Light Pens And Graphics Tablets: How To Use Them

The Leading Magazine Of Home, Educational, And Recreational Computing

3-D Surface Plotting, A Valuable Graphics Technique

Picture Perfect,
A Friendly, Creative Drawing Program For Youngsters

Pentominos, A Fascinating Puzzle-Solving Program For Commodore 64, VIC-20, TI-99/4A, PC And PCjr, Atari, And Apple

Plus Snertle,
A Challenging Game For The VIC-20, Atari, Commodore 64, And IBM PC And PCjr

And More

HALF THE SPEED, FOR HALF THE MONEY.

First there was the Starwriter 40 CPS by C. Itoh, one of the world's most popular letter-quality printers.

And deservedly so, Because it gives you more of just about everything than any other printer in its price range (mid teens). And it churns out copy at a very brisk 40 characters per second, or about half a minute for an average business letter. Now, there's the Starwriter 18 CPS . It takes after its father, in that it's simply the finest printer you can buy for anywhere near the pricewhich in this ease is just about half what Daddy charges.

The only major difference is speed:
Instead of 40 characters per second, this Starwriter trots along at just over 18 cps - which costs you about 30 seconds per average business letter

But it retains the rest of the family resemblance, like low profile and low noise plug-in compatibility with just about any serial or parallel microcomputer on the market, making it a perfect companion in a typical office environment

And perfect for typical office chores like letters, memos, announcements . in fact the vast majority of stuff that can afford to wait a few seconds to get typed.
Enough said?

If not then this: the
Starwriter 18 CPS gives you crisp. letter-quality copy including boldface underlining, sub and superscripts) with your choice of friction feed or optional tractor feed for precise print positioning of tabular and graphic data using easily available industry-standard ribbon cartridges and long-lasting plastic daisy wheels.
But it also gives you something that's far from industrystandard:

A full-year warranty
And for a mere half-a-minute per letter
We think it s well worth the wait

Marketed exclusively by
Leading Edge Products, Inc 225 Tumpike Street, Canton, MA 02021, 1-800-343-6833 or
in Massachusetts
(617) 828-8150.

WordPro 3 Plus ${ }^{\text {Tw } / 64 ~ a n d ~ S p e l l i i g h t ~ P l u s ~}{ }^{\text {Tu }}$ provide a total word processing solution for the Commodore $64^{\prime \prime \prime}$ which gives you:
\star Sophisticated Word Processing

* Built-in Mail Merging for Form Letters
* Math Functions for Column Totals
* Fast and Complete Spell Checking via SpellRight Plus
* A Super Value (two programs) for Only $\$ 99.95$!

WordPro and SpellRight are both specifically designed for the novice user with no computer or word processing experience whatsoever. And with over 40,000 WordPro versions sold, you can be sure that WordPro is a very sophisticated word processor loaded with powerful features including: Transfer, Insert, Delete, and Rearrange Text, Auto Page Numbering, Math Functions, Headers, Footers, Global Search and Replace, the Ability to Create Multiple Personalized Letters and Documents, and much more. WordPro can create documents of virtually any length and will print up to 165 columns wide. You get all of this PLUS fast and complete spell checking using SpellRight Plus!

SpellRight Plus locates and highlights misspelled words and then allows you to quickly correct the misspellings improving the quality of your letters and reports.
And, best of all, WordPro and SpellRight's powerful arsenal of features can be put to use almost immediately - by even the novice user. So whether you're a student, professional writer, in business, education or a hobbyist, you'll quickly become a WordPro Pro!
Both WordPro and SpellRight Plus are also available separately at popular computer outlets nationwide.

Invest in the best . . .WordPro Plus. In a class by itself.

Professional Software Inc.

51 Fremont Street Needham, MA 02194

If getting the whole family together is a real challenge, maybe you need games that really chailenge the whole family.

Introducing a new generation of computer games. Family Learning Games from Spinnaker.

Ever notice how a little fun with the family can be a little hard to arrange?

Well, now there's a solution - Spinnaker's Family Learning Games. A whole family of great games that make getting the family together seem like child's play. And make "family fun" really seem like fun again. What's more, they'll even help your kids develop some very important skills.

What makes our Family Learning Games so special? Well, for one thing they're designed to challenge and excite everyone in the family, from grade schoolers to grownups. Their unique combination of chance and strategy makes them perfect for young players, yet challenging enough that everyone will want to play them again and again.

But what makes our Family Learning Games even more unique is how they help kids learn - about problem solving, strategizing, spelling, even Greek mythology. That's quite a bit more than they'd learn from a typical board game (if you could even get them to play a typical board game).

So next time you want to get everybody together, don't get discouraged - get Spinnaker's Family Learning Games.

You'll find the biggest challenge in family fun won't be on the refrigerator. It'll be on the computer.

SOT-n-NOTE

Hey Everybody-
How about a game of Boondoggle tonight?-

MOM
\square
not that game! I always lose axyluayDebby

Soryymomise
Captain
on Whoopee
T.
Jenny. Tonight. ARE You
O.K. You clowns-

ADVENTURE CREATOR."

UP FOR GRABS.'"
It's a wildly exciting crossword game where everyone has to think fast. More words
will help you winwill help you win
but don ti tet caught with leftover letters!
Ages 8 - Adult.

Changes line spacing, margins, print type, paragraph indents anywhere in the document.

Instantly reformats

Enters text easily, with word wrap, one main menu and helpful prompts.

Creates multi-line headers and footers.

Prints double columns, form letters, multiple copies of a page or document, at the touch of a key.

Chains and merges files.

Has "print preview": you can check your copy before it's printed.

You can't find a friendlier, more powerful word processor at twice the price. New AtariWriter.' Under ${ }^{\text {¹0 }} 100$.

Now you can do multi-featured word processing at home, simply. At a family budget price.

Our ROM-based cartridge technology means you can use new AtariWriter on any ATARI ${ }^{\oplus}$ Home Computer (even 16K) for personal and business correspondence, term papers, committee reports, mailings, etc.

It also lets you choose between cassette and disk storage systems.

One very special AtariWriter feature: you can correct as you write, without switching back and forth between Create and Edit modes.

And our memory buffer offers an "undo" command to let you change your mind, and restore text you've just deleted.

Check into our remarkable AtariWriter, and our choice of letter quality and dot matrix printers, also reasonably priced, at Atari dealers. Call 800-538-8543 for dealer nearest you. In California, call 800-672-1404.

You'll do more with Atari Home Computers.

20 The Digital Palette: Fundamentals Of Computer Graphics Selby Bateman
34 Light Pens And Graphics Tablets:New Ways To Communicate With Your Computer
\qquadKathy Yakal
40 The Inside Story: How Graphics Tablets And Light Pens Work
\qquad
\qquad44 Realtime Dreaming With Mike Newman

Ottis R Cowper Ottis R. Cowper Selby Bateman

EDUCAIION AND RECREATION

58 3-D Plotting

8264 Hi-Res Graphics Editor

88 Snertle
REVIIWS

Tim R. Colvin
74 Picture Perfect For Atari And Commodore 64 Coy V. Ison
123
124PitstopPanic Button For VIC And TRS-80 Color ComputerMichael B. Williams
COLUMNS AND DEPARTMENIS
6 The Editor's NotesRobert Lock
10 Readers' Feedback
\qquad The Editors and Readers of COMPUTE!
126 Questions Beginners Ask128 Computers And Society: Computers In The Workplace
\qquad David D. Thornburg132 On The Road With Fred D'Ignazio: The Morning After, Part 11 JB. Sh................. Fred D'Ignazio
136 Learning With Computers: Ready-To-Run Magazines. J.B. Shelton and Glenn M. Kleiman
140 The Beginner's Page: A Random Leap Richard Mansfield
148 INSIGHT: Atari
159 Programming The Tl: File Processing, Part 3Bill Wilkinson
C. Regena
162 Machine Language: A Program Critique, Part 2
16864 Explorer Larry Isaacs
IHE JOURNAL
106 Pentominos: A Puzzle-Solving Program Jim Butterfield Jim Butterfield147 VIC/64 Memdata Michael M. Milligan
153 A BASIC Cross-Reference
Jim Butterfield
\qquad
165 Atari Softkey Thomas A. Marshall
171 Atari Line Check Utility Ed Sisul
173 Commodore Word Wizard Joe W. Rocke
176 The Automatic Proofreader For VIC, 64, And Atari178 A Beginner's Guide To Typing In Programs179 How To Type COMPUTE!'s Programs
180 CAPUTE! Modifications Or Corrections To Previous Articles

NOTE: See page 179 before typing in programs.

181 MLX Machine Language Entry Program For Commodore 64
184 News \& Products
190 Product Mart
192 Advertisers Index

TOLL FREE Subscription Order Line
 800-334-0868 (In NC 919-275-9809)

AT/64/AD
V/C
*
*
.
.

$$
:
$$

AT
π
64

PN/64/AT/PC/PCjr/TI/C/AP
$V / 64$
$P / 64$
AT
AT
$V / 64 / P$

AP Apple AT Atari, P PET/

CBM, V VIC-20, C Radio Shack Color Computer, 64 Commodore 64, TS Timex/ Sinclair, TI Texas Instruments, PCjr IBM PCjr, PC IBM PC, AD Coleco Adam, -All or several of the above.

COMPUTE! The Journal for Progressive Computing (USPS: 537250) is published monthly by COMPUTE! Publications, Inc., P.O. Box 5406, Greensboro, NC 27403 USA. Phone: (919) 275-9809. Editorial Offices are located at 324 West Wendover Avenue, Greensboro, NC 27408. Domestic Subscriptions: 12 issues, $\$ 24$. Send subscription orders or change of address (P.O. form 3579) to COMPUTE! Magazine, P.O. Box 914, Farmingdale, NY 11737. Second class postage paid at COMPUTE! Magazine, P.O. Box 914 , Farmingdale, NY 11737. Second class postage paid at
Greensboro, NC 27403 and additional mailing offices. Entire contents copyright © 1984 by COMPUTE! Publications. Inc. All rights reserved, ISSN 0194-357X.

This month, Richard Mansfield, senior editor of COMPUTE!, expresses some concerns in this guest editorial about the way programming is taught in schools.
Robert Lock
Editor In Chief

Which computer language is best? Ask that question at a computer club and you're sure to start a debate. But computer users rarely have much choice in the matter. If you buy a personal computer, you'll get BASIC. It's usually built into the computer. If you learn programming at school, you'll get Pascal. It's built into the curriculum.

Of course, other languages can be purchased for personal computers and are sometimes taught in schools, but BASIC and Pascal are by far the most common ways that most people are learning to communicate with computers.

Why is it that Pascal isn't built into consumer computers and BASIC is frowned upon by academics? What's the difference between these languages? Is Pascal the easier language to learn? Or is it just the easier language to teach.

The goal of a teacher is to pass knowledge, even wisdom sometimes, to the student. Good teaching accomplishes this transfer with a minimum of damage to the student's creativity and freedom of thought. But like all human activities, teaching can go awry.

On the first day of driver education, the teacher told me and the two young women in my group that we couldn't get into the car until we'd promised to follow the Three Rules of Good Driving. Evidently there had
been some hair-raising moments in the past and these rules were for everyone's safety. 1. Keep your eyes on the road at all times. 2. Keep both hands on the wheel at all times. 3. Always use the turn signal, but also roll down the window and signal with your hand too. This last rule struck us as perhaps excessive. For one thing, we'd never seen anyone driving like that. And doesn't rule 3 violate rule 2?

Never mind, that's the way to drive. As the weeks progressed, other strange rules were added: Don't adjust the mirrors or the seatbelt while in motion, never converse with other passengers, and so on. We followed the rules, but of course discovered later that these were not realistic guidelines. Some of what we had been taught were the Rules of Good Driver Education, as distinct from rules of good driving.

I suggest that Pascal is not easier to learn than BASIC. Nor is Pascal more flexible or faster to program in than BASIC. In fact, Pascal has no significant advantage over BASIC save one-it is easier to grade.

That's because Pascal and languages like it stress structured programming. Pascal has more rules than BASIC. For example, in BASIC you can create variables anytime you want to. Just say INCOME $=15000$ and that's that. In Pascal, you must define your variables at the start of the program. You must declare whether they're integer, string, floating point, etc.

Another rule associated with Pascal is program formatting: Loops should be indented, each programming event should be on its own line, and subroutines should be set off by additional
spacing.
A third rule is possibly the most confining: You are not allowed to GOTO. In BASIC, this command allows you to branch to any other instruction in the program. And you can keep on branching at will. Pascal permits branching, but you must always return to the place from which you branched.

Forbidding GOTO branches is the keystone of structured programming, and it has an important effect on the way a student approaches programming. Before actual programming can begin, the programmer must plan the structure of the program. This is analogous to the requirement imposed by some English teachers that no one should begin writing an essay until they've first constructed a detailed outline. In Pascal classes, flowcharts abound.

Pascal, of course, is not a terrible way to program computers. And BASIC isn't perfect. They differ mainly in the psychological effects they have on programmers. But if the primary virtue of Pascal is that it is the easier language to teach, maybe some questions should be raised. The most important question might be-is Pascal the best language to learn?

What's worrisome about Pascal's emphasis on preplanning and its blizzard of rules is that such academic programming might be the only experience many people will ever have with computer programming. They might assume that all computer languages are restrictive. They might never go on to discover that communicating with computers can be an exceptionally rewarding, even entertaining, pastime.

?

 follow our path to the future of home computing.

Welcome to the next generation of home computer software and hardware...from Futurehouse. We help you get the most out of your computer. The most personal productivity, the most education, the most entertainment. The most for your money. Follow our path to the future...

For your financial future...the Complete Personal Accountant is an award-winning line of money management software.

For your creative future...the Edumate Light Pen is a low cost, high performance peripheral which draws, entertains and teaches. It is rated the best in its price range and out performs even the most expensive light pens.

For your child's future...Playground Software, our educational series, uses the Edumate Light Pen and S.A.M. (Software Automatic Mouth) to teach and delight your children. The series includes Alphabet Construction Set, a unique program that teaches children how to draw the letters of the alphabet.

For your artistic future...with Peripheral Vision and an Edumate Light Pen you can create sophisticated works of art on your screen. Choose from dozens of advanced graphics routines and then save your artwork to disk or print it on your printer.

Let Futurehouse lead you into the future with quality products for your home computer. Contact your local dealer or order direct 1-800-334-SOFT. Don't wait for the future...it's here.

Futurehouse products are available for Commodore 64/Vic 20, Atari, TRS-80 Color, and IBM PC ir. computers. When ordering please specify computer, cassette or disk and memory.

Can Disks Be Mailed?

Should disks be mailed, and if so, what is the proper way to mail them?

Brian Mangan

Abstract

Disks can be mailed, as long as they are enclosed in a snugly fitting, rigid package. Many office supply stores sell padded jackets (called mailers) especially made for 51/4-inch disks. Also, for what it's worth, many users write a message on the outside of the mailer, to warn mail handlers that the package contains a magnetic recording which can be damaged by electromagnetic fields.

Commodore Sequential Append

I recently made a discovery that I think will help programmers using Commodore disk drives to create and use sequential files. In addition to writing a sequential file (OPEN 2,8,2,"SEQFILE,S,W") and reading a sequential file (OPEN $2,8,2$,
"SEQFILE, $S, R^{\prime \prime}$), it is possible to append a sequential file. This is a great help; rather than having to rewrite the entire file when additions are made (OPEN 2,8,2,"@0:SEQFILE,S,W"), all you have to do is use an A in place of the W when you open the sequential file for writing: OPEN $2,8,2$, "SEQFILE,S, A^{\prime} ". The DOS finds the end of the file and simply adds on the new data. You use the regular PRINT\#2 statement to accomplish this.

Steve Gibson

Disabling The Atari Break Key

I want to inform your readers about a technique I discovered that disables the Atari's BREAK key, but does not need to be reexecuted after each GRAPHICS command. It is so simple that I wonder why no one has ever mentioned it, or if it conflicts with something that I have not yet found out:

POKE 566,143:POKE 567,231 to disable
and
POKE 566,84:POKE 567,231 to enable
The preceding statements change the BREAK key interrupt vector to point to address 59279 (\$E73F) which contains a machine code PLA and RTI instruction used by the OS. This method will work
only with the OS B ROMs, which contain the interrupt vector for the BREAK key.

Neil Weisenfeld

A TI Quit Fix

Have you ever hit FUNCTION + instead of SHIFT + while you are typing in a program? It's extremely frustrating to see all your work go down the drain. Here's a way to disable the QUIT key on the TI.

To do this you will need either the Mini Memory or Editor/Assembler cartridge or Extended BASIC and the 32 K Memory Expansion. This is because the console BASIC does not contain the CALL LOAD subprogram (better known as POKE). Whenever you turn your computer on, type the following line in the command mode: CALL LOAD $(-31806,16)$. This will disable the QUIT key. If you are using Extended BASIC, use CALL INIT:: CALL LOAD $(-31806,16)$. If you wish to return to the Master Title Screen, you can still do so by typing BYE.

Credit for this information goes to the documentation that comes with the TI Forth package.

By the way, does anybody know of a comprehensive memory map for the TI?

Davin A. Trulsen, Jr.

What's An EPROM?

I would like to know what EPROMs are and what they are used for.

Bob Cullen

EPROM stands for Erasable Programmable Read Only Memory. EPROMs are memory chips which can " $r e-$ member" programs even when the computer's power is switched off. Important machine language programs like the BASIC language or the computer's operating system are often permanently stored in ROM, but standard ROM can be programmed only once (when the chip is made). EPROMs, on the other hand, can be programmed by any computer user with a relatively simple peripheral device, the EPROM programmer. EPROMs can also be erased by exposing them to ultraviolet light. You could use an EPROM to store any machine language program you use frequently-even to make your own game cartridges.

THANKS TO COMPUSERVES CB SIMULATOR, "DIGITAL FOX"ACCESSED"DATA HARI"AND Proceeded TO An "AlTARED"STATE.

The CB Simulator, where CompuServe Subscribers can Access Friends and Influence People on 72 Different Channels.

Just pick your handle and get on line. From math to matrimony, there's always someone out there who speaks your language. Friends from all over the U.S. and Canada are at it 24 hours a day. Talking tech or just having fun. And if you've got a secret, just use the CB Scrambler.

That'll fool the "lurkers", those CB "see it alls" who get their kicks by watching. Or you can always use the private talk mode for guaranteed one-to-one conversation.

The CB Simulator is just one of CompuServe's many electronic communications options that include a National Bulletin Board, Professional Forums and Electronic Mail. Plus, there's a world of on-line information and entertainment all for the price of a local phone call plus connect time.

You can access CompuServe with almost any computer and modem, terminal or communicating word processor.

To receive your illustrated guide to the CompuServe Information Service and learn how to subscribe, call or contact:

CompuServe

64 Sprite Collisions

I have a Commodore 64, and am having trouble with collision detection with sprite graphics. I use the following line to check for collisions:

IF $($ PEEK (53278) ANDX $)=X$ THEN action

This is easy to convert to machine language. In all of my programs, this statement is unreliable. Sometimes it detects a collision between two sprites when they aren't colliding, other times it doesn't detect a collision when they are touching, and other times it works just fine.

I've read in past articles that this problem may be caused by "sparkle" on the 64, and that the solution to the problem is to relocate screen memory. I tried that, and it didn't help.

I've also found that by putting a PRINT PEEK(53279) in my programs, the collision registers work every time. But I don't know how to PRINT a PEEK in machine language.

> Eric Rotenberg

First, sparkle can cause spurious collisions with sprites, but you have to relocate the character set, not the screen, to disable the sparkle. Second, be aware of the nature of the collision register. It is set when two sprites collide, and stays set, even after the sprites have moved away from each other.

Also, the register is cleared when you try to read it, so you can't keep doing an LDA or a PEEK to check for different collisions. The first PEEK resets the register. If the sprites are still touching, they will then set the collision register again. When you are checking for a collision, save the results of the first PEEK for later use.

BASIC B For The Atari $\mathbf{4 0 0}$ And $\mathbf{8 0 0}$?

1. Is Atari going to make a Revision B of BASIC, as found in the new $X L$ series on cartridge or other form for the 400 and 800 computers?
2. I've been having trouble with my BASIC cartridge. Pac-Man works just fine, but when I plug in BASIC, either the screen goes blank, or I get two clicks and the screen goes blank, or it goes right into memo pad mode. This happens after I put in any other cartridge. Can anyone help me?

Kevin Bailey
As far as we know, Atari has no plans for offering an upgraded BASIC.

Even though ROMs are sturdy, solid-state devices, they can be damaged by static electricity or by being dropped. It's a good idea to ground yourself (by touching something made of metal) before you operate any computer equipment. But your BASIC's not necessarily bad. You may just need to clean the contacts.

Normally, the contacts are not exposed, but you can stick a pencil or paper clip into the slot to lower the
protective hood. Then, using a swab and rubbing alcohol, thoroughly clean the contacts, then let the cartridge dry. Incidentally, this is also a recommended procedure for your Operating System board and other RAM boards. You may also want to try some TV tuner cleaner in place of the rubbing alcohol.

We don't know of any problems with one cartridge leaving the machine in a state that prevents it from running another cartridge, especially since the power is cut off between cartridge changes. If any other readers are having similar problems, or have a cure, please write in.

Slow TI BASIC

In his review of Robot Runner for the TI-99/4A in COMPUTE!, January 1984, Tony Roberts stated that games written in BASIC on the TI are notoriously slow because the microprocessor can't interpret BASIC fast enough. I want to clear up any implication that the TMS9900 CPU in the $99 / 4 \mathrm{~A}$ is at fault.

TI BASIC is indeed slow, due to the unusual architecture of the machine and the design of the BASIC interpreter. First of all, the RAM in which BASIC programs are stored is not CPU RAM. The 16 K of RAM in the 99/4A is maintained by the TMS 9918A video display processor (VDP). There are only 256 bytes of CPU RAM in the 99/4A console.

Every time the microprocessor accesses or RUNs a BASIC program, it must request the program from the VDP one byte at a time, one statement at a time. This causes a great increase in execution time, because the microprocessor must wait for the VDP. While the TMS9900 microprocessor is a word-oriented (16 bits) chip, the VDP works in bytes.

The second reason why TI BASIC is so slow is that the interpreter itself is not written in machine language. It is written in another highlevel language known as Graphics Programming Language, or GPL. The GPL interpreter is also built into the 99/4A console. Thus, whenever a BASIC program is RUN, a double interpretation takes place. This is similar to writing a BASIC interpreter in BASIC for an IBM PC. It is really amazing that the TMS9900 can run BASIC as fast as it does, considering.

Chris Clark

Use Of COMPUTE! Programs

Concerning the "Readers' Feedback" of September 1983, you stated that the programs in COMPUTE! are not in the public domain, and that only people who own a specific issue of COMPUTE! can have access to the programs in that issue. My question is, what if a computer club takes out a

A SOFTWARE STAR IS BORN

MovieMaker ${ }^{\text {"I }}$ brings the art of computer animation to your Atari Home Computer®. And turns you into the director. No programming is necessary, just imagination, flair and a desire to experiment. MovieMaker" is a powerful, innovative tool that lets you devise the action, set the scene, create the actors and stage the action. The "Compose" mode lets you draw characters and background, with a special "Mirror" function for quick and easy duplication of shapes. The "Zoom" lets you add incredible detail for astounding realism. When you "Record," you film and edit up to 300 frames of continuous action, controlling speed, sequence, colors, camera angles and layers of sound. And the "Smooth" function eliminates all flicker. The results are so professional, you'll want to film one dream after another. And you can, without ever leaving your keyboard. That's the reason why MovieMaker ${ }^{\text {tw }}$ is the best selling soffware from Creative Pastime ${ }^{\text {tw }}$.

MovieMaker ${ }^{\text {tw }}$ is a Creative Pastime ${ }^{\text {tw }}$ from Reston Software ${ }^{\text {Tw }}$

Coming soon for Apple, ${ }^{\text {Tw }}$ IBM-PC, ${ }^{\text {Tw }}$ Commodore $64^{\text {™ }}$
For the Atari 800/1200 ${ }^{\circ}$ Computer
Atari is a registered trademark of Atari, Inc.
subscription to COMPUTE!? Would that club be allowed to place those programs in those issues in its library for all members? And what if a school or public library takes out a subscription? Could everyone who is allowed access to the library be allowed access to those programs in those issues?

Gary Lee Crowell
Sorry, the answer in each case is no. You can only use the programs in an issue of COMPUTE! if you own a copy of that issue.

VIC Video Typewriter

I have written a short program that transforms your VIC into a typewriter (without any annoying syntax errors). I use it to practice my typing after school. To disable the program, use the f1 key.

Vicky Cwiertnie

```
1\varnothing PRINTCHR$(8):PRINTCHRS(14)
20 POKE36879,26:PRINT"{CLR}"
30 PRINT"** VIDEO TYPEWRITER **"
40 GETAS:IFAS=""THEN40
50 IFAS="{Fl}"THENEND
60 IFA$=CHR$ (13)THENPOKE36878,15:POKE3687
6,220:FORX=1TO50:NEXT: POKE36876, 
70 PRINTA$;:GOTO4\varnothing
```


Atari Tape Verify

Here is a one-line program which verifies that an Atari tape file is recorded properly. The utility works whether you CSAVE, LIST, or PRINT (data) to the tape. It performs essentially the same as Michael J. Barkan's "Atari Verify" (COMPUTE!, August 1983), but is much shorter. This utility can be LISTed to tape and ENTERed from tape, but since it is so short, it is easy to enter it from the keyboard in direct mode (without the line number). Just use this line:

```
0 CLOSE #1:OPEN #1,4,0,"C:'':FOR A = 1 TO
    400:GET #1,A:NEXT A
```

After recording a file on tape and while the program or data is still in memory, enter and run this utility. Rewind the tape to the beginning of the file and push PLAY. The utility will read the entire file, one character at a time, to insure that the file is recorded properly. Operation will end with an error code. If you get this code, the file was read successfully, showing that it is good:

136 END OF FILE

If you get one of the following error codes, save the file again, since it could not be read by the computer:

```
138 DEVICE TIMEOUT
140 SERIAL BUS ERROR
143 DATA FRAME CHECKSUM ERROR
```

The same variable is used for loop control and to
hold each character as it is read from tape. This way, the loop never ends and will check any length of file. This variable can be changed to one of those in your program, if desired, to avoid adding to the Variable Name Table of your program.

Douglas J. Wilder

TI Randomness Test

Richard Mansfield's article "Zones Of Unpredictability, Part 2" ("The Beginner's Page," COMPUTE!, December 1983) included a program called "Randomness Test." Since it wouldn't work on my TI-99/4A, I wrote a similar program. It takes several thousand cycles to get close to even distribution for each number, but it's fun to let it run.

Gaston Porterie

```
10g CALL CLEAR
11Q PRINT "TEST OF THE RANDOM NUMBE
    F","FUNCTION ON THE TI-99":::::
    :::
12@ FRINT "PLEASE WAIT..."
13@ T=T+1
140 RANDOMIZE
15@ X=INT (10*RND) +1
16@ A (x) =A (x)+1
170 FOF I=1 TO 10
18@ F(I)=INT(A(I)/T*1@日)
19@ NEXT I
```



```
210 CALL CLEAR
22g FRINT "AFTER":T;"CYCLES":"OF RA
    NDOMIZATION"
    FRINT
240 FRINT "RANDOM","%","NUMEERS","O
    CCURFENCE"
25@ S=%
26@ FOR I=1 TO. 10
27@ FFRINT I,F'(I)
23g S=S+F(I)
290 NEXT I
Sgg FRINT "","---"
310 FRINT "TOTAL",S;"%"
32@ GOTO 13G
```


Easy DATA Statements

Here is a one-liner that I have found very useful while programming many statements that are almost identical. Used in the direct mode it can yield a set of DATA statements that fill the screen. The program can just as easily use POKE, or REM statements, or any combination of these.

```
FOR X=100 TO 300 STEP 10:PRINT X "DATA":
    NEXT X
```

Chuck Cole

Constant 1541 Errors

Ever since I bought my 1541 disk drive, I have been getting the errors 23 READ ERROR and 27 READ ERROR. This not only happens on my

SOFTWARE ARTISTS?

TO MAKE THE FIRST BASKETBALL PROGRAM that feels like the real thing, it helps to start with two guys who know what the real thing feels like.

Enter Larry Bird and Julius Erving. Bird - the hustler, the strong man, deadly from outside. Erving - The Doctor, maybe the most explosive player in the history of the game.

We talked to them, photographed them in action, studied their moves and their stats and their styles. Then we set out to create on computer disc an event which may never happen in real life. We put the two of them together on a dream court of light, for an electronic afternoon of one-on-one.

It wasn't easy. When they talked, we listened. When they criticized, we made big changes. When they gave suggestions, we took them

And it shows. This thing is absolutely uncanny. You actually take on all the skills and characteristics of Bird or The Doctor - their own particular moves, shooting abilities, even strength and speed.

You'll meet with fatigue factors, hot and cold streaks, turnaround jump shots, and 360 -degree slam dunks. But there's some whimsy in here, too-a funny referee, a shattering backboard, even instant replay.

It's called Julius Erving and Larry Bird Go One-on-One."You're Bird. Or you're The Doctor. And that's the last decision you'll have plenty of time to make.

How we got this year's hottest sports game out of two rather inexperienced designers.

disks, but also on prepackaged disks. I have read what these errors mean in Appendix B of my disk users guide, but these descriptions don't tell me much.

Could you please give me more information on these errors, and tell me what I can do about them?

Jay Elmore
The fact that this occurs both on your own disks and on commercial disk programs strongly indicates a hardware problem. Ask the dealer from whom you purchased the drive for the address of the nearest service center and have the drive checked out.

Sprite Data Problems

I am a Commodore 64 owner and I have a question about sprites. I understand how to create a sprite and move it around the screen. I also know how to move more than one sprite, if the data for them is the same. My problem occurs when I have more than one set of data. I can't seem to get both sprites on the screen at the same time. The Programmer's Reference Guide doesn't have an example with two sets of data. I would appreciate it if you would help me out.

Seth Hausman

Jim Butterfield replies:

I can think of two possible problems with your sprites:

1. You may have forgotten to link each sprite to its drawing in memory. With normal memory mapping, sprite 0 needs to have its drawing number (usually 11, 13, 14, or 15) placed into memory address 2040, sprite 1 into 2041, and so on up to sprite 7 into address 2047. If you use drawing number 11, the drawing of the sprite should be in addresses 704-766 decimal; for number 13, addresses 832-894; for number 14, addresses 896958; and for 15, 960-1022.
2. Many sprite register addresses control all eight sprites at the same time. To turn sprite 0 on, you would POKE 53269,1; to turn sprite 1 on, you would POKE 53269,2 ; to turn them both on, you would add 1 and 2 and POKE 53269,3. The following table shows the bit values for each sprite:

$$
\begin{array}{ll}
\text { Sprite } & 0-1 \\
1-2 \\
2-4 \\
3-8 \\
& 4-16 \\
& 5-32 \\
& 6-64 \\
& 7-128
\end{array}
$$

Thus, to turn on sprites 0,2 , and 4 , we add $1+4+16$ and POKE 53269,21.

Be sure that you keep the difference between a sprite number and a drawing number clear in your mind. Several sprites can use one drawing (or "definition"); or a single sprite can be switched from one drawing
to another as it moves its arms, legs, tentacles, or whatever.

Using Atari Cartridge Memory

I have an Atari 800, and am currently writing a text-adventure game using the Assembler Editor cartridge. I hope to run the program without the cartridge when I'm finished. How can I use the 8 K block of RAM used by cartridge (not to mention all those zero-page pointers that the cartridge uses)? Does it have to go to waste? I hope not, because I'll need all the memory I can get for this thing. John Bushakra
No, the memory need not be wasted, but you cannot test the program with the Assembler Editor. Just define the memory you need, then assemble your program to disk. The object code will not go into memory, but will become an executable object file on the disk. The syntax is:

ASM,,\#D:filename

You can then take all the cartridges out of your machine, boot DOS, then Load Binary File. If you make these the last two lines of your machine code

$$
\begin{aligned}
& *=\$ 2 E 0 \\
& . \text { WOR START }
\end{aligned}
$$

where START is a label for the start address, your program will run automatically after it is RUN. Otherwise, you'll have to use Run At Address to start your program from DOS.

More Solutions For TI Cartridge Loading Problems

In the January 1984 "Readers' Feedback," I read a question about TI-99/4A cartridge loading problems. The problem was with lockup of the keyboard and broken screen display patterns after insertion of a program cartridge. The remedy given by COMPUTE! was to clean the contact strips of the program cartridge. I've found this to help, yet also discovered that this is not necessarily the complete solution. The cartridge connector extension that protrudes from the main circuit board may also be at fault. To remedy the problem means disassembling the computer, cleaning the contacts on both sides and both ends of the cartridge connector extension. This solved all of the problems I had encountered.

Richard Winslow

About four months after buying my TI, I had the same problem with loading the cartridges. I solved the problem by taking apart the computer and straightening the bracket which the cartridge plugs into. (It was bent.) Works perfectly now.

David L. Jones

Whether you're a beginner or an experienced user, Reston can expand the world of the Commodore 64 $4^{\text {ma }}$ for you.
COMMODORE 64 ${ }^{\text {TM }}$ COLOR GRAPHICS: A BEGINNER'S GUIDE, by Shaffer and Shaffer, explains how the Commodore 64 operates and teaches you how to read, understand and write simple basic programs for generating color graphics. Each topic includes a BASIC programs, line-by-line explanations, and illustrations of what the screen should look like.
COMMODORE 64 ${ }^{\text {mim }}$ DATA FILES, A BASIC TUTORIAL, by David Miller, is a step-by-step tutorial which takes the
mystery and misery out of creating files. You'll learn how to manipulate and create your own files for home, hobby, business, educational, and investment purposes.

ADDING POWER TO

 YOUR COMMODORE 64 ${ }^{\text {min }}$, by Steve Cates and Vahe Guzelimian, uses a first-of-its-kind utility approach to help you master more of the advanced computing power of your machine than you ever though possible. You'll get an inside look at the workings and advanced features, all in an easy-to-understand style.MASTER MEMORY MAP: COMMODORE 64 ${ }^{\text {™ }}$, by Pavelko and Kelly, is a clearly written, friendly guide to all the

Commodore $64^{\text {™ }} \mathrm{s}$ memory locations places inside the computer which act in special ways. You'll learn lots of special uses, including how to make music or create special characters for video games.
You can find these guided tours of the Commodore 64 at your local bookstore or computer store. Or order directly from Reston at (800) 336-0338.

Reston Computer Group

A Prentice-Hall Company 11480 Sunset Hills Road Reston, Virginia 22090
COMMODORE 64 is a trademark of Commodore Electronics

I discovered that slightly lifting the back of an inplace cartridge seems to improve contact. So I cemented a small rectangle of soft black plastic about . 1 inch thick onto the cartridge insertion area to lift each cartridge a little.

I also use a "Widgit" (Navarone Industries) that holds three command modules and prevents some wear and tear on contacts.

John K. Newell

VIC Video Revisited

I made some modifications to Jim Butterfield's program in "Visiting The VIC-20 Video, Part 4" (COMPUTE!, August 1983) that I think your readers will be interested in. Although the program is a little slow, the patterns that result are remarkable.

The program is short, but because of the loops, it runs for a while. To get some really interesting three-dimensional patterns, try inputs with a value of $1.02,1.03,1.04$, etc. The input sets a step value for line 600 . An input of 2 will give a gray field.

William B. Broome

```
1ø0 POKE56,22:CLR
1ø5 INPUT"{CLR}PATTERN #";C
110 POKE36869,222
120 POKE36866,144
130 POKE36867,32
2ø0 FORJ=6144TO8191
21\varnothing POKEJ,\emptyset:NEXTJ
3Ø\emptyset FORJ=\emptysetTO255
310 POKEJ+5632,J
320 NEXTJ
330 FORJ=37888TO38911
340 POKEJ,\emptyset:NEXTJ
60\emptyset FORJ=61ØøTO88\emptyset\emptyset STEPC
6 1 0 ~ X = 1 2 8
6 2 \emptyset ~ F O R K = J T O J + 7 ~
63\emptyset POKEK,PEEK(K)ORX
640 X=X / 2
650 NEXTK,J
7øØ GOTO7Ø\emptyset
Try adding STEP C to line 620 as well, to get another interesting effect.
```


Another Kerosene Warning

A letter in your January 1984 issue questioned the use of kerosene heaters near a home computer. You compared the emissions of a kerosene heater to those of a gas stove, and suggested the use of an electrostatic air cleaner as a precaution.

The sulfur content of most kerosene fuels is high enough to create sulfur oxide levels that are technically in violation of EPA clean air regulations. These sulfur oxides can corrode exposed metals and cause problems with electrical contacts. Besides the corrosion of metals, the sulfur oxides can cause health problems.

Since the combustion products of kerosene
are gases and not particulates, an electrostatic air cleaner will not help clean the air of sulfur oxides. An activated charcoal filter may help, but this is not a common appliance in most homes. Corrosion problems may not occur with other electronic appliances, such as televisions or radios, because the components are soldered or otherwise permanently fixed inside the appliance.

Those appliances which use exposed electrical contacts, such as game cartridges and computer keyboards, are most prone to corrosion by sulfur oxides. Readers should avoid the use of kerosene heaters in a home with a computer, electric typewriter, or silver tea set.

W. J. Tolonen

VIC Graphics And Super Expander

I'd like to share something with other readers who have VIC Super Expanders. We find that it interferes with some programs written for the unexpanded VIC, especially ones with custom characters. When I find such a program, or am told to "remove all expansion devices" for a certain program, I add the following as the first line in the program (or enter it in the direct mode before RUNning the program), and the program runs fine with the Super Expander left in. (In the case of two-part programs, insert the line in the second part.)

POKE51,30: POKE55,0: POKE52,30: POKE56,30: POKE646,6

This has worked on every program I've encountered so far, and what's nice about it is that you are left with the additional memory as well.

> Robert M. Bleich

The Whiz Kids Were Right

I would like to point out an error in your response to David Smith's question about Whiz Kids (COMPUTE!, February 1984). You mention that the sprinkler system that they turned on should have shorted out the terminal they were using. You may have missed this, but it did short out. For a while they were successful in keeping the terminal dry by standing over it, using their jackets as umbrellas. But when the water did get to the terminal, it shorted out.

Karen Wilson

[^0]

The road to floppy success is paved with Gold Standards.

Maxell can speed your success in computing. Helping you avoid the traps that can block the way to the information you've stored. After all, our disk has outpaced every other in performance tests. And earned a lifetime warranty.

Consider this: disks travel through a disk drive where heat builds up. And up. Only Maxell designed its protective outer jacket to defy 140° F. So the disk keeps its shape. And keeps your information on track.

How good is Gold? Maxell's the disk that many floppy drive manufacturers trust to put new equipment through its final paces.
And the unique way we pack our oxide particles and bind them together means quality for the long run.

Dropouts? Disk errors? Just pass them by. You're on the Gold Standard.

I7日Xell

Selby Bateman, Assistant Editor, Features

Your computer screen is a colorful gateway to the world of digitized graphics. But to appreciate all the video magic that's available, you first have to understand the basics. Here's a look at the pixel power behind your computer's video display.
"I remember standing back with everyone else, saying 'There's no way; I'm never going to touch this thing. It's not creative enough,'" says Kari Beims with a laugh. "I took a computer graphics class; it was full of people like me who are in the graphic arts field. And they were petrified."

The "thing" that petrified Beims and her classmates was, of course, a computer; a machine which, when used as a graphics tool, can appear so novel, so daunting, and ultimately so seductive that artists at first exposure may be simultaneously attracted and repelled.

Beims and many others have changed their views about the computer as a graphics machine. An artist at Maximus, Inc., of McLean, Virginia, Beims now uses and helps promote her company's new Visualizer, one of a new breed of graphics software
packages for home computers that is as easy to use as it is useful.
"It's a lot of fun," Beims says. "I can do it, and I have no programming experience. I mean, I walked into here knowing nothing about computers."

An Undeniable Attraction

Graphic artists like Beims may be among the most perceptive analysts of how well a computer functions as a graphics tool. And although the polls haven't yet closed, Beims and a growing number of other artists are predicting a landslide in favor of the computer.
"It's getting-I hate to use this term because everybody says it-but it's getting user friendly; it truly is," Beims says. "People are starting to ask graphic artists what they need, and the results are beginning to show up in the computer software and the peripherals. And we need that.'

The glow of a computer screen is the first thing that attracts many people to computing. You don't have to know anything about pixels, raster scans, character sets, and RGB monitors to appreciate that
something special, something new and powerful is possible when you can decide what appears on a TV screen.

If you want to create colorful, high-resolution graphics for games, business, or art, today's microcomputers have the capabilities to produce almost any image you wish. Peripherals such as light pens, graphics tablets, and touch screens will free you from the restrictions of the keyboard. And graphics software packages are becoming surprisingly easy and powerful tools for designing anything from pie charts to paintings.

You Don't Have To Be A Genius

A 20-year fascination with computer graphics led Joseph Deken to write the text last year for Computer Images: State of the Art, a full-color collection of computer artworks. Deken, an assistant professor of computer sciences and general business at the University of Texas at Austin, uses an Atari 800 and one of the IBMcompatibles at home. He believes you don't have to be a genius to understand and appreciate computer graphics.
"I use graphics to teach

RESTON MAKES THE ATARI CHILD'S PLAY

Reston Computer Group ${ }^{\text {™ }}$
A Prentice-Hall Company 11480 Sunset Hills Rd. Reston, VA 22090

Available at your local bookstore and computer retailer, or call us at (800) 336-0338.

ATARI, ATARI PILOT, ATARI LOGO and ATARI 400, 800, 600XL and 800 XL are registered trademarks of Atari, Inc.

Reston has the books which make learning to program Atari ${ }^{\text {TM }}$ computers fun.

HELLO, COMPUTER: AN INTRODUCTION TO BASIC, by Lawrence P. Huelsman, can help both teen and adult beginners learn BASIC on many computers, including Ataritu, using drills, programming problems, games, cartoons and an easy conversational style.

SURVIVAL ON PLANET X WITH THE ATARI ${ }^{\text {T }}$ HOME COMPUTER, by Orkin and Bogas, uses the exciting adventures of Vivian on Planet X to teach kids basic programming concepts and techniques. The fun is interspersed with short programs, illustrated by noted animator Bud Lucky.
ATARI* LOGO ACTIVITIES, by Steve DeWitt, provides over 150 activities which encourage young and old alike to be inventive and creative when using Atari Logo educational language. The book includes five big projects and an in-depth discussion of Logo.'*

ADVENTURES WITH THE ATARI ${ }^{\text {² }}$, by Jack Hardy, teaches you how to write adventure games in Atari PILOT ${ }^{\text {w, }}$ Microsoft BASIC, and BASIC. It includes six actual adventure games to study, type in, and play, plus tips and techniques to help you create your own.

A+ PROGRAMMING IN ATARI ${ }^{\text {w }}$ BASIC, by John Reisinger, is a selfstudy workbook which gives you step-by-step instructions for BASIC programming on the Atari 400, 800, 600XL and $800 \times \mathrm{LL}^{\text {T }}$ computers. Stressing top-down programming in a fun and friendly manner, this book is perfect for school, workshop and computer camp.
If you want to make learning about Atari ${ }^{\text {™ }}$ computers fun, then make Reston the teacher.

PCjr, the new family
and personal computer from IBM, ${ }^{\oplus}$ comes with a lot of bright ideas to help make computing easy.

The keys, for example, are color-coded to belp you bit the right ones.

Some software programs come with keyboard overlays
to make working with
them more convenient.
Then there's the keyboard iself.

We call it the IBM "Freeboard" because it's free of $a \ldots$

about computers in introductory courses at the university," he says. "I'm always concerned with the stereotype that computers just have to do with mathematics. And I'm concerned with how to get students who aren't mathematically inclined interested in computers. Graphics winds up being a good vehicle for that."

An important first step in anyone's computer graphics education is the knowledge that capabilities costing thousands of dollars on mainframes just a few years ago are now available on inexpensive microcomputers. Learning the basics of computer graphics can now be inexpensive, simple, and often fascinating. Once you've picked up a few of the fundamentals, you'll probably appreciate your computer's graphics abilities even more.

Have Gun, Will Travel

Faster than the eye can followanywhere from 25 to 60 times a second-an electronic "gun" in your television or video monitor discharges a beam of electrons toward the screen. As the electrons hit a phosphor coating on the inside of the video display, the individual picture elements which make up your screencalled pixels-are lighted. This is a cathode-ray tube, the most common television and microcomputer screen display system.

Rapid-fire painting and repainting of the image on the TV screen is accomplished by the electron gun's repeated drawing of a set number of parallel lines (usually 525) from left to right and from top to bottom. This technique, known as a raster scan, occurs continuously and so rapidly that images appear to move smoothly across the screen.

The creation of characters and shapes on your computer screen is similar to the effects produced when thousands of college football fans use flip cards

The selection screen from Penguin Software's The Complete Graphics System.
to spell messages of team support from the stands. The densely packed pixels flip either on or off, and from color to color, in response to directions from the computer. The more pixels, the higher the quality, or resolution, of the screen image.

A monochrome, or singlecolor, video display uses one electron gun. Red-green-blue (RGB) monitors use three electron guns, resulting in a higher resolution than the composite video you're used to seeing on a color television set.

Characters, Grids, And Turtles

There are several ways to create graphic images on a computer screen. First, you can make use of the alphanumeric charactersletters and numbers-built into the ROM (Read Only Memory) of your system. Many microcomputers, such as the Commodore 64 and VIC-20, have a parallel set of graphics charactersvarious lines, curves, and boxes-built into permanent memory. Using them as building blocks, you can combine characters into a variety of figures.

A more time-consuming,
but flexible method for creating graphics is to manipulate the individual pixels. You tell the computer which pixels you want lighted and in what colors by communicating with it in a language, such as BASIC. In a personal computer which has a high resolution of, say, 320×200 pixels, there are 64,000 graphic points which you can potentially control. Locations in your computer's memory literally form a video map of what you can address on the screen.
(For more information on actually creating color graphics on your computer, see COMPUTE!'s First Book of Atari Graphics, COMPUTE!'s First Book of Commodore 64 Sound and Graphics, and other COMPUTE! books.)

Turtle graphics is a third way of producing images on your screen. Based on the Logo programming language, turtle graphics helps to teach programming and geometric principles. A small triangle on the screenthe imaginary turtle-can be directed to move about the screen, leaving an image in its wake. Intricate patterns can be achieved through this simple,

GOT TO DIG DEEP TO FIND A MORE EXCITING GAME THAN

MINER 2049ER.'

Now, Reston brings Commodore VIC-20 ${ }^{\text {mu }}$ and Commodore $64^{\text {tw }}$ owners one of the hottest home computer games ever created-Miner 2049er." Help the legendary Mountie, Bounty $\mathrm{Bob}^{\text {ª }}$ chase the dastardly Yukon Yohan through an abandoned uranium mine-all ten levels of it. But you've got to avoid the deadly radioactive mutants. And watch out for pulverizers, explosives, slides and falls. And grab all the treasure you can along the way. And beat the clock. Any computer game you've played up to now has just been practice for Miner 2049er.' It's fast and furious, a gold mine of action for the serious computer gamer. And Commodore VIC-20 ${ }^{\text {™ }}$ and Commodore $64^{\text {tw }}$ owners can get it only from Reston.

11480 Sunset Hills Rd. Reston, VA 22090 Available at your local computer retailer or call us at (800) 336-0338.

Commodore VIC-20 and Commodore 64 are registered trademarks of Commodore Computer, Inc.

ENTER: THE BRADY ADVENTURE

If you're bored with the ordinary, dreary functions you've been performing day-by-day and even games have lost their luster, Brady brings back the adventure! You and your Commodore 64 can enter a whole new colorful world of excitement if you're in command.

Brady Communications, Inc., puts you in control of the fun with a complete line of amazingly easy-toread books, published especially for
you and your Commodore64. Whether you're a beginner, an advanced user, a whiz kid, a parent, a teacher or a hacker, Brady publishes the books to teach you how to make the most of your computer. From BASIC to games, from graphics to sound, from software to debugging, these books will let you key into your imagination in microtime and bring it up on screen. Enter The Brady Adventure-the excitement is all yours.

BOREDOM

BLAST OFF WITH BASIC GAMESFOR YOUR COMMODORE 64
David Busch

This is the first really fun approach to BASIC ever devised. The book containing time-tested, highly visual games makes it easy to learn BASIC programming on the Commodore 64 computer. It includes 25 games that take advantage of the Commodore's special features including graphics, sound and joysticks. The programs are even suitable for customizing for further fun.
1984/128pp/paper/ISBN 0.89303-333-2/\$12.95

BLAST OFF WITH BASIC GAMESFOR YOUR VIC 20 David Busch

Twenty-five games make it simple to learn BASIC for your Vic 20. With twenty-five, time-tested, highly visual games, this book lets you take full advantage of the fun available on your Vic 20 .
1984/128/paper 0-89303-334-0/\$12.95

COMMODORE 64: AN INTRODUCTION TO BASIC PROGRAMMING AND APPLICATIONS

Larry Joel Goldstein \& Fred Mosher
In this volume the master teacher has taken a hands-on approach to BASIC language and practical reallife applications. The book gives a complete and up-to-date account of what the Commodore 64 is and how it works. Page by page, the reader is introduced to DOS and BASIC. It shows how to program for personal and professional needs and includes programs for mailing lists, word processing, telephone lists, graphics, sound, and file handling - plus extensive coverage on structuring, planning, and debugging programs. 1984/288pp/paper/ISBN 0.89303-381-2/\$14.95

ADVANCED BASIC PROGRAMMING FOR THE COMMODORE 64 AND OTHER COMMODORE COMPUTERS Michael Richter

This is the next step for the Commodore user who has mastered the basics and wants to move on to more advanced software. In this book, the reader will learn how good programs are written, how to read and use them, how to know a good one when they see it, and how to gain knowledge through the experience of writing advanced software.
1984/204pp/paper/ISBN 0-89303-302-2/\$14.95

COMMODORE 64: GETTING THE MOST FROMIT Tim Onosko

Written for users with little or no previous programming experience, this handy guide is the only source with information on all three versions of the Commodore 64. It includes material on both the classroom model and the portable version. It offers a thorough and understandable introduction to the computer-including a solid approach to BASIC programming. It covers word processing, color graphics, and sound.
1983/320pp/paper//SBN 0-89303-380-4/\$14.95

BRAIN GAMES FOR KIDS AND ADULTS USING THE COMMODORE 64 John Stephenson

Between the front and back covers, this volume contains more than 40 exciting and challenging games. Designed to entertain and educate the reader, it teaches programming and the application of some very important mathematical concepts, without the pain. The games are short and precise and are targeted toward whose who learn best by doing. They can be played and enjoyed without an understanding of the mathematics involved. This is one volume you'll want to have for fun-for kids of all ages!
1984/160pp/paper/ISBN 0-89303-349-9/\$12.95

BRAIN GAMES FOR KIDS AND ADULTS USING THE VIC 20

 John StephensonThis is the volume especially for your Vic 20 . Containing more than 40 challenging games, the book teaches programming and some basic mathematical concepts simply in the doing. Be sure and have this book to make your Vic 20 more fun.
1984/160pp/paper/SSNN 0-89303-347-2/\$12.95

HANDBOOK OF BASIC FOR THECOMMODORE 64 Fred Mosher \& David Schneider

For the beginner, here is the book to buy with your Commodore 64. It is simply organized by BASIC programming statements so while programming, the user can go directly to the information he needs without confusion or delay. This one-of-a-kind guide contains the same information as the BASIC reference manual supplied with your Commodore, rewritten especially for the new user. It presumes no knowledge of BASIC and explains the materials supplied in the manual.
1984/256pp/paper/ISBN 0.89303-505-X/\$14.95
These and other Brady Books written specifically for your Commodore 64 and Vic 20 are available at B. Dalton Booksellers, Walden Books, and other fine bookstores and computer dealers nationwide. Or, call 800-638-0220 for information. Brady Communications, Inc. is a PrenticeHall Company, located in Bowie,

BRADY
but subtly powerful graphics language system.

To Mimic More Closely

As microcomputers become more sophisticated graphics machines, a similar process is occurring with the devices used to draw and paint images on the computer screen. The graphics software now available relies more and more on such peripheral devices as joysticks, light pens, graphics tablets, touch screens, and mice (defined below).

These peripherals fall into three basic price ranges, according to research conducted by Koala Technologies, producer of the KoalaPad Touch Tablet and the Gibson Light Pen. You can find game paddles and most joysticks from $\$ 15$ to $\$ 30$; trackballs, mice, graphics tablets, and better light pens from $\$ 30$ to $\$ 400$; and precision tablets, called digitizers, from $\$ 400$ on up. (See "Light Pens And Graphics Tablets" and "A Graphics Glossary," both in this issue.)

All of these devices attempt to mimic more closely the actual procedure of drawing or painting on a flat surface, as opposed to the more indirect, less satisfactory process of typing in graphics commands on a keyboard. Often, a joystick, light pen, or graphics tablet may be used in conjunction with keyboard commands to produce lines, boxes, circles, rays, points, and various fill patterns.

Other commands allow you to transpose and merge images, lock onto and move parts of a picture, magnify sections of an image for more detailed work, save pictures for later use, and select or change colors.

For Atari And Commodore

Kari Beims says that a mouse-a hand-controlled device which rolls on a flat surface to move the screen cursor-is the most successful device for creating

A Graphics Glossary

ASCII: (Pronounced askey) American Standard Code for Information Interchange. A standard code used in microcomputers to represent alphanumeric information (letters, numbers, and symbols). The capital letter A, for example, is represented in ASCII code by the number 65.
bitmap graphics: A high-resolution graphics plotting technique by which pixels (picture elements) on a computer screen are turned on and off.
CAD: Computer-aided design. The use of computer graphics to help in design development and modification, often eliminating the need to create costly or dangerous prototypes. CAD is usually associated with CAM, or computer-aided manufacturing.
character graphics: The text characters that appear on your computer screen when it is turned on, including letters, numbers, symbols, and punctuation marks.
CRT: Cathode-ray tube. A video display terminal, such as a television or video monitor, which uses a beam of electron particles to draw images on a screen's phosphor coating. The electron beam can write on the screen with a single beam or, more commonly, in a series of parallel lines to form an image. (See raster scan and vector scan.) electron gun: The mechanism within a CRT which shoots a narrow beam of electrons at the screen, creating images. The beam is constantly redrawing the screen at speeds usually ranging from 25 to 60 times a second. Monochrome (single-color) displays use one electron gun. Red-green-blue (RGB) displays use three separate guns (one for each color), and have a higher resolution than the composite color displays found on television sets.
fractals: Geometric patterns which, when repeated, can create new patterns seemingly unrelated to the original forms. Especially useful in computer generation of detailed maps and duplication of the intricacies of many natural objects.
graphics set: The complete set of graphics characters that a computer can display.
graphics tablet: A pad, usually square or rectangular, on which the X and Y coordinates of the computer screen can be plotted by the use of a stylus, or, on some models, your finger, allowing you to create graphic images.
icons: Graphic symbols, most often used as visual representations of computer software options and procedures. For example, a paintbrush icon would represent the painting option in a graphics software package. Similarly, a trash can icon might indicate a delete option.
image processing: Computer enhancement and alteration of photographs and other graphic images by digitizing a picture into pixels, each of which is then measured for light and color intensity. The pixels can subsequently be manipulated to change the image.
light pen: A stylus which emits low-level electrical pulses and, when pulled across a computer screen, creates an image. Most often used in creating graphics and in interacting with software menu options.
graphics. "It's closer to the kind of tools you're used to working with. With a joystick or a light pen, it's a little different. The mouse lets you work flat-on;
you've got more control. And it's closer to the actual production work you've done before," she says.

