you're a grownup who wants to read about the people inside the machine, I recommend Tom Mahon's new book, Charged Bodies: People, Power, and Politics in Silicon Valley (NAL, paperback, 1985). Mahon's account is one of the most honest, eloquent, and fascinating books I've read in a long time. You learn about computer technology-the semiconductors, microchips, operating systems, and Winchester disks-but Mahon weaves the technology into the lives of the industry's famous and obscure pioneers, and has made what could have been a dry history of computers into a very interesting story.

Mahon doesn't pull any punches, either. He devotes equal attention to the dark side of computers as well as the light side. And he does it all in a vivid style reminiscent of Tracy Kidder's Pulitzer Prizewinning Soul of a New Machine (Little, Brown, 1981).

This book is an excellent primer on computer technology and the computer industry, and it will make a good computer literacy text for high school and college introductory courses on computers.

Fred D'Ignazio loves to get electronic mail. Here are his electronic mailboxes: The Source (BCA638); CompuServe (75166,267); MCI Mail (Fred D'Ignazio); and EasyLink (62856637).

Inside XMODEM

Last month we covered the basics of uploading and downloading and how the XMODEM protocol developed into a system for reliably transferring files over phone lines. Now let's take a look inside XMODEM to see how it works.

XMODEM requires certain communications settings (eight data bits, no parity, one stop bit). Some terminal programs set these parameters automatically during XMODEM transfers. Others require you to set them manually.

XMODEM transfers files by sending and receiving them in blocks. Each block consists of five elements: a special character that marks the beginning of the block (called a start of header character); a number which identifies the sequence number of the block (incremented by one for each block sent); a number which insures the block number is correct; a 128 -byte chunk of the file being transferred (the file is chopped up on the sending end and reassembled on the receiving end); and a number to verify that the 128 -byte chunk of data received is the same as was sent. This number is called a checksum. It is the sum of the hexadecimal values of all 128 characters.

Downloading

After notifying the remote system that you want to download a certain file with XMODEM, the other system prepares the file for transmission and then waits for your signal that things are ready to begin. When you instruct your terminal program to begin the transfer, it sends an acknowledgment signal consisting of a single character called an $A C K$. The first ACK means "ready for next block."

The remote system then sends a block to your computer. Your terminal software looks for the start of header character, then checks the block number for both validity and proper sequence. Next it examines
the 128 bytes of data and calculates a checksum. It compares this to the checksum actually sent by the remote system; if both are the same, it assumes the data was transmitted without errors.

As each block is successfully received, another ACK is sent. If an error is detected or the next block is not transmitted after a certain amount of time, your terminal program sends a character referred to as a NAK (negative acknowledgment). A NAK means, "I think we had a problem with the last block; please resend it." The transfer is aborted if a single block must be resent more than an agreed-upon number of times (usually ten). When the transfer is complete, the remote system sends a signal called EOT (end of transmission).

Nonstandard Protocols

Although the original standards for XMODEM file transfers are well established, not all terminal programs that advertise XMODEM capability actually conform to the standard. Here is an example of what can happen (the names have been changed to protect the innocent):

The Bitblaster computer has been available for about a year. Some kindly soul, intent upon putting far-flung Bitblaster owners in touch with each other, writes a bulletin board program for the new machine. Since he wants to encourage people to share programs for the Bitblaster, he includes an XMODEM feature. His friend writes a public domain terminal program with XMODEM capability and starts passing it around.

What they don't know is that their implementation of XMODEM was not strictly by the book. But since the terminal program and BBS work fine together, no one notices. The number of Bitblaster BBS systems rapidly multiplies, and there are thousands of copies of the free terminal program in use.

However, when Bitblaster owners start using the terminal program on other systems, they discovermuch to their chagrin-that the good ol' XMODEM feature doesn't work too well on non-Bitblaster BBSs. When something like this happens, it can take years for everyone to agree on a common fix for the problem. Even commercial telecomputing packages are written by normal people, perfectly capable of making such mistakes.

Other Problems

Commercial information services are not well suited to XMODEM transfers. The protocol was developed for microcomputer-based BBSs which handle only one user at a time and can therefore devote all of their attention to the transfer. On a commercial service, hundreds of users may be logged on simultaneously, and the mainframe computer gives each user only a certain amount of attention for a certain time period.

The only way to make XMODEM work on the information services was to relax the timing standards. However, this severely limits the ability to recover from bad blocks and out-of-sync acknowledgment signals.

Although errors are relatively rare, many terminal programs and information services offer their own transfer methods in addition to (or instead of XMODEM. There's only one hitch-often this means both computers involved in the transfer must be running the same terminal program, or in the case of information services, a terminal program written and sold by the service for your particular system.

Next month, as promised earlier, I'll show you how to save money when sending E-mail by composing your messages offline and then uploading them to the host computer. Until then, BCNU.

Escaping On A LaserJet

This Hewlett-Packard LaserJet printer is shown hooked up to an HP 150 computer, but it also works with the IBM PC and compatibles.

I got a letter last month from my friend who has a covey of computers in his spare bedroom. Five at last count! We've had a friendly rivalry going for years. I bought a pocket calculator, and he bought an Apple III. I got an IBM PC first, but he got a bigger one-the XT. I bought a PCjr, so he got a PCjr and, a few months later, the PC AT. Now he sends me this letter: "This is the first letter ever written with my Apple Imagewriter and Macintosh computer...it sure is fun to play with the font sizes and styles and formats....'

The font he was experimenting with looked like a cross between stencil letters and something a monk in the Middle Ages might have laboriously drawn with a quill-right justified, of course. Having run out of IBM equipment to one-up me with, he has switched to Apple. The letter isn't easy to read, but it is flashy. I thought about going to the Apple store and trying out a Macintosh long enough to answer his letter, but I needed something better than that-something better than IBM or Apple.

A Printer Or Copier?

It was about this time that HewlettPackard called to say they had a LaserJet printer for me to evaluate. Although it arrived at the airport, the LaserJet looked more like an office copying machine than an airplane. And for good reason-that's mostly what it is. The data from the computer is etched on a drum by a
laser, and then transferred-one page at a time, eight pages per min-ute-from the drum to the paper. There's a tray for blank paper, a cartridge for toner, and a manual to show you how to fix a paper jam. Anyone who has used a copying machine will feel right at home with the LaserJet.

Connection was easy. I unplugged my Hayes modem and plugged the LaserJet cable into the modem cable. Typing two DOS commands told the PC to forget my parallel printer and talk instead to the LaserJet, which is a serial printer.

Using the LaserJet takes a little getting used to. You send something to the printer and nothing hap-pens-at least, it doesn't look or sound like anything is happening. There's virtually no noise except for a quiet fan. And nothing immediately pops out. The printer etches the text on the drum and then waits for the page to fill up before transferring the data to paper. If you want to print a partial page, you press the form feed button. Once you've mastered the idea that printing and noise are not related, the Laserjet operates much like any other printer. (In fact, it's so much fun that I lasered a whole ream of paper playing with it.)

The print quality is superb. Although the characters are formed with tiny dots, like a dot-matrix printer, the 300×300 dots-per-inch resolution is so fine that you need a magnifying glass to prove how it was done. The quality of the print is
A sample printout made with the LaserJet.

Hi David --

I got your letter and was surprised to hear that you bought a Macintosh. The Imagewriter does a fancy job of printing even if it is a little difficult to read. ${ }^{1}$

1. Personally, I've found this 8 -point type very useful for footnotes. Does the Imagewriter support anything like this?
better than that of my NEC 3550 printer, which has fully formed characters and uses a film ribbon. But in a duel of one-upmanship, quality isn't enough. You've got to have sizzle. The Hewlett-Packard Laserjet has plenty of sizzle.

Custom Printing

Different type styles (fonts) are available by plugging a Read Only Memory (ROM) cartridge into the front of the printer. Each cartridgeabout the same size and shape as the old eight-track audio tapes-can store up to 16 fonts, although the one I used had only eight. To select a font, you simply send a special character sequence (called an escape sequence) to the printer.

The LaserJet is more powerful than most printers, so the escape sequences are somewhat longer and more complicated. For example, to enable bold printing, the sequence on my NEC 3550 is escE (where esc represents the escape character, ASCII 27). On the LaserJet, the equivalent command is esc\&10Oesc(OUesc (s1p10v0s1b5T.

The LaserJet is a relative bargain at $\$ 3,495$, considering its power and new technology, but only if you can easily take advantage of all its features without having to resort to these huge escape sequences. Fortunately, some programs are appearing which relieve you of this burden. The Volkswriter Deluxe, Version 2.1 word processor has a printer driver especially designed for the Hewlett-Packard LaserJet printer that does a splendid job.

The accompanying figure shows part of the letter I sent to my friend to demonstrate some of the nice things the Laserjet with Volkswriter Deluxe can do. I didn't mention to him that the printer had to be returned to Hewlett-Packard at the end of the month. Since I haven't yet received a reply, I expect he's measuring his spare bedroom for a mainframe.

Analyzing The BASIC Bug

Last month I showed some ways to minimize the problems caused by the bugs in revision B Atari BASIC (the built-in BASIC in the 600XL and 800 XL). But many of you are curious about exactly why these bugs happen, and what effect they can have on your programs.

Let me begin by telling what did not cause the error. Rev B BASIC has a peculiar problem: Each time you LOAD (or CLOAD or RUN "filename") a program, rev B adds 16 bytes to the size of your program. If you then save the program, the next time you load it in it grows by another 16 bytes, and so on.

Now believe it or else, these additional 16 bytes were put in deliberately. It seems that there is a minor, undocumented bug in the Atari S: (graphics screen) driver. Under some circumstances, it will use a few bytes below MEMHI (contents of locations \$2E5-\$2E6, 741-742 decimal). So, if you have a program which extends right to the very top of memory, you can wipe out a little bit of the runtime stack where GOSUBs and FORs are remembered. Somebody at the old Atari apparently had the bright idea that if BASIC told you that memory was full when your program got within 16 bytes of MEMHI, the screen/BASIC conflict could be avoided.

A Fix Gone Sour

Pretty good idea. Except for a few problems. First, BASIC doesn't save the string/array space of the runtime stack; both are created when a program is run. So the nice fact that the saved file is guaranteed to have 16 bytes of space left is negated as soon as you DIMension a string or an array or use a GOSUB or FOR. Second, the 16 bytes are added to all of BASIC's size pointers before the comparison with MEMHI is made. Good. But the newly increased value is then stored as the new pointer value. That effectively moves the
program upward in memory by 16 bytes, meaning that the desired 16 bytes of free space aren't there anyway!

Well, the point of this digression is twofold: (1) This is yet another reason to use LIST and ENTER with rev B BASIC, since ENTERing a program does not trigger this silly 16-byte bug. (2) Several people wrote and suggested that this 16byte bug is what causes the infamous keyboard lockup bug. Sorry, folks.

Last month, I mentioned the detailed explanation of the rev A Atari BASIC lockup bug which is to be found in COMPUTE!'s Atari BASIC Source Book. Well, apparently somebody at Atari read the book. Or maybe they just noticed that my company had fixed the lockup bug in one of the three or four revised versions of BASIC that we did for Atari back in 1979 (yes, that's 1979). It turns out that the lockup resulted from two missing instructions (and a total of two bytes) within the routine which "contracts" memory. (We say "contracts" because it is used when you delete a program line, so the program is contracted in size.)

Then that same somebody looked at the "expand" routine and saw almost identical code. "Aha!" they say, "Methinks there is a bug here which just hasn't been discovered yet!'

If It Ain't Broken . . .

But they were wrong. The reason the bug appeared in the contract routine is because that routine was written after the expand routine and copied its pattern too closely. So our unknown someone at Atari blindly added code to the healthy expand routine and introduced a very nasty new bug. In fact, because this bug appears when you add lines to an existing program, it is probably more likely to occur than the original rev A bug!

To see a demonstration of the bug, enter the following statements in direct mode (without line numbers):

DIM A\$(249)
A $\$=$ "ANY STRING YOU LIKE"
PRINT AS
PRINT AS,
PRINT A§,
The last two statements won't print $\mathrm{A} \$$ properly in either rev A or rev B Atari BASIC-in fact, they'll mess it up two different ways. Cute, eh? The problem is that tacking that comma on the end of the PRINT statement moves the string/array space (and thus A\$) by one byte. Except it doesn't, really, so the variable value table address of A\$ points to the wrong place in memory! Imagine your program being destroyed in a similar way. Is it any wonder you experience keyboard lockup and scrambled listings?

What former Atari employee did I bribe to get all this information about the bugs in rev B BASIC? Did I get the listing on a microdot hidden in a pack of blank disks? Sorry to disappoint you, but I did what any other hacker would do: I dragged out my trusty machine language debugger and carefully disassembled certain portions of rev B BASIC.

Finally, here's how the two bugs we have discussed were fixed in rev C BASIC, which is built into the new XE series computers (and also is available for older Ataris on cartridge at nominal cost-see last month's column). Since both bugs were caused by adding things to code which worked before, you would think that Atari could simply take the "fixes" back out. Nope. Instead, they patched over the extraneous instructions with what are effectively NOP (NO oPeration) instructions. Tacky? Well, I've certainly done it to DOS here in this column enough times, so who am J to say?

Multiple Choice Test

I've seen a number of computer programs written for multiple choice tests. The computer is an ideal way to administer such tests because it can mix up the test questions so each run is different. However, all the programs I have seen always print the choices in the same order. This month's program is a generalpurpose multiple choice tester that randomly arranges both the questions (without repetition) and the possible answers.

This program can be used for questions on any topic. Computer literacy questions are included here for an example.

The questions and answers are in DATA statements. Each DATA statement contains six items. The first item is the question; the next four are the possible answers; and the last item is the number of the correct answer. The final DATA statement signals the end of the question list:

1350 DATA ZZZ,Z,Z,Z,Z,0

You may use any number of possible questions that will fit in the computer's memory. Line 190 is a DIMension statement that allows for 30 possible questions. To increase the number of questions, change all the 30s in line 190.

Reading The Data

Line 160 defines the number of questions in the test, and line 300 performs the procedure for the specified number of questions. If you want to alter this number, change the 20 in these two lines plus the printed score in line 690. Also make sure you have as many or more questions and answers in the DATA statements as you want in the test.

The variable I is used as a counter for the questions. Questions read from the DATA statements are
stored in the string variable $\mathrm{T} \$$, the four possible answers are stored in $\mathrm{A} \$$, and the number of the correct answer is stored in B. These values are in arrays to keep the answers with the corresponding questions.

As the information is being read in, $S \$(\mathrm{I})$ is set equal to A for use as a signal so questions won't be repeated during the quiz. When a question X is printed, $S \$(X)$ is set equal to "'" (null). Line 320 chooses a random number X, but if $S \$(X)$ is null, the question has previously been used and a different X must be chosen. Line 350 prints the question.

Lines $370-390$ define $C(J)$ for the four answers to mix up the order in which the answers are printed. Line 400 randomly chooses D for the correct answer. The C variable for the correct answer is set to zero so it cannot be used in another position. Lines $430-490$ mix up the order of the answers, making sure the correct answer is in the right position and each answer is used only once. Lines 500-530 print the four answers with the possible choices A, B, C, and D.

Lines $540-580$ receive the student's answer, making sure it is a letter from A to D, and then print the choice. Line 590 checks to see if the key pressed is the correct choice. Line 600 prints the message for an incorrect answer, then prints the correct answer. Line 620 prints CORRECT for a correct answer, and line 630 increments the score, SC. Lines 640-670 wait for the student to press ENTER before going to the next question.

Lines 680-700 clear the screen, then print the score.

To customize the test, simply change the questions and answers in the DATA statements, making sure you have enough questions for a complete quiz and that the last

DATA statement contains ZZZ to signal the end. You might also prefer a fancier title screen.

Here is an example of changing the DATA statements. Suppose your question is "In which year did Columbus discover America?" with the possible answers 1256, 1492, 1776, and 1812. The correct answer is in the second position. The DATA statement would look like this:

720 DATA IN WHICH YEAR DID COLUMBUS DISCOVER AMERICA? 730 DATA $1256,1492,1776,1812,2$

If you want to save typing effort, you can obtain a copy of this program by sending a cassette or disk, a stamped, self-addressed mailer, and $\$ 3$ to:

> C. Regena
> P.O. Box 1502
> Cedar City, UT 84720

Please be sure to specify the name of the program and that you need the TI version.

Multiple Choice Test

$1 \emptyset \emptyset$ REM MULTIPLE CHOICE TE ST\{5 SPACES\}
$11 \varnothing$ CALL CLEAR
 **********"
$13 \varnothing$ PRINT "* MULTIPLE CHOI CETEST *"
 **********"
$15 \emptyset$ PRINT : : : : :
$16 \varnothing$ PRINT "TEST OF $2 \varnothing$ QUEST IONS"
$17 \emptyset$ PRINT :: "PRESS LETTER 0 F CORRECT"
$18 \varnothing$ PRINT : "ANSWER FOR EACH QUESTION."
$19 \varnothing$ DIM T $\$(30), A \$(30,4), B(3$ ø) $\mathrm{S} \$(30), A A \(4)
$2 ø \varnothing$ I=1
210 READ T\$(I), A\$(I, 1), A\$(I , 2) , $A \$(I, 3), A \$(I, 4), B(I$)
$22 \varnothing$ IF T\$(I) ="ZZZ" THEN $26 \varnothing$
230 S\$(I)="A"
$240 \quad \mathrm{I}=\mathrm{I}+1$
25 вото 210
$260 \mathrm{I}=\mathrm{I}-1$
27 © PRINT :: "PRESS 〈ENTER〉 tO START."
$28 \varnothing \operatorname{CALL} \operatorname{KEY}(\varnothing, K, S)$
290 IF $K<>13$ THEN 280
3øø FOR $P=1$ TO $2 \varnothing$
31 （ RANDOMIZE
$320 \mathrm{X}=\mathrm{INT}(\mathrm{I} *$ RND $)+1$
330 IF $5 \$(x)=" "$ THEN 320
349 CALL CLEAR
35ø PRINT T\＄（x）：：
36ø 5 $\$(x)=" "$
370 FOR J＝1 TO 4
$38 \emptyset C(J)=1$
39の NEXT J
4のø $D=I N T(4 * R N D)+1$
$41 \varnothing A A \$(D)=A \$(x, B(x))$
42ø C（B（X））＝ø
430 FOR J＝1 TO 4
$44 \varnothing$ IF $J=D$ THEN $49 \varnothing$
$45 \varnothing E=I N T(4$ ：RND $)+1$
46 IF C $(E)=\varnothing$ THEN $45 \varnothing$
$47 \varnothing$ AA $\$(J)=A \(X, E)
48ø C（E）$=\varnothing$
490 NEXT J
5øø FOR J＝1 TO 4
51 （ PRINT CHR $\$(64+J) ; " \cdot " ; A$ A $\$(J)$
520 NEXT J
530 PRINT ：：
$54 \varnothing$ CALL SOUND（1ø日，1497，2）
$55 \varnothing$ CALL $\operatorname{KEY}(\varnothing, K, S)$
560 IF $(K<65)+(K>68)$ THEN 55 ø
$57 \varnothing$ CALL $\operatorname{HCHAR}(23,3, K)$
$58 \varnothing$ PRINT
59 IF $\mathrm{K}=64+\mathrm{D}$ THEN $62 \varnothing$
6øø PRINT＂NO，THE ANSWER I S＂；CHR\＄（64＋D）；＂．＂
$61 \varnothing$ GOTO 64ø
629 PRINT＂CORRECT＂
$630 \mathrm{SC}=\mathrm{SC}+1$
$64 \varnothing$ PRINT ：＂PRESS＜ENTER＞．＂
$65 \varnothing \operatorname{CALL} \operatorname{KEY}(\varnothing, K, S)$
660 IF K＜＞13 THEN 650
670 NEXT P
$68 \emptyset$ CALL CLEAR
$69 \varnothing$ PRINT＂OUT OF $2 \varnothing$ QUESTI ONS，＂
7ヵD PRINT＂YOUR SCORE IS＂； SC：：：：
710 GOTO 1360
72 DATA ONE OF THE MAJOR A TTRACTIONSOF A COMPUTER IS THAT IT
730 DATA HAS ACTIVE INVOLVE MENT．，IS EXPENSIVE．，IS A STATUS SYMBOL．
749 DATA ALLOWS UNINVOLVEME NT．， 1
$75 \varnothing$ DATA A VIDEO GAME IS BE ST\｛B SPACES\}DESCRIBED A S $A(N)$
76 D DATA EXPENSIVE TOY．，SPE CIAL PURPOSE COMPUTER．， home computer．，EDUCATIO NAL TOY．， 2
$77 \varnothing$ DATA THE COMPUTER OWES ITS\｛7 SPACES\}FLEXIBILIT Y TO THE FACT THATIT IS
$78 \emptyset$ DATA SMALL．，COMPLICATED \therefore ，PROGRAMMABLE．，AN ELEC TRONIC DEVICE．， 3
$79 \varnothing$ DATA＂BECAUSE A COMPUTE R IS\｛7 SPACES\}PROGRAMMA BLE，＂
$8 \varnothing \varnothing$ DATA IT CAN BE USED TO PERFORM\｛3 SPACES\}ONLY A LIMITED NUMBER OF \｛4 SPACES\}FUNCTIONS.
$81 \emptyset$ DATA IT CANNOT BE USED FORG7 SPACES\}EDUCATIONA L PURPOSES．
$82 \varnothing$ DATA IT CANNOT BE USED FOR\｛7 SPACES\}ENTERTAINM ENT．

830 DATA IT CAN BECOME A GE NERAL\｛5 SPACES\}PURPOSE TOOL．， 4
$84 \emptyset$ DATA THE MAIN ADVANTAGE OF A\｛S SFACES\}COMPUTER AS OPFOSED TO
\｛6 SPACES\}OTHER CALCULA TING DEVICES\｛3 SPACES\}I S ITS
B5ø DATA COST．，SIZE．，PORTAB ILITY．，PROGRAMMABLE NAT URE．， 4
$86 \varnothing$ DATA BOOKS AND MANUALS THAT \｛6 SPACES\}ACCOMPANY A COMPUTER－RELATEDPROD UCT ARE
87ø DATA SOFTWARE．，DOCUMENT ATION．，DATA．，COMPU－FORM S．， 2
88ø DATA VISICALC IS BEST D ESCRIBED AS A（N）
$89 \varnothing$ DATA TUTORIAL PROGRAM．， ELECTRONIC SPREADSHEET．
9øø DATA EDUCATIONAL PROGRA M．，ENTERTAINMENT PROGRA M．， 2
910 DATA ALL OF THE FOLLOWI NG ARE\｛4 SPACES\}PROGRAM MING LANGUAGES EXCEPT
920 DATA BASIC．，PASCAL．，VIS ICALC．，LOGO．， 3
$93 \emptyset$ DATA ONE OF THE MAJOR P ROBLEMS INACQUIRING COM PUTER LITERACY IS
940 DATA PEOPLE NEED TO BE SKILLED\｛3 SPACES\}IN MAT hematics to use \｛7 SPACES\}COMPUTERS.
950 DATA THE COMPUTER IS A VERY\｛6 SPACES\}COMPLICAT ED MACHINE．
960 DATA THE FIELD HAS ITS OWNC7 SPACES\}LEXICON OR LANGUAGE．
970 DATA PEOPLE NEED A BACK GROUND\｛4 SPACES\}IN LOGI C AND STATISTICS．， 3
$98 \emptyset$ DATA THE PARTS OF A COM PUTER ARE ARRANGED IN S UCH A WAY AS TOFORM ACN ，

990 DATA SYSTEM．，MACHINE．，S UBSYSTEM．，ORGANIZATION． ， 1
$1 ø \varnothing \varnothing$ DATA THE PROCESSING OF DATA IN A COMPUTER SY STEM RESULTS IN THE G ENERATION OF
$1 \varnothing 1 \varnothing$ DATA A PROGRAM．，READOU TS．，INFORMATION．，STATI STICS．， 3
$1 \varnothing 2 \varnothing$ DATA＂BASICALLY，A COM PUTER IS\｛4 SPACES\}INTE NDED TO PRODUCE＂
$193 \emptyset$ DATA INFORMATION．，DATA ．，STATISTICS．，PROGRAMS ．， 1
1040 DATA THE BASIC FUNCTIO N OF ACS SPACESTCOMPUT ER IS TO TRANSFORM
$1 \varnothing 5 \emptyset$ DATA PROGRAMS INTO DAT A．
$1 \varnothing 6 \varnothing$ DATA DATA INTO PROGRAM s．
1 197 DATA INFORMATION INTO DATA．
$1 \varnothing 8 \emptyset$ DATA DATA INTO INFORMA TION．， 4
$109 \varnothing$ DATA＂BY USING A－－－－－ －，ONE MAY CONNECT A COMPUTER TO THE
（3 SPACES）TELEPHONE TO PERMIT COMPUTERCONFER ENCING．
$110 \varnothing$ DATA ADAPTER，CONNECTOR ，CONFERENCE LINK，MODEM ， 4
1110 DATA INTANGIBILITY IS A MAJOR\｛4 SPACES\}CHARA CTERISTIC OF
112 D DATA SOFTWARE．，THE COM PUTER．，HARDWARE．，MAGNE TIC DISKS．， 1
$113 \emptyset$ DATA THE USE TO WHICH A COMPUTER IS PUT IS C ALLED $A(N)$
1140 DATA PROGRAM．，ROUTINE． ，APPLICATION．，FUNCTION ．， 3
1150 DATA INSIDE THE COMPUT ER\｛9 SPACES\}INFORMATIO N IS REPRESENTED BY
1160 DATA PUNCHED CARDS．，EL ECTRONIC SIGNALS．，MAGN ETIC TAPE．，MAGNETIC DI SKS．， 2
$117 \varnothing$ DATA THE ON／OFF PATTER N THAT IS USED IN THE COMPUTER IS THE BASIS OF THE
$118 \varnothing$ DATA CIRCUIT CODE．，BIN ARY CODE．，BINOMIAL COD E．，BIDECIMAL CODE．， 2
1190 DATA＂WITH TELECOMMUTI NG，$\{9$ SPACES $\}$ INFORMATI ON IS MOST COMMONLYTRA NSMITTED BETWEEN \｛9 SPACES\} TERMINALS"
$12 ø \varnothing$ DATA BY RADIO．，OVER TE LEPHONE WIRES．
$121 \emptyset$ DATA VIA SATELLITE．，BY TELEVISION．， 2
1220 DATA A COMPUTER PROGRA M IS AN\｛4 SPACES\}EXAMP LE OF
$123 \varnothing$ DATA HARDWARE．，SOFTWAR E．，FIRMWARE．，FLEXWARE． ， 2
1240 DATA THE FIRST ELECTRO NIC（B SPACES\}COMPUTER WAS
$125 \emptyset$ DATA ENIAC．，ENID．，IBM MARK I．，IBM CYBERNAUGH T．， 1
126 D DATA THE COMPUTER IS I NSTRUCTED OR TOLD WHA T TO DO BY
$127 \varnothing$ DATA HARDWARE．，FIRMWAR E．，SOFTWARE．，SMARTWARE ．， 3
$128 \varnothing$ DATA THE MOST SIGNIFIC ANT FACTOR IN PURCHASI NG A COMPUTER IS
$129 \varnothing$ DATA RELATIVE COST．，AV AILABLE SOFTWARE．，AVAI LABLE HARDWARE．，AVAILA BLE FIRMWARE．， 2
$130 \varnothing$ DATA WHICH IS THE MOST COMMON\｛4 SPACES\}TYPE
OF SECONDARY STORAGE
\｛3 SPACES\}CURRENTLY US ED IN PERSONAL COMPUT ERS？
1310 DATA FLOPPY DISKS，BUBB LE MEMORY，ELECTRIC CON DUCTORS，TUNNEL JUNCTIO N MEMORY， 1
$132 \emptyset$ DATA RAM IS USED ÀS A MEASURE OF
1330 DATA PRIMARY STORAGE C APACITY．，PROCESSING PO WER．
1340 DATA PROCESSING SPEED． ，WORD LENGTH．， 1
$135 \emptyset$ DATA zzz，z，z，z，z，ø ©
$136 \varnothing$ END

Housepainter Inverted Video On The Commodore 64

Jim Butterfield, Associate Editor

Abstract

By fooling the eye with reverse characters, you can make a single-colored object appear to pass over a multicolored background-without sprites or machine language. The technique can also be adapted to the VIC-20, Plus/4, and 16.

If you've ever played around with video effects on the Commodore 64, you know that ordinary video involves one background color and a choice of printing colors. In other words, you can print green, red, and yellow on a white background, but you can't go the other way and print, say, white on a multicolored background. However, you can use an easy trick to get the same effect.

Here's the objective: Assume you want to move an object over a multicolored background. Maybe it's a small black bug flying over terrain which is green (grass), blue (water), and white (ice). You don't want the bug to change color as it passes these areas; it must stay black. Yet the 64 seems to be set up to work the opposite way. The foreground color may change from one character cell to another, but the background must be one solid color across the whole screen.

There are many special features you could use to get around this problem, of course. Extended color mode allows you a choice of backgrounds; it's attractive for many uses and too little used by most programmers. Sprites may be placed anywhere on the screen over existing character patterns, giving a color-over-color effect. You could even use a split-screen technique to create multiple backgrounds.

But you can also achieve the
effect without resorting to special features. To invert the screen effects, we must invert our thinking.

Holes In The Sky

When I was a small child, I used to think that stars were tiny holes in a black curtain that covered the night sky. In other words, they were points of light shining through. I couldn't tell the difference between a white light source set against a black background and a white background shining through gaps in a black foreground.

That's the technique we'll use here. Since the 64 has one background color and a choice of many foreground colors, let's flip them over to create one "foreground" color against a mixture of many "background" colors. We'll have to work in reverse characters to switch background and foreground, but that's no hardship.

Let's try a simple example program which moves a white letter A over a multicolored background:

```
1\varnothing\varnothing PRINT CHR$(144);CHR$(147)
110 POKE 53281,1
```

This clears the screen (147) and sets the colors-background to white (53281) and cursor to black (144).

```
12\emptyset FOR J=\emptyset TO 39
130 POKE 1ø24+J,160
140 POKE 55296+J,RND(1)*14+2
150 NEXT J
```

This POKEs reverse spaces (160) into the top line of screen memory, and puts random colors into color memory beginning at 55296. Note that we need reverse space characters. Ordinary spaces would show the background color only, but the reversed ones show the random foreground colors. These colors will
seem to be background, because they won't change.

```
160 FOR J=\emptyset TO 38
17ø POKE 1ø24+J,160
180 POKE 1ø25+J,129
190 FOR K=1 TO 1øø
2ø\varnothing NEXT K,J
```

These final lines move the white letter A from left to right across the top of the screen. The screen code for A is a value of 1 , but the program adds 128 to get a value of 129 for a reverse A. As the A moves to its new position, it is erased from its old spot by POKEing a reverse space there (160).

An Optical Illusion

We know the program moves a reverse A along the top line of the screen. And we know that each character is a different, random, color as we print it. But when we enter RUN and watch the program work, we see a white A moving across the top. Why? Because we're really seeing the white background color "peeking through" the reversed foreground. The optical illusion is complete: A single foreground color seems to be moving across a multicolored background.

Let's use this principle in a short program called "Housepainter." It's part game, part puzzle, and part coordination exercise. You have five minutes to paint the house, using the four special function keys to move the brush. You are not allowed to paint over any area twice, so be careful and plan your work. By the way, it is possible to succeed, although you may have a lot of trouble at first.

The program is entirely in BASIC, which accounts for the delay

We wrote the book on the..

ATARIASS

First there was the fabulously successful VIC-20. Then came the record-breaking Commodore-64.
Now Jack Tramiel has launched his third home computer, the ATARI ST.
The ST promises to shatter all existing price-performance barriers and become a leader in the home-computer market.
This book, PRESENTING THE ATARI ST gives you an indepth look at this sensational new computer that promises to bring you... "Power without the Price." Some of the topics include: - History of Atari - Overview of the ST - Construction, Operating System - Peripherals • Languages - User Programs, and more.
Price \&16.95

A DATA BECKER BOOK PUBLISHED BY
Abacus罡梱 Software

Available June 1st Gall for the name of your nearest dealer

Abacus ${ }^{\text {mintw}}$ Woftware

as it sets up the screen. The house is drawn with several rectangles defined in DATA statements. Note that the characters showing the time in the upper left of the screen seem normal, but are really in reverse video. The white is the background color peeking through. Similarly, the white paint itself and the circular brush are really background colors. That's how the white brush can move inside a red shed and across a yellow house: It's inverted video.

Housepainter

Please refer to "COMPUTEI's Guide to Typing in Programs" before entering this listing.
$1 \varnothing \emptyset$ PRINT "\{CLR\}\{DOWN\}HOUSEPAI NTER\{2 SPACES $\}-\{2$ SPACES $\}$ IM BUTTERFIELD" :rem 228
$11 \varnothing$ PRINT "\{3 SPACES\}TRY TO PA INT THE HOUSE USING THE
:rem 43
$12 \emptyset$ PRINT "FUNCTION KEYS TO MO VE THE BRUSH.
:rem 81
$13 \emptyset$ PRINT " $\{3$ SPACES $\} Y O U ' R E$ NO T ALLOWED TO PAINT OVER
: rem 82
140 PRINT "AN AREA ... SO DON' T PAINT YOURSELF : rem $1 \varnothing 5$ 150 PRINT "INTO A CORNER.
:rem 183

160 PRINT "\{3 SPACES\}YOU HAVE \{SPACE\}FIVE MINUTES. $\{2$ SPACES $\}$ LEAVE THE: rem $5 \emptyset$
$17 \emptyset$ PRINT "PAINT BRUSH IN THE \{SPACE\}RED SHED WHEN : rem 24ø
$18 \emptyset$ PRINT "YOU'RE FINISHED. \{2 SPACES \}PRESS ANY KEY TO GO. :rem 64
190 FOR J=1 TO 1E4:GET X\$:IF X $\$="$ " THEN NEXT J : rem 154
$2 \emptyset \emptyset$ DATA 3, Ø, 24, Ø, 39 :rem 193 $21 \varnothing$ DATA $7,10,2 \varnothing, 10,3 \varnothing$:rem 27 220 DATA $7,8,9,15,18$:rem 213 230 DATA $3,15,17,13,15$:rem 42 240 DATA $3,16,18,25,27$:rem 51 250 DATA $3,17,20,19,21$:rem 43 260 DATA 2,18,2ø,31,33 :rem 41
270 DATA -1 :rem 17
$3 \emptyset \emptyset$ PRINT CHRS(159); CHRS (147); "WAIT"; CHR\$ (142) ; CHR\$ (8) : P OKE 53281,1
:rem 160
$31 \varnothing \mathrm{C} \varnothing=55296: \mathrm{S} \emptyset=1 \emptyset 24$:rem 16
$32 \emptyset$ REM :rem 121
$33 \varnothing$ READ C:IF C<Ø GOTO 4øØ
:rem 58
340 READ V1,V2,H1,H2 :rem 57
$35 \emptyset$ FOR J=V1*4Ø TO V2*4ø STEP \{SPACE\} $4 \varnothing \quad$:rem 116
360 FOR $\mathrm{X}=\mathrm{C} \emptyset+\mathrm{J}+\mathrm{H} 1$ TO $\mathrm{C} \varnothing+\mathrm{J}+\mathrm{H} 2$
:rem 209
$37 \emptyset$ POKE X,C
:rem 144
$38 \emptyset$ NEXT X,J
:rem 168
$39 \varnothing$ GOTO $33 \varnothing$:rem $1 \varnothing 7$
4øø FOR J=SØ+4 TO S $\quad+999$:POKE \{SPACE\} J, 160:NEXT J: rem 25 $41 \varnothing$ FOR J=CØ TO C $\varnothing+999$:rem 98 420 IF (PEEK (J)AND15) $=7$ THEN N $=\mathrm{N}+1$
:rem 71

430 NEXT J :rem 32
440 TIS="øøøøøø" :rem 250
$450 \mathrm{~V}=19: \mathrm{H}=32$: rem 186
$46 \emptyset$ POKE V 4 * $4 \varnothing+H \varnothing+S \emptyset, 16 \emptyset$
:rem 241
$47 \varnothing$ POKE V* $4 \emptyset+\mathrm{H}+\mathrm{S} \emptyset, 2 \varnothing 9$: rem $15 \emptyset$
$48 \emptyset \mathrm{~V} \varnothing=\mathrm{V}: \mathrm{H} \varnothing=\mathrm{H}$:rem 236
$49 \varnothing$ PRINT CHR\$(19);CHR\$(18);TI \$
:rem 216
5øø IF TI\$>"øøø499" GOTO 68ø
:rem 116
$510 \mathrm{~K}=\operatorname{PEEK}(203) \quad$:rem 41
$52 \emptyset$ GET K\$:Kl=ASC (K\$+CHR\$($\varnothing))$
:rem 29
530 IF Kl=133 THEN VI=-1
:rem 2øø
540 IF Kl=134 THEN Hl=-1
:rem 188
550 IF $\mathrm{Kl}=135$ THEN $\mathrm{Hl}=1$
rem 145
560 IF $\mathrm{Kl}=136$ THEN Vl=1
:rem 161
$57 \emptyset$ IF K<64 GOTO 590 : rem 243
$580 \mathrm{Vl}=\varnothing: \mathrm{Hl}=\varnothing \quad$: rem 177
$590 \mathrm{~V}=\mathrm{V} \varnothing+\mathrm{Vl}: \mathrm{H}=\mathrm{H} \varnothing+\mathrm{Hl}$: rem 68
6øø $\mathrm{P}=\mathrm{C} \emptyset+\mathrm{V} * 4 \emptyset+\mathrm{H}: \mathrm{IF} \mathrm{P}=\mathrm{P} 9$ GOTO 4 9ø
rem 205
61σ C=PEEK (P) AND15 :rem 22
62 IF $C<>7$ AND $C<>2$ GOTO $49 \emptyset$
:rem 179
630 IF C9=7 THEN POKE P9,1:N=N -1 :rem $2 \emptyset 5$ 640 P9=P:C9=C :rem 230 65 IF C<>2 OR N>ø GOTO $46 \emptyset$: rem 73
660 PRINT " WINNER! " : rem 97
670 END :rem 116
680 PRINT " YOU MISSED"; STRS(N);" SQUARES" :rem 203 ©

If you've ever been stuck in an adventure game, you need The Book of Adventure Games by Kim Schuette. This fantastic book contains complete legible (typeset) maps, magnificent illustrations, and all the hints you need to complete 77 of the all-time most popular adventure games including Zork I, II, III, Deadline, Starcross, Witness, Planetfall, Enchanter, Sorcerer, Infidel, Suspended (with map), Wizardry, Knight of Diamonds, Legacy of Llylgamyn, All Scott Adams, All Sierra On-Line including Time Zone, Ultima I, II, III and many more! Best of all, the book doesn't spoil your fun! At about 25c an adventure, it's the biggest bargain around. So stop getting ripped off by \$10 cluebooks and call:

1-(800)-821-5226 Ext. 500

24 hrs. a day, 7 days a week or write:
Witt's End
42 Morehouse Rd., Dept. 12
Easton, CT 06612
Free UPS shipping. Add $\$ 3.00$ for C.O.D. APO's FPO's o.k. Add $\$ 5.00$ for foreign shipping. No charge for credit cards. We accept Visa/Mastercard, Personal Check (allow 2 weeks to clear), Certified Check or money order.
All Trademarks are acknowledged.

Program Your Own EPROMS

PLUGS INTO USER PORT. NOTHING ELSE NEEDED. EASY TO USE. VERSATILE.

- Read or Program. One byte or 32K bytes!
OR Use like a disk drive. LOAD,
 SAVE, GET, INPUT, PRINT, CMD, OPEN, CLOSE-EPROM FILES! Our software lets you use familiar BASIC commands to create, modify, scratch files on readily available EPROM chips. Adds a new dimension to your computing capability. Works with most ML Monitors too.
- Make Auto-Start Cartridges of your programs.
- The promenade ${ }^{\text {tw }} \mathrm{C} 1$ gives you 4 programming voltages, 2 EPROM supply voltages, 3 intelligent programming algorithms, 15 bit chip addressing, 3 LED's and NO switches. Your computer controls everything from software!
- Textool socket. Anti-static aluminum housing.
- EPROMS, cartridge PC boards, etc. at extra charge.
- Some EPROM types you can use with the promenade ${ }^{\text {™ }}$

Call Toll Free: 800-421-7731
In California: 800-421-7748
JASON-RANHEIM
580 Parrott St., San Jose, CA 95112

VIDEO BASIC-64 - ADD $50+$ graphic and sound commands to your programs with this super development package. You can distribute free RUNTIME version without paying royalties! ISBN\# 0-916439-26-7
$\$ 59.95$
BASIC COMPILER 64-compiles the complete BASIC language into either fast 6510 machine language and/or compact speedcode. Get your programs into high gear and protect them by fompiling.
ISBN\# 0.916439-17.8
$\$ 39.95$
MASTER-64 - professional development package for serious applications. Indexed file system, full screen management, programmer's aid, BASIC extensions, 100 commands
ISBN\# 0.916439-21-6
$\$ 39.95$

PASCAL-64 - full Pascal with extensions for graphics, sprites, file management, more. Compiles to 6510 machine code and can link to Assembler/Monitor routines. ISBN\# 0.916439-10.0
$\$ 39.95$

ADA TRAINING COURSE - teaches you the language of the future. Comprehensive subset of the language, editor, syntax checker/compiler, assembler, disassembler, 120+
page guide.
ISBN\# 0.916439-15-1
$\$ 59.95$
FORTH-64 - loaded with hires graphics, complete synthesizer control, full screen editor, programming tools, assembler.
ISBN 0-916439-32-1
$\$ 39.95$
C LANGUAGE COMPILER - a full C language compiler. Conforms to the Kernighan \& Ritchie standard, but without bit fields. Package in cludes editor, compiler and linker.
ISBN\# 0.916439-28-3
$\$ 79.95$
ASSEMBLER MONITOR-64 - a
macro assembler and extended monitor package. Assembler supports floating point constants. Monitor supports bank switching, quick trace, single step, more.
ISBN\# 0.916439-11-9
$\$ 39.95$

XREF-64 - indispensible tool for BASIC programmer cross-references all references to variable and line numbers.
ISBN\# 0-916439-27-5
$\$ 17.95$
OTHER TITLES ALSO AVAIL. ABLE - WRITE OR CALL FOR A FREE COMPLETE CATALOG
Call today for the name and address of your nearest local dealer.
PHONE: (616) 241-5510
For postage and handling include $\$ 4.00$ ($\$ 8.00$ foreign) per order. Money order and checks in U.S. dollars only. Mastercard, VISA and American Express accepted. Michigan residents incl 4\% sales tax.

FREE PEERS \& PORES WALL POSTER INCLUDED WITH EVERY SOFTWARE PURCHASE

BASIC File Editor For Commodore

Henry A. Doenlen

Edit ASCII files in the form of numbered BASIC lines with this short utility for the Commodore 64 and VIC-20.

One of the best features of any Commodore computer is its BASIC line editor. By using the insert, delete, and cursor control keys, you can easily move the cursor anywhere on the screen and edit a BASIC program without having to retype entire lines.

Unfortunately, ASCII data files-files of characters such as those produced by many word processor or database management pro-grams-are not so easy to edit. To change one data item in a file, you must either rerun the program that produced the file, or write another program that reads the file, makes the change you want, and writes the file back to disk or tape. Both options are time-consuming.

Disguising ASCII As BASIC

Although the Commodore BASIC editor is not designed to edit such files, you can make it do the job with a simple trick: Disguise the ASCII data as a collection of BASIC lines by adding line numbers and quotation marks. For example, enter this line:

10 "I'M REALLY ASCII DATA"

You can't execute this line in a program, of course, without getting an error. But the BASIC editor can handle it with ease, letting you add or delete characters, change the line number, or relist the line. "BASIC File Editor" uses this trick to let you edit ASCII files, adding artificial line numbers and quotation marks when it loads a file into memory, and deleting them when the file is resaved.

Type in BASIC File Editor and save it. If you are using a Commodore 64 or VIC- 20 with a disk drive, enter the program exactly as it is listed.Tape users should omit lines

5,220 , and $360-387$, change the 42 in line 350 to 35 , and change the following lines as shown:
$11 \varnothing$ PRINT"\{DOWN \}LOAD FILE": INP UTFS :rem 232
$12 ø$ CLOSE1:OPEN1,1, $\varnothing, F \$:$ rem 38
230 CLOSE1:OPEN1,1,1,F\$:rem 41
Before editing an important file, you may want to practice on a test file. This five-line program makes a test file for you (tape users should change the 8 in line 10 to a 1):

```
1\emptyset OPEN1,8,1,"@\emptyset:ASCTEST,P,W"
2\emptyset PRINT#1,"THIS PROGRAM MAKES
    "
\(3 \varnothing\) PRINT\#1,"ASCII DATA LOOK"
40 PRINT\#1,"LIKE BASIC LINES."
\(5 \emptyset\) CLOSE1
```

After making the test file, load and run BASIC File Editor. The menu offers four options: You can press L to load a file, S to save a file, C to clear data from memory, or E to list your data and exit the program. To load the test file, press L, then type ASCTEST when prompted for the filename. (Disk users should then enter P to indicate that ASCTEST is stored as a program file, as indicated by the , P in line 10.) After the main menu reappears, press E to list the data and return to immediate mode.

Editing Your Data

As you can see, the ASCTEST data is spliced onto the end of BASIC File Editor in the form of numbered program lines. The data lines can be edited like any other BASIC lines. Try making some changes. To add new data at the end of the file, enter new lines with higher line numbers. Use intermediate line numbers to insert new data between existing lines. Don't forget that the data in each line must be enclosed in quotation marks.

When you're done editing, enter RUN to reenter the File Editor program and press S to resave the
file. Again you'll be prompted to enter a filename. If you are using a disk drive, do not use the same filename (ASCTEST) unless you want the revised file to replace the original file. If you use a different filename, a new file is created. Of course, if you are using tape you must also be careful to rewind the cassette if you want the old file erased, or be careful not to overwrite the old copy if you want it preserved.

Now press C to clear the data area, and L to load your new file. After it loads, press E to verify that the changes were successful. If you had not pressed C, the new file would have been appended to the data already in memory. This makes it easy to append one file to another.

You should avoid using RUN/ STOP or RUN/STOP-RESTORE to break out of the program. Always exit by pressing E at the menu, or important memory pointers will be left scrambled. If you do break out, rerun the program, then do a load followed by a clear before attempting any further editing.

When A Program Isn't A Program

For tape users, there's only one simple way to store ASCII data: as a tape data file. Hence, the tape version of the File Editor program works only with such files. However, disk users have greater flexibility in choosing a file type.

The most common format for character data storage on disk is the sequential file. Such files are easy to create: Simply OPEN $1,8,1, "$ filename, $\mathrm{S}, \mathrm{W}^{\prime \prime}$ (the final , S, W indicates that the file called filename is to be a Sequential file open for Writing). Then use PRINT\#1 to write the desired data to the file and CLOSE 1 when finished. Such files will show up in the disk directory as SEQ. However, it's also possible to store the data in a program file. The pro-
cedure is the same as for sequential files, except that the $, \mathrm{S}, \mathrm{W}$ in the OPEN statement is changed to , P, W (where the P indicates a program file). Otherwise, you still use PRINT\# to write data to the file, as illustrated in the ASCTEST file created in the example above. There are several advantages to storing data in program file format. For example, with careful planning the program file of ASCII data can be retrieved with LOAD, which is significantly faster than using GET\# or INPUT\#. You may only rarely encounter ASCII data stored in program files, but the File Editor program can handle it in case you do.

