Apple's Evolutionary New IIc

The Leading Magazine Of Home, Educational, And Recreational Computing

Blueberries And Bunny Hop: Two Fascinating Games For Children

Statistics For Nonstatisticians For The Apple, VIC-20, Commodore 64, Atari, IBM PC And PCjr, TI, And Radio Shack Color Computer

Commodore 64 And 1521 Disk Drive ROM Generations: All The Changes

Applesoft Lister: Format Programs For Fast Debugging

Atari Artist:
Create Graphics The Easy Way

REMEMBER.

A full line of top-quality floppies, in virtually every $5^{1 / 4 "}$ and $8^{\prime \prime}$ model, for compatibility with virtually every computer on the market. Guaranteed to meet or exceed every industry standard, centified 100% error-free and problem-free, and to maintain its quality for at least 12 million passes (or over a lifetime of heavy-duty use).
Contact Dennison Computer Supplies, Inc., 55 Providence Highway, Nonvood, MA 02062 or call toll-free 1-800-343-8413. In Massachusetts, call collect (617) 769-8150. Telex 951-624.

WordPro 3 Plus ${ }^{\text {TM } / 64 ~ a n d ~ S p e l l R i g h t ~ P l u s ~}{ }^{\text {TM }}$ provide a total word processing solution for the Commodore $64^{\text {r"w }}$ which gives you:

* Sophisticated Word Processing
* Built-in Mail Merging for Form Letters
* Math Functions for Column Totals
* Fast and Complete Spell Checking via SpellRight Plus
\star A Super Value (two programs) for Only $\$ 99.95$!
WordPro and SpellRight are both specifically designed for the novice user with no computer or word processing experience whatsoever. And with over 40,000 WordPro versions sold, you can be sure that WordPro is a very sophisticated word processor loaded with powerful features including: Transfer, Insert, Delete, and Rearrange Text, Auto Page Numbering, Math Functions, Headers, Footers, Global Search and Replace, the Ability to Create Multiple Personalized Letters and Documents, and much more. WordPro can create documents of virtually any length and will print up to 165 columns wide. You get all of this PLUS fast and complete spell checking using SpellRight Plus!

SpellRight Plus locates and highlights misspelled words and then allows you to quickly correct the misspellings improving the quality of your letters and reports.
And, best of all, WordPro and SpellRight's powerful arsenal of features can be put to use almost immediately - by even the novice user. So whether you're a student, professional writer, in business, education or a hobbyist, you'll quickly become a WordPro Pro!
Both WordPro and SpellRight Plus are also available separately at popular computer outlets nationwide.

Invest in the best . . .WordPro Plus. In a class by itself.

Professional Software Inc.

51 Fremont Street Needham, MA 02194

EIEVENTHINGS YOU CAN DO
 ONTHE VERY FIRST DAY.

Your first day with PC $j r$ isn't just exciting.

It's rewarding.
This IBM^{\circledR} personal computer quickly hooks up to the family TV. And there's a lot you can do right from the start.
home what you start at the office, and vice versa.

And when it's time to relax, $\mathrm{PC} j r$ is always game. Plug in an entertainment cartridge and let the fun begin.

A COMPUTER THAT CAN GROW WITH YOU

PCjr was designed to make the whole family feel at home with computers.

The keyboard, for example, doesn't need a connecting cord. This refreshing bit of technology - the IBM "Freeboard"-frees you to get comfortable up to twenty feet away.

And the keys are color-coded, so even a beginner can find the right key for the right job.

Right away.

YOU'RE OFF AND RUNNING

You can start using PCjr as soon as you set it up. The Sampler Diskette (included with diskette-drive models) gives you eleven useful mini-programs to choose from.

Including:
A home spreadsheet to help keep your expenses in line.

An electronic address book to help you sort out who's who and who's where.

A home loan calculator that can tell you interesting things about your principal.

An easy-access file for recipes. A checkbook balancer. And a challenging word game.

Of course, the Sampler Diskette is merely a taste of what you can do with PCjr. You can buy easy-to-follow programs to help you write letters, plan your finances, educate the kids, file tax data - to help the whole family use its time to better advantage.

Plus, PCjr runs many of the IBM Personal Computer programs that run on the IBM PC and PC/XT. So you can finish at

Atari presents the

 five greatest advances in the creative arts since someone put 72 crayons in one box.What would Cezanne say to an electronic orange? Surely Van Gogh would go for some flowers painted in phosphors (those glowing things in your TV screen). And you bet Beethoven would be blown away by a computer synthesized symphony.

Too bad. They were all born too early. But luckily you weren't. Because Atari makes several home computer products to help you create all these things and more.

First, there's ATARI Paint; the program that turns the joystick you already own into a computerized paintbrush that helps you explore the fascinating world of computer art.

Get the magic touch with Atar Touch Tablet.

The ATARI Touch Tablet with AtariArtist ${ }^{\text {TV }}$ software cartridge turns your TV into a magic palette of 128 dazzling colors. The Touch Tablet works a little like an electronic slate. Hook it into any ATARI Computer and what you draw on the tablet will instantly appear on your TV screen. You can draw on the Touch Tablet with the unique electronic stylus that comes with it-or even with your finger.

And all the on-screen commands that control your Touch Tablet are labelled with simple sym-
bols as well as words. So everyone from preschoolers to grandparents can create without going near the keyboard.

Atarl Light Pen lets you write right on the screen.
ATARI Light Pen with AtariGraphics ${ }^{\text {TM }}$ software cartridge is among the best tools available for teaching hands-on computer creativity. To draw circles, rectangles, or simply fool around with freehand sketching, just press the pen to your TV screen and VOILA ...A trail of sparkling color follows it.

You can fill in your sketches with one or more of 128 colors. Or choose from over 2,800 patterns.

Roll over Beethoven, Atarimusic is here.

Sure, Beethoven took music lessons. But even he didn't get the head start you'll get with AtariMusic ${ }^{\text {TM }}$ I or AtariMusic ${ }^{\text {TY }}$ II. And once you understand the
basics you'll be ready to move up to ATARI Music Composer and create original compositions in four part harmony!

All of these programs were designed to get the best from your ATARI Computer, including the ATARI $800 \mathrm{XL}^{\text {Tu }}$ or the less expensive ATARI 600XL. ${ }^{\text {™ }}$ Both machines give you unsurpassed Atari graphics and four sound channels. And whether you're painting with light or composing at the computer keyboard, you can store your creation on the ATARI $1010^{\text {tu }}$ Program Recorder or the more sophisticated $1050^{\text {TV }}$ Disk Drive.

And if all that doesn't convince you that our new programs are a giant step beyond crayons, consider this: the kids will never write on the wall with a computer.
*SuperBoots ${ }^{\text {T }}$ Software developed by Capital Children's Museum. Washington, D.C. licensed by Reston Publishing Company, Inc. 01982 Reston Publishing Company, Inc.
All Rights Reserved. All Rights Reserved.

FEATURES

24 Evolutionary To The Core: The Apple lic Heads For Home
38 How To Choose A Home Data Program
40 The ABC's Of Data Bases Atari's New Lease On Life

me:

\qquad Fred D'Ignazio and Selby Bateman

EDUGAIION AND REGREAIION

50 Statistics For Nonstatisticians
72 Bunny Hop
80 Blueberries

Selby Bateman Kathy Yakal Charles Brannon

REVIEWS

67 M'File For The Commodore 64
Stan Fenster
69 AtariWriter
John Heilborn

COLUMNS AND DEPARTIMENIS

Robert Lock The Editors And Readers of COMPUTE!6 The Editor's Notes
10 Readers' Feedback
10 Readers' Feedback

94 The Beginner's Page: Trapping Bugs

96 Computers And Society: Technostress

100 Learning With Computers:

104 INSIGHT: Atari

10864 Explorer
THE JOURNAL

90 The World Inside The Computer: Computing Together

The Computer Speaks, But Will It Listen? . Glenn M. Kleiman

112 Machine Language: Decimal Mode, Part 1
120 Programming The TI: Programming Techniques in TI BASIC

115 Atari Artist
124 Programming 64 Sound, Part 2
130 Applesoft Lister
\qquad Andrew Katz
John Michael Lane
133 Program Conversion With Sinclair BASIC And TI BASIC

64 ROM Generations
137 Commodore 64 ROM Generations
140 Atari MacroDOS: Part 2
144 Commodore Garbage Collection, Part 2
Fred D'Ignazio Richard Mansfield David D. Thornburg Bill Wilkinson Larry Isaacs
llection, Part 2
Jim Butterfield

148 News \& Products
150 The Automatic Proofreader For VIC, 64, And Atari
152 How To Type COMPUTE!'s Programs
153 CAPUTEI Modifications Or Corrections To Previous Articles
158 Product Mart
160 Advertisers Index

NOTE: See page 152 before typing in
programs.

TOLL FREE Subscription Order Line 800-334-0868 (In NC 919-275-9809)

64
AT
-
-
-
-

AT

64
π

AT
64
AP

TI/TS

64
AT
64

AP Apple AT Atari, P PET/ CBM, V VIC-20, C Radio Shack Color Computer, 64 Commodore 64, TS Timex/ Sinclair, TI Texas Instruments, PCJr IBM PCjr, PC IBM PC, AD Coleco Adam, *All or several of the above.

This month, Senior Editor Richard Mansfield responds to an attack on personal computing in this guest editorial.
Robert C. Lock
Editor In Chief

A few weeks ago, pundit Andy Rooney launched an astonishing attack on personal computing on CBS's show 60 Minutes. It was astonishing because he revealed a staggering misunderstanding of computing. But first a bit of background.

There seem to be fewer curmudgeons around these days. It used to be that when an important invention was unveiled, dozens of experts could be counted on to denounce the device as interesting, but impractical. No more. Maybe it was the splitting of the atom or the moon landing. Who knows? For whatever reason, few people are now willing to publicly predict that an invention is fundamentally unimportant, useless, or impossible.

Most people, experts included, still secretly think like that about new technologies. They just won't talk about it with reporters anymore. There is a defect, a weakness in many people, which makes them unable to accept new machines and discoveries. Perhaps we could define this as future-blindness-a skewed view of the potential of new hardware.

Part of the problem is that hardware always precedes software. The car was invented before there were proper roads for it to travel on. TV sets were constructed before there were programs to watch.

So, in the past, when a major new technology was an-
nounced, futureblind "experts" would come out of their dwellings and talk with reporters. The experts would acknowledge that the new device was interesting, but that it was also impractical and hardly deserving of all the notice it was getting. Less stodgy experts might have gone so far as to envision a limited use for the device, a very limited use.

It's always amusing to read such pronouncements a decade or two later. For example, when the first telephone was demonstrated, one expert predicted that there would, in fact, be a real use for this new technology. He announced that he could even foresee a day when there would be one in every large city.

Such a prediction likely drew gasps and murmurs from the more severely futureblind in his audience. A phone in every major city was, of course, desirable, but hardly practical. After all, there would have to be a wire strung from city to city across the land. And that was beyond imagining.

It's always this way with hardware. Most people, and many experts, cannot understand that important new hardware is naked at first, but creates a powerful vacuum, eventually pulling in huge amounts of software. Few people realized that the automobile would throw webs of asphalt over entire continents. Or that nets of telephone wires would cover our cities. Before those webs and nets were in place, the car and the phone seemed, if not frivolous, at least pretty limited.

Yet these days very few experts are willing to reflexively denounce new technology.

Burned once too often, the average expert will now either refuse to comment or make some mild, rhetorical, anticomment like "I'm excited about the prospects of this, but I must wonder where it will lead us in our modern society." Since remarks like this say nothing whatsoever, they're safe enough.

So it was with mixed emotions that we listened to Andy Rooney attack personal computers on 60 Minutes. On the one hand, it was touchingly nostalgic to watch him denounce technology in the traditional way by confusing hardware with software. On the other hand, his stance was so grossly confused that his pronouncements cannot take a place alongside the classic, the truly great historical failures of vision.

He decided to test the value of personal computers by seeing if he could make corrections faster via word processor or pencil and paper. He timed himself and found that his pencil was indeed faster. Anyone remotely familiar with computers would immediately say, "So what?" This was not a test of word processing, much less of computers in general. But Rooney went on to draw several increasingly bizarre conclusions about computing.

Curmudgeons do serve a purpose beyond their amusement value. They are a healthy balance against promoters' hype and uncritical technophilia. But an essential prerequisite of any good denunciation is that, at least on the surface, it must appear to make some sense.

Get skilledorgelt *? TM

 The Typing by Bruce zuvel

Scott Lamb's Interactive Space Fantasy Adventure

Jupiter Mission 1999 is Avalon Hill's Trademark Name
for its Microcomputer Space Adventure Role Playing Game.

Ship Status Display: Damage report

Navigation Display:
Used to plot course

Science Lab Display: Probe report

Science Lab Display: Jupiter system diagramatic

RRRING!!! RRRING!!! RRRING!!!

Too early on a chilly January morning, I was jarred awake by the noxious blaring of my traitorous doorbell. As I moved to accost the unknown aggressor, with the full force of semi-conscious wrath, I pulled on my robe and lost my dignity to the pain of a stubbed toe. Now fully awake, I opened the door, prepared to educate the mysterious interloper on the meaning of manners. My determination to this end was somewhat shattered when I saw two large men clad in long overcoats and wide-brimmed hats. Instinctively, I tried to slam the door. My retreat to safety was denied by the advance of the strangers. Before I could protest their entry, my vision was drawn to the shining silver badges that hung from their now unfolded wallets. They were government agents.

Hesitantly, trying to remember any crimes that I had ever committed, I invited them into my home. At their request, I produced my driver's license and other forms of identification. After examining these credentials, they asked me to pack a bag for an extended journey. After some protest and argument, I was made to understand that my options in this matter were less than limited. My country needs me, they said-with the clear implication that either I pack and dress or I take an extended journey in my robe.

This is how my adventure began. From my cold apartment, I was taken to a towering vehicle for an emergency mission to Jupiter. My very life on the line and, possibly, the survival of the planet Earth as well, and only God knows what other kind of perils await.

JUPITER MISSION 1999 is a highly detailed role-playing space adventure game that includes challenging arcade segments and mystifying puzzles. Four separate program disks are enclosed to test the creative imagination of the advanced computer gamer. JUPITER MISSION 1999 is ready to run on your Atari®Home Computer with 48 K memory and one disk drive.
$\$ 50.00$
Available at leading computer software dealers, or call tollfree for further information: 1-800-638-9292

Porthole View of Jupiter and a moon

Lander Approach Display: note descending spaceship

Exploring an
Alien Complex

Exploring an Alien Space Station

What's An Algorithm?

I have frequently seen the word algorithm and would like to know what it means.

I've also heard that you should have a voltage spike protector, because when appliances are turned on, they can produce a surge in the electricity in your house. Is it absolutely necessary to have one?

Andrew S. Hartman
An algorithm is a set of steps or relationships which, taken as a whole, solve a problem. For example, regular pay $=$ regular hours * regular rate of pay is a standard algorithm that might be found in a payroll program.

Or: 1. Have user INPUT his height 2. Look up correct weight for this height. This would be an algorithm for telling people how much they should weigh.

Using a voltage spike protector couldn't hurt. The electricity in the average home is subject to periodic surges from various sources. A lightning strike, for example, can introduce very high voltage for a few microseconds.

If you see the lights in your house flickering often, you may need one. On the other hand, many people have operated their unprotected microcomputers for years without any problems.

A spike protector is a kind of insurance.

The Commodore Internal Clock

I am trying to write my own game program. I have already programmed my screen display, but I would also like to include an onscreen timer. None of my references mention how I can get a simple TIME REMAINING: XXX SECONDS display on the screen. I have tried loops that subtract 1 from 1000 and print the results on the screen, but so far they either scroll the game display off the screen, or clear the screen. Please help.

Mark Adkins

Try this BASIC line:

This will print a six-digit number to the screen. The format is $H H M M S S$ where $H H=$ hours, $M M=$ minutes, and SS = seconds. Unless you have reset the timer yourself, the six digits you see will reflect how much time has elapsed since you turned on your computer.

To set the timer, use the same HHMMSS format in this manner:

TIS = "HHMMSS"

For example, TI\$ = " 123335 " would set the clock to 12:33 and 35 seconds. Now enter TI\$ = " 000000 " and PRINTTIS to see the value changed. Setting TI\$ with any value between 000000 and 235959 will start the clock running with that value. Enter and RUN the following short BASIC program and you'll be able to watch the clock as it's running:

$2 \emptyset$ PRINT" $\{$ HOME \} "TI\$: GOTO2ø

Using the TI\$ function to create a timer can be done with an IF-THEN statement. For example, if you desire a 10-second timer, set TI\$ to 0, then check for the ten-second limit with: IF TI\$ = "000010" THEN... (action desired). Remember that TI\$ returns a string, and its lowest value is seconds.

The TI command is much like the TI\$ command except it returns values in seconds and fractions of seconds. Enter

PRINTTI/60

The numeric value returned here is seconds in the format XX.XXXXXXX. Programming a timer with the TI command is much the same as with TI\$. The TI value is set with the TI\$ command. For example, to set TI at 60 seconds, you would enter: TIS = "000100" (one minute). To program the same 10-second timer, you would set TIS to zero then check the TI variable with IF TI/60 $=>10$ THEN (action desired).

The problem of the scrolling screen display can be solved with cursor controls within the PRINT statement. For example, you can use the home (upper left corner of the screen) position as a starting point. Each time you want to print your score, timer, etc., simply use the cursor controls to move to that line, print the display, then move back home.

The road to floppy success is paved with our Gold Standards.

Maxell speeds your success in computing. Helping you avoid traps that can block the way to information you've stored. After all, our disk is an industry leader in error-free performance. Performance backed by a lifetime warranty.
Consider this: Disks travel through a disk drive where heat builds up. And up. So Maxell designed its protective outer jacket to defy $140^{\circ} \mathrm{F}$. The disk keeps its shape and keeps your information on track.

How good is Maxell Gold? We're the disk that many floppy drive manufacturers trust to put new equipment through its final paces. And the unqiue way we pack our oxide particles and bind them together means quality for the long run.

Dropouts? Disk errors? Just pass them by. You're on the Gold Standard.

Atari 400 RAM And Tape

1. Where do you find the RAM that's required to run most programs?
2. Is there a program that will convert Commodore programs to run on the Atari 400?
3. What kind of tapes should I use for the Atari 410 cassette recorder? Every one I try gives me an ERROR - 143 when I try to CLOAD from them.

> Mike Meyer

1. RAM is user memory, built into your machine. Your computer is equipped with a certain amount, which can usually be expanded (the Atari 400 comes with 16 K). Software packages designate the amount of RAM they require for the program and storage, with a notice such as " 48 K required." Match this with the amount of RAM you have in your machine to see if you have enough. Most large arcade games require the maximum memory your machine can support, such as 48 K or 64 K . Most cassette-based programs require only a minimum configuration, such as 16K. Don't buy a program that requires more memory than you have-it probably won't work.
2. No conversion programs exist-and there will probably never be any. The Commodore and Atari computers have some things in common: the same type microprocessor (6502 or 6510), a similar BASIC, and similar graphics capabilities. But the differences are overwhelmingly different. Since many programs are inextricably bound to the hardware, no program can be written to reconcile all the differences. An emulator in hardware, essentially a computer on a cartridge, is the only avenue worth pursuing. We know of no Commodore emulators for the Atari computers. As you gain experience, you may want to try converting individual BASIC programs yourself.
3. First, use short tapes. Long, 60-minute tapes are thinner, and are more prone to flaking, binding, and stretching. Although you may not notice these problems with audio tapes, computers can be much more exacting. For the Atari, use a good-quality audio tape. Computer digital tapes are recommended for machines like the Commodore 64 or TI-99/4A, but you should use only audio tape on the Atari, due to the storage technique. Still, if you are using your recorder properly (CSAVEing and CLOADing past the blank leader), you will still be able to get some tapes to work. We've seen tape of marginal quality used with success. Try cleaning and demagnetizing your tape heads. If that doesn't work, you will need to get your recorder replaced or adjusted (this can sometimes be done in audio stores).

Commodore Disk Drive Device Number Update

I am the owner of a 64 and two 1541 disk drives, and was therefore quite interested in the item you
published about changing (1541) device numbers in "Readers' Feedback" (April 1984).

Unfortunately, the picture you showed has little relationship to the circuit boards in the newest models of the 1541 disk drive (light brown case).

I would appreciate your printing a note showing the jumper locations for the newer model 1541s.

Eric H. Larson

As you pointed out, there are two versions of the 1541 disk drive. The older version, usually with a white case, contains a long circuit board that runs the length of the drive. The newer version, usually in a brown case, contains a shorter board.

The method for changing device numbers on the newer 1541s is the same as we described before, except for the position of the jumpers.

Unplug the drive from the wall and then carefully unscrew and remove the top half of the brown case. Then remove the large silver colored shield inside the disk drive. This will expose the circuit board. As you view the drive with the front toward you, the jumpers are near the center of the circuit board toward the front (see picture below).

The two jumpers look like round spots of silver solder (approximately $3 / 8$-inch diameter each) separated into halves, with the two halves connected by a thin strand of solder. To change the device numbers of the 1541 disk drive, the thin strand connecting the two halves should be scratched away on one or both of the jumpers. As you look from the front of the drive, the jumper nearest the front is jumper number 1 , and the rear is jumper 2 .

As stated in the 1541 user's manual, cutting jumper one, jumper two, or both, produces different numbers. Following is a chart showing the different combinations.

Jumper Cut	New Device Number
None	8
1	9
2	10
1 and 2	11

WE CREATED IT. FAMILY COMPUTING RATED IT. INTRODUCING "4 STAR" PUZZLE MANIA.

Puzzle Mania ${ }^{\text {tw }}$ is a challenging jigsaw program for puzzle lovers.
Puzzle Mania is also an inspired jigsaw program for puzzle creators.
Because in addition to the seven great puzzles on the disk, you can create your own pictures on the screen, paint them in sixteen different colors and let the program turn them into puzzles to save on a separate disk.

Each Puzzle Mania puzzle (including your own creations) can be played on six levels of difficulty. There's help when you need it. And all turns are tallied. So you can turn the puzzle play into competitive play. If you have to part with a puzzle before it's finished, there's a stop-and-save feature built into the program, too.

Reader's Digest Software created Puzzle Mania for kids and their friends and their parents and their grandparents and everybody else who likes fun and games. Look for it at your software store or call
 Customer Service at 1-800-431-8800. (NY: 1-800-262-2627; AK, HI: 914-769-7000; Canada: 514-934-0751).

SOFTWARE GOOD ENOUGH

TO GO OUT AND BUY A COMPUTER FOR.

Remember, though, that unless you're handy with a soldering iron, changing the device number via hardware modifications is permanent.

Also remember that-although not specifically stated in the user's manual-opening the disk drive and performing these modifications yourself may void the warranty. Consult your local Commodore representative and thoroughly read the user's manual before attempting any of these modifications.

If you feel uncomfortable changing the device number using the hardware method, the same thing can be achieved with a software (program) modification. Here is the procedure:

1. Turn off all disk drives.
2. Turn on the disk drive whose device number you want to change.
3. Type and enter the following commands:

CLOSE 15: OPEN $15,8,15$
PRINT\#15,"M-W",CHR\$(119)CHR\$(0)CHR\$(2)CHR\$ $(n+32)$ CHR $\$(n+64)$
CLOSE 15
Change the n in the PRINT \#15 command above to the device number you want to assign to the disk drive. It might be best to limit the device numbers to the range between 9 and 14 .

Now you can turn on the other drive(s), and start processing.

Note the syntax of the PRINT\#15,"M-"... command. Contrary to the instructions in the 1541 user's manual, do not include the colon after the memory-write ($M-W$) command. If the colon is included, the device number change will not be successful.

The 1541 demo disk that was included with your drive also contains a program to change device numbers. LOAD the program DISK ADDR CHANGE then RUN. The user prompts will tell you what to do.

VIC Animation

I am 11 years old and I own a VIC-20. My friend owns a Commodore 64. We both make graphics on them. He has the advantage of sprites, but I have figured out a way for the VIC-20 to have a form of sprites. The VIC-20's graphics are made from top to bottom, which allows vertical sprites. Here's a demonstration program.

Bryan D. Stanton

```
5 DIM A(8):K=7167
1\varnothing PRINT"{CLR}"
15 POKE36869,255
2Ø FORM=7168TO7311:POKEM, Ø:NEXTM
3\varnothing FORX=1TO18:PRINTTAB(9);CHR$(63+X):NEXT
    X
40 FORN=1TO8:READA(N):POKEK+N,A (N):NEXTN
50 FORR=1TO137
55 FORL=1TO8:POKEK+L,A (L) :NEXTL:POKEK+1, Ø
    : K=K+1
6 0 ~ N E X T R ~
65 PRINT"{CLR}":POKE36869,240:END
70 DATA 60,24,24,24,255,126,24,24
```


Joystick To Keyboard Control On The TI

Many of your TI-99/4A games require a joystick. Unfortunately, I don't own one. Could you provide a routine that would enable me to convert these programs to keyboard control?

Mike Burgin
Several approaches can be taken to convert a program from joystick to keyboard control on the TI. Probably the simplest approach, in console BASIC, is to GOSUB to a keyboard subroutine whenever the JOYST subprogram is CALLed.

You should locate this keyboard subroutine at the beginning of the program, to speed execution. Let's put such a subroutine at line 10. The entire routine will occupy four lines beginning at line 10, so RESequence your program to begin at line 50 .

Next, find where the subprogram JOYST is CALLed within the program. The general form for this statement is CALL JOYST ($\mathrm{n}, \mathrm{X}, \mathrm{Y}$). Here, n refers to the joystick number (either 1 or 2) while X and Y are values returned based on the joystick position.
X and Y may be represented by any legitimate numerical variable name. Note the variable names used for X and Y in the CALL JOYST statement and then replace this statement with GOSUB 10.

Then, type in the following lines:

```
GOTO 5\emptyset
1\varnothing CALL KEY(\emptyset,K,SS)
2\emptyset X=((K=67)+(K=68)+(K=82))*-4+((K=83)+(K
    =87)+(K=9\emptyset))*4
3\emptyset Y=( (K=69) +(K=82) +(K=87))*-4+((K=67) +(K
    =88)+(K=90))*4
4ø RETURN
```

Now, substitute the variable names from the CALL JOYST statement into the above subroutine for X and Y. Also, if K and SS are used in the main program, you may need to name them differently here.

Just as with the CALL JOYST statement, X and Y will be returned as $-4,0$, or +4 in lines 20 and 30 . The standard arrow keys (E, S, D, and X) are tested for in this routine along with W, R, Z, and C for diagonal movement.

Providing a routine for keyboard control in Extended BASIC is even easier. Since we can write our own subprogram (using SUB), we no longer need worry about the variable names for X and Y in the main program. Variables used in a subprogram are local to that subprogram.

Our subprogram, which we'll call JOY, must be placed at the end of the program. Assuming there's room above line 999, type in the following:

```
1øøø SUB \(\operatorname{JOY}(\mathrm{Z}, \mathrm{X}, \mathrm{Y})\)
\(1 \varnothing 20 \mathrm{X}=((\mathrm{K}=67)+(\mathrm{K}=68)+(\mathrm{K}=82)) *-4+((\mathrm{K}=83)+\)
    \((K=87)+(K=9 \emptyset)) * 4\)
1 Ø3 \(\quad \mathrm{Y}=((\mathrm{K}=69)+(\mathrm{K}=82)+(\mathrm{K}=87)) *-4+((\mathrm{K}=67)+\)
    \((K=88)+(K=9 \varnothing)) * 4\)
\(1 \varnothing 40\) SUBEND
```


Compumate 2100 from SWINTEC

IT'LL INTERFACE WITH YOUR COMPUTER AND YOUR BUDGET

SWINTEC'S Compumate 2100 letter-quality copy printer has built-in parallel and serial interfaces that make it compatible with your computer . . . no matter whose computer you use. What's more, its very modest price tag of $\$ 649$ is no more than you'd pay for an inexpensive dot matrix printer.
It adds instant letter-quality word processing to your computer capabilities. It handles correspondence . . . prints out charts and financial projections . . in fact, gives you a sharp, clear hard copy of anything in the computer.
displays tell you when your Compumate is at the ready. The Compumate 2100 requires no special training to operate. It has its own simple self-testing procedures and is backed by the renowned SWINTEC network of dealer service professionals.
Why pay more for a printer and get much less? Join the switch to SWINTEC. At your dealer's now, or return the coupon.
Dealers, too, are invited to contact us about carrying the Compumate and the full SWINTEC line of quality office equipment including electronic
\square Send me more information about the Compumate 2100
\square Have a dealer contact me for a demonstration. \square Contact me about becoming a SWINTEC dealer.

NAME

COMPANYIDEALERSHIP

ADDRESS
\qquad
CITY
STATE
ZIP

TELEPHONE
typewriters and calculators.

CORPORATION

23 Poplar Street
East Rutherford, New Jersey 201/935-0115 Outside New Jersey call toll-free 800/225-0867

Next, in the main program, change CALL JOYST($\mathrm{n}, \mathrm{X}, \mathrm{Y}$) to CALL JOY($\mathrm{n}, \mathrm{X}, Y$) so that our keyboard subprogram will be CALLed rather than the system joystick subprogram (n is 1 or 2).

Last, for either console or Extended BASIC, check to see if the fire button is used. You should find a statement of the form CALL KEY(n,K,S) in the program (n is 1 or 2). Shortly thereafter in the program, a check for the value of K will be made. If K is equal to 18 , then the fire button has been pressed.

With keyboard control, we can use the space bar rather than the fire button. Change n (which is 1 or 2) to 0 in the appropriate $\operatorname{CALL} \operatorname{KEY}(n, K, S)$ statement. Also, change 18 to 32 in the subsequent check for the value of K.

Hex-To-Decimal Conversions

As a faithful reader of your magazine, I'd like to say that I'm surprised at how many computer hobbyists still have not found a simple decimal-to-hexadecimal conversion program. And I haven't noticed one in any issue of your magazine, so I've written this short BASIC program to do the conversions. It will work on most computers with little or no modification.

Frank Sgabellone
$1 \emptyset$ A\$="Ø123456789ABCDEF": INPUT"DEC/HEX"; A : $\mathrm{B}=1: \mathrm{C}=9: \mathrm{D}=16 \uparrow \mathrm{C}:$ PRINTA; " $=\$ " ;: \mathrm{A}=\mathrm{A}+1$
:rem 107
$2 \varnothing$ IFA-D> ØTHENA=A-D:B=B+1:GOTO2ø : rem 156
$3 \emptyset$ PRINTMID $(A \$, B, 1) ;: B=1: C=C-1: D=16 \uparrow C: I F$ C>-1THEN2ø
: rem 235
$4 \varnothing$ PRINT"\{5 SPACES\}":GOTOIø : rem 9

Hexadecimal numbers are widely used in machine language since they are more convenient for that kind of programming than the normal decimal numbers.

Compilers For The 64

I would appreciate some clarification on compilers. I have seen advertisements for several compilers (DTL-BASIC, and Metacompiler for Forth) and would like to know if they actually produce ML code that will run on any 64.

In other words, can I write a program in BASIC or Forth, run it through the compiler, and have ML code that will run on another 64 that doesn't have access to the compiler?

Paul Filiant
There are two types of compilers: those that produce native code (machine language), and those that generate pseudocode (P-code). P-code compilers translate the source program into another, smaller, faster language. This pseudocode must still be interpreted, like BASIC, but it's interpreted much more quickly. Also, P-code interpreters can run the same P-code program
on many machines, whatever the microprocessor used. But to run a P-code compiled program, you must have a copy of the P-code interpreter.

Other compilers generate true machine language. This has the advantage of speed, if not portability. The object code produced by the compiler needs a set of general-purpose subroutines. Otherwise, the compilation of PRINT would expand into a large chunk of machine language each time it is used. Instead, it is more memory-efficient to compile PRINT into a subroutine call to the general PRINT routine. The set of subroutines required is called the runtime package, and is included in the compiled program.

A compiler generally produces a complete program that will run on any machine, without the compiler itself. However, we now run into the problem of copyright. You have written and therefore own the rights to the original, uncompiled program, but who owns the compiled program? You might think you retain the copyright, since compiling is something like translating a book into a different language.

However, you don't own the runtime package. Some companies require you to pay a royalty for selling the compiled program. Other companies require a special security key to run the compiled program. (A security key prevents a program from running without it. It is usually a ROM chip or some device that plugs into a joystick or cassette port.) This is like a royalty; you must buy security keys for every copy of the compiled program you distribute. Still other companies give you the freedom to distribute your compiled code, as long as you include a notice specifying that it was compiled with their product. Be sure you understand what copyright rules are enforced by the compiler company. If in doubt, write them.

Reading The Atari 800 PIA Registers

I am 16 years old and own an Atari 800. Currently, I am trying to use the joystick ports for certain I/O applications. So far, the only problem I've encountered is speed. The registers that store input information from the joyports are updated only every sixtieth of a second. This is too slow for me. Is there any way to read the joystick ports at a faster rate?

Christopher Terpin

Instead of using the shadow locations for the joysticks, you can read the joystick ports directly from the data direction registers in the 6520 PIA chip. These are truly general-purpose input/output ports, with one byte used for two joysticks. Each bit can be programmed independently for input and output. Complete information on this can be found in the Atari Hardware Reference Manual. Some information is also found in Mapping the Atari, available from COMPUTE! Books. In the meantime, examine the information found at \$D300.

Get the jump on the weatherman by accurately forecasting the local weather yourself!

The beautiful princess is held captive by deadly dragons. Only a knight in shining armor can save her now!

A time-saving organizer for coupons, receipts and more.

A scientifically proven way to develop an awesome memory.

Cut your energy costs by monitoring your phone, electric and gas bills.

School-age and pre-school children are rewarded for right answers, corrected on their wrong ones.

You are trapped in a fivestory, 125 -room structure made entirely of ice. Find the exit before you freeze!

Computerize car maintenance to improve auto performance, economy and resale value.

A real brainflexer. Deflect random balls into targets on a constantly changing playfield.

Take control of your personal finances in less than one hour a month.

Create multi-colored bar graphs with a surprisingly small amount of memory.

A fun way to dramatically increase typing speed and accuracy.

Get up to 30 new programs and games for less than 15 cents each every month in COMPUTE!

Every month, COMPUTE! readers enjoy up to 30 brand new, ready-to-run computer programs, even arcade quality games.

And when you subscribe to COMPUTE! at up to 40% off the newsstand price, you'll get them all for less than 15 cents each!

You'll find programs to help you conserve time, energy and money. Programs like Cash Flow Manager. Retirement Planner. Coupon Filer. Dynamic Bookkeeping.

You'll enjoy games like Air Defense, Boggler, Slalom and High Speed Mazer.

Your children will find learning fast and fun with First Math, Guess That Animal and Mystery Spell.

Looking for a challenge? You can write your own games. Customize BASIC programs. Even make beautiful computer music and pictures.

It's all in COMPUTE! All ready to type in and run on your Atari, Apple, Commodore, PET/CBM, TI 99/4A, Radio Shack Color Computer, IBM PC or IBM PCjr.

What's more, you get information-packed articles, product reviews, ideas and advice that add power and excitement to all your home computing.

And when it's time to shop for peripherals or hardware, check COMPUTE! first. Our product evaluations can save you money and costly mistakes. We'll even help you decide what to buy: Dot-matrix or daisy-wheel printer? Tape storage or disk drive? What about modems? Memory expansion kits? What's new in joysticks, paddles and track balls?

SUBSCRIBE
 NOW AND SAVE UP TO

 40\%ON COMPUTE!Yes! Start my subscription to COMPUTE! for:1 year $\$ 24-32 \%$ off! 2 years $\$ 45-36 \%$ off! 3 years $\$ 65-40 \%$ off!
\square Payment enclosed $\quad \square$ Billme
\qquad Relupon or postpaid card Name
Address
City

"Filer" Modification

I have really enjoyed using the "Filer" program which appeared in October 1983 COMPUTE! "Beginner's Page." However, I would like to modify it to store and search any number of items (defined by variable T in line 1) without having to update T each time another item is added. Can you help me with this?

Richard Hamilton
You can allow for a varying number of items in your file by making just a few modifications to this program. First, delete line 1. Then, adjust the DIMension statement in line 3 to some maximum number of entries-say 50. Next, add the following lines:

```
1\varnothing I=I+l:READ AS (I),B$ (I),C$ (I)
12 IF AS(I)<>"END" THEN 1\varnothing
13 T=I-1
522 DATA END,\varnothing,\varnothing
```

In line 10, the variable I is the number of the item being READ. Line 12 checks for the end-of-data entry in line 522. If the end-of-data flag is not observed in line 12, the counter I is incremented, and another item (title, date, and author as $A \$(I), B \(I), and $C \$(I)$) is READ. Otherwise, no more DATA is READ and T, representing the actual number of items, will be set in line 13.

What Is A Scratch Disk?

I have a 1541 disk drive, and have a question about the performance test program included on the TEST/DEMO disk that comes with the drive.

When you run the program it instructs you to insert a scratch disk. What is a scratch disk? Is it the TEST/DEMO disk, and can I damage the TEST/DEMO disk if the program continues with it in the drive?

Harry Metz
Yes, the programs on the disk can be damaged. If the write-protect notch is not covered and you continue running the program with the TEST/DEMO disk in the drive, all of the programs could be wiped out.

In computer terminology, scratched is defined as meaning empty or available for use. A scratch disk is one that has no useful programs on it, and can be used to SAVE files. A scratch tape is the same. It's like a "scratch pad."

When the performance test prompts you for a scratch disk, take out the TEST/DEMO disk, and place a blank disk into the drive. Do not use a disk which has programs on it that you desire to keep.

Changing The Atari 800 Cursor

I am working on a program for my Atari 800. I would like to know how to change the cursor
from the ordinary box shape to a line. I saw this done in an adventure game and I thought it would be something nice to use in my programs.

John Runions
You will need to write your own input routine which accepts keys from the keyboard, puts them into a string, and permits correction. Then, the cursor you use is up to you. Disable the system cursor with POKE 752,1.

You can display a graphics character on the line below the character it is highlighting. You could use a redefined character set, with patterns for letters with the cursor included (you would then alternate between the normal character and the underlined character). You could also use a player or a missile as a cursor (as done in "Scriptor," April 1983). There are so many ways to display graphics on the Atari that these suggestions barely scratch the surface of the possibilities.

Memory Management In IBM, Atari, And Macintosh

Methods of RAM management are among the most important aspects of computer operation, but I can find practically no information on this. How does one computer compare with another in memory management? Why is it that even in the IBM 16-bit computer, BASIC RAM is limited to 60864 bytes with 256 K memory installed? How fast would IBM load a program? I am told that IBM drives use 512-byte sectors, 9 per track. Does this mean a fourfold increase in speed (from Atari's 128 bytes per sector)? What about the new Apple Macintosh? More than anything else, the speed with which swaps in memory are made determines the horsepower of a computer.

Orville E. Bean

The factors which determine how effectively a computer can manage memory are the amount of memory the central processing (CPU) chip can address directly, and the number of bits the CPU can transfer to or from memory at one time. To use your phrase, a 16-bit machine has more horsepower, since it can grab 16 bits at a time from memory, instead of 8 bits. Most home computer CPUs, like the 6502 chip used in the Apple, Atari, and Commodore, can directly address 64 K bytes and transfer 8 bits at a time. The 8088 CPU in the IBM PC anú PCjr can directly address 1024 K bytes (or one megabyte). However, it organizes this memory into 16 blocks (called segments) of 64 K each. IBM's Microsoft BASIC was written to operate within one segment, which is why only 60 K is available for programming after the computer takes away what it needs for its own operations. (There is at least one third-party BASIC for the PC that supports all available memory.) Although the PC and PCjr are usually called 16-bit computers, their CPUs can actually transfer only 8 bits at a time. The CPU in the new Macintosh can directly address 16

9 to 5 it's business... after 5 it's...

Mail Controller

No matter what time of day it is, MAIL CONTROLLER is always there to keep me organized. Whether for my business life or social life, it's my choice for list information management.
MAIL CONTROLLER is a mini-database that can store over 2,000 individual records per disk, each with up to 7 different fields. And, one of the most useful features of MAIL CONTROLLER is the self-design field capability allowing me to specify the type of data to be stored. So not only can I keep a listing of mailing addresses, but of phone numbers and anything else that needs to be filed in a concise and comprehensive manner.

MAIL CONTROLLER also enables the exact information I need to be called up in seconds by specifying any or all fields. The "wild-card" search technique adds even greater assistance. And, of course, MAIL CONTROLLER is printer compatible with instant printouts of both lists and mailing labels.
This list handler provides many advanced capabilities, yet, allows incredible ease of operation. With its step-by-step documentation and instructional screen prompts, MAIL CONTROLLER is a cinch to learn and use ... any time of day! Commodore 64 (Disk).

megabytes (16384 K) and can transfer data to or from memory 16 bits at a time.

As to disk access, the most important limitation to speed is in the disk interface. Even if you had a hard disk - and they're extremely fast-you would still be limited by how quickly your computer and disk drive could communicate. Many home computers use serial interfaces, both for economy and to comply with FCC regulations. (A serial interface transfers one bit at a time, using few wires, whereas a parallel interface transfers a whole byte (8 bits) at a time, over many wires. Too many wires amplify the tendency of a cable to act as a transmitting antenna of radio-frequency interference.)

The IBM computer uses a parallel, high-speed, direct-memory access (DMA) interface. The computer hardware can directly interact with the disk controller. Other computers have to treat the disk drive as a remote peripheral, communicating and buffering data. Again, the interface limits the speed, but disk formats vary in efficiency. An IBM drive can read one 512-byte sector without moving the head, whereas you have to locate four 128-byte sectors to read as much data on an Atari disk drive. Since the Macintosh uses a small 3^{114}-inch disk, with data tightly packed $(400 \mathrm{~K})$, less movement of the head is needed to find information, so these new drives are usually faster.

Aułomatic SYS For Commodore ML Programs

I really enjoy your programs that are written in machine language. I am accumulating quite a collection of ML programs. The problem I'm having is trying to remember the SYS (beginning) addresses to start them. Is there a way to include a line like 10 SYS 49152 in the program so that all one would have to do is type and enter RUN to start the program?

Kris Wechter
Yes, it is possible. As a matter of fact, many commercial games do just that.

The BASIC program 10 SYS 2064 uses 14 bytes. You can start writing your machine language program past the end of this short BASIC program (memory location $2064=\$ 0810$, on the Commodore 64 , for example).

After it's completed, SAVE it (with a machine language monitor) from address $\$ 0801$ to the end of your ML program. This technique enables you to LOAD it like a BASIC program and enter RUN to start it.

When you use this method, you can LOAD the program with either the LOAD "filename", number or LOAD "filename", number, 1 format (number = device number, 1 for tape or 8 for disk).

Another nice trick is to SAVE the programs with the SYS addresses in the filename. For example, if you have a game called Saucers that starts at address 49152,

SAVE it to tape or disk with a filename of Saucers 49152. That way you'll never forget.

If you presently have programs on tape or disk, and you can't remember their starting addresses, RUN one of these BASIC programs. It will tell you what the starting address is.

Starting Address For Disk Programs

```
1\varnothing INPUT "{CLR}ENTER PROGRAM NAME";PN$
2\varnothing OPEN8,8,8,PN$+",P,R"
3\varnothing GET#8,AS,B$
4\emptyset PRINT"START ADDRESS OF {RVS}";PN$;"
    {OFF} IS:"ASC(AS+CHRS(\varnothing))+256*ASC(B$+C
    HR$(|))
50 CLOSE8:END
```


Starting Address For Tape Programs

10 INPUT"\{CLR\}ENTER PROGRAM NAME"; PN\$
$2 \varnothing$ OPEN $1,1, \varnothing$, PNS
3ø PRINT"START ADDRESS OF \{RVS\}";PN\$;"
\{OFF\} IS: "PEEK (829) +256*PEEK (83ø)
40 CLOSE1:END

Relocating Commodore Programs

If I type in a VIC-20 program from your magazine on my 64 and save it on tape or disk, will the program run on my friend's VIC-20?

Ann Harrison
Yes, it will. Both the VIC-20 and the 64 have the ability to automatically relocate BASIC programs. There is only one restriction. You must LOAD them using this syntax:

LOAD "filename", number
where number is the device number (1 for tape, 8 for disk). It will not work if you load with the syntax:

LOAD "filename",number,1
The extra, 1 after the device number tells the computer to load the program back into the exact area of memory from where it was originally SAVEd. This may cause your programs to run abnormally because the beginning of BASIC memory is different for the VIC and 64.

Atari 800 Keyboard Failure

I own an Atari 800 computer with 48K. Five of my console keys (these are 6, 7, T, Y, and N) no longer call a character to the screen when they are pressed. I have tried turning off the computer and then turning it back on, but this does not solve my problem. The 90 -day warranty by Atari has expired, so I have to solve the problem myself.

Is this problem simple enough to be solved at home? If not, then where should I take my machine and approximately how much would it cost to get it fixed?

Luis A. Betances

Books that teach you to program While turning work into play. Books of music, math, mysteries, Mazes... and more. Books that let your originality shine, And explore by computer Your creative mind.

Creative Pastimes: Books as unique as you are.

Look for 9 new Creative Pastimes Books in your favorite bookstore, computer store or supermarket. Available now for only $\$ 6.95$. Compatible with the most popular home computers. Suitable for all ages. For more information, call us toll free: (800) 336-0338. Or write: Reston Computer Group, A Prentice-Hall Company, 11480 Sunset Hills Road, Reston, Virginia 22090.

Of course, we cannot diagnose your problem sight unseen, but we do have a few suggestions. First, you can easily pry off the keycaps with a paper clip. (Be careful: The spring may jump out.) Check to see that the contacts are clean, with no particles preventing closure of the two contacts.

If that doesn't help, and if you don't mind opening your computer, the keyboard is easily accessible. (Be sure the computer isn't plugged into the wall socket.) Check the keyboard cable to see that it is not twisted, frayed, or loose. If this isn't the cure, you'll have to return your computer to an authorized Atari Service Center. Call Atari Customer Service for the name of the dealer nearest you, toll-free: (800) 538-8543.

Expanding Atari 800 To $\mathbf{6 4 K}$

I have an Atari 800 which I recently expanded to 48 K by adding an Intec 32 K board. This addition leaves an open slot in my memory compartment. Can I now just add a 16 K board in this open slot to bring my machine up to 64 K ? Or do I need some additional hardware or software to make this upgrade possible?

Neil G. Wyatt II

It's not that easy. The 6502 in your computer can access 64 K at a time, but that includes both ROM and RAM. Your machine needs 16 K of space for ROM and other system memory, leaving you with a maximum of 48 K . Adding another 16 K would only hopelessly confuse your machine. There are companies which manufacture 64 K RAM boards. Some of these let you rotate segments of your memory with a large bank of extra memory. Others let you temporarily make the ROMs disappear, revealing underlying RAM. This is the technique used in the new Atari XL computers, and on the Commodore 64. At least one company lets you plug your existing RAM chips into a bare board to save you money in the upgrade.

No Easy Conversion From VIC To 64

Being the previous owner of a VIC-20, I have several VIC programs that I would like to use with my new 64. Is there a conversion factor for memory locations available?

Bill Powell
Translating programs from the VIC to the 64 is not always simple. There are many significant differences between the two computers. For example, the SID (Sound Interface Device) chip in the 64 is much more complex than the VIC chip (Video Interface Chip) in the VIC, so sound routines have to be rewritten.

Color and screen memory in the 64 are both 1024 bytes long, while in the VIC they are 512 bytes. Also, the screen and color memory locations in the 64 and VIC are different. This means that all POKEs and

PEEKs to screen and color memory have to be changed. There is also the problem of "shifted" ROM. BASIC is stored in permanent memory beginning at address $\$ A 000$ in the 64, while BASIC starts at address \$C000 in the VIC. For example, the print fixed-point value routine in BASIC ROM is at $\$$ BDCD in the 64 , and \$DDCD in the VIC.

The way to convert your programs is to go through them one line at a time, and rewrite where necessary.

COMPUTE! welcomes questions, comments, or solutions to issues raised in this column. Write to: Readers' Feedback, COMPUTE! Magazine, P.O. Box 5406, Greensboro, NC 27403. COMPUTE! reserves the right to edit or abridge published letters.

$$
\begin{aligned}
& \text { To receive } \\
& \text { additional } \\
& \text { information } \\
& \text { from advertisers } \\
& \text { in this issue, } \\
& \text { use the handy } \\
& \text { reader service cards } \\
& \text { in the back } \\
& \text { of the magazine. }
\end{aligned}
$$

COMPUTE!
TOLL FREE
Subscription
Order Line
800-334-0868
In NC 949-275-9809

The END of DINKETY-DINK-DINK.

Athe first computer music program that actually sounds like music.

LET'S FACE IT. Up till now, music programs for your home computer have all sounded, well, pretty lame. There were the ones that resembled little electronic music boxes, remember? And then there were those that sounded like so many burps.

Enter Music Construction Set." It's the first music program that really makes use of the power of that machine you've got. If you're a serious student, this means you'll be able to work with an intricacy and range of sound quality you've never heard before on a computer. And if you know nothing about music, you'll find something even more important. Namely, that this thing is simple enough to be a lot of fun.

Take a good look at this screen because it, you, and a joystick are the whole story here.

That's you at the right end of the staff of notes - the little hand. Move the joystick, and you move the hand. Use it to carry notes up to the staff. Lay in rests, signatures, clefs, then point

to the little piano in the lower right and listen, because you'll hear the whole thing played back.

Move those little scales in the middle up and down to vary the music's speed, sound quality, and volume. Use

the scissors to cut out whole measures, then use the glue pot to paste them in somewhere else. Got a printer? Great. Print the score out and show it off to your friends.

But what if you're not up to writing your own stuff yet? No problem.
There are twelve pieces of music already in here, from rock'n roll to baroque. They're fun to listen to, and even more fun to change. (Apologies to Mozart.)

The point is, the possibilities are endless. But if you're still skeptical, visit your nearest Electronic Arts dealer and do the one thing guaranteed to send you home with a Music Construction Set in tow.

Boot one up. Point to the piano. And listen.

> NOW AVAILABLE FOR ATARI HOME COMPUTERS AND THE COMMODORE-64

[^0]
Evolutionary To The Core: The Apple llc Heads For Home

Selby Bateman, Features Editor

Abstract

Apple Computer has made 1984 its year of surprises, first with the "revolutionary" Macintosh and now with the "evolutionary" Apple IIc. The new 7^{112}-pound portable has already achieved critical acclaim and impressive early sales. Is it the computer for you?

"The IIc is not a home computer," says Apple President John Sculley. "It's for the serious user in the home."

Sculley isn't just playing word games with that comment. It is as succinct a statement of Apple's plans for the IIc as you'll find. And it addresses the biggest challenge and the greatest opportunity for the Cupertino, California, company: To convince a huge untapped home market that the IIc is not a lowend computer. And at the same time, Apple is targeting owners of low-end microcomputers who want more power, more software, and more portability.

\$15 Million In Advertising

By now you may have heard or read something about the IIc's power (128K RAM), price (\$1295), portability (notebook size, $7^{1 / 2}$ pounds, built-in lowprofile $5^{1 / 4}$-inch disk drive), and compatibility (it runs thousands of Apple II software programs).
And you've probably seen some of the $\$ 15$ million in advertising that Apple has spent these past few months.

The $\$ 1295$ Apple IIc, with a half-height $5^{1} / 4$-inch built-in disk drive on the right side, 128 K RAM, and a 63 -key keyboard, is a smaller, enhanced Apple IIe. (All photos courtesy of Apple Computer, Inc.)

Still, for most people, the important question is: What is Apple offering you in the IIc that you can't get with the IBM, Commodore, Atari, Radio Shack, and other Apple computers?

If market researchers are correct, the number of personal computers in the home will go up from eight million units now to about 50 million by 1988 . This would put at least one computer in two out of every three U.S. households in the next four years.

Two Steves In A Garage

To see how Apple plans to exploit that potential market with its new IIc, you have to go back to 1977. Two young men, Steve Jobs and Steve Wozniak,
emerged from their garage workshop with the Apple II, the first fully assembled personal computer. It created a sensation, and the two Steves haven't looked back since. The Apple II begat the Apple II + , which begat the Apple III-a business machine. Then, in 1983, the company introduced the Apple IIe (the e stands for enhanced), a 64 K RAM personal computer which continued the evolution of the Apple II line. Almost two million computers in the Apple II family have been sold.

At that point the problems started. Or as John Sculley puts it: "The Apple IIe was a very important technical improvement on the Apple II + , but the real difference in 1983 was that

THERES A COMPUTER BORN EVERY MINUTE... GIVE IT A HOME.

For $\$ 89.95$ with the CS-1632 you can house your computer. peripherals, and accessories without spending a fortune.

The CS-1632 computer storage cabinets compact yet functional design fits almost anywhere while housing your computer monitor, joysticks, software, books and peripherals all for only $\$ 89.95$.
The slide out shelf puts the computer at the right height and position for easy comfortable operation.
The fold up locking door keeps unwanted fingers off the key board when not in use. To store joysticks just turn them upside down and slide them into the inverted storage rack. Twist tabs on the back of center panel allow for neat concealed grouping of wires, while power packs rest hidden behind center panel on shelf.
The slide out software tray has room for 14 cartridges or cassettes and up to 30 diskettes Most brands of software will fit between the adjustable partitions with a convenient hook for the spare key at rear.
Stand fits Atari 400 \& 800 , Commodore 64 \& VIC 20 , Ti 99/4A and TRS-80.
Cabinet dimensions overall $36^{\prime \prime}$ high $\times 33-7 / 8^{\prime \prime}$ wide $\times 16^{\prime \prime}$ deep.

To order CS-1632 send $\$ 89.95$ to:

For those with a large computer family the CS -2748 gives you all the room you need for your computer, monitor, printer, peripherals, software, etc. at a price that's hard to believe: $\mathbf{\$ 2 9 9 . 9 5}$.

To order CS -2748 send $\$ 299.95$ to:

P.O. Box 446

West Lynn, OR 97068

For Fast Phone Orders Call Toll Free 1-800-547-3100 Inside Oregon Call (503) 635-6667

Name \qquad
Address \qquad
City \qquad CS-1632

State \qquad CS-2748
Quantity
\square Golden Oak Finish
\square Natural wainut finishMy personal check, cashiers check or money order is enclosed. Exp. Date \qquadBill my VISA \# \qquad Exp. Date \qquad

\squarePlease include freight charge on my VISA or MasterCard.
Card Holders Signature \qquad
Immediate shipment if in stock If not, allow 3-4 weeks for delivery. If personal check is sent allow additional 2 weeks. CS 1632 ships UPS freight collect from Oregon. CS 2748 ships by truck freight collect from Oregon. Prices subject to change. Shipment subject to availability.

Both the CS-1632 and CS-2748 ship unassembled in two cartons. Assembly requires oniy a screwdriver. hammer, and a few minutes of your time.
hammer, and a few munutes of your time.
Choice in simulated woodgrain of warm golden oak or rich natural walnut finish

The two slide-out shelves put the keyboard at the proper operating height while allowing easy access to the disk drives. The bronze tempered glass door protecting the keyboard and disk drives simply lifts up and slides back out of the way during use.
Twist tabs on the back of the center panel allow for neat concealed grouping of wires while a convenient storage sheif for books or other items lies below. The printer sits behind a fold down door that provides a work surface for papers or books while using the keyboard. The lift up top allows easy access to the top and rear of the printer. A slot in the printer shelf allows for center as well as rear feed printers.
Behind the lower door are a top shelf for paper, feeding the printer, and a bottom shelf to receive printer copy as well as additional storage. Stand fits same computers as the CS-1632 as well as the Apple I and II, IBM-PC. Franklin and many others.
The cabinet dimensions overall: $39-1 / 2^{\prime \prime}$ high $\times 49^{\prime \prime}$ wide $\times 27$ " deep.
Keyboard shelf $20^{\prime \prime}$ deep $\times 26^{\prime \prime}$ wide. Disk drive shelf $15-34^{\prime \prime}$ deep $\times 26^{\prime \prime}$ wide. Top shelf for monitor $17^{\prime \prime}$ deep x $27^{\prime \prime}$ wide. Printer shelf $22^{\prime \prime}$ deep $\times 19^{\prime \prime}$ wide.

The IIc is about the size of a notebook, and can be configured with optional 9-inch monochromatic monitor (as shown here) and with a variety of compatible peripherals.
for the first time, the Apple II faced real competition.'

Apple found itself sandwiched between the low price of the Commodore 64 (and several other low-end computers) and the IBM PC, which quickly established itself as a high-end standard.
"While IIe sales continued to grow," Sculley said, "Apple was quickly becoming positioned as a single-product company with declining importance in business and in the home. That's a very dangerous situation."

The First 100 Days Of The Macintosh

But what a difference a year makes. With the introduction of the Macintosh in January of this year, Apple offered a revolutionary personal computer aimed primarily at the business and college markets. It was designed to be the least intimidat-
ing and easiest to use computer on the market. The $\$ 2495128 \mathrm{~K}$ computer, which has no built-in programming language and features a mouse input device, sold more than 70,000 units in its first 100 days.

By contrast, the original Apple II took $2^{1 / 2}$ years to sell 50,000 units, and the IBM PC took over $71 / 2$ months to sell the same number.

Then, this April, Apple introduced the IIc at a day-long exposition in San Francisco. The event featured a high-tech sound and light show, demonstrations of the new product, presentations of compatible software from a variety of companies, and an unplanned earthquake that rocked the city. Within several hours that day, Apple took more than 50,000 IIc orders from more than two thousand retail dealers. Apple had come some distance from two young men in a garage.

Just Another Appliance

Amidst the carnival hoopla of the IIc's debut, Apple officials restated their argument that the new machine is an evolutionary twist in the Apple II line and that it addresses a new segment of the buying public with a different concept of what a computer should be.
"We should not be judging how convenient the Apple IIc is versus other competitors," says Sculley, "but relative to other consumer appliances that are used by people who have never used any personal computers before. The IIc was designed from the start to demystify the intimidation that personal computers present to so many people." In other words, as with the Macintosh, Apple is trying to make the IIc as easy to use as a toaster, a television, or a stereo system. And the company is trying to do that in the same way that items such as cars,

WITH NIGHT MISSION

You deserve the best. You've earned it. Now reward yourself with a session of Night Mission PINBALL, the most realistic and challenging arcade simulation ever conceived! a Stunning graphics and dazzling
 sound effects put Night Mission PINBALL in a class by itself. Game features: multiball and multi-player capabilities, ten different professionally designed levels of play, and an editor that lets you create your own custom modes. a So take a break with Night Mission PINBALL from SubLOGIC. Winner of Electronic Games magazine's 1983 Arcade Award for Best Computer Audio/Visual Effects.

See your dealer . . .

or write or call for more information. For direct orders please add $\$ 1.50$ for shipping and specify UPS or first class mail delivery. Illinois residents add 5\% sales tax. American Express, Diner's Club, MasterCard, and Visa accepted.
cameras, and pocket calculators have evolved into mass market products.

Apple estimates that about two-thirds of IIc sales will be to the home market, with the rest going to schools and small businesses.

The Snow White Look

To underscore the novelty of the IIc, Apple has altered the physical appearance of the new machine and all of the optional peripherals that are made for it. The new look is called "Snow White," and it features an ivory color, rounded corners, and a sleek, narrow case with a finegrained texture. Frog Design, a West German firm which also designed the Sony Walkman, created the new casing for Apple. It marks the biggest exterior design change in the Apple II line, and will be the look of all future Apple products.

The computer, including the keyboard, internal circuit board, built-in disk drive, and rear panel peripheral ports, weighs only about $7 \frac{1}{2}$ pounds. A recessed handle mounted on the top rear of the computer swings out for carrying and also locks in place in order to position the machine at a correct typing angle. The body of the computer is only $21 / 2$ inches high, 12 inches wide, and $11 \frac{1}{2}$ inches long-little more than the size of a notebook.

To emphasize the IIc's simplicity, everything a user needs to get started comes in one box, except a display screen. The absence of a monitor with the new computer will allow consumers to choose between television, composite monitor, and RGB (red-green-blue) displays. And, by September, a new flat liquid crystal display will be available, says Steve Jobs, Apple's chairman of the board. It also keeps the initial price lower and allows dealers to sell the computer in a variety of configurations.

By September, Apple promises this flat LCD screen, which fits on top of the main IIc unit and has full 80-character by 24 -line display.

There aren't any ROM cartridge slots either. Jobs calls those cartridges clumsy, and prefers the cheaper, more effective, and more flexible floppy disks.

70 Fewer Chips

Internally, the IIc has a 65 C 02 central processing unit (CPU)an eight-bit microprocessorwhich Apple says is an enhanced version of the 6502B CPU used by the Apple IIe. Both of those chips are based on the original 6502 manufactured by MOS Technology. The C in 65 C 02 is taken from CMOS (Complimentary Metal-Oxide Semiconductor), which designates the production process of the chip. The new version reportedly has cooler operation and requires less power, allowing the IIc to use a battery pack that is to be available later.

The 65C02 chip also reportedly includes 27 new programming instructions. If programmers use these instructions in their IIc software packages, those programs will not work on earlier Apple II models with the original 6502 or 6502 B chip. Upward compatibility from the
earlier Apple II machines to the IIc is not a problem, however, Apple says.

There are only 40 chips within the IIc, quite a reduction from the 110 which are found in the IIe. Apple engineers combined the functions of some chips onto custom large-scale integrated chips to achieve this. They also combined functions: The mouse peripheral port on the rear of the unit, for example, can accept a mouse, joystick, or hand controllers. Although there are fewer chips, the machine has double the usable memory of the Apple IIe- 128 K , or the equivalent of about 50 doublespaced typed pages of work area. There is 16 K of ROM (Read Only Memory), containing among other things the standard Applesoft BASIC programming language.

Ultrahigh Resolution

There are three graphics modes available with the IIc. First, a low-resolution graphics mode of 40×48 pixels with 16 available colors and, second, a highresolution mode of 280×192 with 6 colors-both of which are comparable to the IIe's

OUSTROU

The peripheral ports on the rear of the main panel are virtually foolproof for installation, and feature icons above each socket to show the user the various uses.
graphics modes. The IIc also has an ultrahigh-resolution monochromatic mode of 560×192, which approaches but does not match the Macintosh's 512 x 342 pixel monochrome display. Apple says that in the future the ultrahigh-resolution mode will be able to support 16 -color graphics.

The IIc also has an internal speaker almost identical to that in the IIe. It allows five octaves of sound. The IIc has a volume control button on the side of the case, which the IIe does not. And there is a plug for headphones in the new machine, next to the volume control button.

The keyboard on the IIc represents a departure from the IIe, although the basic layout and size are virtually identical. There are 63 sculpted keys, but rather than the smooth up and down action of the IIe, the IIc's keys have a breakover effect-a definite toggle-that gives a tactile sense when a key has been hit as well as an audible click. The effect is not unlike the keyboard action on the IBM PC, although the breakover action on the IIc is not as pronounced.

Spillproof

Above the keyboard, starting on the left, are three partially recessed switches: a rectangular reset button, which on the IIe is to be found on the right side of the keyboard; a button that changes the video display from 40 to 80 columns (or vice versa) for text; and another button which will alter the keyboard from the standard QWERTY key configuration found on most typewriters to a DVORAK keyboard. The DVORAK keyboard, which has a faster and more logical key layout than QWERTY, is growing in popularity. Apple will also have replacement key caps for those who wish to install them in the DVORAK layout.

An Apple spokesperson says that six different keyboard prototypes were tested for the IIc, and that on the recommendations of touch typists who tested the various keyboards, the present style was adopted.

Another interesting keyboard feature is a layer of plastic beneath the keys, which will prevent any spilled liquids from penetrating into the computer itself. At typing angle, liquids will
drain toward air vents at the front of the machine. An Apple spokesperson called this the "drool" cover.

Foolproof Peripheral Ports

Built into the right side of the main unit is a low-profile $51 / 4$ inch disk drive, which has a 140 K capacity. A total of 137 K of that is available with ProDOS (a Disk Operating System) and with Pascal DOS. 124 K of RAM is available with DOS 3.3.

The system uses a 12 -volt detachable power supply, which will allow an unmodified IIc to run off a car's cigarette lighter, a battery pack, or international electrical outputs. This power supply, in the same Snow White style, is packaged in the IIc box along with the main unit, cables, RF modulator for TV hookup, and a disk-based owner's manual/computer literacy course aimed at the first-time user.

But one of the IIc's most attractive features for consumers new to computers could well be its back panel of peripheral ports. This also represents a major departure from the IIe. Instead of the add-on card slots

BROTHER HR15
Costs about the samebut it's slower, noisier, and needs its own brand of ribbon. To be fair, it's lighter.* (But JUKI eclipses the BROTHER totally!)

SILYER REED
EXP500
Okay, it's lighter-but it's more than a whole word slower per second, it's noisier, lacks a buffer memory, and prints only a $10^{\prime \prime}$-wide line.* (JUKI triumphs again!)
*Comparison based upon manufacturer's specifications rather than actual testing.

SILVER REED EXP550 You pay about $\$ 100$ more, and it's slower, noisier, has no buffer memory, and lacks the refinement of our linear stepper carriage motor. A little wider print line, yes. A bargain, no.* (JUKI by a mile.)

QUME LP20
Costs about $\$ 300$ more, needs its own brand of ribbon, and takes only a 96-character wheel. Is it worth it for just 2 more characters per second and a wee bit quieter machine?* (Sorry, QUME, JUKI gets the trophy.)

DIABL0 620
Costs about twice as much, weighs 19 lbs. more, and requires its own brand of ribbon. Pretty steep for a slightly quieter machine and 2 more characters per second.* (The winner: JUKI.)

- - I K듬 6100

CONSIDER THESE FEATURES: Compatible with most personal computers (IBM, Apple, Kaypro, etc.), prints graphics, 2 K buffer (expandable to 8 K), bidirectional tractor feed option, proportional spacing, lightweight, $11^{\prime \prime}$ print line, uses 100-character drop-in daisywheel and inexpensive, easy-to-find IBM Selectric $\mathrm{II}{ }^{\text {® }}$ ribbon! Interchangeable interface and easy-to-read manual. Feature for feature, dollar for dollar, JUKI-the best all-round letter-quality printer anywhere! THERE ARE LOTS OF DAISYWHEEE PRINTERS IN THE FIELD. PICK SMART. PICK JUKI 6100.

? \square°
JUKI INDUSTRIES OF AMERICA, INC.

ACORN DATA PRODUCTS 7042 S. Revere Pkwy. Ste 50 Englewood. CO 80112 (303) 799-8900 Serving: MT, WY, CO. UT, NM	BUTLER ASSOCIATES, INC. 82A Winchester St. Newton, MA 02161 (617) 964-5270 Serving: ME, NH, VT, MA, CT, RI	CM DISTRIBUTION 7023 Little River Tnpk. Annandale. VA 22003 (703) 750-3885 Serving: MD, DE, DC, VA	COMPUTER SERVICES INTL 560 Sylvan Ave. Englewood Cifts, NJ 07632 (201) 569-6300 Serving: METRO NY, E. PA, NJ		CYPRESS DISTRIBUTING CO. 1266 Lincoln Ave. . Ste 109 San Jose, CA 95125 (408) 297-9800 Serving: N. CA, NV, AZ		GENTRY ASSOCIATES INC. 7665 Currency Dt. Orlando, FL. 32809 (305) 859-7480 Serving: TN, NC, SC, MS, LA, AL, FL, GA		INFORMATION SYSTEMS INC. 2420 E. Oakton St., Unit K Arlington Heights, il 60005 (312) 228-5480 Serving: WI, IL, MN, IA, MO, NE, ND, SD, KS		MICRO SOURCE OF TEXAS INC. 670 International Pkwy Richardson, TX 75081 (214) $690-5111$ Serving: TX, OK, AR, LA	
OSSMANN COMPUTER TECHNOLOGIES 6666 Old Collamer Rd. East Syracuse. NY 13057 (315) 437-6666 Serving: UPSTATE NY	SOUTHERN MICRO DISTRIBUTORS 8708 Royal Lane Irving. TX 75063 (214) 258-6636 Serving: TX, OK, AR, LA	STAR-TRONIC DISTRIBUTIN 23976 Freeway Park Dr. Farmington Hills, M1 48024 (313) $477 \cdot 7586$ Serving: MI, IN, OH, KY, W, PA, WV		TECHNOLOGY M 2300 Valley View Dallas, TX 75234 (214) 243-7994 Serving: TX, OK. AR, LA	KETING CORP. ne, Ste 109	VITEK 930 G San M (619) Serving S. CA	Jwalk Ave. CA 92069 8305	WESTERN MIC TECHNOLOGY 10040 Bubb R Cupertino, CA (408) $725 \cdot 166$ Serving: N. CA, NV, AZ	RO ad 95104	MATIONAL HEADQUARTER JUKI INDUSTRIES OF AMERICA, INC. DA DIVISION 299 Market St. Saddie Brook, NJ 07662 (201) $363-3666$		WEST COAST JUKI INDUSTRIES OF AMERICA. INC CALIFORNIA DIVISION 3555 Lomita Blvd. Torrance, CA 90505 (213) $325-3093$

COMPUTEI Books

COMPUTEI's Reference Guide To Commodore 64 Graphics
A complete tutorial on Commodore 64 graphics. Noted Commodore author John Heilborn explains how to program sprites, multicolored screens, animation, custom characters, and more. Beginners will like the step-by-step instructions and clear example programs. Advanced programmers can build up their tool kit with the character editors, sprite editors, screen design program, and other useful utilities.
218 pages, paperback.
Spiral bound for easy access to programs.

$\$ 12.95$

ISBN 0-942386-29-9

VIC Games For Kids

Contains 30 games written just for kids (although adults will enjoy them too). This book is an inexpensive source of educational software for children. The games are designed to teach math, geography, history, and other topics. Children learn while they're having fun. They will return to these games again and again.

240 pages, paperback.
Spiral bound for easy access to programs.

$\$ 12.95$

ISBN 0-942386-35-3

COMPUTE!'s First Book Of Commodore 64

An excellent resource for users of the 64, with something for everyone: BASIC programming techniques, a memory map, a machine language monitor, and information about writing games and using peripherals. Many ready-to-type-in programs and games.

264 pages, paperback.
Spiral bound for easy access to programs.

$\$ 12.95$

ISBN 0-942386-20-5

COMPUTE!'s First Book Of
 Commodore 64 Games

Packed full of games: "'Snake Escape," "Oil Tycoon," "Laser Gunner, "Zuider Zee," and many more. Machine language games requiring fast hands and a good eye, as well as strategy games which will exercise your mind. Introductory chapters and annotated listings provide ideas and techniques for writing games. An excellent introduction for 64 owners who want to begin writing games. 217 pages, paperback. Spiral bound for easy access to programs.

$\$ 12.95$

ISBN 0-942386-34-5

COMPUTE!'s First

 Book Of TI GamesAlthough this book is packed with ready-to-typein games (29 in all), it is more than just a book of games. It is designed to teach game programming techniques. Introductory chapters explain the special features of the TI-99/4 and 99/4A, giving advice on coding techniques. Most games include an explanation of how the program works. Contains mazes,
chase games, old favorites, thinking games, creative challenges, and more.
211 pages, paperback.
Spiral bound for easy access to programs.
$\$ 12.95$
ISBN 0-942386-17-5

COMPUTEIS FIRST BOOK OF
COMMODORE

COMPUTEI's First Book Of 64 Sound And Graphics

Clear explanations of the 64's sound and graphics capabilities. Includes many tutorials and example programs: "MusicMaster," a complete music synthesizer: "High-Resolution Sketchpad," an all-machine-language program for making computer art; and "Ultrafont Character Editor," one of the best character editors available. The appendices feature useful reference charts and conversion tables.

275 pages, paperback.
Spiral bound for easy access to programs.

$\$ 12.95$

ISBN 0-942386-21-3

COMPUTE! Publications,Inc.abc

Post Office Box 5406, Greensboro, North Carolina 27403

The Apple IIc, with optional 9-inch monitor, Scribe thermal transfer printer, AppleMouse II, external disk drive, joystick, modem, and carrying case.
found on the back of the IIe, the new computer has a row of plug-in sockets which can simultaneously support a display screen, printer, modem, mouse pointer, joystick, and a second disk drive. And each socket is configured so that only the correct connector can be plugged into it, thus preventing a beginner from making a major error during setup. Each of the sockets, including two highspeed serial ports, is identified by a picture on the case.

Also, Apple computers have traditionally been hobbyists' and hackers' playgrounds, easily opened and modified. Not so with the IIc. The main unit is sealed, representing Apple's philosophy that this computer is for all of those who don't want to have to learn about expansion cards, complex interfaces, and the like.

Flat LCD Display

The IIc is expandable, with a variety of optional accessories. The Scribe printer (\$299), for example, is a 13 -pound thermal transfer printer that uses regular paper, prints text and graphics in six colors plus black, and has a low-resolution speed of 80 characters per second and a near-letter-quality speed of 50 characters per second.

Other accessories include an 11-pound Apple Monitor IIc (\$199) with a nine-inch green phosphor display (a handle is
also included for the monitor); the AppleMouse IIc (\$99), similar to the mouse used with the Macintosh and Lisa 2 computers (requires no add-on card); an external $51 / 4$-inch disk drive (\$329) with 140 K capacity; a IIc monitor stand (\$39); and a carrying case (\$39) with room for the power pack and the mouse.

By September, Apple promises to have a flat liquid crystal display (LCD) screen for the IIc that will fit onto the top of the machine and make the IIc even more portable. Priced at about $\$ 600$, the LCD screen will hold as much information as a regular monitor- 80 characters wide by 24 lines long. Prototypes of the new screen were being demonstrated at the introduction of the IIc in San Francisco. Although the screen image was inferior to the 9 -inch monitors in both luminance and ease of use, there's little doubt that the flat screen will be a popular option when available.

In addition, several Apple II-family peripherals will run on the IIc including the Imagewriter dot-matrix printer (\$595), both the 300 -baud (\$225) and 1200 -baud ($\$ 495$) modems, the Apple joystick (\$59.95), hand controllers (\$34.95), and color plotter (\$779).

Thousands Of Programs For The Home

If Apple considers its hardware improvements the key to break-
ing down buyer resistance among noncomputer users, it's counting on the thousands of compatible software programs available for the IIc to help bring the computer home.

According to Apple, more than 10,000 programs have been written for the Apple II over the past seven years and more than 90 percent of the programs still available will run on the IIc. That is a wealth of business, educational, home productivity, and entertainment software that not even IBM can come close to offering.

Any existing Apple II software that might not be compatible would result from a software manufacturer's use of a copy protection mechanism or reserved memory locations not recommended by Apple.

To drive home the point of software availability, Apple has been working with more than 100 software companies to make sure there are plenty of new programs designed to take advantage of the IIc's larger memory, ultrahigh resolution, and built-in mouse technology.

AppleWorks For The IIc

Apple also introduced four of its own programs for the IIc: AppleWorks, an integrated word processing, spreadsheet analysis, and data base management package; Apple Access II, telecommunications software; Apple Logo II, a graphics-oriented program-

Ken Uston doesn't think you can solve his computer puzzle, "PUZZLEPANIC." But if you can, you'll have a chance to be his guest, all expenses paid, for a weekend in Atlantic City. If you're over 21 years old, Ken will show you the ins and outs of blackjack at Resorts International's fabulous casino. If you're under 21 years of age, Ken will take you on in the hotel's tremendous and well-equipped arcade, challenging you to every game in the place. Either way you can't lose. Conquer "PUZZLEPANIC" and take on the world famous Ken Uston in the bargain, but hurry, contest ends August 31, 1984.

Here's what you have to do: Solve each puzzle, figure out which symbol will correctly take you to the next puzzle (over 40 puzzles in all) then, use these symbols to find the solution to the Grand Puzzle. Ken will pick a winner from a drawing of all correct entries.

To enter, send your symbol chart listing the correct symbol for each puzzle, along with your name, address and telephone number to: PUZZLEPANIC CONTEST, c/o EPYX, Inc., 1043 Kiel Court, Sunnyvale, CA 94089.

Strategy Games for the Action-Game Player
ming language; and The Apple Education Classics, two popular educational packages-Elementary, My Dear Apple and The Shell Games.

The 21 third-party programs featured by Apple at the introduction of the IIC included such packages as Bank Street Writer by Brøderbund, Inc.; Financial Cookbook by Electronic Arts; Dollars and Sense by Monogram/Tronix Publishing, Inc.; Crypto Cube by DesignWare, Inc.; Fact and Fiction Toolkit by Scholastic Wizware; Mastering the SAT by CBS Software, Inc.; MasterType by Scarborough Systems; Rocky's Boots by The Learning Company; and Stickybear Shapes by Xerox Education Publications, among others.

Since something like 70 percent of the computers in schools today are Apple II's and IIe's, the company believes many parents will opt for the IIc because their children are familiar with those machines.

lle Or lic?

Apple dealers are less certain about the impact that the IIc will have on sales of the IIe. Concurrent with the announcement of the new computer, Apple cut the price of a IIe almost in half, down to $\$ 995$. That, according to Apple's Sculley, means that the IIe can be viewed as a thousand-dollar entry machine with exceptional expandability. Admitting that the two machines have a somewhat overlapping target market, Apple nonetheless expects the IIe to continue to have sales in educational (with even deeper discounts), business, and home markets. "IIe or IIc. That is the question" is the advertising phrase Apple has adopted as it attempts to sell-and point out the differences between-the two computers.

With two very different product lines-the Apple II family and the Lisa/Macintosh fam-ily-Apple is most obviously
squared off against both the IBM PC and the PCjr. Ads for the IIc criticize the PCjr's limited software and its chicletstyle keyboard. As this is written, IBM has already announced to its stockholders that changes will be made in the PCjr, although no specifics were given. While IBM is not about to step away from any of its machines, Apple's giant archrival is scrambling to meet this surprising double onslaught from Apple.

In price and features, the \$1295 IIc is closer to the Expanded Model (\$1269) PCjr than the PC. The PCjr, like the IIc, has 128 K (a 64 K plug-in board); switchable 40/80-column video capability; and a built-in $51 / 4$-inch disk drive. However, the IIc is packaged with an RF modulator for television hookup; you must buy a $\$ 30$ RF modulator for the PCjr as well as cables. The PCjr operates with DOS 2.1, which costs another $\$ 65$

Aging Technology

By choosing to use a " c " in the new computer's name, Apple has been able to offer its marketing team a lot to play with: compact, convenient, complete, and comprehensible. The company's advertising is reflecting all of these concepts in an attempt to market the IIc as the first serious people's computer.

Many people were ready to write off Apple in 1983, calling the Apple II line an example of overpriced, aging technology. But with the IIc, Apple is betting that it will shake off that label-confounding the company's critics, battling IBM successfully on two fronts, and living up to the "Apple II Forever" slogan it adopted for the IIc's introduction.

Hopes have never been higher at Apple, nor the stakes more important. But, as John Sculley says, "If we're right, and we think we are, Silicon Valley will never be the same again." ©

Enter CompuServe's
Electronic Mall" ${ }^{\text {w }}$
and shop at your convenience in these exciting departments.
The Micro Mart
The General Store
The Travel Agent
The Book Bazaar
The Record Emporium
The Photo Booth
The Software Shop
The Financial Market
The Magazine Kiosk
The Gardening Shed
The Newsstand
A sample of the companies participating in Compuserve's Electronic Mall"includes:
Amdek
American Airlines
American Express
AST Research
Bank of America
Bantam
Big TAutomotive
Buick
CBS Publishing
CDEX
Colonial Penn
Commodore
Computer World
Digital Equipment
dilithium Press
800 Software
47th Street photo
Grolier
Harvard Business Review
Heath
Heinold Commodities
Hertz
E.F. Hutton

Inmac
Innovative Software
Knapp Press
Magazine Entree
Magazine Supply House
Manufacturer's Hanover Trust
Max Ule
McGraw-Hill
Metropolitan Life
Microsoft
Miracle Computing
Misco
Newsnet
Novation
Official Airline Guide
Pan American Electronics
Peachtree Software
Practical Peripherals
Program Store
Professional Color Labs
RCA Record Clubs
Record World
Sears
Select Information Exchange
Sim Computer Products
Simon and Schuster
Small Computer Book Club
Software Advisor
Stark Brothers
Supersoft
Vanguard
VisiCorp
Waldenbooks
Woman's Day Books
Ziff-Davis
Merchants and manufacturers who want to participate in the Electronic Mall ${ }^{*}$ may contact: Stephen A. Swanson, L.M. Berry \& Co., P.O. Box 6000,

Dayton, OH 45401, (513) 296-2015.

Introducing the first computer shopping service that brings you convenience, savings and enjoyment.

Here's your chance to expand the practical uses of your personal computer.

Sign up for CompuServe and shop in our new Electronic Mall. It's easy to use. It tells you more about the products you're buying. It lets you order faster. And it's totally unique.

CompuServe's new Electronic Mall* offers you all these shopping innovations.

- It's enormous! So it gives you in-depth information on thousands of goods and services, and lets you buy even hard-to-find merchandise - Its unique "Feedback" service lets you ask the merchants themselves specific questions. - It's incredibly efficient in ordering the products and services you want.
- Its special discount opportunities make it economical, purchase after purchase. - And its name-brand merchants assure you of top-quality merchandise.

Make the CompuServe Electronic Mall 15-Minute Comparison Test.
What you can do in 15 minutes shopping the Electronic Mall way.

- Call up on your computer screen full descriptions of the latest in computer printers, for instance.
- Pick one and enter the order command
- Check complete descriptions of places to stay on your next vacation.
- Pick several and request travel brochures.
- Access a department store catalog and pick out a wine rack, tools, toys...any thing!
- Place your order.

What you can do in 15 minutes shopping the old way.

- Round up the family and get in the car.

The Electronic Mall, a valuable addition to the vast world of CompuServe.

CompuServe's Consumer Information Service brings you shopping information, entertainment, personal communications and more.

You can access CompuServe with almost any computer and modem, terminal or communicating word processor.

To receive your illustrated guide to CompuServe and learn how to subscribe, call or contact..

CompuServe

Consumer Information Service

P.O. Box 20212

5000 Arlington Centre Bivd
Columbus, OH 43220

800-848-8199

How To Choose

Have you ever sat near the reference desk of a public library and watched people do research? There's usually one scholarly looking gentleman with eyeglasses perched atop his head, a chewed-down pencil stub behind one ear, and crumpled yellow reference slips falling from his pockets as he looks in the card catalog.

Evolving Methods Of Research

As the computer begins to offer new ways to sift information, however, the techniques of these scholarly gentlemen may eventually become a thing of the past.

Doubtless, computer terminals with improving search software will continue to proliferate in public libraries, airports, department stores-anywhere information needs to be processed.

Our awareness of these data bases is focused on the data itself, not on the software necessary to store and search for it. Once we've learned how to use a particular data base, we tend to forget about the middleman, the data base software.

But if you're thinking of changing the way you file personal information by setting up a data base on your home computer, you may want to consider what kind of software will best suit your needs.

Searchware?