Software companies are

Logo: An easy-to-use, graphics-oriented programming language originally developed to help children learn programming and the concepts of geometry.
mouse: A small hand-controlled device which rolls on a flat surface, allowing you to control the screen cursor, draw graphic images, and select from menu options.
phosphor coating: The coating inside a CRT that glows when struck by a beam of electrons. A computer activates an electron gun to draw and redraw graphic images at high speed on the coating, thus producing graphics that appear to move smoothly across the screen.
pixel: Picture element. The smallest graphic point addressable by a computer. Pixels are turned on or off to form the characters and graphic images on a computer screen.
raster scan: A video picture drawn by an electron gun which sweeps horizontally across the screen in a series of parallel lines at a high rate of speed. The most common method by which a microcomputer system displays a screen image.
resolution: The clarity of a video image based on the number of pixels available on the display screen. The more pixels there are, the higher the resolution and the more detailed the screen image.
RGB monitor: Red-green-blue monitor. A high-resolution color monitor which uses three electron guns to produce very clear and crisp images. By comparison, a color television would normally have a composite color video system in which the three primary colors would be blended, producing a lower quality video display.
simulation: Computer graphics created to model reality in appearance and usually in performance. Numerous airline companies, for example, use computer-generated flight simulations to help train their personnel.
sprite graphics: Sometimes called movable object blocks (MOBs), sprites are programmable graphics characters that can move around the screen independent of the primary screen image, the background. touch screen: A video screen or plastic screen overlay which allows you to draw, write, and make menu selections from the screen at the touch of a finger or stylus.
turtle graphics: Closely associated with the Logo programming language, the turtle graphics system is most often used in an educational context, especially in teaching children about computer programming and geometric shapes. A triangular screen cursor (the turtle) moves across the face of a display monitor in response to directions entered into a computer, allowing the user to program a wide variety of geometric graphic images.
vector scan: A video picture drawn by the focused beam of an electron gun, much like a pencil's movement across a piece of paper. This produces a slower, but higher quality, video image than the parallelline technique of a raster scan.
video chip: A tiny microprocessor on a silicon chip which handles the video data within a computer, assisting the central processing unit (CPU) by managing the screen image.
exploring all types of input devices in order to give users the right mix of creative flexibility and control. The newer packages offer more options, and a greater
number of practical applications as well.

One such product is the Visualizer graphics animation package introduced by Maximus,

Inc., at Softcon, the international conference and trade fair of the software industry, held recently in New Orleans. Available now for the Atari computer with at least 48 K and disk drive, the $\$ 49.95$ package should be ready for the Commodore 64 in May.
"The goal with Visualizer was to create a graphics program completely for the nonprogrammer, which would be useful besides just being a creative outlet," says Beims. "The Visualizer gives you the option, in addition to creating slides, of adding animation effects and putting together a slide show using up to 26 screens.

Synchronizing Slides And Sound

"You can synchronize them with an audio track so that you've got a customized audiovisual presentation. You can move the slides ahead manually, or use a timer through the computer," she says. "In addition to being a graphics program, it's useful. You can use it for teaching, training, business and sales presentations, retail advertising, and instructional lessons for the kids at home."

The package uses automatic drawing functions for circles, ovals, boxes, borders, and diagonals, and has 18 different text style options that can be used with graphics. The slides you create can be printed in black and white with an Epson MX (with Graftrax), FX, or RX series printer, or with a C. Itoh (NEC, Prowriter, or other) printer. A joystick is used for drawing, with a variety of colors and brush sizes available.

Two more recent graphics software products which combine usefulness with ease of use are The Graphics Magician (on disk for Apple, Atari, and Commodore at $\$ 59.95$ and for IBM by the end of 1984) and The Complete Graphics System (on disk for Apple at \$79.95), both from Penguin Software.

The Visualizer by Maximus，Inc．，allows a variety of text faces to appear on the same screen with animation graphics．
＂With The Complete Graphics System，I basically wanted to set up an all－in－one tool for people to use to create computer graphics，＂says Mark Pelczarski， founder and president of Pen－ guin Software．

Hundreds Of Colors And 3－D T00

The package is compatible with most input devices，and allows three－dimensional line drawings to be reproduced on a variety of plotters．There are over 100 avail－ able colors and 96 brushes．Por－ tions of any individual screen may be magnified from two to eight times for easier manipula－ tion of pixels．And text may be added with graphics in a variety of ways．

Penguin also sells several programs which can be used in conjunction with The Complete Graphics System．Additional Type Sets（\＄19．95）provides 50 extra typefaces and character sets． Map Pack（\＄19．95）includes out－ line maps of all 50 states，the continents，the U．S．，and Cana－ dian provinces．Transitions （\＄49．95）is a presentation system
which will let you organize pic－ ture disks and turn them into slide shows．More than 35 dif－ ferent screen wipes are available． That is，you may clear the screen from top，bottom，left，or right sides；use geometric－pattern clearing techniques and wind－ shield wiper effects，among others．Finally，Paper Graphics （\＄49．95）is a utility that will let you print any high－resolution graphics screen to your printer．
＂The Graphics Magician soft－ ware is actually two different sets of programs．One is a draw－ ing program geared toward people who are going to use it in ［creating］other software－like educational software，＂says Pelczarski．＂There＇s a huge amount of educational software out there that＇s been done using The Graphics Magician．＂

The Graphics Magician uses machine language animation routines with the same tech－ niques that are used on arcade games．Up to 32 independent objects can be assembled in the animating process．The package also includes a high－resolution picture／object builder，which lets
you store hundreds of color pic－ tures on a single disk．More than 100 colors are available for use as well．

Screens A La Mode

Almost all of the top－selling microcomputers have extensive grạphics capabilities，but you＇ll want to spend some time learning your own machine＇s features．

The Apple IIe，for example， has a high－resolution mode with six colors and 280 pixels hori－ zontally by 192 pixels vertically． There is also a 40×48－pixel low－ resolution mode with 16 colors． Apple＇s new Macintosh，which uses a monochrome display，has a whopping 512×342－pixel re－ solution．Obviously，very fine graphic detail is possible with this many pixels．

The Commodore 64 has 16 colors，several modes－includ－ ing a 320×200 graphics mode－ and eight independently pro－ grammable sprites（ 24×21－pixel movable screen objects），which allow you more opportunities to create animation．The VIC－20 also has 16 colors and a graphics resolution of 176×184 ．

The Atari 600XL and 800XL each have 320×192 graphics resolutions，as well as 256 colors （ 16 colors with 16 luminance levels for each color）．But the Ataris also have 11 different graphics modes，or varying com－ binations of colors and pixel densities，which extend its graphics capabilities．

PC Pixels

IBM＇s PC and PCjr each have the same 320×200－pixel，four－ color，high－resolution graphics mode，as well as the same 640 x 200，two－color mode．But the PCjr also has three other graphics modes that the PC doesn＇t：a $160 \times 200,16$－color，medium－ resolution mode；a 320×200 ， 16 － color，high－resolution mode； and a 640×200 ，four－color，high－ resolution mode．

Professional quality com－ puter graphics systems may start

Now your home computer can help you cook, keep your accounts, find an address or keep track of your record and book libraries-with first-class software specially tailored for the home environment.

The Home Organizer '" series includes a wide range of separate and individual programs for different activities like stamp collecting, personal banking, or home photo and movie collections. Each one is pre-programmed with a "page" format planned out by experts to make it easy for you to store and retrieve the information you'll want for your special activity. You don't have to program anything yourself. Just load the disk and start feeding in your data.
If you're used to run-of-the-mill home computer software, the speed and simplicity of the Home Organizer ${ }^{\text {r" }}$ series will surprise you. Each program is written entirely in "machine language", the most basic computer code. So they search, sort and analyze your data with amazing speed.

The Home Organizer ${ }^{\text {TM }}$ is fast enough to sort through your household belongings in seconds, yet so simple the children can use it to look up a phone number. Choose any or all program modules that fit your needs. They make ideal gifts, too!

"Excellence in Software"

A scene from the animated graphic adventure, Ring Quest, which was created with The Graphics Magician by Penguin.
at about a 600×500-pixel resolution and go up from there. Color choices and luminance levels can go into the millions. Threedimensional perspectives and complex simulations of actual processes, such as flying an airplane, are among the complexand costly-features of some mainframe and mini computers.

A Child's Garden Of Graphics

Two programs by Scarborough Systems, Inc., make use of the computer's ability to create dynamic graphic images in a manner easy enough for a child to accomplish.

Picturewriter, by Dr. George Brackett, is an educational drawing program for children from 4 to 14 years of age, which Scarborough markets for the Apple computers at $\$ 39.95$ suggested retail price. Its origins, says Brackett, are in work he did teaching children about the Logo programming language. When he asked a little girl one day what she wanted to draw, she suggested a rainbow-not the easiest of images to produce via Logo.
"So I began to think about what kind of program I would like to have that would make it easy for children to draw a rainbow," he says. "And it was pretty clear that it had to have a pointing device, like a joystick, rather than a keyboard. I also felt it had to have fairly extensive editing capabilities."

As children use Picturewriter, they can learn about spatial and color relationships, the development of geometric patterns, and the basics of computer programming at the same time that they're creating colorful pictures. A selection of preprogrammed works allow the child to alter the designs and colors as well.

Patterns For Apple, Commodore, And IBM

Another program, which Scarborough demonstrated at the recent Softcon show, is Patternmaker, a drawing and patterncreating program for children six years and older and for adults. The package is scheduled to be available in May for Apple computers and by August for Commodore 64 and IBM machines,
at a suggested price of $\$ 39.95$.
"Its educational value is that it gets children comfortable with symmetry, rotations, transformations, inversions, and so on," says Scarborough President Francis Pandolfi. "It makes it easy for them to use those concepts to make beautiful patterns. Symmetry is a very important concept in many areas of science, not to mention art. And the program's manual brings the child through all areas of art in which symmetry has been important."

As you'll quickly find out when studying what's available for microcomputer graphics, the products are coming fast and furious. Softron, Inc., for example, makes a Home Decorator program ($\$ 34.95$ for Commodore 64; other versions planned soon) that teaches about colors, furniture layout, and decorating theory for your home and office. The package even lets you select carpeting, paint walls, and move furniture.

The Age Of Discovery

Other programs, like Access Software's Spritemaster (\$34.95 for Commodore 64) and AvantGarde's StarSprite series (for Apple computers), show you how to produce sprites for use in multicolor animation.

There are literally hundreds of other graphics programs currently available. And there are numerous books and magazines which will teach you how to create your own colorful graphics.
"I think more and more people are discovering the graphics capabilities of computers," says Mark Pelczarski. "In the last couple of years, we've learned how to make software more easily understood. And with computers like the Commodore and the Atari really hitting the mass market, a lot of people who never would have dreamed of having a computer five years ago are learning about all the capabilities."

Get the jump on the weatherman by accurately forecasting the local weather yourself?

The beautiful princess is held captive by deadly dragons. Only a knight in shining armor can save her now!

A time-saving organizer for coupons, receipts and more.

A scientifically proven way to develop an awesome memory.

Cut your energy costs by monitoring your phone, electric and gas bills.

School-age and pre-school children are rewarded for right answers, corrected on their wrong ones.

You are trapped in a fivestory, 125 -room structure made entirely of ice. Find the exit before you freeze!

Computerize car maintenance to improve auto performance, economy and resale value.

A real brainflexer. Deflect random balls into targets on a constantly changing playfield.

Take control of your personal finances in less than one hour a month.

Create multi-colored bar graphs with a surprisingly small amount of memory.

A fun way to dramatically increase typing speed and accuracy.

Get up to 30 new programs and games for less than 15 cents each every month in COMPUTE!

Every month, COMPUTE! readers enjoy up to 30 brand new, ready-to-run computer programs, even arcade quality games.

And when you subscribe to COMPUTE! at up to 40% off the newsstand price, you'll get them all for less than 15 cents each!

You'll find programs to help you conserve time, energy and money. Programs like Cash Flow Manager. Retirement Planner. Coupon Filer. Dynamic Bookkeeping.

You'll enjoy games like Air Defense, Boggler, Slalom and High Speed Mazer.

Your children will find learning fast and fun with First Math, Guess That Animal and Mystery Spell.

Looking for a challenge? You can write your own games. Customize BASIC programs. Even make beautiful computer music and pictures.

It's all in COMPUTE! All ready to type in and run on your Atari, Apple, Commodore, PET/CBM, TI 99/4A, Radio Shack Color Computer, IBM PC or IBM PCjr.

What's more, you get information-packed articles, product reviews, ideas and advice that add power and excitement to all your home computing.

And when it's time to shop for peripherals or hardware, check COMPUTE! first. Our product evaluations can save you money and costly mistakes. We'll even help you decide what to buy: Dot-matrix or daisy-wheel printer? Tape storage or disk drive? What about modems? Memory expansion kits? SUBSCRIBE What's new in joysticks, paddles and track balls?

NOW AND
SAVE UP TO

40\%ON COMPUTE!

Yes! Start my subscription to COMPUTE! for: $\square 1$ year $\$ 24-32 \%$ off! $\square 2$ years $\$ 45-36 \%$ off! $\square 3$ years $\$ 65-40 \%$ off!
\square Payment enclosed \square Bill me

Return the coupon or postpaid card today!

Charge my \square Visa \square MasterCard \square Am.Ex. Account No. \qquad
EXP. DATE
Name
Address
City

Light Pens And Graphics Tablets:
 New Ways To Communicate With Your Computer

Kathy Yakal, Editorial Assistant

You don't have to be an artist to use them. Or a three-year-old. Or a professional architect, engineer, or fabric designer. Light pens and graphics tablets, along with the software that drives them, are making computing easier for young children and adding new dimensions in graphics for everyone.

Whether or not we admit it, we've probably all responded to our computer's SYNTAX ERROR message by typing "Syntax error? I typed it right!"

We may have jabbed a finger at the monitor to show our word processing program precisely which block of text we wanted moved and where we wanted it placed. Or maybe drawn a picture of a spaceship and held it up to the screen to illustrate exactly what we wanted displayed there after typing in a machine language game for the better part of a weekend.

The computer never seems to understand.

Interacting with a microcomputer can sometimes prove exasperating. You still have to talk to a computer in a language it understands. They don't yet respond to written or spoken English.

Animation Station, a graphics tablet designed by Suncom, offers a number of colors and textures for drawings like this.

ONETOUCHESPDUDR.

Time was, Billy would do almost anything to duck his spelling homework.
But since Dad brought home Spellicopter ${ }^{\text {m }}$ by DesignWare, ${ }^{\text {TM }}$ Billy has become a spelling ace. As well as an ace chopper pilot. Each week, in addition to the words already in the game, Billy types new spelling words and new sentences into the game Then he takes command of his chopper and flies a mission through crowded skies and mountainous terrain to recover the words, letter by letter. And always in the right order.
So by the time Billy gets back to the base, he's one proud pilot. And one tough speller.

DESIGNWARE MAKES

 LEARNING COME ALIVE.All DesignWare spelling programs
combine computer game fun with sound educational principles to help improve your youngster's spelling skills. That's why Spellicopter, for example, is consistently on the nation's best seller lists. You'll also want to keep an eye out for new math and science games.

All DesignWare programs run on these computers with disk drive: Apple, Atari, Commodore 64, ${ }^{\text {TM }}$ IBM PC and IBM PC Jr. See your local software retailer or call DesignWare at (800) 572-7767 (in California $415-546-1866$) for our free software catalog. You'll be delighted with the way your kids will learn with DesignWare.

DerignUlWare
spelakazam Derigniliare

Today's most innovative educational software began here 60 years ago.

At Scholastic, we have something no other educational software company has: 60 years' experience making learning fun for kids.
We began in the schoolrooms of the 20 's with the first national news magazine written especially for young people, The Scholastic. Since then, our one magazine has grown into 37 , and we've become the largest educational publisher of books and magazines in the English-speaking world.
Now we've put everything we've learned from five generations of school children into the most innovative family of educational software available today. Scholastic Wizware. ${ }^{\text {TM }}$
Our experience makes Wizware different from all other educational software. It turns learning subjects like geography, writing and spelling into exciting adventures for your children. And because every Wizware game is interactive, kids become deeply involved in what they're learning.
What's more, our experience has taught us the importance of teaching things most other educational software leaves out. Like teamwork, imagination, critical thinking and problem solving. You'll find them all in Wizware.
But by far the most important result of our experience is that your children will thoroughly enjoy learning with Wizware.

There are now Wizware programs for teaching everything from creative writing to computer programming. Here are a few of the ways we bring learning into the Computer Age.

Spelldiver. ${ }^{\text {rM }}$

It's the most ingenious way ever devised for teaching spelling and improving reading skills. Deep beneath the sea lie giant words covered by a strange seaweed called lettermoss. Kids must face ferocious sharks and pesky flippernippers to remove the lettermoss and decipher the words.

Agent U.S.A. ${ }^{\mathrm{TM}}$

Agent U.S.A. turns geography into an exciting race to save the nation from the ruthless Fuzzbomb. Along with learning geography, children hone their problem-solving and reasoning abilities.

Story Tree. ${ }^{\text {TM }}$

Story Tree can bring out the Mark Twain in every child. Budding

Spelldiver, Agent U.S.A. and Bannercatch designed and developed by Tom Snyder Productions, Inc. Story Tree designed and developed by George Brackett.
authors create their own mystery and adventure stories. A remarkable feature lets them weave alternate choices into every turn of the plot, and challenges their imaginations to the maximum.

Bannercatch ${ }^{\text {TM }}$

Based on the classic game of Capture-the-Flag, this is the most sophisticated and fun strategy game for kids available today. Not only do players learn how to devise complex strategies, they also learn how to work together to solve difficult problems.
Scholastic Wizware. Our experience makes all the difference.
Look for Wizware at your local computer store. Or contact Scholastic Inc., 730 Broadway, New York, NY 10003, 212-505-3000.
DScholastic Wizware

Spelldiver, Agent U.S.A. and Bannercatch available for Atari 800/1200/XL. Commodore, Apple and IBM versions available soon. Story Tree available for Apple.

A Pointer To The Future

But graphics tablets and light pens bring us a step closer to easy communication by allowing information entry to bypass the keyboard. Like mice and joysticks and the keyboard itself, light pens and graphics tablets are input devices, peripherals through which you interact with your computer.

These pens and tablets do basically two things: draw and point. You can use them to select user options in menu-driven software and to create graphics.

A light pen is like a magic wand. It resembles a regular pen in size and shape, and has a cord that plugs into the computer. When you point it at the screen and activate it (either by pressing a switch on the pen itself or a key on the keyboard), it responds to whatever software you're running.
manufacturers and software publishers, is beginning to design software that can be used with a light pen. "The potential applications are enormous," says Byrne Elliot, president of Inkwell Systems, another pen manufacturer.
"Not just being able to point at a menu option you might want. They'd be great with even things like spreadsheets and word processors. Instead of learning a lot of control commands that can be very frustrating, you can move text and figures around quickly and easily."

Doing What Comes Naturally

If you've ever tried using spray paint to letter a sign or illustrate a big banner, you have an idea of what drawing with a light pen feels like. The stream of color sometimes comes out faster than you can control it.

Drawing on a graphics tablet is not quite so novel a technique to master. It's like drawing on a piece of paper with a pencil, or drawing pictures on a steamy windowpane with your finger.

Using these pens or tablets is, however, intuitive, to a degree. "Among the first skills that everyone learns when they're young is drawing or writing," says Howard Leventhal, president of Suncom, manufacturers of Animation Station. "There are no other input devices that let someone do that in such a friendly way."

This may be why these new input devices are being so highly touted as educational tools. "There's a strong motivation for people to buy for educational purposes," says Leventhal.

Touch-Sensitive Input

A graphics tablet looks a little like an Etch-ASketch, though each manufacturer's is a little different. Instead of pointing at the computer screen, you touch the surface of the tablet with your finger or a stylus.

Though light pens and graphics tablets are fairly new on the home computer scene, they've been used as design tools with larger computers for years. The technology is not brand-new.

Where's The Software?

The Edumate Light Pen, from Futurehouse, Inc., comes with introductory software that demonstrates the pen's features. If that's where it ended, the skeptics' claims that these tools are just gimmicks might be true.

But Futurehouse, along with other light pen

Like Being A Kid Again

It's not hard to see why graphics tablets and light pens can open the world of computing for children. These peripherals don't require the handeye coordination or knowledge of letters and numbers that a keyboard does.
"Light pens are superb for education. They really expedite the learning process," says Elliot. "They're a good way to get around the intimidation of the keyboard. To respond to software using a keyboard, you have to type in a series of letters and numbers, then return. The light pen is generally $10-15$ times faster than that.'

Bob Ranson, president of Chalkboard, agrees. "Graphics tablets allow the preliterate child to use a computer without having to deal with a keyboard," he says. "There are lots of two- and

HLE WORLD'S GREAIST BASEBALLCAME. HHERES MUCH MORETO WHNHCHHN JUST PIICHING, HINHEATADIC.

Real baseball is more than just hitting, pitching and fielding. It's also your favorite major league teams, the great stars of today and the
Allstars of yesteryear. It's statistics and coaching, and it's managing your own game strategy. With the World's Greatest Baseball Game, you have it all. Pick your major league line-up using the actual player and team stats. Then watch the action unfold against
an opponent or the computer. Two modes let you choose between managing and controlling your team or managing only. The World's Greatest Baseball Gameeverything you could ever want except the hot dogs and peanuts.

One or two players; joystick controlled.

The Inside Story:

How Graphics Tablets And Light Pens Work

Ottis R. Cowper, Technical Editor

Many programmers find graphics tablets and light pens among the most mysterious of peripherals, but the principles of both are really fairly simple.

The graphics tablet is similar in operation to the more familiar game controller paddles. A paddle consists of a variable resistor, a device which can vary the amount of electric current passing through it. For example, rotating the paddle all the way clockwise would allow full current to flow; turning it completely counterclockwise would cut off all current. A computer which accepts paddles must have circuitry which can read the varying current and provide a numeric reading which is proportional to the current, and hence to the position of the paddle knob. This is usually zero when the paddle is rotated all the way in one direction, 255 when the paddle is turned completely in the opposite direction. Joysticks for the Apple, Color Computer, and IBM function in a similar manner, with one resistor on the horizontal axis and another on the vertical.

Graphics Tablet Positions

In a graphics tablet, thin sheets of a special film are used in place of the variable resistors. When you press down on the film, a current flows, with the amount of resistance depending on where on the film you press. For example, if the film is set up to register horizontally from left to right, pressing on the left edge is equivalent to turning the paddle for minimum resistance, while pressing on the right edge is like turning the paddle for maximum resistance.

The working area of the tablet consists of two sheets of this film, one arranged to register horizontally and one arranged for
vertical measurements. The same circuitry used to read paddles (or Apple and IBM joysticks) can be used to read the tablet-the computer interprets each of the sheets as a paddle. What would normally be one paddle reading is the horizontal position of the point on the pad being pressed, while the other reading gives the vertical location.

One significance of graphics tablet design is that you should be able to substitute paddles (or the joystick for Apple or IBM) in programs which call for the tablet. Conversely, you might experiment with using the tablet in programs which call for paddles, although the tablet isn't likely to replace paddles for playing Pong or Breakout.

Holes Of Light

To understand how a light pen works, you must first understand how screen images are created. The chief element of any video display device, television or monitor, is a cathode ray tube (CRT), a sealed glass funnel with an electron "gun" in the narrow end and a specially coated screen across the wide end. The gun shoots electrons at the screen, leaving tiny bullet holes of light where the electrons strike the dark screen.

The shots are not random; they are carefully targeted by powerful electromagnets, the big coils of wire around the throat of the CRT if you've ever looked inside a TV or monitor. Starting at the upper left corner of the screen, the gun is swept across at a constant speed. Shots are fired at the spots that need to be lit up to form part of an image. When the gun has swept all the way across to the right edge, firing is halted while it is aimed at the left edge again, slightly lower than on the first pass. Thus, the spray of

PUYALEPNIC: KEN USTONTHIUKSHE CNI DRIVE YOU CRAYA6

So you think there's no puzzle too tough for you and no video game you can't beat. Welcome to PuzzlePanic-The
computer game that's sure to have you crying "uncle." Designed by Ken Uston, blackjack and arcade game player extraordinaire, PuzzlePanic takes you through 49 increasingly difficult screens based on seven different games of action, logic,
strategy and challenge. Compared to PuzzlePanic, Rubik's Cube is child's play. So put on your thinking hat, grab your joystick, get ready for the contest of your life, and let Ken Uston drive you crazy.

One player; joystick controlled.

Strategy Games for the Action-Game Player

shots forms rows across the screen. Several rows are required to form a character. For example, alphanumeric characters for many computers are eight lines tall. To see this, type some spaces in inverse video. If you look closely, you'll see that the reverse space character is a stack of thin, closely spaced lines rather than a solid block.

The drawing process must be repeated over and over because the bullet holes of light glow for only a fraction of a second before fading away. In most computers, the screen is redrawn every $1 / 60$ second. If you had a very fast stopwatch that you started when the gun began firing at the upper left corner, you could read the elapsed time on the watch when the spray of electrons reached any particular point on the screen and, from this reading, determine how far you were from the starting position at the upper left.

This is the secret of light pen operation. In its simplest form, the pen is a plastic cylinder housing a phototransistor, a lightactivated switch. (The phototransistor is what you see behind the lens at the end of the pen.) When the pen is held to the screen, the beam of electrons which light up the screen triggers the phototransistor, causing it to signal the computer that the beam has been detected. The computer must then check its video stopwatch to see how much time has elapsed since it started drawing the screen. It can then compute where on the screen the
pen is being held.
If the screen is being drawn many times a second, the pen will detect the spray of electrons each time the screen is drawn. Since the spots of light are so small, the pen may be triggered at a slightly different point each time. The readings you get from simple pens can thus be somewhat unsteady, especially for the horizontal location of the pen. Programs written for simple pens usually require that you touch a key on the keyboard to tell the computer when you want the reading to be accepted.

More sophisticated (and hence more expensive) pens have additional circuitry which allows them to latch after triggering so that the readings do not change every time the screen is drawn. This means the readings will be much more stable, and that you will not need to use the keyboard. A switch in the pen tells it when to hold the current reading. In some, the switch is built into the nose of the pen so that you latch the reading by simply pressing the pen against the screen.

If you want to use a light pen or a graphics tablet with your own programs, keep in mind that they won't draw on the screen for you. Like a joystick or a set of paddles, the pen or pad provides only numeric readings. It's up to you to write the software which will decipher the input from the pen or tablet and then accomplish something in your program.
three-year-olds using them."
Beyond that, graphics tablets and light pens can attract adults as well. "People seem to enjoy being able to sit down and draw," says Ranson. "Graphics tablets meet a fundamental human need-the need to express oneself."

Light Pen Elbow?

The naysayers to these new communication tools complain about physical inconveniences. Your arm can get tired from holding the light pen. The cord can get tangled and caught under things. It can be confusing to look back and forth from the tablet to the screen.
"There is a spatial problem when you're writing or drawing on the screen," says Ranson. "But I don't think it's major." Elliot argues that "Once familiarity sets in, you don't look at the tablet."

A more serious accusation is that they're kids' stuff, that you can't do more than draw pictures of trees and bunnies and houses.
"Granted, they're great for kids," says Byrne

Elliot. "I know a lot of kids use Flexidraw for things like making valentines. But I also know of women who use it to design wallpaper and make dress patterns, and professionals who draw up plans for the interiors and exteriors of buildings with it. Graphics is becoming a lot more important to different kinds of people."

Input For The Future

Will a new input device come along that will make pens and tablets or, for that matter, keyboards obsolete? "Voice recognition is not as simple as some people think," says Chalkboard's Ranson. "Say you're a writer and want to sit down and dictate your work. I defy you to read everything you write all day. You'll lose your voice.
"Until we've reached the ultimate, there will be a lot more people exploring how to get into the computer other than QWERTY. We've been existing with joysticks and keyboards for a long time now. There will always be room for more than one input device."

Now, you can introduce your Commodore $64^{\text {TM }}$ to the Work Force: affordable, easy-to-

 use software and hardware that will unleash the power you always expected from your Commodore $64^{\text {TM }}$, but thought you might never see.
PaperClif ${ }^{\text {TM }}$

 is simply the best word processing program of its kind-loaded with advanced features, yet so easy to use even a novice can get professional results. With SpellPack ${ }^{\mathrm{m}}$, it even corrects your spelling! Once you've tried it, you'll never use a typewriter again.
The Consultant ${ }^{\text {Ti }}$
 (formerly Delphi's Oracle)

 is like a computerized filing cabinet with a brain. Organize files for recipes, albums, or the membership of your service club. Then search, sort, arrange and analyze your information with speed and flexibility that's simply astounding.
SpellPack ${ }^{\text {T }}$

teaches your 64 to spell. It checks an entire document in 2 to 4 minutes against a dictionary of over 20,000 words. And you can add up to 5,000 of your own specialized terms. Type letter perfect every time!

BusCard II ${ }^{\text {iu }}$

is a magic box that lets you transform your humble home computer into a powerful business machine. It gives you the added power of BASIC 4.0, and lets you add IEEE disk drives, hard disk, virtually any parallel printer, and other peripherals without extra interfaces. Completely software invisible.

B.I. $-80^{\text {T }}$ Column Adaptor gives you crystal clear 80 column display. Using the highest quality

 hardware, we've eliminated the problems of snow, fuzziness and interference.Basic 4.0 commands greatly simplify disk drive access. Switches easily from 40 to 80 column display.

Discover the true power of your Commodore $64^{\text {tw }}$. Ask your dealer about the Commodore $64^{\text {™ }}$ Work Force, from Batteries Included-the company that doesn't leave anything out when it comes to making things simple for you.

A Portrait Of The Computer Artist

Selby Bateman Assistant Editor, Features
"Realtime dreaming" is Mike Newman's description of his computer art. He spoke with us recently about his development as a computer artist and the future of personal computer art.

Newman is quickly becoming one of the recognized masters of computer art. His work has been exhibited worldwide. Many of his computer paintings were featured in Joseph Deken's recent book Computer Images: State of the Art.

Newman, 29, is supervisor of Creative Services for the DICOMED Corporation of Minneapolis, an international leader in precision computer graphics. What started four years ago as a part-time experiment with

DICOMED has since blossomed into a full-time commitment to computer art. His paintings were created on a \$130,000 state-of-the-art computer design station.

COMIPUTEI Books

COMPUTE!'s Reference Guide To Commodore 64 Graphics

A complete tutorial on Commodore 64 graphics. Noted Commodore author John Heilborn explains how to program sprites, multicolored screens, animation, custom characters, and more. Beginners will like the step-by-step instructions and clear example programs. Advanced programmers can build up their tool kit with the character editors, sprite editors, screen design program, and other useful utilities.
218 pages, paperback.
Spiral bound for easy access to programs

$\$ 12.95$

ISBN 0-942386-29-9

COMPUTEI's Second Book of Commodore 64

Continues in the tradition of the best-selling First Book of Commodore 64 in presenting quality programs and articles, many revised or never before published. There's something for almost any 64 user: arcade and text adventure games, an impressive word processor, a program which adds 41 new BASIC commands, an
electronic spreadsheet, sound and graphics tutorials, and information on saving, copying, and retrieving files.
288 pages, paperback.
Spiral bound for easy access to programs.

VIC Games For Kids

Contains 30 games written just for kids (although adults will enjoy them too). This book is an inexpensive source of educational software for children. The games are designed to teach math, geography. history, and other topics. Children learn while they're having fun. They will return to these games again and again.

240 pages, paperback.
Spiral bound for easy access to programs.

$\$ 12.95$

ISBN 0-942386-35-3

COMPUTE!'s First Book Of Commodore 64

An excellent resource for users of the 64, with something for everyone: BASIC programming techniques, a memory map, a machine language monitor, and information about writing games and using peripherals. Many ready-to-type-in orograms and games.

COMPUTEI's First Book Of Commodore 64 Games

Packed full of games: "Snake Escape," "Oil Tycoon," "Laser Gunner," "Zuider Zee," and many more. Machine language games requiring fast hands and a good eye, as well as strategy games which will exercise your mind. Introductory chapters and annotated listings provide ideas and techniques for writing games. An excellent introduction for 64 owners who want to Degin writing games.
217 pages, paperback.
Spiral bound for easy access to programs.

$\$ 12.95$

ISBN 0-942386-34-5

COMPUTEI's First Book Of TI Games

Although this book is packed with ready-to-typein games (29 in all), it is more than just a book of games. It is designed to teach game programming techniques. Introductory chapters explain the special features of the TI-99/4 and 99/4A, giving advice on coding techniques. Most games include an explanation of how the program works. Contains mazes, chase games, old favorites, thinking games, creative challenges, and more.
211 pages, paperback.
Spiral bound for easy access to programs.

$\$ 12.95$

ISBN 0-942386-17-5

COMPUTEI's First Book Of 64 Sound And Graphics

Clear explanations of the 64's sound and graphics capabilities. Includes many tutorials and example programs: "MusicMaster,"' a complete music synthesizer; "High-Resolution Sketchpad," an all-machine-language program for making computer art; and "Ultrafont Character Editor," one of the best character editors available. The appendices feature useful reference charts and conversion tables.
275 pages, paperback.
Spiral bound for easy access to programs.
$\$ 12.95$
ISBN 0-942386-21-3

picking these icons, or pictograms. For instance, if you want to examine color and work with the color menu, you'd go to a magnifying glass icon that's perched over a picture of a rainbow. And that means to examine color.

The design station has 640 pixels across on the screen and 480 down. We write everything down on the disk in very high resolution- 8000 lines. We can zoom into an area. We don't blow up the frame buffer as on other systems where you get great big pixels, big squares. We read it off a disk and redraw it so that we can actually address the resolution that the film recorder [which turns the image into a color slide] is going to see. So, we have the addressability of that high resolution, which is unique.

Then everything goes directly onto the disk. We have
over 16 million colors that we can blend and use on the system. One of the things that we found out early on, and one of the things I was adamant about, was that we don't have to consciously dump the data to disk. We have a continuous disk update system. But you can back yourself up in case you're going in a direction that you don't like and you want to get back to a previous state.

As an artist, you're generally intensely working on something and the last thing in the world you want to do is to remember to save this or that.

COMPUTE!: What's the attraction of computer art?
Newman: The first thing that attracted me was that it took only about ten minutes to understand that this was just another tool, and that you could put a computer and art together.

THERES A COMPUTER BORN EVERY MINUTE... GIVE IT A HOME.

For $\$ 89.95$ with the CS-1632 you can house your computer, peripherals, and accessories without spending a fortune.

The CS- 1632 computer storage cabinets compact yet functional design fits aimost anywhere while housing your computer monitor, joysticks, software, books and peripherals all for only $\$ 89.95$.
The slide out shelf puts the computer at the right height and position for easy comfortable operation.
The fold up locking door keeps unwanted fingers off the key board when not in use.
To store joysticks just turn them upside down and slide them into the inverted storage rack. Twist tabs on the back of center panel allow for neat concealed grouping of wires, while power packs rest hidden behind center panel on shelf.
The slide out software tray has room for 14 cartridges or cassettes and up to 30 diskettes. Most brands of software will fit between the adjustable partitions with a convenient hook for the spare key at rear.
Stand fits Atari 400 \& 800 ,
Commodore 64 \& VIC 20 . Ti 99/4A and TRS-80.
Cabinet dimensions overall $36^{\prime \prime}$ high $\times 33-7 / 8^{\prime \prime}$ wide $\times 16^{\prime \prime}$ deep.

To order CS-1632 send $\$ 89.95$ to:

P. O. Box 446

Name
Address
City
Quantity \qquad CS-1632Bill my MasterCard \#

Card Holders Signature Prices subject to change. Shipment subject to availability. hammer, and a few minutes of your time.

For those with a large computer family the CS-2748 gives you all the room you need for your computer, monitor. printer, peripherals, software, etc. at a price that's hard to believe: $\mathbf{\$ 2 9 9 . 9 5}$.

To order CS-2748 send $\$ 299.95$ to:

West LYnn, OR 97068

For Fast Phone Orders Call Toll Free 1-800-547-3100
Inside Oregon Call (503) 635-6667

State \qquad CS-2748

\square My personal ch

Golden Oak Finish

Natural walnut finish
ey order is enclosed.
\qquad Exp. Date \qquad
Please include freight charge on my VISA or MasterCard.
\qquad
Immediate shipment if in stock. If not, allow 3-4 weeks for delivery. If personal check is sent allow addrional 2 weeks. CS- 1632 ships UPS freight collect from Oregon. CS- 2748 ships by truck freight collect from Oregon

Both the CS-1632 and CS-2748 ship unassembled in two cartons. Assembly requires only a screwdriver,
Choice in simulated woodgrain of warm golden oak or rich natural walnut finish

The two slide-out shelves put the keyboard at the proper operating height while allowing easy access to the disk drives. The bronze tempered glass door protecting the keyboard and disk drives simply lifts up and slides back out of the way during use.
Twist tabs on the back of the center panel allow for neat concealed grouping of wires while a convenient storage shelf for books or other items lies below. The printer sits behind a fold down door that provides a work surface for papers or books while using the keyboard. The lift up top allows easy access to the top and rear of the printer. A slot in the printer shelf allows for center as well as rear feed printers.
Behind the lower door are a top shelf for paper, feeding the printer, and a bottom sheif to receive printer copy as well as additional storage.
Stand fits same computers as the CS-1632 as well as the Apple I and II, IBM-PC, Franklin and many others.
The cabinet dimensions overall: $39-1 / 2^{\prime \prime}$ high $\times 49^{\prime \prime}$ wide $\times 27$ " deep.
Keyboard shelf $20^{\prime \prime}$ deep $\times 26^{\prime \prime}$ wide. Disk drive shelf $15-34^{\prime \prime}$ deep $\times 26^{\prime \prime}$ wide. Top shelf for monitor $17^{\prime \prime}$ deep x $27^{\prime \prime}$ wide. Printer shelf $22^{\prime \prime}$ deep x 19 " wide.

Some people think of the stereotype of a mathematically oriented artist, of which there are very, very few. There are some who do write their own programs and do artwork, but they are in a completely different ballpark. They are artists and scientists at the same time.

I figured if I could do this, then anybody could. It also attracted me that this was not a threat, because the computer wasn't going to do anything without me. It wasn't going to do anything terrific without somebody who knew about art.
COMPUTE!: What made you reach that conclusion?
Newman: When I saw the work that some of the programmers were doing. They weren't doing terrific work [artistically], although one of the programmers does really great graphics because he also likes art.

It became clear very quickly what the benefits were: I could make a piece of art and experiment with it, begin to do things with it, and see that instead of just think about it. In conventional graphics you say "I wonder what this would look like if it were smaller, or turned a little
bit?" Whatever the changescolor, position, rotation, dupli-cation-instead of thinking about it, with the computer you can try it. You just do it.

It allows the artist to do realtime dreaming, giving you a much stronger sense of design. It's the same thing with color. The best thing I ever did was to take up watercolors because I had to understand what colors were doing when they were on top of one another, when they were mixed together. And the computer just enhances all that.

Now I blend colors in the same way using the computer, but I can see the artwork. After I have the artwork done, I can begin to play with colors and with shapes. It's like working on a painting and the paint never dries. You can still work with it, but it's more permanent than paint because it's digital on a magnetic medium. So, the permanency is neat, but the flexibility is just remarkable.
COMPUTE!: How do you answer critics who say that computer art is not a genuine art form?
Newman: I think that's a real misconception. People get the

Newman created the commercial graphics bar chart and surrounding artwork (far left) by using an Apple IIe and the DICOMED D38 and Imaginator design stations. "Geese," (top) an example of computer interpolation in which Escher-style geese and a photographic slide are transformed. The demands of commercial graphics (bottom) have helped to stretch the limits of computer art.
opinion that computer art is something done by a computer. In fact I'll read that occasionally: "This art was made by computer." Well, that whole concept is wrong. This art was made by a human using a computer. You don't say "This photograph was made by a camera." You usually give credit to the photographer, and it's the same thing with a computer. Not only that, but the person who wrote the program for the computer did a lot of creative programming. There's creativity there, too.

If you look at the wide variety of computer artwork, you

ATLAST
 ALTIIR-QUAITI PRNIIER FOR IICIIWADS.

And we don't mean a bargain-basement speciel, cither:

Not by a long shot. The Abati LQ-20 is a topquality printer, all the way. Offering quiet, bidirectional operation, an 18 characters per second printing speed, single sheet or optional continuous form tractor feed, and a full oneyear warranty. All at a price even Ebenezer Scrooge would love.
And you'll love it, too.

Especially when you consider that the Abati LQ-20 is compatible with IBM, Apple, or any other microcomputer you might own.
Plus, it's incredibly easy to configure for word processors and spreadsheets, as well as most other software. And it's available in either serial or parallel formats.

At $\$ 479$,; it's easy to see why anyone looking for a great buy in letter-quality printers is looking at the Abati LQ-20. So should you. After all, you don't have to be a tightwad to buy the Abati LQ-20. Just act like one. Call 1-800-447-4700.
*Parallel model.

"Ed's First String Art."
can see that it's not just taking a picture and doing image processing, like distorting a picture. It's starting from nothing, a blank screen. Instead of a piece of paper, you have a video screen. And you work with shapes and colors and light and textures and all of the conventional things that we know about art. And you put these things together.

It has human emotional feelings built-in, just as every art form does. That's what makes it art. My work looks different from somebody else's work. That's because emotions are involved, and that's what computers don't have. Without the artist, it just sits there.
COMPUTE!: What influences have contributed to your computer artwork?
Newman: I take in as much information from as many sources as possible. I like to think that
my visual artwork is influenced by music as much as it is by other artists. I don't draw boundaries between dance and literary art and visual art. To me, it's allencompassing. So I may have a visual depiction of a song, or music may have a certain effect on me that will give me a different sense of color for a particular design.

I am, however, influenced by other artists. I'd say the first computer artist-who was a computer artist without a com-puter-was M.C. Escher. This gets back to saying that computer art is not necessarily art made by computers. It's art made by humans. If you look at Escher's work, it was made by the "computer" that he carried around with him. To me, he is the first computer artist. The difference is that he didn't have a computer. Also, I'm very influenced by design technology-the revolu-
tionary. Buckminster Fuller, although he wasn't an artist in the conventional sense, had a lot of influence on my work. And a host of a thousand musicians and other artists. [Laughs] In an unconscious way, I'm affected by everything that I see-Andy Warhol, James Wyeth-I enjoy everything.
COMPUTE!: What advice would you give those who want to get started in computer art?
Newman: The first thing you want to do to be a computer artist is to be a good artist. You can learn the computer part, but it's hard to develop artistically. Whether you do it in art school or on your own, develop the artistic talent first.

I was not willing to become only a fine artist, because I was afraid that I would wind up being a starving artist, and that's not what I wanted in life. Some

Now your Commodore 64 can write letters like I.B.M.

Our Super-Text ${ }^{\oplus}$ Professional Word Processor is now available for the Commodore 64. And that's great news for Commodore owners. Because now you can have all of the advanced features I.B.M. and Apple owners have enjoyed for years. All of the features you'll ever need.

You'll find Super-Text ${ }^{\oplus}$ makes all of your writing easier. It's indispensable for school work, home record keeping, business correspondence, or just plain letter writing. It's ideal for both students and businessmen.

Best of all, you don't have to be a computer whiz to use Super-

Muse offers you more.

PROFESSIONAL WORD PROCESSOR $\$ 99.00$

AWARD WINNING ARCADE/ ADVENTURE GAME $\$ 29.95$

CHALIENGING ADVENTURE/ STRATEGY GAME $\$ 29.95$

Text ${ }^{\text {® }}$. Our On-Screen Instructions and simple commands allow you to quickly create professional looking correspondence. An Exclusive 80 Column Display and On-Screen Formatting shows how your document will appear before it's printed. And SuperText ${ }^{\circledR}$ is the best Commodore word processor that provides 80 column display without costly additional hardware.

Super-Text ${ }^{\oplus}$. It's the best way to make your Commodore write like an Apple. Even an I.B.M.

Super-Text ${ }^{\oplus}$ is available for Atari $48 \mathrm{k}^{\star}$, Apple II and Apple Ile, Commodore 64 and IBM PC.

FOR COMMODORE 64 WITH 1541 DISK DRIVE. $\$ 99.00$

* 80 column display $\&$ on-screen formatting not available on Atari.

24 EXCITING GAMES PLUS A SECRET SCREEN $\$ 29.95$

SOFTWARE
347 N. Charles Street
Baltimore, Maryland 21201
(301) 659-7212

Newman's "Metamorphosis" is another form of computer interpolation. Caterpillar becomes butterfly.
people feel so committed to the work they're doing that they'll take that. Those are conventional decisions you make about art, and they need to be made.

There are some schools in the United States and Canada now that are beginning to have computer graphics programs. They will give you a good overview of the types of systems that are out there, and also give hands-on experience on the equipment so that they know what computer graphics is all about.

COMPUTE!: What are the limitations in computer art?

Newman: There's no medium that does everything. The more
painterly aspects of art are hard to simulate. In order to get the high resolution we have, we're based on what we call graphic primitive shapes. You tell the computer you want to make a line, and it knows you want to make a line. You tell it you want to make a perfectly round shape, and it expects you to tell it if you want a full round shape, how big it's going to be, and where it's going to start and stop.

There are other systems that work on a property of more painterly aspects, and these systems are called paint systems. They're more like what you see on personal computers these days. That is, you say you want to make a brush that is this fat
and you want it to be this color, for instance.

The only problem is that you're just concerned with which little lights [pixels] are on and off, and it's hard to translate that into high resolution. You can't just take a display, even if it's a high-resolution display, and, say, double it and expect it to look better.

I do feel, however, that at some point this won't be a problem. I still consider this medium to be in its very beginning stages. We're just coming out of the basement now. All I know is that as an artist who has access to computers, I have a lot to look forward to. And I expect many great things to occur.

BOLTESSO MEILLMENTNOO

 CASS COMPUTERS:

Tim R. Colvin

How many times have you seen beautiful threedimensional graphics in the ads for video monitors and printers? Now, with these easy-to-use programs, you can create three-dimensional images of your own. Versions are included for the Commodore 64, Atari, Apple, IBM PC and PCjr.

These two programs, "Rectan" and "Spheri," will plot three-dimensional figures using information which you provide.

You don't really need to delve into the mathematics which produce the images. You can just fiddle with the examples given to produce many effective displays. Let's look at some graphic examples. First type in each program and SAVE it to tape or disk.

Then LOAD Rectan. To have Rectan draw a hyperbolic paraboloid, or "saddle function" (it resembles a riding saddle), replace line 790 with:
$790 \mathrm{Z}=\mathrm{X} * \mathrm{X} / 4-\mathrm{Y} * \mathrm{y} / 9$
and give the following inputs:
$-2,2,-3,3,25,25,45$
For another interesting design, use:
$790 \mathrm{Z}=-1 /(\mathrm{X} * \mathrm{X}+\mathrm{Y} * \mathrm{Y}+.5)$
and give the following inputs:

$$
-1,1,-1,1,20,20,45
$$

The program will print SCREEN SCALING IN PROGRESS. The program is scaling the image to fit on the screen, which can require a lot of time. The rule is: The more complicated the description of the surface, the longer this step takes.

The Plotting Begins

When the previous step is completed, the screen will clear and turn cyan. The high-resolution plotting now begins. When the plot is finished, the color of the top left corner of the screen will change color. The program is locked in a loop so you can look at your creation. When you have finished looking at the display hold down RUN/ STOP and hit RESTORE.

A Spheri Demonstration

To see a torus (doughnut shape), type NEW to clear memory. Then LOAD Spheri, replace lines 820-840 with:

```
820 XT=(4+Cl)*C2
830 YT=(4+Cl)*S2
840 ZT=Sl
```

and give the following inputs:
0,360,0,360,25,25,45
For a sphere, use:

```
82\emptyset XT=Cl*C2
830 YT=Cl*S2
840 ZT=S1
```

and give the following inputs:
0,360,0,180,15,15,45

An Illusion Of Depth

These programs use rectangular and spherical coordinate systems to create an illusion of depth in the screen image. You're probably familiar with the $X-Y$ coordinate system used to specify the location of a point on a flat surface. For example, in Figure 1 the point is located five units over on the X axis

Here's a series of seven easy-to-use Management Information Reports flexibly designed to accommodate all small and medium size business accounting requirements for Commodore 64^{*} computers.
Inventory Management/ Sales Analysis Management/ Accounts Receivable Management and Invoicing / Accounts Payable Management and Checkwriting / Payroll Management / Cash Flow Management / General Ledger

WHO'S GOT 7 NEW BUSINESS SYSTEMS FOR ME ? TIMEWORKS.

General Overview

Each system includes:
AMenu-driven program, sophisticated enough to provide complete Management and Product information, yet requires no prior computer or accounting knowledge to operate.
A unique method of creating your own, unlimited array of reports - easily and quickly. YOU select the information you want, and YOU determine the sequence of the report column headings.

A program which can be used by itself (standalone), or can be interfaced, one at a time, with
Gack Oremial
).
other TIMEWORKS MANAGEMENT INFORMATION programs into a fully integrated accounting system.

A Manual written in easy-tounderstand, people-friendly English, abundantly illustrated to provide further clarity and eliminate guesswork. Password Protection, to prevent unauthorized access to confidential data.
Suggested Retail List at $\$ 59.95$ each.

Customer Support Plan

Timeworks Telephone Consulting Service is available to all users at no charge to support your installation and ongoing operations.
For further details, contact your local Dealer or Timeworks, Inc. Choose from a host of Commodore 64 programs. Now at your favorite dealer. Or, contact Timeworks, P.O. Box 321, Deerfield, IL 60015. 312-291-9200.

SOFTWARE WITH SUBSTANCE
-FOR EVERYONE.
and six units up on the Y axis. The point is said to be at location 5,6 .

This simple system works well for specifying the location of a point in a two-dimensional design on a flat surface, but for 3-D plotting you need a third coordinate.

Several coordinate systems are commonly used to plot three-dimensional surfaces. The particular coordinate system you should use depends on the shape you want to draw. Any system can be used, but if you choose the right system, you can simplify your calculations considerably.

A Simple Solution

The easiest system to understand is just an extension of the rectangular ($\mathrm{X}-\mathrm{Y}$) coordinates you are already familiar with. All you need to add is a third coordinate (Z) for the third dimension. For example, the point in Figure 2, below, is located five units out on the X axis, six units over on the Y axis, and four units up on the Z axis. The point is said to be at location $5,6,4$.

A System For The Stars

On the other hand, if the design you wish to draw is roughly the shape of a sphere, you should use spherical coordinates. In that system, a point is described by two angles and a distance from the origin. For example, astronomers use spherical
coordinates to describe the position of a star relative to the earth. The azimuthal angle of the star, designated by the Greek letter theta (θ), is the direction you must face to view the star. If north is taken to be zero degrees, then a star that lies due east has an azimuthal angle of 90 degrees. The elevation angle, designated by the Greek letter phi (ϕ), specifies how much you must tilt your head back to look directly at the star. If the horizon is taken to be zero degrees, a star that is directly overhead has an elevation angle of 90 degrees. Finally, the radial distance, designated by the letter r, is the distance between the earth and the star.

Using spherical coordinates, the point shown in Figure 2 has an azimuthal angle of 50.2 degrees, an elevation angle of 33.7 degrees, and a radial distance of 8.77 units, as shown in Figure 3.

Despite the fine graphics they produce, these programs have a couple of limitations. Screen pixels are taller than they are wide, which makes spheres look slightly less round than they should. Also, we see the surface as if it were transparent and contour lines were drawn on it. A more advanced program (such as those available commercially) would remove lines that we couldn't see if the surface were not transparent.

Program 1: Rectan-64 Version

Refer to the "Automatic Proofreader" article before typing this program in.
$1 \varnothing \varnothing$ REM * THREE-DIMENSIONAL SURFACES *
:rem 253
$11 \varnothing$ REM * IN RECTANGULAR COORDINATES *
:rem 212
$13 \varnothing$ PRINT CHR\$(147) :rem 15
140 PRINT "LOWER X LIMIT ";:INPUT AI
:rem 61
$15 \emptyset$ PRINT "UPPER X LIMIT ";:INPUT Bl
:rem 66
160 PRINT "LOWER Y LIMIT ";:INPUT A2
:rem 65

Handle your home budget, stock portfolio, loans and mortgages with Calc Result

Calc Result Easy is a simple-to-use spreadsheet program for the Commodore 64. It includes 254 lines $\times 64$ columns, built-in graphics, and flexible printout formats. Plug-in cartridge... just plug it in and its ready. Perfect for cash flow analysis, personal net worth, IRA analysis, travel expenses, credit card expenditures, gas and electricity bills, etc.

Calc Result Easy $\$ 49.95$
Calc Result Advanced gives you 32 pages of interrelated information. The three-dimensional feature allows you to consolidate calculations in summary format. Calc Result Advanced comes on plug-in cartridge and disk. Disk drive required.

Calc Result Advanced \$99.95

A complete database for the home

Addresses, telephone numbers, appointments, birthdays, or records-whatever you want to remember-put it on DIARY, an electronic notebook for home use. DIARY comes on a plug-in cartridge. It's easy to use and easy to learn, giving you the flexibility to design a personal calendar or address book.

Diary $\$ 29.95$

Turn statistical information into graphic format

GRAF 64 converts mathematical functions into graphical analysis on the Commodore 64. An ideal program for studying math. Define a function, set the limits of an axis, plot a graph and display the extreme points, intersection values, etc.

Graf $64 \$ 29.95$

Develop your bridge skills

Whether you're an experienced bridge player or a beginner, polish your skills or learn the game with BRIDGE 64. Play North-South, then switch to East-West in the same deal, the return to that deal again and test your skill with a different strategy.

Bridge \$39.95

Handic-for the broadest range of Commodore products

As the largest independent developer of Commodore software and accessories, Handic's broad range of business, education and recreation products are designed exclusively for the Commodore user who demands quality and reliability.

For more information and a catalogue of our products, see your nearest Commodore dealer, or call us direct.