Although BASIC File Editor allows you to edit ASCII data stored in program files, it does not allow you to edit BASIC programs stored in program files. While the file type is the same, all the BASIC keywords in a program are represented in the disk program file as single characters called tokens, which appear as reverse-video characters. Moreover, changes which affect the length of any program lines will cause the edited program to crash when loaded and run. Also, the File Editor can only be used to edit ASCII data files, which means it is not directly compatible with some database and word processing programs-including COMPUTE!'s SpeedScript word processor-which store characters as their Commodore screen code values rather than as ASCII values. (SpeedScript does allow you to print an ASCII file to disk, which could then be edited.)

It is possible to use the File Editor to load ASCII data from program files and store it into sequential files, and vice versa. However, in this case the replace feature will not function properly. That is, you cannot use the same filename for the edited file if you are storing it as a different type from the original.

Customizing The Editor

BASIC File Editor works best with ordinary alphanumeric data (letters and numbers), such as you might find in a word processing file. Carriage return characters (CHR\$(13)) are interpreted as separators. When BASIC File Editor finds a carriage return while loading the file, it terminates the current data line and
begins a new one.
It should not be difficult to customize this program for your own particular needs. Before doing so, however, look at line 350. The FORNEXT statement sets up a loop that counts through the lines of the program (42 for disk or 35 for tape). If you add or delete any lines in the File Editor program, you'll need to change this value from 35 or 42 to whatever is appropriate.

BASIC Flle Editor

Please refer to "COMPUTEI's Guide to Typing In Programs" before entering this listing.
5 OPEN15, 8, 15
:rem 195
$1 \emptyset$ PRINT "\{CLR\}\{3 SPACES\}BASIC FILE EDITOR \{DOWN\}": rem 31
$2 \emptyset$ PRINT "\{HOME\}\{2 DOWN\}SELECT OPTION: " :rem 59
$3 \emptyset$ PRINT " L=LOAD FILE":PRINT" S=SAVE FILE":PRINT" C=CLEA $R^{\prime \prime}: P R I N T " E=E X I T / L I S T "$
:rem 11
40 GETAS: IFAS=""THEN40: rem 235
5 IFAS="E"THENCLOSE15:LIST39の -: END
: rem 122
60 FORC=1TO3:IFA\$=MID\$("LSC", C ,1) THENONCGOSUB8 $, 21 \varnothing, 3 \emptyset \emptyset: G$ OTO1Ø
:rem 201
$7 \varnothing$ NEXTC:GOTO2の :rem $19 \varnothing$
8 8 POKE45, $\operatorname{PEEK}(55): \operatorname{POKE} 46, \operatorname{PEEK}$ (56) -1: GOSUB340 : L=PEEK (44)* $256+\operatorname{PEEK}(43) \quad$:rem 11
$9 \emptyset \operatorname{IFPEEK}(L)+\operatorname{PEEK}(L+1)=\varnothing$ THEN11 Ø :rem 49
1 1ØØ $\mathrm{N}=\operatorname{PEEK}(\mathrm{L}+3) * 256+\operatorname{PEEK}(\mathrm{L}+2)$: $L=\operatorname{PEEK}(L+1) * 256+\operatorname{PEEK}(L): G O$ T09ø :rem 190
$11 \varnothing$ PRINT"\{DOWN\} LOAD FILE": INP UTFS:PRINT" \{DOWN\} PROGRAM O R SEQUENTIAL\{2 SPACES $\}$ (P / S)":INPUTTS :rem 29
120 CLOSEl:OPEN1, 8, 2,F\$+","+T\$ $+", R^{\prime \prime}:$ GOSUB360: IFFL=1 THEN1 $\emptyset \quad$:rem 6
$13 \emptyset \mathrm{~A}=\mathrm{L}: \mathrm{T}=\operatorname{PEEK}(46) * 256+\operatorname{PEEK}(45$) -10
:rem 104
$140 \mathrm{~L}=\mathrm{A}: \mathrm{A}=\mathrm{A}+3: \mathrm{N}=\mathrm{N}+1 \varnothing:$ POKEA, $\mathrm{N} / 2$ 56 : POKEA $-1, \mathrm{~N}-\operatorname{PEEK}(\mathrm{A}) * 256: \mathrm{A}$ $=A+1:$ POKE $A, 34 \quad:$ rem 4
$150 \mathrm{~A}=\mathrm{A}+1: \operatorname{GET} \# 1, \mathrm{C} \$ \mathrm{D}=\mathrm{ASC}(\mathrm{C} \$+\mathrm{CH}$ $\mathrm{R} \$(\varnothing)):$ IF $\mathrm{D}<>13$ ANDA < TTHENP OKEA, D: GOTO15 : rem 8 8
$16 \emptyset$ POKEA, $34:$ POKEA $+1, \varnothing: A=A+2: P$ OKEL +1, A/256: POKEL, A-PEEK($L+1) * 256$
:rem 208
$17 \emptyset$ IFST= $=$ ANDA $<$ TTHEN 140
:rem 163
180 IFA>=TTHENPRINT"OUT OF MEM ORY"
:rem 158
$19 \varnothing$ POKEA, $\varnothing:$ POKEA $+1, \varnothing: A=A+2: P O$ KE4,A/256:POKE 3,A-PEEK (4) * 256
: rem 155
2øø GOSUB33ø:CLOSE 1:RETURN :rem 163
210 GOSUB350:PRINT" \{DOWN\}SAVE \{SPACE\}FILE":INPUTF\$
:rem 74
220 PRINT" \{DOWN\}PROGRAM OR SEQ UENTIAL\{2 SPACES\}(P/S)":IN PUTTS :rem 143
230 CLOSE1:OPEN1,8,2,"@Ø: "+F\$+ ", "+T\$+",W":GOSUB360:IFFL= ITHENIØ :rem 38
$24 \varnothing \operatorname{IFPEEK}(\mathrm{~A})+\operatorname{PEEK}(\mathrm{A}+1)=\varnothing$ THENC LOSE1:RETURN :rem 119
250 A $=A+3$
:rem 180
$26 \emptyset A=A+1: \operatorname{IFPEEK}(A)=\varnothing$ THENPRINT
\#1,"":A=A+1:GOTO240
:rem 126
$27 \emptyset \operatorname{IFPEEK}(A)<>34$ THEN $26 \emptyset$
:rem 135
$28 \emptyset A=A+1: \operatorname{IFPEEK}(A)=34$ THEN $26 \varnothing$
:rem 160
290 PRINT\#1, CHR\$(PEEK (A)) ; :GOT $028 \varnothing$
:rem 249
$3 \emptyset \emptyset$ PRINT"CLEAR": GOSUB35ø: POKE $A, \varnothing: P O K E A+1, \varnothing: A=A+2$
:rem 219
310 POKE4,A/256:POKE3,A-PEEK (4) *256 :rem 215
320 GOSUB330:RETURN :rem 197
$33 \emptyset$ POKE46, PEEK (4) : POKE45, PEEK (3)
: rem 172
340 POKE47, $\operatorname{PEEK}(45)$: POKE48, PEE $K(46)$: POKE49, $\operatorname{PEEK}(45)$: POKE 50, $\operatorname{PEEK}(46)$: RETURN : rem 242
$35 \emptyset$ A= $\operatorname{PEEK}(44) * 256+\operatorname{PEEK}(43): \operatorname{FO}$ $\mathrm{RN}=1 \mathrm{TO} 42: \mathrm{A}=\operatorname{PEEK}(\mathrm{A}+1) * 256+\mathrm{P}$ EEK (A) : NEXTN: RETURN
:rem 254
360 PRINT: POKE198, Ø: INPUT\#15,A S,BS,C\$,D\$:rem 42
$37 \varnothing$ IFB $\$=$ "OK"THENFL= $\varnothing:$ RETURN
: rem 242
$38 \emptyset$ PRINTAS" "B\$" "C\$" "DS" ": FL=1:PRINT"\{DOWN\}HIT ANY K EY":AS="" :rem 254
385 GETAS:IFAS=""THEN385
:rem 99
387 RETURN : rem $13 \varnothing$
39 REM====== FILE FOLLOWS === ======= : rem 150 ©

Learn How to Program in BASIC at Home on Your Own Personal Computer!

No Previous Experience Needed

Now you can learn it all! Computer programming... computer applications... computer games...everything you ever wanted to know about computer operation! Write your own computer programs or use hundreds of programs already available... budgeting, real estate, bookkeeping, expenses, taxes, shopping lists, phone numbers, routing... even foreign languages and graphics.

LEARN IT ALL...IBM, APPLE, COMMODORE, TRS and MORE! Whether or not you have your own computer, our independent study program shows you step-by-step how to program in BASIC, the most commonly used computer language. All BASIC Programming is similar. So once you learn our easy system, you'll understand how to use and program on almost ary brand of personal computer. Send today for free facts and color brochure...a complete information package.

Page Flipping On The Atari

Clay Stuart

Abstract

Page flipping is an animation technique in which entire screens can be flashed in rapid sequence, much like flipping through the pages of a book. This makes possible some amazing graphics displays. The article includes two demonstration programs (one for computers with as little as 16 K RAM, and another for machines with at least 48 K). The programs work on the 400/800, XL, and XE models.

Animation is any sequence of events that creates the illusion of motion. Note the phrase illusion of motion: no actual motion is required. For example, consider the lights on a movie marquee, stadium scoreboard, or message board. When the lights are flashed in sequence, they produce the illusion of motion, although the bulbs themselves are stationary.

Movies and cartoons work on the same principle. They consist of a series of still pictures, each slightly different than the one before it. When the pictures are projected in rapid succession, we perceive motion. The same principle can be applied to computers, except that few computers can draw high-resolution screens fast enough to fool the eye. The answer is a special programming technique known as screen flipping or page flipping. Screens are drawn beforehand and stored in memory, then displayed one after the other in an instant.

ANTIC And Display Lists

By now, many of you are well acquainted with the Atari ANTIC chip, display lists, and how Atari computers display screen images. Many articles and books have been published on this subject. However, a quick overview will be helpful here.

Besides the 6502 microprocessor, the Atari also contains a special chip known as ANTIC. ANTIC is a true microprocessor with its own in-
struction set, and it is in charge of displaying all screen data. The program that instructs ANTIC is called a display list. The display list is merely a list of instructions that locates screen memory for ANTIC and tells it which graphics mode to display. The starting address of the display list is stored in the customary low byte/high byte form at memory locations 560 and 561. To find the starting address of the display list in any graphics mode, type the following line in immediate mode:

> GR.[mode]:DL = PEEK
> $(560)+256^{*}$ PEEK(561):PRINT DL
where [mode] is the graphics mode number. This line can also be included in a program to store the display list address in the variable DL.

Screen Memory And Pointers

While display lists differ greatly, depending on the graphics mode, one thing is always certain. The fifth and sixth bytes of the display list contain the low and high bytes of the starting address of screen memory. To find the starting address of screen memory in any graphics mode, use this line:

$$
\begin{aligned}
& \text { GR.[mode]:DL = PEEK } \\
& \text { (560)+256*PEEK(561):ST = PEEK } \\
& \text { (DL } \left.+4)+256^{*} \text { PEEK(DL }+5\right) \text { :PRINT ST }
\end{aligned}
$$

Remember that when indexing within a list, you start counting at zero. That's why the fifth element of the display list is calculated at $\mathrm{DL}+4$ and the sixth at DL +5 . These two bytes together are called a pointer. As ANTIC scans the display list, these two bytes point ANTIC to the start of the screen memory.

The use of pointers is called indirection. Indirection can be a very powerful tool, and thanks to the foresight of Atari's engineers, it makes page flipping possible on Atari computers. Some other computers reserve an area of memory that is dedicated entirely to the video display. To display a new screen-
ful of data, the entire screen must be redrawn. This requires the high speeds of machine language, and at best is a complicated and timeconsuming project. Through the use of pointers and indirection, the Atari avoids these complications.

By simply POKEing new values into the screen memory pointer in the display list, any area of memory can be instantly displayed on the screen. There is only one important rule to follow. To avoid garbled displays, screen memory should not cross a 4 K memory boundary-that is, any address evenly divisible by 4096.

There is a way around this problem, but there's no room to explain it in detail here. However, you should note that it's impossible to flip pages in GRAPHICS 8 without taking this problem into account. Because GRAPHICS 8 uses about 8 K of screen memory, the screen always crosses a 4 K boundary. For now, it's probably best to experiment with page flipping in graphics modes 0 through 7, which use less than 4 K of screen memory. With careful planning, screen memory need never cross a 4 K boundary in these modes.

Setting Up Page Flipping

To implement page flipping, you must first calculate the starting address of the area of memory you wish to display. (You'll have to determine how much memory to set aside depending on the number of pages you want to flip, how much RAM is installed in your machine, etc.) Next, convert this number to its low-/high-byte representation using the following line:

$$
\begin{aligned}
& \mathrm{AD}=[\text { address }]: \mathrm{HI}=\mathrm{INT}(\mathrm{AD} / 256): \\
& \mathrm{LO}=\mathrm{AD}-\left(256^{*} \mathrm{HI}\right)
\end{aligned}
$$

where [address] is the starting memory address.

Then, choose a graphics mode and calculate the starting address of the display list. Finally, POKE the values LO and HI into the screen
memory pointers in the display list-LO byte first, HI byte second. Remember, the screen memory pointers are always the fifth and sixth bytes of the display list. Use the following short program as an example:

```
10 AD=4096\emptyset
2g HI=INT (AD/256):LO=AD-(
    256*HI)
3@ GRAPHICS \emptyset
40 DL=PEEK(56, + 256%PEEK(
    561)
5ø POKE DL+4,LO:POKE DL+5 , HI
```

When executed, the screen should almost instantly change to display this new area of memory. This area of memory is part of the BASIC ROM, and should be filled with all sorts of interesting data. It will be displayed as characters, since GRAPHICS 0 is a character mode. By substituting different values for the variable AD in the program above, any area of memory can be displayed (as long as it doesn't cross a 4 K boundary, remember). Of course, if the area of memory you choose to display is empty, the screen will be blank.

More Pointers

There are two other memory locations that are important to know when page flipping. These are locations 88 and 89 , another pointer. They store a memory address in the usual low-byte/high-byte form, and point to the area of memory where all PRINTs, PLOTs, and DRAWTOs will be directed, except for information displayed in text windows. By POKEing new values into these locations, you can redirect all PRINTs, PLOTs, and DRAWTOs to any area of memory. In other words, rather than printing text or drawing graphics on the screen, you can print text or draw graphics anywhere in memory and then display this page instantly.

This makes it possible to construct a series of pictures, each slightly different than the one before it, and each in a separate area of RAM. By rapidly flipping through these pictures in sequence, a program creates the illusion of motion. That's how the demonstration programs below work.

A Spinning Globe

If you have at least 48 K RAM, use Program 1. If you have only 16 K RAM, use Program 2 and make sure
no disk drive is connected. Program 1 creates a spinning globe on the high-resolution GRAPHICS 8 screen. Program 2 creates a spinning globe too, but on the mediumresolution GRAPHICS 7 screen to conserve memory. (Program 2 also works on machines with more than 16 K as long as the disk drive is disconnected.)

Both programs GOSUB to a routine that READs machine language DATA into page 6 (starting at location 1536 decimal). After RETURN, Program 1 fills an array with SIN and COSINE values to speed up the drawing process. Program 2 skips this step due to the limited memory on a 16 K machine. Both programs switch to a PLOT mode at line 60 and set up the various color registers at line 70 . The starting address of the display list is calculated at line 80 , and certain variables are initialized at line 90 . (When you run Program 1, the screen is blank for about one minute during these steps.)

Lines 100 through 240 use BASIC trigonometric functions to draw three slightly different views of a wire globe. Each drawing is stored in a separate area of RAM. The spokes of this globe are nine degrees apart, and each drawing shows the globe rotated three degrees from the previous one. As each drawing is completed, the ONGOSUB statement at line 230 directs the program to one of two subroutines at lines 1000 and 2000. These routines POKE the screen memory pointers into the display list, and POKE the PRINT, PLOT, and DRAWTO pointers with the address of the next area of memory to be displayed.

When all of this is completed, line 250 calls the machine language subroutine in page 6 . This sets up a vertical blank interrupt routine that rapidly displays the drawings in sequence. The globe appears to spin!

Multiprocessing?

Although machine language is not really necessary for page flipping, it was included here for a reason. Notice that when the globe starts spinning, the READY prompt appears in the text window at the bottom of the screen. You can type LIST to view the program in the text window while it is executing, or even type

NEW and enter another program without affecting the display. This allows you to incorporate the spinning globe in your own programs.

Another interesting item is memory location 1554. This location in the vertical blank routine controls the speed of the globe's rotation. It normally contains a 1 . Try POKEing 1554 with a 3 to slow down the rotation, or a 0 to speed things up.

For an example of page flipping in BASIC, add these lines to Program 1:

```
LJ 245 POKE DL+5, 129:POKE DL
        +1Ø1,144:FOR X=1 TO 1
        \emptyset:NEXT X
IN 246 POKE DL+5,97:POKE DL+
        1\emptyset1,112:FOR X=1 TO 1g
        : NEXT X
FJ 247 POKE DL+5,65:POKE DL+
        1Ø1,8\emptyset:FOR X=1 TO 1\emptyset:
        NEXT X
HC 248 GOTO 245
or these lines to Program 2:
AJ 245 POKE DL+5, 16:FOR X=1
        TO 10:NEXT X
AI 246 POKE DL+5,32:FOR X=1
        TO 1D:NEXT X
BA 247 POKE DL+5,48:FOR X=1
        TO 1ø:NEXT X
HC 248 GотO 245
```

These modifications bypass the machine language, yet show how BASIC is plenty fast enough for page flipping. You can slow down or speed up the globe by changing the values in the FOR-NEXT loops. Or you can press BREAK and enter GOTO 250 in direct mode to let the machine language routine spin the globe.

Feel free to use these programs for your own pursuits. Remember that once they are running, you can enter NEW and type in your own program. Who knows-maybe you can come up with a game that has a rotating planet in the background. (Incidentally, player/missile graphics is an ideal way to add moving objects when flipping screens, because it's not affected by page flipping.)

Please refer to "COMPUTE!'s Guide to Typing In Programs" before entering these listings.

Program 1: Spinning Globe Demo (48K)

EO 5 REM REQUIRES AT LEAST 4 8K
F6 $1 \varnothing$ POKE 559, ø: GOSUB 3øøø: DIM ARR $(45 \emptyset, 1): \operatorname{DEG}$
GK 19 REM *綡率 ARRAY FILL RO

DL $2 \emptyset$ FOR $I=\emptyset$ TO $45 \emptyset$
PP $3 \varnothing \operatorname{ARR}(I, \emptyset)=S I N(I)$
PH 4 g $\operatorname{ARR}(I, 1)=\operatorname{COS}(I)$

Quickly flipping in sequence through four previously drawn screens，Program 1 creates the illusion of a spinning globe in high－resolution graphics．

ON 50 NEXT I
AB 59 REM＊SETUP GRAPHICS MODE＊＊
OP 6 G GRAPHICS 8
KF 7ø POKE 71Ø，144：POKE 712， 144：COLOR 1
DN 79 REM＊＊CALCULATE START OF DL＊＊
EK 日の DL＝PEEK（56の）＋256＊PEEK（ 561）
AO 9ø X Ø＝159：$Y \emptyset=79: R D S=78: Z=$ 1
6099 REM \＆\＆（z DRAW GLOBE RO

EP 1 Øø FOR ROT $=6$ TO Ø STEP－ 3
FC $11 \emptyset$ FOR ANG＝ROT TO ROT +18 \square STEP 9
Jo $12 \boldsymbol{R}=$ RDS $\ddagger \operatorname{ARR}$（ANG， 1 ）
IE $13 \varnothing \quad X=X \emptyset+R$ \＆ $\operatorname{ARR}(27 \emptyset, 1)$

LC 150 PLOT X, Y
AM 16 G FOR CIR $=28$ TO 450 ST EP $1 \varnothing$
BK 17 D $\mathrm{X}=\mathrm{R}$ \＆ARR（CIR，1）
LC $18 \emptyset \quad Y=R D S$ \＆ 18 （CIR，\varnothing ）
KP $19 \varnothing$ DRAWTO $X \varnothing+X, Y \varnothing+Y$
CH 2 Øø IF ANG $=$ ROT THEN DRAWT O $X \varnothing-X, Y \varnothing+Y: P L O T X \varnothing+X$ ， $\mathrm{Y} \emptyset+\mathrm{Y}$
LA 21 D NEXT CIR
KJ $22 \emptyset$ NEXT ANG
แ 230 ON Z GOSUB $1 \emptyset \emptyset \emptyset, 2 \emptyset \emptyset \emptyset$
HK 24 NEXT ROT
LJ 245 POKE DL＋5， $129:$ POKE DL ＋1ø1，144：FOR $X=1$ TO 1 Ø：NEXT X
IJ 246 POKE $\mathrm{DL}+5,97: \mathrm{POKE} \mathrm{DL}+$ 1ø1，112：FOR $X=1$ TO $1 \varnothing$ ：NEXT X
FJ 247 POKE DL＋5，65：POKE DL＋ 1ø1，8ø：FOR $X=1$ TO 1ø： NEXT X
HC 248 GOTO 245
LD $25 \emptyset$ A＝USR（PAGE6）
GP 260 END
ED 999 REM＊POINTER POKE SU BROUTINE
PC 1øøの POKE DL＋5，97：POKE DL ＋1Ø1，112
PO $1 \varnothing 1 \emptyset$ POKE 89，97
IM 1ø2ø $Z=2$
KE 1939 RETURN
HE 1999 REM \＆POINTER POKE S UBROUTINE＊
HC 2øøø POKE DL＋5，65：POKE DL ＋1Ø1，8ø
PK $2 \varnothing 1 \varnothing$ POKE 89，65
IL 2ø2ø Z＝ø
KF $293 \emptyset$ RETURN
H6 2999 REM＊＊＊＊ML READ SUB ROUTINE＊＊＊
CC $3 \varnothing \emptyset \emptyset$ PAGE6 $=1536$
HB $3 \varnothing 1 \varnothing$ FOR $I=\varnothing$ TO 58
LH $3 \varnothing 2 \emptyset$ READ OBJ
KD 3030 POKE PAGE6 +1 ，OBJ
EP 304 N NEXT I
KI 305 R RETURN
LN 3999 REM \＆MACHINE LANGU AGE DATA＊＊
BI 4øøø DATA $104,169,5,133,2$ 04，169，6， 162
LN 4 ø1ø DATA 6，16ø，15，32，92， 228，96，165
OA 4ø2ø DATA 2ø，41，1，2ø8，29， 164，204，185
PB 4 ø3ø DATA $53,6,141,85,128$ ，136，185，53
KP $4 \varnothing 4 \varnothing$ DATA 6， $141,181,128,1$ 92， $0,24 \varnothing, 6$
LK 4ø5ø DATA $136,132,2 \emptyset 4,76$ ， 50，6，169，5
CD 4ø6ø•DATA 133，2ø4，76，95，2 28，8ø，65， 112
OC 4ø7ø DATA 97，144，129

Program 2：Spinning Globe
 Demo（16K）

KI 5 REM DISCONNECT DISK DRI VE
FN $1 \varnothing$ POKE $1 \emptyset 6,64:$ GRAPHICS \varnothing ：POKE 559，$:$ GOSUB $3 \varnothing \varnothing \varnothing$
DF 5 D DEG
AB 59 REM＊＊SETUP GRAPHICS MODE＊＊
$006 \emptyset$ GRAPHICS 7
KF 7ø POKE 71ø，144：POKE 712， 144：COLOR 1
DN 79 REM＊CALCULATE START OF DL＊＊

Program 2 also simulates a spinning globe via page flipping，but uses medium－resolution graphics to save memory．

EK 8 Ø $\mathrm{DL}=\operatorname{PEEK}(56$ ）$)+256$＊PEEK（ 561）
NH 9 Ø $\mathrm{X} ⿹=79: Y \emptyset=39: R D S=38: Z=1$
6099 REM 事草＊DRAW GLOBE RO UTINE まれまれ
EP 1 Øø FQR ROT＝6 TO Ø STEP－ 3
FC $11 \varnothing$ FOR ANG＝ROT TO ROT +18 \emptyset STEP 9
EB $120 \mathrm{R}=\mathrm{RDS}$ \＆ COS（ANG）

M6 $14 \varnothing \quad Y=Y \emptyset+R D S * S I N(27 \emptyset)$
LC $15 \emptyset$ PLOT X, Y
AK 16 FOR CIR＝28の TO 450 ST EP $1 \varnothing$

FL $18 \emptyset \quad Y=R D S * S I N(C I R)$
KP $19 \emptyset$ DRAWTO $X \emptyset+X, Y \emptyset+Y$
CK 2 Øø IF ANG $=$ ROT THEN DRAWT －$X \varnothing-X, Y \varnothing+Y: P L O T \quad X \varnothing+X$,$Y \emptyset+Y$
LA $21 \varnothing$ NEXT CIR
KJ $22 \varnothing$ NEXT ANG
KK 23ø ON Z GOSUB $1 \varnothing \varnothing \varnothing, 2 \varnothing \varnothing \varnothing$ ， 3øのø
MK 240 NEXT ROT
LD 25 ．$A=$ USR（PAGE 6 ）
6P 260 END
ED 999 REM＊PQINTER POKE SU BROUTINE
HB 1 øøø POKE DL＋5，32
PD $1 \varnothing 1 \varnothing$ POKE 89，32
IM $1 \varnothing 2 \emptyset \quad Z=2$
KE $193 \emptyset$ RETURN
HE 1999 REM POINTER POKE S UBROUTINE＊
HE $2 \emptyset \emptyset \emptyset$ POKE DL $+5,16$
PG 2 Ø1ø POKE 89，16
IL $2 \varnothing 2 \emptyset \quad Z=\varnothing$
KF $2 \emptyset 3 \emptyset$ RETURN
N6 2999 REM 京京率 ML READ SUB

CC $3 \varnothing \varnothing$ D PAGEG＝1536
$6 P 3 \varnothing 1 \varnothing$ FOR I＝Ø TO 47
LH $3 \varnothing 2 \emptyset$ READ OBJ
ND 3030 POKE PAGE6＋I，OBJ
EP $3 \varnothing 4 \emptyset$ NEXT I
KI $3 \varnothing 5 \emptyset$ RETURN
LN 3999 REM MACHINE LANGU AGE DATA＊＊
BF 4øøø DATA $104,169,2,133,2$ 64，169，6，162
LN 4 Ø1ø DATA 6，16Ø，15，32，92， 228，96，165
NI 4ø2の DATA 2ø，41，1，2ø8，21， 164，2ø4，185
LF 4ø3Ø DATA $45,6,141,167,47$ ，192，ø，24ø
FO 404の DATA 5，198，2ø4，76，42 ，6，169，2
PD 4ø5ø DATA $133,2 \emptyset 4,76,95,2$ $28,16,32,48$

Commodore 64 Hi-Res Quick Clear

Paul W. Downing

Here's a machine language routine that clears the Commodore 64's highresolution screen in less than a second.

If you've ever used high-resolution graphics on the Commodore 64, you probably know how long it takes to clear the hi-res screen in BASIC. You need to POKE 8,000 memory locations with zeros, usually with a line like this:

FOR J=8192 TO 16192:POKE J,0:NEXT
This takes about 30 secondsnot a very long time, but it can seem almost endless if you're staring at a PLEASE WAIT message on the screen, waiting for the program to set up.
"Quick Clear" is a short machine language routine that clears the hi-res screen in less than one second. It can be inserted in any program that uses high-resolution graphics. You don't need to understand machine language to use itjust type it in and enter RUN. This installs the ML in the cassette buffer, starting at location 828 . Once the routine is in place, use SYS 828 whenever you want to clear the hires screen.

Fill With Any Value

If you've never used hi-res graphics before, try this experiment. Run Quick Clear, then enter the following line to put your 64 in bitmap mode:

POKE 53265,PEEK(53265)OR32:
POKE 53272,PEEK(53272)OR8
The screen will be full of garbage. Now press SHIFT-CLR/ HOME and enter SYS 828. The screen will clear in a heartbeat.

Ordinarily, you'll want to clear the screen with zeros. But you can also use this routine to fill the hi-res screen with any value from 0 to 255 . Just change the second number in the third DATA statement from 0 to the desired number.

The ML routine is relocatable, so you don't need to put it in the cassette buffer. To change its location, change the variable SA in line 10 from 828 to another safe address (49152, for example).

The variable HS in line 10 is the starting address of the hi-res screen. If you locate the screen at some address other than 8192 , be sure to change HS to match.

Quick Clear

Please refer to "COMPUTEI's Guide to Typing In Programs" before entering this listing.
$10 \mathrm{SA}=828: \mathrm{HS}=8192$: POKE2, HS-256 *INT (HS / 256) : POKE3, INT (HS / 2 56) :rem $3 \emptyset$
$2 \varnothing$ FORA=SATOSA+31:READB:POKEA, B:NEXT :rem 74
$3 \emptyset$ DATA $165,2,133,4,165,3$
:rem 193
$4 \emptyset$ DATA $133,5,162,3 \varnothing, 16 \emptyset, \varnothing$
:rem 233
$5 \emptyset$ DATA $169, \emptyset, 145,4,136,2 \emptyset 8$
:rem 45
$6 \emptyset$ DATA $251,23 \emptyset, 5,2 \emptyset 2,16,242$
:rem 81
$7 \emptyset$ DATA $16 \varnothing, 64,145,4,136,16$
:rem 45
$8 \emptyset$ DATA 251,96 :rem 181 (C)

Unlocking IBM BASIC Programs

Peter F. Nicholson

Abstract

This short utility unlocks BASIC programs which have been saved in protected format with the P option. It works on any IBM PC or PCjr.

IBM BASIC lets you save a program in three formats: in tokenized (compressed binary) form, as an ASCII file, or as a protected (encoded binary) program. The commands for these options are:

```
SAVE "filename" (tokenized)
SAVE "filename",A (ASCII)
SAVE "filename",P (protected)
```

In each case, DOS automatically appends the extender .BAS and does not indicate the format on disk directories. You can load a program saved in any format with LOAD "filename.BAS", omitting the .BAS extender if you wish.

Although a protected program loads and runs normally, it cannot be listed or edited, and neither BASIC nor DOS provides a way to "unlock" it. So when you save a program in protected format, you should also save an unprotected copy in case you decide to make some changes later. If you find yourself without a backup, however, the following utility can remove the protection.

Type in and save UNPROT. UTL. Note that you must save it with the filename UNPROT.UTL. When you run it, you'll be prompted to enter the active drive (enter A if you have one drive) and the name of the protected program. The drive runs briefly as the protection is removed, and then your program is listed on the screen, ready for you to edit or resave.

Invisible Fingers

To mimic the effect of entering direct keyboard commands, UNPROT.

UTL assigns strings to the ten special function keys. It then manipulates the keyboard buffer to enter each string automatically, as if the function keys were being pressed in sequence by invisible fingers. If you use DOS 2.1, the subroutine at line 2000 automatically enters the function keystrokes for you. If you have another version of DOS, you'll have to delete the GOSUB 2000 statement from line 290 and press F1 through F10 in sequence yourself, after entering the filename.

Mimicking keystrokes is an efficient technique, but it makes a program somewhat difficult to follow. If you're interested in how this utility works, here's a brief explanation of how protected programs can be unlocked.

The Key Addresses

The first thing you need to learn is where the program starts and ends in memory. As explained in Appendix I of the IBM BASIC Manual, these addresses can be found with the following PEEKs:
PEEK (\&H30) $+256 *$ PEEK (\&H31)
Program starting address
PEEK(\&H358) $+256 *$ PEEK $(\& H 359)-1$
Program ending address
The starting address is the same in every case; you can find it simply by entering NEW followed by the first PEEK statement above. Finding the ending address is more difficult, as you'll find if you load a protected program and enter the second statement. All you'll get for your trouble is an illegal function call error.

However, there's another way to get the same information. Scalar variables are stored immediately after the end of a BASIC program, and the VARPTR function can find the address of any variable. All you need to do is define an arbitrary scalar variable, CHAIN the protected program into memory, and use VARPTR to find the address of the dummy variable.

Breaking The Chains

Unlike the LOAD command, which clears variables, CHAIN brings a program into memory and begins execution at a specified line number without destroying preexisting variables. This is the method used in UNPROT.UTL. We don't want to run the chained program after it's in memory, so the CHAIN command uses a nonexistent line number (65529). This simply halts execution with an illegal function call error.

Subtracting a few bytes to account for the variable descriptor gives us the exact address where the program ends. To determine its length, we subtract the starting address from the ending address.

Now that we know the program's starting address and length, we BSAVE it back to disk as a binary file. After performing a second NEW, it's necessary to set the pointers for the start of scalar variables, arrays, and strings at the spot where the program ends. Finally, the program is BLOADed back into memory at the correct starting address, and the unlocking process is complete.

If you would rather not type in this program, send a formatted disk with a self-addressed, postage-paid mailer and a $\$ 3.00$ check to:

Peter F. Nicholson
1701 South Princeton Road
Ottawa, Kansas 66067

UNPROT.UTL

Please refer to "COMPUTE!'s Guide to Typing In Programs" before entering this listing.
ID $8 \emptyset$ REM 'UNLOCK' PROGRAMS SAVE D IN PROTECTED FORMAT.
MA $9 \varnothing$ REM LOADS A PREVIOUSLY PRO TECTED PROGRAM INTO MEMORY
MB 95 REM WITHOUT PROTECTION, SO PROGRAM CAN BE LISTED AND SAVED.
KD 96 REM IBM BASIC VERSIONS 1.1 AND $2 . \emptyset$
JL 1 Øø DEF SEG: CLEAR: KEY OFF:CLS : ON ERROR GOTO उøø
HJ $11 \varnothing \mathrm{~B} \%=\varnothing$: $\mathrm{A}=\varnothing$
NM $12 \emptyset$ GOSUB 1 פのØ

KD $13 \varnothing$ A＝PEEK（\＆H3Ø）+256 ＊PEEK（ \＆H3 1）
IL $14 \varnothing$ LINE INPUT＂PROTECTED FIL E DRIVE＂；G\＄：IF LEN（G\＄）＞ø THEN IF INSTR（G $\$, ": ")=\varnothing$ THEN G\＄＝G\＄＋＂：＂
HO $15 \varnothing$ LINE INPUT＂PROTECTED FIL E NAME＂；Fक：IF INSTR（F\＄，＂ －＂）$=\varnothing$ THEN $F \$=F \$+{ }^{(1 . B A S " ~}$
HP $160 \mathrm{G} \$=\mathrm{G} \$+\mathrm{F} \$$
D1 $17 \varnothing \mathrm{~F}==$＂PROT．SCR＂
HG $18 \emptyset \mathrm{H} \$=$＂PROT．DAT＂：I $\$=$＝＂UNPROT． UTL＂
HK $19 \emptyset$ KEY $1, " \mathrm{~B}=\mathrm{VARPTR}$（ B ）＂＋CHR\＄（ 13）
IF 2 Øø KEY 2，＂BSAVE F\＄，A，B－A＂
QL $21 \varnothing$ KEY 3，＂－4：BSAVE H\＆，B，＂
ML 22ø KEY 4，＂4：CHAIN I\＄，5øø＂＋CH R\＄（13）
ON $23 \emptyset$ KEY 5，＂BLOAD＂＋CHR\＄（34）
HE 240 KEY 6，H\＄＋CHR\＄（34）＋＂， 856 ＂+ CHR\＄（13）
E1 $25 \emptyset$ KEY 7，＂BLOAD＂＋CHR\＄（34）＋F\＄
IH 260 KEY． 8, CHR $\$(34)+", "+S T R \$(A$ ）＋CHR $\$$（13）＋＂LIST＂+ CHR $\$(13$ ，
AC 270 KEY 9, ＂FOR I＝1TO 19：KE＂
HK $28 \emptyset$ KEY 1ø，＂Y I，＂＋CHR\＄（34）＋CH R末（34）＋＂：NEXT＂＋CHR（13）
LJ 29ø GOSUB 2øøø：COLOR ø，$:$ CHAI N G\＄，65529！，ALL
EE 3 Øø FOR I＝1 TO 1ø：KEY I，＂＂：NE XT I
DH $31 \varnothing$ COLOR 7，\varnothing ：IF ERL＝29ø AND ERR＝53 THEN CLS：BEEP：PRIN T G\＄＋＂DOES NOT EXIST＂：RE SUME $14 \varnothing$
NE $32 \emptyset$ ON ERROR GOTO $\curvearrowleft: E N D$
6B $5 \varnothing \varnothing$ B＝ø：DIM B1\％（2）：COLOR 7，
DD 510 BLOAD＂PROT．DAT＂，VARPTR（B ）
DB $52 \varnothing$ FOR $I=\emptyset$ TO 2：IF B＜2＾15 TH EN B1\％（I）$=$ B ELSE B1\％（I）$=\mathrm{B}$ $-2^{\wedge} 16$
HC 530 NEXT I：BSAVE＂PROT．DAT＂，V ARPTR（B1\％（ø））， 6
DC 54ø NEW
HH 1øøø PRINT＂UNPROTECTING BASI C PROGRAMS＂
OJ $1 \varnothing 1 \varnothing$ LOCATE 4，1ø：PRINT＂1．YO U WILL BE PROMPTED FOR T HE FILE DRIVE AND NAME＂
PC 104ø LOCATE 7，1ø：PRINT＂2．TH E FINAL STEP IS THE LIST ING OF YOUR PROGRAM＂
6F 1 ø5ø LOCATE 16，1：PRINT＂NOTE： FUNCTION KEYS ARE CLEAR ED BY THE PROGRAM AND TW －SCRATCH＂
KK $1 \varnothing 6 \varnothing$ LOCATE $18,1:$ PRINT＂FILES ，PROT．SCR AND PROT．DAT ARE LEFT ON YOUR DEFAULT DRIVE＂
DH 1 ø7ø LOCATE 25， $1:$ PRINT＂PRESS ANY KEY TO START＂；
CB 1 ø8ø $\mathrm{KB} \$=I N K E Y \$: I F K B \$=" "$ GOT 0 1ø9ø：＇CLEAR KEYBOARD
EN $1 \varnothing 9 \varnothing$ KB $\$=I N K E Y \$:$ IF KB $\$="$＂GOT $0109 \varnothing$
EF 11 øø CLS：RETURN
6F $2 ø \varnothing \varnothing$ REM＊ ER TO ENTER F1 THROUGH F 1ヵ AUTOMATICALLY＊＊＊
DH 2010 REM＊＊IBM P C DOS VERSION 2.1

J6 2620 DEF SEG＝\＆H4の：FOR I＝1 TO 1ø：POKE 2＊I＋28，ø：POKE 2＊ $\mathrm{I}+29,58+\mathrm{I}:$ NEXT I
CO $2 ø 30$ POKE 2＊I +28 ，13：POKE 2 ＊I + 29，28：POKE 26，36：POKE 28 ，5ø：DEF SEG：RETURN

Fast Atari Circles

Owen Sexsmith

Draw circles，stars，diamonds，and other geometric shapes in Atari BASIC quickly and easily，all with a single subroutine written in machine lan－ guage．For the Atari 400／800，XL，and XE computers．

Unlike some newer versions of the language，Atari BASIC has no CIR－ CLE statement，so drawing circles can be a slow and cumbersome pro－ cess．But with＂Fast Atari Circles，＂ you can easily draw circles，ellipses， stars，and a galaxy of other shapes． The routine is written in machine language for maximum speed，but you don＇t need to understand ML to use the routine in your own programs．

Type in and save Fast Atari Cir－ cles．When you run it，you＇ll see a pattern of finely drawn，elliptical lines．After that，the program gener－ ates colored disks，open stars，hexa－ gons，diamonds，and other complex shapes in various graphics modes．

Believe it or not，all these shapes were created with just one routine．As you can see from the program，GOSUB 900 is used when－ ever graphics are generated．Line 900 consists of a single USR state－ ment（which calls the machine lan－ guage subroutine），followed by RETURN．The USR statement in－ cludes several descriptively named variables，such as XCENTER and YRADIUS．To create a shape，you simply assign values to these BASIC variables，then call the Fast Circles routine with USR．

Defining The Variables

XCENTER and YCENTER locate your shape on the screen． XCENTER defines the X coordinate， or horizontal location．Give XCENTER a small value to put the shape near the left of the screen，and larger values to move it to the right．

YCENTER defines the Y coordinate， or vertical location．Smaller YCENTER values put the shape higher on the screen，and larger val－ ues move it down．XRADIUS and YRADIUS define the shape＇s width and height，respectively．

To learn how these four vari－ ables interact，look at lines 165－220． In line 165，XCENTER and YCENTER are given values that place the shape in the middle of the screen．In lines 205－220，a FOR－ NEXT loop increases the values of XRADIUS and YRADIUS each time the loop is executed．Since XRA－ DIUS is always greater than YRA－ DIUS，the shape is wider than it is high，forming an ellipse．In lines 225－240，the process is repeated， giving YRADIUS greater values than XRADIUS，so the ellipse is higher than it is wide．

By changing the STEP values in lines 205 and 225，you can change the distance between the lines．For example，try STEP 3 instead of STEP 5 in line 205，and STEP 1 instead of STEP 5 in line 225．You＇ll see an interesting moiré effect in areas where the two shapes overlap．If you＇d like to experiment further， add these two lines：

201 XRADIUS $=96:$ YRADIUS $=96:$ GOSUB 900
 202 GOTO 202

When you run the program again，it draws one shape and pauses in an endless loop at line 202．Since XRADIUS and YRADIUS are equal，the shape is a circle（some TV sets and monitors may be mildly distorted，making the circles look slightly elliptical）．

Press BREAK to stop，and edit line 175 so that DELTA $=32$ ．When the program runs，you should see an octagon．When DELTA $=64$ ，it be－ comes a diamond．If you change DELTA to an odd value such as 81 ，
the program draws a complex series of lines that eventually overlap to form a thick doughnut shape．When you＇re done experimenting with this section，delete lines 201 and 202.

A small example of some shapes you can draw with＂Fast Atari Circles．＂

Using The Routine

The demonstration program con－ tains REMarks explaining what each section does．By studying the pro－ gram and experimenting with other sections，you can quickly learn how to handle all the variables used by the Atari Fast Circles routine．

To use this routine in your own programs，you＇ll need to include lines $50-60,70,900$ ，and 1000－1135．Lines 50－60 create a ta－ ble of sine values in SINE\＄．Line 70 builds the machine language routine in CIRC\＄．Line 900 contains the line－drawing USR call，and lines 1000－1135 are the machine lan－ guage data．Put the lines that create CIRC\＄and SINE\＄in the setup por－ tion of your program．Once the set－ up is complete，you＇re ready to create your own graphics masterpieces．

Fast Atari Circles

Please refer to＂COMPUTEI＇s Guide to Typing in Programs＂before entering this listing．

PL $1 \varnothing$ GRAPHICS 2＋16：POSITION 5，4：？\＃6；＂PLEASE WAIT ＂：？\＃6：？\＃6；＂
〔7 SPACES\}loading"
EI 40 REM
HM 42 REM BUILD A SINE TABLE IN SINE
EM 45 REM
HH 5 D DEG ：DIM SINE（65）：FOR $\mathrm{I}=\varnothing$ TO 64： $\mathrm{X}=\mathrm{INT}$（256＊S IN（9の／64＊I）$+\varnothing .5$ ）
H 55 IF $X>255$ THEN $X=255$
F1 6 © SINE $\$(I+1)=$ CHR $\$(X)$ ：NEX T I
EP 65 REM
90 COMPUTEI

EA 66 REM PUT M．L．ROUTINE I N CIRC\＄
FB67 REM
PG 7 D DIM CIRC（28の）：FOR I＝1 TO 28の：READ X：CIRC\＄（I ）$=\mathrm{CHR} \$(x):$ NEXT I
HK $15 \varnothing$ REM
OA 155 REM ELLIPSES
HL $16 \varnothing$ REM
If $165 \mathrm{XCENTER}=16 \varnothing: Y C E N T E R=9$ 6
LN $17 \emptyset$ ARCSTART $=\varnothing$ ： ARCEND $=\varnothing$
KF 175 KOLOR＝1：DELTA＝2
KN 2 øø GRAPHICS $8+16$
LE 2 ø5 FOR I＝ø TO 75 STEP 5
DG 210 XRADIUS $=5+2$ \％I ：YRADIUS $=5+1$
LB 215 GOSUB 9øø
BH 220 NEXT I
LD 225 FOR I＝ø TO 45 STEP 5
DI 23 Ø \times RADIUS $=5+$ I ：YRADIUS $=5$ ＋2末
LD 235 GOSUB 9øø
BO 24 D NEXT I
DB 245 FOR I＝1 TO 3øD：NEXT I
HL 25 E REM
PO 255 REM DISKS
HM 260 REM
PI $265 \mathrm{KOLOR}=1: \mathrm{DELTA}=1$ ：GRAPH ICS 7＋16
내 27 F FOR I＝6 TO 27 STEP 3
OJ 275 XCENTER＝1ø＋4＊I：YCENTE $R=1 \varnothing+2 \mathrm{I}$
CE 28ø FOR J＝ø TO I
IH 285 XRADIUS＝J：YRADIUS＝J：A RCEND $=$ NOT J
LE 29ø GOSUB 9øø
CJ 295 NEXT J
BP 3 Øø KOLOR＝KOLOR＋1：IF KOLO R >3 THEN KOLOR＝1
CA 3 g5 NEXT I
HI 310 REM
KB 315 REM SQUARES
HJ 320 REM
PL 325 GRAPHICS $3+16$ ：DELTA $=6$ 4
FL $33 \varnothing$ REM SIXTY－FOUR IS A Q UARTER ARC
EH 335 XCENTER＝29：YCENTER＝12
MD 337 FOR $K=\varnothing$ TO 1：ARCSTART ＝32＊K：ARCEND＝32＊K
NC 34 FOR $I=\varnothing$ TO $5: K O L O R=K O$ LOR＋1：IF KOLOR 33 THEN KOLOR＝1
AO 345 FOR $J=\varnothing$ TO 1
MB $35 \emptyset$ XRADIUS $=2$ \＆I $+J$ ：YRADIUS $=2$ \＃I +J
LC 36 g GOSUB 9 øø
kJ 37ø NEXT J：NEXT I：NEXT K
DF 375 FOR I＝1 TO 3 ØD：NEXT I
HP 38D REM
PD 385 REM VARIOUS OTHER SHA PES
IA $39 \varnothing$ REM
H 4 Øø GRAPHICS $7+16$ ： $\mathrm{KOLOR}=\varnothing$ ：DIM S（4），E（4），I（4）
IP 4 ø5 $S(1)=\varnothing: E(1)=\varnothing: I(1)=64$ ：$S(2)=193: E(2)=191: I$（ 2）$=1$ פ2
M6 $410 \mathrm{~S}(3)=16: \mathrm{E}(3)=16: \mathrm{I}(3)=$ 32：S（4）＝ø：E（4）＝ø：I（4） $=1$
EN 42 Х $\mathrm{CRADIUS}=1 \varnothing$ ：YRADIUS $=1 \varnothing$
CH 43 FOR $I=\varnothing$ TO $3: S=4-1: F O$ $R \quad J=\emptyset$ TO 3
CE 44 Ø KOLOR＝KOLOR＋1：IF KOLO R >3 THEN KOLOR $=1$
F6 $45 \varnothing \mathrm{~S}=\mathrm{S}+1$ ：IF $\mathrm{S}>4$ THEN $\mathrm{S}=1$
EJ 46 〇 XCENTER $=2 \varnothing+4$ \＃ $\mathrm{J}:$ YCENT $E R=12+2 \varnothing * I$
AO 47 Ø ARCSTART $=S(S):$ ARCEND $=$ $E(S): D E L T A=I$（ S ）

LF 48ø GOSUB 9øø
$0149 \varnothing$ NEXT J：NEXT I
01495 FOR I＝1 TO 3øø：NEXT I
605 Бø GOTO 5øø
ED 9 øø $\mathrm{X}=\mathrm{USR}$（ADR（CIRC\＄），ADR（ SINE\＄），XCENTER，YCENTE R，XRADIUS，YRADIUS，ARC START，ARCEND，256＊KOLO R＋DELTA）：RETURN
EF 1 øøø DATA $104,104,133,231$ ，1ø4，133，230，194，133 ， 217
FJ 1 øø5 DATA $194,133,216,1 ø 4$ ，133，228，133，229，1ø4 ， 133
EK $1 \varnothing 1 \varnothing$ DATA $218,1 \varnothing 4,1 \varnothing 4,133$ ，219，1ø4，1ø4，133，220 ， 194
E1 1015 DATA $194,133,221,194$ ，1ø4，133，222，104，141 ， 251
JB 1 ø2ø DATA $2,194,133,223,1$ 62，$, 134,227,165,227$
OB $1 ø 25$ DATA $56,233,64,133,2$ $27,165,221,56,229,22$ 7
CP 1 ø3ø DATA $133,224,144,24 \varnothing$ ，165，227，41，128，133， 225
FE 1 ø35 DATA 165，227，41，64，2 49，7，169，64，56， 229
PK 1 ø4ø DATA 224，133，224，165 ，227，24ø，6，2ø1，192，2 $4 \varnothing$
AG 1045 DATA $2,162,128,134,2$ 26，164，224，177，230，1 33
PH 1 ø5ø DATA $214,165,220,133$ ，215，169， $0,133,212,1$ 62
CN 1955 DATA 8，70，214，144，3， 24，1ø1，215，1ø6，1ø2
NA 1 ø6ø DATA $212,2 \emptyset 2,2 \emptyset 8,243$ ，166，225，249，5，73， 25 5
DP 1 ø65 DATA 24,1 165，1，24，1ø1 ，218，133，84，169，64
EH 1 ø7ø DATA 56，229，224，168， 177，236，133，214，165， 219
DL 1975 DATA $133,215,169,9,1$ 33，212，162，8，2ø8，2
J6 1ø8ø DATA 298，138，79，214， 144，3，24，101，215，106
GC 1 ø日5 DATA $1 ø 2,212,2 ø 2,2 ø 8$ ，243，133，227，166，226 ，24ø
OJ 1 ø9ø DATA 16，165，216，56，2 $29,227,133,85,165,21$ 7
EA 1995 DATA $233,9,133,86,24$ ，144，13，165，216，24
JK 11 øø DATA $1 ø 1,227,133,85$ ， $165,217,165, \varnothing, 133,86$
OC 11 D5 DATA $166,228,298,49$ ， $162,96,134,228,169,1$ 1
LF 111 D DATA $157,66,3,169, \varnothing$ ， 157，72，3，157，73
BK 1115 DATA $3,173,251,2,32$ ， 86，228，169，17，157
LE 112 DATA $66,3,169,12,157$ ，74，3，169， 6,157
PB 1125 DATA 75，3，240，9，162， 96，32，86，228， 166
PF $113 \emptyset$ DATA $229,2 ø 8,16,165$ ， 221，24，1ø1，223，133，2 21
EF 1135 DATA 197，222，208， 142 ，292，134，229，298，137 ， 96

Apple Universal INPUT

William Simpson

Banish EXTRA IGNORED errors from your Applesoft programs with this short INPUT routine. It works on any Apple II series computer with DOS 3.3 or ProDOS.