There is some confusion about what the term data base actually

Kathy Yakal Editorial Assistant

Whether or not you realize it, you've probably created and used data bases hundreds of times: every time you filled out a form for a doctor or employer or bank, or bought a new address book. Data base software for personal computers can make the creation, maintenance, and access of data files-information processing-far more efficient.

refers to. It is often used interchangeably to mean both the software used to store the data and the data itself.

Technically, data base means the information itself. A data base manager (a computer program) controls and processes that data. It's the manager that you can buy, and that's what
we'll be discussing here. The data base is something you enter yourself-a list of your library books, for example.

Impulse buying is rare among software shoppers. Unless there's a two-for- $\$ 5$ bin, the consumer is usually very cautious, finding out as much as possible about the software before a purchase.

It's especially important to determine your needs prior to purchasing a data base manager. "Maybe that seems too obvious," says Steve Bellinghausen, "but a lot of people don't do that.'

Bellinghausen is distribution manager for Professional Software, Inc., publisher of DataPlus-PC, a recently released data base manager for the IBM-PC.

A Consumer's Quandary

How do consumers go about matching their needs with an appropriate data base program? In the past, retailers have helped. "Hardware and software dealers traditionally have performed some kind of consulting role to end users," says Bellinghausen. "As new products and companies flood the market, that's becoming increasingly difficult to do."

Bellinghausen describes a scenario where the unprepared consumer walks into a computer dealership and says he needs a data base manager. The dealer points to a flashy display and tells the customer that it's the
best-selling data base on the market.

So he buys it, only to find out that the program does far more than he'll ever need from it, and he's probably wasted a few hundred dollars. "You don't need a sledgehammer to drive a thumbtack," says Bellinghausen. "Or vice versa. You don't want to go the other way, either."

Though it may be easy to end up buying data base software that does more than the consumer needs or not enough, Bellinghausen thinks that asking yourself and the retailer a few simple questions can prevent that. "The consumer should be sharp enough to figure out what he wants to do with it," he says.

Let's look at some of those questions.

An Electronic Filing Cabinet

How many different files do you anticipate creating? If you're buying a data base manager for
one use only, like cataloging a stamp collection, this isn't important. But some data base managers allow you to store only one file on a disk. So if you have several small files, you may be wasting disk space if you buy a program with that restriction.

How large do you expect your files to be? With even the most limited data base manager, you can always create new files if you run out of space. But if you have to do any kind of search, you may not be able to merge your files and run a search on the complete file. Try to estimate your storage needs generously.

What provisions does the data base manager make for defining the individual fields (subsections) within each record? Most programs allow you to design the format for each record, to designate how many fields per record, how many characters per field, whether letters only or numbers only or both
will be allowed, and so on. Though each data base manager has its limits, a few packages are extremely limiting.

Will you be needing complicated sorts and searches? Most home applications don't require anything very intricate. But if you want to do more than, say, alphabetize, or retrieve by city or state, you'll need a more powerful data base manager.

How about printing reports? You probably want some kind of printer capabilities, which all data base software has. But the extent to which you can design specialized reports varies. Anticipate your future needs.

Remember: You should be able to have all your questions answered either by examining the outside of the package, reading the software documentation, or asking specific questions of the dealer. If you're planning a substantial investment in a data base manager, it might even be worth writing to the publisher if you can't get an important question answered.

A Few Bonuses

Though it's not absolutely necessary, it can be helpful to have a data base that is compatible with a word processing program. The reason for this, believes Bellinghausen, is that mailing lists are "far and away the most widely used application."

Another feature that few data base programs offer is the ability to go back and change field specifications after you've already entered a number of records. To illustrate the value of this, let's set up an imaginary file, a personal mailing list.

Addressing The Problem

It would seem like the best way to set up a file structure for this application would be to imitate
the way that an address book is arranged: one line (field) for name, one for street address, one for city, state, and zip, and one for phone number. Maybe an extra line in case the address runs long.

You then specify that each field can accept both alpha and numeric characters, and allow ample characters per field. You transfer all the information from your address book and various scraps of paper lying around on your desk at home.

Then in November you start thinking about sending Christmas cards. You remember that little notebook that you've used to keep track of cards sent and received over the last five years.

At this point it becomes clear that you should have specified extra fields in your address file for the Chrismas list. Also, it would have been nice to have specified fields to keep track of birthdays.

If your data base software does not allow you to go back and add new fields to existing records, your options are to either set up a new file and reenter all of your records, or keep one set of records in a drawer and one on a disk.

Making It Easier

"I used to use data base software on my Atari," said one home computer owner we questioned. "But now I just use a word processing program to keep track of names and addresses."

Your data management needs may not be extensive enough to warrant buying a large, sophisticated data base manager. Or maybe there are some specific applications you could use data base software for, but don't want to take the time to work with a multipurpose data manager.

An alternative to generic data base programs-those that require you to set up your own

The ABC's Of Data Bases

Charles Brannon, Program Editor

There are several "generic" applications for microcomputers. Electronic spreadsheets such as VisiCalc helped to spark the microcomputer revolution. Word processing has made many a computer purchase easily justified. And data base programs are now one of the hottest items on the market. The bestselling software, such as Lotus 1-2-3, incorporates all three of these applications. Although packages such as Lotus 1-2-3 (first sold for the IBM PC) have more sophistication and scope (as well as a much higher price tag) than similar programs on home computers, there's still a lot you can do with even a bargain-basement data base.

Just as spreadsheets have made financial analysis easier, faster, and more flexible, just as word processors have blurred the distinction between rough and final drafts, data bases can make all your record keeping simple, streamlined, and fast. But first you have to translate the concepts of manual record keeping to the computer's way of doing things. Since you're bound to encounter new vocabulary and principles as you convert to electronic record keeping, it's useful to have a background in these things as you're searching for the right package for your needs. First, a clarification: Sometimes the program that manages the data is called a data base. The set of all your data is also referred to as the data base. Context usually makes the meaning clear.

Files, Records, Fields

To understand some of the features of data base management, think of how records are organized if no computer is involved. Short items are usually stored on index cards, then shoved in a box. This whole box of cards would be called a file on a data base. Each card is called a record. Records are further subdivided into fields. Before you can enter any information, you have to set up or define the data base by entering the name, type, and length of each field. To illustrate these subdivisions of a file, we can look at a common type of data base, the mailing list. Each record in such a file would be an individual mailing label. And, within each record, the fields would probably be: name,
address, city, state, and zip code.
Many data bases ask you to estimate the length and type of each field. This way, the data base program can tally up a total for the length of each record. The memory (computer RAM or disk drive) is then subdivided into records of that length. By contrast, other data bases will assume a fixed record length (usually the size of one disk sector), then let you divide the record up into fields. You still have to estimate the length and type of each field. Some data bases can modify the fields at any time, but many data bases can't. It's often wise to set aside some extra fields in case you later want to start including additional information in each record, like telephone numbers.

Field length is based on what kind of information it will be expected to contain. People's names will generally be less than 20 characters. An address can be longer, say 30 characters. Most cities can be spelled in under 15 characters. Using the official abbreviations, the state field takes only two characters.

Another aspect of fields is their typeName, address, city, and state are all string or alphanumeric fields. The zip code, however, is always a number and so it could be assigned to a numeric field. Numeric fields store their numbers in a fixed number of bytes, in the computer's internal floating point format. What this means to you is that no matter how long or short the number is when written out (5.2 or $5,200,000$), it will only require, say, five bytes to store. Advanced data bases have several other types. A field requiring a yes/no answer can be stored with only 1 bit ($1=$ yes, $0=$ no $)$. You could pack eight yes/no answers in one byte. This is often called a boolean, bit, or binary field. Some data bases might support a byte field, which can hold only numbers in the range $0-255$.

The key field is the primary field you use when accessing records. If the key field is name, you can look up any mailing label by the addressee's name. Many data bases will let you sort the entire file. You choose a key field to sort by. If you sort by zip code, the file will be ordered according to the zip

STOP unexplained data loss, BLOCK power line hash and AVOID damaging transient voltages with GESP-753!

Now you can plug into the double-duty protection for your sensitive personal computer! General Electric's GESP-753 Voltage Surge Suppressor guards valuable equipment two ways: against voltage spike and noise-all in one device!
With a GESP-753 Voltage Surge Suppressor, you can also guard against potentially damaging transient voltages and prevent the generation of additional noise from being sent down the power line by your equipment. Reduce unexplained data loss and block interference that raises havoc with audio or TV reception.
How spikes, surges and other gremlins attack.
Power switching devices (such as heating/cooling equipment going on and off)...utility transformers stepping up power to meet peak load needs...and/or an electrical storm in the area. Each and

all of these can play havoc with any sensitive electronic equipment-and your data input in particular-by triggering a momentary surge, a transient voltage spike, radiofrequency or electromagnetic interference.

Simple installation.

Just plug the GESP-753 into the upper outlet of any standard 110 v wall grounding
receptacle. A stabilizer pin fits into the grounding contact of the unused outlet to hold the unit in place. Once plugged in, a built-in light is illuminated to remind you that the protection circuits are working. Then, simply plug in the power supply cord of the equipment you want protected; up to three grounded outlets per GESP-753.

Technical Specifications

- Clamping level 325v
- Attenuation

Up to 40 db
(200 Khz-30 Mhz)
Over 35 db
(0.5 Mhz-5 Mhz)

- Response time I nanosecond
- Energy dissipation 50 joules

For the names of distributors and dealers in your area where you may obtain the GESP-753, circle the number shown below on the reader's service card.

We bring good things to life.

GENERAL (96) ELECTRIC

code when printed out. Some data bases let you sort or search with multiple keys. For example, you could print out a list, alphabetized by name, of all addressees living in California. The sort would be keyed to the name field, and the printout would be selective by only printing and sorting those fields whose state field is CA.

A Range Of Features

Features vary from one data base to another. Their primary purpose is to let you store and retrieve records. But once you have a large data base, you should be able to manipulate and interrogate the data base, with all the speed and power that the computer can bring to bear. We've already mentioned sorting and printing. If you want to keep a mailing list, be sure the data base can print out mailing labels! You should also be able to remove (delete) a record once it is no longer needed. If you are manually keeping the list in a certain order, you want to be able to insert new records between existing ones. It's very handy to have a printout of just one field from every record. A directory function like this can usually print out the key field from each record for future reference. Some data bases permit you to perform math on numeric fields, even across the entire file. Others offer sophisticated report generation, where you can design a custom printout, complete with rows, columns, and calculations like totals and percentages.

You may want to be able to access your data base file from within other programs. To do this, a word processor, for example, must be compatible with the data base, so that information can be retrieved and inserted into the text held by the word processor. Or, if your data base can create files that are compatible with the word processor, you're in business. If this is important to you, try out both the word processor and the data base together before you buy either.

If you have a cassette system, you'll probably want to buy a memory-storage data base. These store the records in RAM.

The advantage here is speed. You can sort and search for records much faster in memory than you can with a tape drive. At the end of the session, you save out the entire data base to tape. The disadvantage here is that this limits the amount of data which can be stored to the amount of RAM you have in your computer. Also, memory-based data bases often slow to a crawl when their memory is full.

If you have a lot of data to store, you'll probably need a disk-based data base. The records are stored directly on disk, and any record can be called up without reading through the entire file. You can usually use the whole disk for a single data base, or even link the data base to a second disk or disk drive. The disadvantage with a diskbased data base is the speed of disk access time, which is generally much slower than a memory data base.

Be critical of the data-entry mode. You'll be using that part of the data base more than any other as you type in all the data. Grade a program's entry mode in terms of how easy it is to learn, how easily you can edit and make changes, and how it reacts to errors you make. Does it check to make sure the field you've entered is of the correct type for that field? Does it warn you if you've typed too much for one field, or does it just chop off the extra characters?

Some data bases, like $d B A S E$ II, are so sophisticated and flexible that they are practically a programming language for data base management. Many people buy templates for them. Templates are like programs for the data base. The template sets up all the fields, and includes the search and calculation descriptions. A template can also control the kinds of printouts allowed. You don't need to be a programmer to use an advanced data base, but you do have to learn the commands and protocols of that particular program. But once you've set up a certain kind of file, a template could create replications of that file type automatically the next time you want to build a similar data base.
files-is application-specific data base software.

Batteries Included offers such a series for the Commodore 64. At $\$ 29.95$ each, these "mini-data bases" offer tailormade filing systems ranging from Electronic Address Book to

Recipes to Audio/Video Cata-
log. Eight different packages are currently available.

No one could call data base software faddish. After all, it facilitates one of the fundamental computer functions-information processing. And, in one form or
another, data bases have been around for a long time, albeit in low-tech forms like filing cabinets and boxes of index cards. Data managing software offers a fast, effective method of storing, sorting, and searching all kinds of information.

Now, you can introduce your Commodore $64^{\text {TM }}$ to the Work Force: affordable, easy-touse software and hardware that will unleash the power you always expected from your Commodore 64^{Tm}, but thought you might never see.

PaperCllp

 is simply the best word processing program of its kind-loaded with advanced features, yet so easy to use even a novice can get professional results. With SpellPack ${ }^{\mathrm{mm}}$, it even corrects your spelling! Once you've tried it, you'll never use a typewriter again.The Consultant ${ }^{\text {Tw }}$
(formerly Delphi's Oracle) is like a computerized filing cabinet with a brain. Organize files for recipes, albums, or the membership of your service club. Then search, sort, arrange and analyze your information with speed and flexibility that's simply astounding.

SpellPack ${ }^{\text {nu }}$

teaches your 64 to spell. It checks an entire document in 2 to 4 minutes against a dictionary of over 20,000 words. And you can add up to 5,000 of your own specialized terms. Type letter perfect every time!

Buscard II ${ }^{\text {M }}$

is a magic box that lets you transform your humble home computer into a powerful business machine. It gives you the added power of BASIC 4.0, and lets you add IEEE disk drives, hard disk, virtually any parallel printer, and other peripherals without extra interfaces. Completely software invisible.

B. . 1 - 80 "in Column Adaptor

 gives you crystal clear 80 column display. Using the highest quality hardware, we've eliminated the problems of snow, fuzziness and interference. Basic 4.0 commands greatly simplify disk drive access. Switches easily from 40 to 80 column display.Discover the true power of your Commodore 64^{TM}. Ask your dealer about the Commodore $64{ }^{\text {m }}$ Work Force, from Batteries Included-the company that doesn't leave anything out when it comes to making things simple for you.

The Promise Of Things To Come:

Atari's New Lease On Life

Fred D'Ignazio, Associate Editor
Selby Bateman, Features Editor

When an especially strong earthquake recently shook the California city of Sunnyvale, most of the residents shrugged, smiled nervously, and tried not to think about the next one.

But among the hundreds of people who work for Atari in more than two dozen nondescript buildings there, the quake appeared to be hardly noticed. When you've already had the world turned upside down and are feverishly working to restore your corporate footing, a little more trembling scarcely seems worth worrying about.

In retrospect, the earthshaking that Atari took from the end of 1982, through 1983, and into the early part of 1984, seems to have had the same sort of explosive force that first powered the company into becoming a billion-dollar organization. Almost overnight, Atari went from being king of the videogame and home computer market to being every analyst's example of the boom-and-bust potential inherent in the computer revolution.

World-Class Problems

The litany of problems was indeed world-class: over half a billion dollars in losses for the first three-quarters of 1983, premature announcements of sev-

James Morgan, chairman and chief executive officer of Atari, Inc.

Out of the ashes of a disastrous 1983, a slimmer and more serious Atari, Inc., is fashioning a comeback under the guiding hand of new chairman and CEO James Morgan. In this, the first of a two-part look at Atari and its new products, Morgan talks candidly to COMPUTE! about his company's mistakes, its strengths, its hopes.
eral products that never appeared, the unsuccessful launch of the 1200 XL computer, layoffs of hundreds of Atari employees, and a management team wracked with dissension, low morale, and a lack of corporate focus.

Enter James Morgan, a former Phillip Morris marketing executive, who replaced Ray Kassar in September 1983. His mandate from parent company Warner Communications was as simple to state as it was difficult to carry out: Turn Atari around.
"Before I came, this company thought it was a toy company, IBM, and everything in between," says Morgan. "And it was devoting people and resources to all of that."

Energy, Hope, And Resolve

Morgan has not gone about his cleanup at Atari quietly. Instead, he has become one of the most outspoken critics of the company's past policies. He often sounds more like an irate consumer than a computer company president.

In his effort to reshape Atari, Morgan laid off an additional 250 employees last winter, including Chris Crawford, Atari's highly regarded research-and-development director. Also, Atari's chief scientist, Alan Kay, left the company in the spring to join Apple Computer as an Apple Fellow.

Despite these changes-and in some cases because of them-Morgan appears to have brought new energy, new hope,

The Making of A Legend.

Centronics parallel interface standard; RS232C optional.

Serial impact dot matrix in two models: $80 \& 100$ cps.

New square dot technology for higher resolution \& near letter quality print (Model 800).

> Up to 142 columns in compressed printing mode.

Bi-directional logic seeking for fast output:

Features like these make our new dot matrix impact printer a Legend. While a low price makes it a near miracle! Imagine, all this and more for less than $\$ 350$. That puts you into our 80 -cps Legend 800 model. And if you're looking for something even faster, look into our 100-cps Legend 1000.

See them both at a dealer near you. Or drop us a line for facts by mail: CAL-ABCO/PERIPHERAIS DIVISION, 14722 Oxnard Street, Van Nuys, CA 91401. Telephone (818) 994-0909. Toll free 1-800-321-4484. Telex 662436. Dealer inquiries invited.
and a new resolve to Atari's efforts. With an enthusiasm that has been missing for over a year, Atari employees and executives this spring were eagerly preparing for June's Consumer Electronics Show in Chicago and for the 12 months followingcommonly acknowledged as the period during which Atari must show the world and Warner Communications that it is back on the right track.

"'The Public Still Loves Us"

Morgan is excited-not only about Atari's future plans-but about the company's current strengths, which he believes have been largely overlooked.
'The financial analysts and the computer press have been disenchanted with Atari for several months, but the public still loves us. This gives us a franchise from the consumer to develop the type of microprocessor products that the consumer will want," he says.
"Before we could announce any products though, we had to get a sense of our own selfidentity. Who are we? What are our strengths?"

All has not been bleak for Atari. The 600XL and 800XL computers have sold well. In fact, Morgan told analysts earlier this year that Atari could have sold about 40 percent more computers during the Christmas rush if they had been available to ship. And despite dire predictions about the death of the videogame machine, Atari seems confident that this market is stronger than some analysts have estimated.

AtariSoft And Atari Learning Systems

Atari's market share began climbing this past spring. And the company's software division, AtariSoft, and its educational division, Atari Learning Systems, both appear to be doing well.

The AtariLab computer science kit, with its temperature module, brings science into the real world for computer users and is one indication of Atari's commitment to quality educational software.

Linda Gordon, who directs the Atari Learning Systems Group, has a strong team, including Dorothy K. Deringer, formerly program officer with the National Science Foundation. In the burgeoning educational software field, Atari expects this division of the company to offer some of the most innovative and high-quality products for schools and home learning that will be available in the industry.

Products like the recently released AtariLab, a computerized science kit, and a series of other products similar in scope and quality (being introduced at CES) are creating excitement and momentum within the entire Atari organization.

Morgan is quick to point out what he feels are a few of Atari's underlying strengths.
"First, the combination of color graphics and sound in Atari computers is better than in our competitors' computers. Second, more people are familiar with Atari than with any other computer company. Remember, 16
million Americans have an Atari computer-a 2600 videocomputer system-in their home," he says.
"Third, when people think of Atari, they think of entertainment. That is a tremendous advantage, but not just so we can sell more videogames. Computers can make learning more entertaining. They can even make work more entertaining-as well as more productive."

The Computer Of 1990

But Morgan is frank about what he feels Atari must do in the future to reestablish itself as a creative and credible force in the microcomputer field. A committee Morgan chairs at Atari, called "The Computer of 1990," meets frequently to brainstorm about future directions. Division heads and product managers reportedly have more communication with one another than in the past. And products or strategies that once went unquestioned, have all undergone Morgan's scrutiny.

For example, the popular

Atari Program Exchange (APX), a division of the company which purchased, produced, and marketed consumer-written programs for Atari computers, has been drastically reshaped.
"Atari has redeployed some of its resources and programs so that they are more consistent with the current goals of the company," says Morgan. "In the case of APX, Atari has discontinued the mail-order portion of the program. Atari lost money in this portion of the business.
"Moreover, Atari had to come to grips with the fact that Atari is not in the mail-order business. However, APX will continue to review products sent to Atari by outside programmers," he says. "If the programs are topnotch, they will be added to the main Atari catalogue. Otherwise, they will not be sold by Atari in any fashion."

The Fate Of The 1450XLD?

Morgan also took a hard look at Atari's plans for a high-end computer. The 1400XL and the 1450XLD, announced at the June 1983 Consumer Electronics Show (CES), were never released. The 1400 was unceremoniously dropped, and the 1450, although exhibited at the January CES, was not yet on the market.
"Atari will sell a high-end computer in 1984," Morgan now says, "but the specific product features of that highend machine still are under review. We showed the 1450XLD at the Consumer Electronics Show in January of 1984 to demonstrate our intent to market a high-end machine this year.'

In fact, by the time you read this, Atari may well be marketing such a computer. And this points to one of the major changes Morgan has instituted at Atari: "We want Atari to be seen as the consumer's
friend," he says. "That means we don't announce any products unless we are willing to back them 100 percent."

Enhancing Lives Through Interactive Electronics

Morgan also makes it clear that Atari has no intention of abandoning the computer market.
"That's the real tragedy of Atari. Despite a record of several excellent computers, we are still known as a videogame company" he says. "But we're going to change that. Over the next 18 months, we will be introducing a host of new products that will create an awareness and acceptance of Atari as being a superior computer manufacturer."

While Atari's product line will be more focused than in the past, the company's new strengths will have a broader base, Morgan suggests. "Our goal isn't to just produce computers. It is to produce products that enhance consumers' lives through interactive electronics."

'Invisible" Computers

"To think this way, we have to think beyond user friendliness and beyond desktop computers. We have to think of products that are invisible.
"For example, a truly friendly product should not separate you from the task at hand. It should be like a refrigeratoryou just reach inside the door and get what you need. After all," he says, "the product, any product, is not a hero. It is just a medium. It is the carrier of what is important."

Morgan clearly expects June's CES show in Chicago to be a major first step in the company's introduction of new products aimed at carrying Atari back to critical and financial success. But he has not limited Atari to the introduction of products at trade shows.

Tuning In To The Consumer

In early May, Atari announced new Lucasfilm games-Ballblazer and Rescue on Fractaluswhich Atari has developed in association with the specialeffects wizards at the wellknown motion picture company. And by the time you read this, Atari is scheduled to have premiered a new high-end game machine, the 7800 Pro System. Both of these new products were scheduled to be shown at CES in June as well.
"Our major priority at Atari is to tune in to the consumer. Ultimately, the home computer is not an entity unto itself. It is not a question of what a computer can do. It is a question of what a consumer does with it," Morgan says.
"In my opinion, we still have not given consumers a compelling reason to buy a computer. And we haven't spent enough time molding our products to consumers' desires."

Atari's 'Smart" Telephone

"For example, most people like to communicate with other people," he says. "That is a real need and a real desire. And computers can help people communicate. But it's not easy. You have to type all sorts of special codes and commands, just to get started. Instead, it should be just as easy as using a phone. You should be able to press a couple of buttons and communicate."

Morgan says that AtariTel, the company's telecommunications division, will introduce "smart telephones" in the second half of 1984. "These telephones will be microprocessor-based. We currently are deciding how we will market the product," he adds.

While redirecting Atari's efforts, Morgan has also studied the microcomputer industry as well. And one of the major
problems still troubling the industry, he emphasizes, is that home computer technology is ahead of the average consumer without matching the consumer's real needs. The challenge, therefore, is for computer manufacturers to translate this new technology, while at the same time giving prospective buyers genuine reasons to purchase a computer.

Alan Alda Is The Bridge

Assisting in Atari's efforts to explain its computers is actor Alan Alda, who represents what Morgan calls a "bridge" to adults by selling the application of Atari technology, and the ease of use.
"He [Alda] always picks one activity, like word processing, or education, and shows you how you can do it on an Atari. Alan doesn't want to make adults buy computers because they feel guilty. He wants them to buy a computer because they're excited about doing
something they have seen him do," says Morgan.
"Also, he never sells RAM, ROM, or CPUs. The CPU is the least important element in the computer. It is like the engine of a car. Most people buy a car without opening the hood," he says. "There is a common understanding among car owners that the engine will work, and it will get them where they're going. The CPU is like the engine. You've got to have it, but you don't sell computers because of it alone.'

Morgan's Open Letter

Morgan's impact at Atari has not only been felt directly by his employees. He has also gone out of his way to be accessible to industry analysts, the press, and-most importantly-the thousands of loyal Atari owners who are both a present and future market and a formidable, knowledgeable circle of critics.

A personal and candid letter from Morgan to Atari owners

[^1]popped up on the message section of CompuServe earlier this year, for example. In the note, Morgan thanked them for their support and criticism, explained his view of Atari's past problems, and requested their continued interest in Atari's future.

This kind of attention to personal detail, and the simultaneous redirection of Atari's efforts, have done much to restore the morale among Atari employees and have helped give the company valuable time in which to develop, and properly introduce, new products.

Frank Questions And Open Communication

Morgan seems to understand that his role must be multifaceted. "I act as a catalyst to the Atari management team, which has the real job of running this company," he says. "I try to set the tone for the management committee and I help point the group in certain directions.
"As someone who joined this industry as an outsider, I have been able to take a fresh look at the entire consumer electronics field in general and this company, in particular. I'm not afraid to ask frank questions, and also question why we do things the way we do. I encourage all Atari employees to examine their own work in the same way.
"I believe strongly that one of my biggest contributions to Atari will be the implementation of a corporate culture here that inspires teamwork and open communications," Morgan says. "I want to encourage people to take calculated risks and not be afraid to fail. That's part of being an excellent company. If we become an excellent company, then sales and profits will follow."
(Next month, COMPUTE! will take an in-depth look at Atari's new product line from the Summer Consumer Electronics Show.)

Share
 "Standing on the top of the Olympic victory stand is like stretching one's body on the top of the world. It is a moment where the individual man or woman gets introduced to the whole planet. It is a moment that is his or hers alone.
 -Olga Connolly
 Gold Medalist, 1956 Olympics

This summer, the Olympic torch will return to Los Angeles after 52 years. The stage is set. Some 10,000 athletes from 150 countries will battle for the gold in the historic Games of the XXIII Olympiad. And whether or not you plan to attend the Games, you can participate in the drama of this once-in-a-lifetime spectacle.

You and your friends will have virtual front-row tickets with the Official Olympic Guide to Los Angeles, a lavish 300-page magazine that captures it all-the thrills of great Olympic moments past and present, future stars and hopefuls, records to break, maps, TV and day-by-day events schedules.

Everything from the magic of opening ceremonies to the final lap of the marathon, along with an indispensable guide to Southern California, including top attractions, dining, nightlife, tips and trips. All in breathtaking full-color photography and illustrations.

You, and your out-of-town friends, will share all the action of this memorable event with this special collector's issue that will become a cherished keepsake of the legendary rekindling of the Olympic flame in Los Angeles.

Order now and be ahead of the crowd. Send in your check or money order. Or call 557-7587 and charge it to your MasterCard or Visa. Official Olympic Guide, 1888 Century Park East, Suite 920, Los Angeles, California 90067.

\square Yes! l'd like the beautifully designed gift box for an additional \$1.00. Please send me \qquad boxes. l've enclosed an extra \$ \qquad

Statistics For Nonstatisticians

A Burke Luitich

Abstract

Basic statistical methods can help you make logical decisions in everyday situations.

For the most part, elementary statistical methods measure a group of similar things to see how these measurements vary when compared to some standard. Another use for statistics is to see how creating a group of objects can cause variations in these objects.

This program, "Statistics," takes your raw data and returns figures which you can use to make everyday decisions, for example, about the best way to build a wall or how much cash you'll need when you go shopping.

As a first example, let's look at two ways to cut a 2×4, by using a power table saw and a handsaw. We set the table saw guide to one foot and cut five pieces. We cut five more pieces using a handsaw, then measure the actual lengths of all ten pieces to see how accurately we made the cuts.

If nothing unusual is allowed to affect the cutting, we can expect the length of the pieces to vary depending on the process used. Statisticians call this an unbiased random sample.

Assume the measurements are as follows:

Table saw lengths (feet)	Handsaw lengths (feet)
1.05	1.22
.98	.91
1.03	.80
1.07	1.28
.96	.88

The Same Mean

A look at the values alone suggests that cutting with the handsaw is a far less consistent method than using the table saw. However, if you add up the lengths for each method and divide by 5 (the total cuts for each) you will find that both methods give the same mean (average) length of 1.018 feet.

Just finding an average length doesn't tell us much. What we need to know is how widespread the values are likely to be, and which method gave us the most lengths that were nearer our standard of one foot. In statistical terms, we need to calculate the range and the standard deviation.

We find the range by subtracting the shortest length from the longest, for each cutting method. For the handsaw the range is . 48 feet (1.28-.80), and for the table saw the range is .11 feet (1.07.96). Immediately, we can see that the table saw cut more consistently, because the range, or variation, is smaller.

We can use the standard deviation and the mean length to predict how often a given length is likely to occur. You don't have to worry about how to calculate a standard deviation; the program does this for you. If you type in the above lengths for the handsaw, the program will return a standard deviation of .217 feet. The standard deviation for the table saw is .047 feet.

Degree Of Accuracy

If we made a large number of cuts, then measured and graphed the lengths, the graph would form a bell curve, or normal distribution. By combining the standard deviation and the mean length, we get a range of lengths that includes 68.3 percent of all lengths (again, you don't have to know the theory; just use the number). To illustrate, first take the mean length, 1.018 feet, and subtract from it the standard deviation for the handsaw, .217 feet, to get .801 feet. Then add the standard deviation to the mean length to get 1.235 feet. This means that 68.3 percent of our lengths fall in the range between .801 and 1.235 feet.

By adding and subtracting the standard deviation (.047 feet) with the mean length of the table saw cuts (1.018 feet), we find that 68.3 percent (roughly two-thirds) of these lengths fall in the range from .971 to 1.065 feet.

If you want a wider sample, you must increase

Now your home computer can help you cook, keep your accounts, find an address or keep track of your record and book libraries-with first-class software specially tailored for the home environment.

The Home Organizer ${ }^{\text {m" }}$ series includes a wide range of separate and individual programs for different activities like stamp collecting, personal banking, or home photo and movie collections. Each one is pre-programmed with a "page" format planned out by experts to make it easy for you to store and retrieve the information you'll want for your special activity. You don't have to program anything yourself. Just load the disk and start feeding in your data.

If you're used to run-of-the-mill home computer software, the speed and simplicity of the Home Organizer ${ }^{\text {t" }}$ series will surprise you. Each program is written entirely in "machine language", the most basic computer code. So they search, sort and analyze your data with amazing speed.
The Home Organizer ${ }^{\text {m" }}$ is fast enough to sort through your household belongings in seconds, yet so simple the children can use it to look up a phone number. Choose any or all program modules that fit your needs. They make ideal gifts, too!

"Excellence in Software"
the number of standard deviations. To include 95.4 percent of all lengths, use two standard deviations. For the handsaw, we now have .434 feet, two standard deviations. Combining it with the mean length, we get a range of . 584 to 1.452 feet. Our table saw range becomes . 924 to 1.102 feet (1.018 plus and minus .094).

Food For Thought

You can use the same methods to calculate a food budget. In this case, your data consists of the amounts you spent on groceries over a 13-week period (one-fourth of a year):

Week	Amount	Week	Amount
1	$\$ 42$	8	47
2	50	9	65
3	75	10	49
4	37	11	43
5	51	12	52
6	45	13	54
7	56		

If you type this data into the Statistics program, you will find that your mean amount spent was about $\$ 51$; that your spending varied from $\$ 37$ to $\$ 75$, for a range of $\$ 38$; that you spent more than $\$ 50$ (your median amount) as often as you spent less than that; and your standard deviation is about $\$ 10$.

Applying The Statistics

Combining one standard deviation and the mean (or average) amount spent, we find that two-thirds of the weeks you spend between $\$ 41$ and $\$ 61$ at the grocery store. One-sixth of the time you spend less than $\$ 41$; one-sixth of your bills are more than $\$ 61$. So, if you budget $\$ 61$ for groceries, you'll have enough 84 percent of the time.

If you want to be sure you'll have enough in case prices rise, you might want to use two standard deviations. By adding two standard deviations (\$20) to the mean amount (\$51), you will find that, to be about 98 percent sure, you should budget $\$ 71$ each week.

There are other factors to be considered, of course, such as vacations, birthday parties, or visiting relatives, that can affect your food budget. The Statistics program does not take these kinds of things into account. But it does give you a tool which takes some of the guesswork out of every-
day decision-making.
The Statistics program requests input of the size of the sample, or number of items to be entered (line 410), then requests the values of the sample measurements (lines 500-550). All the statistics referred to in this article are then calculated, that is, mean, standard deviation, median, and range.

Lines 325-350 and 4900-5610 give the user a thumbnail sketch of the information to be calculated and a description of each of the statistics. While the sample size is limited to 100 for the VIC version (other versions allow up to 300), this should be more than adequate in most cases.

Error Correction

An error correction routine is included in lines $555-580$ and 5900-6190. This provides for the change of any entry before the calculation. While the program is running, a delay of up to two minutes will be experienced while the program performs several sorts on the data. This is normal for BASIC and may be longer for sample sizes in the 80 to 100 range or greater.

Program 1 requires at least 3 K of expansion memory in the VIC computer. If the instructions, error correction routine, and headings are eliminated, the program will run on an unexpanded VIC. Specifically, the following lines should be deleted if the program is to run without memory expansion: 95-180, 325-350, 555-580, 49005610, and 5900-6190.

Further reductions can be made by reducing the sample size, redimensioning the array in line 90 to the new sample size (SA), and changing the value of 100 in line 420 to the new maximum sample size.

Statistics for a sample of 100 readings requires about $30-45$ minutes to calculate by hand. This program requires about $8-10$ minutes, including input.

Program 1: vic Statistics

Refer to the "Automatic Proofreader" article before typing this program in.

```
9 0 ~ D I M ~ S A ( 1 Ø 0 ) ~ : r e m ~ 1 8 5 ~
9 5 \text { REM GENERAL INTRODUCTION :rem 242}
1\varnothing\emptyset PRINT "{CLR}":POKE 36879,126:PRINT "
    {BLK}"
                            :rem 207
11\varnothing FOR K=1 TO 3:PRINT:NEXT K :rem l47
12\emptyset PRINT TAB(4);"{4 DOWN}{RVS}VIC STATIS
    TICS{OFF}"
                                    :rem 208
13\emptyset PRINT TAB(9);"{DOWN}FOR" :rem 249
140 PRINT TAB(2);"{DOWN}{RVS}NON-STATISTI
    CIANS {OFF}"
                            :rem 171
18\emptyset FORK=1TO2\emptyset\emptyset\emptyset:NEXTK :rem 98
190 PRINT"{CLR}" :rem 254
2ø\emptyset PRINT TAB(4);"{2 DOWN}THIS PROGRAM"
                            :rem 108
210 PRINT TAB(3);"CALCULATES THE":rem 188
22\emptyset PRINT "{2 SPACES}FOLLOWING VALUES"
```

:rem 230

230 PRINT "FROM DATA YOU INPUT:" :rem 123
240 PRINT TAB(4);"\{2 DOWN\}1. MEAN"
:rem 16ø
$25 \emptyset$ PRINT TAB(4);"\{DOWN\}2. STANDARD"
:rem 193
260 PRINT TAB(7);"DEVIATION" :rem 166
290 PRINT TAB(4);"\{DOWN\}3. MEDIAN": rem 35
3øø PRINT TAB(4);"\{DOWN\}4. RANGE": rem 219
$31 \varnothing$ PRINT"\{3 DOWN\} PRESS \{RVS\}C\{OFF\} TO C ONTINUE"
: rem 20
320 GET Z :IF Z S <>"C" THEN $32 \emptyset$:rem 255
325 REM INSTRUCTION REQUEST :rem 9
330 PRINT"\{CLR\}": POKE214,10: PRINT:POKE211 ,5:PRINT"DO YOU NEED" :rem 99
340 PRINT"\{DOWN\} INSTRUCTIONS (Y/N)?":GOS UB701ø
350 IF $Z \$=" Y "$ THEN GOSUB 5010
355 REM DATA ENTRY
370 PRINT"\{CLR\}ENTER YOUR DATA ONE"
:rem 199
$38 \emptyset$ PRINT"VALUE AT A TIME," :rem 26
$39 \emptyset$ PRINT"THEN PRESS RETURN." :rem 55
410 POKE214,10:PRINT:POKE211, $\varnothing: I N P U T " E N T E$ R SAMPLE SIZE";N :rem 26
420 IFN>1 1 ØORN < 2THEN571 \varnothing
:rem 155
430 PRINT: PRINT"\{CLR\}\{4 DOWN\}\{RIGHT\} IF YO U MAKE AN ERROR"
: rem 230
440 PRINT" 22 DOWN\}\{RIGHT \}CONTINUE WITH EN TRY." :rem 9
$45 \varnothing$ PRINT" 22 DOWN $\}$ \{RIGHT \}YOU WILL BE ABLE TO" :rem 28
$46 \varnothing$ PRINT"\{2 DOWN\}\{RIGHT\}CORRECT LATER." :rem 98
47 PRINT" 22 DOWN \} \{RVS \} \{BLK \} \{4 RIGHT\}PRES S ANY KEY\{OFF\}" :rem 148
$48 \varnothing$ GETZS:IFZ\$=""THEN48Ø :rem 141
$50 \emptyset$ FOR I=1 TO N :rem 36
520 PRINT"\{CLR\}":POKE214,11:PRINT:POKE211 , $\varnothing:$ PRINT"DATA ENTRY \#"; I;:INPUTRS

550 NEXT I :rem 34
555 REM ERROR CORRECTION REQUEST :rem 46
$56 \emptyset$ PRINT"\{CLR\}": POKE214,11:PRINT:POKE211 , $\varnothing:$ PRINT"DO YOU WISH TO MAKE" :rem 68
$57 \varnothing$ PRINT"ANY CORRECTIONS (Y/N)?":GOSUB $7 \varnothing$ 10 :rem 136
580 IF $\mathrm{Z} \$=$ "Y" THENPRINT"\{CLR\}": GOTO6øøø :rem $8 \emptyset$
585 REM CALCULATION OF MEAN AND STD. DEVI ATION
:rem 250
587 PRINT"\{CLR\}": POKE214,9:PRINT:POKE211, 5: PRINT"\{RVS\}PLEASE WAIT\{OFF\}": rem 48
588 POKE214,11:PRINT:POKE211,3:PRINT"STAT ISTICS BEING" :rem 151
589 POKE214,13:PRINT:POKE211,6:PRINT"CALC ULATED" :rem 255
590 FOR I=1 TO N
600 SUM=SUM+SA (I)
:rem 22
610 NEXT I :rem 31
620 MEAN=SUM/N :rem $1 \varnothing 4$
630 FOR I=1 TO N
$64 \emptyset \mathrm{DFF}=\mathrm{DFF}+(\mathrm{SA}(\mathrm{I})-\mathrm{MEAN}) \uparrow 2$:rem 255
650 NEXT I :rem 35
$660 \operatorname{SDDEV}=\mathrm{SQR}(\mathrm{DFF} /(\mathrm{N}-1))$:rem 146
665 REM SORT OF DATA INTO NUMERIC ORDER :rem 69
$67 \emptyset \mathrm{FL}=0$
:rem 187
$68 \emptyset$ FOR I=1 TO N-1
690 IF $S A(I)<=S A(I+1)$ THEN 740
:rem 139 :rem 41
$7 \varnothing \varnothing$ Q=SA (I)
$71 \varnothing \mathrm{SA}(\mathrm{I})=\mathrm{SA}(\mathrm{I}+1) \quad$ rem 141
$720 \mathrm{SA}(\mathrm{I}+1)=\mathrm{Q} \quad$:rem 177
$730 \mathrm{FL}=1$:rem 154
740 NEXT I
750 IF FL=1 THEN $67 \varnothing$
:rem 35
:rem 247
:rem 182
$760 \mathrm{RG}=\mathrm{SA}(\mathrm{N})-\mathrm{SA}(\mathrm{l})$:rem 233
765 LR=SA (1)
:rem 233
767 HR=SA (N)
:rem 174
$8 \emptyset 5$ REM CALCULATION OF MEDIAN : rem 243
$81 \emptyset$ IF $N / 2$ < $1 N T(N / 2)$ THEN 814 :rem 8
811 IF $S A(N / 2)=S A(N / 2+1)$ THEN $M D D=S A(N / 2)$
:rem 191
812 IF $S A(N / 2)<>S A(N / 2+1)$ THEN $M D D=(S A(N /$ 2) $+S A(N / 2+1)) / 2$
:rem $2 \emptyset 2$
813 GOTO $1310 \quad$:rem 154
$814 \mathrm{MDD}=\mathrm{SA}(\operatorname{INT}(\mathrm{N} / 2+1)) \quad$:rem 219
$129 \varnothing$ REM PRINT RESULTS TO SCREEN : rem $21 \emptyset$ $131 \varnothing$ PRINT"\{CLR\}CALCULATION RESULTS"
:rem 138
132 PRINT"**********************";
:rem $11 \varnothing$
1330 PRINT "\{DOWN\}SAMPLE SIZE";SPC(3);N
:rem 212
1340 PRINT"\{DOWN\}MEAN (X BAR)";SPC(2);INT (MEAN*1øøøø+.5)/1øøøø :rem 78
1350 PRINT"\{DOWN\}STD. DEV.";SPC(5);INT(SD DEV*1øøø +.5)/1øøøø :rem 46
1360 PRINT"\{DOWN \}MEDIAN"; SPC (8); INT (MDD*I
Øøøø+.5)/1øøøø :rem 25
1370 PRINT"\{DOWN\}RANGE"; SPC(9);RG: rem 153
1375 PRINT"\{DOWN\}LOWEST SAMPLE"; SPC(1);LR :rem $2 ø 6$
$138 \emptyset$ PRINT"\{DOWN\}HIGHEST SAMPLE"; HR
:rem 81
1480 POKE214, $21:$ PRINT:POKE $211,4:$ PRINT"
\{RVS\}PRESS ANY KEY\{OFF\}"; :rem 142
1490 GET AS:IF AS="" THEN 1490 :rem 191
1495 REM REQUEST TO CONTINUE OR END
:rem 96
1510 PRINT"\{CLR\}": POKE214,11:PRINT:POKE21
$1, \varnothing: P R I N T " D O$ YOU WISH TO PROCESS"
:rem 113
$152 \emptyset$ PRINT"MORE DATA (Y/N)?":GOSUB $7 \emptyset 1 \varnothing$
:rem 206
1530 IF $Z \$<>" Y "$ THEN POKE36879,27:PRINT"
\{CLR\}": END
:rem 160
1540 CLR:GOTO 330
:rem 180
49øø REM INSTRUCTION SUBROUTINE :rem 35
$5 \emptyset 1 \emptyset$ PRINT" $\{C L R\}$ \{DOWN \}THE MAXIMUM NUMBER" :rem 3
5020 PRINT "OF ENTRIES YOU CAN" : rem 22
5030 PRINT "MAKE IS 1øø. THE" :rem 243
5035 PRINT "MINIMUM IS 2." :rem 182
5 54ø PRINT "\{DOWN\}*********************" : rem 29
5ø50 PRINT "\{DOWN\}THE MEAN IS THE": rem 43
5060 PRINT "ARITHMETIC AVERAGE" :rem 129
5070 PRINT "OF THE NUMBERS YOU" :rem 44
5ø8Ø PRINT "ENTER." :rem 74
$509 \varnothing$ PRINT "\{DOWN\}*********************" :rein 34
5løø PRINT "\{DOWN\}STANDARD DEVIATION"
:rem 156
5110 PRINT "IS A MEASURE OF HOW" :rem 10
5120 PRINT "WIDELY YOUR NUMBERS" :rem $21 \varnothing$
5130 PRINT "SPREAD FROM THE AVG.": rem 122
5140 PRINT" $\{2$ DOWN \}\{2 RIGHT\}PRESS 'M' FOR MORE"
:rem 57
5150 GET AS:IF AS<<"M" THEN $515 \emptyset$:rem 67
5160 PRINT "\{CLR\}\{DOWN\}SINCE THE VALUES Y

Quality Software that Outshines the Rest

Programs for the Commodore 64
for the collection, arrangement and display of alphanumeric data.
A unique pattern matching and searching capabilities make $\mathrm{dMOS}^{\text {™ }}$ the easiest DB system available on the market.

Features:

- Map search technique to achieve a "logical AND", while searching between fields.
- Display records found, or NOT found by a search.
- Rearrange fields.
- Suppress fields and field titles.
- Insert short (10 character) text.
- Selectively print records.
$\$ 39^{95}$

Missing Key ${ }_{\text {w }}$

A reset System

Restores your BASIC Program.
After programming for hours you press RUN for a final check of your work the computer locks up. You press RUN, STOP. nothing - you press RESTORE. . . nothing - you look for the missing key but it isn't there. You have to turn off your computer and lose hours of work!!
Now Add the Missing Key ${ }^{\text {TM }}$:

- Press the "Missing Key ${ }^{\text {TM" }}$ " and the computer resets itself from any lockup, and your BASIC program is restored.
- Load and run the program included.
- Takes nothing away from your computer, neither memory nor a plug-in port.
- Attaches to your C64 keyboard or any other convenient location.
- Will not void your CBM warranty.
$\$ 29^{95}$

Phone Boss
Personal Phone Directory Program
Designed to store and organize your personal phone listings.

The user has complete control of 15 category titles and entries. $\$ 29^{95}$

OU"
5170 PRINT "ENTER TEND TO FORM A" : rem 95
5180 PRINT "BELL CURVE(NORMAL" :rem 52
5190 PRINT "DISTRIBUTION), THE" :rem 118
$52 \emptyset \varnothing$ PRINT "STD. DEVIATION IS A" :rem 49
$521 \varnothing$ PRINT "MEASURE OF THE AREA" : rem 58
$522 \emptyset$ PRINT "UNDER THE BELL CURVE."
:rem 203
$523 \emptyset$ PRINT "\{DOWN\}NO. OF STD. $\{4$ SPACES \}\% \{SPACE\}AREA"
:rem 99
5240 PRINT "DEV. $(+/-)$ " :rem 129
5245 PRINT "------------\{4 SPACES \}------"
:rem 158
5250 PRINT TAB(4);"\{DOWN\}1";TAB(16);"68.3
:rem 142
5260 PRINT TAB(4);"\{DOWN\}2";TAB(16);"95.5 :rem 146
527 (PRINT TAB(4);"\{DOWN\}3";TAB(16);"99.7

5280 PRINT TAB(4);"\{DOWN\}4";TAB(16);"99.9 " :rem 158
5290 PRINT"\{DOWN\}\{2 RIGHT\}PRESS 'M' FOR M ORE"; :rem 105
5300 GET AS:IF AS<>"M" THEN 5300 : rem 61
5430 PRINT" \{CLR\} \{DOWN \}******************* **" :rem 179
5435 PRINT "\{DOWN\}THE MEDIAN IS THE" :rem 191
$544 \emptyset$ PRINT "VALUE AT THE MID-" :rem 152 $545 \emptyset$ PRINT "POINT OF YOUR DATA." :rem 85
5460 PRINT"\{3 DOWN\}PRESS 'M' FOR MORE"
:rem 21
5470 GET AS:IF AS<>"M" THEN 5470 :rem 77 549の PRINT "\{CLR\}\{2 DOWN\}THE RANGE IS THE " :rem 35
$550 \emptyset$ PRINT "DIFFERENCE BETWEEN" : rem 112
5510 PRINT "YOUR LOWEST DATA" : rem 227
5520 PRINT "VALUE AND THE HIGHEST.": rem 8
5530 PRINT "\{DOWN\}THE RANGE IS A QUICK-"
:rem 132
5540 PRINT "AND-DIRTY ESTIMATE" :rem 135
5550 PRINT "OF THE SPREAD." :rem 3
5560 PRINT "\{2 DOWN\}THE STD. DEVIATION"
:rem 96
$557 \emptyset$ PRINT "IS MORE RELIABLE." :rem 223
$558 \emptyset$ PRINT "\{4 DOWN\}\{2 RIGHT\}PRESS 'S' TO START"
:rem 128
5590 PRINT "\{5 RIGHT\}THE PROGRAM" : rem 46
$560 \emptyset$ GET AS:IF AS<>"S" THEN 56øØ :rem 73
$561 \emptyset$ RETURN :rem 172
$57 \emptyset \emptyset$ REM ERROR TRAP FOR TOO LARGE A SAMPL E :rem 184
5710 POKE214,10:PRINT:POKE211,18:PRINT" \{4 SPACES ${ }^{\prime \prime}$
:rem 132
5720 GOTO 410 :rem 156
$573 \varnothing$ REM DISPLAY CORRECTION OPTIONS
:rem 237
$574 \emptyset$ PRINT"\{CLR\}": POKE214, 21:PRINT:POKE21 $1, \varnothing:$ PRINT" $\{$ RVS $\}\{B L K\} A=A M E N D ~ T=T A B L E$ \{SPACE\}Q=QUIT\{OFF\}";:RETURN :rem 36
5810 GETZ\$:IFZ\$=""OR (Z\$<>"A"ANDZS<>"T"AND Z\$<>"Q") THEN581の
:rem 35
$582 \varnothing$ KL=Ø:IFZ\$="T"THENKL=1:GOTO $613 \varnothing$
:rem 96
5830 IFZ $\$=$ " Q "THEN587
:rem 13ø
5840 PRINT"\{CLR\}"
:rem 53
59øø REM ERROR CORRECTION SUBROUTINE
:rem 68
6øøø POKE214,11:PRINT:POKE211, Ø:PRINT"REM EMBER INCORRECT\{4 SPACES\}SAMPLE \# (Y /N)?":GOSUB 7ø1ø :rem $1 \varnothing$

602 IFZS="N"THEN613ø
:rem 157
6ø3ø PRINT"\{CLR\}": POKE214,6:PRINT: POKE211 ,l:INPUT"THE SAMPLE \#";ENS :rem 118
6040 EN=VAL (ENS) : IFEN>NOREN<1OREN<>INT (EN)THEN 6ø3Ø
:rem 131
6Ø7ø POKE214,8:PRINT:POKE211,1:PRINT"SAMP LE";EN :rem 179
6075 POKE214,10:PRINT:POKE211,1:PRINT"VAL UE="; SA (EN)
:rem 190
6 68Ø POKE214,12:PRINT:POKE211,1:INPUT"YOU R NEW VALUE"; C:SA(EN)=C :rem 184
6090 POKE214,14:PRINT:POKE211,1:PRINT"
\{2 DOWN\}MORE CHANGES (Y/N)?":GOSUB 7 $01 \varnothing$
:rem 136
$611 \varnothing$ IFZ $\$=" Y$ "THENPRINT"\{CLR\}": GOTO 6øøø :rem 123
$612 \emptyset$ GOTO 587
:rem 166
$613 \varnothing$ GOSUB574ø:POKE214, $\varnothing:$ PRINT:POKE211, \varnothing :rem 150
6140 IFKL= $=$ THENPRINT"THESE ARE THE FIRST
\{3 SPACES \}TEN VALUES.": K=1:GOTO $615 \emptyset$: rem 47
6145 PRINT"THESE ARE THE NEXT\{4 SPACES\}TE N VALUES." :rem 247
6150 POKE214,3:PRINT:POKE211,1:PRINT"ENTR Y"; SPC(5);"VALUE" :rem 82
$6160 \mathrm{FF}=\varnothing: \mathrm{FORK}=\mathrm{KTOK}+9: \mathrm{FF}=\mathrm{FF}+1$: rem 247
6165 IFK> 1øØTHENK=K+9:NEXT:GOTO587
:rem 113
$617 \varnothing$ POKE214,FF+5:PRINT:POKE211,1:PRINTK; TAB (11); SA (K)
:rem 15
6180 NEXT K :rem 89
6190 GOTO $5810 \quad$:rem 215
7010 GETZ $:$ IFZ $=$ " "OR(Z\$<>"Y"ANDZS<>"N")TH EN $7 \emptyset 1 \varnothing$
:rem $2 ø 1$
$7 \emptyset 20$ RETURN :rem 169

Program 2: 64 Statistics

Refer to the "Automatic Proofreader" article before typing this program in.
$8 \emptyset$ POKE5328ø, $:$ POKE53281, Ø :rem 189
90 DIM SA (3øø) :rem 187
95 REM GENERAL INTRODUCTION :rem 242
120 PRINT"\{CLR\}":POKE214,10:PRINT:POKE211 ,14: PRINT" $\{$ RVS \}STATISTICS \{OFF\}"
:rem 147
130 POKE214,12:PRINT:POKE211,17:PRINT" \{RVS \}FOR\{OFF\}"
:rem 215
140 POKE $214,14:$ PRINT:POKE $211,1 \varnothing:$ PRINT"
\{RVS\}NON-STATISTICIANS\{OFF\}" :rem 231
180 FORK=1TO2øøø:NEXT :rem 23
2øø PRINT"\{CLR\}": POKE214,4:PRINT:POKE211, 14: PRINT"\{CYN\}THIS PROGRAM" : rem 165
210 POKE214,5:PRINT: POKE211,13:PRINT"CALC ULATES THE"
: rem 219
$22 \varnothing$ POKE214,6:PRINT:POKE211,12:PRINT"FOLL OWING VALUES:" :rem 213
$24 \varnothing$ POKE214,1ø:PRINT:POKE211,15:PRINT"1. \{SPACE\}MEAN" :rem 202
250 POKE214,12:PRINT:POKE211,15:PRINT"2. \{SPACE\}STANDARD" :rem 254
260 POKE214,13:PRINT:POKE211,18:PRINT"DEV IATION"
: rem 245
290 POKE214,15:PRINT:POKE211,15:PRINT"3. \{SPACE\}MEDIAN" :rem 99
3øø POKE214,17:PRINT:POKE211,15:PRINT"4. \{SPACE\}RANGE" :rem 29
310 POKE214,22:PRINT:POKE211,10:PRINT"PRE SS 'C' TO CONTINUE" :rem 1 Ø8
$32 \varnothing$ GETZS:IFZ\$<>"C"THEN 320 :rem 255
322 REM INSTRUCTIONS REQUEST :rem 89
$325 \mathrm{SUM}=\varnothing:$ MEAN $=\varnothing: D F F=\varnothing:$ SDDEV $=\varnothing:$ RG $=\varnothing$
:rem 152
330 PRINT" \{CLR\}": POKE 214,12:PRINT:POKE211 ,5:PRINT"DO YOU NEED INSTRUCTIONS (Y/ N) ?"
:rem 128
340 GOSUB $7 \varnothing 1 \varnothing$
350 IF Z \$="Y"THEN GOSUB $501 \varnothing$
:rem 223
355 REM DATA ENTRY
:rem 244
:rem 45
$41 \varnothing$ PRINT"\{CLR\}": POKE214,1ø:PRINT:POKE211 , 6:INPUT"ENTER SAMPLE SIZE";N:rem 190
$42 \emptyset$ IF $\mathrm{N}>3$ 3øORN<=1THENFORI=1488TO1498: POK EI, 32 : NEXT: GOTO $41 \varnothing$
:rem 139
425 PRINT"\{CLR\}"
:rem 255
430 POKE214,2:PRINT:POKE211,1:PRINT"IF YO U MAKE AN ERROR, CONTINUE WITH"
:rem 119
440 POKE214,4:PRINT:POKE211,1:PRINT"DATA
\{SPACE\}ENTRY. YOU CAN CORRECT LATER."
: rem 75
500 FOR $\mathrm{I}=1 \mathrm{TO} \mathrm{N}$
:rem 36
$52 \emptyset$ POKE214,9:PRINT:POKE211,1 $0:$ PRINT"DATA ENTRY \#\{4 SPACES\}\{4 LEFT\}"; I;:INPUTR \$
$53 \emptyset$ SA (I) $=\mathrm{VAL}(\mathrm{R} \$)$
:rem 96
55ø FORJ=145ØTO1468: POKEJ, 32:NEXTJ:NEXT I
: rem 17
555 REM ERROR CORRECTION REQUEST : rem 46
560 PRINT"\{CLR\}": POKE214,12:PRINT: POKE211 , 2 :rem 176
561 PRINT"WISH TO MAKE ANY CORRECTIONS (Y /N)?" :rem 2
$57 \varnothing$ GOSUB $7 \emptyset 1 \varnothing \quad$:rem 228
58 IFZ $=$ ="Y"THENPRINT"\{CLR\}": GOTO6øøØ
:rem 8ø
585 REM CALCULATION OF MEAN AND STD. DEVI ATION
:rem 250
587 PRINT"\{CLR\}": POKE214,11:PRINT:POKE211 ,14:PRINT"\{RVS\}PLEASE WAIT\{OFF\}"
:rem 137
588 POKE214,13:PRINT:POKE211,6:PRINT"STAT ISTICS BEING CALCULATED" :rem $11 \varnothing$
590 FOR I=1 TO N
:rem 45
$6 \varnothing \varnothing$ SUM=SUM+SA (I)
:rem 22
610 NEXT I
$620 \mathrm{MEAN}=$ SUM $/ \mathrm{N}$
630 FOR I=1 TO N
$64 \emptyset \mathrm{DFF}=\mathrm{DFF}+(\mathrm{SA}(\mathrm{I})-\mathrm{MEAN}) \uparrow 2$
650 NEXT I
$66 \emptyset \operatorname{SDDEV}=\mathrm{SQR}(\mathrm{DFF} /(\mathrm{N}-1))$
665 REM SORT OP DATA
665 REM SORT OF DATA INTO NUMERIC ORDER :rem 69
$670 \mathrm{FL}=0$
680 FOR I=1 TO N-1
690 IF $\mathrm{SA}(\mathrm{I})<=S A(\mathrm{I}+1)$ THEN $74 \emptyset$
$7 \emptyset \emptyset \mathrm{Q}=\mathrm{SA}(\mathrm{I})$
710 SA (I) $=\mathrm{SA}(\mathrm{I}+1)$
$72 \emptyset$ SA $(I+1)=Q$
$730 \mathrm{FL}=1$
740 NEXT I
750 IF FL=1 THEN 670
755 REM CALCULATION OF RANGE
$760 \mathrm{RG}=\mathrm{SA}(\mathrm{N})-\mathrm{SA}(1)$
765 LR=SA (1)
767 HR=SA (N)
805 REM CALCULATION OF MEDIAN
810 IF N/2 <>INT(N/2) THEN 814
811 IF $\operatorname{SA}(N / 2)=S A(N / 2+1)$ THEN $\operatorname{MDD}=S A(N / 2)$
:rem 191
812 IF $S A(N / 2)<>S A(N / 2+1)$ THEN $M D D=(S A(N /$ 2) $+S A(N / 2+1)) / 2$
:rem $2 ø 2$
813 GOTO $131 \emptyset$
:rem 154

814 MDD=SA (INT(N/2+1))
:rem 219
1290 REM PRINT RESULTS TO SCREEN :rem 210
1310 PRINT"\{CLR\}": POKE214,3:PRINT:POKE211 , $10:$ PRINT"CALCULATION RESULTS"
:rem 69
1320 POKE214,4:PRINT:POKE211,9:PRINT"****
133 *****************" :rem 146 LE SIZE"; SPC(10); N :rem 122
1340 POKE214,8:PRINT:POKE211,7 :rem 25
1345 PRINT"MEAN (X BAR)";SPC(10);INT(MEAN* $1 \varnothing \varnothing \varnothing \varnothing+.5) / 1 \varnothing \varnothing \varnothing \varnothing$: rem 113
1350 POKE214,10:PRINT:POKE211,7 :rem 67
1355 PRINT"STD. DEVIATION";SPC(7);INT(SDD EV*1øøø +.5)/løøøø \quad rem 186
1360 POKE214,12:PRINT:POKE211,7 :rem 7 7
1365 PRINT"MEDIAN"; SPC(15); INT (MDD*1øøøø+ .5)/1øøøб : rem 59
1370 POKE214,14:PRINT:POKE211,7:PRINT"RAN GE"; SPC(16);RG :rem $11 \varnothing$
1375 POKE214,16:PRINT:POKE211,7:PRINT"LOW EST SAMPLE VALUE";SPC(2);LR :rem 245
1377 POKE214,18:PRINT:POKE211,7:PRINT"HIG HEST SAMPLE VALUE"; SPC(1);HR : rem 34
1480 POKE214,22:PRINT:POKE211,13:PRINT" \{RVS\}\{YEL\}PRESS ANY KEY\{OFF\}\{CYN\}"
:rem 193
1490 GET AS:IF AS="" THEN 1490 :rem 191
1495 REM REQUEST TO CONTINUE OR END : rem 96
1510 PRINT" $\{$ CLR $\}$ ": POKE214,12:PRINT: POKE21 1,3
:rem 221
$152 \emptyset$ PRINT"WISH TO PROCESS MORE DATA (Y/N)?" :rem 73
1530 GOSUB 7010 :rem 17
1535 IFZS="N"THENPRINT"\{CLR\}": END : rem 78
1540 FORI=1TON:SA (I) $=\varnothing$:NEXT:GOTO 325
:rem $18 \emptyset$
$49 \varnothing 0$ REM INSTRUCTION SUBROUTINE :rem 35
5ø1ø PRINT"\{CLR\}": POKE214,3:PRINT:POKE211 , 6
:rem 175
$5 ø 2 \emptyset$ PRINT"THE MAXIMUM NUMBER OF ENTRIES \{SPACE\}YOU"
: rem 12
5ø3ø POKE214,5:PRINT:POKE211,1:PRINT"CAN
\{SPACE\}MAKE IS 3ø0. MINIMUM NUMBER I S 2." : rem 73
5050 POKE214,9:PRINT:POKE211,5:PRINT"THE
\{SPACE\}MEAN IS THE ARITHMETIC AVERAG E" :rem 137
5070 POKE214,11:PRINT:POKE211,1:PRINT"OF
\{SPACE\}THE NUMBERS YOU ENTER."
:rem 135
51øø POKE214,15:PRINT:POKE211,5:PRINT"STA NDARD DEVIATION IS A MEASURE OF" :rem 198
$512 \emptyset$ POKE214,17:PRINT:POKE211,1:PRINT"HOW WIDELY YOUR NUMBERS SPREAD FROM"
:rem 104
5130 POKE214,19:PRINT:POKE211,1:PRINT"THE AVERAGE." :rem 91
5140 PRINTTAB (9);"\{2 DOWN\}\{RVS\}\{GRN\}PRESS ANY KEY FOR MORE \{OFF\}\{CYN\}" : rem 5ø
5150 GET AS:IF AS="" THEN 5150 :rem 185
5155 PRINT"\{CLR\}" :rem 52
5160 POKE214,1:PRINT:POKE211,6:PRINT"SINC E THE VALUES YOU ENTER TEND TO"
:rem $14 \varnothing$
$518 \emptyset$ POKE214,3:PRINT:POKE211,1:PRINT"FORM A BELL CURVE (NORMAL DIST.), THE"

52øØ POKE214，5：PRINT：POKE211，1：PRINT＂STD． DEVIATION IS A MEASURE OF THE AREA＂
：rem 84
5220 POKE214，7：PRINT：POKE211，1：PRINT＂UNDE R THE BELL CURVE．＂
：rem 79
5230 POKE214，9：PRINT：POKE211，5：PRINT＂NO．O F STD．DEV．＂；SPC（6）；＂\％AREA＂：rem 16
5245 POKE214，10：PRINT：POKE211，5：PRINT＂－－－ －－－－－－－－－－－＂；SPC（6）；＂－－－－－－＂：rem 254
5250 PRINTTAB（1б）；＂\｛DOWN\}1"; SPC(15);"68.3 ＂：rem 2 Ø1
5260 PRINTTAB（10）；＂\｛DOWN \} 2"; SPC(15) ;"95.5 ：rem $2 \not 05$
$527 \varnothing$ PRINTTAB（1ø）；＂\｛DOWN\}3"; SPC(15);"99.7 ＂：rem 213
5280 PRINTTAB（10）；＂\｛DOWN\}4"; SPC(15);"99.9 ＂ ：rem 217
$5290 \operatorname{PRINTTAB}(9) ; "\{2$ DOWN $\}\{R V S\}\{G R N\} P R E S S$ ANY KEY FOR MORE \｛OFF\}\{CYN\}" :rem 56 5300 GET AS：IF AS＝＂＂THEN 53ø0 ：rem 179 5430 PRINT＂$\{C L R\}$＂ ：rem 48
5435 POKE214，3：PRINT：POKE211，5：PRINT＂THE \｛SPACE\}MEDIAN IS THE VALUE AT THE"
：rem 37
5450 POKE214，5：PRINT：POKE211，1：PRINT＂MID－ POINT OF YOUR DATA．＂ ：rem 222
5490 POKE214，9：PRINT：POKE211，5：PRINT＂THE \｛SPACE\}RANGE IS THE DIFFERENCE BETWE EN＂ ：rem 2 ø5
$551 \varnothing$ POKE214，11：PRINT：POKE211，1：PRINT＂YOU R LOWEST DATA VALUE AND THE HIGHEST． ＂ ：rem 253
5530 POKE214，13：PRINT：POKE211，1：PRINT＂THE RANGE IS A QUICK－AND－DIRTY ESTIMATE ＂ ：rem 12
$554 \varnothing$ POKE214，15：PRINT：POKE211，1：PRINT＂OF \｛SPACE\}THE SPREAD. THE STD. DEVIATIO N IS＂ ：rem 238
5560 POKE 214，17：PRINT：POKE211，1：PRINT＂MOR E RELIABLE．＂ ：rem 247
5580 PRINTTAB（4）；＂\｛2 DOWN\}\{RVS \}\{GRN\}PRESS ＇S＇TO START THE PROGRAM\｛OFF\}\{CYN\}" ：rem 21
56øø GET AS：IF AS＝＂＂OR（AS＜＞＂S＂）THEN 5600
：rem 33
5610 RETURN ：rem 172
5810 GETZ $:$ IFZ $=$＂＂OR（ $\mathrm{Z} \$<>\mathrm{Cl} \mathrm{C}$＂ANDZ\＄＜＞＂N＂AND $Z \$<>$＂$Q$＂）THEN 581ø ：rem 31
$582 \varnothing \mathrm{FL}=\emptyset: I F Z \$=" \mathrm{~N}$＂THENFL＝1：GOTO613 \varnothing ：rem $8 \emptyset$
5830 IFZ $\$=$＂Q＂THEN587 ：rem 130
5840 PRINT＂\｛CLR\}" ：rem 53
59øø REM ERROR CORRECTION SUBROUTINE ：rem 68
6øøø POKE214，12：PRINT：POKE211，3：PRINT＂REM EMBER INCORRECT SAMPLE \＃（Y／N）？＂
：rem 140
$601 \varnothing$ GOSUB $7 \emptyset 1 \varnothing$
6ø2Ø IFZ\＄＝＂N＂THEN613Ø ：rem 15

6ø30 PRINT＂\｛CLR\}": POKE214,6:PRINT:POKE211 ，6：INPUT＂WHAT IS THE SAMPLE NUMBER＂； EN\＄ ：rem 241
$6 \emptyset 40 \mathrm{EN}=\mathrm{VAL}(\mathrm{EN}$ ）：：IFEN＞NOREN＜IOREN＜＞INT（EN ）THEN6Ø3Ø ：rem 131
6ø7ø POKE214，8：PRINT：POKE211，6：PRINT＂SAMP LE＂；EN；SPC（5）；＂VALUE＝＂；SA（EN）：rem 75
6ø80 POKE214，11：PRINT：POKE211，6：INPUT＂ENT ER YOUR NEW VALUE＂；C
：rem 8
6090 SA（EN）＝C ：rem 199
6096 POKE214，14：PRINT：POKE211，6：PRINT＂ANY MORE CHANGES（Y／N）？＂
：rem 215

6100 GOSUB 7010
：rem 15
$611 \varnothing$ IF $\mathrm{Z} \$=$＂Y＂THEN PRINT＂\｛CLR\}":GOTO6øøø ：rem 123

6120 GOTO587

：rem 166
6130 PRINT＂$\{C L R\} "$
：rem 46
6132 POKE214，21：PRINT：POKE211，Ø ：rem 65
6134 PRINT＂\｛RVS \}\{WHT \} \{ 2 SPACES $\}$ C＝CHANGE D ATA\｛2 SPACES $\} N=N E X T$ TABLE\｛2 SPACES $\} Q$ ＝QUIT $\{2$ SPACES $\}\{O F F\} " ;$
：rem 198
6137 POKE214，2：PRINT：POKE211，5 ：rem 26
$614 \emptyset$ IFFL＝\varnothing THENPRINT＂THESE ARE THE FIRST \｛SPACE\}TEN VALUES. ": K=1:GOTO615ø
：rem 42
6145 PRINT＂THESE ARE THE NEXT TEN VALUES． ＂
：rem 247
$615 \emptyset$ POKE214，6：PRINT：POKE211，1ø：PRINT＂ENT RY＂；SPC（12）；＂VALUE＂
：rem 179
$6160 \mathrm{FF}=\emptyset: \mathrm{FOR} \mathrm{K}=\mathrm{K}$ TO $\mathrm{K}+9: \mathrm{FF}=\mathrm{FF}+1$ ：rem 247
6165 IFK $>3 \varnothing$ ØTHENK $=\mathrm{K}+9$ ：NEXT：GOTO587
：rem 115
$617 \emptyset$ POKE $214, F F+7:$ PRINT：POKE211，1ø：PRINTK ；TAB（27）；SA（K）
：rem 72
6180 NEXT K ：rem 89
6190 GOTO5810 ：rem 215
7010 GETZ\＄：IF $\mathrm{Z} \$=" \mathrm{OR}(\mathrm{Z} \$<>" \mathrm{Y} " A N D Z \$<>" N ") \mathrm{T}$ HEN 7 Ø1ø ：rem 2 Ø1
$7 \emptyset 2 \emptyset$ RETURN
：rem 169

Program 3：Atari Statistics

Refer to the＂Automatic Proofreader＂article before typing this program in．
31 ＠め GRAPHICS 0：CLOSE \＃1：OFEN \＃1，4， ，＂K：＂：FOKE 752，1：SETCOLOR 2，,\emptyset
OE 11 日 DIM SA（ 36 日）

 SITION 18，10：？＂国造＂：POSITION 1

AG 14 Q FOR $K=1$ TO 3 G日：SA（K）＝ $5: N E X T K$
1.150 ？＂CCLEAR 3 ＂：FOSITION 14，3：？＂TH IS PROGRAM＂：POSITION 13，4：？＂CA LCULATES THE＂：POSITION 12，5：？＂ FOLLOWING VALUES＂
FY 16g FOSITION 9，6：？＂FROM THE DATA Y OU INPUT：＂
C1 179 POSITION ：4，9：？＂1．MEAN＂：FOSIT ION 14，11：？＂2．STANDARD＂：POSIT ION 17，12：？＂DEVIATION＂
$A D$ 1B F FOSITION $14,14: ?$＂S．MEDIAN＂：PO SITION 14，16：？＂4．RANGE＂
U17日 POSITION 9，20：？＂PRESS＂C＂TO C ONTINUE＂
OF $2 \emptyset \emptyset$ GET \＃ 1 ，A：IF $A<>67$ THEN $26 \Leftrightarrow$

EH 23め？＂\｛CLEAR\}":FOSITION 5, 12:? "DO you need instructions（ y / n ）？＂
NF 240 GOSUB 1359
$F: 250$ IF $A=89$ THEN GOSUE 839
E） 26 ด REM WEDG
FK 2＇7め？＂\｛CLEAR\}":FOSITION 9, 11:?"En ter sample size＂；：INPUT N
H3 280 IF $N>3 \emptyset \emptyset$ OR $N<=1$ THEN FOR $I=28$ TO 38：FOSITION I，11：？CHRक（32）： NEXT I：GOTO 27日
EM 290 ？＂\｛CLEAR\}":FOSITION 5, 2:? "Ent er data one value at a time， （4 SFACES？then press return．＂
EC $30 g$ POSITION 5，6：？＂In case of an e rror，continue to \｛3 SFACES\}ente r Hata．You will be able to \｛7 SPACES\}correct later."