Handic Software, Inc.
Fellowship Business Center
520 Fellowship Road, B 206
Mount Laurel, NJ 08054
Phone (609)663-0660

The hyperbolic paraboloid resembles a saddle or a trough curving downward.

```
17\emptyset PRINT "UPPER Y LIMIT ";:INPUT B2
                :rem 70
18\emptyset PRINT "SLICES IN X ";:INPUT N:rem lll
19ø PRINT "SLICES IN Y ";:INPUT M:rem ll2
2\emptyset\emptyset PRINT "OBSERVATION ANGLE ";:INPUT Q
                            :rem 108
```

$21 \varnothing$ PRINT "SCREEN SCALING IN PROGRESS"
:rem 49
$220 Q=Q * . ø 174532925$:rem 2 Ø9
$23 \varnothing \operatorname{CS}=\operatorname{COS}(Q) \quad$:rem 239
240 SI=SIN (Q) :rem 251
$250 \mathrm{Hl}=(\mathrm{Bl}-\mathrm{Al}) / 319: \mathrm{H} 2=(\mathrm{B} 2-\mathrm{A} 2) /(\mathrm{N}-1)$
:rem 254
$260 \mathrm{H} 3=(\mathrm{Bl}-\mathrm{Al}) /(\mathrm{M}-1): \mathrm{H} 4=(\mathrm{B} 2-\mathrm{A} 2) / 319:$ rem 2
$270 \mathrm{Ml}=99999999: \mathrm{M} 2=\mathrm{Ml}: \mathrm{Nl}=-\mathrm{Ml}: \mathrm{N} 2=\mathrm{Nl}$
:rem 167
$28 \emptyset$ FOR $\mathrm{Y}=\mathrm{A} 2$ TO B2 STEP H2 :rem 87
$290^{\circ} \mathrm{FOR} X=A 1$ TO Bl STEP Hl :rem 84
3 GOSUB $61 \varnothing$:rem l7Ø
310 NEXT X :rem 43
320 NEXT Y :rem 45
330 FOR X=Al TO Bl STEP H3 :rem 81
340 FOR Y=A2 TO B2 STEP H4 :rem 86
$35 \emptyset$ GOSUB $61 \varnothing$:rem 175
360 NEXT Y :rem 49
$37 \varnothing$ NEXT X :rem 49
$380 \mathrm{D}=8192$: POKE 53272, PEEK(53272)OR8
:rem 218
390 POKE 53265, PEEK(53265)OR32 :rem 125
4бØ FOR I=D TO D+7999:POKE I, Ø:NEXT I
: rem 9
$41 \varnothing$ FOR I=1Ø24 TO 2ø23:POKE I, 3:NEXT I
:rem 6
$42 \emptyset \mathrm{Tl}=(\mathrm{Nl}-\mathrm{Ml}) / 2$
$43 \emptyset \mathrm{~T} 2=(\mathrm{N} 2-\mathrm{M} 2) / 2$
$440 \mathrm{~W}=\mathrm{T} 1 / \mathrm{T} 2$
$45 \emptyset$ IF $\mathrm{W}<1.6 \emptyset 606 \emptyset 61$ THEN $48 \emptyset$
460 XS=159: ZS=159/W
$47 \emptyset$ GOTO 49ø
$48 \emptyset$ XS=99*W: ZS=99
$49 \varnothing$ FOR Y=A2 TO B2 STEP H2
5øø FOR X=Al TO B1 STEP H1
510 GOSUB $69 \varnothing$
$52 \emptyset$ NEXT X
530 NEXT Y
540 FOR X=Al TO B1 STEP H3
550 FOR Y=A2 TO B2 STEP H4
560 GOSUB $69 \varnothing$
:rem 52
:rem 56
:rem 102
:rem 126
:rem 1ø6
:rem 113
:rem 13
:rem 90
:rem 78
rem 78
:rem 181
: rem 46
:rem 48
:rem 84
:rem 89
:rem 186

570	NEXT Y	:rem 52
580	NEXT X	rem 52
590	POKE 1024,16	:rem 39
$6 \varnothing 0$	GOTO 6øб	:rem 101
610	GOSUB 790	:rem 183
620	$\mathrm{XT}=\mathrm{X}-\mathrm{Y} * \mathrm{CS}$:rem 31
630	$\mathrm{ZT}=\mathrm{Z}-\mathrm{Y} *$ S I	:rem 42
640	IF XT > Nl I THEN $\mathrm{Nl}=\mathrm{XT}$:rem 41
650	IF XT <Ml THEN Ml=XT	:rem 38
660	IF ZT ¢ N 2 THEN $\mathrm{N} 2=\mathrm{ZT}$:rem 49
670	IF ZT <M2 THEN M2=ZT	:rem 46
680	RETURN	:rem 126
690	GOSUB 790	:rem 191
$7 \varnothing \varnothing$	XT=160+INT (XS* (X-Y*CS--N1	T1)
710	ZT=1Øø-INT(ZS* $\mathrm{Z}-\mathrm{Y} * \mathrm{SI}$--N2	$\text { :rem } 82$ T2)
		:rem 94
720	$\mathrm{RO}=\mathrm{INT}(\mathrm{ZT} / 8)$:rem $20 \varnothing$
730	$\mathrm{CH}=\mathrm{INT}(\mathrm{XT} / 8)$:rem 177
740	LN $=(\mathrm{ZT})$ AND7	:rem 123
750	$\mathrm{BI}=7-((\mathrm{XT})$ AND7 $)$:rem 32
760	$\mathrm{BY}=\mathrm{D}+32 \emptyset * \mathrm{RO}++8 * \mathrm{CH}+\mathrm{LN}$:rem 76
770	POKE BY, PEEK(BY)OR(2†BI)	:rem 178
780	RETURN	:rem 127
790	$\mathrm{Z}=\mathrm{X} * \mathrm{X} / 4-\mathrm{Y} * \mathrm{Y} / 9$:rem 229
$8 \emptyset \emptyset$	RETURN	:rem 120

Program 2: Spheri-64 Version

Refer to the "Automatic Proofreader" article before typing this program in.
1øØ REM * THREE-DIMENSIONAL SURFACES * : rem 253
$11 \varnothing$ REM * 22 SPACES $\}$ IN SPHERICAL COORDINAT ES\{2 SPACES \}*
:rem 55
130 PRINT CHRS (147)
:rem 15
$14 \varnothing$ PRINT "LOWER THETA LIMIT ";:INPUT A1
:rem 91
$15 \emptyset$ PRINT "UPPER THETA LIMIT ";:INPUT B1
: rem 96
$16 \emptyset$ PRINT "LOWER PHI LIMIT ";:INPUT A2
:rem $2 \not 01$
$17 \emptyset$ PRINT "UPPER PHI LIMIT ";:INPUT B2
:rem $2 ø 6$
$18 \emptyset$ PRINT "SLICES IN THETA ";:INPUT N :rem 141
190 PRINT "SLICES IN PHI ";:INPUT M
: rem 248
$2 ø \varnothing$ PRINT "OBSERVATION ANGLE ";:INPUT Q
:rem $1 \varnothing 8$
$21 \emptyset$ PRINT "SCREEN SCALING IN PROGRESS"
:rem 49
$220 \mathrm{U}=.0174532925 \quad$:rem 9ø
$230 \mathrm{Q}=\mathrm{Q}$ * U :rem 243
$24 \varnothing \operatorname{CS}=\cos (Q) \quad$:rem $24 \varnothing$
$25 \emptyset$ SI=SIN (Q) :rem 252
$260 \mathrm{Hl}=(\mathrm{B} 1-\mathrm{Al}) / 319: \mathrm{H} 2=(\mathrm{B} 2-\mathrm{A} 2) /(\mathrm{N}-1)$:rem 255
$27 \emptyset$ H3 $=(\mathrm{Bl}-\mathrm{Al}) /(\mathrm{M}-1): \mathrm{H} 4=(\mathrm{B} 2-\mathrm{A} 2) / 319:$ rem 3
$280 \mathrm{Ml}=99999999: \mathrm{M} 2=\mathrm{Ml}: \mathrm{N} 1=-\mathrm{Ml}: \mathrm{N} 2=\mathrm{N} 1$
:rem 168
290 FOR Y=A2 TO B2 STEP H2 :rem 88
$3 \varnothing \varnothing$ FOR X=Al TO Bl STEP H1 :rem 76
310 GOSUB 620
: rem 172
$32 \emptyset$ NEXT X :rem 44
330 NEXT Y :rem 46
340 FOR X=Al TO B1 STEP H3 :rem 82
$35 \emptyset$ FOR Y=A2 TO B2 STEP H4 : rem 87
360 GOSUB $62 \varnothing$:rem 177
$37 \varnothing$ NEXT Y :rem 50
38 NEXT X :rem 5ø

THE ULTIMATE FLIGHT EXPERIENGE

OVER TWO DOZEN GAME SCREENS!

Put yourself in the pilot's seat of an advanced AGX hypersonic fighter! The year is 2096 and the time is now. Your mission is to destroy COMPUTER CONTROL, a renegade CPU out to take over the universe. You'll fly in low over awe-inspiring scenery whose beauty just might be your end. Guarding the approach to its fortress is an endless array of computer controlled FLAK batteries. They always seem to know where you are, where you're going and where you'll be. You fire, evade, fire again ... Your hand tightens around the flight control, you push harder on the fire button, the tension builds ... Can you take it? Will you survive the FLAK?
BY: Y. Lempereur and A. Marsily

SEE YOUR DEALER

or write or call for more information. If unavailable from your local dealer, send $\mathbf{S} 34.95$ plus $\mathbf{S 2 . 0 0}$ for shipping. Foreign orders add $\mathbf{5 5 . 0 0}$ Mastercard/Visa accepted.

28611 B Canwood St. Agoura, CA 91301 818-991-6540 TELEX 181161

Available now for:
APPLE II/IIE ε ATARI 800 [KL]/1200-48K, COMMODORE 64 on DISK $\$ 34.95$

The Mathematics Of 3-D Plotting

"Rectan" plots surfaces using rectangular coordinates (x, y, z). The values for x and y are specified; the value of z is then given by $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ for some function f .

To use Rectan, specify the function $f(x, y)$ in line 790 . For example, $z=x^{*} x / 4-y^{*} y / 9$ defines a hyperbolic paraboloid.
"Spheri" plots surfaces using spherical coordinates. This method describes a point on the surface using three parameters: radial distance from the origin, r; azimuthal angle, theta (θ); and elevation angle, phi (ϕ).

To use Spheri, specify x, y, and z (called XT, YT, and ZT in lines 820-840) as functions of r, theta, and phi in lines 820-840.

Parameters And Slices

Both programs are structured the same. You specify parameter ranges. In Rectan these are for x and y; in Spheri, for θ and ϕ.

Next enter the number of slices for the parameters. Each slice corresponds to a contour line on the surface. A contour line is where one of the parameters is held constant.

Finally, you specify an observation angle. This is the angle which allows you to see a three-dimensional surface on a twodimensional video screen. The most commonly used angle is 45 degrees.

If you'd like any technical information, or if you have a particular surface in mind but don't know how to write an equation for it, please write to:
Tim R. Colvin
1414 San Remo Dr.
Pacific Palisades, CA 90272
$390 \mathrm{D}=8192$: POKE 53272, PEEK (53272) OR8 :rem 219
$4 \emptyset \emptyset$ POKE 53265, PEEK (53265)OR32 :rem 117 $41 \varnothing$ FOR I=D TO D+7999:POKE I, Ø:NEXT I :rem $1 \varnothing$
$42 \emptyset$ FOR I=1ø24 TO 2ø23:POKE I, 3:NEXT I
: rem 7
$430 \mathrm{Tl}=(\mathrm{N} 1-\mathrm{Ml}) / 2$:rem 53
$440 \mathrm{~T} 2=(\mathrm{N} 2-\mathrm{M} 2) / 2$:rem 57
$450 \mathrm{~W}=\mathrm{Tl} / \mathrm{T} 2$
460 IF $W<1.60606061$ THEN 490
:rem 1ø3
:rem 128
$47 \mathrm{XS}=159: \mathrm{ZS}=159 / \mathrm{W}$
$48 \varnothing$ GOTO 5øø
$49 \varnothing$ XS=99*W: ZS=99
$5 \emptyset \emptyset$ FOR Y=A2 TO B2 STEP H2
510 FOR X=Al TO Bl STEP H1
:rem 107
:rem 106
:rem 14
:rem 82
:rem 79
520 GOSUB $7 \varnothing \varnothing$

```
530 NEXT X :rem 47
540 NEXT Y
:rem 49
550 FOR X=Al TO Bl STEP H3 :rem 85
560 FOR Y=A2 TO B2 STEP H4 :rem 90
57\varnothing GOSUB 7ø\emptyset
    :rem 179
58\emptyset NEXT Y :rem 53
    -rem }
590 NEXT X :rem 53
600 POKE 1ø24,16 :rem 31
6 1 0 \text { GOTO 610 :rem 103}
60 GOSUB 8\emptyset\emptyset :rem l76
630 XT=XT-YT*CS :rem 2\emptyset\emptyset
640 ZT=ZT-YT*SI :rem 211
650 IF XT>N1 THEN Nl=XT :rem 42
660 IF XT<MI THEN Ml=XT :rem 39
67\emptyset IF ZT>N2 THEN N2=ZT :rem 5\emptyset
68\emptyset IF ZT<M2 THEN M2=ZT :rem 47
6 9 0 ~ R E T U R N ~
    :rem 127
7\emptyset\emptyset GOSUB 8\emptyset\emptyset :rem 175
71\emptyset XT=16\emptyset+INT(XS*(XT-YT*CS-N1+T1)/Tl)
    :rem 251
72\varnothing ZT=1Ø\emptyset-INT(ZS*(ZT-YT*SI-N2+T2)/T2)
                                    :rem 7
730 RO=INT(ZT/8) :rem 2\emptyset1
740 CH=INT(XT/8) :rem l78
750 LN=(ZT)AND7 :rem 124
760 BI=7- ((XT)AND7) :rem 33
770 BY=D+32\emptyset*RO+8*CH+LN :rem 34
78\emptyset POKE BY,PEEK(BY)OR(2\uparrowBI) :rem 179
7 9 0 ~ R E T U R N ~ : r e m ~ 1 2 8 ~
8\emptyset\emptyset XA=X*U:Cl=COS(XA):Sl=SIN(XA) :rem 2ø6
81\varnothing YA=Y*U:C2=COS(YA):S2=SIN(YA) :rem 213
82\emptyset XT=(4+Cl)*C2 :rem 7\emptyset
83\emptyset YT=(4+Cl)*S2 :rem 88
840 ZT=Sl :rem ll
850 RETURN :rem l25
```


Program 3: Rectan-Atari Version

Refer to the "Automatic Proofreader" article before typing this program in.

```
BF 13Ø GRAPHICS g
OP 14\emptyset ? "LOWER X LIMIT";:INPUT A1
PE 15\emptyset ? "UPPER X LIMIT";:INPUT B1
PD 16Ø ? "LOWER Y LIMIT";:INPUT A2
PI 17\emptyset ? "UPPER Y LIMIT";:INPUT B2
CB 18g ? "SLICES IN X";:INPUT N
CC 19\emptyset ? "SLICES IN Y";:INPUT M
BO2ø\emptyset ? "OBSERVATION ANGLE";:INPUT Q
OD 21\emptyset ? "SCREEN SCALING IN PROGRESS"
IO215 U=\varnothing. Ø174532925
PC 220 Q=Q*U
0P 23. CS=cos(Q)
PL 24ø SI=SIN(Q)
PO 25ø H1=(B1-A1)/319:H2=(B2-A2)/(N-1)
AC 26ø H3=(B1-A1)/(M-1):H4=(B2-A2)/319
KH 270 M1=99999999:M2=M1:N1=-M1:N2=N1
FH 28ø FOR Y=A2 TO B2 STEP H2
FE 29g FOR X=A1 TO B1 STEP H1
kk 3øø GOSUB 61ø
CL 31ø NEXT X
CN320 NEXT Y
FB 33ø FOR X=A1 TO B1 STEP H3
FG 340 FOR Y=A2 TO B2 STEP H4
kP 35ø GOSUB 61ø
DB 36G NEXT Y
DB 37, NEXT X
CE 38\emptyset GRAPHICS 8
PB 39\emptyset SETCOLOR 2,\emptyset,\emptyset
OL 4øø SETCOLOR 4,ø,ø
CI 41ø SETCOLOR 1,9,15
EK415 COLOR 1
DE 42\emptyset T1=(N1-M1)/2
```

you want to stay ahead of the personal computing rolution...
Nelcome to COMPUTE!'s PC \& PCjr!
is exciting new magazine from COMPUTE! takes 1 inside the PC and the incredible new PCjr to bring λ inside information you'll find nowhere else.
rou'll discover how to get the most computer power your money. At home. At school. At work. With easyrun programs. Challenging jects for advanced users. and new sound and graphics olications. Plus some of the st exciting computer ictions outside of the topret research labs!
Ne'll help you decide what buy. With independent aluations of hardware, tware and peripherals. mprehensive reviews of N products as they're introced. Hard-nosed evaluans of each machine's engths and weaknesses.
JOMPUTE!'s PC \& PCjr 1 keep you on the leading ge of personal computing e no other publication can. re are some of the features u can look forward to:
lcome to the PCjr! A comte introduction to IBM's west personal computer, d a fascinating peek at the 88 microprocessor - the y-but-talented brain of the jr.
signing PCjr - The Inside ry. PCjr's creators tell how y designed the new com-ter-from original planning

From the publishers of COMPUTE!

Announcing the magazine that takes you inside the IBM PC and the PCjr.

COMPUTEI's PC\&PCjr

DESIGNING THE PCjr: The Inside Story
to trade-offs to ultimate success.
Telecomputing with Your IBM. How to link up with distant computers over ordinary phone lines, access information services, even do office work at home with your own machine!
Music and Graphics. How to play songs and create sound effects with your PC or PCjr. Programs to generate impressive hi-res graphics and computer animation.

Your First Hour with an IBM. How to avoid those opening night jitters and get your computer up and running fast!
Financial Analysis. Ready-torun programs to help you make intelligent investments.
PC vs. PCjr. Which one is right for you? COMPUTE!'s PC \& PCjr helps you decide!
PLUS: Programming the function keys to suit you. Speeding up BASIC without resorting to machine language. Tape, disk, or hard disk? Buyer's guides. How to take advantage of free public-domain software. Computing activities for the whole family. Reviews. Games. Educational programs for children. And much, much more!

Subscribe right now and you can enjoy special Charter Subscriber Savings on COMPUTE!'s PC \& PCjr-just \$24 for the first 12 big issues. That's 33% off the cover price!

To start receiving COMPUTE!'s PC \& PCjr, just mail the postpaid card in this issue or the coupon below today.

The "Rectan" program was used to create this "fish net."

HB 47ø GOTO 49ø
AJ $48 \varnothing \quad X S=79$ 重 $W: Z S=79$
FK $49 \varnothing$ FOR $Y=A 2$ TO B2 STEP H2
EO $5 \emptyset \emptyset$ FOR $X=A 1$ TO B1 STEP H1
LF $51 \emptyset$ GOSUB $69 \emptyset$
CO 52の NEXT X
DA 53Ø NEXT Y
FE 54 F FOR $X=A 1$ TO B1 STEP H3
FJ $55 \emptyset$ FOR $Y=A 2$ TO B2 STEP H4
LK 56ø GOSUB 69ø
DE 57 П NEXT Y
DE 58ø NEXT X
HF 590 END
LH 619 GOSUB 790
HH 62 D $X T=X T-Y T * C S$
NC 63 Ø $Z T=Z T-Y T * S I$
CJ 64ø IF $X T>N 1$ THEN $N 1=X T$
C6 65 IF $\quad \mathrm{IF}$ T $\angle M 1$ THEN $M 1=X T$
DB 66 IF IF $\quad T>N 2$ THEN N2=ZT
$C O 67$ O \quad IF $Z T<M Z \quad$ THEN $M 2=Z T$
HO 689 RETURN
LP 690 GOSUB $79 \emptyset$
PK. 7 Øø $\mathrm{XT}=16 \emptyset+\mathrm{INT}(X S *(X T-Y T * C S-N 1+T 1) /$ T1)
 2)

FO 72 Ø PLOT XT, ZT
HK. $73 \varnothing$ RETURN
N6 79 Ø $X A=X * U: C 1=C O S(X A): S 1=S I N(X A)$
NE 8øØ $Y A=Y * U: C 2=C O S(Y A): S 2=S I N(Y A)$
E6 $82 \emptyset \mathrm{XT}=(4+\mathrm{C} 1)$ * C 2
FI 83Ø $\mathrm{YT}=(4+\mathrm{C} 1)$ * S 2
AL 84 Ø $\quad 2 T=51$
HN 85 R RETURN

Program 5: Rectan-PC/PCjr Version

The Spinning Top almost topples him!

Close. But Pogo Joe bounces back. Bouncing from cylinder to cylinder, screen to screen, Pogo Joe racks up point after point.

You guide him from cylinder to cylinder, changing the color on top of each. Change the top of each cylinder on a screen, then youre on to the next.

The more screens you complete, the nastier the monsters you face, and the faster they attack.

Press the fire button! Jump two cylinders to safety.Hop into a transport tube, and then whoosh! Pogo Joe appears across the screen. Jump on an
 escaping monster. Blam! It's gone in a flash! Only to reappear out of thin air.
 music on realistic 3-dimensional cylinders. All the characters in this rollicking game are also 3-dimensional and fully animated.The graphics almost jump off the screen, leaving the arcades behind.

What's ahead with Pogo Joe ${ }^{\text {Tw }}$ is $\$ 10,000$. Simply tell us what magic word appears
 after Pogo Joes's tenth screen. If your name is drawn from among the correct answers you'll win $\$ 10,000$!

No purchase is necessary. You'll find entry forms at any store that sells Screenplay ${ }^{\text {TIT }}$ games.

But if you don't win you can't lose. Pogo $J o e^{\text {TTM }}$ is so much fun you'll jump for joy no matter what.
$260 H 3=(B 1-A 1) /(M-1): H 4=(B 2-A 2) / 639$
270 M1=99999999\#: $\mathrm{M}_{2}=\mathrm{M} 1: N 1=-\mathrm{M} 1: N 2=N 1$
280 FOR $Y=A 2$ TO B2 STEP H2
290 FOR X=A1 TO B1 STEP H1
300 GOSUB 610
310 NEXT X
320 NEXT Y
330 FOR $X=A 1$ TO B1 STEP H3
340 FDR $Y=A 2$ TO B2 STEP H4
350 GOSUB 610
360 NEXT Y
370 NEXT X
380 SCREEN 2,1
$420 \mathrm{~T} 1=(\mathrm{N} 1-\mathrm{M} 1) / 2$
430 T2=(N2-M2)/2
$440 \mathrm{~W}=\mathrm{T} 1 / \mathrm{T} 2$
450 IF W<3.21212121\# THEN 480
460 XS=319: ZS=319/W
470 GOTO 490
480 XS=199*W: ZS=99
490 FOR Y=A2 TO B2 STEP H2
500 FOR $X=A 1$ TO B1 STEP H1
510 GOSUB 690
520 NEXT X
530 NEXT Y
540 FOR $X=A 1$ TO B1 STEF HS
550 FOR $Y=A 2$ TO B2 STEP H4
560 GOSUB 690
570 NEXT Y
580 NEXT X
590 GOTD 590
610 GOSUB 790
$620 \mathrm{XT}=\mathrm{X}-\mathrm{Y}$ *CS
$630 \mathrm{ZT}=\mathrm{Z}-\mathrm{Y}$ *SI
640 IF XT>N1 THEN N1=XT
650 IF XT<M1 THEN M1=XT
660 IF ZT>N2 THEN N2=ZT
670 IF $Z T<M 2$ THEN M $2=Z T$
680 RETURN
690 GOSUB 790
$700 \mathrm{XT}=320+\mathrm{INT}(\mathrm{XS} *(\mathrm{X}-\mathrm{Y} * \mathrm{CS}-\mathrm{N} 1+\mathrm{T} 1) / \mathrm{T} 1)$
$710 \mathrm{ZT}=100-\mathrm{INT}(\mathrm{ZS*}(\mathrm{Z}-\mathrm{Y} * \mathrm{SI}-\mathrm{N} 2+\mathrm{T} 2) / \mathrm{T} 2)$
720 PSET (XT,ZT)
730 RETURN
$790 \mathrm{Z}=\mathrm{X}+\mathrm{Y}$
800 RETURN

Program 6: Spheri-PC/PCjr Version

100 SCREEN 0,0,0:CLS
110 KEY DFF
140 INFUT "Lower Theta limit ";A1
150 INFUT "Upper Theta limit "; B1
160 INPUT "Lower Phi limit "; A2
170 INFUT "Upper Fhi limit "; B2
180 INFUT "Slices in Theta ":N
190 INFIJT "Slices in Fhi ":M
200 INFUT "Observation angle "; 0
210 FRINT "Screen scaling in progress"
$220 \mathrm{U}=.0174532925 \#$: $\mathrm{Q}=\mathrm{Q}$ *U
230 CS=COS (0)
$2405 \mathrm{I}=\mathrm{SIN}(\mathrm{O})$
$250 \mathrm{H}_{1}=(\mathrm{B} 1-\mathrm{A} 1) / 639: \mathrm{H} 2=(\mathrm{B} 2-\mathrm{A} 2) /(\mathrm{N}-1)$
$260 H S=(B 1-A 1) /(M-1): H 4=(B 2-A 2) / 639$
270 M1 = 99999999\#: M2=M1:N1=-M1:N2=N1
280 FOF $Y=A 2$ TO B2 STEF H2
290 FOR $X=A 1$ TO B1 STEF H1
300 GOSUB 610
310 NEXT X
320 NEXT Y

330 FOR $X=A 1$ TO B1 STEP H3
340 FOR $Y=A 2$ TO B2 STEP H4
350 GOSUB 610
360 NEXT Y
370 NEXT X
380 SCREEN 2,1
420 T1=(N1-M1)/2
430 T2=(N2-M2)/2
$440 \mathrm{~W}=\mathrm{T} 1 / \mathrm{T} 2$
450 IF WくS. 21212121\# THEN 480
460 XS=319: ZS=319/W
470 GOTO 490
480 XS=199*W: ZS=99
490 FOR $\mathrm{Y}=\mathrm{A} 2$ TO B2 STEP H2
500 FOR $X=A 1$ TD B1 STEP H1
510 GOSUB 690
520 NEXT X
530 NEXT Y
540 FOR $X=A 1$ TO B1 STEP H3
550 FOR $Y=A 2$ TO B2 STEP H4
560 GOSUB 690
570 NEXT Y
580 NEXT X
590 GOTO 590
610 GOSUB 790
$620 \times T=X T-Y T * C S$
$630 \mathrm{ZT}=\mathrm{ZT}-\mathrm{YT}$ *SI
640 IF $X T>N 1$ THEN $N 1=X T$
650 IF XT<M1 THEN M1 $=X T$
660 IF $Z T>N 2$ THEN N2=ZT
670 IF $\mathrm{ZT}<\mathrm{M} 2$ THEN $M 2=Z T$
680 RETURN
690 GOSUB 790
$700 \mathrm{XT}=320+\mathrm{INT}(\mathrm{XS*}(\mathrm{XT}-\mathrm{YT} * \mathrm{CS}-\mathrm{N} 1+\mathrm{T} 1) / \mathrm{T} 1)$
$710 \mathrm{ZT}=100-\mathrm{INT}(\mathrm{ZS*}(\mathrm{ZT}-\mathrm{YT} * S I-\mathrm{N} 2+\mathrm{T} 2) / \mathrm{T} 2)$
720 PSET (XT,ZT)
730 RETURN
790 REM The function
$800 \times A=X * U: C 1=\operatorname{COS}(X A): S 1=\operatorname{SIN}(X A)$
810 YA=Y*U:C2=COS $(Y A): S 2=S I N(Y A)$
$820 \times T=(4+C 1) * C 2$
$830 \mathrm{YT}=(4+\mathrm{C} 1) * S 2$
$840 \mathrm{ZT}=\mathrm{S} 1$
850 RETURN

Program 7: Rectan-Apple Version

```
1ø\emptyset HCOLOR= 3
130 HOME
140 INPUT "LOWER X LIMIT:";A1
15Ø INPUT "UPPER X LIMIT:";B1
16\emptyset INPUT "LOWER Y LIMIT:";A2
17Ø INPUT "UPPER Y LIMIT:";B2
18\emptyset INPUT "SLICES IN X:";N
19\varnothing INPUT "SLICES IN Y:";M
2øø INPUT "OBSERVATION ANGLE:";Q
21פ PRINT "SCREEN SCALING IN PROGRESS"
215 U = .\emptyset174532925
220Q = Q * U
23ø CS = COS (Q)
24ø SI = SIN (Q)
25ø H1 = (B1 - A1) / 279:H2 = (B2 - A2) / (N
        - 1)
260 H3 = (B1 - A1) / (M - 1):H4 = (B2 - A2)/
        279
27ø M1 = 9999999:M2 = M1:N1 = - M1:N2 = N1
28\emptyset FOR Y = A2 TO B2 STEF H2
299 FOR X = A1 TO B1 STEF H1
39g GOSUB 610
31\emptyset NEXT
32\emptyset NEXT
```


NOW FOR YOUR
 ATARI; APPLE'OR COMMODORE 64!

Super Bunny

Cosmic Tunnels

Ardy the Aardvark

Mr. Robot

Go ahead. Take one for a spin. But be prepared. These games will challenge you like no others. Incredible arcade animation. Never-ending action. And magical music. Your eyes won't believe your ears. Are you up to it? Are you ready to test yourself against the best that DATAMOST has to offer? Go ahead. Take one for a spin.

The most out of our minds.
Datamost. Inc.., 20660 Nordhoff St.. Chatsworth, CA 91311, (213) 709-1202 *Atari is a trademark of Atari Computer. *Apple is a trademark of Apple Computer. *Commodore 64 is a trademark of Commodore Business Machines, Inc.

"3-D Plotting" can create spectacular pictures such as this torus or "doughnut."

This sphere was drawn using the "Spheri" program.