As you know if you've ever tried it, Applesoft BASIC won't let you type commas or colons when responding to an INPUT prompt. The computer rejects everything after the punctuation and gives you an EXTRA IGNORED error. There's a good reason for this, but there may be times when you'd like an input string to include the punctuation. For example, you might want to input a time value in response to a prompt like:

ENTER HOURS:MINUTES.

"Apple Universal Input" solves this problem and can be used as a routine in any Applesoft BASIC program. Once installed, it lets you input strings containing commas and colons, from the keyboard or from disk.

Type in and save the following program, then enter RUN and type any string containing commas or colons. The program prints the string to show that the input was accepted without errors.

You'll notice that the input prompt is a greater-than sign ($>$) rather than a question mark. This signals that the normal Applesoft INPUT command is not in use. If you don't like this prompt, you can easily change it to another character. Find the ASCII code for the character you prefer, add 128 to the ASCII
code, and substitute that value for the second DATA number in line 270 of the program. For example, the < character has an ASCII code of 60. To use that character as the prompt, you would replace the second DATA number in line 270 with $188(60+128)$.

Program Breakdown

Let's look at the example program to learn how this input routine can be used in other programs.

Line 100 defines the variable T \$. It's essential that this be the first variable your program defines.

Line 110 POKEs a short machine language (ML) routine into memory; the DATA for this routine is contained in lines 270-300. Lines 120 and 130 print a prompt on the screen, and call the new input routine with GOSUB 190. When using this routine in your own programs, you should use a similar GOSUB whenever you want to input a new string. Note that the string is returned in the variable A\$ (line 140).

The BASIC subroutine calls the ML routine (CALL 768) to bring the input string into the computer's memory. Using the ROM GETLN routine, the ML routine first moves the string into the input buffer. Then it stores the string's length in location 798, subtracts 128 from each character's value to obtain the correct ASCII codes, and returns control to BASIC.

Lines .200-260 move the string from the input buffer to a safe place in memory where it can accessed by the main program. The vehicle for this transfer is the string variable T\$,
which you'll recall was the first variable defined in the program. This is done so that you can find the descriptor for $\mathrm{T} \$$ by PEEKing the pointer in locations 105-106.

Variable Descriptors

As you may know, a simple variable descriptor consists of five bytes in the following form:

Byte \# Function
 $1=$ First letter of the variable's name
 $2=$ Second letter of the name
 $3=$ Length of the variable
 $4=$ Low byte of the variable's memory address
 $5=$ High byte of the variable's memory address

By manipulating the descriptor for the variable T\$, it is relatively simple to transfer the string from the input buffer (where it would quickly be overwritten) to another string variable (A\$ in example program).

After the descriptor is located (line 210), its third byte is POKEd with the length of the string (line 220), and the fourth and fifth bytes are POKEd with the low byte/high byte address of the input buffer (lines 230-240). T\$ is now set to the correct length and its descriptor points to the input buffer.

The final step (line 250) is to copy $\mathrm{T} \$$ into $\mathrm{A} \$$, using a form of the MID\$ function that extracts every character from T\$. You may substitute other names for $\mathrm{T} \$$ and $\mathrm{A} \$$, of course, when using this routine in your own programs.

Applesoft Universal Input

```
1øø T$=""
110 FOR I \(=768\) TO 798: READ A: POKE I, A: NEXT
```

120 HOME
$13 \emptyset$ PRINT "INPUT ANYTHING": GOS UB $19 \varnothing$
$14 \varnothing$ PRINT "ANYTHING==> "; A\$
150 PRINT
$16 \varnothing$ INPUT "ANY MORE? (Y OR N) " ; YT ${ }^{\text {F }}$
$17 \emptyset$ IF YT $\$=$ "Y" THEN $12 \varnothing$
189 END
$19 \emptyset$ CALL 768
$29 \boxed{B 1}=$ PEEK (798)
$21 \varnothing$ B2 $=$ PEEK (1ø6) 256 + PEE K (105)
$22 \emptyset$ POKE B2 +2 , B1
$23 \varnothing$ POKE B2 $+3, \varnothing$
$24 \emptyset$ POKE B2 $+4,2$
$259 A \$=M I D \$(T \$, 1)$
260 RETURN
$27 \emptyset$ DATA $169,19 \varnothing, 133,51,32,1 \emptyset 6$, 253, 142
$28 \emptyset$ DATA 3ø,3,164, $6,2 \emptyset 4,3 \emptyset, 3,2$ $4 \varnothing$
$29 \emptyset$ DATA $12,185, \emptyset, 2,41,127,153$
, \varnothing
$3 ø \varnothing$ DATA $2,2 ø \varnothing, 76,12,3,96, \emptyset, 9$ ()

Hardcopy Sprites For Commodore 64

Thomas H. White

Make a hardcopy printout of any Commodore 64 sprite with this BASIC program for the VIC-1525, MPS-801, or MPS-802 printer. It's easily adapted to other printers as well.

Have you ever wished you could print a sprite on paper? For example, you may want to check some detail on a sprite you designed without bothering to load and run the program. With "Hardcopy Sprites," you can check such details in seconds rather than minutes, and even compile a personal library of sprite shapes for future reference.

Ordinary screen dump programs can't make sprite printouts because the data that defines sprite shapes isn't located in regular screen memory. To print out a sprite, you need a program that reads the $64-$ byte memory area where the sprite shape is actually stored.

Hardcopy Sprites uses this technique to print a 24×21 character representation of any sprite, with vertical or horizontal expansion if you wish. Large ball-shaped characters form single-color sprites, and additional characters represent multicolor sprites. Figures 1 and 2 show two examples of what is possible.

After typing and saving the program, POKE your sprite data into memory and note the address where it begins. Then simply run Hardcopy Sprites and follow the prompts. The program asks you to enter the memory address where the sprite data begins, to give the sprite a descriptive name, to choose horizontal or vertical expansion (or both), and to select single-color or multicolor mode.

Non-Commodore Printers

Hardcopy Sprites is written for Commodore printers, but is readily adapted to other printers. If your printer can't handle Commodore
graphics, replace the ball-shaped Commodore graphics character (SHIFT-Q in the program listing) in lines 200, 210, 230, 340, and 360 with some other character, such as an X or a plus sign. With a little extra work, you could also incorporate Hardcopy Sprites as a subroutine within a BASIC sprite editor program.

Figure 1: Expanded SingleColor Sprite

Figure 2: Unexpanded Multicolor Sprite

Hardcopy Sprites

Please refer to "COMPUTEI's Guide to Typing In Programs" before entering this listing.
$1 \varnothing$ REM ** SPRITE HARDCOPY **
:rem 3ø
$2 \varnothing$ INPUT"\{CLR\}\{DOWN\}SPRITE DAT A MEMORY LOCATION";PG
:rem $2 ø 7$

40 INPUT" $\{7$ SPACES $\}$ Y DIR. (Y/N)";EYS :rem 194
45 INPUT" $\{$ DOWN\}SPRITE NAME"; NS
:rem 243
47 INPUT"\{DOWN\}MULTICOLOR MODE (Y/N)";M\$:rem 82
50 OPEN1,4 :rem 4ø
55 PRINT\#1, CHRS(15)"MEMORY LOC ATION"PG"\{2 SPACES\}"NS
:rem 242
60 FORR=ØTO60STEP3 :rem 132
$7 \varnothing$ FORC $=\emptyset$ TO2 : $\mathrm{P}=\mathrm{PEEK}(\mathrm{PG}+\mathrm{R}+\mathrm{C})$
:rem 146
8 FORB=7TObSTEP-1:V(B)=P/2:P= INT(V(B)) :rem 111
$9 \varnothing \mathrm{~V}(\mathrm{~B})=\mathrm{V}(\mathrm{B})-\mathrm{INT}(\mathrm{V}(\mathrm{B})):$ rem $2 \not 02$
$1 \varnothing \varnothing \operatorname{IFV}(B)>\varnothing$ THENGOSUB2øø
:rem 184
$11 \varnothing \operatorname{IFV}(B)=\emptyset$ THENGOSUB25ø
:rem 189
$12 \emptyset$ NEXTB : rem $2 \varnothing$
$13 \emptyset \mathrm{FORB}=\varnothing \mathrm{TO} 7: \mathrm{L} \$=\mathrm{L} \$+\mathrm{D} \$(\mathrm{~B})$
:rem 129
140 NEXTB:NEXTC :rem $21 \varnothing$
$15 \emptyset$ IFEYS<>"Y"THENPRINT\#1,CHRS (15) + CHRS $(16)+" 28 "+$ L $\$+$ CHR $\$$ (8)
:rem 255
 INT\#1, CHRS (15) + CHRS (16) + " 1 6"+L\$+CHR\$ (8) :NEXTRE

:rem 201

$17 \varnothing$ LS="":NEXTR :rem 84
$18 \emptyset$ PRINT\#1:CLOSE1:END: rem $1 \emptyset 8$
$2 \emptyset \emptyset \mathrm{D}$ (B$)=$ "Q" :rem 223
$21 \varnothing$ IFMS="N"ANDEXS="Y"THEND\$ (B) $=$ " $Q Q$ " :rem 29
220 IFMS="Y"ANDEXS="N"THENGOSU B3øø :rem 19
230 IFMS="Y"ANDEX\$="Y"THEND\$ (B)="QQ": GOSUB32 \quad :rem 121
240 RETURN : rem 118
$250 \mathrm{D} \$(\mathrm{~B})="$ " :rem 19
260 IFMS="N"ANDEX\$="Y"THEND\$ (B $)="\{2$ SPACES $\} ":$ rem 128
$27 \varnothing$ IFMS="Y"ANDEXS="N"THENGOSU B340 :rem 28
28 IFMS="Y"ANDEX\$="Y"THEND\$ (B $)="\{2$ SPACES $\} ":$ GOSUB36
: rem 224
290 RETURN :rem 123
$3 \varnothing \varnothing$ IFB $=60 \mathrm{RB}=40 \mathrm{RB}=20 \mathrm{RB}=\emptyset$ THENIF $D \$(B+1)=" \quad " T H E N D \$(B+1)=" \emptyset "$ $: D \$(B)=" \emptyset " \quad$:rem 128
$31 \varnothing$ RETURN :rem 116
32 IFB $=60 \mathrm{RB}=40 \mathrm{RB}=20 \mathrm{RB}=\emptyset$ THENIF $D \$(B+1)="\{2$ SPACES $\}$ "THENDS $(B+1)=" \emptyset \emptyset ": D \$(B)=" \emptyset \emptyset "$
:rem 226
330 RETURN :rem 118
$34 \emptyset \mathrm{IFB}=60 \mathrm{RB}=40 \mathrm{RB}=20 \mathrm{RB}=\varnothing$ THENIF $D \$(B+1)=" Q " \operatorname{THEND} \$(B+1)=" O "$ $: D \$(B)=" O^{2} \quad$ rem 147
350 RETURN :rem 120
360 IFB $=60 \mathrm{RB}=40 \mathrm{RB}=20 \mathrm{RB}=\emptyset$ THENIF $D \$(B+1)=" Q Q " T H E N D \$(B+1)=" 0$ $O ": D \$(B)=" O O " \quad:$ rem 4
370 RETURN :rem 122 ()

IBM Variable Lister

Peter F. Nicholson

This handy utility lists all the variables in your IBM BASIC programs. It runs on any PC with at least 64 K RAM or PCjr with at least 128 K RAM.

The ability to list variables is a valuable aid in debugging and documenting BASIC programs. The three programs accompanying this article show how IBM BASIC variables are stored and let you list the variables in any IBM BASIC program.
"Variable Lister" (Program 3) is the actual utility. Programs 1 and 2 demonstrate how IBM BASIC stores variables for those who are interested in the details (see below). But you don't have to be familiar with the theory to use Variable Lister.

The first step is to type in and save Program 3. (Note: All three programs assume that your screen is in the 80 -column mode. Enter WIDTH 80 from BASIC or MODE 80 from DOS before running the programs.)

Once Variable Lister is saved on disk, there are two ways to run it. The easiest way is to run your own program first, break out, then activate Variable Lister with the CHAIN command. For example, if you have saved Variable Lister under the filename "VARLIST," enter CHAIN "VARLIST", 70, ALL and press ENTER. This preserves your program's variables while Variable Lister loads and runs.

After doing this, Variable Lister replaces your program in memory. If you want to get a variable list while your program remains in memory, you need to renumber Variable Lister with line numbers not used in your program, and then merge it
with your program using CHAIN MERGE. See the IBM BASIC Manual for details.

Of course, Variable Lister uses variables of its own. To avoid confusion, these variables (BAS, XLEN, CTA, CTV, II1, JJ1, AD0, VARNAME\$, ARRNAME\$, ITV!, and TESTARRAY) are suppressed from the variable list, and should not be used by your program.

The subroutine beginning at line 820 sorts variables and arrays alphabetically. There may be times when you'd rather display them chronologically (the order in which they're defined as the program runs). This is easily done by deleting the statement GOSUB 820 from lines 500 and 520 .

How It Works

IBM BASIC uses four types of vari-ables-integer, string, singleprecision, or double-precision. The term scalar describes all variables that are not arrays. Appendix I of the IBM BASIC Manual explains how and where scalars are stored. Page I2 of this appendix shows where the scalar storage area starts, and pages I-3 and I-4 explain the meaning of the data stored there.

If you want to see a graphic illustration of scalar variable storage, type in and save Program 1, then enter RUN. The program defines four variables-each a different type-and displays the descriptor bytes that describe each. You'll see two columns of numbers for each variable. The left column provides a reference number for each byte of the descriptor, and the right column shows the value that each byte contains.

The first byte of the descriptor indicates the variable type. This byte contains a 2 for an integer variable, 3 for a string, and 4 or 8 for a single- or double-precision variable, respectively. The next two bytes hold the first two characters of the variable name. For the variable A, we see the value of 65 , the ASCII code for the letter A. The letter B is shown with an ASCII code of 66, and so on.

When a variable name has more than two characters, the fourth byte of the descriptor shows the number of remaining characters. The additional characters are stored immediately after this byte, with 128 added to their ASCII codes. Thus, where the variable is named $A B C$, you will see the values 65 and 66 (ASCII codes for AB), 1 (the number of remaining characters), and 195 (128 + ASCII code for C). The final bytes in each descriptor, highlighted in reverse video, show the value given to each variable.

Array Variables

The IBM BASIC Manual gives few details about how and where array variables are stored. However, its memory map does show that scalars, arrays, and strings occupy three contiguous areas in memory. You can use these formulas to find the boundaries of each zone:

PEEK (\&H358) + 256*PEEK (\&H359)
Scalar variable space starts
PEEK $(\& H 35 A)+256 *$ PEEK (\& H 35B) -1
Scalar variable space ends
PEEK (\&H35A) + 256*PEEK(\&H35B)
Array space starts
PEEK (\&H35C) +256 *PEEK (\&H35D) -1
Array space ends
PEEK(\&H35C) $+256 *$ PEEK (\&H35D)
String space starts
(Of course, the PEEKs won't return meaningful results until your variables have actually been declared. Prior to that time, the storage zones are empty, and the pointers all point to the same place.)

Like scalars, array variables can be any of four types: integer, string, single-precision, or double-precision. Thus, the first part of an array descriptor is the same as a scalar de-scriptor-first comes a type byte, followed by the characters of the array name-but additional bytes are needed to describe the more complex structure of an array. The two bytes after the name show the number of bytes needed to complete the array; this includes a description of the array's elements and dimensions, and the array data itself.

The next byte in the array descriptor (highlighted in reverse video) shows the number of dimensions in the array. For example, the statement DIM A $(2,200)$ creates a two-dimensional array; the statement DIM B $(1,2,3,4,5,6)$ creates an array with six dimensions. Although it's rarely necessary to use more than a few dimensions, IBM BASIC lets you define an array with as many as 255 of them.

The DIM statement that defines an array also specifies the maximum number of elements in each dimension. The array descriptor contains two more bytes for each dimension in the array, indicating the number of elements in that dimension. An array dimension may contain a maximum of 32,767 elements. If the number of elements is not specified, the default value of 10 elements is assigned.

Program 2 graphically illustrates array storage. Its display is similar to that of Program 1, using reverse video to highlight the area allocated for the array dimension and element numbers.

Lister Details

Strings stored in program lines may not be stored in string space. For example, say that your program has this line:

$$
\begin{aligned}
& 5 \mathrm{AS}=\text { "A": BS }= \\
& \text { STRING\$(2,CHRS(65)) }
\end{aligned}
$$

Variable Lister reports both A\$ and $B \$$ as variables, but the string space is only two bytes long, since the character A for $\mathrm{A} \$$ is stored in line 5
of the program where it is defined. Functions defined in a program are indicated by the FN prefix and are listed last for the variable type. A function is shown by adding 128 to the code of the first character. If your program contains DEF FNAA\%, Variable Lister displays 2, 193 $(65+128), 65,0$. Where your program consists of the line $5 \mathrm{~A} \%=$ 1:DEF FNA $\%(X, Y)=X^{\wedge} 2+Y^{\wedge} 2$, Variable Lister reports A, FNA, X , and Y as variables.

The program lists array dimensions exactly as defined in your DIM statement, independent of the OPTION BASE you have selected. If your program consists of the line 5 DIM A $(2,2)$, the report should list $\mathrm{A}(2,2)$ and show 47 bytes occupied. If the program consists of 5 OPTION BASE 1: DIM A(2,2), the report should list $A(2,2)$ and show 27 bytes occupied.

Keep in mind that string space is filled from the top of memory downward. To find the starting address of your stack area, use PEEK (\&H30A) + 256 * PEEK (\&H30B). Use PEEK (\&H32F) +256 * PEEK (\&H330) to find the current string space. To get an accurate report, you may first need to issue a FRE ('"'") command as described in the manual.

Finally, Variable Lister cannot report any variable that your program does not actually use. Consider this example:

$$
\begin{aligned}
& 5 \mathrm{D} \$=" 12-31-84^{\prime \prime}: \mathrm{IF} \\
& \text { RIGHT\$(D\$,2)=" } 85 \text { " THEN A=1 }
\end{aligned}
$$

Since the IF condition can never be satisfied, the computer never executes $\mathrm{A}=1$. Variable Lister reports only one variable-D\$.

If you would like a copy of this program, send a formatted disk with a self-addressed, postage-paid mailer and a check for $\$ 3.00$ to:

Peter F. Nicholson
 1701 South Princeton Road L Ottawa, Kansas 66067

Please refer to "COMPUTEl's Guide to Typing In Programs" before entering these listings.

Program 1: Scalar Variable Storage

GH 100 KEY OFF: DEF SEG: COLOR 7 O :CLS:PRINT "HOW SCALAR VA RIABLES ARE STORED":PRINT
 \emptyset

10 $12 \varnothing$ AD!=PEEK ($\& H 358$) +256 *PEEK (\& H359)
PJ $13 \varnothing$ PRINT "INTEGER STRI NG SINGLE PREC.
HM 140 FOR $\mathrm{J}=1$ TO 4
6H $15 \emptyset$ FOR $\mathrm{I}=\varnothing$ TO PEEK (AD!) + PEEK (AD ! + 3) +3
QK $16 \varnothing$ IF I $>$ PEEK (AD +3) +3 THEN C OLOR $\varnothing, 7$ ELSE COLOR $7, \varnothing$
CL $17 \varnothing$ K=PEEK (AD!+I)
FD 189 LOCATE $\mathrm{I}+5$, 15 ($\mathrm{J}-1$) +1 : PRI NT USING "\#\#\#\# "; I; K;
OS $19 \varnothing$ NEXT I
MB $2 ø \varnothing$ AD! =AD!+PEEK (AD!)+PEEK (AD ! +3) +4
HE 210 NEXT J
6K $22 \varnothing$ COLOR 7,ø
FK $23 \varnothing$ PRINT:PRINT "INTEGER A\%= g"
LO $24 \varnothing$ PRINT "STRING AB $\$=` \oslash$ '"
CG $25 \varnothing$ PRINT "SINGLE PRECISION ABC! $=\varnothing 1$
JB $26 \emptyset$ PRINT "DOUBLE PRECISION ABCD\# $=$ "
CL $27 \varnothing$ PRINT STRING $\$(5$, CHR $\$(219)$);" DATA ";
DP 289 LOCATE 15, 1

Program 2: Array Variable Storage

EB 1 øøø KEY OFF: DEF SEG: COLOR 7, ø:CLS: PRINT "HOW ARRAYS ARE STORED": PRINT
OH $1 \varnothing 1 \varnothing \mathrm{~J}=1: \mathrm{I}=\varnothing$: $\mathrm{K}=\varnothing$: XLEN= \varnothing : OPTIO N BASE 1:' DECLARE ALL V ARIABLES USED
LP 1 ø2ø DIM ABCD\%(1), ABC\$(1), AB! (2,1), A\# (1): 'DECLARE SA MPLE ARRAYS
 (2 H 35 B)
so $1 \varnothing 4 \varnothing$ PRINT TAB(2);"INTEGER"; T AB(18);"STRING"; TAB(32); "SINGLE PREC. "; TAB(46);" DOUBLE PREC."
CH 1 195ø WHILE AD!<PEEK ($\& H 35 C)+25$ 6*PEEK (\&H35D) - $1:$ XLEN $=$ PEE K(AD!+3)
JP 1 166ø FOR $\mathrm{I}=\varnothing$ TO XLEN $+5+\operatorname{PEEK}(A$ D! +XLEN +4) + 256*PEEK (AD ! + XLEN+5)
CF $197 \varnothing$ IF I $>$ XLEN +5 THEN COLOR \varnothing , 7 ELSE COLOR 7, \varnothing
0. 1 ø் 1 IF I $>$ XLEN $+6+2$ \& PEEK (AD ! +X LEN+6) THEN COLOR 7, \varnothing
CA $1090 \mathrm{~K}=\mathrm{PEEK}$ (AD!+I)
OK 11 øø LOCATE $\mathrm{I}+5,15$ ($\mathrm{J}-1)+1$: PR INT USING "\#\#\# "; I; K;
FE 1110 NEXT I
LP $112 \varnothing$ AD! =AD ! +XLEN+6+PEEK (XLEN
 $!+5): J=\mathrm{J}+1$
FM 1130 WEND
OL 114ø LOCATE 19,1:PRINT "VARIA BLES: ": PRINT TAB(11);"AB CD\% (1)"
CO 1159 PRINT TAB(11); "ABC\$(1)"
6B $116 \varnothing$ PRINT TAB(11); "AB! $(2,1)$ "
NN $117 \varnothing$ PRINT TAB(11);"A\#(1)"
KH $118 \emptyset$ PRINT "ARRAY DIMENSION A ND ELEMENTS PER DIMENSIO N "; CHR\$(219); CHR\$(219);
IE $119 \varnothing$ COLOR $7, \varnothing$
EE 12øø LOCATE 1,79

Program 3: Variable Lister

DJ 10 REM PROGRAM ANALYZES DATA AREA AND PROVIDES A REPORT ON
OB $2 \varnothing$ REM 1. SCALAR VARIABLES
ME $3 \varnothing$ REM 2. ARRAYS

KP $4 \varnothing$ REM 3．AMOUNT OF MEMORY R EQUIRED FOR VARIABLES
11 $5 \emptyset$ REM INTERNAL VARIABLES：AD ø！，BAS，CTV ，CTA，II 1，JJ 1 ，XLE N
CL 69 REM
ARRAYS：IT V！，VARNAME $\$$ ，ARRNAME $\$$ ，TMPNA ME ${ }^{-}$
MH $7 \varnothing$ DEF SEG：SCREEN $\varnothing:$ WIDTH $8 \varnothing$ ： COLOR 7，ø：KEY OFF：CLS：ON E RROR GOTO 92ø
OB 8ø LOCATE 1，1：PRINT＂SORTING VARIABLES＂；
$669 \mathscr{D}$ BAS＝1：DIM TESTARRAY（2）：TES TARRAY（ø）＝1：＇TEST FOR OPT ION BASE
CH 1 øø ERASE TESTARRAY
KK $11 \varnothing$ ADø！＝ø：XLEN＝ø：CTV＝－BAS：CT A＝－BAS：II1＝$:$ ：JJ1 $=\varnothing$ ：DIM IT V！（1ø－BAS）：＇DECLARE INTE RNAL VAR．
ED 12の ADの！＝PEEK（ $\%$ H358）＋256＊PEEK （\＆H359）：＇COUNT NUMBER OF VARIABLES
MD $13 \varnothing$ CTV $=$ CTV +1 ：XLEN＝PEEK（ADの！＋ 3）
BJ $14 \varnothing$ ADø！＝ADø！＋PEEK（ADø！）＋XLEN $+4$
D1 150 IF $A D \oslash!<$ PEEK $(\& H 35 A)+256 * F$ EEK（\＆H35B）－1 GOTO $13 \varnothing$
DN $16 \varnothing$ ADø！＝PEEK $(\& H 35 A)+256$＊PEEK （\＆H35B）：，COUNT NUMBER 0 F ARRAYS
FB $17 \varnothing$ CTA $=$ CTA +1 ：XLEN＝PEEK（AD $\operatorname{l}+$ 3）
FH $18 \emptyset$ ADø！＝ADø！＋XLEN＋PEEK（ADø！＋ $4+$ XLEN $)+256$＊PEEK（AD $\emptyset!+5+x$ LEN）+6
HM 196 IF ADø！$\angle P E E K(\& H 35 C)+256 * P$ EEK（\＆H35D）－1 GOTO $17 \emptyset$
GF $2 ø \varnothing$ DIM VARNAME （CTV），ARRNAME \＄（CTA）：＇DECLARE STRINGS FOR VAR．AND ARRAYS
JH $21 \varnothing$ GOSUB 590：＇GET ADDRESS 0 F INTERNAL VARIABLES
$0022 \varnothing$ CTV＝－BAS：ADø！＝PEEK（\＆H358） ＋256＊PEEK（\＆H359）
BE $23 \varnothing$ XLEN＝PEEK（ADø！＋3）：FOR II 1 $=1$－BAS TO 7－BAS：IF ADø！＝1 TV！（II1）GOTO $28 \varnothing$
k． $24 \varnothing$ NEXT II1：CTV＝CTV＋1
IF 250 VARNAME（CTV）$=$ STR $\$$（PEEK（A Dø！））+ CHR（PEEK（ADø！＋1））： ＇GET TYPE AND NAME
KK $26 \emptyset$ IF PEEK（ADø！+2 ）＞の THEN VA RNAME $\$$（CTV）$=$ VARNAME $\$$（CTV） ＋CHR\＄（PEEK（ADø！＋2））：FOR I I $1=1$ TO XLEN：VARNAME $\$$（CTV ）＝VARNAME $\$$（CTV）+ CHR $\$$（PEEK （ADø！＋3＋1I1）－128）：NEXT II 1
IB $27 \varnothing$ IF PEEK（ADø！）$=3$ THEN VARN AME $\$(C T V)=$ VARNAME $\$(C T V)+"$ \＄＂
BC $28 \varnothing$ ADø！＝ADø！＋PEEK（AD®！）＋XLEN $+4$
6B $29 \varnothing$ IF ADø！＜PEEK（ $\& H 35 A)+256 * P$ EEK（\＆H35B）－1 GOTO $23 \varnothing$
PA $3 \varnothing \varnothing$ CTA $=-B A S:$ ADD！$=$ PEEK $(\& H 35 A)$ ＋256＊PEEK（\＆H35B）
IP $31 \varnothing$ XLEN＝PEEK（AD $\varnothing+3$ ）：FOR II 1 ＝8－BAS TO 1ø－BAS：IF AD®！＝ ITV！（II1）GOTO $41 \varnothing$
KE $32 \varnothing$ NEXT II1：CTA $=$ CTA +1
QK $33 \varnothing$ ARRNAME $\$(C T A)=S T R \$($ PEEK $(A$ Dø！））+ STR $\$$（PEEK（ADD！$+6+\mathrm{XL}$ EN））+ CHR $\$($ PEEK（ADD！+1$)$ ）：, GET TYPE AND NAME
$0 E 34 \varnothing$ IF PEEK（ADD！+2 ）$>\varnothing$ THEN AR RNAME \＄（CTA）＝ARRNAME \＄（CTA） ＋CHR\＄（PEEK（ADD！＋2））：FOR I I $1=1$ TO XLEN：ARRNAME $\$$（CTA ）＝ARRNAME $\$$（CTA）+ CHR $\$$（PEEK （ADø！＋3＋II1）－128）：NEXT II 1

OC 35 I IF MID\＄（ARRNAME $\$$（CTA）， 2,1 ）＝＂3＂THEN ARRNAME $\$(C T A)=$ ARRNAME $\$($ CTA $)+" \$ "$
U $36 \varnothing$ ARRNAME $\$(C T A)=$ ARRNAME $\$(C T$ A）＋＂（＂
k． $37 \varnothing$ FOR II $1=$ PEEK（ADD ！＋XLEN +6 ） TO 1 STEP－ 1
AA $38 \varnothing$ ARRNAME $\$$（CTA）＝ARRNAME $\$$（CT A）＋STR\＄（PEEK（ADD ！＋6＋XLEN + 2＊II1－1）＋256＊PEEK（ADø！＋+ ＋ XLEN＋2＊II1）－BAS）
AE $39 \varnothing$ IF II $1=1$ THEN ARRNAME $\$$（CT A）$=$ ARRNAME $\$(C T A)+") " E L S E$ ARRNAME $\$$（CTA）＝ARRNAME $\$$（ C TA）＋＂，＂

EJ $40 \varnothing$ NEXT II1
FK $41 \varnothing$ ADø！＝AD ！！＋XLEN＋PEEK（AD $!+$ 4＋XLEN）＋256＊PEEK（ADø ！＋5＋X LEN）+6
KL 42 IF ADø！＜PEEK（ $\& H 35 C$ ）$+256 *$ P EEK（\＆H35D）－1 EOTO $31 \varnothing$
AG 430 ITV！（ 1 －BAS ）＝PEEK $(\& H 35 A)+2$ 56＊PEEK（ \＆H 35B）－PEEK（ \＆H 358 ）－256＊PEEK（\＆H359）－64
$6144 \varnothing$ ITV：（ 2 －BAS ）＝PEEK（ \＆H35C）+2 56＊PEEK（ \＆H35D）－PEEK（ \＆H35A ）－256＊PEEK（ $\& H 35 B$ ）－1ø2－3＊（ CTA + CTV +2 ＊BAS）
EN $45 \varnothing$ FOR II $1=1$－BAS TO CTA：ARRN AME （III）＝RIGHT\＄（ARRNAME $\$$ （II1），LEN（ARRNAME\＄（II1））－ 1）
HI $46 \varnothing \mathrm{JJ} 1=$ INSTR（ 1 ，ARRNAME $\$$（III） ，CHR $\$(32)$ ）：IF JJ $1>$ © THEN ARRNAME （III）$=$ LEFT （ （ARRNA $\operatorname{ME} \$(I I 1), J J 1-1)+M I D \$(A R R N$ AME\＄（III），JJ 1＋1，LEN（ARRNA ME（II1））－JJ1）
EH $47 \varnothing$ IF JJ $1>\varnothing$ GOTO 46の
OP 489 NEXT II1：IF CTV＝－1 THEN C TV＝ø ELSE IF CTV＝ø THEN C $T V=1$
FG 490 CLS：DIM TMPNAME $\$(C T V): F O R$ II $1=1$－BAS TO CTV：TMPNAME \＄（III）＝VARNAME\＄（III）：NEXT II1
KJ 5øø JJ1＝CTV－1：GOSUB 82の：II1＝ø ：GOSUB 86ø：GOSUB 949：ERAS E TMPNAME $\$:$ CLS：IF CTA $=-1$ THEN CTA＝ø ELSE IF CTA＝ø THEN CTA $=1$
$0651 \varnothing$ DIM TMPNAME \＄（CTA）：FOR III ＝1－BAS TO CTA：TMPNAME $\$$（II 1）＝ARRNAME（II1）：NEXT III
CD 520 JJ1＝CTA－1：GOSUB 829：II $1=1$ ：GOSUB 869：GOSUB 949：ERAS E TMPNAME\＄，VARNAME\＄，ARRNA MÉक：CL．S
GD $53 \varnothing$ PRINT＂STRING SPACE USED ＂，TAB（3Ø）；
JH $54 \varnothing$ ADø！＝FRE（＂＂）：ADø！$=$ PEEK（\＆H 3gA）－PEEK（ $\& H 32 F)-1+256 *(P$ EEK（ \＆H36B）－PEEK（ \＆H33ø））：P RINT USING＂\＃\＃\＃\＃\＃＂；ADø！
FL 550 PRINT＂SCALAR VARIABLE SP ACE＂，TAB（38）；：PRINT USING ＂\＃\＃\＃\＃\＃\＃＂；ITV！（1－BAS）
BH $56 \varnothing$ PRINT＂ARRAY SPACE＂，TAB（3 ø）；：PRINT USING＂\＃\＃\＃\＃\＃＂；I TV！（2－BAS）
DN $57 \varnothing$ PRINT：PRINT＂TOTAL VARIAB LE SPACE＂，TAB（3Ø）；：PRINT USING＂\＃\＃\＃\＃\＃＂；ITV！（1－BAS ）＋ITV！（2－BAS）＋ADø！；：PRINT ＂BYTES＂
QP 58ø GOSUB 94ø：CLS：END
DJ $59 \varnothing$ ITV！（1－BAS）＝VARPTR（ADø！）－ 5：＇SUBROUTINE TO GET INTE RNAL ADDRESSES
NF 6øø ITV！（2－BAS）$=$ VARPTR（XLEN $)-$

J1 610 ITV！（3－BAS）＝VARPTR（CTV）-5
HC $62 \varnothing$ ITV！$(4-B A S)=V A R P T R(C T A)-5$
6 L 630 ITV！（5－BAS）$=\operatorname{VARPTR}$（II1）－5
K1 $64 \varnothing$ ITV！（ 6 －BAS $)=$ VARPTR（JJ1）-5
HH $65 \varnothing$ ITV！（ 7 －BAS $)=$ VARPTR（BAS）-5
DJ $66 \emptyset$ ITV！（8－RAS）＝VARPTR（ITV！（ 1 －BAS）$-1 \varnothing$
W1 67% ITV！$(9-B A S)=V A R P T R(V A R N A M$ E $\$(1-\mathrm{BAS})$ ）－14
BF $68 \emptyset$ ITV！$(1 \varnothing$－BAS $)=V A R P T R(A R R N A$ ME $\$(1-\mathrm{BAS})$ ）-14
JD $69 \varnothing$ FOR II $1=1$－BAS TO 9－BAS：IF ITV！（III）＜ø THEN ITV！（II 1）$=2^{\wedge} 16+$ ITV！（II1）
D1 $7 ø \varnothing$ NEXT II1：RETURN
DO 710 XLEN＝ø：FOR III＝1－BAS TO C TV
HP 720 IF MID\＄（TMPNAME\＄（III）， 1,2 ）$=$ STR $\$$（JJ1）AND MID\＄（TMPN AME（III）， 3,1 ）＜＂a＂THEN P RINT MID\＄（TMPNAME\＄（II1）， 3 ，LEN（TMPNAME $\$(I I i))-2)+$ SF ACE（2）；：XLEN＝1
OK 73 IF MID\＄（TMPNAME\＄（II1）， 1,2 ）$=$ STR $\$(J J 1)$ AND MID $\$$（TMPN AME $\$($ II1）$, 3,1)>" a "$ THEN P RINT＂FN＂+ CHR\＄（ASC（MID\＄（T MPNAME $\$(I I 1), 3,1)$ ）-128 ）+ M ID $\$$（TMPNAME $\$$（II1），4，LEN（T MPNAME $\$($ II 1 $)$ ）-2 ）+ SPACE $\$(2$ ）；：XLEN＝1
EE 740 NEXT II1
BL $75 \varnothing$ IF XLEN $=\varnothing$ THEN PRINT＂NON E＂：PRINT：PRINT ELSE PRINT ：PRINT
NN 766 RETURN
KP 770 FOR II $1=1$－BAS TO CTA
FC 789 IF LEFT\＄（ARRNAME（II1）， 1 ） ＝RIGHT\＄（STR $\$$（JJ1），1）THEN
PRINT MID\＄（ARRNAME（III） ，3，LEN（ARRNAME $($ III）$)-2)+$ SPACE（2）；：XLEN＝1
F0 790 NEXT II 1
AC 8øø IF XLEN＝ø THEN PRINT＂NON E＂：PRINT：PRINT ELSE PRINT ：PRINT
EK B1ø XLEN＝ø：RETURN
KE 829 XLEN $=1$ ：WHILE XLEN：XLEN＝\varnothing
NM 839 FOR II $1=1$－BAS TO JJ 1
LK 840 IF TMPNAME $\$$（III）$>$ TMPNAME $\$$ （II $1+1$ ）THEN SWAP TMPNAME \＄（II1），TMPNAME $\$(I I 1+1):$ XL $\mathrm{EN}=1$
01 859 NEXT II1：WEND：RETURN
$\mathrm{KK} 86 \mathrm{Cl}_{\text {IF }}$ III $=\varnothing$ THEN PRINT＂VARI ABLE SPACE＂；ITV！（1－BAS）； ＂BYTES＂：TMP\＄＝＂＂ELSE PRIN T＂ARRAY SPACE＂；ITV！（2－B AS）；＂BYTES OPTION BASE＂ ；ABS（1－BAS）；：TMP $\$=$＂ARRAYS

DL $87 \emptyset$ PRINT：PRINT：PRINT：PRINT＂ INTEGER＂＋TMP\＄＋＂－＂；：JJ1 ＝2：IF TMP $\$="$＂THEN GOSUB $71 \varnothing$ ELSE GOSUB 77ø
BK $88 \emptyset$ PRINT：PRINT：PRINT＂STRING ＂＋TMP\＄＋＂－＂；：JJ1＝3：IF T MP\＄＝＂＂THEN GOSUB 71ø ELS E GOSUB 770
ME $89 \varnothing$ PRINT：PRINT：PRINT＂SINGLE PRECISION＂＋TMP\＄＋＂－＂； JJ1＝4：IF TMP $\$=" 1$ THEN GOS UB 710 ELSE GOSUB 77ø
Q $9 \varnothing \varnothing$ PRINT：PRINT：PRINT＂DOUBLE PRECISION＂＋TMP\＄＋＂－＂； JJ1＝8：IF TMP $\$="$＂THEN GOS UB 710 ELSE GOSUB 77ø
MF 910 RETURN
C1 920 IF ERR＝9 AND ERL＝9Ø THEN BAS＝ø：RESUME NEXT
OL $93 \varnothing$ ON ERROR GOTO \varnothing
CN 940 LOCATE 25，1：PRINT＂PRESS ANY KEY TO CONTINUE＂；
LJ $95 \varnothing$ KB\＄＝INKEY\＄：IF KB\＄＝＂＂GOTO $95 \varnothing$ ELSE RETURN

Apple Ilc RAM Disk Mover Part 2

Christopher J. Flynn

Abstract

Last month, Part 1 of this two-part series demonstrated the RAM disk and subdirectory options with ProDOS and the Apple IIc. This month's article presents a utility program which rapidly copies a number of programs from a floppy disk to the RAM disk, greatly speeding up the preparations required for using the RAM disk.

The discussion in Part 1 was a bit on the theoretical side, but this month we tackle the practical side. "RAM Disk Mover" is a program which automates the processes described in Part 1. It adds a few little twists, however. Here is how RAM Disk Mover works:

1. First it looks for the PROGRAMS subdirectory on your floppy disk. If PROGRAMS is not found, RAM Disk Mover instructs you to insert another disk.
2. Next, it looks in the RAM drive for the PROGRAMS subdirectory. If PROGRAMS is not found, RAM Disk Mover creates the subdirectory. If PROGRAMS is found, it deletes all of the files in PROGRAMS. This makes room for the new programs.
3. RAM Disk Mover goes back to the floppy PROGRAMS subdirectory. Then it saves the name and length (in blocks) of each BASIC program. It stops when there are no more BASIC programs or when the number of blocks exceeds the capacity of the RAM drive (118 blocks, considering the directories).
4. Using this list of BASIC programs, RAM Disk Mover builds an EXEC file containing a series of LOAD and SAVE commands. The EXEC file is named TEMP.EXEC and is stored in the volume directory of the floppy with which RAM Disk Mover is currently working.
5. RAM Disk Mover adds a RUN command as the last line of the EXEC file. The program specified by the variable P1\$ will start automatically when the copy operation is
finished. Right now, $\mathrm{P} 1 \$$ is set up for STARTUP.RAM. You can change this to whatever program name you want.
6. After building the EXEC file, RAM Disk Mover clears the screen and informs you that all is well. Then the EXEC file starts up. At this point, programs are actually moved from floppy disk to RAM disk. Your startup program will run and you'll be in business.

Preparing The Mover

RAM Disk Mover requires little, if any, of your attention while it runs. Your biggest job is to organize your disks so that Mover can access them properly.

Here are some guidelines for trouble-free operation:

Format some disks so you'll always have some spares handy. Use whatever volume labels suit you.

As you format the disks, be sure to establish the PROGRAM and DATA subdirectories.

Place a copy of Mover in the volume directory of each disk. Mover does not require much space.

Place all of the BASIC programs you want Mover to copy in the PROGRAMS subdirectory. Don't forget that the RAM disk has a limit of about 61 K or 120 blocks. If you think you will exceed this limit, place some of the programs on a second disk.

Putting It To Work

Now for the actual operation. It's simple:

1. Always make sure your IIc is turned on, that ProDOS is ready, and that you're in Applesoft.
2. Place your program disk in the internal disk drive.
3. Type either RUN MOVER or -MOVER. RAM Disk Mover will take over from there. It tells you the name of each program it is copying, then starts the EXEC file. As the EXEC file runs, you will see a series
of open brackets displayed. This means all is well.
4. When the EXEC file is done, the STARTUP.RAM program will begin running if it is present.
5. At this point, you can remove your floppy disk from the disk drive. You can insert a data disk and have the entire 140 K free for data storage.

Now What?

RAM Disk Mover has done its job. The BASIC programs have been moved over to the RAM disk. Now, how do you get to the programs?

If you want to run a program, you can type:

RUN /RAM/PROGRAMS/programname
or

- /RAM/PROGRAMS/program-name

Perhaps typing all this seems a bit tedious. You can use the PREFIX command:

PREFIX /RAM/PROGRAMS

Now whenever you want to run a program, you can just type RUN followed by the program name. /RAM/PROGRAMS/ is automatically appended to the front of the name

A caution is in order, however. Suppose that your program performs some file operations. If the input/output statements do not include a full path name, the prefix will also be applied to your data file commands. This will cause your program to try to read or write to the RAM disk-probably not what you intended. Remember this when using the PREFIX command.