POSITIUN 7， 1
；：I INPUT SA
נF $33 \emptyset S A(I)=S A$
LE 49 FOR $J=22$ TO 38：POSITION J，12：？ CHR $\$(\Xi 2)$ ：NEXT J：NEXT I

HM З6め ？＂\｛CLEAR\}" =FOSITION 3,12:? "Wi sh to make any corrections（y／n ）？＂
00 З7め GOSUE 1 З5め
$E F$ S8\％IF $A=89$ THEN GOTO 1120

हDEMEAIIIC：

FJ 4 めめ ？＂\｛CLEAR3＂：POSITION 15，12：？＂F LEASE WAIT＂：FOSITION 6，14：？＂ST ATISTICS BEING CAL．CULATED＂
E 410 FOR $I=1$ TO N
Ni 42g SUM $=S U M+S A(I): N E \times T$ I
GH 43 O $M E A N=S U M / N$
CH 440 FOR $I=1$ TO N
4A 450 DFF $=\mathrm{DFF}+(S A(I)-M E A N)$ 人 $2: N E X T$ I
iA 46Ω SDDEV $=$ SQR（DFF（ $N-1$ ））

4 $486 \mathrm{FL}=\varnothing$
ik 490 FOR $I=1$ TO N－1
90506 IF $S A(I)<=S A(I+1)$ THEN 55め
FC $5100=5 A(I)$
IM $5205 A(I)=S A(I+1)$
ㄴ 5 S $S A(I+1)=0$
נ5 $54 \mathrm{~F} \mathrm{FL}=1$
CC 55 N NEXT I
PF 56g IF FL＝1 THEN 430

$0550 F G=S A(N)-S A(1)$
$N 590 \quad L F=S A(1): H F=S A(N)$

AE 619 IF $M / 2<>\operatorname{INT}(N / 2)$ THEN \＆5G
1462日 IF $S A(N / 2)=S A(N / 2+1)$ THEN $M D D=S$ $A(N / 2)$
41 630 IF $S A(N / 2)<>S A(N / 2+1)$ THEN $M D D=$ $(S A(N / 2)+S A(N / 2+1)) / 2$
HA 649 GOTO 67 g
H65 $6 \mathrm{MDD}=5 \mathrm{~S}$（INT $(\mathrm{N} / 2+1)$ ）

KA67め？＂\｛CLEAR？＂：FOSITION 15，2：？＂CA LCULATION RESULTS＂：FOSITION 9,4 ：？＂＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＂
期 68 POSITION $4,6: ? ~ " S A M P L E E I Z E: ": F$ OSITION 26， $5: ? \mathrm{~N}$
F6 69＠POSITION 4，8：？＂MEAN（X BAR）＂：F OSITION 26，8：？INT（MEAN＊1めめめめ＋め ．5）／1の曰めめ
 ＂：FOSITION $26,10:$ ？INT（SDDEV＊1日 めめめ＋め．5）／ 1 日のめめ
CP 71 g POSITION $4,12: ?$ MMEDIAN＂：FOSITI ON 26，12：？MDD
LH 72 POSITION $4,14:$ ？＂RANGE＂：POSITIO N 26，14：？RG
H8 730 FOSITION 4，16：？＂LOWEST SAMPLE VALUE＂：POSITION 26．16：？LR
YA 740 POSTTION 4， $18: ?$＂HIGHEST SAMFLE VALUE＂：POSITION 26，18：？HR

0076 GET \＃ $1, \mathrm{~A}$

00780 ？＂\｛CLEAR\}":FOSITION 4, 12:? "Wi sh to process more data (y / π) ？＂ 03790 GOSUB 1350
IF $8 \otimes$ IF $A=78$ THEN GRAFHICS $\wp: E N D$
MG 81＠FOF：$I=1$ TO $N: S A(I)=Q: N E X T \quad I=G O T$ － 229

4 830 maximum number of entries is〔उ SPACES\} 5 ด ．while the minimu m number is 2 ．
1H84の OSITION 5，9：？＂The Gagi is the arithmetic average of the numb ers you enter．＂
 EBEFEIESE is a measureof how wid ely your numbers spread fromthe average．＂
48866
POSITION 1＠，21：？＂Press a key f or more＂
EA 879 GET \＃1，A
［L B8＠？＂\｛CLEAK\}":FOSITION 6, 3:? "Sin ce the values you enter tend to form a bell curve（Normal dist ．）the Std．Deviation＂
M．89め POSITION 17，5：？＂is a measure of the\｛ 4 SPACES3area under the bell curve．＂
PG 9めめ FOSITION 3，9：？＂No of Std．Dev．？ $+(-) "$ ：FOSITIDN $3,1 月:$ ？＂－－－－－－－－－－ POSITION 29， $9: ? 7 \%$ Area＂：POSITI ON 29，1め：？＂－－－－－－－＂
92∞ POSITION 4，12：？＂ $4+/-) 1$ Std．De v．＂：POSITION 31，12：？＂68． 3 ＂
HF 936 POSITION $4,14: ? ~ "(+1-) 2$ Std．De v．＂：POSITION 31，14：？＂95．5＂
IB 940 POSITION $4,16: ? ~ "(+1-) 3$ Std．De v．＂：POSITION 31，16：？＂99．7＂
IJ 950 POSITION $4,18: ? "(+/-) 4$ Std．De v．＂：POSITION 31，18：？＂99．9＂
HC 96＠POSITION 10，21：？＂Press a key f or more＂
EB 97め GET \＃1，A
10989 ？＂とCLEAR；＂：FOSITION 4．5：？＂The Mabyal：is the value at the mid －point of your data．＂
 he difference between your lowe st data value＂
LH 10め日 POSITION $25,11:$ ？＂and the high est．The range is a quick－and－ dirty＂
AB 1め1ゆ ？＂estimate of the spread．The standard deviation is more r eliable than the\｛3 SFACES\} spre ad．＂
1D 1 日2め FOSITION $10,20: ?$＂Fress＊S＂to start＂
EH 1GSめ GET \＃1，A：IF A＜＞8S THEN $193 g$
YF 1 இ4 4 FETURN
 BC 196め？＂\｛CLEAR3＂：FOSITION 1，23：？＂E

 GET \＃1，A：IF A＜＞b＞AND A＜＞78 AN D $A<>81$ THEN 1 日7Q IF $A=78$ THEN 1289 IF $A=81$ THEN 39母 ？＂\｛CLEAR\}"
 E
DF 112 g

AO 1130
DH 1140
LN 1159
？＂（CLEAR3＂：POSITION $3,12: ? " R$ emember incorrect sample \＃（y／ n）？＂
GOSUE 135の
IF $A=78$ THEN $12 \Xi \emptyset$
？＂\｛CLEAR\}": POSITION 7,9:? "Wh at is the sample \＃＂：$=$ INPUT EN

```
IK 116% IF EN>N OR EN<1 OR EN<>INT(EN)
            THEN 115G
PO 1170 POSITION 7,11:? "Sample ";EN:P
    OSITION 22,11:? "Value ":SA(EN
    )
*N 118@ POSITION 7, 13:? "Enter your ne
    w value":FOSITION 7,14:INFUT C
    : SA(EN)=C
CE 1199 POSITION 7,19:? "Any more chan
    ges (y/n)?"
Am 1200 GOSUB 135@
DF 121\emptyset IF A=89 THEN 1120
J 122@ GOTO 40@
LH 123@ GOSUB 1ø60:POSITION 5, 2:? "The
    se are the first ten values:"
PM 1240 POSITION 11,5:? "ENTRY":POSITI
    ON 22,5:? "VALUE"
GM 1250 FOR K=1 TO 10
JJ 1260 POSITION 12,K+7:? K:POSITION 2
    4,K+7:? SA(K):NEXT K
ML 127\emptyset GOTO 1@7@
6H 1280 FOSITION 5, 2:? "These are the
    next ten values:{DELETE}":IF K
    <=उQG THEN GOSUB 134@
9012QG CT=8:FOR K=K TO K+9
KA SGg IF K>3贝@ THEN K=K+9:NEXT K:GOT
    O 4@g
KF1S1の FOSITION 12,CT:? K:FOSITION 24
    ,CT:? SA(K)
FB132@ CT=CT+1:NEXT K
HI 1336 GOTO 1070
J 1340 FOR J=1 TO 1贝:POSITION 12,J+7:
    ?"{3 SPACES;":FOSITION 24,J+7
    :? "{15 SFACES}":NEXT J:RETURN
FE 135@ GET #1, A:IF A<>89 AND A<>78 TH
    EN 135%
*K 136G RETURN
```


Program 4：TI－99／4A Statistics

60 COMPUTEI July 1984

399
40め
419 FEM INSTRUCTIONS REQUEST
42ø FRINT TAB（G）：＂INSTRUCTIONS \＆Y／N ）？＂
$43 \varnothing$ FRINT ：：：：：：：
440 GOSUB 2176

4 \＆IF K $=75$ THEN 4906
47め GOSUE $1 \leq 36$
4BG REM DATA ENTRY
470 CALI CLEAR
5贝贝 FRIMT TAE（ ＂
510 INFUT N
ᄃ26 IF（N）
5З CALL CLEAR
S4＠FRINT TAE（ङ）；＂ENTER YOUR DATA O NE VALGE＂：：
55 FFFINT＂AT A TIME．THEN PRESS＂： $:$
56 F FRINT＂RETURN．＂：：：：
579 FRINT TAB（S）：＂IF YOU MAKE AN ER FOR，＂：：
5马Q FFINT＂CONTINUE WTTH DATA ENTRY ．＂：
59G FFINT＂YOU WILL BE ABLE TO MAKE ＂：
6 96
616 FRINT TAE（2）：＂FRESS ANY KEY TO CONTINUE＂：：
S2め GOSLE 217G
636 FOF $I=1$ TO N
G40 CALL CLEAR
65月 FFINT＂DATA ENTRY \＃＂；I；
660 INPUT Fi
670 SA（I）$=$ VAL（Fiक）
689 NEXT I
6GQ FEM ERFOR CORFECTION FEQUEST
790 CALL CLEAR
71日 FRINT TAE（S）：＂ANY COFFEETTONS（ Y／N）${ }^{\prime \prime}$
$72 \boldsymbol{6}$ FRINT ：：：：：：：：：
73め GOSUE 217曰
749 IF K＜ 289 THEN 77%
75月 GOSUR 1月め日
76日 FEM CALCULATION OF MEAN AND STD －DEVIATIGN
779
78 FFINT＂STATISTICS BEING CALCULA TED＂
79め PRINT
906 FOR $I=1$ TO N
$816 S U M=S U M+S A$（I）
82＠NEXT I
$8 S 9 \quad M E A N=S U M / N$
840 FOF $I=1$ TO N
859 DFF＝DFF＋（SA（I）－MEAN $)^{\wedge} 2$
8GQ NEXT I
870 SDDEV＝SQR（DFF／（N－1））
88＠REM SORT OF DATA INTO NUMERIC O RDER
89め $F L=Q$
$90 め$ FOR $I=1$ TO $N-1$
910 IF $S A(I)<=S A(I+1)$ THEN 960
$9200=5 A(1)$
のЗめ $S A(I)=S A(I+1)$
$9405 A(I+1)=0$
959 $\mathrm{FL}=1$

960 NEXT I
970 IF FI．$=1$ THEN 899
980 FEM CALCULATION OF RAMGE
$996 \mathrm{RG}=\mathrm{SA}(\mathrm{N})-\mathrm{SA} \mathrm{A}^{1} 1$ ）
1 日句 $1 \mathrm{R}=\mathrm{SA}(1)$
$1010 H R=S A(N)$
1029 REM CALCULATION OF MEDIAN
103め IF $N / 2$ ：INT（N／2）THEN 1 GGQ
1 ＠4の IF SA（N／？）SA（N／2＋1）THEN 1 कら日
$105 め \mathrm{MDD}=5 A(\mathrm{~N} / 2)$
1ヵ6め IF $S A(N / 2)=S A(N / 2+1)$ THEN 1 W日，
$1676 M D D=(S A(N / 2)+S A(N / 2+1)) / 2$
1 め8 GOTO 1110
1 Ø9 $8 \mathrm{MDD}=5 \mathrm{~S}(\mathrm{INT}(\mathrm{N} / 2+1)$ ）
11 日G REM FFINT FEESULTS TO SEREEN
111 g CALL CLEAF：
1120 FFINT TAB（5）：＂CALCULATION RESU ITS＂：
1130 PRINT
＊＊＊＊＊＂：：
：140 FRINT＂SAMFLE SIZE＂：TAE（19）；N： ；
1150 FRINT＂MEAN（X GAR）＂；TAB（19）：I

1160 FRINT＂STD．DEVIATTOM＂；TAB（17）

117 OR PRINT＂MEDIAN＂；TAB： 19 ）： 1 NT（MDD

119 ＠FRINT＂RANGE＂；TAE（19）；INT（RE＊ 1

1196 PRINT＂LOWEST VALUE＂；TAB（19）：L F：：
12以日 FRINT＂HIEHEST VALUE＂；TAE（19）； HR：：：：
1210 FFIINT TAE（8）：＂PRESS ANY KEY＂
1226 GOSUE 2179
123 REM FEQUEST TO CONTINUE OR END
124 Q FRINT＂WISH TO FROCESS MORE D ATA＂：
125 FRFINT $\mathrm{TAR}(12) ; "(Y / N) ? "::=:$ ：：：：：

126め GOSUE 217 g
1276 IF K＝78 THEN 1329
$1230 \mathrm{FOR} \mathrm{I}=1 \mathrm{TO} \mathrm{N}$
1290 SA（I）$=$ S
130 NEXT I
1310 GOTO S．6
1320 END
13SG FRINT TAE（ 3 ）：＂THE MAXIMIMM NUME ER OF EN－＂：：
134 PFINT＂TRTES YOU CAN MAKE IS उ の日，＂：
1 SEG FRINT＂THE MINTMUM MHMEER IS 2 －
13 SO FRINT TAE（3）：＂THE MEAN IS THE ARITH＂：：
1375 FRINT＂METIS AVERAGE OF THE NU MBEFS＂：：
13BG FRINT＂YOU ENTER．＂：：：
1390 FRINT TAB（Z）：＂STAMDARD DEVIATI ON IS $A^{\prime \prime}$ ：：
14 QG FRINT＂MEASURE OF HOW WIDELY Y OHE＂：：
1419 FRINT＂NUMREFS SFREAD FROM THE
1420 FRINT＂AVERAGE．＂：：：
1430 GOS11E 214日
144 g CAIL CLEAF
145 GFFINT TAB（3）；＂SINCE THE VALUES YחU ENTER＂：：

146 0 FFINT＂TEND TO FORM A EEI 1．CUF
VE＂：：
1476 FRINT＂（NORMAL．DTSTRIGIIION） THE＂：
143 G FFINT＂ETD．DEVIATION IS A MEA SURE＂：：
1490 PRINT＂OF THE AREA UNDER THE B ELL＂：：
150日 PRINT＂CURVE．＂：：：
151日 FRINT TAB（4）；＂NO．QF STD．
\｛4 SFACES？\％AREA＂
1520 PRINT TAB（5）：＂DEV．（t／－）＂
1536 FRINT TAB（4）：
\｛4 SFACES\}…--": :
1540 FRINT TAB（8）；＂1（11 SPACES；SB．3＂
155＠PRINT TAR（8）：＂2（11 SFACES？95．5＂
156め PRINT TAE（8）；＂3（11 SPACES？99．7＂
$157 め$ FFIINT TAE（8）；＂4（11 SPACES；99．9＂
：：：
158め GOSUB 216め
159＠PRINT TAB（S）：＂THE MEDIAN IS TH E VALUE AT＂：：
16 QQ FRINT＂THE MID－POINT OF YOUR D ATA．＂：：：
1619 PRINT TAE（S）：＂THE RANGE IS THE DIF－＂：
1620 PRINT＂FERENCE BETWEEN YOUR LO WEST＂：：
163G FRINT＂DATA VALUE AND THE HIGH EST．＂：：
1640 PRINT＂IT IS A OUICK－AND－DIRTY ＂：：
165% PRINT＂ESTIMATE OF THE SPREAD． ＂：：
16GQ PRINT＂STANDARD DEVIATION IS M ORE＂：：
167＠PRINT＂REIIABLE，HOWEVER．＂：： PRINT TAB（S）：＂PRESS ANY KEY TO START＂
169め GOSUB 217 g
1760 RETURN
1710 REM DISFLAY CORRECTION OPTION
1720 GOSUE 217
1730 IF（Kくン67）＊（Kく＞78）＊（Kく＞81）THEN 1720
$174 \mathrm{FL}=\emptyset$
175 IF K K >78 THEN 178 Q
$1760 \mathrm{FL}=1$
1770 GOTO 198
178め IF K＝81 THEN 77
1790 REM ERROR CORRECTION SUBK
139＠FRINT＂REMEMEER INCORFECT SAMF LE \＃＂：：
1810 FRINT TAE（11）；＂（Y／N）？＂：：：： ：：：：：：
1829 GOSUA 2179
1339 IF $K=73$ THEN 1989
1840 INFUT＂WHAT TS THE SAMPLE \＃？ $": E N$ क
185 $\mathrm{EN}=\mathrm{VAL}$（EN\＄）
186GIF（EN＞N）＋（EN（1）＋（EN＞INT（EN）） THEN 1840
187 FFRINT：：
$188 \emptyset$ FRINT＂SAMPLE＂；EN：＂（S SFACES？＂ ；＂VALUE＝＂；SA（EN）
1890 FRINT ：：
19G日 FRINT＂ENTER YOUR NEW VALUE：
1910 INFUT SA（EN）

```
    192G PRTNT : : : : : :
193@ FRINT TAE(S);"ANY MORE CHANGES
        (Y/N)?": : : : :
1940 GOSUG 2179
1950 CALL CLEAR
19&G IF K=78 THEN 77@
1970 GOTO 180日
1990 1F FL=1 THEN 2020
197@ FRINT "THESE ARE THE FIRST TEN
    ": :
2000 L=1
2め10 GOTO 204@
2020 CALL CLEAR
2GSG PRINT "THESE ARE THE NEXT TEN"
    : :
2@4@ PRINT "VALUES.": : :
2@5め FRINT TAE(5);"ENTRY";TAE(15);"
    VALUE": :
2W60 FF=贝
207@ FOR L=L TO L+9
208@ FF=FF+1
2090 IF L>3日g THEN 77@
210め PRINT TAB(5);L;TAB(15);SA(L)
2110 NEXT L
212@ FRINT : :
213G PRINT "C=CHANGE DATA
    {3 SPACES}N=NEXT TABLE": :
2140 FRINT TAB(12);"Q=QUIT"
215@ GOTO 172@
216@ PRINT TAB{S); "PRESS ANY KEY FO
    R MORE";
217@ CALL KEY(@,K,S)
218@ IF S=\emptyset THEN 2170
2190 CALL CLEAR
220@ RETURN
```


Program 5：PC／PCjr Statistics

100 DIM SA（300）
110 REM GENERAL INTRODUCTION
120 WIDTH 40
130 KEY OFF
140 CLS：LOCATE 9，15，0：FRINT＂STATISTICS＂
150 LOCATE 11，18：PRINT＂FOR＂
160 LOCATE 13，12：PRINT＂NON－STATISTICIAN S＂
170 FOR $K=1$ TO 1500：NEXT K
180 CLS：LOCATE 5，8：PRINT＂This program ca lculates the＂：LOCATE 7，5：FRINT＂following
from data you input：＂
190 LOCATE 10，10：FRINT＂1．Mean＂：LOCATE 13，10：FRINT＂2．Standard Deviation＂
200 LOCATE 16，10：FRINT＂ 3. Median＂：LOCAT
E 19，10：PRINT＂4．Range＂
210 GOSUB 1190
220 REM INSTRUCTIUN REQUEST
230 SUM＝0：MEAN＝0：DFF＝0：SDDEV＝0：RG＝0
240 LOCATE 13， 4 ：FFINT＂Do you need inst ructions（ Y / N ）？＂
250 GOSUB 1160
260 IF $A==" Y$＂OR $A \$=" y "$ THEN GOSUB 730 270 FEM DATA ENTFY
280 LOCATE 11，7：INPUT＂Enter sample size ＂；N
290 IF $N>300$ OF $N=1$ THEN 280
300 CLS：LOCATE 3，4：FRINT＂If you make an error，continue with＂：LOCATE 5，4：FRINT＂t he with data entry．You will be＂ 310 LOCATE 7，4：FRINT＂able to correct it later．＂

320 FOR $I=1$ TO N：LOCATE $13,22:$ FRINT STRI NG $\$(19,32)$ ：LOCATE $13,10:$ PRINT＂Data entry \＃．＂STRING $\$(4,27)$ i；：INFUT Ri $\$$
330 SA（I）＝VAL（Fis）：NEXT I
340 REM ERROR CORRECTION REQUEST
350 CLS：LDCATE 12，2：PRINT＂Wish to make a ny corrections（Y／N）？＂
360 GOSUB 1160
370 IF $A \phi=" Y "$ OR $A \neq " Y$＂THEN 950
380 REM CALCULATION OF MEAN AND STD．DEV IATION
390 LDCATE 11，14：PRINT＂PLEASE WAIT＂
400 LDCATE 13，b：COLOR 0，7：PRINT＂Statisti
cs being calculated＂：COLOF 7，0
410 FOR $I=1$ TO N：SUM＝SUM＋SA（I）：NEXT I
$420 \mathrm{MEAN}=\mathrm{SUM} / \mathrm{N}$
430 FOF $I=1$ TO $N: D F F=D F F+(S A(I)-M E A N){ }^{2}$ 2：
NEXT I
440 SDDEV＝SQR（DFF／（N－1））
450 REM SOFT OF DATA INTO NUMERIC ORDEF
460 FL＝0：FOR $I=1$ TO $N-1: I F \quad S A(I)<=S A\{I+1$ ）THEN 480
$470 \mathrm{Q}=\mathrm{SA}(\mathrm{I}): \mathrm{SA}(\mathrm{I})=\mathrm{SA}(\mathrm{I}+1): \mathrm{SA}(\mathrm{I}+1)=0: \mathrm{FL}=1$
480 NEXT I
490 IF FL＝1 THEN 460
500 REM CALCULATISN OF RANGE
$510 \mathrm{FG}=\mathrm{SA}(\mathrm{N})-\mathrm{SA}(1): L \mathrm{~F}=\mathrm{SA}(1): \mathrm{HR}=\mathrm{SA}(\mathrm{N})$
520 REM CALCULATION OF MEDIAN
530 IF $N / 2 \ll$ INT $(N / 2)$ THEN 570
540 if $S A(N / 2)=S A(N / 2+1) \quad$ IHEN $M D D=S A(N / 2$ ）

550 IF $S A(N / 2)<>S A(N / 2+1)$ THEN $M D D=(S A(N$ ／2）$+5 A(N / 2+1)) / 2$
560 GOTD 590
$570 \mathrm{MDD}=\mathrm{SA}$（INT（N／2＋1））
580 REM FRINT RESULTS TO THE SCREEN
590 CLS：LOCATE 3，10：FRINT＂CALCULATION FE SULTS＂
600 LOCATE 5，4：FRINT＂＊＊＊宗具＊＊＊＊＊＊＊＊＊＊＊＊＊＊ ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＂
610 LOCATE 7，7：PRINT＂Sample Size＂；SFC：10 ）； N
620 LOCATE 9，7：PFINT＂Mean（X Ear）＂；SPC（7 ）：INT（MEAN＊ $10000+.5) / 10000$
6JO LOCATE I1，7：FFINT＂Std．DEV．＂；SFC（12）
；INT（SDDEV米10000＋．5）／10000
640 LOCATE 13，7：PRINT＂Median＂；SFC（15）；MD D
650 LDCATE 15，7：FFINT＂Range＂；SFC（16）；FE
660 LOCATE 17，7：PRINT＂Lowest Sample Valu e＂；SFC（2）；LF
670 LDCATE 17，7：FRINT＂Highest Sample Vai ue＂；SPC（1）；HR：GOSUE 1170
680 REM REQUEST TO CONTINUE OR END
690 LOCATE 12，3：PRINT＂wish to process mo re data（ Y / N ）？＂：GUSUE 1160
700 IF $A D=" N$＂OF $A \Phi=" \Pi "$ THEN CLS：END
710 FOF $I=1$ TO $N: S A(I)=0:$ NEXT $1: C L S: G O T O$ 230
720 REM INSTFUCTION SUBF
730 LDCATE 3， $5:$ PRINT＂The maximum number of entries you＂
740 LOCATE 5，2：FRINT＂can make 15300 ．Th e minimum is 2．＂
750 LOCATE 9，5：FRINT＂The mean is the ari thmetic average＂：LOCATE 11，2：FRINT＂of th e numbers you enter．＂
760 LOCATE 15，5：FRINT＂Standard deviation is a measure＂：LOCATE 17，2：F＇RINT＂of how．
widely your numbers spread from＂
770 LOCATE 19，2：PRINT＂the average．＂
780 GUSUB 1170
790 CLS：LOCATE 1，5：PRINT＂Since the value 5 you enter tend to＂：LOCATE 3，2：FRINT＂fo rm a bell curve（normal＂
800 LOCATE 5，2：FRINT＂distribution），the standard deviation＂：LOCATE 7，2：PRINT＂is a measure of the area under the bell＂ 810 LOCATE 9，2：PRINT＂curve．＂：LOCATE 11，9 ：PRINT＂No．of Std．\％Area＂
820 LOCATE $13,10:$ PRINT＂Dev．$(+/-)$＂：LOCATE 14，9：FRINT＂－－－－－－－－－－－－－－－－－－－＂
830 LDCATE 16，14：PRINT＂1＂SPC（10）＂ 68.3 ＂：L OCATE 18，14：FRINT＂2＂SFC（10）＂95．5＂：LOCATE
20，14：FRINT＂ 3 ＂SFC（10）＂ 97.7 ＂：LOCATE 22，1 4：PRINT＂4＂SFC（10）＂99．9＂
840 GOSUB 1170
850 CLS：LOCATE 4，5：PRINT＂The median is t he value at the mid－＂：LOCATE 6,2 ：FRINT＂？ oint of your data．＂
860 LOCATE $9,5:$ FRINT＂The range is the di fference between＂：LOCATE 11，2：PRINT＂your lowest data value and the highest．＂
870 LDCATE 13，2：FFiINT＂The range is a qui ck－and－dirty estimate＂：LOCATE 15，2：FRINT ＂of the spread．The standard deviation＂ 880 LOCATE 17,2 ：FRINT＂is a more reliable estimate of spread＂：LOCATE 19，2：FRINT＂t han range．＂
890 LOCATE 23，9：FFINT＂Fress any key to 5 tart＂：GOSUB 1180：RETUFN
900 REM DISPLAY CORRECTION OPTIONS
910 Z $\$=I N K E Y \neq I F \quad Z 末="$ DR（ $Z \$\rangle$＂c＂AND Z まく〉＂C＂AND Zまく＞＂ח＂AND Z\＄く〉＂N＂AND Z\＄く〉＂ q＂AND Z末＜＞＂Q＂）THEN 910
920 CLS：FL＝0：IF $Z \$=" n "$ OR $Z \$=" N$＂THEN FL ＝1：GOTO 1060
930 IF $Z \$=$＂q＂OF $Z \$=$＂Q＂THEN 390
940 REM ERROR CORFECTION SUBR
950 LOCATE 12，3：FFiNT＂Femember incorrect sampile \＃（Y／N）？＂：GOSUB 1160
960 IF $A \$=" N "$ OR $A \$=" \cap "$ THEN 1060
970 LOCATE 7，6：INPUT＂What is the sample number＂；ENक
980 EN＝VAL（ENक）：IF EN $>N$ OR $E N<1$ OR EN $<>I$ NT（EN）THEN 970
990 LOCATE 9，6：FRINT＂Sample＂；EN；SFC（5）；＂ Value＝＂；SA（EN）
1000 LOCATE 12，b：INPUT＂Enter your new va lue＂；C
1010 SA（EN）$=C$
1020 LOCATE 16，6：FRINT＂Any more changes （ Y / N ）？＂
1030 GOSUB 1160
1040 IF $A \$=" Y$＂OR $A \$=" Y$＂THEN 950
1050 GOTO 390
1060 CLS：COLOR 0，7：LOCATE 22，2：PFINT＂C $=$ CHANGE DATA $N=N E X T$ TABLE $Q=Q U I T$＂：CO LOF 7,0
1070 LOCATE 2，5
1080 IF FL＝0 THEN FRINT＂These are the $f \mathrm{i}$ rst ten values．＂：$k=1:$ GOTD 1100
1090 PRINT＂These are the next ten values
1100 LOCATE 6，10：PRINT＂Entry＂；SPC（12）；＂v alue＂
$1110 \mathrm{FF}=0$ ： $\mathrm{FOR} \mathrm{K}=\mathrm{K}$ TO $\mathrm{K}+9: \mathrm{FF}=\mathrm{FF}+1$
1120 IF K＞SOO THEN CLS：GOTO 390
1130 LOCATE FF $+7,10:$ PRINT K ；TAB（27）；SA（K

1140 NEXT K
1150 GOTO 910
1160 A $\$=I N K E Y \$$ ：IF $A \$=" "$ OR（ $A \$<>" Y "$ AND
A\＄く〉＂y＂AND A\＄く＞＂N＂AND A \langle（＞＂n＂）THEN 11
60 ELSE CLS：RETURN
1170 LOCATE 24，10：FRiNT＂Fress any key fo r more＂；
1180 A $\$=$ INKEY $\$$ ：IF $A \$="$＂THEN 1180 ELSE C LS：RETURN
1190 LOCATE 22，7：FRINT＂Fress any key t －continue＂
1200 IF INKEY $\$=" "$ THEN 1200 ELSE CLS：RET URN

Program 6：Apple Statistics

$1 \emptyset \varnothing$ HOME ：DIM SA（उळø）
11め INVERSE ：VTAB 9：HTAB 17：PRINT ＂STATISTICS＂：VTAB 13：HTAR 2の：PRINT ＂FOR＂
120 UTAB 17：HTAB 13：PRINT＂NON－STAT ISTICIANS＂
139 FOR $K=1$ TO $3 \varnothing \varnothing: S A(K)=\varnothing:$ NEXT K：NORMAL
$14 \varnothing$ HOME ：UTAB 2：PRINT＂THIS PROGRA M CALCULATES THE FOLLOWING：＂ VTAB 6：HTAF 15：PRINT＂1．MEAN＂： UTAB 1ळ：HTAB 15：FRINT＂2．STAN DARD＂：UTAB 11：HTAB 18：PRINT＂D EVIATION＂
16め VTAB 15：HTAB 15：PRINT＂3．MEDIA N＂：UTAB 19：HTAB 15：PRINT＂4．R ANGE＂
17め VTAB 23：HTAB 1ø：PRINT＂PRESS ${ }^{\circ} \mathrm{C}$ ＂TO CONTINUE＂：VTAB 23：HTAB 17
18め GET Z\＄：IF $Z \$$＜$>" \mathrm{C}$＂THEN 18め
19% REM INSTRUCTIONS REQUEST
$2 \emptyset \varnothing$ SUM $=\emptyset:$ MEAN $=\varnothing:$ DFF $=\varnothing:$ SDDEV $=\varnothing$ $: R G=\varnothing$
21ळ HOME：UTAB 12：HTAB 5：PRINT＂DO YOU NEED INSTRUCTIONS（Y／N）？＂：VTAB 12：HTAB 35
22め GOSUB 118め
23め IF $Z \$=$＂Y＂THEN GOSUR $7 \emptyset \varnothing$
24め HOME ：REM DATA ENTRY
25ø VTAB 12：HTAE 9：INPUT＂ENTER SAM PLE SIZE：＂；N\＄：N＝VAL（N\＄）
26の IF N＞उのめ OR $N<=1$ THEN FOR $I=26$ TO 35：VTAB 12：HTAB I：PRINT CHR\＄（32）：NEXT ：GOTO 25め
27ळ HOME ：PRINT＂IN CASE OF AN ERROR ，CONTINUE WITH THE ENTRY．＂
28め VTAB 2：HTAB 8：PRINT＂YOU CAN CO RRECT LATER．＂
290 FOR I＝ 1 TO N：VTAB 12：HTAB 1ø： PRINT＂DATA ENTRY \＃＂；I；：INPUT R \＄：SA（I）＝VAL（R\＄）
उめめ FOR $J=24$ TO 39：VTAB 12：HTAB J ：PRINT CHR $\$(32)$ ：NEXT J ：NEXT I
उ19 REM ERROR CORRECTION REQUEST
32の HOME ：VTAB 12：PRINT＂WISH TO MA KE ANY CORRECTIONS（Y／N）？＂：VTAB 12：HTAB 35
उ3め GOSUR $118 \varnothing$
$34 \varnothing$ IF $Z \$=$＂Y＂THEN GOTO 97＠
35月 REM CALCULATIONS OF MEAN AND STD DEVIATION
36＠HOME ：VTAB 11：HTAB 16：PRINT＂P LEASE WAIT＂
37＠VTAB 13：HTAB 8：PRINT＂STATISTIC S BEING CALCULATED＂
उ8ด FOR I＝ 1 TO N：SUM $=S U M+S A(I):$ NEXT I

```
390 MEAN = SUM / N
40め FOR I = 1 TO N:DFF = DFF + (SA(I)
        - MEAN) ~ 2: NEXT I
    419 SDDEV = SQR (DFF / (N - 1))
420 REM SORTING THE DATA
43Ø FL = Ø: FOR I = 1 TO N-1: IF SA(
        I) < = SA(I + 1) THEN 45@
440Q = SA(I):SA(I)=SA(I + 1):SA(I +
        1) = Q:FL = 1
45ø NEXT I: IF FL = 1 THEN 430
460 REM CALCULATION OF RANGE
47@ HR = SA(N):LR = SA(1):RG = HR - LR
480 REM CALCULATION OF MEDIAN
49@ IFN/2<> INT (N/2) THEN 5
        2ø
5@g IF SA(N / 2)=SA(N/2 + 1) THEN
    MDD = SA(N / 2): GOTD 54の
51øMDD = (SA (N / 2) + SA (N/2 + 1))/
        2: GOTO 540
52\emptyset MDD = SA( INT (N / 2 + 1))
530 REM PRINT RESULTS TO SCREEN
54\emptyset HOME : VTAB 2: HTAB 1Ø: PRINT "CA
        LCULATION RESULTS": UTAB 3: HTAB
        9: PRINT "**********************"
55@ VTAB 6: HTAB 6: PRINT "SAMPLE SIZ
        E"; TAB( 28);N
569 VTAB 8: HTAB 6: PRINT "MEAN (X-BA
        R)"; TAB( 28); INT (MEAN * 1のØ\emptyset\emptyset +
        .5) / 1øøøø
57Ø UTAB 1\varnothing: HTAB 6: PRINT "STD. DEVI
        ATION"; TAB( 28); INT <SDDEV * 1\varnothing
        øøg + .5) / 1øøgぁ
58@ VTAB 12: HTAB 6: PRINT "MEDIAN"; TAB{
    28);MDD
590 VTAB 14: HTAB 6: PRINT "RANGE"; TAB\
        28);RG
6øØ UTAB 16: HTAB 6: PRINT "LOWEST SA
    MPLE VALUE"; TAB( 28);LR
61\varnothing VTAB 18: HTAB 6: PRINT "HIGHEST S
    AMPLE VALUE"; TAB( 28);HR
620 VTAB 23: HTAB 1ø: PRINT "PRESS 'P
        " TO PROCEED": VTAB 23: HTAB 17
63@ GET Z$: IF Z$= "" OR Z$< > "P"
        THEN 63%
G4g REM REQUEST TO CONTINUE OR END
65% HOME : VTAB 12: HTAB 3: PRINT "WI
    SH TO PROCESS MORE DATA (Y/N)?": UTAB
        12: HTAB 34
66g GOSUB 1189
67% IF Z$ = "N" THEN HOME : END
68@ FOR I = 1 TO N:SA(I) = ø: NEXT I:
        GOTO 2øø
690 REM INSTRUCTIONS SUBROUTINE
7\emptyset\emptyset HOME : UTAB 4: PRINT "THE MAXIMUM
        SAMPLE SIZE IS 3\emptyset\emptyset, WHILE THE
    MINIMUM IS 2."
71@ UTAB 1%: PRINT "THE MEAN IS THE A
    RITHMETIC AVERAGE OF THE NUMBER
    S YOU ENTER."
72% VTAB 16: PRINT "THE STANDARD DEVI
    ATION IS A MEASURE OF HOW WIDELY
        YOUR DATA SPREADS FROM THE AVE
        RAGE."
73@ VTAB 22: HTAB 12: PRINT "PRESS 'M
        " FOR MORE": UTAB 22: HTAB 19
74ø GET Z$: IF Z$ = "" OR Z$ < > "M"
        THEN 74Ø
75\Omega HOME : PRINT "SINCE THE VALUES YO
        U ENTER TEND TO FORM A BELL CURVE
        (NORMAL DIST.), THE STD. DEVIA
        TION IS A MEASURE OF THE AREA UND
        ERTHE BELL CURVE."
```

74ø GET Z\＄：IF Z\＄＝＂＂OR Z\＄く＞＂M＂ THEN 74Ø
75Ω HOME ：PRINT＂SINCE THE VALUES YO U ENTER TEND TO FORM A BELL CURVE （NORMAL DIST．），THE STD．DEVIA TION IS A MEASURE OF THE AREA UND ERTHE BELL CURVE．＂

VTAB 8：PRINT＂NO．OF STD．DEV．\＆＋ ／－）＂：VTAB 9：PRINT＂－－－－－－－－－－－－－－
$77 \varnothing$ VTAB 8：HTAB 28：PRINT＂\％AREA＂：VTAB 9：HTAB 28：PRINT＂－．．．－－＂
789
VTAB 11：HTAB 2：PRINT＂$(+/-) 1 \mathrm{~s}$ TD．DEV．＂；TAB（ 3n）；＂68．3＂
VTAB 13：HTAB 2：PRINT＂$(+/-) 2 \mathrm{~s}$ TD．DEV．＂；TAB（ 3ø）；＂95．5＂
UTAB 15：HTAB 2：PRINT＂$(+/-) 3 \mathrm{~s}$ TD．DEV．＂；TAB（ 3ø）；＂99．7＂
VTAB 17：HTAB 2：PRINT＂$(+/-) 45$ TD．DEV．＂；TAB（ 30）；＂99．9＂
VTAB 22：HTAB 12：PRINT＂PRESS＂M ＂FOR MORE＂：UTAB 22：HTAB 19
3ヵ GET Z\＄：IF Z $=$＝＂＂OR Z\＄＜＞＂M＂ THEN 83g
HOME ：VTAB 4：PRINT＂THE MEDIAN IS THE VALUE AT THE MID－POINT OF YOUR DATA．＂
$85 \square$
UTAB 8：PRINT＂THE RANGE IS THE D IFFERENCE BETWEEN YOURLOWEST DATA VALUE AND THE HIGHEST．THE RANG E IS A QUICK－AND－DIRTY ESTIMATE OF THE SPREAD．＂
UTAB 11：HTAB 13：PRINT＂THE STD． DEVIATION IS MORE RELIABLE．＂
870 VTAB 22：HTAB 5：PRINT＂PRESS＂S＂ TO START THE PROGRAM＂：UTAB 22：HTAB 12
88ø GET Z\＄：IF $\mathrm{Z} \$=\mathrm{m"}$ OR $\mathrm{Z} \$$＜＞＂S＂ THEN 88ø
896
9 9ø
910

929

RETURN

REM DISPLAY CORRECTION OPTIONS
HOME ：INVERSE ：VTAB 24：PRINT＂ $\mathrm{C}=$ CHANGE DATA $\quad \mathrm{N}=\mathrm{NEXT}$ TABLE E＝EXIT＂：NORMAL ：RETURN
GET Z\＄：IF Z\＄＝＂＂OR 《 Z \＆＜＞＂C
＂AND Z\＄＜＞＂N＂AND Z\＄＜＞＂E＂
）THEN 92ø
930 IF $Z \$=$＂N＂THEN 1129
940 IF Z\＄＝＂E＂THEN 350
950 GOTO 97』
960
975
REM ERROR CORRECTION SUBROUTINE
HOME ：UTAB 12：HTAB 3：PRINT＂RE
MEMBER INCORRECT SAMPLE（Y／N）？＂
：VTAB 12：HTAB 36
980 GOSUB 1189
990 IF Zक＝＂N＂THEN 1ø8の
1øøø HOME ：UTAB 8：HTAB 6：PRINT＂WH AT IS THE SAMPLE NUMBER＂；：INPUT E\＄：EN＝VAL（E\＄）
1ø1ø IF EN＞N OR EN＜ 1 OR EN＜＞INT （EN）THEN 1ดのळ
102の VTAB 11：HTAB 6：PRINT＂SAMPLE＂ ；EN；TAB（ 22）；＂VALUE＂SA（EN）
1ø3Ø VTAB 15：HTAB 6：PRINT＂ENTER YO UR NEW VALUE＂；：INPUT C：SA（EN）＝ C
1040
AB 22：HTAB 6：PRINT＂ANY MORE CHANGES（Y／N）？＂：UTAB 22：HTAB 2
8
165の GOSUB 1180
1ø6Ø IF $Z \$=$ "Y" THEN 97の
1979 GOTO 36の

1ø8ø GOSUB 91め：UTAB 2：PRINT＂THESE ARE THE FIRST TEN SAMPLE VALUES：＂

1ø9ø UTAB 6：HTAB 1ø：PRINT＂ENTRY＂；TAB（ 25）；＂VALUE＂
$11 \emptyset \square$ UTAB 7：HTAB 1ø：PRINT＂－－－－－＂；TAB〔 25）；＂－－－－－＂
111ஜ FOR K＝ 1 TO 1币：VTAB K＋8：HTAB

11：PRINT K；TAB（ 26）；SA（K）：NEXT K：GOTO 929
$112 \mathscr{D}$ UTAB 2：PRINT＂THESE ARE THE NEX T TEN SAMPLE VALUES：＂：UTAB 2：HTAB 38：PRINT＂＂
1130 IF K＜3øø THEN GOSUB 1179
$1149 \mathrm{~L}=9$ ：FOR $K=K$ TO $K+9$ ：IF $K>$
309 THEN $K=K+9$ ：NEXT K ：GOTO 369
1150 VTAB L：HTAB 19：PRINT K；TAB 2 6）；$S A(K)$
$116 \square \mathrm{~L}=\mathrm{L}+1$ ：NEXT K：GOTO 920
1179 FOR M＝ 9 TO 18：VTAB M：HTAB 19 ：PRINT＂＂；TAB（ 26）；＂
＂：NEXT M：RETURN
 Y＂AND $Z \$$（＞＂N＂）THEN 22の
119の RETURN

Program 7：Color Computer Statistics

1のด DIM SA（Зめめ）
119 REM［न\＃
120 CLS：FRINT：171，＂STATISTICS＂：PRI NT，238，＂FOR＂：FRINT＠295，＂NON－S TATISTICIANS＂
1उด FOR K＝1 TO 1 日月ด：NEXT K
149 CLS：FRINT： 32, ＂THIS PROGRAM CAL CULATES THEKS SFACESJFOLLOWING：

15＠FRINT：139，＂1．MEAN＂：PRINTQ 2G3 ，＂2．STANDARD＂：PRINT，238，＂DEVI ATION＂
16G FRINT：299，＂ 3. MEDIAN＂：PRINT： 3 6S，＂4．RANGE＂
$17 \emptyset$ FRINT® 454，＂FRESS C＂TO CONTIN UE＂
18め Z\＄＝INKEY\＄：IF $Z \$=" "$ OR $Z \$\rangle " C "$ THEN 189
$19 \emptyset \operatorname{SUM}=\emptyset: M E A N=\emptyset: D F F=\emptyset: S D D E V=\varnothing: R G=\varnothing$ 2め $毋$ CLS：FRINTA 224，＂DO YOU NEED INS TRUCTIONS（Y／N）？＂
210 GOSUB $1050:$ IF $Z \$=" Y "$ THEN GOSUB 6ゆり
229 REM DETE GNDEF
2उ 5 CLS：FRINT：229，＂ENTER SAMPLE SI ZE＂；：INPUT Nक：N＝VAL（Nक）
24 IF $N>36$ OR $N<=1$ THEN 236
25め CLS：PRINT＂IN CASE OF AN ERROR CONTINUE．YOU CAN CORRECT LATE R．＂
269 FOR I＝1 TO N：FRINT：224，＂DATA E NTRY \＃＂；I；：INPUT R $\$: S A(I)=V A L\{R$ \＄）
27 （FOR $J=242$ TO 25 $:$ PRINTQ J，CHR उ2）：NEXT J：NEXT I

296 CLS：PRINT：224，＂WISH TO MAKE CO RRECTIONS（Y／N）？＂
उめめ GOSUB 1めらめ：IF $Z \$=" Y$＂THEN GOSUR 879
 C．D＝－
326 CLS：FRINT：202，＂FLEASE WAIT＂：PR INT：258，＂STATISTICS BEING CALC ULATED＂
33ด FOR I＝1 TO N：SUM＝SUM＋SA（I）：NEXT I：MEAN＝SUM／N
349 FOR I＝1 TO N：DFF＝DFF＋（SA（I）－MEA N） 2 ：NEXT I ：SDDEV＝SQR（DFF／（N－1） ，

$36 ด \mathrm{FL}=\varnothing$ ：FOR $I=1$ TO $N-1: I F \quad S A(I)<=S$ A（I＋1）THEN 38 （ 1 ）
$379 \quad Q=S A(I): S A(I)=S A(I+1): S A(I+1)=0$ ： $\mathrm{FL}=1$
38月 NEXT I：IF FL＝1 THEN $36 \emptyset$

4の日 $\quad H R=S A(N): L R=S A(1): R G=H R-L R$

429 IF $N / 2 \ll$ INT $(N / 2)$ THEN 450
43ด IF $S A(N / 2)=S A(N / 2+1)$ THEN $M D D=S$ $A(N / 2)=G O T O 47 贝$
$449 \operatorname{MDD}=(S A(N / 2)+S A(N / 2+1)) / 2=$ GOTO 479
$45 \varnothing \mathrm{MDD}=\mathrm{SA}(I N T(N / 2+1))$

47ツ CLS：PRINT：S，＂CALCULATION RESULT S＂：PRINTఐ37，＂＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ ＊＊＊＂
$48 \emptyset$ FRINT： 1 ＠日，＂SAMPLE SIZE＂；TAB＜2め ） N
49の FRINT®164，＂MEAN（ $\mathrm{X}-\mathrm{BAR}$ ）＂；TAB（29

5めめ PRINTจ228，＂STD．DEVIATION＂；TAE（2

51日 FRINTจ292，＂MEDIAN＂；TAB（20）；MDD
52め PRINT＠356，＂RANGE＂；TAB（2め）；RG：PR INT：З97，＂（＂；LR；＂－＂；HR；＂）＂
539 PRINT：456，＂PRESS ANY KEY＂
540 Z \＄＝INKEY\＄：IF $\mathrm{Z} \$="$＂THEN 54．

560 CLS：PRINTQ224，＂WISH TO PROCESS MORE DATA（Y／N）？＂
570 GOSUB 195月：IF $Z \$=" N "$ THEN CLS：E ND
58 FOR I＝1 TO N：SA（I）＝贝：NEXT I：GOT －19 19
596 REM EKS
6ПØ CLS：PRINTQ65，＂THE MAXIMUM NUMBE R OF ENTRIES IS Sめめ．THE MINIM UM IS 2．＂
610 PRINTO193，＂THE MEAE IS THE ARIT HMETIC〔S SPACES？AVERAGE OF THE DATA．＂
 ［IF IS A\｛4 SPACES\}MEASURE OF HOW WIDELY YOUR DATA SPREADS FROM THE AVERAGE．＂
G3Ø FRINT：453，＂PRESS ANY KEY FOR MO RE＂
64め Z\＄＝INKEY\＄：IF Z\＄＝＂＂THEN 64
65 CLS：PRINT＂SINCE THE VALUES YOU ENTER TENDTO FORM A BELL CURVE （NORMAL\｛4 SPACES？DIST．），THE S TD．DEVIATION IS A MEASURE OF A REA UNDER THE BELL CURVE．＂
G6め PRINT®192，＂NO．OF STD．DEV． $1+/-$ ）＂；TAB（25）；＂\％AREA＂
670 PRINTD224， －＂；TAB（25）；＂－－－－－－＂
68め PRINTD29め，＂$\{+/-) 1$ STD．DEV．＂；TA B（26）；＂68．3＂
690 PRINT®322，＂$(+/-) 2$ STD．DEV．＂：TA B（26）：＂95．5＂
7 7历 PRINT〇354，＂（＋／－） 3 STD．DEV．＂；TA B（26）；＂99．7＂
710 PRINTЭ386，＂$(+/-) 4$ STD．DEV．＂：TA B（26）；＂99．9＂
72の PRINT＠453，＂PRESS ANY KEY FOR MO RE＂
73の $Z \$=I N K E Y \$: I F \quad Z \$=" n$ THEN 73Ω

74ø CLS：PRINT：PRINT：PRINT＂THE MEDII IIL IS THE VALUE AT THE MID－POIN T OF YOUR DATA．＂
75 PRINT：193，＂THE R月DTEE IS THE DI FFERENCE\｛4 SPACES3BETWEEN YOUR LOWEST DATA VALUE AND THE HIGH EST．IT IS A QUICK－AND－DIRTY E STIMATE OF THE＂
$76 \emptyset$ PRINT＠З2ø，＂SPREAD．STD．DEVIATI ON IS MORE RELIABLE THAN RANGE －＂
$77 \emptyset$ PRINTЭ449，＂PRESS＊S＂TO START T HE PROGRAM＂
78の $\mathrm{Z} \$=$ INKEY\＄：IF $Z \$="$ OR（Z\＄く＞＂S＂） THEN 78ø

$79 \emptyset$ RETURN

 ；：RETURN
829 Z\＄＝INKEY\＄：IF Z\＄＝＂＂OR（Z\＄く〉＂C＂ AND Zकく〉＂N＂AND $Z \Phi<>" E ")$ THEN 8 20
83 IF Z\＄＝＂N＂THEN 99め
84＠IF $Z \$=" E "$ THEN 310
85＠GOTO 87
 ＂
87ヵ CLS：PRINTज224，＂REMEMEER INCORRE CT SAMPLE（Y／N）？＂
88の GOSUR 1 ＠5 ：IF $Z \$=" N "$ THEN 96の
89の CLS：FRINT：165，＂WHAT IS THE SAMP LE \＃＂；：INPUT E\＄：EN＝VAL（E\＄）

90Ø IF EN＞N OR ENく1 OR ENく＞INT（EN） THEN 89め
$91 \curvearrowleft$ PRINT®229，＂SAMPLE＂；EN；TAB（2め）； ＂VALUE＂；SA（EN）
929 PRINT®293，＂ENTER YOUR NEW VALUE ＂：PRINT＂\｛S SPACES\}";: INPUT C $\$: S$ A（EN）＝VAL（C\＄）
93Ø PRINT®453，＂ANY MORE CHANGES（Y／ N）？＂
940 GOSUB $1950:$ IF $Z \$=" Y "$ THEN $87 \emptyset$
95 GOTO 1 日4の
960 GOSUB 81Ø：PRINTコØ，＂THESE ARE TH E FIRST TEN VALUES：＂
970 PRINTこ69，＂ENTERY＂；TAB（17）；＂UREDE ＂

980 I＝1：FOR K＝1ø1 T0 389 STEP 32：PR INT®K，I；TAB（17）；SA（I）：I＝I＋1：NEX T K：GOTO 82の

990 PRINTจø，＂THESE ARE THE NEXT TEN VALUES＂：IF Iくふめळ THEN GOSUB $1 \emptyset$ 30
1 Øø曰 FOR K＝1ø1 TO 389 STEP 32：IFIンЗ Øの THEN 1 Ø2め
1 Ø1 \emptyset FRINT®K，I；TAB（17）；SA（I）：$I=I+1$
1め2Ø NEXT K：GOTO 82Ø
$1 \varnothing 3 め$ FOR K＝101 TO 389 STEF 32：PRINT QK，＂ 3 SPACES\}"; TAB(18);" \｛6 SPACES\}": NEXT K: RETURN
104 ® RETURN
1ø5の $Z \$=I N K E Y \$: I F \quad Z \$="$ OR（Z\＄く〉＂Y＂ AND Z\＄く〉＂N＂）THEN 1ळ5め
156D RETURN

Each Sentinel Color Diskette has a lifetime guarantee； 100% certified at levels which meet or exceed all criteria necessary for accurate，error－free read／write operations．

Phone toll－free for the name of the dealer nearest you： 1－800－323－5005（in Massachusetts 1－800－323－5001）．

M’FILE For The Commodore 64

Stan Fenster
$M^{\prime} F I L E$ is a set of data management programs for the Commodore 64. A 1541 disk drive and a printer are required. The manual indicates that there's also a tape version, but it was not tested for this review. Any serial port or user port (RS-232 or parallel) printer can be used.

The package contains a 7 inch x 9 -inch loose-leaf manual, a software key, and a program disk. The programs on the disk can be copied to a backup disk. The key, which plugs into Control Port 1 (front joystick port), is required to run the program. The disk contains the main routines, a SORT program, a COPY program, and a TEXT'MERGE program. No data files go on this disk. Instead, each data file occupies a separate data disk. This might discourage the use of M'FILE for small jobs.

The manual is well written and generally easy to follow, though more examples would have been helpful. However, the menus within the program lead the user so effectively through all the necessary steps that you'd rarely need to refer to the manual.

Major Characteristics

Data is stored on the data disk, not in RAM. This allows for either 1000 records of 125 characters each or 500 records of 250 characters each. Each record is limited to 32 fields of no more than 78 characters
each. Fields can be either numeric or alphanumeric. All alphabetic characters are in uppercase, but a new version which supports both upper- and lowercase has been announced. Numeric fields can be used in formulas allowing arithmetic calculations among fields. Within formulas, an if-then syntax is available. Up to ten userdefined interfield formulas can be used.

Selection of records for updates, reports, or text merges can be made using any or all fields. One field is designated as the keyfield. Searches using the keyfield are especially fast, and offer extensive comparison capabilities ($=,<,>,<=,>=$, or $<>$) between fields.

Report formats are very flexible, and up to 15 such formats can be saved for reuse later. Fields can be printed in columns or horizontally, and special ASCII control codes can be sent to the printer.

Main Menu Options

The main menu gives the following options:

1. Access a File.
2. Print a Report.
3. Create a File.
4. Sort a File.
5. Exit.

To get started, select Create a File. Next, format a data disk and set it up to receive the record specifications. After a

title is entered, the program leads the user through the steps of choosing field names, types, sizes, and decimal settings. When setup is complete, it is stored on disk, and the user proceeds to Access a File.

Access a File is used to enter new data, to change or inspect data, or to add fields and formulas.

Print a Report allows the user to create a new report format, to call up a saved report format, to add temporary fields or formulas, to display totals on the screen, or to set printer control characters. After a report format is chosen and edited as desired, it may be saved. The report is then printed. Many options are available in setting up the print format.

Use Of Function Keys

The screens displayed by $M^{\prime} F I L E$ are either menus or data screens. Data screens have a line at the bottom indicating the functions available by use of function keys. These generally include $\mathrm{f} 1=$ ACCEPT, $\mathrm{f3}=$ DELETE, and f5 = EXIT. On a data entry or modification screen, $\mathrm{f7}=\mathrm{ADD} / \mathrm{SUB}$ (modify a numeric field) also appears.

When a record selection is made by record number, the f 2 key advances the pointer to the next sequential record, and f4 moves to the previous sequential record. Note that if records have been deleted, there may be missing record numbers. When a record selection is done by searching, the f8 key advances to the next matching record. However, none of these evennumbered function keys is indicated in the screen prompts.

Sorting

Sorting is done by a separate program (SORT) loaded from the main menu. Sorting is performed on any single field, in either ascending or descending order. The result is a new, sorted data file on the disk. The
exit from SORT is to the BASIC environment, not back to the main menu. To continue proc-essing-for example, to prepare a report-the user must load and run M'FILE again.

Texł Merging

A separate program, TEXT'MERGE, is provided to create files which can be used by most major word processing programs. The selection menu lists Quick Brown Fox, WordPro, EasyScript, Script 64, Totl Text, Busiwriter, Paper Clip, and Other. Other is intended to work with any word processors which can read sequential files. I found that I could not generate mailing lists and labels in the format I wanted with the M'FILE report generator. However, using TEXT'MERGE in conjunction with my word processor (EasyScript), it was easy to get single-column labels. Additional columns are not supported by M'FILE but I was able to do it with word processor manipula-tions-but only because my printer has reverse-line motion.

Copy Program

A separate program, COPY, is provided to make backup copies of $M^{\prime} F I L E$ data disks, using a single disk drive. The file title of the new disk can be different from the old title. As with other backup programs, frequent disk swaps are required to make the backup disk. COPY also allows the user to copy the format only. This feature is useful for expanding the file onto a second disk, or creating a new file with the same format.

Other Features And Considerations

Another capability of $M^{\prime} F I L E$ is a screen dump to the printer at almost any time, by pressing the British pound key.

When the file structure is accepted by the user, the file character limit is set at 125 if no
more than 125 characters are required; otherwise, the limit is 250 characters. After this, the original field names and structures can't be changed, although new fields can be added later, as long as the maximum character limit (125 or 250) is not exceeded.

In report mode, additional temporary numeric fields can be added. Their contents are created by using formulas involving other numeric fields. The menu allows the user to add alphanumeric fields, but there is no way to enter data into them.

Reports have an optional total line at the end. However, the number of characters for each numeric field is the same for the totals as for individual entries. This leads to possible truncation in a total if extra digits would have been generated. I had this problem, and I found a solution by creating a temporary field equal to my original field, but with extra width. Then I used the new field instead of the old one and got a correct total. Of course, it would have been easier if the original field had been wider, but I didn't know that at the time. A related feature is Screen Totals. This allows display of totals on the screen, but has the same width limitation as printed totals.

Because the main data is kept on the data disk, there are frequent disk reads and writes. In particular, when an exit is made from the file access mode after changes are made, the data file on disk is rewritten, which takes a few minutes. When the user enters a new mode, a read is required, even if a write was just performed.

Field selection and searching are easy and fast. Sorting on keyfields is fast too, but limited in speed by disk accesses. Other sorts are slower.

Even with the limitations discussed above, M'FILE is a
powerful and versatile data management system.

M'FILE
 by m'soft

Double E. Electronics, Inc. 12027 Pacific Street
Omaha, NE 68154
(402) 334-7870
$\$ 79.95$

AtariWriter

John Heilborn
A few years ago, Atari introduced a program called Atari Word Processor. It was a fairly expensive word processor that had an enormous number of functions and features. It was versatile and almost totally menu-driven. In other words, while you were using it, the computer displayed a menu of program functions at the top of the screen.

Unfortunately, if you decided you wanted to do something that was on another, undisplayed, menu you would have to know how to find the menu (the menus were nested and could be accessed by pressing different options) and would have to go through all of the other menus to get there.

The old word processor was very versatile, but was also rather cumbersome.

A New Generation

Today there is a new Atari word processor called AtariWriter. It's obviously a descendant of the original Atari Word Processor, but all of the "fat" has been trimmed. AtariWriter is easy to use (no menus to wallow through), easy to understand (all of the commands are logically accessed), and very responsive (when you press a key, the computer responds quickly).

One additional feature that makes this program far better than the old one is that it is in a cartridge, not on disk, and it will work with as little as 16 K memory. You can use it with any of the existing Atari computers and

MAKES YOUR PERSONAL COMPUTER EVEN MORE USEFUL AND VERSATILE!

- Allows quick computer processing of conventional checks.
- Heavy vinyl- $8^{\prime \prime}$ wide.
- Holds eight personal-size checks.
- For adjustable, tractor-type printers, friction-type printers or regular typewriters.
- Comes with BASIC program to format checks. Can be used as a sub-routine in your present program.
- Ideal for small to medium-size businesses, too! (Model-200 holds six commercial-size checks)

Send check or money

 order. Ohio residents add $51 / 2 \%$ sales tax. Allow two weeks for delivery. Be certain to specify model. Visa and MasterCard accepted.THE CHF COMPANY P.O. BOX 185 • OBERLIN, OH. 44074 216/775-7338

you don't need to have a disk drive or a tape drive. Of course, if you run the word processor without a device to store your text, you will lose it after writing it. However, for people just using the system as an enhanced typewriter, this is enough.

Functions And Features

Although I am used to writing on an expensive professional word processing system, AtariWriter has all of the features that I would normally use on the larger system. I wrote this article on AtariWriter and found, in fact, that AtariWriter has some very nice extra features not usually found on other systems, such as a single toggle function which allows you to switch displayed characters from upper- to lowercase automatically. The program has more features than I can cover in a review, so I'll just give you the highlights.

When you turn AtariWriter on, it displays the Atari logo
for a few moments and then switches to a menu of functions. The functions are:

- [C]REATE File is used to begin writing a new file. If you have some text in memory left over from another file and you select this option, the computer responds by asking you if you wish to delete the file in memory. This way you will not accidentally erase a file that you want to SAVE. If there is no file in memory, the computer simply goes to the editing page.
- [D]ELETE File erases a file from the disk drive. When you select this option, the computer asks for the name of the file you wish to delete. Once you have selected the file to delete, it checks with you one more time by asking, "ARE YOU SURE?" This makes it almost impossible to erase a file by accident.
- [E]DIT File is similar to [C]REATE File, but is used to continue working on an existing file.
- [F]ORMAT Disk erases all
of the information a disk contains, so the program asks you, "ARE YOU SURE?" before executing this command too.
- [I]NDEX of Disk Files displays the names of all the programs and text files on your disk. After the files have been displayed, the computer asks if you want to print the index. If you press Y or enter YES (and have a printer connected), the index will be printed.
- [L]OAD File transfers any file you have on disk (or cassette) into the computer's memory.
- [P]RINT File prints the file that is currently in memory. This routine will not print a file directly from disk (or cassette). The file must first be transferred to memory.
- [S]AVE File transfers any file you have in memory onto the disk (or cassette).

Editing

In the editing mode, AtariWriter displays a blank screen with a

Put a Monkey Wrench into your ATARI 800 or XL

Cut your programming time from hours to seconds, and have 33 direct mode commands and functions. All at your finger tips and all made easy by the MONKEY WRENCH II.
The MONKEY WRENCH II plugs easily into the cartridge slot of your ATÅRI and works with the ATARI BASIC.
Order your MONKEY WRENCH II today and enjoy the conveniences of these 33 features

- Line numbering
- Renumbering basic line numbers
- Deletion of line numbers
- Variable and current value display
- Location of every string occurrence
- String exchange
- Move lines
- Up and down scrolling of basic programs
- Special line formats and page numbering
- Disk directory display
- Margins change
- Home key functions
- Cursor exchange
- Upper case lock
- Hex conversion
- Decimal conversion
- Machine language monitor
- DOS functions
- Function keys

The MONKEY WRENCH II also contains a machine
language monitor with 16 commands that can be used
to interact with the powerful features of the 6502 microprocessor.

"The Rabbit" for your VIC 20 or CBM 64

If you own aVIC 20 or a CBM 64 and have been concerned about the high cost of a disk to store yout programs on worty yourself no longer Now the'e's the RABBIT. The RABBIT comes in a cartridge and at a much. much lower price than the average disk. And speed this is one fast RABBIT. With the RABBIT you can load and store on your CBM datasette an 8 K program in almos 30 seconds compared to the curtent 3 minutes of a VIC 20 or CBM 64, almost as fast as the 1541 disk drive
The RABBIT is easy to install, allows one to Append Basic Programs, works with or without Expansion Basic Programs, works with or without Expansion
Memory. and provides two data file modes The RABBIT is not only fast but reliable
(The Rabbit for the VIC 20 contains an expansion connector so you can simultaneousty use your memory board, etc)

MAE NOW THE BEST FOR EESS!

Please for your own protecfion consider the MAE first before you buy that other assembler. We've had numerous customers who wasted their money on some cheaper off brand assembler tell us how much better the MAE is. The most powerful Macro Assembler/Editor available for the Commodore 64 and other CBM/PET computers, and also for the ATARI 800/XL and Apple IIIIIE.
MAE includes an Assembler, Editor, Word Processor, Relocating Loader, and more all for just $\$ 59.95$.
We could go on and describe the MAE but we thought you would like to read our customers' comments. The following are actual unedited comments from correspondence about the MAE:
"Excellent Development "My Compliments to Carl Moser Package."
and EHS".

Eisici:
series of letters and numbers across the top. Below the blank screen is a black area with arrows indicating the tab positions and two indicators (L and C) which are used to keep track of the line and column of the cursor location.

Print Formatting Controls

The letters and numbers across the top of the screen are print controls and can be changed at any time during your editing session. This means that you can have text that varies in width, spacing, or any other parameter that can be set with these controls. The print functions that you can control are bottom margin, paragraph spacing, print style, paragraph indention, right justification, left margin position, right margin position, line spacing, top margin, and page length.

Block Functions

Block functions are controls that allow you to move or delete entire blocks of text. To move a
block of text, you would simply mark the beginning and end of the block you wish to move (or delete); AtariWriter will do the rest for you automatically.

Search and Replace

With search and replace you can specify a word (or several words) that you want the computer to find. AtariWriter will then look through the entire document and locate each occurrence of the word (or words) you specify. Once each word has been found, you can continue editing from that point, replace that word or delete it.

AtariWriter is a very good, low-cost word processing system that can provide you with virtually every feature you could want from a word processor.
AtariWriter
Atari, Inc.
1265 Borregas Ave.
Box 427
Sunnyvale, CA 94086
(408) 745-2000
$\$ 99.95$

C-05, C-06, C-10, C-12, C-20, C-24, C-32
From the leading supplier of Computer Cassettes, new, longer length C-12's (6 minutes per side) provide the extra few feet needed for some 16 K programs.

BASF-LHD (DPS) world standard tape.
Premium 5 screw shell with leader. Error Free - Money back guarantee.
Call: $818 / 700-0330$ tor IMmEDLATE SHIPMENT on Credit Card Orders ORDER NOW. . . 1 - ${ }^{18} 9525$ Vassar Ave., \#CM . . MAIL TO.

9525 Vassar Ave., \#CM
Chatsworth, CA 91311

FREE I STORAGE
CADDY with every 4 doz
casstis CADOY with every
cassettes purchased.

Each cassette includes
2 labels only. Boxes sold separately. In Cont.
U.S. shipment by U.P.S If Parcel Post preferred. check here. \square \#CM $500 \mathrm{C}-12$'s
or C-10's... $38 \not 8$ ea. or C-10's... $38 \not \subset \mathrm{ea}$.
w/labels, add 4 c ea. w/labels, add $4 ¢$ ea
plus $\$ 17$ shipping (free Casoy other does not apoly)
Check or M.O. enclosed \square Send Quantity Discounts \square Charge to credit card: VISA \square MASTERCARD \square

Card No.
Exp.

Address
City
Signature \qquad Phone
Ask about our DUPLICATING SERVICE

ATARITM USERS
 WE SPECIALIZE IN BACKUP HARDWARE AND SOFTWARE

We are the Backup Experts'

COPY ANY ATARI' CARTRIDGE

CART CLONE ${ }^{\text {m }}$

A MUST FOR ALL ATARI' USERS. CART CLONE will backup and transfer any 8 or 16 K cartridge to disk or tape. any 8 or 16 K cartridge to disk or tape. The contents of the cartridge will
become a file which you can transfer, become a file which you can transfer, rename or delete. They will execute from DOS. No need to run a special menu or program to run these files.
(A) Will it copy any cartridge? The answer is YES
(B) What will I get?

The answer is a cartridge containing the hardware required and a disk with the cloner software in a powerful machine language program.
We are running an Introductory Sale for a limited time. You can get CART CLONE ${ }^{\text {TW }}$ with software for

S5995
 +2.50 Shipping

This price could increase in the future. Dealer inquiries are welcome.
CART CLONE ${ }^{\text {** }}$ goes in the left cartridge slot enabling it to work in all ATARI ${ }^{1 \times}$ Home Computers including the XL series.

COPY ANY ATARI'* DISK

The HAPPY 810

 ENHANCEMENT KIT With WARP SPEED SoftwareThe HAPPY ENHANCEMENT KIT is guaranteed for five years to copy any ATARI ${ }^{\text {º }}$ Disk. Comes with Sector Copier and The Compactor and more software. The Compactor will turn your auto boot whole disks into files. The transfer of data between the computer and disk is greatly increased. Disk drive wear is decreased. This is a plug-in kit. No need to solder or cut. Easy installation.
We have LARGE STOCK ready for 24 Hour shipping.
sime $\$ 22500$
Shipping

The TRANSFERPACK

FOR BACKING UP AND TRANS FERRING YOUR SOFTWARE

1) Disk file to tape
2) Boot tape to disk file
3) Tape to tape

VERY POWERFUL and low priced Programs are in machine language and user friendly. ALL 3 FOR ONLY

NEW PRODUCT

The DOWNLOADER
 For The ATARI 835 Modem'*

At last, a program that will allow you to download Binary and Basic files with the new 835 Modem, no interface needed. You can save these files to disk, printer or cassette. But Best Of All you will be able download games from bulletin boards with our software and the 835 Modem.

\$3495
 +2.50 Shipping

THE BOOK

WITH SOFTWARE

Software protection and code cracking techniques MASTER CODE CRACKER REVEALS ALL
In this book you will find out how the software is protected and ways to protect your software. Copy guarding will be covered in detail on disks, cartridges and tapes and hardware tricks. You will also receive a disk with many programs and examples. BOOK WITH SOFTWARE ONLY
$\$ 2495$

Airborne carrots and a cloud-hopping rabbit add a dash of whimsy to this joystick-controlled game for the Commodore 64, VIC, and Atari.

It's harvest time in that great big carrot patch in the sky and Copernicus, a rather hungry rabbit, is on the prowl for his favorite vegetable.

Unfortunately, due to a fluke of nature as well as incredibly bad air pollution, the carrots are suspended in midair. This, however, can be turned into an advantage for Copernicus, since he is able to hop around on the dense clouds in pursuit of his meal.

He may also jump around on platforms which have been dispersed across the sky for absolutely no reason at all.

Watch That Brier Patch

The only thing Copernicus cannot do is land in the brier patch below-he would be transported back to his initial position. This would not be so bad if he had an unlimited number of transport passes-unfortunately, he has not. After they are exhausted, he is condemned to the brier patch for the rest of his life.

If he clears the sky of carrots, then benevolent forces disperse a new set of carrots for him, and his friends in the brier patch become so happy for him that they usually jump around in a rabbit euphoria. Meanwhile, Copernicus continues to collect carrots until he runs out of transport passes.

One Tricky Carrot

Once in a while our hero eats a jumping bean which has been disguised as a carrot by some unknown troublemaker. This causes him to hop continuously, hampering his ability to gather carrots. In addition, the more he eats, the heavier he becomes, until he finds that he can no longer jump as high as he used to. But then, it just adds more challenge to his hare-raising adventures.

Joystick Controls

The object of the game is to collect all the carrots. Copernicus jumps when you press the fire button or push the joystick forward. He moves either left or right when you push the joystick in either of those directions.

Clearing the screen of carrots starts you on a new level. Every fifth level is a "jumper round" during which the rabbit jumps continuously. At the completion of every tenth level, a new rabbit is earned. Rabbits are displayed at the top center of the screen, and one is lost every time you fall into the brier patch at the bottom of the screen. When all rabbits are exhausted, the game is over.

You have 60 seconds to collect the carrots. If your time runs out, the clouds speed up and you forfeit an extra time bonus. If you still do not collect all the carrots within 30 seconds, the clouds and platforms will start disappearing.

The score is displayed on the top right. Try to beat a score of 10,000 ! The key to high scoring is to clear the carrots quickly and collect the extra time bonus.

Finally, computer games you want your kids to play.

Spinnaker makes computer games kids love to play. But some of our biggest fans are parents.
Because on top of all the fun and excitement, our games have something more. True educational value. They help develop a child's learning skills, in all kinds of fun ways.

So Spinnaker games aren'tjust computer games. They're Learning Games.

They're written by top educators who know how to make learning fun. And by expert game programmers, who use colorful graphics, animation and sound to make our games so exciting, your kids may not even realize they're learning. They're having too good a time!

That's why children love us. And parents love us.
And why we're already the leader in the field of home edu-
cational software.
So if you're looking for computer games that you'll like as much as your kids will, look for Spinnaker Early Learning Games (ages 3-8) and Learning Discovery Games (ages 6-12) at your local retailer. Spinnaker. We're giving computer games a good name.

Disks for: Apple, ${ }^{\oplus}$ Atari, IBM® PC and PCjr and Commodore 64.'
SPIMNAKER

Logic (VIC And 64 Versions)

Lines 5 to 20 set the custom characters. Lines 30 to 55 produce a short machine language routine to move the clouds. Lines 100 to 150 initialize the screen for each new level.

Lines 200 to 280 are the main game loop. Lines 400 to 410 are a subroutine which increases the game difficulty when the timer reaches zero. Lines 500 to 520 are called when the game ends.

Lines 600 to 635 control the interlevel features like the jumper round and game speed. Lines 700 and 705 are called when a carrot is gathered.

Lines 800 to 840 are a routine which is called when all carrots have been gathered. It controls the extra time bonus and the bouncing rabbit.

Lines 900 and 905 are called when a rabbit hits the brier patch.

Bunny Hop (VIC And 64 Versions)

Line 20 contains the variable I, which is the general speed of the game. Decreasing it makes the game faster but also causes Copernicus to remain on the screen for less time.

Line 25 has CT, which is the number of carrots you must collect initially. LI is one less than the number of rabbits you start off with. L is the number of cloud pieces that are placed in each row.

The platform pieces in line 115 and also in line 117 of the 64 version are character number 183 .

Line 150 has the variable D, which contains the initial bunny character. It is either 33, facing right, or 34 , facing left. Line 150 also increases CT by one. Changing this to $\mathrm{CT}=\mathrm{CT}+0$ will keep the number of carrots to be collected at four.

Use Either Joystick Port

The statement in line 200 of the 64 version, $\mathrm{Y}=\mathrm{PEEK}(56320)$ AND $\operatorname{PEEK}(\mathrm{QQ})$ combines the joystick ports, enabling use of either.

Changing the number 36 to the number 1 in line 245 will enable a person to jump on the brier patch without losing a bunny.

Z of line 400 is the cloud speed switch. If Z is zero, the clouds remain slow. They speed up when Z is changed to -1 .

Line 610 increments LE, which is the level counter. If LE is greater than $19, \mathrm{~W}$ is set to one instead of zero, which makes Copernicus' jumps shorter.

An Extra Rabbit

The tens in line 615 give you an extra rabbit every ten levels. Changing this to
$\operatorname{INT}(\mathrm{LE} / 5)=\mathrm{LE} / 5$ will give extra rabbits every
five levels.
Line 620 makes V true (-1) every five levels, which produces a jumper round.

Line 625 resets the number of carrots to 4 every ten levels.

Line 630 decreases the number of cloud pieces per row. Changing it to $\mathrm{L}=\mathrm{L}-0$ will keep the number of clouds constant.

20 Points For A Carrot

You are given 20 points for a carrot in line 700. Changing this to FORX $=1$ TO55 would give you 55 points for each carrot.

If you are tired of the large number of bunny hops at high levels, just revise line 800 with $\mathrm{FORC}=1 \mathrm{TO} 2$, which will perform only two hops each level throughout the game.

To change the number of extra bonus points, simply revise line 830 to something like $\mathrm{SC}=\mathrm{SC}+2$.

Program 1: 64 Bunny Hop

Refer to the "Automatic Proofreader" article before typing this program in.
$1 Q Q=56321 \quad$: rem 17
5 DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 8,12,6,189,127,124$, $56,7 \varnothing, 16,48,96,189,254,62,28,34$: rem 241
$1 \varnothing$ DATAØ, 1ø2, 255,255,1ø2, $\varnothing, \varnothing, \varnothing, 66,4 \varnothing, 134$, $51,136,1 \emptyset 2,102,1 \emptyset 2 \quad:$ rem 78
15 DATAø, 48, 188, 255,255,188,48, Ø, $\varnothing, 1 \varnothing 2,25$ 5,255,1ø2, $, \varnothing, \varnothing$
:rem 228
16 POKE56334, \varnothing :POKE1,51 :rem 35
17 FORX=ØTO1ø23: POKEX+13312, PEEK (X+53248) :NEXT: POKE1,55:POKE56334,1 :rem 2
$2 \varnothing$ FORX=12544TO12599:READY:POKEX,Y:NEXT:S =54272: $\mathrm{I}=75$
: rem 243
23 POKES+5,9:POKES+6,9:POKES,115:POKES+1, 3: POKE5328Ø,5:POKE53281,6: :rem 190
25 POKE53272,28:K=54272:L=18:CT=3:LI=3:GO SUB6øø: POKES+24,15
:rem 2 ø8
30 DATA160,40,177,253,200,145,253,136,136 , 192,255,2ø8,245,160,40,177,253,160
:rem 207
31 DATA $\varnothing, 145,253,16 \emptyset \quad:$ rem 253
35 DATA $40,169,32,145,253,96,160,41,177,25$ 3,136,145,253,2øø,2øø,192,81,2:rem 216
40 DATA245,160,40,177,253,160,80,145,253, $160,40,169,32,145,253,96,169,5,133,254$
:rem $11 \varnothing$
45 DATAl $69,63,133,253,32,96,47,169,184,13$ $3,253,32,68,47,169,47,133,253,169,6$
: rem 254
50 DATAl $33,254,32,96,47,169,168,133,253,3$ $2,68,47,169,31,133,253,169,7,133,254$

$$
\text { : rem } 32
$$

53 DATA $32,96,47,96$:rem 180
55 FORX=121øøTO122ø3:READY:POKEX,Y:NEXT
: rem 227
$1 \varnothing \emptyset$ PRINT" $\{$ HOME $\}$ \{ 15 RIGHT \} \{WHT \} \{RVS \}BUNNY \{2 SPACES \}HOP": PRINT"\{WHT\}\{RVS \} \{2 RIGHT \}TIME": PRINT"\{7 LEFT\}\{RVS \}SCO RE" :rem 33
1 (65 FORX=1944TO2ø23: POKEX, $36:$ POKEX+K, $5: \mathrm{NE}$ XT :rem 181
$11 \varnothing$ FORX=55496TO56215: POKEX,1:NEXT:I=I-3
:rem 193
115 PRINT" $\{$ HOME $\}$ \{ 7 DOWN $\}$ \{YEL $\}$ \{RVS \} EY

IS YOUR CHIIDTOP BANANA, OR JUST ONE OF THE BUNCH?

Kids everywhere are going ape over Artworx Monkey Series educational software! Like all good arcade games, kids just can't stop playing them. Which is great, because while they're enjoying the antics of Marc the Monkey, they're learning. And growing.

Three Artworx monkey programs, designed by teachers and learning specialists, are available to help your child.

Monkeymath ${ }^{\text {'" }}$ uses colorful graphics and three levels of challenges to give a better understanding of number sequences, addition, sub-

Monkeymath traction, multiplication, and division.

Monkeynews ${ }^{\text {tw }}$ uses a newspaper setting to increase your child's ability to read and understand by enabling him to actively participate in the story, answer questions, check facts and type

Monkeynews his own headlines.

For help with spelling and vocabulary, choose Monkeybuilder". It encourages the child to combine word pieces correctly to form building blocks, and make a tree house for Marc.

All three programs are more fun than a barrel of you-know-whats!
All are available for the Commodore 64, Atari, and Apple computers. All include a FREE Marc the Monkey story and coloring book. And they're all the stuff top bananas are made of!

See them in action wherever software is sold. To find out more facts, send $\$ 1.00$ for a colorful catalog to: Artworx Software Co., Inc. 150 North Main Street, Fairport, NY 14450.

Monkeybuilder

The bunny is about to fall into the brier patch（ 64 version of ＂Bunny Hop＂）．
 \｛4 LEFT\}E2 Y习\{5 DOWN\}E2 Y习\{DOWN\} \｛4 LEFT\}E2 Y习" ：rem 199 117 PRINT＂\｛HOME \} \{RVS \} \{ 7 DOWN \} \{11 RIGHT\} E3 Y \exists \｛12 RIGHT\}E3 Y习\{6 DOWN $\}\{2$ LEFT $\}$ KY习\｛16 LEFT\}区Y习" ：rem 201 120 FORX＝9TO21STEP6：FORY＝1TOL：POKE1 $024+$ X＊ $4 \emptyset+\operatorname{RND}(1) * 4 \emptyset, 35:$ NEXTY，X ：rem 225
125 FORX＝11TO17STEP6：FORY＝1TOL：POKE1ø24＋X ＊ $4 \varnothing+\mathrm{RND}(1) * 4 \varnothing, 38: N E X T Y, X$ ：rem 23

130 C＝CT：FORX＝1TOC

 ：rem 120$135 \mathrm{Y}=\operatorname{INT}(\operatorname{RND}(1) * 639)+1224: \operatorname{IFPEEK}(\mathrm{Y})<>320$ RY＝1505THEN135
：rem 210
140 IF（ $\mathrm{Y}<19 \varnothing 5$ ANDY＞1862） $\mathrm{OR}(\mathrm{Y}<1746$ ANDY $>17 \emptyset 2$ ）OR（Y＜1666ANDY＞1622）THEN135：rem 248
145 IF（ $\mathrm{Y}<1425$ ANDY＞1382）OR（ $\mathrm{Y}<15$ ■6ANDY＞1462 ）THEN135 ：rem 101
$15 \emptyset$ POKEY， $37:$ POKEY＋K， $7:$ NEXTX：$P=15 ø 5: D=33$ ： $\mathrm{CT}=\mathrm{CT}+1$ ：rem 212
155 TI\＄＝＂øøøøøø＂：POKES－1，13Ø ：rem 215
$2 ø 0$ POKEP， $32: \operatorname{POKE} 37154,127: Y=\operatorname{PEEK}(5632 \emptyset) \mathrm{A}$ $\operatorname{NDPEEK}(Q Q): I F(Y A N D 8)=\emptyset T H E N P=P+1: D=3$ ：rem 71
$2 \emptyset 5 \operatorname{IFPEEK}(\mathrm{P}+4 \emptyset)=38$ AND（NOT（B）ORZ ）THENP $=\mathrm{P}+$ 1 ：rem 46
$21 \varnothing$ IF（YAND4）$=\emptyset$ THENP $=\mathrm{P}-1: \mathrm{D}=34$ ：rem $2 \emptyset 4$
215 POKES $+4,32: \operatorname{IFPEEK}(\mathrm{P}+4 \varnothing)=35 \mathrm{AND}$（NOT（B）O RZ ）THENP $=\mathrm{P}-1$
：rem 218
$220 \mathrm{~B}=(\mathrm{B}=\varnothing):$ IFBORZTHENSYS $12156:$ POKES $+\angle, 33$
：rem 243
225 IFA $=\emptyset$ ANDPEEK $(\mathrm{P}+4 \emptyset)<>32$ THENIF $($ YAND 16$)=$ ØOR（YAND1 $)=\emptyset O R V T H E N A=7-W * 2:$ POKES $+11,3$ 3 ：rem 62
$23 \varnothing$ IFA <4－WANDPEEK $(P+4 \varnothing)=320$ RPEEK $(P+4 \varnothing)=3$ 7 THENP $=\mathrm{P}+4 \varnothing$ ：rem 91
233 POKES $+1,3:$ IFZTHENPOKES $+1,15$ ：rem 151
235 IFA＜＞ THENA $^{2}=\mathrm{A}-1:$ IFA $>3-$ WTHENP $=\mathrm{P}-4 \varnothing:$ POK $\operatorname{ES}+8, \operatorname{PEEK}(\mathrm{~S}+8)+2$
：rem $2 \emptyset 8$
$240 \operatorname{IFPEEK}(P)=37$ THEN7ø 7 ：rem 88
$245 \operatorname{IFPEEK}(\mathrm{P}+4 \varnothing)=36$ THEN9øø ：rem 237
250 IFPEEK（ P ）＜＞32THENP＝P＋4ø：GOTO260：POKES ， $\operatorname{PEEK}(\mathrm{S})-2 \varnothing \quad$ ：rem 177
255 POKES， $7 \emptyset \quad$ ：rem 177
$26 \varnothing \operatorname{IFPEEK}(P)=37$ THEN $7 \varnothing \varnothing$ ：rem $9 \varnothing$
265 POKEP，D：POKEP＋K，1：FORX＝1TOI：NEXT
：rem 1øØ

270 PRINT＂$\{\mathrm{HOME}$ \} \{ 3 DOWN\} \{ 8 LEFT\} \{RVS\} \｛WHT\}";SC
：rem 128
275 PRINT＂\｛HOME \}\{2 DOWN\}\{RVS \}\{2 RIGHT\}"; T＝6Ø－VAL（TIS）：IFT＜1THEN4øø ：rem $2 \varnothing 3$
$28 \emptyset$ PRINTT；＂\｛LEFT\} ":GOTO2øø :rem 156
$4 \varnothing \varnothing$ PRINT＂$\{$ HOME $\}$ \｛ 2 DOWN $\}\{4$ SPACES $\}\{$ WHT \} \｛RVS\}ø\{2 SPACES\}": $\mathrm{Z}=-1:$ IFTIS＜＂øøø13ø＂ THENGOTO2øø
：rem 56
$405 \mathrm{Y}=1224+\operatorname{INT}(\operatorname{RND}(1) * 719): \operatorname{IFPEEK}(\mathrm{Y})=370 \mathrm{R}$ （ $\operatorname{PEEK}(\mathrm{Y})=32 \operatorname{ANDRND}(1)>.2$ ）THEN4ø5

410 POKEY，32：GOTO2øø
5øØ PRINT＂ 112 DOWN \} \{16 RIGHT \} \{RVS \} \{CYN \}AG AIN ？＂
：rem 82
5 G5 GETA\＄：IFAS＝＂＂THEN5ø5 ：rem 87
$51 \varnothing$ IFA\＄＝＂Y＂THENRUN ：rem 136
515 IFAS＝＂N＂THENEND ：rem 1øø
$52 \emptyset$ GOTO5ø5
：rem 1 ø6
6 6ø IFLI＜ØTHEN5øø
：rem 234
605 PRINT＂\｛CLR\}\{2 DOWN\}\{18 RIGHT\}\{WHT\}"; IFLI＞ØTHENFORX＝1TOLI：PRINT＂l＂；：NEXT
：rem 43
$61 \varnothing$ PRINT＂＂：LE＝LE＋1：Z＝ø：W＝$: \mathrm{V}=\varnothing:$ IFLE＞ 19 T HENW＝1
：rem 79
$615 \operatorname{IFINT}(\mathrm{LE} / 1 \varnothing)=\mathrm{LE} / 1 \emptyset$ THENLI＝LI＋1：rem 216
620 IFLE $/ 5=$ INT（LE／5）THENV＝－1 ：rem $17 \emptyset$
625 IFLE／ $1 \varnothing=1 N T(L E / 1 \varnothing)$ THENCT＝4 ：rem $3 \varnothing$
$63 \emptyset \mathrm{~L}=\mathrm{L}-1$ ： $\mathrm{IFL}<3$ THENL $=1 \varnothing$
：rem 105
635 RETURN
：rem 126
$7 \varnothing \varnothing$ FORX＝1TO20：POKES＋4，129：SC＝SC＋1：PRINT＂ \｛HOME \}\{3 DOWN\}\{8 LEFT\}\{RVS\}"; SC: POKES ＋4，128：NEXT
：rem 162
$7 \varnothing 5 \mathrm{C}=\mathrm{C}-1:$ ON－$(\mathrm{C}=\varnothing)+1 \mathrm{GOTO} 265,8 \emptyset \varnothing$ ：rem 184
$8 \varnothing \varnothing$ POKES，$\varnothing: F O R C=1$ TOLE $: Y=\varnothing: \mathrm{X}=\varnothing: \mathrm{V}=\varnothing$
：rem 120
8 Ø5 $\mathrm{Z}=19 \varnothing 4+\mathrm{X}+\mathrm{Y}: \mathrm{X}=\mathrm{X}+1:$ POKES $+4,33: \mathrm{IFX}=39 \mathrm{THE}$ N825
：rem 209
$81 \varnothing$ POKES $+1, A B S(Y / 2 \emptyset)+1 \varnothing: I F V=\varnothing T H E N Y=Y-4 \varnothing$ ： IFY $=-16 \emptyset$ THENV $=1$
：rem 145
815 IFV＝1THENY＝Y＋4 $:$ IFY＝\varnothing THENV $=\varnothing$ ：rem 31
82Ø POKEZ，32：POKE19ø4＋X＋Y， 33 ：POKE19ø4＋X＋Y $+K, 1:$ POKES $+4,32:$ GOTO8ø5 ：rem 81
825 POKEZ， $32:$ NEXTC：POKES $+1,3$ ：rem 236
83Ø IFT＞ 1 THENFORX＝TTOØSTEP－1：POKES +4 ，129： PRINT＂\｛HOME \} \{2 DOWN \}\{RVS \} \{2 RIGHT\}"; X ：SC＝SC＋T
：rem 124
835 IFT＞ØTHENPRINT＂$\{$ HOME \} \{ 3 DOWN \} \{ 7 LEFT \} \｛RVS\}";SC:POKES+4,128:NEXTX :rem 24
$84 \varnothing$ POKES，$\varnothing: G O S U B 6 \varnothing \varnothing: G O T O 1 \varnothing \varnothing$ ：rem $2 \varnothing 6$
9øø FORY＝1TOLE：POKES＋1，1ø：FORX＝1TO15øSTEP 5 ：POKES $+4,33$ ：POKES $+1, x / 1 \varnothing$
：rem 138
$9 \varnothing 5$ POKES $+4,32:$ NEXTX，Y：POKES＋1， $3: L I=L I-1:$ GOSUB6øø：GOTOIøø
：rem 48

Program 2：VIC Bunny Hop

Refer to the＂Automatic Proofreader＂article before typing this program in．

5 DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 8,12,6,189,127,124$ ， $56,7 \varnothing, 16,48,96,189,254,62,28,34:$ rem 241 $1 \varnothing$ DATAØ， $1 \varnothing 2,255,255,1 \varnothing 2, \varnothing, \varnothing, \varnothing, 66,4 \varnothing, 134$ ， 51，136，1ø2，1ø2，1ø2
：rem 78
15 DATA $\varnothing, 48,188,255,255,188,48, \varnothing, \varnothing, 1 \varnothing 2,25$ $5,255,1 \varnothing 2, \varnothing, \varnothing, \varnothing$ ：rem 228
$2 \emptyset$ FORX＝7424TO 7479 ：READY：POKEX，Y：NEXT：S＝3 6876：$I=1 \varnothing \varnothing$
：rem 196
25 POKE36869， 255 ：POKES $+3,1 \varnothing 9: K=3 \varnothing 72 \varnothing: L=1 \varnothing$ ：CT＝4：LI＝3：GOSUB6øø：POKES＋2，15：rem 172
$3 \emptyset$ DATAl6ø，22，177，253，200，145，253，136，136 $, 192,255,2$ Ø8，245，16ø，22，177，253，160，ø， 145
：rem 241