It was as peaceful a day as New York ever gets, when suddenly the sky went dark and a monstrous droning noise filled the air. Hordes of grotesque aliens were swooping down from all sides, biting into the Big Apple as if they hadn't eaten for days. They were laying eggs, too. Horrible slimy things that got down into the subway tunnels and began clawing their way up. If anyone was going to save the city, it would have to be me. I leapt into my rocket and began blasting away. I thought I stood a fighting chance, but fuel's running low. . . another wave of invaders on the horizon. .. signing off..
SAVE NEW YORK." For the Commodore 64.

```
660 IF ZT > N2 THEN N2 = ZT
67\emptyset IF ZT < M2 THEN M2 = ZT
68Ø RETURN
690 GOSUB 790
7øø XT = 14ø + INT (XS * (XT - YT * CS - N
    1 + T1) ( T1)
710 ZT = 96 - INT (ZS * (ZT - YT * SI - N2
    + T2) / T2)
715 IF XT < I THEN XT = Ø
716 IF XT > 279 THEN XT = 279
7 2 g ~ H P L O T ~ X T , Z T ~ T
78\emptyset RETURN
79ø XA=X H:C1= COS (XA):S1=SIN (XA
    )
8\emptyset\emptyset YA = Y U:C2 = COS (YA):S2 = SIN (YA
82ø XT = (4 + C1) C2
83Ø YT = (4+C1) S2
840 ZT = S1
B5\emptyset RETURN


\section*{LEARN MACHINE LANGUAGE}
- Write Fast-action Arcade-style graphics
- Fully use the Music synthesizer
- Completely understand the Computer
- Develop your skills inventory

Learn with the Tutorial that comes complete with a Full set of professional quality development tools.

\section*{DEVELOP-64 4.0 \\ IS NOW \\ 亩 (}

\section*{Assembles 2000 lines of code in under 15 seconds!}
- Superfast - Macros • 2600 Lines of code in memory Expandable by disk or tape file - Assemble direct to disk or tape or memory • Powerful Co-resident Full-screen editor, debugger and decoder - Decoder disassembles programs on disk or tape or in memory - Built-in disk wedge - Program trace, Single step, Execute - Set 10 breakpoints and/or Gopoints - Full-screen memory display and modify
PLUS the Machine Language Programmer's Bible:
"Inside the Commodore 64"
\$69 \({ }^{95}\)
Plus \(\$ 3.00\) postage and handling. (Minn residents add 6\%)
P.O. Box 7426 Minneapolis, MN 55407 Call Toll-Free 1-800-328-0145 or in Minnesota call: (612) 871-4505

\section*{ATTENTION COMMODORE 64 OWNERS WE'LL BACK YOU UP!}

If you own a disk drive then you'll need "The Clone Machine." Take control of your 1541 drive.

\section*{NEW IMPROVED} WITH UNGUARD*
Package includes
1) Complete and thorough users manual
2) Copy with one or two drives
3) Investigate and back-up many "PROTECTED" disks
4) Copy all file types including relative types
5) Edit and view track/block in Hex or ASCII
6) Display full contents of directory and print
7) Change program names, add, delete files with simple keystrokes
8) Easy disk initialization
9) Supports up to four drives
-UNGUARD Now allows you to read, write and verify bad sectors and errors on your disk making it easy to back-up most protected software.

Dealers \& Distributors Inquiries Invited

\section*{SPIIE-SPIKER \({ }^{\text {® }}\)}
\(\qquad\) THE SOLUTION

Protects, organizes, controls computers \& sensitive electronic equipment. Helps prevent software "glitches", unexplained memory loss, and equipment damage. Filter models attenuate conducted RF interference. \(120 \mathrm{~V}, 15\) Amps. Other models available. Ask for free literature.


DELUXE POWER CONSOLE \$89.95
Transient absorber, dual 5-stoge filter. 8 individually switched sockets, fused, moin switch, \& lite. QUAD-II \$59.95
Transient absorber. Dual 3 stoge filter. 4 sockets, lite.
QUAD-I \$49.95
Transient absorber, 4 sockets.
MINI-II \$44.95
Transient obsorber, 3 stage filter, 2 sockets.

\section*{MINI-I \$34.95}

Transient absorber, 2 sockets.

6584 Ruch Rd., Dept. CP Bethlehem, PA 18017

\section*{POWIER LINE} PROBLEMS?


DELUXE POWUR COMSOLE


DEALER INQUIRIES INVITED •

\section*{Quality Software that Outshines the Rest}



A reset System
Restores your BASIC Program.
After programming for hours you press RUN for a final check of your work the computer locks up. You press RUN, STOP. nothing - you press RESTORE. . . nothing - you look for the missing key but it isn't there. You have to turn off your computer and lose hours of work!! Now Add the Missing Key \({ }^{\text {TM }}\) :
- Press the "Missing Key" \({ }^{\text {TM" }}\) and the computer resets itself from any lockup, and your BASIC program is restored.
- Load and run the program included.
- Takes nothing away from your computer, neither memory nor a plug-in port.
- Attaches to your C64 keyboard or any other convenient location.
- Will not void your CBM warranty. \(\$ 29^{95}\)


\section*{Phone Boss}

Personal Phone Directory Program Designed to store and organize your personal phone listings.


The user has complete control of 15 category titles and entries.


\author{
Coy V Ison
}

Construct screen art on the Atari with a joystick and basic shapes formed by redefining characters. You also can save a picture to disk or tape for later viewing. The Commodore 64 version, called "Hi-Res Graphics Editor," employs sprites to transport and transform even the most intricate designs.
"Picture Perfect" is not a game that pits you against the computer, but instead is a way to create pictures, patterns, and designs by using the computer and your imagination.

Type in the listing and SAVE a copy, making sure that line 1520 is exactly as shown. When you run the program, you will be prompted for the filename to be used later when saving or loading your picture file. Tape users should enter C: for the filename. Disk users can enter any legal filename, but it must be prefixed with D:. Once you have selected a valid filename, a picture of a castle will be displayed. Press START, and two rows of nine shapes will appear at the bottom of the screen, below the drawing area.

Touch the OPTION key to see two new rows of shapes, and touch OPTION again to toggle back to the first two rows of shapes. These are redefined characters, to be used in your drawings.

\section*{Choose A Shape}

A question mark will blink on top of the shape to indicate your position. Using a joystick plugged into port 1, you can move across the two rows of redesigned shapes. To pick up one of the shapes, stop on top of it and touch the joystick button. The question mark will then move to the upper right corner of the drawing screen.

You can now place the redesigned shape anywhere on the screen by touching the joystick button. When you want another redesigned shape, touch the SELECT key. This places your cursor on the two rows of shapes so you can pick up another design.

To erase a shape, move the question mark on top of it and touch the space bar. Should you want to erase a large portion of a picture, touch the E key. A red E will replace the question mark on the screen. By holding down on the joystick button and moving the red E, you will be able to quickly erase a large portion of the screen. To stop erasing, simply press the E key again. If you want to erase the whole screen, touch the CLEAR key.

\section*{Storing A Picture}

To store a picture on tape, first place a tape in the recorder or your disk in the drive and press PLAY and RECORD, then touch the \(S\) key on the keyboard. The program will save the picture on tape for you. When using tape, be sure that you press PLAY and RECORD before you touch the S key. No RETURN is necessary and the saving will start immediately.

To save a picture to disk, first insert the disk in the drive and close the door. Then touch the S key.

\section*{Loading Your Picture}

If you have a picture already stored on a tape or disk and want to load it into the program, you need to have Picture Perfect in the computer. Place your tape into the recorder (or the disk into the disk drive), press PLAY (for cassette) then touch the L key. When the picture is loaded, it


\title{
LAST NIGHT, COMPUSERIE TURNEDTHIS COMPUTER INTO ATRAVEL AGENT FOR JENNIE, A Stock Analyst For Ralph, And Now, It's Sending Herbie To Another Galaxy.
}

\section*{NO MATTER WHICH COMPUTER YOU OWN, WE'LL HELP YOU GET THE MOST OUT OF IT.}

If you've got places to go, CompuServe can save you time and money getting there. Just access the Official Airline Guide Electronic Edition-for current flight schedules and fares. Make reservations through our on-line travel service. Even charter a yacht through "Worldwide Exchange." If your money's in the market, CompuServe offers a wealth of
prestigious financial data bases. Access Value Line, or Standard and Poor's. Get the latest information on 40,000 stocks, bonds or commodities. Then, consult experts like IDS or Heinold Commodities. All on line with CompuServe.

Or if, like Herbie, intergalactic gamesmanship is your thing, enjoy the best in fantasy, adventure, and space games. Like MegaWars, the ultimate computer conflict.

To get all this and more, you'll
need a computer, a modem and CompuServe. CompuServe connects with almost any personal computer, terminal, or communicating word processor. To receive an illustrated guide to CompuServe and learn how you can subscribe, contact or call:

\section*{CompuServe}

Consumer Information Service, P. O. Box 20212 5000 Arlington Centre Blvd., Columbus, OH 43220
800-848-8199
In Ohio call 614-457-0802.
will be displayed．Once again，be sure that your tape is ready and that you have the PLAY button pressed before you touch the L key．

If you don＇t want to type in the program，I will make copies（for the Atari only）on cassette，if you send the usual \(\$ 3\) ，a cassette，and a stamped， self－addressed mailer to：

Coy Ison
605 Fifth Ave．
Conway，AR 72032

\section*{Program 1：Atari Picture Perfect}

Refer to the＂Automatic Proofreader＂article before typing this program in．

ग 20 GOSUE 1480 ：GOSUE 970 ：GOSUB 1260 ：GOTO 130
W З FOR I＝め TO 1 ＠め STEF 2め

ON SO NEXT I
E6 SO FETUFN
HC \(7 \varnothing\) REM CLEAR SCREEN
FN B FOF DO＝1 TO 19
EM 90 GOSUB उめ
NO 1め以 POSITION 1，DO：？\＃6：＂
（18 SPACES）＂：REM（18 SFACES）
GE 11 Q NEXT DO
H0 120 FETURN
O6 1 Sめ REM JOYSTICK ROUTE FOR RE－SHAF ES
［1F 140 FOR T＝1 TO 1 QQ：NEXT T
LH 15 GO FOV＝2：FODO＝21
P1 16 S S STICK（回）：FOKE 764，255
P． \(170 \mathrm{DX}=(\mathrm{S}=7)-(\mathrm{S}=11)\)
a． \(180 \mathrm{DY}=(5=13)-(S=14)\)
Gi 190 IF \(D X<>0\) OR DYく〉 THEN GOSUE 3 g
EE 2GG FOV \(=\mathrm{FOU}+\mathrm{DX}+\mathrm{DX}: \mathrm{FDO}=\mathrm{FDO}+\mathrm{DY}+\mathrm{DY}\)
EP 210 IF FOVく2 THEN FQU \(=18\)
FC 220 IF FQV＞18 THEN FOV＝2
F． 230 IF FDO＜ 21 THEN \(F D O=23\)
FN 240 IF FDOン2S THEN FDO \(=21\)
MA 250 LOCATE FOU，FDO，A
VF 26Q FOSITION FOV，FDO：？\＃6：＂？＂
5\％27g FOR \(T=1\) TO 3 G：NEXT \(T\)
L2 28 FOSITION POV，FDO：？\＃6：CHR（A）
6K 290 IF STRIG（ 0\()=0\) THEN 37 G
ID 3 Qg IF FEEK \((53279)=3\) THEN GOSUR 13 7日：GOTO 13め

K1 319 IF PEEK \((53279)=6\) THEN DF \(=1\) ：GOS UB 970：GOTO 13め
HK 326 IF FEEK（764）\(=255\) THEN 16 S
VF З3 IF IF FEEK \((764)=62\) THEN 786
HC 340 IF FEEK \((764)=6\) THEN G3
AE З5g IF FEEK \((764)=54\) THEN GOSUB 76： GOTO 13 ふ
61 36日 GOTO 160
FC 379 REM JOYSTICK ROUTE FQF SCREEN DRAW
CG 389 FOF \(T=1\) TO 99：NEXT \(T\)
FF З9G QV＝18：DO＝1：POKE 77．Q
PF 4 月G S＝STICK（Q）：FOKE 764，255

PG 41 ＠\(D X=(S=7) \cdots(S=11)\)
c： \(420 \mathrm{DY}=(S=13)-(S=14)\)
6G 4 З g
EL 44 G \(O V=O V+D X: D O=D O+D Y\)
LE 45G IF OV 1 THEN OV 18
LH 4GQ IF OV 18 THEN OV \(=1\)
ग0 476 IF DO＜1 THEN DO \(=19\)
3G 48 IF DO 19 THEN DO \(=1\)
DE 49 g LOCATE OV，DO．©
PO SgQ FOSITION OV，DO：？\＃6；＂？＂
GE 595 FOSITION FOU，FDO：？\＃b；＂＂
EA 51 W FOR \(T=1\) TO \(1 \Leftrightarrow:\) NEXT \(T\)
CA 52g FOSITION OV．DO：？\＃6；CHFक（0）
LF 525 FOSITION FOU，FDO：？\＃6；CHRक（A）
EG \(5 \Xi\) IF STRIG（历）＝め THEN FOSITION OV DD：？\＃6：CHRक（A）
JJ 549 IF PEEK（53279）＝3 THEN GOSUB 13
7め：GOTO 13＠
NO 55＠IF FEEK \((53279)=5\) THEN 1 SQ
NH 56＠IF FEEK \((764)=255\) THEN 409
00565 IF FEEK \((764)=42\) THEN 1235
LF 579 IF PEEK \((764)=62\) THEN 789
DP 58＠IF PEEK \((764)=33\) THEN FOSITION
OV，DO：？\＃S；＂＂
HJ 59＠IF FEEK（764）\(=6\) THEN 63＠
PP G日＠IF PEEK \((764)=54\) THEN GOSUE 7＠： GOTO 13Q
NL 610 IF PEEK \((53279)=5\) THEN \(13 め\)
GF 62め GOTO 4めめ
LP 63D REM LOADING DATA TAFE
NF 64 ＠SC \(\$=" "\)
66 65月 POSITION 1，2Q：？\＃6：＂LOADING DA TA TAPE＂
\(30660 \quad \mathrm{FN}=1\)
FC 67 D DFEN \＃4， 4 ，以，FILE \(\$\)
EC 68め GET \＃4，A
6N 69＠IF \(A=63\) THEN CLOSE \＃4：GOTO \(72 \emptyset\)

6P 710 GOTO 680
JH 720 FOR LF＝1 TO 19
AH 7S＠FOSITION 1，LP：？\＃6：SC \(\$\)（FN，FN＋1 7）
JE 749 \(\quad \mathrm{FN}=\mathrm{FN}+18\)
HH \(75 \Omega\) NEXT LP


GL77 GOTO 13の
IP 789 REM SAVING DATA TAFE
M 79め SCक＝＂＂
CK 日めめ POSITION 2，29：？\＃6：＂SAVING DAT
A TAFE＂
10810 FOR DO＝1 TO 19
KA 82g FOR OV \(=1\) TO 18
GF 8SG LOCATE OV，DO，ZZ：SC\＄（LEN（SC\＄）+1 \()=C H R \$(Z Z)\)
AF B40 FOSITION OV，DO：？\＃S：＂？＂
13 85＠FOSITION OV，DO：？\＃6：CHRक（ZZ）
IC 860 NEXT OU
H8 870 NEXT DO
FJ 88＠OFEN \＃4，8，W，FILE \(\$\)
4P 89 G FOF LP＝1 TO LEN（SC क）
KH 9 ＠F FUT \＃4，ASC（SC\＆（LF，LF））
HF910 NEXT LF
1A 92g FUT \＃4，63
GJ 93日 CLOSE \＃4


GL 959 GOTO 139
GH 969 REM DRAW

\title{
 OR JUST ONE OF THE BUCHP?
}

Kids everywhere are going ape over Artworx Monkey Series educational software! Like all good arcade games, kids just can't stop playing them. Which is great, because while they're enjoying the antics of Marc the Monkey, they're learning. And growing.

Three Artworx monkey programs, designed by teachers and learning specialists, are available to help your child.

Monkeymath \({ }^{\text {T }}\) uses colorful graphics and three levels of challenges to give a better understanding of number sequences, addition, sub-


Monkeymath traction, multiplication, and division.

Monkeynews "" uses a newspaper setting to increase your child's ability to read and understand by enabling him to actively participate in the story, answer questions, check facts and type his own headlines.

For help with spelling and vocabulary, choose Monkeybuilder". It encourages the child to combine word pieces correctly to form building blocks, and make a tree house for Marc.

All three programs are more fun than a barrel of you-know-whats!
All are available for the Commodore 64, Atari, and Apple computers. All include a FREE Marc the Monkey story and coloring book. And they're all the stuff top bananas are made of!

See them in action wherever software is sold. To find out more facts, send \(\$ 1.00\) for a colorful catalog to: Artworx Software Co., Inc. 150 North Main Street, Fairport, NY 14450.

Or call: 800-828-6573.


Monkeybuilder

PE 970 FOSITION 1， \(1: ?\) \＃6；＂〔18 SFACES\}" KO 98，FOSITION \(1,2: ? \# 6\) ：＂ 211 SPACES？ \｛3 SPACES\}
H0 99＠POSITION 1，3：？\＃6；＂\(\{5\) SFACES\}* \｛7 SPACES\} \(\backslash 4\) SPACES？＂
81 1 פゆめ POSITION 1，4：？\＃S；＂
\｛18 SFACES\}"
EK 101月 FOSITION \(1,5: ? \# 6 ; "\)
\｛18 SFACES\}"
LF 1＠2ด FOSITION \(1,6:\) ？\＃：＂ （5 SPACES\}) \#\$) (7 SFACES\}"
EM 1øSめ FOSITION 1，7：？\＃b；＂\＃क \(\mathbb{C}\)［C

 69世ल9999＂
 ［T TEX4 SFACES）＂
 ［द）［द\｛4 SF＇ACES？＇
 Cरदब + \＃＂
 प्डाद्य，

－Kत［a＜4 SFACES3＂
 ［G＋ C ）
OH 111めPOSITION 1，15：？\＃6；＂पद्य ［दा［द；；
EN 1120 POSITION \(1,16: ?\) \＃6：＂）



FC 1140 FOSITION 1，18：？\＃6；＂ \｛18 SFACES3＂
FE 1150 FOSITION 1，19：？\＃6；＂ \｛18 SFACES\}"
KD 116 IF \(D F=1\) THEN DF＝ \(0:\) RETURN
HE 117日 GOSUB 128日
AF 118 P POSITION \(3,1:\) ？\＃b；＂picture pe rfect＂
HA 1190 FOSITION 4，22：？\＃6；＂FRESS STA RT＂
DP 12 Q FOF \(T=1\) TO \(3 \Omega:\) NEXT \(T\)
EJ 1210 POSITION 4，22：？\＃6；＂RMEXSE Ste FTi＂
ER 1220 FOR T＝1 TO \(3 \varnothing\) ：NEXT T
DK 123ด IF PEEK \((53279)=6\) THEN POSITIO N 2，22：？\＃6；＂\｛13 SPACES\}": GOSU B \(7 \varnothing\) ：RETURN
ML 1231 GOTO 1190
GJ 1232 REM E KEY ROUTE
HJ 1235 EOV \(=O V: E D O=D O\)
CN 1236 S＝STICK（ 12 ）：POKE 764，255
PK \(1237 \mathrm{DX}=(\mathrm{S}=7)-(\mathrm{S}=11): \mathrm{DY}=(\mathrm{S}=13)-(\mathrm{S}=\) 14）
JF 1238 EOV＝EOV \(+D X: E D O=E D O+D Y\)
HE 1239 IF EOV＜ 1 THEN EOV \(=18\)
601240 IF EQV＞18 THEN EQV＝1
EK 1241 IF \(E D O<1\) THEN \(E D O=19\)
E！ 1242 IF EDO \(>19\) THEN EDO \(=1\)
CN 1243 LOCATE EOV，EDO，EL
GE 1244 POSITION EOV，EDO：？\＃6：＂E＇＂
EH 1245 FOR \(T=1\) TO 2Q：NEXT T
CA 1246 FOSITION EOV，EDO：？\＃6；CHRक（EL ）
LH 1247 IF STRIG（0）\(=0\) THEN FOSITION E OV，EDO：？\＃6：＂
NM 1248 IF PEEK \((764)=42\) THEN 14 日 NF 1249 GOTO 1236

AG 1259 REM SET UF SCREEN
AA \(1260 \quad M N=1: C C=1\)
Ef 127日 GOSUB 141め
M1 1289 FOR LF＝g TO 19
CL 129 POSITION LF，日：？\＃6；＂日＂
FF 1ЗめØ FOSITION LF，2曰：？\＃6；＂D＂
KA \(131 め\) NEXT LF
ME 1320 FOR LF＝1 TO 19
CG 1336 FOSITION 日，LF：？\＃6；＂巴＂
GP 1 34 POSITION 19，LF：？\＃6；＂⿴⿱冂一⿰丨丨丁口＂
YE 1350 NEXT LP
K 136 RETURN
301370 REM FLIF SHAPES
FD \(1380 \quad \mathrm{CC}=\mathrm{CC}+1\) ：IF CC \(>2\) THEN CC＝1
OE 139め ON CC GOTO 141 以，144日
ML 14 G月 GOTO 1396

M 1420 FOSITION 2，23：？\＃b：＂ \(\mathbf{H}+, \quad-\quad\) ］
\ ：；＊＂
N1 143 R FETURN
KO 144 GS REM SECOND SET OF SHAFES
D 145の FOSITION 2，21：？\＃6；＂日 123 ［ ME 1460 FOSITION 2，23：？\＃6；＂医 8 ？\(=\) \(6574^{\prime \prime}\)
KH 147日 RETURN
日F 1480 REM FAST DUMF
OC 1490 GRAPHICS \(1+16\)
PP 15め日 FOSITION 4，1月：？\＃6；＂ONE MOMEN \(T^{\prime \prime}\)
KI 151め DIM E\＄（5め）：RAMTOF＝PEEK（1פ6）－8 ：FOKE 1＠6．FAMTOF：CHEAS＝RAMTOF ： \(\mathrm{ADDR}=\mathrm{CHEAS} * 25 \mathrm{~S}: \mathrm{PAGE}=4\)
CP 152 G FOR \(I=1\) TO \(41:\) FEAD UM：E（I，I） \(=\) CHR（ \(U M\) ）：NEXT I：A＝USR（ADR（E \(\$\) ），ADDR，FAGE）
EF 1521 DATA \(1 @ 4,164,133,267,1 め 4,13 \mathrm{~S}\)
EO 1522 DATA \(206,104,164,133,212,169\)
ON 1523 DATA \(5,133,204,169,224,133\)
U 1524 DATA \(205,162,1,16\) ， 0,177
FG 1525 DATA \(204,145,296,290,268.249\)
FB 1526 DATA 23日，2ด5，23日，2め7，232， 228
PN 1527 DATA 212，208，240，96， 6
MD 1530 FOR \(L F=1\) TO उS
AE 1540 READ CHAR
明 155 P POS＝ADDR＋（CHAR \(\times 8\) ）
FG 156＠FOR X＝Q TO 7：READ A：POKE（FOS \(+X), A: N E X T \quad X\)
K1 1570 NEXT LF
FF 1580 POSITION 4，1め：？\＃6：＂
\｛1D SFACES\}"
FK 1590 DATA \(1,255,255,255,255,255,25\) 5，255，255
HI 16日G DATA \(3,1,3,7,15,31,63,127,255\)
EJ 1610 DATA \(4,128,192,224,249,248,25\) 2． 254.255
PE 1629 DATA 5，24，24，24，255，255，24，24 ， 24
161639 DATA \(6,69,36,69,36,60,36,60,3\) 6
KM 1640 DATA 7，0，255，255，0，0，255，255， Ø
GC 165 D DATA 8，222，222， \(5,123,123, \varnothing, 22\) 2． 222
IC 1660 DATA 9，24，24，6月，60，126，126， 25 5， 255
FH 167め DATA \(10,66,165,90,60,60,9 め, 16\) 5． 66
IL 1680 DATA \(11,255,129,129,129,129,1\) 29，129，255


A6 169め DATA 12，215，め，19め，め，221，め，6め， 129
K1 17めの DATA \(13,24,6 \emptyset, 126,255,255,126\) ，6日， 24
N］ 1710 DATA \(14,24,24,24,24,24,24,24\) ， 24
AC 1720 DATA \(15, \varnothing, \emptyset, \emptyset, 255,255, 母, \varnothing, め\)
JD 1736 DATA \(26,255,255,255,255,255,2\) 55．249．249

IH 1750 FEM SECOND DATA
BN 1760 DATA 16，6日，126，255，255，255，25 5．126，5母
C1 177日 DATA \(17,6 母, 255,126,219,126,36\) ，255． 189
PN 1780 DATA \(18,64,90,126,165,24,255\) ， 189， 189
GE 1790 DATA \(19,189,189,60,60,102,162\) ，102．231
K 18めめ DATA \(20,24,24,24,248,248, \varnothing, \emptyset\) ， Ø
KF 181め DATA 21．日，6，日，248，248，24，24，2 4

DD 182め DATA 22，Ø，Ø，Ø，З1，31，24，24，24
DF 183 DATA \(23,24,24,24,31,31, \emptyset, \emptyset, \emptyset\)
\(K H 1840\) DATA \(24,24,24,24,255,255,0,0\) ， Ø
K1 1850 DATA \(25, 母, \varnothing, 0,255,255,24,24,2\) 4
NP \(186 \varnothing\) DATA \(28,24,24,24,31,31,24,24\) ， 24
FF 1879 DATA \(29,24,24,24,248,248,24,2\) 4， 24
11 188め DATA \(36,1.3,6,12.24,48,96,192\)
P01896 DATA 59，128，192，96，48，24，12，6 ，उ
A1 \(19 め\) DATA \(6 \varnothing, め, め, め, 36,90,129, \emptyset, め\)
NK 191＠DATA 61，24，28，З＠，31，31，З 4,28 ， 24
MC 1926 DATA 62，176，85，176，85，176，85， 17日，85
CL 1936 FOKE 756，CHBAS
KO 194 R RETURN
FC 2めめめ DIM FILE\＄（15）：GRAFHICS 日
D \(2 め 1\) TRAF 2め6め：PRINT＂\｛CLEAR\}
〔DOWN\} INPUT FILENAME"
JL 2め2め FRINT＂\｛DOWN\}CASSETTE USERS E NTER C：＂
\(0 J 2 め 3 \varnothing\) FRINT＂\｛DOWN\}DISK USERS ENTER FILENAME WITH D：＂
JK \(2 め 4 め\) INFUT FILE \(\$\)
LA 2曰5，IF FILE\＄\((1,2)=" C: " \quad O R\) FILEक（1 ，2）＝＂D：＂THEN TRAF 4めめgめ：RETU FN
CG 2円Gด TRAF 2QG日：FRINT＂〔BELL？\｛DOWN？ ERROR IN FILENAME！＂：FOR UM＝1 TO 2めQ：NEXT UM：GOTO \(2 \oiint 1 め\)

\section*{Program 2： \\ Machine Language For Hi－Res Graphics Editor}
（Use MLX to enter this program．）
49152 ：Ø32，1Ø7，198，169，Ø15，141，15Ø \(49158: 226,206,032, \emptyset 13,198,169, \varnothing 82\) \(49164: 128,133,044,141,130, \emptyset 02,078\) \(4917 \emptyset: 169, \varnothing \emptyset \emptyset, 141, \varnothing 0 \emptyset, 128,169,113\) 49176 ：2ØØ，141，ØøØ，2Ø8，141，254，2ØØ 49182 ：2ø6，169，Øø3，141，Ø21，2Ø8，Ø1Ø \(49188: 169,033,141,212,205,169,197\) 49194 ：Øøø，141，Ø16，2Ø8，141，255，Ø35

49200
49206
49212
49218 49224 49230 49236 49242 49248 49254 49260 49266 49272 49278 49284 49290 49296 49302 49308 49314 49320 49326 49332 49338 49344 49350 49356 49362 49368 49374 49380 49386 49392 49398 49404 49410 49416 49422 49428 49434 49440 49446 49452 49458 49464 49470 49476 49482 49488 49494 495øø 49506 49512 49518 ： 49524 ： 49530 49536 49542 ： 49548 49554 49560 49566 49572 49578 49584 49590 49596
49602

\section*{49608} 49614 \(4962 \emptyset\)
\(: 2 \emptyset 6,169,1 \varnothing \emptyset, 141, \emptyset \emptyset 1,2 \emptyset 8,1 \varnothing 5\) ：141，Øø3，2ø8，173，Ø24，2ø8，ø43 ：Ø41，24の，Øø9，øø8，141，Ø24，011 ：208，173，Ø17，208，Øø9，Ø32，2ø1 ：141，Ø17，2ø8，169，øøø，141，236 \(: 238, \varnothing \varnothing 2, \varnothing 32,182,2 \emptyset \emptyset, \varnothing 32,252\) \(: 107,192, \emptyset 32, \emptyset \emptyset 4,194, \varnothing 32,133\) \(: 186,197, \varnothing 32,239,197, \emptyset 32,205\) \(: 186,199, \emptyset 32, \varnothing \emptyset 8,201,173,127\) \(: 238, \varnothing \emptyset 2,24 \emptyset, 23 \emptyset, \varnothing 96,169, \varnothing 53\) ：Ø32，141，248，Øø7，169，Øø1，194 ：141，Ø39，2ø8，238，Ø4ø，2ø8，22ø ：173，227，2Ø5，201，Øø3，2Ø8，113 ：Ø18，169，Ø76，141，198，2Ø5，165 ：169，248，141，197，205，169，237 \(: \emptyset 14,141,241, \varnothing \emptyset 2, \varnothing 76,160, \emptyset \emptyset 4\) ：192，169，Ø63，141，198，2ø5，Ø88 \(: 169,228,141,197,205,169,235\) ：Ø25，141，241，Øø2，173，212，182 ：2ø5，141，249，Øø7，173，Øøø，169 ：220，Ø41，015，141，253，2Ø6，Ø2ø ：Ø56，169，Ø15，237，253，2ø6，Ø86 ：141，252，2ø6，16ø，øøø，2øø，115 \(: 204,252,206,208,250,152,178\) ： \(010,168,185,2 \emptyset 4,192,072,255\) \(: 185,203,192, \varnothing 72,096, \varnothing 02,180\) \(: 194,214,193,218,193, \emptyset 02,194\) \(: 194,226,193,230,193,237,203\) ：193，Ø02，194，222，193，251，247 \(: 193,244,193, \varnothing \emptyset 2,194,169,193\) ： \(05 \emptyset, 2 \emptyset 5, \varnothing \emptyset 1,2 \emptyset 8,176, \emptyset 12,112\) \(: 173, \emptyset 01,2 \emptyset 8, \emptyset 56,173, \emptyset 01, \varnothing 78\) ：2ø8，233，Øø1，141，Øø1，208，0ø8 ： \(096,173,197,2 \emptyset 5,2 \emptyset 5, \boxed{1,01,099}\) ：2ø8，144，Ø12，173，Ø01，2ø8，230 \(: \varnothing 24,173, \emptyset \emptyset 1,2 \emptyset 8,1 \emptyset 5, \varnothing \emptyset 1, \varnothing \emptyset 2\) \(: 141, \varnothing 01,2 \emptyset 8, \varnothing 96,056,173,171\) ：254，206，237，198，205，141，231 \(: 253,2 \emptyset 6,173,255,2 \varnothing 6,233,066\) ：Øø1，Ø13，253，2Ø6，144，Ø14，145 \(: 173,198,2 \emptyset 5,141,254,206,185\) ：169，Øø1，141，255，2ø6，Ø76，118 ：Ø63，193，Ø24，173，254，2Ø6，189 ：105，Ø01，141，254，206，173，162 \(: 255,206,105, \varnothing \emptyset \emptyset, 141,255,25 \emptyset\) ：2ø6，Ø56，173，254，2ø6，233，166 ：000，141，253，206，173，255，072 \(: 206,233, \emptyset \emptyset 1,013,253,206,218\) ：144，ø15，173，ø16，2ø8，øø9，133 ：Øø1，141，Ø16，2ø8，173，254，111 ：206，141，øøø，2ø8，096，173，148 ：Ø16，2ø8，Ø41，254，141，Ø16，ØØ6 \(: 208,173,254,206,141,0 \emptyset 0,062\) ：2ø8，Ø96，ø56，173，254，2ø6，Ø79 ：237，241，øø2，141，253，2Ø6，172 \(: 173,255,2 \emptyset 6,233\), Øøø，Ø13，234 ：253，2ø6，176，017，056，173，241 ：241，øø2，233，øø1，141，254，238 \(: 206,169, \emptyset \emptyset \emptyset, 141,255,2 \emptyset 6,093\) ：\(\varnothing 76,166,193, \emptyset 56,173,254, \emptyset 4 \emptyset\) \(: 2 \emptyset 6,233, \varnothing \varnothing 1,141,254,2 \emptyset 6,169\) \(=173,255,2 \emptyset 6,233, \emptyset \emptyset \emptyset, 141,142\) \(: 255,2 \emptyset 6, \emptyset 56,173,254,2 \emptyset 6, \emptyset 34\) ：233，Øøø，141，253，2Ø6，173，152 ：255，2ø6，233，øø1，Ø13，253，113 \(: 2 \emptyset 6,144,015,173, \varnothing 16,2 \emptyset 8,176\) ：øø9，Øø1，141，Ø16，2ø8，173，224 \(: 254,2 \emptyset 6,141, \emptyset \emptyset 0,2 \emptyset 8, \emptyset 96,075\) \(: 173,016,2 \emptyset 8,041,254,141,009\) ：Ø16，2ø8，173，254，206，141，180 ：ØØб，2Ø8，Ø96，Ø32，227，192，199

\section*{VIC RORY: SAT}

\section*{We, The People of Kiel Software} in order to help students gain admission to He college of their choice, to secure the blessings of sholarssiips and financial aids and to enhance their opportunities in life. do hereby proclaim \(A^{*}\). Prep new expanded Krill's college Board SAT . Preparation series for microcomputers.

\section*{Article I}
1. 42 programs providing complete coverage of all standard \(W\) written math and verbal areas including the
English.
 III. SAT* exam question s. S.A. T. format nations to maximize learn IV. All questions manchus sowers and dexplase warranty. study and no other instruct for fe ch individual wert.


\section*{nO POUT}

SAT SCORE INCREASE WARRANTY BACKED BY FULL CASH REFUND
The best investment you can make in the education your most precious investment, your children Call or write for details about Krell's GREAT AMERICAN SAT* CONTEST with \(\mathbf{\$ 5 0 , 0 0 0}\) in prizes SPECIAL SCHOOL DISCOUNT PACKAGE AVAILABLE.
Krell Software Corporation has no official ties with either the CEEB or the E.T.S. of Princeton, New Jersey Krell's College Board SAT Preparation Series of microcomputer programs may be used with any microcomputer including Acorn Apple Atari. Commodore 64. PET Kaypro. IBM Radio Shack
Krell Software Corporation does not endorse the use of the SAT exams in any way. We believe that both the SAT Examination System and the examinations themselves are seriously flawed. However, we recognize the needs for individual students to perform well on these examinations in order to secure college entrance and scholarships. SAT and College Board are registered trademarks and service marks of the College Entrance Examination Board.

\title{
64 Hi-Res \(19952-5 / 553\) Graphics Editor
}

\author{
Gregg Peele, Assistant Programming Supervisor
}

Just as a word processor allows you to expand your writing skills by giving you power to manipulate text freely, "Hi-Res Graphics Editor" allows you to easily draw, erase, and edit images on the 64 's hi-res screen. Once you have finished your drawing, you can even send the results to your 1525 printer.

The Editor expands on the graphics techniques in "Picture Perfect," using the sprite capability of your 64 to create and modify intricate designs on the screen. Parts of pictures can be "imprinted" onto a sprite and "planted" on another area of the screen. You can then enlarge the sprite to full-screen size and edit it more precisely.

\section*{Type It In With MLX}

Hi-Res Graphics Editor is in two parts. First you must type in Program 2 using the MLX program elsewhere in this issue. After saving Program 2 to disk or tape, reset your machine by turning it off.

Now type in Program 3, the BASIC part of Hi-Res Graphics Editor. SAVE it to disk or tape.

To run the program, first LOAD the file created by MLX with this format:

LOAD "your filename", 8,1 for disk
LOAD "your filename", 1,1 for tape
Now enter this line and press RETURN:
POKE 642,128:POKE 44,128:POKE 32768,0:NEW
This moves BASIC to a safe place in mem-ory-leaving plenty of room for hi-res screens. You must type this line each time before you LOAD Program 3.

Next, LOAD the BASIC program-Program 3. Type RUN, press RETURN, and you are in the Editor.

\section*{Set The Joystick Speed}

The first prompt in Hi-Res Graphics Editor is for joystick speed. Enter a number from 1 to 10 ( 10 is fastest). The lower the number, the more control you have over drawing. You can experiment with these numbers to find the best speed for your purposes.

Next, the screen clears and a rectangle appears in the center. This is the sprite cursor. Press the letter D and the box will change

into an arrow. You are now in Draw Mode. With a joystick in port 2, you can move this arrow around the screen.

Pressing the fire button draws on the screen. If what you have drawn is invisible, press B to change the background color and \(F\) to change the foreground color. Repeat each of these keys to step through the sequence of all possible colors.

\section*{Erasing With The Arrow}

If you wish to erase what you have drawn, engage the SHIFT LOCK key on the keyboard. Then hold down the fire button and use the joystick to point the arrow at any pixel you want to erase. To start over with a clean slate, just press the f1 key. This clears the screen.

Sprite Mode can be accessed by pressing the A (Add), S (Stamp), C (Copy), or E (Erase) key. Let's explore the most interesting of these, hitting the letter C.

Using the joystick, move the rectangle around the screen until it's superimposed on part of your original drawing. (If you have cleared the screen, you can return to draw mode by pressing D.) Press the fire button, and the contents of the screen "under" the sprite will be copied onto the sprite.

You can enter Add Mode at any time by pressing A. In this mode, you can move your sprite around the screen and "plant" the image anywhere you like. (You add the image of the sprite to the images already on the screen.) If you hold the button down while you move the sprite, the sprite's image becomes a wide "brush," which you can use for calligraphy and to create other interesting effects.

\section*{A Graphic Stamp}

Stamp Mode replaces the contents of the screen with the contents of the sprite. And if you make a mistake in your drawing, use E, Erase Mode. This mode transforms the sprite cursor into a giant eraser which clears any pixels it passes over.

\section*{Developing a mind for the Future. . Rec}


Color 80 S4995 U.S:

Produces 80 Columns With Color! Needs No Extra Hardware Use With Terminal Programs Uses No Basic Memory in the 64 Develop Your Own Programs

NEW Combined PACKAGE
SCRIPT 64 \& SCRATCH PAD 64 \$10500 U.S:
Script 64 and English 80 Columns d Replac User Created Dictionary Spelling Check Scratch Pad 64 The Database/Mail List in One Merges with Script 64 Word Processor Print out Labels. Envelopes, Mail List \& More Suitable with both Single and Dual Disk Drives Fully C64 Link Compatible
*SUGGESTED RETAIL PRICE F.O.B in U.S FUNDS, Toronto, CANADA

\section*{C64 LINK \({ }^{\circledR}\)} The Smart 64

\section*{Give These Expanded Capabilities} to Your 64 and VIC 20
- The ability to transfer data from any type of device to another (IEEE, Serial, Parallel)
- BASIC 4.0 which allows you to run more PET BASIC programs and gives you extended disk and I/O commands.
- The ability to have several 64s on line together - sharing common IEEE devices such as disks or printers with Spooling Capability.
* Built-in machine language monitor.
- A built-in terminal or modem program which allows the system to communicate through a modem to many bulletin board systems and other computer mainframes.
- Compatability with CP/M.

Contact your local Commodore dealer or RTC. Payments by VISA, MASTERCARD or BANK TRANSFER. Mail orders also by certified cheque, etc.


10610 Bayview Avenue (Bayview Plaza) Richmond Hill, Ontario, Canada L4C 3N8
(416) 884-4165

\section*{A Sprite Editor}

You can create your own sprites by enlarging the sprite to full screen proportions. Hold down the \(f 7\) key briefly. The screen will clear and an enlarged image of the sprite will appear in the upper left corner of the screen. To edit this sprite, press the fire button of the joystick as you move the cursor in this area. Erasing is simple. Just engage the SHIFT/LOCK key, and instead of drawing to the sprite image, you will erase parts of the sprite. The f1 key clears the sprite, just as it cleared the screen in hi-res mode.

If you want to save or load a hi-res screen, you must do it from this sprite definition mode. Hold the CTRL key while you press L for LOAD, and a series of prompts will then appear for loading from disk or tape. Likewise, holding CTRL and S allows you to save to disk or tape.

Anytime you wish to return to hi-res mode, simply hold f 7 down for a moment. You can then use the sprite definition you have just created to produce intricate pictures on the hi-res screen.

\section*{Two Graphics Screens}

The Editor contains a feature which allows you to have two full screens of graphics in memory at one time. Press T to toggle between them. When you first try this function, the screen will fill with garbage if nothing has been created on the alternate screen. (There is undefined data in this area.)

Clear the screen (using the f1 key) to start with a new palette. Draw a new design on this screen, and press T (toggle) to return to the old screen. Pressing T again takes you back to your second creation, and so on

\section*{Printing Your Creation}

Since an image created on a computer screen will last only as long as the power is on, a hires screen dump is included. Just press the letter P, and your 1525 printer (or 1525 compatible printer) will print the contents (minus the sprite cursors) of the screen.

Here's a summary of the commands in the Hi-Res Graphics Editor:
\begin{tabular}{|c|c|}
\hline D & Draw Mode \\
\hline SHIFT & \\
\hline LOCK on & Erase draw (in sprite definition mode, erase parts of sprite) \\
\hline A & Add Mode; overlay sprite with screen \\
\hline C & Copy screen to sprite \\
\hline S & Stamp Mode; replace what is onscreen with sprite image \\
\hline E & Erase under sprite \\
\hline F & Sequence through foreground colors \\
\hline B & Sequence through background colors \\
\hline T & Toggle between screens \\
\hline f1 & Clear screen (hi-res and sprite definition modes) \\
\hline f7 & Change from hi-res to sprite definition and vice versa \\
\hline CTRL-L & Load screen from disk or tape; available only from sprite definition mode \\
\hline CTRL-S & Save screen from disk or tape; available only from sprite definition mode \\
\hline P & Produce printout on 1525 printer \\
\hline
\end{tabular}

49626 : \(096, ~ Ø 32,247,192,096, \varnothing 32,145\) 49632 : \(012,193,096,032,112,193,094\) 49638 : \(096, \varnothing 32,227,192,032,112,153\) 49644 : 193, ø96, ø32, 247, 192, ø32, øø4
 49656 : Ø32, Ø12,193, 096, 032,227,072 49662 : 192, Ø32, Ø12,193, Ø96, Ø96,1ø7 49668 : \(173, \varnothing 01,2 \varnothing 8,141, \varnothing \varnothing 3,208,226\) 49674 : \(173, \varnothing \varnothing \varnothing, 2 \emptyset 8,141, \varnothing \varnothing 2,208,23 \varnothing\) \(4968 \emptyset: 173, \varnothing 16,2 \varnothing 8, \varnothing 41, \varnothing \varnothing 1,240,183\) 49686 : Ø11,169, øø2, Ø13, Ø16,208,185 49692 : 141, Ø16, 2ø8, ø76,042,194,193 49698 : \(169,253,045,016,208,141,098\) \(497 \varnothing 4\) : \(016,2 \varnothing 8, \varnothing 56,173,254,2 \varnothing 6,185\) \(4971 \emptyset: 233, \varnothing 24,141,25 \emptyset, 2 \varnothing 6,173, \varnothing 49\) 49716 : \(255,206,233, \varnothing \varnothing \varnothing, 141,251,114\) 49722 : 2ø6,165,197,201, Ø13,240, Ø56 49728 : \(023,2 \emptyset 1, \varnothing 1 \varnothing, 24 \emptyset, \varnothing 3 \varnothing, 2 \emptyset 1, \varnothing \varnothing 1\) 49734 : \(\varnothing 14,24 \emptyset, \varnothing 46,2 \emptyset 1, \varnothing 18,24 \emptyset, \emptyset 61\) \(4974 \emptyset: \varnothing 53,2 \varnothing 1, \varnothing 2 \emptyset, 24 \varnothing, 079,2 \emptyset 1,1 \varnothing 2\) 49746 : øø \(2,24 \varnothing, \varnothing 25, \varnothing 76,168,194, \varnothing 2 \varnothing\) 49752 : 169, øøø,141,227,2ø5, Ø32, 994 49758 : \(138,194, \boxed{6}, 168,194,169,009\) 49764 : øø1,141,227,2ø5, Ø32,138, 076 \(4977 \emptyset: 194, \varnothing 76,168,194, \varnothing 32,138,14 \varnothing\)

49776 : \(194,076,180,199,076,168,237\) 49782 : 194,169, øø2,141,227,2ø5, ø32 49788 : ø \(32,138,194, \varnothing 76,168,194,158\)
49794 : 169, øø3,141,227,205, Ø76, 183
498øø : 168,194,169,172,141, øøø,212
49806 : 2ø8,141,254,2ø6,169,øøø, Ø96
49812 : \(141,016,2 ø 8,141,255,2\) Ø6, 091
49818 : 169,124,141, Ø01,208, Ø96,125
49824 : 169, øø4,141,227,2ø5,ø32,17ø
49830 : \(138,194,173,227,205,201,024\)
49836 : Øø \(3,208, \varnothing 16,169,034,141,231\)
49842 : 212,205,173, Ø21,2ø8, Ø41, Ø14
49848 : 254,141, ø21,2ø8, 076,2ø4, ø64
49854 : 194, 169, ø33,141,212,205,12ø
\(49860: 173, \varnothing 21,2 \varnothing 8, \varnothing \varnothing 9, \varnothing \emptyset 3,141,239\)
49866 : Ø21, 208, Ø56,173, øø1,208,101
49872 : \(233, \varnothing 50,141,248,206,173,235\)
49878 : øøø,22ø, Ø41, ø16,2ø8, Ø17,2ø4
49884 : 169, øøø,141,224,2ø6,162, 098
49890 : \(\varnothing \varnothing \varnothing, 173,227,205,201, \varnothing 04,012\)
49896 : 2ø8, øø6, \(76,243,194,076, \varnothing 11\)
49902 : \(018,196,076,125,195,173,253\)
49908 : 250,206,141,218,205,173,157
49914 : 251, 206, 141, 219,205,169,161
\(4992 \emptyset: 128,141,216,2 \emptyset 5,169\), Øøø, Ø91

50016 50022
50028
50034
5øø4の
50046
50052
50058
50064
50ø7ø
50076
50082
\(50 \emptyset 88\)
50094
50100
50106
50112
50118
50124
50130
50136
50142
50148
50154
50160
50166
50172
50178
50184
50190
50196
50202
50208
50214
5022ø
50226
50232
50238
50244
5ø250
50256
50262
50268
50274
5028ø
50286
50292
50298
5ø304
50310
50316
50322
50328
50334
50340
50346

49926 : \(168,170,141,214,205,142,022\) 49932 : 222, 2ø5,14Ø,221,205, Ø32, ø13 49938 : Ø22, 196, 174, 222, 205,172,241 49944 : 221, 205, 173, 224, 205, 045, 073 49950 : 206, 207,240, Ø12,173,216, ø6ø 49956 : 205, ø25, øøø, øø8,153, øøø,171 49962 : Ø08, 076, 057,195,173,216,255 49968 : 205, Ø73,255, Ø57,øøø, øø8,134 49974 : 153, øøø, øø8, Ø78, 216, 2ø5,2ø2 4998 : 208, Øø6,169,128,141,216,160 49986 : 205,2øø, ø24,173,250,2ø6,1øø 49992 : 105, 001,141,250,206,173,180 49998 : 251, 2ø6,105, Øøø,141,251, øø8 \(5 \emptyset 0 \emptyset 4: 206,232,224,024,208,177,131\) \(50010: 162,000,173,218,205,141,221\) \(: 205,073,255,057,00 \emptyset, 008,134\)
\(: 153, \boxed{1}, \boxed{1}, 078,216,205,202\) : 208,006, 169,128,141,216,160 \(: 162,000,173,218,205,141,221\) \(: 250,206,173,219,205,141,010\) : 251, 206, 238, 248, 206, 162,133 : øøø,238,214,205,173,214,128 : 2ø5, 2ø1, 021,144,148,169,234 : øø1,141,227,205,096,169,191 : 128, 141, 226, 206, 172, 224, 199
 \(: 206,240,0 \emptyset 8,169,001,141,135\) : 228, 206, ø76,157,195,169,151 : Ø0ø,141,228,206, 076,157,19Ø \(: 195,173,227,205,201,003,136\) : 208, Ø39, 173,141, øø2,208,165 : Øø8,169,001,141,228,206,153 : \(076,182,195,169, \varnothing \emptyset 0,141,169\) : 228, 2ø6, 024,173,250,206,243 : 105, 011,141,250,206,173,048 : 251,2ø6,1ø5, øøø,141,251,122 : 206, ø32, ø22,196, Ø96,142,124 : 216, 2ø6, Ø32, ø22,196,174, Ø26 : 216, 2ø6, ø24,173,250,206, øø5 : 105, øø1,141,250,206,173, ø68 : 251,2ø6,105, øøø,141,251,152 \(: 206,110,226,206,208,152, \varnothing 56\) : 238, 224, 2ø6, 232, 224, ø03, Ø81 : 240, Ø03, Ø76,125,195,162, ø17 : øøø, 238,248,2ø6, ø56,173,143 : 250, 2ø6, 233, 024,141,250, 076 : 206, 173, 251,206,233, Ø0ø, ø47 :141,251,2ø6,172,224,206,184 \(: 192,063,144, \varnothing 01, \varnothing 96, \varnothing 76, \varnothing 74\) : 125,195,173,250,2ø6,141,086 \(: 250,207,173,251,206,141,230\) \(: 251,207,173,248,206,141,234\) \(: 248,207,169,000,141,249,028\) \(: 207,173,250,207,141,212,210\) \(: 207,173,251,207,141,213,218\) \(: 207,173,248,207,141,214,222\) \(: 207,173,249,207,141,215,230\) \(: 207,173,215,207,074,141,061\) \(: 217,207,173,214,207,106,174\) : 141, 216,207,173,217,207,217 : \(074,141,217,207,173,216,090\) \(: 207,106,141,216,207,173,118\) \(: 217,207, \varnothing 74,141,217,207,137\) \(: 173,216,207,106,141,216,139\) : 207, 173, 213, 207, 074,141,1ø1 \(: 219,207,173,212,207,106,216\) \(: 141,218,2 \varnothing 7,173,219,2 \varnothing 7, \varnothing \varnothing 7\) : \(074,141,219,2 \varnothing 7,173,218,136\) : 207,106,141,218,207,173,162 : 219, 207,074,141,219,207,183 \(: 173,218,207,106,141,218,185\) \(: 207,173,214,207,041,007,233\) \(: 141,220,207,173,216,207,042\) : Ø1ø, ø46,217,2ø7,ø1ø, 046,188 : 217, 207, 010,141,210,207,138

50352
50358
50364
50370
50376
50382
50388
50394
504øø
50406
50412
50418
50424
50430
50436
50442
50448
50454
50460
50466
50472
50478
50484
50490
50496
50502
50508
50514
50520
50526
50532
50538
50544
50550
50556
50562
50568
50574
50580
50586
50592
50598
50604
50610
50616
50622
50628
50634
50640
50646
50652
50658
50664
5ø670
50676
50682
50688
50694
50700
50706
50712
50718
50724
50730
50736
50742
50748
50754
50760
50766
50772
: \(046,217,2 \emptyset 7,173,217,207,219\) \(: 141,211,207,173,210,207,051\) : \(\varnothing 1 \varnothing, \varnothing 46,217,207, \varnothing 10,046,212\) : 217, 2ø7,1ø9, 210, 207,141, øø5 : 216,2ø7,173,211,2ø7,109,ø43 \(: 217,207,141,217,207,173,088\) \(: 216,207, \varnothing 10,046,217,2 \varnothing 7,091\) : Ø1ø, Ø46,217,2ø7, Ø10, ø46,242 \(: 217,207,141,216,207,173,105\) : 218, 207, Ø10, ø46, 219, 207,113 : Ø1ø, Ø46,219,2ø7,ø1ø,ø46,øø6 : 219, 207,141,218,207, 024, 234 \(: 173,216,207,109,218,207,098\) \(: 141,2 \varnothing 8,207,173,217,207,127\) \(: 109,219,207,141,209,207,072\) : Ø24,173,220,207,109,2ø8,183 \(: 207,141,208,207,169, \varnothing \varnothing 0,18 \emptyset\) : 1ø9, 2ø9, 2ø7,141,2ø9,2ø7, ø8ø : Ø24,169, ø32,1ø9,2ø9,2ø7,ø1ø : 141, 209, 207,173,208,207,155 \(: 133,251,173,209,207,133,122\) \(: 252,173,212,2 ø 7,041, \varnothing \varnothing 7,17 \emptyset\) : 141,225,2ø7,ø56,169,øø7,ø89 \(: 237,225,207,141,225,207,020\) :169, øøø,141,2ø6,2ø7,ø56,075 \(: 173,225,207,046,2 \varnothing 6,207,11 \varnothing\) : 206, 225,207,016,245,160,111 : øøø,173,227,205,201, Øø5,125 : 24ø, ø90,201, øø2,24ø, ø64,157 \(: 201, \varnothing \varnothing 4,2 \varnothing 8, \varnothing \varnothing 3, \varnothing 76,180,254\) : 197,173,228,2ø6,24ø, ø1ø,130 : 177,251,013,206,207,145,081 : 251, Ø76,180,197,173,227,192 \(: 205,201,001,240,018,173,188\) : 2ø6, 2ø7, Ø73,255,141,2ø6,188 \(: 207,177,251,045,206,207,199\) : 145, 251, ø76,18ø,197,177,138 \(: 251, \varnothing 45,2 \varnothing 6,2 \varnothing 7,240, \varnothing 32, \varnothing 99\) \(: 177,251, ø 13,206,207,145,123\) : 251, Ø76, 180, 197, 177,251, Øø6 : Ø45,2ø6,207,240,015,173,022 \(: 206,2 \emptyset 7, \varnothing 73,255,141,206,230\) \(: 207,177,251,045,206,2 \varnothing 7,241\) : 145,251,177,251,141,224,087 \(: 205,096,165,197,2 \varnothing 1, \varnothing \varnothing 4, \varnothing 28\) \(: 208,046,169, \varnothing \varnothing \varnothing, 133,17 \varnothing, 148\) :169,032,133,171,160, øøø,ø93 \(: 152,145,17 \varnothing, \varnothing 56,165,17 \varnothing, \varnothing 36\) \(: 233,255,141,212,2 ø 6,165,14 \varnothing\) : 171,233, Ø63, Ø13,212,2ø6, ø88 \(: 240,016,024,165,170,105,172\) : \(001,133,170,165,171,105,203\) : øø0,133,171, 076,2ø0,197,241 : \(096,165,197,170,201,028,071\) : 2ø8, Øø8,169, Ø15,141,212,229 \(: 206,076,010,198,201,021,194\) \(: 208,104,169,240,141,212,050\) \(: 206,076,034,198,238,214,204\) \(: 206,173,214,206,045,212,044\) \(: 206,201, \varnothing 15,2 ø 8, \varnothing 35,173, \varnothing 88\) : 214, 206, 041,240,141,214,056 \(: 206,076,058,198,024,173,253\) : 214, 206,105,016,141,214,164 : 2ø6, Ø45, 212,2ø6,201,240,128 : 2ø8, øø8, 173, 214, 2ø6, ø41,130 : Ø15,141,214,2ø6,169,øøø, Ø31 : 133,170,169,0ø4,133,171,072 \(: 173,214,2 \varnothing 6,160, \varnothing \varnothing \varnothing, 145,196\) \(: 170,056,165,170,233,231,073\) :141,212,206,165,171,233,182 : \(\varnothing 07, \varnothing 13,212,2 \varnothing 6,176,016,2 \varnothing 2\)

50778 50784 5079ø 50796 50802 50808 \(5 \emptyset 814\) 5ø82の: 50826 50832 50838 : 50844 5ø85ø 50856 50862 50868 50874 5ø88ø 50886 50892 50898 50904 50910
50916 50922 50928
50934
50940
50946
50952
50958
50964
50970
50976
50982
50988
50994
51000
51006
51012
51018
51024
51030
51036
51042 51048
51054
51060
51066
51072
51078
51084
51090
51096
51102
511ø8
, : 2ø8,2ø5,2ø1, ø21,176,øø3,216 5112ø:076, Ø49,199,ø96,169,øø1,254 \(51126: 141,238, ø \emptyset 2,096,165,197,253\) 51132 : 2ø1, Ø41, 24ø, Øø1, Ø96,169,168 51138 : øøø, Ø32,189,255,169, Ø04, Ø75 51144 : 170,160,255,032,186,255,234 \(5115 \emptyset: ø 32,19.2,255,162, \varnothing \varnothing 4, \varnothing 32,115\) 51156 : 201, 255,176, Øø3,076,220,119 51162 : 199, ø96, 169, Øø8, 032, 210,164 51168 : 255,169, Ø13, ø32,210,255,134 51174 : 162, øøø,169, Øø1,141,204,139 \(51180: 205,169, \varnothing \emptyset 0,141,250,206,183\) 51186 : 169, øøø,141,251,206,169,154 \(51192: 199,141,248,2 \varnothing 6,169,005,192\) 51198 : 141, 227,205,142,242,øø2,189

51204
51210
: Ø32, ø22,196,174,242, øø2,160 :173,224,205, \(045,206,207,046\) : 240, ø12,173,2ø2,205,ø13,ø93 51222 : 204, 2ø5,141,2ø2,205, Ø76, ø31 51228 : \(041,2 \varnothing 0,173,2 \varnothing 4,265,073,156\) 51234 : 255, Ø45, 2ø2,2ø5,141,2ø2, Ø6ø 51240 : 2ø5, ø14, 2ø4,2ø5,173,2ø4, Ø21 51246 : 205,2ø1,128,240, Ø20, Ø24, Ø96 51252 : \(173,25 \emptyset, 2 \varnothing 6,105, \varnothing 01,141,16 \varnothing\) 51258 : \(250,206,173,251,266,105,225\) 51264 : Øøø,141,251,2ø6, \(76, \varnothing \emptyset 1,227\) \(5127 \emptyset: 20 \varnothing, 173,2 \varnothing 2,205, \varnothing 09,128,219\) 51276 : 224, 045,144, 010,173,202,106 51282 : 205, Ø41, ø31, ø09,128,141,125 51288 : 202, 205,168, 032,210,255,136 51294 : 152, ø32,210,255,169, 001,145 \(5130 \emptyset: 141,2 \emptyset 4,2 \emptyset 5,169, \varnothing \varnothing \emptyset, 141,192\) \(51306: 202,205,056,173,250,206,174\) 51312 : 233, \(006,141,250,206,173,097\) 51318 : 251,2ø6,233, Øøø,141,251,176 \(51324: 206,2 \varnothing 6,248,206,173,248,131\) \(5133 \emptyset: 206,201,255,240, \varnothing 03,076, \varnothing 87\) 51336 : Øø1,2øø,224, Ø45,176,ø31,ø45 51342 : Ø24, 173,250,2Ø6,165, Ø07,139 51348 : 141,250,2ø6,173,251,2ø6, 095 51354 : 105, øøб,141,251,2ø6,232, Ø65 \(51360: 169,199,141,248,206,169,012\) 51366 : Ø13, Ø32,210,255, 076, 001,241 51372 : 2øø,169, Ø13, 032,21.0,255,027 51378 : \(\emptyset 32,231,255,096,174,24 \emptyset, 182\) 51384 : Øø \(2,160,255,136,2 \emptyset 8,253,174\) 51390 : 202,2ø8,248, Ø96,173,167, øø4 51396 : \(\varnothing \emptyset 2,174,168, \emptyset \emptyset 2,16 \emptyset, \varnothing \emptyset 1,191\)
\(514 \emptyset 2\) : Ø32,186,255,173,169, Øø2,251
51408 : 162,172,160, øø2, Ø32,189,157 51414 : 255,169, Øøø,162, øøø,16ø,192 51420 : \(\varnothing 32, \varnothing 32,213,255, \emptyset 96,173,253\) 51426 : 167, øø2,174,168, øø2,16ø,131 51432 : øø1, ø32,186,255,173,169, Ø24 51438 : Øø \(2,162,172,160, \varnothing \emptyset 2, \varnothing 32, \varnothing \varnothing \emptyset\) 51444 : 189, 255,169, 032,133,254,252 51450 : 169, øøø,133,253,169,253,2ø3 51456 : 162,255,160,063, Ø32,216,120 51462 : 255, Ø96,165,197,2Ø1, Ø22,174 51468 : 240, Øø1, Ø96,169, Øøø,133,139 51474 : 170,169, 032,133,171,169,094 \(5148 \emptyset\) : øøø,133,18ø,169, ø96,133,223 51486 : 181,16Ø, Øøø,177,170,141, 091 51492 : Ø62, øø3,177,18Ø,141, Ø64,151 51498 : Øø \(3,173, \varnothing 62, \varnothing \varnothing 3,145,18 \varnothing, \varnothing 96\) 51504 : \(173,064,0 \emptyset 3,145,170,024,115\) \(5151 \varnothing: 165,17 \varnothing, 1 \varnothing 5,001,133,17 \emptyset, 03 \varnothing\) 51516 : 165,171,1ø5, øøø,133,171,ø37 51522 : Ø24,165,180,1Ø5, Ø01,133,162 51528 : 18ø,165,181,1ø5,øøø,133, ø68 51534 : 181, Ø56, 165,170,233,255,114 \(5154 \emptyset: 141,2 ø \varnothing, 2 \emptyset 5,165,171,233,175\) 51546 : ø63, Ø13,2øø,2ø5,144,193,14ø 51552 : Ø96, Ø13,ø13,ø13,013,ø13,øø1

\section*{Program 3: \\ BASIC Portion Of Hi-Res Graphics Editor}

5 INPUT "\{CLR\}JOYSTICK SPEED (1-10)"; JS\$ :rem 137
6 IF VAL(JS\$) <lOR VAL(JS\$) > 10 THEN5
:rem 192
7 POKE752,11-VAL(JS\$)
: rem 18ø
8 FOR \(\mathrm{T}=2\) 2ø48TO2Ø48+64:POKET, Ø:NEXT
: rem 22
\(1 \varnothing\) SYS50624
11 SYS49152
12 GETAS:IF PEEK(197)<>3THEN12
13 FOR T= 1 TO 3øø:NEXT
15 SYS50941
16 VI=53248:POKEVI+21,1:POKEVI, 21 :POKEVI + \(16, \operatorname{PEEK}(\mathrm{VI}+16) \mathrm{ORI}:\) POKEVI+1,1ø 10
17 POKE2Ø4の, 32
:rem 51
 EK (OS)
:rem 65
31 IF PEEK (197)=4 THEN FOR T=2ø48TO2ø48+6 4: POKET, \(\varnothing:\) NEXT:SYS5ø941
:rem 196
32 IF \(\operatorname{PEEK}(197)=3\) THENPOKE198, \(0: F O R T=1 T O 3 \varnothing\) Ø:NEXT:GOTOll :rem 62
33 IF AS="\{L\}"THEN GOSUB 3ø0:SYS51394:GOS UB4のø:SYS50941
:rem 242
34 IF AS="\{HOME \}"THEN GOSUB3øø:SYS51425:G OSUB4øø:SYS5ø941
:rem 245
\(4 \varnothing\) IF CN= 2 THEN POKE SC,PEEK (SC)OR128:CN \(=\varnothing\)
:rem 147
\(5 \emptyset\) IF CN= 1 THEN POKE SC,PEEK(SC)AND127
:rem 140
\(6 \emptyset \operatorname{IF}(\operatorname{PEEK}(5632 \emptyset)\) AND16) <>ø THEN 65: rem 58
61 IF PEEK (653)THEN POKESC+54272, \(0: \mathrm{SH}=1: \mathrm{G}\) OSUB2øø:GOTO 65
:rem 246
63 POKESC \(+54272,1:\) SH= \(\varnothing\) :GOSUB \(2 \emptyset \varnothing\) :rem 72
65 IF 15-PEEK (56320) \(=\emptyset\) THEN 79 :rem 15
\(66 \mathrm{FL}=\emptyset: \mathrm{OC}=\mathrm{PEEK}(\mathrm{SC}+54272): \mathrm{OS}=\mathrm{SC}+54272\)
:rem 141
\(7 \emptyset\) ON 15-PEEK (5632ø)AND15GOSUB 8ø,9ø,95,1 Øø,120,130,140,150,160,17Ø:rem 163
72 POKESC, (PEEK(SC)OR128)
:rem 243
75 SC=1Ø24+4Ø*Y+X
:rem 155
79 GOTO 30
: rem 97
:rem 1ø2
:rem 199
:rem 188
:rem 104
:rem 238
:rem 24
GE AS:IF AS= THEN \(C N=C N+1\) :rem 65
4:POKET, \(0: N E X T: S Y S 50941\) :rem
\[
5
\]
\(8 \emptyset \mathrm{Y}=\mathrm{Y}+(\mathrm{Y}>\emptyset):\) RETURN
:rem 18ø
\(9 \emptyset \mathrm{Y}=\mathrm{Y}-(\mathrm{Y}<2 \varnothing):\) RETURN \(\quad\) :rem 231
95 RETURN :rem 78
\(1 \emptyset \varnothing \mathrm{X}=\mathrm{X}+(\mathrm{X}>\emptyset):\) RETURN :rem 218
\(11 \varnothing\) RETURN :rem 114
\(12 \varnothing \mathrm{Y}=\mathrm{Y}+(\mathrm{Y}>\varnothing): \mathrm{X}=\mathrm{X}+(\mathrm{X}>\varnothing):\) RETURN :rem 72
\(13 \varnothing \mathrm{Y}=\mathrm{Y}-(\mathrm{Y}<2 \varnothing): \mathrm{X}=\mathrm{X}+(\mathrm{X}>\varnothing):\) RETURN : rem 123
140 RETURN :rem 117
\(150 \mathrm{X}=\mathrm{X}-(\mathrm{X}<23)\) : RETURN :rem \(2 \varnothing\)
\(16 \varnothing \mathrm{Y}=\mathrm{Y}+(\mathrm{Y}>-\varnothing): \mathrm{X}=\mathrm{X}-(\mathrm{X}<23)\) : RETURN : rem 174
\(17 \varnothing \mathrm{Y}=\mathrm{Y}-(\mathrm{Y}<2 \varnothing): \mathrm{X}=\mathrm{X}-(\mathrm{X}<23):\) RETURN : rem \(18 \emptyset\)
\(2 \emptyset \emptyset \mathrm{BO}=\mathrm{Y}^{\star} 3+\operatorname{INT}(\mathrm{X} / 8) \quad\) :rem 60
\(21 \varnothing \mathrm{BT}=2 \uparrow(7-(\mathrm{X}-\operatorname{INT}(\mathrm{X} / 8) * 8)): \mathrm{P}=64\) *PEEK ( \(2 \varnothing\)
```