You can also use the usual LOAD and SAVE commands, of course. But this time a warning is in order. Yes, you can recall a program from the RAM disk, work on it, test the revisions, and store it back in the RAM disk. Just don't forget it's only a RAM disk. If the power goes kaplooey, then your program goes kaplooey along with it. If you make important changes to a program,
save the new version on a real live disk．The RAM disk is best for pro－ grams you just want to run．

Oops！

On occasion things can go wrong－ especially where computers are con－ cerned．Here are a few gotchas． Watch out for them．
－RAM Disk Mover is designed for an Apple IIc and ProDOS．It uses the 80 －column display capability of the IIc．If the display looks funny，make sure your computer is in the 80 － column mode．
－Mover attempts to use all of the available RAM drive space．It will clean up／RAM／PROGRAMS，but it is not aware of anything else that you may have in the RAM drive．If you run out of room，ProDOS will tell you about it loudly and clearly．
－There can be problems writing the EXEC file．Do not remove your pro－ gram disk until RAM Disk Mover is finished with it．Do not write－ protect it，either．Finally，leave a few blocks free for Mover＇s use．That EXEC file has to go somewhere．

Additional Hints

Programs can run other programs．If the programs are in the RAM disk， switching from program to program is almost instantaneous．Here＇s an example：

$1 \varnothing$ REM PROGRAM1

$2 \emptyset \mathrm{D} \$=$ CHR $\$$（4）
$3 \emptyset$ PRINT＂PROGRAM 1 IS RUNNING＂
4ø PRINT D\＄；＂－RAM／PROGRAMS／PROG RAM2＂
$1 \varnothing$ REM PROGRAM2
$2 \emptyset \mathrm{D} \$=\mathrm{CHR}$ \＄（4）
$3 \emptyset$ PRINT＂PROGRAM 2 IS RUNNING＂
$4 \emptyset$ PRINT D\＄；＂－RAM／PROGRAMS／PROG RAM1＂
How about that！Keep this tech－ nique in mind when you are writing that huge program that eats all the available program space．The way out is to think small and think RAM drive．ProDOS even has a CHAIN statement that permits variables to be passed between programs．

If you would like to learn more about ProDOS，find a copy of Ap－ ple＇s BASIC Programming with Pro－ DOS．It covers all the ProDOS features available from Applesoft BASIC．

Apple Ilc RAM Disk Mover

$1 \varnothing \varnothing$ REM MOVE／．．．／PROGRAMS TO／ RAM／PROGRAMS（MOVER）
$11 \emptyset$ REM
$12 \emptyset$ PF\＄$=$＂／RAM／PROGRAMS／＂
$13 \emptyset P 1 \$=$＂STARTUP．RAM＂
$140 \mathrm{RB}=118:$ REM／RAM BLOCKS A VAILABLE
15Ø MP＝5の：REM MAX PROGRAMS
$16 \emptyset$ DIM PN\＄（MP）
$17 \varnothing$ HOME $: D \$=$ CHR $\$(4):$ PRINT D\＄；＂PR\＃3＂
$18 \emptyset$ GOSUB 330：REM TITLE
$19 \varnothing$ GOTO 4øø：REM OPEN DIRECTOR Y
200 GOTO 650：REM CREATE／RAM D IRECTORY
$21 \emptyset$ GOSUB 86Ø：REM MOVE PROGRAM S
$22 \emptyset$ REM
$23 \varnothing$ REM THE EXEC PROGRAM WILL M QUE THE PROGRAMS
240 REM
250 HOME
$26 \emptyset$ VTAB 12：HTAB 1：PRINT＂Run ning the EXEC copy program ．．．
270 FOR I $=1$ TO 1 Øøø：NEXT
$28 \varnothing$ PRINT D\＄；＂EXEC＂；FL\＄
29ø HOME
3øø VTAB 12：HTAB 1：PRINT＂Pro grams are being copied to：＂ ；PF\＄
310 FOR I＝ 1 TO 1 Øøø：NEXT
329 END
330 REM PROGRAM TITLE
$34 \emptyset$ UL\＄$=" ":$ FQR I $=1$ TO 8ø：U L\＄＝UL\＄＋＂＿＂：NEXT
35ø TL\＄＝＂DISK TO／RAM PROGRAM MOVER＂
36ø HOME ：VTAB 1：HTAB 1：PRIN T UL $\$$
$37 \emptyset$ VTAB 3：HTAB（8ø－LEN（TL\＄ ））／2：PRINT TL\＄
389 VTAB 4：HTAB 1：PRINT UL\＄
390 RETURN
4øø REM OPEN／．．．／PROGRAMS DIRE CTORY
41ø GOSUB 590：REM GET VOLUME L ABEL
$42 \emptyset$ DR $\$=$ VL $\$+$＂PROGRAMS $/ "$
$43 \emptyset$ UTAB 6：HTAB 1：PRINT＂Movi ng programs from＂；DR\＄
$44 \emptyset$ ONERR GOTO 48ø
$45 \varnothing$ PRINT D\＄；＂OPEN＂；DR\＄；＂，TDIR
46ø POKE 216，Ø：REM．NORMAL ERR
47ø GOTO 2øø
48ø POKE 216，$:$ ：REM NORMAL ERR
49ø CALL－3288：REM FIX STACK
5øø VTAB 8：HTAB 1：PRINT＂The directory＇／PROGRAMS／＇is n ot on the diskette＂；VL\＄
519 UTAB 10：HTAB 1：PRINT＂Ins ert the proper diskette．＂
$52 \varnothing$ UTAB 12：HTAB 1：PRINT＂Pre $5 s$ SPACE to continue．Pres 5 RETURN to stop．＂
530 GET C\＄：IF C $\$\langle>$＂＂AND C $\$<>$ CHR $\$$（13）THEN $53 \varnothing$
540 FOR I $=6$ TO 12 STEP 2
559 VTAB I：HTAB 1：PRINT SPC（ 79）；CHR\＄（13）
560 NEXT
579 IF C $\$=$ CHR $\$$（13）THEN STOP $58 \emptyset$ GOTO 4øø
$59 \varnothing$ REM GET VOLUME LABEL
6øø PRINT D\＄；＂PREFIX／＂
$61 \varnothing$ PRINT D\＄；＂PREFIX＂
620 INPUT VL\＄
$63 \mathscr{6}$ PRINT D\＄
$64 \emptyset$ RETURN
$65 \emptyset$ REM CREATE／RAM／PROGRAMS／
66 V VTAB 8：HTAB 1：PRINT＂Movi ng programs to＂；PF末
$67 \emptyset$ ONERR GOTO $82 \emptyset$
68Ø PRINT D\＄；＂OPEN＂；PF\＄；＂，TDIR
$69 \varnothing$ PRINT D\＄；＂READ＂；PF\＄
$7 \emptyset \varnothing$ INPUT L1\＄
710 INPUT L2\＄
720 INPUT L3\＄
730 INPUT L4\＄：IF L4\＄$=\cdots "$ THEN $77 \varnothing$
$74 \emptyset T \$=M I D \$(L 4 \$, 2,15)$
$75 \emptyset N P=N P+1: P N \$(N P)=T \$$
$76 \emptyset$ GOTO 73Ø
$77 \emptyset$ PRINT D\＄；＂CLOSE＂；PF\＄
$78 \varnothing$ FOR I $=1$ TO NP
$79 \emptyset$ PRINT D\＄；＂DELETE＂；PF\＄；PN\＄（ I）
8øの NEXT
$81 \varnothing$ GOTO $21 \varnothing$
$82 \emptyset$ POKE 216，Ø：REM DIRECTORY N OT PRESENT
83Ø CALL－3288：REM FIX STACK
$84 \varnothing$ PRINT D\＄；＂CREATE＂；PF\＄
$85 \emptyset$ GOTO $21 \emptyset$
$86 \emptyset$ REM MOVE PROGRAMS
$87 \emptyset \mathrm{NP}=\varnothing:$ REM NUMBER OF PROGR AMS
$88 \emptyset \mathrm{BC}=\emptyset:$ REM BLOCK COUNT
890 PRINT D\＄；＂READ＂；DR\＄
909 INPUT L1\＄：REM DIRECTORY NA ME
916 INPUT L2\＄：REM TITLE LINE
920 INPUT L3\＄：REM BLANK LINE
93Ø INPUT L4\＄：REM FILE ENTRY
$94 \varnothing$ IF L4\＄$=" "$ THEN $97 \varnothing$
95ø GOSUB 1øøø：REM SAVE PGM NA MES
960 GOTO $93 \emptyset$
$97 \varnothing$ PRINT D\＄；＂CLOSE＂
989 GOSUB 116ø：REM BUILD EXEC FILE
990 RETURN
$1 ø \emptyset \emptyset$ REM SAVE PGM NAMES
1 101ஏ IF MID\＄（L4\＄，18，3）＜＞＂BA S＂THEN $115 \varnothing$
$1 \emptyset 2 \emptyset N P=N P+1$
$193 \emptyset$ IF NP $>$ MP THEN $115 \emptyset$
$1 ø 4 \varnothing \mathrm{BC}=\mathrm{BC}+\mathrm{VAL}$（MID\＄（L4\＄， $23,6)$ ）
$1 \varnothing 5 \emptyset$ IF $B C>$ RB THEN $115 \emptyset$
$1 \emptyset 6 \emptyset \mathrm{~T} \$=\mathrm{MID} \$(\mathrm{~L} 4 \$, 2,15)$
$1 ø 7 \emptyset$ FOR K $=15$ TO 1 STEP－ 1
1ø8 IF MID\＄（T\＄，K，1）＜＞＂＂T HEN 11 Øø
$109 \emptyset$ NEXT
$11 \varnothing \emptyset \mathrm{PN} \$(\mathrm{NP})=$ LEFT $\$(T \$, K)$
$111 \varnothing$ IF PN $\$(N P)=P 1 \$$ THEN $S U=$ 1
$112 \emptyset$ VTAB 1ø：HTAB 1：PRINT SPC （ 79）；CHR\＄（13）
$113 \emptyset$ VTAB 1ø：HTAB 1：PRINT＂Co pying＂；PN\＄（NP）；＂．．．＂
114 FOR K $=1$ TO 5øØ：NEXT
$115 \emptyset$ RETURN
1169 REM BUILD EXEC FILE
$117 \emptyset$ VTAB 1ø：HTAB 1：PRINT SPC （ 79 ）；CHR\＄（13）
$118 \emptyset$ VTAB 1ø：HTAB 1：PRINT＂Bu ilding EXEC copy program． ．．＂
$119 \emptyset$ FL\＄$=$＂TEMP．EXEC＂
$12 \emptyset \emptyset$ PRINT D\＄；＂OPEN＂；FL\＄
$121 \emptyset$ PRINT D\＄；＂CLOSE＂；FL\＄
122 PRINT D\＄；＂DELETE＂；FL\＄
$123 \emptyset$ PRINT D\＄；＂OPEN＂；FL\＄
$124 \emptyset$ PRINT D\＄；＂WRITE＂；FL\＄
$125 \emptyset$ FOR I $=1$ TO NP
126Φ PRINT＂LOAD＂；VL\＄；＂PROGRAM S／＂；PN\＄（I）
$127 \emptyset$ PRINT＂SAVE＂；PF\＄；PN\＄（I）
$128 \emptyset$ NEXT
129 IF SU $=1$ THEN PRINT＂－＂；P F\＄；P1\＄
13øø PRINT＂PRINT：PRINT＂
$131 \varnothing$ PRINT D\＄；＂CLOSE＂
1320 RETURN

Commodore Disk Editor

Martin Sikes

Examine or edit any sector on a disk with this short, useful program for the Commodore 64 and 1541 disk drive. Recommended for intermediate to advanced users.

One of the best ways to learn about disk storage is to look at the actual contents of sectors on the disk. "Commodore Disk Editor" lets you do just that and even change the contents if you wish. Equipped with this tool, you can repair garbled disks, retrieve accidentally scratched files, as well as protect your programs against tampering by others.

To make the most of Disk Editor, you'll need to know at least the basics of Commodore disk storage. Consult your 1541 User's Manual. Additional information also is available in various books and programming guides. Even without advanced knowledge, however, you can perform some interesting tricks. A few examples are given below.

To get started, type in the program and save it. When running it for the first time, put an unimportant disk in the drive. Making mistakes with a program like this can scramble a disk and render it useless. Until you have gained some experience, practice on an unimportant disk. Make a backup copy of any important disk before you try to alter it.

Reading And Editing Blocks

Disk Editor begins by prompting you to enter track and sector numbers of the block of data you want to examine. Commodore 1541 disks
have 35 tracks, and each track contains a number of sectors. (The terms sector and block are often used interchangeably to describe a 256byte data area on the disk.) The available track and sector numbers are listed below. Tracks 1-17 each have 21 sectors, numbered $0-20$, and so on.

Tracks	Sectors
$1-17$	$0-20$
$18-24$	$0-18$
$25-30$	$0-17$
$31-35$	$0-16$

To choose a particular sector, you must enter two numbers separated by a comma. The program does not let you enter nonexistent track or sector values, with the exception noted below. For example, enter 18,1 and press RETURN to examine track 18, sector 1 (this block holds the first part of the disk directory). Disk Editor reads that block from the disk and displays its contents at the top of the screen.

Disk Editor displays the block using the upper-/lowercase character mode. Thus, the values on the screen correspond to the numbers in your 64 User's Guide screen code table: A zero is displayed as an @ character, 13 as a lowercase m, and so on.

The next prompt asks whether you want to edit the block displayed on the screen. Press Y to edit, or N to choose another sector. If you select Y , press the cursor keys to move the blinking cursor atop the character you want to change. Then type in the new character over the old one. For instance, if the first filename in your directory is DOG, you can change the name to BOG simply by typing SHIFT-B over the D.

When your editing is complete,
you again have two options. You can press RETURN to write the changed block back to the disk, or press the f1 special function key to escape the editing mode without changing anything on the disk. In either case, you'll return to the first prompt, so you can read the same sector again to verify your changes or proceed to another sector. To exit the program, enter track 99 , sector 99 at the first prompt. These are the only nonexistent track and sector numbers that Disk Editor allows you to enter.

Don't Boggle The BAM

You've already seen how to change filenames by editing directory blocks. The disk name can be changed just as easily, by editing track 18 , sector 0 . Note that these names cannot be more than 16 characters long.

Sector 0 of track 18 contains the Block Availability Map, or BAMimportant information about the organization of programs on the disk. It's very easy to damage files by improperly changing things in this sector. Until you're familiar with the BAM, avoid changing anything in this sector other than the disk name.

You may notice that a copy of the disk ID follows the disk name in the BAM. However, you cannot change the disk ID by changing this value in the BAM. (You can change the value of the ID shown in sector 0 , but this won't change the disk ID; there's no way to do that without reformatting the disk.)

Hidden Programs

Lots of tricks are possible with Disk Editor. Perhaps you'd like to conceal a program's name to make it difficult for others to find in the
directory．Directory lists are dis－ played on the screen with the equivalent of PRINT，so it＇s easy to disrupt the list by inserting control characters in a filename．

For instance，you might conceal the filename DOG by adding three delete characters after the name． The ASCII table in your 64 User＇s Guide tells you that a delete charac－ ter has a value of 20 ．This corre－ sponds to lowercase t in the screen code table，so you simply type three t＇s after DOG．Now the program appears as＂＂＂when you list the directory．But you can still load the program with the filename DOG＊or DOG？？？．It can also be loaded with the line $\mathrm{A} \$=$＂DOG＂+ CHR $\$(20)$ $+\operatorname{CHR} \$(20)+$ CHR\＄（20）：LOAD A\＄，8．

Most characters are easily en－ tered from the keyboard．To enter a reverse video character，press CTRL－9 before typing the character． Disable reverse video by pressing CTRL－0．

Like many protection methods， of course，these simple tricks are only effective against people who know less than you do．It＇s not very difficult to write a BASIC program that displays a directory without us－ ing PRINT statements．If your friends also are familiar with Disk Editor，your attempts at conceal－ ment will be utterly transparent． Nevertheless，such methods should be sufficient to deter casual users．

As your knowledge grows， you＇ll find more practical uses for Disk Editor，such as changing the file type to prevent a program from being scratched．You can also copy blocks from one disk to another， store data directly in unused disk sectors，and restore damaged files to their original condition．

Commodore Disk Editor

Please refer to＂COMPUTEI＇s Guide to Typing in Programs＂before entering this listing．
$1 \varnothing$ REM BLOCK EDIT ：rem 214
$2 \emptyset$ FORX $=\varnothing$ TO 26 ：READA：POKE82 $\varnothing+\mathrm{X}$ ， A：NEXT
：rem 28
$3 \emptyset$ DATA $162,2,32,198,255,160,0$ ，32，207 ：rem 16
40 DATA $255,153, \emptyset, 4,169,1,153$ ， Ø， 216
：rem 170
$5 \emptyset$ DATA 2øø，208，242，162，1，32，1 98，255
：rem 228
60 DATA 96 ：rem 239
7 7 PRINT＂$\{C L R\}\{C Y N\} ":$ POKE53281 ， $0:$ POKE5328Ø， 9
：rem 2
$8 \emptyset$ POKE 53272， $23:$ PRINTCHRS（8）
：rem 124
90 OPEN $1, \varnothing:$ OPEN $15,8,15$
：rem 240
$1 \emptyset 0$ GOSUB38Ø ：rem 172
110 INPUT＂ENTER TRACK，SECTOR＂ ；T，S ：rem 227
120 IFT＝99THEN47ø ：rem 239
$13 \emptyset$ IFT＜1ORS＞2ØORT＞35THEN1 10
：rem 211
140 IFT＞17ANDT＜25ANDS＞18THEN1 \varnothing Ø ：rem 117
150 IFT＞24ANDT＜31ANDS＞17THEN1 \emptyset Ø ：rem 112
$16 \emptyset$ IFT＞3ØANDS＞16THEN 1 Øø
：rem 166
$17 \emptyset$ OPEN 2，8，2，＂\＃＂：rem 81
$18 \emptyset$ PRINT\＃15，＂Ul：＂2；ø；T；S
：rem 153
190 SYS820：CLOSE2：GOSUB420：GOS UB38Ø
：rem 186
$2 ø \emptyset$ INPUT＂EDIT AND SAVE？\｛RVS\} Y\｛OFF\} $\bar{E} S$ OR \｛RVS\}N\{OFF\}O"; AS：IFAS＜＞＂Y＂THENIøø
：rem 105
220 POKE254， $\operatorname{PEEK}(1 \varnothing 24):$ GOSUB38 Ø：PRINT＂\｛WHT\}"; :rem lø3
$23 \emptyset$ PRINT＂USE THE CURSOR TO TY PE OVER THE BLOCK．
\｛ 2 SPACES $\}$ IF YOU MAKE A MI STAKE，DO ${ }^{\pi}$ ；：rem $16 \varnothing$
240 PRINT＂NOT PRESS \｛5 SPACES \}R ETURN．PRESS THE FI FUNCTI ON KEY．＂：rem 85
250 POKE781，Ø：POKE782，Ø：SYS655 $2 \emptyset$
：rem 99
$26 \emptyset$ POKE2Ø4，Ø：WAIT198， 255 ：WAIT 2ø7，1：POKE1Ø24，PEEK（254）
：rem 1øø
280 GETAS： $\operatorname{IFPEEK}(2 \emptyset 3)=\emptyset$ THEN $28 \emptyset$ ：rem 233
29 IFAS $=$ CHR (13) THENWAIT 207,1 ：POKE2Ø4，1：GOTO34の ：rem 66
$3 \varnothing \emptyset$ IFAS $=$ CHR $\$(133)$ THEN $33 \varnothing$
：rem 114
310 POKE2ø5， 3 ：WAIT207，1：PRINTA \＄；：GOTO260 ：rem 144
330 CLOSE1：CLOSE15：OPEN15，8，15 ，＂Iの＂：CLOSE15：PRINT＂\｛CLR \}
\｛2 DOWN\}OK": GOSUB460:GOTO7 g
：rem 162
340 OPEN2，8，2，＂\＃＂：PRINT＂\｛HOME \} \｛14 DOWN \}\{RVS\}SAVING TRACK ＂T＂SECTOR＂S＂
：rem 136
$35 \emptyset$ FORX $=$ ØTO254：PRINT\＃2，CHRS（P EEK（1Ø25＋X））；：NEXT：PRINT\＃2 ，CHRS（PEEK（1ø24））；：rem 163
360 PRINT\＃15，＂U2：＂2；Ø；T；S：CLOS E2
：rem 124
37 ด AS＝＂＂：GOSUB42ด：GOTOI ØØ
：rem 212
$38 \emptyset$ PRINT＂\｛HOME \} \{6 DOWN\}"
：rem 229
390 PRINTCHR\＄（5）；：FORX＝ØTO39：P RINTCHRS（162）；：NEXT：PRINTC HRS（159）
：rem 254
4øø FORX＝1TO1のø：PRINT＂ \｛5 SPACES\}";:NEXT :rem 52 $41 \varnothing$ PRINT＂\｛HOME \} \{7 DOWN\}": RETU RN ：rem $1 \varnothing$
420 INPUT\＃15，A，B\＄，C，D ：rem 141
430 IF $\mathrm{B} \$=$＂OK＂THEN RETURN
：rem 182
440 PRINTA；BȘ；C；D：POKE53281，9
：rem 213
$45 \emptyset$ FORX＝1TO2øøø：NEXT ：POKE5 328 1，$:$ GOTOIø ：rem 24ø
$46 \emptyset$ FORX＝1TO2øøの：NEXT：RETURN
：rem 63
$47 \emptyset$ PRINT＂OK＂：CLOSE1：PRINT\＃15， ＂IØ＂：CLOSE15：END ：rem 71 ©

THE AMAZING VOICE MASTER

Three Exciting Products in One：
－Speech Synthesizer－Your Computer can talk to you in your own voice．
－Word Recognition－Make your computer respond to
－Volce Harp－A totally yeur musical instrument your apoken commands． play and compose by humming．
Based upon new technologies invented by COVOX．Per－ formance is equal to other systems costing thousands of dollars more．One low price buys the entire system．

ONLY \＄89．95（svggeatiod ratai）

Available from your dealer or by mail．When ordering by mail，please include $\$ 4.00$ shipping and handing（ $\$ 10.00$ for foreign orders） Call（503）342－1271 for a telephone demonstration and ordering information．VISA or MC accepted．FREE brochure available．
oovox inc．
675－D Conger Street，Eugene，OR 97402 Telex 706017 （AV ALARM UD）

maxell Disks
 LIFETIME WARRANTY

Think you＇re getting the best price on Maxell Diskettes？
You＇re right ．．BUT ONLY IF You＇re buying from
NORTH HILLS CORP．
We will beat any nationally adver－ tised price＊or give you a 15 disk library case FREE！

Call us last－TOLL FREE－for our best shot every time．

1－800－328－3472
Formatted and hard sectored disks in stock．
Dealer inquiries invited COD＇s and charge cards accepted All orders shipped trom stock within 24 hours．Why wait 10 days to be shipped？

North Hills Corporation
3564 Rolling View Dr
White Bear Lake，MN 55110
MN Call Collect 1－612－770－0485
MN Call Collect 1－612－770－0485

Lyco Computer Marketing \& Consultants

AXION

 GP 700 Ap Apapile) Gilit 5CD (C-64)

BLUE CHIPS

Mi2010 ${ }^{522}$

Prowrier 8510 AP
${ }_{8510}{ }^{8}{ }^{2}$
${ }_{85510}^{85 \mathrm{BC} 21}$
${ }_{8550}{ }^{5} 5$
8510 SCP
$8510 . . .$.
7500 APR
750.

1550 BCD
A-10-20.P
F 1040 PU or RDU
F 1040 PU or ADU

\section*{| OVER 200 |
| :---: |
| $\begin{array}{c}\text { COMPAND Newff } \\ \text { CARE }\end{array}$ |}

BIB
DISK DRIVE
CLEANEA........... S12 75
COMPUTERCAREKIT S1975

NORTRONICS DISK DRIVE

 CLEANER with software for IBM-PC, Atari, Vic, DISK DRIVE CLEANER with sotware tor IBM.PC. Alar. vic.ADole Ti.
DISK CLEANER
REFILL.
REFILL................ $\$ 1475$
MEDIABULKERASER $\$ 995$

NEC

PC8201 Portable
Syst 64K Computer
NECB2 128 K Compute
System $\$ 1299$
PC8221 Thermal Printer... \$ 139
PC82018KRAMChip... S 99
PC820632K RAM Cart... \$ 299
PC300 Modem S 65
PC8801 MSDOS
16 Bit Card

PRINTING
PAPER

3000 SHEETS
FANFOLD $\$ 4275$
1000 SHEETS
FANFOLD $\$ 1975$
1000 SHEETLETTER ... $\$ 2195$
200 SHEETS LETTER... $\$ 899$
150RAGSTATIONARY... $\$ 1099$
MAILING LABELS $(1$ In $) \ldots \$ 995$
14×111000
FANFOLD $\$ 2475$

INNOVATIVE CONCEPTS Flip-n-File 10
 Flip-n-File 15 Flip-n-File 25 Lock
 Flip-n-File 50
 Flip-n-File Rom

DRIVES

MSD
SD1 Drive
SD2 Drive
INDUS
GT Atari 219
GT Atari ….......... 219
GT Commodore 249
GT Apple w/controller
GT Apple

WE OFFER FULL LINE OF ACCESSORIES!'

DISKETTES

(Box 10)

IBM-PC
 sOFt-WARE

*. 2.3 OTUS

*ASHTON-TATE
Framework...................385.00
d Base $11 .389 .00 ~$
d Base III..........................3855.00
d Base II upgrade 135.00
*PARADISE
5.Pak Multiffnction.... 179.00
Modular Graphics. 289.00

Modular Graphics Card...... 315.00

PANASONIC 189
.259
.595
.459 NEC
s699 Smith Corona
Fastext 80 18900 Fastext 80 21900
0100 ${ }_{0200} \mathbf{0} 300$................... 399.00 เ1000 …............... 33900

STARMICRONICS

OLIVETTI
739 Powertype.
.739 Powertype
1099 Gemini 15X
1099 SB-10...
.+ .219
$\ldots .379$
$\ldots .339$
$\ldots 445$
$\ldots .489$
$\ldots .385$
CALL
CALL
CALL

NEC 8025	\$699	Smith Corona	
NEC 8027	\$359	Fastext 80	18900
		D100	219.00
		D200	39900
OKIDATA		D300	51900
	$\begin{array}{r} \\ . . \\ \hline\end{array}$	L1000	339.00
2 A............................... 295			
$2 \ldots \ldots \ldots \ldots349$ S			
2 Imagewriter 425 SG-10......................... 219			
2 IBM Version 349		SD-10	339
		SD-15	445
		SR-10	489
OLIVETT		SR-15	585
250 Parallel	739	Powertype	309
Y 250 Serial...	729	Gemini 10X	CALL
Y 450 Parallel	1099	Gemini 15X.	CALL
Y 450 Serial..	1079	SB-10....	CALL

-

TOLL FREE 1-800-233-8760

爪 ATARI \mathbb{R}

SCARBOHOUGH

 Net Worth.Improved Mastertype
Mastertype's Filer.

SPINNAKER

Delta Drawing Room..... 19.95 Up for Grabs Room........ 19.95

SSI
Baseball.
Question.
50 Mission Crush
Broadsides
Broadsides

22.75
26.75
22.75
22.75
.34 .75

MICROPOSE Solo Flig
NATO Spitfire Ace
Spitfire Ace
F. 15 Strike Eagle
CONTINENTAL

Home Accountant	
1985 Book of Aratri Software	44.75

SUBLOGIC
Flight Simulator II,
Night Mission Pinbal... Night Mission Pinbail..... 18.75 PERSONAL
PERIPHEIALS
uper Sketch-Atari 32.95

	WICO
\$26.75	(Joysticks)
\$26.75	15-9714 Bat Handle.
\$26.75	50-2002 Super 3-way

BRODERBUND

BUSINESS

VISICALC..............\$159.75 LETTER PERFECT R ... 5900 DATA PERFECT $\$ 8975$ FILE MANAGER......... $\$ 6975$ HOME FILE MGR $\$ 6975$

ADVENTURE

Dishey
Ultra Disassembler29.95

GRAPHIC TABLET
Koala Pad...
EASTERN HOUSE
$\begin{array}{ll}\text { Monkey Wrench } 11800 \mathrm{XL} & 24.95 \\ \text { Monkey Wrench } 11800 \mathrm{XL} & 24.95\end{array}$

CONTINENTAL

Home Accountant
1985 Book of Alar Sotware
ADVENTURE INTERNATONAL
Oistray bisambler ${ }_{32}^{3275}$

50-2002 Super 3-way 19.99

Broderbund

Bank St Writer $\$ 4275$
Bank St FilerS42 75
Bank St Mailer........... $\$ 4275$
Bank St Spell $\$ 4275$
Mask of Sun $\$ 2495$
Print shop 32.95
Graphics Tablet
Supersketch.......... $\$ 4995$

COMMODORE

Simon's Basic $\quad 24.75$ Assembler 64 Super Expander Logo 64 Pilot 64.... Easy Cale.. Easy Script Easy Script $\quad34 .75$ C 64 Computer $\quad38 .75$ C 1541 Disk Drive MPS 801 Printer C 1702 Monitor.... C 1660 Auto Modem

SS1
 Computer Baseball...

24.75

Field of Fire....................24.75
Computer Quarterback..24.75 Questron 24.75
50 Mission Crush........ 24.75

Scarborough

Songwriter

Phi Beta F

Mastertype
Run I Money
Net Worth .
\$24.75
$\$ 29.45$
$\$ 24.75$
$\$ 24.75$
$\$ 49.95$

SUBLOGIC

Flight Simulator II.......... 32.75 Night Mission Pinball.....22.75

PERSONAL PERIPHERALS
Super Sketch 64 32.75
$\begin{array}{ll}\text { Printer Utility } & 18.75\end{array}$
KOALA
(C-64)
Koala Pad.
. 59.95

MICROBITS MPP 1000 E (Atari) y9.00 MPP 1064 (C. $64 \quad 69.95$

HAYES Smartmodem 300
Smartmoden 1200 Smartmoden 1200
Smartmoden 1200 B Smartmoden 1200 Micromodem IIE
Micromodem Micromodem 100 Chronograph Smart Com II

TELE LEARNING
 ${ }^{18.250}$ (BRM) CARDCO MOD-1 (C-64)
NESTRIDGE (C.64) MITEY MO (C.64) 1660 AUTO MODEM COMPUSERVE
\star LOWEST PRICES! \star
MONITORS

300 Green
300 Amber
310 Amber IBM
Color 500 Composi
Color 600
Color 700
Color 710

PANASONIC
DT 1300 AGI Composite

329 SR-12 RGB

PRINCETON GRAPHICS PRINCETON
MAX.12 Amber
HX. 12 AGB

SAKATA SC. 100 Color
STSi Stand STSI Stand SG 1000 Green

GR
(

CARDCO

C/01 Write Now
29.95

C/02 Write Now - 64 ... 39.95
D/01 Mail Now - 64 29.00
D/04 Spell Now - 64 29.00
D/02 Utility Desk
CSD-1 Disk Drive (new) MOD-1 Modern (new) D/03 Tax Payer D/07 Calc Now/64 (new) ... 27.95 D/08 SUper Printer Utility D/08 Super Printer Utility
CK/1 Numeric Key
DC/1 Data Cassette 39.95
CB/5 5 Slot
Board C-64
CR/1 Light Pen
CE/1 Cassette Interface . . 29.75
CB/3 3 Slot
Board Vic-20
CB/ 66 Slot
Board Vic-20
65.00

HES
HES Games 84
Omni Writer/Spell
HES Mon 64
22.95

HES Mon $64 \quad 23.95$
Microsoft Multiplan 55.00
Type N Write
Turtle Graphics II
Cell Defense
Paint Brush
Tri Math
HES Kit
Millionaire
64 Forth
HES Writer 64
Timeworks

inventory

Sales
Accts. Rec
Accts Rec
G. Ledger

Data Mgr .
Checkbook
Star Battle
Cave of Word
$\$ 32.75$
\$32.75 $\$ 32.75$ $\$ 32.75$ $\$ 39.75$ …...... $\$ 14.75$

Solo Fligh
NATO
F-15 Strike
Air Rescue

Microprose
................. $\$ 22.75$
$\$ 22.75$

SUPER SPECIAL! \star

TO ORDER

CALL TOLL FREE
800-233-8760
In PA 1 717-327-1824

TAXAN
210 Color RB
115 Green.
400 Color RGB
410 Color RGB
420 Color IBM
121 Green IBM
122 Amber IBM
X-TRON
Comcolor 1 Composite Green. 199
 \title{

AMERICA'S MAIL ORDER HEADQUARTERS
 \title{ \section*{AMERICA'S MAIL ORDER HEADQUARTERS

 LYCO COMPUTER

 LYCO COMPUTER

 WORLD'S LEADER IN SALES \& SERVICE}

 WORLD'S LEADER IN SALES \& SERVICE}}

TI SuperFont

A powerful feature of the TI-99/4A is its ability to redefine the character set. With "TI SuperFont," a comprehensive character-definition program, you can harness this capability. Requires Extended BASIC and a joystick (printer optional).

The character graphics capabilities of the TI-99/4A are well known. But to redefine a character on the TI by the usual means (see the TI User's Reference Guide, pages II-76 to II79), you must follow a tedious, multistep procedure. First, you plot the character in an 8×8 grid. Next, you convert each row of the grid into a two-digit hexadecimal number and then sequentially combine the numbers from each row to generate a pattern identifier, or coded representation of the character. Finally, you place this pattern identifier along with a chosen ASCII value for the character in a CALL CHAR statement. Anyone who has repeatedly endured this process can attest to its drudgery.

Fortunately, the process is easily computerized, and several char-acter-definition programs have been written for the TI. Until now, however, these programs have not taken full advantage of the TI's capabilities. With "TI SuperFont" (Program 1), once-tedious character manipulations can now be undertaken with ease.

Sixteen Commands

SuperFont, originally written for the Atari by Charles Brannon, first ap-

When the program is run, this command menu is displayed on the screen. Above it is an 8×8 grid which serves as a workspace for redefining each character. To the right of the grid, the current mode and, in some cases, a prompt will be displayed. Below this is printed the entire TI character set (codes 32-143) with each subset (eight characters) denoted by a different background color. (If you find the colors annoying, remove the FORNEXT loop in line 300.)

Several commands require that you pick a character from the TI character set. In these instances, a box-shaped sprite (CHR\$(143)) appears over the last character referenced from the set (defaults to space). Position the sprite with the joystick over the desired character and press the fire button. Unless indicated otherwise, each command returns you to the EDIT mode upon completion.

Now let's examine each command, beginning with EDIT. (The ALPHA-LOCK key should be up when making menu selections.)

- EDIT is the basic editing command. After you press E, SuperFont requests you to choose a character from the character set. The character selected is copied into the grid and the box-shaped sprite appears. This is actually like a cursor, controlled with the joystick. Press the fire button to set a point (if a point is clear) or reset a point (if a point is already set). You can draw lines by holding down the button while moving the joystick. When you're pleased with

E	EDIT	N	INPUT
R	RESTORE CH	H	RESTORE
F	COPY	W	CHSET
		WRITE	
M	MIRROR	V	DATA
REVERSE			
A	ROTATE	C	CLEAR
I	INSERT	D	DELETE
L	LOAD FONT	S	SAVE FONT
P	PRINT CH	T	PRINT
			CHSET

the appearance of the shape in the grid, press ENTER to redefine the character. (To completely redesign a character from scratch, use the CLEAR command, described below.)

- INPUT lets you type in a pattern identifier and assign it to a particular character code. After selecting INPUT, choose a character from the set with the joystick and then type in the hexadecimal code for the redefined character. The hexadecimal code can be typed in upper- or lowercase (a routine at line 960 automatically converts the code to uppercase). The INPUT command is handy when attempting to associate a pattern identifier with a CHR\$ code in someone else's program.
- RESTORE CH restores the current character to its original configuration. This command is useful if you've mangled a character or changed the wrong one.
- RESTORE CHSET restores the entire character set to its initial appearance.
- COPY copies a character to a second location in the character set. SuperFont prompts you for the first character (the one to be moved) and the second character (the destination character). This command is handy for arranging your customized characters to fit the various color codes.
- WRITE DATA displays the pattern identifier for each selected character along with its ASCII value. Very handy when comparing characters or for providing a few character codes for another program.
- MIRROR produces a mirror image of the current character in the grid.
- REVERSE puts the current character in the grid in reverse field: All dots become blanks, and all blanks become dots.
- ROTATE turns the current character 90 degrees clockwise.
- CLEAR completely clears out the current character. For creating new characters from scratch.
- INSERT places a row of blanks in the current character. Move the cursor in the grid with the joystick to the row where you wish to insert the blanks and press ENTER. All rows below will scroll down and the bottom row will be lost.
- DELETE is the opposite of INSERT.

Position the cursor on a row in the grid and press ENTER. The row will be eliminated and all other rows will scroll upward. DELETE and INSERT can be used with ROTATE to scroll characters left or right in the grid (of course, one row will be lost in both cases).

- LOAD FONT loads a previously SAVEd character set (a font) from tape or disk. SuperFont prompts you for the device and filename. Be sure to type this in the standard format (that is, CS1 or DSK1.FILENAME). Again, capital letters need not be used. The routine that converts from lower- to uppercase takes care of this for you. If you're using tape, the screen will be restored after the tape system messages have been printed (the same occurs with SAVE FONT, discussed below). When loading is complete, a command prompt appears.
- SAVE FONT saves to tape or disk (in a data file format) only those characters which have been altered since SuperFont was run. Since each character code is saved as a separate record, a large set may take 30 min utes to save. As with LOAD FONT, you will be prompted for the device and filename. If you accidentally hit L (for LOAD FONT) or S from the main menu, simply press ENTER to abort the command when prompted for the device and filename.

Once saved, character sets can be loaded into any program where they're needed (we'll consider this in greater detail shortly). As with LOAD FONT, a command prompt appears when the operation is complete.

- PRINT CH prints the current character in an 8×8 grid along with its ASCII and pattern identifier codes, then returns you to the main menu. Be sure to modify line 1260 to correspond to the specifications of your printer.
- PRINT CHSET is the same as the previous command, except it prints every character which has been modified.

The commands offered by SuperFont are versatile, but you may want to add others. Since the program uses most of the TI's memory, unless you have additional RAM you'll have to substitute your own routine for an existing one. Fortunately, the program is modular in

Redesigning a character with "TI SuperFont."
structure. Just follow the branching IF statements from line 360 to 920 for the current commands. If you do alter the program, test it thoroughly to make sure you still have plenty of memory left.

Retrieving A Font Or Screen

After you've saved a newly created character set, how do you go about recovering it for use in another program? Program 2 shows how this is done.

In line 130 , the device and filename for the character set file is defined as B\$ (the filename used here is FONT). If you store this file on tape rather than disk, line 130 should read $\mathrm{B} \$=$ "CS1". Lines 140-160 load in the new character set and print it on the screen. Line 170 sets up a delay so you can see that the character set has successfully loaded.

With SuperFont, you can perform many chores with ease. You can customize your character set (ever wished for true lowercase?), create graphics characters and animated figures (space creatures!), or just play around. The uses of this utility are endless. I'm sure you'll have as much fun discovering them as I have.

Program 1: TI SuperFont

$1 \emptyset$ DIM A\$(111), C\$(15),N\$(11 2), $D(15), V(B, 8): L=32$
$2 \varnothing E=15: ~ Q \$=" D E V I C E$.FILEN AME?" : : GOSUB $124 \varnothing$: G OTO 260
$3 \emptyset F=\emptyset:$: GOSUB $4 \varnothing$: : GOTO $34 \varnothing$
$4 \varnothing$ CALL $\operatorname{HCHAR}(5,14, L, 16):=$ RETURN
$5 \emptyset$ CALL $\operatorname{HCHAR}(3,17, L, 7):=C$ ALL $\operatorname{HCHAR}(7,17, L, 16):: R$ ETURN
6の FOR I=5 TO 7 :: CALL HCH
$\operatorname{AR}(I, 13, L, 18):$ ： NEXT I ： ：RETURN
$7 \emptyset \quad Z \$=N \$(W-L)$
8 F FOR $I=\emptyset$ TO $15: \quad D(I)=A S$ C（SEG\＄（Z\＄，I＋1，1））－48： $D(I)=D(I)+(D(I)>9) \& 7$
9 NEXT 1 ：：$J=\emptyset:$ ：FOR $I=\emptyset$ TO 7 ：：DISPLAY AT（2＋I， 1）：C $\$(\mathrm{D}(\mathrm{J}))$ ；：：DISPLAY A $T(2+I, 5): C \$(D(J+1)) ;: \quad J$ $=J+2$ ：：NEXT I ：：RETURN
1 ■ CALL DELSPRITE（\＃1）：：DI SPLAY AT（5，15）：＂WAIT＂
$11 \emptyset$ FOR $R=1$ TO $8:$ FOR $C=1$ TO 8
120 IF $M=1.99$ THEN CALL GCHA $R(R+1,11-C, H):$ ：GOTO 15 \emptyset
$13 \emptyset$ IF $M=97$ THEN CALL GCHAR $(1 \emptyset-C, R+2, H):$ GOTO $15 \emptyset$
$14 \emptyset$ CALL GCHAR（ $\mathrm{R}+1,2+\mathrm{C}, \mathrm{H}$ ）
$15 \emptyset V(R, C)=H-141:$ ：NEXT C ：：NEXT R
$16 \varnothing \mathrm{H}={ }^{2}$＝ $123456789 \mathrm{ABCDEF":}$ ：IF $M=118$ THEN $H \$=" F E D$ CBA9876543216＂
$17 \emptyset \mathrm{Z} \$=\mathrm{"n}:$ ：FOR R＝1 TO $8:$ ：$L O=V(R, 5) * 8+V(R, 6) * 4+$ $V(R, 7)$ \＆ $2+V(R, 8)+1$
$18 \emptyset H I=V(R, 1) * 8+V(R, 2) * 4+V($ $R, 3) * 2+V(R, 4)+1$
19 Z $\mathbf{Z}=\mathrm{Z} \$ \& S E G \$(H \$, H I, 1) \& S E G$ \＄（H\＄，LO，1）：：NEXT R
2 2の IF $(M<>1 \emptyset \emptyset):(M<>1 \emptyset 5)$ THE N 240
$21 \emptyset$ IF M＜＞1øø THEN $23 \varnothing$
22 Z $\mathbf{2}=$ SEG\＄（Z\＄，1，ROW\＆2－2）\＆S EG\＄（Z\＄，ROW\％ $2+1,14$ ）\＆＂øø＂ ：：GOTO 24D
$23 \emptyset \quad Z \$=$ SEG $\$(Z \$, 1$ ，ROW＊2－2）\＆＂ øø＂\＆SEG\＄（Z\＄，ROW＊2－1，16－ ROW＊2）
$24 \emptyset C A L L C H A R(W, Z \$): N \$(W-$ $L)=Z$ ：：IF $(M=1 \varnothing \varnothing)+(M=$ 1ø5）THEN GOSUB $7 \emptyset$
$25 \emptyset$ GOSUB $4 \emptyset:$ ：RETLRN
 Øø1ø1ø11øワ1111øøø1øø11ø $1 \emptyset 1 \varnothing 1111 \emptyset \emptyset 11 \varnothing 1111 \emptyset 1111 "$
27 FOR $I=\emptyset$ TO $15: \quad Z \$=S E G$ $\$(F \$, I * 4+1,4):=D \$=" "$
$28 \emptyset$ FOR $J=1$ TO 4 ：$: T=V A L$（ S $E G \$(Z \$, J, 1))+141:=\mathrm{D} \$=$ D\＄\＆CHR\＄（T）：：NEXT J ：： C\＄（I）$=\mathrm{D} \$$ ：：NEXT I
290 CALL CHAR（141，＂＂，142，RP T\＄（＂F＂，16），143，＂FF81818 1818181FF＂）：：FOR $I=141$ T0 $143:$ ：CALL CHARPAT $(I, A \$(I-L)):=N \$(I-L)=A$ \＄（I－L）：：NEXT I
30ø CALL DELSPRITE（\＃1）：：CA LL CLEAR ：：FOR $I=2$ TO $14:$ ：CALL COLOR（I，2，I＋ 2）：：NEXT I
310 FOR $I=L$ TO $143:$ PRINT CHR\＄（I）；：：NEXT I ：：D ISPLAY AT（1，11）：＂SUPERF ONT＂：：GOSUB 11 Øø
32 Ø FOR R＝1 TO $8:$ ：CALL HC $\operatorname{HAR}(R+1,3,141,8):=\operatorname{NEXT}$ R
$33 \emptyset \quad \mathrm{BR}=2 \emptyset: \mathrm{BC}=2:: W=\mathrm{L}$
34ø CALL SOUND（1のø，8のø，2）：： DISPLAY AT $(3,15):$＂MODE ？＂
$35 \emptyset$ CALL $\operatorname{KEY}(\varnothing, M, S):$ IF $S=$ \emptyset THEN $35 \emptyset$
360 IF $M<>101$ THEN 510
$37 \emptyset T=1:$ ：GOSUB 12 Ø $:$ ：GO SUB 98の ：：IF（F＝1）（ $K<$ ＞112）THEN $3 \emptyset$ ELSE IF $K=$ 112 THEN $M=K$ ：：GOSUB 4 の ：：GOTO 910
$38 \emptyset$ GOSUB $7 \emptyset: \quad Z=1$
390 CALL SPRITE（\＃1，143，10，9 ，17）：：$R=1: ~ C=2: C A$ LL $\operatorname{GCHAR}(\mathrm{R}+1, \mathrm{C}+1, \mathrm{~T})$
$4 \emptyset \emptyset$ CALL $\operatorname{KEY}(\emptyset, K, S):$ IF（K $=13)+(K=112)$ THEN ROW＝R ：：GOSUB 1øD ：：GOSUB 1 18ø：：IF $K<>112$ THEN 0 N Z GOTO $34 \emptyset, 59 \emptyset$
$41 \emptyset$ IF（K＞13）THEN $M=K$ ：：GO T0 36
$42 \emptyset$ CALL JOYST（ $1, X, Y$ ）：：IF ABS $(X)+A B S(Y)=8$ THEN 42 Ø

43ø CALL $\operatorname{KEY}(1, K K, S):$ IF（ $K K\langle>18)$ ：$(\operatorname{ABS}(X)+A B S(Y)=$ Ø）THEN $4 \emptyset \emptyset$
$44 \varnothing O K=\mathscr{D}:=1 F \operatorname{ABS}(X)+A B S(Y$ ）$=4$ THEN OK＝1
45 פ $C=C-(X=4)+(X=-4):: \quad R=R-$ $(Y=-4)+(Y=4)$
46 Ø $C=C-(C=1) * 8+(C=1 \emptyset) * 8:=$ $R=R-(R=\varnothing) * 8+(R=9)$ \＆ 8
$47 \boldsymbol{D}$ CALL LOCATE（\＃1，8＊R＋1，8＊ $\mathrm{C}+1$ ）
48 IF $(K K=18)$＊$(O K=\varnothing)$ THEN C ALL $\operatorname{GCHAR}(R+1, C+1, T)::$ $T=283-T$
49 IF $(0 K=1)$ ）$(K K<>18)$ THEN CALL $\operatorname{GCHAR}(R+1, C+1, T)$
$5 \emptyset \emptyset$ CALL $\operatorname{HCHAR}(R+1, C+1, T)::$ CALL SOUND $(-1,294,3):$ ： GOTO 4 4 g
$51 \emptyset$ IF $M<>11 \emptyset$ THEN 570
$52 \varnothing T=1:$ ：GOSUB $12 \varnothing \varnothing:$ GO SUB 98ø ：：IF $F=1$ THEN 3ø
530 DISPLAY AT $(5,12):$＂CHAR HEX CODE？＂：：ACCEPT AT （6，11）SIZE（16）BEEP：D\＄： ：IF LEN（D\＄）＜＞16 THEN 5 $3 \curvearrowleft$
$54 \varnothing$ GOSUB 6ø ：：GOSUB 96ø
$55 \emptyset \mathrm{~N} \$(W-L)=Z \$:$ ：GOSUB Bø ：：CALL CHAR（W，Z\＄）
$56 \emptyset$ GOSUB $4 \varnothing$ ：：GOTO $59 \emptyset$
57 IF $M<>114$ THEN $6 \emptyset \varnothing$
58 GOSUB $12 \emptyset \varnothing:$ ：CALL CHAR $(W, A \$(W-L)):: N \$(W-L)=A$ \＄（W－L）
$59 \emptyset Z=1:$ GOSUB $4 \emptyset:$ ：GOSU B 7 Ø ：：$M=1 \varnothing 1$ ：：GOSUB $118 \emptyset:$ ：CALL $\operatorname{HCHAR}(3,17$ ，69）：：CALL SOUND（59，88 Ø，3）：：GOTO 39ø
$6 \emptyset \emptyset$ IF．M $\langle>1$ פ 4 THEN 620
61ø GOSUB 120ø ：：FOR $I=L T$ 0143 ：：CALL CHAR（I，A\＄ $(I-L)):=N \$(I-L)=A \$(I-L$ ）：：NEXT I ：：GOTO 59Ø
620 IF $M<>1 \emptyset 2$ THEN 670
639 GOSUB 1290
$64 \emptyset$ DISPLAY AT $(5,15): " 1 S T$ C HAR？＂：：GOSUB 98日 ：：I F F＝1 THEN $3 \varnothing$ ELSE TM $=W$
650．GOSUB 7 ：：DISPLAY AT（ 5，15）：＂2ND CHAR？＂：：GO SUB 98ø ：：IF $F=1$ THEN $3 \varnothing$ ELSE CALL DELSPRITE（ \＃1）
66 D CALL CHARPAT（TM，Z $\$$ ）：： C ALL CHAR $(W, Z \$):$ ：$\$(W-L$ ）$=\mathrm{Z}$ \＄：：GOTO 59の
670 IF $M=109$ THEN GOSUB 120 Ø ：：GOSUB $1 \emptyset \varnothing$ ：：GOTO 590
$68 \emptyset$ IF $M=118$ THEN GOSUB $12 \emptyset$ Ø ：：GOSUB 1 Øø ：：GOTO $59 \varnothing$
690 IF M＜＞97 THEN 730
$7 \emptyset \emptyset$ GOSUB $120 \varnothing$
$71 \varnothing$ GOSUB $1 \varnothing \varnothing$ ：：GOSUB $7 \varnothing$ ： $:$ GOSUB $118 \emptyset:: T=\varnothing:$ ：