35 DATA253，160，22，169，32，145，253，96，160，2 3，177，253，136，145，253，2ø0，2øø，192，45，2 Ø8
：rem $2 \emptyset 1$
$4 \emptyset$ DATA245，16Ø，22，177，253，160，44，145，253， 16Ø，22，169，32，145，253，96，169，30，133，25 4，169
：rem 104
45 DATAl53，133，253，32，184，28，169，220，133， 253，32，156，28，169，29，133，253，169，31，13 3
：rem 164
$5 \emptyset$ DATA $254,32,184,28,169,96,133,253,32,15$ $6,28,169,161,133,253,32,184,28,96$
：rem 141
55 FORX＝7324TO7423：READY：POKEX，Y：NEXT ：rem 151
$1 \emptyset \emptyset$ PRINT＂$\{$ HOME \} \{ 6 SPACES \} \{YEL \} \{RVS \}BUNNY \｛2 SPACES \}HOP": PRINT"\{WHT\}\{RVS\}TIME": PRINT＂\｛5 LEFT\}\{RVS\}SCORE" :rem 147
105 FORX＝8164TO8185：POKEX， $36:$ POKEX + K， $5: \mathrm{NE}$ XT ：rem 197
$11 \varnothing$ FORX＝38576TO38861：POKEX，1：NEXT：I＝I－3
：rem 2øø
115 PRINT＂\｛HOME \} \{6 DOWN\}\{YEL\} \{RVS\}EY习
\｛9 RIGHT\}区2 Y习\{9 RIGHT\}\&Y习\{5 DOWN\}
K 2 Y习 4 LEFT $\}\{D O W N\} \mathbb{K} 2$ Y习\｛5 DOWN\}E2 Y习 \｛4 LEFT\}\{DOWN\}太2 Y习" ：rem 227
120 FORX＝8TO2øSTEP6：FORY＝1TOL：POKE768Ø＋X＊ $22+$ RND（1）＊22，35：NEXTY，X ：rem 237
125 FORX＝1øTO16STEP6：FORY＝1TOL：POKE768 $\varnothing+\mathrm{X}$ ＊22＋RND（1）＊22，38：NEXTY，X ：rem 35
$13 \emptyset \mathrm{C}=\mathrm{CT}: \mathrm{FORX}=1 \mathrm{TOC}$ ：rem $12 \varnothing$
$135 \mathrm{Y}=\operatorname{INT}(\operatorname{RND}(1) * 351)+7768: \operatorname{IFPEEK}(\mathrm{Y})<>320$ RY＝8ø55THEN135
：rem 227
$14 \varnothing \mathrm{IF}(\mathrm{Y}<8143$ ANDY $>8118) \mathrm{OR}(\mathrm{Y}<8 \emptyset 56$ ANDY $>8 \emptyset 3 \emptyset$ ）OR（Y＜8ø11ANDY＞7986）THEN135 ：rem 6
145 IF（ $\mathrm{Y}<7879$ ANDY＞7854）OR（ $\mathrm{Y}<7924$ ANDY >7898 ）THEN135 ：rem 159
150 POKEY， $37:$ POKEY $+\mathrm{K}, 7:$ NEXTX： $\mathrm{P}=8055: \mathrm{D}=33$ ： $\mathrm{CT}=\mathrm{CT}+1$
：rem 219
155 TI\＄＝＂øøøøøø＂：POKES－1，13Ø ：rem 215
2øø POKEP，32：POKE37154，127：Y＝PEEK（37152）： IF（YAND128）$=\emptyset$ THENP＝P＋1： $\mathrm{D}=33$ ：rem 244
$2 ø 5 \operatorname{IFPEEK}(\mathrm{P}+22)=38$ AND（NOT（B）ORZ $)$ THENP $=\mathrm{P}+$ 1 ：rem 46
210 POKE37154，255：Y＝PEEK（37137）：IF（YAND16 $)=\emptyset$ THENP＝P－1： $\mathrm{D}=34 \quad$ ：rem 127
$215 \operatorname{IFPEEK}(\mathrm{P}+22)=35 \mathrm{AND}($ NOT（B）ORZ $)$ THENP $=\mathrm{P}-$ 1 ：rem 46
$220 \mathrm{~B}=(\mathrm{B}=\varnothing)$ ：IFBORZTHENSYS7380：POKES－1，PEE $K(S-1)+2 \emptyset: \operatorname{IFPEEK}(S-1)=17 \emptyset$ THENPOKES -1 ， $13 \varnothing$
：rem 167
225 IFA $=\emptyset$ ANDPEEK $(\mathrm{P}+22)<>32$ THENIF $($ YAND 32$)=$ ØOR（YAND4）＝øORVTHENA＝7－W＊2：POKES， 195 ：rem 235
$23 \emptyset$ IFA 4 －WANDPEEK $(P+22)=320 \operatorname{RPEEK}(P+22)=3$ 7THENP＝P＋22 ：rem 91
235 IFA $\langle>$ ØTHENA $=$ A－1 ：IFA $>3-$ WTHENP $=\mathrm{P}-22:$ POK ES，PEEK（S）$+2 \emptyset$ ：rem 58
$24 \varnothing \operatorname{IFPEEK}(\mathrm{P})=37$ THEN7øØ ：rem 88
$245 \operatorname{IFPEEK}(\mathrm{P}+22)=36$ THEN9øø ：rem 237
250 IFPEEK（ P ）＜＞32THENP＝P＋22：POKES，PEEK（S） －20：GOTO26ø
：rem 177
255 POKES， $7 \varnothing$
：rem 177
$26 \varnothing \operatorname{IFPEEK}(\mathrm{P})=37$ THEN $7 \emptyset \emptyset \quad$ ：rem $9 \emptyset$
265 POKEP，D：POKEP＋K，1：FORX＝1TOI：NEXT
：rem 1øø
 ：rem 65
275 PRINT＂\｛HOME \}\{2 DOWN\}\{RVS\}";:T=6Ø-VAL (TI\＄）：IFT＜1THEN4øø
：rem 145
$28 \varnothing$ PRINTT；＂\｛LEFT\} ":GOTO2øø :rem 156
4øø PRINT＂\｛HOME \} \{2 DOWN \} \{2 SPACES \}\{CYN \}

Time has run out for the bunny（VIC version）．
\｛RVS\}ø\{2 SPACES\}": Z=-1:IFTIS<"øøø13Ø" THENGOTO2のø
：rem $21 \varnothing$
$405 \mathrm{Y}=7746+\operatorname{INT}(\operatorname{RND}(1) * 417): \operatorname{IFPEEK}(\mathrm{Y})=370 \mathrm{R}$ （ $\operatorname{PEEK}(\mathrm{Y})=32$ ANDRND $(1)>.5)$ THEN4ø5
：rem 222
$41 \varnothing$ POKEY，32：GOTO2øø ：rem 179
5øø PRINT＂$\{1 \varnothing$ DOWN $\}$ \｛ 7 RIGHT $\}\{R V S\}\{G R N\} A G A$ IN ？＂
：rem 17ø
505 GETA\＄：IFA\＄＝＂＂THEN505 ：rem 87
510 IFA\＄＝＂Y＂THENRUN ：rem 136
515 IFAS＝＂N＂THENEND ：rem løø
520 GOTO5ø5 ：rem 106
$6 \varnothing$ IFLI＜ØTHEN5øø ：rem 234
605 PRINT＂\｛CLR\} \{2 DOWN\} \{9 RIGHT \} \{WHT\}"; :I FLI＞øTHENFORX＝1TOLI：PRINT＂！＂；：NEXT
：rem 38
$61 \varnothing$ PRINT＂＂：LE＝LE＋1：Z＝ø：W＝ø：V＝ø：IFLE＞19T HENW＝1 ：rem 79
$615 \operatorname{IFINT}(L E / 1 \emptyset)=L E / 1 \emptyset T H E N L I=L I+1:$ rem 216
$62 \emptyset$ IFLE $/ 5=$ INT（LE／5）THENV＝－1 ：rem $17 \varnothing$
625 IFLE／ $1 \varnothing=$ INT（LE／ $1 \varnothing$ ）THENCT＝4 ：rem $3 \emptyset$
$630 \mathrm{~L}=\mathrm{L}-1:$ IFL＜3THENL＝1ø ：rem 105
635 RETURN ：rem 126
$7 \emptyset \emptyset$ FORX＝1TO2 \varnothing ：POKES $+1,126+(2 \varnothing-X) * 3: S C=S C$ ＋1：PRINT＂\｛HOME \} \{ 3 DOWN\} \{6 LEFT\}\{RVS\}" ；SC：NEXT
：rem 64
$7 \emptyset 5 \mathrm{C}=\mathrm{C}-1:$ ON－（C＝ø）$+1 \mathrm{GOTO} 265,8 \emptyset \emptyset$ ：rem 184
8øø POKES，$\varnothing: F O R C=1 T O L E: Y=\emptyset: X=\varnothing: V=\varnothing$
：rem 12ø
$8 \emptyset 5 \mathrm{Z}=8142+\mathrm{X}+\mathrm{Y}: \mathrm{X}=\mathrm{X}+1:$ POKES－1，188－Y：IFX＝21 THEN825
：rem 137
$81 \varnothing$ IFV＝ØTHENY＝Y－22： $\mathrm{IFY}=-66 \mathrm{THENV}=1$
：rem 133
815 IFV＝1THENY＝Y＋22：IFY＝ØTHENV＝Ø ：rem 31
82Ø POKEZ，32：POKE8142＋X＋Y，33：POKE8142＋X＋Y $+K, 1:$ GOTO8ø5 ：rem 167
825 POKEZ， $32:$ NEXTC：POKES－1，\varnothing ：rem 235
$83 \varnothing$ IFT＞\varnothing THENFORX＝TTOØSTEP－1：PRINT＂$\{$ HOME $\}$ \｛2 DOWN \} \{RVS\}";X:SC=SC+T:PRINT"\{HOME \} \｛3 DOWN \} \{5 LEFT\}\{RVS\}"; SC :rem 164
835 IFT $>\varnothing$ THENPOKES，$\emptyset: P O K E S, 17 \emptyset+T: N E X T X$
：rem $2 ø 6$
84ø POKES，Ø：GOSUB6øø：GOTO1øø ：rem $2 \varnothing 6$
$9 \emptyset \emptyset$ FORY＝1TOLE：POKES－1，$\emptyset: F O R X=255 T O 2 \emptyset \emptyset S T E$ P－1：POKES，X：NEXTX，Y：POKES，\varnothing ：rem 192
$9 \emptyset 5 \mathrm{LI=LI-1:GOSUB6} \mathrm{\emptyset} \mathrm{\emptyset:GOTO1} \mathrm{\emptyset} \mathrm{\emptyset} \mathrm{:rem} 183$

Program 3：Atari Bunny Hop

CE \emptyset POKE 752，1：PRINT＂\｛CLEAR\}":POSI TION 15， $19:$ PRINT＂BUNNY HOP＂：PO SITION 1ø，12：PRINT＂USE JOYSTIC K PORT 1＂：POSITION 14， 14
AF 1 FQR $A=1536$ TO $1536+126:$ READ $B: P$ OKE $A, B: N E X T$ A
CP 2 PRINT＂PLEASE WAIT＂：FOR T＝1 TO 1øøø：NEXT T：GRAPHICS 17：SETCOLD R $\emptyset, \emptyset, 14:$ SETCOLOR 2，12，8：SETCOL OR 3，2，8：DIM T\＄（3）
FH 3 SND $=15$ Ø：OPEN \＃1，4，Ø，＂K：＂
MG 11 CHBAS $=57344$ ： CHSET $=(\operatorname{PEEK}(1$ Ø6）$)-8$ ）＊256：FOR I＝ø TO 1ø23：POKE CHS $E T+I, \operatorname{PEEK}(C H B A S+I): N E X T$ I ：POKE 756，CHSET／256
CF 12 READ NCHR：FOR I＝1 TO NCHR：READ RPLC：FOR $J=\emptyset$ TO 7：READ A：POKE CHSET＋8＊RPLC＋J，A：NEXT J：NEXT I
FL $25 L E=1: L=1 \emptyset: C T=4: L I=3: G O S U B 6 \emptyset \emptyset$
MN 1 Øø POSITION 5，$\boxed{\text { P PRINT \＃6；＂BUNNY }}$ HOP＂：PRINT \＃6；＂TIME＂；：PRINT \＃6；＂\｛5 SPACES\}SCORE"
P6 195 COLOR 199：PLOT Ø，22：DRAWTO 19 ， 22
LO 115 POSITION Ø，12：PRINT \＃6；＂\｛2 M\} ＂：POSITION 18，12：PRINT \＃6；＂ \｛2 M\}":POSITION $0,18:$ PRINT \＃6 ；＂\｛2 M\}":POSITION 18, 18
明 116 PRINT \＃6；＂\｛2 M\}"
EL $12 \emptyset$ FOR $Y=8$ TO $2 \emptyset$ STEP 6：FOR $X=1$ TO L：POSITION RND（1）＊ $19, \mathrm{Y}:$ PRI NT \＃G；＂F＂：NEXT X：NEXT Y
ID 125 FOR $Y=1 \emptyset$ TO 16 STEP 6：FOR $X=1$ TO L：POSITION RND（1）＊19，Y：PR INT \＃6；＂K＂：NEXT X ：NEXT Y
HC $13 \emptyset$ C＝CT：FOR R＝1 TO C
I6 $135 \mathrm{Y}=\mathrm{INT}$（RND（1）＊1 1 ）＋6：X＝RND（1）＊19
BF 136 LQCATE X, Y, PEEK：IF PEEKくン32 T HEN 135
CL 137 IF $Y=8$ OR $Y=1 \emptyset \quad$ OR $Y=14$ OR $Y=1$ 6 OR $Y=20$ THEN 135
CO 150 PJSITION $X, Y:$ PRINT \＃6；CHR\＄（234）
FC 152 NEXT $\mathrm{R}: \mathrm{D}=76: \mathrm{CT}=\mathrm{CT}+1$
OF 155 POKE 18，Ø：POKE 19，Ø：POKE 2ø，Ø
JB 19 Ø $X=\varnothing: Y=11$
IN $2 ø \emptyset$ COLOR $32:$ PLOT $X, Y: S N D=5 \emptyset$
CJ 2 Ø5 IF STICK（Ø）$=7$ THEN $X=X+1: D=76$ $=$ IF $x>19$ THEN $X=\varnothing$ ：POKE 77 ，\emptyset
OE 206 LOCATE $X, Y+1, Z: I F \quad Z=75$ AND（ NOT（B）OR $Z 1$ ）THEN $X=x+1$ ：IF $X>19$ THEN $X=\varnothing$
FB 21 IF STICK $(\emptyset)=11$ THEN $X=X-1: D=6$ 8：IF $X<\emptyset$ THEN $X=19$ ：POKE 77 ，\varnothing
NP 215 LOCATE $X, Y+1, Z: I F ~ Z=7 \emptyset$ AND（ NOT（B）OR $Z 1$ ）THEN $X=X-1: I F$ $X<\varnothing$ THEN $X=19$
HC $22 \emptyset B=(B=\emptyset): I F B$ OR $Z 1$ THEN QQ＝US R（1536）
J0 225 LOCATE $X, Y+1, Z: I F A=\varnothing$ AND $Z\rangle$ 32 THEN IF STICK（ $\varnothing)=14$ OR STR IG（ø）$=\varnothing$ OR V THEN $A=7-W * 2: S O U$ ND $3,159,12,15$
HD 23ø IF A＜4－W AND $Z=32$ OR $Z=234$ TH EN $\quad Y=Y+1$
KB 235 IF $A<>\emptyset$ THEN $A=A-1:$ IF $A>3-W$ T HEN $Y=Y-1$ ：SND＝SND－2：SQUND $3, S$ ND， 10,15
CE 24 LOCATE $X, Y, Z Z: I F \quad Z Z=234$ THEN $7 \emptyset \emptyset$

CH 245 IF $\mathrm{Z}=199$ THEN 9 פø
DC 25ø IF $Z Z<>32$ THEN $Y=Y+1: S N D=S N D+$ 2פ：SOUND 3 ，SND，1ø，15：GOTO 26の
AD 255 SOUND $3,15 \varnothing, 1 \varnothing$ ，\varnothing
HH 26 IF $Z Z=234$ THEN 7 Øø
DI 265 COLOR D：PLOT $X, Y: F O R \quad G=1$ TO I ：NEXT G
HD 27ø POSITION 16，1：PRINT \＃6；SC
HL 275 T＝INT（6ロー（PEEK（19）＊256＋PEEK（2 ஏ））（6Ø）：IF T＜1 THEN 4 4 Ø
IE 277 T\＄＝STR\＄（T）：IF LEN（T\＄）＝1 THEN POSITION 6，1：PRINT \＃6；T\＄；＂＂： GOTO 2øø
FG 28ø POSITION 6，1：PRINT \＃6；T：GOTO $2 \emptyset \emptyset$
EI 4øø POSITION 4，1：PRINT \＃6；＂$\quad \square$ ：Z1＝1：IF T＞－3ø THEN 2のø
LL $405 \mathrm{XX}=$ RND（ 1 ）＊ $16: \mathrm{YY}=$ RND（ 1 ）＊ $16+4: \mathrm{L}$ OCATE $X X, Y Y, Z: I F \quad Z=234$ OR（ $Z=$ 32 AND RND（1）＞ø．5）THEN $4 \varnothing 5$
IF $41 \emptyset$ COLOR 32：PLOT $X X, Y Y: G O T O \quad 2 \emptyset \emptyset$
ME 5 Øø SOUND $3, \varnothing, \emptyset, \varnothing:$ POSITION 4，11： F RINT \＃6；＂ANOTHER TRY？＂
FJ 5 ØS DIM A\＄（1）
DL 5 Ø5 GET \＃1，A
FE $51 \varnothing$ IF $A=A S C(" Y ")$ THEN CLR＝DIM T \＄（3）：SND＝15 $:$ GOTO 25
61515 IF $A=A S C(" N$＂）THEN END
6K 52 GOTO 5 פ5
IH 599 GOTO 599
OK GのØ IF LI＜の THEN 5øの
ME 6 פ5 PRINT \＃6；＂\｛CLEAR ${ }^{\circ}$＂：POSITION 8 ，23：IF LI＞D THEN FOR $X=1$ TO L I：PRINT \＃6；＂D＂；：NEXT X
HF 61 D LE＝LE $+1: Z 1=\emptyset: W=\emptyset: V=\emptyset: I F L E>19$ THEN $W=1$
NI 615 IF INT $(L E / 1 \varnothing)=L E / 1 \emptyset$ THEN LI＝L I＋ 1
kK 62の IF LE／S＝INT（LE／5）THEN $V=-1$
B0 625 IF LE／1ø＝INT（LE／1ø）THEN CT＝4
6J $63 \emptyset L=L-1$ ：IF $L<3$ THEN $L=1 \varnothing$
H0 635 RETURN
MC 7 Øø FOR $S=2 \emptyset$ TO 1 STEP $-1:$ SOUND 3 ，126＋S＊ $3,1 \emptyset, 15: S C=S C+1: P O S I T I$ ON 16，1：PRINT \＃6；SC：NEXT S
LI 7 Ø5 C＝C－1：ON $-(C=\emptyset)+1$ GOTO 265， $8 \emptyset \emptyset$
LO 8øø SOUND $3,13 \varnothing, 1 \varnothing, \varnothing: F O R C=1$ TO L $E: Y=\varnothing: X=\emptyset: N E X T$ C
AE 84ø SOUND Ø，Ø，Ø，Ø：GOSUB Gøø：GOSUB 1 Øø

The bunny prepares to eat a carrot（Atari version）．

ND 9 Øø FOR $Y=1$ TO LE：FOR $X=2 \emptyset 5$ TO $2 \emptyset$ Ø STEP－1：SOUND $3, X, 1 \varnothing, 15:$ NEX $T \mathrm{X}$ ：NEXT Y
AB 9 פ5 SOUND $3, \curvearrowleft, \emptyset, \curvearrowleft: L I=L I-1:$ GOSUB 6 Øø：GOTO 1øஜ
PJ 1536 DATA $194,24,165,88,195,16 \emptyset$ MB 1542 DATA $133,293,165,89,195, \varnothing$ 6A 1548 DATA $133,294,32,82,6,24$ CF 1554 DATA $165,88,195,299,133,293$ MC 156 DATA $165,89,195, \varnothing, 133,2 \emptyset 4$ $6 L 1566$ DATA $32,195,6,24,165,88$ PK 1572 DATA $1 \emptyset 5,24,133,2 \emptyset 3,165,89$ IO 1578 DATA 1 ø5， $1,133,294,32,82$ HA 1584 DATA $6,24,165,88,1$ פ5， 64 MF 159 DATA $133,293,165,89,195,1$ IP 1596 DATA $133,294,32,195,6,24$ C6 1692 DATA $165,88,195,144,133,293$ MG 1698 DATA $165,89,195,1,133,294$ NN 1613 DATA $32,82,6,96$
NL 1615 DATA $16 \emptyset, \emptyset, 177,2 \emptyset 3,17 \emptyset, 16 \emptyset, 1$ ，177，2ø3，136，145，2ø3，2øø，2øø ，192，20，298，245，136，138，145， 2 Ø3，96，16ø，19，177，2Ø3，17ø
KE 1616 DATA $136,177,293,290,145,293$ ，136，136，192，255，2ø8，245，2øø ，138，145，293，96
OC 25 Фø DATA $7,32, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 44$ ，8，12，6，189， $127,124,56,79,36$ ，16，48，96，189，254，62，28，34，3 8，Ø，1ø2，255，255
K6 $25 \emptyset 5$ DATA 1 Ø2，Ø，Ø，Ø，39，66，4の，134， $51,136,192,192,192$
FP $25 \emptyset 6$ DATA $42, \emptyset, 48,188,255,255,188$ ，48，ø
MN 25 Ø7 DATA 43，ø，1ø2，255，255，1ø2，ø， Ø，\varnothing

RATED \＃ 1 FOR SERVICE \＆REUABHITY

23 PARK ROW NEW YORK CITY NEW YORK 10038 THIS MONTH＇S SUPER SPECIALS
\int_{99}
Mogroctrowion crancs $\$ 199^{95}$ COMMODORE 64 SOTTWAR vecerf \qquad

cont entiet		
VC Aovemturtana		
Vk omen pax		
Nex sorm peemoer		
and		
Owue treetiod		

EDUCATIONAL EASY－TO－USE SOFTWARE FOR CHILDREN

All three programs are available on disk for Apple II． II＋and Ile，on disk o cassette for Commodore 64 and on cassette for Texas Instruments 99／4A．Zु．

THE PLANE GAME．．．Ages $31 / 2$ to 5

This game teaches letter and number ident－ ification，counting from 1 to 9 and the location of the keys on the keyboard
ABC II．．．for SECOND GRADERS
This game teaches addition，subtraction，and spelling and can be played by up to five children at once There is a scoreboard and the children are relerred to by name
ABC III．．．for THIRD GRADERS
This game teaches multiplication，division，and spelling and can be played by up to five
children at once．There is a scoreboard and the children are referred to by name．

ALL PROGRAMS $\$ 19^{95}$ 2 for $\$ 35^{95}$
Add $\$ 1.50$ per order for shipping and handling
－SEND CHECK OR MONEY ORDER TO：
RO』R區
P．O．BOX 814 Bay City，MI 48707 Or use VISA or MASTERCARD to order by phone：1－517－892－6568

Blueberries

Bill Root

Don't be fooled by the name. "Blueberries" is a fastpaced strategic game for one or two players. Originally written for Atari computers with at least 16 K memory, versions are included for Commodore 64, IBM PC, and PCjr. Two joysticks required.

Picking blueberries might seem to be a pleasant task for children on a hot dusty summer day. But not in this game. You won't have time for a nap in the shade.

First you must plant the seeds for the blueberries. And once they grow into blueberries, you must pick them before they grow into redberries or rot altogether.

When you run the Atari version of "Blueberries," you will first see a title screen which says: GTIA/CTIA (G/C)? Push either G or C depending on which chip you have. (Computers
purchased after January 1982 probably have the GTIA chip.) If you don't know which you have, just choose one-you can stop the program later and rerun it if the colors are wrong.

Dividing Up The Farm

Then, in the middle of the screen you'll see the actual playing field, which is split up into two planting fields. Player 1 plays on the upper field; player 2 plays on the lower field.

The very bottom of the screen displays the current options. Pressing the OPTION and SELECT keys will change these. Select the options you want for the game. HANDS means the number of farmhands you'll have to help with the picking. The various LIMITs mean that the game will end once one player reaches that LIMIT. A
NO LIMIT game continues until one player loses all of his farmhands.

Once the options are chosen and each player has a joystick (player 1 uses port 1, player 2 uses port 2), the game can be started by pressing START. (One-player games can be played from either joystick port, depending on which field you want to play.)

Meet The Farmhands

Player 1 controls the small farmhand standing in the lower left corner of the top field (that's Farmer Jack). Player 2 controls the farmhand standing in the upper right corner of the bottom field (that's Farmer Bob). Moving the joysticks in the four compass directions moves the farmers similarly.

Try moving the farmers around their fields. You will notice that you can't go through the bushes separating the fields. If you try to do so you hear a noise.

In the upper right or lower left corner of each field, you'll see a small shed where the blueberry seeds are stored. In order to get the seeds, you must maneuver your farmer into the shed. Once you go into the shed, you will be placed outside of it automatically, and you will hear a short, razzy sound.

It＇s Planting Time

Now you can plant the seeds by moving your farmer while holding down the fire button of your joystick．The seeds are small，long，and light green．

You will have to return to the shed periodi－ cally to get more seeds，as your farmer can get only a limited number of seeds each time．

Once the seeds are planted，they should soon start growing into blueberries．The growth of the blueberries is random，however；the seeds that have been planted the longest will not nec－ essarily grow into blueberries first．

Harvesting

Picking the blueberries is even easier than plant－ ing the seeds－simply move your farmer over the blueberries．

You may notice，while picking blueberries， that when you run over the seeds they dis－ appear．You are not picking the seeds back up when you do this．What you are doing is destroying them，and they can no longer grow into blueberries．

You may also notice that some of the blue－ berries turn red after a while．This is actually the second stage of the berry metamorphosis： redberries．The redberry stage represents the degradation（due primarily to age）of the blue－ berries．Redberries，while they can be picked， aren＇t worth as many points as the blueberries．

Redberries are less desirable not only be－ cause of their lower point value，however．Be－ cause blueberries have already aged by the time they turn into redberries，redberries are suscep－ tible to rotting．

Once a redberry has rotted it turns white（al－ though it may appear a very light green on your TV）．Whiteberries are not to be picked；in fact， any farmhand attempting to do so will be forced to retreat to the farmhouse to recover from the ill effects．

The Payoff

Each player gains 10 points for each seed planted， 50 points for each blueberry picked，and 25 points for each redberry picked．In turn，each player loses 5 points for each seed run over and 200 points for running into a whiteberry．

The game will end once one player loses all of his farmhands or when one player reaches the set LIMIT．At this point PLAYER 1 or PLAYER 2 at the top of the screen will flash to show who won the game．

Blueberries can be restarted at any time while the program is running by pressing START （on the Atari）．This，however，puts you in the option－selecting mode．Press START again to be－ gin game play．

Blueberries can also be played with just one player，and since the speed increases as the game progresses，it can be just as challenging as the two－player game．The player can play on either field by plugging the joystick into port 1 or port 2．The object of a one－player game is simply to beat a high score．

One berry has turned overripe（Atari version）．

Program 1：Atari Blueberries

Refer to the＂Automatic Proofreader＂article before typing this program in．
FP 1 Ø GOTO 5øøの
If 1 Øø S1＝PEEK（632）：S＝PEEK（633）：ST1＝ PEEK（644）：ST＝PEEK（645）：POKE 7 7，$:$ ：IF $S=15$ AND $S 1=15$ THEN 39 ø
OL 110 DXY1＝（S＝7）－（S＝11）＋40＊（ $S=13)-$ $(S=14)): D \times Y 2=(S 1=7)-(S 1=11)+4$ の＊$((S 1=13)-(S 1=14))$
B $129 \mathrm{Z}=(\mathrm{S} 1=7)-(\mathrm{S} 1=11): \mathrm{IF} \mathrm{Z}$ THEN FB $=68+Z$
HP $13 \varnothing$ IF ST OR（ $S T=\varnothing$ AND SD＝ø）THEN POKE XY1，$: X Y 1=X Y 1+D X Y 1$
IB $14 \varnothing$ IF $S T=\varnothing$ AND SD＞Ø THEN POKE XY 1，7ø：SOUND $\curvearrowleft, 25,1 \varnothing, 8: S D=S D-1$ ： $X Y 1=X Y 1+D X Y 1: S C 1=S C 1+1 \varnothing: S O U N D$ ø，$, \varnothing, \varnothing ~$
GK $17 \varnothing$ IF ST1 OR（ST1＝ø AND SD $1=\varnothing$ ）T HEN POKE XY2，$: X Y 2=X Y 2+D X Y 2$
EL $18 \varnothing$ IF ST $1=\varnothing$ AND SD $1>\varnothing$ THEN POKE XY2，7ø：SOUND $1,1 \varnothing, 1 \varnothing, 8: S D 1=S D$ 1－1：XY2＝XY2＋DXY2：SC2＝SC2＋1ø：S OUND 1，ø，Ø，ø
KK 2øø $A=\operatorname{PEEK}(X Y 1): A 1=\operatorname{PEEK}(X Y 2)$
KN $21 \varnothing$ IF $A=65$ THEN SOUND $\varnothing, 25 \varnothing, 8,14$ ：XY1＝XY1－DXY1：FOR $X=1$ TO 2：NE XT X：SOUND $\varnothing, \varnothing, \varnothing, \varnothing$
PP 22の IF A1＝65 THEN SOUND 1，2øø，8， 1 4：XY2＝XY2－DXY2：FOR X＝1 TO 2：N EXT X：SOUND $1, \varnothing, \varnothing, \varnothing$
025 IF A＝66 THEN SOUND $\varnothing, 2 ø \varnothing, 6,1 \varnothing$ ：FOR Q＝1 TO 5ø：NEXT Q：GOSUB 8 øの：XY1 $=\mathrm{XY} 1-\mathrm{DXY} 1:$ SOUND $\varnothing, \varnothing, \varnothing, \varnothing ~$

WE LOVE COMMODORE and
 We Love Our Customers

That's why we only sell and support Commodore 64 and Vic 20 computers!! We have • the best prices • over 1000 programs • 500 accessories • absolutely the best service • one day express mail delivery - immediate replacement warranty - 15 day free trial - programming knowledge - technical knowledge - we are the only one in the U.S.A. with complete support for Commodore 64 and Vic 20 computers!!

No One! But No One! Can Compare

 TO PROTECTO ENTERPRIZESTO ORDER WRITE OR CALL: PROTECTO ENTERPRIZES, BOX 550, BARRINGTON, IL 60010

Call 312/ 382-5244
 8 to 5 Weekdays 9-12 Saturdays

Сомmodore 64
(more power than Apple II at half the price)

$\$ 99$.

- 170 K DISK DRIVE $\$ 159.00$ \%
- TRACTION FRICTION PRINTER $\$ 79.00$ 步

WE WE HAVE THE BEST SERVICE

HAVE
THE LOWEST PRICES

$\$ 79.50$

- COM-64 POWER FOR VIC-20 $\$ 79.00$
- NEW VOICE SYNTHESIZER $\$ 59.00$ (Com-64 or VIC-20)
* COMMODORE 64 COMPUTER $\$ 99.50$ You pay only $\$ 199.50$ when you order the powerful 84 K COMMODORE 64 COMPUTER! LESS the value of the SPECIAL SOFTWARE COUPON we pack with your computer that allows you to SAVE OVER $\$ 100$ off software sale prices!! With only $\$ 100$ of savings applied, your net computer cost is $\$ 99.50$!!
*170K DISK DRIVE $\$ 159.00$
You pay only $\$ 259.00$ when you order the 170 K Disk Drive! LESS the value of the SPECIAL SOFTWARE COUPON we pack with your disk drive that allows you to SAVE OVER $\$ 100$ off software sale prices!! With only $\$ 100$ of savings applied, your net disk drive cost is $\$ 159.00$.

* TRACTION FRICTION PRINTER $\$ 79.00$

You pay only $\$ 179.00$ when you order the Comstar T/F deluxe line printer that prints $81 / 2 \times 11$ full size, single sheet, roll or fan fold paper, labels etc. 40,66,80, 132 columns. Impact dot matrix, bi-directional, 80 CPS. LESS the value of the SPECIAL SOFTWARE COUPON we pack with your printer that allows you to SAVE OVER $\$ 100$ off software sale prices!! With only $\$ 100$ of savings applied your net printer cost is only $\$ 79.00$.

4 COLOR PRINTER/PLOTTER $\$ 99.00$

 Lowest cost, 4 color, 80 column, letter quality PRINTERJPLOTTER for Com-64 or VIC- 20 computers!! List programs. High resolution graphics for charts and geometric figures. INCLUDES IN. TERFACE AND SPECIAL SOFTWARE SAVINGS COUPON!!
80 COLUMN BOARD $\$ 99.00$

Now you program 80 COLUMNS on the screen at one time! Converts your Commodore 64 to 80 COLUMNS when you plug in the 80 COLUMN EXPANSION BOARD!! PLUS-you can get an 80 COLUMN BOARD WORD PROCESSOR with mail merge, terminal emulator, ELECTRONIC SPREAD SHEET. List $\$ 59.00$ SALE $\$ 24.95$ if purchased with 80 COLUMN BOARD!! (Tape or Disk)

80 COLUMNS IN COLOR

EXECUTIVE WORD PROCESSOR $\$ 69.00$ This EXECUTIVE WORD PROCESSOR is the finest available for the COMMODORE 64 computer! The ULTIMATE for PROFESSIONAL Wordprocessing application! DISPLAYS 40 OR 80 COLUMNS IN COLOR or Black and White! Simple to operate, powerful text editing with a 250 WORD DICTIONARY, complete cursor and insert/delete key controls line and paragraph insertion, automatic deletion, centering, margin settings and output to all printers! Includes a powerful mail merge. 20,000 WORD DICTIONARY - List $\$ 24.95$ SALE $\$ 19.95$. EXECUTIVE DATA BASE - List $\$ 69.00$ SALE $\$ 49.00$. (Disk

SPECIAL SOFTWARE COUPON

We pack a SPECIAL SOFTWARE COUPON with every COMMODORE 64 COMPUTERDISK DRIVE-PRINTER-MONITOR we sell! This coupon allows you to SAVE OVER $\$ 100$ OFF SALE PRICES! Up to $\$ 500$ savings are possible!!

PROFESSIONAL SOFTWARE COMMODORE 64

Name	List	Sale	Coupon
Executive Word			
Processor	\$99.00	\$69.00	\$59.00
Executive Data Base	\$69.00	\$59.00	\$39.00
20,000 Word Dictionary	\$24.95	\$19.95	\$14.95
Electronic Spreadsheet	\$59.95	\$49.00	\$39.00
Accounting Pack	\$49.00	\$39.00	\$29.00
Total 5.2 Word Processor			
Tape	\$69.00	\$49.00	$\$ 34.00$ $\$ 3900$
Disk	\$79.95	\$59.00	\$39.00
Total Text 2.6Word Processor			
Tape	\$44.95	\$34.95	\$22.00
Disk	\$49.00	\$39.00	\$27.00
Total Label 2.6			
Tape	\$24.95	\$18.00	\$12.00
Disk	\$29.95	\$23.00	\$15.00
Programmers			
Helper (Disk)	\$59.00	\$39.95	\$29.95
80 Column Screen (Disk)	\$59.95	\$39.95	\$29.95
Crush-Crumble-Chomp			
(Tape/Disk)	\$29.95	\$24.95	\$19.95
Pitstop (Cartridge)	\$39.95	\$29.95	\$24.95
Typing Teacher			
Sorite Designer (Disk)	\$16.95	\$14.95	\$10.00
Fireball Joy Stick	\$24.95	\$15.95	\$10.00
Light Pen	\$39.95	\$16.95	\$14.95
Dust Cover	\$8.95	\$ 6.95	\$ 4.60

(See 100 coupon items in our catalog!) Write or call for
Sample SPECIAL SOFTWARE COUPON!

EXECUTIVE QUALITY

PROFESSIONAL BUSINESS SOFTWARE

The Cadillac of business programs for Commodore 64 Computers

Item	List	"SALE	Coupon
Inventory Management	$\$ 99.00$	$\$ 59.00$	$\$ 49.00$
Accounts Receivable	$\$ 99.00$	$\$ 59.00$	$\$ 49.00$
Accounts Payable	$\$ 99.00$	$\$ 59.00$	$\$ 49.00$
Payroll	$\$ 99.00$	$\$ 59.00$	$\$ 49.00$
General Ledger	$\$ 99.00$	$\$ 59.00$	$\$ 49.00$

VIC-20 COMPUTER $\$ 79.50$

This 25 K VIC-20 computer includes a full size 66 key typewriter keyboard color and graphics keys, upper/lower case, full screen editor, 16 K level II microsoft basic, sound and music, real time floating point decimal, self teaching book, connects to any T.V. or monitor!

COM-64 POWER FOR VIC-20 $\$ 79.00$ Just plug in our 32K RAM MEMORY EXPANDER and you get as much usable programming power as the Commodore-64 computer!! Master contro switches on cover, Gold Edge connectors, five year warranty (FREE \$29.95; CARTRIDGE GAME)

NEW VOICE SYNTHESIZER \$59.00

For Com-64 or VIC- 20 computers. Just plug it in and you can program words and sentences, adjust volume and pitch, make talking adventure games, sound action games and customized talkies!! FOR ONLY $\$ 19.95$ you can add TEXT TO SPEECH, just type a word and hear your computer talk-ADD SOUND TO "ZORK," SCOTT ADAMS AND AARDVARK ADVENTURE GAMES!! (Disk or tape).

16K RAM CARTRIDGE $\$ 49.00$

Increases VIC-20 programming power 4 times. Expands total memory to 41 K (41,000 bytes). Memory block switches are an outside cover! CARDCO Includes FREE $\$ 29.95$ game!!

8K RAM CARTRIDGE $\$ 34.95$

Increases VIC-20 programming power $21 / 2$ times. Expands total memory to 33 K (33,000 bytes). Includes FREE $\$ 16.95$ game.

3 SLOT SWITCHABLE EXPANDER $\$ 24.95$
Allows you to add 3 cartridges at one timeswitch select to turn slots on or off-PLUS reset button. A must for your VIC-20 computer!!

60K MEMORY EXPANDER $\$ 49.00$
Sixslot Board - Switch selectable - Reset button - Ribbon cable - CARDCO. A must to get the most out of your VIC-20 Computer!
$9^{\prime \prime}$ GREEN SCREEN MONITOR $\$ 69.00$ Excellent quality SANYO, easy to read, 80 col umns $\times 24$ lines, Green Phosphorous screen with anti-glare, metal cabinet! Saves your T.V. PLUS $\$ 9.95$ for connecting cable. Com- 64 or VIC-20.
$12^{\prime \prime}$ GREEN OR AMBER MONITOR $\$ 99.00$ Your choice of green or amber screen monitor, top quality, SANYO, 80 columns $\times 24$ lines, easy to ready, anti-glare, faster scanning! A must for word processing PLUS $\$ 9.95$ for connecting cable. Com-64 or VIC-20.

- BEST SERVICE IN U.S.A. - ONE DAY EXPRESS MAIL • OVER 500 PROGRAMS • FREE CATALOGS

[^2]PROTECTO ENTERPRIZES wetorounussomesa
BOX 550, BARRINGTON, ILLINOIS 60010 Phone 312/382.5244 to order

HC $26 \varnothing$ IF $A 1=66$ THEN SOUND $1,2 \varnothing \varnothing, 6,1$ Ø：FOR Q＝1 TO 5ø：NEXT Q：GOSUB 85ø：$X Y 2=X Y 2-D X Y 2$
EG Зのø POKE XY1，68：POKE XY2，FB：SOUND $1, \emptyset, \emptyset, \varnothing$
HE $31 \emptyset$ IF $A=71$ THEN SC $1=S C 1+5 \emptyset: U=U S R$ （1630）
KN 32 IF $A 1=71$ THEN SC2＝SC $2+5 \emptyset: U=U S$ R（1653）
HJ $33 \emptyset$ IF $A=72$ THEN SC $1=S C 1+25: U=U S R$ （163の）
$L C 340$ IF $A 1=72$ THEN SC $2=S C 2+25: U=U S$ R（1653）

FN 36 D IF $A 1=73$ THEN C＝6：GOTO 202ø
$B C 37 \emptyset$ IF $A=7 \varnothing$ THEN SOUND $\varnothing, 1 \varnothing \varnothing, 1 \varnothing, 8$ ：SC $1=$ SC $1-5:$ SOUND $\emptyset, \varnothing, \emptyset, \emptyset$
$C D 38 \emptyset$ IF $A 1=7 \emptyset$ THEN SOUND $1,75,1 \varnothing, 8$ ：SC2＝SC2－5：SOUND 1，Ø，Ø，Ø
IF 39ø POSITION 26，1：？SC1；＂＂：POSIT ION 9，1：？SC2；＂＂：POKE SAUMSC $+55,226$ ：FOKE SAUMSC＋72，4の
AP 4øø IF PEEK（53279）$=6$ THEN $217 \emptyset$
Af 410 IF SC $1>=L I M$ OR SC $2>=L I M$ THEN 21 øの
JB 42 L LV＝21ø $+(S C 1+$ SC2 $) * 1.7 E-\emptyset 3+\emptyset .5$
EM 430 IF LV＞255 THEN LV＝255
DB 440 POKE 255，LV
60 45ø GOTO 1 Øø
HA 8øø SD＝INT（5め＊RND（ø）＋51）－INT（SC1／ 5øøø）＋INT（SC2／1øøの）
CG $81 \varnothing$ IF SD＜25 THEN SD＝INT（5ø＊RND（ \varnothing ）+5 1）
HK 82 R RETURN
K6 85ø SD $1=$ INT（5 0 ＊RND（Ø）+51$)-$ INT（SC2 ／5øøø）＋INT（SC1／1の日の）
IN 860 IF SD $1<25$ THEN SD $1=I N T$（ $5 \emptyset$＊RND （D）+51 ）
HP $87 \emptyset$ RETUFN
 \｛3 SPACES\} PRAKETM SCORE PEE

DE 1010 ？＂HANDS 3 Ø\｛5 SPACES\} GIUEE ERPREEg\｛5 SPACES\}HANDS $3 "$ ；
K 1 ØЗø？＂\｛4ø A\}";
IK $1 \emptyset 4 \varnothing$ ？＂\｛2 A\}\{15 SPACES\}\{2 A\} \｛19 SPACES\}\{B\}\{A\}";
JP 1 Ø5 5 ？＂\｛2 $A\}\{7 A\}\{A\}\{3 A\}$ \｛4 SPACES\}\{A\} \{A\} \{5 A\} \{A\} \｛2 A\} \{2 A\} \{2 A\}";
JH $196 \emptyset$ ？＂\｛2 A\}\{7 SPACES\}\{A\} \{A\} $\{3 A\}\{4 A\}$ \｛A\}\{5 SPACES\} \｛A\} \{A\} \{A\} \{3 SPACES\}\{A\} \｛2 A\}";
JK $197 \emptyset$ ？＂\｛2 A\} \{5 A\} \{A\} \{A\} \{A\} \｛1ø SPACES\}\{3 A\} \{A\} \{A\} \{A\} \｛A\} \{A\} \{2 A\}";
J0 $1 \emptyset 8 \emptyset$ ？＂\｛2 A\} \{A\}\{5 SPACES\}\{A\} \｛A\} \{A\} \{3 A\} \{7 A\} \{A\} $\{A\}\{A\}\{A\}\{A\}\{2 A\} " ;$
נ1 109 ？＂\｛2 $A\}\{A\}\{5 A\}$
\｛6 SPACES\} \{A\} \{5 SPACES\} \{A\}
\｛5 SPACES\}\{A\}\{3 SPACES\}\{A\}
\｛A\} \{A\} \{2 A\}";
JK $11 ø \emptyset$ ？＂\｛2 A\} \{A\}\{5 SPACES\}\{A\} $\{6 A\}\{3 A\}\{A\}\{6 A\}\{2 A\}$ \｛A\} \{A\} \{2 A\}";
IM $111 \varnothing$ ？＂\｛A\}\{B\}\{3 SPACES\}\{3 A\} \｛1ø SPACES\}\{3 A\}\{17 SPACES\}
$\{2 A\}^{\prime \prime} ;$
KK 112 ？＂ 124 A\}";
KL $113 \varnothing$ ？＂$\{4 \varnothing A\} " ;$
IP $114 \varnothing$ ？＂\｛2 A\} \{17 SPACES\}\{3 A\}
\｛1ø SPACES\}\{3 A\}\{3 SPACES\}
\｛B\} \{A\}";
JP 1159 ？＂\｛2 A\} \{A\} \{A\} \{2 A\} \{6 A\} $\{A\}\{3 A\}\{6$ A\} \{A\}
$\{5$ SPACES\}\{A\} \{2 A\}";
JG $116 \boldsymbol{6}$ ？＂\｛2 A\} \{A\} \{A\} \{A\}
\｛3 SPACES\} \{A\} \{5 SPACES\} \{A\}
\｛5 SPACES\} \{A\} \{6 SPACES\} \{5 A\}
\｛A\} \{2 A\}";
J0 $117 \boldsymbol{\square}$ ？＂\｛2 $A\}$ \｛A\} \{A\} \{A\} \{A\}
\｛A\} \{7 A\} \{3 A\} \{A\} \{A\}
\｛A\} \{5 SPACES\}\{A\} \{2 A\}";
JH 1189 ？＂\｛2 $A\}\{A\}\{A\}\{A\}\{A\}$
\｛A\} \{3 A\}\{1ø SPACES\}\{A\} \{A\}
\｛A\} \{5 A\} \{2 A\}";
JL 119 ？＂\｛2 A\} \{A\}\{3 SPACES\}\{A\}
\｛A\} \{A\}\{5 SPACES\}\{A\} \{4 A\}
\｛J A\} \{A\} \{A\}\{7 SPACES\}\{2 A\}
＂；
JM $120 \emptyset$ ？＂\｛2 A\} \{2 A\} \{2 A\} \{A\}
\｛5 A\} \{A\} \{A\}\{4 SPACES\}\{3 A\} \｛A\} \{7 A\} \{2 A\}";
IJ 121 ？＂$\{A\}\{B\}\{19$ SPACES\} \{2 A\}
\｛15 SPACES\}\{2 A\}";
KL 122ø？＂\｛4のA\}";
LH $125 \emptyset$ SAVMSC＝PEEK（88）＋256＊PEEK（89） ： $\mathrm{XY} 1=5 \mathrm{SAVMSC}+557: \mathrm{XY} 2=$ SAVMSC +4 Ø2：FB＝67：POKE XY1，68：POKE XY 2，FB
BB $126 \emptyset \mathrm{U}=\mathrm{USR}(1676): \operatorname{SC} 1=\varnothing: S C 2=\emptyset:$ GOTO G
P6 13øø POKE 84，22：？＂$\{3$ SPACES\}PRES S OPTION＂；：POKE 85，2ø：？＂P RESS SELECT＂；
ME $13 \emptyset 5$ A $=$＂$\{3$ SPACES $\}$［DO 1．$\emptyset E+95: A 1 \$="$ Fincirs＂：$L=3: L$ 1＝3：POKE 84，23：POKE 85，2：？A \＄；：POKE 85，23：？A1\＄；
AB 131＠POKE 559，34：POKE 53279， 8
BO 1329 PK＝PEEK（53279）
OK $133 \emptyset$ IF PK＝6 THEN POKE 559， $0: F O R$ Q＝1 TO 125：NEXT Q：POKE 559， 3 4：QID＝L：GOTO 1øD
KB $134 \varnothing$ IF FK＝3 THEN SOUND $\varnothing, 2 \emptyset \varnothing, 1 \emptyset$, 1の：GOSUB 14 ほø
KE $135 \varnothing$ IF PK＝5 THEN SOUND $\emptyset, 1 \emptyset \emptyset, 1 \emptyset$ ， 1ø：GOSUB $15 \emptyset \emptyset$
MI 136 GOTO 1310
 HEN A\＄＝＂ESSISIS［1 Øø：GOTD 16øø

 TO 16øØ

 TO 16 00
 ＝＂E［IIISIS GOTO 16 DD

 ：GOTO 16øの

 －ØE＋95：GOTO 16のด

 $S C+46, L+16:$ FOKE SAUMSC＋78，L 1 ＋16：GOTO 16めø
 KirnInts＂： $\mathrm{L}=3: \mathrm{L} 1=3$ ：FOKE SAVM $S C+46, L+16:$ POKE SAVMSC +78 ，L 1 ＋16：GOTO 16øØ
ED 16 ØD FOKE 84，23：FOKE 85，2：？A\＄；＂ \｛4 SFACES\}";:POKE 85, 23:? A1 \＄；SOUND Ø，Ø，Ø，Ø：FOR Q＝1 TO 5ø：NEXT Q：RETURN
66 2のøロ FOR Q＝74 TO 79：POKE XY1，Q：SO UND Ø，2＊Q，8，7：SOUND 1，25ø－2＊ Q，6，6：FOR T＝1 TO $15:$ NEXT $T: N$ EXT Q：GOSUB 2200
HK $2 \varnothing 1 \varnothing$ SOUND Ø，Ø，Ø，Ø：SOUND 1 ，Ø，$, \varnothing: ~$ POKE XY1，CO：GOTO 2Ø4の
602920 FQR $Q=74$ TO 79：POKE $X Y 2, Q: S 0$ UND $\emptyset, 2 * Q, 8,7:$ SOUND 1，25日－2＊ $0,6,6: F O R \quad T=1$ TO $15: N E X T \quad T: N$ EXT Q：GOSUB 225日
KE 2øЗø SOUND Ø，Ø，Ø，Ø：SOUND 1，Ø，Ø，ø： FOKE XYZ，CO
NK 2040 IF C＝6 THEN L1＝L1－1：SC2＝SC2－ 2øø：POSITION C，1：？L1
HL 2ø5め IF C＝38 THEN L＝L－1：SC $1=$ SC $1-2$ øø：POSITION C， $1: ? ~ L$
AA $206 \emptyset$ IF L1＝ø OR L＝Ø THEN POSITION 9，1：？SC2：POSITION 26，1：？S C1：GOTO 21 øø
JE 2ø8Ø GOTO 1 øø
PH $210 \emptyset$ IF SC1＞SC2 THEN B\＄＝＂PLAYER 2 ＂：B1 $\$=$＂RLEMER 2＂：C＝32：GOTO 2 $12 \emptyset$
$A D 211 \emptyset B \$=" P L A Y E R 1 ": B 1 \phi="$ PGFMER 1 1＂ ： $\mathrm{C}=\varnothing$
£ 212 P POSITION C，Ø：？B\＄；：FOR $X=1$ T 0 25：NEXT X：POSITION C，Ø：？B 1\＄；
GD 213 P POKE 53279，8
BP 214 （ $215=$ PEEK（53279）
JM 215 IF PKく＞7 THEN $217 \emptyset$
OE 216 COL＝COL＋1：IF COL＞15 THEN COL ＝ 1
BB 2165 SETCOLOR 4，COL，6：GOTO $212 \emptyset$
L6 217 G GRAPHICS $\emptyset:$ POKE 752，1：POKE 7 56，CHBAS：POKE 16，64：POKE 537 74，64
PF 218 D SETCOLOR 2，15，6：SETCOLOR 1,1 5，14：SETCOLOR 4，1 $5,4:$ POSITIO N $\emptyset, \emptyset: L=Q I D: L 1=L: G=219 \emptyset: G O T O$ 1 Øøø
6C 2190 POKE 84，22：？＂\｛3 SPACES\}PRES S OPTION＂；：POKE 85，2の：？＂P RESS SELECT＂；：POKE 84，23：POK E 85，2：？A\＄；：POKE 85，23：？A1 \＄；
KP 2195 POKE SAUMSC＋46，L＋16：POKE SAV MSC＋78，L1＋16：GOTO 131 Ø
$6022 \emptyset \emptyset$ IF PEEK $(5377 \emptyset)>127$ THEN POKE XY1， \mathscr{D} ：XY1＝SAUMSC＋557：GOTO 2 $22 \emptyset$
BN 221 Ø POKE XY1，$\emptyset: X Y 1=S A V M S C+8 \varnothing 2$
JH 222ø IF L＝1 THEN CO＝79：RETURN
IH 223 Ø FOR $Q=79$ TO 74 STEP－ $1:$ SUUND $\emptyset, 2 * Q, 8,6=$ SOUND $1,25 \emptyset-2 * Q, 6$ ，7：POKE XY1，Q：FOR T＝1 TO 15： NEXT T：NEXT Q
CO224の SOUND $\emptyset, \emptyset, \varnothing, \emptyset:$ SOUND $1, \varnothing, \emptyset, \emptyset:$

CO＝68：RETURN

6P 2250
IF PEEK $(5377 \emptyset)>127$ THEN POKE $X Y 2, \emptyset: X Y 2=S A \cup M S C+4 \varnothing 2:$ GOTO 2 27 Ø
CH 226 g
MN 227 の
IN 2280

EN 229 Ø
В 5 øøø
KL5010
IC 5020
EF5 50 Ø
J65040

A1 5959

0051 ゆロ

LJ 5110
6F512＠
FM 5130

60 5140
DA 515%

005160

NA $517 \emptyset$
PL 5200
HL 5390
$k 05310$
AE 5320
LD 5339
LI 5349
Ep 535日 HM 5360

AP 537 Ø
FC 5389
0E539
AJ $54 \varnothing \varnothing$
MG 541 Ø
BJ 542 Ø
JB 5430
POKE XY2, Ø: XY2=SAUMSC+157
IF $L 1=1$ THEN $C 0=79:$ RETURN
FOR $Q=79$ TO 74 STEP -1 : SOUND
Ø, $2 * Q, 8,6=$ SOUND $1,25 \emptyset-2 * Q, 6$
, 7: FOKE XY2, Q:FOR T=1 TO 15:
NEXT T:NEXT Q

SOUND Ø，$, \varnothing, \varnothing:$ SOUND 1， $1, \varnothing, \emptyset: ~$ CO＝FB：RETURN
CHBAS $=$ PEEK $(742)-4: \mathrm{D}=$（PEEK $(74$ 2）-4 ）＊ 256
RESTORE $5 \emptyset 40:$ FOR $X=1536$ TO 1 591
READ $Y:$ POKE X, Y
NEXT $X: U=U S R(1536)$
DATA 1 Ø4，173，244，2，133，294，1 $69,9,133,293,133,295,173,23 \emptyset$ ，2，56，233，4，133，206，133，207， 162，Ø，16め，Ø，177，203 Øø，24，144，244，224，3，24ø，8， 23 2，23ø，206，230，204，24，144，23の ，165，207，141，244，2，96
GRAPHICS 17：FOKE 16，64：POKE 53774，64
？\＃6：？\＃6：？\＃6：？\＃6；＂

？\＃6：？\＃6：？\＃6：？\＃6：？\＃6：？\＃ 6：？\＃6：？\＃6；＂GTIA／CTIA（G／ C）？＂

IF $\operatorname{PEEK}(764)=18$ THEN \quad $1=71=\mathrm{C}$ 2＝72：？\＃6；＂\｛4 SPACES\}EłほE": G 0T0 52øø
IF PEEK $(764)=61$ THEN C $1=72$ ：C 2＝71：？\＃6；＂\｛4 SPACES\}国隹官": G 0 0T0 52のロ GOTO 514 g
？\＃6：？\＃6：？\＃6；＂PLEASE WAI T ．．．＂ 69，164
$104,169,255,141,6,210,1$ Øø
DATA $141,0,219,169,162,141,1$ ， 210
DATA $32,79,6,169,15 \emptyset, 141, \emptyset, 2$ 1 ø ， 6
DATA $32,79,6,169, \varnothing, 141, \emptyset, 21 \emptyset$
DATA $162,0,232,224,150,208,2$ 51,169
DATA $125,141, \emptyset, 21 \varnothing, 169,172,1$
41， 1
DATA $210,32,79,6,169, \emptyset, 141, \emptyset$
DATA 21 ， $169,0,141,1,210,96$ ， 162
DATA ø，232，16Ø，Ø，2øø，192，255 ， 208
DATA $251,224,3,208,244,96$
DATA $169,155,141,2,6,169,1$ øø
， 141
DATA $15,6,169,50,141,28,6,16$ 9

6F 5440 DATA $75,141,56,6,76,9,6$
B0 545Ø DATA $169,255,141,2,6,169,20 \emptyset$ ， 141
HF 546 D DATA $15,6,169,159,141,28,6,1$ 69
JE 547 D DATA $125,141,56,6,76,9,6$
CI 548ø DATA $194,169,255,133,254,16 \emptyset$ ， 155
6J $549 \emptyset$ DATA $162,6,169,7,32,92,228,9$ 6， 165
FO 55øø DATA $255,197,254,240,5,198,2$ 54， 24
FH $551 \emptyset$ DATA $144,59,169,255,133,254$ ， 162，\square
IK 552 D DATA $134,253,165,88,133,252$ ， 24，165
HH 553Ø DATA 89， $1 ø 1,253,133,253,172$ ， 1ø，21Ø
CH 554 DATA $177,252,2 \emptyset 1,7 \emptyset, 2 \emptyset 8,7,16$ 9， 71
E0 555ø DATA $145,252,24,144,19,2$ の1， 7 1， 2 Ø8
MI 556ø DATA 7，169，72，145，252，24，144 ， 8
CG $557 \emptyset$ DATA $2 \emptyset 1,72,298,4,169,73,145$ ， 252
CH 558＠DATA $232,224,4,298,293,76,98$ ， 228
LI 559ø RESTORE 5Зøø：FOR $x=1536$ TO 1 763
FH 56øの READ $Y:$ POKE X, Y ：NEXT X
NJ 6øøめ FOR $X=1$ TO $15: R E A D$ A：IF $A=-1$ THEN $A=C 1$
FF 6Ø1Ø IF $A=-2$ THEN $A=C 2$
AC 6 Ø2の $Z=A * 8$
CJ 6め3 FOR Y＝Ø TO 7：READ N1：POKE $Z+$ $D+Y, N 1=N E X T$ Y：NEXT X
LD 6 Ø4 4 POKE 82，Ø：FOKE 83， 4 Ø：DIM A\＄（ 15），A1\＄（1ø）， $\mathrm{B} \$(8), \mathrm{B} 1 \$(8): \mathrm{COL}$ ＝Ø
LH 6ø5Ø GRAFHICS Ø：POKE 752，1：POKE 7 56，CHBAS：POKE 16，64：POKE 537 74，64
AN 6Ø6Ø SETCOLOR $2,15,6: \operatorname{SETCOLOR} 1,1$ 5， 14 ：SETCOLOF $4,10,4$ ：FOSITIO N Ø，Ø：G＝1उøø：GOTO 1øøめ
IK 6＠7g DATA 65，127，246，127，246，127， 246，127，246
AB 6ø8Ø DATA 66，24，6Ø，126，255，102，1ø 2，102，102
FC 6 G9＠DATA $67, \emptyset, 4,14,4,3 \emptyset, 36,74,17$
CE 61ØØ DATA $68, \emptyset, 8,28,8,62,8,2 \emptyset, 36$
DF 6110 DATA $69,9,32,112,32,129,36,8$ 2，136
$66612 \emptyset \mathrm{DATA} 7 \emptyset, \varnothing, \varnothing, \varnothing, \varnothing, 48, \varnothing, \varnothing, \varnothing$
AK 613＠DATA $-1, \varnothing, 8,42,42,42,42,8$ ，Ø
IC 6140 DATA $-2,9,16,84,84,84,84,16$ ， め
EA 615 DATA $73,0,24,126,126,126,126$ ，24，ø
186160 DATA $74,0,16,56,16,56,16,40$ ， Ø
IH $617 \emptyset$ DATA $75,0, \emptyset, 16,56,16,56,56,4$ Ø
H0618Ø DATA 76，Ø，Ø，Ø，16，56，124，56，4 \emptyset
IC 619Ø DATA 77， $0, \emptyset, \emptyset, \emptyset, 16,56,254,23$ 8
ED $62 \emptyset \emptyset$ DATA $78, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 16,186,255$
KF 621Ø DATA 79，Ø，Ø，Ø，Ø，Ø，Ø，16，56

The blueberries have just ripened in this 64 version of ＂Blueberries．＂

Program 2：Blueberries， 64 Version

Refer to the＂Automatic Proofreader＂article before typing this program in．

10 GOTO5øøø
 ：rem 95

$1 \varnothing \varnothing$ Sl＝PEEK（Jl）：S＝PEEK（Jø）：SV＝（SlAND16）／1 6：SU＝（SAND16）／16：Sl＝SlAND15：S＝SAND15
：rem 99
$1 \emptyset 5$ IFS＝15ANDS1＝15THEN38 $:$ rem 223
$11 \varnothing \mathrm{Dl}=(\mathrm{S}=11)-(\mathrm{S}=7)+4$ 月 $^{*}((\mathrm{~S}=14)-(\mathrm{S}=13)): \mathrm{D} 2$ $=(\mathrm{Sl}=11)-(\mathrm{Sl}=7)+4 \emptyset *((\mathrm{Sl}=14)-(\mathrm{Sl}=13))$
：rem 137
$13 \emptyset$ IFSUOR（SU＝\emptyset ANDSD＝\varnothing ）THENPOKEXI， $32: \mathrm{Xl}=\mathrm{x}$ l＋Dl
：rem 74
$14 \varnothing$ IFSU＝\emptyset ANDSD $>\emptyset$ THENPOKEXI，7 $0: S D=S D-1: X 1$ ＝Xl＋Dl：SA＝SA＋1ø：F＝25：GOSUB 25øø
：rem 135
$17 \varnothing$ IFSVOR（SV＝øANDSE＝\varnothing ）THENPOKEX2，32：X2＝X 2＋D2
：rem 85
$18 \emptyset$ IFSV＝ØANDSE $>$ ØTHENPOKEX2，7 7 ：SE＝SE－1：X2 $=\mathrm{X} 2+\mathrm{D} 2: \mathrm{SB}=\mathrm{SB}+1 \varnothing: \mathrm{F}=1 \varnothing:$ GOSUB $26 \varnothing \varnothing$
：rem 144
$2 \emptyset \emptyset$ A＝PEEK（X1）：Al＝PEEK（X2）：rem 248
210 IFA $=65$ THENXI＝Xl－Dl：F＝250：GOSUB $250 \emptyset$
：rem \varnothing
$22 \emptyset$ IFAl＝65THENX2＝X2－D2：F＝2øø：GOSUB $26 \varnothing \varnothing$
：rem 49
250 IFA＝66THENGOSUB8øø： $\mathrm{Xl}=\mathrm{Xl}-\mathrm{Dl}: \mathrm{F}=2 \varnothing \varnothing: \mathrm{GOS}$ UB $25 \emptyset \emptyset$
：rem 82
$26 \emptyset$ IFAl $=66 \mathrm{THENGOSUB} 850: \mathrm{X} 2=\mathrm{X} 2-\mathrm{D} 2: \mathrm{F}=2 \varnothing 0: \mathrm{GO}$ SUB 26Øø
：rem 141
3øØ POKEX1，68：POKEX1＋CO，7：POKEX2，68：POKEX $2+\mathrm{CO}, 7$
：rem 151
310 IFA＜7ØORA＞73THEN350 ：rem 88
$32 \emptyset$ ON（A－69）GOTO $330,331,332,333$ ：rem 123
$330 \mathrm{SA}=\mathrm{SA}-5: \mathrm{F}=1 \varnothing 0:$ GOSUB25ø0：GOTO35ø
：rem 55
331 SA＝SA＋25：GOTO35 ：rem 153
$332 \mathrm{SA}=\mathrm{SA}+5$ ： GOTO 55 ：rem 152
$333 \mathrm{C}=\varnothing$ ：GOTO2øøø
：rem 126
$35 \emptyset$ IFAl＜7øORAl＞73THEN38 ：rem 193
360 ON（Al－69）GOTO $370,371,372,373$ ：rem 192
$37 \varnothing \mathrm{SB}=\mathrm{SB}-5: \mathrm{F}=75: \mathrm{GOSUB} 2600: \mathrm{GOTO} 380:$ rem 28
371 SB＝SB＋25：GOTO38 \quad ：rem 162
372 SB＝SB＋5ø：GOTO38Ø
：rem 161

Notes On The Commodore 64 And IBM PC／PCjr Versions Of Blueberries

The 64 and PC／PCjr versions are the same as the Atari version except for the scoring routine and the berry development routine． The blueberries in these versions have four stages of development：the seed，the un－ developed berry，the mature berry，and the overripe berry．

If you pick the berry before it has had a chance to sprout，you have five points de－ ducted from your score．If you pick an un－ developed berry，you only get 25 points．If you pick the berry when it is ripe，you re－ ceive the full 50 points．If you pick an over－ ripe berry，your farmhand becomes sick and you lose 200 points．

In the Atari version，berries ripen at random times，but in the 64 and PC／PCir versions all the berries on the screen ripen at the same time．However，the amount of time required for the berries to ripen is determined randomly．Both versions require two joysticks to play，and the Color／ Graphics Monitor Adapter board is required to use Program 3 on an IBM PC．

373 C＝1：GOTO2øøø
：rem 131
380 PRINT＂\｛HOME \} \{DOWN \} \{ 25 RIGHT \} "SB" \｛LEFT\} "
：rem 219
385 PRINT＂\｛HOME \} \{DOWN\} \{8 RIGHT \} "SA" \{LEFT \} ＂
：rem 242
39 IFSA $>=$ LIORSB $>=$ LITHEN $21 \varnothing \varnothing$ ：rem 7
395 GOSUB $27 \varnothing \emptyset$ ：rem 234
$4 \emptyset \varnothing \mathrm{CN}=\mathrm{CN}+1:$ IFCN $<3 \emptyset+\mathrm{RND}(1)$＊2ØTHEN1ØØ ：rem 37
41Ø CN＝ø：SYS49152：GOTOIØØ ：rem 213
$8 \emptyset \emptyset \mathrm{SD}=\mathrm{INT}(50 * \operatorname{RND}(1)+51):$ RETURN ：rem 72
$85 \emptyset \mathrm{SE}=\operatorname{INT}(5 \emptyset * \operatorname{RND}(1)+51):$ RETURN ：rem 78
1øøø POKE53280，Ø：POKE53281，Ø ：rem 22
$10 \emptyset 5$ PRINT＂\｛CLR\}E7习\{RVS\}PLAYER I\{OFF\} SCO RE\｛3 SPACES\}PICKIN'\{2 SPACES\}SCORE \｛RVS\}PLAYER 2\{OFF\}"; :rem 33
$1 \emptyset 1 \emptyset$ PRINT＂HANDS $3\{2$ SPACES $\} \emptyset\{5$ SPACES\}BL UEBERRIES $\emptyset\{5$ SPACES $\}$ HANDS 3 ＂；
：rem 164
1020 PRINT＂ 2 习习AAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAA＂；：rem $14 \emptyset$
1030 PRINT＂AA\｛15 SPACES\}AA\{19 SPACES\}BA"; ：rem 87
$1 \varnothing 40$ PRINT＂AA AAAAAAA A AAA 4 SPACES $\}$ A A \｛SPACE\}AAAAA A AA A A AA"; :rem 44
1060 PRINT＂$A \bar{A}\{7$ SPACES $\} \bar{A} A$ AAA AAAA A $\{5$ SPA $\overline{C E S}\} \underline{A}-\underline{A} \underline{A}\{3 \overline{S P} \bar{A} C \overline{E S}\} \underline{A} \frac{A A^{\prime \prime}}{: r e m} 101$
$107 \varnothing$ PRINT＂AA AAAAA A \underline{A} A $\{1 \varnothing$ SPACES $\}$ AAA $\frac{A}{2}$

 $1 \emptyset 9 \emptyset \overline{\mathrm{PR}} \mathrm{I} \overline{\mathrm{NT} \text {＂AA } A} \overline{\mathrm{~A}} A \bar{A} A \bar{A}\{\overline{6} \overline{\mathrm{~S}} \overline{\mathrm{AC}} \overline{\mathrm{AC}} \mathrm{S}\} \mathrm{A}$ $\{5$ SPACES $\}$ A $\{5$ SPACES $\}$ A $\{3$ SP̄ACES $\}$ A A \｛SPACE\}A $A \bar{A} " ; \quad$ rem ${ }^{-} 2 \overline{3} \emptyset$ $11 \varnothing \emptyset$ PRINT＂A侖 $\bar{A}\{5$ SPACES $\}$ A AAAAAA AAA A A AAAAA $\overline{A A}$ A AA＂； ：$\frac{\mathrm{AAA}}{\mathrm{rem}} \frac{\mathrm{A}}{1} \emptyset \frac{A}{4}$
$111 \varnothing \overline{\text { PRINT }} " \overline{\mathrm{AB}}\{\overline{3} \overline{\mathrm{~S} P \overline{A C} E S}\}$ AAA $\{1 \varnothing$ SPACES $\}$ AAA
\｛17 SPACES $\}$ AA＂；
：rem 90
1120 PRINT＂AAAAA $\bar{A} A$ AAAAAAAAAA＂；：rem 248
1130 PRINT＂AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAA AAAA＂；
：rem 249
1140 PRINT＂AA\｛17 SPACES $\}$ AAA $\{1 \varnothing$ SPACES $\}$ AAA \｛ 3 SPA $\overline{C E S}\}$ BA＂；
：rem 93
1150 PRINT＂AA A A AA AAAAAA A AAA AAAAAA
$\{S P A C E\} A \bar{A} \overline{S P} \overline{A C E S}\} \bar{A} A \overline{A A} ; \overline{r e m ~ 1 \varnothing} 9$
1160 PRINT＂A \bar{A} A A A $\{3$ S $\bar{P} A \overline{C E S}\} A\{5$ SPACES $\}$ A $\{5$ SPA $\overline{C E} S\}$ A $\left\{6^{-}\right.$SPACES $\}$AAA $\bar{A} A$ A $-\frac{A A " ; ~}{\text { rem }}$

$$
\text { :rem } 228
$$

1170 PRINT＂AA A A A A AAAAAAA AAA
$\{2 \text { SPACES }\}_{A} \underline{A}^{-}-\underline{A}\left\{5^{-}\right.$SPACES $\} \underline{A} \underline{A B}^{\prime \prime}$ ；
：rem 44
1180 PRINT＂AA A A A A AAA\｛1ø SPACES\} $\underset{A}{A}$ A A $A A A \overline{A A} \bar{A} A^{\bar{\prime}} ;-\quad$ ：rem $\overline{2} 3 \overline{4}$
1190 PRINT＂AA $\bar{A}\{3$ SPACES $\} A$ A $A\{5$ SPACES $\} A$ AAAA AAA A A\｛7 SPACES $\} A \bar{A} "$ ；：rem $1 \emptyset \overline{5}$ 1200 PRINT＂$\overline{A A} A \bar{A} \bar{A} A$ A AAAAA $\bar{A} A\{4$ SPACES $\}$ AAA A
$1210 \overline{\text { PRINT }}$＂$\overline{A B}\{19$ SPACES $\}$ AA $\{15$ SPACES $\} A A " ;$
：rem 87
1220 PRINT＂AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAA $\overline{A A A A}$＂；：rem 249
$1250 \overline{\mathrm{Xl}=1426: \mathrm{X} 2}=1581: \mathrm{CO}=54272$ ：POKEX1，68： P OKEXI + CO， 7 ：POKEX2，68：POKEX2＋CO， 7
$126 \emptyset \mathrm{SA}=\varnothing: \mathrm{SB}=\varnothing: \mathrm{J} \emptyset=56321: \mathrm{Jl=J} \emptyset-1$ ：rem 194
$127 \varnothing$ FORI＝COTOCO＋24：POKEI，$\varnothing:$ NEXT ：rem 22
1280 POKECO $+24,15$ ：POKECO $+5,16$ ：POKECO $+6,24$ $\emptyset:$ POKECO $+12,16:$ POKECO $+13,17$ ：rem 245
$13 \varnothing \emptyset$ PRINT＂$\{$ GRN $\}$ \｛HOME $\}$ \｛ 22 DOWN \}
\｛1ø SPACES\}PRESS $\mathbb{K} 6 \exists S P A C E\{G R N\}$ TO PL AY＂
：rem 197
1301 PRINT＂\｛CYN\}\{5 SPACES\}PRESS 'Fl'
\｛10 SPACES\}PRESS 'F3'" :rem 219
1305 AS＝＂$\{3$ SPACES $\}$ NO LIMIT＂：LI＝1E38：Al\＄＝ ＂ 3 HANDS＂：L＝3：Ll＝3 ：rem 199
$13 ø 6$ PRINT＂\｛3 SPACES\}"AS"\{3 SPACES\}","
\｛5 SPACES＂A1\＄＂\｛UP\}" :rem 31
1310 GETI\＄：IFI\＄＝＂＂THEN1310 ：rem 189
1330 IFI $\$="$＂THEN1øø ：rem 4
1340 IFI $\$="\{F 1\}$＂THEN140Ø ：rem 190
1350 IFI $\$=$＂\｛F3\}"THEN15ø0 :rem 193
1360 GOTO131ø ：rem 2øØ
14øØ IFA $=$＝＂$\{3$ SPACES $\}$ NO LIMIT＂THENA $=$＝＂
\｛2 SPACES $\} 5$ 5øø LIMLT＂；LI＝5Øø日：GOTO13 Ø6
：rem 189
$141 \varnothing$ IFAS＝＂$\{2$ SPACES $\} 5 \emptyset \emptyset \emptyset$ LIMIT＂THENAS＝＂ \｛2 SPACES $\}$ 1øøøø LIMIT＂：LI＝1øøøø：GOTO 1306
：rem 62
$142 \emptyset$ IFA $=$＂$\{2$ SPACES $\} 1 \varnothing \varnothing \emptyset \emptyset$ LIMIT＂THENAS＝＂
\｛2 SPACES $\}$ 5øøøø LIMIT＂：LI＝5øøøø：GOTO 1366
：rem 115
1430 IFA $=$＂$\{2$ SPACES $\} 5 \emptyset \emptyset \emptyset \emptyset$ LIMIT＂THENA $\$="$ 1øøøøø LIMIT＂：LI＝1øøøøø：GOTO13Ø6
：rem $2 ø 8$
1440 IFAS＝＂1øøøøø LIMIT＂THENA\＄＝＂ 5 Øøøøø \｛SPACE\}LIMIT":LI=5øøøø0:GOTO13ø6
：rem 5
1450 IFA\＄＝＂ $5 \emptyset \emptyset \emptyset \emptyset \emptyset$ LIMIT＂THENAS＝＂
\｛3 SPACES\}NO LIMIT":LI=1E38:GOTO13ø6
：rem 62

150 IFAl $\$=" 3$ HANDS"THENAI $\$=" 5$ HANDS":L =5:Ll=5:GOTOl6øø :rem 81
$151 \varnothing$ IFAl\$=" 5 HANDS"THENA1\$=" 3 HANDS":L =3:Ll=3:GOTOl6øØ :rem 78
$16 \varnothing \varnothing$ POKE1Ø7ø,L+48:POKE11ø2,Ll+48:GOTO13Ø 6
:rem 119
$20 \varnothing \varnothing$ IFCTHENLl=L1-1:SB=SB-2øø:POKEX2,32:X 2=1581:GOTO2ø2ø :rem 67
$2 \emptyset 1 \varnothing \mathrm{~L}=\mathrm{L}-1: \mathrm{SA}=\mathrm{SA}-2 \emptyset \varnothing:$ POKEXI, $32: \mathrm{Xl}=1426$
:rem 164
$2 \emptyset 2 \emptyset$ POKE1Ø7Ø, L+48: POKEllø2,Ll+48:rem 55
$2 \emptyset 21$ POKEXI, 68: POKEXI+CO,7:POKEX2,68:POKE $\mathrm{X} 2+\mathrm{CO}, 7$
: rem $2 \emptyset 1$
$2 \emptyset 25$ GOSUB27øø
:rem 18
$2 \emptyset 26$ POKECO $+4,33:$ FORI $=2 \varnothing \emptyset T O 1 \varnothing S T E P-5:$ POKEC O+1, I: FORJ=1TO5:NEXTJ, I:GOSUB27øØ
:rem 143
 :rem 4
$2 \emptyset 4 \varnothing$ PRINT" \{HOME \} \{DOWN\} \{ 25 RIGHT \} "SB"
\{LEFT\} " :rem 6
$205 \emptyset$ PRINT" $\{$ HOME $\}$ \{DOWN \} \{8 RIGHT \}"SA" \{LEFT\} "
:rem 25
2060 FORTD=1TO3Øø0:NEXT :rem 148
$21 \varnothing \emptyset \mathrm{~B}=$ ="1": IFSA<SBTHENB $\$=" 2 "$:rem 81
2110 PRINT"\{CLR\}\{10 DOWN\}\{13 RIGHT\}PLAYER "BS" WINS"
:rem 3
$213 \emptyset$ PRINT" $\{4$ DOWN $\}$ \{ 8 SPACES $\}$ PRESS SPACE \{SPACE\}TO CONTINUE"
:rem $22 \varnothing$
2140 GETAS:IFAS<>" "THEN2140 :rem 238
215 GOTOIØøø :rem 194
$25 \emptyset \varnothing$ POKECO +1, F: POKECO, $\varnothing:$ POKECO $+4,33$:FORI $=1 \mathrm{TO} 20$: NEXT: RETURN
:rem 9
$26 \emptyset \emptyset$ POKECO $+8, \mathrm{~F}: \mathrm{POKECO}+7, \varnothing: \mathrm{POKECO}+11,33: \mathrm{F}$ ORI=1TO2 $\sigma:$ NEXT : RETURN :rem 161
$27 \emptyset \emptyset$ POKECO $+4, \varnothing:$ POKECO $+11, \varnothing:$ RETURN: rem 67
$5 \emptyset \emptyset \emptyset$ PRINT"\{CLR\}\{13 DOWN\}\{9 SPACES\}REDEFI NING CHARACTERS" :rem 193
501ø POKE55, Ø: POKE56,48:CLR :rem 66
5ø2ø POKE56334, PEEK (56334)AND254:POKE1, PE EK (1)AND251 :rem 232
5030 FORI=ØTO2Ø47: POKEI + 12288 , PEEK (I+5324 8): NEXT :rem 76

5ø4Ø POKE1, PEEK (1)OR4: POKE56334, PEEK (5633 4) ORI
:rem 184
5050 FORI $=\varnothing$ TO $71:$ READA $:$ POKE $128 \varnothing 8+\mathrm{I}, \mathrm{A}:$ NEXT
:rem $2 ø 7$
5060 POKE53272, (PEEK (53272) AND240)OR12
:rem 96
$507 \emptyset$ FORI $=\emptyset T O 4 \emptyset:$ READA: POKE $49152+\mathrm{I}$, A : NEXT : GOTOløøø
:rem 3
$6 \emptyset \emptyset \emptyset$ DATA $127,246,127,246,127,246,127,246$
:rem 236
6010 DATA $24,60,126,255,1 \varnothing 2,102,102,1 \varnothing 2$
:rem 98
$6 \emptyset 2 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
:rem 150
$6 \emptyset 3 \emptyset$ DATA $\emptyset, 8,28,8,62,8,2 \emptyset, 36$
:rem 14ø
$6 \varnothing 4 \varnothing$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing \quad$:rem 152
$605 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \varnothing, 48, \varnothing, \varnothing, \varnothing \quad$:rem 213
$6 \emptyset 60$ DATA $\emptyset, \emptyset, 8,42,42,8, \varnothing, \varnothing \quad$ rem 22
$607 \emptyset$ DATA $\emptyset, 16,84,84,84,84,16, \varnothing$:rem 249
$6 \emptyset 8 \emptyset$ DATA $\varnothing, 24,126,126,126,126,24, \varnothing$
:rem 172
$7 \emptyset \emptyset \emptyset$ DATA $16 \varnothing, \varnothing, 169, \varnothing, 133,251,169,4,133,2$ $52,177,251,2 \emptyset 1,7 \emptyset, 24 \emptyset, 8,2 \emptyset 1,71$
:rem 145
$7 \emptyset 1 \emptyset$ DATA $24 \emptyset, 4,2 \emptyset 1,72,2 \emptyset 8,5,17 \emptyset, 232,138$
:rem 162
7015 DATA $145,251,200,208,234,230,252,165$:rem $22 \emptyset$
$7 \emptyset 2 \emptyset$ DATA $252,2 \emptyset 1,8,2 \varnothing 8,226,96$:rem 198

 R W北Player 2 has got a good start (IBM version).