4Ø) + BO
:rem 49

```
\(22 \varnothing\) IF \(\mathrm{SH}=\varnothing\) THENPOKEP, PEEK (P) ORBT: GOTO23 \(\varnothing\)
:rem 10
225 POKEP, \(\operatorname{PEEK}(\mathrm{P})\) AND ( \(255-\mathrm{BT}\) ) : SH= : rem \(2 \emptyset 7\)
\(23 \emptyset\) RETURN : rem 117
3øø PRINT" \(\{\) BLK \(\}\) \{ 7 RIGHT \} \{CLR \(\}\{R V S\}\) D\{OFF \(\}\) I SK OR \{RVS\}T\{OFF\}APE" :rem 144
\(3 ø 1\) GET J\$:IF J\$=""THEN3ø1 :rem 93
\(3 \emptyset 2\) IF J\$<>"D"AND J\$<>"T"THEN 3øl:rem 17ø
\(3 ø 3\) INPUT "FILENAME";FI\$ :rem 153
\(3 \varnothing 5\) IF LEFT \((J \$, 1)=" D " T H E N\) D=8:GOTO31ø
:rem 70
\(3 \varnothing 6 \mathrm{D}=1 \quad\) :rem 75
\(31 \emptyset\) FOR T= 684 TO 684+LEN(FI\$)-1:POKET,AS C(MIDS (FIS,T-683,1)):NEXT :rem 150
320 POKE679, D: POKE680, D: POKE681, LEN (FIS) : POKE682,172: POKE683,2 :rem 159
325 RETURN :rem 122
4øø OPEN15,8,15:INPUT\#15,A\$,B\$,C\$,D\$:PRIN TAS;" ";BS" ";C\$;" ";CS;" ";DS:rem 52
405 CLOSE15
:rem 117
\(41 \varnothing\) FOR \(T=1 T O\) 3øøø :NEXT :RETURN: rem 55@

\section*{HEALTHY \\ GOMPUTING!! \\ TOTAL FITNESS PROGRAMS}

Your computer can help you and your loved ones live longer and enjoy life more.

Call or send for a FREE catalog of health-related programs:
* Diet/Nutrition
* Exercise/Aerobics * Health Education
* Self-Improvement * Psychology * Games

Programs for all ages!
CTRL Health Software
18653 Ventura Blvd., \# 348 Tarzana, CA 91356 (818) 788-0888

\section*{CASSETTES!!!}

\section*{FOR YOUR COMPUTER DIGITAL}
- Computer Grade •Wide Dynamic Range
- \(100 \%\) Error Free - 5 Screw Housing
- Fully Guaranteed - Carefully Packed

All Prices Include U. S. Shipping
*Phone Orders Add \$2.50 C.O.D. Fee *

\section*{COMPUTER TAPE PRICES}
\begin{tabular}{llll} 
Length & 25 LOT & 100LOT & 1000 LOT \\
\hline C-5 & \(.45 / 11.25\) & \(.35 / 35.00\) & \(30 / 300.00\) \\
C-10 & \(.50 / 12.50\) & \(.35 / 35.00\) & \(30 / 300.00\) \\
C-20 & \(.55 / 13.75\) & \(.40 / 40.00\) & \(35 / 350.00\)
\end{tabular}

BASF DPS Tapes Add . 05 Cents Per Tape - Custom Lengths AvailableWrite For Volume Prices..
- Norelco Cassette Cases and Labels [with Cassette Orders Only|
12-249 Cases 20 Ea 250-. 13 Ea 12 Labels for \(20 \quad 120\) for 1.70 1000 Pinfeed Labels 14.50
SEND MONEY ORDERS OR CHECKS TO: CASS-A-TAPES

Box 8123-C
Kansas City, MO 64112 816-444-4651

SOPHISTICATED SOFTWARE OF AMERICA" PRESENTS

GRAFIX - ARTIST*
(Commodore 64" version)
THE LATEST IN EDUCATIONAL GRAPHICS SOFTWARE DESIGNED WITH THE CONSUMER IN MIND

\section*{CREATE EXTRAORDINARY} COLOR-GRAPHICS

USING THE:
- Joystick Mode Program Mode
- Program to Picture Utility (for your basic or machine-language programs)

GRAFIX-ARTIST* provides comprehensive
- Reference Card - Help Screens - Introduction Tutorial - Demo's

NO COMPUTER EXPERIENCE IS NECESSARY

Children, parents, artists, educators will enjoy the ease-of-use and options GRAFIX-ARTIST \({ }^{*}\) provides.
NOW AVAILABLE - Grafix-Printer \({ }^{\text {TM }}\) COMING SOON - Lesson-Designer \({ }^{\text {TM }}\)

Dealer and Distributor Inquiries Invited
198 Ross Rd.
King of Prussia, PA 19406
(215) 265-2277


Soori Sivakumaran

By making simple selections from a menu, a child can change this arithmetic drill to fit his or her own tutoring needs. Written for the unexpanded VIC, versions also are included for the Commodore 64, Atari, TI-99/4A, Color Computer, Apple, IBM PC, and PCjr.
"Snertle" is designed to help teach children the fundamentals of addition, subtraction, and multiplication. A turtle named Snertle is drawn on the screen to give encouragement and assistance to the player.

\section*{An Individual Challenge}

Snertle allows children to tailor math problems to fit their individual abilities and weaknesses.
Snertle first asks the child to select addition, subtraction, or multiplication problems. If addition or subtraction is selected, the child is then asked to choose the largest and smallest numbers to be used in creating the problems. The largest number that can be chosen is 99 and the smallest number is zero.

If multiplication is chosen, the child can decide to practice a certain "times table," or solve problems created randomly from 0 through the 14 times table.

For example, if the 12 times table is selected, then one number in each question created will always be 12. The other number will be randomly selected from the range \(0-14\).

If the child chooses to attempt random multiplication problems, he or she must define the range of numbers (within the limits of 0 and 14) from which the problems can be created, similar
to the process for random addition or subtraction problems.

\section*{Creating The Screen}

In Program 1, once the necessary information is entered, the turtle's image is POKEd onto the screen. The two numbers used in the problem are chosen in lines 305,315 , and 1070 . The numbers are then displayed on the screen, each digit being four regular characters high and three wide. The large character set is created in a series of subroutines in lines 500-990.

The larger number is always displayed above the smaller number to avoid negative answers to subtraction problems. The appropriate sign for addition, subtraction, or multiplication is drawn on the screen by a subroutine beginning at line 6000. Next, a horizontal line is drawn under the numbers.

Line 394 contains a FOR-NEXT loop that clears the keyboard buffer. This prevents the child from accidentally entering data while the turtle and the problem are being put on the screen.

Another FOR-NEXT loop in lines 395-420 enters the user's response to the problem. Because a GET statement is used, the RETURN key does not have to be pressed when entering the response. An arrow will appear at the bottom of the screen to prompt for each digit of the response.

\section*{The Turtle Smiles}

Once the response is entered, Snertle checks it against the correct answer. If the child's response is correct the turtle will smile, GOOD! will appear on its shell, and a high beep will sound. If the


\section*{WITH NIGHT MISSION}


You deserve the best. You've earned it. Now reward yourself with a session of Night Mission PINBALL, the most realistic and challenging arcade simulation ever conceived! a Stunning graphics and dazzling
 sound effects put Night Mission PINBALL in a class by itself. Game features: multiball and multi-player capabilities, ten different professionally designed levels of play, and an editor that lets you create your own custom modes. a So take a break with Night Mission PINBALL from SubLOGIC. Winner of Electronic Games magazine's 1983 Arcade Award for Best Computer AudioNisual Effects.

\section*{See your dealer . . .}
or write or call for more information. For direct orders please add \(\$ 1.50\) for shipping and specify UPS or first class mail delivery. Illinois residents add 5\% sales tax. American Express, Diner's Club, MasterCard, and Visa accepted.

Order Line: 800/637-4983
response is incorrect, Snertle the turtle's head will disappear into his shell and the message TRY AGAIN will appear on his side.

The user will be given a second chance. If the new response is correct, Snertle will poke his head out from his shell. If the answer is again incorrect, the correct answer will be displayed on the screen.

The program will keep producing problems until the X key is pressed in response to a problem. The percentage of correctly answered questions is then calculated in line 410, and displayed. This percentage only includes problems answered correctly on the first attempt. Snertle then returns to the menu where the child may END the program or select more problems.

Program 1 uses all but 84 bytes of the unexpanded VIC's memory.

\section*{Program 1: Snertle For VIC}

Refer to the "Automatic Proofreader" article before typing this program in.
 \(\mathrm{D}=\operatorname{CHRS}(18): \mathrm{ES}=\operatorname{CHR} \$(146): \mathrm{Y}=160: \mathrm{LL}=368\) \(76 \quad:\) rem 62 \(11 \varnothing\) PRINTASSPC(5)B\$B\$"**SNERTLE**":POKELL +2,15 :rem 181 12ø PRINTB\$B\$B\$BSCSC D\$"SELECT ONE:"E\$
:rem 119
\(13 \varnothing\) PRINTB\$"1) ADDITION" :rem 113
\(14 \varnothing\) PRINTB\$"2) SUBTRACTION" :rem 117
150 PRINTB\$"3) MULTIPLICATION" :rem 87
155 PRINTB\$"4) END PROGRAM" :rem \(3 \varnothing\)
160 PRINTB\$"(ENTER 1,2,3 OR 4)";:INPUTQ:I
FQ>4ORQ<øTHEN16ø :rem \(1 \varnothing 2\)
\(185 \mathrm{C}=14\) : \(\mathrm{IFQ}=10 \mathrm{RQ}=2\) THENC=99 :rem 141
187 IFQ=3THEN \(1 \varnothing \varnothing \varnothing\) :rem 224
188 IFQ=4THENEND :rem 248
\(19 \varnothing\) PRINTA\$B\$B\$"ENTER LARGEST VALUE"
:rem 169
\(2 ø \varnothing\) PRINT"(MIN.:ø MAX.:";C;")";:INPUTR:IF R<øORR>CTHEN2øø
:rem 142
\(23 \varnothing\) PRINTB\$B\$"ENTER SMALLEST VALUE"
:rem 146
\(24 \varnothing\) PRINT"(MIN.:ø MAX.:"; R;")";:INPUTS:IF S<øORS>RTHEN24ø :rem 183
263 PRINTA\$B\$"PRESS "D\$"X"E\$" RETURN TO M ENU":FORI=1TO750:NEXTI :rem 6
265 PRINTAS
:rem 143
\(27 \varnothing \mathrm{Z}=\varnothing\) :ZZ=ø:GOSUB2øøø :rem 55
275 GOSUB11øø:GOSUB117ø:GOSUB1230:GOSUB12

\section*{60}
:rem \(1 \not{ }^{2}\)
\(3 ø 1\) TR=ø:ZZ=ZZ+1 :rem 226
\(3 \varnothing 5 \mathrm{~L}=\mathrm{INT}(\operatorname{RND}(1) *(\mathrm{R}-\mathrm{S}+1))+\mathrm{S}\) :rem 234
\(31 \varnothing\) IFQ \(=3\) ANDT \(=1\) THEN \(32 \varnothing\)
:rem 61
\(315 \mathrm{~K}=\operatorname{INT}(\operatorname{RND}(1) *(\mathrm{R}-\mathrm{S}+1))+\mathrm{S} \quad: r e m 234\)
\(32 \varnothing \mathrm{~F} \$=\operatorname{STR} \$(\mathrm{~K}): \mathrm{W}=\varnothing \quad\) :rem 243
325 IFK<LTHENW=11ø :rem 81
\(33 \varnothing\) GOSUB \(3 \varnothing \varnothing \varnothing\) :rem 217
\(335 \mathrm{~W}=110 \quad\) :rem 193
337 IFL>KTHENW= \(\varnothing\) :rem 244
\(340 \mathrm{~F} \$=\operatorname{STR} \$(\mathrm{~L}) \quad:\) rem 248
345 GOSUB3øøø
:rem 223
346 ONQGOSUB6øøø,6øøø,6øø4
:rem 185
\(35 \varnothing\) IFQ=1THENM=K+L :rem 97
355 IFQ=2ANDK \(>=\) LTHENM \(=K-L \quad\) rem 78


A subtraction problem-"Snertle" for VIC. Other versions similar.

\section*{360 IFQ=2ANDK<LTHENM=L-K :rem 11}

365 IFQ=3THENM=K*L :rem \(1 \varnothing 4\)
380 GOSUB740:MM=1:IFM>9THENMM=2 :rem 189
385 IFM>99THENMM=3 :rem 1ø1
\(39 \varnothing\) GOSUB74ø :rem 183
\(393 \mathrm{~V}=\varnothing\) :GOSUBl1øø :rem 222
394 FORI=631TO64ø: POKEI, \(\varnothing:\) NEXTI :rem \(18 \varnothing\)
395 FORJ \(=\varnothing\) TO MM-1 :rem 218
397 POKE8177-(4*J),3ø :rem 94
\(4 \varnothing \varnothing\) GETH\$ :rem 224
\(4 \varnothing 5\) IFH\$=""THEN4øØ :rem 216
\(4 \varnothing 7\) IFHS="X"ANDZZ=1THEN10Ø :rem 36
\(41 \varnothing\) IFH\$="X"THENPRINTAS"PERCENTAGE:"; INT( z/(zZ-1)*1øø):GOTO12ø :rem \(1 \varnothing\)
412 FORO=8164TO8168:POKEO, 32 :NEXTO
:rem 104
\(415 \mathrm{P}=\mathrm{VAL}(\mathrm{H} \$) \quad\) :rem 199
\(42 \varnothing \mathrm{~V}=\mathrm{V}+(\mathrm{P} * 1 \varnothing \uparrow \mathrm{~J}): \mathrm{X}=811 \varnothing-(4 * \mathrm{~J}):\) GOSUB48 \(\varnothing\) :NE XTJ
:rem 86
\(45 \varnothing\) IFM=VTHEN47ø :rem \(21 \varnothing\)
451 POKELL, 160:FORI=1TO5øø:NEXTI:POKELL, \(\varnothing\)
:rem 83
452 FORI=8ø98TO8186:POKEI, 32 :NEXTI:rem 96
456 IFTR=1THEN46ø :rem 11
458 TR=1:GOSUB15ø0:GOSUB770:GOTO393
:rem 159
\(460 \mathrm{M}=\mathrm{STR}(\mathrm{M}) \quad:\) rem 3
461 FORI=1TO22-MM:READA:NEXTI :rem 96
462 FOROO=1TOMM :rem \(2 ø 4\)
\(464 \mathrm{P}=\mathrm{VAL}(\mathrm{MID}(\mathrm{MS},(00+1), 1)) \quad: r e m 243\)
465 READX:GOSUB48ø:NEXTOO:RESTORE: rem 222
47ø GOSUB123ø:IFTR=øTHENGOSUB25 \(\varnothing \varnothing\) :GOSUB75
\(5: Z=Z+1: G O S U B 65 ø \varnothing \quad\) :rem 154
471 GOSUB2225:GOTO3ø1 :rem 238
480 IFP=øTHENGOSUB72ø :rem 48
485 ONPGOSUB 5øø,525,555,585,610,633,660, 680,7øø:RETURN :rem 254
\(5 \varnothing \varnothing\) FORI \(=\varnothing\) TO66STEP22: POKEX+I+1,Y:NEXTI :RE TURN
:rem 211
525 GOSUB99ø:GOSUB980: POKEX+44,Y:GOSUB97ø : RETURN
:rem 102
555 GOSUB99ø:GOSUB980:POKEX+46,Y:GOSUB97ø : RETURN
:rem 107
585 POKEX,Y: POKEX +22 ,16Ø
:rem 193
595 FORI=44TO46: POKEI+X,Y:NEXTI :rem 1
6øø POKEX+23,118: POKEX+67,118:RETURN
:rem 172
610 GOSUB99ø :rem 185
\(62 \emptyset\) POKEX \(+22, \mathrm{Y}: \mathrm{POKEX}+23,98: \mathrm{POKEX}+24,98: \mathrm{PO}\) KEX+46,Y: GOSUB97ø: RETURN :rem 95

\section*{633 GOSUB990} :rem \(19 \varnothing\)
640 POKEX+22,Y: POKEX \(+23,98:\) POKEX \(+24,98\). :rem 18
645 POKEX+44,Y:POKEX+46,Y:GOSUB970:RETURN :rem 141
660 GOSUB99Ø :rem 190
\(67 \emptyset\) POKEX \(+24, \mathrm{Y}: \mathrm{POKEX}+45, \mathrm{Y}: \mathrm{POKEX}+46,97: \mathrm{POK}\) EX+67,Y: RETURN
:rem 254
680 GOSUB525 :rem 186
690 POKEX \(+22, \mathrm{Y}:\) POKEX \(+46, \mathrm{Y}:\) RETURN :rem 47
7øØ GOSUB68Ø: POKEX+44,32:RETURN :rem 18Ø
720 GOSUB68 : POKEX+23,32:RETURN :rem 179
740 FORI=8ø8ØTO8ø93:POKEI, 64:NEXTI:RETURN :rem 115
755 POKE7753,7:POKE7754,15: POKE7755,15: PO KE7756, 4: POKE7757,33 : rem 37
760 POKE7753,7:POKE7754,15: POKE7755,15: PO KE7756,4: POKE7757,33:RETURN :rem 59
770 POKE7732,20: POKE7733,18:POKE7734, 25
:rem 209
780 POKE7753,1:POKE7754,7:POKE7755,1:POKE 7756,9:POKE7757,14:POKE7758,33
:rem 147
785 FORI=1TO750:NEXTI:RETURN :rem 93
\(96 \emptyset\) FORI \(=\varnothing\) TO66STEP22:POKE \(I+X, 160:\) NEXTI:R ETURN
:rem 191
\(97 \emptyset\) FORI \(=\varnothing\) TO2 \(:\) POKEI \(+66+\mathrm{X}, 16 \emptyset:\) NEXTI:RETURN :rem 125
980 POKEX+22,98: POKEX+23,98: POKEX+24,160: RETURN :rem 113
99ø FORI=ØTO2:POKEX+I,160:NEXTI:RETURN :rem 232
1øøø PRINTA\$B\$B\$SPC(2)"DO YOU WISH TO:" :rem 212
1ølø PRINTB\$SPC(3)"1) PRACTICE TIMES" :rem 138
\(1 \emptyset 15\) PRINT"TABLES" :rem 83
\(1 \varnothing 2 \emptyset\) PRINTB\$SPC(3)"2) .RANDOM NUMBERS" :rem 156
1ø3ø PRINT" (ENTER 1 OR 2)";:INPUTT:IFT<øO RT>2THEN1ø30
:rem 162
\(1 \emptyset 50\) IFT=2THENGOTO19の :rem 26
1ø6Ø PRINTA\$B\$B\$SPC(2)"ENTER TIMES TABLE" : rem 154
1ø7ø PRINTBSSPC(3)"(1-14)";:INPUTK:IFK<10 RK>14THEN107ø
:rem 212
1ø9ø \(\mathrm{S}=\varnothing\) : R=14:GOTO263
:rem 198
lløø FORI=77ø2TO779øSTEP22
1110 READA: READB :rem 25
\(112 \emptyset\) FORJ=1TOB
1130 POKE (I+A+J)
1140 NEXTJ:NEXTI:RESTORE:RETURN :rem 46
1170 FORI=1TOI1
1180 POKE (7815+I), 120
1190 NEXIT
:rem 1 ø8
1190 NEXTI :rem 82

12øø POKE7793,74
\(121 \emptyset\) RETURN
\(123 \emptyset\) FORI=1TOl \(\varnothing:\) READA:NEXTI :rem 83 :rem 99
:rem 193
1232 FORI=7724TO7768STEP 22 :rem 4ø
1234 FORJ=15TO17 :rem 169
1235 READA: POKEI+J,A:NEXTJ:NEXTI:RESTORE: RETURN
:rem 185
1260 FORI=1TO2 :rem 60
1270 POKE7817+I,Y:POKE7821+I,Y:NEXTI
:rem 191
\(13 \varnothing \emptyset\) FORI=1TO3 :rem 56
\(131 \varnothing\) POKE7839+I,Y
1320 POKE7843+I, Y
1330 NEXTI:RETURN :rem 105

1500 FORI \(=7724\) TO7768STEP 22 :rem 38
1510 FORJ=15TO17:POKEI+J, 32:NEXTJ:NEXTI:R ETURN
:rem 253
2 Øøø FORI=384øøTO38575 :rem 221
\(2 ø \emptyset 1\) POKEI,5:NEXTI :rem 94
2øø3 POKE38482,6:FORI=38576TO389ø5:POKEI, \(1+Q: N E X T I: R E T U R N\) :rem 38
2225 FORI=7878TO8185:POKEI, 32:NEXTI:RETUR N
2500 POKE7785 202 RETURN
:rem 171
3øøø \(\operatorname{IFLEN}(F \$)>2\) THEN \(3 \varnothing 3 \varnothing\) :rem 81
\(3 \emptyset 15 \mathrm{P}=\operatorname{VAL}(\operatorname{MID}(\mathrm{F} \$, 2,1)) \quad\) :rem 254
\(3 \varnothing 2 \emptyset \mathrm{X}=789 \varnothing+\mathrm{W}:\) GOSUB48Ø :rem 1ø
\(3 \varnothing 25\) RETURN :rem \(17 \emptyset\)
\(3 \emptyset 3 \emptyset \mathrm{P}=\mathrm{VAL}(\mathrm{MID}(\mathrm{F}, 2,1)) \quad\) rem 251
\(3 \varnothing 35 \mathrm{X}=7886+\mathrm{W}\) :GOSUB48Ø
\(3 \varnothing 4 \emptyset \mathrm{P}=\mathrm{VAL}(\mathrm{MID} \$(\mathrm{~F} \$, 3,1))\)
:rem 21
:rem 17
3050 RETURN :rem 168
5øøø DATA 6,5,5,7,4,9,3,11,3,11,233,160,1 60,160,1ø8,160,160,160,160,81ø2,81ø6 ,811ø :rem 159
6øøø POKE8Ø15,Y:POKE8ø36,Y:POKE8ø37,Y:POK E8ø38,Y:POKE8ø59,Y :rem 76
6øø2 IFQ=2THENPOKE8ø15,32:POKE8ø59,32
:rem 164
\(6 \emptyset \emptyset 3\) RETURN :rem 169
6øø4 POKE8Ø14,Y:POKE8Ø16,Y:POKE8ø37,Y:POK E8Ø58,Y:POKE8ø6Ø, Y: RETURN : rem 97
65øø POKELL, 2ø7:FORI=1TO150:NEXTI:POKELL, 215 : FORI=1TO175: NEXTI: POKELL, \(\varnothing\) :RETUR N
:rem 64


Subtraction, 64 version of "Snertle." Other versions similar.

\section*{Program 2: Snertle For Commodore 64}

Refer to the "Automatic Proofreader" article before typing this program in.
9ø FOR I=54272 TO 54296:POKEI, Ø:NEXTI
:rem 87
\(1 \varnothing \varnothing \mathrm{~A} \$=\operatorname{CHR} \$(147): \mathrm{B}=\operatorname{CHR} \$(17): \mathrm{C} \$=\operatorname{CHR} \$(29):\)
\(\mathrm{D} \$=\operatorname{CHR} \$(18): \mathrm{E} \$=\operatorname{CHR} \$(146): \mathrm{Y}=160:\) rem 33
\(1 \emptyset 5\) LL=54272:POKELL+5,1:POKELL+6,241:POKE LL+24, 15
:rem 118
\(11 \emptyset\) PRINTA\$SPC(15)B\$B\$"**SNERTLE**": POKE5 3281,1
:rem 191
\(12 \varnothing\) PRINTTAB(13)B\$B\$B\$B\$C\$C\$ D\$"SELECT ON E: "E\$
:rem 3
\(13 \emptyset\) PRINTTAB(13)B\$"1) ADDITION" :rem 253

140 PRINTTAB(13)B\$"2) SUBTRACTION" :rem 1 \(15 \emptyset\) PRINTTAB(13)B\$"3) MULTIPLICATION"
\[
\text { :rem } 227
\]

155 PRINTTAB(13)B\$"4) END PROGRAM"
:rem \(17 \emptyset\)
\(16 \emptyset\) PRINT" \(\{\) HOME \(\}\) \{ 16 DOWN \} "TAB (13)B\$" (ENTE R 1,2,3 OR 4)";:INPUTQ :rem 169
\(17 \varnothing\) IFQ>4ORQ<1THEN160 :rem 15
\(185 \mathrm{C}=14: \mathrm{IFQ}=10 \mathrm{RQ}=2 \mathrm{THENC}=99\) :rem 141
187 IFQ=3THEN1øøø :rem 224
188 IFQ=4THENPRINT"\{CLR\}":END :rem 15ø
\(19 \varnothing\) PRINTA\$B\$B\$TAB(1ø)"ENTER LARGEST VALU E"
:rem 50
\(2 ø \emptyset\) PRINT" \(\{\) HOME \(\}\) \{ 3 DOWN \}"TAB (1ø)" (MIN.: 1 \{SPACE\}MAX.:";C;")";:INPUTR:IFR<IORR> CTHEN2øØ
:rem 163
\(23 \varnothing\) PRINTB\$B\$TAB(1ø)"ENTER SMALLEST VALUE " :rem 27
\(24 \varnothing\) PRINT" \(\{\) HOME \(\}\) \{ 8 DOWN\}"TAB (1ø)" (MIN.: \(\varnothing\)
\{SPACE\}MAX.:";R;")";:INPUTS:IFS<øORS> RTHEN24ø :rem 31
263 PRINTASB\$B\$BSBSB\$B\$TAB(8)"PRESS "D\$"X "ES" RETURN TO MENU":FORI=1TO15øø:NEX T
265 PRINTA\$ :rem 69
\(27 \varnothing \mathrm{Z}=\varnothing\) : \(\mathrm{ZZ}=\varnothing\) : GOSUB2øøø
:rem 143
275 GOSUBll日の:GOSUB1170:GOSUB1230 60
: GOSUB12
\(3 \emptyset 1\) TR=ø: ZZ=ZZ +1
-rem 102
\(305 \mathrm{~L}=\mathrm{INT}(\) RND \((1)\) * \((\mathrm{R}-\mathrm{S}+1))+\mathrm{S}\)
\(31 \varnothing\) TFQ \(=3\) ANDT=1THEN32 \(\sigma\) rem 61
\(315 \mathrm{~K}=\operatorname{INT}(\operatorname{RND}(1) *(\mathrm{R}-\mathrm{S}+1))+\mathrm{S}\) :rem 234
\(32 \emptyset \mathrm{~F} \$=\operatorname{STR}(\mathrm{K}): \mathrm{W}=\varnothing \quad\) :rem 243
325 IFK<LANDQ \(=2\) THEN 3 Ø5 5 :rem 86
\(33 \varnothing \mathrm{~W}=5\) : GOSUB3øøø :rem \(22 \varnothing\)
337 IFL>KTHENW=ø :rem 244
340 FS=STR\$(L) :rem 248
\(345 \mathrm{~W}=205\) : GOSUB \(3 \varnothing \varnothing \varnothing\)
346 ONQGOSUB6øøø,6øøø,6øø4 :rem 68
\(35 \emptyset\) IFQ \(=1\) THENM \(=K+L\)
355 IFQ \(=2\) ANDK \(>=\) LTHENM \(=\mathrm{K}-\mathrm{L}\)
\(36 \emptyset\) IFQ \(=2\) ANDK \(<L T H E N M=L-K\)
365 IFQ \(=3\) THENM \(=K * L\)
\(38 \emptyset\) GOSUB740: MM=1:IFM>9THENMM=2
385 IFM>99THENMM=3
\(39 \varnothing\) GOSUB74ø
\(393 \mathrm{~V}=\varnothing\) : GOSUB11øø
394 FORI=631TO640:POKEI, \(\varnothing:\) NEXTI
395 FORJ= \(\emptyset\) TO MM-1
397 POKE18Ø2-(4*J),3Ø
\(4 \emptyset \emptyset\) GETHS
\(4 \varnothing 5\) IFH\$=""THEN4øø
407 IFH\$="X"ANDZZ=1THEN1øØ :rem 36
\(41 \varnothing\) IFH\$="X"THENPRINTA\$B\$BSSPC(13)"PERCEN TAGE: "; INT (Z/(ZZ-1)*1øø):GOTO12Ø :rem 113
411 IF HS<>"Ø"AND VAL(H\$)=ø THEN 4øØ :rem 34
412 FORO=1984TO2ø23: POKEO, 32 :NEXTO: rem 91
\(415 \mathrm{P}=\mathrm{VAL}(\mathrm{H} \$) \quad\) :rem 199
\(42 \varnothing \mathrm{~V}=\mathrm{V}+(\mathrm{P} * 1 \varnothing \uparrow \mathrm{~J}): \mathrm{X}=18 \varnothing 1-(4 * \mathrm{~J}):\) GOSUB480:NE
\(\mathrm{XTJ} \quad:\) rem 86
450 IFM=VTHEN \(47 \varnothing\) :rem \(21 \varnothing\)
451 GOSUB 6600 :rem 230
452 FORI=1792TO1943:POKEI, 32:NEXTI: rem 84
456 IFTR=1THEN:GOTO460 :rem 126
458 TR=1:GOSUB15 00 : GOSUB 770 : GOTO 393
:rem 159
\(46 \emptyset \mathrm{M}\) \$ \(=\operatorname{STR} \$(\mathrm{M})\) :rem 3
461 FORI=1TO25-MM: READA: NEXTI :rem 99
462 FOROO \(=1\) TOMM

464 P=VAL (MID\$(MS, ( \(00+1\) ), 1) )
:rem 243
465 READX: GOSUB480:NEXTOO:RESTORE: rem 222 \(47 \varnothing\) GOSUB1230:IFTR= \(\varnothing\) THENGOSUB25 \(0 \varnothing\) : GOSUB75
\(5: Z=Z+1\) : GOSUB65øø
:rem 154
471 GOSUB2225:GOTO3ø1 :rem 238
\(48 \emptyset\) IFP= 1 THENGOSUB72ø :rem 48
485 ONPGOSUB 5øø,525,555,585,61ø,633,660, 680,7øø: RETURN
:rem 254
\(5 \emptyset \emptyset\) FORI \(=\emptyset\) TOl \(2 \emptyset S T E P 4 \emptyset: P O K E X+I+1, Y:\) NEXTI \(: R\) ETURN
:rem 250
525 GOSUB990:GOSUB980:POKEX +8 , Y, YOSUB97ø : RETURN
:rem \(1 \varnothing 2\)
555 GOSUB990:GOSUB980:POKEX+82,Y:GOSUB97ø : RETURN
:rem 107
585 POKEX, Y: POKEX \(+4 \varnothing, 16 \varnothing\)
:rem 193
595 FORI \(=8\) ØTO82:POKEI \(+\mathrm{X}, \mathrm{Y}:\) NEXTI :rem 1
\(6 \emptyset \varnothing\) FORI=1TO2: POKEX \(+\mathrm{I}, 118\) : POKEX \(+4 \emptyset+\mathrm{I}, 118\) : POKEX \(+12 \varnothing+I, 118:\) RETURN :rem 97
610 GOSUB99ø :rem 185
\(62 \emptyset\) POKEX \(+4 \varnothing, \mathrm{Y}: \mathrm{POKEX}+41,98: \mathrm{POKEX}+42,98: \mathrm{PO}\) KEX+82,Y:GOSUB97ø:RETURN :rem 95
633 GOSUB990
:rem 19ø
\(64 \emptyset\) POKEX \(+4 \emptyset, \mathrm{Y}: \mathrm{POKEX}+41,98:\) POKEX \(+42,98\)
:rem 18
645 POKEX \(+8 \emptyset, \mathrm{Y}:\) POKEX \(+82, \mathrm{Y}:\) GOSUB \(97 \emptyset:\) RETURN :rem 141
660 GOSUB990 :rem 190
\(67 \emptyset\) POKEX \(+42, \mathrm{Y}: \mathrm{POKEX}+81, \mathrm{Y}: \mathrm{POKEX}+82,97\) : POK EX \(+121, \mathrm{Y}:\) RETURN :rem 37
680 GOSUB525 :rem 186
\(69 \emptyset\) POKEX \(+4 \emptyset, \mathrm{Y}:\) POKEX \(+82, \mathrm{Y}:\) RETURN :rem 47
\(7 \varnothing \varnothing\) GOSUB68 1 :POKEX+8ø,32:RETURN :rem \(18 \emptyset\)
\(72 \emptyset\) GOSUB68ø: POKEX+41, 32 :RETURN :rem 179
\(74 \emptyset\) FORI=1748TO1763:POKEI, 64:NEXTI:RETURN :rem 116
755 POKE1151,7:POKE1152,15:POKE1153,15:PO KEll54,4: POKEl155,33 :rem 223
760 POKE1151,7:POKE1152,15:POKE1153,15: PO KEll54,4: POKEll55,33:RETURN :rem 245
770 POKEll12, 20:POKEll13,18:POKE1114, 25
:rem 167
\(78 \emptyset\) POKE1151,1:POKE1152,7:POKE1153,1:POKE 1154,9:POKE1155,14:POKE1156,33:rem 63 785 FORI=1TO250:NEXTI:RETURN :rem 88 \(96 \emptyset\) FORI=ØTO12øSTEP4ø:POKE I+X,16ø:NEXTI: RETURN :rem \(23 \varnothing\)
\(97 \emptyset\) FORI \(=\varnothing\) TO2: POKEI \(+12 \varnothing+\mathrm{X}, 16 \emptyset:\) NEXTI:RETUR \(\mathrm{N} \quad:\) rem 164
98ø POKEX+4ø, 98:POKEX+41,98:POKEX+42,16ø: RETURN :rem 113
990 FORI \(=\emptyset\) TO2 \(:\) POKEX \(+1,16 \emptyset:\) NEXTI:RETURN : rem 232 1øøø PRINTA\$B\$BSSPC(11)"DO YOU WISH TO:"
:rem 4
\(1 \emptyset 1 \emptyset\) PRINTB\$SPC(11)"1) PRACTICE TIMES TAB LES" :rem 116
\(1 \emptyset 2 \emptyset\) PRINTB\$SPC(11)"2) RANDOM NUMBERS"
:rem \(2 ø 3\)
\(1 \varnothing 3 \varnothing\) PRINT" \(\{\) HOME \(\}\) \{ 7 DOWN \} "B\$SPC(11)" (ENTE R 1 OR 2)";:INPUTT :rem 142
\(1 \varnothing 4 \varnothing\) IFT<1ORT>2THEN1ø3Ø :rem \(1 \varnothing 9\)
\(1 \varnothing 5 \emptyset\) IFT=2THENGOTO19ø :rem 26
\(1 \varnothing 6 \emptyset\) PRINTA\$B\$B\$SPC(11)"ENTER TIMES TABLE " :rem \(2 \not 02\)
\(107 \varnothing\) PRINT" \(\{\) HOME \} \{ 3 DOWN \} "B\$SPC (11)" (1-14 )";:INPUTK:IFK<1ORK>14THEN1ø7ø :rem 141
\(1090 \mathrm{~S}=\varnothing: \mathrm{R}=14:\) GOTO263 :rem 198
lløø FORI=1Ø64TO1224STEP4ø :rem 6
1110 READA: READB
112 Ø FORJ=1TOB*2-1 : rem 184
:rem 2

\section*{"BEAT TO QUARTERS! RUN OUT THE GUNS, AND CLEAR FOR ACTION!"}

These urgent commands of the 18 thcentury captain are now yours to issue as you re-enact legendary naval engagements from the age of fighting sail.
BROADSIDES \({ }^{\text {- }}\) - a new game from SSI - gives you non-stop naval action, as fast and demanding as the historical battles it re-creates.
In this two-player/solitaire simulation, the ships will be rigged, manned, and armed just like the real ships were, and will handle in the wind just as real ships sailed.
For speed of play, the ARCADE game lets you sail right into action. You set your course, maneuver and fire broadsides as fast as your crew can reload.
For authenticity and his torical detail, the TACTICAL game puts you
 on the quarter-deck. There, you make the decisions real captains had to make: How much sail? What course for best speed? Aim your guns for the rigging or waterline? What range? Load with solid shot or grape shot?

NOW ALSO ON 48K DISK FOR

\section*{A T A R I HOME COMPUTERS}

RTpic Fire

\section*{FOR THE APPLE}

BROADSIDES \({ }^{*}\)
(\$39.95) comes on 48 K disk for the Apple II with Applesoft ROM, II + , Ile, and Apple III.
Designed by Wayne Garris.

\section*{All SSI games are} covered by a 14 -day "satisfaction or your money back" guarantee.

If there are no convenient stores near you. VISA \& Mastercard holders can order direct by calling 800-227-1617, ext. 335 (toll free). In California, call 800-772-3545, ext. 335. To order by mail, send your
check to: Strategic Simulations Inc, 883 Stierlin Road, Bldg. A-200, Mountain View, CA 94043. Please specify computer format and include \(\$ 2.00\) for shipping \& handling. (California residents, add \(61 / 2 \%\) sales tax.)

1130 POKE（I＋A＋J），1ø2
：rem 46
\(114 \emptyset\) NEXTJ：NEXTI：RESTORE：RETURN
：rem 137
\(117 \emptyset\) FORI＝1TO21
\(118 \emptyset\) POKE（1267＋I），12Ø
1190 NEXTI
12øø POKE1227，74
\(121 \varnothing\) RETURN
\(123 \varnothing\) FORI＝1TOI \(\varnothing\) ：READA：NEXTI
1232 FORI＝11Ø4TOl184STEP 4Ø
1234 FORJ＝25TO28
1235 READA：POKEI＋J，A：NEXTJ：NEXTI：RESTORE： RETURN
：rem 185
1260 FORI \(=1\) TO3 ：rem 61
127 （ POKEl271＋I，Y：POKE128ø＋I，Y：NEXTI
：rem 172
\(13 \varnothing \emptyset\) FORI＝1TO4
\(131 \varnothing\) POKE1311＋I，Y
\(132 \emptyset\) POKEl32Ø＋I，Y
\(133 \varnothing\) NEXTI：RETURN
1500 FORI＝1064 TO 1224 STEP 40
1510 FORJ＝25TO28：POKEI＋J，32•NEXTJ NEM 10 ETURN
2øøø FORI＝55296TO55615 ：rem \(\varnothing\)
：rem 227
\(2 ø \emptyset 1\) POKEI，5：NEXTI ：rem 94
2øø3 POKE55442，6：FORI＝55616TO56256：POKEI， l＋Q：NEXTI：RETURN
：rem 26
2225 FORI＝1384TO2ø23：POKEI，32：NEXTI：RETUR N
25øø POKE1212，2ø2：RETURN
：rem 145
：rem 150 ORI＝1TO24：POKELL＋I，\(\varnothing: N E X T I: P O K E L L+5\) ，240：POKELL＋6， 72 ：POKEV，72：RETURN
：rem 138
\(3 \varnothing \varnothing \varnothing\) IFLEN \((F \$)>2\) THEN \(3 \varnothing 3 \varnothing\) ：rem 81
\(3 \emptyset 15 \mathrm{P}=\operatorname{VAL}(\mathrm{MID}(F \$, 2,1)) \quad\) ：rem 254
\(3 \varnothing 2 \emptyset \mathrm{X}=1396+\mathrm{W}\) ：GOSUB48 \(\quad\) ：rem 5
\(3 \emptyset 25\) RETURN
3ø3Ø \(\mathrm{P}=\mathrm{VAL}(\mathrm{MID} \$(\mathrm{~F} \$, 2,1))\)
\(3035 \mathrm{X}=1392+\mathrm{W}\) ：GOSUB48ø
\(3 ø 4 \emptyset \mathrm{P}=\mathrm{VAL}(\operatorname{MID}(\mathrm{F} \$, 3,1))\)
\(3045 \mathrm{X}=1396+\mathrm{W}\) ：GOSUB \(48 \emptyset\)
\(305 \emptyset\) RETURN
50の日 DATA \(6,5,5,7,4,9,3,11,3,11,23\) \(60,160,160,108,160,160\) ：rem 244
\(501 \varnothing\) DATA \(160,160,160,160,1793,1797,1801\)
：rem 186
6øøø POKE1631，Y：POKE1670，Y：POKE1671，Y：POK El672，Y：POKE1711，Y ：rem 52
6øø2 IFQ＝2THENPOKE1631，32：POKE1711，32
：rem 149
6 6ø3 RETURN
：rem 169
6004 POKEl63ø，Y：POKE1632，Y：POKE1671，Y：POK El71ø，Y：POKE1712，Y：RETURN ：rem 73
65øø POKE LL＋4，33：POKELL＋1，21：POKELL，31：F ORI＝1TO2øø：NEXTI：POKELL＋1， 25 ：POKELL， \(3 \varnothing\)
：rem 79
6510 FORI＝1TO6øø：NEXTI：POKELL＋4，32：FORI＝1 TOIØøø：NEXTI：POKELL＋4，8：RETURN
：rem 5ø
\(66 \emptyset \emptyset\) POKE LL＋4，33：POKELL＋1，1ø：POKELL，143： FORI＝1TO15øø：NEXTI：POKELL＋4， 32
：rem 39
\(661 \varnothing\) FOR I＝1TO1øøø：NEXTI：POKELL＋4，8：RETUR N
：rem 111

\section*{Program 3：Snertle For Atari}

Refer to the＂Automatic Proofreader＂article before typing this program in．
HE 9 D DIM \(F \$(4), M \$(3):\) OPEN \＃1， \(4, ~ ■, " K: "\) DL 1 Øø GRAPHICS 17：SETCOLOR \(\emptyset, 12,1 \varnothing\)
KN 11 Ø POSITION 3，1：？\＃6；＂＊＊SNERTLE＊＊＂


The final digit is just beginning to appear onscreen，Atari version of＂Snertle．＂Other versions similar．

HI 12ø POSITION 3，4：？\＃6；＂SELECT ONE：＂ J6 13ø POSITION 3，7：？\＃6；＂1）ADDITION＂ JH 14 P POSITION 3，9：？\＃6；＂2）SUBTRACTI ON＂
KH 15ø POSITION 3，11：？\＃6；＂3）MULTIPLI CATION＂
 RAM＂
PK 17ø POSITION 1，17：？\＃6；＂（ENTER 1， 2 ， 3 OR 4）＂；：GET \＃1，Q：IF Q＜49 OR Q \(>52\) THEN \(17 \varnothing\)
DP \(185 Q=Q-48: C=14: I F Q=1\) QR \(Q=2\) THEN \(\mathrm{C}=99\)
OA 187 IF \(Q=3\) THEN 1 Øøø
PI 188 IF \(Q=4\) THEN END
OP 19Ø GRAPHICS 17：POSITION ø，3：？\＃6；＂ ENTER LARGEST VALUE＂
KH2øø ？\＃6；＂MIN．： 1 MAX．：＂；C；＂＂；
6L 2 Ø3 GET \＃1，R：IF R＜48 OR R＞57 THEN 2 93
JA 2 Ø5 ？\＃6；R－48；
IL 21 GET \＃1，RR：IF（RR＜48 OR RR＞57）A ND（RR＜＞155）THEN 21 ）
66211 IF RR＝155 THEN 215
KF 212 ？\＃6；RR－48
DK 215 IF \(R R=155\) THEN \(R R=R: R=48\)
61 22 D \(R=1 \emptyset *(R-48)+R R-48: I F R<1\) OR \(R>C\) THEN PRINT \＃6：GOTO \(2 \emptyset \emptyset\)
HH 23ø POSITION \(\curvearrowleft, 14: ? ~ \# 6 ; " E N T E R ~ S M A L L\) EST VALUE＂
L0 24の ？\＃6；＂MIN．：Ø MAX．：＂；R；＂＂；
HE 242 GET \＃1，S：IF \(S<48\) OR S＞57 THEN 2 42
JE 244 ？\＃6；S－48；
गи 25 G GET \＃1，SS九：IF（SS＜48 OR SS＞58）A ND（SS＜＞155）THEN 25の
EN 251 IF SS＝155 THEN SS＝S：S＝48：GOTO 2 53
KL 252 ？\＃6；5S－48
I6 \(253 S=1 \emptyset *(S-48)+S S-48: I F S<\emptyset\) OR \(S>R\) THEN PRINT \＃6：GOTO \(24 \varnothing\)
OK 263 GRAPHICS 17：POSITION 2，8：？\＃6；＂ ENTER \(X\) TO RETURN＂：POSITION 6，1 Ø：？\＃6；＂TO MENU＂：FQR I＝1 TO 5øø ：NEXT I：？＂\｛CLEAR\}"
HP 27 Ø \(Z=\varnothing: Z Z=\varnothing:\) GRAPHICS 5：POKE 752， 1 OD 275 GOSUB 11øø：GOSUB 117ø：GOSUB 123 Ø
0C \(3 \varnothing 1\) TR＝ø：ZZ＝ZZ +1


\section*{The Making of
ALegend. Making of
ALegend.}


Features like these make our new dot matrix impact printer a Legend. While a low price makes it a near miracle! Imagine, all this and more for less than \(\$ 350\). That puts you into our 80 -cps Legend 800 model. And if you're looking for something even faster, look into our 100 -cps Legend 1000.

See them both at a dealer near you. Or drop us a line for facts by mail: CAL-ABCO/PERIPHERALS DIVISION, 14722 Oxnard Street, Van Nuys, CA 91401. Telephone (818) 994-0909. Toll free 1-800-321-4484. Telex 662436. Dealer inquiries invited.

HJ \(31 \emptyset\) IF \(Q=3\) AND \(T=49\) THEN \(32 \emptyset\)
DK \(315 \mathrm{~K}=\mathrm{INT}(\operatorname{RND}(1) *(R-S+1))+S\)
CJ \(32 \emptyset \quad F \$=S T R \$(K): W=15\)
CD 325 IF \(K<L\) THEN \(W=22\)
NJ 3 Gの GOSUB उøøø
JD \(335 \quad W=22\)
\(C I 337\) IF \(K<L\) THEN \(W=15\)
PI 34 F \(\$=S T R \$(L)\)
NP 345 GOSUB \(3 \varnothing \emptyset \emptyset\)

\(6 B 35 \emptyset\) IF \(Q=1\) THEN \(M=K+L\)
AL \(36 \varnothing\) IF \(Q=2\) AND \(L<K\) THEN \(M=K-L\)
AN 362 IF \(Q=2\) AND \(K<L\) THEN \(M=L-K\)
61365 IF \(Q=3\) THEN \(M=K\) KL
PH \(38 \emptyset\) ？＂\｛CLEAR\}":GOSUB \(74 \emptyset: M M=1: I F M\) \(\geqslant 9\) THEN \(M M=2\)
\(6 F 385\) IF \(M>99\) THEN \(M M=3\)
\(6 C 393 \quad V=\emptyset\)
NK． 395 FQR \(J=\emptyset\) TO \(M M-1\)

B6 4 Øø POKE 764，255：GET \＃1，P
CJ 4ø1 IF \((P<>88)\) AND \((P<48\) OR \(P>57) T\) HEN 4 Øø
NM 4 Ø IF \(P=88\) AND \(Z Z=1\) THEN \(1 \emptyset \emptyset\)
DP 4 Ø IF \(P=88\) AND TR＝1 THEN \(Z Z=Z Z+1\)
IK． 416 IF \(F=88\) THEN GRAPHICS 17：SETCOL OR Ø，12，1ø：？\＃6；＂PERCENTAGE＝＂

EB \(415 \quad P=P-48: W=3 \varnothing\)
HK 417 COLOR Ø：PLOT \(4 \emptyset-J * 6,3 \emptyset: C O L O R ~ 3\)
JH 42 Ø \(V=V+I N T\left(\left(P\right.\right.\) 审 \(\left.\left.1 \emptyset^{へ} \mathrm{~J}\right)+\varnothing .1\right): X=4 \varnothing-6 * J:\) GOSUB \(48 \varnothing\) ：NEXT J
NC \(45 \varnothing\) IF \(M=V\) THEN \(47 \emptyset\)
AI 451 SQUND \(2,2 \emptyset \emptyset, 12,12: F O R \quad I=1\) TO \(1 \varnothing\) \(\emptyset:\) NEXT I ：SOUND \(2, \varnothing, \varnothing, \varnothing\)
EM 452 COLOR Ø：FOR \(Y=3 \emptyset\) TO \(35: F O R \quad I=24\) TO 42：FLDT I，Y：NEXT I：NEXT Y：C OLOR 3
AL 456 IF TR＝1 THEN 46 ．
HH 458 TR＝1：COLOR Ø：GOSUB \(117 \emptyset:\) COLOR 3 ：GOSUB \(77 \emptyset:\) GOTO 393
\(K B 46\)（ \(\mathrm{M} \$=S T R \$(M): I F \quad M M=3\) THEN 462
CP 461 FQR I＝1 TO \(3-M M: R E A D ~ A: N E X T\) I
MM 462 FOR \(O Q=1\) TO MM
IJ \(464 \quad \mathrm{P}=\mathrm{VAL}(M \$(00,00))\)
HO 465 READ \(X\) ：GOSUB 48 ：NEXT DO：RESTOR E
MC 47ø ？＂\｛CLEAR\}": COLOR 2:GOSUB 117 : IF TR＝ø THEN GOSUB 25øø：GOSUB 7 55： \(\mathrm{Z}=\mathrm{Z}+1\) ：GOSUB 65øø
FF 471 GQSUB 2225：POKE 198，Ø：GOTO \(3 \varnothing 1\)
BK 48 COLOR 1：IF \(P=\varnothing\) THEN GOSUB \(72 \emptyset\)
PP 485 ON P GOSUB \(5 \emptyset \emptyset, 525,53 \emptyset, 555,585\) ， \(610,633,660,680:\) RETURN
6D 5øø PLDT \(X, W\) ：DRAWTO \(X, W+4: P L D T X-1\) ， \(W=\) DRAWTO \(x-1, W+4\) ：RETURN
AO 525 PLOT \(X, W=D R A W T O X-3, W: P L O T X-1\) ， \(W+1\) ：PLOT \(x, W+1: P L O T \quad X, W+2\) ：DRAWT \(0 x-3, W+2\)
PJ 527 PLOT \(x-3, W+3:\) PLOT \(x-2, W+3: P L O T\) \(X-3, W+4\) ：DRAWTO \(x, W+4\) ：RETURN
LD \(53 \emptyset\) PLOT \(X, W: D R A W T O X, W+4: P L D T X-1\) ， \(W\) ：DRAWTO \(x-1, W+4\) ：PLDT \(x-3, W: P L O\) T \(x-2, W\)
LP 540 PLOT \(X-3, W+2:\) PLOT \(X-2, W+2: P L O T\) \(x-3, w+4\) ：PLOT \(x-2, w+4\) ：RETURN
EI 555 PLOT \(x-3, W:\) DRAWTO \(x-3, W+2: P L O T\) \(X-1, W+1\) ：DRAWTO \(x-1, W+4\) ：PLOT \(X, W\) ＋2：PLOT \(x-2, W+2\) ：RETURN
\(K 0585\) PLOT \(X-3, W: D R A W T O X, W: P L O T X-3\) ， \(W+2\) ：DRAWTO \(x, W+2:\) PLOT \(X-3, W+4: D\) RAWTO \(X, W+4\)
FP 59 D PLOT \(x-3, W+1: P L D T \quad x-2, W+1: P L O T\) \(X-1, W+3: P L Q T \quad X, W+3:\) RETURN

DD \(61 \emptyset\) PLOT \(x-3, W: D R A W T C \quad x-3, W+4: P L O T\) \(X-1, W=P L O T \quad X, W: P L D T \quad X-2, W: D R A W T\) \(0 \quad x-2, W+4\) ：PLOT \(X-1, W+2\) ：PLOT \(X-1\) ，\(W+4\)
HC 615 PLOT \(x, W+2\) ：DRAWTO \(x, W+4=\) RETURN
\(6 L 63\) PLOT \(X, W: D R A W T O X-3, W: P L O T X, W+\) 1：DRAWTO \(X-3, W+4\) ：RETURN
\(0066 \emptyset\) GOSUB 720 ：PLOT \(X-2, W+2: P L O T X-1\) ，\(W+2\) ：RETURN
IL 689 PLOT \(x-3, W+4\) ：DRAWTO \(x, W+4:\) DRAWT \(0 x, W: D R A W T O \quad x-3, W: D R A W T O X-3, W\) \(+2\)
CE 685 DRAWTO \(X-1, W+2:\) RETURN
OD \(72 \emptyset\) PLOT \(X, W: D R A W T O X, W+4\) ：DRAWTO \(X-\) \(3, W+4\) ：DRAWTO \(x-3, W\) ：DRAWTO \(x, W: R\) ETURN
KL 74 FOR \(I=24\) TO 42：PLOT I，28：NEXT I ：RETURN
6H 755 ？＂\｛12 SPACES\}GOOD": RETURN
JK \(77 \varnothing\) ？＂\｛1ø SPACES\}TRY AGAIN": RETURN
KE \(1 \varnothing \emptyset \emptyset\) GRAPHICS 17：SETCOLOR 1，12，1ø：P OSITION 2，2：？\＃b；＂DO YOU WISH TO：＂
JB 1 Ø1ø POSITION 2，5：？\＃6；＂1）PRACTICE TIMES＂：POSITION 2，6：？\＃6；＂TAB LES＂
FH 1 Ø2 2 POSITION 2，8：？非 \(6 ; " 2\) ）RANDOM \(N\) UMBERS＂
BM 1 ØЗØ POSITION 2，1ø：？\＃6；＂（ENTER 10 R 2）＂
ML \(1 \varnothing 4 \varnothing\) GET \＃ \(1, T: I F T<49\) OR \(T>5 \emptyset\) THEN 1 Ø4
BE 1 Ø5 \(I F\) T＝5の THEN \(19 \emptyset\)
EE 1 Ø6 6 POSITION 2，12：？\＃6；＂ENTER TIME 5 TABLES＂；
BL \(1065 K=\emptyset: F=\varnothing: ? \# 6 ; "(1-14) " ;\)
MN \(1 \varnothing 7 \emptyset\) GET \＃1，\(Z: I F(Z<48\) OR \(Z>57)\) AND （ \(Z<>155\) ）THEN 1 ø7ø
KN 1 Ø73 IF \(Z=155\) THEN \(K=Z Z-48: G 0 T O 1 \emptyset 9\) \(\emptyset\)
MO 1075 ？\＃6；\(Z-48\) ；
BB 1 Ø8Ø \(P=P+1: I F P=1\) AND \(Z<>155\) THEN \(K\) \(=(Z-48) * 1 \varnothing: Z Z=Z:\) GOTO \(1 \varnothing 7 \emptyset\)
MN \(1 \emptyset 85 K=K+(Z-48)=I F K>14\) THEN ？\＃6：G OTO 1 Ø65
M6 1 Ø9 \(\quad S=\emptyset: R=14: G O T O 263\)
6F 11 1 \(\varnothing\) COLOR \(2: A=4 \emptyset: B=28: F O R \quad I=\varnothing\) TO 9
ME \(111 \emptyset\) IF \(I / 2=I N T(I / 2)\) THEN \(A=A+2: B=B\) \(-2\)
DN \(112 \emptyset\) PLOT \(B, I\) ：DRAWTO \(A, I: N E X T I\)
NF \(113 \emptyset\) FLDT \(B, I: R E T U R N\)
IH 117 F FOR \(I=51\) TO 55：FLOT I，2：NEXT I ：FOR I \(=5 \varnothing\) TO \(55:\) PLOT I， \(3:\) NEXT I
CE 118 FOR \(I=4\) TO 7：FOR \(J=49\) TO \(55: P L\) OT J，I ：NEXT J：NEXT I
NF 119ø COLOR Ø：PLOT 54，3：RETURN
DI 123Ø COLOR 2：\(Y=24: F O R \quad X=Y\) TO \(Y+3: P L\) OT \(X, 1\) Ø：DRAWTO \(X, 13:\) NEXT \(X\)
EM 124 Ø \(Y=4 \emptyset: F O R \quad X=Y\) TO \(Y+3: P L O T X, 1 \varnothing:\) DRAWTO \(X, 13: N E X T X\)
FK \(125 \emptyset\) PLOT 28，12：PLOT 28，13：PLOT 29， 12：PLOT 29，13
6N 126 Ø PLOT 44， 12 ：PLOT 44，13：PLOT 45， 12：PLOT 45， 13 ：RETURN
JJ 2225 COLOR \(\emptyset: F O R \quad Y=15\) TO \(35: F O R \quad I=2\) 4 TO 42：PLDT I，Y：NEXT I：NEXT Y ：COLDR 3：RETURN
AE 25のø COLOR Ø：PLOT 54，7：PLOT 53，6：C0 LOR 3：RETURN
FA \(3 \emptyset \emptyset \emptyset\) IF LEN（F\＄）\(>1\) THEN \(3 \emptyset 3 \varnothing\)
ND \(3 \emptyset 15 \quad \mathrm{P}=\mathrm{VAL}(F \$(1,1))\)
BE \(3 \varnothing 2 \emptyset \quad X=4\) Ø：GOSUB \(48 \emptyset\)

\title{
Lookslikea Ferrari. Drives like a Rolls. Parks like a Beetle.
}


Ask your computer dealer to take the cover off a world-class disk drive.

The all new, 1984 Indus GT.TM
The most advanced, most handsome disk drive in the world.

A flick of its power switch can turn an Atari into a Ferrari.

Or an Apple into a Red Hot Apple.

\section*{Looks like a Ferrari.}

The Indus GT is only \(2.65^{\prime \prime}\) high. But under its front-loading front end is slimline engineering with a distinctive European-Gran flair.
Touch its LED-lit CommandPost \({ }^{\text {TM }}\) function control AccuTouch \({ }^{\text {TM }}\) buttons. Marvel at how responsive it makes every Atari or Apple home computer.

\section*{Drives like a Rolls.}

Nestled into its soundproofed chassis is the quietest and most powerful disk drive power system money can buy. At top speed, it's virtually unhearable. Whisper quiet.

Flat out, the GT will drive your Atari track-totrack 0-39 in less than one second. Increasing data transfer 400\%. (Faster than any other drive. And as fast as any Apple disk drive.)

And each GT comes with the exclusive GT DrivingSystem \({ }^{\text {TM }}\) of software programs.* World-class word processing is a breeze with the GT Estate WordProcessor. \({ }^{\text {TM }}\) And your dealer will describe the two additional programs that allow GT owners to accelerate their computer driving skills. *Included as standard equipment.

Also, the 1984 Indus GT is covered with the GT PortaCase. \({ }^{\text {TM }}\) A stylish case that conveniently doubles as a 80-disk storage file.

\section*{Parks like a Beetle.}

The GT's small, sleek, condensed size makes it easy to park.

And its low price makes it easy to buy.
\(\$ 449\) for Atari. \$329 for Apple.
So see and test drive the incredible new 1984 Indus GT at your nearest computer dealer soon.

The drive will be well worth it.

\section*{INDUS}

The all-new 1984 Indus GT Disk Drive.
The most advanced, most handsome disk drive in the world.
\begin{tabular}{|c|c|}
\hline \(3 \emptyset 2\) & RETURN \\
\hline NA 3 ØЗø & \(P=\operatorname{VAL}(F \$(1,1))\) \\
\hline BN 3035 & X＝34：GOSUB 48ø \\
\hline ND 3 ¢ 40 & \(P=\operatorname{VAL}(F \$(2,2))\) \\
\hline BL 3045 & X＝4ø：GOSUB 48ø \\
\hline K1 \(305 \emptyset\) & RETURN \\
\hline J06øøø & PLOT 27，24：DRAWTO 27，26：PLOT 2 \\
\hline & 6，25：DRAWTO 28，25：RETURN \\
\hline CE 6 Øø2 & PLOT 26，25：DRAWTO 28，25：RETURN \\
\hline PD \(60 \square 4\) & PLOT 26，24：PLOT 28，24：PLOT 27， \\
\hline & 25：PLOT 26，26：PLOT 28， \(26:\) RETUR \\
\hline J065øø & SOUND 2，15ø，1ø，1ø：FQR I＝1 TO 5 \\
\hline & \(\emptyset:\) NEXT \(I\) ：SOUND \(2,125,1 \varnothing, 12:\) FOR \(I=1\) TO \(5 \emptyset: N E X T\) I SOUND \(2, \emptyset, \emptyset\) ， \\
\hline & Ø：RETURN \\
\hline DJ 6510 & REM SOUND \\
\hline 6P8øøø & DATA 28，34，4ø \\
\hline
\end{tabular}

\section*{Program 4：Snertle For TI－99／4A}
```