SUB $122 \emptyset:$ ：GOSUB $4 \emptyset:$ IF $T=1$ THEN $71 \varnothing$
$72 \emptyset$ GOTO 59＠
$73 \emptyset$ IF $M=99$ THEN GOSUB $12 \emptyset \emptyset$ ：：D\＄＝RPT\＄（＂g＂，16）： C ALL CHAR $(W, D \$): 1 / N \$(W-L$ ）＝D\＄：GOTO 59の
$74 \emptyset$ IF $M=1 \emptyset 5$ THEN GOSUB $12 \emptyset$ Ø ：：$Z=2:$ ：GOTO 39ø
$75 \emptyset$ IF $M=1 \varnothing \varnothing$ THEN GOSUB $12 \emptyset$ Ø ：：$Z=2$ ：：GOTO 39 g
760 IF $M<>119$ THEN 820
$77 \emptyset \mathrm{~T}=1$ ：：GOSUB $12 \emptyset \emptyset: \mathrm{GO}$ SUB 98ø ：：IF $F=1$ THEN $F=\emptyset:$ ：GOTO $81 \emptyset$ ELSE GO SUB $7 \emptyset$
786 DISPLAY AT $(7,16):$＂CHAR＝ ＂；W ：：DISPLAY AT $(9,11)$ ：$N \$(W-L)$
$79 \emptyset \mathrm{D} \$=$＂AGAIN (Y / N) ？＂：$:$ GO SUB 122ø
8øø CALL $\operatorname{HCHAR}(9,11, L, 18):=$ IF $T=1$ THEN GOSUB $4 \varnothing$ ： ：GOTO 779
810 GOSUB 6 ：：GOTO $34 \emptyset$
$82 \emptyset$ IF $M<>1 \varnothing 8$ THEN $86 \emptyset$
83Ø GOSUB 12 Øø
$84 \emptyset$ GOSUB $940:$ ：OPEN \＃ $1: \mathrm{D} \$$ ，INTERNAL，INPUT，FIXED
85ø INPUT \＃1：T，N\＄（T）：IF T $\langle>112$ THEN CALL CHAR（T＋ L，$N \$(T)):=$ GOTO B5Ø ELS E CLOSE \＃1 ：：GOSUB 6 g ：：IF ASC $(D \$)=67$ THEN 3 Øø ELSE $34 \emptyset$
日6の IF $M<>115$ THEN $91 \emptyset$
日7ø GOSUB 12øø ：：GOSUB 94ø日日ø OPEN 1：D\＄，INTERNAL，OUT PUT，FIXED ：：FOR $I=L$ TO 143
89の IF N\＄（I－L）＜＞A $\$(I-L)$ THEN PRINT \＃1：I－L，N\＄（I－L）
$9 \emptyset \emptyset$ NEXT I ：：$T=112: \quad \mathrm{F} \ddagger={ }^{\circ}$ ＂：：PRINT \＃1：T，F\＄：C LOSE \＃1 ：：GOSUB 6ø ：： IF ASC $(D \$)=67$ THEN $3 \emptyset \emptyset$ ELSE $34 \varnothing$
910 IF $M=112$ THEN $H=1$ ：$: G O$ SUB $126 \emptyset$
$92 \emptyset$ IF $M=116$ THEN $H=\varnothing:$ ：$G O$ SUB $126 \varnothing$
930 GOTO $34 \emptyset$
$94 \varnothing$ DISPLAY AT $(5,13): Q \$:$ ACCEPT AT $(6,14): D \$: I$ F D\＄＝＂＂THEN GOSUB 6の ： ：GOTO $34 \varnothing$ ELSE GOSUB 9 6ø
95ø RETURN
$96 \emptyset \mathrm{Z} \$=" \mathrm{n}:$ ：FOR $\mathrm{I}=1$ TO LEN （D\＄）：：F\＄＝SEG\＄（D\＄，I，1）： ：IF（ASC $(F \$)>96)$（ASC（ F $\$$ ）（ 123 ）THEN $F \$=$ CHR $\$$（AS C（F\＄）－L）
$97 \emptyset \mathrm{Z} \$=\mathrm{Z} \$ \& \mathrm{~F} \$:$ ：NEXT I ： D \＄$=$ Z \＄：：RETURN
9月ø CALL SPRITE（\＃1，143，16，B R＊ $8+1$ ， $\mathrm{BC}+8+1$ ）
$99 \emptyset \operatorname{CALL}$ JOYST $(1, X, Y):=I F$ $\operatorname{ABS}(X)+\operatorname{ABS}(Y)=8$ THEN 99 \emptyset
$1 \varnothing \varnothing \varnothing B C=B C-(X=4)+(x=-4):=W$ $=W-(X=4)+(X=-4)$
$1 \varnothing 1 \emptyset B R=B R-(Y=-4)+(Y=4): \quad W$ $=W-(Y=-4) * 28+(Y=4) * 28$
1020 IF BC＜2 THEN BC＝29： $B R=B R-1$
$1 ø 3 \emptyset$ IF $B C>29$ THEN $B C=2::$ $B R=B R+1$
$1 \emptyset 4 \emptyset$ IF $\mathrm{BR}<2 \emptyset$ THEN $\mathrm{BR}=23:=$ $W=W+112$
$1 \emptyset 5 \emptyset$ IF BR＞23 THEN $B R=2 \emptyset::$ $W=W-112$
$1 \varnothing 6 \emptyset \operatorname{CALL} \operatorname{KEY}(1, K K, S T):=C A$ LL $\operatorname{KEY}(\varnothing, K, S)$ M＝111 THEN RETURN ELS E CALL DELSPRITE（\＃1）：： RETURN
1 Ф8ø IF KK＝18 THEN CALL SQU ND $(1 \varnothing, 11 \varnothing, 2):=\operatorname{GOSUB} 4$ Ø ：：CALL DELSPRITE（\＃1 ）：：RETURN
1 1ø9ø GOTO 98ø
$11 \varnothing \emptyset$ DISPLAY AT（11，1）：＂E ED IT＂；TAB（14）；＂N INPUT＂
$111 \varnothing$ DISPLAY AT $(12,1):$＂R RE STORE CH＂；TAB（14）；＂H R ESTORE CHSET＂
$112 \emptyset$ DISPLAY AT $(13,1): " F \operatorname{CO}$ PY＂；TAB（14）；＂W WRITE D ATA＂
$113 \varnothing$ DISPLAY AT（14，1）：＂M MI RROR＂；TAB（14）；＂V REVER SE＂
$114 \varnothing$ DISPLAY AT（15，1）：＂A RO TATE＂；TAB（14）；＂C CLEAR

1150 DISPLAY AT $(16,1):$＂I IN SERT＂；TAB（14）；＂D DELET E＂
1160 DISPLAY AT $(17,1):$＂L LO AD FONT＂；TAB（14）；＂S SA VE FONT＂
$117 \varnothing$ DISPLAY AT $(18,1): " P$ PR INT CH＂；TAB（14）；＂T PRI NT CHSET＂：：RETURN
$118 \emptyset$ FQR $I=\emptyset$ TO 5 STEP 2 ：： CALL $\operatorname{HCHAR}(7,17+I, W):$ ：NEXT I ：：RETURN
119 の $R=29: C=2: W=L:$ CALL SPRITE（\＃1，143，2，R

```
    ( \(8+1\), \(\mathrm{C} \% 8+1)\) : : RETURN
\(12 \emptyset \emptyset\) GOSUB 5ø : : CALL HCHAR
    \((3,17, M-L):\) IF \(T=1 \mathrm{TH}\)
    EN DISPLAY AT 5,15\(): " P\)
    ICK A CHAR" : : \(T=\varnothing\)
121 R RETURN
1220 DISPLAY AT \((5,15): D \$:\)
        ACCEPT AT \((5,27)\) BEEP \(V\)
        ALIDATE ("yn")SIZE(1):Z
        \$: : IF \(Z \$=" y "\) THEN \(T=\)
        1
1230 RETURN
124 CALL CLEAR : : CALL SCR
    EEN(E): : DISPLAY AT (12
    , 7): "LOADING CHARPATS"
        : : FOR I=127 TO \(14 \varnothing\) :
        : CALL CHAR (I, "") : : NE
        XT I
\(125 \emptyset\) FOR I=L TO \(14 \emptyset:\) : CALL
        CHARPAT (I, A\$(I-L)): :
        \(N \$(I-L)=A \$(I-L):\) : NEXT
        I : : RETURN
1260 DISPLAY AT \((3,15):\) "PRIN
        T" : : OPEN \#1:"RS232/2
        . \(\mathrm{BA}=960 \varnothing . \mathrm{DA}=8 . \mathrm{PA}=\mathrm{N}^{\prime \prime}\)
1279 TM=W : IF \(H=1\) THEN 13
    Øロ
1289 FOR T=L TO \(143:\) IF \(N\)
        \$ \((T-L)<>A \$(T-L)\) THEN \(W=\)
        T ELSE \(135 \emptyset\)
\(1290 \mathrm{E}=\mathrm{E}+1:=\mathrm{E}=(\mathrm{E}=17) * 14+\mathrm{E}\)
        :: CALL SCREEN(E)
13øø IF \(((F=1)\) \# \((H=1))+(H=\varnothing)\)
        THEN GOSUB \(7 \boldsymbol{\sigma}\) : : GOSUB
        118 ロ
1319 FOR \(R=2\) TO \(9: I F R=5\)
        THEN PRINT \#1:TAB(5);
```

＂CHR\＄\＃－＂\＆＂く＂\＆STR\＄（W ）\＆＂＞＂；
132 D PRINT \＃1：TAB（3ø）；：$:$ FO $R \quad C=3$ TO 1ø ：：CALL GC $\operatorname{HAR}(R, C, X):$ IF $X=141$ THEN $X=45$ ELSE $X=88$
1330 PRINT \＃1：CHR\＄(x) ；：$:$ NE $X T$ C ：IF R＝5 THEN PR INT \＃1：TAP（47）；＂HEX CO $D E-" \& "\langle " \& N \$(W-L) \& ">"$
1340 NEXT R ：：PRINT H ：： PRINT \＃1 ：：IF $H=1$ THE N 1360
135 N NEXT T
$136 \varnothing$ CLOSE \＃1 ：$F=\varnothing: \quad H=\varnothing$ ：：$E=15$ ：：$W=T M$ ：：$C A$ LL SCREEN（E）：：RETURN

Program 2：Character Set Loader

$1 \varnothing \varnothing$ ！GAME
$11 \varnothing$ GET REDEFINED CHARS
12 CALL CLEAR
$130 \mathrm{~B} \$=$＂DSK1．FONT＂
$14 \varnothing$ OPEN \＃ $1: B \$$ ，INTERNAL，INP UT ，FIXED
15 Ø INPUT $1: F$ ，NEWA\＄：：IF $\mathrm{F}<>112$ THEN CALL CHAR（F ＋32，NEWA\＄）：：PRINT CHR\＄ （F＋32）；：：GOTO $15 \emptyset$
$16 \emptyset$ CLOSE \＃1
$17 \emptyset$ FOR $T=1$ TO 1 Øøø ：：NEXT T

micRQpendium

Covering The TI99／4A Home Computer And Compatibles

TI99／4A USERS

Here＇s a magazine that＇s just for you．A magazine that has been published every month since Feb．1984，filled with nothing but information for TI99／4A users．

MICROpendium is our name and the TI99／4A is our game．Each edition includes comprehensive reviews of hardware and software，articles about programming， programs，page after page of programming hints，arti－ cles about new products，features about how to get the most out of the hardware and software you already own， and much more．Our focus is simple．If it has to do with the TI99／4A，you＇ll read about it in MICROpendium．In most cases，you＇ll read about it in MICROpendium months before it appears anywhere else．We＇ve pub－ lished articles about the new 99／4A upgrade computer， the Z80A and CP／M cards，the 80 －column card，the proof－ reading program for TI Writer，and more．We also offer a Freeware page of software that can be yours for the asking，including file updates for TI Writer and Multiplan．

All this can be yours for $\$ 15$ a year，$\$ 18.50$ if you want delivery by first class mail，which we recommend．In Canada the price is $\$ 18.50$ U．S．funds．

Give us a try．You may cancel at any time and we will refund the balance of your subscription．Send check or money order to：MICROpendium，P．O．Box 1343，Round Rock，TX78680．

Apple ProDOS Variable Lister

Paul F. Stuever

This fast machine language utility takes the pain out of debugging BASIC programs by listing the current value of every program variable. You can also make a hardcopy of the variable list. ProDOS is required.

How many times have you run a program, only to get a message like OVERFLOW ERROR IN 240, or worse yet, BAD SUBSCRIPT ERROR IN 240? When you list the line in question, it may look something like this:

$$
\begin{aligned}
& \text { 240 AS }\left(X+X Z, 2^{*}(\mathrm{~B} / 4=\mathrm{C}+1), \mathrm{B} / 4\right) \\
& =\operatorname{STRS}(\mathrm{Z})
\end{aligned}
$$

To locate the error, you'll need to type PRINT X, followed by PRINT XZ and so on, to find the current value of each variable. This is a slow, tedious way to debug a program, especially when you find that some of these variables were defined with other formulas.
"Apple Variable Lister" takes the drudgery out of such debugging tasks by quickly listing the current value of every variable in your program. The program is written in machine language and works on any Apple II series computer with ProDOS.

You can use this utility even if you don't understand machine language: The BASIC loader program listed below creates the machine language and saves it on your disk. Type in the loader, and save a copy before you run it in case you made a typing error. The program has a checksum to catch errors and identify any lines that have mistakes. If no errors are found, it prints OK and saves the utility with the filename VAR.LIST on your disk as a binary file.

Once this is done, you're ready to use the lister. Enter BLOAD VAR. LIST to load it into memory, followed by HIMEM: 31000 to set the top of memory. You will ordinarily want to do this at the beginning of a programming session. To list your variables, simply type CALL 32000 and press RETURN. The same command can run the routine from with-
in a BASIC program. To make a hardcopy of the variable list, enter PR\#1 before calling the routine.

A Chronological List

Variable Lister displays your program's arrays first, followed by floating point, string, and integer variables. The variables are displayed in chronological order (the order they are used in the program), not alphabetically. Although Applesoft BASIC allows arrays with up to 88 dimensions and as many elements per dimension as available memory will allow, Variable Lister is more restrictive. For this program, arrays are limited to three dimensions and a maximum of 254 elements per dimension. Attempting to list a larger array-for example, the one created by DIM A\$(500)crashes the utility.

Note that Variable Lister cannot display a variable until it has actually been used in the program. For instance, consider the following line:

10 A $\$=" Y E S^{\prime \prime}: I F A \$=" N O$ " THEN B\$="OK"

Since the IF condition can never be satisfied, $B \$$ will not appear on the variable list unless the program uses it elsewhere. This is no problem when debugging, since you're interested only in variables that were used up to the time the program crashed. However, to make a complete variable list for permanent documentation, you'll need to run your program until you know that every variable has been used.

Apple Variable Lister

108 HIME : PRINT "CREATING VAR. LIST": HIMEM: $31 \emptyset \emptyset \emptyset$
$11 \emptyset \mathrm{X}=32 \emptyset \emptyset \emptyset:$ TC $=\varnothing:$ PRINT
$12 \emptyset Z=\emptyset: F O R A=\emptyset$ TQ 9
$13 \emptyset$ READ $P:$ POKE $X, P: Z=Z+P$
$14 \varnothing \mathrm{X}=\mathrm{X}+1:$ IF $\mathrm{X}>326 \emptyset 1$ THE $N 2 \emptyset \varnothing$
159 NEXT A:TC $=T C+Z$
$16 \emptyset$ READ $A:$ IF $A=Z$ THEN 129
$17 \emptyset$ PRINT "ERROR IN DATA "
$18 \emptyset$ PRINT "CHECK LINE \# "; X.- 3 1ø1Ø: STOP
190 :
$20 \varnothing$ IF TC $=85238$ THEN PRINT "0 K": PRINT CHR\$ (4); "BSAVE VAR.LIST,A\$7Døø,L6ø1": END
$21 \varnothing$ PRINT "ERROR IN DATA "
$22 \emptyset$ PRINT "MISSING A LINE": STO P
$1 ø \emptyset \emptyset$ DATA ø32, 127, 125, 169, Ø øø, 133, øø4, ø32, Ø17, 12 5, 764
$1 \emptyset 1 \varnothing$ DATA 23ø, Øø4, Ø32, Ø17, 1 25, 230, $\boxed{94}, 169,141,93$ 2, 984
1 D20 DATA $237,253,165,106,1$ $33,236,165,105,208, \emptyset \emptyset$ 9, 1617
$1 ø 3 \emptyset$ DATA 169, øø7, Ø24, 1ø1, 2 35, 144, øø2, 23ø, 236, 13 3, 1281
1040 DATA 235, $165,236,197,1$ ø8, 144, øø9, 24ø, øø1, ø9 6, 1431
1 1ø5Ø DATA $165,235,197,107,1$ 76, 249, Ø32, 251, 126, 22 B, 1766
1 1ø6Ø DATA øø4, 2ø8, 223, ø32, ø $19,127,16 \emptyset, 6 \boxed{ }, 166,96$ 4, 945
1 1ø7Ø DATA 24ø, Ø29, 2ø2, 24ø, Ø $13,169,165, \emptyset 32,237,25$ 3, 1589
1 ஏ8ø DATA $932, ~ Ø 72, ~ 249, ~ Ø 32, ~ 2 ~$ $28,126,298,198,169,16$ 4, 1478
$1 \emptyset 9 \emptyset$ DATA $932,237,253, ~ Ø 32,1$ $73,126, \emptyset 32,188,126,29$ 8,1497
$11 \emptyset \emptyset$ DATA 185, Ø32, $\boxed{182}, 249,1$ $64,236,165,235,624,16$ 5, 1467
$111 \emptyset$ DATA Øø2, 144, Øø1, 2øø, Ø $32,249,234$, Ø32, 946,23 7, 1177
$112 \emptyset$ DATA $169,141,632,237,2$ $53,208,159,169, \emptyset \emptyset \emptyset, 13$ 3, 1501
$113 \emptyset$ DATA $\emptyset \boxed{1}, ~ \emptyset 32,141,125,2$ $3 \varnothing, \emptyset \emptyset 4, \emptyset 32,141,125,23$ Ø, 1.064
1140 DATA $\emptyset \emptyset 4,169,141, ~ Ø 32,2$ $37,253,165,197,133,23$ 5, 1476
$115 \emptyset$ DATA $165,1 ø 8,2 ø 8, ~ Ø 11,1$ 65, 237, $624,1.1,235,13$ 3, 1387
1160 DATA $235,165,238,101,2$ 36, 133, 236, 197, 11ø, 24 Ø, 1891
$117 \emptyset$ DATA $963,144, \emptyset \emptyset 7,996,1$ $65,235,197,199,176,24$ 9, 1381
$118 \emptyset$ DATA 16פ, øø3, 177, 235, 1 $33,238,136,177,235,13$ 3, 1627
$119 \emptyset$ DATA 237, ø32, 251, 126, 2 28, øø4, 2ø8, 212, 132, 25 2, 1682
1290 DATA $132,251,132,250,1$ $6 \emptyset, ~ Ø \emptyset 4,177,235,17 \emptyset, 2 \varnothing$ Ø, 1711
121 DATA 2øø, 177, 235, 149, 2 $49,262,2 ø 8,247,134,25$ 5, 2056
1220 DATA 134, 254, 134, 253, 1 $52, ~ 656,101,235,133,23$ 5, 1687

1230 DATA 169，øøø，1ø1，236， 1 $33,236, ~ Ø 32, ~ Ø 19,127,16$ 6， 1219
$124 \varnothing$ DATA øø4，2ø8，Øø5，ø32，\emptyset $44,126,2 \emptyset 8$, Ø11，2ø2，2ø 8， 1048
$125 \emptyset$ DATA ஏø5，ø32， 974,126, 2ø8，øø3，ø32，1ø2，126，1 64， 872
$126 \emptyset$ DATA $253,166,254,165,2$ $55,299,196,259,144,91$ 6， 1899
$127 \emptyset$ DATA $16 \emptyset$, Øøø，232，228， 2 51,144, Øø9，162，நøø，$ஜ 2$ 4， 1210
1280 DATA 1ø5，$\varnothing \emptyset 1,197,252,1$ 76, Øø9，132， $253,134,25$ 4， 1513
1290 DATA $133,255, ~ 976,236,1$ $25,165,236,976,167,12$ 5， 1594
$13 \emptyset \emptyset$ DATA $932,127,126,165,2$ $35,164,236, ~ 632,249,23$ 4，16øØ
131ø DATA $\emptyset 32, ~ \emptyset 46,237,169,1$ $41,932,237,253, \emptyset 24,16$ 9，134Ø
$132 \emptyset$ DATA $\emptyset \emptyset 5,1 \emptyset 1,235,144, \emptyset$ Ø2，23Ø，236，133，235，Ø9 6， 1417
$133 \emptyset$ DATA $169,164, \emptyset 32,237,2$ $53, \emptyset 32,127,126,16 \emptyset, \emptyset \emptyset$ Ø，13øワ
$134 \emptyset$ DATA $\emptyset 32,173,126,152, ~ \curvearrowleft$ $56,191,235,133,235,16$ 9， 1412
$135 \emptyset$ DATA øøø，1ø1，236，133， 2 36， $976,191,126,169,16$ 5， 1433
$136 \emptyset$ DATA $932,237,253, ~ \emptyset 32,1$ $27,126,169, \emptyset \varnothing \varnothing, ~ \emptyset 32,22$ 8， 1227
1370 DATA $126,624,165,235,1$ פ5，ஏø2，144，פø2，23ø， 23 6， 1269
$138 \emptyset$ DATA 133，235， $996,169,1$ 68，$\boxed{632}, 237,253,165,25$ 3， 1741
$139 \emptyset$ DATA $\emptyset 32, ~ \emptyset 34,127,165,2$ $51,24 \varnothing, \emptyset 24,169,172, \emptyset 3$ 2， 1246
$14 \emptyset \emptyset$ DATA 237，253，165，254，Ø 32， $634,127,165,252,24$ の， 1759
$141 \emptyset$ DATA $\varnothing 1 \emptyset, 169,172, \emptyset 32,2$ 37，253，165，255，Ø32，$\emptyset 3$ 4， 1359
$142 \emptyset$ DATA $127,169,169, \emptyset 32,2$ $37,253,976, ~ Ø 72,249,17$ 7， 1561
1430 DATA 235， $133,142,206,1$ $77,235,133, ~ \emptyset \emptyset 2,2 \emptyset 0,17$ 7， 1634
1449 DATA 235，133，øø3，ø96，Ø $32, ~ \boxed{72}, 249,169,162$ ， 93 2， 1183
1450 DATA $237,253,166,142,2$ 49, Ø18，16ø，øøø，177，øø 2， 1395
$146 \emptyset$ DATA $\emptyset \emptyset 9,128, \emptyset 32,237,2$ $53,165,241, ~ \emptyset 32,168,25$ 2， 1517
$147 \emptyset$ DATA 2øø，2ø2，2ø8，24ø， 1 $69,162,932,237,253,16$ 9， 1872
$148 \emptyset$ DATA 141， $976,237,253,1$ $77,235,133,158,290,17$ 7， 1787

1490 DATA $235,133,159,162,1$ 44, Ø24，ø32，155，235，ø3 2， 1311
$15 \emptyset \emptyset$ DATA $946,237,169,141, \emptyset$ $76,237,253,162$, ØøD， 16 Ø， 1481
$151 \emptyset$ DATA Øø1，177，235，Ø16，Ø Ø1，232，$\varnothing \varnothing 9,128,133,6 \varnothing$ 1， 933
1520 DATA $136,177,235, \emptyset 16, \varnothing$ Ø1，232，øø9，128，133，Øロ Ø， 1 Ø67
1536 DATA $996,165, ~ Ø \emptyset \emptyset, ~ Ø 32, ~ 2 ~$ $37,253,165, \emptyset 61, ~ \emptyset 32,23$ 7， 1218
1540 DATA $253,165,241,676,1$ $68,252,16 \emptyset, \emptyset \emptyset \emptyset, 162, \boxed{ }$ Ø， 1477
$155 \emptyset$ DATA $2 \emptyset 1,1 \emptyset \emptyset, 144, \emptyset 12,1$ $6 \emptyset, 176,162,176,2 \emptyset \varnothing, 65$ 6， 1387
$156 \emptyset$ DATA 233，1øø，2ø1，1øø， 1
$76,248,2 \emptyset 1, \emptyset 1 \varnothing, 144, \emptyset 1$ Ø， 1423
1570 DATA $162,176,252,656,2$ $33, \emptyset 1 \emptyset, 2 \emptyset 1, \emptyset 1 \emptyset, 176,24$ 8， $15 \emptyset 4$
$158 \emptyset$ DATA øø9，176，ø72，138，Ø $72,152,24 \emptyset, ~ \emptyset \emptyset 3, ~ \emptyset 32,23$ 7,1131
$159 \emptyset$ DATA 253，1ø4，24の，øø3，Ø 32，237，253，194，976， 23 7， 1539
$16 \emptyset \emptyset$ DATA 253，Øøø，Øøø，Øøø，Ø Øø，øøø，øøø，Øøø，øøø，øø D， 253
$161 \varnothing$ DATA Øøø，Øøø，Øøø，Øøø， Øøø，øøø，øøø，øøø，Øøø， Øø，Ø

Educational Software That Works：

Math Blaster！ Word Attack！

Now Available For ATARI

The Davidson Best Seller Tradition．

Davidson \mathcal{E}° Associates，Inc． 6069 Groveoak Place＊ 12
Rancho Palos Verdes，CA 90274
（213）373－0971，（800）556－6141 Outside California

Professional Handicapping Systems
 by Professor Yones

GLD．Thoroughbred＂Gold＂EditionTM

A＂Full＂featured thoroughbred analysis designed for the protessional and serious novice．$\$ 159.95$ complete
EGLD．Enhanced＂Gold＂Edition ${ }^{\text {TM }}$
＂Gold＂Edition with complete Master Bettor TM system integrated onto the same disk．This powerful program will transter all horses and scores to the bet analysis with a＂single keystroke．＂（Master BettorTM included）\＄199．95 complete
GLTD．Limited＂Gold＂TM
Enables Protessional Handicappers to assign specific values to the racing var－ Enables Protessional Handicappers to assign specific values to the racing var－
lables＂they＂feel are important．Create program weight based on a particular track and fine tune it for maximum win percentage．This program is designed for＂ease of use＂．The user needs no programming experience．
（contains Integrated BettorTM）$\$ 299.95$ complete
GD．Gold Dog Analysis ${ }^{\text {TM }}$
The only professional dog handicapper on the market，includes 1）Speed 4）Post Last
2）Post Today 5 Post Las
$\begin{array}{ll}\text { 2）Post Today } & \text { 5）Distance } \\ \text { 3）Kennel } & \text { 6）Condition }\end{array}$
7 Running Style
$\begin{array}{lll}\text { 4）Distance } & \text { 8）Running } \\ \text { Kennel } & \text { 6）Condition } & \text { 8eight }\end{array}$
If you are near a greyhound track，you can＇t afford not to use this program． $\mathbf{\$ 1 4 9 . 9 5}$ complete（with integrated Master BettorTM）\＄199．95 Limited Dog ${ }^{\text {TM }}$ \＄299．95
PPX．Professor Jones＇Football Predictor，Prof．Pix TM Complete Football Analysis with Data－Base．
1）Overlays nalysis wth Data－
3）＂Super Plays＂ 4）＂Over／Under＂bets 5）Data Base Stats 2）Point Spreads 4）＂Over／Under＂bets 6）Hoids＂100＂teams 4.95 Highest percentage of winners 1984

MHH．Master Harness HandicapperTM
Protessional software designed to provide a thorough analysis of all trotter and Protessional software designed to provide a thor
pacer races in North America and Canada－ $\$ 159.95$ complete
with integrated Master Bettor TM $\$ 199.95$
NBA．Basketball ${ }^{\text {TM }}$
This data base managed analysis will provide the user with＂ALL＂betting stua－ tions while storing relevant information on the dsk
$\$ 99.95$ complete w／Manual $\quad \$ 129.95$ NBA／College Version LOT．LOTTERY ANALYSISTM
Statistical comparison program designed to detech subtle patterns in winning lottery number．
$\$ 79.95$ complete w／Manual
$\$ 99.95$ wth Lotto

BROCHURE AVAILABLE

IBM ${ }^{\text {IM }}$ APPLETM TRS－80＇m CPM ${ }^{\text {m }}$ COMMODORETM

Prof．Jones 1940 W．State St． Boise，ID 83702
VISA OnHecoe
48 HR．FREE
SHIPPING

CALL 208－342－6939

TERMS：FREE SHIPPING ALL SOFTWARE．Add $\$ 6.00$ hard ware／\＄6．00 C．O．D．／UPS Blue $\$ 6.00$／Out of Country $\$ 9.00$ ID Residents $4 \% / 3$ weeks per sonal checks／Cash price only adect to change．

Atari Cassette Filenames

Norman Lin

Abstract

Do you have trouble loading Atari cassette files because you keep losing track of the tape counter numbers? Or maybe you're wasting lots of tape by recording only one program per cassette side. Now there's a solution-a clever way to add filename capability to Atari cassettes. The technique works on any Atari 400/800, XL, or $X E$.

Unlike some other tape storage systems, the Atari doesn't allow filenames for cassette files. You must either jot down the tape counter numbers where the files start, or record only one file on each side of a cassette. But what happens if your cassette recorder's counter goes awry, or if you lose the index numbers? Things would be a lot easier if the computer could locate a program in the middle of a tape and load it for you.

Finally there's a simple way to solve these problems: "Atari Searcher/Loader." It lets you save numerous programs on a single side of a cassette, and then automatically finds and loads the program you want.

Saving Programs

Atari Searcher/Loader is very easy to use. Just follow these steps:

1. Type in the program listing following this article. (Note: Line 90 is too long to be typed as listed; to enter it, you must abbreviate POSITION as POS. When you list the program, POS. automatically appears as POSITION. Don't attempt to edit the line after it is entered. If you make a mistake, retype the entire line.)
2. Save the program once at the beginning of each tape using the LIST"C:' command-not the CSAVE command. (Just type LIST"C:", press RETURN, push the

Play and Record buttons on the recorder, and hit RETURN again. Of course, you'll have to start with blank tapes to avoid overwriting programs on your existing tapes.) After you've saved Atari Searcher/ Loader with LIST" C :", do not rewind the tape. Type NEW to clear Searcher/ Loader out of memory.
3. Enter the following short line in immediate mode (that is, without a line number):

> OPEN\#1,8,0,"C:":? \#1;
> "filename":CLOSE \#1
where filename is the name you wish to assign to your program. Then press the Play and Record buttons and hit RETURN twice. After a few seconds, the filename is written onto tape and the computer's READY prompt reappears.
4. Now you can start saving your regular program as usual, except that you must use the LIST " $\mathrm{C}:$ " command as described above instead of CSAVE. If you want to load a program from another tape to save onto the Searcher/Loader tape with a filename, swap cassettes without rewinding the Searcher/Loader tape.

Repeat steps 3 and 4 for each program you save on that side of the tape.

The filename can be anything you like. Disk filenames are limited to eight characters plus a threecharacter extender (such as PROGRAM1.BAS), but Atari Searcher/ Loader permits much longer filenames. However, you should not include spaces or graphics characters as part of a name. Stick to letters, numbers, and common symbols. Do not use the same filename more than once on the same side of a cassette. It is a good idea to write the filenames on the cassette label in case you forget them.

Automatic Loading

Loading your programs with Atari Searcher/Loader is even easier than saving them. Suppose you've saved five programs on one tape using the above procedure. Their filenames are PROG1, PROG2, PROG3, PROG4, and PROG5. Now you want to load PROG4. Just follow these steps:

1. Rewind the tape to the beginning and load Atari Searcher/ Loader by typing this command and pressing RETURN:

ENTER"C:"

2. When the READY prompt reappears, type RUN. Searcher/ Loader asks, FILENAME?. Type in the filename (in this example, PROG4) and press RETURN.

Searcher/Loader hunts through the tape until it finds PROG4, then automatically loads it and stops.

How It Works

After Searcher/Loader asks you for the filename, it stores the name in the string variable $\mathrm{A} \$$ and enters the FOR-NEXT loop at lines 40-80. This loop searches for and loads one block of data at a time (made possible by the LIST" C :" format in which the programs are saved). Each block of data is stored in B\$. If you'd like to see these blocks of data printed on the screen during the search process, insert line 65 PRINT B\$.

Line 70 checks to see if $B \$$ equals $A \$$-in other words, if the block of data loaded is the same as the filename you specified (which is actually a block of data in itself). If $B \$$ does not equal $A \$$, the search goes on. If an error occurs or the tape ends, Searcher/Loader displays the error message at line 100 .

If a block of data loaded corresponds to the specified filename (if $B \$=A \$$), the program jumps out of
the FOR-NEXT loop and goes to line 90. Line 90 clears the screen, erases Searcher/Loader from memory, and then loads the program that follows. When the program is loaded, the operation stops.

Although slow, Searcher/ Loader does eliminate part of the hassle of cassette files.

Atari Searcher/Loader

Please refer to "COMPUTEI's Guide to Typing In Programs" before entering this listing.

BI 1Φ REM TO SAVE A PROGRAM WITH A FILENAME, TYPE OPEN \#1, B, Ø, "C: ":? 1 ;" [FILENAME]": CLOSE \#1
AD $2 \emptyset$ DIM $A \$(1 \varnothing \varnothing), B \(256)
JB $3 \varnothing$? "FILENAME"; : INPUT A\$
BE $4 \varnothing$ FOR I=1 TO 1. $\varnothing E+97$
JE 5 Ø OPEN \#1,4, \ddagger, "C: "
NO 6 TR TRAP 1 פø: INPUT 1 , B $\$$
J6 7 I IF $B \$=A \$$ THEN $9 \varnothing$
JA 8ø CLDSE \#1:PDKE 764,33:N EXT I
009 ? "\{CLEAR\}": POSITION 2 4: ? "NEW":? :? :? "EN TER"; CHR\$(34);"C:";CHR \$(34):? :? : "POKE842 , 12": POSITION 2, D: POKE 842,13:POKE 764,33:EN D
PE 1 Øø ? "BAD BLOCK. LOAD FA ILED. TRY AGAIN." (O)

COMPUTE! Subscriber Services

Please help us serve you better. If you need to contact us for any of the reasons listed below, write to us at:

COMPUTE! Magazine

P.O. Box 914

Farmingdale, NY 11737
or call the Toll Free number listed below.
Change Of Address. Please allow us 6-8 weeks to effect the change; send your current mailing label along with your new address.
Renewal. Should you wish to renew your COMPUTE! subscription before we remind you to, send your current mailing label with payment or charge number or call the Toll Free number listed below.

New Subscription. A one year (12 month)

 US subscription to COMPUTE! is $\$ 24.00$ (2 years, $\$ 45.00 ; 3$ years, $\$ 65.00$. For subscription rates outside the US, see staff page). Send us your name and address or call the Toll Free number listed below. Delivery Problems. If you receive duplicate issues of COMPUTE!, if you experience late delivery or if you have problems with your subscription, please call the Toll Free number listed below.

PRICE

BUSTERS

software*books * supplies apple ${ }^{* *}$ atari ${ }^{* *}$ cammodore $* *$ ibn-pc ${ }^{* *}$ pc-jr games * education * home managenent
business \star utilities $*$ systems business * utilities * systams disks cartridges
cassettes
Our prices are 25% to 50% or more below retail. We have thousands of different corputer items. And, YES, they are the Real Thing...NDT COPIES. Please call or write for our current price list. \rightarrow Be sure to tell us wat camputer you have.
>CODE for this PRICELISTく A=Apple II $+D=$ Apple MAC $G=C / 64$ Disk $I=I B N D C$ $B=A p p l e$ IIC $E=A t a r i$ Disk $H=C / 64$ Cart $J=P C j r$ $\mathrm{C}=A \mathrm{pple}$ IIE $\mathrm{F}=$ Atari Cart
$\mathrm{e}=$ Educational $\mathrm{h}=$ Hane Use $\mathrm{r}=$ Recreational

Type of	Store our	Name of
Computer:	Price Price	PrograiVItem

ABC.E.G.IJ $\$ 40$ e $\$ 26$ Agent USA.48K(Atari $\$ 22$) ABC.E.G.IJ $\$ 40 r \$ 28$ Archon (Electronic Arts) ABC.E.G... $\$ 40 r \$ 28$ Archon II: Adept (E.Arts) ABC.E.G... $\$ 40 \mathrm{r} \$ 26$ Bruce Lee. 48k
ABC.E.G.I. $\$ 30 r \$ 20$ Castle Wolfenstein. 32k BC.E.G.IJ $\$ 50 r \$ 35$ Cut \& Paste Word Processer ABCD. G. IJ $\$ 50 r$ r $\$ 32$ Dead ine (Infocam) ABC.E.G.IJ $\$ 35$ e $\$ 23$ Early Games-Young Children …...H.. $\$ 40 \mathrm{~h} \$ 26$ Fast Load Cartridge (Epyx) ABC.E.G... $\$ 40$ r $\$ 2650$ Mission Crush (S.S.I.) ABCOE.G.IJ $\$ 50 \mathrm{~h} \$ 35$ Financial Cookbook (E.Art) ABC.E.G.IJ $\$ 50 \mathrm{~h} \$ 35$ Finght Simulator II AB.DE.GII. $\$ 35 r$ S 23 Frogger (MAC $\$ 27$)
ABC.E.G.IJ $\$ 35 \mathrm{r} \$ 25$ Hard Hat Mack (Elect.Arts) ABC.E.G... $\$ 75 \mathrm{~h} \$ 49$ Hane Acct. (Arrays/Cont'1) ABC......IJ $\$ 150 \mathrm{~h} \$ 99$ Hane Acct.Plus (Array/Con) ABC...G... $\$ 70 \mathrm{~h} \$ 35$ Honeword (Sierra on Line) $\$ 70$ h $\$ 45$ Haneword (Sierra on Line)
ABCDE.GHIJ $\$ 35 r \$ 23$ Lode Runner (MAC \$27)
ABCDE.G.IJ $\$ 40$ e $\$ 26$ MasterType (MAC $\$ 33$)
ABC...G.IJ $\$ 50$ e $\$ 32$ Math Blaster (Davidson) ABC.E.G... $\$ 25$ e $\$ 18$ Memory Bldr:Concentration …E.G... $\$ 40$ r $\$ 28$ M.U.L.E. (Electronic Arts) ABC.E.G... CALL e CALL Muppet Learning Keys ABC.E.G.Ij $\$ 40 r$ \$28 Murder on the Zindemeuf ABC.E.G.IJ $\$ 40 r \$ 28$ Music Construction Set ABC....... $\$ 50$ eh $\$ 33$ Newsroam. 64k (Great!!) ABC.E.G.IJ $\$ 40 r \$ 28$ ion 1: L. Bird \& J.Erving ABCDE.G.IJ $\$ 40 r \$ 28$ Pirball Construction Set ABC.E.G... $\quad \$ 50 \mathrm{~h} \$ 32$ Print Shop (Broderbund) AB...F.HI. $\$ 35 r \$ 21$ Robotron (Atari) ABC.E.G... $\$ 20 r \$ 15$ Sargon II (Hayden) ABCD..G.IJ $\$ 50 r \$ 32$ Sargon III (hayden)
ABC.E.G.IJ $\$ 40 r \$ 287$ Cities of Gold (E.Arts) ABC...G.... $\$ 40 \mathrm{r} \$ 28$ Sky Fox (Electronic Arts) ABC....G.IJ $\$ 70$ e $\$ 45$ Speed Reader II (Davidson) ABC...G.IJ $\$ 40$ e $\$ 26$ Spellicopter (Designmare) ABC.E.G.IJ $\$ 40 r \$ 26$ Summer Ganes (IBM Sept.85) ABCD.G. IJ $\$ 35 r \$ 23$ Transylvania (MAC \$27) ABCD..G.IJ $\$ 40 \mathrm{r} \$ 26$ Trivia Fever. 48k (Prof ${ }^{\prime} 1$) ABCD..G.I. $\$ 50$ e $\$ 32$ Typing Tutor III (SimonsS) ABC.E.G.IJ $\$ 60 \mathrm{r} \$ 39$ UV tima II, III (each). 48k ABC...G.IJ $\$ 50$ e $\$ 32$ Word Attack (Davidson) ABC.E.G... $\$ 80 \mathrm{~h} \$ 52$ Your Personal Net Worth $\ldots \ldots$. Ij $\$ 100 \mathrm{~h} \$ 55$ Your Personal Net Worth ABCD...... $\$ 45 r \$ 29$ Zork 1,2,3. (each)G.IJ $\$ 40$ r $\$ 26$ Zork 1,2,3. (each) * THE FINE PRINT *

Califormia Buyers Only: Please add $\%$ Sales Tax. Shipping cost for Software within Cont. 48 states: UPS Ground: 1 Item $=\$ 3$. Thereafter, $\$ 1.50 \mathrm{ea}$. UPS Air : 1 Item $=\$ 5$. Thereafter, $\$ 2.00 \mathrm{ea}$. Air Mail $\therefore 1$ Item $=\$ 5$. Thereafter, $\$ 3.00$ ea. Alaska, Hawaii, FPO/APO, Canada: Sme as Air Mail VISA \& 'WCARD: 'Please add 3% to the dove cash prices. Also include: Card \#; Expiration Date; and Cardholder's signature.
Cashier Check/Credit Card/Money Orders usually
shipped out within 24 hrs. Other checks: 2 wks. Public/Parochial School Purchase Orders Accepted. This ad was sutmitted on February 9th, therefore, Price/Availabil ty subject to change. In case of problavs, your phone \# will help us notify you.

FAMILY DISCOUNT COMPUTER PRODUCTS
$250-2$ So. Or ange Ave. \#540 Escondido, CA 92025
Phone: (619)489-1040
> We REBATE S1. on Phone Orders

3M Diskettes Lifetime Warranty

Think you're getting the best price on 3M Diskettes?
You're right : . . BUT ONLY IF You're buying from NORTH HILLS CORP. We will beat any nationally advertised price* or give you a 15 disk library case FREE!

Call us last-TOLL FREE-for our best shot every time.

1-800-328-3472
Formatted and hard sectored disks in stock.

Dealer inquiries inviled. COD's and charge cards accepted. All orders shipped trom stock within 24 hours. Why wait 10 days to be shipped?

North Hills Corporation
3504 Rolling View Dr
White Bear Lake, MN 55110
MN Call Collect 1-612-770-0485
veritiable: same product. same quantities

MEMOREX flexible discs

WE WILL NOT BE UNDERSOLDIl Call Free (800)235-4137 for prices and information. Dealer inquiries invited and C.O.D.'s accepted

COMPUTEI＇s Guide To Typing In Programs

Before typing in any program，you should famil－ iarize yourself with your computer．Learn how to use the keyboard to type in and correct BASIC programs．Read your manuals to understand how to save and load BASIC programs to and from your disk drive or cassette unit．Computers are precise－take special care to type the program exactly as listed，including any necessary punctuation and symbols．To help you with this task，we have implemented a special listing convention as well as a program to help check your typing－the＂Automatic Proofreader．＂ Please read the following notes before typing in any programs from COMPUTE！．They can save you a lot of time and trouble．

Since programs can contain some hard－to－ read（and hard－to－type）special characters，we have developed a listing system that spells out in abbreviated form the function of these control characters．You will find these special characters within curly braces．For example，\｛CLEAR\} or $\{C L R\}$ instructs you to insert the symbol which clears the screen on the Atari or Commodore ma－ chines．A symbol by itself within curly braces is usually a control key or graphics key．If you see \｛A\}, hold down the CONTROL key and press A. Commodore machines have a special control key labeled with the Commodore logo．Graphics characters entered with the Commodore logo key are enclosed in a new kind of special bracket．A graphics character can be listed as $[<A>]$ ．In this case，hold down the Commodore logo key as you type A．Our Commodore listings are in uppercase，so shifted symbols are underlined．A graphics heart symbol（SHIFT－S）would be listed as S．One exception is \｛SHIFT－SPACE\}. Hold down SHIFT and press the space bar．

If a number precedes a symbol，such as $\{5$ RIGHT\}, $\{6 \underline{S}\}$ ，or $[<8 Q>]$ ，you would enter five cursor rights，six shifted S ＇s，or eight Com－ modore－Q＇s．On the Atari，inverse characters （printed in white on black）should be entered with the Atari logo key．Since spacing is some－ times important，any more than two spaces will be listed，for example，as：$\{6$ SPACES $\}$ ．A space is never left at the end of a line，but will be moved to the next printed line as $\{$ SPACE $\}$ ． There are no special control characters found in our IBM PC／PCjr，TI－99／4A，and Apple program listings．For your convenience，we have prepared this quick－reference key for the Commodore and Atari special characters：

Atari 400／800／XL

When you see	Type		See	
［CLEAR）	ESC	SHIFT＜	π	Clear Screen
（UP）	ESC	CTRL－	t	Cursor Up
［DOWN）	ESC	CTRL＝	4	Cursor Down
［LEFT）	ESC	CTRL＋	\leftarrow	Cursor Left
［RIGHT）	ESC	CTRL	\rightarrow	Cursor Right
（BACK S）	ESC	DELETE	4	Backspace
（DELETE\}	ESC	CTRL DELETE	51	Delete character
〔INSERT	ESC	CTRL INSERT	1	Insert character
（DEL LINE	ESC	SHIFT DELETE	E	Delete line
（INS LINE）	ESC	SHIFT INSERT	［	Insert line
［TAB）	ESC	TAB	－	TAB key
\｛CLR TAB）	ESC	CTRL TAB	E	Clear tab
［SET TAB）	ESC	SHIFT TAB	E1	Set tab stop
（BELL）	ESC	CTRL 2	（1）	Ring buzzer
\｛ESC）	ESC	ESC	E	ESCape key

Commodore PET／CBM／VIC／64

When You Read：	Pres		See：	When Read：		ess：	See：
［CLR）	SHIFT	Clibiome	雨	［GRN］	стRL	6	F
\｛ Home \}		CLR HOME	\％	［ BLU \}	CTRL	7	\％
［UP］	SHIFT	4 CRSR	里	［YEL］	CTRL	8	TIT
（DOWN）		CRSR	明	［F1］	${ }^{1}$		
［LEFT］	SHIIT	$-\mathrm{CRSR} \rightarrow$	\square	［F2］	${ }^{1}$		
\｛RIGHT］		$\square-\mathrm{CRSR}-{ }^{\text {a }}$	T	［F3）	${ }^{4}$		
［RVS］	CTRL	9	［	［F4］	${ }_{4}$		
\｛0FF］	CTRL	0		［F5］	${ }^{5}$		
［BLK］	cTRL	1		［F6］	${ }_{6}$		
［ WHT \}	CTRL	2	E	［F7）	7		
［RED］	CTRI．	3	＋	［F8］	${ }^{6}$		
［CYN］	ctri	4	4	4	\square		6
［PUR］	CTRL	5	㐎	1	SHIFT	1	T

The Automatic Proofreader

Also，we have developed a simple，yet effective program that can help check your typing．Type in the appropriate Proofreader program for your machine，then save it for future use．On the VIC， 64，or Atari，run the Proofreader to activate it， then enter NEW to erase the BASIC loader（the Proofreader will still be active，hidden in memory，as a machine language program）．Press－ ing RUN／STOP－RESTORE or SYSTEM RESET deactivates the Proofreader．You can use SYS 886 to reactivate the VIC／64 Proofreader，or PRINT USR（1536）to reenable the Atari Proofreader．The IBM Proofreader is a BASIC program that lets you enter，edit，list，save，and load programs that you type．It simulates the IBM＇s BASIC line editor．

Using The Automatic Proofreader

Once the Proofreader is active，try typing in a line．As soon as you press RETURN，either a number（on the Commodore）or a pair of letters

BETTER MODEMS AT LOWER PRICES!