Program 3: PC/PCjr Blueberries

2 DEF SEG=0: SCREEN 0,1
3 LDCATE 1,1,0
4 WIDTH 40:KEY OFF
5 GOSUB 5000
6 DEF SEG=\&HB800
7 STRIG ON
10 GOTO 1000
$100 \mathrm{~J} 1=\operatorname{STICK}(0): \mathrm{J} 2=\operatorname{STICK}(1): \mathrm{S}=-1$ ($\mathrm{C} 2>80$)
$-2 *(\mathrm{~J} 1<30)-3 *(\mathrm{~J} 1>80)-4 *(\mathrm{~J} 2<30): S T=N O T$ (ST RIG(1))
$105 \mathrm{~J} 1=\operatorname{STICK}(2): \mathrm{J} 2=S T I C K(3): S 1=-1$ * ($\mathrm{J} 2>80$
 STRIG(3))
110 DXY1 $=(S=2)-(S=3)+40 *((S=4)-(S=1))$
$115 \mathrm{DXY2}=(\mathrm{S} 1=2)-(51=3)+40 *((51=4)-(51=1)$)
120 DXY1=DXY1*2: DXY2=DXY2*2
130 IF ST OR ($S T=0$ AND $S D=0$) THEN POKE X $\mathrm{Y} 1,32: \mathrm{XY} 1=\mathrm{XY} 1+\mathrm{DXY} 1$
140 IF $S T=0$ AND $S D>0$ THEN POKE $X Y 1,176: P$ OKE XY1+1, 1: SOUND 200, 1: SD=SD-1: XY1=XY1+ DXY1: SC1 =SC $1+10$
170 IF ST1 OR (ST1=0 AND SD $1=0$) THEN POK E XY2,32: $\mathrm{XYZ}=\mathrm{XY} 2+\mathrm{DXY2}$
180 IF ST1=0 AND SD $1>0$ THEN POKE XY2, 176 :POKE XY2+1,1:SOUND 210,1:SD1=SD1-1: $\mathrm{XY} 2=$ XYZ + DXY2: SC2=SC2 +10
$200 A=\operatorname{PEEK}(X Y 1): A 1=\operatorname{PEEK}(X Y 2)$
210 IF $A=219$ THEN SOUND 500, 1: XY1=XY1-DX Y1
220 IF $A 1=219$ THEN SOUND 510, 1: XY2=XY2-D XY2
250 IF $A=127$ THEN SOUND 300, 1: GOSUB 800: $X Y 1=X Y 1-D X Y 1$
260 IF A1=127 THEN SOUND 310, 1:GOSUB 850 : $\mathrm{XYZ}=\mathrm{XYZ}-\mathrm{DXYZ}$
300 POKE XY1, 1:POKE XY2, 1
305 POKE XY1+1,14: POKE XY2+1,14
310 IF $\mathrm{A}=178$ THEN SC $1=\mathrm{SC} 1+50$
320 IF A1=178 THEN SC2=SC $2+50$
330 IF $A=177$ THEN SC $1=\mathrm{SC} 1+25$
340 IF A1=177 THEN SC2=SC2+25
350 IF $A=15$ THEN C=38: GOTO 2000

360 IF $A 1=15$ THEN $C=6$: GOTD 2000
370 IF $A=176$ THEN SOUND 100, 1:SC1=SC1-5
380 IF A1=176 THEN SOUND 110, 1:SC2=SC2-5
390 LOCATE 2,26:PRINT SC1" ":LOCATE 2,9: PRINT SC2" "
410 IF SC1>=LIM OR SC2>=LIM THEN 2100
450 CNT $=$ CNT +1 : IF CNT $>30+$ RND $* 20$ THEN CNT $=$ O ELSE 100
455 DEF SEG: CALL ZZ: DEF SEG=\&HB8OO
456 GOTO 100
800 SD=INT (50*RND+51) -INT (SC1/5000) + INT (
SC2/1000)
810 IF SD<25 THEN SD=INT (50*RND+51)
820 RETURN
850 SD1 $=$ INT (50*RND+51) -INT (SC2/5000) + INT (SC1/1000)
860 IF SD1<25 THEN SD1=INT (50*RND+51)
870 RETURN
1000 CLS:COLOR 7,0,0:FRINT"Player 1 SCOR E Pickin' SCORE Player 2";
1010 PRINT"Hands 30 BlueberriesO Hands 3 ";
1020 W\$=CHR\$ (219) : B\$=CHR\$ (32)
1030 COLOR 6, $0,0:$ PRINT STRING $\$(40,219)$;
1040 PRINT W\$W\$STRING\$ $(15,32)$ W\$W\$STRING\$ (19, 32) CHR\$ (127) W\$;
1050 PRINT W\$W\$B\$STRING $\$(7,219) \mathrm{B} \$ W \$$ B $\$ W \$ W$ \$W\$STRING $(4,32)$ W\$B\$W\$B\$STRING $\$(5,219) \mathrm{B} \$$ W\$B\$W\$W\$B\$W\$W\$B\$W\$W\$;
1060 PRINT W\$W $\$$ STRING $\$(7,32) W \$ B \$ W \$ B \$ W \$ W \$$ W\$B\$STRING $\$(4,219)$ B $\$ W \$ S T R I N G \$(5,32) W \$ B \$ W$ \$B\$W\$B\$B\$B\$W\$B\$W\$W\$;
1070 PRINT W\$W\$B\$STRING\$ $(5,219) B \$ W \$ B \$ W \$ B$ \$W\$STRING $\$(10,32)$ W\$W\$W\$B\$W\$B\$W\$B\$W\$B\$W\$B \$W\$B\$W\$W\$;
1080 PRINT $W \$ W \$ B \$ W \$$ STRING $\$(5,32) W \$ B \$ W \$ B \$$ W\$B\$B\$W\$W\$W\$B\$STRING\$(7,219)B\$W\$B\$W\$B\$W\$ B\$W\$B\$W\$B\$W\$W\$;
1090 PRINT $W \$ W \$ B \$ W \$ B \$$ STRING $\$(5,219)$ STRIN G\$ (6, 32) W\$STRING $\$(5,32)$ W\$STRING $\$(5,32)$ W $\$$ $B \$ B \$ B \$ W \$ B \$ W \$ B \$ W \$ B \$ W \$ W \$$;
1100 PRINT W\$W\$B\$W\$STRING\$(5,32)W\$B\$STRI NG\$ (6, 219) B\$W\$W\$W\$B\$W\$B\$STRING\$ $(6,219) \mathrm{B} \$$ W\$W\$B\$W\$B\$W\$B\$W\$W\$;
1110 PRINT W\$CHR\$ (127)B\$B\$B\$W\$W\$W\$STRING $\$(10,32)$ W\$W\$W\$STRING\$ $(17,32)$ W\$W\$;
1120 PRINT STRING $\$(40,219)$;
1130 PRINT STRING $\$(40,219)$;
1140 PRINT W\$W\$STRING\$(17,32)W\$W\$W\$STRIN G\$ (10, 32) W\$W\$W\$B\$B\$B\$CHR\$(127)W\$;
1150 PRINT W\$W\$B\$W\$B\$W\$B\$W\$W\$B\$STRING\$(6) , 219) B\$W\$B\$W\$W\$W\$B\$STRING\$(6,219)B\$W\$STR ING $\$(5,32) W \$ B \$ W \$ W \$$;
1160 PRINT $W \$ W \$ B \$ W \$ B \$ W \$ B \$ W \$ B \$ B \$ B \$ W \$ S T R I N$ G\$(5, 32) W\$STRING\$ $(5,32)$ W\$STRING $\$(6,32)$ ST RING\$ (5, 219) B\$W\$B\$W\$W\$;
1170 PRINT W\$W\$B\$W\$B\$W\$B\$W\$B\$W\$B\$W\$B\$STR ING $\$(7,219) B \$ W \$ W \$ W \$ B \$ B \$ W \$ B \$ W \$ B \$ W \$ S T R I N G \$$ $(5,32)$ W\$B\$W\$W\$;
1180 PRINT $W \$ W \$ B \$ W \$ W$ \$W\$STRING $\$(10,32)$ W\$B\$W\$B\$W\$B\$STRING\$ (5, 2 19) B\$W\$W\$;

1190 PRINT W\$W\$B\$W\$B\$B\$B\$W\$B\$W\$B\$W\$STRIN G\$(5,32) W\$B\$STRING\$(4,219)B\$W\$W\$W\$B\$W\$B\$ W\$STRING\$ $(7,32)$ W\$W\$;
1200 PRINT W\$W\$B\$W\$W\$B\$W\$W\$B\$W\$B\$STRING\$ (5, 219) B\$W\$B\$W\$STRING\$ $(4,32)$ W\$W\$W\$B\$W\$B\$ STRING $\$(7,219) B \$ W \$ W \$$;
1210 PRINT W\$CHR\$(127)STRING $\$(19,32)$ W $\$ W \$$ STRING\$ $(15,32)$ W\$W\$;

1220 PRINT STRING $\$(40,219)$;
1250 XY1=1114: XY2=804: POKE XY1,1: POKE XY 2, 1: POKE XY1+1,14: POKE XY2+1,14
1260 SC1=0:SC2=0
1290 LOCATE 23, 7: COLOR 2,0,0:PRINT"Press SPACE to start play"
1300 LOCATE 24,1:COLOR 7,0,0:PRINT" Pr ess ' 1 ' Press ' 2 '";
1305 A\$=" No Limit":LIM=9.999999E+37:A 1 $\$=$ " 3 Hands": L=3:L1=3:LOCATE 25, 1:PRINT A\$," "A1\$;
1310 I $\$=$ INKEY $\$$: IF I $\$="$ " THEN 1310
1320 IF I $\$="$ " THEN LOCATE 23, 1:PRINT SP
ACE\$ (79); :LOCATE 25, 1:PRINT SPACE\$ (39);:
GOTO 100
1330 IF I $\$=" 1 "$ THEN GOSUB 1400
1340 IF I $\$=" 2$ " THEN GOSUB 1500
1350 GOTO 1310
1400 IF $A \$="$ No Limit" THEN A $\$=" 5000$ Limit":LIM=5000:GOTO 1600
1410 IF $A \$=" \quad 5000$ Limit" THEN A $\$=" 1000$ o Limit": LIM=10000: GOTO 1600
1420 IF $A \$=" 10000$ Limit" THEN A $\$=" 5000$ o Limit":LIM=50000!:GOTO 1600
1430 IF $A \$=" 50000$ Limit" THEN A $\$=" 1000$ OO Limit":LIM=100000!:GOTO 1600
1440 IF $A \$=" 100000$ Limit" THEN A\$=" 500 000 Limit":LIM=500000!:GOTO 1600
1450 IF $A \$=" 500000$ Limit" THEN A\$=" N - Limit":LIM=9.999999E+37:GOTO 1600

1500 IF A1 $\$=" 3$ Hands" THEN A1 $\$=" 5$ Hand $s^{\prime \prime}: L=5$: L1 = 5: POKE 92, L+48:POKE 156, L1 +48 : GOTO 1600
1510 IF A1 $\$=$ " 5 Hands" THEN A1 $\$=$ " 3 Hand s":L=3:L1=3: POKE 92, L+48:POKE 156, L1 +48: GOTO 1600
1600 LOCATE 25,1:PRINT A\$," "A1\$;: RETURN
2000 FOR I=270 TO 250 STEP -2: SOUND I, 1: NEXT
2040 IF C=6 THEN L1=L1-1:SC2=SC2-200:LOC
ATE 2,C:PRINT L1:POKE XY2,32: XY2=804:POK E XY2,1:POKE XY2+1,14
2050 IF $\mathrm{C}=38$ THEN L=L-1:SC1=SC1-200: LOCA
TE 2, C:PRINT L:POKE XY1,32: XY1=1114:POKE XY1,1: POKE XY1+1, 14
2060 IF L1=0 OR L=0 THEN LOCATE 2,9:PRIN T SC2: LOCATE 2, 26:PRINT SC1:GOTO 2100
2080 GOTO 100
2100 IF SC1<SC2 THEN C=1: $\mathrm{B} \$=" 1 "$ ELSE $\mathrm{C}=3$ 3: $\mathrm{B} \$==2$ "
2200 COLOR 23,0:LOCATE 1,C:PRINT"PLAYER
"B\$:COLOR 3,0:LOCATE 23,1:PRINT"
Press SPACE to continue"
2210 A $\$=I N K E Y \$:$ IF $A \$="$ " THEN 1000 ELSE 2210
5000 DEF SEG: ML $\$=$ SPACE $\$(48): V=V A R P T R(M L \$$): $Z Z=\operatorname{PEEK}(V)+256 * \operatorname{PEEK}(V+1)$
5010 FOR $I=0$ TO 47:READ A:POKE $Z Z+I, A: N E$ XT: RETURN
10000 DATA \&H55, \&H1E, \&HBE, \&HOO, \&HOO, \&HBB, \&HOO, \&HBB, \&HBE, \&HDB 10010 DATA \&HBA, \&HO4, \&H3C, \&HBO, \&H75, \&HO4, \&HFE, \&HO4, \&HEB, \&HOF
10020 DATA \&H3C, \&HB1, \&H75, \&HO4, \&HFE, \&HO4, \&HEB, \&HO7, \&H3C, \&HB2
10030 DATA \&H75, \&HO3, \&HC6, \&H04, \&HOF, \&H46, \&H46, \&H81, \&HFE, \&HEO
10040 DATA \&HOE, \&H72, \&HDF, \&H1F, \&H5D, \&HCA, \&HOO, \&HOO

THE WORLD INSIDE THE COMPUTER

Computing Together
 Fred D'lgnazio, Associate Editor

New research suggests that infants are much brighter than we once thought. This research has prompted anxious parents who are worried about their children's ability to cope with a high-tech future, to enroll their infants in computer courses before they are even out of diapers. After class, the parents bring the kids home and drill them using flash cards. On the cards are written words like RAM, ROM, BITS, and BYTES. The parents think that early familiarity with computer technology and jargon will be the youngsters' ticket to a good college and a successful career.

Unfortunately, these parents are teaching their kids skills that may soon be obsolete. After all, it will be the twenty-first century before today's infants enter college or the job market. Between now and then, computers are going to change drastically.

Instead of concentrating on bits and bytes, parents of young children should concentrate on

[^3]more general skills. They should strive to build a relaxed, comfortable relationship between their children and computers-a constructive relationship that enhances the child's self-image and self-confidence. As the child gets older, this sort of relationship will be more enduring and more valuable than specific skills which may quickly go out of date.

Toddler Burnout

Understandably, parents want their children to do something productive on the computer. For example, they may buy drill-and-practice software that will help give the child a boost in a school subject with which he is struggling.

At first, this approach works well. The child diligently works at the computer and seems to be making progress. But then boredom sets in, the software's novelty fades, and the child loses interest in the computer. The parents' natural reaction is to make the child sit at the computer and continue drilling.

Unfortunately, this approach may lead to toddler burnout. For many kids, the joy of computing is replaced by the drudgery of computing. Computers are no longer fun, they are pure work. If kids are "strapped to their computer" every afternoon (as I was once strapped to my piano), they could develop a lifelong negative attitude toward computers and a mental block about using them.

The Computer Playground

We have so many computers around our house that people think we must be a futuristic family. They think that our computers are plugged into everything, including the coffee maker, the thermostat, the bathroom scales, and the toaster oven. They think we live computerized lives.
Such A PeoleNEWLOW PRICES
Gemini 10X \$267
Legend 80 CPS \$239
Legend 100 CPS \$259
12 In. Amber Monitor $\$ 89$
Concord Disk Drive \$297
SUCH-A-STEAL ON SOFTWARE!
Epyx Summer Games \$25
SubLogic Flight Simulator II. \$37
Screenplay Pogo Joe \$19
Access Beachhead \$23
Infocom Sorcerer \$33
Continental Home Acct. \$47
Timeworks Word Writer \$39
Timeworks Data Manager II \$39
Commodore Magic Desk \$55
Microware Clone Machine \$39
Blue Sky Super Copy \$29
Handic CalcResult Adv'd... \$75
CALL FOR OTHER SUCH-A-STEAL PRICES ON SOFTWARE AND HARDWARE FOR YOUR COMMODORE

CALL TOLL FREE 1-800-431-8697

For Customer Service Call: 602-957-3619

ORDERING \& TERMS: Send cashier check, money order, personal/company checks allow 3 weeks bank clearance VISA/MasterCard accepted. Provide phone number with order. SHIPPING: Software add $\$ 4.00$ for first three pieces, add $\$ 1.00$ each additional piece. Hardware add $\$ 10.00$. Returns must have authorization number (call 602-957-3619 for authorization number). All returned merchandise subject to restocking fee and must come with all original pockaging. No returns allowed after 30 days from shipping date. Prices are for cash, VISA and MasterCard add 3\%. Prices subject to change without notice. All products subject to availability from manufacturers and/or suppliers. All prices in U.S. dollars.

SAVE MORE THAN EVER ON sMScotch DISKETIES AND OTHER COMPUTER NEEDS!
 Lower

LIFETIME WARRANTY!

3M BULK DISKETTES

AT TREMENDOUS SAVINGS!

These are genuine 3 M diskettes with a lifetime warranty. But they are bulk packed in cartons of 50 with separate white Tyvec envelopes. No identification labels, write protect tabs or cartons are provided! A great buy for volume users.

51/4" SSDD-96TPI
$\$ 2.20 \quad$ 1¹/4" DSDD-96TPI
\$2.75
All have reinforced hub.
SOFT SECTOR ONLY!
(for IBM, APPLE, KAYPRO, DEC and about 99\% of all computers.) Must be ordered in multiples of 50 !

BOXED 3M DISKETTES
 WITH ALL THE TRIMMINGS!

Factory-fresh 3M packaging with envelopes, 3M logo labels, ID labels and write-protect tabs.

Minimum order of $\mathbf{2 0}$ diskettes. Additional diskettes in multiples of 10.

3M HEADCLEANING KITS
Stop swearing and start cleaning. This non-abrasive cleaning kit has everything you need for thirty applications.
$\mathbf{\$ 2 3 . 0 0}+\mathbf{\$ 1 . 5 0}$ Shpng.
SAVE MONEY WITH A CLEAN COMPUTER! INTRODUCING MINI-VAC

DISKETTE 70 STORAGE: STILL A GREAT BUY
Dust-free storage for 70514^{*} diskettes. Six dividers included. An excellent value.
$\$ 14.95$ + \$3.00 Shpng.

PRINTER RIBBONS
AT BARGAIN PRICES.
Most computer malfunctions are caused by dust. MINIVAC is ideal for cleaning keyboards, screens, drives and printers. (Great for photo equipment, tool) Equipped with an easy-empty bag, two directional wands and two fine-brush nozzles. Don't compute without it. (Requires 9 -volt battery which is not included.)
$\$ 21.95+\$ 3.00$ Shpng
AT LAST: A DISK DRIVE DIAGNOSTICS SYSTEM THAT WORKS!
The Dymek Recording Interchange Diagnostic (RID) is a professional, but easy to use, drive diagnostic disk. It tests drive speed, radial position, hysteresis, write function, erase crosstalk, signal-to-noise and clamping. in short, it's a professional's system that will help you keep your machine in prime condition. data loss.
\$29.95 + \$1.50 Shpng.

MEDIA-MATE 50:
A REVOLUTION IN DISKETTE STORAGE Every once in a while, someone takes the simple.... and makes it elegant. This unit holds $5051 / 4^{*}$ diskettes, has grooves for easy stacking, nipples to keep diskettes from slipping in the case and several other features. We like it.
$\$ 10.95+\$ 2.00$ Shpn
\$3.58 + . 25 Shpng
EPSON MX-70/80
$\$ 6.99+25$ Shpng
EPSON MX-100
$\$ 3.66+25$ Shpng
Okidata Micro 84 $\$ 3.66$ + 25 Snpng
Diablo 630 Mylar
Diablo 630 Nylon
$\$ 2.93+.25$ Shpng

THE END TO RS-232

CABLE PROBLEMS: SMARTCABLE Now interfacing almost any two RS-232 devices is simple and quick. Just plug in SMARTCABLE and flip two switches. The logic of both devices is figured out immediately and you can get to work.
$\$ 79.95+\$ 1.50$ Shpng

> Shipping: $5 \% 4^{-}$DISKETTES-Add $\$ 3.00$ per 100 or fewer diskettes. DISKETTES-Add $\$ 4.00$ per 100 or fewer diskettes. OTHER shipping charges. Payment VISA snown in addition to diskette orders only, add $\$ 3.00$ handling charges. Taxes: llinois residents, please add 8% sales tax.

> WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE ON THE SAME PRODUCTS AND QUANTITIES!

> Nationwide: 1-800-621-6827 Illinois: 1-312-944-2788 Hours: 9AM - 5PM Central Time

> Minimum Order: $\mathbf{\$ 3 5 . 0 0}$

Nothing could be further from the truth. When I get the chance to tell people what really goes on, I say that we have an Erma Bombeck household. Sure we use computers, but not to make our lives more rigid, organized, and mechanical. Instead, we use them as an electronic playground-and not just for Catie and Eric, but for me and my wife, Jan, too.

When people ask me what kind of software we buy for the kids, I say that we buy the software that turns us on. Then when the kids see us using the computer and having a good time, it gets them excited, too.

At my house we don't think of play as trivial. To us, play is a product of love. If we love to do something, it isn't work, it is play.

I would like my children to love to use computers, to use them playfully and creatively. I never want my kids to feel that computers are chains tying them to a hateful task. Instead, I want them to see computers as wings that enable them to swoop, dive, and have fun, and take them to new heights and soar to the limits of their abilities and imaginations.

The Computer As A Babysitter

The computer makes a great babysitter-even better than TV (unless you have cable, a VCR, and lots of tapes). It will soon be a big tempta-
tion for parents to turn on the computer to get their little kids out of their hair.

The computer can make a healthful baby-sitter-to a point. It can provide a much-needed break for a harried parent. And it can become a child's companion and a patient teacher. Also, flying solo on a computer can be a very positive experience for a child. It can give them a sense of control, mastery, and responsibility that they seldom experience at such a young age.

However, it is easy for little kids to get too much of a good thing. More than computing they need time to play with other children, get lots of exercise, fresh air, and experience the joy of swinging, digging in sand, and getting elbowdeep in finger paints.

Most important of all, they need to spend time with their parents. Computers make great toys, but they cannot replace parents. Parents are children's first and most important toys. Computers make a very poor substitute.

New games are starting to appear (including many programs from Children's Television Workshop, Spinnaker, Sunburst, and Counterpoint Software) that encourage parents and children to play on the computer together. Then the computer changes from being a babysitter that isolates the child to an electronic hearth that brings the whole family together actively and
happily. In fact, studies at New York University suggest that computers encourage families to spend more time together.

Computer Elevator Shoes

Computers are like booster shoes. They can give handicapped people a boost so they can go about their lives on par with the rest of the world. Computers can also play this role with young children.

My children are always at the bottom of the family totem pole, except when they use the computer. I encourage five-year-old Eric and eight-year-old Catie to do things on the computer that enhance their abilities, that increase their selfrespect and self-confidence, and give them a leg up on the rest of us. Here are some of the things our kids do on their computers:

- Gobbledygook Processing. Five-year-old Eric bangs on the keys of the computer and gets it to print out page after page of gobbledygook. Eric is learning how to type, he thinks he is doing work, and he takes his gobbledygook to school and sends it to both his grandmothers. Remarkably, the gobbledygook is gradually starting to make sense. Real words, phrases, and sentences are starting to appear. Most important of all, Eric is developing the habit of using the computer as a tool to help him think better and not as a crutch to do his thinking for him.
-Training The Family Pet. Catie and Eric treat our computers like pets. Sometimes they pull their tails, but mostly they are learning "computer manners"-how to treat the computers kindly and responsibly. They can turn on all the computers, use the floppy disks and cartridges, and call up all their favorite programs. Eric, for example, is so good that when I hired a housekeeper and a secretary, he taught them how to use the family computers.
- Computer Scribbling. Catie and Eric have a skill that Janet and I have lost: They can scribble! When we turned Catie and Eric loose on a computer touch tablet-like the PowerPad from Chalk Board and the KoalaPad from Koala Tech-nologies-it was incredible. The tablets enhanced the kids' motor skills, allowed them to make fine, detailed changes to their drawings and pictures, and gave them the freedom to creatively scribble. We now have a slideshow of the children's computer pictures and a door full of their drawings on the new Macintosh computer.
- The Computer Sandbox. The children play games on the computer that give them the most control. They control the computer, rather than the other way around. One of the children's most popular games is to play on the keyboard, pushing buttons just to see what happens. They call
this "Flying the Cursor." Doing this they have discovered how to get the computer to make moving rainbows, colorful letters, upside-down letters, pictures, and sounds-all without writing or buying a single program.
- The Electronic Picturebook. The kids have both learned how to read by using computer adventure games for young children like Sierra OnLine's Troll's Tale and Dragon's Keep. They enter the microworlds inside the computer and instantly become the heroes at center stage. To journey through the world they have to remember where they are, and read the signs in the pictures and the messages at the bottom of the screens. In these games, words gain real meaning and power. They are the keys Catie and Eric use to outwit an ugly troll or rescue small animals from a mean dragon.

Robots: Bag Ladies And Alarm Clocks

We have lots of computers around the house, but we also have robots. In fact, we run a flophouse for robots. We never know when a robot will come to our door looking for a home. Then I write an article about the robot, and, pretty soon, we have to send the robot along to another writer so they can write about the robot, too.

My children love robots-not as servants, but as pets. When TOPO the robot came to visit us, for example, my children noticed that TOPO was naked and dressed it in various costumes. My son tied his blanket to TOPO and turned it into a superhero. My daughter dressed TOPO as a New York bag lady, as a little girl, and as a witch, complete with a long pointed hat, a black cape, and vampire teeth.

TOPO never washed any dishes, made any beds, or took out the trash, but it was still useful. Every school morning, I turned TOPO on and sent it into the children's bedrooms to wake them up. When Jan and I wake up the kids they growl, whine, and complain. But when TOPO appeared, did a silly jig, and said, "Wake up, sleepyheads. Time to get out of bed," the kids got up smiling and gave the robot a hug.

Robots may never be good as maids or butlers, but they make great pets and alarm clocks. ©

Trapping Bugs

It was a moth, according to legend, that caused a program to crash in the early days when computers were built of vacuum tubes and tons of copper wire. The critter had flown into the machine. From this we get the term bug, meaning that there is an error, a problem in a computer program. And tracking down bugs is called debugging.

As all programmers soon learn, there is no permanent cure for bugs-they are always hiding inside a freshly written program of any complexity. Some bugs are obvious and will show up the first time a program is tried out. Some are hidden away and permit most of the program to run without error. A complex program might run well for weeks or months and then a particular sequence of events will trigger a well-hidden bug.

Program Sketches

For many, programming is similar to painting or sculpting. First you jump in and roughly create the outlines, the main ideas. At this point you've essentially made a sketch of the final program. Then you start testing the program by RUNning it, refining it until it performs as it should.

What are the best ways to look for bugs? Luckily, the most common bugs, typos, are reported to you by BASIC itself. On the Atari, if you try to enter a line like this: PRINF X, you will get an immediate SYNTAX ERROR report. Other versions of BASIC wait to report typos until after you RUN the program, but the effect is the same. Your computer tells you what's wrong and which line to fix.

Many other bugs show up quickly when you first try out the program: Nothing appears onscreen; things appear, but in the wrong places; or the numbers are all wrong. In other words, the
program isn't even coming close to your expectations. These are often easy bugs to work with because they aren't usually caused by the interaction of two parts of your program. There's some gross failure somewhere. You've simply got to look at your formatting routine or your mathematical definitions to see where the problem is.

Between The Cracks

Some of the hardest bugs to find are hidden in the cracks. They are usually the result of a clash between two otherwise perfectly functional subroutines. For example, if your program uses the variable T to stand for the total of an addition problem and then you use a subroutine with a loop that also uses T:

$$
10 \mathrm{~T} \text { = BOLTS + WASHERS }
$$

.

800 FOR T $=1$ TO 500

As you can see, no matter what your total of bolts and washers is, it will be left at 500 anytime you use the subroutine at line 800.

A similar interaction between variables can be even more subtle. In many versions of BASIC, only the first two letters of a variable name have any significance. So, if you name one thing BOLTS and another thing BOWLING, these two things will appear to the computer as a single variable called BO. And, as in the example above, the most recent number assigned to BO will be the only value that variable can have.

The Worst Bugs

But the worst bugs are not in the computer at all. They're in the programmer's mind. And since you must use your brain to ferret out the errors
caused by that brain-you can see the paradox. These errors tend to be of two types: incorrect setups and bad logic.

An example of an incorrect setup would be thinking you've defined a variable when, in fact, you haven't, or using $>$ when you mean $<$. The variations on this theme are endless and you can look at > dozens of times and not even stop to think about it as a possible source of error.

Bad logic would include such things as subroutines which exit via GOTO instead of RETURN; INPUT at the wrong time; or forgetting about the first or last item in a sequence like a DATA list.

Sometimes there's only one way to find a deeply hidden bug: stepping through the program. There are two levels of step testing. You can insert STOP in various places, then check to see that the variables are what they should be at these stopping points. Then CONT to the next STOP and ask to have the variables printed again (type: ? $X, Y, Z \$$). This rough test is often enough to pinpoint the place where the program has gone wrong.

Alternatively, you can use the singlestepping TRACE function found in many programmer's aid programs. These aids add commands to BASIC like RENUMBER, DELETE, and usually have a single-stepping function as well.

When you activate a TRACE command, your program executes step by step, one command at a time. After each command, the status of all active variables is displayed on screen along with the program line so you can locate where things begin to come unglued. Often, a TRACE function permits you to define how fast it will execute and even allows you to turn it on or off from within the program. TRACEing is a slow, but nearly always successful way to trap the most devious bugs.

If all else fails, it's sometimes advisable to ask for help from a friend. His brain won't have been implicated in the original error, and he can therefore often spot the $>$ you keep ignoring.

Maxell Floppy Disks The Mini-Disks with maximum quality.

Dealer inquiries invited. C.O.D's accepted.

Call FREE (800) 235-4137
PACIFIC EXCHANGES 100 Foothill Blvd San Luis Obispo CA 93401 In Cal call (800) 592.5935 or (805)543-1037

VISA

> Your original computer program could win you a $\$ 10,000$ Scholarship and substantial royalties!

\author{

- Business
 Applications
 - Education
 - Systems Software
 - Recreation
 - Home Applications
}

CATEGORIES

For complete Scholarship Award instructions and application, visit your local Software City store.

SOFTWARE ALWAYS DISCOUNTED

Programs, disks, peripherals, accessories and custom forms, plus a complete selection of books and magazines.

[^4]
Computers And Society

Technostress

Craig Brod is a psychotherapist who is seeing a disturbing trend in his patients. He is seeing a new malaise that he calls technostress. His concern over this ailment was apparently so severe that he felt obliged to write a book about it (Technostress: The Human Cost of the Computer Revolution, Addison-Wesley, \$16.95). Whether technostress is a serious malady is not for me to ponder, but there is little question in my mind that Dr. Brod's book will induce stress in many of its computer-literate readers.

According to Dr. Brod, our societal fabric is being reshaped as a result of our headlong push into the information age. It is astounding to see the nature of the ailments that appear to be caused by the mere use of computers in society:

The wife of a director of computer services for a large bank reports that when she first met her husband, he was a warm and sensitive man. Today he has no close friends and his only recreational activity is watching television. He no longer has patience for the easy exchange of informal conversa-

David Thornburg is an author and speaker who has been heavily involved with the personal computer field since 1978. His main interest is in making computers responsive to people's needs. He is the inventor of the KoalaPad graphics tablet and is the author of nine books about programming. His recent series Computer Art and Animation (Addison-Wesley) includes four books on Logo for the Atari, Commodore, Radio Shack, and TI computers. Discovering Apple Logo (Addison-Wesley) shows how Logo can be used as a tool for exploring the art and pattern of nature. He has been called "an enthusiastic advocate for a humanistic computer revolution," and his editorial opinions have appeared in COMPUTE! since its inception.
tion. One night, she asked him to slow down as they walked home.
"Walk faster," he replied.
"I can't walk faster. My legs are shorter than yours."
"That's no excuse," he said. "You have to learn to walk more efficiently."

But Is It Pervasive?

Now, seriously, folks, this man has problemsbut I can't believe that the computer is the cause of them. The fact is that, as a therapist, Dr. Brod is more likely than the rest of us to encounter people who are having difficulty adapting to change-and we are definitely going through a period of intense change. Nonetheless, rather than suggesting that he is observing the aberrant behavior of a minority, Dr. Brod goes so far as to suggest that we are all potential victims of the onslaught of computer technology.

As one example of this, he suggests that the reason we as a nation have purchased so many computers is because we fear them:

Ironically, we are motivated by fear to accept what is supposed to bring security and hope. Workers and managers fear obsolescence if they are not at the technological forefront. Parents, concerned about the demands of future educators and employers, feel compelled to make sure their children are computer-literate at an early age. Those who do not join the revolution will, we are told, become relics of a backward culture.

I seriously question whether any readers of this magazine felt that society compelled them to buy a computer. If it is considered a "negative sell" to encourage people to become facile with the tools of their future, then so be it.

SPECIALS on INTEGRATED CIRCUITS
6502 @ 4.906520 @ 4.006522 @ 5.004116 @ 1.85 2532 @ 5.902716 @ 4.456116 @ 6.454164 @

FREE SOURCE MEMBERSHIP WITH SIGNALMAN All Signalman Modems are Direct Connect, and provide the best price-performance values. Dealer and OEM inquiries invited
Volksmodem with computer cable 68
Mark VII Auto Dial/Auto Answer 99
Mark XII Smart Model 1200/300 279
D̄C HAYES Smartmodem 219
DC Hayes Smartmodem 1200/300 519

PROM QUEEN for C64 or VIC 130
SM-KIT 64 program \& disk utilities STAT Statistics Package for C64 Solid Oak 2 Level Stand for C64 or VIC C64NIC Switch (networking)
BACKUP V1.O tape copier for C64 or VIC CARDBOARD/6 Motherboard - VIC CARDBOARD/5 Motherboard - C64 CARD PRINT G Printer Int with Graphics CARD PRINT B Printer Interface-C64NIC CARDBOARD/3s Motherboard - VIC CARDCO C64/VIC Calculator Keypad CARDRAM/16 RAM Expansion - VIC Complete CARDCO Line in stock
CIE and VIE IEEE Interiaces in stock
MSD Dual SuperDisk for C64 or IEEE
MAE Assembler for C64
Koala Pad Touch Tablet-C64 or VIC 75
CBC $4 / 12$ Analog to Digital 4 chan/ 12 bit 179
MULTIPLAN for C64 79
Dust Cover for C64 or VIC 6
Grand Master Chess for C64 6
19
COMAL Language for C64
with sprites, color graphics, sound, turtle graphics.
BusCard II from Batteries Included
ULTRA BASIC - 64 with Turtle Graphics
Super Disk Utility - C64 - includes backup
MicroChess - C64-8 levels of play
HES MODEM with software for C64
Commodore 64 Programmers Reference Guide
WordPro $3+/ 64$ with Spellright
VIController (also C64) - BSR Controller
COM VOICE Synthesizer for C64 or VIC
VIC products in stock - call for extra discounts.
Victory Software for VIC and C64 in stock.

APPLE-FRANKLIN ITEMS
FRANKLIN-complete line in stock
QUENTIN Drives for Apple/Franklin
Swapper Stopper
automatic switch between paddles and joystick KRAFT Apple Joystick
Kraft Apple Paddle Pair
Koala Pad Touch Tablet-Apple/Franklin
SPINNAKER Software in stock
Broderbund Software in stock
16 K RAM Card for Apple
Multiplan-Microsoft
Solid Oak 2 Level Stand for Apple
Serial Card for Apple
MPC RAM/80 column card for Ile (AP/TXT) Z80 Softcard and CP/M (Microsoft) AB 80 Column Card with Softswitch Parallel Printer Interface/Cable
Microtek and MPC Interfaces in stock Grappler + Interface
DC Hayes Micromodem II, Ile with Smartcom
PFS: File or PFS: Report or PFS: Graph Videx 80 Column Card
Apple Blue Book

Gcommodore

See us for Personal, Business, and Educational requirements. Educational Discounts available.

PETSCAN I \$245 base price

Allows you to connect up to 30 CBM/PET Computers to shared disk drives and printers. Completely transparent to the user. Perfect for schools or multiple word processing configurations. Base configuration supports 2 computers. Additional computer hookups $\$ 100$ each.

COMPACK/STCP

$\$ 115$
Intelligent Terminal Package for PET, CBM, C64 Includes ACIA Hardware / STCP Software
MSD Dual Super Disk for IEEE or C64 570 replaces 4040 drive
SCREENMAKER 80 Column Adapter for C64 139
Provide big screen capability for business applications.
Copy-Writer Word Processor for C64
Full-featured package with 800 lines of text in memory. Includes double column printing, graphic capability, full printer support.
Special Screenmaker/Copy-Writer Combo

VICTORY Software for VIC and C64

$\begin{array}{ll}\text { Metamorphosis } & 16 \text { Creator's Revenge }\end{array}$
16
$\begin{array}{llll}\text { Labyrinth of Creator } & 16 \text { Galactic Conquest } & 16\end{array}$
Kongo Kong
Chomper Man 16 Annihilator
16 Grave Robbers $\begin{array}{lll}\text { Bounty Hunter } & 16 \text { Adventure Pack I or II } 16\end{array}$
PAPER CLIP Word Processor - CBM/C64 60
ORACLE Data Base from Batteries Included 89
SPINNAKER Software C64, Apple, IBM, Atari
Computel's First Book of PET/CBM
11
POWER ROM Utilities for PET/CBM
WordPro 4+-8032, disk, printer
VISICALC for PET, ATARI, or Apple 285
189
SM-KIT enhanced PET/CBM ROM Utilities 11
PET Spacemaker H ROM 40

Compute's First Book of Games
Dust Cover for PET, CBM, 4040, or 8050
8
CmC Interíaces (ADA1800, ADA1450, SADI in stock)
Computel's Reference Guide to 64 Graphics 11
Computel's Machine Language for Beginners 11
HES Software and Hardware in stock

FlexFile for PET/CBM/C64

DataBase, Report Writer with calculations, Mailing Lists. Easy to use, and can be modified.
FORTH for PET/C64 full FIG model - Cargile/Riley 50 includes all FORTH 79 Standard extensions, structured 6502 assembler with nested decision macros, standard 16×64 screens, ability to read/write BASIC sequential files, sample programs, introductory + reference manual.
Metacompliler for FORTH for independent object code 30 Floating Point for FORTH

20
KMMM PASCAL IV for PET/CBM/C64
99
Virtually full Jensen-Wirth implementation is now suitable for advanced placement courses.
EARL for PET/CBM/C64 disk-based ASSEMBLER 59
SuperGraphics - BASIC Language Extensions 45
Fast graphics, sound, turtle graphics routines for PET/CBM. RAM/ROM for PET/CBM $4 \mathrm{~K} \$ 75 \quad 8 \mathrm{~K} \$ 90$
COMAL Language for C64, CBM, PET 14
Smart Terminal Software for C64/VIC 10
CBM Public Domain Software - C64 27 disks 75

STAT for PET/CBM/C64 and Apple

95
Comprehensive Statistical Analysis Routines
Includes complete file handling capabilities, summary statistics, confidence intervals, hypothesis tests, exponential mean tests, multiple and power series regression, analysis of variance, histograms, and non-parametric tests.
PageMate 60 Command Word Processor
20
Full-featured package for all Commodore computers. Full screen editing, and supports disk, tape, and all printers.

DISK SPECIALS

Scotch (3M) $5^{\prime \prime} \mathrm{ss} / \mathrm{dd}$ Scotch (3M) 5" ds/dd Scotch (3M) $8^{\prime \prime}$ ss/sd
Scotch (3M) $8^{\prime \prime}$ ss/dd 10/2.10 $50 / 1.90 \quad 100 / 1.86$ 10/265 50/2.45 100/2.40 10/ $2.2050 / 2.00$ 100/ 1.98

We stock VERBATIM DISKS

Write for Dealer and OEM prices.
$\begin{array}{lllllllllllll}\text { Sentinal } 5^{\prime \prime} \text { ss/dd } & 10 / 1.80 & 50 / 1.75 & 100 / 1.65\end{array}$ Sentinal $5^{\prime \prime} \mathrm{ds} / \mathrm{dd}$ $\begin{array}{llll}10 / 2.40 & 50 / 2.35 & 100 / 2.25\end{array}$

We stock Dysan disks

$\begin{array}{lllll}\text { Wabash } 5^{\prime \prime} \text { ss/sd } & 10 / 1.45 & 50 / 1.40 & 100 / 1.35\end{array}$
Wabash $5^{\prime \prime}$ ss/dd $\quad 10 / 1.6050 / 1.55100 / 1.50$
Wabash $5^{\prime \prime} \mathrm{ds} / \mathrm{dd}$ 10/ 1.95 50/ 1.90 100/ 1.80

We stock MAXELL DISKS

Write for dealer and OEM prices.
Disk Storage Pages 10 for $\$ 4$ Hub Rings 50 for $\$ 6$ Disk Library Cases $8^{\prime \prime}-3.005^{\prime \prime}-2.25$ Head Disk Cleaning Kits 12
AMARAY Disk Storage Systems in stock.
Innovative Concepts FLIP 'N' FILES in stock.
CASSETTE TAPES—AGFA PE-611 PREMIUM

C-10	$10 / .61$	$50 / .58$	$100 / .50$
C-30	$10 / .85$	$50 / .82$	$100 / .70$

Hewlett Packard

Write or call for prices.
DATASHIELD BACKUP POWER SOURCE \$265
Battery back up Uninterruptible Power Supply with surge and noise filtering. The answer to your power problems.

ATARI - WE STOCK ENTIRE LINE
SPINNAKER and Broderbund Software in stock.

I, for one, see things in a much more positive light.

The Best Tool Available

The fact of the matter is that I use computers for several reasons. I use a word processor for all my correspondence, books, and articles because it is, quite simply, the best tool available for the job. The fact that some authors can whip out books in front of an old Underwood is fine with mebut I'm not one of those authors. Dr. Brod suggests that authors who use word processors do not produce as finely crafted works as those who have to completely retype their early drafts.

I think he is confusing technology with writing style. Yes, it is easier to change a line or paragraph with a word processor-one doesn't have to retype an entire page. But if I have written something that just doesn't hang together, I rewrite it from scratch, and so do many other authors with whom I have talked. In fact, I have found that college students often hand in essays that they would really like to change, simply because the time associated with retyping the complete document is prohibitively long. The presence of a word processor may, in fact, make better writers of all of us.

Parents are right to be interested in their children's education, and they are right to realize that the computer can be an important educational tool. But to suggest that the success of Apple and Commodore and IBM has arisen out of a fear in the buying public is (and this is not a medical opinion on my part) pure hogwash.

Yes, guilt has been used to sell computers, especially in the late 1970s ("Make an investment in your child's future-buy a computer"), but this isn't any different from the time-honored approach for selling encyclopedias.

True, It's Not Perfect

Now I know that some of you must be saying that the computer revolution isn't all it's cracked up to be, that computers are frustrating to use, that they cause disruptions in offices when they are installed, and that computers and robots are likely to change the very nature of our workforceespecially in the blue and pink collar areas.

You are right, of course. Many of us use computers in spite of their poor user interfaces (even though these are improving all the time), and, yes, a lot of jobs are going to disappear in the near future. But, after all, we have been down this road before in our history. Many buggy whip manufacturers must have either changed their business or gone bankrupt when the automobile replaced the horse.

The computer will be no more or less trau-
matic in its impact on society. Dr. Brod is quick to point out, of course, that the convenience of automobiles has brought with it 50,000 annual deaths on our nation's highways, and some severe smog problems as well.

I would be the last to suggest that the automobile has been an unqualified blessing, but I can't imagine our culture surviving, let alone growing, if we went back to the horse and buggy.

A Heavier Workload

One of Dr. Brod's points is that many of the labor-saving aspects of computers haven't been realized by the people who are using them. Secretaries who, according to the word processor ads, should now have time for "that extra cup of coffee" are finding that their ability to generate letter-perfect documents is increasing their workload as their managers ask for work to be redone until it is perfect. Organizations that functioned adequately when financial statements were generated quarterly are now using electronic spreadsheets to do financial statements on a weekly basis, thus increasing the workload for that department.

Dr. Brod is correct in assuming that more isn't necessarily better, but one must ask how much the computer contributed to the increased flow of information. From my own experiences inside Fortune 500 companies, the information backlog has been there all the time-all the computer is doing is helping to handle a preexisting problem.

As I mentioned a few months ago, John Naisbitt's concept of high-tech/high-touch (as expressed in his book Megatrends) showed that as we became more involved with the use of technology in our work and play, we have also become more interested in those things that make us uniquely human. Dr. Brod claims that the reverse is true-that the computer world is symbolintensive, not sensual, and that this constricts us in our ability to interpret and create in a human way.

If this is the case, then how was Michelangelo able to create such a sensitive work of art as the Pieta using such cold and inhuman tools as the hammer and chisel? Once again, I feel that Dr. Brod has confused the technology with its use. The two are quite different from each other.

The Computer As Scapegoat

And yet, in chapter after chapter, we find that computer technology is the purported cause of much that is "wrong" with our society. His chapter on computers and kids, for example, is filled with the typical hand-wringing about videogames that has appeared in all the tabloids. This is surprising, considering that many of his col-
leagues who have actually researched the matter find that video arcades do not cause perversion, or even acne.

After devoting several chapters to his observations of the purported ills foisted upon us by computers, Dr. Brod does give some careful thought to ways to make us capable of handling this technology, even though many of us never knew we had any problems.

Technostress is a book filled with quotable material, and it will probably be heralded as an important book by technophobes everywhere. It will probably receive a lot of press, and its author will probably be in great demand as a speaker, as he carries his message to the world. After all, as a society, we always seem to favor the bad news over the good, and seem to devote our energies to looking for only the real or imagined wrongs in our world.

If Dr. Brod wanted to perform a service to mankind, he might have devoted his energies to solving this problem, rather than extrapolating the quirks of his patients to the rest of society.

ONE PROGRAM YOU CAN'T AFFORD TO BE WITHOUT!

Now you can protect your investment with Broad Form, low cost protection from Markel.

Policy Limit	Annual Premium
up to \$2,500	\$22.50
\$ 2,501-\$5,000	\$32.50
\$ 5,001-\$15,000	\$47.50
\$15,001-\$25,000	\$62.50

(Higher limits are available upon request)
Call today toll free for immediate coverage or more information!

MARKEL SERVICE, IINC.
5310 Markel Road, Richmond, VA 23230
1-800-446-6678 or 1-800-552-3408 (VA)

Are you getting as much out of your Commodore as Commodore put in?

Your Commodore has so much potential, it would be a shame to use just a small part of it.
To get more out of your Commodore, use New American Library computer books.

Mastering Sight
and Sound on the
and Commodore ${ }^{*} 64^{\text {™ }}$
by KentPorter Acrystal-clear guide on howyou can create beautiful colorgraphics and music on your Commodore ${ }^{\circ}$ 64. ${ }^{\text {T }}$

The Computer Phone Book ${ }^{\text {™ }}$
by Mike Cane A directory of online computer systems. PublishersWeekly has called this"an institution in the making."

The Computer

 Phone Book ${ }^{\text {™ }}$ Online Guide ${ }^{\text {TM }}$ to Commodore ${ }^{*}$ Computers by Mike Cane Acompletetelecommunications handbook forthe Commodore ${ }^{\circ} 644^{\text {,w }}$ SX64, ${ }^{\text {TM }}$ and Vic $20{ }^{\text {™ }}$.

Porter's Programs for the Commodore ${ }^{\circ} 64^{\text {m }}$ byKentPorter A broad range of programs witten specifically for the Commodore ${ }^{6} 64$. $^{\text {w }}$

```
New American Library P.O.Box999,Bergenfield,NJ 07621
```

Please send me:
Mastering Sight \& Sound on the Commodore ${ }^{\circ} 64^{\text {™ }}$ (Z5490) \$9.95 __ The Computer Phone Book ${ }^{\text {™ }}$ Online Guide ${ }^{\text {4 }}$ to Commodore ${ }^{\circ}$ Computers (XE2084) $\$ 9.95$ The Computer Phone Book ${ }^{\text {™ }}$ (Z5446) $\$ 9.95$ \qquad Porter's Programs for the Commodore ${ }^{\circ} 64^{\text {TM }}$ (XE2090) $\$ 6.95$. Please include $\$ 1.50$ shipping and handling per order.
l enclose \qquad check \qquad _ money order(noCOD's or cash), or charge \qquad Visa Mastercard.

Card \# Exp.Date
Signature
Name
Address
City \quad State
Alowa minimum of 4 weeks for delivery, This offer, prices, and numbers are subject to change without notice. Offer expires Dec, 30,1984

The Computer Speaks, But Will It Listen?

Computer-generated speech, already used in some software, will be incorporated into many educational programs in the next few years. Spoken instructions and responses will be used in programs designed for prereading children and for students who have reading difficulties. Speech will be an integral component of programs which help students learn reading, spelling, and foreign languages, and will make many other types of educational programs more interesting and enjoyable.

Computerized speech can open new worlds for handicapped people. Special programs enable blind users to direct a speech synthesizer to read aloud the words on the computer screen. This makes computerized information bases, word processing, programming languages, and many other computer tools available to the blind. Computerized speech can also help provide communication aids for people with speech impairments.

Computerized speech recognition devices are also becoming less expensive and more readily available. These enable computers to recognize words people say, and can make programs easier to use and more appealing. More importantly, speech recognition devices make computers accessible to many people who have physical handicaps which prohibit them from using keyboards.

Two Types Of Computer Speech

There are two general types of computergenerated speech: stored vocabulary and unlimited vocabulary.

Dr. Glenn M. Kleiman is an educational psychologist and software developer. He is the author of Brave New Schools: How Computers Can Change Education (Reston/Prentice-Hall) and the designer of Square Pairs, an educational game program (Scholastic, Inc.).

Stored vocabulary speech is created by a person saying the words. Special devices and programs measure characteristics of the sound waveform (for example, intensity, pitch) as the person pronounces each word. Numbers representing the waveform at each fraction of a second are stored in the computer. That is, the speech waveform (an example of what is called analogiue information) is converted to a sequence of numbers (digitized information). The numbers are then used to recreate the sound of the word whenever it is needed.

Stored vocabulary speech can sound very human when individual words are produced. However, it usually sounds choppy and somewhat artificial when the words are combined into sentences. With this technique, the computer is limited to the words previously stored in its memory.

Each digitized word requires a large amount of memory-many numbers must be stored for the computer to recreate the spoken words clearly-so the vocabulary of a personal computer with digitized speech is limited. However, the possibilities for digitized speech will expand as larger-capacity computer memories become less expensive, and as more efficient techniques are developed for representing speech waveforms within the computer's memory.

Unlimited Vocabulary

With unlimited vocabulary speech, programs for generating the individual speech sound (phonemes) are stored in the computer, along with the rules for combining them into words, phrases, and sentences. This technique of speech synthesis enables the computer to produce any word from its component sounds. Synthesized speech does not sound as natural as digitized speech, but it has been greatly improved in recent years.

	$=$			INTERFACES
600XL	CALL	CBM 64	(ir	(138
800XL	ALL	SX6	9	"1
\bigcirc	Ights reserved	1701 MONITOR $\$ 249$	S	
DISK DRIVES				DIRECT PRINTERS
AT.D2	Axiom 346 Call		Video Pak..... 5209	Commodore 1526 ... 5288
		\geqslant	RD	Caraco 1520 color Printer
	Microbist 1150			DIRECT MODEMS
	Axiom Butter Call	DISK DRIVE SYSTEM		Hesmodem
Rana 1000	Axiom AT-100 …..s219			
MEMORIES		\%OR	4 So	WARE 04
		$\begin{aligned} & \text { LE OR SINGLE DENSIT } \\ & \text { TWO DRIVES } \end{aligned}$	ACCESS SOFTWARE	crosp
	DIRECT MODEMS			32
		(. ${ }^{\text {S }}$	aster(I)..... s25	
400 keyboard Call			Midway Campaign (C) sis	Patker bros
kboard Pad				
Bit-380 Column s228	0 Recorder 574			Frogger(R) s33
ARI	W		BATERIES INCLUDED	OFESSIONAL
ADVENTURE INT'L	OPTIMIZE	$\begin{aligned} & \text { epso } \\ & \text { Fxx80 } \end{aligned}$		(0) $\ldots \ldots$ S45
Ulitra Disassembler(D) ${ }_{\text {d }} \mathbf{5 3 3}$	¢ ${ }_{\substack{565 \\ \text { S65 } \\ \hline 58}}$			Cuick Br. For
	C.65 (0)	SMITH CORONA 93 Call	Spell Pack (I) ${ }_{\text {S37 }}$	
ATARI	Bug 65 (0) s23	TR		
	PARKER BROS	JUK1 Call ${ }^{\text {Soifit } \text { Call }}$		
Microsoti Basicili (R). S64	${ }_{533}$	ONITORS		
ar		NI		
mbler Editor (R) - \quad s44	PENGU		Wnd(0) .. 5227	Star Trek(R) \quad....... 527
${ }_{532}^{532}$			27	
	OUALIT SW			
avalon	Ali Babail (0)....... s22	SAKATA Call Panasonic Call		SOUTHERN SOLUTIONS
	REST	MODEMS		
	MCARBOROUGH SYS.		mon's Basici(f) 517	Bill collector (i) ${ }^{\text {s } 48}$
Broderbund ${ }_{\text {Arcade }}$	Mastertype (DiR)			
	Songwiter ()			
${ }_{529}$	SEGA			
				Most Amazing (D) $\mathbf{s c}_{\text {S2 }}$
NTINENTAL	Congo ${ }^{\text {Songo (R) }}$ SIERRA ON.LINE		Win WWords Ior ili(D) $\$ 15$	AlphabetZoo (0) 20
Home Accountant(D)	Homevora(D) 546		Contin	
Pointsw Call	Dark Crystal		Home Accountant(D)	
TASOR			534	
	Sos		Early Games (Ea) $\ldots . .520$	SYNA
Shic Gen (D) ($)$... st7	Kids		CREATIVE SOFTWARE	
ropaiter (D) s23	Delta		523	Zaxxon(0) ${ }_{\text {Blue Max }}$
	Aerobics (1)		Houssend Einance (C)	
STERN HOUSE	Broadsides (D) Carrierforce (D)			Quasimodo(D) $\$ 23$
Cational sw	Co		MoNTECH	Combat Leader (C/ID) ${ }^{297}$
Trick $\mathrm{F} 5 \cdot 13$.......... 522	Epidemic (D) s23		Studio $64(1010) \cdots \cdots . . .528$	Computer Easeoball(0)
	Cosmic Baliorilio . . s27			
(e) APS(C) ... s27	SUBLO	727 BREA CANYON RD., SUITE 16	Jum	dy (CiD) s27
(R) …...... $\$ 27$	Pin	LNUT, CA 91789		
Ider Osh (CID	sy	Ca	Gateway to APS (i) .. 527	
stes (CID) \ldots....... ${ }^{\text {s20 }}$			Se(CID)520	
MESTAR	Fort Apocalysel (CID) ${ }_{\text {S23 }}$			Elec. Checkbook (Clid) ${ }^{117}$
seball (CID)	Blue Max (CIC)		PR	
	Zepolin(CID) ……s23	PLEASE FOR ORDERS ONLY	HES	
(Deadine((D)	Pharoan's Curse (C/D)	SORRY, NO COD'S	Syynhesound $64(0) . . .553$	Rstch Asst. (C) \$24 (D) \$27
(0) $\cdots \cdots . . .534$				S.A.M.(D) 539
nettalil()) s34 3	Juice (CID)	F.(714) 594-5204	64 Fort	
hanter(D) ${ }_{\text {s }} 34$	Chaterbee ${ }^{\text {chel }}$	FOR TECHNICAL INFO, ORDER INQUIRIES,		
LSAT .i....call		OR FOR CALIFORNIA ORDERS	INFOCO	Batrons satio) 559
	Zo	152.50 shipping per sotwware ordere in continental U.S. Add	34	
		per sotuw		
Prer	Gridrunner (R) 520	stipoping. Calitr ressidents add $61 / 2$	Mini Jini (R)	
ect(D)		Leecrsor money	ICROSOFTW	
(Castie Woitenstein (D) $\mathbf{S c}_{520}$	sotwware ony within continenalal U. .S. .2.ad 3% surcharge. Incluce card	52	ackiack(D)
Solo Filight(0)	Fin			23
		Please call to obtain one before returning goods for repl		
Compiler (D) 555		repair Pirces $\&$ availability subject 10 c change	Word Processsori(i) .. ${ }^{\text {S68 }}$	EAssembler (i). .5327

Phoneme synthesis techniques have been combined with text-to-speech conversion programs. These programs contain a set of rules which tell the computer how to change any sequence of letters into speech. Creating a program of this sort for English is difficult, since many letters and letter patterns are pronounced in various ways, depending on the context of their use. For example, the word read is pronounced differently depending upon whether it refers to the past or future (for example, John read the book versus John will read the book). The same aspects of English which cause difficulties for people in learning to read also cause difficulties in programming computers to convert written English to spoken English.

While text-to-speech programs do not produce human-sounding speech, most people understand it easily after a short time-much the way we can understand someone who has a foreign accent and mispronounces some words. Text-to-speech is valuable for people with impaired vision. However, it is not suitable for educational applications in which clear speech is essential.

A Talking Apple

The Echo II speech synthesizer, for Apple II computers, makes use of both stored and unlimited vocabulary techniques. The Echo II is a board that plugs into a slot in the Apple. A speaker or headphone then plugs into the board. The board has volume and pitch controls, but these can also be controlled from software. The basis of the Echo II is a speech synthesis chip made by Texas Instruments. This chip, an advanced version of the one used in the original Speak and Spell toy, is used in most of the available speech synthesizers.

The Echo II comes with a text-to-speech program. It also allows you to enter speech more directly by using symbols to represent each sound (for example, there are different symbols for the long e of Pete and the short e of bet). In addition, a disk containing 700 digitized words is available. These provide a good demonstration of the superior quality of digitized speech.

With the Echo II, it is easy to add speech to your own program. You can change the volume, pitch, and rate of speech, all under the control of your program. Produced by Street Electronics, the Echo II sells for about $\$ 150$. Street Electronics also produces speech synthesizers for the IBM PC and for other personal computers. Other speech synthesizers are available, including Type-'N-Talk from Votrax, Mockingboard from Sweet Micro Systems, and S.A.M. from Don't Ask Computer Software.

Computers That Listen

A great deal of research has been devoted to getting computers to recognize people's speech. This research has shown that speech is very complex and that we do not fully understand how people are able to recognize spoken words so easily. It is much more difficult to make computers recognize spoken words than it is to make them pronounce words. However, advances have been made and some usable, although limited, devices are now available.

Current systems for personal computers require the user to program the computer to distinguish among a number of spoken words. The technique is related to stored vocabulary speech. The individual selects a vocabulary to be used. He says each word, then the computer digitizes the sound patterns and stores a set of numbers representing the waveform of the word.

Once trained, the computer recognizes a spoken word by digitizing it and comparing the resulting pattern of numbers to the patterns stored in its memory. Since the pronunciation changes slightly each time an individual says a word, exact matches are not expected, but the computer is programmed to find the closest match. Since people differ widely in their speech patterns, these systems are reliable only in recognizing the words spoken by the person who spoke the original training set.

The digitized representation of each word uses up a lot of computer memory, and the matching process becomes progressively slower and less reliable as more words are added. Therefore, speech recognition systems work well only with limited vocabularies.

It Takes Dictation

One speech recognition device is the Voice Entry Terminal (VET-2), produced by Scott Instruments for Apple II computers. The VET-2 can be programmed for sets of up to 40 words. The Apple II can hold only one set in memory at a time, but others can be loaded from disk as needed.

One important characteristic of the VET-2 is that it functions as a keyboard emulator. It plugs into the computer in parallel with the keyboard, so both can be used together. Each spoken word is associated with a string of printed characters.

When the spoken word is recognized, the VET-2 sends the same signals to the computer that the keyboard sends when the associated keys are pressed. Therefore, you can have the VET-2 recognize a spoken name for each key and then "type" by saying the names of letters, numbers, and special characters. You can then use standard software with voice input replacing the keyboard.

What About Language?

Current technology for personal computers enables us to have computers speak and recognize individual words. But what about sentences and paragraphs? For speech production, we can have the computer string words together, but replicating the intonation and stress patterns of human voices is another, much more difficult, matter.

For speech recognition, anything more complex than the simplest sentence creates inordinate difficulties. Try listening to fluent speakers of a language you do not understand. Can you even tell where one word ends and the next begins? Recognizing the words in spoken sentences generally depends upon being able to understand meanings, something we have not yet learned to program personal computers to do.

Getting computers to produce and understand language is the focus of much of the effort of researchers in artificial intelligence. They have had only limited success, with very powerful computers. For the present, we will have to be content with personal computers which are at the single-word state of language development.

Street Electronics (Echo II)
1140 Mark Ave.
Carpinteria, CA 93013
Sweet Micro Systems (Mockingboard)
Cranston, RI 02910
Votrax (Type-'N-Talk)
500 Stephenson Highway
Troy, MI 48084
Don't Ask Computer Software (Software Automatic Mouth)
2265 Westwood Blvd
Los Angeles, CA 90064
Scott Instruments (Voice-Entry-Terminal)
1111 Willow Springs Drive Denton, TX 76201
 TRYIT.
FAZE INTO YOUR COMPUTER WITH OUR NEW, AMAZING PERIPHERAL YOU'LL BE BLOWN AWAY I! !
AVAILABLE FOR ALL THE ATARI COMPUTERS, COMMODORE 64, VIC 20, AND OTHERS BROWNOUTS!

AEGIS ${ }^{\circledR}$. . . Power Conditioning Equipment . . . THE SOLUTION Protects From Damaging Voltage Surges, Lost Data, \& Costly Down Time

SPIKE-SPIKER ${ }^{\text {© }}$

Transient Voltage Suppressors \& Noise Filters Eleven Models - All Models Rated 120V, 15A
Deluxe Power Console-2-stage transient absorber; dual 5-stage filter; common \& differential mode protection: nano seconds response; clamping at $150 \mathrm{~V} ; 8$ individually switched sockets; fused; main switch; 7' cord and status lite. \$89.95.

Quad Power Console-6-stage transient absorber; dual 5 -stage filter; common \& differential mode protection; pico second response; clamping at 131 V ; four outlets; fused, master switch; 7' cord and status light. \$75.95
Mini II-Direct AC Plug-In; 2-stage transient absorber; dual 3 -stage filter; common \& differential mode protection; nano second response; clamping at 150 V ; two outlets and status lite. \$44.95

LINE-SAVERTM

Standby Uninterruptible Power System

 -Clean Reliable Power SystemModel LS-240-240 watts-VA capacity, increased backup time: 11 min . full load, 27 min . $1 / 2$ load, 43 min . $1 / 3$ load; 4-AC outlets, 3 -staged transient protection; dual 4 -staged RFI/EMI filter; sealed rechargeable internal battery; master control switch; test switch; external fuses; detachable 6' cord; external DC connectors for mobil use and extended hold-up time; many more exclusive features. \$485.00
Call or write for free literature.

Dealer inquires invited.
KALG1:
6584 Ruch Rd., Dept.CP Bethlehem, PA 18107

INSTANT ORDER LINE
800-524-0400 TWX 501-651-2101 IN PENNA. 215-837-0700

PA Res. add 6% sales tax; for COD add $\$ 3.00+$ shipping \& handling. All ' Pre-paid SPIKE-SPIKER shipping \& handling. All Pre-paid SPIKE-JPIK $\$ 10.00$ shipping \& handling

STOP PLAYING GAME

- Calculate odds on HORSE RACES with ANY COMPUTER using BASIC.
- SCIENTIFICALLY DERIVED SYSTEM really works. TV Station WLKY of Louisville, Kentucky used this system Station WLKY of Louisville, Kentucky used this system to predict the odds of the 1980 Kentucky Derby. See Popular Computing (February, 1984) for a review of this program. This system was written and used by computer experts and is now being made available to home computer owners. This method is based on storing data from a large number of races on a high speed, large scale computer. 23 factors taken from the "Daily Racing Form" were then analyzed by the computer to see how they influenced race results. From these 23 facts, ten were found to be the most vital in determining winners. ${ }^{\text {NU }}$. ${ }^{2}$ MERICAL PROBABILITIES of each of these 10 tactors were then computed and this forms the basis of this REVOLUTIONARY NEW PROGRAM.
- SIMPLE TO USE: Obtain "Daily Racing Form" the day before the races and answer the 10 questions about each horse. Run the program and your computer will print out the odds for all horses in each race. COMPUTER POWER gives you the advantage!
- YOU GET:

1) Program on cassette or disk
2) Listing of BASIC programs for use with any computer
3) Instructions on how to get the needed data from the "Daily Racing Form,
4) Tips on using the odds generated by the program.
5) Sample form to simplify entering data for each race
--------MAIL COUPON OR CALL TODAY -
3G COMPANY, INC. DEPT. CO
(503) $357-5607$

RT. 3, BOX 28A, GASTON, OR 97119
Yes, I want to use my computer for FUN and PROFIT. Please send me "Play the Horses" for \$29.95. Circle the cassette you need: PET/CBM, VIC-20, Color Computer. TRS-80. Sinclair Timex 1000. Atari Commodore 64 (disk or cassette). Apple (disk or cassette)
Enclosed is: \square check or money order \square masterCard \square visa

Card No.
Exp. date
NAME
ADDRESS

> START USING YOUR COMPUTER FOR FUN and PROFIT!

This month we'll conclude our exploration of the source code of the program to load a binary file starting with the GET routine presented last month. Lines 600-619. GET is a special routine for two reasons. First, it assumes a buffer length of zero, thus forcing a single byte transfer into the A register (Atari I/O spec). Second, if the GET fails, it pops a level off the subroutine stack and goes directly to the end-of-file code at line 4000 (BASIC's line 400). This is a crude but effective simulation of the TRAP 400 code in the BASIC version.

For GET to be a general-purpose subroutine, it would have to simply return the status and let the caller do the error trapping.

The Main Section

This routine begins the real work. All object code is reasonably close to its BASIC parallel.
Lines 1200-1204, 1300-1304. Remember the calling requirements for the I/O routines? Channel in X, address in A and Y. Looks easy once you have built the subroutines.
Lines 1400-1407. Same as above. The only extra here is the need to specify a mode for OPEN. Here, we use mode 4 (just as in BASIC) to indicate we will only read the file.
Lines 2400-2405. Since we just stored the A register in HIGH, we test HIGH first by comparing A with 255 . If HIGH is equal to 255 , then A contains 255 and we can compare it to LOW. A tiny bit sneaky. Did you ever realize that BASIC has to implement THEN this way? By branching around the following code?
Lines 2600-2701. We used LOW and HIGH to get the START address, but we have already moved their contents to START. Now, they
won't be used again until we are through with QUIT, so why not share memory between QUIT, LOW, and HIGH? Again, a little bit sneaky, but not inordinately so.

We could have saved more memory (and code) by doing GETs into the low and high bytes of START directly, but I wanted to keep the code as close as reasonable to the original BASIC.
Lines 3100-3106. See the comments above about START and ADDR.

The FOR Loop

Lines 3300-3302. Remember, if a zero page location points to a desired memory location, use an offset of zero in the Y register to store, load, add, etc., to or from that location.
Lines 3403-3408. Since we are STEPping by one, we need check only for equality.
Lines 3411-3417. If the FOR loop had used a STEP, we would have had to add it on here. Since the step is implied to be one, we can use this simple two-byte increment.
Line 4103. If this routine is called from DOS or from BASIC, the RTS is all that is needed, thanks to the POP in the GET routine.

As I said, one could write this routine in better ways. The most obvious thought that comes to mind is to replace the FOR loop with a block get of the requisite bytes. Since that would produce significantly faster runtime (for large files, at least), we will make these changes next month.

To do so, though, we will also change the BASIC program to enable it to make a call to do block I/O. So, even if you are not into machine language, watch next month for a method of doing fast memory reads and writes to and from disk.

Load A Binary Object File-Program Completed

```
\emptyset990 BEGINWORK
    091 ;
    løøø ; BASIC: REM binary object file loader
    l001 ; ---- just a comment ----
    11\varnothing\varnothing ; BASIC: DIM NAME$(30)
    l1\varnothing1; (the NAME buffer is defined above)
    1200 ; BASIC: PRINT "WHAT FILE TO LOAD ";
```


凡 ATAR

ATARI 800XL．Call MOSAIC

Atari 1050
Disk Drive
Atari 1010
Recorder．．．．．．． 77.00
Atari 1027 Printer．Call
Atari 850
Interface
Replacement Keyboard for Atari 400.54 .95
3rd Party Printer Interfaces
64K Ram／400 ．．．．．． 149.00 64K Ram＋Cable Kit 400／800
169.00

8K Ram Kit ．．．．．．． 94.00
16／32 Expander
32K Ram
Mosaic Adaptor
.64 .95
77.95
49.95

Apeface w／cable included
139.00

PRINTERS
Axiom AT－100
Axiom AT－ 550
Epson

229．00 Gemini 10X
329.00 Alphacom ．

Call Okidata 92A．
69.95

Call for assorted Printer Packages

ATARI		BRODERBUND	AR
		Arc	Astrochase－Cart ．．．．．．． 34.95
		Bank St．Writer－D．．．．．．． 49.9	Frogger－Cart．．．．．．．．．．．．．34．95Q－Bert－Cart．．．．．．．．．．．34Popeye－Cart
		Spare Change - ．．．．．．． 23.95	MISCELLANEOUS FOR ATARI
	． 9	Mask of the Sun－D．．．．． 27.9	
			Castle－Wolfenstein－D．．． 20.95 Home Accountant－D ．．． 52.95 Master Type－D／Cart ．．．． 27.95
		Gateway To Apshai－Cart 27.95	ght Simulator II－D ．．． 37.95
	37.95 39.95	Fun With Music－Cart ．．． 27.95	
	32.9	Jumpman Jr．－Cart ．．．．．． 27.95	Mr．Robot－D．River Raid－Cart
	19．		
		Dragonriders of Pern－DTT 27.95 Temple of Apshai－D／T ．． 27.95	River Raid－Cart ．．．．．． 31.31 .95 Diskey－D．．．．．．．．．．． 34.95
	35.95	Hellfire Warrior－D／T ．．． 20.95	Ultima Ill－D．．．．．．．．．．．． 41.95
发	39.9	Fun With Art－Cart ．．．．．． 27.95 Summer Games－D．．．．． 27.95	Miner 2049＇er－Cart．．．．．． 34.95
		SSI	Basic XL．Cart．．．．．．．．．．．． 74.95 Monkey Wrench II－Cart ．． 49.95
	32.9	Carrier Force－D ．．．．．．． 41.95	Omnimon＿．．．．．．．．．i．．． 82.95 Starbowl Football－DiT ． 22.95
		Combat Leader－D／T ．．． 27.27 .95Cosmic Balance－D．．．． 27.95	Starbowl Football－D／T ．． 22.95 Hockey－Cart．．．．．．．．．．．．． 27.95
	4.9	Fortress－D ．．．．．．．．．．．． 23.95	
tari			Boulder Dash－D／T ．．．．．． 20.95 Encounter－D／T．．．．．．．．．．． 23.95
SIERRA O		Broadsides－D War In Russia－	Quasimoto－D／T ．．．．．．．．． 23.95
			Compute Books ．．．．．．．．．．Call Pitfall－Cart ．．．．．．．．．．．．． 31.95
			$\text { Codewriter-D } 69.95$
隹	23.95	SPINNAKER Up For Grabs－Cart ．．．．．． 27.95	The Heist－D．．．．．．．．．． 27.95
tima	23.9	Cosmic Life－Cart ．．．．．．．． 23.95 Facemaker－Cart ．．．．．．．． 23.95	
Ultima	41.95		Mac 65XL－Cart ．．．．．．． 77.74 .95
Wizard／Prince		Alphabet Zoo－Cart ．．．．．． 23.95 Fraction Fever－Cart ．．．．． 23.95	Nibbler－D．．．o．．．．．． 20.9295
INFOCOM			Air Support－D／T ．．．．．．．．．． 23.95Pogo Joe－D／T．．．．．．． 20.95
Deadlin	34.95	Fraction Fever－Cart ．．．．．． 23.95 Kids on Keys－Cart ．．．．．． 23.95	
	34.95	Delta Drawing－Cart．．．． 27.95	k Movie Maker－D ．．．．．．．．．． 91.95 \square
		Story Machine－Ca	
Piane		Hey Diddle Diddle－D ．．． 20.95	
	95		Hundreds of items available for the Atari and CBM 64 ．．． please call．

DISK DRIVES

Rana 1000
Trak
Call
Concorde
For
Indus GT ．．．．．．．．．．．．．Prices
TOUCH TABLETS
Koala Touch Tablet－D ．． 69.95
Koala Touch Tablet－Cart 74.95
RS232 Modem Adaptor
（Through serial port）．．．． 39.95
MONITORS
USI．．．
Call
STIMUTECH SUBLIMINAL
SOFTWARE FOR ATARI
AND CBM 64
Expando－Vision Interface w／one FREE Cart ．．． 99.00
Weight Control
Study Habits Stress Control Drinking Control Smoking Control Career Success Sexual Confidence Addit＇I Rom Carts 29.95 ea．

ATARI

My First Alphabet－D Home Filing Mgr．－D． Star Raiders－Cart． Assembly Editor－Cart Macroassembler－D Itation to Program I－T． Basketball－Cart

Dig Dug－Car
Atariwriter－Cart
Donkey Kong－Cart
Ms．Pac－Man－Cart
Eastern Front－Cart
Donkey Kong Jr．－Cart
Logo．Cart．
Robitron－Cart
Pole Position－Cart． Paint－
Caverns of Mars－Cart Joust－Cart．
Jungle Hunt－Cart．
Mario Bros．－Cart
Atari Music
SIERRA ON－LINE Homeword－D
Dark Crystal－D
Frogger－D／Ti．．．．．
Ultima I－D
Wizard／Princess－D
INFOCOM
Deadline－D
Witness－D．．．．
Zork I，II，ili．D
Pianetfall－D
Suspended－D
Infidel－D．
Sorcerer－D
LJK
Letter Perfect－D
Data Perfect－D
Spell Perfect－D
D．Disk T．Cassette Cart－Cartridge

To Order Call Toll Free
800－558－0003

For Technical Info，Order Inquiries，or for Wisc．Orders

[^5]

A complete drawing package should allow the user to print characters on the bitmapped display. This month and next I will discuss this topic, and give more examples on the use of the drawing routines presented last month.

There are two methods for printing characters on a bitmapped display. We can POKE the dot patterns of the characters to the bitmapped RAM, or we can draw the characters onto the display.

Let's take a look at the first method, which is faster because no line-drawing routines are required.

POKEing To The Bitmap

The first step in POKEing characters to a bitmapped display is to choose the cell size, or dimensions, of our character set. The choice of the cell size can greatly affect the complexity of the routines which print the characters. If a convenient size is chosen, the routines will be simplified; if you are up for a challenge, you can write the routines to accept a variable cell size.

We will use a cell size of 8 dots high by 8 dots wide, for two reasons. First, a width of 8 dots is the number of dots which can be held in a byte. Second, there already exists a set of 8×8 characters in the 64's character ROM.

Actually, the 64's normal character display mode is very similar to what we want to accomplish in a bitmapped mode. The process involves character cells and some method of transferring the character dot patterns to the display. However, in the normal character display mode, the format is determined by the character codes found in a character array called screen memory. In screen memory, you can change only whole 8 $\times 8$ characters, so your effective resolution winds up being 40 columns by 25 lines.

Blending Characters And The Bitmap

When using a bitmap display, you can control each dot. This implies that you can place a character at any X, Y position on the screen. This can certainly be done, though it is more difficult
than placing a character code in screen memory. What complicates the task somewhat is that the 64's VIC-II chip organizes a bitmap display as groups of 8×8 dot cells.

It's possible for the 8×8 dot character pattern to span as many as four of the bitmap cells, two horizontally and two vertically. This doesn't create much of a problem vertically, but horizontally the bytes in the character dot pattern may have to be moved or shifted to span two bytes. In addition, when the bytes are added to the bitmap, the routine must not disturb the dots outside the shifted 8 dots of the character pattern.

Next, we must decide how to transfer the dot patterns so they will be visible against the bitmapped background.

Using Conditional Logic

One way of transferring the dot pattern is to add (logical OR) the dots in the pattern to the dots already in the display. Dots which are on in the character dot pattern are also turned on in the display. Dots which are on in the display remain on. This avoids erasing the background as a character is printed to the bitmapped display, but can result in illegible characters if there are too many dots already turned on in the background.

Another way to transfer the dot pattern is to flip (Exclusive-OR) the dots in the pattern into the bitmapped RAM. Dots in the bitmapped RAM which correspond to on dots in the dot pattern are flipped to the opposite state. The advantage of this technique is that it will make characters visible regardless of whether the background is on or off. However, characters can still be illegible if the background is not predominantly either on or off.

Or the transfer could be accomplished by writing the pattern directly into the bitmapped RAM. This type of transfer replaces the background with the character cell. We will use this technique.

A BASIC Example

Let's first demonstrate how the required routines might be implemented in BASIC. Unfortunately,

CBM 4023 Ribbons	S 12.00
CBM 8023 Ribbons	S 14.95
Flip N^{\prime} File 10, 15, 25,50	Call
Power Strips w/surge stopper	Call
Computer Care Kit	19.95

INIERACES	
Interpod (full compatibility!!) (Intelligent IEEE \& RS232)	Cal
The Connection (By Tymac) (Commodore Graphics + 2K Buffer)	
Cardco + G Parallel Interface	\$ 79.00
Vic Switch	S 149.95
ADA 1800 (Parallel-8032 only)	§ 129.00
ADA 1450 (Serial-8032 only)	\$ 149.00
Pet-to-IEEE Cable	\$ 39.00
IEEE-to-IEEE Cable	\$ 49.00
4 Prong AV Cable.	\$ 15.00
Centronics Cable (male to male)	\$ 34.95
RS232 Cable (male to male)	\$ 31.95
Custom Computer Cables (we make to your specifications)	

MONITORS	
CBM 1702 Color Monitor	\$ 269.00
Panasonic CT-160 Color	Call
Panasonic TR-120 (Green)	Call
Panasonic TR-120 (Amber)	Call
Panasonic DT-1300 (RGB)	\$ 395.00
Monitor Stand (Tilt \& Swivel) .	\$ 29.95
RGB Monitor Cable:	
ET-100C (Apple)	\$ 33.80
ET-101C (IBM)	\$ 33.80

LeITER QUAMTY PRINTERS	
Transtar 120 (80 column) .	\$ 535.00
Transtar 130 (132 column)	S 725.00
CBM 6400 Printer	. $\$ 1425.00$
NEC Spinwriter	Call
Cardco LQ/1 Printer	\$ 565.00

DEALERS INQUIRIES WELCOME
Call to Order
1-800-527-1738
All Others Call
1-214-231-2645
Micro-Sys

Okidata 82A 412.50	
Okidata 83	635.00
Okidata 84P	\$1165.00
Okidata 92P	S 519.0
Okidata 93P	810.
Panasonic KX-P	-
Panasonic KX-P1091 Printer	
Pasonic KX-P1092 Printe	
Panasonic KX-P1093 Printer	
Star Gemini 10X	S 295.0
Star Gemini 15	\$ 499.00
Star Gemini Delia	
COMMODORE BUSINESS MACHINES	
Executive 64 portable (new) CallB128-80 128 k Bus. Machine (new) ... Call	
SuperPet (5 languages) S1059.00	
CBM 8032 $\$ 625$.	
CBM 2031 sing	\$ 295.00
CBM 8050 Dual Disk 1 meg	\$ 995.00
CBM 8250 Dual Disk 2 meg. S1295.00	
64 K Expansion Board	
SuperPet Upgrade Kit	

BUSINESSSOFTWARE-8032	
WordPro $4+$ or $5+$. 305.
Calc Result.	S 199.95
The Manager.	\$ 199.00
BPI Accounting System (5 separate modules) .	\$ 325.00
Southern Solutions Accounting	
System III (Per/Module)	\$ 285.00
McTerm Communications Pack	S 175.0

TERMS

Orders under 50.00 add 10.00 Handling fee MasterCard, VISA, Money Order, Bank Check COD (add 5.00)
Add 3\% For Credit Cards
All Products In Stock Shipped Within 24 Hours
F.O.B. Dallas, Texas

All Products Shipped With Manufacturers
90 Day Warranty
PRICES ARE SUBJECT TO
CHANGE WITHOUT NOTICE.
like the drawing routines presented in earlier columns, the character routines are too slow to be really useful. To enhance their value as an example, we'll try to illustrate modular programming style as well.

One of the main aspects of modular programming is breaking main or primary tasks into smaller, more manageable tasks. Once the tasks have been broken down sufficiently, each may be implemented in a single routine. The more independent each of these separate routines is, the better. This allows you to concentrate on the details involved with the routine as it is written, without being distracted by the details involved with other routines. To show how printing to the bitmapped display might be broken into modules, let's take a look at the logical subdivisions of this task.

Although this program isn't really complex enough to justify a modular approach, I prefer to keep the functions or tasks in separate routines, so long as the routines don't become embarrassingly simple. This helps while debugging, since the symptoms of the bug often eliminate a majority of the routines from consideration. It also helps keep you from accidentally tangling functions together.

When functions get tangled or intertwined, making one change may require making other changes, leading to a snowball effect. And finally, it is good practice to keep functions divided into separate routines when you write a complex program. How well the tasks are divided up can greatly affect how much effort it takes to write and debug the program.

Breaking Down The Task

Putting a character in a bitmapped display will involve transferring bytes into bitmapped RAM, so we will need a routine which does the transferring. We need another routine to calculate the character's position. We also need to know what to write; this will require two routines. We need a routine which will find and read the appropriate bytes in the character ROM. However, the dot patterns are organized based on screen codes, which are different from the Commodore 64 ASCII codes you normally print. This means we need a routine to convert the ASCII code to the corresponding screen code.

Finally, we need a routine to do the horizontal shifting necessary when the character byte needs to span two bytes in the bitmapped RAM. This gives us five routines to be implemented:

1. Convert the character to screen code
2. Read the character's dot pattern
3. Calculate its position in the bitmap and amount of shift
4. Shift a dot-pattern byte
5. Put the dot-pattern byte in the bitmap

By dividing the tasks into well-defined and independent sections, it will be a little easier to implement them than if you tried to throw it all together in one routine. For example, converting the ASCII character code to a screen code can be done without concerning ourselves with where the ASCII code came from, or for what the screen code will be used. The shift section does not need to account for where the shift amount came from or what will be done with the shifted bytes.

Combining The Modules

Once we build the character print routine from these five sections, it is simple to build a string print routine using the character print routine. The result might be a BASIC program like the one that accompanies this article. The program uses the machine language routines discussed in this column in previous issues. Before running this program, you must run the BASIC loader presented in the May 1984 issue. The subroutine at line 100 converts ASCII code CH to the equivalent screen code SC. The subroutine at line 200 uses screen code CH to read the associated dot pattern into the array DP() . This subroutine also uses CP which points to the base of the character dot patterns in ROM.

The subroutine at line 300 uses the coordinates in X and Y to calculate an offset OF into the bitmap, and the shift amount SH. The subroutine at line 400 uses the shift amount SH to right-shift the byte in BY partially into B2. This means shifting dots out of the right end of the byte and into the left end of the other byte. This shift routine also makes the mask bytes, M1 and M2.

Finally, the subroutine at line 500 writes the bytes into the bitmap base of the offset OF, calculated earlier. This routine also uses the mask bytes to keep the necessary old bits from the bitmap bytes, before adding the new dot pattern bits. The subroutine at line 600 prints the character at the current coordinates specified by X and Y, and the subroutine at 700 prints a string at X, Y.

Logical Math

I have used logical operators (OR and AND) rather than division and the INT functions. For example, in line 320, the term (X AND -8) gives the same result as $\operatorname{INT}(X / 8)^{*} 8$. In the subroutine at line 200, the POKEs are required to turn off interrupts and make the character ROM accessible to the BASIC program.

The main routine uses the string-printing routine at line 700 to label the vertical axis for the plot of a sine wave. As you will see, the
character printing is pretty slow. This part of the program would be much more useful written in machine language. Next month I will discuss the drawing method of putting characters in the bitmapped display, and present machine language routines for both.

Characters On A Bitmapped Display

$1 \varnothing$ REM PRINT CHARACTERS TO BIT-MAP: rem 63 $2 \emptyset \mathrm{JV}=49152$:REM JU̇MP TABLE :rem 6 $3 \emptyset \mathrm{CP}=53248$: REM LOC. OF CHAR. PATTERNS : rem 181 $4 \emptyset$ POKE 785, PEEK (JV+28): REM SETUP USR() :rem 8 50 POKE 786, PEEK (JV+29) :rem 17 6 GOTO 1øøø :rem 96
$1 \varnothing \emptyset$ REM CONVERT CHAR. TO SCREEN CODE :rem 96
$11 \emptyset$ IF CH>31 AND CH<64 THEN SC=CH:RETURN
: rem 249
$12 \emptyset$ IF CH>63 AND CH<96 THEN SC=CH-64:RETU RN :rem 155
130 IF CH>95 AND CH<128 THEN SC=CH-32:RET URN :rem 2øø
140 IF CH> 127 AND CH<192 THEN SC=CH-64: RE TURN
: rem 251
$15 \emptyset \mathrm{SC}=\mathrm{CH}-128:$ RETURN :rem 214
$2 \emptyset \emptyset$ REM GET CHARACTER DOT PATTERN: rem 232
210 POKE 56334, PEEK (56344) AND 254 : rem 221
$22 \emptyset$ POKE 1, PEEK (1) AND 251 :rem 5 0
$23 \emptyset$ FOR IX=ø TO 7 :rem 1øØ
$24 \emptyset \mathrm{DP}(\mathrm{IX})=\mathrm{PEEK}(\mathrm{CP}+\mathrm{SC} * 8+I X):$ NEXT : rem $2 \emptyset 2$
250 POKE 1, PEEK (1) OR 4 :rem 159
260 POKE 56334, PEEK (56334) OR 1 :rem 69
$27 \emptyset$ RETURN :rem 121
3øØ REM CALC OFFSET AND SHIFT COUNT
:rem 43
$31 \varnothing$ TY=199-Y:SH=X AND 7 :rem 27
$32 \emptyset \mathrm{OF}=($ TYAND -8$) * 4 \emptyset+($ XAND -8$)+($ TYAND 7$)$:rem 1 ø6
330 RETURN :rem 118
4ØØ REM SHIFT BYTE TO CORRECT POSITION : rem 84
$41 \varnothing \mathrm{~B} 2=\varnothing: \mathrm{Ml}=\varnothing: \mathrm{M} 2=255: \mathrm{IF} \mathrm{SH}=\varnothing$ THEN RETURN
:rem 13
$42 \emptyset$ FOR K=1 TO SH:B2=B2/2 :rem 52
$43 \emptyset$ IF BY AND 1 THEN B2=B2 OR 128 :rem 85
$44 \varnothing \mathrm{BY}=\mathrm{BY} / 2: \mathrm{Ml}=(\mathrm{Ml} / 2) \mathrm{OR} 128: \mathrm{M} 2=\mathrm{M} 2 / 2: \mathrm{NEXT}$
:rem 28
$45 \emptyset$ RETURN
:rem 121
5 5ø REM PUT BYTE AT X,Y :rem 24
$51 \varnothing$ GOSUB $3 \varnothing \varnothing:$ REM CALCULATE OF \& SH
:rem 171
520 GOSUB 4øø:REM SHIFT OVER :rem 131
$53 \emptyset \mathrm{AD}=57344+\mathrm{OF}:$ REM GET ADDRESS FOR BY : rem 167
$54 \emptyset$ POKE AD,USR(OF) AND MI OR BY : rem $23 \emptyset$ $55 \emptyset$ IF SH= \varnothing THEN RETURN :rem 64
560 POKE AD+8, USR (OF+8) AND M2 OR B2 : rem 136
$57 \emptyset$ RETURN
: rem 124
6øø REM PUT CHARACTER AT X,Y :rem ll4
$61 \varnothing$ GOSUB 1øø:REM CONVERT CH :rem 114
$62 \emptyset$ GOSUB 2øø:REM READ DOT PATTERN
: rem 233
$63 \emptyset \mathrm{Y}=\mathrm{Y}+8$: REM PUT CHAR. FROM TOP DOWN
:rem 173
$64 \emptyset$ FOR IX=ø TO 7:Y=Y-1:BY=DP(IX): rem 136

Program Your Own EPROMS

VIC 20 C 64

PLUGS INTO USER PORT. NOTHING ELSE NEEDED. EASY TO USE. VERSATILE.