1gø GOTO 15ø
11ø FOR I=1 TO LEN(H$)
12\emptyset CALL HCHAR(ROW,COL+I,ASC(SEG$(H
\$,I,1)))
13@ NEXT I
14\emptyset RETURN
15ø GOSUB 271ø
16\emptyset CALL CLEAR
17\emptyset CALL SCREEN(12)
18\emptyset PRINT TAB(5);"** S N E R T L E
*\&":: : :
19\emptyset PRINT "SELECT ONE:"::
2ø\emptyset PRINT TAB(3);"1) ADDITION"::
21ø PRINT TAB(3);"2) SUBTRACTION"::
22ø PRINT TAB(3);"3) MULTIPLICATION
":=
23ø PRINT TAB(3);"4) END PROGRAM"::
::::
24ø PRINT "(ENTER 1, 2, 3, OR 4)";
25\emptyset CALL KEY (\emptyset,Q,ST)
26\emptyset IF ST=\emptyset THEN 25@
270 Q=Q-48
28\emptyset IF (Q>4)+(Q<1)THEN 25\emptyset
29ø KOL=Q
30\emptyset IF Q<>2 THEN 32\emptyset
31ø KOL=1\emptyset
320 CALL COLOR(11,KOL+4,1)

```

＂Snertle，＂TI version．
\(330 \quad \mathrm{C}=14\)
34 IF \((Q<>1) *(Q<>2)\) THEN \(36 \emptyset\)
\(350 \mathrm{C}=99\)
\(36 \emptyset\) IF \(Q=3\) THEN \(221 \varnothing\)
37 IF \(Q=4\) THEN \(31 \varnothing \varnothing\)
\(38 \emptyset\) CALL CLEAR
\(39 \emptyset\) CALL SCREEN（4）
4øø PRINT TAB（4）；＂ENTER LARGEST VAL UE：＂：
41 ø PRINT＂（LOWEST ： 1 HIGHEST：＂； ；＂）＂：
\(42 \emptyset\) INPUT R
\(43 \emptyset\) IF \((R<1)+(R\rangle C)\) THEN \(42 \emptyset\)
\(44 \varnothing\) PRINT ：：
45の PRINT TAB（4）；＂ENTER SMALLEST VA LUE＂：：
46Ø PRINT＂〔LOWEST ：Ø HIGHEST：＂；R ；＂）＂：
INPUT S
\(48 \emptyset\) IF（Sくめ）＋（S＞R）THEN \(47 \varnothing\)
\(49 \emptyset\) CALL CLEAR
\(5 \emptyset \emptyset\) CALL SCREEN（1ø）
\(51 \emptyset\) PRINT＂PRESS＊\(X\)＂TO RETURN TO M ENU＂：：：：：：：：：：：：
\(52 \emptyset\) FOR I＝1 TO \(4 \emptyset \emptyset\)
\(53 \emptyset\) NEXT I
\(54 \emptyset\) CALL CLEAR
55の CALL SCREEN（12）
\(56 \emptyset \mathrm{Z}=\varnothing\)
57 Ø Z Z＝
58ø GOSUB 241 ø
59 GOSUB 2510
6 6ø GOSUB 2589
610 TR＝ 0
62 Ø \(Z=Z Z+1\)
\(63 \emptyset\) RANDOMIZE
\(64 \emptyset \mathrm{~L}=\mathrm{INT}(\mathrm{RND} *(\mathrm{R}-\mathrm{S}+1))+\mathrm{S}\)
\(65 \emptyset\) IF \((Q=3) *(T=1)\) THEN \(67 \emptyset\)
\(660 \mathrm{~K}=\mathrm{INT}(\mathrm{RND} *(\mathrm{R}-\mathrm{S}+1))+\mathrm{S}\)
67 Ø \(F\) \＄\(=\) STR \(\$(K\) ）
\(689 \quad Y=9\)
\(690 \mathrm{~W}=15\)
\(7 \emptyset\) IF K＞＝L THEN \(72 \boldsymbol{1}\)
\(710 \mathrm{Y}=14\)
72の GOSUB 284の
73 Ø \(Y=14\)
\(74 \varnothing\) IF L＜＝K THEN 76 Ø
\(75 \emptyset \quad \mathrm{Y}=9\)
760
770
780
790
8øø
810 IF \((Q<>2)+(K<L)\) THEN \(83 \emptyset\)
\(82 \emptyset \quad M=K-L\)
830 IF \((Q\rangle 2)+(K\rangle=L)\) THEN \(85 \emptyset\)
840 \(M=L-K\)
\(85 \emptyset\) IF \(0<>3\) THEN \(87 \emptyset\)
86 の \(\mathrm{M}=\mathrm{K}\)＊
\(87 \emptyset\) CALL \(\operatorname{HCHAR}(18,9,194,14)\)
\(88 \emptyset \quad M M=1\)
890 IF \(\mathrm{M}<=9\) THEN 910
9øの \(\quad M M=2\)
\(91 \varnothing\) IF \(\mathrm{M}<=99\) THEN 930
\(920 \quad\) MM＝3
\(930 \quad V=\varnothing\)
940 GOSUB 241 D
\(95 \emptyset\) FOR \(J=\varnothing\) TO MM－1
969 CALL HCHAR（ \(22,29-4 * J, 94\) ）
\(97 \emptyset\) CALL \(\operatorname{KEY}(\varnothing, K 1, S T)\)
\(98 \emptyset\) IF ST＝ø THEN 97ø

Recognized as the authoritative source for micro users!

\title{
Superior Performance, Practical Price!
}

More programs, projects, ways to use your micro for home, hobby, education, and business!

\section*{Select 5 Books for Only \({ }^{5} 2^{2}\)}






List \$19.95

\(\stackrel{1745}{\text { List } \$ 16.9}\)



List \$14.95


List \$15.95


Free guide to BASIC Statements \& Commands


\section*{7 very good reasons to join The Computer Book Club \({ }^{\circledR}\)}
- Big Savings. Save \(20 \%\) to \(75 \%\) on books sure to increase your computer know-how
- No-Risk Guarantee. All books returnable within 10 days without obligation
- Club News Bulletins. All about current selections-mains, alternates, extras-plus bonus offers. Comes 13 times a year with hundreds of up-to-the-minute titles you can pick from - "Automatic Order." Do nothing, and the Main selection will be shipped automatically! But . . . if you want an Alternate selection-or no books at all-we'll follow the instructions you give on the reply form provided with every News Bulletin - Bonus Books. Immediately get a Dividend Certificate with every book purchased and qualify for big discounts of \(60 \%\) to 80\%
- Extra Bonuses. Take advantage of added-value promotions, plus special discounts on software, games, and more - Exceptional Quality. All books are first-rate publisher's editions selected by our Editorial Board and filled with useful, up-to-the-minute information

\section*{}
P.O. Box 80, Blue Ridge Summit, PA 17214
Please accept my membership in The Computer Book Club \({ }^{\bullet}\) and send the 5 volumes circled below, plus my FREE copy of BASIC Statements, Commands and Functions, billing \(\mathrm{me} \$ 2.95\) plus shipping and handling charges. If not satisfied, I may return the books within ten days without obligation and have my membership canceled. I agree to purchase 3 or more books at reduced Club prices (plus shipping/handling) during the next 12 months, and may resign any time thereafter.
\[
\begin{array}{rllllllllll}
1050 & 1062 & 1160 & 1195 & 1205 & 1276 & 1295 & 1389 & 1423 \\
1455 & 1466 & 1473 & 1479 & 1496 & 1506 & 1513 & 1521 & 1533 & 1567 \\
1607 & 1612 & 1633 & 1640 & 1643 & 1702 & 1712 & 1745 & 1764
\end{array}
\]
Name \(\qquad\) Phone
Address
City
State
Valid for new Zip \(\qquad\) CMPT-584
must remit in U.S. currency. Thign applicants will receive special ordering instructions. Canada lle

99 IF \(\left(\left(K_{1}<48\right)+(K 1>57)\right) *(K 1<>88) T H\) EN 97 Ø
\(1 \varnothing \varnothing \varnothing\) IF \((K 1=88) *(Z Z=1)\) THEN \(46 \emptyset\)
\(1 \varnothing 1 \varnothing\) IF K \(1<>88\) THEN 1 Ø6も
\(1 \varnothing 2 \varnothing\) CALL CLEAR
\(1 \emptyset 3 \varnothing\) PRINT TAB（3）；＂PERCENTAGE：＂；IN T（Z／（ZZ－1）＊1øø）
\(1 \varnothing 4 \varnothing\) PRINT ：：：：
1 Ø5 GOTO 190
1 ø6ø CALL HCHAR（22，2ø－4＊J，32）
107 （ \(\mathrm{P}=\mathrm{K} 1-48\)
1 ø8ø V＝V＋（P＊1øへJ）
1 ø9ø \(X=19-4\)＊J
\(11 \varnothing \varnothing \quad Y=2 \emptyset\)
\(111 \varnothing\) GOSUB \(143 \varnothing\)
112 NEXT J
\(113 \varnothing\) IF \(M=V\) THEN \(131 \varnothing\)
\(114 \emptyset\) CALL SOUND \((3 \varnothing \varnothing, 11 \emptyset, 2)\)
115 FOR I＝2Ø TO 24
\(116 \emptyset\) CALL HCHAR（I， \(1,32,3 \varnothing\) ）
117 DEXT I
1189 IF TR＝1 THEN 1230
119 TR＝1
\(120 \emptyset\) GOSUB 2660
\(121 \varnothing\) GOSUB \(2 \emptyset 1 \emptyset\)
1220 GOTO 93ø
\(123 \emptyset \mathrm{M} \$=\mathrm{STR} \$(\mathrm{M})\)
124 FOR OO＝1 TO MM
\(125 \emptyset P=\operatorname{VAL}(S E G \$(M \$, 00,1))\)
\(1260 \mathrm{X}=19\)－（MM－00）＊4
127 GOSUB 1430
128 N NEXT 00
129 FOR T＝1 TO 4øØ
13 Øø NEXT T
\(131 \varnothing\) GOSUB \(251 \emptyset\)
\(132 \emptyset\) IF TRくンØ THEN \(139 \varnothing\)
\(133 \emptyset\) CALL \(\operatorname{HCHAR}(5,23,136)\)
134 G GOSUB \(195 \emptyset\)
135 Ø \(\mathrm{Z}=\mathrm{Z}+1\)
\(136 \emptyset\) CALL SOUND（ \(2 \varnothing \varnothing, 196,2\) ）
\(137 \emptyset\) CALL SOUND（ \(2 \varnothing \varnothing, 262,2\) ）
1389 CALL SOUND（ \(200,294,2\) ）
1390 FOR \(I=9\) TO 24
\(14 \emptyset \emptyset\) CALL HCHAR（I，2，32，3ø）
141 D NEXT I
1420 GOTO \(61 \emptyset\)
\(143 \varnothing\) IF \(F<>\varnothing\) THEN \(146 \emptyset\)
144 GOSUB 192の
145 RETURN
1460 ON F GOSUB \(1489,15 \emptyset \emptyset, 155 \emptyset, 16 \emptyset \varnothing\) ，1659，1719，1790，1850，1890
147 R RETURN
1489 CALL VCHAR（ \(Y, X+1,115,4\) ）
1490 RETURN
15めの GOSUB 2190
1519 GOSUB \(216 \emptyset\)
1529 CALL HCHAR \((Y+2, X, 115)\)
1530 GOSUB 2140
1540 RETURN
1550 GOSUB \(219 \emptyset\)
1560 GOSUB 2169
1579 CALL \(\operatorname{HCHAR}(Y+2, X+2,115)\)
\(158 \varnothing\) GOSUB \(214 \emptyset\)
\(159 \emptyset\) RETURN
\(1609 \operatorname{CALL} \operatorname{VCHAR}(Y, X, 115,2)\)
1619 CALL \(\operatorname{HCHAR}(Y+2, X, 115,3)\)
162 CALL \(\operatorname{HCHAR}(Y+1, X+1,114)\)
\(163 \emptyset \operatorname{CALL} \operatorname{HCHAR}(Y+3, X+1,114)\)
1640 RETURN
1659 GOSUB \(219 \varnothing\)
1669 CALL \(\operatorname{HCHAR}(Y+1, X, 115)\)

167 © \(\operatorname{CALL} \operatorname{HCHAR}(Y+1, X+1,112,2)\)
1689 CALL \(\operatorname{HCHAR}(Y+2, X+2,115)\)
169 GOSUB 2140
\(176 \varnothing\) RETURN
\(171 \varnothing\) GOSUB 2190
\(172 \emptyset\) CALL \(\operatorname{HCHAR}(Y+2, X+2,115)\)
\(173 \emptyset\) CALL \(\operatorname{HCHAR}(Y+1, X, 115)\)
1749 CALL HCHAR \((Y+1, X+1,112,2)\)
1750 CALL \(\operatorname{HCHAR}(Y+2, X, 115)\)
176 CALL \(\operatorname{HCHAR}(Y+2, X+2,115)\)
177 GOSUB \(214 \varnothing\)
\(178 \emptyset\) RETURN
179 GOSUB \(219 \varnothing\)
\(180 \emptyset\) CALL \(\operatorname{HCHAR}(Y+1, X+2,115)\)
1810 CALL \(\operatorname{HCHAR}(Y+2, X+1,115)\)
182 CALL \(\operatorname{HCHAR}(Y+2, X+2,113)\)
\(183 \varnothing\) CALL HCHAR \((Y+3, X+1,115)\)
184 Ø RETURN
\(185 \varnothing\) GOSUB \(15 \emptyset \emptyset\)
186 © CALL \(\operatorname{HCHAR}(Y+1, X, 115)\)
1879 CALL HCHAR \((Y+2, X+2,115)\)
\(188 \varnothing\) RETURN
189ø GOSUB 185の
\(19 \varnothing \varnothing\) CALL \(\operatorname{HCHAR}(Y+2, x, 32)\)
\(191 \varnothing\) RETURN
192 GOSUB \(185 \varnothing\)
1939 CALL HCHAR \((Y+1, X+1,32)\)
1940 RETURN
195ø H\＄＝＂GOOD！＂
196 （ROW＝3
197 © COL＝12
\(198 \varnothing\) GOSUB \(11 \varnothing\)
1990 RETURN
2øøø REM CORRECT
\(2010 \mathrm{H} \$=" T R Y "\)
202 ROW＝2
\(2030 \mathrm{COL}=13\)
\(2 ø 4\) GOSUB 11 Ø
\(2050 \mathrm{H}=\)＝AGAIN＂
206 R ROW＝3
207 © COL＝12
2 208 GOSUB 119
\(209 \varnothing\) FOR \(I=1\) TO \(2 \varnothing \varnothing\)
21 Øの NEXT I
2110 RETURN
212 CALL \(\operatorname{VCHAR}(Y, X, 115,4)\)
\(213 \emptyset\) RETURN
2140 CALL \(\operatorname{HCHAR}(Y+3, X, 115,3)\)
215 ® RETURN
216 © CALL \(\operatorname{HCHAR}(Y+1, X, 112,2)\)
\(217 \emptyset\) CALL \(\operatorname{HCHAR}(Y+1, X+2,115)\)
218 g RETURN
219 © CALL \(\operatorname{HCHAR}(Y, X, 115,3)\)
220 DETURN
2210 CALL CLEAR
2220 CALL SCREEN（4）
2230 PRINT＂DO YOU WISH TO PRACTICE ：＂：：：：
\(224 \varnothing\) PRINT TAB（3）；＂1）TIMES TABLES， OR＂：：
\(225 \emptyset\) PRINT TAB（3）；＂2）RANDOM NUMBER S ？＂：：：：：：：：
2260 PRINT TAB（5）；＂（ENTER 1 OR 2）＂
227 © CALL KEY（ \(\emptyset, K 1\) ，ST）
228ø IF ST＝ø THEN \(227 \emptyset\)
229 IF（K1＜＞49）＊（K1《＞5め）THEN 227 ）
23øの T＝K1－48
\(231 \emptyset\) IF \(T=2\) THEN \(38 \emptyset\)
232 © CALL CLEAR
\(233 \emptyset\) PRINT TAB（6）；＂ENTER TIMES TABL E＂：
\begin{tabular}{|c|c|}
\hline 2340 & PRINT TAB（6）；＂（ENTER 1 TO 14） ：： \\
\hline 2350 & INPUT K \\
\hline 2369 & IF \((K<1)+(K\rangle 14)\) THEN 235＠ \\
\hline 2376 & \(S=\varnothing\) \\
\hline 2389 & \(\mathrm{R}=14\) \\
\hline 2390 & GOTO 49ø \\
\hline 2406 & REM DRAW THE SHELL \\
\hline 2419 & \(\mathrm{RS}=5\) \\
\hline 2426 & COL \(=13\) \\
\hline 2430 & FOR I＝1 TO 4 \\
\hline 2440 & CALL HCHAR（I，COL，96，R5） \\
\hline 2450 & \(\mathrm{R} 5=\mathrm{R} 5+2\) \\
\hline 2460 & \(\mathrm{COL}=\mathrm{COL}-1\) \\
\hline 2470 & NEXT I \\
\hline 2480 & CALL HCHAR（5，9，96，12） \\
\hline 2490 & RETURN \\
\hline 2500 & REM DRAW THE HEAD \\
\hline 2519 & CALL \(\operatorname{HCHAR}(3,21,97)\) \\
\hline 2520 & CALL HCHAR（3，22，96，2） \\
\hline 2530 & CALL \(\operatorname{HCHAR}(4,21,96,3)\) \\
\hline 2540 & CALL \(\operatorname{HCHAR}(4,22,128)\) \\
\hline 2550 & CALL \(\operatorname{HCHAR}(5,21,96,3)\) \\
\hline 2569 & RETURN \\
\hline 2570 & REM DRAW THE FEET AND TAIL \\
\hline 2589 & FOR I＝1 TO 8 \\
\hline 2596 & READ RS，C \\
\hline 2600 & CALL HCHAR（R5， \(\mathrm{C}, 96\) ） \\
\hline 2610 & NEXT I \\
\hline 2620 & FESTORE \\
\hline 2630 & \[
\begin{aligned}
& \text { DATA } 6,9,6,12,6,18,7,12,7,13,7 \\
& , 18,7,19,5,22
\end{aligned}
\] \\
\hline 2640 & RETURN \\
\hline 2659 & REM ERASE THE HEAD \\
\hline 2660 & FOR I＝3 TO 5 \\
\hline 2670 & CALL HCHAR（I，21，32，3） \\
\hline 2680 & NEXT I \\
\hline 2690 & RETURN \\
\hline 27 269 & REM DEFINE CHARS \＆COLORS \\
\hline 271 ¢ & CA） \\
\hline 2720 & CALL CHAR（97，＂ø1ø3Ø7ØF1F3F7FFF \\
\hline 273ø &  \\
\hline 2749 & CAL）CHAR（128，＂øøøøøøøøøFøFøFø \\
\hline 2750 & CALL CHAR（136，＂ \(3 \emptyset 3 \emptyset 18 \emptyset C \emptyset 7 \emptyset 3 \emptyset \emptyset \emptyset\)吕） \\
\hline 2760 & CALL \(\operatorname{COLOR}(9,3,1)\) \\
\hline 277 の & CALL \(\operatorname{COLOR}(13,6,16)\) \\
\hline 2789 & CALL COLOR（14，14，3） \\
\hline 2790 & CALL CHAR（112，＂\(\emptyset \emptyset ø \emptyset \emptyset \emptyset \emptyset \emptyset F F F F F F F\) F＂） \\
\hline 28øø & CALL CHAR（113，＂FØFøFØFØFøFØFØF （＂） \\
\hline 2810 & CALL CHAR（114，＂ø7ø7ø7ø7ø7ø7ø7ø 7＂） \\
\hline 2820 & CALL CHAR（115，＂FFFFFFFFFFFFFFF \(F^{\prime \prime}\) ） \\
\hline 2830 & RETURN \\
\hline 2840 & IF LEN（F\＄）\(=2\) THEN \(289 \emptyset\) \\
\hline 2850 & \(P=\operatorname{VAL}(\operatorname{SEG} \$(F \$, 1,1)\) ） \\
\hline 2860 & \(\mathrm{X}=\mathrm{W}+4\) \\
\hline 287ø & GOSUB 143ø \\
\hline 288ø & RETURN \\
\hline 2890 & \(\mathrm{P}=\mathrm{VAL}(\operatorname{SEG} \$(\mathrm{~F} \$, 1,1)\) ） \\
\hline 290． & \(\mathrm{X}=\mathrm{W}\) \\
\hline 2910 & GOSUB 143Ø \\
\hline 2920 & \(P=\operatorname{VAL}(\operatorname{SEG} \$(F \$, 2,1))\) \\
\hline 2930 & \(\mathrm{X}=\mathrm{W}+4\) \\
\hline 2949 & GOSUB 1439 \\
\hline
\end{tabular}

295 R RETURN
2960 CALL VCHAR（14，11，115，3）
297 © CALL \(\operatorname{HCHAR}(15,1 \varnothing, 115)\)
298ø CALL \(\operatorname{HCHAR}(15,12,115)\)
299の IF \(Q=2\) THEN \(3 \varnothing 1 \varnothing\)
उØØø RETURN
\(3 \varnothing 1 \varnothing\) CALL \(\operatorname{HCHAR}(14,11,32)\)
302 CALL \(\operatorname{HCHAR}(16,11,32)\)
\(3 \emptyset 3 \varnothing\) RETURN
\(394 \varnothing\) CALL \(\operatorname{HCHAR}(14,9,115)\)
3ø5ø CALL HCHAR（14，11，115）
3ø6め CALL \(\operatorname{HCHAR}(15,10,115)\)
3ø7Ø CALL HCHAR（16，9，115）
3ø8ø CALL \(\operatorname{HCHAR}(16,11,115)\)
399 RETURN
उ1Øロ END

\section*{Program 5：Snertle For The Color Computer}

1 Øø CLS（1）：B \(\$=\) CHR \(\$(32)\)
11 （PRINT＠74，＂＊＊SNERTLE＊＊＂
120 PRINT७ 138 ，＂SELECT 1 ＂
\(13 \emptyset\) PRINTఅ2ø2，＂1）ADDITION＂
14め PRINTTAB（1ø）＂2）SUBTRACTION＂
\(15 \emptyset\) PRINTTAB（1ø）＂उ）MULTIPLICATION＂
155 PRINTTAB（10）＂4）END＂
160 PRINTTAB（10）＂（ENTER 1，2，3 OR 4） ＂；：INFUTQ：IF \(Q>4\) OR \(Q<1\) THEN 16 Ø
\(185 \mathrm{C}=14\) ：IF \(\mathrm{Q}=1\) OR \(\mathrm{Q}=2\) THEN \(\mathrm{C}=99\)
187 IF \(Q=3\) THEN 1 פøの
188 IF \(Q=4\) THEN END
\(19 \varnothing\) CLS（1）：PRINTจ37，＂ENTER LARGEST VALUE＂
\(2 \emptyset め\) PRINTTAB（5）＂（MIN．： 1 MAX．：＂；C；＂ ）＂；：INPUTR：IF R＜1 OR R＞C THEN 2 Øø
\(23 \emptyset\) PRINT®133，＂ENTER SMALLEST VALUE ＂
24の PRINTTAB（5）＂（MIN．：\(\varnothing\) MAX．：＂；R；＂ ）＂；：INPUTS：IF \(S<\varnothing\) OR \(S>R\) THEN 2 4 Ø
263 CLS：PRINTQ227，＂PRESS E：TO RETUR N TO MENU＂；：FORI＝1TO75 \(:\) NEXTI：C LS（Ø）
27の \(\mathrm{Z}=\emptyset: \mathrm{ZZ}=\varnothing\)
275 GOSUB 11øø：GOSUB 117ø：GOSUB123ø
\(3 \varnothing 1 \quad T R=\varnothing: Z Z=Z Z+1\)
3 Ø5 L＝INT（RND（R－S）＋S）
\(31 \varnothing\) IF \(Q=3\) ANDT \(=1\) THEN \(32 \emptyset\)
\(315 \mathrm{~K}=\mathrm{INT}\)（RND（R－S）＋S）
\(32 \emptyset\) F\＄＝STR \(\$(K): W=\varnothing\)
325 IF \(K<L\) AND \(Q=2\) THEN TR＝ø：GOTOS 05
उЗø W＝ø：GOSUBЗøøø
\(335 \mathrm{~W}=64\)
34の F\＄＝STR\＄（L）
\(345 \mathrm{~W}=96\) ：GOSUB \(3 \varnothing \varnothing \varnothing\)
346 ON Q GOSUB 6øøø，6øøø，6øø4
\(35 \emptyset\) IF \(Q=1\) THEN \(M=K+L\)
355 IF \(Q=2\) THEN \(M=K-L\)
36 g IF \(Q=3\) THEN \(M=K \& L\)
38 Ø \(M M=1\) ：IF \(M>9\) THEN \(M M=2\)
385 IF M＞99 THEN MM＝3
39ø GOSUB 74の
393 V＝ø：GOSUB 11øø
395 FOR J＝ø TO MM－1
397 POKE 1466－（4＊J）， 94
\(399 \mathrm{HH} \$=\) INKEY\＄
4．ø H\＄＝INKEY\＄
4 95 IF \(\mathrm{H}=\)＝＂THEN 4 Øø
\(41 \varnothing\) IF \(H \$=" X "\) AND \(Z Z=1\) THEN 1 Øø

411 IF \(H \$=" X "\) THEN CLS（1）：PRINT＠68， ＂YOUR PERCENTAGE IS＂；INT（Z／（ZZ －1）＊ 1 Øø）：GOTO12ø
413 IF \(H \$\rangle " \emptyset "\) AND VAL \((H \$)=\emptyset\) THEN 4 Øø
\(415 \mathrm{P}=\mathrm{VAL}\)（ \(\mathrm{H} \$\) ）
42ø \(V=V+(P * 1 \emptyset \wedge J): x=1466-(4 * J)\) ：GOSUB 48の：NEXTJ
\(45 \emptyset\) IF INT（M）＝INT（V）THEN \(47 \emptyset\)
451 SOUND 8ø，6：FORI＝1TO2の：NEXTI：SOU ND 8ø，6：FORI＝1TO2の：NEXTI：SOUND6 ©， 12
452 FOR \(\mathrm{I}=1439\) TO 1535：POKEI，128：NE XT I
456 IF TR＝1 THEN 469
458 TR＝1：GOSUB 15øø：GOSUB 77ø：GOTO3 93
46 D \(M=S T R \$(M)\)
461 FORI＝1 TO 11 －MM：READA：NEXTI
462 FOR OO＝1 TO MM
\(464 \mathrm{P}=\mathrm{VAL}(\mathrm{MID} \$(\mathrm{M} \$,(00+1), 1))\)
465 READX：GOSUB 48ø：NEXT 00：RESTORE
47の GOSUB117の：IF TR＝øTHEN GOSUB 25ø ø：GOSUB 755： \(\mathrm{Z}=\mathrm{Z}+1\) ：GOSUB 65øø
471 GOSUB 2225：GOTO3＠1
\(48 \emptyset\) IF \(P=\varnothing\) THEN \(72 \emptyset\)
485 ON P GOSUB 5øø，525，555，585，61ø， 633，660，680， 7 Øの：RETURN
50ø POKEX， 143 ：POKEX \(+32,143\) ：POKEX +64 ，140：RETURN
525 POKEX， 14 Ø：POKEX＋1， \(143:\) POKEX＋33， 14 ：POKEX \(+32,143:\) POKEX \(+64,140: P\) OKEX＋65， 14 ■
\(53 \varnothing\) RETURN
555 POKEX， 14 6：POKEX +32 ， 14 Ø：POKEX +64 ， 14 Ø：POKEX \(+65,14\) ø
560 POKE \(X+1,143:\) POKEX \(+33,143:\) RETUR N
585 POKEX，138：POKEX＋32， 14 Ø：POKEX＋ 1 ， 13Ø：POKEX＋33， 142
59ø POKEX＋64，128：POKEX＋65，136：RETUR N
61 （ POKEX， \(143:\) POKEX \(+32,14\) ：POKEX +64 ， 14 Ø
615 POKEX＋1， \(140:\) POKEX \(+33,143:\) POKEX＋ 65，14ø：RETURN
633 POKEX， \(143:\) FOKEX \(+32,143:\) POKEX +64 ， 14 Ø：POKEX \(+1,14 \varnothing\)
635 POKE \(X+33,141:\) POKEX \(+65,149:\) RETU RN
66Ø POKE X，149：POKEX＋32，129：POKEX＋6 4， 132
67 6 POKEX \(+65,128:\) POKE \(X+1,141\) ：POKEX ＋33，138：RETURN
68 G POKEX， 142 ：POKEX \(+32,142\) ：POKEX +64 ，14ø：POKEX＋65， 14 Ø
685 POKEX＋1， 141 ：POKEX \(+33,141\) ：RETURN
7 7øø POKEX， 142 ：POKEX \(+32,14\) Ø：POKEX＋ 64 ， 14 Ø
719 POKEX＋1， 141 ：POKEX +33 ， 141 ：POKEX＋ 65， 14 ： RETURN
\(72 \emptyset\) POKEX， 142 ：POKEX＋1， 141 ：POKEX +32 ， 138 ：POKEX \(+33,133\)
725 POKEX \(+64,140:\) POKEX \(+65,140:\) RETUR N
74 （ FORI＝1392 TO 14＠4：POKEI，131：NEX TI：RETURN
755 PRINT＠ 1 Ø3，＂GOOD＂；：FORI＝1T05øø：N EXTI：RETURN
77 （ PRINT＠72，＂TRY＂；：PRINT＠1ø3，＂AGAI N＂；：FOR I＝1 TO 5øø：NEXTI：RETURN

＂Snertle，＂Color Computer version．
1 Øøø CLS（1）：PRINT，66，＂DO YOU WISH T 0：＂
\(1 \varnothing 1 \varnothing\) PRINTQ13ø，＂1）PRACTICE TIMES T ABLES＂
1 Ø2ø PRINT＠162，＂2）RANDOM NUMBERS＂
1ø3ø PRINT＠224，＂（ENTER 1 OR 2）＂；：IN PUTT：IF T＜1 OR T＞2 THEN \(1 \emptyset 3 \emptyset\)
\(1 \varnothing 5\) IF \(T=2\) THEN \(1 \varnothing 9 \emptyset\)
1 Ø6Ø CLS（1）：PRINT®66，＂ENTER TIMES T ABLE＂
\(1 \varnothing 7 \emptyset\) PRINTQ1øø，＂（1－14）＂；：INPUT K：IF Kく1 OR K＞14 THEN 1 Ø7
\(1 \varnothing 9 \varnothing\) S＝ø：R＝14：GOTO 263
\(11 ø \varnothing\) FOR I＝1ø56 TO 1152 STEP 32
\(111 \varnothing\) READ \(A\) ，B
\(112 \varnothing\) FOR \(J=1\) TOB
1130 POKEI＋J＋A， 143
\(114 \varnothing\) NEXTJ ：NEXTI ：RESTORE：RETURN
 E1168， \(14 \boldsymbol{6}\)
\(118 \varnothing\) POKE \(11 \varnothing 3,129:\) POKE1194，131：POK E11ø5， 136
119 Ø POKE1135， 143 ：POKE1136， 142 ：POKE 1137，143：RETURN
1230 POKE 1196，143：POKE1197，143：POK E1189，143：POKE119ø， 143
 E123ø，14ø：POKE1221， 14 Ø：POKE 122 2，14の：POKE1223， 14 Ø：RETURN
15 のø FORI＝1193 TO 1167 STEP 32：FOR \(\mathrm{J}=\varnothing\) TO \(3:\) POKE \(I+J, 128:\) NEXTJ：NE XTI：POKE 1167，143：RETURN
2225 FOR I＝114の TO 1236 STEP 32
\(223 \varnothing\) FOR J＝1 TO \(11:\) POKEJ＋I， \(128:\) NEXT J：NEXTI：FOR I＝126の TO 1535 STE P 32
2235 FOR J＝1 TO 16：POKE J＋I，128：NEX TJ：NEXTI：RETURN
25øø POKE 1167，139：RETURN
\(3 \varnothing \varnothing \varnothing\) IF LEN（F\＄）＞2 THEN \(3 \emptyset 3 \varnothing\)
\(3015 \mathrm{P}=\mathrm{VAL}(M I D \$(F \$, 2,1)\) ）

\(3 \emptyset 25\) RETURN
\(3 \emptyset 3 \emptyset P=V A L(M I D \$(F \$, 2,1))\)
\(3 ø 35 \mathrm{X}=1206+\mathrm{W}\) ：GOSUB48ø
\(3 \emptyset 4 \emptyset P=V A L(M I D \$(F \$, 3,1))\)
\(3 \emptyset 45 \mathrm{X}=121\) Ø W W：GOSUB48
\(3 \varrho 5 \emptyset\) RETURN
5øøø DATA 5，7，4，9，3，11，2，13，1458， 14 62，1466

POKE 1298， \(143:\) POKE \(133 \varnothing, 143:\) POK E 1362，14ø：POKE 1331，14ø：POKE1 329，14
\(6 \emptyset \emptyset 1\) IF \(Q=2\) THEN PQKE 1298，128：POKE 13ЗØ，149：POKE1362， 128
6øØ3 RETURN
\(6 \emptyset \emptyset 4\) POKE 1297，131：POKE1299，131：POK E133 ， 14 ：：POKE1329，131：POKE13 1，131：RETURN
\(65 \emptyset \emptyset\) SOUND \(1 \varnothing \varnothing, 7=\) SOUND \(13 \mathscr{\square}, 1 \varnothing\)
651.0 RETURN

\section*{Program 6：Snertle For Apple}

11ø TEXT ：HOME ：VTAB 2：HTAB 15：PRINT ＂音乡SNERTLEれま＂：VTAB 5
120 PRINT ：VTAB 5：HTAB 1ø：PRINT＂SE LECT ONE：＂
\(13 \varnothing\) PRINT ：PRINT ：HTAB 1ø：PRINT＂1） ADDITION＇
\(14 \varnothing\) PRINT ：HTAB 1ø：PRINT＂2）SUBTRAC TION＂
150 PRINT ：HTAB 1ヵ：PRINT＂3）MULTIPL ICATION＂
155 PRINT ：HTAB 1ø：PRINT＂4）END PRO GRAM＂
\(16 \emptyset\) PRINT ：PRINT ：HTAB 1ø：PRINT＂\＆E NTER 1，2，3 OR 4）＂；：INPUT Q：IF Q \(\langle 1\) OR \(Q\rangle 4\) THEN \(16 \varnothing\)
\(185 C=14:\) IF \(Q=1\) QR \(Q=2\) THEN \(C=\) 99
187 IF \(Q=3\) THEN \(1 \varnothing \varnothing \varnothing\)
188 IF \(Q=4\) THEN END
190 HOME ：VTAB 3：HTAB 1ø：PRINT＂ENT ER LARGEST VALUE＂
2øø HTAB 1ø：PRINT＂乡MIN．： 1 MAX．：＂；C； ＂）＂；：INPUT R：IF \(R<1\) QR \(R>C\) THEN 2øØ
230 HTAB 1ø：UTAB 1ø：PRINT＂ENTER SMA LLEST VALUE＂
24ø HTAB 1ø：PRINT＂亿MIN．：\(\varnothing\) MAX．：＂；R； ＂）＂；：INPUT \(5:\) IF \(S<\emptyset\) OR \(S>R\) THEN 24ø
263 HOME ：VTAB 1ø：HTAB 7：PRINT＂TYP E＂；：INVERSE ：PRINT＂X＂；：NORMAL ：PRINT＂TO RETURN TO THE MENU＂
265 FOR I＝ 1 TO 2øøD：NEXT I：HOME
270 \(Z=\varnothing: Z Z=\varnothing:\) GR
275 GOSUB 11ø历：COLOR＝12：GOSUB 117 ： GOSUB 1230
\(301 T R=\varnothing: Z Z=Z Z+1\)
\(365 L=I N T(R N D(1) *(R-S+1))+\) IF \(Q=3\) AND \(T=1\) THEN 326
\(315 K=\) INT \((\operatorname{RND}(1) *(R-S+1))+\) 5
\(32 \emptyset \mathrm{~F} \$=\) STR \(\$(\mathrm{~K}): W=\varnothing\)
325 IF \(K<L\) AND \(Q=2\) THEN \(3 \varnothing 5\)
\(33 \varnothing W=\varnothing\) ：GOSUB Зøøø
340 F \＄\(=\) STR \(\$(L)\)
\(345 \mathrm{~W}=6\) ：GOSUB 3øøø
346 ON Q GOSUB 6øøø，6øøø，6øø4
35 IF \(Q=1\) THEN \(M=K+L\)
355 IF \(Q=2\) THEN \(M=K-L\)
365 IF \(Q=3\) THEN \(M=K \div L\)
38の GOSUB 74ø：MM \(=1:\) IF \(M>9\) THEN MM \(=2\)
385 IF \(M>99\) THEN \(M M=3\)
\(393 V=6:\) COLOR＝12：GOSUB 1170
395 FOR J＝\(\quad\) TO MM－ 1
397 COLOR＝1：PLOT \(21-(5 * J), 34\)
399 POKE－16368，
\(4 \emptyset \emptyset H \$=" ": H=P E E K(-16384)-128:\) IF \(H>\varnothing\) THEN \(H \$=\) CHR \(\$\)（H）

＂Snertle，＂Apple version．

497 IF \(H \$=\)＂X＂AND \(Z Z=1\) THEN POKE －16368，\(:\) GOTO \(11 \varnothing\)
410 IF \(H \$=\)＂X＂THEN TEXT ：HOME ：HTAB 15：PRINT＂PERCENTAGE＝＂；INT \(\{Z\)／ （ZZ－1）（ \(1 \varnothing \varnothing\) ）：POKE－16368，\(: ~ G O T O ~\) 120
412 IF \(H<48\) OR \(H>57\) THEN \(4 \emptyset \emptyset\)
\(415 \mathrm{P}=\) VAL（H\＄）
\(420 V=V+(P * 1 \varnothing \wedge J): W=14: X=21-\) （5＊J）：GOSUB 48ø：NEXT J
450 IF \(M=V\) THEN \(47 \emptyset\)
451 FOR \(I=1\) TO 4ø：FOR \(J=1\) TO 2：NEXT J：L＝PEEK（－16336）：NEXT I
452 COLOR＝\(=\) FOR I \(=33\) TO 38：HLIN 7 ， 34 AT I：NEXT I：COLOR＝ 1
456 IF TR \(=1\) THEN \(46 \emptyset\)
458 TR＝1：COLOR＝\(\varnothing\) ：GOSUB 117ø：GOSUB 77ヵ：V＝ \(0:\) GOTO 395
46 M \(\mathrm{M}=\mathrm{STR}\)（ M ）
461 IF \(M M<3\) THEN FOR \(I=1\) TO \(3-M\) \(M\) ：READ \(X\) ：NEXT I
462 FOR OO \(=1\) TO MM
\(464 \mathrm{P}=\mathrm{VAL}\)（MID\＄（M\＄，00，1））
465 READ \(X:\) GOSUB 48D：NEXT OD：RESTORE
467 FOR I＝ 1 TO 9ØØ：NEXT
47め COLOR＝12：GOSUB 117ø：IF TR \(=\varnothing\) THEN GOSUB 25ø๗：GOSUB 755：\(Z=Z+1\) ：GOSUB 65øø：HOME
471 GOSUB 2225：GOTO 301
48ø COLOR \(=1\) ：IF \(P=\varnothing\) THEN GOSUB 720
485 ON P GOSUB 5øø，525，555，585，61ø，633 ，660，680，7の日：RETURN
\(5 \emptyset \emptyset\) VLIN \(2 \emptyset+W, 24+W\) AT \(X\) ：VLIN \(20+\) \(W, 24+W\) AT \(X+1:\) RETURN
525 HLIN \(X, X+3\) AT \(20+W\) ：PLOT \(X+2\) \(, 21+W:\) PLOT \(x+3,21+W:\) HLIN \(x\) \(X+3\) AT \(22+W\)
536 VLIN \(23+W, 24+W\) AT X：VLIN \(23+\) \(W, 24+W\) AT \(X+1:\) PLOT \(X+2,24+\) \(W:\) PLOT \(X+3,24+W:\) RETURN
555 VLIN \(20+W, 24+W\) AT \(X+2:\) PLOT \(X, 20+W:\) PLOT \(X, 22+W:\) PLOT \(X, 24\) \(+W\)
560 PLOT \(X+1,2 \varnothing+W:\) PLOT \(X+1,22+\) \(W:\) PLOT \(x+1,24+W:\) RETURN
585 VLIN \(2 \varnothing+W, 22+W\) AT \(X:\) PLOT \(x+\) \(1,22+W: V L I N 20+W, 24+W\) AT \(X+\) 2：PLOT \(\mathrm{X}+3,22+W\) ：RETURN

61ø HLIN \(X, x+3\) AT \(20+W:\) HLIN \(x, x+\) 3 AT \(22+W:\) HLIN \(X, X+3\) AT \(24+\) \(W\) ：PLOT \(x+2,23+W\) ：PLOT \(x+3,2\) \(3+W\)
615 PLOT \(\mathrm{X}, 21+W:\) PLOT \(\mathrm{X}+1,21+W\) ：RETU RN
633 VLIN \(2 \emptyset+W, 24+W\) AT \(X:\) VLIN \(2 \varnothing+\) \(W, 24+W\) AT \(X+1:\) VLIN \(22+W, 24+\) \(W\) AT \(X+3:\) HLIN \(X+2, X+3\) AT \(2 \emptyset\) \(+W\)
635 PLOT X＋2，22＋W：PLOT X＋2，24＋ W：RETURN
\(66 \varnothing\) HLIN \(x+1, x+3\) AT \(2 \varnothing+W\) ：PLOT \(x\) \(+3,21+W:\) PLOT \(X+2,22+W\)
665 VLIN \(23+W, 24+W\) AT \(x+1\) ：RETURN
68Ø GOSUB 72ø：HLIN \(x+1, x+2\) AT \(22+\) \(W\) ：RETURN
7øø HLIN \(x, x+3\) AT \(2 \emptyset+W:\) HLIN \(x, x+\) 3 AT \(22+W:\) HLIN \(X, X+3\) AT \(24+\) W：VLIN \(2 \emptyset+W, 24+W\) AT \(X+3\)
705 VLIN \(21+W, 22+W\) AT \(x\) ：RETURN
\(72 \varnothing\) VLIN \(2 \emptyset+W, 24+W\) AT \(X\) ：VLIN \(2 \varnothing+\) W， \(24+W\) AT \(x+3:\) HLIN \(x+1, x+\) 2 AT \(2 \emptyset+W\) ：HLIN \(X+1, X+2\) AT 2 4 ＋W：RETURN
740 HLIN 1ø，27 AT 32：RETURN
755 VTAB 21：HTAB 19：PRINT＂GOOD！＂：FOR I＝ 1 TO 3øø：NEXT I：RETURN
\(77 \emptyset\) VTAB 21：HTAB 16：PRINT＂TRY AGAIN ＂：FOR I＝ 1 TO 1øøø：NEXT I：HOME ：RETURN
1øøø HOME ：UTAB 4：HTAB 13：PRINT＂DO YOU WISH TO：＂
1ø1ø PRINT ：HTAB 9：PRINT＂1）PRACTIC E TIMES TABLES＂
1ø2ø PRINT ：HTAB 9：PRINT＂2）PRACTIC E RANDOM NUMBERS＂
1 1030 PRINT ：HTAB 9：PRINT＂（ENTER 10 R 2）＂；：INPUT T：IF T＜Ø OR T＞ 2 THEN \(193 \varnothing\)
\(105 \emptyset\) IF \(T=2\) THEN \(19 \emptyset\)
1 1ø6 HOME ：UTAB 5：HTAB 11：PRINT＂EN TER TIMES TABLE（1－14）＂
\(1 \emptyset 7 \varnothing\) INPUT K：IF K＜ 1 OR K＞ 14 THEN 1 107ø
\(1 \varnothing 9 \varnothing 5=\varnothing: R=14:\) GOTO 263
\(11 \varnothing \varnothing \mathrm{~J}=12: \mathrm{JJ}=20:\) COLOR＝4：FOR I＝ Ø TO 8：HLIN J，JJ AT I：J＝J－1：J \(J=J J+1\)
111ø NEXT I：FOR I \(=8\) TO 11：HLIN J＋ 1，JJ－ 1 AT I：NEXT I：RETURN
1170 HLIN 30，32 AT 5：FOR I＝ 6 TO 1ø： HLIN 29，33 AT I：NEXT I：COLOR＝\(\varnothing\) ：PLOT 32，7：RETURN
1230 COLOR＝12：FOR I＝ 12 TO 15：HLIN \(1 \varnothing, 12\) AT I：HLIN 21，23 AT I：NEXT I

1240 FOR I \(=16\) TO 17：HLIN 1ø， 14 AT I ：HLIN 21，25 AT I：NEXT I：RETURN
2225 COLOR＝Ø：FOR I＝ \(2 \varnothing\) TO 38：HLIN 1ø，39 AT I：NEXT I：COLOR＝1：RETURN
25øø COLOR＝ ：PLOT 32，1め：PLOT 31，9：COLO \(\mathrm{R}=1\) ：RETURN
3øøø IF LEN（F\＄）＞ 1 THEN \(3 \varnothing 3 \varnothing\)
\(3015 \mathrm{P}=\) VAL（ \(\operatorname{MID} \$(F \$, 1,1)\) ）
3ø20 \(\mathrm{X}=21\) ：GOSUB 48ø
3025 RETURN
\(3 ø 3 \varnothing \mathrm{P}=\) VAL（ \(\mathrm{MID} \$(F \$, 1,1)\) ）
\(3035 x=16\) ：GOSUB 489
\(3 ø 4 \varnothing \mathrm{P}=\mathrm{VAL}(\mathrm{MID} \$(F \$, 2,1)\) ）
\(3 ø 45 \mathrm{X}=21\) ：GOSUB 48ø
3ø5ø RETURN
\(50 ø\) DATA 12，16，22

6øDD HLIN 11，14 AT 29：HLIN 11， 14 AT 2 8：IF \(Q=1\) THEN VLIN 27，3ø AT 12 ：VLIN 27，3ø AT 13
\(6 \varnothing \varnothing 1\) RETURN
6ø日4 PLOT 12，27：PLOT 14，27：PLOT 13，2 8：PLOT 12，29：PLOT 14，29：RETURN
650ø FOR I＝ 1 TO 20：L＝PEEK（ -163 36）：NEXT I：FOR I＝ 1 TO 1ø：NEXT I：FOR I＝ 1 TO 40：L＝PEEK \((-1\) 6336）：NEXT I：RETURN

＂Snertle，＂PC／PCjr version．

\section*{Program 7：Snertle For PC／PCjr}

10 DEF SEG＝0：POKE 1047， 192
20 SCREEN 0，1：WIDTH 40：KEY OFF
25 S\＄＝CHR\＄（219）：D\＄＝CHR\＄（31）：L\＄＝CHR\＄（29）： \(R \$=\operatorname{CHR} \$(28): U \$=C H R \$(30): T B \$=C H R \$(223): B B\) \＄＝CHR\＄（220）：LB\＄＝CHR\＄（221）：RB\＄＝CHR\＄（222）： SP\＄＝CHR \(\$\)（32）
\(100 \mathrm{~B} \$=\mathrm{CHR} \$(13): \mathrm{C} \$=\mathrm{CHR} \$\)（9）
110 COLOR 12：CLS：LOCATE 24，9，0：PRINT＂戠音
＊＊＊＊SNERTLE＊＊＊＊＊＊＊＂
120 PRINT B\＄B\＄B\＄B\＄B\＄C\＄＂
SELECT ONE：
＂
\(\begin{array}{lll}130 \text { COLOR 2：PRINT B\＄C\＄＂1）} & \text { ADDITION＂} \\ \text { 140 COLOR 4：PRINT B\＄C\＄＂2）} & \text { SUBTRACTION＂} \\ 150 \text { COLOR 6：PRINT B\＄C\＄＂3）} & \text { MULTIPLICATION }\end{array}\)
155 COLOR 14：PRINT B\＄C\＄＂4）END PROGRAM＂ 160 PRINT B\＄B\＄B\＄B\＄C\＄＂（ENTER 1，2，3 OR 4）＂ ；
170 Q\＄＝INKEY\＄： \(\mathrm{X}=\mathrm{RND}(1): Q=\mathrm{VAL}(\mathrm{Q} \$): \mathrm{IF} \mathrm{Q}<1\)
OR Q＞4 THEN 170
\(175 \mathrm{C}=14\) ：IF \(\mathrm{Q}=1\) OR \(\mathrm{Q}=2\) THEN \(\mathrm{C}=99\)
\(185 \mathrm{C}=14\) ：IF \(\mathrm{Q}=1\) OR \(\mathrm{Q}=2\) THEN \(\mathrm{C}=99\)
187 IF \(Q=3\) THEN 1000
188 IF \(Q=4\) THEN END
190 CLS：LOCATE 10，12：PRINT＂ENTER LARGES T VALUE＂
200 PRINT：PRINT＂（MIN．：O MAX．：＂；C；＂）＂； ：INPUT R：IF R＜O OR R＞C THEN PRINT U \(\$ \mathrm{U} \$ \mathrm{U} \$\) ：GOTO 200
230 PRINT：PRINT＂ENTER SMALLEST VALUE＂
240 PRINT：PRINT＂（MIN．：O MAX．：＂；R；＂）＂；
：INPUT \(S\) ：IF \(S<O\) OR \(S>R\) THEN PRINT U\＄U\＄U \＄：GOTO 240
263 CLS：LOCATE 12，5：PRINT＂PRESS＊\(X\) ，T 0 RETURN TO MENU＂：FOR I＝1 TO 1000 ：NEXT
\begin{tabular}{|c|c|}
\hline & \\
\hline & \(\mathrm{Z}=0: \mathrm{ZZ}=0\) \\
\hline 275 & COLOR 2:GOSUB 1100:GOSUB 1170:GOSUB \\
\hline 1230 & 0:GOSUB 1260: COLOR Q \$2 \\
\hline 301 & TR=0: \(Z Z=Z Z+1\) \\
\hline 305 & \(\mathrm{L}=\mathrm{INT}(\mathrm{RND}(1) *(\mathrm{R}-\mathrm{S}+1))+\mathrm{S}\) \\
\hline 310 & IF \(Q=3\) AND \(T=1\) THEN 320 \\
\hline 315 & \(\mathrm{K}=\mathrm{INT}(\mathrm{RND}(1) *(\mathrm{R}-\mathrm{S}+1))+\mathrm{S}\) \\
\hline 320 & F \$=STR\$ (K) : W=0 \\
\hline 325 & IF K<L THEN W=5 \\
\hline 330 & GOSUB 3000 \\
\hline 335 & \(\mathrm{W}=5\) \\
\hline 337 & IF L>K THEN \(\mathbf{W}=0\) \\
\hline 340 & F\$= STR\$ (L) \\
\hline 345 & GOSUB 3000 \\
\hline 346 & ON Q GOSUB 6000,6000,6004 \\
\hline 350 & IF \(Q=1\) THEN \(M=K+L\) \\
\hline 355 & IF \(Q=2\) AND \(K>=L\) THEN \(M=K-L\) \\
\hline 360 & IF \(Q=2\) AND \(K<L\) THEN \(M=L-K\) \\
\hline 365 & IF \(Q=3\) THEN \(\mathrm{M}=\mathrm{K} * \mathrm{~L}\) \\
\hline 380 & GOSUB 740: MM =1: IF M>9 THEN MM=2 \\
\hline 385 & IF M>99 THEN MM=3 \\
\hline 390 & GOSUB 740 \\
\hline 393 & \(\mathrm{V}=0:\) COLOR 2 :GOSUB 1100: COLOR Q*2 \\
\hline 394 & FOR \(A=1\) TO 10: \({ }^{\text {d }}=\) =INKEY \(\$\) : NEXT \\
\hline 395 & FOR \(\mathrm{J}=0\) TO (MM-1) \\
\hline 397 & LOCATE 24,30-4*J:PRINT"へ"; \\
\hline 400 & H\$=INKEY \(\$\) \\
\hline & IF \(H \$=\) " \(x\) "AND \(Z Z=1\) THEN 100 \\
\hline 406 &  \\
\hline GE: & "; INT (Z/ (ZZ-1) * 100\()\) : GOTO 120 \\
\hline 407 & IF \(\mathrm{H} \$=0 \mathrm{C}\) OR H\$<"O" OR H\$>"9" THEN \\
\hline \(\bigcirc\) & \\
\hline 412 & FOR \(\mathrm{I}=21\) TO \(31:\) LOCATE 24, I:PRINT SP \\
\hline \$; & NEXT \\
\hline 415 & \(P=\) VAL \(\quad(H \$): Y=20\) \\
\hline \[
\begin{gathered}
420 \\
\mathrm{~J}
\end{gathered}
\] & \(\mathrm{V}=\mathrm{V}+\left(\mathrm{P} * 10^{\wedge} \mathrm{J}\right): \mathrm{X}=29-\mathrm{J} * 4:\) GOSUB 475: NEXT \\
\hline 450 & IF \(M=V\) THEN 470 \\
\hline 452 & FOR I= 20 TO 23:LOCATE I, 21:FOR J=1 \\
\hline T0 & 11:PRINT SP\$; : NEXT J,I \\
\hline & IF TR \(=1\) THEN 460 \\
\hline 458 & TR = 1:GOSUB 1500:GOSUB 770:G0TO 393 \\
\hline & M\$ =STR \(\$(M): X=33: Y=20\) \\
\hline & FOR OO=MM TO 1 STEP -1 \\
\hline & \(P=\) VAL (MID\$ (M\$, \((00+1), 1)\) ) \\
\hline 465 & X=X-4:GOSUB 475: NEXT 00:RESTORE \\
\hline 470 & FOR I=1 TO 750:NEXT:GOSUB 1230: IF T \\
\hline \(\mathrm{R}=0\) & THEN GOSUB 2500: : GOSUB 755: \(\mathrm{Z}=\mathrm{Z}+1\) : GO \\
\hline SUB & 6500 \\
\hline 471 & GOSUB 2225: GOTO 301 \\
\hline 475 & LOCATE \(\mathrm{Y}, \mathrm{X}\) \\
\hline & IF \(\mathrm{P}=0\) THEN GOSUB 720 \\
\hline 485 & ON P GOSUB 500,525,555,585,610,633,6 \\
\hline 60, & 680, 700: RETURN \\
\hline 500 & PRINT R\$R\$; FOR I=1 TO 4 :PRINT S\$D\$ \\
\hline L\$; & : NEXT : RETURN \\
\hline 525 & PRINT S\$S\$S\$D\$L\$S\$D\$L\$TB\$L\$L\$TB\$L\$L\$ \\
\hline S\$D & \$L\$S\$S\$S\$: RETURN \\
\hline 555 & PRINT S\$S\$S\$D\$L\$S\$D\$L\$S\$L\$L\$TB\$D\$L\$L \\
\hline \$S\$ & S\$S\$: RETURN \\
\hline 585 & PRINT LB\$R\$S\$D\$L\$L\$L\$S\$S\$S\$D\$L\$S\$D\$L \\
\hline \$5\$ & : RETURN \\
\hline 610 & PRINT S\$S\$S\$D\$L\$L\$L\$S\$BB\$BB\$D\$L\$S\$D\$ \\
\hline L\$L & \$L\$S\$S\$S\$: RETURN \\
\hline 633 & PRINT S\$S \$S\$D\$L\$L\$L\$S\$BB\$BB\$D\$L\$L\$L\$ \\
\hline S\$R & \$S\$D\$L\$L\$L\$S\$S\$S\$:RETURN \\
\hline 660 & PRINT S\$S\$S\$D\$L\$S\$D\$L\$L\$S\$D\$L\$L\$S\$:R \\
\hline ETUR & \\
\hline & PRINT S\$S\$S\$D\$L\$L\$L\$S\$BB\$S\$D\$L\$L\$L\$S \\
\hline
\end{tabular}

265 CLS
270 Z=0: ZZ=0
275 COLOR 2:GOSUB 1100:GOSUB 1170:GOSUB
1230:GOSUB 1260: COLOR Q *2
\(305 \mathrm{~L}=\mathrm{INT}(\) RND (1) * (R-S+1)) +S
10 IF \(Q=3\) AND \(T=1\) THEN 320
31S \(K=I N T(R N D(1) *(R-S+1))+S\)
320 F
330 GOSUB 3000
335 W=5
340 F\$= STR
545 GOSUB 3000
350 IF \(Q=1\) THEN \(M=K+L\)
355 IF \(Q=2\) AND \(K>=L\) THEN \(M=K-L\)
360 IF \(Q=2\) AND \(K<L\) THEN \(M=L-K\)
365 IF \(Q=3\) THEN \(M=K * L\)
380 GOSUB 740: MM=1: IF M>9 THEN MM=2

393 V=O:COLOR 2 :GOSUB 1100:COLOR Q*2
394 FOR A=1 TO 10: B\$=INKEY\$:NEXT
395 FOR J=0 TO (MM-1)
(

405 IF \(\mathrm{H} \$=\) "X"AND \(Z Z=1\) THEN 100
406 IF H\$="X" THEN CLS:PRINT B\$"PERCENTA
407 IF H\$="" OR H\$<"O" OR H\$>"9" THEN 40 o \$; : NEXT
\(415 \mathrm{P}=\mathrm{VAL} \quad(\mathrm{H} \$): \mathrm{Y}=20\)
\(420 \mathrm{~V}=\mathrm{V}+\left(\mathrm{P} * 10^{\wedge} \mathrm{J}\right)\) : \(\mathrm{X}=29-\mathrm{J} * 4\) : GOSUB 475: NEXT

450 IF \(M=V\) THEN 470
452 FOR I= 20 TO 23:LOCATE I, 21:FOR J=1
TO 11:PRINT SP\$; : NEXT J, I
456 IF TR \(=1\) THEN 460
TR =1:GOSUB 1500:GOSUB 770:GOTO 393
462 FOR OO MM TO 1
\(464 \mathrm{P}=\mathrm{VAL}\) (MID\$ (M\$, (00+1), 1))
\(465 \mathrm{X}=\mathrm{X}-4\) : GOSUB 475: NEXT OO:RESTORE
470 FOR I=1 TO 750: NEXT:GOSUB 1230: IF T
SUB 6500
471 GOSUB 2225: GOTO 301
475 LOCATE \(\mathrm{Y}, \mathrm{x}\)
480 IF P=0 THEN GOSUB 720
485 ON P GOSUB 500,525,555,585,610,633,6
500 PRINT R\$R \(\$\); FOR I=1 TO 4 :PRINT S \(\$ \mathrm{D} \$\) L\$; : NEXT : RETURN
PRINT S\$S\$S\$D\$L\$S\$D\$L\$TB\$L\$L\$TB\$L\$L\$
S\$D\$L\$S\$S\$S\$:RETURN
555 PRINT S\$S\$S\$D\$L\$S\$D\$L\$S\$L\$L\$TB\$D\$L\$L \$S\$S\$S\$:RETURN
\$S\$: RETURN
10 PRINT S\$S\$S\$D\$L\$L\$L\$S\$BB\$BB\$D\$L\$S\$D\$
633 PRINT S\$S \(\$ 5 \$ D \$ L \$ L \$ L \$ S \$ B B \$ B B \$ D \$ L \$ L \$ L \$\)
S\$R\$S\$D\$L\$L\$L\$S\$S\$S\$:RETURN

ETURN
680 PRINT S\$S\$S\$D\$L\$L\$L\$S\$BB\$S\$D\$L\$L\$L\$S
\$R\$S\$D\$L\$L\$L\$S\$S\$S\$:RETURN
700 PRINT S\$S\$S\$D\$L\$L\$L\$S\$BB\$S\$D\$L\$S\$D\$L \$S\$: RETURN
720 PRINT S\$S\$S\$D\$L\$L\$L\$S\$R\$S\$D\$L\$L\$L\$S\$ R\$S\$D\$L\$L\$L\$S\$S\$S\$:RETURN
740 LOCATE 18, 21:FOR I=1 TO 11:PRINT BB \(\$\) ;:NEXT:RETURN
755 LOCATE 4,7:PRINT "GOOD!":RETURN
770 LOCATE 3,8:PRINT "TRY" D\$L\$L\$L\$L\$ "A GAIN"
780 FOR \(I=1000\) TO 500 STEP -250: SOUND I, 4:NEXT:FOR TD=1 TO 500:NEXT:RETURN
960 FOR I=1 TO 4:LOCATE X,I:PRINT S\$:NEX T: RETURN
1000 CLS:LOCATE 7,10:PRINT"DO YOU WISH T 0: "
1010 PRINT:PRINT:PRINT C\$"1) PRACTICE TI MES TABLE"
1020 PRINT:PRINT C\$"2) RANDOM NUMBERS
1030 PRINT:PRINT:PRINT C\$" (ENTER 1 OR 2)
";:INPUT T:IF T<1 OR T>2 THEN PRINT U\$U\$ U\$U\$:GOTO 1030
1050 IF \(T=2\) THEN GOTO 190
1060 CLS:PRINT:PRINT:PRINT C\$"ENTER TIME 5 TABLE"
1070 PRINT:PRINT C\$" (1-14)"; : INPUT K: IF
K<1 OR K>14 THEN PRINT U\$U\$U\$:GOTO 1070
1090 S=0:R=14:GOTO 263
1100 FOR I= 2 TO 6
1110 READ A : READ B
1120 FOR J= 1 TD B
1130 LOCATE I, J+A : PRINT CHR\$ (176)
1140 NEXT J:NEXT I:RESTORE:RETURN
1170 LOCATE 7, 4:FOR I= 1 TO 11 :PRINT TB \$;:NEXT :RETURN
1230 COLOR 2:LOCATE 5,15:PRINT CHR\$(47)U \$BB\$BB\$D\$L\$CHR\$ (249) LB\$D\$L\$LB\$D\$L\$L\$L\$L\$ TB\$TB\$TB\$:COLOR Q*2:RETURN
1240 LOCATE 7,5:PRINT S \(\$\) :LOCATE 7,14:PR INT S \(\$\)
1250 RETURN
1260 COLOR 2:GOSUB 1240:LOCATE 8,5:PRINT
TB\$TB\$:LOCATE 8,14:PRINT TB\$TB\$:RETURN:
COLOR Q *2
1270 RETURN
1500 FOR I=4 TO 7:LOCATE I, 15:FOR J=1 TO 4: PRINT SP\$; : NEXT J,I:RETURN
2225 FOR I= 9 TO 23:LOCATE I, 21: FOR J=
1 TO 11 :PRINT SP\$; :NEXT J, I:RETURN
2500 COLOR 2:LOCATE 6,17:PRINT CHR\$(126)
: RETURN: COLOR Q*2
3000 COLOR Q*2: \(X=29:\) IF LEN (F \(\$\) ) \(>2\) THEN 3 030
\(3015 \mathrm{P}=\mathrm{VAL}\) (MID\$(F\$,2,1))
3020 Y=9+W: GOSUB 475
3025 RETURN
\(3030 \mathrm{P}=\mathrm{VAL}(\mathrm{MID} \$(F \$, 3,1))\)
\(3035 \mathrm{Y}=9+\mathrm{W}\) : GOSUB 475
\(3040 \mathrm{P}=\mathrm{VAL}(\mathrm{MID} \$(F \$, 2,1))\)
\(3045 \mathrm{X}=\mathrm{X}-4\) : GOSUB 475
3050 RETURN
5000 DATA 6,5,5, 7, 4, 9, 3, 11, 3, 11
6000 LOCATE 14,22:PRINT S\$D\$L\$L\$S\$S\$S\$D\$ L\$L\$S\$;
6002 IF Q=2 THEN PRINT L\$SP\$U\$U\$L\$SP\$
6003 RETURN
6004 LOCATE 14,21:PRINT S\$D\$S\$U\$S\$D\$D\$L L\$L\$S\$R\$S\$: RETURN
6500 FOR \(I=500\) TO 1000 STEP 250: SOUND I, 4: NEXT: RETURN

\title{
PENTOMINOS A Puzzle-Solving Program
}

Jim Butterfield, Associate Editor

Computers can solve puzzles. With the right set of instructions, a program will follow the same logic as humans, trying things to see if they fit. It's interesting to watch the computer working in this way.

This famous puzzle is dealt with at some length in Arthur C. Clarke's novel Imperial Earth. The characters of the novel don't use a computer to solve the puzzle.

The original program works on all Commodore computers. Additional versions are included here for the Atari, IBM PC and PCjr, T1-99/4A, Radio Shack Color Computer, and Apple.
NOTE: IBM, TI, Color Computer, and Apple users should insert lines 110-860 from Program 1, the Commodore version, into their programs. The rem statements at the ends of these lines should be ignored.

Pentominos are like dominos, except that they are made up of five elements rather than two. If we put five squares end to end and glued them together, we'd get a long strip, often called the I pentomino. On the other hand, if we took a central square and glued the other four squares to the sides, top, and bottom, we'd get something that looks like a plus sign, which many people call the X pentomino.

Allowing for the differences that are caused by rotating or turning over a piece, there are 12 different pentominos. They are shown in Figure 1; but you might find it fun to try discovering them yourself by drawing them out on a piece of paper. Most of them look a little like letters-you can see a T, an X , and a W among them, for example.

\section*{What's The Puzzle?}

The 12 different pentominos, each with an area of 5 squares, give a total of 60 squares. Suppose you had to cut these pentominos out of a rectangle

Figure 1: The 12 Pentominos

without wasting any space: How big would the rectangle need to be?

We know two things: The total area is 60 squares; and the rectangle must be at least three wide (otherwise, we couldn't cut out the plus sign). So it might be possible to get all the pentominos from a rectangle that is \(3 \times 20\), or \(4 \times 15\), or \(5 \times 12\), or \(6 \times 10\). As it turns out, we can do it in any of these ways.

We can turn the question inside out and put it this way: Can you fit all 12 pentominos into a rectangle of size: \(3 \times 20\), or \(4 \times 15\), or \(5 \times 12\), or \(6 \times 10\) ?

\section*{The Brain Bender}

Don't let the following computer program take the fun out of the puzzle for you. Cut the pieces out of cardboard and try your hand at the puzzle.

\section*{4 Color \\ 80 COLUMN Letter Quality PRINTER/PLOTTER \\ }
- List your programs - High resolution graphics for bar charts and geometric figures (like spirograph) • Plugs directly into VIC 20 and Commodore 64 - Interface included • Lowest cost letter quality printer in the country.


At last you can list your programs (even control characters) and make beautiful high resolution graphics at an affordable price. This 80 column letter quality printer/plotter is great for making complex bar charts for business plus fancy greeting cards and geometric designs. Great for homework too. Everyone must have a 4 color printer plotter for their VIC-20 or Commodore-64. List \$199.00. Sale \$99.00.

\footnotetext{
TAdd \(\$ 10.00\) for shipping, handiling and Insurance. Illinols residents | please add \(6 \%\) tax. Add \(\$ 20.00\) for CANADA, PUERTO RICO, HAWAll | orders. WE DO NOT EXPORT TO OTHER COUNTRIES.
Enclose Cashiers Check, Money Order or Personal Check. Allow 14 | days for delivery, 2 to 7 days for phone orders, 1 day express mail! | Canada orders must be in U.S. dollars. Visa - MasterCard C.O.D.
}

\section*{80 COLUMN PRINTER SALE-\$149.00*}

*STX-80 COLUMN
PRINTER-\$149.00
Prints full 80 columns. Super silent operation, 60 CPS , prints Hi -resolution graphics and block graphics, expanded character set, exceptionally clear characters, fantastic print quality, uses inexpensive thermal paper! Best thermal printer in the U.S.A.! (Centronics Parallel Interface).

\section*{**DELUXE COMSTAR T/F \\ 80 CPS PRINTER- \(\$ 199.00\)}

The COMSTAR T/F (Tractor Friction) PRINTER is exceptionally versatile. It prints \(8^{1 / 2 "} \times 11^{\prime \prime}\) standard size single sheet stationary or continuous feed computer paper. Bi-directional, impact dot matrix, 80 CPS, 224 characters. (Centronics Parallel Interface).

Premium Quality-120 CPS
COMSTAR T/F SUPER-10X PRINTER—\$289.00 COMSTAR T/F (Tractor Friction) SUPER10X PRINTER gives you all the features of the COMSTAR T/F PRINTER plus a 10 " carriage, 120 CPS, \(9 \times 9\) dot matrix with double strike capability for \(18 \times 18\) dot matrix (near letter quality), high resolution bit image ( \(120 \times 144\) dot matrix), underlining, back spacing, left and right margin settings, true lower decenders with super and subscripts, prints standard, italic, block graphics
and special characters, plus 2 K of user definable characters! The COMSTAR T/F SUPER-10X PRINTER was Rated No. 1 by "Popular Science Magazine." It gives you print quality and features found on printers costing twice as much!! (Centronics Parallel Interface) (Better than Epson FX 80).
\[
\begin{gathered}
\text { Premium Quality-120 CPS } \\
\text { COMSTAR T/F SUPER•15} 1 / 2 " \\
\text { PRINTER } \$ 379.00
\end{gathered}
\]

COMSTAR T/F SUPER \(151 / 2^{\prime \prime}\) PRINTER has all the features of the COMSTAR T/F SUPER-10X PRINTER plus a \(15^{\prime} 1^{\prime \prime}\) carriage and more powerful electronics components to handle large ledger business forms! (Better than Epson FX 100).

\section*{Superior Quality}

SUPER HIGH SPEED-160 CPS

> COMSTAR T/F \(10 "\)
> PRINTER-\$489.00

SUPER HIGH SPEED COMSTAR T/F (Tractor Friction) PRINTER has all the features of the COMSTAR SUPER-10X PRINTER plus SUPER HIGH SPEED PRINTING-160 CPS, \(100 \%\) duty cycle, 8 K buffer, diverse character fonts, special symbols and true decenders, vertical and horizontal tabs. RED HOT BUSINESS PRINTER at an unbelievable low price!! (Serial or Centronics Parallel Interface)

Superior Quality
SUPER HIGH SPEED-160 CPS
COMSTAR T/F 15 \(1 / 2\) "
PRINTER-\$579.00
SUPER HIGH SPEED COMSTAR T/F \(151 / 2^{\prime \prime}\) PRINTER has all the features of the SUPER HIGH SPEED COMSTAR T/F 10" PRINTER plus a \(151_{2}\) " carriage and more powerful electronics to handle larger ledger business forms! Exclusive bottom paper feed!!

\section*{PARALLEL INTERFACES}

For VIC-20 and COM-64- \(\$ 49.00\)
For All Apple Computers- \(\$ 79.00\)
NOTE: Other printer interfaces are available at computer stores!

\section*{Double Immediate Replacement Warranty}

We have doubled the normal 90 day warranty to 180 days. Therefore if your printer fails within " 180 days" from the date of purchase you simply send your printer to us via United Parcel Service, prepaid. We will IMMEDIATELY send you a replacement printer at no charge, prepaid. This warranty, once again, proves that WE LOVE OUR CUSTOMERS!

\section*{(1) Olympia}

"WORLD'S FINEST" LIST \$799.00
SALE \$489.00
- SUPERB COMPUTER PRINTER COMBINED WITH WORLD'S FINEST ELECTRONIC TYPEWRITER!
- BETTER THAN IBM SELECTRIC - USED BY WORLD'S LARGEST CORPORATIONS!
- TWO MACHINES IN ONE - JUST A FLICK OF THE SWITCH!
- SUPERB EXECUTIVE CORRESPONDENCE - HOME, OFFICE, WORD PROCESSING!
- EXTRA LARGE CARRIAGE - ALLOWS \(14-1 / 8^{\prime \prime}\) PAPER USAGE!
- DROP IN CASSETTE RIBBON - EXPRESS LIFT OFF CORRECTION OR ERASER UP TO 46 CHARACTERS!
- PRECISION DAISY WHEEL PRINTING - MANY TYPE STYLES!
- PITCH SELECTOR - 10, 12, 15 CPS, AUTOMATIC RELOCATE KEY!
- AUTOMATIC MARGIN CONTROL AND SETTING! KEY IN BUFFER!
- ELECTRONIC RELIABILITY, BUILT IN DIAGNOSTIC TEST!
- CENTRONICS PARALLEL INTERFACE BUILT-IN (SERIAL OPTIONAL)!
- 15 DAY FREE TRIAL - 90 DAY FREE REPLACEMENT WARRANTY!

\footnotetext{
Add \(\$ 17.50\) for shipping and handling!!
Enclose Cashiers Check, Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders, 1 day express mail! Canada orders must be in U.S. dollars. VISA - MASTER
}


\section*{ONE CALL GETS IT ALL!}

\section*{TELECOMMUNICATIONS SALE! \({ }^{\text {S }} 49\)}


DELUXE 40 CHARACTER MODEM SALE \(\$ 49.00\)
(LIst S99.00)
- Saves on-line time; Easier to read!
- Direct connect, originate/answer, half and full duplex!
- Terminal program (tape included) Disk-Add \(\$ 5.00\) !
- One year free access to Compuserve, 2 hours free on-line time!
- 15 day free trial - 180 day free replacement warranty!
- Instruction manual!

\section*{80 COLUMN TERMINAL CARTRIDGE SALE \(\$ 59.00\)}
- No cassette or disk drive needed!
- VIC-20 40-80 Column . . .
\(\$ 59.00\) (List \$99.00)
- COM-64 80 Column Board \$99.00 (List \$199.00)

Converts your computer screen to 40 or 80 columns! You can add a 40-80 column word processor, mailmerge and electronic spreadsheet for only \(\$ 24.95\) (tape or disk).

\section*{SMART 64 MODEM PROGRAM SALE \$26.95}
(LIst S39.95)
- One key password automatic entry!
(DISK)
- On-line alarm timer!
- Prints out all information received!
- Record and send programs on disk!
- Use with Protecto 40-80 column terminal!
- LOWEST PRICES • 15 DAY FREE TRIAL • 90 DAY FREE REPLACEMENT WARRANTY
- BEST SERVICE IN U.S.A. • ONE DAY EXPRESS MAIL• OVER 500 PROGRAMS • FREE CATALOGS

Add \(\$ 3.00\) for postage. Add \(\$ 6.00\) tor CANADA. PUERTO RICO. HAWAII orders. WE DO NOT EXPORT TO OTHER COUNTRIES
Enclose Cashiers Check. Money Order or Personal Check. Allow 14 days for delivery, 2 to 7 days for phone orders. 1 day express mail! Canada orders must be in US dollars. We accept Visa and MasterCard. We ship C.O.D.


\section*{9" Data Monitor}
- 80 Columns \(\times 24\) lines
- Green text display
- Easy to read - no eye strain
- Up front brightness control
- High resolution graphics
- Quick start - no preheating
- Regulated power supply
- Attractive metal cabinet
- UL and FCC approved

\section*{- 15 Day Free Trial - 90 Day Immediate Replacement Warranty}

9" Screen - Green Text Display
12" Screen - Green Text Display (anti-reflective screen) 12" Screen - Amber Text Display (anti-reflective screen) 14" Screen - Color Monitor (national brand) *PLUS \(\$ 9.95\) for Connecting Cable.
*\$ 69.00
* \(\$ 99.00\)
* 99.00
*\$249.00

\section*{Display Monitors From Sanyo}

With the need for computing power growing every day, Sanyo has stepped in to meet the demand with a whole new line of low cost, high quality data monitors. Designed for commercial and personal computer use. All models come with an array of features, including upfront brightness and contrast controls. The capacity \(5 \times 7\) dot characters as the input is 24 lines of characters with up to 80 characters per line.
Equally important, all are built with Sanyo's commitment to technological excellence. In the world of Audio/Video, Sanyo is synonymous with reliability and performance. And Sanyo quality is reflected in our reputation. Unlike some suppliers, Sanyo designs, manufactures and tests virtually all the parts that go into our products,
 from cameras to stereos. That's an assurance not everybody can give you!

It's an interesting way to wile away the hours. \(6 \times 10\) and \(5 \times 12\) are not too hard; \(4 \times 15\) will make you work; and \(3 \times 20\), which seems at first to be the easiest, proves to be a real brain bender.

A sample solution to the \(4 \times 15\) problem is given in Figure 2.

Figure 2: A \(4 \times 15\) Solution


If humans can waste time trying to fit the pieces, computers can do it too. "Pentominos" does not run at blinding speed; it tries the pieces at about the same speed as humans do. It's dumber than human puzzle solvers: It will try to make a piece fit in places we know instinctively are hopeless. But the computer has no intuition: It will plod along, making dumb moves until it finds a combination that fits.

The program tries the pieces "visibly"-that is, you can see it putting the pieces in place, thinking about its next move, and then taking a piece back out when it becomes obvious (even to the dumb computer) that it can't work there.

In a moment we'll get to more detail on how it works. The computer always thinks about fitting the upper-leftmost empty square, and it will tell you which piece it is trying to fit there; that piece's identity will be shown in a corner of the screen. So you can track the computer's thoughts if you wish.

It can take a few minutes or several hours to find the next solution. This program is a good one to set up for an overnight run. You might want to turn off your TV set or monitor and let the computer hum away quietly all by itself.

When a solution is found, you can type CONT at any blank place on the screen, and the computer will go after the next solution.

\section*{How It Works}

The pentominos and all their possible rotations are stored in DATA statements. Only four squares need to be described for each pentomino rotation, since the information gives coordinates based upon the starting square.

After reading in the data, the computer uses the following logic. Line numbers are given for those who would like to try examining the program.
1. (Line 2010) The computer looks through the list of pieces to find the first one that isn't being used. Then it searches the board for a blank square, starting at the left and searching each
column top to bottom. That's the next place it will try to fit a piece. If it can't find a blank, we have a solution and will go to step 5 .
2. (Line 2030) The piece just picked is set to its first rotation.
3. (Line 2060) The computer tries to fit the piece starting at the square it has identified. If it doesn't fit, it will skip ahead to step 7.
4. (Line 2120) The piece fits, so the computer puts it onto the board, onto the screen, and marks off the piece as used. It then goes back to step 1 to look for a new place to fit pieces.
5. (Line 2170) We have a solution! Stop and wait for the user to admire us. If the user types CONT, we'll keep going into step 6.
6. (Line 2190) We've reached a dead end, so we go back and remove the last piece placed on the board. If there are no pieces left, we quit; at this point we will have found all the solutions.
7. (Line 2260) Let's rotate the current piece so that we can try it in a different way. If we can find a new rotation, we go back to step 3 to try the piece. If not, we continue to step 8.
8. (Line 2300) The computer looks through the list of pieces to find the next piece to be tried. Then it goes back to step 2.

\section*{Variables And Arrays}

If you're trying to read the program, it will be worthwhile to have some information on variables and arrays. Here are some useful ones:

Array \(B(X, Y)\) is the board. If the value is zero, that part of the board is blank. When a board square is used, the appropriate value in this array is set to the number of the occupying piece; but the important thing to remember is that it's set to nonzero.

The DATA statements show all rotations of all pieces. They are transferred to arrays X and Y :

Arrays \(X(\) rotation, \(C)\) and \(Y(\) rotation, \(C)\) tell where to find the squares ( \(X\) and \(Y\) ) of each piece's rotation. The rotation is taken from the DATA statements.

Array P(rotation) tells which piece is involved for each rotation of the above table.

\section*{Each Piece Has Data}

Array P\$(piece) is the name of the piece.
Array S(piece) tells where to find the starting rotation for piece \(X\).

Array T(piece) tells which rotation is currently being used (or tried) for piece \(X\).

Arrays X 2 (piece) and X 2 (piece) list the starting square where piece A has been placed.

\section*{Tracking The Moves}

Array U(move) lists the pieces in the order in which we tried them.

The piece under consideration is designated

\title{
aninuaik Lid.
}

\section*{VIDEO ADVENTURES \({ }^{\text {" }}\)}


QUEST - A different kind of Graphic Adventure, it is played on a computer generated mape of Alesia. You'll have to build an army and feed them through combat, bargaining, exploration of ruins and temples, and outright banditry! Takes 2-5 hours to play and is different each time.
Available On: TRS8OC 16K, CMO64, VIC2O 13K, MC10 16K, TI99 (EXT. BASIC), IBMPC
TAPE \(\$ 14.95\)
DISK \$19.95

MARS - Your ship crashed on the Red Plane and you have to get home. You will have to explore a Martian City, repair your ship, and deal with possibly hostile aliens to get home again. This is recommended as a first Adventure. It is in no way simple - playing time normally runs from 30 to 50 hours, but it lets you try out Adventuring before you battle the really tough ones. Full Graphics Adventure.
Available On: TRSBOC, CMD 64, IBM PC
TAPE \(\$ 19.95\)
DISK \(\$ 24.95\)
STARFIRE - If you enjoyed StarRaiders or StarWars, you will love Starfire. It is not a copy, but the best shoot-em-up, see them in the window space game on the CMD64 or TRS80C. The fantastic graphics will put you right in the control room as you hyperspace from quadrant to quadrant fighting the aliens and protecting your bases.
Available On: TRS80C 16K, CMD64
TAPE \(\$ 19.95\) DISK \(\$ 24.95\)


PYRAMID - ONE OF THE TOUGHEST ADVENTURES. Average time through the pyramid is 50 70 hours. Clues are everywhere and some ingenious problems make this popular around the world. FULL GRAPHIC ADVENTURE.
Available On: TRSSOC 16K, CMD64, MC10 16K, IBM PC
TAPE S19.95
DISK \$24.55


NEWI GRAPHIC ADVENTURES

> AARDVARK offers over 120 original high quality programs. Send one dollar for a current catalog and receive a \(\$ 1.00\) gift certificate good towards your next purchase.

Authors - AARDVARK pays top dollar for high quality programs. Send a copy today for a personal review and editorial help.

TO ORDER: Send amount indicated plus \(\$ 2.00\) shipping, per order. Include quantity desired and your preference of tape or disk. Be sure to indicate type of system and amount of memory. When using charge card to order by mail, be sure to include expiration date.

Figure 3: Partial Solution. The Program Will Be Trying To Fit The Point Marked \(X\).

by P; its current rotation, of course, will be T(P).
When we place a piece, we log it into array \(U\)
and use P1 to keep track of how many pieces have been used.

\section*{Program Variations}

The program could be speeded up significantly by using a compiler or by converting it to machine language. I have chosen not to do that for two reasons: compatibility and readability.

A machine language version would nevertheless be quite straightforward to write. No special math or other logic is involved. Such a program would be very fast. But it would not be universal, since different machines would need to load the program into different memory locations.

If you go for many solutions, you should realize that some of the solutions are transformations of others. Given one solution, others can be found by inverting it left to right or top to bottom. This means that each solution is really four solutions; but the computer will find each of the four as it works. If this is not desired, the extra solutions can be eliminated by removing all but two of the rotations of a single eight-rotation piece. That way, the reflected solutions couldn't happen: That piece can appear in only one orientation.

For example, we could eliminate reflected solutions by changing line 770 to DATA R, 2 and then deleting lines 800 to 850 inclusive.

\section*{Making It Smarter}

The program would run faster if it didn't show its moves on the screen, but watching it work is most of the fun. For one thing, it may remind you of an important aspect of computers: They're dumb, but they're faithful.

The computer will lumber along, trying dumb moves. But it won't get tired, and it will eventually reach the solution.

Yes, we could add extra logic to make the computer smarter. We could ask the computer to scan for some of the obviously impossible situations that it does not recognize at all with the present program. But there's a danger: The computer could waste more time being smart than it does being dumb.
Copyright © 1984 Jim Butterfield

\section*{Program 1: Pentominos For Commodore}

Refer to the "Automatic Proofreader" article before typing this program in.
\begin{tabular}{|c|c|c|}
\hline \(1 \varnothing \square\) & PRINT CHR\$ (142) " \{CLR\} \{5 & RIGHT \} PENTOMI \\
\hline & NOS \{ DOWN \} " & :rem 140 \\
\hline 110 & DATA I, 2 & em 83 \\
\hline \(12 \varnothing\) & DATA Ø, 1, \(\varnothing, 2, \varnothing, 3, \varnothing, 4\) & 107 \\
\hline 130 & DATA 1, \(0,2, \varnothing, 3, \varnothing, 4, \varnothing\) & :rem 108 \\
\hline \(14 \varnothing\) & DATA \(\mathrm{X}, \mathrm{l}\) & m 1øø \\
\hline 150 & DATA \(1,-1,1, \varnothing, 2,0,1,1\) & em 152 \\
\hline 160 & DATA V,4 & rem 103 \\
\hline 170 & DATA \(\varnothing, 1, \varnothing, 2,1, \varnothing, 2, \varnothing\) & rem 108 \\
\hline \(18 \emptyset\) & DATA \(\varnothing, 1, \varnothing, 2,1,2,2,2\) & :rem 113 \\
\hline 190 & DATA \(1, \varnothing, 2, \varnothing, 2,1,2,2\) & :rem 114 \\
\hline \(2 ø \emptyset\) & DATA \(1, \varnothing, 2, \varnothing, 2,-1,2,-2\) & :rem 196 \\
\hline 210 & DATA T, 4 & rem 97 \\
\hline 220 & DATA \(\varnothing, 1, \varnothing, 2,1,1,2,1\) & :rem 106 \\
\hline 230 & DATA \(1, \varnothing, 1,1,2, \varnothing, 1,2\) & m 107 \\
\hline 240 & DATA \(1, \varnothing, 2, \varnothing, 1,-1,1,-2\) & m 198 \\
\hline 250 & DATA \(2,-1,2, \varnothing, 2,1,1, \varnothing\) & em 155 \\
\hline 260 & DATA W, 4 & m 105 \\
\hline 270 & DATA \(\emptyset, 1,1,1,1,2,2,2\) & :rem 113 \\
\hline \(28 \varnothing\) & DATA \(1, \varnothing, 1,1,2,1,2,2\) & em 114 \\
\hline \(29 \varnothing\) & DATA \(\varnothing, 1,1,-1,1, \varnothing, 2,-1\) & :rem \(2 ø 2\) \\
\hline \(3 \varnothing \emptyset\) & DATA \(1,-1,1, \varnothing, 2,-2,2,-1\) & :rem 242 \\
\hline 310 & DATA U, 4 & :rem 99 \\
\hline 320 & DATA \(\varnothing, 2,1, \varnothing, 1,1,1,2\) & :rem 107 \\
\hline 330 & DATA \(2, \varnothing, \varnothing, 1,1,1,2,1\) & em 108 \\
\hline 340 & DATA \(\varnothing, 1,1, \varnothing, 2, \varnothing, 2,1\) & rem 108 \\
\hline 350 & DATA \(1, \varnothing, \varnothing, 1, \varnothing, 2,1,2\) & :rem 109 \\
\hline 360 & DATA F,8 & :rem 93 \\
\hline 370 & DATA \(\emptyset, 1,1,-1,1, \varnothing, 2, \emptyset\) & :rem 155 \\
\hline 380 & DATA \(1,-1,2,-1,1,0,1,1\) & em 203 \\
\hline 390 & DATA \(1,-1,1, \varnothing, 1,1,2,1\) & rem 159 \\
\hline \(4 \varnothing \emptyset\) & DATA \(1,-1,1, \varnothing, 2, \varnothing, 2,1\) & em 151 \\
\hline 410 & DATA \(\varnothing, 1,1,1,1,2,2,1\) & rem 108 \\
\hline \(42 \varnothing\) & DATA \(1, \varnothing, 1,1,2,1,1,2\) & :rem 109 \\
\hline 430 & DATA \(1,0,1,1,2,-1,2,0\) & :rem 154 \\
\hline 440 & DATA \(1,-2,1,-1,2,-1,1, \varnothing\) & :rem 246 \\
\hline 450 & DATA L, 8 & :rem 99 \\
\hline 460 & DATA \(1, \varnothing, 2, \varnothing, 3, \varnothing, 3,1\) & :rem 114 \\
\hline 470 & DATA \(\varnothing, 1, \varnothing, 2, \varnothing, 3,1,3\) & :rem 115 \\
\hline 480 & DATA \(1,-3,1,-2,1,-1,1, \emptyset\) & :rem 251 \\
\hline 490 & DATA \(1, \varnothing, 2, \varnothing, 3, \varnothing, 3,-1\) & rem 162 \\
\hline \(50 \emptyset\) & DATA \(1, \varnothing, 2, \varnothing, 3, \varnothing, \varnothing, 1\) & em 106 \\
\hline 510 & DATA \(\varnothing, 1, \varnothing, 2, \varnothing, 3,1, \varnothing\) & :rem 107 \\
\hline 520 & DATA \(\varnothing, 1,1,1,2,1,3,1\) & :rem 111 \\
\hline 530 & DATA \(1, \varnothing, 1,1,1,2,1,3\) & :rem 112 \\
\hline 540 & DATA \(\mathrm{Y}, 8\) & :rem 112 \\
\hline 550 & DATA \(\varnothing, 1, \varnothing, 2, \varnothing, 3,1,1\) & :rem 112 \\
\hline 560 & DATA \(1, \varnothing, 2, \varnothing, 3, \varnothing, 1,1\) & :rem 113 \\
\hline \(57 \varnothing\) & DATA \(1,-1,1,0,1,1,1,2\) & :rem 159 \\
\hline 580 & DATA \(1,-1,1, \varnothing, 2, \varnothing, 3, \varnothing\) & : rem 160 \\
\hline 590 & DATA \(\varnothing, 1, \varnothing, 2, \varnothing, 3,1,2\) & :rem 117 \\
\hline \(6 \varnothing \square\) & DATA \(1, \varnothing, 2,0,3, \varnothing, 2,1\) & :rem 109 \\
\hline 610 & DATA \(1,-2,1,-1,1, \varnothing, 1,1\) & :rem 199 \\
\hline 620 & DATA 1, \(, 2,0,3, \varnothing, 2,-1\) & : rem 156 \\
\hline 630 & DATA \(\mathrm{Z}, 4\) & :rem 109 \\
\hline 640 & DATA \(0,1,1,1,2,1,2,2\) & :rem 114 \\
\hline 650 & DATA 1, \(1,1,1,1,2,2,2\) & rem 115 \\
\hline 660 & DATA \(1,-2,1,-1,1,0,2,-2\) & :rem 251 \\
\hline 670 & dATA \(2,-1,1, \varnothing, 2, \varnothing, \varnothing, 1\) & :rem 159 \\
\hline \(68 \varnothing\) & DATA \(\mathrm{P}, 8\) & :rem 108 \\
\hline 690 & DATA \(\varnothing, 1,1, \varnothing, 1,1,2, \varnothing\) & :rem 115 \\
\hline \(7 \emptyset \square\) & DATA \(1, \varnothing, \varnothing, 1,1,1, \varnothing, 2\) & :rem 107 \\
\hline 710 & DATA \(\varnothing, 1,1, \emptyset, 1,1,1,2\) & :rem 109 \\
\hline 720 & DATA \(1,0,0,1,1,1,2,1\) & :rem 110 \\
\hline 736 & DATA \(1,-1,1,0,2,-1,2,0\) & :rem 202 \\
\hline 740 & DATA \(1,-1,1,0,0,1,1,1\) & :rem 156 \\
\hline 750 & DATA \(\varnothing, 1, \varnothing, 2,1,1,1,2\) & rem 114 \\
\hline
\end{tabular}

\section*{PBOSNS}

\section*{The Professional Systems People And
} Present Products From commodore And

\section*{The Software That Makes Them Work!}


\section*{SOFTWARE}

\section*{SBSYS 8032, 8096 \& B-Series} The Small Business System Available for twin 8250 systems. GL, AP, AR, INV. \& payroll modules all communicate.

LEGISYS 8032, 8096 \& B-Series. The total legal office information, accounting and tickler system.

\section*{LOADSYS 8032, 8096 \& B-Series.}

The total truck brokerage accounting system. Call for free intro consulting.


Call Toll-Free by dialing:
Outside Texas: 1-800-221-WORX
Inside Texas: 1-800-692-4265, wait for beep, then dial 008-3378, wait for tone and dial 993 or Lubbock 806/797-2623, Dallas/Ft. W. 817/589-2622.

Send \(\$ 1\) for catalog, refundable on first order. VISA \& MasterCard. Add 3\% Surcharge.
Prices for mail order only, subject to change without notice.

760 DATA \(1, \varnothing, 2,0,1,1,2,1\)
770 DATA R, 8
\(78 \emptyset\) DATA \(\emptyset, 1, \emptyset, 2,1,2,1,3\)
790 DATA \(1, \emptyset, 2,0,2,1,3,1\)
\(8 \emptyset \emptyset\) DATA \(1,-1,1, \varnothing, 2,-1,3,-1\)
\(81 \varnothing\) DATA \(1,-1,1, \varnothing, \varnothing, 1, \varnothing, 2\)
\(82 \varnothing\) DATA \(\varnothing, 1,1,1,1,2,1,3\)
\(83 \emptyset\) DATA \(1, \varnothing, 1,1,2,1,3,1\)
840 DATA \(1, \varnothing, 2,-1,2,0,3,-1\)
850 DATA \(1,-2,1,-1,1, \varnothing, \varnothing, 1\)

860 DATA A, \(\varnothing\)
\(87 \varnothing\) V\$=" \(\{\) HOME \(\}\{13\) DOWN \(\} "\)
880 H\$=" \(\{23\) RIGHT \(\} "\)
1øøø DIM X \((63,4), Y(63,4), P(64), P \$(13), S(1\) \(3), T(13), B(6,20)\)
1øø1 DIM X1(5),Y1(5), X2(12),Y2(12),U(12)
\(1 \emptyset 1 \emptyset\) READ PS,N:IF N=Ø GOTO 1ø7ø :rem 81
\(1 \varnothing 20 \mathrm{~T}=\mathrm{T}+1: \mathrm{P} \$(\mathrm{~T})=\mathrm{P} \$: \mathrm{S}(\mathrm{T})=\mathrm{V}+1 \quad\) :rem 41
\(103 \emptyset\) FOR \(\mathrm{J}=\mathrm{V}+1\) TO \(\mathrm{V}+\mathrm{N}: \mathrm{P}(\mathrm{J})=\mathrm{T} \quad\) :rem 12
\(1 \varnothing 4 \emptyset\) FOR \(K=\emptyset\) TO \(3:\) READ \(X(J, K), Y(J, K): N E X T\) K, J
1 10б V=V+N:PRINT P\$; :rem 158
1 1ø6 GOTO 1 1ø1ø :rem 194
1ø7ø PRINTLEFT\$(V\$,5);:PRINT"CHOOSE: \{DOWN\}" :rem 34
1ø8ø FOR J=3 TO 6:PRINT J;"BY"; 6ø/J;" \{DOWN\}":NEXT J :rem 219
\(109 \emptyset\) INPUT "SELECT 3 THRU 6";Wl :rem 205
11øø IF Wl<3 OR Wl>6 OR Wl<>INT(Wl) GOTO
\{SPACE\}107ø
\(111 \varnothing \mathrm{~W} 2=6 \varnothing / \mathrm{W} 1\)
1120 PRINT "\{CLR\}"
2000 REM FIND NEW
\(2 \varnothing 1 \varnothing\) GOSUB \(3 \varnothing \varnothing \varnothing: P=J: G O S U B \quad 32 \emptyset \varnothing: I F\) Xl>W2 G OTO \(217 \varnothing\)
2020 REM GET A NEW PIECE rem 25
\(2 ø 30 \mathrm{~T}(\mathrm{P})=\mathrm{S}(\mathrm{P})\)
2040 PRINT "\{HOME\}";P\$(P);"\{11 DOWN\}" :rem 52
2050 REM TRY FITTING PIECE :rem 37
\(2 \varnothing 6 \varnothing \mathrm{C} \$=\mathrm{P} \$(\mathrm{P}): \mathrm{Xl}(\varnothing)=\mathrm{Xl}: \mathrm{Yl}(\varnothing)=\mathrm{Yl}: \mathrm{FOR} \mathrm{J}=1 \mathrm{~T}\) 04
: rem 71
\(2 \emptyset 7 \varnothing \quad \mathrm{X}=\mathrm{X}(\mathrm{T}(\mathrm{P}), \mathrm{J}-1)+\mathrm{Xl}: \mathrm{Y}=\mathrm{Y}(\mathrm{T}(\mathrm{P}), \mathrm{J}-1)+\mathrm{Yl}: \mathrm{Xl}\) \((J)=X: Y l(J)=Y \quad: r e m 1 \varnothing \varnothing\)
\(2 ø 8 \emptyset\) IF \(\mathrm{X}<1\) OR Y<l OR X>W2 OR Y>Wl GOTO 2 260
\(209 \emptyset\) IF \(\mathrm{B}(\mathrm{Y}, \mathrm{X})<>\emptyset\) GOTO \(226 \emptyset\) :rem 119
\(21 \emptyset \emptyset\) NEXT J
2110 REM IT FITS - PUT PIECE IN PLACE
:rem 3
212 В \(=\) P:FOR \(\mathrm{J}=\emptyset\) TO 4 :rem 67
\(213 \varnothing \mathrm{X}=\mathrm{Xl}(\mathrm{J}): \mathrm{Y}=\mathrm{Yl}(\mathrm{J}): G O S U B 35 \emptyset \emptyset\) :rem 246
2140 NEXT J
: rem \(8 \emptyset\)
\(215 \emptyset \mathrm{X} 2(\mathrm{P})=\mathrm{Xl}: \mathrm{Y} 2(\mathrm{P})=\mathrm{Yl}: \mathrm{Pl}=\mathrm{Pl}+\mathrm{l}: \mathrm{U}(\mathrm{P} 1)=\mathrm{P}: \mathrm{GO}\) TO \(2 \varnothing 1 \varnothing\)
: rem 223
\(216 \emptyset\) REM BOARD FILLED :rem 197
\(217 \emptyset\) PRINT "\{HOME\}\{2 SPACES\}SOLUTION";:EN D
:rem 119
\(218 \emptyset\) REM UNDRAW LAST ONE :rem 15ø
\(219 \varnothing \mathrm{P}=\mathrm{U}(\mathrm{Pl}): \mathrm{U}(\mathrm{Pl})=\varnothing: \mathrm{Pl}=\mathrm{Pl}-1: \mathrm{IF} \mathrm{Pl}<\emptyset\) THEN PRINT"THAT'S ALL": END :rem 112
\(2200 \mathrm{~B}=\varnothing: \mathrm{X}=\mathrm{X} 2(\mathrm{P}): \mathrm{Y}=\mathrm{Y} 2(\mathrm{P}): \mathrm{C} \$=\mathrm{"}\) ":GOSUB \(35 \emptyset\) \(\varnothing\) :rem 13
\(221 \varnothing \mathrm{Xl}=\mathrm{X}: \mathrm{Yl}=\mathrm{Y}: \mathrm{FOR} \mathrm{J}=1\) TO 4 :rem 237
\(222 \varnothing \mathrm{X}=\mathrm{X}(\mathrm{T}(\mathrm{P}), \mathrm{J}-1)+\mathrm{Xl}: \mathrm{Y}=\mathrm{Y}(\mathrm{T}(\mathrm{P}), \mathrm{J}-1)+\mathrm{Y} 1: \mathrm{Xl}\) ( J ) =X: Yl (J) =Y :rem 97
2230 GOSUB \(35 \emptyset \emptyset\)
2240 NEXT J
2250 REM ROTATE THE PIECE :rem 15 :rem 81
\(226 \emptyset \mathrm{~T}(\mathrm{P})=\mathrm{T}(\mathrm{P})+1:\) IF \(\mathrm{P}(\mathrm{T}(\mathrm{P}))=\mathrm{P}\) GOTO \(2 \varnothing 6 \emptyset\)
:rem 77
:rem 166
:rem 8
:rem 40
:rem 36
:rem 241
:rem \(2 ø 3\)
:rem 115
:rem 11ø
:rem 119
:rem 12ø
:rem 247
:rem 154
:rem 114
:rem 115
:rem 206
:rem 204
:rem 85
:rem 138
(13) 1
-
-
1

612 DATA \(\varnothing, 1, \varnothing, 2, \varnothing, 3, \varnothing, 4\)
6M \(13 \varnothing\) DATA 1 , ø, 2, Ø, З, Ø, 4, ø
6E \(14 \varnothing\) DATA \(x, 1\)
JI \(15 \varnothing\) DATA \(1,-1,1, \varnothing, 2, \varnothing, 1,1\)
6H \(16 \varnothing\) DATA \(V, 4\)
GK \(17 \varnothing\) DATA \(\varnothing, 1, \varnothing, 2,1, \varnothing, 2, \varnothing\)
HB \(18 \varnothing\) DATA \(\varnothing, 1, \varnothing, 2,1,2,2,2\)
HC \(19 \emptyset\) DATA \(1, \emptyset, 2, \emptyset, 2,1,2,2\)
HE \(2 ø \varnothing\) DATA \(1, \varnothing, 2, \varnothing, 2,-1,2,-2\)
\(6 B 21 \varnothing\) DATA T, 4
6K 22 D DATA \(\varnothing, 1, \varnothing, 2,1,1,2,1\)
GL 23 D DATA \(1, \varnothing, 1,1,2, \emptyset, 1,2\)
MG 24 D DATA \(1, \emptyset, 2, \varnothing, 1,-1,1,-2\)
נ \(25 \emptyset\) DATA \(2,-1,2, \varnothing, 2,1,1, \emptyset\)
6J \(26 \varnothing\) DATA W, 4
HE \(27 \varnothing\) DATA \(\emptyset, 1,1,1,1,2,2,2\)
HC \(28 \emptyset\) DATA \(1, \emptyset, 1,1,2,1,2,2\)
HK \(29 \varnothing\) DATA \(\varnothing, 1,1,-1,1, \varnothing, 2,-1\)
PC \(3 \varnothing \varnothing\) DATA \(1,-1,1, \emptyset, 2,-2,2,-1\)
\(6031 \varnothing\) DATA U, 4
6 GL 32 DATA \(\emptyset, 2,1, \emptyset, 1,1,1,2\)
6 33 D DATA \(2, \emptyset, \emptyset, 1,1,1,2,1\)
6K 34 D DATA \(\varnothing, 1,1, \emptyset, 2, \varnothing, 2,1\)
6N 35 DATA \(1, \emptyset, \emptyset, 1, \varnothing, 2,1,2\)
FN \(36 \emptyset\) DATA \(F\), 8
J 37Ø DATA \(\emptyset, 1,1,-1,1, \varnothing, 2, \emptyset\)
ML \(38 \emptyset\) DATA \(1,-1,2,-1,1, \varnothing, 1,1\)
JP \(39 \varnothing\) DATA \(1,-1,1, \emptyset, 1,1,2,1\)
JH 4 Øø DATA \(1,-1,1, \emptyset, 2, \varnothing, 2,1\)
6M \(41 \varnothing\) DATA \(\varnothing, 1,1,1,1,2,2,1\)
GN 42 Ø DATA \(1, \varnothing, 1,1,2,1,1,2\)
JK \(43 \emptyset\) DATA \(1, \emptyset, 1,1,2,-1,2, \emptyset\)
PG 44 Ø DATA \(1,-2,1,-1,2,-1,1, \emptyset\)
\(6045 \emptyset\) DATA L, 8
HC \(46 \varnothing\) DATA \(1, \varnothing, 2, \varnothing, 3, \varnothing, 3,1\)
HD \(47 \emptyset\) DATA \(\emptyset, 1, \emptyset, 2, \emptyset, 3,1,3\)
PL \(48 \emptyset\) DATA \(1,-3,1,-2,1,-1,1, \varnothing\)
KC \(49 \emptyset\) DATA \(1, \varnothing, 2, \emptyset, 3, \emptyset, 3,-1\)
6K 5 Øø DATA \(1, \varnothing, 2, \varnothing, 3, \emptyset, \varnothing, 1\)
\(6 L 51 \varnothing\) DATA \(\varnothing, 1, \varnothing, 2, \varnothing, 3,1, \varnothing\)
\(6 P 52 \emptyset\) DATA \(\emptyset, 1,1,1,2,1,3,1\)
HA \(53 \emptyset\) DATA \(1, \emptyset, 1,1,1,2,1,3\)
HA \(54 \varnothing\) DATA \(Y, 8\)
HA \(55 \emptyset\) DATA \(\emptyset, 1, \varnothing, 2, \varnothing, 3,1,1\)
НВ \(56 \varnothing\) DATA \(1, \varnothing, 2, \varnothing, 3, \varnothing, 1,1\)
JP \(57 \emptyset\) DATA \(1,-1,1, \emptyset, 1,1,1,2\)
KA \(58 \varnothing\) DATA \(1,-1,1, \varnothing, 2, \varnothing, 3, \varnothing\)
HF \(59 \emptyset\) DATA \(\emptyset, 1, \emptyset, 2, \emptyset, 3,1,2\)

\section*{Program 2: Pentominos For Atari}

Refer to the "Automatic Proofreader" article before typing this program in.
FE \(10 \varnothing\) PRINT " (CLEAR\}PLEASE WAIT... I NITIALIZING ARRAYS": POKE 752, 1: POSITION \(\varnothing, \varnothing\)
FD \(11 \varnothing\) DATA 1,2 8 3 5 난

新
\(351 \varnothing\) RETURN
:rem 58
:rem \(13 \varnothing\)
:rem 46
:rem 29
:rem 189
:rem 242
:rem 197
EN NEXT J
:rem 13ø
:rem 164
\(320 \varnothing\) FOR Xl=1 TO W2:FOR Yl=1 TO Wl:rem 19
\(\begin{array}{llll}321 \varnothing \text { IF B(Y1,X1)=ø GOTO } 323 \varnothing & \text { :rem l49 } \\ 322 \emptyset \text { NEXT Yl,Xl } & \text { :rem } 69\end{array}\)
\(\begin{array}{lll}321 \varnothing \text { IF } \mathrm{B}(\mathrm{Yl}, \mathrm{Xl})=\emptyset \text { GOTO } 323 \emptyset & \text { :rem } 149 \\ 322 \emptyset \text { NEXT Yl,Xl } & \text { :rem } 69\end{array}\)
3230 RETURN :rem 168


:rem 169
\(\varnothing\)
\(>\varnothing\) THE
1 TO W
FT\$ (H\$
2280 T(P) \(=\varnothing\)2290 REM LOOK FOR NEW PIECE2300 P +1 (P)2320 GOTO 203の-

\[
5
\]


\section*{-}
\(\qquad\)
\(\qquad\)

116 COMPUTE! May 1984


\title{
A new concept in interactive visual learning.
} CodePro-64 \({ }^{\text {m }}\)

Now you can learn to code in BASIC and develop advanced programming skills with graphics, sprites and music-visually. You learm by interacting with CodePro-64, a new concept in interactive visual learning.

SEE PROGRAM EXECUTION
Imagine actually seeing BASIC statements execute. CodePro-64 guides you through structured examples of BASIC program segments. You enter the requested data or let CodePro-64 do the typing for you. (It will not let you make a mistake.)

You step through and actually see the execution of sample program statements by simply pressing the space bar. CodePro-64 does the rest. You see statements with corresponding graphics and variable value displays.

\section*{EXTENSIVETUTORIAL}

CodePro-64's extensive tutorial guides you through each BASIC command, program statement, and function. You get clear explanations. Where appropriate, you invoke BasicView to see examples execute and watch their flow charts and variables change.

By seeing graphic displays of program segment execution you learn by visual example. You leam faster and grasp programming concepts easier with CodePro-64 because you immediately see the results of your input.

You control your learning. You can go through the tutorial sequentially, or return to the main menu and select different topics, or use keywords to select language elements to study. You can page back and forth between screens within a topic at the touch of a function key.

Once you have practiced and mastered the BASIC language elements you move on to
more advanced concepts. You learn about sprite and music programming.

\section*{SPRITE GENERATOR} \& DEMONSTRATOR
CodePro-64's sprite generator lets you define your own sprites on the screen. You learn how to define sprites and what data values correspond to your sprite definitions. (You can then save your sprite data to a diskette file for use in your own programs.) You can easily experiment with different definitions and make changes to immediately see the effects.

We also help you learn to program with sprites by giving you a sprite demonstrator so you can see the effect of changing register values. You can experiment by moving your sprite around in a screen segment, change its color and see the effects of your changes. You learn by visual examples.

\section*{MUSIC GENERATOR \& DEMONSTRATOR}

Our Music Generator and Music Demonstrator will provide hours of instruction and creative enjoyment. From the beginning of your instruction you can compose simple tunes on the screen using the generator. Once you've completed a composition you can save the tune and its associated SID parameters to a diskette file. Our music sam-

\section*{OUR GUARANTEE}

We guarantee your satisfaction. You must be satisfied with CodePro-64 for the Commodore-64. Try it for 10 days and if for any reason you are not satisfied return it to us (undamaged) for a full refund. No risk.
ple program can be used alone or incorporated into your own programs to read the saved music file and replay your songs.

Our music demonstrator lets you experiment with various combinations of music programming parameters and hear the results. All you do is enter rows of SID parameters on the screen to create a particular sound. Then you hear each sound by playing the "keyboard organ" in real time as you shift from row to row of SID parameters. By seeing your input and hearing the result you quickly learn how to create new musical sounds and special sound effects.

Whether you're a beginning programmer or an experienced professional, CodePro-64 will help you improve you Commodore 64 programming skills. We're sure because CodePro-64 was developed by a team of two professionals with over 25 years of software development experience.

CodePro-64 is a professional quality educational program for the serious student of personal computing. And it's fully guaranteed. Order yours today.

\section*{HOW TO ORDER}

Order your copy of CodePro-64 today by mail or phone. Send only \(\$ 59.95\) plus \(\$ 3.00\) shipping and handling to:

\section*{SYSTEMS MANAGEMENT ASSOCIATES 3700 Computer Drive, Dept. G-1 Raleigh, N.C. 27609}

Available on diskette only. MasterCard/VISA accepted. For faster service on credit card orders, call toll free 1-800 SMA-RUSH. (1-800-762-7874). Dealer inquiries invited.
Commodore 64 is a trademark of Commodore Business Machines, Inc.


6N 6øø DATA \(1, \varnothing, 2, \varnothing, 3, \emptyset, 2,1\)
NH \(61 \emptyset\) DATA \(1,-2,1,-1,1, @, 1,1\)
IM \(62 \emptyset\) DATA \(1, \varnothing, 2, \emptyset, 3, \varnothing, 2,-1\)
6N 6ЗØ DATA \(Z, 4\)
HC 64 D DATA \(\boxminus, 1,1,1,2,1,2,2\)
HD 65 DATA \(1, \varnothing, 1,1,1,2,2,2\)
PL \(66 \emptyset\) DATA \(1,-2,1,-1,1, \emptyset, 2,-2\)
JP \(67 \emptyset\) DATA \(2,-1,1, \emptyset, 2, \emptyset, \emptyset, 1\)
6M 68 DATA F， 8
HD 69 DATA \(\varnothing, 1,1, \varnothing, 1,1,2, \emptyset\)
\(6 L 7 \emptyset \emptyset\) DATA \(1, \varnothing, \varnothing, 1,1,1, \varnothing, 2\)
6K \(71 \varnothing\) DATA \(\emptyset, 1,1, \varnothing, 1,1,1,2\)
\(6072 \emptyset\) DATA \(1, \emptyset, \emptyset, 1,1,1,2,1\)
MK \(73 \varnothing\) DATA \(1,-1,1, \varnothing, 2,-1,2, \varnothing\)
JM 74 D DATA \(1,-1,1, \emptyset, \emptyset, 1,1,1\)
HC \(75 \varnothing\) DATA \(\emptyset, 1, \varnothing, 2,1,1,1,2\)
HD \(76 \emptyset\) DATA \(1, \varnothing, 2, \emptyset, 1,1,2,1\)
\(6077 \emptyset\) DATA \(\mathrm{F}, 8\)
HH 78ø DATA Ø，1，Ø，2，1，2，1，3
HI79ø DATA \(1, \emptyset, 2, \varnothing, 2,1,3,1\)
PH \(8 \emptyset \emptyset\) DATA \(1,-1,1, \varnothing, 2,-1,3,-1\)
Јк \(81 \emptyset\) DATA \(1,-1,1, \varnothing, \emptyset, 1, \varnothing, 2\)
HC 82 D DATA \(\varnothing, 1,1,1,1,2,1,3\)
HO 83Ø DATA \(1, \varnothing, 1,1,2,1,3,1\)
MO \(84 \emptyset\) DATA \(1, \emptyset, 2,-1,2, \emptyset, 3,-1\)
MM \(85 \emptyset\) DATA \(1,-2,1,-1,1, \varnothing, \varnothing, 1\)
FF 86Ø DATA A，\(\sigma\)
HE 1 Øøø DIM \(\mathrm{X}(63,4), \mathrm{Y}(63,4), \mathrm{P}(64), \mathrm{PP} \$(\) 13），\(S(13), T(13), B(6,2 \emptyset)\)
CI 1 פめ1 DIM \(\mathrm{X} 1(5), \mathrm{Y} 1(5), \mathrm{X} 2(12), \mathrm{Y} 2(12)\) ， U（12），C\＄（1），F中（1）
MP 1 Øめ2 \(Z=\emptyset: F O R \quad I=\emptyset\) TO 63：P（I）＝Z：FOR J \(=\varnothing\) TO \(4: X(I, J)=Z: Y(I, J)=Z: N E X T\) \(J\) ：NEXT I
Of 1 Øø \(3 \quad \mathrm{~F}(64)=\mathrm{Z}: \mathrm{FOF} \quad \mathrm{I}=\emptyset \quad\) TO \(12: \mathrm{S}(\mathrm{I})=\mathrm{Z}: \mathrm{T}\) （I）\(=Z: X 2(I)=Z: Y 2(I)=Z: U(I)=Z: N\)
EXT I：S（13）\(=Z: T(13)=Z\)
BK 1 Øø 4 FOR \(I=\emptyset\) TO \(6: F O R \quad J=\emptyset\) TO 2ø：B（I ，\(J\) ）\(=\mathrm{Z}: \operatorname{NEXT} \quad J=\operatorname{NEXT} \quad I=F O R \quad I=\varnothing \quad T O\) \(5: X 1(I)=Z: Y 1(I)=Z: N E X T \quad I\)
601 1 曰ด FRINT＂\｛CLEAR\}":FOSITION 15, ø: FRINT＂PENTOMINOS＂：FRINT
EH \(101 \emptyset\) READ F\＄，N：IF N＝ø THEN \(1 \varnothing 7 \emptyset\)
PJ 192 g \(T=T+1: F \cdot P \$(T, T)=P \$: S(T)=V+1\)
AK 1 ＠ 3 Ø FOR \(J=V+1 \quad T O \quad V+N: P(J)=T\)
D1 1940 FOR \(K=\emptyset\) TO \(3: R E A D L, M: X(J, K)=L\) \(: Y(J, K)=M: N E X T \quad K: N E X T \quad J\)
10165ø \(V=V+N=\) PRINT P\＄；
MC 1 Ø6曰 GOTO 1 Ø1の
JM \(1 \varnothing 7 \emptyset\) POSITION 1 ， \(5:\) PRINT＂CHOQSE：＂：P RINT
EL 108 ® FOR \(J=3\) TO \(6: P R I N T \quad J ; " B Y " ; 6 \emptyset\) ／J：NEXT J
JF 1 Øけø PRINT＝PRINT＂SELECT 3 THRU \(6:\) ＂；：INPUT W1
HM 11 Øø IF \(W 1<3\) OR \(W 1>6\) OR \(W 1<>I N T(W 1)\) THEN GOTO \(1 \varnothing 7 \emptyset\)
K6 111 Ø \(12=6 \emptyset / W 1\)
BC 1120 PRINT＂\｛CLEAR\}"
OH \(2 \varnothing \varnothing \emptyset\) REM FIND NEW SPACE TO FILL
OB 2ø1ø GOSUB उøøø：P＝J：GOSUB 32øø：IF X \(1>W 2\) THEN GOTO \(217 \varnothing\)
BJ \(2 \emptyset 2 \emptyset\) REM GET A NEW PIECE
OL \(2 \emptyset 3 \emptyset \quad T(P)=S(P)\)
NP \(2 \emptyset 4 \emptyset\) FOSITION \(1,1:\) PRINT \(P P \$(P, P): P 0\) SITION 0,12
CF 2050 FEM TRY FITTING PIECE
\(B D 2 \varnothing 6 \emptyset C \$=P P \Phi(P, P)=X 1(\emptyset)=X 1: Y 1(\varnothing)=Y 1:\) FOR \(J=1\) TO 4
GE \(2 \emptyset 7 \emptyset \quad X=X(T(P), J-1)+X 1: Y=Y(T(P), J-1)\) \(+Y 1: X 1(J)=X: Y 1(J)=Y\)
DH 2 Ø8 IF \(X<1\) OR \(Y<1\) OR \(X>W 2 \quad O R \quad Y>W 1\) THEN GOTO 226Ø
K6 2ø9ø IF \(B(Y, X)<\rangle \emptyset\) THEN GOTO \(226 \emptyset\)

EM 21 Øø NEXT J
AD \(211 \emptyset\) REM IT FITS－PUT PIECE IN FLA CE
ED \(212 \emptyset \quad B=P: F O R \quad J=\emptyset\) TO 4
PG \(213 \varnothing \quad X=X 1(J): Y=Y 1(J): G O S U B \quad 35 \varnothing \varnothing\)
FA 214 ■ NEXT J
NP \(215 \emptyset \times 2(P)=X 1: Y 2(P)=Y 1: P 1=F 1+1: U\left(P_{1}\right.\) ）＝P：GOTO 2 Ø1ø
MF 216 REM BUARD FILLED
DF \(217 \emptyset\) POSITION \(\emptyset, 12: P R I N T\)＂SOLUTION＂ ；：FOKE 752，ø：END
J6 218 R REM UNDRAW LAST ONE
HA \(219 \emptyset \quad P=U(F 1): J(P 1)=\emptyset: F 1=P 1-1: I F \quad P 1<\) \(\emptyset\) THEN PRINT＂THAT＂S ALL＂：END
 UB З5øø
ON \(221 \varnothing \quad X 1=X: Y 1=Y: F O F \quad J=1 \quad\) TO 4
SB 222ø \(X=X(T(F), J-1)+X 1: Y=Y(T(P), J-1)\) \(+Y 1: X 1(J)=X: Y 1(J)=Y\)
AF 223Ø GOSUB 35＠ø
FB 224＠NEXT J
MD 225 Ø FEM ROTATE THE PIECE
GJ \(2260 \quad T(F)=T(P)+1\) ：IF \(F(T(F))=P \quad\) THEN GOTO 2ø6の
IC 227 FEM GIVE UP ON FIECE
CO 228 Ø \(T(F)=\varnothing\)
BN 229 REM LOOK FOR NEW PIECE
OH 23 Øの \(\mathrm{P}=\mathrm{P}+1\) ：IF \(\mathrm{P}>12\) THEN GOTO \(219 \emptyset\)
\(01231 \emptyset\) IF \(T(F)<\rangle \emptyset\) THEN \(23 \emptyset \emptyset\)
MF 232 GOTO \(203 \emptyset\)
IC \(3 \varnothing \emptyset \emptyset\) FOR \(J=1\) TO \(12:\) IF \(T(J)<\rangle \emptyset T H E N\) NEXT J
KE ЗW1のRETURN
旳 \(32 \emptyset \emptyset\) FOF \(X 1=1\) TO W2：FOR Y1＝1 TO W1
IL \(321 \emptyset\) IF \(B(Y 1, X 1)=\varnothing\) THEN \(323 \emptyset\)
J 3220 NEXT Y1：NEXT X1
H 3230 RETURN
MO \(35 \emptyset \emptyset\) POSITION \(X, Y+2\) ：PRINT \(C \Phi=B(Y, X)\) \(=\mathrm{B}\)
N 3510 RETURN

\section*{Program 3：Pentominos For IBM PC／PCjr}

Insert lines 110－860 from the Commodore version（Program 1）．
100 CLS：PRINT＂PENTOMINOS＂：P RINT
1000 DIM X（63，4），Y（63，4），P（64），P\＄（13），S（ 13）， \(\mathrm{T}(13), \mathrm{B}(6,20)\)
1001 DIM X1（5），Y1（5），X2（12），Y2（12），U（12）
1010 READ P\＄，\(N:\) IF \(N=0\) GOTO 1070
\(1020 \mathrm{~T}=\mathrm{T}+1: \mathrm{F} \Phi(\mathrm{T})=\mathrm{P} \$: \mathrm{S}(\mathrm{T})=\mathrm{V}+1\)
1030 FOR \(\mathrm{J}=\mathrm{V}+1\) TO \(\mathrm{V}+\mathrm{N}: \mathrm{P}(\mathrm{J})=\mathrm{T}\)
1040 FOF \(K=0\) TO \(3:\) READ \(X(J, K), Y(J, K)=\) NEX
T K，J
\(1050 \mathrm{~V}=\mathrm{V}+\mathrm{N}:\) PRINT F＇\＄；
1060 GDTO 1010
1070 LOCATE 5，1：FRINT＂CHOOSE：＂：PRINT
1080 FOF J＝3 TO 6：FRINT J；＂BY＂； \(60 / \mathrm{J} ; "\)＂： F
FINT：NEXT J
1090 INFUT＂SELECT 3 THFU 6＂；W1
1100 IF \(W 1<3\) OR W \(1>6\) OR W \(1<>\) INT（W1）GOTO 1070
\(1110 \mathrm{~W} 2=60 / \mathrm{W} 1\)
1120 CLS
2000 REM FIND NEW SFACE TO FILL
2010 GOSUB \(3000: F=J=G O S U B \quad 3200:\) IF \(\times 1>W 2\)
GOTO 2170
2020 REM GET A NEW FIECE
2030 T（F）\(=5(F)\)
2040 LOCATE 1，1：FRINT Fक（F）
2050 REM TRY FITTING FIECE
\(2060 \mathrm{C} \$=\mathrm{F} \Phi(\mathrm{F}): \mathrm{X} 1(0)=\mathrm{X} 1: Y 1(0)=\mathrm{Y} 1:\) FOF \(\mathrm{J}=1\) TO 4


Now you can get deep discounts on micro software by taking advantage of Software City's tremendous Purchasing Power. We buy from leading software publishers in wholesale quantities, so you benefit with substantial savings whether buying for home or business.
Low prices, great selection and friendly service have made us the nation's largest chain of software stores. Start putting our Purchasing Power to work for you today!

\section*{SOFTWARE ALWAYS DISCOUNTED}

Programs, peripherals, disks, accessories, and of books and magazines.


VISIT A SOFTWARE CITY PROGRAM DISCOUNT CENTER NEAR YOU .
ALABAMA:Birmingham(205) 591-8314 • Huntsville (205) 536-9456 ARIZONA: Phoenix (602)264-1422 Tucson (602) 721-1008 COLORADO: Westminster (303) 430-8708 CONNECTICUT:
Hartford (coming soon) • Orange (203) \(799-2119\) • Stamford (203) 359.1414 DELAWARE:
Wilmington (302) 478-4880 FLORIDA: Orange Park (904) 264-3102•St. Peterșburg (813) \(345-5132\) Sarasota (813) 923-4040 - Tampa (813) 961-8081 GEORGIA: Atlanta (404) 257.1833 ILLINOIS: Arlington Heights (312)259-4260 - Chicago (coming soon) INDIANA: Fort Wayne (coming soon) Indianapolis (coming soon) IOWA: Davenport (319) 386-2345 KENTUCKY:
Louisville (502) \(893-3838\) MARYLAND: Bethesda (301) 468 -1001 MASSACHUSETTS: Lexington (617) 861-0116 • W. Springfield (413) 739-5101 MICHIGAN: Ann Arbor (313) \(996-4500\) Okemos (coming soon) - Southfield (313) \(559-6966\) - Sterling Hts. (313) \(978-3700\) MISSOURI: Independence (816) 461-1260 • St. Louis (coming soon) NEBRASKA: Omaha (coming soon) NEW JERSEY: Bergenfield (201) 387-8388 • Cherry Hill (609) 424-8155
Englishtown (201) 972.1150 • Fair Lawn (201) 791.8793 • Green Brook (201) 968.7780 Hamilton (609) 890-1066 • Linwood (609) 927-3393 • Little Falls (coming soon) Midland Park (201) 447.9794 - Montvale (201) 391-0931 • Morristown (201) 267-3353 Pine Brook (201) 575-4574 • Pompton Lakes (201) 831-1004 • Red Bank (201) 747.6490 Ridgefield (201) \(943-9444\) • Summit (201) \(273-7904\) • Teaneck (201) \(692-8298\) NEW YORK: Albany (coming soon) • Brooklyn (coming soon) • Buffalo (coming soon) • Fairport (716) 223-3723 Forest Hills (212) 261-1141 • Great Neck (516) 482.4929 • Long Island (coming soon) Manhattan (212) \(832-0760\) - Mt. Kisco (914) \(666-6036\) • North White Plains (914) 946-1800
Pomona (914) \(354-3706\) Pomona (914) \(354-3706\) - Poughkeepsie (coming soon) - Scarsdale (coming soon) Staten Island (212) 351.9217 - Syracuse (315) \(445-2577\) NORTH CAROLINA:
Charlotte (704) \(366-5218\) • Fayetteville (919) 864-7293 OHIO: Centerville (513) \(439-1237\) Columbus (614) 888-6660 - Mayfield Hts. (216) \(473-8124\) OKLAHOMA:
Tulsa (918) 744-0558 PENNSYLVANIA: Bethel Park (412) 854-1777 • Exton (215) 524-1483 Fairless Hills (215) 943-4544 • King of Prussia (coming soon) • Pittsburgh (412) \(367-0441\) Whitehall (215) 434-3060 SOUTH CAROLINA: Spartanburg (803) 574.4713 TEXAS:
Austin (512) 458-2101 VERMONT: Burlington (802) \(864-6981\) VIRGINIA: Fairfax (coming soon) Falls Church (703) 845-9393 • Richmond I (804) 740-8400 • Richmond II (804) 320-2244 Virginia Beach (804) \(463-8220\) WASHINGTON: Bellevue (206) \(451-1141\) CANADA: (coming soon) ENGLAND: London 013529220 PUERTO RICO: San Juan (809) 781.9357

BUSINESS SOFTWARE: Catalog at all stores.
RETAIL STORE FRANCHISES: \$50,000 estimated investment. Offering by prospectus only. Direct inquiries to SOFTWARE CITY FRANCHISE DEPT. - 1415 Queen Anne Road, Teaneck, NJ 07666

NEW!
Universal Input/Output Board for VIC-20/64

- 16 channel 8-bit A/D converter with 100 microsecond sampling time.
- 1 D/A output.
- 16 high voltage/high current discrete outputs.
- 1 EROM socket.
- Use multiple boards for additional channels up to 6 boards.
VIC-20 uses MW-311V . . . . . \$205.00
CBM-64 uses MW-311C . . . . \$225.00

MW-302: VIC-20/64 Parallel Printer Interface.


Works with all centronics type parallel matrix \& letter printers and plottersEpson, C.Itoh, Okidata, Nec, Gemini 10, TP-I Smith Corona, and most others. Hardware driven; works off the serial port. Quality construction: Steel DIN connectors \& shielded cables. Has these switch selectable options: Device 4,5, 6 or 7; ASCII or PET ASCII; 7-bit or 8-bit output; upper \& lower case or upper only. Recommended by PROFESSIONAL SOFTWARE for WordPro 3 Plus for the 64, and by City Software for PaperClip.
MW-302
\(\$ 119.95\)

\section*{Dealer} inquiries invited.

Micro World Electronix, Inc. 3333 S. Wadsworth Blvd. \#C105, Lakewood, CO 80227
(303) 987-9532 or 987-2671
\(2070 X=X\left(T\left(F^{\prime}\right), J-1\right)+X 1: Y=Y\left(T\left(F^{\prime}\right), J-1\right)+Y 1: X\) \(1(J)=X: Y 1(J)=Y\)
2080 IF \(X<1\) OF \(Y<1\) OR \(X>W 2\) OR \(Y>W 1\) GOTO 2260
2090 IF \(B(Y, X)<>0\) GOTO 2260
2100 NEXT J
2110 REM IT FITS－FUT FIECE IN FLACE
\(2120 \mathrm{~B}=\mathrm{F}: F \mathrm{FOR} \mathrm{J}=0\) TO 4
\(2130 \quad X=X 1(\mathrm{~J}): Y=Y 1(\mathrm{~J}): G 0 S U B \quad 3500\)
2140 NEXT J
\(2150 \times 2(F)=X 1: Y 2(F)=Y 1: F 1=F 1+1: U(F 1)=F: G\) OTO 2010
2160 REM BOARD FILLED
2170 LOCATE 15，1：PRINT＂SDLUTION＂；：END 2180 REM UNDRAW LAST ONE
\(2190 \mathrm{~F}=\mathrm{U}(\mathrm{P} 1): \mathrm{U}(\mathrm{P} 1)=0: \mathrm{F} 1=\mathrm{P} 1-1\) ：IF \(\mathrm{F} 1<0\) THE N FRINT＂THAT＇S ALL＂：END
\(2200 \mathrm{~B}=0: \mathrm{X}=\mathrm{X} 2(\mathrm{~F}): \mathrm{Y}=\mathrm{Y} 2(\mathrm{~F}): \mathrm{C}=\mathrm{F}=\mathrm{n}\)＂：GOSUB 35 00
\(2210 \times 1=X: Y 1=Y: F O R \quad J=1\) TO 4
\(2220 X=X(T(F), J-1)+X 1: Y=Y(T(F), J-1)+Y 1: X\) \(1(J)=X: Y 1(J)=Y\)
2280 GOSUB 3500
2240 NEXT J
2250 FEM FUTATE THE FIECE
\(2260 \mathrm{~T}\left(\mathrm{~F}^{\prime}\right)=\mathrm{T}\left(\mathrm{F}^{\prime}\right)+1:\) IF \(\mathrm{F}(\mathrm{T}(\mathrm{F}))=\mathrm{P}\) GOTO 2060
2270 REM GIVE UF ON FIECE
\(2280 \mathrm{~T}\left(F^{\prime}\right)=0\)
2290 FEM LOOK FOR NEW FIECE
\(2300 \mathrm{~F}=\mathrm{F}+1\) ：IF \(\mathrm{F}>12\) GOTO 2190
\(2 \Xi 10\) IF \(T(F)<>0\) GOTO 2300
2320 GOTO 2030
30OO FOR \(\mathrm{J}=1\) TO 12：IF \(\mathrm{T}(\mathrm{J})<>0\) THEN NEXT J

SO1O FETLINN
3200 FOF \(\times 1=1\) TO W2：FOF Y \(1=1\) TO \(W 1\)
3210 IF \(B(Y 1, X 1)=0\) GOTO 3230
3220 NEXT Y \(1, X 1\)
3230 RETURN
3500 LOCATE \(Y+2, X:\) PRINT \(C \$: B(Y, X)=B\)
S 10 RETURN

\section*{Program 4：Pentominos For TI－99／4A}

Insert lines 110－860 from the Commodore version（Program 1）．
（Note：If using a disk drive，type CALL FILES（1）before loading and running this program．）
40 CALL CLEAR
5＠FRINT＂\｛8 SPACES\}PENTOMINOS": :
6め GOTO 870
\(7 \emptyset\) FOR \(I=1\) TO LEN（A\＄）
8ø CALL HCHAR（ROW，COL＋I，ASC（SEG\＄（A\＄ ，（ 1 ）））
90 NEXT I
1 Bめ RETUFN
870 DIM XX \((63,4), Y Y(63,4), P P(64), P P\) \＄（13），SS（13），TT（13），BE（6，2あ）
880 DIM \(X X 1(5), Y Y 1(5), X X 2(12), Y Y 2(1\) 2），UU（12）
890 CT＝5
\(9 \emptyset \emptyset\) READ F\＄，N
\(91 \varnothing\) IF \(N=\varnothing\) THEN \(1 \varnothing 4 \varnothing\)
\(92 \emptyset \quad T=T+1\)
\(936 \mathrm{PF} \$(T)=P \$\)
\(940 \quad S S(T)=V+1\)
959 FOF \(J=V+1\) TO \(V+N\)
\(96 \emptyset \operatorname{PP}(J)=T\)
\(97 \emptyset\) FOR \(K=\emptyset\) TO 3
\(98 \emptyset\) READ \(X X(J, K), Y Y(J, K)\)
99 NEXT K
1 ØøØ NEXT J
\(161 \varnothing V=V+N\)
1020 PRINT \(P \$ ;\)

1 Ø3Ø GOTO 9øø
1040 CALL CLEAR
\(1 \emptyset 5 \emptyset\) PRINT＂CHOOSE：＂：：
1 106 FOR J＝3 TO 6
\(197 \varnothing\) PRINT J；＂BY＂； \(6 \emptyset / \mathrm{J}\)
1 Ø8ø NEXT J
1 Ø \(9 \varnothing\) PRINT
\(110 \varnothing\) INPUT＂SELECT 3 THRU 6：＂：W1
\(111 \emptyset\) IF \(\left(W_{1}<3\right)+\left(W_{1}>6\right)+\left(W_{1}<>\operatorname{INT}\left(W_{1}\right)\right)\)
THEN 1640
\(112 \emptyset \mathrm{~W} 2=6 \emptyset / \mathrm{W} 1\)
1130 CALL CLEAR
\(114 \varnothing\) FEM FIND NEW SFACE TO FILL
\(115 \varnothing\) GOSUB \(193 \varnothing\)
\(1160 \mathrm{P}=\mathrm{J}\)
\(117 \emptyset\) GOSUB \(197 \emptyset\)
\(118 \emptyset\) IF \(X 1 \geqslant W 2\) THEN \(15 \emptyset \emptyset\)
\(119 \emptyset\) REM GET A NEW FIECE
\(12 \emptyset \varnothing\) TT \((P)=S S(P)\)
121 ø ROW＝CT
\(122 \emptyset \mathrm{COL}=5+\mathrm{CT}\)
\(123 \varnothing\) A\＄＝PP\＄（P）
124 GOSUB \(7 \emptyset\)
\(125 \emptyset\) REM TRY FITTING PIECE
126 の \(\mathrm{C} \$=\mathrm{PP} \$(P)\)
\(127 \emptyset \times \times 1(\varnothing)=X_{1}\)
\(128 \emptyset Y Y 1(\varnothing)=Y 1\)
129 FOR \(J=1\) TO 4
\(13 \varnothing \varnothing \mathrm{X}=\mathrm{XX}(\mathrm{TT}(P), \mathrm{J}-1)+\mathrm{X} 1\)
\(131 \emptyset \quad Y=Y Y(T T(P), J-1)+Y 1\)
\(1320 \times X 1(J)=X\)
1330 YY1（J）\(=Y\)
134 IF \((X<1)+(Y<1)+(X>W 2)+(Y>W 1)\) TH EN 184ø
\(135 \emptyset\) IF \(B B(Y, X)<\rangle \varnothing\) THEN \(184 \varnothing\)
1360 NEXT J
\(137 \emptyset\) REM IT FITS－PUT PIECE IN PLA CE
\(1380 \mathrm{~B}=\mathrm{P}\)
139の FOR J＝ø TO 4
14 あぁ \(X=X X 1\)（ \(J\) ）
141 Ø \(\mathrm{Y}=\mathrm{YY} 1\)（J）
\(142 \emptyset\) GOSUB \(2 \emptyset 3 \emptyset\)
\(143 \emptyset\) NEXT J
\(1440 \times 2(F)=X 1\)
\(145 \varnothing \quad Y Y 2(F)=Y 1\)
\(1460 \mathrm{~F} 1=\mathrm{F} 1+1\)
\(147 \emptyset\) UU（ F 1 ）\(=\mathrm{F}\)
\(148 \emptyset\) GOTO \(115 \varnothing\)
149 Ø REM BOARD FILLED
150め ROW＝15
\(1510 \mathrm{COL}=5+\mathrm{CT}\)
1520 A\＄＝＂SOLUTION＂
1530 GOSUB 70
1540 ROW＝17
\(1550 \mathrm{COL}=5\)
\(156 \varnothing\) A\＄＝＂FIND ANOTHER SOLUTION？＂
157日 GOSUB 7日
\(158 \emptyset\) CALL \(\operatorname{KEY}(J, K, S)\)
\(159 \emptyset\) IF \(S<>1\) THEN \(158 \varnothing\)
16 IF CHR\＄（K）＝＂Y＂THEN 1620
1610 END
\(162 \emptyset\) REM UNDRAW LAST ONE
\(1630 \mathrm{~F}=\mathrm{UU}\left(\mathrm{P}_{1}\right)\)
164 Ø UU（F1）＝Ø
1650 F \(1=P 1-1\)
166 IF \(\mathrm{F} 1>=\varnothing\) THEN \(169 \emptyset\)
167 Ø PRINT＂THAT＇S ALL＂
1689 STOP
\(1690 \mathrm{~B}=\varnothing\)
\(1700 \mathrm{X}=\mathrm{X} \times 2\)（F）
\begin{tabular}{|c|c|}
\hline 1710 & \(Y=Y Y Z(F)\) \\
\hline 1720 & C\＄＝＂＂ \\
\hline 1730 & G0SUB 203ด \\
\hline 1740 & \(\mathrm{X} 1=\mathrm{X}\) \\
\hline 1750 & \(Y 1=Y\) \\
\hline 1760 & FOR \(J=1\) TO 4 \\
\hline 1770 & \(\mathrm{X}=\mathrm{XX}(\mathrm{TT}(\mathrm{P}), \mathrm{J}-1)+\mathrm{X} 1\) \\
\hline 178 ¢ & \(Y=Y Y(T T(F), J-1)+Y 1\) \\
\hline 1790 & \(X \times 1(J)=X\) \\
\hline \(18 \emptyset \emptyset\) & \(Y Y 1(J)=Y\) \\
\hline 1810 & GOSUB 203＠ \\
\hline 1829 & NEXT J \\
\hline 1830 & Rem＇Rotate the piece \\
\hline 1840 & \(T \mathrm{~T}(\mathrm{~F})=\mathrm{T} T(\mathrm{~F})+1\) \\
\hline 1850 & IF \(\mathrm{PF}(\mathrm{TT}(\mathrm{P}) \mathrm{)}=\mathrm{P}\) THEN 1260 \\
\hline 1860 & REM GIVE UF ON PIECE \\
\hline 1879 & TT \((P)=\emptyset\) \\
\hline \(188 \emptyset\) & REM LOOK FOR NEW PIECE \\
\hline 1896 & \(\mathrm{F}=\mathrm{P}+1\) \\
\hline 1900 & IF \(P>12\) IHEN 1630 \\
\hline 1910 & IF TT（P）＜＜の THEN \(189 \emptyset\) \\
\hline 1920 & GOTO 12＠め \\
\hline 1930 & FOR J＝1 TO 12 \\
\hline 1940 & IF TT \((J)=\varnothing\) THEN 1960 \\
\hline 195\％ & NEXT J \\
\hline 1960 & RETURN \\
\hline 1970 & FOR \(\times 1=1\) TO W2 \\
\hline 1980 & FOR Y1＝1 TO W 1 \\
\hline 199ø & IF \(\mathrm{BB}\left(\mathrm{Y}_{1}, \mathrm{X}_{1}\right)=\emptyset\) THEN 2 Ø2ø \\
\hline \(2 \square 0 \square\) & NEXT Y 1 \\
\hline \(2 \emptyset 1 \varnothing\) & NEXT X 1 \\
\hline 2ø2Ø & RETURN \\
\hline 203ø & \(\mathrm{ROW}=\mathrm{Y}+1+\mathrm{CT}\) \\
\hline 204ø & \(\mathrm{COL}=\mathrm{X}+\mathrm{CT}\) \\
\hline 2650 & \(A \$=C \$\) \\
\hline 2060 & GOSUB \(7 \emptyset\) \\
\hline 2070 & \(\mathrm{BB}(\mathrm{Y}, \mathrm{X})=\mathrm{B}\) \\
\hline 2ø8ø & RETURN \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Program 5： \\
Pentominos For The Color Computer
\end{tabular}}} \\
\hline & \\
\hline Insert lin & 110－860 from the Commodore version（Pro \\
\hline
\end{tabular}

1 Øø CLS：PRINT＂\｛11 SPACES\}PENTOMINOS" 999 PCLEAR 1
1 ØのØ DIM X（63，4），Y（63，4），P（64），P\＄（1 3），\(S(13), T(13), B(6,26)\)
1 øの1 DIM X1（5），Y1（5），X2（12），Y2（12）， U（12）
\(1 \emptyset 1 \emptyset\) READ \(P \$, N: I F N=\emptyset\) GOTO 1 Ø 7 Ø
\(1 \varnothing 2 \varnothing T=T+1: P \$(T)=P \$: S(T)=V+1\)
\(1 \curvearrowleft 3 \varnothing\) FOR \(J=V+1\) TO \(V+N: P(J)=T\)
\(1 \sqsubseteq 4\) FOR \(K=\emptyset\) TO \(3: \operatorname{READ} X(J, K), Y(J, K\) ）：NEXT K，J
\(1 \emptyset 5 \emptyset V=V+N:\) PRINT \(F \$\) ；
1 Ø6Ø GOTO 1 Ø1ø
1 107 7 FRINTจ64，＂CHOOSE：＂
\(1 \emptyset 8 \emptyset\) FOR J＝3 TO 6：PRINT J；＂BY＂；6ø／ J：NEXT J
1 199ø INPUT＂SELECT 3 THRU 6＂；W1
\(11 \varnothing \varnothing\) IF W \(1<3\) OR W1ン6 OR W \(1<>I N T(W 1)\) BOTO \(167 \varnothing\)
\(111 \varnothing \mathrm{~W} 2=6\) の／W 1
\(112 \emptyset\) CLS
\(2 \emptyset \varnothing \varnothing\) REM FIND NEW SPACE TO FILL
 1）W2 GOTO 217 Ø
\(202 \varnothing\) REM GET A NEW FIECE
\(2030 \mathrm{~T}(\mathrm{~F})=\mathrm{S}(\mathrm{P})\)
\(2 \emptyset 40\) FRINT®33，P\＄（P）
2950 REM TRY FITTING PIECE
\(2 \emptyset 6\) Ø \(C \Phi=P \$(F): X 1(\varnothing)=X 1: Y 1(\emptyset)=Y 1: F O R\)

J＝1 TO 4
\(2 \emptyset 7 め \quad X=X(T(F), J-1)+X 1: Y=Y(T(F), J-1)\)
\(+Y 1: X 1(J)=X: Y 1(J)=Y\)
\(2 め 8 \varnothing\) IF \(X<1\) OR \(Y<1\) OR \(X>W 2 \quad O R \quad Y>W 1\) GOTO 2260
\(2 \emptyset 9 \emptyset\) IF \(B(Y, X)<>\varnothing\) GOTO \(226 \emptyset\)
2100 NEXT J
2110 REM IT FITS－FUT PIECE IN PLA CE
\(2120 \mathrm{~B}=\mathrm{P}: \mathrm{FOR} \mathrm{J}=\mathrm{Q}\) TO 4
\(2136 \quad X=X 1(\mathrm{~J}): Y=Y 1(\mathrm{~J}): G O S U B \quad 35 \emptyset \emptyset\)
214 ＠NEXT J
\(2150 \times 2(F)=X_{1}: Y 2(P)=Y 1: P 1=P 1+1: U(P 1\)
）＝P：GOTO 2 Ø1ø
2160 REM BOARD FILLED
217 OFRINT＠385，＂SOLUTION＂：END
2189 REM UNDRAW LAST ONE
\(219 \emptyset \mathrm{~F}=\mathrm{U}(\mathrm{F} 1): \mathrm{U}(\mathrm{P} 1)=\emptyset: \mathrm{F} 1=\mathrm{P} 1-1: \mathrm{IF} P 1<\) ＠THEN PRINT＂THAT＇S ALL＂：END
\(22 \emptyset 0 \mathrm{~B}=\varnothing: \mathrm{X}=\mathrm{X} 2(\mathrm{P}): \mathrm{Y}=\mathrm{Y} 2(\mathrm{P}): \mathrm{C} \$=" \mathrm{~F}=\mathrm{GOS}\) UB \(35 \emptyset \emptyset\)
221 Ø \(\mathrm{X} 1=\mathrm{X}: \mathrm{Y} 1=\mathrm{Y}: \mathrm{FOR} \quad \mathrm{J}=1\) TO 4
\(222 \emptyset X=X(T(F), J-1)+X 1: Y=Y(T(F), J-1)\)
\(+Y 1: X 1(J)=X: Y 1(J)=Y\)
\(223 \varnothing\) GOSUB \(35 \varnothing \varnothing\)
224 D NEXT J
\(225 \emptyset\) REM ROTATE THE PIECE
\(226 \emptyset T(P)=T(P)+1: I F P(T(P))=P\) GOTO \(206 \emptyset\)
\(227 \emptyset\) REM GIVE UP ON PIECE
\(228 \emptyset \mathrm{~T}(\mathrm{P})=\varnothing\)
\(229 \varnothing\) REM LOOK FOR NEW PIECE
\(23 \emptyset \emptyset P=P+1\) ：IF \(P>12\) GOTO \(219 \emptyset\)
\(231 \emptyset\) IF \(T(P)<>\emptyset\) GOTO \(23 \emptyset \emptyset\)
232め GOTO 2øЗめ
3ØØØ FOR \(J=1\) TO 12：IF \(T(J)<\rangle \varnothing\) THEN NEXT J
उØ1Ø RETUFN
\(32 \emptyset \varnothing\) FOR X1＝1 TO W2：FOR Y1＝1 TO W1
\(321 \varnothing\) IF \(B\left(Y_{1}, X_{1}\right)=\varnothing\) GOTO \(323 \emptyset\)
\(322 \emptyset\) NEXT Y 1 ，X1
3236 RETURN
35øø PRINT \(จ X+(Y+2) * 32, C \$ ;: B(Y, X)=B\)
351 Ø RETURN

\section*{Program 6：Pentominos For The Apple}

Insert lines 110－860 from the Commodore version（Program 1）．
1 Фøø DIM \(X(63,4), Y(63,4), P(64), P \$(13)\) ， \(\mathrm{S}(13), \mathrm{T}(13), \mathrm{B}(6,2 \varnothing)\)
\(1 ø \varnothing 1\) DIM X1（5），Y1（5），X2（12），Y2（12），U（1 2）
\(1 ø \emptyset 3\) HOME ：HTAB 16：PRINT＂PENTOMINOS ＂：PRINT
\(1 \varnothing 1 \varnothing\) READ P \(\$, N\) ：IF \(N=\varnothing\) GOTO \(1 \varnothing 7 \emptyset\)
\(1 \varnothing 2 \varnothing T=T+1: P \$(T)=P \$: S(T)=V+1\)
1 1030 FOR \(J=V+1 T O V+N: P(J)=T\)
\(1 \emptyset 4 \varnothing\) FOR K \(=\varnothing\) TO 3：READ \(X(J, K), Y(J, K\) ）：NEXT K，J
\(1 ø 5 \emptyset V=V+N:\) PRINT P\＄；
\(1 \varnothing 6 \varnothing\) GOTO 1 N1ø
\(1 ø 7 \emptyset\) PRINT ：VTAB（5）：PRINT＂CHOOSE：＂ ：PRINT
1ø8ø FOR J＝ 3 TO 6：PRINT J；＂BY＂； \(6 \varnothing\) ／J：PRINT ：NEXT J
\(1 ø 9 \emptyset\) INPUT＂SELECT 3 THRU 6 ？＂；W1
\(11 \emptyset \emptyset\) IF W \(1<3\) OR W \(1>6\) OR W \(1<>\) INT （W1）GOTO 1ø7の
\(1110 \mathrm{~W} 2=60 / \mathrm{W} 1\)
\(112 \varnothing\) HDME
\(2 ø ø \emptyset\) REM FIND NEW SPACE TO FILL
2ø1ø GOSUB 3øøø：P＝J：GOSUB 32øø：IF \(x_{1}>\) W2 GOTO \(217 \varnothing\)
```