...and get 24-hour shipping on your DISK WORLD! orders 1200/300 Baud Avatex Modem $\$ 189.95$ ea. 300 Baud Avatex Modem
Avatex Modems have everything $\$ 59.95$ ea. sive, Hayes-compatible, Auto Dial, Auto Answer and high quality (backed by a one-year warranty).
Best of all, our combination includes a One-Year FREE subscription to MCI MAIL and special communications software for placing TOLL-FREE orders with DISK WORLD!
Orders received via MCI MAIL are shipped within
24 -hours (subject to product availability).
(Cables are nct included.)

FOR ORDERS ONLY:
1-800-621-6827
INFORMATION \&
In Illinois: 1-312-944-2788 INQUIRIES: 1-312-944-2788 HOURS: 8AM-5PMM Central Time, Monday-Friday WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES!

DISK WORLD!, Inc.
Suite 4806 • 30 East Huron Street •Chicago, Illinos 60611

DISK

WORLD!
Authorized Distributor AVATEX
Authorized Distributor MODEMS

DISKETTE STORAGE CASES

AMARAY MEDIA-MATE 50: A REVOLUTION IN DISKETTE STORAGE

Every once in a while, someone takes the simple and makes it elegant! This unit holds $505 \%{ }^{*}$ diskettes, has grooves for easy stacking, inside nipples to keep diskettes from slipping and several other features. We like it! $\$ 10.95$ ea. $+\$ 2.00$
DISKETTE 70 STORAGE: STILL A GREAT BUY. Dust-free storage for $705 \% /^{\prime \prime}$ diskettes. Six dividers included. An excellent value $\$ 11.95+\$ 3.00$ DISK CADDIES 11.95 shpng The original flip-up holder for $105 \mathrm{~K}^{\circ}$
iskettes. Beige or grey only. 165° diskettes. Beige or grey only. $\$ 1.65$ ea
FOR ORDERS ONLY: INFORMATION \& INFORMATION
1-800-621-6827 INQUIRIES:
312-944-2788 (In Illinois: 1-312-944-2788)

WE WILL BEAT ANY NATION ON THE SAME PRODUCTS AND QUANTITIES! DISK WORLD!, Inc.
Suite 4806 • 30 East Huron Street • Chicago, Illinos 60611
WORLD! And accessories.

FANTASTIC LOW PRICES ON BASF QUALIMETRIC DISKETTES! LIFETIME WARRANTY!
$5 \%{ }^{\circ}$ SSDD-96TPI $\rightarrow \$ 1.46$ ea $\quad 5 \%{ }^{2}$ DSDD-96TPI $-\$ 1.75$ ea. PACKED IN CARDBOARD CASES! BASF QUALIMETRIC DISKETTES have a LIFETIME WARRANTY with Tyvek sleeves, reinforced hubs, user identification labels and write-protect tabs
SOFT SECTOR ONLY! MINIMUM ORDER: 20 DISKETTES
BASF 3.5^{*} MICRO-FLOPPIES BASF $51 /{ }^{*}$ HIGH DENSITY
SSDD- 135 TPI $\rightarrow \$ 2.50$ ea. \quad FOR IBM PC-AT
DSDD-HD $\rightarrow \$ 4.91$ ea FOR ORDERS ONLY: INFORMATION \&
1-800-621-6827 INQUIRIES: (In Illinois: 1-312-944-2788) 1-312-944-2788 HOURS: 8AM-5PM Central Time, Monday-Friday WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES!

DSK Authorized Reseller \quad Information Processing: BASF MORDD Media

DSK WORLD!
 Ordering \& Shipping Instructions

Shipping: $54^{*} \& 3.5^{*}$ DISKETTES-Add $\$ 3.00$ per each 100 or fewer diskettes. Other Items: Add shipping charges as shown in addition to other shipping charges. Payment: VISA and MASTER CARD accepted. COD Orders: Add additional $\$ 3.00$ Special Handling charge. APO, FPO, AK, HI \& PR Orders: Include shipping charges as shown and additional 5% of total order amount to cover PAL and insurance. Taxes: Illinois residents only, add 8\% sales tax.

Prices subject to change without notice. This ad supercedes all other ads.
Not responsible for typographical errors. MINIMUM TOTAL ORDER: $\$ 35.00$

FOR ORDERS ONLY: INFORMATION \&
1-800-621-6827 INQUIRIES:
(In Illinois. 1-312-944-2788) 1-312-944-2788
HOURS: 8AM-5PM Central Time Monday-Friday
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES!

DISK WORLD!, Inc.
Suite 4806 • 30 East Huron Street •Chicago, Illinos 60611
DISK
WORLD!

PRINTER RIBEONS:

at
 extraordinary prices!

Brand new ribbons, manufactured to Original Equipment Manufacturer's specifications, in housings. (Not re-inked or spools only.)

LIFETIME WARRANTY!
Epson MX-70/80 . . \$3.58 ea. + 25c Shpng
Epson MX-100 . . . S4.95 ea. + 25c Shpng.
Okidata Micro83 . . \$1.48 ea. + 25c Shpng.
Okidata Micro84 .. \$3.66 ea. + 25c Shpng
FOR ORDERS ONLY: INFORMATION \&
$1-800-621-6827$
INQUIRIES:
1-800-621-6827
INQUIRIES
(In Illinois: 1-312-944-2788)
1-312-944-2788
HOURS. AAM-SPM Central Time, Monday-Friday WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES

DISK WORLD!, Inc.
Suite 4806•30 East Huron Street •'Chicago, Illinos 60611
DISK
WORLD!

Incredible value!

Nashua

 DiskettesLIFETIME WARRANTYI $\$ 105{ }_{51 / 4} \mathrm{ea}$. SSDD

Qty. $50 \quad 51 / 4^{\prime \prime}$ DSDD
These are poly-bagged diskettes packaged with Tyvek sleeves, reinforced hubs, user identification labels and write-protect tabs NASHUA Corporation is a half-billion dollar corporation and a recognized leader in magnetic media.

SOFT SECTOR ONLY! Sold in multiples of 50 only
FOR ORDERS ONLY: INFORMATION \&
1-800-621-6827 INQUIRIES:
(In Illinois: 1-312-944-2788) 1-312-944-2788
HOURS: 8AM-5PM Central Time, Monday-Friday
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES!

DISK WORLD!, Inc.
Suite 4806 • 30 East Huron Street •Chicago, Illinos 60611
DISK WORLD!

Authorized Distributor MACNET MACNE
MEDIA

ATHANA DISKETTES The great unknown!
 99\% sion

You've used these diskettes hundreds of times....as copy-protected originals on some of the most popular software packages. They're packed in poly-bags of 25 with Tyvek sleeves, reinforced hubs, user identification labels and write-protect tabs.

LIFETIME WARRANTY!
SOFT SECTOR ONLY! Sold in multiples of 50 only.
FOR ORDERS ONLY: INFORMATION \&
1-800-621-6827 INQUIRIES:
(In Illinois: 1-312-944-2788) 1-312-944-2788
HOURS: 8AM-5PM Central Time, Monday-Friday
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES

DISK WORLD!, Inc.
Suite 4806 • 30 East Huron Street •Chicago, Illinos 6061
DISK
Authorized Distributor
ATHANA
WORLDI
MEDIA

(Atari or IBM) appears. The number or pair of letters is called a checksum. Try making a change in the line, and notice how the checksum changes.

All you need to do is compare the value provided by the Proofreader with the checksum printed in the program listing in the magazine. In Commodore listings, the checksum is a number from 0 to 255 . It is set off from the rest of the line with rem. This prevents a syntax error if the checksum is typed in, but the REM statements and checksums need not be typed in. It is just there for your information.

In Atari and IBM listings, the checksum is given to the left of each line number. Just type in the program, a line at a time (without the printed checksum) and compare the checksum generated by the Proofreader to the checksum in the listing. If they match, go on to the next line. If not, check your typing: You've made a mistake. On the Commodore and Atari Proofreader, spaces are not counted as part of the checksum, and no check is made to see that you've typed in the characters in the right order. If characters are transposed, the checksum will still match the listing. Because of the checksum method used, do not use abbreviations, such as ? for PRINT. However, the Proofreader does catch the majority of typing errors most people make. The IBM Proofreader is even pickier; it will detect errors in spacing and transposition. Also, be sure you leave Caps Lock on, except when you need to enter lowercase characters.

Special Proofreader Notes For Commodore Cassette Users

The Proofreader resides in the cassette buffer, which is used during tape LOADs and SAVEs. Be sure to press RUN/STOP-RESTORE before you save or load a program, to get the Proofreader out of the way. If you want to use the Proofreader with tape, run the Proofreader, then enter these two lines exactly as shown, pressing RETURN after each one:

> A $\$=$ "PROOFREADER.T":B\$ $=$ " $\{10$ SPACES $\} "$ $:$ FORX $=1$ TO $4: A \$=A \$+$ B $\$:$ NEXT FORX $=886$ TO1018:A $\$=$ A $\$+$ CHR $\$($ PEEK $(X))$ $:$ NEXT:OPEN $1,1,1, A \$:$ CLOSE1

Then press RECORD and PLAY on a blank tape, and a special version of the Proofreader will be saved to tape. Anytime you need to reload the Proofreader after it has been erased, just rewind the tape, type OPEN1:CLOSE1, then press PLAY. When READY comes back, enter SYS 886.

IBM Proofreader Commands

Since the IBM Proofreader replaces the computer's normal BASIC line editor, it has to include
many of the direct-mode IBM BASIC commands The syntax is identical to IBM BASIC. Commands simulated are LIST, LLIST, NEW, FILES, SAVE, and LOAD. When listing your program, press any key (except Ctrl-Break) to stop the listing. If you enter NEW, the Proofreader will prompt you to press Y to be especially sure you mean yes.

Two new commands are BASIC and CHECK. BASIC exits the Proofreader back to IBM BASIC, leaving the Proofreader in memory. CHECK works just like LIST, but shows the checksums along with the listing. After you have typed in a program, save it to disk. Then exit the Proofreader with the BASIC command, and load the program into the normal BASIC environment (this will replace the Proofreader in memory). You can now run the program, but you may want to resave it to disk. This will shorten it on disk and make it load faster, but it can no longer be edited with the Proofreader. If you want to convert a program to Proofreader format, save it to disk with SAVE "filename", A.

VIC/64 Proofreader

1øø PRINT"\{CLR\}PLEASE WAIT...":FORI=886TO1 \varnothing 18: READA: CK=CK $+\mathrm{A}:$ POKEI, A: NEXT
$11 \varnothing$ IF CK<>17539 THEN PRINT" \{DOWN\}YOU MADE \{SPACE\}AN ERROR":PRINT"IN DATA STATEMEN TS.":END
120 SYS886: PRINT"\{CLR\}\{2 DOWN\}PROOFREADER A CTIVATED.":NEW
886 DATA $173, \emptyset 36, \emptyset \emptyset 3,201,15 \emptyset, 2 \emptyset 8$
892 DATA Øø1, Ø96,141,151, Øø3,173
898 DATA Ø37, Ø03,141,152, Ø03,169
$9 \emptyset 4$ DATA $150,141, \emptyset 36, \emptyset \emptyset 3,169, \emptyset \emptyset 3$
$91 \emptyset$ DATA 141, Ø37, Øø3,169, Øøø,133
916 DATA 254, Ø96, Ø32, Ø87,241,133
922 DATA $251,134,252,132,253$, øø
928 DATA 2Ø1, Ø13,24Ø, Ø17,2Ø1, Ø32
934 DATA $24 \emptyset, \emptyset 05, \emptyset 24,1 \varnothing 1,254,133$
940 DATA $254,165,251,166,252,164$
946 DATA 253, Ø40, Ø96, 169, Ø13, Ø32
952 DATA $210,255,165,214,141,251$
958 DATA Øø3,2Ø6,251, Øø3,169, øøø
964 DATA $133,216,169, \varnothing 19, \emptyset 32,21 \emptyset$
$97 \emptyset$ DATA $255,169, \emptyset 18, \emptyset 32,21 \varnothing, 255$
976 DATA $169, \emptyset 58, \emptyset 32,21 \emptyset, 255,166$
982 DATA $254,169, \emptyset \emptyset \emptyset, 133,254,172$
988 DATA 151, Ø03,192, Ø87,2Ø8,Øø6
994 DATA Ø32,2Ø5,189, Ø76, 235, Øø3
1 1øø DATA Ø $32,2 \emptyset 5,221,169, \varnothing 32, \emptyset 32$
1006 DATA $210,255,032,210,255,173$
1012 DATA 251, Øø3,133,214, Ø76,173
1018 DATA ØØ3

Atari Proofreader

```
1\emptyset\emptyset GRAPHICS Ø
110 FOR I=1536 TO 1700:READ A:POKE I
        ,A:CK=CK+A:NEXT I
12@ IF CK<>19Q72 THEN ? "Error in DA
    TA Statements. Check Typing.":E
    ND
13@ A=USR(1536)
14@ ? :? "Automatic Froofreader Now
    Activated."
```

1536	DATA	104，16め，Ø，185，26，3
1542	DATA	201，69，240，7，2め日，20め
1548	DATA	192，34，208，243，96，200
1554	dATA	$169,74,153,26,3,206$
156\％	DATA	$169,6,153,26,3,162$
1566	DATA	Ø，189， $0,228,157,74$
1572	DATA	6，232，224，16，208，245
1578	DATA	$169,93,141,78,6,169$
1584	dATA	6，141，79，6，24，173
1590	dATA	$4,228,165,1,141,95$
1596	dATA	6，173，5，228，105，0
1692	DATA	141，96，6，169， 0,133
1698	DATA	203，96，247，238，125，241
1614	DATA	93，6，244，241，115，241
1620	dATA	124，241，76，205，238，
1626	DATA	め，Ø，¢，¢，32，62
1632	DATA	246，8，201，155，240，13
1638	DATA	261， $32,240,7,72,24$
1644	dATA	$101,203,133,2 \emptyset 3,104,4 \emptyset$
1650	DATA	76，72，152，72，138，72
1656	DATA	$160,9,169,128,145,88$
1662	DATA	200，192，40，268， 249,165
1668	DATA	203，74，74，74，74，24
1674	dATA	$165,161,160,3,145,88$
1689	DATA	$165,263,41,15,24,105$
1686	DATA	$161,200,145,88,169, \emptyset$
1692	DATA	$133,2 \emptyset 3,104,179,194,168$
1698	dATA	104，40，96

IBM Proofreader

$1 \varnothing$ ：Automatic Proofreader Version $2 . \varnothing \varnothing$（L ines $27 \varnothing, 51 \varnothing, 515,517,62 \varnothing, 63 \varnothing$ changed f rom V1． D ）
$1 \varnothing \varnothing$ DIM L $\$(5 \emptyset \varnothing)$ ，LNUM（5øø）：COLOR $\varnothing, 7,7: K E Y$ OFF：CLS： $\mathrm{MAX}=\varnothing$ ： $\operatorname{LNUM}(\varnothing)=65536$ ！
110 ON ERROR GOTO 120 ：KEY 15，CHR $\$$（4）＋CHR $\$$ （7ヵ）：ON KEY（15）GOSUB 64ø：KEY（15）ON ：GOTO 13D
$12 \varnothing$ RESUME $13 \varnothing$
$13 \varnothing$ DEF SEG＝\＆H4ø：W＝PEEK（ $\& H 4 A$ ）
$14 \varnothing$ ON ERROR GOTO 65月：PRINT：PRINT＂Proofre ader Ready．＂
$15 \emptyset$ LINE INPUT L $\$: Y=$ CSRLIN－INT（LEN（L\＄）／W） -1 ：LOCATE $Y, 1$
160 DEF SEG＝$=$ POKE 1ø5 $, 30:$ POKE 1ø52，34：P OKE 1054， $0:$ POKE 1ø55，79：POKE 1056，13： POKE 1957，28：LINE INPUT L\＄：DEF SEG：IF L $\$="$＂THEN 15
$17 \emptyset$ IF LEFT $\$(L \$, 1)=" "$ THEN L $\$=M I D \$(L \$, 2)$ ：GOTO 170
189 IF VAL（LEFT $\$(L \$, 2))=\varnothing$ AND $\operatorname{MID} \$(L \$, 3,1$ ）＝＂＂THEN L\＄＝MID\＄（L\＄，4）
190 LNUM $=$ VAL $(L \$): T E X T \$=M I D \$(L \$, L E N(S T R \$(L$ NUM））＋ 1 ）
$20 \varnothing$ IF ASC（L\＄）>57 THEN $26 \varnothing$＇no line numbe r ，therefore command
210 IF TEXT $\$=" "$ THEN GOSUB 549：IF LNUM＝LN UM（P）THEN GOSUB 569：GOTO 15ø ELSE 15 D
$22 \varnothing$ CKSUM＝\varnothing ：FOR $\mathrm{I}=1$ TO LEN（L $\$$ ）：CKSUM $=$（CKS UM＋ASC（MID $\$(L \$, I)$ ）＊I）AND 255：NEXT：LO CATE Y，1：PRINT CHR $\$(65+$ CKSUM $/ 16)+$ CHR $\$$ （ $65+($ CKSUM AND 15）$)+"$＂+ L
230 GOSUB 540：IF LNUM $(P)=$ LNUM THEN L $\$(P)=$ TEXTक：GOTO 150＇replace line
24ø GOSUB 589：GOTO 150 ；insert the line
26 6 TEXT $\$="$＂：FOR $I=1$ TO LEN（L $\$$ ）：A＝ASC（MID \＄（L\＄，I））：TEXT\＄＝TEXT\＄＋CHR\＄（A＋32＊（A＞96 AND A（123））：NEXT

27め DELIMITER＝INSTR（TEXT $\$$ ，＂＂）：COMMAND $\$=T$ EXT $\$:$ ARG $=$＝＂：IF DELIMITER THEN COMMAN $\mathrm{D} \$=\mathrm{LEFT} \$(\mathrm{TEXT} \$, \mathrm{DELIMITER}-1):$ ARG$\$=\mathrm{MID} \$$ （TEXT\＄，DELIMITER＋1）ELSE DELIMITER＝IN STR（TEXT $\$$, CHR $\$(34)$ ）：IF DELIMITER THEN COMMAND $\$=$ LEFT $\$(T E X T \$, D E L I M I T E R-1)$ ：AR G\＄＝MID\＄（TEXT\＄，DELIMITER）
289 IF COMMAND\＄く＞＂LIST＂THEN $41 \varnothing$
$29 \varnothing$ OPEN＂scrn：＂FOR OUTPUT AS \＃1
3øø IF ARG $\$="$＂THEN FIRST $=\emptyset: P=\mathrm{MAX}-1:$ GOTO 34』
319 DELIMITER＝INSTR（ARG\＄，＂－＂）：IF DELIMITE R＝ø THEN LNUM＝VAL（ARG $\$$ ）：GOSUB 54の：FIR ST＝P：GOTO 349
32 FIRST＝VAL（LEFT\＄（ARG\＄，DELIMITER））：LAST $=V A L$（MID\＄（ARG $\$$ ，DELIMITER＋1））
330 LNUM＝FIRST：GOSUB 54D：FIRST＝P：LNUM＝LAS T：GOSUB 54\％：IF $\mathrm{P}=\boldsymbol{6}$ THEN $\mathrm{P}=\mathrm{MAX}-1$
$34 \varnothing$ FOR $X=F$ IRST TO $P: N \$=M I D \$(S T R \$(L N U M(X)$ ），2）＋＂＂
$35 \emptyset$ IF CKFLAG＝\emptyset THEN $A \$=" ": G O T O \quad 37 \varnothing$
36 CKSUM $=9: A \$=N \$+L \$(X): F O R \quad I=1$ TO LEN $\{A \$$ ）：CKSUM＝（CKSUM＋ASC（MID\＄（A $\$, I)) * I)$ AND 255：NEXT：A\＄＝CHR $\$(65+$ CKSUM $/ 16)+$ CHR $\$(6$ $5+($ CKSUM AND 15））$+"$＂
$37 \varnothing$ PRINT \＃1，A\＄＋N\＄＋L\＄（X）
389 IF INKEY $\langle\ll \cdots$ THEN $X=P$
$39 \varnothing$ NEXT ：CLOSE \＃1：CKFLAG＝\emptyset
4øの GOTO $13 \emptyset$
$41 \emptyset$ IF COMMAND $\$=$＂LLIST＂THEN OPEN＂lpt $1: "$ FOR OUTPUT AS \＃1：GOTO 3のD
429 IF COMMAND $=$＝＂CHECK＂THEN CKFLAG＝1：GOT － 290
430 IF COMMAND\＄＜＞＂SAVE＂THEN 459
44の GOSUB GøD：OPEN ARG\＄FOR OUTPUT AS \＃1： ARG\＄＝＂＂：GOTO 3øø
$45 \emptyset$ IF COMMAND\＄く＞＂LOAD＂THEN $49 \varnothing$
46Ø GOSUB GØD：OPEN ARG\＄FOR INPUT AS \＃1：M $A X=\emptyset: P=\varnothing$
47の WHILE NOT EOF（1）：LINE INPUT \＃1，L\＄：LNU $M(P)=V A L(L \$): L \$(P)=M I D \$(L \phi, L E N(S T R \$(V$ AL（L\＄）））＋1）： $\mathrm{P}=\mathrm{P}+1$ ：WEND
48D MAX＝P：CLOSE \＃1：GOTO 13Ø
490 IF COMMAND $\$=$＂NEW＂THEN INPUT＂Erase p rogram－Are you sure＂；L\＄：IF LEFT\＄ ，1）＝＂y＂OR LEFT\＄（L $\$, 1)=" Y "$ THEN MAX＝\varnothing ：GOTO 139：ELSE 13ø
5øø IF COMMAND\＄＝＂BASIC＂THEN COLOR 7，$\boxed{\varnothing}, \mathscr{D}$ ON ERROR GOTO $\emptyset: C L S: E N D$
$51 \varnothing$ IF COMMAND\＄く＞＂FILES＂THEN 52ด
515 IF ARG $\$=" "$ THEN ARG $\$=" A$ ：$"$ ELSE SEL＝1： GOSUB 6Dø
517 FILES ARG\＄：GOTO 139
529 PRINT＂Synta：error＂：GOTO 130
$540 \mathrm{P}=\varnothing$ ：WHILE LNUM＞LNUM（ P ）AND P＜MAX：$P=P+$ 1：WEND：RETURN
56 D $\operatorname{MAX}=\operatorname{MAX}-1:$ FOR $X=P$ TO MAX：LNUM $(X)=$ LNUM $(X: 1): L \$(X)=L \$(X+1):$ NEXT：RETURN
$58 \varnothing$ MAX $=$ MAX $+1:$ FOR $X=$ MAX TO $P+1$ STEP $-1: L N$ $\operatorname{UM}(X)=\operatorname{LNUM}(X-1): L \$(X)=L \$(X-1):$ NEXT：L $\$$ $(P)=$ TEXT $\$:$ LNUM $(P)=$ LNUM：RETURN
$6 \emptyset \emptyset$ IF LEFT $\$$（ARG $\$, 1$ ）＜＞CHR $\$$（34）THEN $52 \emptyset$ E LSE ARG $\$=$ MID $\$(A R G \$, 2)$
61D IF RIGHT $\$$（ARG $\$, 1$ ）$=$ CHR $\$(34)$ THEN ARG $\$=$ LEFT $\$$（ARG\＄，LEN（ARG\＄）－ 1 ）
620 IF SEL $=\varnothing$ AND INSTR（ARG $\$$ ．$^{\prime \prime}$ ．＂）$=\emptyset$ THEN A RG\＄＝ARG\＄＋＂．BAS＂
$63 \varnothing$ SEL $=\varnothing$ ：RETURN
64め CLOSE \＃1：CKFLAG＝ $0:$ PRINT＂Stopped．＂：RET URN 150
650 PRINT＂Error \＃＂；ERR：RESUME 150

Apple MLX Machine Language Entry Program

Tim Victor, Editorial Programmer

Abstract

To make it easier to enter machine language programs into your computer without typos, COMPUTE! is introducing its MLX entry program for the Apple II series. It's our best MLX yet. It runs on the II, II +, IIe, and IIc, and with either DOS 3.3 or ProDOS.

A machine language (ML) program is usually listed as a long series of numbers. It's hard to keep your place and even harder to avoid making mistakes as you type in the listing, since an incorrect line looks almost identical to a correct one. To make error-free entry easier, COMPUTE! generally lists ML programs for Commodore and Atari computers in a format designed to be typed in with a utility called "MLX." The MLX program uses a checksum system to catch typing errors almost as soon as they happen.

This month, COMPUTE! introduces MLX for the Apple II series. Apple MLX checks your typing on a line-by-line basis. It won't let you enter invalid characters or let you continue if there's a mistake in a line. It won't even let you enter a line or digit out of sequence. Best of all, you don't have to know anything about machine language to enter ML programs with MLX. Apple MLX makes typing ML programs almost foolproof.

Using Apple MLX

Type in and save some copies of Apple MLX on disk (you'll want to use MLX to enter future ML programs in COMPUTE!). It doesn't matter whether you type it in on a disk formatted for DOS 3.3 or ProDOS. Programs entered with Apple MLX, however, must be saved to a disk formatted with the same operating
system as Apple MLX itself.
If you have an Apple IIe or IIc, make sure that the key marked CAPS LOCK is in the down position. Type RUN. You'll be asked for the starting and ending addresses of the ML program. These values vary for each program, so they're given at the beginning of the ML program listing and in the program's accompanying article. Find them and type them in.

The next thing you'll see is a menu asking you to select a function. The first is (E)NTER DATA. If you're just starting to type in a program, pick this. Press the E key, and the program asks for the address where you want to begin entering data. Type the first number in the first line of the program listing if you're just starting, or the line number where you left off if you've already typed in part of a program. Hit the RETURN key and begin entering the data.

Once you're in Enter mode, Apple MLX prints the address for each program line for you. You then type in all nine numbers on that line, beginning with the first two-digit number after the colon (:). Each line represents eight bytes and a checksum. When you enter a line and hit RETURN, Apple MLX recalculates the checksum from the eight bytes and the address. If you enter more or less than nine numbers, or the checksum doesn't exactly match, Apple MLX erases the line you just entered and prompts you again for the same line.

Invalid Characters Banned

Apple MLX is fairly flexible about how you type in the numbers. You can put extra spaces between numbers or leave the spaces out entirely, compressing a line into 18 keypresses. Be careful not to put a space
between two digits in the middle of a number. Apple MLX will read two single-digit numbers instead of one two-digit number (F 6 means F and 6, not F6).

You can't enter an invalid character with Apple MLX. Only the numerals $0-9$ and the letters A-F can be typed in. If you press any other key (with some exceptions noted below), nothing happens. This safeguards against entering extraneous characters. Even better, Apple MLX checks for transposed characters. If you're supposed to type in A0 and instead enter 0A, Apple MLX will catch your mistake.

Apple MLX also checks to make sure you're typing in the right line. The address (the number to the left of the colon) is part of the checksum recalculation. If you accidentally skip a line and try to enter incorrect values, Apple MLX won't let you continue. Just make sure you enter the correct starting address; if you don't, you won't be able to enter any of the following lines. Apple MLX will stop you.

Editing Features

Apple MLX also includes some editing features. The left- and rightarrow keys allow you to back up and go forward on the line that you are entering, so you can retype data. Pressing the CONTROL (CTRL) and D keys at the same time (delete) removes the character under the cursor, shortening the line by one character. Pressing CTRL-I (insert) puts a space under the cursor and shifts the rest of the line to the right, making the line one character longer. If the cursor is at the right end of the line, neither CTRL-D nor CTRL-I has any effect.

When you've entered the entire listing (up to the ending address that you specified earlier), Apple MLX
automatically leaves Enter mode and redisplays the functions menu. If you want to leave Enter mode before then, press the RETURN key when Apple MLX prompts you with a new line address. (For instance, you may want to leave Enter mode to enter a program listing in more than one sitting; see below.)

Display Data

The second menu choice, (D)ISPLAY DATA, examines memory and shows the contents in the same format as the program listing. You can use it to check your work or to see how far you've gotten. When you press D, Apple MLX asks you for a starting address. Type in the address of the first line you want to see and hit RETURN. Apple MLX displays program lines until you press any key or until it reaches the end of the program.

Save And Load

Two more menu selections let you save programs on disk and load them back into the computer. These are (S)AVE FILE and (L)OAD FILE. When you press S or L, Apple MLX asks you for the filename. The first time you save an ML program, the name you assign will be the program's filename on the disk. If you press L and specify a filename that doesn't exist on the disk, you'll see a disk error message.

If you're not sure why a disk error has occurred, check the drive. Make sure there's a formatted disk in the drive and that it was formatted by the same operating system you're using for Apple MLX (ProDOS or DOS 3.3). If you're trying to save a file and see an error message, the disk might be full. Either save the file on another disk or quit Apple MLX (by pressing the Q key), delete an old file or two, then run Apple MLX again. Your typing should still be safe in memory.

Apple MLX: Machine Language Entry Program

$1 \varnothing \varnothing \mathrm{~N}=9:$ HOME : NORMAL : PRIN T "APPLE MLX": POKE 34,2: 0 NERR GOTO $61 \varnothing$
$11 \varnothing$ VTAB 1: HTAB 2ø: PRINT "STA RT ADDRESS"; : GOSUB 53Ø: IF $A=\varnothing$ THEN PRINT CHR $\$$ <7): GOTO $11 \varnothing$
$12 \emptyset S=A$
$13 \varnothing$ VTAB 2: HTAB 2ø: PRINT "END ADDRESS "; : GOSUB 530: IF $S>=A$ QR $A=\emptyset$ THEN PR INT CHR\$ (7): GOTO 13Ø
$140 \mathrm{E}=\mathrm{A}$
$15 \varnothing$ PRINT : PRINT "CHOOSE: (E)NT ER DATA"; : HTAB 22: PRINT " (D) ISPLAY DATA": HTAB 8: PR INT " (L) OAD FILE (S)AVE FI LE (Q)UIT": PRINT
$16 \emptyset$ GET A\$: FOR I = 1 TO 5: IF $A \$<>M I D \$$ ("EDLSQ", I, 1) T HEN NEXT : GOTO $16 \varnothing$
17ø ON I GOTO 27ø,22の,18ø,2øØ: POKE 34, $\varnothing: ~ E N D$
$18 \emptyset$ INPUT "FILENAME: "; A\$: IF A $\$\rangle " "$ THEN PRINT CHR $\$$ (4);"BLOAD";A\$;", A";
$19 \varnothing$ GOTO $15 \varnothing$
2øø INPUT "FILENAME: ";A\$: IF A \$ < > "" THEN PRINT CHR\$ (4) ; "BSAVE"; A\$; ", A"; S; ", L" ; E - S
210 GOTO 15ø
220 GOSUB 59ø: IF B $=\emptyset$ THEN 15 Ø
230 FOR $B=B$ TO E STEP 8:L $=4$ $: A=B:$ GOSUB 58ø: PRINT A\$;": ";:L = 2
$24 \emptyset$ FOR $F=\emptyset$ TO 7:V(F+1) $=P$ EEK $(B+F)$: NEXT : GOSUB 5 6П:V(9) $=C$
250 FOR $F=1$ TO $N: A=V(F):$ GO SUB 58ø: PRINT A\$" "; : NEXT : PRINT : IF PEEK (49152) < 128 THEN NEXT
$26 \emptyset$ POKE 49168, Ø: GOTO 15ø
$27 \varnothing$ GOSUB 59ø: IF B $=\varnothing$ THEN 15 \emptyset
$28 \emptyset$ FOR $B=B$ TO E STEP B
$29 \varnothing$ HTAB 1:A $=B: L=4$: GOSUB 5 8ø: PRINT A\$;": ";: CALL 64 668:A\$ $=" 1: P=\varnothing$: GOSUB 33 Ø: IF L $=\varnothing$ THEN 15ø
$30 \emptyset$ GOSUB 47ø: IF F < > N THEN PRINT CHR\& (7);: GOTO $29 \emptyset$
$31 \varnothing$ IF $N=9$ THEN GOSUB 56ø: IF $C<>V(9)$ THEN PRINT CHR $\$$ (7);: GOTO 29Ø

32 FOR $F=1$ TO 8: POKE $B+F$ $-1, V(F):$ NEXT : PRINT : NE XT : GOTO 15ø
330 IF LEN $(A \$)=33$ THEN A $\$=$ O\$:P = O: PRINT CHR\$ (7);
$34 \varnothing \mathrm{~L}=\operatorname{LEN}(A \$): 0 \$=A \$: 0=P:$ L $\$="$ ": IF $P>\emptyset$ THEN L $\$=$ LEFT\$ ($A \$, P$)
$35 \emptyset R \$=" ": I F P<L-1$ THEN $R \$=$ RIGHT $\$(A \$, L-P-1)$
36ø HTAB 7: PRINT L\$;: FLASH: IF $P<L$ THEN PRINT MID\$ (A $\$, P+1,1) ;:$ NORMAL : PRINT R\$;
$37 \emptyset$ PRINT " "; : NORMAL
$38 \emptyset K=\operatorname{PEEK}(49152)$: IF K <12 8 THEN 38ஏ
390 POKE 49168, $0: K=K-128$
4øø IF $K=13$ THEN HTAB 7: PRIN T A\$;" ";: RETURN
$41 \varnothing$ IF $K=32$ OR $K>47^{\circ}$ AND $K<$ 58 OR K >64 AND $K<71$ TH $E N A \$=L \$+C H R \$(K)+R \$:$ $P=P+1$
$42 \emptyset$ IF $K=4$ THEN $A \$=L \$+R \$$
$43 \emptyset$ IF $K=9$ THEN $A \$=L \$+" "$ $+M I D \$(A \$, P+1,1)+R \$$
440 IF $K=8$ THEN $P=P-(P>$ Ø)
450 IF $K=21$ THEN $P=P+(P<$ L)
$46 \emptyset \mathrm{GOTO} 330$
$47 \emptyset \mathrm{~F}=1: \mathrm{D}=$
$47 \varnothing F=1: D=\emptyset:$ FOR $P=1$ TO L $\operatorname{EN}(A \$): C \$=\operatorname{MID} \$(A \$, P, 1):$ IF $F>N$ AND $C \$\rangle "$ "TH EN RETURN

48ø IF C $\$<>"$ " THEN GOSUB 5 $20: V(F)=J+16 *(D=1)$ * $V(F): D=D+1$

49ø IF D $>$ Ø AND $C \$="$ " OR D $=2$ THEN $D=\emptyset: F=F+1$
$5 \emptyset \emptyset$ NEXT : IF $D=\emptyset$ THEN $F=F$ -1
$51 \varnothing$ RETURN
$520 \mathrm{~J}=$ ASC $(C \$): \mathrm{J}=\mathrm{J}-48-7$ * (J > 64): RETURN

53ø $A=\emptyset:$ INPUT $A \$: A \$=$ LEFT $\$$ ($A \Phi, 4$): IF LEN (A\$) $=\emptyset$ THE N RETURN
54ø FOR $P=1$ TO LEN ($A \$$): $C \$=$ MID\$ ($A \$, P, 1$): IF $C \$<" \emptyset "$ OR C $\$>$ "q" AND $C \$<" A "$ OR $C \$>$ " Z " THEN $A=\varnothing:$ RETUR N
550 GOSUB 520:A $=A * 16+J: N$ EXT : RETURN
$560 \mathrm{C}=$ INT $(\mathrm{B} / 256): \mathrm{C}=\mathrm{B}-2$ $54 * C-255 *(C>127): C$ $=C-255 *(C>255)$
570 FOR $F=1$ TO B:C $=C * 2$ 255*($C>127)+V(F): C=$ C-255 * ($\mathrm{C}>255$) : NEXT : RETURN
580 I $=$ FRE (ø) : A $\$=" ":$ FOR I $=1$ TOL:T $=$ INT $(A / 16):$ $A \$=M I D \$(" ø 123456789 A B C D$ $\left.E F^{\prime \prime}, A-16 * T+1,1\right)+A \$:$ $A=T:$ NEXT : RETURN
$59 \emptyset$ PRINT "FROM ADDRESS ";: GOS UB 53ø: IF $S>A$ OR $E<A O$ R $A=\emptyset$ THEN $B=\emptyset:$ RETURN
6øø B = $5+8 *$ INT $((A-S) /$ 8) : RETURN

61ø PRINT "DISK ERROR": GOTO 15 \varnothing

SpeedScript 3.0 All Machine Language Word Processor For Apple

Charles Brannon, Program Editor
Apple Adaptation By Kevin Martin, Editorial Programmer

Abstract

COMPUTE! concludes its SpeedScript 3.0 series this month with a version for Apple II-series computers with DOS 3.3 and at least 48K RAM. Originally written for the Commodore 64 and VIC-20, SpeedScript has also been adapted for Atari computers (COMPUTE!, May 1985) and has become extremely popular. It compares favorably with commercial programs and has some features never seen before in an Apple word processor.

SpeedScript 3.0, though compact in size (5.5 K), has most of the functions you expect in a full-featured word processor. SpeedScript is also very easy to learn and use. You type in everything first; preview and make corrections on the screen; insert and delete words, sentences, and paragraphs; then print out an error-free draft, letting SpeedScript take care of things like margins, centering, headers, and footers.

[^4]
Special Typing Instructions

Apple SpeedScript is the longest Apple machine language program we've ever published, but COMPUTE!'s new "Apple MLX" entry system helps you type it right the first time. MLX can detect most typing errors as they happen. (See the Apple MLX article elsewhere in this issue.) MLX also lets you type SpeedScript in more than one sitting. Although the program listing is lengthy, we guarantee the effort will be worthwhile. If you prefer, you can order Apple SpeedScript 3.0 (and all other Apple programs in this issue) on disk directly from COMPUTE! Publications at a nominal cost (see box).

To begin entering the data for SpeedScript, boot up your Apple with a DOS 3.3 startup disk in the drive. As the MLX article states, programs entered with MLX must be saved to a disk with the same operating system format as the disk from which MLX was loaded. Since this version of SpeedScript works only with DOS 3.3, you must load Apple MLX from a DOS 3.3 disk. If you have a IIe or IIc that came with the ProDOS operating system, you must obtain a copy of DOS 3.3 before entering SpeedScript.

Because the machine language data for SpeedScript resides in the same area of memory where BASIC programs are normally loaded, it's necessary in this case to reconfigure memory before loading MLX to enter SpeedScript. Otherwise, the SpeedScript data you enter with MLX will overwrite the MLX program itself as you type. To reconfigure memory, type the following line in direct mode (no line number) and
hit RETURN:
POKE 104,32: POKE 8192,0: NEW
You must always enter this line before loading MLX to enter SpeedScript data. It is, however, not necessary to enter this line before loading the completed SpeedScript program.

Now load and run Apple MLX. Answer the first two questions that MLX asks like this:

STARTING ADDRESS? 0800
ENDING ADDRESS? 1 E45
An options menu appears next. Press E to Enter the program. Now type the address at which you'd like to start typing. If you're just beginning to type the listing, you'd enter 0800 . The screen then shows the first prompt, the number 0800 followed by a colon (:). Type in each two-digit number shown in the SpeedScript listing (some of the digits are letters, because the numbers are in hexadecimal). You don't need to type the spaces shown in the listing, but you can for the sake of readability. MLX does not let you type illegal characters.

The last number you enter in each line is a checksum. If you type the line correctly, the checksum calculated by MLX should match the checksum number you typed in. If it doesn't match, MLX makes you retype the line. MLX is not foolproof, though. It's quite rare, but it's possible that an error in one number could be offset by an error in another. MLX will help catch your errors, but you still must be careful.

Typing In Multiple Sittings

If you want to stop typing the listing at some point and pick up later, press RETURN at the address prompt without typing anything.

Apple SpeedScript 3.0 Keyboard Map

Use CTRL or control with most commands
Apple IIc Keyboard Shown. Apple Ile,II+ keyboard similar

Write down the address number you stopped at. The options menu reappears, and you can save your typing at this point. To continue entering data the next time, boot your system, enter the direct-mode line given above to configure memory, and load MLX. Answer the STARTING ADDRESS? and ENDING ADDRESS? questions with the same values you used the first time, 0800 and 1 E 45 . Then select Load from the options menu, then press E to enter data. Give MLX the address number you previously stopped at. Now continue typing as before.

When you finish all typing, MLX returns you to the options
menu, where you can save the finished program.

MLX has now created a binary file on disk. To run it, reboot the machine to clear out memory, then from BASIC type BRUN filename, where filename is the name you specified when saving SpeedScript on disk with MLX. SpeedScript automatically loads and runs. If you prefer, you can write a short program:

10 PRINT CHR\$(4);"BRUN filename"
and save it as the HELLO file on the disk (INIT HELLO to format and set up a blank disk). This makes SpeedScript load and run automatically when you boot up.

Do You Have Lowercase?

When you BRUN SpeedScript, you'll first be asked, LOWERCASE? $[\mathrm{Y} / \mathrm{N}]$. If you are running SpeedScript on an Apple IIe or IIc, or have a lowercase character generator in your Apple II+, press Y for Yes. Otherwise, press N . This adjusts SpeedScript for your machine.

After you've answered the prompt, you'll see a blank 40 -column screen with a blinking underline cursor. The first line on the screen is in inverse video, white with black letters. SpeedScript presents all messages on this command line. The remaining 23 lines of the screen are used to enter, edit, and
display your document. You cannot enter text in 80 columns, although you can print the document to the screen in 80 columns, if you have the appropriate hardware.

The cursor shows where the next character you type will appear on the screen. SpeedScript lets you move the cursor anywhere within your document, making it easy to find and correct errors.

Entering Text

To begin using SpeedScript, just start typing. If you have an Apple II + without a lowercase character generator and SHIFT key modification, you'll need to follow a special procedure because the Apple II + SHIFT key does not work with alphabetic characters. (Lowercase adapters and SHIFT key modifications are available for the Apple II+; see your Apple dealer.)

For lowercase text, just type normally. On an Apple II + without a lowercase adapter, lowercase text appears on the screen as uppercase. When you need to specify an uppercase letter, press the ESC key before typing that letter. An uppercase letter appears on the screen in inverse video (with the colors switched). The next character you type will appear as a normal uppercase character, representing lowercase.

This is the convention used by most Apple word processors when lowercase is not available. While this may seem awkward, it overcomes the uppercase-only limitation of the Apple II + and becomes second nature after a while. For example, to enter:
Who won the World Series?
you'd type:
ESC WHO WON THE ESC WORLD
ESC SERIES?
which appears onscreen as:

WHO WON THE WORLD SERIES?

With an Apple II + with the SHIFT key modification or an Apple IIe/IIc, you type as you would on a typewriter, holding down the SHIFT key while typing the uppercase letter. Be sure to disengage the CAPS LOCK key if you want to type lowercase.

When the cursor reaches the right edge of the screen, it automatically jumps to the beginning of the
next line, just as in BASIC. But unlike BASIC, SpeedScript never splits words at the right edge of the screen. If a word you're typing won't fit at the end of one line, it's instantly moved to the next line. This feature, called word-wrap or parsing, also helps make your text more readable.

Scrolling And Screen Formatting

When you finish typing on the last screen line, SpeedScript automatically scrolls the text upward to make room for a new line at the bottom. Imagine the screen as a 23 -line window on a long, continuous document. There's room in memory for 27904 characters on a 48 K machine, or about $10-15$ pages of text. (Unfortunately, SpeedScript 3.0 cannot make use of the extra memory available with 64 K or 128 K .) To check at any time how much space is available, press CTRL-A (hold down the CTRL key while pressing the A key). The number appearing in the command line indicates how much available room remains for characters of text.

If you're used to a typewriter, you'll have to unlearn some habits if this is your first experience with word processing. Since the screen is only 40 columns wide, and most printers have 80 -column carriages, it doesn't make sense to press RETURN at the end of each line as you do on a typewriter. SpeedScript's word-wrap takes care of this automatically. Press RETURN only when you want to force a carriage return to end a paragraph or limit the length of a line. A return-mark appears on the screen as an inverse less-than sign (<).

Using The Keyboard

Most features are accessed with con-trol-key commands-you hold down CTRL while pressing another key. In this article, control-key commands are abbreviated CTRL- x (where x is the key you press in combination with CTRL). An example is the CTRL-A mentioned above to check on available memory. CTRL-E means hold down CTRL and press E .

Some commands have special options. On the Apple II + , you'll sometimes need to press ESC before the CTRL key, as in ESC-CTRL-E.

You first press ESC, then release it and press CTRL and E together. If your Apple II + has the SHIFT key modification, you can press SHIFT instead of ESC, but you must press it simultaneously with CTRL and the command key.

On the Apple IIe and IIc, you hold down the Open Apple key (the key with a hollow Apple symbol) while pressing the CTRL key combination. This is represented in this article as OpAp-CTRL-E. Other keys are referenced by name or function, such as DELETE for the backspace key, carat for the carat (${ }^{\wedge}$) symbol (SHIFT-N on the Apple II + or SHIFT-6 on the Apple IIe/IIc), or cursor-left for the + key. See the figure for a complete quick-reference chart of all keyboard commands.

The Apple II + keyboard does not support all the keys used by SpeedScript, such as cursor-up and cursor-down ($\uparrow \downarrow$), but these commands can still be accessed with CTRL-key combinations. Because SpeedScript uses almost every key, not all combinations are especially mnemonic. Most keys, though, stand for the name of the function they perform.

Some keys let you move the cursor to different places in the document to make corrections or scroll text into view. You can move the cursor by character, word, sentence, or paragraph. Here's how to control the cursor:

- The cursor-left/right keys $(\leftarrow / \rightarrow)$ move the cursor a single space in either direction. By preceding this key with ESC on the Apple II +, or by holding down the Open Apple key while pressing the key on the Apple IIe/IIc, you can move the cursor to the beginning of the next (\rightarrow) or previous (\leftarrow) word.
- The cursor-up/down keys (\uparrow / \downarrow on the IIe/IIc, CTRL-J/CTRL-K on the II +) move the cursor to the beginning of either the previous or next sentence. On the IIe/IIc, hold down the Open Apple key as you press the arrow to move to the beginning of the next (\downarrow) or previous (\uparrow) paragraph. On the Apple II + , press CTRL-K to move the cursor to the beginning of the next sentence, and press CTRL-J to move the cursor to the beginning of the previous sentence. Press ESC-CTRL-K to move
the cursor to the beginning of the next paragraph, or ESC-CTRL-J to move the cursor to the beginning of the previous paragraph. (A paragraph is defined as any sequence of characters ending in a return-mark.)
- Pressing CTRL-@ (CTRL-SHIFT-2 on the IIe/IIc, CTRL-SHIFT-P on the II +), puts the cursor at the top of the screen. If the cursor is already at the top of the screen, CTRL-@ moves the cursor to the top of the document. So to quickly move to the beginning of the document, press CTRL-@ twice.
- CTRL-Z moves the cursor to the end of the document, scrolling if necessary. It's easy to remember since Z is at the end of the alphabet.