- Read or Program. One byte or 32 K bytes!
OR Use like a disk drive. LOAD,
SAVE, GET, INPUT, PRINT, CMD,
OPEN, CLOSE-EPROM FILES!
Our software lets you use familiar BASIC commands to create, modify, scratch files on readily available EPROM chips. Adds a new dimension to your computing capability. Works with most ML Monitors too.
- Make Auto-Start Cartridges of your programs.
- The promenade ${ }^{\text {ru }} \mathrm{C} 1$ gives you 4 programming voltages, 2 EPROM supply voltages, 3 intelligent programming algorithms, 15 bit chip addressing, 3 LED's and NO switches. Your computer controls everything from software!
- Textool socket. Anti-static aluminum housing.
- EPROMS, cartridge PC boards, etc. at extra charge.
- Some EPROM types you can use with the promenade ${ }^{\text {Tw }}$

Call Toll Free: 800-421-7731
In California: 800-421-7748

580 Parrott St., San Jose, CA 95112

Decimal Mode Part 1

The 6502 has an option which affects only the add (ADC) and subtract (SBC) instructions: decimal mode.

Decimal mode is invoked with the Set Decimal (SED) command, and canceled with Clear Decimal (CLD). It may be affected by stack activities that pull the status register-PLP for Pull Processor status, and RTI-but this is unusual. In most computer environments you can assume that decimal mode is not in force when your program is invoked; but if you're not sure, it won't hurt to give a CLD.

Decimal mode is intended to help with certain types of numbers: Binary Coded Decimal (BCD) numbers. You might want to use this type of number system when the values are used mostly for input and output with little calculation involved.

Binary numbers-the computer's usual numeric values-are good for advanced calculations. Multiplication and division are easy to do in binary, and more advanced calculations can readily be developed. The only problem with binary numbers is this: They must be converted to decimal at the time of input or output.

Decimal numbers, or more accurately BCD numbers, are easy to input and output since they are held in the same decimal notation as was entered or will be seen by the user. With decimal mode, we may add or subtract these numbers without converting them to binary. But if we want to do more advanced mathematics, we'll certainly go to binary.

Accounting programs often use decimal mode. Similarly, many games keep scores in decimal format, since the only activities are adding points as they are scored and displaying the results.

What Is BCD?

The easiest way to describe a number held in Binary Coded Decimal is this: When you display it in hexadecimal format, you see the correct decimal value. Let's explain this with a few examples.

A value of 9 is held within a byte as binary 00001001 . This is true whether you are using binary or BCD numbering. If we print the contents of this byte in hexadecimal, it is displayed as 09. Now, this not only represents the value nine, it looks like nine.

If we are in binary mode and add one to the above value, we'll get 00001010 . The value is ten but the number displays in hex as 0A. This doesn't look like ten to those of us who are not trained to read hex. Worse: If we add six, we'll get a value of 16 , which prints as hex value 10 . This doesn't look like 16-if we didn't know it was a hexadecimal number, we might think it was ten.

Let's go back to our original value of nine, but switch to decimal mode. If we add one, using the ADC instruction, we'll end up with binary 00010000 . We know that the value must represent ten, and when we print the hexadecimal it shows up as 10 -which looks like ten. We must ignore the usual binary rules, which would tell us that binary 00010000 is equivalent to decimal 16. In BCD, this binary number has a value of 10. If we add a six in decimal mode, we'll get 00010110 which has a value of 16 and prints out as hexadecimal 16.

We've decided to use the bits in a different way. The four high bits-the high nybble, as it's sometimes called-represent a tens digit; the four low bits, or low nybble, represent units. Each nybble may have a value from 0 to 9 , but the six

Why Pay Retail?

Business

Commodore

Easy Script 64/D Easy Spell 64/D Easy Finance I, II ea./D Accts. Receivable/D General Ledger/D Payroll/Checkwriting/D Assembler 64/D Logo/D
Simon's Basic/CRT
Bank Street Writer/D
Home Accountant/D
Tax Advantage
FCM
Paper Clip Word
Processor
Delphi's Oracle Practicale 64 Calc Result/Easy-CRT. Calc Result/Advanced-D
Multiplan/D
.539 .517 517 S 39 . 39 539

$\$ 39$ $\begin{array}{r}5 \\ \hline\end{array}$ 15 | 549 |
| :--- |
| 4 | S 49 S 17

549
S 48 s 39 539

$$
2
$$

$$
\begin{aligned}
& \mathrm{S}_{6} 65 \\
& \mathrm{~s} \\
& 89
\end{aligned}
$$

$$
\begin{aligned}
& 589 \\
& 5
\end{aligned}
$$

$$
S_{40}
$$

$$
\begin{aligned}
& 540 \\
& 5 \\
& 5
\end{aligned}
$$

Atari
Harcourt Brace SAT/D ... 559
Chaterbee/D 529
Match Wits/D............ 522
Early Games/D........... 522
Early Games Music/D 522
Spellicopter 529

Creature Creator 529
Math Maze 529

Alien Addition/D 525
Meteor Multiplication..... 525
Compu-Read/D S22
Compu-Math/Fractions ... 529
Compu-Math/Decimals ... 529
Spelling Bee Games........ 529

Speed Read +/D Spider Eater/Koala 522 Bumble Bee/Learning Co. 529 Snooper Troops 1, 2 ea 532 Face Maker/CRT 525 Kids on Keys/CRT 525 Alphabet Zoo/CRT 525 Kid Writer/CRT.......... 525 Delta Drawing/CRT 529

Commodore

CBS Addition/Subt.S17 CBS Multiplication/ Division Speed Reader II/D S49 Word Attack/D Mathblaster/D Spellakazan/D Crypto Cube/D 529 Master Type/D-CRT 529 Songwriter/D S29 Alphabet Zoo/CRT S25 Fraction Fever/CRT 525 Delta Drawing/CRT 529 Facemaker/CRT S25 Trains/D Kidwriter/CRT Dungeons of Algebra Dragons Juggles Rainbow Bumble Bee . Early Games Piece of Cake $\mathbf{5 2 2}$ Early Games Match Maker $\mathbf{S 2 2}$

Atari 600XL$\$ 299$1027 Letter Quality Printer\$299
解$\$ 269$
Koala Touch Tablet \$ 79.00Elephant Disks S/S$\$ 19.50$

Data Manager/D Electronic Checkbook Swif tax/D
Quick Brown Fox/D

Atari

Atariwriter Visicalc.
Financial Wizard Letter Perfect Data Perfect Spell Perfect Spell Wizard Text/Spell Wizard Combo
Bank Street Writer Bank Street Speller Homeword Syn File +
Syn Text
Syn Mail
Home Accountant
Tax Advantage
Complete Personal
Accountant
Atspeller
Diskette Mailing List
Miles Payroll System
Atari Accounting
Family Finance.
File Manager 800

Hardware
 \section*{Printers}

. $\$ 189$

Okidata ML 82A........ Call
Okidata MI. 83A........ Call
Call
C. ITOH 8510 Prowriter $\$ 399$
C. ITOH 8510 SP 5665

Gemini 10X 5315
Mannesmann Tally
Spirit 5345

Modems

Atari 1030 Modem S115
Hayes 1200 5529
Hayes 300 5229

C

Computer Ortlet

1095 East Twain, Las Vegas, NV 89109 Mon.-Fri. 8 a.m. to 6 p.m.,Sat. 9 a.m. to 5 p.m.

1-800-634-6766

Information and Inquiries: (702) 796-0296 Order Status: (702) 369-5523.

IF YOU DON'T SEE IT . . . CALL!

ORDERING INFORMATION AND TERMS: For fast delivery send cashier checks, money orders or drect benk wire transfers. Perzonal and company chacks allow 3 weeks to clase. Charges for C. O.D. orders ans $\$ 3.00$ minimum $\propto 1 \%$ for orders over $\$ 300$. School purchase orders welcomod. Prices reflect a cash discount onky and are subiect to change without notice. Please enclose your phone number with any orders. SHIPPING: - Software: $\$ 3.00$ minimum. SHIPPING - Hardware: (Plesse cal) SHIPPING - Fornign Orderz: APO 8 FPO orders: $\$ 10$ minimum and 15% of al orders over $\$ 100$. Nevada residents add $5 \% \%$ sales tax. All goods are new and include factory warranty. Due to our low prices, all sales are final. Al retums must be accompanied by a return authorization number. Cal 702-369-5523 to obtain one before roturning goods for roplacament viSA wovericor Catalogs: 50 C U.S., $\$ 1.00$ foreign
highest combinations corresponding to hex A, B, $\mathrm{C}, \mathrm{D}, \mathrm{E}$, and F will never be used.

This makes BCD less efficient than binary for storing numbers. The highest $B C D$ number that we can store within a single byte is 99 , as compared to 255 for binary. We can use several bytes together to hold larger numbers, but BCD always holds less: A two-byte BCD number can go from 0000 to 9999 , compared to a two-byte unsigned binary number which can range from 0 to 65535 .

But it's convenient. When we wish to output such a number, we extract each digit, convert it to ASCII with an ORA $\# \$ 30$, and print it. (We get the left digit by using four LSR instructions, and the right digit with AND \#\$0F.) An equivalent binary number would need a divide-by-ten routine before it could be output.

Similarly, input is a snap. As each ASCII digit arrives, it has its high bits stripped (with AND \#\$0F) and gets packed together with another digit to generate the two-to-a-byte BCD value.

An Example

Here's a sample program to show the power of BCD numbers and ease of programming with them. We'll have the computer (PET, VIC, or 64) output a table of multiples of the number 142857. This is a favorite peculiar number of mine; you'll see why when we print the table.

033C	A2	00		; set value to zero	
033E	8 E	90	03	LDX STX	LOW
0341	8E	91	03	STX	MED
0344	8E	92	03	STX	HIGH
				; do the addition	
0347	18			LOOP CLC	
0348	78			SEI	
0349	F8			SED	
034A	AD	90	03	LDA	LOW
034D	69	57		ADC	\#\$57
034F	8D	90	03	STA	LOW
0352	AD	91	03	LDA	MED
0355	69	28		ADC	\#\$28
0357	8D	91	03	STA	MED
035A	AD	92	03	LDA	HIGH
035D	69	14		ADC	\#\$14
035F	8D	92	03	STA	HIGH
0362	D8			CLD	
0363	58			CLI	
				; print the number	
0364	A0	02		LDY	\#\$02
0366	B9	90	03	LP LDA	LOW, Y
0369	4A			LSR	A
036A	4A			LSR	A
036B	4A			LSR	A
036C	4A			LSR	A
036D	09	30		ORA	\#\$30
036F	20	D2	FF	JSR	\$FFD2
0372	B9	90	03	LDA	LOW,Y
0375	29	0F		AND	\#\$0F
0377	09	30		ORA	\#\$30
0379	20	D2	FF	JSR	\$FFD2
114	OMPU	TEI	July 1		

$\begin{aligned} & \text { 037C } \\ & \text { 037D } \end{aligned}$	88			DEY	
	10	E7		BPL	LP
				; print RETURN and loop	
037F	A9	0D		LDA	\#\$0D
0381	20	D2	FF	JSR	\$FFD2
0384	E8			INX	
0385	E0	07		CPX	\#\$07
0387	D0	BE		BNE	LOOP
0389	60			RTS	

Note that we hold the value we are calculating in three bytes; called LOW, MED, and HIGH; we add starting at the low byte and working up. The Carry flag works the same way as is usual for addition. While we're in decimal mode, we lock out the interrupt so that the interrupt routines won't do their arithmetic in the wrong mode. The addition sequences could have been written as a loop; for the sake of clarity, it was done using "straight line" coding.

For printing, we start from the high byte, of course. The output routine for BCD is simple compared to what we would need to do with binary values.

If you'd rather enter the program from BASIC, here's the same program in DATA statements. It will work on all Commodore machines.

```
1ø\emptyset DATA 162,0,142,144,3,142,145,3
110 DATA 142,146,3,24,120,248,173,144,3
12\emptyset DATA 105,87,141,144,3,173,145,3
130 DATA 105,40,141,145,3,173,146,3
140 DATA 105,2\emptyset,141,146,3,216,88,16\emptyset,2
150 DATA 185,144,3,74,74,74,74,9,48
160 DATA 32,210,255,185,144,3,41,15,9,48
17\emptyset DATA 32,210,255,136,16,231,169,13
180 DATA 32,210,255,232,224,7,2ø8,190,96
2ø\emptyset FORJ=828 TO 9ø5
210 READX:T=T+X
22Ø POKEJ,X
230 NEXT J
240 IF T<>8325 THEN STOP
250 SYS 828
```

You might like to examine the output of the program to see what's so special about the first seven multiples of the number 142857.

Next month, we'll discuss special features and wrinkles of decimal mode.

WE WILL NOT BE UNDERSOLDI Call Free (800)235-4137 for prices and information. Dealer inquiries invited and C.O.D.s accepted.

PACIFIC
EXCHANGES
100 Foothill Blud
San Luis Obispo, CA
93401 . In Cal. call
(800) $592-5935$ or
(805) 543-1037

Atari Artist

Andrew S. Katz

Abstract

With this program, you can place shapes of any size, orientation, or color anywhere on the screen. Use the joystick to create the shape, and change its color with the press of a single key.

In spite of its simplicity, "Atari Artist" can be used to draw complex designs as well as realistic scenes. Draw a circle inside a triangle inside a circle, and so on. Piece together a house in the midst of a forest. Then store your art on disk or tape.

Atari Artist comes in two versions. Version 1, a four-color version, has a blue status window and runs in 16 K . Version 2, a 16 -color GTIA version, has a gray status window and needs 24 K to run.

To use this program, you'll need a joystick plugged into port 1. Be sure to have a cassette recorder or disk drive attached if you wish to LOAD and SAVE copies of your designs. When you first RUN the program, the title screen will appear. It will give you information about the keys' uses. At this point, you may wish to select a version. Version 1 is set up by default. If you wish to use Version 2, press and release the joystick button. The number 2 should replace the 1 after the word version. Press the button again to return to Version 1.

Once you've selected the version, move the joystick. If you have selected Version 2 and the message ERROR 147 ON LINE 1000 is on the screen, your Atari does not have enough memory for Version 2. Type RUN again, and this time use Version 1.

Marking The Shape

After several seconds the play screen will appear. All three markers are on top of one another at the top of the screen. Notice the two-line status window at the bottom of the screen.

To move a marker, push the joystick in the direction you want the marker to go. It should respond instantly. The marker you are moving is called the current marker and is indicated by a pinkish tint. The other two markers are white. The markers may move anywhere on the screen, including the hidden area behind the status window. If you try to move it off the screen, the marker will stop at the screen's boundary.

To control the other markers, release the joystick and press the joystick button. Notice that MARKER \# lights up in the status window. This is to show you that you are in the process of picking a new current marker. Release the joystick button. MARKER \# is no longer lit up, but the number beneath it has changed. It has increased by one, or cycled back from 2 to 0 . Also, a different marker now has a pinkish tint. That's the marker that now responds to the joystick. Very soon, you will find the movement of the markers and the switching between them to be quite simple.

Change The Marker Speed

The speed at which the joystick moves the markers across the screen can be changed. Speeds range from 1 to 9 . Speed 1 is normal, Speed 2 is twice as fast, and so on up to Speed 9, which is nine times as fast as Speed 1. The higher speeds do not permit you to stop at every point on the screen. These high speeds are used to get across the screen quickly, or to assist in more advanced drawing. To change speed, press the joystick button and move the joystick.

Notice that the highlighted item in the status window changed from MARKER \# to SPEED. Move the joystick toward you to decrease speed or away from you to increase speed. You will see the number under SPEED in the status window change as you move the joystick. When you've
reached the desired speed, release the joystick button. Now when you use the joystick, it will move the current marker at the speed you set.

To change the color, release the joystick and press the OPTION key. Notice that in the status window COLOR has lit up. This is to show you that you are in the process of choosing the next color in the sequence. When you release the OPTION key, the next color is shown beneath COLOR. To step through the color sequence, repeatedly press and release OPTION. When the color sequence reaches the last color, it starts again from the first color (the one in effect when you first started). Each version has its own color sequence listed in the table. The colors you actually see may vary, depending upon your computer and the tint adjustment on your TV.
Drawing Colors

```
Version 1:
        ORANGE
        GREEN
        BLUE
        BLACK or erase
Version 2:
        GOLD
        ORANGE
        REDORG (red orange)
        PINK
        PURPLE
        VIOLET
        STBLUE (steel blue)
        BLUE
        BYBLUE (baby blue)
        TURQUO (turquoise)
        GRBLUE (green blue)
        GREEN
        YELGRE (yellow green)
        ORGGRE (orange green)
        LTGREN (light green)
        BLACK or erase
```


Two Fundamental Shapes

To change the shape, release the joystick and press the SELECT key. Notice that in the status window SHAPE has lit up. This is to show you that you are in the process of selecting the other fundamental shape. The two fundamental shapes are TRIANGL (triangle) and CIRCLE. Now, release the SELECT key. The shape underneath SHAPE has changed from TRIANGL to CIRCLE, or from CIRCLE to TRIANGL.

To draw a shape, just press START. The program will take control and draw the shape. When the drawing has completed, control over the keys and joystick returns to you. The amount of time it takes to draw a shape will depend upon its size. A circle takes more time than a triangle, and Version 2 is slower than Version 1. The shape shown under SHAPE is drawn and given the color shown under COLOR. If the shape is TRIANGL, the three markers are its corners. If the shape is

CIRCLE, it is drawn using the markers as points along its circumference. As the shape is drawn, it covers (or erases) anything that was in its position on the screen.

SAVEing The Screen

To store the screen display on cassette or disk, or to reload a previously stored screen, press the OPTION and SELECT keys at the same time. The status window is then replaced with the first level of prompt. If you press RETURN, you'll get the status window back. You must press L for LOAD or S for SAVE. Other keys will be rejected and a buzz will sound. Do not press BREAK or SYSTEM RESET.

When you press S or L, the second level of prompt will be shown. Now, you must type a filename such as C for cassette or D:ANDY.GRT for disk. You cannot type more than 15 letters for a filename. Any additional letters or invalid keystrokes will be ignored. Mistakes can be corrected with the backspace key. After typing a filename, press RETURN. If no filename is shown, you will get the status window back. If the filename is invalid, you will see ERROR DETECTED TRY AGAIN for several seconds before the status window returns.

If the filename was correct and you have the disk or cassette set up, the SAVE or LOAD should proceed as explained in the tape or disk manual. When the SAVE or LOAD is complete or interrupted, the status window returns.

Keep The Versions Separate

During a LOAD, the second prompt will come with a warning to use files saved under the current version. A Version 2 screen loaded into Version 1 will result in some striped colors and height distortion. A Version 1 screen loaded into Version 2 will result in different colors and height distortion. Also, it will attempt to LOAD past the end of the file. During a LOAD you will see the screen fill from top to bottom.

Feel free to interrupt a LOAD by pressing BREAK. This is a way to merge the top of a SAVEd screen with the bottom of the current screen. However, pressing BREAK or SYSTEM RESET may cause the program to crash. If this happens, press SYSTEM RESET and type RUN.

Before drawing the shape, the program calculates the numbers it needs from the positions of the markers. For the purpose of positioning, the screen is treated as an $X-Y$ grid with X, Y pairs for each separate point or pixel on the screen. The X can be thought of as column and the Y as row. The upper left corner of the screen is assigned 0,0 and the lower right corner is assigned 159,79 (79,159 in V2). Then it uses the numbers to draw the shape one row at a time.

Creating A Triangle

Lines 507-540 contain the triangle predrawing section. Line 510 finds the highest (A), middle (B), and lowest (C) markers by comparing the markers' Y coordinates. Line 1550 has the six possibilities for three markers listed out in advance. Lines 530-536 calculate the slopes of the imaginary lines connecting the markers. Lines $11-30$ contain the drawing routine. There are two sections divided by a horizontal line at B. In the first section, horizontal lines are drawn from line CA to line BA. In the second section, horizontal lines are drawn from line CA to line CB. The two special cases where $\mathrm{AY}=\mathrm{BY}$ or $\mathrm{BY}=\mathrm{CY}$ are also handled.

The circle predrawing section is lines 600-680. The two crucial factors here are the location of the center of the circle (RX, RY), and the radius of the circle (R). The center of the circle is found by using the bisectors rule from geometry. To apply that rule, connect points C and A and points B and A . Then, make lines which pass through the midpoints of lines CA and BA and are perpendicular to CA and BA. We can use the point-slope method to describe these lines. Finally, find where these lines intersect. That is done by solving simultaneous linear equations.

Plotting A Circle

To find the radius, calculate the distance from the center of the circle to point A. In the program, any of the three markers are used as points A, B, and C. The markers are tried in different orders in line 1550 until a center is found.

Notice line 650. The TRAP is there to test for the case where the slopes of the bisectors are equal. This will occur only when the three markers are in a straight line. You can't draw a circle on a straight line. The actual drawing is performed by lines $2-10$. It is done by drawing the upper half and the bottom half simultaneously, starting at the equator and going to the poles. X, Y pairs which are outside the screen range are converted to fit on the screen for partial horizontal lines.

Finally, an FT factor is used to make round circles. If you draw circles without using FT, they come out oval. This is because the height of a screen pixel is not equal to its width.

With careful planning, you can construct interesting designs or detailed scenes that have the quality of a watercolor painting. By combining the two fundamental shapes of nature-the circle and the triangle-you can form many other shapes such as rectangles, stars, diamonds, and crescents. The program teaches children drawing composition and the names of the colors.

Drawing A Rectangle

Let's draw a rectangle.

Step 1: Move the markers together until they are exactly on top of one another. This will be the lower left corner of the rectangle.
Step 2: Increase the speed (9 is OK).
Step 3: Move a marker right by tapping the joystick. Count how many taps you make.
Step 4: Do the same thing with another marker but in the up direction.
Step 5: Press START.
Step 6: Move the third marker right and then up the same number of times you counted in steps 3 and 4 .
Step 7: Press START and you'll have a rectangle. Now that you have the general idea, try drawing some shapes on your own.

Here's some advice about circles. Since the markers form the edge of the circle, lining up the markers in a straight line will form a very large circle. In fact, it may not form a circle at all, because you can't draw a curve on a straight line. The computer will buzz at you if you tell it to draw a straight line circle. Move one marker a little and try again. You will see that very large circle. Sometimes circles are partly off and partly on the screen. If the partly off part is drawn first, you may have to wait a few seconds before you see your circle being drawn. Be patient. Soon you will become familiar with how circles are made, so you will know in advance how one will come out before it's drawn.

The Background Comes First

When you draw a scene, remember to do the background first. It is just like painting: The new shape will cover the old. You may notice that certain colors contrast each other and certain colors blend into each other. This and other visual effects can and should be used to your advantage. Remember also that the same color can look different with different backgrounds.

If you see the colors changing after you have been drawing for a while, your Atari is in attract mode. The purpose of attract mode is to protect your TV from permanent burn-in of colors. To get your normal colors back, just press the SPACE bar or a letter key.

There is no specific feature for clearing the screen, but it's easy to start with a clean slate. Just move the markers to three of the corners of the screen and draw a BLACK TRIANGL. Then move a marker to the fourth corner from the corner diagonally opposite and draw again.

You may want to modify the program. One simple modification is to use the 16 shades of the GTIA mode. In this mode, the names of the colors should be reinterpreted as shades of gray. In lines 1525 and 1530 , change 623 to 65,87 to 9 , and 712 to 0 .
Refer to the "Automatic Proofreader" article before typing this program in.

Atari Artist

FL 1 GOTO 1 øøøø
IC 2 FOR $Y=\emptyset$ TO R：$X=S Q R(R S-Y * Y): X 1=F T$＊ $(R X-X): X 2=F T *(R X+X): Y 1=R Y-Y: Y 2=R Y$ $+Y$
PO 3 IF $Y 1>Y M A X$ THEN $Y 1=Y M A X$
AB 4 IF Y2＞YMAX THEN Y $2=Y M A X$
BH $5 \times 1=X 1 *(X 1>\emptyset)=I F \quad X 1>X M A X$ THEN $\quad \times 1=-$ 1
PP 6 IF $\times 2>X M A X$ THEN $\times 2=X M A X$
OC 7 IF $X 1<\varnothing$ OR $X 2<\emptyset$ THEN $1 . \emptyset$
PE 8 IF $Y 1>=\emptyset$ THEN PLOT $X 1, Y 1: D R A W T O X$ 2，Y 1
PI 9 IF Y2＞＝ø THEN PLOT $X 1, Y 2: D R A W T D ~ X$ 2，Y2
PN $1 \varnothing$ NEXT $Y=G O T O \quad 1 \varnothing \varnothing$
HB 11 IF $A Y=B Y$ THEN PLOT $A X, A Y: D R A W T O$ $B X, B Y=G O T D \quad 2 \varnothing$
IA 15 FOR $Y=A Y$ TO BY：PLOT $C X-(C Y-Y)$＊KC $A, Y: D R A W T D E X-(B Y-Y)$ 为KBA，$Y: N E X T$ Y
HI $2 \emptyset$ IF $B Y=C Y$ THEN PLOT $B X, B Y: D R A W T O$ CX，CY：GOTO उめ
IH 25 FOR $Y=B Y$ TO CY：PLOT $C X-(C Y-Y)$＊KC $A, Y: D R A W T O C X-(C Y-Y) * K C B, Y: N E X T$ Y
CH $3 \varnothing$ GOTO 1 Øø
NE 1 Øゆ REM MAIN LOOP
NI 110 IF PEEK $(53279)=6$ THEN $5 \emptyset \emptyset$
HG 12 S $\mathrm{ST}=\mathrm{STICK}$（め）
$0813 \emptyset$ IF $S T=15$ THEN IF PEEK（53279）$=3$ THEN 7 ＠め
OD 132 IF $5 T=15$ THEN IF PEEK（53279）＝1 THEN 9 Øロ
03135 IF $S T=15$ THEN IF PEEK $(53279)=5$ THEN 8めめ
6F 14＠IF $5 T=15$ THEN IF STRIG（Ø）$=\varnothing$ THE N उØめ
OD $150 X M$（MARKER）$=X M$（MARKER）＋SPEED＊X（S T ）：YNE $W=Y M$（MARKER）＋SPEED＊Y（ST）
HA 16 I \quad IF $X M$（MARKER）$>2 \emptyset 6$ THEN XM（MARKE F）$=2$ Ø6
PH $17 \emptyset$ IF $X M$（MARKER）<49 THEN XM（MARKER $)=48$
CE 18 IF IF YNEWく16 THEN YNEW＝16
HP 19 IF YNEW 1111 THEN YNEW＝111
JD $2 \emptyset 6$ POKE $53252+M A R K E R, X M$（MARKER）
CA 204 IF YNEW＝YM（MARKER）THEN 21 Ø
OA 205 POKE PMM＋YM（MARKER），PEEK（PMM＋YM （MARKER））－MK（MARKER）：POKE PMM＋Y NEW，PEEK（FMM＋YNEW）＋MK（MARKER）：Y $M(M A R K E R)=Y N E W$
FN 210 GOTO 1 めめ
HK $3 \varnothing$ S $5(3,1 め)=H E I D \$(1,8)$
BK $32 \emptyset$ IF STICK（ø）＜>15 THEN $5 \$(3,1 \varnothing)=H$ EAD $\$(1,8):$ GOTO 4 ＠
6A उЗめ IF STRIG（ $)=\varnothing$ THEN $32 \emptyset$
OE 345 POKE $794+$ MARKER， 14
AO З5の MARKER＝MARKER＋1：IF MARKER＝3 THE N MARKER＝ø
$06355 \mathrm{~S} \$(3,16)=\mathrm{HEAD} \$(1,8): 5 \$(46,46)=\mathrm{C}$ HR क（MARKER＋16）：POKE $7 \emptyset 4$＋MARKER， 60
GD $36 \emptyset$ GOTD $1 \emptyset \emptyset$
0． 4 ＠ $5 \$(11,18)=\mathrm{HEID} \$(9,16)$
BN $4 \emptyset 5$ FOR $W=1$ TO $5 \emptyset: N E X T \quad W$
EI 41 IF STICK（ळ）$=15$ THEN $S \$(11,18)=\mathrm{H}$ EAD $\$(9,16)=$ GOTO 1 ØØ
DH $42 \emptyset$ IF STICK $(\emptyset)=14$ THEN SPEED＝SPEED ＋1：IF SPEED＞9 THEN SPEED＝9
CH 43 IF STICK $(\varnothing)=13$ THEN SFEED＝SPEED $-1: I F$ SPEED＜1 THEN SPEED＝1

P6 435 S\＄（55，55）＝CHR\＄（SPEED＋16）
6K 44 G GOTO 4 ＠5
6N $5 \emptyset \emptyset$ COLOR COLR：RESTORE $155 \varnothing$
MN 505 IF SHAPE＝1 THEN Gめळ
OP $5 \varnothing 7$ TRAP $699: R E A D$ A，B，C
IJ 510 IF $Y M(A)<=Y M(B) \quad A N D \quad Y M(B)<=Y M(C$ ）THEN $A Y=Y M(A): A X=X M(A): B Y=Y M$（ $B): B X=X M(B): C Y=Y M(C): C X=X M(C): G$ OTD 52め
64511 GOTO 507
NJ 52Ø $A X=(A X-48) * X T: B X=(B X-48) * X T: C X=$ $(C X-48) * X T=A Y=(A Y-16) * Y T: B Y=\{B Y$ －16）＊YT：$C Y=(C Y-16) * Y T$
EE 5Зの
EF 532 TRAP $534: K B A=(B X-A X) /(B Y-A Y)$
$E P 534$ TRAP $536: K C B=(C X-B X) /(C Y-B Y)$
MJ 536 TRAP 4 ØЮøळ
DE 540 GOTO 11
$036 \emptyset \emptyset$ TRAP $699: R E A D$ A，B，C
DC $6 \varnothing 1 \quad A X=(X M(A)-48) * X T / F T: A Y=(Y M(A)-1$ 6）＊$Y T$
DG 61 Ø $\mathrm{BX}=(X M(\mathrm{~B})-48) * X T / F T: B Y=(Y M(B)-1$ 6）＊YT
DL 62の $C X=(X M(C)-48) * X T / F T: C Y=(Y M(C)-1$ b）＊YT
II 625 IF $C Y=A Y$ OR $B Y=A Y$ OR $A X=B X$ THEN 6月Ø
DK $630 K C A=(A X-C X) /(C Y-A Y)$
DJ $632 \mathrm{KBA}=(A X-B X) /(B Y-A Y)$
PB 64 Ø LCA $=(C Y+A Y) / 2-K C A *(C X+A X) / 2$
$0 P 642 L B A=(B Y+A Y) / 2-K B A+(B X+A X) / 2$
PE 650 TRAP $699: R Y=(K B A * L C A-K C A * L B A) /($ $K B A-K C A)$
NH 66め TRAP 4 Фøø $: R X=(R Y-L B A) / K B A$
AG 67玉 RS＝（RY－AY）＊（RY－AY）＋（RX－AX）＊（RX－ AX）
NP $675 \mathrm{R}=\mathrm{SQR}(\mathrm{FS})=I F \mathrm{R}, 20 め$ THEN 699
AJ 68め GOTO 2
EF 699 TRAP $4 \varnothing \varnothing \varnothing \varnothing: F O R ~ I=\varnothing T O ~ उ \varnothing: F O K E ~ 5 ~$ З279，め：NEXT I：GOTO 1めめ
CD 7 （めめ S $\$(19,26)=\mathrm{HEID}(17,24)$
OA 72め IF PEEK（53279）＝ 3 THEN $72 め$
$6673 Q C O L F=C O L R+1: I F \quad C O L R=N C O L F S$ THEN COLR＝め
AJ 740 S\＄$(19,26)=$ HEAD $\$(17,24): 5 \$(69,65$ $)=$ COLF $\$($ COLR＊ $6+1$, COLF＊G +6 ）
66 $75 め$ GOTO 1 ＠
$C A 8 め 5 \$(27,34)=H E I D \$(25,32)$
OE 82＠IF FEEK（53279）＝5 THEN 82め
81 8डめ SHAPE $=1-5 \mathrm{HAPE}$
NE $84 \varnothing 5 \$(27,34)=\operatorname{HEAD} \$(25,32)=5 \$(68,74$ $)=$ SHAPE $\$($ SHAPE＊ $7+1$ ，SHAPE＊ $7+7$ ）
6H 859 GOTO $19!g$
6A 9め＠SS $=5$ ：$:$ POKE 764，255：CLOSE \＃2：OP EN \＃2，4，＠，＂K：＂：POKE 7＠2，64：POKE 694，あ
HH 910 S市＝＂FRESS ETO LOAD SCREEN FR OM FILE\｛8 SPACES？PRESS B TO SAV E SCREEN TO FILE S^{\prime} SPACES3＇＂
 S\＄（I，I．））－ $\mathbf{S Z}$ ）：NEXT I
10925 GOSUB 2以め日：IF $A=155$ THEN 999
FN 926 IF $A=A S C(" L ")$ THEN $W=4: B=7=$ GOTO 940
נE 927 IF $A=A S C(" S ")$ THEN $W=8: B=11: G O T$ 10 940
$0193 \wp$ FOR $I=1$ TO 25：FOKE 53279，$: N E X T$ I：GOTO 925
J094日 S\＄＝＂FILE NAME ？亿多 SPACES？＂：FI LEक＝S事（14，28）
BL 941 IF $W=4$ THEN $5 \$(42,65)=" F I L E$ MUS T BE FOR VERSION＂：S\＄（67，67）$=\mathrm{CHF}$ \＄（ASC（＂$"$＂）＋V）

JK 943 FOR $I=1$ TO 8め：S\＄（I，I）＝CHR\＄（ASC S\＄（I，I））－ 32 ）：NEXT I
FE 950 I＝め
CK 955 GOSUB 2の日の：IF $A=155$ AND $I=\varnothing$ THE N 999
明960．IF $A=155$ THEN 98ツ
KF 965 IF $A=126$ AND $I=\varnothing$ THEN 955
EF 968 IF $A=126$ THEN $A=A S C(")$ ：GOSUB 978：I＝I－1：GOTO 955
01970 IF $I=15$ THEN 955
E1975 I＝I＋ 9 ：GOSUB 978：GOTO 955
CH 978 FILEक $(I, I)=C H R \$(A): S \$(14+I, 14+I$ ）＝CHR $\$(A-32)$ ：RETURN
IJ 989 TKAP 997：POKE 54286，64
PD 981 IF FILE $(1,1)=" C "$ THEN POKE 537 75，35：POKE 53768，40：POKE 53764， Ø：POKE 53766，Ø：POKE 53773，255
HI 982 OPEN \＃ 1 ，W，Ø，FILE $\$$
W985 POKE 852，PEEK（88）：POKE 853，PEEK （89）：POKE 856，Ø：POKE 857，15＊V：F OKE 85め，B
LB 99め $B=U S R(A D R(C I O \$)): G O T 0.999$
 ，67）＝＂ERROR DETECTED TRY AGAIN

NK 998 FOR $I=42$ T0 67：S\＄（I，I）$=$ CHR $\$(A S C$ （SW（I，I））－32）：NEXT I：FOR I＝1 TO 1のØロ：NEXT I
NC999 TRAF 4めゆぁด：S\＄＝SS\＄：CLOSE \＃2：CLOS E \＃1：GOTO 152の
BN 1 Øめळ IF $V=2$ THEN GRAFHICS 24：PM＝PEE $K(1 风 6)-36:$ NCOLRS $=16: X T=\varnothing .5: Y T=$ 2：FT＝0．3125：XMAX＝79：YMAX＝191
BO 1 Øめ1 IF $V=1$ THEN GRAPHICS 23：PM＝FEE $K(1 @ 6)-2 \emptyset: N C O L R S=4: X T=1: Y T=1: F$ $T=1.25: X M A X=159: Y M A X=95$
MH 1 10 S POKE 54279，PM：PMM＝PM＊256＋384：F OKE 559，38：POKE 53277，1
JP 1 Øg 4 POKE 623，1：FOF $I=F M M$ TO PMM +12 7：POKE I，＠：NEXT I
AD 1ゆØS FOR $I=\varnothing$ TO 2：FOKE 7＠4＋1，14：NEX T I
BH 1 Ø1の DIM $X M(2), Y M(2), M K(2), C O L R क(96$ ），SHAPE末（14）
LC 1 D11 FOR $I=\varnothing$ TO 2：XM $(I)=125:$ POKE 53 $252+1,125: Y M(I)=16:$ NEXT $I: P O K E$ PMM $+16,255$
PC 1 Ø12 $M K(\emptyset)=3: M K(1)=12: M K(2)=48:$ REM MISSILE MASKS
KP 1 D13 COLR $\$="$ BLACK GOLD ORANGEREDOR GPINK PURPLEVIOLETSTBLUE BLUE GYELUETURQUOGRBLUEGREEN YELGR EORGGRELTGREN＂
PG 1 O14 SHAFE\＄＝＂TRIANGLCIRCLE＂：IF $V=1$ THEN COLR事 $(1,24)=$＂BLACK ORANG EGREEN BLUE
IC $1015 \mathrm{FOR} \mathrm{I}=1 \mathrm{TO} 96: \operatorname{COLR} \$(\mathrm{I}, \mathrm{I})=\mathrm{CHR} \$($ ASC（COLR\＄（I，I））－32）：NEXT I
PL 1 Ø16 FOR $I=1$ TO $14: S H A P E \$(I, I)=C H R \$$ （ASC（SHAPE\＄（I，I））－32）：NEXT I
נ 1 Ø2 5 SHPE $=\varnothing:$ COLR $=1:$ MARKER＝$=$ SPEED $=$ 1：POKE 704 ， 6 の
JM 1 Ø21 DIM S\＄（8め）：S＝ADR（S\＄）：SH＝INT（S／ 256）： $\mathrm{SL}=5-5 H * 256$

MA 1023 FOR $I=1$ TO $80: S \$(I, I)=C H R क(A S C$ （S\＄（I，I））－32）：NEXT I
MF 1 Ø25 DIM HEAD $\$(32)$ ：HEAD $=$＂MARKER \＃ SPEED COLOR〔S SPACES\}SHAPE

DP 1027 FOR $I=1$ TO $32: \operatorname{HEAD} \$(I, I)=C H R \$$（

ASC（HEAD\＄（I，I））－32）：NEXT I
FA 1 O28 FOR I＝1 TO 32： $\mathrm{HEID} \$(\mathrm{I}, \mathrm{I})=\mathrm{CHR} \$($ ASC（HEID\＄（I，I））－32）：NEXT I
DA 1 Ø29 S\＄（3，З4）$=$ HEAD $\$:$ S $\$(46,46)=C H R \$($ MARKER＋16）：S $\$(55,55$ ）＝CHR $\$$（SPEE $\mathrm{D}+16$ ）：S $\$(6$（ 9,65$)=$ COLR $\$($ COLF＊ $6+1$ ，COLR＊ $6+6$ ）
EC 1 פS \varnothing S $\$(68,74)=$ SHAPE $\$(S H A P E * 7+1$ ，SHA PE＊7＋7）
$0 P 1 \emptyset 34$ DIM $X(15), Y(15): F O R \quad I=5$ TO 15： READ $A, E: X(I)=A: Y(I)=B: N E X T I$
LJ 1035 DATA $1,1,1,-1,1, \emptyset, \varnothing, ळ,-1,1,-1$ ， $-1,-1, \varnothing, \varnothing, \varnothing, \varnothing, 1, \varnothing,-1, \varnothing, \varnothing$
EE 11めの DIM CIO\＄（6）：FOR I＝1 TO 6：READ
$A: C I O \$(I, I)=\operatorname{CHR} \Phi(A): \operatorname{NEXT}$ I
MJ 1105 DATA $104,162,16,75,86,228$
EH 111 D DIM SSक（8＠），FILEक（15）
KC 1500 DIM DLI\＄（14）：FOR I＝1 TO 14：REA D $A: D L I \$(I, I)=C H R \$(A): N E X T$ I
KC 1501 DATA $72,173,111,2,41,3,141,10$ ， $212,141,27,208,104,64$
DE 1502 DL＝PEEK（56 月）＋PEEK（561）＊256：IF $V=1$ THEN 1514
AD 1593 POKE DL $+182,143:$ POKE DL $+183,66$ ：POKE DL＋186，2：POKE DL＋187，PEE $K(D L+199):$ POKE DL＋188，PEEK（DL＋ 2の日）
J6 1513 POKE DL＋ 189 ，PEEK（DL＋ 201 ）：POKE DL $+184, \mathrm{SL}:$ POKE DL＋185，SH：GOTO 1520
LC 1514 FOKE DL＋93，66：POKE DL＋96，2：POK E DL +97 ，PEEK（DL +101 ）：POKE DL＋9 8，PEEK（DL＋102）
AJ 1515 POKE DL＋99，PEEK（DL＋ 193 ）：POKE D L＋94，SL：POKE DL＋95，SH：GOTO 152 g
D0 1520 FOKE 513，INT（ADR（DLI\＄）／256）：PO KE 512，ADR（DLI\＄）－256＊PEEK（513）
M 1521 POKE 54286， 192
EJ 1525 IF $V=2$ THEN POKE 623， $193:$ POKE 87，11
H1 153 IF IF $V=2$ THEN POKE 712 ， $8:$ POKE 71历，8：POKE 7历9， 14
JE 154 GOTO 1 Gめ
ED 155 D DATA $\varnothing, 1,2,2,1, め, め, 2,1,1,2, \varnothing, 1$ ，$, 2,2, \varnothing, 1$
DL 2øワด $A=P E E K(764)$ ：IF $A=255$ OR $A=60 \square$ R $A=39$ THEN 2めめの
BC 2095 GET \＃2，$A:$ IF $A=126$ OR $A=155$ THE N RETURN
P8 201の IF $A<S 2$ OR $A>=96$ THEN 2めøの K1 2015 RETURN
AK 1 Øøøด GRAFHICS 17：POKE 752， $1: V=1$
NE 1 Øดด 1 DL＝PEEK（560）+256 ＊PEEK（561）
B1 1 Øøळ2 POKE DL＋3， $71: F O R \quad I=6$ TO $11: \mathrm{PO}$ KE DL＋I，7：NEXT I
FI 1 Ø日1G POSITION 7，1：？\＃6；＂WELCOME＂
FM 1002め POSITION 10，3：？\＃6；＂to＂
 CEIERS＂
 HANGE COLORS＂
 HANGE SHAFES＂
FP 10055 POSITION $0,12:$ ？\＃；＂EThRIE \｛ड SPACESJTO DRAW＂
HH 1 ØめGめ POSITION $0,15:$ ？\＃b；＂move stic k to begin＂；
D1 1 1065 POSITION $\varnothing, 14:$ ？\＃；＂button fo r version＂；V ；
FL 10066 IF STICK（の）＜>15 THEN 1 Øøめ
HM 10067 IF STRIG $(\varnothing)=\varnothing$ THEN $\quad V=3-V$

DF 10069 GOTO 19665

PROGRAMMING THE TI

Programming Techniques In TI BASIC

This month, by answering some of the common questions I have received from readers, I'm going to give you a variety of programming techniques that you can use in your own programs.
How do you clear part of a screen?
Let's say you have onscreen a nice picture with a description underneath. CALL CLEAR will clear the whole screen; but you want to clear the printing, not the picture. Use CALL HCHAR with the row and column parameters under the picture, and use the number of repetitions that will clear the section you want. For example, to clear the lower half of the screen, CALL $\operatorname{HCHAR}\left(13,1,32,32^{*} 12\right)$. We're starting with row 13, column 1, and clearing with the space (character code 32) for $32 * 12$ squares- 32 columns times 12 more rows.

To clear with a different color, redefine a character (in a color set you are not using) as a colored square, then use CALL HCHAR to put that character on the screen:
$3 \emptyset \emptyset$ CALL COLOR $(13,16,16)$
31 Ø CALL $\operatorname{HCHAR}(13,1,128,32 * 12)$
To clear a vertical section of the screen, use CALL VCHAR:

CALL VCHAR $\left(1,17,32,24^{*} 16\right)$

To try out this technique, try this sample program:
$1 \emptyset \emptyset$ CALL $\operatorname{HCHAR}(1,1,42,32 * 24)$
$11 \emptyset$ CALL $\operatorname{HCHAR}(13,1,32,32 * 12)$
$9 \emptyset \emptyset$
GOTO $9 \emptyset \emptyset$

Change line 110 to the CALL VCHAR statement above and try the program. Next take out line 110 and put in lines 300 and 310 listed above. Experiment with different numbers of repetitions.
How do you get a border around the screen?
CALL SCREEN (c), where c is a number from 1 to 16 , defines the screen color. When you use this
statement in a program, the whole screen instantly changes color. CALL COLOR (s, f, b) defines the character colors. The characters are divided into sets of eight characters each. The s in the parentheses is the set number and can be from 1 to 16 . The f is the foreground color of the character, b the background color, and they can be one of the 16 color numbers, from 1 to 16 .

Now take a look at the characters in set 1 . The space is code 32 in set 1 . The screen is filled with spaces wherever there isn't any printing or graphics. If you change the color of set 1 to something other than the screen color (background color 1), you'll get color where all the spaces are.

```
1ø\emptyset CALL CLEAR
11\emptyset CALL SCREEN(14)
12\emptyset CALL COLOR(1,2,16)
9ø\emptyset GOTO 9\emptyset\emptyset
```

Press FCTN 4 (CLEAR) to stop the program. You've got a border on the top and on the bottom, but you would like the sides also. When we PRINT messages we have a 28 -column line, but when we do graphics we actually have 32 columns-there are two columns on each side of the regular printing section. They currently have spaces in them. To get the screen color in those columns, add

```
115 PRINT ::::: : : : : : : : : : : : : : : : : : 
```

Or, as you print messages, those extra columns fill with the screen color. (As you PRINT, columns 1, 2, 31, and 32 will contain character 31.) A quicker way to get rid of the spaces in those columns is to fill the columns with a character in the screen color. You may add these lines instead:

```
115 CALL CHAR(152,"")
116 CALL VCHAR(1,1,152,48)
117 CALL VCHAR(1,31,152,48)
```

Now try a few PRINT messages, such as

$15 \emptyset$ PRINT "HELLO"

Notice that the letters have little squares of the screen color around them. All the color sets are automatically defined as CALL COLOR $(\mathrm{S}, 2,1)$, which is black with a transparent background. The color number 1, transparent, will be the screen color. If you want the printing to be black on your inner screen color (the color of the spaces), you need to define the sets with the background color that you used in set 1 . Change line 120 above to

```
12\emptyset FOR S=1 TO 12
13\emptyset CALL COLOR(S,2,16)
140 NEXT S
```

This defines a white background for the first 12 character sets, those sets which have letters and symbols. Now run the program and you will see that the message no longer has the screen color background.

How do you make a simple math drill with graphics?

I have had quite a few requests for an arithmetic drill program. Many readers would like to develop such programs on their own and want to know how to draw a certain number of pictures for the numbers chosen randomly in a simple math problem.

Here is a short program to give you the general idea of using the graphics. I defined character 128 to be the picture. The variables A and B can be numbers from zero to four. Lines 170-200 print the problem on the screen-a simple addition problem. Lines 210 and 220 draw the right number of characters for A and B.

Program 1: Simple Math Drill

$32 \emptyset$ PRINT "CORRECT!"
33ø CALL SOUND (1øø,262,2)
$34 \emptyset$ CALL SOUND (1øø,33ø,2)
35ø CALL SOUND (1øø,392,2)
36ø CALL SOUND (2øø,532,2)
$37 \emptyset$ CALL SOUND (1,9999,3ø)
38ø CALL CLEAR
39ø GOTO 14ø
$4 \emptyset \emptyset$ CALL CLEAR
41σ END
If you prefer to have a space between graphics characters, place a character in every other space. You can do this by changing lines 210 and 220 above to the following:
$21 \varnothing$ FOR C=12 TO 12+2*(A-1) STEP2
$212 \operatorname{CALL} \operatorname{HCHAR}(8, \mathrm{C}, 128)$
214 NEXT C
$22 \varnothing$ FOR C=12 TO 12+2*(B-1) STEP2
222 CALL HCHAR ($1 \varnothing, \mathrm{C}, 128$)
224 NEXT C
In this sample program, an addition problem is presented and the student answers by pressing a number. If it is incorrect, there is an "uh-oh" sound. If it is correct, an arpeggio is played and the computer goes to the next problem. To stop, press the space bar.

How can you draw a bar graph?

This procedure is similar to the previous sample program. The easiest way to draw a bar graph is to use HCHAR with the appropriate number of repetitions (or VCHAR). You may need to scale the numbers. Take the highest number you'll need to graph, relate it to the greatest number of repetitions you can have in your HCHAR statement, and stay on that row.

Another method is to use PRINT and print the right number of characters for the bar. The following sample program segment demonstrates this method. Character 128 will be a red square. For purposes of illustration, I will use random numbers N up to 90 for the amounts to be graphed. You would probably have specific numbers that have been calculated or read in from DATA.

A is the scaled value (rounded) for N -for every four units one square can be drawn. Line 170 prints the number N then says to start the next printing in the fifth print column. Lines $180-200$ print the appropriate number of red squares.

Program 2: Bar Graph Generator

```
1\emptyset\emptyset REM BAR GRAPH
11g CALL CLEAR
12\emptyset CALL COLOR(13,7,7)
13\emptyset FOR I=1 TO 1\emptyset
14ø RANDOMIZE
15ø N=INT (9\emptyset*RND)
16g A=INT (N/4+.5)
17\emptyset PRINT N;TAB(5);
18\emptyset FOR B=1 TO A
19ø PRINT CHR$(128);
```

2øø NEXT B
$21 \varnothing$ PRINT: :
$22 \emptyset$ NEXT I
$23 \varnothing$ GOTO 23ø
$24 \varnothing$ END
How do you print a list of items in more than two columns?
As you know, the comma in PRINT statements prints items in two columns-items start either in the first print position or the center position. To get three columns or more, use the TAB function. TAB works like the tab key on a typewriter. You may specify which column to start printing. $\mathrm{TAB}(7)$ would start the next print item in the seventh print column. Here's a sample that types three columns of names.

```
1\emptyset\emptyset CALL CLEAR
11\emptyset READ L$,M$,N$
12\emptyset IF L$="a" THEN 18\emptyset
13Ø PRINT L$;TAB(1\emptyset);M$;TAB(19);N$
14\emptyset GOTO 11\emptyset
15\emptyset DATA MIKE, BOB,DICK,RICH
16\emptyset DATA JIM, JERRY, MARY, PAULA
17\emptyset DATA CHRIS,KEVIN,KATHY,KIRK, a, a
    , ©
18Ø END
```

How can you print a screen without seeing the scrolling?
Some people don't like to see scrolling as they print. Messages on the TI are always printed on the twenty-fourth row then moved upward. To block this motion, change the screen to black first (because the printing is black), print the messages, then change the screen back to a different color so you can read the printing.
$1 \emptyset \emptyset$ CALL CLEAR
$11 \varnothing$ CALL SCREEN (2)
$12 \emptyset$ PRINT "THIS IS AN EXAMPLE"
$13 \emptyset$ PRINT : : "TO SEE A SCREEN"
$14 \varnothing$ PRINT : : "ALL AT ONCE.": : : :
$15 \emptyset$ CALL SCREEN(4)
$16 \varnothing$ GOTO $16 \varnothing$
How can you print what is on the screen to the printer?
I'm sorry, but I don't know how to do a screen dump of graphics because none of the printers I have right now has the graphics capabilities. You will need to look at your own brand printer manual to see how to use the dot-addressable graphics. If you have a screen of printing, however, with regular printed symbols, you can use the following procedure. The character in each row and column is determined, then that character is printed on the printer. You may need to change the OPEN statement in line 100 to suit your particular printer configuration.

```
1Ø\emptyset OPEN #1:"RS232.BA=6\emptyset\emptyset"
110 FOR ROW=1 TO 24
12\emptyset FOR COL=3 TO 3\emptyset
13\emptyset CALL GCHAR(ROW,COL,G)
```

$14 \varnothing$ PRINT \#1: CHR
$15 \emptyset$ NEXT COL
$16 \emptyset$ PRINT \#1
$17 \emptyset$ NEXT ROW

190 END
If you want everything you are printing to go both to the screen and to the printer, use both a PRINT statement and a PRINT \#1 statement for items printed.

```
1Ø\emptyset DPEN #1:"RS232.BA=6\emptyset\emptyset"
110 CALL CLEAR
12\emptyset PRINT #1:CHR$(12)
13\emptyset PRINT "HELLO"
14\emptyset PRINT #1:"HELLO"
15\emptyset PRINT "ANY MESSAGE"
16\emptyset PRINT #1: "ANY MESSAGE"
17\emptyset CLDSE #1
18\emptyset END
```

Line 120 above goes to the top of a page.
How can you simulate time on the TI?
If you need an exact time, use the CALL SOUND statement in which you can specify an exact duration in milliseconds. If you don't want to hear the sound, use a high frequency and the softest volume.

```
1\emptyset\emptyset PRINT "START"
11\emptyset CALL SOUND(1.\emptyset\emptyset\emptyset,9999,3ø)
12\emptyset CALL SOUND (1,9999,3Ø)
13ø PRINT "END"
14\emptyset END
```

Line 120 is necessary to end the first sound.
If you want to time someone as they are pressing keys to move or are answering a question, use a counter in your CALL KEY loop. You can't relate this counter to an exact time because in each program it will be different-depending on how you do the programming, how long your program is, and how full the memory is. However, once you have your program working, you can print the counter value and use a stopwatch to figure out a formula that relates the actual time to the counter value. ("Type-ette Timer" in my Programmer's Reference Guide to the TI-99/4A from COMPUTE! Books uses this technique to time how fast you can type sentences.) Here is a sample:

```
1ø\emptyset T=\emptyset
11\emptyset CALL KEY(ø,K,S)
12\emptyset T=T+1
13\emptyset IF S<1 THEN 11ø
14\emptyset PRINT T
15\emptyset GOTO 1ø\emptyset
16\emptyset END
```

The faster you press a key, the lower the value for T will be. The longer you wait, the more times the computer will go through the loop and increment T .

Other computers use PRINT AT; how can we do it?
In TI Extended BASIC you can specify a row and column to begin printing an item. However, we don't have that feature in regular console BASIC on the TI. There are several ways to accomplish this, though they're slower than regular printing. First, you can use the regular PRINT statement, perhaps with the TAB function, and then use colons to move the message up to the proper row.

PRINT TAB(9);"START PRINTING"::::::

The main problem with this method is that it scrolls the screen. If I am labeling graphics, I do all the printing first, then use CALL HCHAR and CALL VCHAR to put up the graphics.

Another method is to treat the letters in the printed message as graphics characters, and use CALL HCHAR to specify the row and column to place the letters on the screen. Here's a generalpurpose subroutine that you can use. $\mathrm{M} \$$ is the message you want printed, R is the row, and C is the column you want the message to start in.

```
3\emptyset\emptyset FOR L=1 TO LEN(M$)
310 CALL HCHAR(R,C-1+L,ASC(SEG$(M$,
    L,1)))
320 NEXT L
33\emptyset RETURN
```

Before you call the subroutine with a GOSUB, specify a row R and a column C and the message $M \$$:
9øø M\$="TEST PRINTING"
91 Ø R=6
$92 \emptyset \mathrm{C}=12$
$93 \emptyset$ GOSUB $3 ø \emptyset$
How can I put a code in my program?
I have had lots of young people ask me how they can write a program so that whoever runs it must enter a code before the program continuesthey don't want their brothers and sisters using their program. The general idea is that you put a code name in the program as a string variable. Next, use INPUT for the user who is running the program to type in the code. Now compare the INPUT value with the code to see whether to continue or not.

```
1ஏ\emptyset CALL CLEAR
11\emptyset CODE$="RANDY"
12\emptyset INPUT "ENTER CODE NAME: ":A$
13\emptyset IF A$=CODE$ THEN 16\emptyset
14g PRINT ::"SORRY, INVALID CODE."
15ø STOP
16g REM PROGRAM CONTINUES
```

The only problem with specifying the code in line 110 is that anyone can load the program, then LIST it to find out what the code name is. One method I use so people can't read the code name is to hold down the CTRL key (key with
the red dot) while you type your code message. Line 110 will now look like this:

110 CODE $\$=$ "
or you may get some funny-looking graphics characters between the quotes. Now when someone lists your program, they can't tell what the code name is. When you run the program, be sure to hold the CTRL key down when you INPUT the code name, and it will match the code in the program.

A Couple Of Warnings

Always use the SHIFT key on the left side of the keyboard to type the plus sign. You don't want to go for the right SHIFT key and accidentally hit the FCTN key-and quit!

Do not use TI Extended BASIC to run regular TI BASIC programs because they may not run properly. One reason is the double colon used in PRINT statements, and another reason is that I often use graphics in character sets 15 and 16, which are not available in Extended BASIC.

If you have a disk drive attached to your computer, the disk uses up some memory. For any of my published programs, type in CALL FILES(1) and press ENTER, then type NEW and press ENTER, then proceed normally (load a program or start typing a program). This procedure clears about 1000 bytes of memory so a program can fit.

Until Next Time ...

I hope these ideas help you in your programming. Your computer can be a lot of fun. Part of the joy of programming is getting that machine to do what you want it to do. As I continue these columns I hope to present a variety of programs so you can see that this computer is really quite versatile. Your suggestions and letters are always welcome.

$$
\begin{aligned}
& \text { Use the card } \\
& \text { in the back } \\
& \text { of this magazine } \\
& \text { to order your } \\
& \text { COMPUTE! } \\
& \text { Books }
\end{aligned}
$$

Programming 64 Sound Part 2

John Michael Lane

Last month in Part 1, we discussed sound and music in general. This month we examine some techniques for programming more complicated music using the 64's SID chip.

The control register is the most complex register in the chip. Each of the eight bits in this register has a different function. Dealing with individual bits within a one-byte register is often a problem for BASIC programmers. One very easy way to approach the problem is to use the following:

```
17\emptyset B (\varnothing)=1
18\emptyset B(1)=\varnothing
190 B(2)=1
2ø\emptyset B (3)=\varnothing
210B(4)=\emptyset
22ø B(5)=\varnothing
230}B(6)=
240 B(7)=1
250 FOR I=\emptyset TO 7
260Q=Q+B(I)*2\uparrowI
270 NEXT I:POKE S+4,Q
```

This is not efficient programming, but by defining the bits we want (that is, $B(I)$ where $I=$ the bit number) in terms of a 1 and those we don't want in terms of a 0 , this segment will work. It will be somewhat slow and cannot be used in a loop that must execute quickly, which is usually the case when doing musical programming.

A quicker method is to think of the bits in terms of their value in an eight-bit binary number. Bit 0 has a value of 1 , bit $1=2$, bit $2=4$, bit $3=8$, bit $4=16$, bit $5=32$, bit $6=64$, and bit $7=128$. In the case above, we want to set bits 0 , 2 , and 7 on, so we simply add their values: $1+4+128=133$. Simply POKE 133 into the register to set those bits. It's much simpler, but requires you to add up the bit values before writing the program, so when you look back on
the program one month later you may not have the slightest idea why you chose 133.

The first bit of the control register, bit 0 , acts as the gate to turn the sound on and off. Remember that when the gate is opened (when bit 0 is set to 1), the attack phase of the volume envelope begins. When the gate is closed (bit 0 is set to 0), the release phase of the volume envelope is triggered. If the gate is closed prematurely, the sustain, decay, and even a portion of the attack phase may be omitted. Opening and closing the gate is actually very easy. Just remember that POKEing an odd value in register 4 turns the gate on and that POKEing an even value into the register turns the gate off.

Watch The Timing

Be careful of turning the gate off by POKEing zero into the register. That will also clear the waveform bits (which we'll discuss in a second) and will result in your volume envelope having no release phase.

The next bit, bit 1 , is the sync bit. If this bit is on, the output from voice 1 will be synchronized with the output from voice 3. Sync in this case means that the output of voice 1 will be replaced with a logical AND of the output of voice 1 and voice 3 . Another way to think of it is that voice 1 is turned on and off with the frequency of voice 3 . In order for this bit to have any effect, oscillator three (voice 3) must be set to some frequency less than voice 1 . The best way to understand this effect is to listen to it. "Laser" (Program 4) contains a demonstration using the sync bit. When using sync, the lower frequency will predominate. The effect works best when the lower frequency is $1 / 10$ to $1 / 2$ of the higher.

The sync bit has a slightly different effect in the other two voices. In voice 2 it produces a
sync of voice 2 with voice 1 , and in voice 3 it produces a sync of voice 3 with voice 2 .

The next bit, bit 2 , is the ring modulation bit. When this bit is set on, it produces nonharmonic overtones that sound like a bell. In order for this effect to take place, the triangular waveform must be selected for voice 1 , and voice 3 must have a frequency other than zero.

Ring modulation in the other voices works like the sync bit; that is, for voice 2 to be ring modulated, voice 1 must have a nonzero frequency. For voice 3, voice 2 must be nonzero. In all cases the triangular waveform must be selected for the affected voice.

Bit 3 in the control register is the test bit. Setting the test bit to one will turn off the sound generator. This technique will generally be used only by machine language programmers.

Bits 4-7 are the waveform bits. Turning on bit 4 will select the triangular waveform; bit 5 will select the sawtooth; bit 6 , the rectangular pulse; and bit 7, white noise (the hissing sound that you hear between stations on a radio).

At this point you must be asking yourself "What happens if more than one bit is selected?" The answer is that the two (or more) waveforms will be ANDed together (a logical AND will be done on the waveforms). Commodore cautions that selecting more than one waveform while using the white noise waveform could cause the oscillator to go silent, so don't combine waveforms using the white noise waveform. Even while avoiding the white noise waveform, it is still possible to generate four more waveform shapes using combinations of the sawtooth, triangular, and rectangular pulse waveforms. However, the volume declines significantly when combining waveforms.

Register 5 contains the attack and decay values for the sound envelope. The four-bit attack value is held in bits $7-4$. The four-bit decay value is held in bits $3-0$. The values can be loaded like this:

```
30\emptyset A=13:D=5: REM ATTACK=13,DECAY=5
3l\emptyset POKE S+5,16*A+D
```

Register 6 contains the sustain level and the release value. As above, the sustain level is held in bits 7-4, and the release value in bits 3-0. Program them in the following manner:

```
32\emptyset SU=13:R=4: REM SUSTAIN=13,RELEASE=4
33\emptyset POKE S+6,16*SU+R
```

Now we've completely covered the seven register groups and shown how to load them. "Twiddle" (Program 1) allows you to explore all possible combinations using these seven registers. The program allows you to set and change any of the values and then listen to an eight-note
scale governed by those values. If you can sit down and play with the program for a couple of hours, you'll gain a good understanding of how changing SID parameters affects a sound. The program is also useful for demonstrating how to play a tune within a basic program.

From Sound To Music

To play actual music, you generally write a program which will load all the parameters except the waveform and the frequency. At this point you select the note to be played and POKE the appropriate values into the frequency registers. Then you POKE the waveform value plus one $(16+1=17$ for triangular, 33 for sawtooth, 65 for the rectangular pulse, and 129 for white noise) into register 4 (the control register). Adding a 1 causes the gate bit (bit 0) to be turned on and the tone begins. The program waits a certain period of time and then POKEs the waveform value (16, 32,64 , or 128) into register 4 . By POKEing an even number into the register we turn the gate off, and the note begins its release phase and gradually dies out (according to the release value that you've set).

A simple way to time the note is to use a delay loop. An empty loop (like the one below) will execute 1000 cycles in just about one second.

400 FOR I=1 TO 1000:NEXT I

Therefore, each cycle is just about $1 / 1000$ second (or a millisecond). To turn the note on and off, the program line will look like this:

400 POKE S+4,17:FOR I=1 TO 250: NEXT:POKES+4,16

The above program line will play a note for about one quarter of a second.

This technique works well for a single voice, but it may not work at all for more than one voice. The problem is that while the computer is timing the duration of one note, it cannot be separately timing voices 2 and 3 . We could fill the empty loop with timing routines for voices 2 and 3 , but that would change the execution time for the loop and throw the timing off.

A second technique is to use the internal timer of the Commodore 64 through the use of the variable TI. The variable TI is updated automatically on the Commodore 64 and increases by a value of one every ${ }^{1 / 60}$ second. We can use this timer to time the duration of our notes:

```
5\emptyset\emptyset T\emptyset=TI: REM INITIALIZE THE VARIABLE "T
    |"
51\varnothing TØ=T\emptyset+D: REM INCREASE "T\emptyset" BY DURATIO
    N OF THE FIRST NOTE - D
52\emptyset IF T\emptyset<=TI THEN GOSUB 11ø\emptyset: REM CHECK
    {SPACE}IF THE TIME IS UP
525 REM IF SO SUBROUTINE 11ø\emptyset WILL CHANGE
        NOTES
530 GOTO 52\emptyset: REM IF NOT CHECK TIME AGAIN

The key to using this routine is to make sure that the subroutine executes quickly, at least while using multiple voices. "Tune" (Program 2) illustrates this technique using all three voices. But this method isn't problem-free either. We want to reproduce the rhythm of the original tune as accurately as possible. It's physically impossible to change the frequency of all three voices at once. Using BASIC, it's somewhat difficult to change all three voices in less than \(1 / 6\) second. For that reason, we split all the frequencies into the higher and lower order bytes before the tune begins. We can then change the frequency of all three voices in about \({ }^{1} 110\) second. For most tunes that will be satisfactory. However, for a fast tempo, you might have to omit the second or third voice in order to maintain the rapid changes of the first voice.

\section*{Sound Effects}

Now, let's briefly explore the sound of a laser firing, or an explosion, siren, or any other sound we need. How can we accomplish it?

There is no direct way. The best approach is trial and error. Listen to the sound carefully. Most sounds in nature cannot be duplicated simply by selecting the right waveform and envelope. Generally, the frequency is also actively changing during the sound's life. While you listen to (or think about) the sound you want, consider what is happening to the frequency. Is it rising or falling? How quickly?

Also consider the volume. Many volume envelopes cannot be duplicated using the attack/decay/sustain/release envelope on the Commodore SID. You will often have to change the volume level through program control, using the volume register (register 24) on the SID.

Programs 3 and 4, "Blast-off" and "Laser," illustrate one approach. In Blast-off, both the frequency and volume are modulated by the program. Laser demonstrates the sync feature and modulates the frequency to produce the laser sound. Both programs were written after much trial and error.

Many authors, when converting programs to the 64 , simply drop the sound effects or stop at a sound which is only vaguely like the one they want. Be persistent; the 64 can accurately produce almost any sound. As you gain experience, you will find that the trial and error phase will decrease significantly.

Twiddle illustrates the basic methods of loading the SID registers and lets you experiment by changing the waveform and ADSR envelope while listening to the musical scale.

Tune uses the three voices to play an English folk tune. Don't be discouraged by the long list of DATA statements. Voice 1 repeats the
same statements four times, and there is considerable repetition in voices 2 and 3 . Once you've typed in the few basic lines, you can simply change the line numbers with the screen editor to produce the remainder of the data statements.

Tune can be used to produce any melody by changing the values in the DATA statements. Each note is represented by a pair of values. The first represents the duration of the note (in sixtieths of a second). A value of \(30-40\) is appropriate for a quarter note. The second value is the frequency of the note. Appendix E in the Commodore 64 Programmer's Reference Guide offers a good, simple frequency table. Below are the values for the 12 -semitone scale starting at middle C .
\begin{tabular}{ll} 
C - 4291 & C\# - 4547 \\
D - 4817 & D\# - 5103 \\
E -5407 & \\
F -5728 & F\# - 6069 \\
G -6430 & G\# -6812 \\
A -7217 & A\# - 7647 \\
B -8101 &
\end{tabular}

Notes for other octaves can be calculated by doubling or halving these values, depending upon whether you're going one octave up (doubling) or one octave down (halving).

It is useful to convert one measure of music to one DATA statement if you can. This makes it easier to match the voices.

Voice 1 is the sound of a flute, voice 2 is a mandolin, and voice 3 is a guitar. Blast-off and Laser are supposed to produce the sound of their titles. They are pretty straightforward.

\section*{Program 1: Twiddle}

Refer to the "Automatic Proofreader" article before typing this program in.
\(5 \mathrm{~S}=54272 \quad\) :rem 201
7 DIM A (15),D(15) :rem 48
\(1 \emptyset\) FORL=STOS+24:POKEL, \(\varnothing: N E X T\) :rem 53
15 GOSUB løøø :rem 167
17 GOSUB lløø :rem 170
18 GOSUB 12øø :rem 172
\(2 \emptyset\) PRINT"\{CLR\}";TAB(5);"TOUCH W FOR WAVEF ORM" :rem 5
\(3 \emptyset\) PRINT TAB(5)"TOUCH A FOR ATTACK RATE"
:rem 32
\(4 \emptyset\) PRINT TAB(5)"TOUCH S FOR SUSTAIN LEVEL


45 PRINT TAB(5)"TOUCH T FOR SUSTAIN TIME"
:rem 171
\(5 \emptyset\) PRINT TAB(5) "TOUCH R FOR RELEASE"
:rem 8 8
\(6 \emptyset\) PRINT TAB(5) "TOUCH D FOR DECAY"
:rem 168
\(7 \emptyset\) PRINT TAB(5)"TOUCH P FOR PULSE WIDTH"
:rem 88
72 PRINT TAB(5)"TOUCH B TO SET DEAD TIME"
:rem 4ø
75 PRINT TAB(5) "TOUCH + OR - FOR FREQUENC
Y CHANGE"
: rem 85
\(8 \emptyset\) GET AS:IF AS=""THEN8 \(\quad\) :rem 243
82 IF \(A \$=" W\) "THEN \(2 \emptyset \varnothing\) :rem 247

84 IF \(A \$=" A\) " THEN \(25 \varnothing\)
86 IF \(A \$=" S "\) THEN \(3 \emptyset \emptyset\)
88 IF \(A \$=" R "\) THEN 350
\(9 \varnothing\) IF \(\mathrm{A} \$=" \mathrm{D}\) " THEN \(4 \varnothing \varnothing\)
92 IF A\$="P" THEN 450
94 IF \(\mathrm{A}=" \mathrm{~T} "\) THEN 5øø
96 IF A\$="+" THEN GOSUB \(14 \varnothing \varnothing\)
97 IF A S="B" THEN 55ø
98 IF AS="-" THEN GOSUB \(145 \emptyset\)
\(10 \emptyset\) REM
\(1 \emptyset 5\) POKE S+24,15
\(11 \emptyset\) POKE \(S+5,16 * A+D\)
\(12 \emptyset\) POKE \(S+6,16 * S L+R\)
\(13 \emptyset\) POKE S+3,INT(P/256)
140 POKE \(\mathrm{S}+2, \mathrm{P}-256 *\) INT \((\mathrm{P} / 256)\)
150 FOR I=1 TO 8
IFINT \((F(I))<=65536\) THENPOKE \(S+1\),INT ( \(F\) ( I) \(/ 256\) )
\(17 \emptyset\) POKE S,F(I)-256*INT(F(I)/256) :rem 2
\(18 \emptyset\) IFINT \((F(I))<=65536\) THENPOKE \(S+4,2 \uparrow(W+3\) ) +1
185 FORJ=1TOT:NEXT
187 POKE \(\mathrm{S}+4,2 \uparrow(\mathrm{~W}+3)\)
188 FORJ=1TOB:NEXT
\(19 \varnothing\) NEXT I:GOTO \(2 \emptyset\)
\(2 \emptyset \emptyset\) PRINT"WAVEFORM IS";" - ";W
202 PRINT"l=TRIANGLE"
\(2 ø 4\) PRINT"2=SAWTOOTH"
\(2 \emptyset 6\) PRINT"3=PULSE"
2 Ø8 PRINT"4=NOISE"
INPUT"ENTER WAVEFORM
215 IFW<1 ORW>4THEN21 \(\varnothing\)
220 GOTO 1øø
\(25 \emptyset\) PRINT"ATTACK RATE IS";A
\(26 \emptyset\) INPUT"ENTER ATTACK RATE
265 IFA<ØORA > 15THEN26Ø
\(27 \emptyset\) GOTO løø
PRINT"SUSTAIN LEVEL IS";SL
310 INPUT"ENTER SUSTAIN LEVEL ( \(0-15\) )"; SL
:rem 115
315 IFSL < ØORSL>15THEN31ø
320 GOTO løø
\(35 \emptyset\) PRINT"RELEASE RATE IS";R
:rem 218
\(36 \emptyset\) INPUT"ENTER RELEASE RATE ( \(\varnothing-15\) )"; R
:rem 185
365 IFR<øORR>15THEN36Ø
\(37 \emptyset\) GOTO 1 Øø
\(40 \varnothing\)
\(41 \varnothing\) INPUT"ENTER DECAY RATE (Ø-15)";D
415 IFD < ØORD > 15THEN41б
\(42 \emptyset\) GOTO 1øø
\(45 \emptyset\) PRINT"PULSE WIDTH IS";1Øø*P/4ø95
:rem 86
\(46 \emptyset\) INPUT"ENTER PULSE WIDTH (Ø-1øø)"; P
:rem 191
465 IFP<øORP>1ØØTHEN46Ø :rem 115
\(47 \varnothing \mathrm{P}=\mathrm{P} * 4 \varnothing 95 / 1 \varnothing \varnothing\) :rem 52
\(48 \emptyset\) GOTO \(1 \varnothing \varnothing\) :rem \(1 \varnothing 2\)
5øø PRINT"SUSTAIN TIME IS";T;"MILLISECOND S"
:rem 236
510 PRINT"MINIMUM TIME FOR ATTACK/DECAY C YCLE IS:"
:rem 44
515 PRINT \(\mathrm{A}(\mathrm{A})+\mathrm{D}(\mathrm{D})\); "MILLISECONDS" :rem 4
\(52 \emptyset\) INPUT"ENTER TIME IN MILLISECONDS";T
:rem 196
530 GOTO 1øø :rem 98
\(55 \emptyset\) PRINT"DEAD TIME IS"; \(\mathrm{B} ;\) "MILLISECONDS"
:rem 232
:rem 248
: rem 254
:rem 229
:rem 248
:rem 25ø
:rem 131
:rem 24ø
:rem 140
:rem 117
:rem 59
:rem 225
:rem 79
:rem 248
:rem 60 :rem 244
:rem 173
:rem 67
:rem 158
:rem 247
:rem 164
: rem 41
:rem 79
:rem 98
:rem 90
:rem 23
:rem 94
:rem 1øØ
; :rem 94
:rem 38
:rem 99
:rem 95
rem 191
:rem 74
:rem 1øø :rem 18
:rem 12 :rem 38 :rem 96

-
POKES \(+13, \varnothing \varnothing * 16+\varnothing\) : REM SUSTAIN= \(\varnothing \varnothing\), RELEA \(S E=\varnothing \varnothing\)
:rem 203
\(4 \emptyset \emptyset\) REM SET VOICE THREE :rem 82
410 W3=64:REM RECTANGULAR WAVE :rem 79
\(42 \emptyset\) POKES \(+17,3:\) REM DUTY CYCLE 2ø\%:rem \(1 \varnothing 1\) 430 POKES \(+19,3 * 16+1 \varnothing:\) REM ATTACK \(=3\), DECAY \(=1\) \(\sigma\)
:rem l6ø
\(44 \varnothing\) POKES \(+2 \varnothing, \varnothing\) * \(16+\varnothing:\) REM SUSTAIN \(=\varnothing\) : RELEASE \(=0 \quad:\) rem \(1 \varnothing 4\)
\(5 \emptyset \emptyset \mathrm{~J}=\varnothing: \mathrm{K}=\varnothing: \mathrm{L}=\varnothing: \mathrm{Tl}=\mathrm{TI}: \mathrm{T} 2=\mathrm{Tl}: \mathrm{T} 3=\mathrm{Tl}:\) rem \(2 \emptyset 7\)
\(6 \emptyset \emptyset\) IF \(\mathrm{Tl}=<\mathrm{TI}\) THEN GOSUB \(11 \varnothing \emptyset\) :rem 49
\(61 \varnothing\) IF \(\mathrm{T} 2=<\mathrm{TI}\) THEN GOSUB \(12 \emptyset \emptyset\) :rem 52
620 IF T3=<TI THEN GOSUB \(13 \emptyset \varnothing\) :rem 55
\(63 \emptyset\) GOTO 6øø
\(1 \varnothing \varnothing \varnothing\) ON I GOTO 11øø,12øø,13øø :rem 129
\(110 \emptyset \mathrm{~J}=\mathrm{J}+1: \mathrm{Tl}=\mathrm{Tl}+\mathrm{D}(1, \mathrm{~J}) \quad\) :rem 215
\(1115 \operatorname{IFD}(1, \mathrm{~J})=\emptyset\) THEN POKES +4 ,Wl:POKES +11 , W2: POKES+18,W3: END
:rem 217
1117 POKES+4,W1 :rem 95
\(112 \varnothing\) POKES, \(F(1, J):\) POKES \(+1, G(1, J)\) :rem 51
1140 POKES \(+4, \mathrm{Wl}+1:\) RETURN :rem \(2 \emptyset 9\)
\(1200 \mathrm{~K}=\mathrm{K}+1: \mathrm{T} 2=\mathrm{T} 2+\mathrm{D}(2, \mathrm{~K}) \quad\) :rem 222

1210 POKE S+11,W2
:rem 136
1220 POKE \(\mathrm{S}+7, \mathrm{~F}(2, \mathrm{~K}): \mathrm{POKES}+8, \mathrm{G}(2, \mathrm{~K})\)
:rem 161
1240 POKES+11,W2+1:RETURN :rem 1
\(13 \varnothing \varnothing \mathrm{~L}=\mathrm{L}+1: \mathrm{T} 3=\mathrm{T} 3+\mathrm{D}(3, \mathrm{~L})\)
:rem 229
1310 POKES +18 ,W3 :rem 145
1320 POKES +14, F (3, L) : POKES +15 , G(3, L)
:rem 2
1340 POKES \(+18, \mathrm{~W} 3+1\) : RETURN
:rem 1ø
\(2 \emptyset \emptyset \emptyset\) REM NOTES FOR VOICE ONE
:rem llø
\(201 \emptyset\) DATA 30,4051
:rem 54
\(2 \emptyset 2 \emptyset\) DATA \(3 \varnothing, 54 \emptyset 7,3 \varnothing, 4 \emptyset 51,3 \varnothing, 6 \varnothing 69,3 \varnothing, 4 \emptyset 51\)
:rem 215
\(2 \varnothing 3 \emptyset\) DATA \(30,643 \neq, 3 \emptyset, 6 \emptyset 69,3 \emptyset, 5407,3 \varnothing, 4 \varnothing 5 \emptyset\)
:rem 218
\(2 \emptyset 40\) DATA \(3 \varnothing, 5407,3 \varnothing, 4 \varnothing 5 \emptyset, 3 \varnothing, 6069,3 \varnothing, 4 \varnothing 5 \emptyset\) :rem 215
\(2 \emptyset 5 \emptyset\) DATA \(3 \varnothing, 643 \emptyset, 3 \emptyset, 7217,3 \emptyset, 81 \varnothing 1,3 \varnothing, 4 \varnothing 5 \emptyset\)
:rem \(21 \varnothing\)
\(2 \emptyset 6 \emptyset\) DАТА \(3 \varnothing, 5407,3 \varnothing, 4 \emptyset 5 \emptyset, 3 \varnothing, 6 \varnothing 69,3 \varnothing, 4 \varnothing 5 \emptyset\)
:rem 217
\(2 \varnothing 7 \emptyset\) DATA \(3 \varnothing, 643 \varnothing, 3 \emptyset, 6 \emptyset 69,3 \emptyset, 54 \emptyset 7,3 \emptyset, 4 \emptyset 5 \emptyset\) :rem 222
\(2 \emptyset 8 \emptyset\) DATA \(3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \emptyset 5 \emptyset, 3 \emptyset, 6069,30,4817\)
:rem 230
\(2 \emptyset 9 \emptyset\) DATA \(6 \varnothing, 5407,30,5407,3 \varnothing, 4 \emptyset 50\) :rem 86
2120 DATA \(3 \emptyset, 54 \emptyset 7,3 \emptyset, 4 \emptyset 51,3 \emptyset, 6 \emptyset 69,3 \emptyset, 4 \emptyset 51\) :rem 216
\(213 \emptyset\) DATA \(3 \emptyset, 643 \emptyset, 3 \emptyset, 6 \emptyset 69,3 \emptyset, 54 \varnothing 7,3 \emptyset, 4 \emptyset 5 \emptyset\)
:rem 219
\(214 \varnothing\) DATA \(3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \varnothing 5 \emptyset, 3 \varnothing, 6 \varnothing 69,3 \varnothing, 4 \varnothing 5 \emptyset\) : rem 216
\(215 \emptyset\) DATA \(3 \varnothing, 6430,3 \emptyset, 7217,3 \emptyset, 81 \varnothing 1,3 \varnothing, 4 \varnothing 5 \emptyset\)
:rem 211
\(216 \emptyset\) DATA \(3 \emptyset, 54 \emptyset 7,3 \emptyset, 4 \emptyset 5 \emptyset, 3 \emptyset, 6 \emptyset 69,3 \emptyset, 4 \emptyset 5 \emptyset\)
:rem 218
\(217 \emptyset\) DATA \(3 \varnothing, 643 \varnothing, 3 \varnothing, 6 \varnothing 69,3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \varnothing 5 \emptyset\)
:rem 223
\(218 \emptyset\) DATA \(3 \varnothing, 5407,30,4 \emptyset 5 \emptyset, 3 \emptyset, 6 \emptyset 69,30,4817\)
:rem 231
2190 DATA12ø,5407
:rem 117
2220 DATA \(3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \varnothing 51,3 \varnothing, 6 \varnothing 69,3 \varnothing, 4 \varnothing 51\) : rem 217
\(223 \emptyset\) DATA \(3 \varnothing, 643 \varnothing, 3 \varnothing, 6 \varnothing 69,3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \emptyset 5 \varnothing\) :rem 220
\(224 \varnothing\) DATA \(3 \varnothing, 54 \emptyset 7,3 \emptyset, 4 \emptyset 5 \varnothing, 3 \varnothing, 6 \varnothing 69,3 \varnothing, 4 \emptyset 5 \varnothing\) : rem 217
\(225 \emptyset\) DATA \(3 \varnothing, 6430,3 \varnothing, 7217,30,81 \varnothing 1,30,4 \varnothing 50\)
:rem 212
\(226 \emptyset\) DATA \(3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \varnothing 5 \emptyset, 3 \emptyset, 6 \emptyset 69,3 \emptyset, 4 \varnothing 5 \emptyset\)
:rem 219
\(227 \emptyset\) DATA \(3 \varnothing, 643 \emptyset, 3 \varnothing, 6 \emptyset 69,3 \emptyset, 54 \emptyset 7,3 \varnothing, 4 \varnothing 5 \emptyset\)
:rem 224
\(228 \varnothing\) DATA \(3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \varnothing 5 \emptyset, 3 \varnothing, 6 \varnothing 69,3 \varnothing, 4817\)
:rem 232
2290 DATA12の,5407 :rem 118
\(232 \emptyset\) DATA \(3 \emptyset, 54 \emptyset 7,30,4051,3 \emptyset, 6 \varnothing 69,3 \emptyset, 4 \emptyset 51\) :rem 218 \(233 \varnothing\) DATA \(3 \varnothing, 643 \varnothing, 3 \emptyset, 6 \varnothing 69,3 \varnothing, 54 \varnothing 7,3 \varnothing, 4 \emptyset 5 \emptyset\) :rem 221 \(234 \emptyset\) DATA \(3 \varnothing, 54 \emptyset 7,3 \emptyset, 4 \emptyset 5 \emptyset, 3 \emptyset, 6 \emptyset 69,3 \emptyset, 4 \emptyset 5 \emptyset\) :rem 218
\(235 \emptyset\) DATA \(3 \varnothing, 643 \emptyset, 3 \emptyset, 7217,3 \emptyset, 81 \emptyset 1,3 \emptyset, 4 \emptyset 5 \emptyset\) :rem 213
\(236 \emptyset\) DATA \(3 \varnothing, 54 \emptyset 7,3 \varnothing, 4 \emptyset 5 \emptyset, 3 \emptyset, 6 \emptyset 69,3 \emptyset, 4 \varnothing 5 \emptyset\) :rem \(22 \emptyset\)
\(237 \emptyset\) DATA \(3 \varnothing, 643 \varnothing, 3 \emptyset, 6 \emptyset 69,3 \emptyset, 54 \emptyset 7,3 \varnothing, 4 \emptyset 5 \emptyset\) :rem 225
\(238 \emptyset\) DATA \(3 \varnothing, 54 \emptyset 7,30,4 \emptyset 5 \emptyset, 3 \emptyset, 6 \varnothing 69,30,4817\)
:rem 233

2390 DATA120,5407
\(29 \emptyset \emptyset\) DATA \(\varnothing, \varnothing\)
\(3 \emptyset \emptyset \emptyset\) REM NOTES FOR VOICE TWO
\(301 \varnothing\) DATA99Ø, \(\varnothing\)
\(3 \emptyset 2 \emptyset\) DATA6Ø, 27ø3,6ø,24ø8
\(3 \emptyset 3 \emptyset\) DATA \(3 \emptyset, 2145,3 \varnothing, 2 \emptyset 25,6 \emptyset, 2145\)
3040 DATA6Ø, 2ø25,6ø,18Ø4
3050 DATA \(3 \varnothing, 1607,3 \varnothing, 1517,60,1351\)
3060 DATA60,2703,60,24ø8
3Ø7ø DATA \(3 \varnothing, 2145,30,2 \emptyset 25,60,2145\)
3ø8Ø DATA6Ø,2ø25,60,18ø4
3090 DATA \(3 \varnothing, 1607,30,1517,60,1351\)
3120 DATA60,2703,60,24ø8
\(313 \emptyset\) DATA \(3 \varnothing, 2145,3 \emptyset, 2 \emptyset 25,6 \emptyset, 2145\)
3140 DATA60,2Ø25,60,1804
3150 DATA \(30,1607,30,1517,60,1351\)
\(316 \emptyset\) DATA6Ø, 27Ø3,6Ø, \(24 \emptyset 8\)
\(317 \varnothing\) DATA \(3 \varnothing, 2145,30,2025,60,2145\)
3180 DATA60, 2Ø25,60,1804
\(319 \emptyset\) DATA \(3 \varnothing, 1607,3 \emptyset, 1517,60,1351\)
3220 DATA60,2703,60,2408
323ø DATA30,2145,3ø,2Ø25,60,2145
3240 DATA6 \(0,2 \emptyset 25,6 \emptyset, 18 \emptyset 4\)
3250 DATA \(30,1607,30,1517,60,1351\)
3260 DATA60,27ø3,60,24ø8
\(327 \emptyset\) DATA \(3 \varnothing, 2145,3 \varnothing, 2 \emptyset 25,6 \emptyset, 2145\)
3280 DATA6Ø, 2025,60,1804
3290 DATA \(30,1607,30,1517,60,1351\)
\(39 \varnothing \varnothing\) DATA Ø, \(\varnothing\)
4øøø REM NOTES FOR VOICE THREE
\(401 \varnothing\) DATA1950, 0
4020 DATA \(6 \emptyset, 27 \emptyset 3,6 \emptyset, 2408\)
4030 DATA \(30,2703,15,2703,15,2703\)
(2030 DATA \(30,2703,15,2703,15,2703,60,2025\)
:rem 215
\(4 \emptyset 4 \emptyset\) DATA \(3 \emptyset, 27 \emptyset 3,3 \emptyset, 27 \emptyset 3,3 \emptyset, 3 \emptyset 34,3 \emptyset, 3 \emptyset 34\)
:rem \(2 \varnothing 6\)
4050 DATA \(15,3215,15,3215,15,3215,15,3215\) ,6ø, 3 Ø34 :rem 99
4060 DATA \(45,405 \emptyset, 15,3608,45,4050,15,36 \varnothing 8\) :rem 234
\(4 \emptyset 7 \varnothing\) DATA \(45,4050,15,36 \emptyset 8,15,405 \emptyset, 15,36 \emptyset 8\) ,15,3215,15,3ø34
:rem 249
4080 DATA 60,2703,60,24ø8 :rem \(2 \emptyset 8\)
\(4 \emptyset 9 \emptyset\) DATA \(3 \emptyset, 27 \emptyset 3,15,27 \emptyset 3,15,27 \emptyset 3,6 \emptyset, 2 \emptyset 25\)
:rem 221
\(41 \varnothing \emptyset\) DATA \(3 \varnothing, 27 \varnothing 3,3 \varnothing, 27 \emptyset 3,3 \emptyset, 3 \emptyset 34,3 \emptyset, 3 \emptyset 34\)
:rem \(2 \emptyset 3\)
4110 DATA \(15,3215,15,3215,15,3215,15,3215\) \(, 60,3034\) :rem 96
\(412 \emptyset\) DATA \(45,4 \emptyset 5 \emptyset, 15,36 \emptyset 8,45,4 \emptyset 5 \emptyset, 15,36 \emptyset 8\)
:rem 231
4130 DATA \(45,405 \emptyset, 15,3608,15,4050,15,36 \varnothing 8\) , 15, 3215,15,3034
:rem 246
4140 DATA 60,2703,60,2408 :rem 205
4150 DATA \(30,2703,15,27 \emptyset 3,15,27 \emptyset 3,60,2025\)
:rem 218
4160 DATA 6ø,4050,6ø,4050 :rem 199
\(417 \emptyset\) DATA \(3 \emptyset, 4 \emptyset 5 \emptyset, 15,4 \emptyset 5 \emptyset, 15,4 \emptyset 50,6 \emptyset, 4 \emptyset 5 \emptyset\)
:rem 211
\(49 \varnothing \varnothing\) DATA 8øø, \(, \varnothing, \varnothing \quad\) rem 147

\section*{Program 3: Blast-off}

Refer to the "Automatic Proofreader" article before typing this program in.
\(1 \varnothing S=54272\)
\(2 \emptyset\) FOR I=STOS +24 : POKEI, \(\varnothing\) : NEXT
30 POKES+24,15
\(4 \varnothing \mathrm{FR}=\emptyset 5 \emptyset \varnothing\)
: rem 245
:rem 48 :rem 8
:rem 254
\(5 \emptyset A=\varnothing: D=\varnothing: S S=15: R=\varnothing\)
\(60 \mathrm{~W}=128\) : \(\mathrm{P}=1\) Ø24
\(7 \varnothing\) POKES +1 ,INT (FR/256)
8 ( POKES,FR-256*INT(FR/256)
\(9 \emptyset\) POKES \(+3, \operatorname{INT}(\mathrm{P} / 256)\)
1øø POKES +2, P-256*INT (P/256)
\(11 \varnothing\) POKES \(+5,16^{*}\) A+D
\(12 \emptyset\) POKES \(+6,16 * S S+R\)
\(2 \emptyset \emptyset\) POKES \(+4, W+1:\) REM TURN SOUND ON: rem 223
\(21 \varnothing\) FORI \(=2 \varnothing \sigma\) TOl STEP-1
\(22 \emptyset \mathrm{FR}=\mathrm{FR}+1 \varnothing \varnothing:\) REM INCREASE FREQUENCY
:rem 215
222 IF I < 45 THEN POKES +24 , I/3: REM NEAR T HE END TURN DOWN THE VOLUME
:rem 98
\(225 \mathrm{~F} 2=\mathrm{INT}(\mathrm{FR} / 256): \mathrm{Fl}=\mathrm{FR}-256 * \mathrm{~F} 2\)
230 POKES,F1:POKES+1,F2
240 NEXT I
:rem 224
:rem 118
:rem \(3 \varnothing\)
\(25 \emptyset\) POKES+4,W:REM TURN SOUND OFF :rem 198

\section*{Program 4: Laser}

Refer to the "Automatic Proofreader" article before typing this program in.
\(1 \varnothing \mathrm{~S}=54272\)
\(2 \emptyset\) FOR I=STOS+24:POKEI, \(\varnothing:\) NEXT
30 POKES+24,143
4 F \(\mathrm{FR}=5\) Øøø
\(5 \emptyset \mathrm{~A}=\varnothing\) : \(\mathrm{D}=8: \mathrm{SS}=15\) : \(\mathrm{R}=\varnothing 8\)
\(60 \mathrm{~W}=\varnothing 64\) : \(\mathrm{P}=1\) Ø 24
7 7 POKES +1 , INT (FR/256)
80 POKES,FR-256*INT(FR/256)
\(9 \emptyset\) POKES +3 , INT ( \(\mathrm{P} / 256\) )
:rem 245
:rem 48
:rem 58
:rem 46
:rem 186
:rem 34
:rem 17
:rem 66
:rem \(2 ø 5\)