2ø2ø REM GET A NEW PIECE
2030}T(P)=S(P
2040 VTAB 1: PRINT P$(P): VTAB 12
205! REM TRY FITTING PIECE
2060 C$ = P$(P):X1(吕 = X1:Y1(\emptyset) = Y1: FOR
 J = 1 TO 4
2@7\emptyset X = X(T (P),J - 1) + X1:Y = Y(T(P),
 J - 1) + Y1:X1(J) = X:Y1(J) = Y
2ø8\emptyset IF X < 1 OR Y< 1 OR X > W2 OR Y >
 W1 GOTD 2260
2ø9\emptyset IF B (Y,X) < > D GOTO 226\emptyset
21øD NEXT J
2110 REM IT FITS - PUT PIECE IN PLACE
212ø B = P: FOR J = Ø TO 4
213ø X= X1(J):Y = Y1(J): GOSUB 35ø\emptyset
2140 NEXT J
2150 X2(P) = X1:Y2(P)= Y1:P1 = P1 + 1:
 U(P1) = P: GOTO 2ø1\emptyset
2160 REM BOARD FILLED
217@ UTAB 1: PRINT " SOLUTION";: END
218\emptyset REM UNDRAW LAST ONE
219ø P = U(P1):U(P1) = Ø:P1 = P1 - 1: IF
 P1 < Ø THEN PRINT "THAT'S ALL": END
22ø\varnothing B = Ø: X = X2(P):Y = Y2(P):C$ = ""
: GOSUB 35ø0
221ø X1 = X:Y1 = Y: FOR J = 1 TO 4
2220 X = X(T (P),J - 1) + X1:Y = Y(T(P),
J - 1) + Y1:X1(J) = X:Y1(J) = Y
2230 GOSUB 35øø
2240 NEXT J
2250 REM ROTATE THE PIECE
2260T(P)=T(P)+1: IF P(T (P)) = P GOTO
2ø60

```
\(227 \emptyset\) REM GIVE UP ON PIECE
\(228 \emptyset T(P)=\varnothing\)
229の REM LOOK FOR NEW PIECE
\(23 ø \varnothing P=P+1: I F P>12\) GOTO \(219 \varnothing\)
\(231 \varnothing\) IF \(T(P)<>\varnothing\) GOTO 23øø
2320 GOTO 2ø3の
उøøø FOR J＝ 1 TO 12：IF T（J）\(\langle>\emptyset\) THEN NEXT J
\(3 \varnothing 1 \varnothing\) RETURN
32øめ FOR X1＝ 1 TO W2：FOR Y1＝ 1 TO W 1
\(321 \varnothing\) IF \(\mathrm{B}(\mathrm{Y} 1, \mathrm{X} 1)=\varnothing\) GOTO \(323 \emptyset\)
3220 NEXT Y1，X1
\(323 \varnothing\) RETURN
35のø UTAB \(Y+4:\) HTAB \(X:\) PRINT C \(\$: B(Y\) ， \(X)=B\)
351ø RETURN

\section*{Saper \\ ¢ญิp}

ATARI CARTRIDGE－TO－DISK COPY SYSTEM \＄69
Supercart lets you copy ANY cartridge for the Atari \(400 / 800\) to diskette，and thereafter run it from your
disk drive．Enioy the convenience of selecting your favorite games from a＂menu screen＂rather than swapping cartridges in and out of your computer．Each cartridge copied by Supercart functions exacth like the original，．self－booting，etc．
Supercart includes：COPY ROUTINE
Supercart includes：COPY ROUTINE－Dumps the contents of the cartridge to a diskette（up to 9 cartridges will fit on one disk．） CARTRIDGE－＂Tricks＂the cartridge has been inserted．
carrioge has been inserted．
． been no problems duplicating
To date there haver Sim illegal copying and／or distribution of copyrighted software ．．．Sorryll！

Atari 400 or 800 Computer／ 48 K Memory／One Disk Drive
Available at you mputer store or direct from FRONTRUNNER．DEALER INQUIRIES ENCOURAGED． Personal checks allow \(2-3\) weeks to clear．M／C and VISA accepted．
Include \(\$ 3.50\)（ \(\$ 7.50\) Foreign orders）for shipping．
FRONTRUNER COMPUTER INDUSTRIES
FRONTRUNNER COMPUTER INDUSTRIES
316 California Ave．，Suite 7712 ，Reno，Nevada 89509 －（702）786－4600
316 California Ave．，Suite n712，Reno．Nevada 89509－（702） 786 －4600 \(\begin{gathered}\text { Others Make Claims．．SUPERCART makes copies／I！}\end{gathered}\)

\section*{Put a Monkey Wrench into your ATARI 800}

Cut your programming time from hours to seconds，and have 18 direct mode commands．All at your finger tips and all made easy by the MONKEY WRENCH II．
The MONKEY WRENCH II plugs easily into the right slot of your ATARI and works with the ATARI BASIC cartridge．
Order your MONKEY WRENCH II today and enjoy the conveniences of these 18 modes： －Line numbering
－Renumbering basic line numbers －Deletion of line numbers
－Variable and current value display
－Up and down scrolling of basic programs
－Location of every string occurrence －String exchange －Move lines
－Copy lines
－Special line formats and page numbering
－Disk directory display
－Margins change
－Memory test
－Cursor exchange
－Upper case lock
－Hex conversion
－Decimal conversion
－Machine language monitor
The MONKEY WRENCH II also contains a machine language monitor with 16 commands that can be used to interact with the powerful features of the 6502 microprocessor．


\section*{8 K in 30 Seconds}
for your VIC 20 or CBM 64
If you own a VIC 20 or a CBM 64 and have been concerned about the high cost of a disk to store your programs on worty yoursel no longet Now theres the RABBI．The RABBIT comesin a cartridge and ar much，much iower price han he cverage disk．And speed stis is onelas win he RABB you can locdand slore on you com dasele an fast as the 1541 disk drive 20 Cos tast as the 1541 disk drive
The RABBIT is easy to install，allows one to Append Basic Programs，works with or without Exponsion Memory，and provides two data file modes The RABBIT is not only fast but reliable
（The Rabbit for the VIC 20 contains an expansion con－
nector so you can simulitaneously use your memory board，etc）\＄39．95

\section*{\(\rightarrow\) NOW THE BEST FOR LESS！}
\(\$ 59.95\)

For CBM 64，PET，APPLE，and ATARI Now，you can have the same protessionally designed Macro Assembler／Editor as used on Spoce Shutlle projects
－Designed to improve Programmer Productivity．
－Similar syntox and commands－No need to relearn peculia syntaxes and commands when you go from PET to APPLE to AtARI
－Coresident Assembler／Edito－No needtoload the Editor，then the Assembler，then the Editos，etc
－Also includes Word Processot：Relocating Loader：and much
－Powerful Editor．Macros．Conditional and Interactive Assembly，and Auto－zero page addressing
Still not convinced；send for our tree spec sheet！

3239 Linda Dr．
Winston－Salem，N．C． 27106 （919）924－2889（919）748－8446 Send for free catalog！

\section*{REVIEWS}

\section*{Pitstop}

Shay Addams
Racing games are nothing new, but Pitstop from Epyx incorporates a realistic element of the sport that sets it apart from everything else on the track. In addition to zooming around the course as fast as possible, you must develop a solid plan for maneuvering your three-man pit crew when you're forced to pull in for fresh tires and refueling. The game is available on cartridge for Atari, Commodore 64, and Coleco Adam computers.

The action takes place on one of six speedways, all based on genuine tracks such as Le Mans and Monaco. You can race at any one, or opt for the "MiniCircuit," in which the program picks three courses at random for you to complete, one after the other. Hardcore speed demons will prefer the "Grand Circuit"-it requires you to cover all six tracks in succession, a grueling marathon event. The number of laps per race can be set to three, six, or nine; skill levels include Rookie, Semi-Pro, and Pro. Up to four players can compete by taking turns.

The race kicks off as you push forward on the stick to accelerate. The perspective and graphics are similar to Enduro, but unfortunately not as detailed as Pole Position. While you accelerate, the gears shift automatically, accompanied by authentic sound effects. The screen scrolls vertically, with a green background and yellow cars. Your speed, elapsed time, and current lap are constantly displayed.

No more than two other
cars are on the track simultaneously, but they are programmed to swerve into your path or travel side by side to prevent your passing them. The main thing to watch out for is bumping into other cars or the sides of the road. An accident won't cause a colorful explosion the way it does in Pole Position, but it will reduce your speed as in Baja Buggies.

\section*{Trouble With Tires}

This is where Pitstop takes a detour from the familiar "race around the track" scenario of similar games. When you smash into another car or the railing alongside the road, the corresponding tire is damaged. Starting off a deep blue, the tires change to a different hue each time you have an accident. Sustain too much damage and the tire explodes, knocking you out of the race. You've got to keep an eye on the color of all four tires and be ready to pull into the pits when they turn a bright red (indicating that they'll burst on the next collision).

The pit area is located to the right of the finish line. An inset map on the left displays an overhead view of the course, with your car's current position and the finish line prominently marked. Turn into the off-ramp on the right as you pass the finish line, and the scene cuts to a threequarter perspective of your car sitting in the pits. Now your vehicle is revealed as one of those low-slung, Indy 500-type racers, and is larger and much more detailed.

\section*{Action In The Pits}

A member of your pit crew waits on each side of the car, standing
by to change the tires. Another is behind you, gas hose in hand. If the horizontal fuel gauge says you're running low, it's best to get the gas pumping immediately. This is done by using the joystick to move a cursor over the man, then hitting the fire button. Now you can steer him into place, where he automatically starts refilling your tank.

Tires are changed by activating one of the other men and moving him to the tire you want removed. He'll latch onto it, and you can guide him to a stack of fresh tires. When he touches the stack, the tire he's holding turns a deep blue to indicate that he's got a new tire, which he can then attach to the car. But keep your eyes on the gas gauge, because if you don't remove the nozzle when the tank's topped off, the gas spills over and you have to fill it up again.

While all this is going on, a timer at the top right of the screen shows the seconds ticking away to remind you how much time you're losing in the pits. Another digital display at bottom left tells you how much overall time has elapsed since the race began. To underscore the urgency of getting out of the pits as quickly as possible, the rest of the cars keep racing past in the background, their engines buzzing as they gain distance on you. When you're ready to roll, position the cursor over the man in front of the car and he'll raise his flag to wave you back onto the track.

\section*{Multiplayer Competition}

You can make it through three laps around most tracks without
a stop for gas or tire changes, but the only fun involved in this is trying to beat your best time for the same course. Pitstop's more enjoyable in group play. When one driver completes the set number of laps, the next one takes a whirl around the track. After the race, each player's time is posted, along with his portion of the \(\$ 94,000\) prize money. If you're competing in a Mini- or Grand circuit, the overall winnings are displayed at the bottom. If two or more players tie, the one who started first wins, so flip a coin to determine who goes first.

In addition to the exciting competition and action, Pitstop requires strategy and split-
second decision-making that are missing in other racing games. Should you try to finish the race in spite of a severely damaged tire, or pull into the pits and at least insure that you complete the race? Is there time to change all four tires? Situations like these put a real edge on the game play. Since veteran race car drivers agree that many professional races are won in the pits, not on the track, Pitstop has to be one of the most realistic and playable racing simulations available. Pitstop
Epyx Computer Software
1043 Kiel Court
Sunnyvale, CA 94089
Atari, 64 versions, \(\$ 39.95\)
Coleco Adam version, \(\$ 53\)

\title{
Panic Button For VIC And TRS-80 Color Computer
}

Michael B. Williams
Not wanting to imitate the other arcade games on the market, First Star has introduced a game which is refreshingly originaland very entertaining.

In Panic Button, you have been hired to assemble various objects whose parts parade on three continuously moving conveyor belts. On the first level, robot parts are ejected from the three chutes at the top of the screen. Not only must you catch up to them, but you must assemble them in the proper order to be given credit for the item. Should you accidentally place the robot's feet on its head (an improper sequence), no credit is given for the item, nor are its parts reusable, since there is no way to separate any two joined parts. I found it frustrating: No sooner had I completed two-thirds of an object than an incorrect part dropped from a chute and attached itself to mine. Surprisingly, this occurred in my favor as often as it did against me.

After a while, especially during the harder screens, these


Parts continuously flow from three conveyor belts in Panic Button (Color Computer version).
"rejected" objects (obviously thrown by your boss in anger) begin to fly around the screen, at times bumping into you and making your job even more difficult. I almost found it more than I could handle, having to race around the screen to retrieve objects moving nearly as quickly as I was.

\section*{Houses, Telephones, And Lamps}

In later screens, you will find three-layered cakes, houses, telephones, televisions, and finally lamps dropping from the chutes. After every screen, it
becomes progressively more challenging to complete your minimum order as the conveyor belts move faster and the number of objects you must assemble within the two-minute limit increases. After completing the second screen, you have a muchawaited opportunity to fling a pie into your boss's face-but that is not what gets you fired. Panic Button breaks away from the three-man tradition and provides you with only one worker. Should he fail to fulfill his minimum order of assembled items, the boss spares no time in firing him (where's another pie?).

You have only one thing going for you in this game-the "panic button." You activate it by using the joystick button to move your character over to the operating switch. This slows the conveyors to a halt, allowing you to freely gather the objects around the factory. (Unfortunately, it has no effect on the clock, which continues to run down.) But your enraged boss soon comes to restart the conveyor belt, and you continue your frantic race against time.

An "external" panic button not mentioned in the rather skimpy documentation is the space bar: Pressed at any time during the game, it pauses the action indefinitely. I found myself using this panic button more than the other.

First Star's decision to develop a game with a unique concept is refreshing, but an original game is not always a good game. With Panic Button, however, First Star has succeeded. I recommend it to anyone who enjoys nonstop action-and even to those who do not. After all, that is the reason the "panic button" exists.
Panic Button First Star Software, Inc. 22 East 41st Street New York, NY 10017
Color Computer or VIC (8K expansion) tape, \$24.95
VIC cartridge \(\$ 34.95\)
Color Computer cartridge \(\$ 39.95\)
\begin{tabular}{|c|c|c|c|}
\hline 600XL & & & LL \\
\hline 800XL & & & LL \\
\hline 1200XL & & & 9* \\
\hline 1050 DRIVE & \$335 & microbits infc & ate
\$78 \\
\hline 1025 PRINTER & \$399 & 80 COLUMN BD & \$249 \\
\hline 1020 COLOR PTR & \$219 & TECHNICAL NOTES & \$25 \\
\hline 1027 PRINTER & \$279 & REAL TIME CLK & \$38 \\
\hline 1010 RECORDER & \$72 & 810 DRIVE & \$419 \\
\hline
\end{tabular}

Gemini 15X Printer
Axiom AT-100 Printer (with interface Astra Double Density Dual Drive . . . Rana 1000 Drive
Bit-3 80 Column Board
Mannesmann Talley 160 L Printer
Atari 400 Keyboard (In Home)
Programmer Kit . . \$48 Entertainer Kit
Wico Joystick ... \$23 Wico Trackball

\section*{*ASTRA 1620 \\ DISK DRIVE SYSTEM}

\section*{MORE FOR YOUR MONEY} DOUBLE OR SINGLE DENSITY TWO DRIVES
SPECIAL
\$469
PERCOM 40-S2
PERCOM 44-S1
PERCOM 44-S2

\section*{ATARI SOFTWARE}

ADVENTURE INT'L
Adv. 1.12 each (C)
EDU.WARE
Preppie (C/D).
Diskey (D)
Sea Dragon (COD)
APX
Eastern Front (C/D)
747 Land Sim
Fig-Forth (C)
ATARI INC.
Microsoft Basic II (R) Outdo
Paint (D)
Speed R Speed
Qix (R) Qix Dug (R) Atari Writer (R Donkey Kong (R) Vime Wise Juggles House (CID) Juggles Rnb
Pilot (Home) Galaxian Defender
ET .
Microsoft Basic (D) Assembler Editor (R) Basic Cartridge (R) Pac Man (R) Centipede (R) Caverns of Mars (D) Star Raiders (R)
Conv. Lang. Ea. (C Music Composer (R) Super Breakout (R) My First Alphabet (D) Prog. 2 \& 3 (ea.)(C) Word Proces Touch Typing (C) Home File Mngr (D)

AUTOMATED SIMUL Hellfire Warrior (CID) Kng Arthr's Heir (C/D) emple of Aps. (CID)
Star Warrior (C/D)
Dragon's Eye (D)
Crush Crumble (CID) .
AVALON HILL
VC(D).
B-1 Nuc. Bomber (C) . . . \(\$ 12\)
Legionnaire (C
BRODERBUND
Sky Blazer (D)
Bank St. Writer (D)
A.E. (D)

Arcade Machine (D)
Choplifter (D)
CBS
Boulders \& Bombs (R) \({ }^{\mathbf{R}}\) \$27
Krazy (each) (R) \$27
CONTINENTAL SOFT.
Home Accountant (D) Tax Advantage (D)
DATASOFT
Text Wizard (D) Graphic Master (D) Micro Painter (D). Lisp Interpreter (D) Graphics Gen.(D) Basic Compiler (D) Zaxxon (C/D)
DON'T ASK
Sam (D)
P.M. Animator (D)

Teletari (D)
\(\$ 18\)
\(\$ 20\)

\section*{Spelling Bee (D) Spelling Bee (D)} Compu-Read (D) Compu-Math Fr. (D)
Compu-Math Dec. (D) EDUCATIONAL SOFT
```