Making Corrections

Sometimes you'll have to insert some characters to make a correction. Use CTRL-O to open up a single space. Merely position the cursor at the point where you want to insert a space, and press CTRL-O.

It can be tedious to use CTRL-O to open up enough space for a whole sentence or paragraph. For convenience, SpeedScript has an insert mode that automatically inserts space for each character you type. In this mode, you can't type over characters; everything is inserted at the cursor position. To enter insert mode, press CTRL-I. To cancel insert mode, press CTRL-I again. To let you know you're in insert mode, the cursor changes from a blinking underline to a blinking inverse underline (which looks like a solid square). The cursor changes back to a blinking underline when you exit insert mode. Because of keyboard redundancy, the TAB key on the Apple IIe/IIc works just like CTRL-I.

Insert mode is the easiest way to insert text, but it can become too slow when inserting near the top of a very long document because it must move all the text following the cursor position. So SpeedScript has even more ways to insert blocks of text.

One way is to use CTRL-T (tab). It is programmed in SpeedScript to act as a five-space margin indent. To end a paragraph and start another, press RETURN twice and press CTRL-T. A shortcut for this is CTRL-] on the Apple IIe/IIc and CTRL-SHIFT-M on the Apple II + ; these keystrokes automatically in-
sert two return-marks and indent the margin. CTRL-T always inserts; you don't need to be in insert mode. You can also use CTRL-T to open up more space than CTRL-O. (You cannot set or clear tab stops in SpeedScript as you can with some word processors.) No matter how much space you want to insert, each insertion takes the same amount of time. So CTRL-T can insert five spaces five times faster than pressing CTRL-O five times.

There's an even better way, though. Press CTRL-Q to quickly insert 255 spaces (it does not insert a line; use RETURN for that). You can press it several times to open up as much space as you need. And CTRL-Q is quick indeed. It inserts 255 spaces as fast as CTRL-O opens up one space. Now just type the text you wanted to insert over the blank space. (You don't want to be in CTRL-I insert mode when you use this trick; that would defeat its purpose.)

Since DELETE (backspace) is also slow when working with large documents (it, too, must move all text following the cursor), you may prefer to use the cursor-left key to backspace when using this method.

After you're done inserting, there may be some inserted spaces left over that you didn't use. Just press ESC-CTRL-Q on the II + or OpAp-CTRL-Q on the IIe/IIc. This instantly deletes all extra spaces between the cursor and the start of following text. It's also useful whenever you need to delete a block of spaces for some reason.

Erasing Text

To erase the character on which the cursor is sitting, press CTRL-G (to grab the character). The character highlighted by the cursor is removed, and all following text is moved toward the cursor to fill the empty space.

Press CTRL-B (backspace) on the II + or the DELETE key on the IIe/IIc to delete the character to the left of the cursor. All the following text is moved with the cursor to fill the empty space.

These keys are fine for minor deletions, but it could take all day to delete a whole paragraph this way. So SpeedScript has two commands that can delete an entire word, sentence, or paragraph at a time.

CTRL-E erases text after (to the right of) the cursor position (and can also erase all text), and CTRL-D deletes text behind (to the left of) the cursor.

To use the CTRL-E erase mode, first place the cursor at the beginning of the word, sentence, or paragraph you want to erase. Then press CTRL-E. The command line shows the message "ERASE (S,W,P,A): RETURN TO EXIT." Press S to erase a sentence, W for a word, or P for a paragraph. Each time you press one of these letters, the text is quickly erased. You can keep pressing S, W, or P until you've erased all the text you wish. Then press RETURN to exit the erase mode. .

You also use CTRL-E to erase all text from memory when you want to start a new document. To erase all text, press CTRL-E, then press the A (all) key. A prompt appears: ERASE ALL TEXT: ARE YOU SURE (Y / N). Press Y to perform the irreversible deed. You cannot recover any text erased this way. Press N or any other key to cancel this function.

The CTRL-D delete mode works similar to CTRL-E, but deletes only one word, sentence, or paragraph at a time. First, place the cursor after the word, sentence, or paragraph you want to delete. Then press CTRL-D. Next, press S, W, or P for sentence, word, or paragraph. The text is immediately deleted and you return to editing. You don't need to press RETURN to exit the CTRL-D delete mode unless you pressed this key by mistake. (In general, you can escape from any function in SpeedScript by simply pressing RETURN.) CTRL-D is most convenient when the cursor is already past what you've been typing.

The Text Buffer

When you erase or delete with CTRL-E and CTRL-D, the text isn't lost forever (unless you've performed an Erase All). SpeedScript remembers what you've removed by storing deletions in a separate area of memory called a buffer. The buffer is a failsafe device. If you erase too much, or change your mind, just press CTRL-carat (CTRL-SHIFT-6 on the IIe/IIc, CTRL-SHIFT-N on the $\mathrm{II}+$) to restore the deletion. However, be aware that SpeedScript remembers only the last erase or
delete you performed. It's not to hard to remember this command, since the carat is used in paper-andpencil editing to signify an insertion. Be sure you don't press CTRL-N without SHIFT, since CTRL-N is the command to clear out (null) the buffer.

Another, more powerful, use of this buffer is to move or copy sections of text. To move some text from one location in your document to another, first erase or delete it with CTRL-E or CTRL-D. Then move the cursor to where you want the text to appear and press CTRLcarat. CTRL-carat instantly inserts the contents of the buffer at the cursor position. If you want to copy some text from one part of your document to another, just erase or delete it with CTRL-E or CTRL-D, restore it at the original position with CTRL-carat, then move the cursor elsewhere and press CTRLcarat to restore it again. You can retrieve the buffer with CTRL-carat as many times as you like. If there is no room left in memory for inserting the buffer, you'll see the message NO ROOM.

Important: The CTRL-E erase mode lets you erase up to the maximum size of the buffer (2 K), and CTRL-E also removes the previous contents of the buffer. The buffer is also erased with the ERASE ALL option of CTRL-E. Keep this in mind if there's something in the buffer you'd rather keep. If you don't want the buffer to be erased, hold down the Open Apple key (or precede with ESC on the II +) when you press CTRL-E. This preserves the buffer contents and adds newly erased text to the buffer.

If you ever need to erase the contents of the buffer, press CTRL-N (null buffer).

Search And Replace

SpeedScript has a Find command that searches through your document to find a selected word or phrase. A Replace option lets you automatically change one word to another throughout the document.

ESC-CTRL-F or OpAp-CTRLF (find) lets you define a search phrase, ESC-CTRL-R or OpAp-CTRL-R (replace) lets you define a replace phrase, and CTRL-Y is for automatically searching and replacing.

Searching is a two-step process. First you need to tell SpeedScript what to search for, then you trigger the actual search. Hold down Open Apple and press CTRL-F (on the Apple II + , press ESC, then CTRL-F). The command line prompts FIND:. Type in what you'd like to search for, the search phrase. If you press RETURN alone without typing anything, the Find command is canceled.

When you are ready to search, press CTRL-F. SpeedScript looks for the next occurrence of the search phrase starting from the current cursor position. If you want to hunt through the entire document, press CTRL-@ twice to move the cursor to the very top before beginning the search. Each time you press CTRL-F, SpeedScript looks for the next occurrence of the search phrase and places the cursor at the start of the phrase. If the search fails, you'll see the message NOT FOUND.

CTRL-R works together with CTRL-F. After you've specified the search phrase with OpAp-CTRL-F or ESC-CTRL-F, press OpAp-CTRLR or ESC-CTRL-R to select the replace phrase. (You can press RETURN alone at the REPLACE WITH: prompt to select a null replace phrase. When you hunt and replace, this deletes the located phrase.) To manually search and replace, start by pressing CTRL-F. After SpeedScript finds the search phrase, press CTRL-R if you want to replace the phrase. If you don't want to replace the phrase, don't press CTRL-R. You are not in a special search and replace mode. You're free to continue writing at any time.

CTRL-Y links CTRL-F and CTRL-R together (think of the two branches of the Y linking together Find and Replace). It first asks FIND:, then REPLACE:, then automatically searches and replaces throughout the document starting at the cursor position.

There are a few things to watch out for when using search and replace. First, realize that if you search for "the," SpeedScript finds the embedded "the" in words like "therefore" and "heathen." If you changed all occurrences of "the" to "cow," these words would become "cowrefore" and "heacown." If you want to find a single word, include a space as the first character of the
word, since almost all words are preceded by a space. Naturally, if you are replacing, you need to include the space in the replace phrase, too.

Also, SpeedScript distinguishes between upper- and lowercase. The word "Meldids" does not match with "meldids." SpeedScript will not find a capitalized word unless you capitalize it in the search phrase. To cover all bases, you will sometimes need to make two passes at replacing a word. Keep these things in mind when using CTRL-Y, since you don't have a chance to stop a linked find and replace.

Storing Your Document

To store your text, press CTRL-S. You'll see the prompt SAVE:. Type in the filename and press RETURN. If you need to access a second disk drive, precede the filename with 2 :. This becomes the default drive for future disk access. To return to drive 1 , precede the filename with 1 :. If the filename you specify coincides with one already on the disk, the existing file will be overwritten by the new one.

CTRL-S always saves the entire document. The cursor position within the document is not important.

When the SAVE is complete, SpeedScript reports NO ERRORS if all is well, or gives a message like DISK FULL if not. Check your DOS or BASIC manual for a list of error messages and their causes.

Press CTRL-C to display the disk catalog. The catalog pauses when the screen is full, waiting for you to press a key to continue. When the catalog is finished, press RETURN to return to editing.

Loading A Document

To recall a previously saved document, press CTRL-L. Answer the LOAD: prompt with the filename. Again, you can precede the filename with 1: or 2: to switch drives. SpeedScript loads the file and should display NO ERRORS. Otherwise, SpeedScript reports the error.

The position of the cursor is important before loading a file. Documents start loading at the cursor position, so be sure to press CTRL-@ twice or CTRL-E and A (Erase All) to move the cursor to the start of text, unless you want to merge two documents. When you press CTRL-L to
load, a flashing asterisk appears to warn you if the cursor is not at the top of the document.

To merge two or more files, simply load the first file, press CTRL-Z to move the cursor to the end of the document, and then load the file you want to merge. Do not place the cursor somewhere in the middle of your document before loading. A Load does not insert the text from disk, but overwrites all text after the cursor position. The last character loaded becomes the new end-of-text pointer, and you cannot access any text that appears ahead of this pointer.

Since SpeedScript stores documents as binary files, you cannot read a text file in BASIC, load a BASIC program into SpeedScript, or upload a text file with a modem. However, Program 2 is a file conversion program which allows these functions. It converts SpeedScript binary files into ASCII text files. It can also convert an ASCII text file into a SpeedScript binary file. This lets you convert word processing files from other word processors, or change a SpeedScript document into a text file suitable for uploading. You can even edit BASIC programs with SpeedScript. Add the following line to your BASIC program and run it. It creates a text file on disk of your BASIC listing.

0 PRINT CHRS(4);"OPEN filename" :PRINT CHR\$(4)"WRITE filename":LIST

Run Program 2 to convert the BASIC text file to a SpeedScript file. You can then load this file into SpeedScript for editing. Save this file back to disk, run Program 2 to convert it back to a text file, then in BASIC use EXEC filename to read the text file back into BASIC. Although this seems rather tedious, you may find it quite worthwhile when working with long programs. A similar technique can be used to edit files written by other applications.

Note: Delete any SpeedScript print formatting commands (described below) before converting a text file to an ASCII file. Otherwise, they will not be converted correctly.

Additional Features

SpeedScript has a few commands that don't do much, but are nice to
have. CTRL-X exchanges the character under the cursor with the character to the right of the cursor. Thus you can fix transposition errors with a single keystroke. CTRL-W (think sWitch) changes the character under the cursor from uppercase to lowercase or vice versa.

Apple SpeedScript traps the RESET key. RESET or CTRL-RESET always returns you to editing mode. There is no way to exit SpeedScript once you've run it, short of rebooting.

PRINT!

If you already think SpeedScript has plenty of commands, wait until you see what the printing package offers. SpeedScript supports an array of powerful formatting features. It automatically fits your text between left and right margins you can specify. You can center a line or block it against the right margin. SpeedScript skips over the perforation on contin-uous-form paper, or can wait for you to insert single-sheet paper. A line of text can be printed at the top of each page (a header) and/or at the bottom of each page (a footer), and can include automatic page numbering, starting with whatever number you like.

SpeedScript can print on different lengths and widths of paper, and single-, double-, triple-, or anyspacing is easy. You can print a document as big as can fit on a disk by linking several files together during printing. You can print to the screen or to a file instead of to a printer. Other features let you send special codes to the printer to control features like underlining, boldfacing, italics, and double-width type (depending on the printer).

But with all this power comes the need to learn additional commands. Fortunately, SpeedScript sets most of these variables to a default state. If you don't change these settings, SpeedScript assumes a left margin of five, a right margin position of 75 , no header or footer, single-spacing, and continuous paper page feeding. You can change these default settings if you want (see below).

Before printing, be sure the paper in your printer is adjusted to top-of-form (move the paper perforation just above the printing element). One additional note: Some printers
incorporate an automatic skip-overperforation feature. The printer skips to the next page when it reaches the bottom of a page. Since SpeedScript already controls paper feeding, you need to turn off this automatic skip-over-perf feature before running SpeedScript, or paging won't work properly.

To begin printing, press CTRLP. If your printer is attached, powered on, and selected (online), SpeedScript begins printing immediately. To cancel printing, press CTRL and the RESET key.

If you need to print to an RS232 printer or to a printer in a slot other than slot \#1, press- ESC-CTRL-P (Apple II +) or OpAp-CTRL-P (Apple IIe/IIc). This brings up the prompt PRINT TO: SCREEN, PRINTER? Press S to print to the screen. If you don't have lowercase, the screen display won't make much sense, although you can still see where pages break. If you have an Apple IIc, an Apple IIe with the 80column card, or an Apple II + with a compatible 80 -column card, SpeedScript automatically prints to the screen in 80 columns, simulating the printer.

If you select P, you'll be asked for the slot number. Output is sent to the slot number you select. It's similar to PR\# in BASIC. If you print to slot 6 (the disk drive), you'll cause the system to reboot, so be careful.

Formatting Commands

The print formatting commands are single letters embedded in text, such as L for left margin. To enter a formatting variable, press CTRL-V. You'll see the prompt ENTER FORMAT VARIABLE:. Now press any key. The print formatting commands must be distinguished from normal text, so they appear onscreen in flashing inverse video with the text and background colors switched. All lettered printer commands should be entered without the SHIFT key. During printing, SpeedScript treats these characters as printing commands.

There are two kinds of printing commands, which we'll call Stage 1 and Stage 2. Stage 1 commands usually control variables such as left margin and right margin. Most are followed by a number, with no space between the command and the number. Stage 1 commands are
executed before a line is printed.
Stage 2 commands, like centering and underlining, are executed while the line is being printed. Usually Stage 1 commands must be on a line of their own, although you can group several Stage 1 commands together on a line. Stage 2 commands are by nature embedded within a line of text. Again, remember to press CTRL-V to enter the boldface characters shown below.

Stage 1 Commands

L Left margin. Follow with a number from 0 to 255 . Use 0 for no margin. Defaults to 5 .

R Right margin position, a number from 1 to 255 . Defaults to 75. Be sure the right margin value is greater than the left margin value, or SpeedScript will go bonkers.

T Top margin. The position at which the first line of text is printed, relative to the top of the page. Defaults to 5 . The header (if any) is always printed on the first line of the page, before the first line of text.

B Bottom margin. The line at which printing stops before continuing to the next page. Standard $81 / 2 \times$ 11 -inch paper has 66 lines. Bottom margin defaults to the fifty-eighth line. Don't make the bottom margin greater than the page length.

P Page length. Defaults to 66. If your printer does not print six lines per inch, multiply lines-per-inch by 11 to get the page length. European paper is usually longer than American paper- $115 / 8$ or 12 inches. Try a page length of 69 or 72 .

S Spacing. Defaults to singlespacing. Follow with a number from 1 to 255 . Use 1 for single-spacing, 2 for double-spacing, 3 for triplespacing.
@ Start numbering at page number given. Page numbering normally starts with 1.
? Disables printing until selected page number is reached. For example, a value of 3 would start printing the third page of your document. Normally, SpeedScript prints starting with the first page.
X Sets the page width, in columns (think a cross). Defaults to 80 . You need to change this for the sake of the centering command if you are printing in double-width or condensed type, or are using a 40 column or wide-carriage printer.

N Forced paging. Normally, SpeedScript prints the footer and moves on to the next page only when it has finished a page, but you can force it to continue to the next page by issuing this command. It requires no numbers.

M Margin release. Disables the left margin for the next printed line. Remember that this executes before the line is printed. It's used for outdenting.

W Page wait. This command should be placed at the beginning of your document before any text. With page wait turned on, SpeedScript prompts you to INSERT NEXT SHEET, PRESS RETURN when each page is finished printing. Insert the next sheet, line it up with the printhead, then press RETURN to continue. Page wait is ignored during disk or screen output.

J Select automatic linefeeds after carriage return. Like W, this command must be placed before any text. Don't use this command to achieve double-spacing, but only if all text prints on the same line with some printers.

I Information. This works like REM in BASIC. You follow the command with a line of text, up to 255 characters, ending in a return-mark. This line will be ignored during printing, and is handy for making notes to yourself such as the filename of the document.

H Header define and enable. The header must be a single line of text (up to 254 characters) ending in a return-mark. The header prints on the first line of each page. You can include Stage 2 commands such as centering and page numbering in a header. You can use a header by itself without a footer. The header and footer should be defined at the top of your document, before any text. If you want to prevent the header from printing on the first page, put a return-mark by itself at the top of your document before the header definition.

F Footer define and enable. The footer must be a single line of text (up to 254 characters) ending in a return-mark. The footer prints two lines prior to the last line of each page. As with the header, you can include Stage 2 printing commands, and you don't need to set the header to use a footer.

G Go to (link) next file. Put this command as the last line in your document. Follow the command with the filename (with no spaces between the G and the filename), including the drive number prefix 1 : or 2 :, if appropriate. After the text in memory is printed, the link command loads the next file into memory. You can continue linking successive files, but don't include a link in the last file. Before you start printing a linked file, make sure the first of the linked files is in memory. When printing is finished, the last file linked to will be in memory.

Stage 2 Commands

These commands either precede a line of text or are embedded within one.

C Centering. Put this at the beginning of a line you want to center. This centers only one line ending in a return-mark. Repeat this command at the beginning of every line you want centered. Centering uses the page-width setting (see above) to properly center the line. To center a double-width line, either set the page width to 40 or pad out the rest of the line with an equal number of spaces. If you use double width, remember that the spaces preceding the centered text will be doublewide spaces.
\# When SpeedScript encounters this command, it prints the current page number. You usually embed this within a header or footer.

U A simple form of underlining. It works only on printers that recognize CHR $\$(8)$ as a backspace and CHR $\$(95$) as an underline character. Underlining works on spaces, too. Use the first U to start underlining, and another one to turn off underlining.

Fonts And Styles

Most dot-matrix printers are capable of more than just printing text at ten characters per inch. Some printers have several character sets, with italics and foreign language characters. Most can print in double width (40 characters per line), condensed (132 characters per line), and in either pica or elite. Other features may include programmable characters, programmable tab stops, and graphics modes. Many word processors customize themselves to a particular printer, but for flexibility

SpeedScript was purposely designed not to be printer-specific. Instead, SpeedScript lets you define your own Stage 2 printing commands.

You define a programmable printkey by choosing any character that is not already used for other printer commands. The numbers 0-9, most symbols, and some alphabetic characters are available for printkeys. You enter these commands like printer commands with CTRL-V. The printkeys are like variables in BASIC.

To define a printkey, press CTRL-V, then type the key you want to assign as the printkey, then an equals sign ($=$), and finally the ASCII value to be substituted for the printkey during printing. Now whenever SpeedScript encounters the printkey embedded in text, it prints the character with the ASCII value you previously defined. (If you have trouble passing some printkeys to the printer, try adding 128 to the ASCII value you wish to send. Otherwise, some printer interfaces intercept the printkey.)

For example, to define the + key as the letter z , you first look up the ASCII value of the letter z (in either your printer manual or in the BASIC manual). The ASCII value of the letter z is 122 , so the definition is:

+ $=122$ 《

Now, anywhere you want to print the letter z , substitute the printkey:

Gad+ooks! The Hoo is Hany! «

This would appear on paper as:
Gadzooks! The zoo is zany!
More practically, here's how you could program italics on an Epson MX-80 compatible printer. You switch on italics by sending an ESC (a character with an ASCII value of 27), then the character 4. You turn off italics by sending ESC 5 . So define * as the escape code. Anywhere you want to print a word in italics, bracket it with *4 and *5.

You can similarly define whatever codes your printer uses for features like double width or emphasized mode. For your convenience, four of the printkeys are predefined, though you can change them. The keys 1-4 are defined as $27,14,15$,
and 18 , common values for most printers. On most printers, CHR\$(27) is the ESCape key, CHR\$(14) starts double-width printing, CHR $\$(15)$ either stops double width or starts condensed characters, and CHR\$(18) usually cancels condensed characters.

Keep one thing in mind about printkeys. SpeedScript always assumes it is printing to a rather dumb, featureless printer, the least common denominator. SpeedScript doesn't understand the intent of a printkey; it justs sends out its value. So if you make one word within a line double width, it may make the line overflow the specified right margin. There's no way for SpeedScript to include built-in font and typestyle codes without being customized for a particular printer, since no set of codes is universal to all printers.

Hints And Tips

It may take you awhile to fully master SpeedScript, but as you do you'll discover many ways to use the editing and formatting commands. For example, there is a simple way to simulate tab stops, say for a columnar table. Just type a period at every tab stop position. Erase the line with CTRL-E, then restore it with CTRLcarat multiple times. When you are filling in the table, just use word-left/word-right to jump quickly between the periods. Or you can use the programmable printkeys to embed your printer's own commands for setting and jumping to tab stops.

You don't have to change or define printer commands every time you write. Just save these definitions, and load this file for each session. You can create many custom definition files and have them ready to use on disk. You can create customized "fill-in-the-blank" letters. Just type the letter, and everywhere you'll need to insert something, substitute a unique character, such as an * or a CTRL character. When you're ready to customize the letter, use Find to locate each symbol and insert the specific information. Instead of typing an oft-used word or phrase, substitute a unique character, then use CTRL-Y to automatically change these characters into the actual word or phrase. You can even use SpeedScript as a simple filing program.

Just type in all your data, flagging each field with a unique character. You can use Find to quickly locate any field.

If you experience any problems with SpeedScript that you are sure are not due to your error, please write (don't call) with a detailed explanation of the problem and how it occurred. Describe your hardware configuration. It also helps to send us a disk copy of your typing so we can determine with our equipment whether you have a hardware problem.

Due to the volume of mail, we cannot always reply to individual questions, but we welcome your suggestions. Who knows-your feedback may help make SpeedScript 4.0 a reality.

The Apple version of SpeedScript 3.0, and all other Apple programs in this issue, may be ordered on disk directly from COMPUTE! Publications. Call TOLL FREE 1-800-334-
0868 (in NC 1-919-275-9809) to charge your order 8:30 a.m.-7:00 p.m. Eastern Time, Monday through Friday. Or send check or money order ($\$ 12.95$ plus $\$ 2.00$ shipping and handling) to:

COMPUTE! Publications, Inc. P.O. Box 5058
 Greensboro, NC 27403 USA

Readers outside the United States and Canada add $\$ 3.00$ shipping and handling. All orders must be prepaid in US funds.

Program 1: SpeedScript 3.0 For Apple

Please refer to the "Apple MLX" article before entering this listing.

START ADDRESS: ø日øø
 END ADDRESS: $1 E 45$

Ø日9の：1D Dø $\emptyset 4$ Fg øD Aø FF B9 97 ø日98：FF FF 99 FF FF 88 Cø FF 7F ø日Aの：Dø FS CE 99 ø日 CE 9С øВ C6 øBAB：CA DØ EA $6 \varnothing$ A2 Øø BD 6D B3 g8Bø： 99 8D øF 99 8D $4 \varnothing$ g9 BD 58 ø日B8： 84 ø9 8D øE 99 8D $3 F 99$ E5 øBCg：$A D 4 F 1 E$ 8D DC 98 8D ED 28 ø日CB：ø日 日D ø3 ø9 AD $5 \emptyset$ 1E 8D A9 ø日Dø：DD ø日 8D EE g日 8D 94 g9 F9 ø日D8：EB Aø øø B9 FF FF CB C9 7C ø日Eg： 82 Fg 1C C9 3C Fの 18 Cの 25 g日E8： 28 Dg Fg 88 B9 FF FF C9 7F の日Fø： $8 \emptyset$ Fø gB 29 3F C9 $2 \varnothing$ Fg C3 ø日F8：ø5 8B Dø Fø Aø 27 CB 84 BE の9øø：ED B8 B9 FF FF 1086 C9 78 ø9ø日： $83 \mathrm{~B} \varnothing$ ø2 A5 FF 99 FF FF 99 g910：88 10 EF A4 ED 18 98 6D 21 ø918：DC øB 8D DC øB 8D ED øB 74 9920：8D 93 g9 AD DD $9869 \quad 9097$ ø928：8D DD ø8 8D EE øB 8D 9499
 ø938：Cø 28 Fø ØA A9 Aø 99 FF 76 の94の：FF CB Cø 28 Dø FB BD 6D 72 ø948： 99 8D のF 99 8D 4ø 99 BD F1 9959： 84 g9 8D ØE 99 8D 3F $997 F$ ø958：E8 Eの 18 FØ Ø3 4C D9 ø8 2E ஏ969：AD DC ø日 8D 59 1E AD DD D6

 ø988： $8 \varnothing$ øø $8 \varnothing 28$ AB 28 AB 28 CC ø99®：AB 28 AB $5 \varnothing$ Dø $5 \varnothing$ D 50 D4
 ø9Ag： $8 D 4 F 1 E$ 日D $551 E 85 \mathrm{FB} 14$ ø9AB：AD 471 E 85 EC BD $5 \varnothing 1 \mathrm{D}$ DB 99Bg：8D 56 1E 85 FC 38 AD 49 AB 99B8：1E ED 47 1E AA A9 Aø Ag FD ø9Cø：FF C6 EC 91 EB CB E6 EC 78 ø9C8： 91 EB C8 Dø FB E6 EC CA E4 g9Dg：Dg F6 91 EB 6985 ED 8473 Ø9D8：EE $2 \varnothing$ 8ø FE Aø Øø B1 ED Cø g9Eの：Fの $\emptyset 620$ ED FD CB Dø F6 7B の9E8：6の $2 \varnothing$ F5 $\varnothing 9$ Fの FB C9 Cø 4E ø9Fø：9の ø2 $29 \mathrm{DF} 6 \varnothing$ 2C øの Cø 63 の9F8：1の 2C AD øø Cø C9 Cø 9ø 13 ØAøø： 212 C Øの ø3 $3 \varnothing 1 \mathrm{C}$ 日5 E3 Cø ØAø8：AD 61 Cø $\emptyset D 441 E 4 D 63$ CC ØA1ø：Cø $1 \varnothing$ ø日 A5 E3 $\varnothing 92 \varnothing$ 8D F4 ØA18： $1 \varnothing$ Cø $6 \varnothing$ A9 øの 8D 44 1E E7 ØA2Ø：A5 E3 BD 1ø Cø $6 \varnothing$ A9 Øø 8D ØA28： $6 \varnothing 2058$ FC A9 Øの 8D 52 ØA ØA3®： 1 E 8D 46 1E 8D 48 1E 8D B8 ØA3B： 4 A 1E BD 4 C 1 E 8D FD $1 E 96$ פA4Ø：8D 19 1F 2995 FE A9 $6 \varnothing$ A3 ØA48：8D D5 A6 A9 $\emptyset_{1} 2 \varnothing$ 5D A2 ED ØA59：A9 221869 Ø1 8D 47 1E 46 פA59：A9 90 8D 49 1E A9 918 BD F3 ØA6ø：4B 1E A9 99 8D 4D 1E A9 F7 ØAbB：FF BD EE 1E $2 \varnothing 78$ øE A9 48 ØA7ø：AØ BD F2 93 A9 ØA 8D F3 4B ØA78： 9349 A5 8D F4 63 A9 DF D4 ØA8ø：85 FF $2 \varnothing 9 \varnothing$ ØA A9 D1 Aø 9F øAB8：1C $2 \varnothing$ D5 $\varnothing 9$ EE $511 \mathrm{E} 6 \emptyset 57$ ØA9Ø： $2 \varnothing$ A $\triangle A$ A9 C1 AØ 1C $2 \varnothing 23$ ØA98：D5 99 A9 Øの 8D 51 1E 60 5D ØAAØ： $2 \varnothing 82$ ØA 4C 18 øB A2 27 C4 ØAAB：A9 $2 \varnothing 9 D$ øø $\varnothing 4$ CA $1 \varnothing$ FA B3 ØABø：A9 øø 852485254 C 24 øA
 øACø： $9 \varnothing$ Ø9 C9 EØ $9 \varnothing$ Ø3 29 DF 69 ØAC8：6ø 29 1F $6 \varnothing$ Aø øø B1 FB A5
 øAD8：Fø øB 29 3F C9 $2 \varnothing$ Dø ØA BB ФAEØ：$A 9$ 8ø $4 C$ EC ØA A9 $824 C B A$ ØAE8：EC ØA A9 $8191 \mathrm{FB} 2 \emptyset A C A C$ ØAFø：øB AØ øø A5 1F 91 FB A2 65 ØAF8： $122 \varnothing$ FS $\varnothing 9$ Dø 19 CB Dø BA ø日øø：FB CA Dø F5 20 AC øB A2 25 øBø日： 12 2ø F5 ø9 Dø 99 C8 Dø 8B ØB1ø：F8 CA Dø F5 4C D2 gA $6 \varnothing$ Fg øB18：$A D 45$ 1E $3 \varnothing 12 \mathrm{D} \varnothing$ øB $A 9 \quad B \varnothing$ ØB20： $908 D 441 E$ CE $451 E 4 C 18$ øB28： $2 F$ øB A9 øø $8 D 451 E 2 \varnothing$ AB

ØB3ø：CC ØA AA AD 51 1E FØ $\emptyset 7$ 4B øB38： 8 A $482 \varnothing 9 \varnothing$ ØA 68 AA $8 A 84$ øB4ø：C9 FF Dø ø6 2ø 5A gF 4C 8A øB48：18 øB BA C9 BD Dø $\varnothing 2$ A2 71 ஏВ5の：उС 8А 29 7F C9 299048 7C ØВ58：8А $2 \varnothing$ B9 ØA 48 Aø øø B1 ØA
 øB68：Fø Ø3 2ø BE $1 \varnothing 68$ Aø øø øB øB79： 91 FB 20 AC g8 38 AS FB 85 gB78：ED 55 1E 85 ED A5 FC ED E4 gBBg： 56 1E 95 ED 90 gE A5 FB CC øBB8： 69 ØD 8D 55 1E A5 FC 6945 פB99：$\varnothing \varnothing$ 8D 56 1E E6 FB Dø 9281 gB98：E6 FC $2 \varnothing 1 F$ øC 4C 18 øB 24 gBAg：BA $48 \quad 20$ AC g日 68 AE C7 E3 øBAB：ØB DD C7 øB Fø ø6 CA Dø 6B gBBg：FB 4 C 18 פB CA BA ØA AA 49 gBB8：A9 øB 48 A9 17 48 BD E6 46 gBCg：gB 48 BD E5 gB 48 69 1D DB gBC8： 9588 BB BA $82 \mathrm{BF} 84 \mathrm{BO} \mathrm{C1}$
 øBDE：9ø 9687978 BE 868194 6D øBEØ： 9192 9D 99 9B D4 øC EB E2 gBE8：øC 94 øD øB øE 59 øF BD FD gBFø： 1083 øF CB øF 2311 E4 6A gBF8： 11 E3 13 EE 12 CB 145822 פCøg：15 EC 1578 gD 8216 BC 63 øCø8： 1374 gF FC 1565 øE B5 88 øC10：1A 98 1C 7A 1064 10 5C 15 øC18：1B A2 1094 1A B2 1C $2 \varnothing$ A5 gC20：7D gC 38 AS FB ED 4 F 1E AF ØC28：A5 FC ED 5ø 1E Bø $2 \varnothing$ 38 41 øC30：AD 4F 1E ED 46 1E 85 ED 39 øC38：AD $5 \emptyset$ 1E ED 47 1E 95 ED 88 gC40：Fg gD A5 FB 8D 4F 1E A5 14 øC48：FC 日D $591 E 20$ AC g日 382 A gC59：AD 59 1E E5 FB 85 EB AD 33 gC5B：5A 1E E5 FC 85 EC 05 EB 87 øC6の：Fg 02 Bø 18 18 AD 4F 1E 3D gC6B：6D 4E 1E 日D 4F 1E AD 5ø Ø6 øC7ø：1E 69 øø 8D $5 \varnothing 1 E 2 \varnothing$ AC B2 øC78：ø日 4C 4F øC 6938 AD 55 E6 gCBg：1E ED 48 1E 85 ED AD 56 A3
 øC90：AD 48 1E 8D 55 1E AD 49 F5 gC98：1E 8D 56 1E 38 A5 FB ED øE øCAø： 46 1E 85 ED A5 FC ED 4737 gCAB：1E ø5 ED Bø gB AD 46 1E 93 gCBg： 85 FB AD 47 1E $85 \mathrm{FC} 6{ }^{6} 16$ gCBE：38 A5 FB ED 55 1E 85 ED Dø gCCg：A5 FC ED 56 1E 95 ED Bø 9F gCCB：$g_{1} 6 \varnothing$ AD 551 E 85 FB AD 31 ØCDの： 56 1E 85 FC $6 \varnothing$ AD 61 C 95 øCDE：øD 44 1E 4D 63 Cø 1055 B4 øCEg：E6 FB Dg $\quad 02$ EG FC 4C $1 F 88$ gCEB：øC AD 61 Cø øD 44 1E 4D AD ØCFø： 63 Cø 10 ØB A5 FB Dø $\varnothing 2$ 5E gCFB：C6 FC C6 FB 4C 1F gC A5 EB øDøø：FB 85 EB A5 FC 85 EC C6 EF øDø日：EC Aø FF B1 EB C9 Aø Fø 94 ØD19： 94 C9 3C Dø 93 88 Dø F3 93 øD18：B1 EB C9 Aø Fø g8 C9 3C Cø øD29：Fg 9488 Dg F3 693898 FB øD28： 65 EB 85 FB A5 EC $69 \quad 9014$ gD3ø：85 FC 4C 1F øC Aø øø B1 5C øD38：FB C9 Aø Fø ø日 C9 3C Fø B6 ØD4の：$\varnothing 4$ CE Dø F3 6ø CB Dø øB BA ØD48：E6 FC AS FC CD 56 1E 9ø 2 E gD5ø： 02 Dø 19 B1 FB C9 Aø Fø 17 gD58：EC C9 3C Fg EB 18986530 gD6ø：FB 85 FB A5 FC 69 øø 85 C6 gD68：FC 4C 1F gC AD 55 1E 85 3D gD7ø：FB AD 56 1E 85 FC． $4 \mathrm{C} \quad 1 \mathrm{~F} 78$ øD78：øC A9 øø 8D 4F．1E AD 56 8ø øD8ø：1E 38 E9 94 CD 47 1E Bø AD gD88： 93 AD 47 1E 8D 59 1E 2064 gD9ø：$A C$ gB 4C 6C gD AD 61 Cø F5 ตD98：ØD 44 1E 4D 63 Cø $3 \varnothing 6364$ ØDAg：4C 8A 11 A5 FB 85 EB A5 73 gDAB：FC B5 EC C6 EC Aø FF B1 48 פDBg：EBC9 AE FØ øC C9 A1 Fø D3
 øDCø： 94 88 Dø EB $6 \varnothing$ B1 EB C9 43 gDC8：AE Fg 1B C9 A1 Fg 17 C9 3F

ØDDø：BF FØ 13 C9 3C Fø $\operatorname{\text {OF}} 8852$ ØDD8：Dの EB C6 EC AS EC CD 46 Cの gDEø：1E Bø E2 4C FC $\emptyset D 84$ ED $6 A$ ØDEB：C6 ED CB Fø ØA B1 EB C9 C2 ØDFD：Aø Fø F7 B8 4 C 26 øD A4 DB øDF8：ED 4C C5 øD AD 46 1E 85 EE बEøø：FB AD 47 1E 85 FC 4C $1 F 28$ øEø日：øC AD 61 Cø øD 44 1E 4D Dø
 ØE18：Øø B1 FB C9 AE FØ 1D C9 F9 gE20：A1 Fø 19 C9 BF Fg 15 C9 BE ØE28：3C Fø 11 C8 Dø EB EG FC 4E बE36：A5 FC CD 56 1E FD E2 $9 \varnothing 88$ øE38：Eø 4C 6C ØD C8 Dø ØE E6 C2 gE40：FC A5 FC CD 56 1E $9 \varnothing 0512$ ØE4B：Fの $\emptyset 34 C \quad 6 C$ ØD B1 FB C9 DE gE50：AD FØ E9 C9 AE FØ E5 C9 A1 बE58：A1 Fø E1 C9 BF FØ DD C9 A1
 ØE68：ØA A9 3B Aø 1E $2 \varnothing$ D5 99 2B
 gE78：$A D$ 4A 1E 8D CA 1E AD 4B 10 øE8ø：1E 8D CB 1E $2 \varnothing$ AG ØA A9 C3 øEB8：Fø Aø 1C $2 \emptyset$ D5 ø9 A9 ø1 F1 gE90：8D 51 1E 6の 38 A5 FB ED CF øE98： 46 1E 85 ED AS FC ED 4733
 פEAB：A5 FB 85 Ø6 AS FC 85 øB DB gEBø： 69 38 A5 FB 851949 FF A2 gEBE： 65 g6 8D CE 1E A5 FC 85 AE øECD：1B 49 FF 65 ø8 8D CF 1 E 47 gECB：A5 ø6 8D Dø 1E A5 ø8 8D 1D gED．D1 1E AS 19 8D D2 1E 85 1D ged8： 96 A5 1B 8D D3 1E 85 g8 C7 gEED： 38 AD CF 1E 6D CB 1E CD 95 gEEB：4D 1E $9 \varnothing 102 \varnothing$ A6 ØA A9 9F øEFø：FE AD 1C $2 \emptyset$ D5 99 A9 $\emptyset_{1} 61$ gEFB： $8 \mathrm{D} 51 \mathrm{IE} 6 \varnothing$ AD CA 1E 8554 gFgø： 19 AD CB 1E 85 1B AD CE 34 gFge：1E 85 1D 18 6D CA 1E 8D 1C פF19：CA 1E AD CF 1E 85 F9 6D 36 øF18：CB 1E 8D CB 1E $2 \varnothing 31$ ø8 ED øF2ø：AD Dø 1E 85 ø6 AD D1 1E ØE ØF28： 85 ø8 AD D2 $1 E 8519$ AD D4 øF30：D3 1E 85 1B 38 AD 55 1E 63 øF38：ES 1985 1D AD 56 1E ES FA ดF4の：1B 85 F9 2031 ø8 38 AD 56 かF48： 55 1E ED CE 1E 8D 551 E 33 बF5ø：AD 56 1E ED CF $1 E$ 8D 56 ES øF58：1E 6ø 2ø 94 øE 2ø F4 øC D1 ØF6ø：2ø B1 ØE 38 AD CA 1E E9 FE øF68：$\emptyset_{1} 8 D$ CA $1 E A D C B 1 E E 9 ~ 6 B$ ØF7ø：Øø 8D CB 1E 6ø 2ø Eø ØC 9E øF78： 2094 øE $2 \varnothing$ F4 øC 20 B1 59
 øF88：A6 ØA A9 ØA AØ 1D $2 \varnothing$ DS E1 ØF9ø：Ø9 2ø CC ØA C9 CØ 9ø Ø2 E9 ØF98： 29 DF $48209 \varnothing$ ØA $68 \quad 29$ F4 ØFAg：7F C9 57 D® $\emptyset 92094$ øE EB øFAB： $2 \varnothing$ FF øC 4C B1 פE C9 53 C9 øFBø：Dø ø9 2ø 94 ØE $2 \varnothing$ A3 ØD ØC ФFB8：4C B1 פE C9 $5 \varnothing$ Dø $\varnothing 920 \mathrm{BF}$ øFCの： 94 øE 2ø 8A 114 C B1 øE 84 øFCB： $6 \varnothing 38$ A5 FB ED $4 F 1 E 85$ øB ØFDø：ED AS FC ED $5 \varnothing$ 1E Ø5 ED Cø ØFDB：$F \varnothing \emptyset B A D 4 F 1 E 85 \mathrm{FB}$ AD 89 ØFEØ：50 1E $85 \mathrm{FC} 6 \varnothing$ AD 46 1E 93 gFE8： 85 FB AD 47 1E 85 FC 4 C 40 øFFø：1F øC AS FB 85 EB 851916 øFF8：AS FC 85 EC 851 B Aø $\emptyset \varnothing 82$ 1øøø：B1 EB C9 Aø Dø 1E C8 Dø 98 1øø8：F7 A5 EC CD $561 E 9 \emptyset \emptyset F 63$ 1ø1ø：AD $551 E 85 E B A D 56$ 1E 59 1018：85 EC Aø øø 4C 2410 E6 44 1ø2の：EC $4 C$ Øø 10189865 EB A4 1ø28： $85 \emptyset 6$ A9 øø 65 EC 8598 B3 1939： 38 AD 55 1E ES 1985 1D 20 1ø38：AD 56 1E E5 1B 85 F9 38 ø2 1ø49：A5 Ø6 ES 19 BD CE 1E AS BC 1948：ø8 E5 1B 8D CF 1E 20318 A 1ø59：ø8 38 AD 55 1E ED CE 1E F1 1058： 8 D 551 E AD 56 1E ED CF OA^{2} 1ø69：1E 8D $561 E 6 \varnothing A D 61 C \varnothing D C$ 1ø68： 9 D 44 1E 4D $63 \mathrm{Cg} 3 \emptyset$ Ø3 3 A

1ø7ø：4C F2 øF A9 FF 日D E8 1E 16 1ø78：4C 8D $1 \varnothing$ A9 ø5 8D E8 1E øD 1ø日ø： $2 \varnothing$ 8D 19 B1 FB C9 Aø Dø 4A 1ø88： 01 C8 4C 5D øD A9 øø 8D 57 1090：E9 1E 29 D4 10 A9 Aø AE 95 1ø98：E8 1E AD $\varnothing \varnothing 91 \mathrm{FB}$ C8 CA A1 1øAø：D \varnothing FA $6 \varnothing 2 \varnothing \mathrm{BE} 1 \varnothing 2 \varnothing \mathrm{BE} 2 \mathrm{~B}$ 1øAB： $1 \varnothing$ A9 ЗC Aø $\varnothing \varnothing 91 \mathrm{FB} C 8 \mathrm{D} 3$ 1øBø： $91 \mathrm{FB} 2 \varnothing \mathrm{AC}$ ø8 $2 \varnothing$ Eø øC F5 1øB8：2ø Eø øC 4C 7B $1 \varnothing$ A9 $\emptyset_{1} \mathrm{D} 7$
 1øC8：2ø D4 1ø A9 Aø Aø øø 91 EJ 1øDø：$F B 4 C 1 F \emptyset C 18$ AD $551 E E 6$ 1øD8： 6 D E8 1E AD 561 E 6D E9 78 1øEの：1E CD 49 1E $9 \varnothing 6568686 \varnothing$ 1øE8：4C 231118 AS FB 8506 C9 1øFø：6D E8 1E 8519 AS FC 85 FC 1øF8：ø8 6D E9 1E $851 \mathrm{~B} 38 \mathrm{AD} \mathrm{4E}$ 1100： 55 1E E5 9685 1D AD 56 C3 11ø8：1E ES g8 85 F9 2ø 6E ø8 41 1110： 18 AD 55 1E 6D E8 1E 8D gF 1118： 551 E AD 56 1E 6 D E9 1E $2 \varnothing$ 1120：8D 56 1E $6 \varnothing$ AD 52 1E 49 A4 1128： DE 8D 52 1E Fø $\emptyset 5$ A9 1F EE 1130： 85 FF 68 A9 DF 85 FF 6831 1138：A9 19 Aの 1D $2 \varnothing$ DS 9920 ES
 1148：C9 D9 $6 \varnothing 20$ A6 $\emptyset A$ A9 $3 \varnothing$ B4 1150：Aø 1D 20 D5 99203811 B5 1158：$F \emptyset \emptyset 34 C 9 \varnothing \emptyset A ~ A 2 ~ F A ~ 9 A ~ B 1$ 1160： $2098992 \varnothing 82$ ØA 4 C 1889
 1179： 11 C8 Dの F7 E6 FC AS FC SA 1178：CD 56 1E 90 EE Fø EC 4C 45 1189：6C ØD C8 Dø Ø2 E6 FC 4C 34 1188：5D øD A5 FB 85 EB AS FC 35 1190： 85 EC C6 EC AD FF B1 EB AC 1198：C9 ЗC Fø 1188 Cø FF Dø FS 11AD：FS C6 EC AS EC CD 47 1E B2 $11 \mathrm{AB}: \mathrm{B} \varnothing \mathrm{EC} 4 \mathrm{C} . \mathrm{FC} 9 \mathrm{D} 38986597$ 118ø：EB 85 EB A9 $9 \varnothing 65$ EC 8537 1188：EC 38 AS EB ES FB 85 ED EA 11Cø：AS EC ES FC ØS ED Dø 1211 11C8： 84 ED 18 AS EB ES ED 85 SE 11Dø：EB AS EC E9 0085 EC 4 C CA 11D8：9C 11 AS EB 85 FB AS EC 55 11Eg： 85 FC 4 C 1 F ØC AD 61 C 1B 11E8：øD 44 1E 4D 63 C C $1 \varnothing$ Ø3 7C 11Fの： $2 \varnothing 78$ øE $2 \varnothing$ A6 $\emptyset A$ A9 $3 F$ F4 11F8：Aの 1D 29 DS $\emptyset 926 \mathrm{CC}$ ØA $8 \emptyset$ 12ø日：C9 Cø 9ø Ø2 29 DF C9 D7 9F 12ø8：Dø $\varnothing 92 \emptyset 3 A 122035$ øD 97 121ø：4C 4912 C9 D3 Dø $\varnothing 9209 F$ 1218：उA $12 \quad 2017$ øE 4C 491299 122の：C9 Dø Dø $\varnothing 9203 A 122036$ 1228： $69 \quad 114 \mathrm{C} 4912$ C9 C1 Dø $6 F$ 1230：Ø3 4C 4B $11201 F$ ØC 4C 45 1238：9ø ØA A5 FB 8519 8D C4 øC 1240：1E AS FC 851 B 8D CS 1E 8D 1248： $6 \varnothing 38$ AS FB 85 ø6 ED C4 94 1259：1E 8D CE 1E AS FC 85 g8 D6 1258：ED C5 1E 8D CF 1E $2 \varnothing$ CB 81 126ø：gE AD C4 1E 85 FB AD C5 AE 1268：1E 85 FC 29 AC $ø 8$ 4C FD BA 127ø： 11 A9 27 E5 24 8D 57 1E EE 1278： $2084 \mathrm{FE} A \varnothing$ øø A9 1 F 20 BC 1289：ED FD 8C 58 1E 29 F5 99 98 1288：Fø FB AC 58 1E 85 ED A9 CB 1299：88 29 ED FD A9 2828 ED 9A 1298：FD A9 88 20 ED FD AS ED D9 12Ag：C9 9B Fg 37 C9 8D Fø 39 C1 12AB：C9 FF Fø $\emptyset 4$ C9 88 Dø $\emptyset F 31$ 12Bg： 881094 C8 4C 7D 12 A9 59 12B8： $882 \varnothing$ ED FD 4C 7D 12 AS EB 12C9：ED 29 7F C9 2090 B6 CC 30 12C8： 57 1E Fø B1 A5 ED 29 B9 38 12Dø： 9 A 9983 1E 29 ED FD C8 $3 \varnothing$ 12D8：4C 7D 12 29 B3 1C 4C 7D EA 12Eø： 12 2ø ED FD A9 909983 B7 12E8： 1 E 982089 FE AB $6 \varnothing 2 \varnothing$ C9 12Fø：AG ØA A9 76 A 1 D 20 D5 17 12FB： $99294 C 13$ AD 46 1E 8D B4 13øø： 72 AA AD 47 1E BD 73 AA EC 13ø8：AD $551 E 38 E D 46$ 1E $8 \mathrm{E} F 3$