```

1ø\emptyset POKES+2,P-256*INT(P/256)
110 POKES+5,16*A+D
12\emptyset POKES+6,16*SS+R
130 POKES+1^5,75 :rem 63
:rem 56
:rem 225
:rem }8
155 POKES +4,W+3:REM USING W+3 TURNS ON
{2 SPACES}GATE AND SYNC :rem 32
160 FORI=1TO25 :rem 63
17\varnothing POKES+15,12\emptyset-4*I:REM{2 SPACES}DECREAS
E FREQ VOICE THREE :rem 18\emptyset
18\emptyset NEXT I :rem 33
185 POKES+4,W
:rem 2

```

\section*{To receive additional information from advertisers in this issue, use the handy reader service cards in the back of the magazine.}

\title{
Applesoft Lister
}

David Dobrin
"Applesoft Lister" will give you more readable program listings, along with printer-oriented output, translated control characters, and indention of nested FOR-NEXT loops.

Would you like your Applesoft programs to look like this:
```

10 REM BASIC LISTING WITH APPLESOFT LIST
20 HOME
22 PRINT "ANT SCRAM[G][G][G]"
30 FOR J=0 TO 35
31 VTAB 2
: HTAB J+1
4| PRINT " ;=;@"
5 0 ~ N E X T
E0 PRINT "[G][G][G]THAT IS ALL"

```
instead of this:
```

10 REM BASIC LISTING WITH APPLESOFT LIST
20 HOME
22 PRINT "RNT SCRAM"
30 FOR J = Ø TO 35
31 VTAB 2: HTAB J + 1
40 PRINT " ;=;@"
50 NEXT
ED PRINT "THAT IS ALL"

```

Applesoft programs are usually very difficult to read. The standard LIST function built into Applesoft is unsophisticated, having only the minimum logic necessary to list programs. Here's a program for the Apple that will list Applesoft programs in a nicely formatted fashion. Five major features distinguish "Applesoft Lister" from the standard format:
- There is intelligent spacing between
keywords, variables, and operands.
- Multiple statements with a single line number are listed one per line.
- FOR-NEXT constructs are nested.
- Output is oriented for a printer. This listing will not simply "wrap" when it runs out of space on a line.
- Control characters are shown with printable characters.

\section*{How Applesoft Lisfer Works}

The program translates the Applesoft intermediate language (IL) into statement numbers and keywords. The keywords are taken from ROM at \$D0D0. If this program is to be used with Applesoft in RAM, this value must be changed.

The high byte of the keyword table address is at location \(\$ 812\) C. The low byte is at \(\$ 8130\).

When a colon (:) is encountered in the text, the lister starts a new line, indenting appropriately. No action is taken on colons inside double quotes or REM statements. FORs and NEXTs are observed to calculate a nest level.

If you would like to change the indentation of your FOR-NEXT constructs or multiple statements you can change the value at location 32771 with the POKE command. Putting a 0 there will turn indenting off, a 3 will indent three spaces per nest level, a 10 will indent ten spaces per nest level, and so on.

If you want to change the column width, change the value at 32772 with the POKE command. Putting a 39 there will give a screen width. You can also use 80, 132, or whatever your printer width is.

These POKEs can，of course，be made per－ manent by saving the program to disk or tape after changing．

Control characters are printed inside brackets； for example，CTRL－G appears as［G］．

\section*{Loading The Program Into Your Apple}

The lister program is written entirely in machine language．Program 1 is a BASIC program which READs the machine language from DATA state－ ments and POKEs it into memory．

The program was assembled to load at loca－ tion \(\$ 8000\) ．If your machine has less than 48 K ，the program will have to be relocated．

If you wish to enter the machine language， you can do so by using the Apple monitor（CALL －151）．Enter the hex values as shown in Program 2. The Apple Reference Manual，Chapter 3，details the use of the resident monitor．

Once the program is entered into the Apple either by the loader or from the monitor，it should be saved to disk or tape before going any farther． This can be done by typing：

JBSAVE ALIST，A\＄8000，L\＄2F0
or
＊8000．82FOW

\section*{Running Applesoft Lister}

After the program has been stored，it can be utilized by loading the Applesoft program to be listed in the usual manner．The list program can then be loaded with：
］BLOAD ALIST
or
JCALL－ 155
＊8000．82F0R
＊（CTRL－C）
The listing program can then be run by typing：
］PR\＃\(x\)（where \(x\) is the slot for your printer interface， if you want the output to go to a printer）
］CALL 32768
Program 1：BASIC Loader For Applesoff Lister
\(1 \varnothing \varnothing\)
\(12 \Omega\) NEXT

28ø
\(11 \varnothing\) READ A：CK \(=C K+A:\) POKE I，A
13Ø IF CK＜＞4788の THEN PRINT＂ERRO R IN DATA STATEMENTS＂：STOP
\(27 \equiv\) DATA \(16,24,248,165,6,1 \not 01,6,133\)
FOR \(I=32768\) TO 33295
READ \(A: C K=C K+A:\) POKE I，A
NEXT
IF CK \(<>4788 \emptyset\) THEN PRINT＂ERRO
R IN DATA STATEMENTS＂：STOP
PRINT＂LISTER ML LOADED＂
END
DATA \(76,5,128,3,89,169,9,133\)
DATA \(19,169,1,133,9,169,8,133\)
DATA \(1,169,141,32,157,129,32,96\)
DATA \(129,133,2,32,96,129,133,3\)
DATA \(5,2,298,1,96,32,96,129\)
DATA \(133,4,32,96,129,133,5,169\)
DATA \(9,133,6,133,7,133,8,162\)
DATA \(16,24,248,165,6,191,6,133\)
DATA \(6,165,7,191,7,133,7,165\)
        PRINT "LISTER ML LOADED"
        END
        DATA 76,5,128,3,80,169,5,133
        DATA \(1 \not 0,169,1,133,6,169,8,133\)
        \(1,169,141,32,157,129,32,96\)
        DATA \(129,133,2,32,96,129,133,3\)
        DATA \(5,2,298,1,96,32,96,129\)
        DATA \(133,4,32,96,129,133,5,169\)
        DATA \(6,165,7,1 \emptyset 1,7,133,7,165\)DATDATA
DATADAT
DAT
DATA213
380
        9
        DATA
        DATA
        DATA
        DATA
        DATA
        DATA
16 ， \(4,6,6,38,7,38,8\)

\(166,4,6,6,38,7,38,8\)

\(136,298,247,194,168,202,208\) ，
        \(169,169,32,157,129,32,197,12\)
\(8,1 \not 1,8,133,8,216,6,4\)
38，5，144，2，239，6，292，298
\(224,162,5,169, \emptyset, 165,8,41\)
\(15,298,12,192, \varnothing, 298,8,224\)
\(1,249,4,169,169,298,4,169\)
\(1,9,176,32,157,129,152,72\)
\(169,169,32,157,129,32,197,12\)
\(169,9,133,9,32,96,129,201\)
פ，298，16，169，141，32，157， 129
\(165,2,133, \emptyset, 165,3,133,1\)
\(76,22,128,166,14,236,4,128\)
\(48,18,72,162,9,189,149,129\)
\(240,6,32,157,129,232,298,245\)
32，1ø7，129，1ø4，2ø1，34，2ø8，8
\(165,9,73,128,133,9,169,34\)
\(166,9,298,27,291,58,298,19\)
\(162,5,189,141,129,240,6,32\)
\(157,129,232,298,245,32,107,1\)
\(76,148,128,291,128,16,26,41\)
\(127,291,32,16,14,72,169,91\)
\(32,157,129,154,9,64,32,157\)
\(129,169,93,32,157,129,76,148\)
\(128,72,201,129,298,2,230,10\)
\(291,130,208,2,198,19,291,178\)
\(208,2,230,9,170,188,37,129\)
\(132,11,36,11,16,5,169,160\)
\(32,157,129,169,208,133,13,16\)
\(2 \not 08,133,12,1 \varnothing 4,17 \varnothing, 16 \emptyset, \emptyset, 2 \emptyset 2\)
\(16,16,177,12,23 \varnothing, 12,298,2\)
\(230,13,291,128,16,241,48,242\)
16 ，\(, 177,12,295,17 \varnothing, 32,157\)
\(129,138,16,246,36,11,80,5\)
\(169,169,32,157,129,76,148,12\)

\(230,1,96,162,13,134,14,166\)
\(15,16,2,162,5,224,6,48\)
\(2,162,6,2 \emptyset 2,48,14,172,3\)
\(128,136,48,247,169,169,32,15\)
\(129,76,129,129,96,141,160,16\)
\(166,169,160,186,0,141,160,16\)
\(16 \emptyset, 16 \emptyset, 16 \emptyset, 16 \varnothing, \varnothing, 9,128,32\)
\(237,253,239,14,96,64,64,64\)
64，64，64，64，64，64，64， 0
Ø，64，64，64，64，64，64， 0
\(64,64,64,64,64, \varnothing, \emptyset, 64\)
64，64，64，64，64，\(, 64,64\)
Ф，\(, 6,64,64,64,64, \emptyset, 64\)
\(64,64,64,64, \emptyset, 64,64, \varnothing\)
\(64,64,64,64,64,64,64,64\)
64，64，64，64，64，Ø，192，Ø
Ø，192，192，64，192，Ф，Ф，
Ø，\(, 192,192, \varnothing, \varnothing, \varnothing, \varnothing\)

ळ，\(, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing\)
Ø，\(, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing\)

\section*{Program 2：Hex Dump Of Applesoft Lister Machine Language}

8øøø－4C Ø5 89 ø3 5ø A9 øø 85
8øø8－øА А9 Ø1 85 øø A9 ø8 85
8ø1ø－Ø1 A9 8D 2ø 9D 812060
8ø18－81 85 ø2 29 60 8185 ø3
8ø2Ø－ø5 Ø2 Dø Ø1 69 2ø 6ø 81
8ø28－85 042069818595 A9
8ø3ø－øø 85 ø6 85 ø7 85 ø8 A2
8ø38－1 10 18 F8 A5 \(96 \quad 65 \quad 9685\)
8ø40－Ø6 A5 \(976597 \quad 8597\) A5

8ø5ø－ 26 Ø5 9Ø ø2 E6 ø6 CA Dø
8ø58－Eの A2 ø5 Aø øø A5 9829


\(8 \emptyset 7 \emptyset-\emptyset 1\) Ø9 Bø 20 9D 819848
8ø78－Aø Ø4 06 Ø6 \(26 \quad 07 \quad 26 \quad 98\)
8ø8ø－ 88 Dø F7 68 A8 CA DØ D5
8988－A9 Aの 209 9 81206881
8ø9Ø－А9 øø 85 Ø9 206981 C9
8ø98－øø DØ 1ø A9 8D 2ø 9D 81
8øAø－A5 ø2 85 øø A5 \(\boxed{~ 85 ~} 851\)
8øAB－4C 16 8Ø A6 ØE EC Ø4 8Ø
\(8 \emptyset B \emptyset-3 \emptyset 1248\) A2 øの BD 9581
8øB8－Fめ Ø6 29 9D 81 E8 Dø FS
8øCØ－2の 6B 8168 C9 22 Dの ø8
8øC8－A5 ø9 49 8ø 8599 A9 22
8øDø－A6 Ø9 Dø 1B C9 ЗA Dø 13
8øD8－A2 øø BD 8D 81 Fø 66 2ø
8øEØ－9D 81 E8 DØ FS 2Ø 6B 81

8øFØ－7F C9 2919 ØE 48 A9 5B
8のF8－2の 9D 8168 の9 40 20 9D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 ¢0 & 81 & A9 & 5D & 20 & 9D & 81 & 4C & \\
\hline 81 ¢8－ & 89 & 48 & C9 & 81 & Dø & ø2 & E6 & A \\
\hline 8110 & C9 & 82 & DØ & \(\boxed{\square} 2\) & C6 & DA & C9 & B2 \\
\hline 8118－ & Dø & ø2 & E6 & 99 & AA & BC & 25 & 81 \\
\hline 8129 & 84 & øB & 24 & øВ & \(1 \varnothing\) & 05 & A9 & AØ \\
\hline 8128－ & 20 & 9 D & 81 & A9 & Dø & 85 & ¢D & A9 \\
\hline 8136 & Dø & 85 & øC & 68 & AA & AØ & Øø & CA \\
\hline 8138 & \(1 \varnothing\) & \(1 \varnothing\) & B1 & øC & E6 & ロС & DØ & 02 \\
\hline 8140－ & E6 & øD & C9 & \(8 \square\) & 10 & F1 & \(3 \square\) & F2 \\
\hline 8148 & Aø & Øø & B1 & øC & C8 & AA & 20 & 9D \\
\hline 8150－ & 81 & 8A & \(1 \varnothing\) & F6 & 24 & øB & 59 & ¢5 \\
\hline 8158－ & A9 & AØ & 2ø & 9D & 81 & 4C & 94 & \(8 \varnothing\) \\
\hline 8160 & AØ & øø & B1 & øø & E6 & øø & Dめ & ø2 \\
\hline 8168－ & E6 & 01 & 60 & A2 & øD & 86 & ØE & A6 \\
\hline 817ø & ¢A & \(1 \varnothing\) & ø2 & A2 & Øø & Eø & g6 & \(3 \square\) \\
\hline 8178－ & ¢2 & A2 & 96 & CA & \(3 \emptyset\) & øE & AC & 93 \\
\hline 818ø & \(8 \square\) & 88 & \(3 \varnothing\) & F7 & A9 & AØ & \(2 \square\) & 9D \\
\hline 8188 & 81 & 4C & 81 & 81 & 60 & 8D & AD & Aø \\
\hline 8190－ & AD & AØ & AØ & BA & Øø & 8D & Aø & AD \\
\hline 8198 & Aø & Aø & AØ & A & Øロ & 99 & 89 & 20 \\
\hline 81 Ag－ & ED & FD & E6 & ØE & 69 & 49 & 40 & 40 \\
\hline 81 A8 & 4ø & 40 & 40 & 40 & 40 & 40 & 40 & 60 \\
\hline 818ø－ & øø & 40 & 4ø & 40 & 4ø & 49 & 4Ø & 0． \\
\hline 8188－ & \(4 \varnothing\) & 49 & 40 & 40 & \(4 \emptyset\) & ¢ロ & øø & 40 \\
\hline 81СØ－ & 40 & 40 & 40 & \(4 \square\) & 40 & øø & 40 & 40 \\
\hline 8158－ & øø & Øø & \(4 \varnothing\) & 4ø & \(4 \varnothing\) & 46 & øø & 40 \\
\hline 81 D & 40 & 40 & 4ø & 40 & øø & 40 & 49 & 0¢ \\
\hline 81D8－ & 40 & 4の & 4ø & 40 & \(4 \emptyset\) & 40 & 40 & 40 \\
\hline 81EØ－ & \(4 \varnothing\) & \(4 \varnothing\) & \(4 \square\) & \(4 \square\) & 40 & øø & Сø & ¢ø \\
\hline 81E8－ & øø & C口 & Сø & \(4 \varnothing\) & C口 & 66 & ம¢ & 00 \\
\hline 81Fø－ & øø & øø & Сø & Сø & øø & Øロ & פ¢ & ¢ø \\
\hline 81F8－ & øø & øø & øø & ஏワ & Øぁ & ¢5 & ๑็ & øø \\
\hline 829¢－ & Øø & øø & øø & Øワ & Øロ & øூ & ロூ & Фஜ \\
\hline 8208－ & øø & øø & øロ & øぁ & Øø & øø & Ф¢ & øø \\
\hline
\end{tabular}


\title{
Program Conversion With Sinclair BASIC And TI BASIC
}

\author{
Julie Knott and Dave Prochnow
}

\begin{abstract}
Program conversion between BASIC dialects is often easier than imagined. This tutorial demonstrates the compatibility of TI BASIC and Sinclair BASIC and includes helpful tables and sample conversion programs.
\end{abstract}

Program conversion can be an easy and convenient operation. Virtually every home computer uses BASIC, which, because it's easy to learn and to manipulate, is ideal for ready-made language conversion. However, no two BASICs are created equal. For many years the industry's standard was Microsoft BASIC, then different dialects began to emerge. Manufacturers would use the Microsoft format and introduce nuances and subtleties in the structuring, labeling each of these alterations an "improvement" of BASIC. But many were only changes in the protocol-the manner in which a command is expressed. And it becomes relatively easy to convert BASIC dialects if the major differences are in protocol or syntax.

Two versions of BASIC which lend themselves to such a program conversion are Sinclair BASIC and TI BASIC. Sinclair BASIC, used in the Timex/Sinclair-1000, is unique in that all keywords are single-stroke entries. For example, the P key stands for the PRINT command. (The use of a touch-membrane keyboard dictates this procedural necessity.)

Texas Instruments TI-99/4 and 4A use TI BASIC, which is more conventional in that each individual letter has to be typed-PRINT would require five keystrokes.

There are only slight variations between Sinclair BASIC and TI BASIC, but their similarities allow for easy program conversion. By studying which statements and commands are equivalent for both BASICs, and what substitutions are necessary, program conversion can be relatively simple. Also, you can virtually double your software by translating programs published for the other machines.

For the sake of brevity, the following glossary does not contain all of the keywords in Sinclair BASIC and TI BASIC-only those words which are confusing, complicated, or not directly translatable have been listed. For a more com-
plete listing, consult the appropriate user's manual.

\section*{Sinclair BASIC}

AND - a logical operator, often used in IFTHEN statements
ACS - function that gives the arc cosine of an angle in radians
ASN - function that gives the arc sine of an angle in radians
AT - used in a PRINT statement to give a location at which to PRINT
BREAK - stops program execution, key activated and may not be included as a command in a program
CLEAR - deletes all variables from memory
CLS - clears the screen
CODE - a string function used to obtain the numeric value of a given character
CONT - resumes execution of a program following a report code
COPY - copies the contents of the screen to printer
DELETE - erases keywords and characters while programming
FAST - fast mode, a time-saving mode for increased RUN speed
FUNCTION - function mode
GRAPHICS - graphics mode
INKEY\$ -used in IF-THEN statements as a conditional statement, executes exclusive of ENTER
LLIST - lists the contents of a program listing to a printer
LOAD - loads a prerecorded program from cassette tape to the computer's memory
LPRINT - PRINTs to printer
NOT - inverts the truth value of an expression
OR - a logical operator, used in conditional statements
PAUSE - creates a time delay while the program is RUNning
PEEK - gives the value of the byte at a specific address in memory

PI - gives the value of PI
PLOT - draws a pixel at a given location
POKE - puts a numeric value into memory at a specific address, erasing the previous one
SCROLL - scrolls the screen up one line, eliminating the top line
SLOW - slow mode, the standard operating mode
UNPLOT - erases a pixel at a given location
USR - calls a machine language routine at a specific memory address

\section*{TI BASIC}

APPEND - an open mode, allows data to be added at the end of the existing file
ASC - ASCII value or character code
BASE - option base
BREAK - sets breakpoints in a program, used for error checking
BYE - erases memory, returns to title screen
CALL - special subprogram to obtain color and sound
CLOSE - closes the association between a file and a program
CONTINUE (CON) - continues a program after a breakpoint
DATA - stores data
DEF - defines user-established functions in a program
DELETE - removes a program or data file from a filing system
DISPLAY - prints on screen only
ELSE - conditional part of IF-THEN/ELSE statement
END - terminates program, similar to STOP
EOF - End-Of-File, determines if the end of a file has been reached on an accessory device
FIXED - files with a specified length, used with RELATIVE or SEQUENTIAL
INTERNAL - file type recorded in machine language
NUMBER (NUM) - automatic line number generator
OLD - loads a previously SAVEd program ON - a conditional numeric expression, used with ON-GOTO or ON-GOSUB
OPEN - prepares to use data files stored in accessory device
OPTION - option base, sets lower limit of array subscripts to 1 instead of 0
OUTPUT - transfers data out of a program
PERMANENT - file life

POS - position
READ - reads data in DATA statements
REC - points to a specific record in a RELATIVE file
RELATIVE - defines a file with FIXED
RESEQUENCE (RES) - reassigns line numbers
RESTORE - identifies which DATA to use with the next READ
SEG\$ - string segment, substring
SEQUENTIAL - defines a file, used with FIXED or VARIABLE
SUB - part of GO SUB
TRACE - outlines the order that statements will be performed when the program is RUN
UNBREAK - removes breakpoints
UNTRACE - cancels TRACE
UPDATE - an open mode, for reading and writing into files
VARIABLE - defines a varying length file, used with SEQUENTIAL

\section*{Special Subprograms Used With Graphics And Sound In TI BASIC}

Each subprogram is preceded by CALL (for example, CALL CLEAR)
CLEAR - erases the entire screen
COLOR - specifies screen character colors
SCREEN - changes screen color
CHAR - defines user-special graphic characters
HCHAR - places a character and repeats it horizontally
VCHAR - similar to HCHAR except repetition is vertical
SOUND - produces tones and noises of different duration, frequency, and volume
GCHAR - reads a character anywhere on the screen
KEY - transfers character directly from keyboard to program without ENTER
JOYST - inputs data with remote controllers

\section*{Easy Conversions}

Many of the commands and statements of these two BASICs are directly translatable. Table 1 shows the direct BASIC equivalents for Sinclair BASIC and TI BASIC. The only major differences between these two dialects are in their nomenclature.

Several dialects of BASIC have an ON-GOTO statement expressed as:

\section*{ON x GOTO w,y,z}
where \(x\) is the value of a numerical expression and \(w, y\), and \(z\) are line numbers. This statement is available in TI BASIC, but not in Sinclair BASIC. Through the use of conditional expressions, the

Sinclair BASIC substitution is:
GOTO ( \(w\) AND \(x=1\) ) \(+(y\) AND \(x=2)+(z\) AND \(x=3)\)
The operators AND and OR would make this possible.

The translation of many program lines requires only the replacement or substitution of a word unique to that particular BASIC. Several of the more common functions and statements are evaluated in this manner in Table 2. The following Sinclair BASIC line will await the pressing of the Y key, exclusive of ENTER:
\(1 \emptyset \emptyset\) IF INKEY \(\$\rangle\) "Y" THEN GOTO 1 Dø To perform the same statement in TI BASIC, replace INKEY\$ with the KEY subprogram, as follows:
```

10日 CALL KEY(D,K,Z)
110 IF K<>89 THEN 10g

```

The main difference is in the structuring. The KEY subprogram (subprograms are obtained with CALL) uses three variables to establish where the key is originating, its ASCII code, and its status. In this example the ASCII code of 89 represents the \(Y\) character.

TI BASIC has the ability to store expressions and assign values to these variables with the statements DATA, READ, and RESTORE (see the glossary). Vast arrays can be developed and initialized with this method. Sinclair BASIC is not directly convertible with DATA, READ, and RESTORE. A large battery of LET statements could crudely handle the data. Alternatively, a properly DIMensioned INPUT statement allows the creation of such an array. Upon completion, the INPUT statements are removed and a GOTO command is used for program starting (RUN erases the variable array).

\section*{String Handling}

Strings can be equally bothersome. Slicing will supply usable substrings in Sinclair BASIC. A string expression's parameters govern the start and finish of the slice. No special statement is necessary:

\section*{\(\mathrm{A} \$(\mathrm{x} \mathrm{TO} \mathrm{z})\)}
with \(x\) representing the starting number and \(z\) the finish. For example:

\section*{"COMPUTE" (4 TO 7) = "PUTE"}

The statement SEG \(\$(A \$, x, y)\) in TI BASIC has the same result, but, again, with different nomenclature. X is the number of the start for the substring and \(Y\) is the length of the substring. For example:

A \(\mathbf{\$}=\) "COMPUTE"
SEGS (A\$,4,4)="PUTE"
While string slicing is easily translated, the TI BASIC user-defined function is not. DEF allows the definition of functions within a program.

DEF \(\mathrm{X} \$=\) " Y "
The string function's name is X and the string expression is Y. VAL and string variables can be user-defined in Sinclair BASIC.
```

LET X$= "Y"
VAL X$= Y

```

This is a very limited and a "sometimes-maybe" proposition. DEF has the ability to also handle numeric functions. This ability, as well as using parameters in argument evaluation, is beyond VAL's means.

When attempting a program conversion you may run across a few Sinclair BASIC terms that are completely unfamiliar to you. The terms USR, PEEK, and POKE are not procedures for the examination of some strange alien creature. They are primarily associated with direct access to memory. To call a machine language routine that begins with a specific address, USR is used. This will start a machine language program running. POKE is used by the T/S-1000 to store a numeric value at a specific address in the computer's memory. For example:

\section*{POKE 17529, 38}

POKEs the value 38 into address 17529. Conversely, the PEEK command is used to read certain addresses to see what is stored there. The PEEK command is followed by the address to be PEEKed.

\section*{PRINT PEEK 17529}
would PRINT the number 38 . When you are translating a program from Sinclair BASIC which contains USR, PEEK, and POKE statements, you must find out what they accomplish and then interpret that into TI BASIC.

PRINTing on the screen is accomplished by a blending of line and row markers. Memory conservation techniques notwithstanding, PRINT can be used to move the PRINT line. For example:

\section*{PRINT}

PRINT
PRINT "COMPUTE"
Sinclair BASIC also allows the movement of PRINT with AT and TAB.
```

PRINT AT x,y

```
and

\section*{PRINT TAB y}

TAB moves the PRINT position a prescribed number of spaces to the right. Even though TAB is present in TI BASIC, the vocabulary is different. Line changes are accomplished with colons (:).
Duplicating the above examples,

\section*{PRINT::...(x) TAB (y)}
and

\section*{PRINT TAB (y)}
\(X\) is the number of colons necessary to equal the
value of the line number ( x ) in the Sinclair BASIC example.

The Timex/Sinclair lacks color and sound features, but these features are of importance on the TI-99/4. TI BASIC's color and sound statements are subprograms that begin with CALL. Clever usage of Sinclair BASIC's character set can duplicate some of these color combinations. As a rule, however, TI BASIC CALL subprograms should be removed and not directly substituted in a program conversion to Sinclair BASIC. This allows concentration on the program's more important graphics. Consultation with Texas Instruments' User's Reference Guide will provide the proper protocol for development and inclusion of color and sound subprograms in a Sinclair BASIC converted to TI BASIC program.

To illustrate the principles of program conversion, examine these sample programs. While each program is unique in its results, the approach is similar and convertible. The purpose of this program is to display the entire character set along with the character codes.

\section*{T/S-1000 Version}
```

1\varnothing FORA=\varnothing TO 255
2\varnothing LET A\$ = CHR\$ A
3\emptyset PRINT AT 10,13; A
4\emptyset PRINT AT 7,10; A$;"{6 SPACES}"
50 PRINT AT 7,17; A$;"{6 SPACES}"
60 PRINT AT 13,1\varnothing; A$;"{6 SPACES}"
70 PRINT AT 13,17; A$;"{6 SPACES}"
80 NEXT A

```

\section*{T1-99/4 Version}
```

1\emptyset\emptyset FOR A=32 TO 127
11\emptyset B$=CHRक(A)
12g CALL CLEAR
13@ CALL SCREEN(2)
140 PRINT TAB(1S); B&;TAB(1B); B$
159 PRINT
16@ PRINT TAB(14);A
176 PRINT
180 PRINT TAE(13);B$;TAB(18);B$
19@ FRINT: : : : : : : :
209 FOR S=S TO 16
210 CALL SCREEN:S)
220 CALL SOUND (40日, 110}+8\equiv%(S-3),1
2S@ NEXT S
24\emptyset NEXT A

```

In line 10 of the Timex/Sinclair example, a loop establishes the number of character codes to be examined (the entire character set is 0 to 255 ). Note that the characters with codes 67-127 cannot be printed and will show on the screen as question marks. Lines 20 and 30 PRINT the code or numeric value for each character. The arrangement of the printed characters is defined in lines \(30-40\). In this way, you can easily interpret the delay, and read the code value and the character almost simultaneously. This program will RUN until BREAK is pressed.

Table 1:
Reference Chart Of BASIC Equivalencies
\begin{tabular}{|l|l|}
\hline Sinclair BASIC & =TIBASIC \\
\hline ABS & ABS \\
ATN & ATN \\
CHRS & CHRS \\
CODE & ASC \\
COS & COS \\
DIM & DIM \\
EXP & EXP \\
FOR & FOR \\
GOSUB & GOSUB orGOSUB \\
GOTO & GOTO GOTO TO \\
IF & IF \\
INPUT & INPUT \\
INT & INT \\
LEN & LEN \\
LET & LET \\
LN & LOG \\
LOAD & OLD \\
NEW & NEW \\
NEXT & NEXT \\
PRINT & PRINT \\
RAND & RANDOMIZE \\
REM & REM \\
RETURN & RETURN \\
RND & RND \\
RUN & RUN \\
SAVE & SAVE \\
SGN & SGN \\
SIN & SIN \\
SQR & SQR \\
STEP & STEP \\
STOP & STR\$ \\
TAB & STRS \\
TAN & TAB \\
THEN & TAN \\
TO & THEN \\
VAL & TO \\
& VAL \\
& CALLCLEAR \\
\hline & \\
\hline
\end{tabular}

Table 2:
Substitution Chart For BASIC Nonequivalents
\begin{tabular}{|c|c|}
\hline Sinclair BASIC & - TI BASIC \\
\hline NEW & BYE \\
\hline PRINT & DISPLAY \\
\hline \[
\begin{aligned}
& \text { GOTO (W AND } X=1) \\
& +(Y \text { AND } X=2)+(Z \text { AND } X=3) \\
& \hline
\end{aligned}
\] & ON \(X\) GOTO \(W\), Y, Z \\
\hline If \(X\) THEN GOTO \(Y\) & IF \(X\) THEN ( Y ) \\
\hline LET \(\mathrm{X}=\mathrm{Y}+\mathrm{Z}\) & LET \(X=Y+Z\) or \(X=Y+Z\) \\
\hline PAUSE or FOR \(X=Z\) TO \(Y\) NEXT \(X\) & \[
\begin{aligned}
& \text { FOR } X=Z \text { TO } Y \\
& \text { NEXT } X
\end{aligned}
\] \\
\hline INKEYS & CALL KEy \\
\hline As(X TO Z) & SEGS(AS, \(\mathrm{X}, \mathrm{Y}\) ) \\
\hline PI & 4*ATN (1) \\
\hline \[
\begin{aligned}
& \text { LET } X S=" Y \text { " } \\
& \text { VAL } X S=Y \\
& \hline
\end{aligned}
\] & DEF \(X=Y\) \\
\hline STOP & END or STOP \\
\hline PRINT AT \(X, Y\) & PRINT:... (X) TAB(Y) \\
\hline PRINT TAB \(Y\) & PRINT TAB(Y) \\
\hline ASN 1 & \(\pi / 2\) or \(4^{*} \operatorname{ATN}(1) / 2\) or \(2^{*} \operatorname{ATN}(1)\) \\
\hline IF \(X=Y\) THEN GOTO A GOTO Z & If \(X=Y\) THEN A ELSE \(Z\) © \\
\hline
\end{tabular}

\title{
Commodore 64 ROM Generations
}

\author{
Jim Butterfield, Associate Editor
}

\begin{abstract}
Commodore products are often subject to changes in logic. Not marketing logic or pricing logic (although they change too), but the internal logic that drives the machines: the programs in ROM. This has been true of PET/CBM and various disk systems. This article traces differences in two major ROM releases of the Commodore 64 computer, plus a third released with the SX-64 portable computer.
\end{abstract}

\section*{Two Environments}

The first 64 s used ROM set 1 . Before releasing a European version of the 64, Commodore developed ROM set 2. ROM 2 is unique in that it's the same for North America and Europe, yet recognizes and copes with differences between the two environments. More on that later.

Programs developed on ROM set 1 sometimes didn't seem to work on ROM set 2 . This was particularly true when the screen was set up using a POKE statement. For example, a user clearing the screen and then typing the command POKE 1500,1 will print a letter A around the middle of the screen, but with ROM 2 this letter is "invisible." Many games and educational programs using the screen this way couldn't make the transition from ROM 1 to ROM 2; attractive graphics would become invisible and the effect would be lost.

I have met a third ROM recently; it's used in the SX-64 portable computer. There are small differences: For example, disk activities are given preference over tape, and screen POKEs are once again legal.

In all cases, the BASIC language in ROM is not changed (addresses \(\$ \mathrm{~A} 000\) to \(\$ \mathrm{BFFF}\) ). All changes are in the Kernal ROM, which resides at addresses \$E000 to \$FFFF.

All three ROM sets are very similar; the dif-
ferences are largely cosmetic. Sometimes, of course, cosmetic differences are enough to prevent a particular program from working in a satisfactory manner; but there's a strong bond between all models I have examined.

\section*{The Tape Pause}

When you give a tape LOAD command, the computer blanks the screen and searches for a program "header" on the tape. When it finds a program, it reports the name with a message, FOUND \(X X X X X\), unblanks the screen, and waits. When you touch a key (preferably the Commodore Logo key), the screen blanks once again and the program starts to load.

ROM 1 waits forever. If you don't press a key, it keeps waiting. ROM 2, however, waits only a few seconds and then proceeds with the program load activity. ROM3 for the SX-64 doesn't have a cassette tape connection, so it doesn't do either.

Why does the screen need to blank? Here's the reason: The screen interferes very slightly with the processor. Roughly once every \(1 / 2000\) second, the processor chip is stopped briefly to allow the video chip to get extra information from memory. This is no hardship except when we need to read or write tape.

When cassette tape is active, the processor needs to time events precisely. It can't afford to miss even the brief time lapse that the video chip might cause. So it turns the screen off in order to get the most efficient timing "edge."

Technical note: The "Find Tape Header" subroutine at \(\$ F 761\) is changed in ROM 2 so that it calls a new subroutine at \$E4E0 to allow time-out. The same coding is used in the SX-64 ROM, but it's not useful since this machine can't use tape.

\section*{Screen Clear}

When ROM 1 clears the screen, it sets the foreground color of all screen locations to white. As a result, it's easy to POKE screen memory and have white characters appear.

ROM 2 changed all that. When the screen clears, the foreground color of all characters is set to the background color. If you POKE to an unused location, you'll end up printing blue on blue, which makes it invisible. The character is indeed there: You can see it if you place the cursor over that position. But it's not much use to the viewer.

Commodore may have done this to reduce screen "sparkle" - colored or white flashes that appear randomly on the screen. Whatever the reasoning, it caused writers of software some anguish if their existing programs POKEd the screen a good deal. Many Commodore demonstration programs lost their appeal on the new machines. All programs would still run, but the screen wouldn't look right.

With the new SX-64 ROM, we're back to allowing screen POKEs. It may be too late for software writers, but when the SX-64 clears the screen, it sets the foreground color of all screen locations to the cursor color. That's better than ROM 1, which sets white only-you have a chance to choose the POKE color.

Technical note: The Clear-a-Line subroutine at \(\$\) E9FF was changed slightly to call a new subroutine at \$E4DA; this sets character color to background color on ROM 2. On SX-64 ROM, character color is set to the value from \(\$ 0286\), the current "cursor" color.

\section*{Different Crystal Speeds}

ROM 1 was designed for North American use. ROM 2 was designed for worldwide use, and considerable thought was put into creating a universal design. When power is applied to the computer, ROM 2 does some interesting detective work.

Very early in the game, ROM 2 set the raster interrupt to fire at scan line 622. Here's the trick: There is no line 622 on North American sets; if the interrupt signal fires, we must be elsewhere.

Depending on the continent, the ROM sets up timing for the clock and RS-232 transmission. What's happening here is that the two different types of machine are driven at different "crystal" speeds, and the program must compensate for this to allow consistent overall speed.

The programmer on a ROM 2 system must keep in mind that the raster interrupt register in the video chip has already been used by the system; it cannot be assumed to be zero.

Technical note: The table at \$ECB9 which sets up the video chip has been changed to include the raster interrupt. The Power-Up Reset program
itself has been changed at \(\$\) FCFB by the insertion of a call to a new subroutine at \$FF5B. If line 622 (Europe) is detected, address \(\$ 02 \mathrm{~A} 6\) is set to 1 to signal "European System." This new location, \(\$ 02 A 6\), is used to set up the timer which creates "jiffies" \(-1 / 60\)-second interrupts. It will also be checked if the RS-232 channel is opened, and timing information extracted from the appropriate table.

\section*{Small Stuff}

ROM 1 had troubles if you tried to PRINT\# to a device that wasn't there; ROM2 has its act together a little better.

SX-64 ROM identifies itself with a new message: SX-64 BASIC V2.0, in case you didn't notice that it was an SX-64 you had.

If you hold down SHIFT and press RUN/STOP on the SX-64, you'll get a load/run from disk; the screen reads LOAD" \(: *{ }^{* \prime \prime}, 8 \ldots\) RUN. This data is stored in an area of memory that usually contains the message PRESS PLAY, but you won't be using the cassette this time so you won't miss that message. Any attempt to use a cassette on the SX-64, by the way, will result in an ILLEGAL DEVICE NUMBER message.

The differences are not great. Most users will spot only the tape pause and the screen POKE as operational differences.

Serious programmers will appreciate the fact that changes have been made as "patches," which means that previous entry points have not moved; they are still in the same places that they used to be. A call to a machine language subroutine at a given location will still be good.

There are still things that many users would like to see improved in Commodore 64 BASIC and Kernal. In particular: The INPUT statement is uncomfortable at times, and certain types of screen editing work awkwardly. You may have a wish list of your own. It seems quite likely that we'll see another ROM system one of these days.

\section*{Coming Soon}

Commodore is said to be working on new ROM systems for the 64 and its peripherals. Compatibility is expected to be retained with previous ROMs, but certain operational annoyances will be eliminated.

Watch for a new Kernal ROM-we expect it to be coded 901227-03. It will fix up a couple of problems associated with screen usage.

The Commodore 64, like the VIC-20, behaves oddly if an INPUT statement is written with a lengthy prompt; if the prompting message is long enough, the user input will need to be typed onto the next line of the screen. In such a case, the computer receives a peculiar input: As well as reading what the user has typed in, it reads its own prompt message.

A more serious problem arises if a user types in a line longer than 80 characters, and then backs up using the Delete key. The too-long line goes beyond two rows on the screen, of course; but when the user backs up, the computer might stop working.

The above problems are expected to be fixed
when the new version 3 chip is released. In addition, some of the above-noted changes for the SX64 will also be implemented-for example, screen POKEs.

Commodore is also said to be working on new logic for printers and disk units. Watch for them, too.

\section*{Commodore 1541 Generations}

Tracking the generations of Commodore's 1541 disk drive is not unlike reading a mystery novel. Unfortunately for 1541 owners, Commodore so far has not written the last page in which the mystery is revealed, so we can only examine the clues and speculate.

Clue No. 1: The original 1541 had a "long" circuit board which extended the length of the drive. This board probably was the same as was in the 1540 drive, predecessor to the 1541.

Clue No. 2: Both the 1540 and the original version of the 1541 had white cases.

Clue No. 3: Later versions of the 1541 have brown cases, and a "short" board which extends about half the length of the drive. Our sources tell us that the short board is a redesigned long board and that when the circuit board was redesigned, timing problems showed up in the drive.

Clue No. 4: ROM chips bearing four different part numbers have been seen in 1541 drives. During a teleconference on the Commedore Information Network on March 29, 1984, a Commodore Research \& Development representative gave the part number of the latest ROM as 901229-05. (The suffix 05 indicates the ROM version.) ROM chips with suffixes 01,02 , and 03 also have been seen in 1541 drives.

Clue No. 5: During the teleconference, the Commodore representative said that one of the changes incorporated into the 05 ROM version had to do with the serial bus. (Peripherals such as the 1541 and the 1525 printer connect to the Commodore 64 through the serial bus.)

Clue No. 6: Owners of the 1541 have reported problems when trying to use two 1541s; occasionally, when a program accesses one of the drives, the system locks up. Problems also have been reported involving lockup on systems with one 1541 drive and the Commodore 1526 and MPS-801 printers.

Clue No. 7: 1541 users report an intermittent problem when saving files to disk using the replace option (SAVE "@0:filename",8). Instead of replacing the intended file, the
drive's operating system writes over another file on the disk, and changes the directory pointers so that the intended file is no longer accessible. A similar problem has been reported in the Commodore 4040 drives. At the teleconference, the Commodore representative said he'd never experienced this problem. However, he also said that the 4040 and 1541 used the same basic operating system.

Clue No. 8: A technical representative with Integrated Computer Repairs (ICR), of Santa Mesa, California, told us that his company repairs and updates the 1540 and 1541 drives. ICR claims that merely replacing the ROM chip with an 05 version is not enough; they also make hardware changes, modifying the short circuit board.

Clue No. 9: Overheating problems have been reported with the 1541. After the drive has been on for several hours, some users report input-output errors and other problems.

Clue No. 10: In the past, Commodore representatives have said that the 1541 ROM changes were "mainly cosmetic."

Clue No. 11: ICR claims that the drives they have updated no longer have lockup problems. It is not clear whether their update solves the save-with-replace problem.

Clue No. 12: COMPUTE! made several telephone calls to Commodore Business Machines, Inc., asking Commodore to respond to the above items. Ms. Susan West, of the Public Relations Department, promised to find a technical representative who could answer our questions. We never heard from a technical representative, and Ms. West failed to return our subsequent calls, the last placed as this article was going to press.

So, it seems that Commodore has issued at least four different versions of the 1541 disk drive, for reasons which are known only to them. And problems may exist (or have existed) not only in the ROM chips, but also in the board circuitry. Finally, it appears that Commodore is unwilling to help us solve the mystery.


Last month we introduced＂Atari MacroDOS＂ and presented a BASIC program which loads the MacroDOS machine language．This month we＇ll look at some technical details of MacroDOS and present a disassembly of the program．

Assembler users can alter the MacroDOS commands table（CMDTAB）if they so desire． Just remember to change lines which check for command input to reflect the new command let－ ter．Also，revise TAB1 if necessary．

You can append another AUTORUN．SYS program to the end of MacroDOS，such as a menu loader for BASIC．

Assuming you have MacroDOS up and run－ ning as AUTORUN．SYS，enter DOS，then load the other AUTORUN．SYS from another disk． SAVE with APPEND（＂D：AUTORUN．SYS＂）．En－ ter the beginning and ending addresses at the＠ prompts．If necessary，return to the cartridge and POKE or otherwise change the INIT and RUN addresses．Return to DOS and SAVE with ap－ pend again to pick up the addresses just altered．

\section*{Finding Load Addresses}

If you can＇t figure out the load addresses，use this program：
```

1ø OPEN\# 2, 4, Ø, "D: YOURFROG. OBJ
2\emptyset FOR I=1 TO 6
3\emptyset GET\#2,A
4\emptyset FRINT A
5% NEXT A
6\emptyset CLOSE\#2

```

The first two bytes should be a header of 255 （\＄FF）．The next four bytes will be the beginning and ending addresses of the load（two－byte num－ bers in low byte，high byte format）．

If the file loads to multiple address areas （including RUN and INIT）after the first block of
memory is loaded，OS checks for a new header of 255,255 ．If it is there，the header is ignored， and the next four bytes will be the new from－to load addresses．

\section*{Loading With Page 6}

Loading RUN with page 6 （1536）would look like：
\(\$ \mathrm{EO}(224), \$ 02(2), \$ \mathrm{EO}(224), \$ 02(2), \$ 00(0), \$ 06(6)\)
（without the header）．With a little math and modification of the program，you could find all the load addresses of any compound load file．

If you don＇t want to type the programs in， send \(\$ 3\) ，and a disk or tape with an SASE mailer．

\section*{Jerry Allen}

1906 Carnegie \＃E
Redondo Beach，CA 90278

\section*{MacroDOS，Machine Language Source Code}

Refer to the＂Automatic Proofreader＂article before typing this program in．
\begin{tabular}{|c|c|}
\hline Ø2øø & ；EQUATES \\
\hline Ø21ø & ICBC \(=\$ 342\) \\
\hline Ø22ø & ICBAL \(=\$ 344\) \\
\hline 623ø & ICBAH \(=\$ 345\) \\
\hline Ø240 & ICBLL \(=\$ 348\) \\
\hline ø25ø & ICBLH \(=\$ 349\) \\
\hline 6260 & ICBAX \(=\$ 34 \mathrm{~A}+16\) \\
\hline Ø27ø & MEMLO \(=\$ 2 \mathrm{ET}\) \\
\hline 628ø & LBUF \(=\$ 589\) \\
\hline ø29ø & INBUF \(=\) \＄F3 \\
\hline Øろロø & CIX \(=\) \＄F2 \\
\hline ØЗ1ø & \(F R \emptyset=\$ \mathrm{D} 4\) \\
\hline Ø32ø & FR1＝\＄Eø \\
\hline のЗ3ø & GETR \(=\$ 05\) \\
\hline Ø34ø & GETC \(=\$ \emptyset 7\) \\
\hline ø35ø & PUTC \(=\$ \emptyset \mathrm{~B}\) \\
\hline Ø36ø & PUTR \(=\$ 09\) \\
\hline Ø37ø & OPEN \(=\$ 93\) \\
\hline ø38ø & CLOSE \(=\) \＄øC \\
\hline ø39ø & \(A \times I D=\$ \square C\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Ø4．ø & AXOUT \(=\$ \square 8\) \\
\hline \(\square 410\) & AXAP \(=\) \＄ 09 \\
\hline Ø42ø & \(A \times D R=\$ \emptyset 6\) \\
\hline ø43ø & FRøZ \(=\) \＄DA44 \\
\hline Ø44ø & IFP \(=\) \＄D9AA \\
\hline の45ø & FPI \(=\) \＄D9D2 \\
\hline ¢46ø & FPASC \(=\) \＄D8E6 \\
\hline Ø479 & FMOVE \(=\) \＄DDB6 \\
\hline ø48ø & ASCFP \(=\) \＄D8øø \\
\hline Ø49の & LO＝\＄øøFF \\
\hline ø5øø & \(\mathrm{HI}=\$ \emptyset 1 \varnothing \square\) \\
\hline Ø51ø & CIO \(=\) \＄E456 \\
\hline ø52ø & WARMST \(=\) \＄E474 \\
\hline ø530 & DOSVEC \(=\$ \emptyset A\) \\
\hline Ø54ø & DOSINI \(=\$ \emptyset C\) \\
\hline ஏ55ø & OLDDOS \(=\$ 179 \mathrm{~F}\) \\
\hline の56ø & JMPINI \(=\$ 1795\) \\
\hline Ø57ø & JMPRUN \(=\) \＄17ø8 \\
\hline Ø58ø & ； \\
\hline Ø59ø & ； \\
\hline Ø6øø & ＊\(=\) क1CFC ；change this addr for \\
\hline Ø610 & ；larger versions of DOS2．gS \\
\hline Ø62の & ； \\
\hline 6630 & ； \\
\hline Ø64ø & ST JSR CLSE ；to be sure \\
\hline 665ø & STY CIX ；set f．p．pointer \\
\hline 6660 & DEY \\
\hline Ø670 & STY \＄2E3；clear INIT／RUN \\
\hline Ф68ø & STY \＄2E1 \\
\hline Ø69ø & STY \＄FF ；reset load flag \\
\hline Ø7øø & LDX \＃LbUF\＆LO ；init flt．pt \\
\hline Ø71ø & LDY \＃LBUF／HI \\
\hline ロ729 & STX INBUF \\
\hline Ø73ø & STY INBUF＋ 1 \\
\hline Ø740 & DISCMD LDY \＃TAB1－CMDTAB－1 \\
\hline ø75ø & L1 TYA ；DISPLAY COMMANDS \\
\hline Ø76ø & PHA \\
\hline の77ロ & LDA CMDTAB，Y \\
\hline の78ø & JSR PRINT \\
\hline Ø79ø & PLA \\
\hline Øロøø & TAY \\
\hline Ø81ø & DEY \\
\hline Ø82ø & BPL Li \\
\hline の83の & LDA \＃AXOUT ；init aux \\
\hline Ø84の & STA ICBAX \\
\hline Ø85ø & JSR GTREC ；get command \\
\hline Ø86ø & LDY \＃4 ；GET COMMAND \\
\hline Ø87ø & LDA LBUF \\
\hline ø88ø & L2 CMP TAB1，Y \\
\hline Ø89ø & BEQ SPECMD \\
\hline Ø \(9 \varnothing \emptyset ~\) & DEY \\
\hline 6910 & BPL L2 \\
\hline Ø920 & DIR CMP \＃＇D ；DIRECTORY \\
\hline Ø93Ø & BNE WDS \\
\hline の940 & LDA \＃ø6 \\
\hline Ø95ø & STA ICBAX \\
\hline の96ロ & JSR ASKDN ；drive \＃？ \\
\hline Ø970 & JSR OPN ；open \\
\hline Ø98ø & LS LDX \＃\＄10 \\
\hline ø99ø & ine JSR GTREC ；get formatted 1 \\
\hline \(1 \varnothing \square \square\) & JSR PTRECØ ；print it \\
\hline 1 Ø1ワ & BPL LJ \\
\hline 1 Ø2ø & SPECMD LDA TAB2，Y ；SPECIAL MDS \\
\hline 1 Ø3Ø & PHA ；save cmd \\
\hline \(1 \emptyset 4 \emptyset\) & CMP \＃\＄FE ；check if format \\
\hline 1 105． & BEQ FMT \\
\hline 1 ¢6ø & JSR PFN \\
\hline \(197 \square\) & EX PLA ；retrieve command \\
\hline 1 ¢8ワ & JSR EXCMD ；do it \\
\hline \(1 \emptyset 9 \square\) & BPL ST \\
\hline
\end{tabular}
```

FMT LDA \#'? ; FORMAT
111\emptyset JSR PRINT ; sure?
JSR GTREC
LDA LBUF
CMP \#'Y;is there a yes?
B1 BNE ST ;if not start over
JSR ASKDN ; get drive\#
BMI EX ; execute
ASKDN LDA \#'D ;GET DRIVE\#
JSR PRINT
LDA \#'\#
JSR PRINT
JSR GTREC
LDA LBUF
STA ADRDIR+1 ;change D\#
STA ADRDOS+1 ;just in case
WDS
LDY \#6
L4 LDA ADRDIR,Y ;move filena
me
STA (INBUF),Y
DEY
BPL L4
RTS
PFN LDA \#'F ; PROMPT FILENAME
JSR PRINT
LDA \#'N
JSR PRINT
LDA \#'?
JSR PRINT
JMP GTREC
WDS CMP \#'W ;WRITE DOS.SYS
BNE LOD
JSR ASKDN
INY
L5 LDA ADRDOS,Y
STA (INBUF),Y
DEY
BNE L5
JSR DPN
BPL B1
LOD CMP \#'L
BNE SAV
STA $FF
 JSR PFN
 LSR ICBAX ; 8>4
 JSR OPN
 L6 JSR GETCR2 ;get hdr in pa
 irs
 LDA #$FF ;check headr and-
CMP FR\emptyset ; disregard \$FF'S
BNE SK2
CMP FRØ+1
BEQ L6
SK2 JSR FMOVE ;FP\emptyset to FP1
JSR GETCR2
JSR SUBTR ; subtr HI-LO \&ex
ecute
JSR CHKIN
BEQ L6
CHKIN LDA \$2E3
BEQ SK12
JSR JMPINI
LDA \#Ø
STA \$2EJ
SK12 RTS
SAV CMP \#'S ; SAVE FUNCTION
BNE RUN
JSR PFN
LDY \#कFF ;check if append
(/)
177\emptyset LDA (INBUF),Y
178\emptyset CMP \#'/

```
\(176 \emptyset\) L7 INY
\begin{tabular}{|c|c|}
\hline 1790 & BNE SK4 \\
\hline \(18 \emptyset \emptyset\) & INC ICBAX ；9＝append \\
\hline 1810 & LDA \＃\＄9B \\
\hline \(182 \emptyset\) & STA（INBUF），Y \\
\hline \(183 \varnothing\) & SK4 CMP \＃\＄9B \\
\hline 1840 & BNE L7 \\
\hline 1850 & JSR OPN ；open for write \\
\hline 1860 & LDA \＃\＄FF ；start headr \\
\hline 1870 & STA FRØ \\
\hline \(188 \emptyset\) & STA FRø＋1 \\
\hline 1890 & JSR PUTCR2 ；write it \\
\hline \(190 \varnothing\) & JSR INPCON ；get from\＃ \\
\hline 1910 & JSR PUTCR2 ；write it \\
\hline 1920 & JSR FMOVE ；store it \\
\hline 1930 & JSR INPCON ；get to\＃ \\
\hline 1940 & JSR PUTCR2 ；write it \\
\hline 195ø & JSR SUBTR ；find len and \\
\hline & ave \\
\hline 196ø & BPL B2 ；the rest \\
\hline 1970 & RUN CMP \＃＇\({ }^{\text {a }}\) ；RUN \\
\hline 198ø & BNE CART \\
\hline \(199 \emptyset\) & JSR INPCON ；get \＃ \\
\hline 2øøø & JMP（FRø）；jump indirectl \\
\hline & Y \({ }^{\text {CART CMP }}\) ？\(C\) CARTRID \\
\hline \(2 \varnothing 1\) ø & CART CMP \＃＇C ；CARTRIDGE \\
\hline 2ø2ø & BNE ADOS \\
\hline \(2 \square 3 \varnothing\) & JMP WARMST \\
\hline 2ø4ø & ADOS CMP \＃＇！；ESC TO ATARI D UP \\
\hline 205ø & BNE HEX \\
\hline 2ø6ø & LDA \＃\＄4Ø ；reset DOSINI for \\
\hline & no－ \\
\hline 2ø7ø & STA DOSINI ；trouble later \\
\hline 2ø8ø & LDA \＃\＄15 \\
\hline 209ø & STA DOSINI＋1 \\
\hline 21 ¢ø & JSR \＄154ø ；fast reset DOSV \\
\hline & EC \\
\hline 2110 & JMP OLDDOS \\
\hline 2120 & HEX CMP \＃＇\＄；HEX TO DEC \\
\hline 2130 & BNE DEC \\
\hline 2140 & JSR HASCI ；hex to int \\
\hline 2159 & JSR IASC ；int to dec \\
\hline 2169 & BPL B2 \\
\hline 2170 & DEC CMP \＃＇．；DEC TO HEX \\
\hline \(218 \emptyset\) & BNE B2 \\
\hline 2190 & JSR DASCI ；dec to int \\
\hline 22øø & JSR IHASC ；int to hex \\
\hline 2210 & B2 BPL LSTCNC＋2 \\
\hline 2220 & OPN LDA \＃OPEN ；IOCB MAIN SET UPS \\
\hline 223ø & EXCMD LDX \＃\＄1ø \\
\hline 2240 & BNE GTR2 \\
\hline 225ø & PTRECØ LDX \＃Ø \\
\hline 2260 & PTREC LDA \＃PUTR \\
\hline 2270 & BNE GTR2 \\
\hline 2280 & GETRECø \\
\hline 229ø & GTREC LDA \＃GETR \\
\hline 23øø & GTR2 STA ICBC，\(X\) \\
\hline 2310 & LDA \＃\＄1E ；max rec length \\
\hline 2320 & STA ICBLL，\(X\) \\
\hline 2330 & LDA \＃LbuF／HI \\
\hline 2340 & STA ICBAH，X \\
\hline 2350 & LDA \＃LBUF\＆LO \\
\hline 2360 & PGIN STA ICBAL，X \\
\hline 2370 & LDA \＃ø \\
\hline 238ø & STA ICBLH，\(X\) \\
\hline 2390 & ICB JSR CIO；let the OS take over \\
\hline \(240 \varnothing\) & BMI ERR \\
\hline 2410 & RTN2 RTS \\
\hline 2420 & PUTCR2 LDA \＃PUTC \\
\hline 243ø & BNE GETC2 \\
\hline 2440 & GETCR2 LDA \＃GETC \\
\hline 2450 & GETC2 LDX \＃\＄1ø \\
\hline
\end{tabular}

2460
2470
248ø
2490
25øの
\(251 ø\)
2520
\(253 \varnothing\)
254 の
255ø
2560
257ø
258ø
259の
2690
2610
262ø
\(263 \varnothing\)
2640
2650
2669
2679
2689
2690
\(270 \emptyset\)
271 の
2720
2736
274 の
275 ø
2769
277 ＠
2789
2790
28øø
2810
2829
283 5
2840
2859
286ø
287の
288』
289ø
\(290 \varnothing\)
2910
2920
2930
2949
\(295 \emptyset\)
\(296 \emptyset\)
\(297 \emptyset\)
\(298 \emptyset\)
2990
Зøのロ
3010
3． 20
3 \(93 \varnothing\)
3949
3059 L
3969
\(307 \emptyset\)
3ø8ø
3990
\(319 \varnothing\)
3110
3129
\(313 \emptyset\)

STA ICBC，\(X\)
LDA \＃2
JG STA ICBLL，\(x\)
LDA \＃ø
STA ICBAH，X
LDA \＃FRø
BNE PGIN
clse lda \＃close
BPL EXCMD
PRINT STA FRø
LDX \＃Ø
LDA \＃FUTC
STA ICBC，X
LDA \＃1
BPL JG
ERR CPY \＃\＄øS ；ERR next read OK

BEQ RTN2
CPY \＃\＄88；ERR EOF OK too
BEQ CINI
TYA ；store ERR
PHA
LDA \＃कCS ；inverted E for e
rror

JSR PRINT
JSR FRøZ ；clear FPø
PLA ；retrieve ERR
STA FRø
JSR IASC ；int to dec
LSTCNC PLA ；clr stack of ret urn

PLA
JMF ST ；do not pass GO
CINI LDA \＄FF
BEQ LSTCNC
JSR CHKIN
JRUN LDA \＄2E1
BEQ LSTCNC
JSR JMPRUN
BNE LSTCNC
INPCON LDA \＃＇a ；HEX OR DEC\＃ TYPE

JSR PRINT ；the a means AT／ TO

JSR GTREC
LDY LBUF
CPY \＃＇．
BEQ DASCI
CPY \＃＇\({ }^{\text {B }}\)
BEQ HASCI
BNE ERR ；bad input
DASCI JSR ASCFP ；DEC TO INT JMP FPI
HASCI JSR FRgZ ；HEX TO INT
LDY \＃ 1
LB LDA（INBUF），\(Y\)
CMP \＃\＄9B
BEQ RTN
SEC ；convert each digit
SBC \＃\＄3
CMP \＃\＄øA
BMI SK7
SBC \＃7
SK7 LDX \＃4 ；times 16
LA ASL FRØ
ROL FRø＋1
DEX
BNE LA
ORA FRg ；add in new bits
STA FRø
INY
BPL LB
RTN RTS
\begin{tabular}{|c|c|}
\hline 3140 & IHASC LDY \＃ø ；INT TO HEX SUB RT \\
\hline 3159 & LDX \＃ 1 \\
\hline 3169 & LC LDA \＃\＄Fg ；hi mask \\
\hline 3179 & AND FRø， X \\
\hline 3189 & LSR A ；roll into low b \\
\hline & its \\
\hline 3199 & LSR A \\
\hline 329ø & LSR A \\
\hline 3210 & LSR A \\
\hline 3229 & JSR CONVH ；go conv to dig \\
\hline & it \\
\hline 3239 & LDA \＃\＄0F ；10 mask \\
\hline 3240 & AND FRø， X \\
\hline 3250 & JSR CONVH \\
\hline 3260 & DEX \\
\hline 3279 & BPL LC ；one more time \\
\hline 328ø & BMI LE ；set eol and rtn \\
\hline 3290 & CONVH CMP \＃\＄øA ；INT TO HEX D IGIT \\
\hline ЗЗøø & BMI SK9 \\
\hline 3310 & ADC \＃6 ；carry set \\
\hline 3329 & SK9 ADC \＃\＄3Ø ；carry clr \\
\hline 3330 & STA（INBUF），Y \\
\hline 3340 & INY \\
\hline 3350 & RTS \\
\hline 3360 & IASC JSR IFP ；INT TO DEC \\
\hline 3379 & JSR FPASC \\
\hline З389 & AREC LDY \＃ \(\mathfrak{D}\) ；CLR HI BIT／MAKE REC \\
\hline 3399 & L9 LDA（INBUF），Y \\
\hline 34øワ & INY \\
\hline 3410 & CMP \＃\＄8ø ；find hi bit char \\
\hline 3420 & BMI L9 \\
\hline 3430 & AND \＃\＄7F ；mask it \\
\hline 3440 & DEY \\
\hline 3450 & STA（INBUF），Y \\
\hline 3469 & INY \\
\hline 3479 & LE LDA \＃\＄9B ；set EOL \\
\hline 3480 & STA（INBUF），Y \\
\hline 3499 & JMP FTRECD \\
\hline 3590 & SUBTR INC FRØ ；inclusive so inc \\
\hline 3510 & BNE SKS ；TO address \\
\hline 3520 & INC FRø＋1 \\
\hline 3530 & SK5 LDX \＃\＄1ø \\
\hline 3540 & LDA FR1 \\
\hline 3550 & STA ICBAL，\(X\) \\
\hline 3569 & LDA FR1＋1 \\
\hline 3579 & STA ICBAH，\(X\) \\
\hline 3580 & SEC ；CALC LENGTH \\
\hline 359ø & LDA FRø \\
\hline 3690 & SBC FR1 \\
\hline 3619 & STA ICBLL，\(X\) ；STORE AT IOC \\
\hline & B \\
\hline 3629 & LDA FRø＋1 \\
\hline 3630 & SBC FR \(1+1\) \\
\hline 3640 & JMP ICB－3 ；exec same cmd as last \\
\hline 3659 & ； \\
\hline 3669 & ； \\
\hline 3679 & INIT JSR \＄154ø ；SRESET INIT \\
\hline 3689 & JI LDA \＃END\＆LO \\
\hline 3690 & STA MEMLO \\
\hline 37 ¢ø & LDA \＃END／HI \\
\hline 3710 & STA MEMLO＋1 \\
\hline 3729 & LDA \＃ST\＆LO \\
\hline 3730 & STA DOSVEC \\
\hline 3740 & LDA \＃ST／HI \\
\hline 3750 & STA DOSVEC＋1 \\
\hline 3760 & RTS \\
\hline 3770 & ； \\
\hline 3789 & ； \\
\hline 379 ¢ & CMDTAB ；all spaces are one 5 \\
\hline
\end{tabular}
```

pace
pace

```
．BYTE＂＞＂，\＄9B，\＄9B，＂SD＂，\＄A
1

．BYTE＂SD＂，\＄D7，＂NR＂，\＄Cळ
．BYTE＂\(D Q^{\prime \prime}, \$ C C, " \vee A ", \$ D 3\)
\＄9B
．．BYTE＂TR＂，\＄C3，＂TM＂，\＄C6
．BYTE＂SR＂，\＄C5，＂MN＂，\＄D2
．BYTE＂ \(\mathrm{KN}^{\prime}, \$ \mathrm{D} 5, " K L ", \$ A A\)
－BYTE＂RI＂，\＄C4，\＄9B
TAB1
－BYTE＂RE＊UF＂
TAB2
．BYTE \(\$ 2 \emptyset, \$ 21, \$ 23, \$ 24, \$ F E\)
ADRDIR
- BYTE "D1: *. 京", \$9B

ADRDOS
－BYTE＂D1：DOS．SYS＂，\＄9B
END ；end after boot init exe cuted
；
；
INIT1 LDA \＃INIT\＆LO；BODT INI
\(T\)
STA DOSINI
LDA \＃INIT／HI
STA DOSINI＋ 1
JMP JI
；
；\(\quad\)＋\(=\$ 2 E 2\) ；LOAD AND GO INIT ADR
－WORD INIT1
．END
©

\section*{COMPUTE！}

\section*{Subscriber Services}

Please help us serve you better．If you need to contact us for any of the reasons listed below，write to us at：

\section*{COMPUTE！Magazine}

\section*{P．O．Box 914}

Farmingdale，NY 11737
or call the Toll Free number listed below．
Change Of Address．Please allow us \(6-8\) weeks to effect the change；send your current mailing label along with your new address．
Renewal．Should you wish to renew your COMPUTE！subscription before we remind you to，send your current mailing label with payment or charge number or call the Toll Free number listed below．
New Subscription．A one year（ 12 month） US subscription to COMPUTE！is \(\$ 24.00\)（2 years，\(\$ 45.00 ; 3\) years，\(\$ 65.00\) ．For sub－ scription rates outside the US，see staff page）．Send us your name and address or call the Toll Free number listed below． Delivery Problems．If you receive dupli－ cate issues of COMPUTE！，if you experi－ ence late delivery or if you have prob－ lems with your subscription，please call the Toll Free number listed below．

\title{
Commodore Garbage Collection Part 2 \\ Jim Butterfield, Associate Editor
}

Last month, we looked into some of the causes of garbage collection delays, and investigated some of its working mechanisms. It's time to put our knowledge to work by developing some rules.

The following program will help us see the rules by means of examples:
```

1Ø\varnothing DIM AS(8\emptyset\emptyset)
11\varnothing FOR J=1 TO 8ø\emptyset
12\emptyset A\$(J)="A"
13\emptyset NEXT J
140 PRINT "X"
15\emptyset PRINT FRE(\varnothing)
16\emptyset PRINT "Y"

```

\section*{Rules of Garbage Collection}

Rule 1: There are static (in place) strings and \(d y\) namic (created) strings. Only dynamic strings have garbage collection consequences.
Proof: RUN the above program which contains only static strings. There will be no significant delay between the printing of \(X\) and \(Y\). Now change line 120 to read:
\[
120 \mathrm{~A} \$(\mathrm{~J})=\mathrm{CHR} \$(65)
\]

RUN once again; there will be a significant pause between the printing of \(X\) and \(Y\).
Rule 2: Garbage collection time depends on the number of dynamic strings you keep, not what you throw away.
Proof: Change line 120 to read:
\[
120 \mathrm{~A} \$(\mathrm{~J})=\operatorname{CHRS}(65): \mathrm{A} \$(\mathrm{~J})=" \mathrm{~A} \text { " }
\]

RUN the program. Even though we're throwing
away a large amount of garbage (the first \(\mathrm{A} \$(\mathrm{~J})=)\), there's no significant delay.
Rule 3: Performing a garbage collection saves you no time on the next one.
Proof: Enter line 120 as:
\(120 \mathrm{~A} \$(\mathrm{~J})=\) CHR \(\$(65)\)
RUN and note the delay. Now type: GOTO 140. Note that the delay is exactly the same as before; the previous collection saved us no time.
Rule 4: Doubling the number of strings will multiply the delay by 4 . Mathematically, we can say that the time varies as the square of the number of strings.
Proof: Change the value of 800 in lines 100 and 110 to 400 . RUN and note that the delay between the printing of \(X\) and \(Y\) drops to onequarter of the previous time.

This last rule is the killer. You might work out a test program using ten strings, and when your program works satisfactorily expand to one thousand items. But your garbage collection time doesn't increase by a factor of 100 ; it jumps to 10,000 times the original delay. This could become crippling.

\section*{Fixing The Problem}

If you know what to look for, you can usually avoid massive garbage collection delays. There's no single technique that will do the job. It's best to investigate what's causing the garbage and decide on the appropriate action to eliminate the problem.

Here's a list of techniques to get around the

\section*{SUPER FORTH 64.}

TOTAL CONTROL OVER YOUR COMMODORE-64 \({ }^{\text {T}}\) USING ONLY WORDS
MAKING PROGRAMMING FAST, FUN AND EASY! MORE THAN JUST A LANGUAGE.
A complete, fully-integrated program development system. Home Use, Fast Games, Graphics, Data Acquisition, Business Home Use, Fast Games, Graphics, Data Acquisition, Business
Real Time Process Control, Communications, Robotics, Scientific, Artificial Intelligence A Powerful Superset of MVPFORTH/FORTH 79 + Ext. for the beginner or professional
- 20 to \(600 \times\) faster than Basic
- \(1 / 4 \times\) the programming time
- Easy full control of all sound, hi res. graphics, color, sprite, plotting line \& circle
- Controllable SPUIT-SCREEN Display
- Includes interactive interpreter \& compiler - Forth virtual memory
- Full cursor Screen Editor
- Provision for application program
distribution without licensing
- FORTH equivalent Kernal Routines
- Conditional Macro Assembler
- Meets all Forth 79 standardst
- Source screens provided
- Compatible with the book "Starting Forth"
by Leo Brodie
- Access to all I/O ports RS232, IEEE,
including memory \(\&\) interrupts
- ROMABLE code generator
- MUSIC-EDITOR

SUPER FORTH 64 \({ }^{\boldsymbol{*}}\) is more
 - SPRITE-EDITOR
- Access
- Singe disk drive backup utility
- Disk \& Cassette based. Disk included
- Full disk usage - 680 Sectors
- Supports all Commodore file types and

Forth Virtual disk
- Access to 20K RAM underneath ROM areas
- Vectored kernal words
- TRACE facility
- DECOMPIER facility
- Full String Handling
- ASCII error messages
- FLOATING POINT MATH SIN/COS \& SQRT
- Conversational user defined Commands
- Tutorial examples provided, in extensive manual
- INTERRUPT routines provide easy control of hardware timers, alarms and devices - USER Support

SUPER FORTH 64 \({ }^{\circ}\) compiled code becomes more compact than even assembly code!

A SUPERIOR PRODUCT
in every way! At a low price of only \$96

Call:
(415) 651-3160

PARSEC RESEARCH
Drawer 1776, Fremont, CA 94538


For the

\section*{Commodore 64}
\[
\text { Nony } \$ 119
\]

F

 Telecomputing with a difference!

SuperTerm - the only software that communicates with them all! Information networks such as CompuServe; business and university mainframes; free hobby bulletin boards.

Professionals and students: SuperTerm's VT102 emulation gets you on-line in style. Advanced video features, graphics, full-screen editing, 80/132 column through sidescrolling, extended keyboard - perfect for EDT, DECMail, etc. Even download your workfiles and edit off-line! Full printer and editor support; other emulations available.
Researchers and writers: SuperTerm's built-in text editor helps you create, edit, print, save, send and receive text files - articles, stories, reports, inventories, bibliographies - in short, it's your information work station. Access CompuServe, Dow Jones Information Network, Dialog/Knowledge Index, Western Union's Easylink, The Source, and many more. Optional Sprinter accessory saves printing time and S (see below).
Computer hobbyists: Join in the fun of accessing hundreds of free bulletin board systems (BBS) for Commodore, Apple, TRS-80, etc. Text mode with all BBS systems; up/downloading with Commodore BBS systems (Punter protocol). Special protocol for up/downloading with other SuperTerm owners. Popular "redial-if-busy" feature for use with automodems.

Get the information you need, for business or for fun, with the software that communicates with them all!

Requires: Commodore 64, disk drive, and suitable manual- or auto-modem. Printer optional. Software on disk w/free backup copy. Extensive manual in deluxe binder.

\section*{SuperTerm's}

\section*{SPRINTER Accessory}
\(\qquad\)
With the Sprinter accessory, SuperTerm can perform concurrent printing - as text appears on your screen, it's simultaneously printed on your printer. Includes all necessary hardware for connecting your parallel printer and computer via the cartridge port. Simply plug-in and go. Free utility software for printing and listing as a stand-alone interface.
Requires: parallel printer such as Epson, Gemini, Microline, C.Itoh. (Min. speed 35 cps.)

Commodore 64 is a trademark of Commodore Electronics, Ltd.
garbage collection hang-up.

\section*{1. Don't Move Strings Around}

Suppose we are writing a program to input several names and sort them into alphabetical order. It would seem logical to move the names so as to put them into the right place. Don't. Use an index array, which contains only numbers: Move the index values, not the strings.

A simple example:
```

1øø PRINT "INPUT TEN NAMES"
11\varnothing DIM N$(1\varnothing),I%(10)
12\emptyset FOR J=1 TO 1\varnothing
13ø PRINT "NAME";J;
140 INPUT N$(J)
150 I% (J)=J
160 NEXT J
17\emptyset PRINT "SORTING..."
18\emptyset FOR J=9 TO l STEP -1
190 FOR K=1 TO J
2ø\emptyset IF N$(I%(K)) <= N$(I%(K+l)) GOTO 22ø
210 I=I% (K):I%(K)=I%(K+1):I% (K+1)=I
22\emptyset NEXT K,J
23\emptyset FOR J=1 TO 1\varnothing
24ø PRINT N\$(I%(J))
250 NEXT J

```

The above program uses a bubble sort technique, which is notoriously inefficient; but the point here is that the strings \(\mathrm{N} \$(.\).\() are never moved.\) Thus, there can be no garbage collection. Note that the index array must be initialized before use-see line 150.

\section*{2. Clean Up Between Blocks}

Suppose you're reading in a large file of students from various classes. For a number of reasonsespecially processing convenience and shortage of memory-you don't read in all the students. Instead, you read and process a class at a time.

Before reading in the next class, set all student names, to null strings. Now, force a garbage collection with a statement such as \(Z=F R E(0)\). There will be few or no strings to keep, so garbage collection will be fast. When the next block of data-the next class-comes in, it will have freshly cleaned memory to use.

\section*{3. Do Local Cleanups}

Many programs like to build strings from GET statements. The code often looks like this:
```

5\emptyset\emptyset PRINT "TYPE IN YOUR NAME"
530 N=""
54ø GET K$:IF K$="" GOTO 54ø
55\emptyset IF K$=CHR$(13) GOTO 6\emptyset\emptyset
560 N$=N$+K\$
57ø GOTO 54ø
6\emptyset\emptyset REM CONTINUE

```

This sort of thing creates a lot of garbage. Every time line 550 is executed, a new \(\mathrm{N} \$\) is created and the old one is thrown away; and \(\mathrm{N} \$\) gets bigger and bigger all the time. There's also gar-

Configuration Of BASIC Memory

bage from \(\mathrm{K} \$\), but it's only a single character at a time.

If \(N \$\) and \(K \$\) were our only strings, we'd have no problem. Garbage collection time depends only on what you keep, not what you throw away; and keeping two strings isn't much work. However, if this were part of a program which also had a thousand names and addresses, we'd be in trouble; everything would need to be reclaimed, and the delays would become impractically long.

\section*{Local Collection}

If we're careful, we can get around this problem by setting the stage for a "local" collection. We might reason as follows: During the above code, N\$ and K\$ are our only working strings. If we make all the other strings disappear momentarily, we may generate all the garbage we like, since garbage collections will be virtually instantaneous. When we're finished, we must carefully force one last collection to get rid of any leftover garbage, and then make these missing strings reappear.

We can do this by temporarily moving the top-of-BASIC pointer down to match the dynamic string pointer. This will fool the garbage collection routine into thinking that there are no dynamic strings except the ones we have just created. But we must remember to put the top-ofBASIC pointer back when the job is finished, or we'll suffer permanent loss of memory.

The top-of-BASIC pointer may be found on the VIC and 64 at addresses 55 and 56. We must save the values there so that we can replace them later, and then use the contents of the string pointer ( 51 and 52) to change the top-ofBASIC pointer. (In the PET/CBM, the top-ofBASIC pointer is at 52 and 53 , and the string pointer is at 48 and 49 . We'll show the programming for the VIC/ 64 below, but you may adjust it for your machine.)

Here's how we would change the above coding to eliminate garbage collection dangers:
```

5\emptyset\emptyset PRINT"TYPE IN YOUR NAME"
51\varnothing Al=PEEK(55):A2=PEEK(56)
52\emptyset POKE 55,PEEK(51):POKE 56,PEEK(52)
530 N=""
54ø GET K$:IF K$="" GOTO 54\emptyset
55\emptyset IF K$=CHR$(13) GOTO 58\emptyset
560 N$=N$+K\$
57\emptyset GOTO 54ø
5 8 \emptyset ~ Z = F R E (\varnothing)
590 POKE 55,A1:POKE 56,A2
6ø\emptyset REM CONTINUE.....

```

It seems complex, and you must indeed program with great care. But it solves the problem.

\section*{4. Use Numeric Values}

Who says that everything that seems alphabetic must be a string? A month can be coded 1 to 12; a grade of A to F can be a numeric from 1 to 6 .

Where the number of possible strings is limited-a class, a region, an airline-using a numeric system is quite feasible. You can always look up the string you want by using the number as an index and getting the name out of an array.

I wouldn't recommend that we all lose our names and become numbers within the computer. But a little sensible data reduction can save a lot of garbage collection.

\section*{5. Brute Force}

Sometimes conventional methods fail. Your data consists of a large number of names which have been read in from a file. You need to make changes to a substantial number of these names. There seems to be no way you can control the amount of garbage. What then?

\section*{Use The Disk}

When all else fails, write out all your strings to disk. Set the strings to null values and force a garbage collection-this will take place instantaneously. Now read them back in to the newly cleaned-up memory.

You can watch the string pointer (addresses 51 and 52 on the VIC/64), and when it seems to be getting near the danger point, initiate this whole operation. At least it will be under your control; you can print a message to the user (TAKE A BREAK WHILE I UNSCRAMBLE MY BRAINS), and may even get the bonus of having generated a data backup or checkpoint in case of loss of power.

And it's a lot better than having the machine go dead for twenty minutes or more.

Copyright © 1983 Jim Butterfield

\section*{This Publication is available in Microform.}


University Microfilms International


\section*{wabash}

When it comes to Flexible Disks, nobody does it better than Wabash.

\section*{MasterCard, Visa Accepted. Call Free: (800) 235-4137}


PACIFIC EXCHANGES

\section*{Stress Reduction Software}

Relax, a computer-controlled biofeedback system aimed at stress reduction, is available from Synapse Software for the Atari, Commodore, Apple, and IBM personal computers.

The system allows the user to observe and measure his or her stress levels on a video monitor or television set, and provides a method to attempt to reduce those levels.

A headband with three electromyograph (EMG) sensors measures tension in the forehead's frontalis muscle. The software converts these measurements into visual patterns designed to monitor the stress level. An audio tape has a program of therapeutic relaxation exercises, and a workbook provides guidelines for reducing stress and establishing a personal stress management profile.

Relax is available for \$139.95.
Synapse Software
5221 Central Avenue
Richmond, CA 94804
(415) 527-7751

\section*{Apple Educational Games}

Methods and Solutions, Inc., has announced its Mindplay line of educational software games that teach children from four years of age and up skills in measurement, following directions, memory, map reading, tactics, vocabulary, grammar, art, and mathematics.

The six educational games in the series include Bake \(\mathcal{E}\) Taste, programs that teach youngsters to measure and follow directions; Dyno-Quest, a game of memory, map reading, tactics, and the discovery of dinosaurs; Picture Perfect, a joystick-based game that teaches children to draw and to color shapes, designs, and animals; Race the Clock, a matching game of words and hidden pictures;
Cat ' \(n\) Mouse, a maze game using word and picture associations; and Math Magic, a monsterfilled arcade game that teaches addition and subtraction.

The games are priced from \(\$ 34.95\), and are available for the Apple II family of computers and for the IBM PC and PCjr. They will be available for the Commodore 64 this fall.
Methods and Solutions, Inc. 300 Unicorn Park
Woburn, MA 01801
(617) 933-3298

\section*{Coleco Adam Data Packs}

Victory Software has introduced blank data packs for the Coleco Adam computer. The blank, preformatted tapes store about 250 pages of information.

The tapes are available for a suggested price of \(\$ 3.98\).

Victory Software has also announced its new line of games for the Adam, including Bounty Hunter (\$19.95), an Old West text adventure game.
Victory Software Corporation
1410 Russell Road
Paoli, PA 19301
(800) 243-1515
(215) 296-3787

\section*{Apple, IBM Classroom Software}

Classmate, a classroom grading and attendance software package, has been released by Davidson \& Associates for the Apple II, IIe and II + , and the IBM PC, PCjr and XT.

The program allows users to enter, modify, and store an unlimited number of class lists for up to 51 students. It stores grades, attendance records and teacher comments, and computes weighted averages, graphs grade distribution, class rankings and final grades, and displays or prints out all records.

The program also can sort by student name or class designation, and can display or print out individual scores, either on a particular assignment or for all assignments.

The program will give out either a single student's or a full class's complete or partial record.

In addition, the program can generate individualized parent and student reports.

Classmate is available for \(\$ 49.95\).
Davidson \& Associates 6069 Groveoak Place, \#12 Rancho Palos Verdes, CA 90274 (213) 383-9473

\section*{Foreign Language Tutorials}

Soflight Software, a division of M. P. Computer Services Corporation, has introduced a new product line of foreign language development software.

The programs were de-
signed for the Apple II and IIe, with software for the Atari and IBM PC and PCjr to be available in the future.

One disk drive is required to run the program.

All programs teach 1000 of the most common words in the target language. Where words have more than one meaning, the program allows for those other meanings, along with English translation.

The package retails for \$56.95. Languages currently available include Spanish, French, German, Italian, Biblical Hebrew, modern Hebrew, and Arabic. Latin, Russian, Polish, Swedish, and classical Greek will be available in the near future.

Each language program is menu-driven with sequential review, random review, and quiz options.
Soflight Software
2223 Encinal Station
Sunnyvale, CA 94087
(408) 735-0871

\section*{Personal Finances Soffware}

A software product designed to help consumers make personal financial decisions has been announced by Electronic Arts. Called Financial Cookbook, the program contains "recipes," or formulas, that produce answers about money matters.

Through the program's 32 different recipes, users can figure such data as returns on investments, effective tax shelters and IRAs, effects of inflation, mortgage calculations, and tax rates.

Each recipe asks the user to enter variables, such as interest or inflation rates, and then makes calculations based on those numbers.

Calculations for 11 basic tax shelters available to most consumers are found in the recipes. The instruction manual includes
a tutorial, recipe instructions, and index.

Financial Cookbook is available for the entire Apple II line, the IBM PC and PCjr, Commodore 64, and Atari 800.

Suggested retail price is \(\$ 50\).
Electronic Arts
2755 Campus Drive
San Mateo, CA 94403 (415) 571-7171

\section*{Text Adventure For Youngsters}

Infocom has announced Seastalker, an interactive text adventure game for ages 9 and up.

In it, players aboard the specially equipped submarine Scimitar must save the Aquadome, earth's first undersea research station.

Unfortunately, the Scimitar hasn't been tested in deep water, and the crew of the Aquadome may have a traitor in its ranks. If the right course isn't charted, players might end up as shark bait.

Solving hints are included in the game package.

Seastalker is available for the Apple II, Atari, Commodore 64, IBM PC and PCjr, and TI\(99 / 4 \mathrm{~A}\) at a cost of \(\$ 39.95\).
Infocom, Inc.
55 Wheeler St.
Cambridge, MA 02138
(617) 492-1031

New Product releases are selected from submissions for reasons of timeliness, available space, and general interest to our readers. We regret that we are unable to select all new product submissions for publication. Readers should be aware that we present here some edited version of material submitted by vendors and are unable to vouch for its accuracy at time of publication.

COMPUTE! welcomes notices of upcoming events and requests that the sponsors send a short description, their name and phone number, and an address to which interested readers may write for further information. Please send notices at least three months before the date of the event, to: Calendar, P.O. Box 5406, Greensboro, NC 27403.

> COMMODORE 64 HACKERS ONLY
* BOOKWARE FROM ABACUS*

\(\bullet \bullet \circ\) Unravel the mysteries of the misunderstood floppy disk. \(300+\) pages of in-depth information. Sequential, relative random files. Many useful utilities. 1541 ROM listing fully commented. \(\$ 19.95\)
\(\because\) - A machine language reference guide specifically to the Commodore 64. All instructions fully explained. With these complete program listings for an ASSEMBLER, DISASSEMBLER \& 6510 sim ulator. \(\mathbf{2 0 0 +}\) pages. \(\mathbf{\$ 1 9 . 9 5}\)
- - \(300+\) page detailed guide to the internals of your favorite computer. Covers graphics, synthesizer, kernal, BASIC. Includes full commented ROM listings. \(\quad \$ 19.95\)
OTHER TITLES COMING SOON! ASK FOR FREE CATALOG FOR QUICK SERVICE PHONE 616-241-5510位 Abacus 輏initit Software
P.0. Box 7211 Grand Rapids, MI 49510 Add \(\$ 2.00\) postage and handling. Foreign add \(\$ 4.00\). Michigan residence add \(4 \%\). MC, VISA, AMEX accepted.

\section*{EBASF DISKETTES \$1.75 WITH LIBRARY CASEIIII DIGITAL CASSETTES C-10 for 35c (100 Lot)!!!! FOR YOUR COMPUTER \\ ALL DISKS AND CASSETTES ARE . - \(100 \%\) ERROR FREE (Diskettes Fully Certified) -- LIFETIME GUARANTEED- \\ .................................................... \\ COMPUTER TAPE PRICES \\  \\ QUALITY NORELCO CASSETTE CASE. AND LABEL PRICES \\ [WITH CASSETTE ORDERS ONLY}
\(25-249\) Cases \(/ 20 \mathrm{Ea} . \quad 250 / .13 \mathrm{Ea} . \quad 1000 / .11 \mathrm{Ea}\). \(\begin{array}{llll}\text { Labels - Sheet } 20 & 12 / .20 & 120 / 1.70 & 1200 / 14.50\end{array}\) Tractor Feed Cassette Labels (1 up) 1000/14.50

\section*{-INTRODUCTORY OFFER-}

BASF \(51 / 4\) Single Side Double Density Diskettes with...Hub Ring, Label, Jacket, W/Protect Stickers -Free Hard Library Case with Every 10 Disks-

10 LOT 20 LOT 50 LOT 100 LOT
\begin{tabular}{llll}
\(2.00 / 20.00\) & \(1.95 / 39.00\) & \(1.80 / 90.00\) & \(1.75 / 175.00\) \\
\hline All Prices Include U.S. Shipping \& Handling
\end{tabular} - Write For Volume Prices-
- Phone Orders Add \$2.50 C.O.D. Fee -
(Canadian Customers May Call or Write for Shipping Costs)
Send Cashier's Checks, Money Orders, \& Checks to:
CASS-A-TAPES
BOX 8123-C
KANSAS CITY, MO. 64112 816-444-4651

\title{
The Automatic Proofreader For VIC, 64, And Atari
}

\author{
Charles Brannon, Program Editor
}

\begin{abstract}
At last there's a way for your computer to help you check your typing. "The Automatic Proofreader" will make entering programs faster, easier, and more accurate.
\end{abstract}

The strong point of computers is that they excel at tedious, exacting tasks. So why not get your computer to check your typing for you?

With "The Automatic Proofreader" nestled in your VIC-20, Commodore 64, or Atari computer, every line you type in will be verified. It displays a special code, called a checksum, at the top of the screen. The checksum, either a number (VIC/64) or a pair of letters (Atari), corresponds to the line you've just typed. It represents every character in the line summed together. A matching code in the program listing lets you compare it to the checksum which the Proofreader displays. A glance is all it takes to confirm that you've typed the line correctly.

\section*{Entering The Automatic Proofreader}

Commodore (VIC/64) owners should type in Program 1. Program 2 is for Atari users. Since the Proofreader is a machine language program, be especially diligent. Watch out for typing extra commas, or a letter O for a zero, and check every number carefully. If you make a mistake when typing in the DATA statements, you'll get the message "Error in DATA statements" when you RUN the program. Check your typing and try again.

When you've typed in The Automatic Proofreader, SAVE it to tape or disk at least twice before running it for the first time. If you mistype the Proofreader, it may cause a system crash when you first run it. By SAVEing a copy beforehand, you can reLOAD it and hunt for your error. Also, you'll want a backup copy of the Proofreader because you'll use it again and againevery time you enter a program from COMPUTE!.

When you RUN the Proofreader, the program will be POKEd safely into memory, then it will activate itself. If you ever need to reactivate it (RUN/STOP-RESTORE or SYSTEM RESET will disable it), just enter the command SYS 886 (VIC/64) or PRINT USR(1536) for the Atari.

\section*{Using The Proofreader}

Now, let's see how it works. LIST the Proofreader program, move the cursor up to one of the lines, and press RETURN. If you've entered the Proofreader correctly, a checksum will appear in the top-left corner of your screen.

Try making a change in the line and hit RETURN. Notice that the checksum has changed. All VIC and 64 listings in COMPUTE! now have a number appended to the end of each line, for example, :rem 123. Don't
enter this statement. It is just for your information. The rem is used to make the number harmless if someone does type it in. It will, however, use up memory if you enter it, and it will cause the checksum displayed at the top of the screen to be different, even if you entered the rest of the line correctly.

The Atari checksum is found immediately to the left of each line number. This makes it impossible to type in the checksum accidentally, since a program line must start with a number.

Just type in each line (without the printed checksum), and check the checksum displayed at the top of the screen against the checksum in the listing. If they match, go on to the next line. If they don't, there's a mistake. You can correct the line immediately, instead of waiting to find the error when you RUN the program.

The Proofreader is not picky with spaces. It will not notice extra spaces or missing ones. This is for your convenience, since spacing is generally not important. Occasionally proper spacing is important, but the article describing the program will warn you to be careful in these cases.

\section*{Nobody's Perfect}

Although the Proofreader is an important aid, there are a few things to watch out for. If you enter a line by using abbreviations for commands, the checksum will not match up. This is because the Proofreader is very literal: It looks at the individual letters in a line, not at tokens such as PRINT. There is a way to make the Proofreader check such a line. After entering the line, LIST it. This makes the computer spell out the abbreviations. Then move the cursor up to the line and press RETURN. It should now match the checksum. You can check whole groups of lines this way. Atari users should beware of using ? as an abbreviation for PRINTthey're not the same thing in the Proofreader's eyes.

The checksum is a sum of the ASCII values of the characters in a line. VIC and 64 owners may wonder why the numbers are so small, never exceeding 255. This is because the addition is done only in eight bits. A result over 255 will roll over past zero, like an odometer past 99999 . On the Atari, the number is turned into two letters, both for increased convenience and to make the Proofreader shorter. For the curious, the letters correspond to the values of the left and right nybbles added to 33 (to offset them into the alphabet). This number is then stored directly into screen memory.

Due to the nature of a checksum, the Proofreader will not catch all errors. Since \(1+3+5=3+1+5\), the Proofreader cannot catch errors of transposition. In fact, you could type in the line in any order, and the Proofreader wouldn't notice. Anytime the Proofreader
seems to act strange，keep this in mind．Since the ASCII values of the number \(18(49+56)\) and \(63(54+51)\) both equal 105，these numbers are equal according to the Proofreader．There really is no simple way to catch these kinds of errors．Fortunately，the Proofreader will catch the majority of the typing mistakes most people make．

If you want the Proofreader out of your way，just press SYSTEM RESET or RUN／STOP－RESTORE．If you need it again，enter SYS 828 （VIC／64）or PRINT USR（1536）（Atari）．You must disable the Proofreader before doing any tape operations on the VIC or 64.

\section*{Hidden Perils}

The Proofreader＇s home in the VIC and 64 is not a very safe haven．Since the cassette buffer is wiped out during tape operations，you need to disable the Proofreader with RUN／STOP－RESTORE before you SAVE your program．This applies only to tape use．Disk users or Atari owners have nothing to worry about．

Not so for VIC and 64 owners with tape drives． What if you type in a program in several sittings？The next day，you come to your computer，LOAD and RUN the Proofreader，then try to LOAD the partially completed program so you can add to it．But since the Proofreader is trying to hide in the cassette buffer，it is wiped out！

What you need is a way to LOAD the Proofreader after you＇ve LOADed the partial program．The problem is，a tape load to the buffer destroys what it＇s supposed to load．

After you＇ve typed in and RUN the Proofreader， enter the following lines in direct mode（without line numbers）exactly as shown：

A\＄＝＂PROOFREADER．T＂：B\＄＝＂\｛1ø SPACES\}": FOR \(\mathrm{X}=1\) TO 4：A\＄＝A\＄＋B\＄：NEXTX
FOR \(\mathrm{X}=886\) TO 1ø18：A\＄＝A\＄＋CHR\＄（PEEK（X））： NEXTX
OPEN 1，1，1，AS：CLOSE1
After you enter the last line，you will be asked to press record and play on your cassette recorder．Put this program at the beginning of a new tape．This gives you a new way to load the Proofreader．Anytime you want to bring the Proofreader into memory without disturbing anything else，put the cassette in the tape drive，rewind，and enter：

\section*{OPEN1：CLOSE1}

You can now start the Proofreader by typing SYS 886．To test this，PRINT PEEK（886）should return the number 173．If it does not，repeat the steps above， making sure that A\＄（＂PROOFREADER．T＂）contains 13 characters and that B\＄contains 10 spaces．

You can now reload the Proofreader into memory whenever LOAD or SAVE destroys it，restoring your personal typing helper．

Incidentally，you can protect the cassette buffer on the Commodore 64 with POKE 178，165．This POKE should work on the VIC，but it has caused numerous problems，probably due to a bug in the VIC operating system．With this POKE，the 64 will not wipe out the cassette buffer during tape LOADs and SAVEs．

\section*{Program 1：vic／64 Proofreader}

1øø PRINT＂\｛CLR\}PLEASE WAIT...":FORI=886TO 1ø18：READA：CK＝CK＋A：POKEI，A：NEXT
\(11 \varnothing\) IF CK＜＞17539 THEN PRINT＂\｛DOWN\}YOU MAD E AN ERROR＂：PRINT＂IN DATA STATEMENTS． ＂：END
120 SYS886：PRINT＂\｛CLR\}\{2 DOWN\}PROOFREADER ACTIVATED．＂：NEW
886 DATA \(173, \emptyset 36, \varnothing \emptyset 3,2 \emptyset 1,15 \emptyset, 2 ø 8\)
892 DATA Øø1，Ø96，141，151，øø3，173
898 DATA Ø37，Øø3，141，152，Øø3，169
\(9 \varnothing 4\) DATA 15ø，141，ø36，øø3，169，øø3
910 DATA 141，Ø37，Øø3，169，Øøø，133
916 DATA 254，Ø96，Ø32，Ø87，241，133
922 DATA \(251,134,252,132,253, \varnothing \varnothing 8\)
928 DATA 2ø1，ø13，24ø，Ø17，2ø1，ø32
934 DATA \(24 \emptyset, \emptyset \emptyset 5, \varnothing 24,1 \varnothing 1,254,133\)
940 DATA \(254,165,251,166,252,164\)
946 DATA 253，Ø40，Ø96，169，Ø13，Ø32
952 DATA \(210,255,165,214,141,251\)
958 DATA Øø3，2ø6，251，Øø3，169，øøø
964 DATA \(133,216,169, \varnothing 19, \emptyset 32,21 \varnothing\)
\(97 \emptyset\) DATA \(255,169, \varnothing 18, \varnothing 32,21 \varnothing, 255\)
976 DATA \(169, \varnothing 58, \varnothing 32,21 \varnothing, 255,166\)
982 DATA \(254,169, \varnothing 00,133,254,172\)
988 DATA 151，Øø3，192，Ø87，2ø8，Øø6
994 DATA Ø32，2ø5，189，ø76，235，øø3
\(1 \varnothing \emptyset \emptyset\) DATA \(\emptyset 32,2 \emptyset 5,221,169, \varnothing 32, \varnothing 32\)
\(1 \emptyset \emptyset 6\) DATA \(21 \varnothing, 255, \varnothing 32,21 \varnothing, 255,173\)
1012 DATA 251，øø3，133，214，076，173
1018 DATA øø3

\section*{Program 2：Atari Proofreader}

1 Øø GRAPHICS Ø
110 FOR I＝1536 TO \(17 \emptyset \emptyset:\) READ A：POKE I ，\(A: C K=C K+A: N E X T\) I
120 IF CKく＞19め72 THEN ？＂Error in DA TA statements．Check typing＂：END
\(139 A=\) USR（ 1536 ）
140 ？？＂Automatic Proofreader now activated．＂
150 END
1536 DATA \(104,160,0,185,26,3\)
1542 DATA \(2 \mathscr{} 1,69,24\) 月， \(7,20 \varnothing, 20 め\)
1548 DATA \(192,34,208,243,96,200\)
1554 DATA \(169,74,153,26,3,2\) Øø
1560 DATA \(169,6,153,26,3,162\)
1566 DATA \(\emptyset, 189,0,228,157,74\)
1572 DATA \(6,232,224,16,208,245\)
1578 DATA \(169,93,141,78,6,169\)
1584 DATA \(6,141,79,6,24,173\)
159 DATA \(4,228,105,1,0141,95\)
1596 DATA \(6,173,5,228,105\) ，
1692 DATA \(141,96,6,169,0,133\)
1698 DATA \(203,96,247,238,125,241\)
1614 DATA \(93,6,244,241,115,241\)
\(162 め\) DATA \(124,241,76,205,238\) ，
1626 DATA \(9,0, \emptyset, \emptyset, 32,62\)
1632 DATA \(246,8,2 \varnothing 1,155,240,13\)
1638 DATA \(2 \varnothing 1,32,240,7,72,24\)
1644 DATA \(101,2 \emptyset 3,133,2 \emptyset 3,1 \varnothing 4,4 め\)
1659 DATA \(96,72,152,72,138,72\)
1656 DATA \(169,6,169,128,145,88\)
1662 DATA \(299,192,49,268,249,165\)
1668 DATA 203，74，74，74，74， 24
1674 DATA \(195,161,160,3,145,88\)
1680 DATA \(165,203,41,15,24,165\)
1686 DATA \(161,200,145,88,169,9\)
1692 DATA \(133,203,164,170,194,168\)
1698 DATA \(194,40,96\)

\title{
How To Type COMPUTE!'s Programs
}

Many of the programs which are listed in COMPUTE! contain special control characters (cursor control, color keys, inverse video, etc.). To make it easy to tell exactly what to type when entering one of these programs into your computer, we have established the following listing conventions. There is a separate key for each computer. Refer to the appropriate tables when you come across an unusual symbol in a program listing. If you are unsure how to actually enter a control character, consult your computer's manuals.

\section*{Atari 400/800}

Characters in inverse video will appear like: memaremembere Enter these characters with the Atarilogo key, \{风\}.


Graphies characters, such as CTRL-T, the ball character e will appear as the "normal" letter enclosed in braces, e.g. (T).

A series of identical control characters, such as 10 spaces, three cursor-lefts, or 20 CTRL-R's, will appear as 110 SPACES, 13 LEFT \(),(20 \mathrm{R})\), etc. If the character in braces is in inverse video, that character or characters should be entered with the Atari logo key. For example, ( \(m\) ) means to enter a reverse-field heart with CTRL-comma, \(\{5 \mathrm{~m} \mid)\) means to enter five inverse-video CTRL-U's.

\section*{Commodore PET/CBMNIC/64}

Generally, any PET/CBM/VIC/64 program listings will contain words within braces which spell out any special characters: (DOWN) would mean to press the cursor down key. 15 SPACES I would mean to press the space bar five times.

To indicate that a key should be shifted (hold down the SHIFT key while pressing the other key), the key would be underlined in our listings. For example, \(\underline{S}\) would mean to type the S key while holding the shift key. If you find an underlined key enclosed in braces (e.g., \(\{10 \mathrm{~N}\}\) ), you should type the key as many times as indicated (in our example, you would enter ten shifted \(N\) 's). Some graphics characters are inaccessible from the keyboard on CBM Business models (32N, 8032).

For the VIC and 64, if a key is enclosed in special brackets, \(k \geqslant\), you should hold down the Commodore key while pressing the key inside the special brackets. (The Commodore key is the key in the lower left corner of the keyboard.) Again, if the key is preceded by a number, you should press the key as many times as indicated.

Rarely, you'll see in a Commodore 64 program a solitary letter of the alphabet enclosed in braces. These characters can be entered by holding down the CTRL key while typing the letter in the braces. For example, (A) would indicate that you should press CTRL-A.

About the quote mode: you know that you can move the cursor around the screen with the CRSR keys. Sometimes a programmer will want to move the cursor under program control. That's why you see all the (LEFTY's, (HOME)'s, and (BLU''s in our programs. The only way the computer
can tell the difference between direct and programmed cursor control is the quote mode.

Once you press the quote (the double quote, SHIFT-2), you are in the quote mode. If you type something and then try to change it by moving the cursor left, you'll only get a bunch of reverse-video lines. These are the symbols for cursor left. The only editing key that isn't programmable is the DEL key; you can still use DEL to back up and edit the line. Once you type another quote, you are out of quote mode.

You also go into quote mode when you INSerT spaces into a line. In any case, the easiest way to get out of quote mode is to just press RETURN. You'll then be out of quote mode and you can cursor up to the mistyped line and fix it.

Use the following tables when entering special characters:
VIC And 64
When You


\section*{All Commodore Machines}

Clear Screen (CLR)
Home Cursor \{ HOME \}
Cursor Up \{UP\}
Cursor Down \{ DOWN \}
Cursor Right \{RIGHT\}


\section*{Apple II / Apple II Plus}

All programs are in Applesoft BASIC, unless otherwise stated. Control characters are printed as the "normal" character enclosed in braces, such as (D) for CTRL -D. Hold down CTRL while pressing the control key. You will not see the special character on the screen.

\section*{Texas Instruments 99/4}

The only special characters used are in PRINT statements to indicate where two or more spaces should be left between words. For example, ENERGY \(\{10\) SPACES \(\}\) MANAGEMENT means that ten spaces should be left between the words ENERGY and MANAGEMENT. Do not type in the braces or the words 10 SPACES. Enter all programs with the ALPHA LOCK on (in the down position). Release the ALPHA LOCK to enter lowercase text.

\section*{CAPUTE} Modifications Or Corrections To Previous Articles

\section*{Atari Snertle}

Program 3 (p. 94) of this math tutorial from the May issue has a bug in its subtraction routine. In those cases when the answer to the displayed problem should be zero, a zero will not be accepted as the correct result. Donald Carlson points out that line 362 should read as follows:

\section*{362 IF \(\mathrm{Q}=2\) AND \(\mathrm{K}<=\mathrm{L}\) THEN \(\mathrm{M}=\mathrm{L}-\mathrm{K}\)}

\section*{64 Hi-Res Graphics Editor}

The notes to this program (May issue, p. 82) failed to state the required starting and ending addresses to use when typing the MLX portion of the editor (Program 2). The values are 49152 for the start and 51553 for the end. Also, the series
of steps required to set up the program may seem cumbersome. Andy Van Duyne has provided this short program, which will perform all the steps for you:
```

1\varnothing IF FL=Ø THEN FL=1:LOAD"HIRES/ML",8,1
2ø PRINT"{CLR}{2 DOWN}POKE642,128:POKE44,
128:POKE32768,ø:NEW"
3ø PRINT"{3 DOWN}LOAD"CHR$(34)"HIRES/BAS"
 CHR$(34)",8"
4б PRINT"{HOME}";
50 POKE 198,6:POKE 631,13:POKE 632,13:POK
E 633,13
60 POKE 634,82:POKE 635,213:POKE 636,13

```

The program assumes you have used the filenames HIRES/ML for the machine language portion (typed in with MLX) and HIRES/BAS for the BASIC portion (Program 3). Change these names in lines 10 and 30 to match the names you used. To use the program with tape, change the 8 to a 1 in lines 10 and 30 . You must have the BASIC portion saved on the tape immediately following the machine language portion.

The screen dump feature of the editor will not work with the new Commodore 1526 printer, since this model does not have the dot-addressable graphics feature of the Commodore 1525 printer.

\section*{YOU CAN'T TELL A DISK DRIVE BY ITS COVER!!}


\section*{WITH A HAPPY ENHANCEMENT INSTALLED THESE ARE THE MOST POWERFUL DISK DRIVES FOR YOUR ATARI COMPUTER}

WARP SPEED SOFTWARE DISK READING AND WRITING 500\% FASTER

> HAPPY BACKUP - Easy to use backup of even the most heavily protected disks
> HAPPY COMPACTOR - Combines 8 disks into 1 disk with a menu
> WARP SPEED DOS - Improved Atari DOS 2.0 with WARP SPEED reading \& writing
> SECTOR COPIER - Whole disk read, write and verify in 105 seconds
> 1050 ENHANCEMENT - Supports single, 1050 double, and true double density \(\mathbf{8 1 0}\) ENHANCEMENT - Supports single density

SPECIAL SUGGESTED RETAIL PRICE: Get the HAPPY ENHANCEMENT 810 or 1050 version with the HAPPY BACKUP PROGRAM, plus the multi drive HAPPY BACKUP PROGRAM, plus the HAPPY COMPACTOR PROGRAM, plus the HAPPY DRIVE DOS, plus the HAPPY SECTOR COPY, all with WARP DRIVE SPEED, including our diagnostic, a \(\$ 350.00\) value for only \(\$ 249.95\), for a limited time only! Price includes shipping by air mail to U.S.A. and Canada. Foreign orders add \(\$ 10.00\) and send an international money order payable through a U.S.A. bank. Califormia orders add \(\$ 16.25\) state sales tax. Cashiers check or money order for immediate shipment from stock. Personal checks require \(2-3\) weeks to clear. Cash COD available by phone order and charges will be added. No credit card orders accepted. ENHANCEMENTS for other ATARI compatible drives coming soon, call for information. Specify 1050 or 810 ENHANCEMENT, all 1050s use the same ENHANCEMENT. Please specify H model for all 810 disk drives purchased new after February 1982, call for help in 810 ENHANCEMENT model selection. Dealers now throughout the world, call for the number of the dealer closest to you.

\title{
COMPUTER MAIL ORDER
}



1027 Letter Quality Printer....
1030 Direct Connect Modem. 1030 Direct Connect Modem............

\section*{CX30 Paddle.} CX77 Touch Tablet CX80 Trak Ball. CX85 Keypad. 488 Communicator II... 4003 Assembler Edit 4012 Missile Command 4013 Asteroids 5049 VisiCal
7079 Logo.

\section*{Atar}

Atari
ALIEN VOICE BOX

MEMORY BOARDS
Axlon 32 K .
Axion \(48 K\) Axlon 48 K .
Axion 128K
. .59 .00 .399 .00 -299.00

Intec 32K Intec 48 K
Intec 64 K Intec Real Time Clock. -85.00 \(\begin{array}{r}85.00 \\ \hline 99.00\end{array}\) 99.00
.2900

\section*{DISK DRIVES FOR ATARI PERCOM}
\begin{tabular}{|c|}
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
AT 88-51 \\
AT \(88-\) A1 AT 88-S1 PD. PFD \(40-51\). RFD \(40-52\). RFD 44-S1.
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
1369.00
\(\cdot 259.00\)
\begin{tabular}{l}
.449 .00 \\
\hline 369.00
\end{tabular}
\(\cdot{ }^{-699.00}\)
5339.00

\section*{DISKETTES}
\begin{tabular}{|c|c|}
\hline MAXELL & ELEPHANT \\
\hline 5\%/4. MD-1.................................-24.99 & 5\%** SS/SD................................116.99 \\
\hline 5\%" MD-2..............................334.99 & 5\%" 5S/D0................................21.99 \\
\hline 8" FD-1 [SS/DD] & 5\%" FD/DD...............................26.99 \\
\hline B" FD-2 [DS/DD) & \\
\hline VERBATIM & DISK HOLDERS \\
\hline 5\%" SS/DD................................26.99 & INNOVATIVE CONCEPTS \\
\hline 5\%/4 DS/DD..............................336.99 & Fip-n-Fie 10...........................33.99 \\
\hline BIB & Aip-n-File 50 ................................117.99 \\
\hline 5\%" Disk Head Ceaner...................14.99 & Fip-n-File (400/800 ROM] Holder.......117.99 \\
\hline WICO & Q JOYSTICME \\
\hline Joystick....................................21.99 & Joystick.................................... 41.99 \\
\hline 3-wey Joystick.............................22.99 & Atar Single Fire..............................12.99 \\
\hline Power Grip................................... 21.99 & Atar Switch Hitter.........................115.99 \\
\hline BOSS Joystick ............................117.99 & Apple Poddles................................334.99 \\
\hline ATARIMIC Trek Bell........................ 34.99 & IBM Paddes................................ 34.99 \\
\hline Apple Trak Ball.............................54.99 & IBM Joystick............................46.99 \\
\hline Apple Anelog..............................337.99 & KOALA PADS \\
\hline AMIGA & Atari [ROM)............................... 779.00 \\
\hline 3100 Singe................................ 13.99 & C.64 (ROM) .............................. 79.00 \\
\hline 3101 Pair..................................19.99 & IEM ........................................99.00 \\
\hline Joyboard ..................................337.99 & Apple/frankin............................... 85.00 \\
\hline
\end{tabular}

AXIOM
AT100 Atar Interlace Printer AT. 100 Paralled intertace
AT-846 ruerface for AMS
BMC
401 Letter Quaity
Ex-80 Dot Matrix
CENTRONICS
122 Parailel
\(739-1\) Parall 739-3 Seria

\section*{C.ITOH \\ Gorila Banana.............. \\ Fonila Banana...... \\ Pownter 8510p.
Prowniter 1550 .}

A10 (18 pms )...
8600 P
F10-40
F10-55
COMREX
CornWriter II Letter Quality....
DIABLO
\&20 Letter Quaity 620 Letter Quaity. 630 Letter Quality...............
DAISYWRTTER Trector Feed. RX-80, RX-80FT, RX-100 RX-80, RX-80F
FXXB0, \(\mathrm{FX}-100\) FX-80, FX-1
L 1500 ...
Prism 80 For Corfiguration
Prism 80 For Corriguration.
Arism 32 For Configurstion
JUKI

\section*{PRINTERS}
-239.00
:239.00 199.00 .589.00 \(\cdot 269.00\)
-299.00 -199.00 \(\cdot 249.00\)
.209.00
209.00
.379 .00
379.00
.599 .00
.599 .00
.569 .00
.599 .00
.929 .00
1929.00
.999 .00
•999.00
\(\bullet 1349.00\)
.499 .00
.949 .00
1749.00

\subsection*{1949.00}
\(\cdot 109.00\)
....CALL
.CALL
.CALL
....CALL
...CALL

MANNESMAN TALLY 160 L. \({ }^{180 \mathrm{~L}}\) Spint 80.

NEC
8023 Dat Matrix...
8025 Dat Matrix...
2010/15/30.
3510/15/30

. 589.00 -799.00 . 309.00 \(\begin{array}{r}* 379.00 \\ \hline\end{array}\) 669.00
.749 .00 7749.00
\(\cdot 1369.00\) -1799.00
OKIDATA
82, 83, 84, 92, 93, 2350, 2410.........CALL OLYMPIA
Compect 2.
.479 .00
Compect RO.
509.00

ESW 3000.
TP-1000.......
Tractor Feed.
-399.00
500 Letter Gudity
500 Letter Quelity 550 Letter Quality
.449 .00 770 Letter Quality......................................... 8999.00

STAR
Gernin 10X
Gemin 15X
Gernin \(15 \times\)
Delta \(10 .\).
Serial Board.
Radx \(10 .\).
Radix 15
Radix 15 ...
TOSHIBA
1340.
1351.

TRANSTAR
120 P
130P.......
315 Color.


\section*{MODEMS}


\section*{canada}

Ontario/Cuabec
800-268-3974
Other Provinces800-268-4558
In Toronto call (416)328-0866,Dapt 105
Ordar Status Numbar: 828-0866
2505 Dunwin Drive, Unit 38 Mississauga, Ontario, Canada L5L1T1

\section*{MONITORS}
\begin{tabular}{|c|c|}
\hline & PRINCETON GRAPHICS \\
\hline 49.00 & HX-12 RGB...............................5529.00 \\
\hline -159.00 & SAKATA \\
\hline -169.00 & 100 . 268900 \\
\hline +279.00 & TAXAN \\
\hline -299.00 & 210 Color RGB TAXAN 299.00 \\
\hline -419.00 & 210 Caor RGB .....................2989.00 \\
\hline -349.00 & 400 Med-Res RGB.....................319.00 \\
\hline .749.00 & 415 Hi-Res RGB......................... 439.00 \\
\hline & 420 HiiPes PGB [BM] \\
\hline & \(10012{ }^{\text {" }}\) Green............................'125.00 \\
\hline 99 & \(10512{ }^{\text {" Amber......................... }} 1\) \\
\hline -119.99 & S \\
\hline -249.00 & \\
\hline & A 1, 9" Green.............................999.99 \\
\hline & A 2. 12"' Green............................119.99 \\
\hline 88.99 & Pi 3, 12" Amber.........................'149.99 \\
\hline -95.99 & A 4. \({ }^{\text {"' Amber........................... } 139.99}\) \\
\hline & 1400 Color...............................269.99 \\
\hline 09.00 & UA \\
\hline -149.99 & me 8400 Col \\
\hline -159.99 & ZENITH \\
\hline 259.00 & ZENITH \\
\hline -429.00 & 2VM 122 Anber........................109.00 \\
\hline -359.00 & IVM 135 Color/RGB .....................4869.99 \\
\hline
\end{tabular}

\section*{COMPUTERMAIL ORDER}


\author{
east \\ 800-233-8950 \\ In PA call (717)k27-9575, Dapt. 105 \\ Order Status Number: 327-9576 \\ Customar Service Number: 327-1450 \\ 477 E. 3rd St., Williamsport, PA 17701 \\ \section*{canada} \\ Ontario/Quabec 800-268-3974 \\ Other Provinces800-268-4558 \\ In Toronto call [416]328-0865,Dept. 105 Ordar Status Number: 828-0866 2505 Dunwin Drive, Unit 3 B \\ INTERNATIONAL ORDERS: All shipments outside the Continental United States must be pre-paid by certified check only. Include 3\% (minimum \({ }^{5}\) ) shipping and handling. \\ EDUCATIONAL DISCOUNTS: Additional discounts are available to qualified Educational Institutions. \\ APO \& FPO: Add 3\% (minimum \({ }^{5}\) ) shipping and handling
}

\title{
Lyco Computer Marketing \& Consultants TO ORDER \\ CALL US TOLL FREE 800-233-8760
}

DISK DRIVES

TRAK DISK DRIVES

\section*{AT-D1 ........................ \(\$ 379.00\)} AT-D2 . ....................... \(\$ 399.00\) AT-D2 TURBO PAK ........ \(\$ 22.95\) PRINTER CABLE .......... \(\mathbf{\$ 2 2 . 9 5}\)

\section*{CONCORD DISK DRIVES}

\author{
APPLE 163K DRIVE ..... \(\$ 199.00\) APPLE 326K DRIVE ..... \(\$ 229.00\) APPLE CONTROLLER CARD.
}
.\(\$ 69.00\)
COMMODORE VIC 174K... \(\$ 289.00\) COMMODORE VIC 348K... \(\$ 359.00\)

ATARI 176K MASTER... \(\$ 289.00\) ATARI 348K MASTER... \(\$ 369.00\) ATARI ADD-ON DRIVES...SCALL
DATASOFT
POOYAN C/D \(\ldots \ldots \ldots \ldots . \$ 21.75\)
O'RILEYS MINE \(\ldots \ldots \ldots . \$ 21.75\)
PARKER 20
FROGGER \(\ldots \ldots \ldots \ldots \ldots . . \$ 33.75\)

\section*{\(\$ 329.00\)} 129.00 CALL

5 MEG 10 MEG 15 MEG
20 MEG

JUMPMAN C/D ............\$27.75 JUMPMAN JR R PITSTOP R. TEMPLE ASPHAI GATE T ASPHAI CRUSH, C\&C C/D. INFOCOM 64 ENCHANTER
PLANETFALL
S CALL \(\$ 239.00\)

\section*{SSI}

KNIGHTS OF DESERT . EAGLES. TIGERS IN SNOW COMBAT LEADER BATTLE FOR N EPYX 64 . I ....
. \(\$ 27.75\) 527.75 \(\$ 27.75\)
\(\$ 27.75\) S21.75
\(\$ 34.75\)
\(\$ 34.75\)

\section*{\(\$ 26.75\)} \(\$ 26.75\) \(\$ 26.75\) \$26.75 \(\$ 26.75\)

VIC 64


\section*{KOALA}
oala tablet.
....... \(\mathbf{s 8 4 . 7 5}\)
 OG DESIGN llustrator SONG WRITER D MASTER TYPE. CONTINENTAL home account d ...... 544.75 TAX ADVANTAGE......... 335.75 воок OF APPLE
SOFTWARE
ENERAL LEDGER ACCOUNTS PAY. ACCOUNTS REC PAYROLL

TY MGMT \(\$ 16.95\)
\(\$ 179.95\) \$179.95 \$179.95
\(\$ 329.95\)

\section*{PEACHTREE SOFTWARE}

LIST MANAGER ......... \(\$ 199.00\) BUSINESS GRAPHICS \(\mathbf{\$ 2 2 5 . 0 0}\) GRAPHICS LANGUAGE... \(\mathbf{\$ 2 9 9 . 0 0}\) REQUIRES COBAL RUNTIME
ACCTS PAYABLE I ...... \(\$ 495.00\) ACCTS PAYABLE II..... \(\$ 1695.00\) PAYROLL I................. \(\$ 495.00\) PAYROLL II .............. \(\$ 1695.00\) GENERAL LEDGER I.... \(\$ 495.00\) GENERAL LEDGER II ... \(\mathbf{S 1 6 9 5 . 0 0}\)

\section*{CP/M VERSION}

PEACHPACK 4 ACCTS PAYABLE III. ACCTS PAYABLE IV. ACCTS REC III III. ACCTS REC IV GENERALLEDGERIII. GENERALLEDGERIV ... 8899.00 INVENTORY MGMT I.... \(\$ 549.00\) INVENTORY MGMT II... \(\mathbf{\$ 8 9 9 . 0 0}\) PAYROLL III PAYROLLIV IV............. \$549.00 \$899.00 SALES INVOICING I .... \(\$ 549.00\) SALES INVOICING ....... \(\$ 899.00\)

\section*{mostercorc TO ORDER}

CALL TOLL FREE 800-233-8760
or send order to Lyco Computer P.O. Box 5088

Jersey Shore. PA 17740

\section*{DISKETTES} ELEPHANT
SINGLE SIDE SD (10) .... \(\$ 17.75\) SD (100) .............. \(\$ 16.75 / 10\) SINGLE SIDE DD (10) ....\$21.75 DD (100)..............S20.75/10 DOUBLE SIDE DD (10) ... \(\$ 26.75\) DD (100) ..............s24.75/10

\section*{MAXELL}

MD1 (10)
\(\$ 27.75\)
MD2 (10)
\(\$ 37.75\)

\section*{CERTRON \\ CASSETTES}

CC-10 (12)
\(\$ 15.9 y\)
CC-20 (12)
\(\$ 17.99\)

\section*{INNOVATIVE CONCEPTS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DISK STORAGE (10) ....... \$4.95} \\
\hline \multicolumn{2}{|l|}{DISK STORAGE (15) ....... \$9.95} \\
\hline \multicolumn{2}{|l|}{DISK STORAGE (25)} \\
\hline \multicolumn{2}{|l|}{DISK STORAGE (50) . .....\$26.75} \\
\hline ROM STORAGE (10) & \\
\hline
\end{tabular}

\section*{MODEMS}

ANCHOR MARK I ......... \(\$ 45.75\) ANCHOR MARK II .........\$79.75 HAYES SMART ............ \$239.00 HAYES MICRO II ......... \(\$ 309.00\)
MICROBIT 1000 C ....... \(\$ 129.00\) CAT. .
D-CAT
PPL
APPLE CAT II.
AT.........

12 APPLE CAT \(\$ 279.00\)
\(\$ 589.00\)

DEADLINE ................. \(\$ 34.75\)
ZORK 1.2. or 3 .............. \(\$ 34.75\)
ENCHANTER .............. \(\$ 34.75\)
PLANETFALL ............... \(\$ 34.75\)
SPINNAKER
KINDERCOMP D............ \(\mathbf{\$ 2 1 . 7 5}\)
STORY MACH D ........... \(\$ 23.75\)
FACE MAKER D ........... \(\$ 23.75\)
SNOOPER TR D.............. \(\$ 29.75\)
SNOOPER T2 D.............. \(\$ 29.75\)
DELTA DRAW D.............. \(\$ 32.75\)
FRACTION F D............... \(\$ 23.75\)
ALPHABET ZOO D......... \(\$ 21.75\)
MOST AMAZING D ........ \(\mathbf{\$ 2 6 . 7 5}\)
RHYMES \& RID D......... 521.75
HPPLE DUMPLING GX....599.75 APPLE DUMPLING
16K BUFFER.
\(\$ 179.75\)
TEXT PRINTER
INTERFACE
\(\$ 79.75\)

\section*{ATARI}

\section*{INFOCOM}

DEADLINE
ZORK 1,2, or 3
ENCHANTER .

\section*{EDUFUN}

GULP ARROW
GRAPHICS.
FACE FLASH

\section*{CONTINENTAL}

HOME ACCOUNT D ...... \(\$ 44.75\) TAX ADVANTAGE.......... \(\$ 35.75\) BOOK OF ATARI
SOFTWARE
\(\$ 34.75\) \(\$ 26.75\) \(\$ 34.75\)
\$24.75 \(\$ 24.75\)

\section*{COMPUTER CARE}

\section*{BIB}

DISK DRIVE CLEANER... \(\$ 12.75\) COMPUTER CARE KIT ... \(\$ 19.75\)

\section*{NORTRONICS}

DISK DRIVE CLEANER WITH SOFTWARE FOR IBM-PC, ATARI, VIC. APPLE. \& TI.
\(\$ 29.75\)
DISK CLEANER REFILLS... \(\$ 14.75\) CASS DRIVE CLEANER.... \(\$ 9.95\) MEDIA BULK ERASER ... \(\$ 46.75\)

\section*{MONITORS}

SAKATA COLOR.......... \(\$ 249.00\) TAXAN GREEN .......... \(\$ 119.00\) TAXAN AMBER........... \(\$ 129.00\) TAXAN RGB
COMPOSITE.
.5289 .00 R......... \(\$ 105.00\) ZENITH GREEN ........... \(\$ 95.00\) GORILLA GREEN .......... \(\$ 88.00\) GORILLA AMBER......... 595.00 NEC JB1260................. \(\$ 99.00\) NEC JB1205 ............. \(\$ 145.00\) NEC JB1215 COLOR ... \(\$ 269.00\) AMDEK GREEN .......... \(\$ 145.00\) AMDEK AMBER ......... \(\$ 149.00\)
AMDEK COLOR 1 - . . . . . \(\$ 289.00\)
SSI
KNIGHTS OF DESERT ... \(\mathbf{\$ 2 6 . 7 5}\)
EAGLES.................... \(\$ 26.75\)
TIGERS IN SNOW ......... \(\$ 26.75\)
GERMANY \(1985 \ldots \ldots \ldots .\). . 36.75
BATTLE FOR
NORMANDY
SHATTERED ALLIANCE... 539.75
SIERRA ON-LINE
ULTIMA II.
.......... 539.75

\section*{ATARISOFT}

PACMAN
\(\$ 25.75\)
DONKEY KONG............ \(\$ 25.75\)
DIG DUG ..................... \(\mathbf{\$ 2 5 . 7 5}\)
CENTIPEDE ............... \(\$ 25.75\)
ROBOTRON................. \(\$ 25.75\)
PROGRAM DESIGN
ANALOGIES ................ \(\$ 18.50\)
PREP FOR SAT'S ......... \(\$ 79.75\)
PRESCHOOLIO
BUILDER
\(\$ 18.75\)
READING COMP.......... \(\$ 18.75\)
VOCABULARY BUILDER... \(\$ 18.75\)

\section*{SCARBOROUGH}

SONG WRITER D.......... \(\$ 27.75\)
MASTER TYPE ............. \(\$ 27.75\)
EASTERN HOUSE
MONKEY WRENCH II .... \(\$ 52.75\) DON'T ASK SOFTWARE
SAM.
.539 .75
ABUSE
\$22.75
WORD RACE ................ \(\$ 24.75\)
PROGRAM DESIGN
ANALOGIES ................ \(\$ 14.50\)
PREP FOR SAT'S .......... \(\$ 79.75\) PRESCHOOL IQ
BUILDER.
.516 .75
READING COMP........... \(\$ 16.75\)
VOCABULARY BUILDER... \(\$ 16.75\)

\title{
Lyco Computer Marketing \& Consultants TO ORDER \\ CALL US TOLL FREE 800-233-8760
}

\section*{MANNESMANN TALLY}
SPIRIT \(80 \ldots \ldots \ldots \ldots . . \$ 299.00\)
MTL-160L \(\ldots \ldots \ldots \ldots \ldots . . \$ 559.00\)
MTL-180L ................ \(\$ 775.00\)
NEC
NEC8023............... \(\$ 369.00\)

NEC8025.


\section*{INTERFACING}

PRINTER
aVAILABLE FOR COMMODORE
VIC. APPLE, ATARI, IBM-PC
TRS-80. TI. AND OTHERS

\section*{stai SAVE}
MICRONTICS
\begin{tabular}{|c|c|}
\hline GEMINI 10X. & . \(\$ 259.00\) \\
\hline GEMINI 15X. & \$379.00 \\
\hline DELTA 10. & \$449.00 \\
\hline DELTA 15. & \$525.00 \\
\hline RADIX 10 & \$575.00 \\
\hline RADIX 15 & \$675.00 \\
\hline POWERTYPE & .. SCALL \\
\hline SWEET P(Mod & .. \$549.00 \\
\hline STX80 & . \(\$ 149.00\) \\
\hline
\end{tabular}

\section*{EPSON}


\section*{OKIDATA}
\begin{tabular}{|c|c|}
\hline 80 & .SSAVE \\
\hline 82A & SON THESE \\
\hline 83A & ..SIN-STOCK \\
\hline 84 & ..SPRINTERS \\
\hline 92. & SCALL \& \\
\hline 93 & .sSAVES \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline GORILLA GX-100. & . \(\$ 169.00\) \\
\hline gorilla Serial & \$199.00 \\
\hline PROWRITER 8510 & . \(\$ 335.00\) \\
\hline PROWRITER II & . 5535.00 \\
\hline 8600 & \$899.00 \\
\hline STARWRITER & \$999.00 \\
\hline PRINTMASTER & \$1299.00 \\
\hline SHEET FEEDER. & \$425.00 \\
\hline 620 & . 5929.00 \\
\hline 630 & \$1699.00 \\
\hline 8510 SP & . \(\$ 499.00\) \\
\hline 8510 SCP & \$559.00 \\
\hline A10 LETTER QUAL & \$499.00 \\
\hline
\end{tabular}

\section*{PRINTING PAPER}

3000 SHEETS
FANFOLD.
1000 SHEETS
FANFOLD.
1000 SHEETS LETTER 200 SHEETS LETTER ..... \(\$ 8.99\) 150 RAG STATIONERY... \(\$ 10.99\) MAILING LABELS ( 1 in ) ... \(\$ 9.75\) 14×11 1000 FANFOLD ... \(\$ 24.75\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{DUST COVERS} \\
\hline 800 & \$3.99 \\
\hline 400 & \$3.99 \\
\hline 1200 & \$3.99 \\
\hline 410 & \$3.99 \\
\hline 810 & \$3.99 \\
\hline 600 XL & \$5.99 \\
\hline 800 XL & . 55.99 \\
\hline 1050. & . 55.99 \\
\hline 1010. & . 55.99 \\
\hline PROWRITER & . 55.99 \\
\hline GEMINI 10X. & . 55.99 \\
\hline PERCOM & . 55.99 \\
\hline EPSON & . 55.99 \\
\hline RANA.. & . 55.99 \\
\hline VIC 64/20 & \$5.99 \\
\hline VIC 1541 & . \(\$ 5.99\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline RESTON 64 & SONG WRITER D... \(\$ 27.75\) \\
MINER 2049 ROM . \(\$ 29.75\) & MASTER TYPER...... \(\mathbf{S} 32.75\) \\
\hline
\end{tabular} INVENTORYKK INVENTORY ........ \(\$ 39.75\) ACCOUNTS REC.... \(\$ 39.75\) GENERAL LEDGER \(\$ 39.75\) PAYROLL ............ \(\$ 39.75\) INVENTORY MAN .. \(\$ 39.75\) CASH FLOW ........ 539.75 SALES ANALYSIS .. \(\$ 39.75\) DATA MANAGER ... \(\$ 19.75\) MONEY MGR C/D...S19.95 CHECKBOOK C/D .. \(\$ 19.95\) FORGET-ME-NOT .. \(\$ 19.95\) STAR BATTLE ...... \(\$ 19.95\) ROBOT REVOLT .... \(\$ 19.95\) SPELLBOUND C/D. \(\$ 19.95\) SCARBOROUGH 64 SONG WRITER D... \(\$ 27.75\)


CALL TOLL FREE

\section*{WICO}

COMMODORE \& ATARI JOYSTICK ..................S16.75 RED BALL.................... S18.75
BOSS JOYSTICK .......... \(\$ 12.75\) TRACK BALL................ 532.75 12 FT EXT CORD.............. \(\mathbf{5 6 . 9 5}\) TI ADAPTER.................... 59.95
APPLE ANALOG ........... \(\$ 34.75\)
IBM-PC ANALOG
S34.75


\section*{Q © OR!} F.C.M.

\section*{HES 64}

\section*{PARKER} QBERT.

\section*{PERCOM}

AT88S1 . . \(\$ 249.00\) RDF4OSI \$269.00 SSI EAGLES. S26.75 WORD WIZZARD S26.75 ZAXXON C/D. s26.75

BLUE MAX C/D \(\quad \$ 24.75\) ZEPPELIN C/D....... \(\mathbf{\$ 2 4 . 7 5}\) PHAROAH'S C/D...... \(\mathbf{S 2 4 . 7 5}\) SHAMUS C/D ......... \(\$ 24.75\) PARKER 64 SOUND BOX ......... 59.95 64 FORTH. ............. 539.95 HESMON ............. \(\$ 22.75\) GRIDRUNNER. ATTACK OF M C HESWRITER. OMNI WRITER TYPE N WRITER. PAINT BRUSH . BENJI. HOME MANAGER TIME MONEY MGR OMNI CALC. SWORD POINT HES MODEM
TURTLE TUTOR .... \(\mathbf{S 2 2 . 7 5}\)
TURTLE TUTOR .... \(\mathbf{\$ 2 2 . 7 5}\) TURTLE TRAINER .. \(\mathbf{\$ 2 2 . 7 5}\) TURTLE GRAPHICS \(\$ 37.75\) \$19.75 \$22.75 \$28.75 SPINNAKER 64 S45.75 KINDERCOMP D/R ..... \(\mathbf{S 2 1 . 7 5}\) \$24.75 STORY MACH ROM..... \(\mathbf{\$ 2 4 . 7 5}\) \$22.75 FACE MAKER D/R ......S24.75 S25.75 SNOOPER TR D..........S26.75 \$28.75 SNOOPER T2 D..........s26.75 S44.75 DELTA DRAW ROM..... \(\$ 26.75\) \(\mathbf{\$ 3 3 . 7 5}\) FRACTION FROM....... \(\mathbf{\$ 2 4 . 7 5}\) \$19.95 KIDS ON KEYS \(\$ 49.95\) ALPHABET ZOO.
\$24.75 S24.75 524.75

\section*{FROGGER ............. \(\$ 32.75\)}

QBERT ....... \(\$ 32.75\) \$32.75 \$32.75 4.75

HOME ACCOUNT D TAX ADVANTAGE,

64 USERS OF ENCYC
20 ENCYCLOPEDIA
KOALA 64
KOALA TABLET PROGRAMMERSGUIDE PROGRAMMERSGUIDE... LOGO DESIGN. LOGO DESIGN............. \(\mathbf{S 2 7 . 7 5}\)
SPIDER EATER ........... \(\mathbf{S 2 2 . 7 5}\)

BLUE MAX CID 64

\section*{S44.75} \(\$ 35.75\) \(\$ 35.75\) \(\$ 12.75\)
\(\$ 12.75\)

S69.75
569.75 12.75 \$22.75
\$27.75
bank street d
CHOPLIFTER R
DAVID'D MAGIC
DROL D/R.
LODE RUN D/R
SEAFOX R
SEAFOX R ................ \(\$ 29.95\)
SPARE CHANGE D ........ \(\mathbf{\$ 2 4 . 9 5}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{G PRINTER}} \\
\hline & \\
\hline & INTERFACE ........... 564.75 \\
\hline \multicolumn{2}{|l|}{B PRINTER} \\
\hline & INTERFACE ............ 539.75 \\
\hline & KEY PAD 64.............. \(\mathbf{\$ 2 9 . 7 5}\) \\
\hline & LIGHT PEN ............... \(\mathbf{S 2 9 . 7 5}\) \\
\hline & 3 SLOT EXPANSION .....S24.75 \\
\hline & 5 SLOT EXPANSION ..... \(\mathbf{5} 54.75\) \\
\hline & 6 SLOT EXPANSION ..... \(\mathbf{\$ 7 9 . 7 5}\) \\
\hline & PRINTER UTILITY ........ \(\mathbf{\$ 1 9 . 7 5}\) \\
\hline & CASSETTE INTERFACE... \(\mathbf{S 2 9 . 7 5}\) \\
\hline & WRITE NOW 20........... \(\mathbf{S 2 9 . 7 5}\) \\
\hline & WRITE NOW 64........... \(\mathbf{\$ 3 9 . 7 5}\) \\
\hline & MAIL NOW ................ \(\mathbf{\$ 2 9 . 7 5}\) \\
\hline & DM-1 PRINTER . . . . . . . . S109.75 \\
\hline & LQ-1 PRINTER ........... \(\$ 499.75\) \\
\hline \multicolumn{2}{|l|}{BRODERBUND 64} \\
\hline & BANK STREET D ......... 544.75 \\
\hline & CHOPLIFTER R........... \(\mathbf{\$ 2 9 . 9 5}\) \\
\hline & DAVID'D MAGIC .......... \(\mathbf{\$ 2 4 . 9 5}\) \\
\hline & DROL D/R................. \(\mathbf{\$ 2 4 . 9 5}\) \\
\hline & LODE RUN D/R ............ \(\mathbf{\$ 2 4 . 9 5}\) \\
\hline & SEAFOX R ................ \(\mathbf{\$ 2 9 . 9 5}\) \\
\hline & SPARE CHANGE D ....... \(\mathbf{\$ 2 4 . 9 5}\) \\
\hline
\end{tabular}
.


In-stock items shipped within 24 hours of order. Personal checks require four weeks clearance before shipping. No deposit on C O.D orders. Freeshipping on prepaid cash orders within the continental U.S. PA residents add sales tax. All products subject to availability and price change Advertised prices show \(4^{\text {on }}\) discount offered for cash. add \(4^{4}\). . for Master Card or VIsa DEALER INQUIRIES INVITED.
\begin{tabular}{|c|}
\hline SAVE0 \\
\hline DISKETTES \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
\(\$ 180^{* w n} \$ 2^{35}\) \\
\(5 \%^{*}\) SSDD-96TPI. \(\$ 2.49\) ea. \(\quad 51 / 4^{*}\) DSDD-96TPI \(\$ 3.25\) ea.
Boxed in 10 's with Tyvec sleeves, reinforced hubs and \\
Boxed in 10's with Tyvec sleeves, reinforced hubs and
labels. \\
DISKETTES FOR MACINTOSH \& HP-150
AT TERRIFIC SAVINGS! \\
\(31 / 2^{*}\) Memorex AT TERRIFIC SAVINGS!
See our big ad in this issue for other great values! \(\$ 3.99\) ea. Shipping: \(51 / 4^{*}\) or \(31 / 2^{*}\) DISKETTES-Add \(\$ 3.00\) per 100 or
fewer diskettes. Payment VISA and Mastercard accepted fewer diskettes. Payment: VISA and Mastercard accepted.
COD orders only, add \(\$ 3.00\) handling charge. Taxes: Illinois
residents, please add \(8 \%\) sales tax \\
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE
ON THE SAME PRODUCTS AND OUGNTITIES! \\
Nationwide: 1-800-621-6827 \\
Illinois: 1-312-944-2788 \\
Hours: 9AM - 5PM Central Time \\
Minimum Order: \(\$ 35.00\) \\
DISK WORLD!, Inc. \\
Suite 4806 • 30 East Huron Street • Chicago, Illinois 60611
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\section*{C-64 \({ }^{\text {M }}\) and ATARI 400 \({ }^{\text {m }}\) OWNERS}

SOLVE YOUR TRIGONOMETRY PROBLEMS THE EASY WAY AND SEE RESULTS

\(\$ 10.00\) (DISK ONLY)

Check, Money Orders, VISA and MASTERCARD accepted. Please specify C-64 \({ }^{\text {ru }}\) or Atari-400 \({ }^{\text {ru }}\)

\author{
Just Fun Software P.O. Box 25854 \\ Colorado Springs, CO 80917 (303) 597-1965
}

C-64 is a trademark of Commodore Electronics, Ltd. Atari is a trademark of Atari Corporation.

\section*{WHERE DID THAT}
*@\#\% VALUE COME FROM? Xref HELPER \({ }^{\text {" }}\)


\section*{HELPS YOU FIND OUT!}

From your Commodore 64 BASIC program on diskette, Xref HELPER sorts and lists the variables, constants, GOTOs, and GOSUBs with the line number of each occurrence. Fast, Xref HELPER scans most programs in one to five minutes. Printer required.
VISA \(\$ 25.00\) plus \(\$ 1.25\) shipping mosterctrion Canadian residents may pay CDN \(\$ 32.40\) plus CDN \(\$ 1.60\) shipping
(M)agreeable software, inc.

5925 Magnolia Lane • Plymouth, MN 55442 (612) 559-1108

HELPER is a trademark of (M) agreeable Software, Inc. Commodore is a trademark of Commodore Electronics Ltd.

\section*{BREAK-THRU}

ONLY

\section*{\$3495}

SHIPPING \& HANDLING
ADD \(\$ 2.50\)
Dealer inquiries welcome
A compact and inexpensive Eprom eraser for the hacker. It erases two chips per exposure, so if you are one of those smart people who only makes little mistakes and only needs to erase two Eproms at a time, this eraser is for you.


7755 E. Evans • Suite 400 - Scottsdale, AZ 85260 (602) 998-7550

Aspen Ribbons* brand replacements for
Tally \({ }^{\circledR}\) MT80 "Spirit" Microprinter Ribbons


Buy directly from a manufacturer and save! These ribbons are manufactured by Aspen Ribbons, Inc., as replacement ribbons for use on printers manufactured by other companies.* Standard ink color is black. Red, green, blue, brown, and purple colors are available for \(\$ 2.00\) extra per ribbon.
CALL FOR FREE CATALOG
PRICES (BLACK NYLON)
Tally \({ }^{2}\) "Spirit" \(\$ 4.25\) to \(\$ 7.75\) ea.
Price depends on quantity ordered.

Aspen Ribbons, Inc., is not affiliated with or licensed by any other company.

Aspen Ribbons, Inc. - 1700 N. 55th St
Boulder, CO 80301-2796 - (303)444-4054
Telex: 45-0055 • End User: 800-525-0646 Wholesale: 800-525-9966


The low priced high quality diskette with a LIFETME WARRANTY Packed in polybags of 10 with Tyvek envelopes, labels and reinforced hubs. One of the best buys we ve seen.

\section*{\$139 raa \(5 \%\) Kssod \\ \(\frac{1}{\text { QTY. } 20} \quad 51 / 4^{\prime \prime}\) DSDD ea. \(\quad \frac{1}{\text { QTY. } 20}\)}

DISKEITE 70-Holds 705 Kin \(^{\circ}\) diskettes in dust free safety \(\$ 14.55 \mathrm{ea}+\) DISK. \(\$ 300\) Shpng.

Shong.
Shing R SEsM Bonus Orfer
For the lowest priced, highest quality diskettes, storage cases, printer ribbons and paper products, send for our catalog. FREE with your order,
\(\$ 1.00\) otherwise. BONUS! Every catalog includes \(\$ 1500\) worth of bonus
coupons.
Shipping: \(5 \mathrm{y}^{*}\) DISKETTES-Add \(\$ 3.00\) per 100 or fraction thereof. OTHER TTEMS: Shipping charges as shown in addition to diskette shipping charges. Payment. VISA or MC. COD orders, add \(\$ 3.00\). Taxes: llinois
customers, please add \(8 \%\).

Nationwide: 1-800-621-6827
In Illinois: 1-312-944-2788
WE WILL BEAT MNY MATIOMALIY ADVERTISED PRICE
WE WILL BEAT ANY DISK WORLD!
Suite 4806 - 30 East Huron Street - Chicago, Illinois 60611

\title{
VIDEO \& COMPUTER REVOLUTION \\ \\ BSD ENTERPRISES \\ \\ BSD ENTERPRISES \\ \(800-346-5001\) on \(212-438-4111\)
}

ALL PRODUCTS ARE IN ALPHABETICAL ORDER. WE CARRY A FULL LINE OF LISTED BRANDS IF YOU DO NOT SEE WHAT YOU WANT, CALL AND ASK FOR IT


WHOLESALERS, DEALERS AND OTHER DISTRIBUTORS INQUIRIES INVITED.. 212-438-4111 ext. \#18
 800-346-5001 212-438-4111

TO ORDER-Simply dial toll free 800-346-5001 or 212-438-4111. You may order with Master Card or Visa, or you may send a money order, cashier's check, or certified chect to: BSD ENTERPRISES, 1781 64th St.. Brooklyn. N.Y. 11204, and add approximate shipping, handling and insurance charges. Credit cards for phone orders only. All items subject to availability and price change. NO TAX for orders shipped out of state. ALL MERCHANDISE SHIPPED BRAND NEw, FACTORY FRESH AND \(100 \%\) GUARANTEED. FO customer service please dial 212-438-4111, axt. "17.

\section*{Advertisers Index}
Reader Service Number/Advertiser ..... Page
Abacus Software ..... 67
Abacus Software ..... 149
101 AB Computers ..... 97
ABC Ware ..... 79
Artworx ..... 75
102 Aspen Ribbons, Inc ..... 158
Atari, Inc. ..... 4
103 The Avalon Hill Game Company ..... 9
104 Batteries Included ..... 43
105 Batteries Included ..... 51
106 Brooktronix ..... 103
BSD Enterprises ..... 159
107 Cal-Abco/Peripherals Division ..... 45
108 Cardco, Inc. ..... IBC
Cass-A-Tapes ..... 149
The CHF Company ..... 69
Commodore Computers ..... BC
CompuServe ..... 36
109 CompuServe ..... 37
ComputAbility ..... 105
110 Computer Mail Order ..... 154,155
111 Computer Outlet ..... 113
Computer Warehouse ..... 147
Cosmic Computers Unlimited ..... 101
Dennison Computer Supplies, Inc. ..... IFC
Discount Data Supply ..... 158
112 Disk World!. Inc ..... 91
Disk World!, Inc. ..... 158
Disk World!, Inc. ..... 158
Disk World!, Inc. ..... 158
113 Eastern House ..... 70
Electronic Arts ..... 23
Epyx ..... 35
Frontrunner Computer Industries ..... 107
114 Gardner Computing Company ..... 71
115 General Electric Company ..... 41
Happy Computers, Inc. ..... 153
116 Harmony Video And Electronics ..... 132
Reader Service Number/Advertiser Page
Hytec Systems ..... 25
BM ..... 2,3
inmac ..... 69
117 Jamware Computer Store ..... 132
J \& R Music World ..... 79
Jason-Ranheim ..... 111
Juki Industries of America, Inc. ..... 31
Just Fun Software ..... 158
118 Kalglo ..... 103
119 Lyco Computer Marketing \&
Consultants ..... 156,157
(M)agreeable software, inc. ..... 158
Markel Service, Inc. ..... 99
Maxell ..... 11
Micro-Sys Distributors ..... 109
120 Micro Ware ..... 48
Midwest Micro Inc. ..... 145
New American Library ..... 99
121 Nibble Notch ..... 145
Official Olympic Guide to Los Angeles ..... 49
122 Orbyte Software ..... 19
Pacific Exchanges ..... 95
Pacific Exchanges ..... 107
Pacific Exchanges ..... 114
Pacific Exchanges ..... 147
123 Parsec Research ..... 145
Powersoft, Inc. ..... 79
124 Precision Software, Inc. ..... 53
125 Professional Software Inc. .....  1
126 Protecto Enterprizes ..... 82,83
127 Reader's Digest ..... 13
128 Reston Computer Group ..... 21
Scarborough Systems, Inc ..... 7
129 Sentinel Technologies ..... 66
SM Software Inc. ..... 129
SM Software Inc. ..... 129
130 SoftPeople Inc ..... 55
Reader Service Number/Advertiser ..... Page
Software City ..... 95
131 Software Unlimited ..... 158
Spinnaker ..... 73
Strategic Simulations Inc. ..... 29
132 sublOGIC Corporation ..... 27
133 Such A Deal ..... 91
134 Swintec Corporation ..... 15
3G Company, Inc ..... 103
Walling Co ..... 158
York 10 ..... 71
COMPUTEI Books ..... 32,33
COMPUTEI's Subscriber Services ..... 17


\section*{Save \(\frac{\text { UP }}{\text { Ti }} 40 \%\) on COMPUTE!}

Every issue of COMPUTE! contains up to 30 new programs and games. And a year's subscription brings them to you for less than 15 cents each! Plus you'll enjoy the most useful home computer advice, ideas and information anywhere! Subscribe now at up to \(40 \%\) off the newsstand price. At less than 15 cents per program, this COMPUTE! offer is too good to pass up!
\(\square 1\) year \(\$ 24\)-Save \(32 \%\) ! \(\square 2\) years \(\$ 45\)-Save \(36 \%\) !
\(\square 3\) years \(\$ 65\)-Save \(40 \%\) !
Name \(\qquad\)
Address \(\qquad\)
City \(\qquad\) State \(\qquad\) Zip \(\qquad\)
\(\square\) Payment enclosed Charge my \(\square\) Visa \(\square\) MasterCard \(\square\) American Express

Account No.
Exp. date
COMPUTE! brings you programs and games for the following machines: Atari, PET/CBM, VIC-20, TI 99/4A, Apple, Commodore 64, Radio Shack Color Computer, IBM PC and IBM PCjr.


3ヨSSヨyOOV 人8 OIVd \(\exists 88\) ו1וM \(39 \forall 1 S O d\)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{d\＆VD 人7dヨУ} \\
\hline \\
\hline
\end{tabular}

\section*{The Editor's Feedback:}


Are you a COMPUTE! Subscriber?
\(\square \mathrm{Y}\)
Yes

Just
More Right Fewer


Specific applications programs.


BASIC programs.
Machine language programs.


Tutorials.
Educational articles.
Detailed explanations of programs.
\(\square\) No I would like to see:

What do you like best about COMPUTE! ?

What do you like least?

\title{
COMPUTE! Magazine P.O. Box 5406 Greensboro, NC 27435-0406
}

\section*{COMPUTE!'s \\ FREE Reader Information Service}

Use these cards to request FREE information about the products advertised in this issue. Clearly print or type your full name and address. Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.

Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTE! cannot be responsible if advertisers do not provide literature to readers.
Please use these cards only for subscribing or for requesting product information. Editorial and customer service inquiries should be addressed to: COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.
Use these cards and this address only for COMPUTE's Reader Information Service. Do not send with payment in any form.

\section*{COMPUTE!}
\begin{tabular}{rrrrrrrrrrr}
101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 \\
112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 & 121 & 122 \\
123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 \\
134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 \\
145 & 146 & 147 & 148 & 149 & 150 & 151 & 152 & 153 & 154 & 155 \\
156 & 157 & 158 & 159 & 160 & 161 & 162 & 163 & 164 & 165 & 166 \\
167 & 168 & 169 & 170 & 171 & 172 & 173 & 174 & 175 & 176 & 177 \\
178 & 179 & 180 & 181 & 182 & 183 & 184 & 185 & 186 & 187 & 188 \\
189 & 190 & 191 & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 \\
200 & 201 & 202 & 203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 \\
211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 221 \\
222 & 223 & 224 & 225 & 226 & 227 & 228 & 229 & 230 & 231 & 232 \\
233 & 234 & 235 & 236 & 237 & 238 & 239 & 240 & 241 & 242 & 243 \\
244 & 245 & 246 & 247 & 248 & 249 & 250 & 251 & 252 & 253 & 254 \\
255 & 256 & 257 & 258 & 259 & 260 & 261 & 262 & 263 & 264 & 265 \\
266 & 267 & 268 & 269 & 270 & 271 & 272 & 273 & 274 & 275 & 276 \\
277 & 278 & 279 & 280 & 281 & 282 & 283 & 284 & 285 & 286 & 287 \\
288 & 289 & 290 & 291 & 292 & 293 & 294 & 295 & 296 & 297 & 298 \\
299 & 300 & 301 & 302 & 303 & 304 & 305 & 306 & 307 & 308 & 309 \\
310 & 311 & 312 & 313 & 314 & 315 & 316 & 317 & 318 & 319 & 320 \\
321 & 322 & 323 & 324 & 325 & 326 & 327 & 328 & 329 & 330 & 331 \\
332 & 333 & 334 & 335 & 336 & 337 & 338 & 339 & 340 & 341 & 342 \\
343 & 314 & 345 & 346 & 347 & 348 & 349 & 350 & & &
\end{tabular}

Circle 101 for a one year new U.S. subscription to COMPUTE: you will be billed for \(\$ 24\).

Please print or type your full name and address. Limit one card per person.
Name
Address
City
State/Province Zip

Country
Please include zip code. Expiration 9/30/84
\begin{tabular}{l}
00 \\
0 \\
0 \\
0 \\
\hline
\end{tabular}

\title{
"The Complete CARDCO Line" ... and still growing:
}

CARDCO provides "Commodore-ready" computer accessories that will enhance your utilization of Commodore-64 and VIC-20 Computers, increase their capability, and add to your enjoyment and skill. AND, they're available for use with oither personal computers, too.

Designed with the user in mind, CARDCO offers fine accessories including Printer Interfaces with and without graphics, Expansion Interfaces, Memory Expansions, Cassette Interfaces, Numeric Keypads PLUS "NOW" Software for your VIC-20 and C-64. These programs include the "WRIIE NOW" Word Processor, "MAIL NOW" Mailing List, PRINIER UTILIIY PROGRAMS on Tape and on Disk, "SPELL NOW" Spell Checker, "GRAPH NOW" including "PAINT NOW", and "FILENOW".
CARDCO has three new Letter Quality PRINTERS with your choice of drumhead design (8 1/2" carriage), Daisy Wheel Design ( 13 inch carriage) and Daisy

Wheel Design ( 11 inch carriage). "Commodoreready" . . . plus; with compatible input for PC, PC jr., TRS-80 and many more personal computers. CARDCO'S NEW "DATA CASSEITE RECORDER/PLAYER" is also "Commodore-ready" and ready for instant shipment at prices that will amaze you.
CARDCO will constanty increase its line with unique and new products to enhance the enjoyment of computer owners.
Write for illustrated literature and prices or see CARDCO Computer Accessories and Software wherever Computers are sold.


\title{
commodore 64 \\ \\ Magic Desk
} \\ \\ Magic Desk
}
of Magic Desk！

Only From Commodore－The Excite men


MAGIC DESK easy to use ．．．of several＂help menus＂appears to to to the various picture also
Not only is MAGIC DE SE and one messages show y mistake．He and wastebasket．
printer，filing cabinet，digital come join us．```


[^0]:    MUSIC CONSTRUCTION SET is now available for Apple II, II + , Ile, and Commodore 64 computers. The Apple version, with a Mockingboard, plays chords of up to six notes each. The Commodore version plays chords of up to three notes each. Apple is a registered trademark of Apple Computer. Commodore is a registered trademark of Commodore Business Machines, Inc. For more information about Electronic Arts, write us at 2755 Campus Drive, San Mateo, CA 94403 or call (415) 571-7171.

[^1]:    ATTENTION COMMODORE 64 OWNERS WE'LL BACK YOU UP!

    ## If you own a disk drive then you'll need "The Clone

    Machine." Take control of your 1541 drive.NEW IMPROVED WITH UNGUARD*
    Package includes

    1) Complete and thorough users manual
    2) Copy with one or two drives
    3) Investigate and back-up many "PROTECTED* disks
    4) Copy all file types including relative types
    5) Edit and view track/block in Hex or ASCII
    6) Display full contents of directory and print
    7) Change program names, add, delete files with simple keystrokes
    8) Easy disk initialization
    9) Supports up to four drives

    - UNGUARD Now allows you to read, write and verify bad sectors and errors on your disk making it easy to back-up most protected software.

[^2]:    I Add $\$ 10.00$ for shipping, handling and insurance. Illinois residents | please add $6 \%$ tax. Add' $\$ 20.00$ for CANADA, PUERTO RICO, HAWAll - orders. WE DO NOT EXPORT TO OTHER COUNTRIES.
    | Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! Canada orders must be in U.S. dollars. VISA - MASTER CARD - COO

[^3]:    Fred D'Ignazio is a computer enthusiast and author of several books on computers for young people. His books include Katie and the Computer (Creative Computing), Chip Mitchell: The Case of the Stolen Computer Brains (Dutton/Lodestar), The Star Wars Question and Answer Book About Computers (Random House), and How To Get Intimate With Your Computer (A 10-Step Plan To Conquer Computer Anxiety) (McGraw-Hill).

    As the father of two young children, Fred has become concerned with introducing the computer to children as a wonderful tool rather than as a forbidding electronic device. His column appears monthly in COMPUTE!.

[^4]:    ALABAMA: Birmingham • Huntsville ARIZONA: Phoenix • Tucson CALIFORNIA: San Francisco COLORADO: Westminster CONNECTICUT: Danbury • W. Hartford • Orange • Stamford DELAWARE: Wilmington FLORIDA: Orange Park • St. Petersburg Sarasota • Tampa GEORGIA: Atlanta • Augusta • Columbus IDAHO: Idaho Falls ILLINOIS: Arlington Heights • Chicago INDIANA: Indianapolis IOWA: Davenport KENTUCKY: Louisville LOUISIANA: Baton Rouge MARYLAND: Bethesda MASSACHUSETTS: Lexington W. Springfield MICHIGAN: Ann Arbor • Okemos • Southfield Sterling Hts. MISSOURI: Creve Coeur • Independence NEBRASKA: Omaha NEW JERSEY: Bergenfield • Cherry Hill • Englishtown Fair Lawn • Green Brook • Hamilton • Linwood • Little Falls Midland Park • Montvale • Morristown • Pine Brook • Pompton Lakes Red Bank • Ridgefield • Summit • Teaneck NEW YORK: Albany • Brooklyn • Buffalo • Fairport • Forest Hills • Great Neck Long Island • Manhattan $\bullet$ Mt. Kisco • North White Plains Long Island • Manhattan • Mt. Kisco • North White Pla
    Poughkeepsie • Scarsdale • Staten Island • Syracuse Poughkeepsie • Scarsdale • Staten Island • Syracuse
    NORTH CAROLINA: Charlotte •Fayetteville • Greensboro OHIO Centerville • Columbus - Mayfield Hts. OKLAHOMA: Tulsa PENNSYLVANIA: Bethel Park • Exton - Fairless Hills • King of Prussia Pittsburgh (3 locations) - Whitehall SOUTH CAROLINA: Spartanburg TEXAS: Austin • Dallas • Houston VERMONT: Burlington VIRGINIA: Fairfax • Falls Church • Richmond (2 locations) Virginia Beach WASHINGTON: Bellevue CANADA: Halifax, Nova Scotia - Montreal, Quebec (look for Logiville) ENGLAND: London PUERTO RICO: San Juan

    Business Software Catalog at all stores.
    RETAIL STORE FRANCHISES
    Offering by prospectus only. Direct inquiries to
    SOFTWARE CITY FRANCHISE DEPARTMENT C
    1415 Queen Anne Road, Teaneck, NJ 07666

[^5]:    ORDERING INFORMATION．For fast delivery send cashier＇s check，money order or direct bank transfers．Personal and company checks allow 2 weeks to clear．Charges for COD are $\$ 3.00$ ．School Purchase Orders welcome．In CONTINENTAL USA，include $\$ 3.00$ shipping per software order．Include $3 \%$ shipping on all Hardware orders，minimum $\$ 3.00$ ．Mastercard \＆Visa please include card \＃and expiration date．WI residents please add $5 \%$ sales tax．HI，AK，FPO，APO，Canadian orders－add $5 \%$ shipping，minimum $\$ 5.00$ ．All other foreign orders，please add $15 \%$ shipping，minimum $\$ 10.00$ ．All goods are new and include factory warranty．Due to our low prices，all sales are
    final．All defective returns must have a return authorization number．Please call $414-351-2007$ to obtain an RA\＃or your return will NOT final．All defective returns must have a return authorization number．Please call $414-351-2007$ to obta
    be accepted for replacement or repair．Prices and availability are subject to change without notice．