1310： $6 C$ AA AD 56 1E ED 47 1E 87 1318：8D 6D AA A9 39 8D 5F AA 71 132ø：A9 $\emptyset 9$ 8D 65 AA $2 \varnothing 6 \varnothing 141 \varnothing$ 1328： 2080 A1 209614 AD C5 DA 133ø：B5 D 96 4C 531429 A6 5C 1338：øA AE C5 B5 29 ø2 A7 A9 25
 1348： 511 E 60 øø $207112 \mathrm{D} \varnothing 66$ 1350：Ø6 2898 ØA 68686020 F9 1358：95 Aø A9 øø 8D 51 AA 8D 3B 1360： 52 AA 8D 74 AA BD 66 AA 56 1368：8D 6C AA 8D 6D AA 8D 6333 137ø：AA 8D $7 \varnothing$ AA 8D 71 AA 8D 1D 1378：D3 9C A2 øø Aø $\emptyset 1$ B9 $83 \quad 94$ 1389：1E C9 BA Dg 1F AD 83 1E 61 1388： 38 E9 Bø Fø øD $3 \varnothing$ øВ C9 73 139ø：$\emptyset 3 \mathrm{~B} \emptyset \quad 97$ 8D 68 AA CB 4 C E9 1398：A6 13686829 A6 ØA A2 BC 13Aø： 92 4C ЗС 13 Aø $\varnothing \varnothing$ B9 83 8F 13AB：1E 2ø 2F 16 C9 Eg 9ø 0222 13Bø： 29 DF 9 D 75 AA E8 C8 CC C5 13B8： 58 1E Dø EA $6 \varnothing 2 \varnothing$ A6 ØA 36 13CØ：A9 5F Aø 1D $2 \varnothing$ D5 992094 13C8：CC ØA C9 Cø $9 \varnothing \emptyset 229$ DF DB 13Dø： 29 3F 994048 AD $521 E 3 C$ 13D8：Fø $9320 \mathrm{BE} 10209 \varnothing$ ØA 54 13EØ： 684 C 6E ØB 29 AG ØA A5 22 13E8：FB CD 46 1E Dø 97 A5 FC 16 13Fø：CD 47 1E Fø $\varnothing 5$ A9 6 A 日D D3 13F8： 2794 A9 86 AD 1D 20 D5 E 9 14øø： 99204 C 13 AD 2794 C9 4B 14ø8： $6 A$ Fø 9329 9B 99 A5 FB $4 C$ 1419： $8 D 72$ AA A5 FC $8 D 73$ AA FA 1418：A9 32 8D 5F AA A9 $0_{1} 18 D$ D4
 1428：AE $6 \varnothing$ AA AC 61 AA AD C5 B6 1430： 35 Fg פ6 209614 4C 36 Ø6
 1440：FB 18 6D 55 1E 8D $551 E 5 F$ 1448：AS FC 6D 56 1E 8D 56 1E 87 1459： 20961420 A6 $9 A$ A9 7C DF 1458：A® 1D 28 D5 $994 C 451390$ 146ø：2C $\varnothing \varnothing$ ø $3 \varnothing$ 2B EE 56 1E E1 1468：A9 $\varnothing \varnothing 85$ ø8 AD 47 1E 85 E2 147ø： 99 A $\varnothing \varnothing$ B1 øB C9 $2 \varnothing 9 \varnothing 98$ 1478： 18 C9 C 9909499209156 1489： 98 C8 D 8 EF E6 99 A5 99 A7 1488：CD 56 1E Dø E6 CE 56 1E 3B 149日：6ø 99 CØ 4C 7F 14 2C Øø AC 1498： 93 30 2B EE 56 1E A9 $9 \varnothing 21$ 14Aø： 85 ø $A D 47$ 1E 85 ø9 Aø 71 14AB：øø B1 ø日 C9 Cø 9ø ø日 C9 FC 14B9：Eø 9ø 1429 DF 91 ø日 CB Aø 14B8：Dø EF E6 99 A5 99 CD 56 F5 14Cø：1E D \varnothing E CE 56 1E $6 \varnothing 29$ øB 14C8：1F 4C B5 142958 FC 29 øB 14Dø： 84 FE A9 $\varnothing \varnothing$ 8D D3 9C $2 \varnothing 45$ 14D8： $6 E$ AS A9 8D $2 \varnothing$ ED FD A9 ØE 14EØ：8C AD 1D 29 D5 9920 F5 26 14EB：$\varnothing 9$ C9 8D Dø F9 4C 9ø ØA F2 14Fø：A2 $\varnothing \varnothing 8 E C 6$ 1E 8E C7 1E 81 14F8： 8 E C8 1E 8E C9 1E 38 B1 $3 \varnothing$ 15øø：EB E9 Bø 9ø 2A C9 ØA Bø F6 15ø8： 26 øE C6 1E 2E C7 1E øE SE 151ø：C6 1E 2E C7 1E øE C6 1E 3C 1518：2E C7 1E øE C6 1E 2E C7 C2 152ø：1E øD C6 1E 8D C6 1E CB E3 1528：Dの D4 E6 EC 4C FE 14 FB 1B 153ø：AD C6 1E øD C7 1E Fø 1C 2C 1538： 38 AD C6 1E E9 \emptyset_{1} 8D C6 D9 154の：1E AD C7 1E E9 øの 8D C7 F1 1548：1E EE CB 1E Dø $\emptyset 3$ EE C9 72 1550：1E 4C 3015 AD C8 1E DB 99 1558：6ø 38 AD CA 1E ED 4A 1E 7E 156日：8D CC 1E AD CB 1E ED 4B 21 1568：1E 8D CD 1E øD CC 1E Dø 49 157ø： $1 \varnothing 2 \varnothing$ A6 ØA A9 A1 Aø 1D 52 1578：2ø D5 ø9 A9 Ø1 8D 51 1E E2 1589： 6918 A5 FB 85 g6 6D CC 41 1588：1E 8519 AS FC 85 ø8 6D 1C 1590：CD 1E 85 1B 38 AD 55 1E CC 1598：E5 $\varnothing 685$ 1D AD 56 1E E5 A2 15AD：g8 85 F9 1865 1B CD 49 6D 15A8：1E 9016 20 A6 $ø A$ A9 9954

15Bø：Aø 1D $2 \varnothing$ D5 $\varnothing 9$ A9 $\emptyset_{1} 8 D 52$ 15B8： 51 1E $60206 E$ ø8 18 AD 92 15CD：CC 1E 85 1D 6D $551 E 8 D E 5$ 15C8： $551 E$ AD CD 1E 85 Fq $6 D 2 \varnothing$ 15Dg： 56 1E 8D 56 1E A5 FB 85 C 9 15D8： 19 AS FC 85 1B AD 4A 1E 33 15Eø： 85 g6 AD 4B 1E 85 gB $2 \varnothing \mathrm{Fg}$ 15E8： 31 ø $4 C 1 F$ øC $A \emptyset$ øø $B 1 B D$ 15Fg： $\mathrm{FB} A \mathrm{~A} C 8 \mathrm{B1} \mathrm{FB} 8891 \mathrm{FB} 19$ 15FB：CB $8 \mathrm{~A} 91 \mathrm{FB} 6 \varnothing \mathrm{~A} \varnothing$ øø 8 C 2 E 1600： 44 1E B1 FB $2 C \quad 90 \quad 93 \quad 30 \quad 63$ 16ø8： 12 C9 299099 C9 Cø 90 3E
 1618：4C 2A 16 C9 Cの 90. ØB C9 70 1620：EØ 9ø 9529 DF 4C 2A 16 AE 1628： 992091 FB 4C Eø øC 2C FC 1639：øの 93 3ø øA C9 2090 ø7 BA 1638：C9 Cø 9ø 92992069 Ø9 3E 1640：Cの $6 \emptyset 954 B 42 \quad 65$ 3A 91 D5 1648：Ø1 Ø1 øø Ø1 øø 5ø 18 øE CA 1659：øF 12 8D EF 1E 8A 4B 98 7D 1658： $48 \quad 38$ AD DD 1E ED DF 1E Dø 1660：AD DE 1E ED EØ 1E 9ø 9664 1668：AD EF 1E $2 \varnothing E D F D$ 68 AB פE 1670：68 AA AD EF 1E $6 \varnothing 29$ A6 89 1678：ØA A9 DC AD 1D 4C D5 9988 1689：4C EF 17 AD 61 Cg øD 44 F8 1688：1E 4D 63 Cø 19 פ3 4C D5 8A 1690： 1629 A6 $\emptyset A 20$ AC 98 A9 B2 1698：B4 Aの 1D 2の D5 9920 E9 E9 16AD： 99 A2 03 8E EA 1E C9 D3 7A 16AB：Fø 30 A2 98 BE EA 1E C9 54 16Bø：Dø Dø CD $2 \varnothing$ A6 $\emptyset A$ A9 CF B5 16BB：Aø 1D 20 D5 9920 E9 9983 16Cø：C9 B1 9ø øD C9 B8 Bø ø9 BC 16C8： 38 E9 Bg 8D EA 1E 4C DA BD
 16D8：EA 1E AD EA 1E AB $2 \varnothing 76$ Bø 16EØ： 16 AD EA 1E C9 $ø 3$ Dø $\varnothing D C B$ 16E8：AD $\varnothing 5$ C3 18 6D $97 \mathrm{C3}$ C9 FF 16Fg： 59 Dg 95 A9 932995 FE 77 16F8： 2984 FE A2 øø 8E D5 1E 64 17øø：8E D4 1E 8E EB 1E 8E EC 39 17ø8：1E BD 4216 9D D6 1E E8 CB 171ø：Eø øC Dø F5 A9 FF 8D E4 78 1718：1E 8D E2 1E A2 g4 BD 4D E4 1729： 16 9D 72 1F CA Dg F7 AD 38 1728： 46 1E 85 EB AD 47 1E 85 BC
 1738：1E Fø 66 AD D6 1E 8D E3 7B
 1748： 93 4C CA 18 C9 3C Fø 2C 33 175ø：99 C2 1F CB EE E3 1E AD 5D 1758：E3 1E CD D7 1E 9ø E2 BC BC 1769： 54 1E B1 EB C9 AD Fg 14 FB 1768：CE E3 1E 88 Dの F4 AC 54 4B 1779：1E 4C 7F 17 CB B1 EB C9 D8 1778：Aø Fめ $\emptyset_{1} 88$ 8C 54 1E 9866 1780： 38 65 EB 85 EB A5 EC 6933 1788：øø 85 EC AØ øø AD E4 1E SE 179の：C9 FF Dø $\varnothing 3207518$ AD A2 1798：E2 1E Fø $\emptyset 320$ A5 1838 øE 17AG：2E E2 1E AD 54 1E 8D 53 Cb 17A8：1E A9 C2 85 D6 A9 1F 8522 17B9：D7 29 05 1C 29 B6 18 AD EE 17B8：E4 1E CD DA 1E $9 \varnothing \quad \emptyset 3 \quad 2 \varnothing$ A1 17Cの：$\varnothing \square 18$ 38 A5 EB ED 55 1E 36 17C8： 85 ED A5 EC ED 56 1E 95 C2 17D9：ED Fg $2 A 9828$ AD D5 1E 42 17D8：Fø øB A9 øø 8D D4 1E 8D ø1 17ED：D9 1E 29 פø 18 AD EA 1E F2 17E8：C9 $\varnothing 3$ Dø $\varnothing 32 \varnothing$ E9 99 A9 6B 17Fø： $9 \varnothing 2095$ FE A2 FA 9A 2028 17FB：9ø ØA 4C 18 øB 4C 3117 FF 18øø： 38 AD D8 1E ED E4 1E AB 9C 18ø日：88 88 Fø 18 A 30 g8 A9 8D DF 181ø： 29521688 Dg FB AD DS CB 1818：1E Fø 118 BD 531 EA C2 B7 1820： 85 D6 A9 2185 D7 20 AS 81 1828： $18 \quad 29$ g5 1c A9 8D 2952 E4 1830： 16205216205216 EE 84 1838：DD 1E Dø ø3 EE DE 1E AD 06 1840：DC 1E Dø 31 AD EA 1E C9 B2 1848：$\varnothing 3$ Fg $2 A 38$ AD DD 1E ED gE

1850：DF 1E AD DE 1E ED Eg 1E 24 1858：9 9 1B A9 $\varnothing 02095$ FE 2942 186ø：A6 ФA A9 E8 Ag 1D 29 D5 B9 1868： 9920 E9 99207616 AD A7 1879：EA 1E 2995 FE AD D4 1E 71 1878：Fø 118 D 53 IE A9 C2 85 EE 1889：D6 A9 2085 D7 20 A5 1885 1888： $2 \varnothing$ ø5 1C A9 8D 205216 CF 1890：AC D9 1E 8C E4 1E 88 88 53 1898：Fø ØA 39 ø8 A9 8D $2 \emptyset 5269$ 18Ag： 16 B8 D \varnothing FB $6 \varnothing$ A9 Ag AC $3 F$ 18AB：D6 1E BC E3 1E Fg ø6 20 7C 18BØ： 521688 Dg FA 60 AC DB 3C 18B8：1E $18 \quad 98$ 6D E4 1E 8D E4 87 18CØ：1E A9 8D 20521688 D 9 EA 18C8：FA 60 8D EG IE AE 101993 18Dg：DD 1019 Fg $\emptyset 9$ CA Dg FB 34 18DB：CE E3 1E 4C g9 1A CA 8A C2 18ED：ØA AA BC E5 1E A9 18 48 CØ 18E8：A9 F3 48 BD 221948 BD 93 18Fg： $21 \quad 1948 \quad 60 \quad 38$ AD E5 1E 69 18F8： 65 EB 85 EB A5 EC 69 øø F9 19ø日： 85 EC 4 C 3117 B 1 EB C9 ED 19ø日：ЗC Fø $\emptyset_{1} 88$ 8C ES 1E 69 DS 1910： $105742525442534 E \quad 6 F$ 1918： $48 \quad 46 \quad 40 \quad 597 F \quad 584 D 494 E$ 1920： 47 7D 1986199919 9A B8 1928：19．A4 19 AE 19 B8 19 C7 C3 1930： 19 E9 $1963197319 \quad 53 \mathrm{DE}$ 1938： $1949194019 \quad 921 \mathrm{~A} \quad 29 \mathrm{9E}$ 1940：1A CB A9 Øø 日D E2 1E 4C 67 1948： 9519 CB 29 Fg 14 8D E1 33 1959：1E 4C 9519 C8 29 Fg 1493 1958： $8 D$ DF $1 E$ AD C9 1E 8D Eg AA 1969：1E 4 C פ5 19 CB 29 Fg 14 A3 1968：8D DD 1E AD C9 1E 8D DE 38 197ø：1E 4C 6519 CB 29 Fø 14 B3 1978：8D D8 1E 4C 9519 A9 9510 1980：8D DC 1E C8 4C 6519 C8 72 1988： 20 Fg 14 8D D6 1E 4C 95 2F 199ø： 19 C8 20 Fg 14 8D D7 1E 39 1998：4C ø5 19 CB 29 FD 14 8D 5C 19Aø：D9 1E 4C ø5 19 CB 20 Fg 3 C 19AB： 14 日D DA 1E 4C 0519 CB FG 19Bg： 20 Fg 14 8D DB 1E 4C $957 F$ 19B8： 19 AC E5 1E CB $9848 \quad 20$ 9A 19CØ： 9018 68 AB BC ES 1E 6929 19C8： 20 E2 1988 8C D4 1E Ag 94 19Dø：$\emptyset_{1} \mathrm{~B} 1 \mathrm{~EB} 99$ C1 29 CB CC F3 19D8：D4 1E 9ø F5 Fg F3 CB 4 C A3 19Eø：ø5 19 C8 B1 EB C9 3C Dg DF 19E8：F9 6 28 E2 1988 8C D5 3C 19Fø：1E Aø $\emptyset_{1} \mathrm{~B} 1 \mathrm{~EB} 99 \mathrm{C} 121 \mathrm{FF}$ 19F8：CB CC DS 1E 90 FS Fg F3 91 1Aø日：4C 951920 E2 19 4C 95 D9 1Ag8： 19 C8 B1 EB C9 BD Fg 971 E 1A10：88 AD E6 1E 4C 4C 17 C8 3D 1A18： 20 FD 1448 AD E6 1E AA $8 F$ 1A2の： 689 D 42 FF 2065194 CD 1A28：F4 18 A2 $\varnothing \varnothing C 8$ B1 EB C9 DF 1A3g：ЗC Fg $9 A 292 F 169 D 8392$ 1A38： 1 E E8 4 C 2 C 1 A 8 E 58 1E DB 1A4日： 20 9B 99205713 A5 FB DC 1A48： $8 D 72$ AA A5 FC $8 D 73$ AA $3 F$ 1A50：A9 32 8D 5F AA A9 g1 $_{1}$ 日D 19 1A58： 65 AA $2 \varnothing$ 6ø $142 \varnothing 8 \varnothing$ A1 147 1AGø：AE $6 \varnothing$ AA AC 61 AA AD C5 FA 1A68：B5 Fø $\emptyset B 209614$ A9 $966 F$ 1A70： $2095 \mathrm{FE} \mathrm{4C} 36138 \mathrm{Cl} 55 \mathrm{~F}$ 1A78：1E 8C 56 1E A5 FB 18 6D 46 1AB9： 55 1E 8D 55 1E A5 FC 6D DC 1AB8： 56 1E 8D $561 E 269614 \quad 39$ 1A90： $68684 C 271728$ C1 1A E5 1A98：AD Fg 1E Fg $1620 \quad 68$ 1B CF 1AAの： $2 \varnothing E 7$ 1A AD EE 1E C9 FF $8 \varnothing$
 1ABØ： $4 C$ A $1 A 4 C \quad 9 \varnothing \emptyset A$ AD 61 A4 1AB8：Cø $\emptyset D 441 E 4 D \quad 63$ C 46 A4 1ACg： 2620 AG ØA A9 øB Aø 1E 52 1ACB： 28 D5 99207112 BD Fg 85
 1ADB：B9 83 1E 99 F1 1E CB CC 8E 1AEの： 58 1E D $\mathrm{F}_{4} 4 \mathrm{C} 9 \varnothing$ gA A5 9Ø 1AEB：FB 85 EB AS FC 85 EC A9 DS
 1AFB：AD Fg 1E Fg $5 \emptyset$ BD F1 1E BE
 1Bø日：CA CB Dø øB EG EC AS EC C3 1B19：CD 56 1E FD 92 Bg 36 EB BD 1B18：EC Fg 1E Dg Eg 189865 CF 1B2ø：EB 85 ED AS EC 69 gø 8558 1B28：EE AD 55 1E C5 ED AD 5665 1B3ø：1E E5 EE 9ø 1838 A5 ED Bø 1B38：ED Fg 1E 85 FB 8D ED 1E CD 1B4ø：A5 EE E9 $9 \varnothing 85 \mathrm{FC} 8 \mathrm{DEE} 6 \mathrm{C}$ 1B48：1E 26 1F øC $6 \emptyset 2 \emptyset A 6$ ØA 15 1B59：A9 פE A® 1E $2 \varnothing$ DS 99 A9 EB 1B58：\emptyset_{1} 8D 51 1E $6 \varnothing$ AD 61 C C BB 1B6ø：øD 44 1E 4D $63 \mathrm{Cg} 3 \varnothing 2368$ 1B68： 20 A 6 ØA A9 18 Ag 1E 28 D3
 1B78：Fø øE Aø Øø B9 83 1E $997 \varnothing$ 1BEg： 1 A 1F CB CC 58 1E D $\operatorname{F4} 43$ 1B88： $4 \mathrm{C} 9 \varnothing$ ØA 38 A5 FB 8519 פF 1B90：ED ED 1E 85 ED AS FC 85 DA 1B98：1B ED EE 1E ø5 ED D $627 B$ 1BAD：A9 FF 日D EE 1E 18 AD Fg E9 1BAB： 1 E 65 FB 85 ø6 A9 $\varnothing \varnothing 655 \mathrm{~B}$ 1BBø：FC 85 gB 38 AD 55 1E ES 38 1BBE： 1985 1D AD 56 1E E5 1B 6D 1BC®：85 F9 2031 g8 38 AD 5521 1BCB：1E ED Fø 1E 8D 55 1E AD 35 1BDø： 56 1E E9 øø 8D 56 1E AD A6 1BD8： 19 1F Fg 26 8D EB 1E A9 D9 1BEの：$\varnothing \varnothing$ 日D E9 1E $2 \varnothing$ D4 $1 \varnothing$ Aø $A E$ 1BES：$\varnothing \varnothing$ B9 1A 1F $91 \mathrm{FB} C B C C 9 D$ 1BFø： 19 1F D \varnothing FS 18 AS FB 6D B1 18F8： 19 1F 85 FB A5 FC 69 øø E7 1Cø日： 85 FC 4 C 1 F ØC Aの $9 \varnothing$ CC 65 1Cø日： $531 \mathrm{Fg} 21 \mathrm{~B} 1 \mathrm{DG} 3 \varnothing \quad 94 \mathrm{EE}$ 1C1』：C9 4ø B 1 A 202 F 1620 FE 1C18： 5216 AD EC 1E Fø ØA A9 F5 1C2ø：88 205216 A9 DF 2952 AF 1C28： 16 C8 4C 97 1C $608 C$ E5 FB 1C3ø：1E 8D E6 1E 2ø 2F 16 C9 4D 1C38： 43 D D 1 B 38 AD E1 1E ED 4C 1C40： 53 1E $4 A 38$ ED D6 1E AB 26 1C48：A9 AØ $2 \varnothing 5216$ B8 DØ FA 16 1C59：AC ES 1E 4C 29 1C C9 4573 1C58：D® 11 3B AD D7 1E ED 5385 1C68：1E 38 ED D6 1E AB A9 Ag 68 1C68：4C 4A 1C C9 55 Dg ø8 AD 25
 1C78： 63 Dø 12 8C ES 1E AE DD 84 1C8日：1E AD DE 1E $2 \varnothing 24$ ED AC gB 1CB8：E5 1E 4 C 29 IC AE E6 1E DE 1C90：BD 42 1F $2952164 C \quad 29$ CA 1C98：1C 2ø A6 ØA 38 AD 48 1E 83 1CAg：ED 55 1E AA AD 49 1E ED 59 1CAB： 56 1E 2924 ED A9 $\mathrm{g}_{1} 8 \mathrm{BD} 7 \mathrm{~F}$ 1CBø： 51 1E $6 \varnothing$ AD 44 1E 49 Bø AD 1CBE： 8 D 44 IE A9 $\mathrm{D}_{1} \mathrm{BD} 45 \mathrm{IE}$ gE 1CCØ： $6 \varnothing$ D3 D \varnothing C5 C5 C4 D3 C3 41 1CCB：D2 C9 Dø D4 Ag B3 AE Bg 26 1CD9： 9988888888 Aの C2 D9 EA 1CDB：Aø C3 AE Aø C2 D2 C1 CE E5 1CE日：CE CF CE Aø AG Aø CB AE 56 1CEB：Aø CD C1 D2 D4 C9 CE øø B5 1CFø：C2 DS C6 C6 C5 D2 Aø CE CE 1CFB：D5 CC CC C5 C4 øø C2 D5 C6 1Døø：C6 C6 CS D2 Aø CG DS CC CD 1Dø日：CC $9 \varnothing$ C4 C5 CC C5 D4 C5 BA 1D19：Ag AB D3 AC D7 AC D 9 A9 C6 1D18：Øø BA AD C1 D2 CS Aø D9 F9 1D29：CF D5 A® D3 D5 D2 C5 BF 4E 1D28：AØ AB D9 AF CE A9 BA Øø AS 1D36：C5 D2 C1 D3 C5 Aの C1 CC 78 1D38：CC Aø D4 CS DB D4 $9 \varnothing$ C5 D7 1D49：D2 C1 D3 C5 Ag AB D3 AC 27 1D48：D7 AC D® AC C1 A9 BA Ag 49 1D59：D2 C5 D4 D5 D2 CE Ag D4 45 1D58：CF Aø C5 DB C9 D4 øø C5 $5 \emptyset$ 1D6g：CE D4 C5 D2 Ag C6 CF D2 AF 1D6B：CD C1 D4 Aø D6 C1 D2 C9 CB 1D76：C1 C2 CC C5 BA 96 D3 C1 71 1D78：D6 C5 BA Ø® CE CF Aの C5 A3
 1D88：C1 C4 BA Øø Dø D2 C5 D3 5D

1D96：D3 Aの D2 C5 D4 D5 D2 CE 66 1D98：øø CE CF Aø D2 CF CF CD CD 1DAø：Ø® CE CF Aø D4 C5 D8 D4 D6 1DAB：Aø C9 CE Aø C2 D5 C6 C6 4B 1DBg：C5 D2 AE $9 \varnothing$ Dø D2 C9 CE 8C 1DB8：D4 Aø D4 CF BA Aø D3 C3 Eø 1DCø：D2 C5 C5 CE AC Aø D D D2 D7 1DC8：C9 CE D4 CS D2 BF 90 D3 FB 1DDg：CC CF D4 AD CE D5 CD C2 36 1DD8：C5 D2 BF $\varnothing \varnothing$ D \varnothing D2 C9 CE D6 1DEg：D4 C9 CE C7 AE AE AE Øø DB 1DE8：C9 CE D3 C5 D2 D4 Aø CE BC 1DFø：C5 D8 D4 Aの D3 C8 C5 C5 FB 1DF8：D4 AC A \varnothing D \varnothing D2 C5 D3 D3 13 1Eøø：A D D2 C5 D4 D5 D2 CE øø DE 1Eø日：C6 C9 CE C4 BA $\varnothing \varnothing$ CE CF 83 1E1ø：D4 Aø C6 CF DS CE C4 øø 28 1E18：D2 C5 Dø CC C1 C3 C5 Aの 5F 1E2ø：D7 C9 D4 C8 BA 96 CC CF 21 1E28：D7 C5 D2 C3 C1 D3 CS Aø E1 1E3ø：DB D9 AF CE DD BF $6 \varnothing$ øø 62 1E38：CE D5 CC CC AD C2 D5 C6 3A 1E4ø：C6 C5 D2 øø øの FF $\varnothing \varnothing$ Øø $A B$

Program 2：SpeedScript 3.0 File Converter

5 HIMEM： 8191

10 HOME

$20 \mathrm{D} \$=$ CHR $\$(4)$
30 PRINT D\＄；＂MAXFILES1＂
$4 \varnothing$ PRINT＂DO YOU WANT TO：＂
$5 \varnothing$ PRINT＂（1）MAKE A SPEEDSCRI PT FILE INTO A TEXT FILE
$6 \emptyset$ PRINT＂（2）MAKE A TEXT FILE INTO A SPEEDSCRIPT FILE
$7 \varnothing$ GET $A \$: A=$ VAL（ $A \$$ ）
80 IF $A<>1$ AND $A<>2$ THEN 78
$9 \varnothing$ ON A GOTO 1øø，2øø
1øø PRINT＂ENTER SPEEDSCRIPT FI LE NAME＂：INPUT＂：＂；A
110 PRINT＂ENTER TEXT FILE NAME TO CREATE＂：INPUT＂：＂；B\＄
$12 \varnothing$ PRINT D\＄；＂BLOAD＂；A\＄；＂，A\＄2ø øø＂
$125 \mathrm{~L}=\operatorname{PEEK}(43616)+\operatorname{PEEK}(43$ 617）： $256+8192$
13 の PRINT D $\$$ ；＂OPEN＂；B\＄
131 PRINT D\＄；＂DELETE＂；B\＄
132 PRINT D $\$$ ；＂OPEN＂；B\＄
$14 \varnothing$ PRINT D\＄；＂WRITE＂；B\＄
159 FOR I＝ 8192 TO L－1
$155 \mathrm{~B}=$ PEEK（I）
169 IF B $=69$ THEN B $=141$
$17 \varnothing$ PRINT CHR\＄（B）；
$18 \emptyset$ NEXT
$19 \emptyset$ PRINT
195 PRINT D\＄；＂CLOSE＂；B\＄ 196 END
$2 ø \varnothing$ PRINT＂ENTER TEXT FILE NAME ＂：INPUT＂：＂；B\＄
$21 \varnothing$ INPUT＂ENTER SPEEDSCRIPT FI LE NAME TO CREATE ：＂；A\＄
$22 \varnothing$ PRINT D\＄；＂OPEN＂；B\＄
239 PRINT D $\$$ ；＂READ＂；B $\$$
$235 \mathrm{~L}=\varnothing$
$24 \varnothing$ ONERR GOTO $27 \varnothing$
25 G GET C $\$: A=$ ASC（C $\$+$ CHR $\$($ g））+ 128：IF $A=141$ THEN $A=6 \varnothing$
$26 \varnothing$ POKE $8192+L, A: L=L+1:$ GOTO 259
27ø POKE 216，\varnothing

$28 \emptyset$ PRINT

$29 \varnothing$ PRINT D\＄；＂CLOSE＂；B\＄
295 PRINT D\＄；＂BSAVE＂；A\＄；＂，AB19 2，L＂；L－ 1
296 END

Modifications or Corrections To Previous Articles

Apple Games In ProDOS

Most of the Apple game programs recently published in COMPUTE! fail to operate properly with Apple's new ProDOS operating system, although they all work with DOS 3.3. The programs suffer from the same bug: Their graphics were developed using the DOS 3.3 version of the "Apple SuperFont" utility (published in the April 1985 issue). To use the following programs with ProDOS, these changes are required:

For "Mindbusters" (April 1985, p. 54):

```
12\emptyset POKE 6,\emptyset:POKE 7,141:P
    RINT CHR$(4);"PR# A$3
    øø"
```

45ø PRINT CHR\$(4);"PR\#ø"
For "Space Caverns" (March 1985, p. 54):
$91 \varnothing$ HOME: HGR:POKE 6, $9:$ POK E 7,141: PRINT CHR\$(4) ;"PR\# A\$3øø"

For "Bowling Champ" (February 1985, p. 126):
$13 \emptyset$ HOME : POKE 23Ø,32: CALL 62450: HGR: POKE 6, Ø: POK E 7, 141: PRINT CHR\$(4);"P R\# A\$3øの"
$83 \varnothing \mathrm{X}=\varnothing \mathrm{F}:$ FOR $\mathrm{I}=768 \mathrm{TO} 853$: READ $A: X=X+A:$ POKE I, A: NEXT : IF $X<>795 \emptyset$ THEN PRINT "ERROR IN DAT A STATEMENTS FOR ML AT 76 8.": STOP

84Ø DATA $216,133,69,134,79,1$ 32,71,166,7

For "Paratrooper" (January 1985, p. 72):
$20 \varnothing$ FOR I $=768 \mathrm{TO} \mathrm{I}+85:$ RE $A D A: X=X+A:$ POKE $I, A:$ NEXT : IF $X<>23417$ TH EN PRINT "ERROR IN DATA 5 TATEMENTS.": STOP
$22 \emptyset$ PRINT CHR\$ (4)"PR\# A\$3ØØ
$113 \emptyset$ DATA $216,133,69,134,7 \emptyset$, $132,71,166,7$

For "Things in the Dark" (December 1984, p. 79):
$77 \emptyset$ HOME : HGR : POKE 6, Ø: PO KE 7, 141: PRINT CHR\$ (4)" PR\# A\$3 ${ }^{\prime \prime}$
$990 \mathrm{X}=9:$ FOR I $=768 \mathrm{TO} 853$: READ $A: X=X+A: P O K E$

I,A: NEXT : IF $X<>795 \emptyset$ THEN PRINT "ERROR IN 1ST SET OF DATA STATEMENTS. " : STOP
1 10øØ DATA $216,133,69,134,79$, 132,71,166,7

For "Spiders" (November 1984, p. 96): 160 CALL 36884
In addition, ProDOS filename conventions require that you BSAVE the machine language portion of Spiders (Program 6) with the title SPIDER. 2 instead of SPIDER 2 as indicated on p. 90. You'll also have to change SPIDER 2 to SPIDER. 2 in line 130 of Program 5.

Atari Disk Rx

The author of this utility program from the March issue (p. 107) has provided the following corrections: Renumber line 4015 to become line 4006 , replace the old line 4015 with 4015 REM, change the GOTO HALT in line 5075 with GOSUB HALT, and change the $\mathrm{REC}=1$ in line 6040 to $\mathrm{REC}=0$.

It is also possible for the program to crash with the message ERROR 5 IN LINE 325 while you are attempting to recover large files. The error occurs because the program does not check for buffer overflow. To prevent this, reader Jim Owens suggests adding and changing the following lines:

Apple SuperFont

There are two typos in the checksum program (Program 6, p. 137) for this custom character utility for the Apple II series in the April issue. Lines 140 and 150 should read as follows:

```
```

14\emptyset FOR J=\emptyset TO 63:S = S

```
```

14\emptyset FOR J=\emptyset TO 63:S = S
+ PEEK (4096 + I * 6
+ PEEK (4096 + I * 6
4 + J): NEXT
4 + J): NEXT
15\emptyset READ A:S = S-256*
15\emptyset READ A:S = S-256*
INT (S / 256)

```
```

 INT (S / 256)
    ```
```


Plus/Term For VIC \& 64

In addition to the items in last month's "CAPUTE!" column, there is another correction to the machine language portion for the VIC-20. Whenever you load a file into the buffer, the lower boundary of the

```
323 IF FILL=1 AND (BCNT+T
```

323 IF FILL=1 AND (BCNT+T
YPE) >RAM THEN ?:? "BU
YPE) >RAM THEN ?:? "BU
FFER FULL. LAST BUFFE
FFER FULL. LAST BUFFE
R SECT=";SECT-1:POP:G
R SECT=";SECT-1:POP:G
OTO З3\emptyset
OTO З3\emptyset
326 NEXT SECT
326 NEXT SECT
33\emptyset IF DIR=1 THEN RETURN

```
33\emptyset IF DIR=1 THEN RETURN
```

buffer is reset incorrectly so that 256 bytes of garbage are added to the start of the text. To remedy this, reset the VIC by turning it off and back on. Load the machine language data by typing LOAD "PLUS/ TERM.ML' ${ }^{\prime \prime}, 8,1$ (for tape, replace the $, 8,1$ with $, 1,1$). Then enter the following line in direct mode (without a line number):

POKE 43,0: POKE 44,24: POKE 7075,64 Immediately save the revised version by typing SAVE "PLUS/ TERM.ML2", 8 (or , 1 for tape). Now change line 100 of the BASIC portion to reflect the new name for the machine language portion.

If your printer is not properly handling upper- and lowercase characters, try changing line 1900 to 1900 OPEN 5,ZE,7.

The article states that changing the baud rate after other parameters have been set causes all other parameters to revert to their default values. Actually, even though the various submenus will show all parameters reverted to their default states, the actual parameter values will not have changed. Thus, the menus will not reflect the actual settings of the parameters. For this reason, you should always change the baud rate before changing any other parameter.

Computer $\begin{aligned} \text { tandupe amm } \\ \text { and }\end{aligned}$ Air Filters
Don't Let DUST Collect Inside Your Computer! Protect your investment and reduce the chances for costly service.

KIT \# 1 Will supply the Apple il il + , Ile for over a year KIT \# 1 For Apple II, II+, Ile, Ilc; Adam, Atari XL600, XL1800. Commodore 64. VIC 20, IBM P/C: Kaypro $2 / 4$ Includes: $1-72^{-}$Self Adhesive Veicro $1-12^{-} \times 60^{-}$Filter Matenial Only $\$ 10.50$ KIT \#2 For Apple, Macintosh: IBM P/C Jr.

Includes: 1-108 Self Adhesive Velcio $1-16^{\circ} \times 60^{-}$Fiter Material Only $\$ 12.50$ If your computer is not mentioned, measure the outside diameter of all the grills on your computer and order the needs.
Extra Self Adhesive Velcro $\$ 3.00 / \mathrm{yd}$.
Refill Air Filter Material for Kits \#1 and \#2 Refill \#1 1-12" $\times 60^{-}$Filter Material Only 57.75 Refill \#2 $1-16^{\circ} \times 60^{-}$Filter Material Only 59.25 Add $\$ 1.75$ postage and handling for any size order. Wisconsin res. add 5\% tax.
Send check or money order to:
Computer Air Filter Co. P.O. Box 972 Racine, W/ 53405
Reader Service Number/Advertiser
Page
102 Abacus Software79
103 Abacus Software 81
104 American PEOPLE/LINK 69
2-3
105 Apricot, Inc.
4
4
106 Aprotek
106 Aprotek 13
107 CALABCO Peripherals Division 32-33
108 Cardco, Inc. IBC
Commodore BC
109 CompuServe 21
ComputAbility 47
Computel Publishing Society 105
110 Computer Air Filters 127
111 Computer Direct 62-63
112 Computer Mail Order 38-39
113 Comspec Communications Inc. 65
114 Covox Inc. 99
115 Davidson \& Associates, Inc 7
116 Davidson \& Associates, Inc. 107
Disk World!, Inc. 111
117 EPYX 25
Family Discount Computer Products 109
118 Grolier Electronic Publishing, Inc 31
119 Harmony Video \& Computers 115
ICS Computer Training 83
120 Indus Systems 43
121 J \& R Music World 87
Jason-Ranheim 80
Lyco Computer 100-101
Maxell 11
MICROpendium 105
122 Mimic Systems, Inc 27
North Hills Corporation 99
North Hills Corporation 109
123 Nibble Notch Computer Products 67
124 Okidata IFC-1
125 Pacific Exchanges 109
126 PDS Sports 29
127 Precision Data Products 109
128 Prof. Jones 107
129 Protecto 60-61
130 PSI 9
131 Quinsept, Inc. 16
14-15 Apple Computer, Inc.
Reader Service Number/Advertiser Page
132 Starpoint Software 28
133 Strategic Simulations, Inc. 37

COMPUIEI'S APPLE APPLICATIONS ISSUE

\square Volume 1 \$3.95 (magazine only)

पI would like to order the companion Disk for Volume 1 \$12.95
(Add $\$ 1.00$ shipping/handling inside U.S. Add $\$ 2.00$ shipping/handling outside U.S.) All orders must be prepaid. To order send in this card with your payment or call toll-free 1-800-334-0868.

NAME \qquad
ADDRESS \qquad
CITY
STATE
ZIP \qquad
\square Payment enclosed. Charge: \square Visa \square MasterCard \square American Express

BUSINESS REPLY CARD
 FIRST CLASS PERMIT NO 2312 GREENSBORO. NC

POSTAGE WILL BE PAID BY ADDRESSEE

COMPUTEI's
 APPLE APPLICATIONS ISSUE
 Post Office Box 5058
 Greensboro, NC 27403

The Editor's Feedback:

Computer: \square PET \square Apple \square Atari \square VIC-20 \square Commodore 64
TT-99/4A - Timex/Sinclair \square Radio Shack Color Computer

- Other \qquad - Don't yet have one . . .

Are you a computel Subcriber? \square Yes \square No
I would like to see:

More | Just |
| :---: |
| Right | Fewer

Specific applications programs.
 BASIC programs Machine language programs.
 Tutorials.
Educational articles.
Detailed explanations of programs.

More | Just |
| :---: |
| Right | Fewer

- Games.
\square Reviews of game software.
- Reviews of business software.
ㅁ Reviews of educational software.
ㅁ Reviews of hardware.

What do you like best about computel?

What do you like least?

COMPUTE! Magazine P.O. Box 5406
 Greensboro, NC 27435-0406

COMPUTE!'s

FREE Reader Information Service

Use these cards to request FREE information about the products advertised in this issue. Clearly print or type your full name and address. Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.

Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTE! cannot be responsible if advertisers do not provide literature to readers.

Please use these cards only for subscribing or for requesting product information. Editorial and customer service inquiries should be addressed to: COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.

Use these cards and this address only for COMPUTEI's Reader Infor-

 mation Service. Do not send with payment in any form.
COMPUTE

| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 |
| 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 |
| 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 |
| 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 |
| 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 |
| 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 |
| 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 |
| 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 |

Circle 101 for a one year new U.S. subscription to COMPUTEI: you will be billed for $\$ 24$.

Please print or type name and address. Limit one card per person.

Name
Address
City
State/Province Zip
Country
Please include zip code. Expiration 8/31/85.
C0685

For Fastest Service, Call Our Toll-Free US Order Line 800-334-0868
in NC call 919-275-9809

SUBSCRIBE TO COMPUTE!

My Computer Is:
$01 \square$ Apple
$02 \square$ AtariCommodore 64
TI-99/4A
$s \square$ Other \qquad - Don't yet have one.\$24.00 One Year US Subscription\$45.00 Two Year US Subscription
(Readers outside of the US, please see our foreign readers subscription card or inquire for rates).

Name
Address

| City | State | | Zip |
| :---: | :---: | :---: | :---: |
| \square Payment Enclosed | \square Bill me | | |
| Charge my: \square VISA | \square MasterCard | \square American Express | |
| Account No. | | Expires / | |

COMPUTEI Reader Service P.O. Box 2141
 Radnor, PA 19089

BUSINESS REPLY CARD
 FIRST CLASS PERMIT NO. 2312 GREENSBORO, NC

POSTAGE WILL BE PAID BY ADDRESSEE
COMPUTE!
P.O. Box 914

Farmingdale, NY 11737

Technical

Breakthrough
 Number 27

no other printer interface can touch:

Only CARDCO would dare improve on its own best seller (the $+G$ has far out-sold any other printer interface, and has set the industry standard by which competitors are judged). The G-Wiz is even better - and costs 30% less. * Our 27th major innovation in Commodore accessories has all the + G's features, and more...

Built-In Buffer for More Speed

The G-Wiz buffer dumps high-resolution screens up to 18 times faster than competitive interfaces without buffers. No more waiting! A complex 50 -minute printout now takes just 2.5 minutes with the G-Wiz.

Exclusive! Aspect Patio Selection

Only the G-Wiz matches graphics characters to standard characters on Okidata, Epson, Star * Actual price may vary according to dealer and region.

Micronics, Prowriter, Smith Corona, C-ITOH, Gorilla Banana, and many other dot matrix printers. Now you can perfectly align high resolution graphics characters within text blocks, or in columns.
CARDCO excellence triumphs again! The G-Wiz is the "best bang for the buck" on the printer interface market today - and it's backed by CARDCO'S exclusive lifetime warranty! G-Wiz: another distant target for the competition to shoot at.
CARDCO,Inc. 300 S. Topeka/Wichita,KS 67202

IT'S NOT HOW MUCH YOU PAY.

The computer at the top has a 64 K memory.

It has the initials I, B, and M. And you pay for those initials.

The Commodore $64^{\text {TM }}$ has a 64 K memory.

But you don't pay for the initials, you just pay for the computer. About one third the price of the IBM PCjr.'T

The Commodore 64 also has a typewriter-type
keyboard with 66 typewritertype keys. (Not rubber chicklet keys like the IBM PCjr.)

It has high resolution graphics with 320×200 pixel resolution, 16 available colors and eight 3 -dimensional sprites.

It has 9 -octave high fidelity sound.

The Commodore 64 is capable of running thousands of programs for home and office. And if you àdd a printer
or color monitor, disk drive and a modem-all together it just about equals the price of the IBM PCjr all alone. With no peripherals.

So you can buy a computer for a lot of money.

Or buy a lot of computer for the money.

COMMODORE 64E

IT'S NOT HOW LITTLE IT COSTS, IT'S HOW MUCH YOU GET.

[^0]: *A note to Dr Greenspan's relatives: He sags "Don't get excited. This isn't my real bank account""© 1985 Apple Computer, Inc Apple and the Apple logo are registered trademarts of Apple Computer Inc. The Home Accountant is a trademark of Continental Soffuare. Dollars\& Sense and Forecast are trademarks of Monogram. Dow Jones Neus/Retrieual and Dow Jones Investor's Worksbop are trademarks of Dow Jones and Company: Inc. Tax Preparer is a trademark of Howard Soffuare Services. Scribe is a registered trademark licensed to Apple Computer, Inc. THE SOURCE is a service mark of Source Telecomputing Corporation, a subsidiary of tbe Reader's Diget Asociation, Inc. CompuServe is a trademark of Compuserve Corporation, an H \& R Block Company. The Equalizer a nd Equalizer are trademarks of Charles Schuab \& Compary, Inc. Spectrum is a registered service mark of the Chase Manbattan Corporation. For an authorized Apple dealer near you call (800) 538.9696. In Canada, call (800) 268-7796 or (800) 268-7637.

[^1]: THE LADS Disk
 LADS, the assembler used in The Second Book of Machine Language, is available on disk for only $\$ 12.95$. This is a great accompaniment to the book, saving you hours of typing time by providing the complete source and object modules for all versions of the assembler. And LADS disks are specific to your Apple, Atari, or Commodore computers.

[^2]: To Order: Call Toll Free 800-334-0868 (in NC 919-275-9809) or mail this coupon with your payment to COMPUTE! Books, P.O. Box 5058, Greensboro, NC 27403. Offer Expires July 15, 1985.

[^3]: Add $\$ 14.50$ for shipping, handling and insurance. Illinois residents please add 6% tax. Add $\$ 29.00$ for CANADA, PUERTO RICO, HAWAII, ALASKA. APO-FPO orders. Canadian orders must be in U.S. dollars

 WE DO NOT EXPORT TO OTHER COUNTRIES, EXCEPT CANADA. Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days delivery. 2 to 7 days for phone orders. 1 day express mail! VISA - MASTERCARD - C.O.D

 No C.O.D. to Canada or APO-FPO

[^4]: The Apple version of SpeedScript 3.0, and all other Apple programs in this issue, may be ordered on disk directly from COMPUTE! Publications. Call TOLL FREE 1-800-3340868 (in NC 1-919-275-9809) to charge your order 8:30 a.m.-7:00 p.m. Eastern Time, Monday through Friday. Or send check or money order ($\$ 12.95$ plus $\$ 2.00$ shipping and handling) to:

 COMPUTE! Publications, Inc.

 ## P.O. Box 5058

 Greensboro, NC 27403 USA
 Readers outside the United States and Canada add $\$ 3.00$ shipping and handling. All orders must be prepaid in US funds.