EDUCATIONAL SOFT.

```
\(\$ 23\)
\(\$ 17\)
1,2,3 or 4 (C/D).
Tricky Tutorial Tricky Tutorial INFOCOM

\section*{INFOCOM}

Suspended (D)
Zork I, II or III (D)
Starcross (D)
Starcross (D)
Deadline (D)
JV SOFTWARE
Jrny to PInts (C/D Jrny to PInts (C/D)
Action Quest (C/D) Action Quest (C/D)
Ghost Encount. (C/D) LJK
Letter Perfect (D)
Data Perfect (D)
ON-LINE
Ultima II (D)
Marauder (D)
Lunar Leeper (D)
Wiz \& Princess (D)
Frogger (C/D)
CROSSIMIZED SYSTEMS

\section*{C-65 (D)}

Bug-65 (D
Max-65 (D)
Basic A+ (D)
ROKLAN
Gorf (D)
Wizard of Wor (D)
Wizard of Wor (R)
SIRIUS
SIRIUS
Alpha Shield (R)
Wavy Navy (D
Bandits (D)
SPINNAKER
SPINNAKER
Snooper Troop 1,2 Snooper Troop 1, Kindercomp (D) ...
Rhymes \& Riddles (D) Hey Diddle Diddle (D) Srch Amzng Thngs (D) Story Machine (D). Face Maker (D) STRATEGIC SIM. Cosmic Balance (D) Cosmic Balance II (D) Tigers In Snow (C/D) Battle of Shiloh (CID) Battle of Norm. (CID) Galactic Gladiator (D) Cytron Masters (D) SYNAPSE SOFTWARE Flle Mngr \(800+\) Protector II (D) \(\$ 23\) (R) \(\$ 29\) Shamus ... (D) \$23 (R) \$29 Fort Apocalypse (CID) \$23 Shamus II (C/D)
Necromancer (C/D) Pharoh's Curse (C/D) THORN EMI
Soccer (R)
Jumbo Jet ( \(\ddot{R}\) )
Submarine Com....... \(\$ 34\) USA
Atari World (D)
3-D Sprgrphcs (C/D) . . . \(\$ 39\) MISCELLANEOUS
Sargon II ... (C) \$20 (D) \$23 Financial Wizard (D) . \(\$ 41\) Castie Wolfenstein (D) \(\$ 20\)
Master Type (D) ...... \(\$ 27\) Master Type (D)
Millionaire (D) Millionaire (D). Astro Chase (D) Ali Baba (D) . Miner \(2049 e r\) (R) Sammy Sea Serp. (C) . \({ }_{\mathbf{S}} 13\)

\(\$ 27\)
\(\$ 27\)
\(\$ 20\)

\section*{Printers/Etc.} GEMINI 10X \$279 PROWRITER \$345
 NÑ AMDEK Color
V300 V300. Color II

\section*{HAYES} Smartmodem 1200 .. \$498 Apple Cat il \$259 A.Cat

\section*{727 BREA CANYON RD., SUITE 16 WALNUT, CA 91789 \\ ORDER LINES OPEN MON-SAT \(8 \mathrm{am}-8 \mathrm{pm}\)}
(800) 626-7642

PLEASE FOR ORDERS ONLY SORRY, NO COD'S (714) 594-5204

\section*{FOR TECHNICAL INFO, ORDER INQUIRIES,} OR FOR CALIFORNIA ORDERS
Add \(\$ 2.50\) shipping per software order in continental U.S. Add \(\$ 5.00\) shipping per software order for AK, HI, FPO-APO. Add \$10.00 or \(15 \%\) whichever is greater) per software order for non-U.S. Call for cost of hardware shipping. Calif, residents add \(61 / 2 \%\) sales tax Cashiers checks or money orders filled within 24 hours for items in stock Personal checks require 4 weeks to clear. MasterCard and Visa OK for. software only within continental 1 clear. MasterCard and Visa OK for software only within continental U.S., add 3\% surcharge. Include card final. All defective returns must have to our low prices, all sales are Please call to obtain one must have a return authorization number Please call to obtain one before returning goods for replacement or
repair. Prices \& availability subject to change

COMMODORE CBM 64 CALL 1541 DISK DRIVE \$239
\begin{tabular}{|c|c|c|c|}
\hline 1701 Color Monitor & \$255 & 1530 Recorder & \$59 \\
\hline 1525 Printer & \$239 & 1600 Modem & \$59 \\
\hline 1520 Color Ptr & \$169 & 1650 Auto Modem & \$89 \\
\hline Card ? (Infc) & \$60 & CMB 64 Ref Guide & \$18 \\
\hline Light Pen & \$29 & The Connection (Infc) & \$85 \\
\hline Cassette Infc & \$29 & MSD Disk Drive & \$339 \\
\hline Card ? Software & \$16 & PTI 45 Lot Board & \$59 \\
\hline
\end{tabular}

\title{
64
}

\section*{software}


ACCESS SOFTWARE Sprite Master (C/D) ... \$27 Inventory Pkg (D) AVALON HILL

\section*{Planet Miners (C)} Androm. Conquest (C) Midway Campaign (C)
North Atl. Convoy (C) North Ati. Convoy (C) Computer Football (C) Telengard (C) BATTERIES INCLUDED Paper Clip (D) Delphis Oracle(D Choplifter (R) Serpentine (R) Seafox (R)

\section*{COMMODORE}

Easy File (D)
Easy Finance (D)
Easy Mail (D)
Easy Script (D)
Easy Schedule (D)
Logo (R)
Pilot (D)
Assembler (D)
Music Machine
Music Composer (D)
Meza Music (D)
Video/Music Supt. (D) Jupiter Lander (R)....
Radar Rat Race (R) Sea Wolf (R) Kickman (R)

Pakacuda . (C) \$14 (D) \$18 Escp. MCP. (C) \(\$ 14\) (D) \(\$\)

\section*{COMPUTERMAT}

Arcade-Pak (C)
Education-Pak (Cㄷ) . . . . . \$
CREATIVE SOFTWARE
Moondust (R) .
Save New York (R)
Astroblitz (R)
Household Fin. (D) . .

\section*{DATA 20}

Z 80 Video Pak . . . . . . . . \(\$ 229\)
Finance Calc 64 …. \(\$ 34\) Invoice Ease 64

\section*{EPYX}

Upper Reach. APS (D). \$27 Jumpman (D) ......... \(\$ 27\)

\section*{HES}

HES Modem ........ \$59
Hesmon 64 (R)
Turtle Grapics II (R)
Heswriter 64 (R)
Gridrunner (R)
Retroball (R)
INFOCOM
Deadline (D) (D)
Starcross

\section*{JIN SAM}

Mini-Jini (R)
Pro.Mail.List (C)\$22 (D)\$25 Stockmaster
(Inventory) (C) \(\$ 25\) (D) \(\$ 28\)

\section*{Locic}

Datacalc 64 (C) \(\$ 55\) (D) \(\$ 59\)
Home Journal (D)
General Ledger (D)
\(\$ 12\)
Mail List Mgr (D)
CheckbookMgr(D)
M-SOFT
M-File (D)
ON-LINE
Frogger (D)
Jawbreaker (D) ....... \$20
PACIFIC COAST SOFT.
PCS (80 Col BD, Word Proc,
D.Base,Spreadsheet) CALL
Account PAC (C/D) \(\ldots 34\)

Account PAC (C/D)
File PAC (D).
Editor PAC (D)
Inquire PAC (D) ....... \(\$ 39\)
Happy Tutor Typng
Happy Tutor Typng (D) \(\$ 18\)
PROFESS. SOFTWARE
PROFESS. SOFTWAR
Wordpro \(3+/ 64\) (D) ...
QUICK BROWN FOX
Prof.Word Proc. (R)
RAINBOW
Writers Assistant . . . . \$95
Spreadsheet Assist. . . \(\$ 95\)
Fire Assistan
SIRIUS
Blade/Blackpoodle (D) \(\$ 27\)
Type Attack
Type Attack (D)
Repton (D)
Critical Mas
Snake Byte (D)
Snake Byte (D)
Way Out (D)
Fast Eddie (D)
Spider City (D)
Spider City (D)
Squish'Em (D)
Final Orbit (D)
Alpha Shield (D) ....... \$27
SKYLES ELEC. WORKS
\(\begin{array}{ll}\text { Busicalc (CID) } & \text {. . . . . . } \$ 52 \\ \text { Busiwriter (D) } & \text {. . . . . } \$ 72\end{array}\)
SPINNAKER
Snooper Troops 1 (D) . \$29
Facemaker (D)
Kindercomp (D) ........ \$23
Hey Diddo (D)
Most Amaz. Thing (D) . \$27
Fort Apocalypse (CID) \$23
Survivor (CID) . . . . . . . \$23
Dreibs (C/D) ........... \$23
Pharoh's Curse (C/D) . \$23
Protector II (D) ........
Shamus (D)
Touch Typing Tutor
3.0 (D)..

TIMEWORKS \(\$ 21\)
Rbbrs/Lost Tomb (C/D) \(\$ 21\)
Wall Street (C/D)
Wall Street (C/D)
Money Manager (CID) \$21

\section*{Questions Beginners Ask}

Are you thinking about buying a computer for the first time, but you don't know much about computers? Or maybe you just purchased a computer and are still a bit baffled. Each month in this column, COMPUTE! will answer questions frequently asked by beginners.


What is a motherboard?

AA motherboard is the main circuit board of a computer. All other boards are connected to the motherboard.

The most important component on the motherboard is the central processing unit (CPU)-the central brain of the computer. The CPU is a microprocessor chip which performs or supervises all computer operations. It fetches each program instruction one at a time, executes it, stores the result, and then fetches the next instruction.

The motherboard also contains support chips required by the CPU: usually a video chip to control the TV display; input/output chips to handle the exchange of data with such peripherals as the disk drive, tape recorder, or printer; and perhaps a sound chip for music and sound effects.

In some computers-such as the Apple, Atari 800, and IBM PC/PCjr-the motherboard has long, narrow sockets called slots into which accessory boards can be plugged. Memory boards full of RAM chips (Random Access Memory) often fit into these slots. Other accessory boards (or cards) might include operating systems, disk drive controllers, printer interfaces, direct-connect modems, 80 -column video expanders, graphics expanders, and even piggyback processors (boards with another CPU to allow the computer to run different types of software). That's why motherboards with several internal slots make a computer more versatile.

Some computers, including most home computers these days, contain only one circuit boardthe motherboard. All the components are contained on this main board: the CPU, support chips, RAM chips, and ROM chips (Read Only Memory).

Consolidating all the boards into one motherboard makes the computer smaller, lighter, and-most important from the manufacturer's point of viewcheaper to produce. For example, original Atari 800s contain six boards, and that's even before all the slots are filled with accessory boards. But the new Atari 800XL, which replaces the 800, contains only one board, even though it has more memory ( 64 K RAM versus \(8 \mathrm{~K}-48 \mathrm{~K}\) ). Obviously, the 800 XL costs less to manufacture.

Of course, a computer without slots for accessory boards would not be as versatile. So singleboard computers generally have an expansion slot or system bus on the rear. This allows accessory boards to be added externally. The accessory boards resemble large cartridges because they are enclosed in protective plastic or metal housings.

This still leaves one problem. How can more than one accessory board be plugged in at once? Naturally, there's a solution-an expansion box or motherboard extender. Both devices convert a lone expansion slot into several slots. For instance, you can expand a Commodore VIC-20 from the standard 5K RAM to 24 K RAM by plugging a motherboard extender into the rear expansion slot, and then plugging 3 K and 16 K expanders into the motherboard extender.

Occasionally this is necessary even on computers with internal slots on the motherboard, such as the IBM PC. To fully equip a PC, sometimes the five internal slots just aren't enough.

\section*{ATTENTION PROGRAMMERS}

Our company is small enough that you won't get lost in the shuffle and our distribution is large enough for you to make significant royalties. One of our outside programmers made over \(\$ 18,000.00\) in royalties from our first sale of his program to one mass merchandiser! (Our royalties are generous.) His program wasn't quite finished when it was submitted to us, but we could see its possibilities and aided in its completion.
If you have an exceptional original program for the Commodore 64 that would appeal to a wide audience, contact our new program manager.

\section*{ACADEMY SOFTWARE}
P.O. Box 6277, San Rafael, CA 94903 (415) 499-0850

Anchor Automation Signalman MODEMS


FREE SOURCE MEMBERSHIP WITH SIGNALMAN All Signalman Modems are Direct Connect, and provide the best price-performance values. Dealer and OEM inquiries invited
\begin{tabular}{lr} 
Volksmodem with computer cable & 68 \\
Mark VII Auto Dial/Auto Answer & 99 \\
Mark XII Smart Model'1200/300 & 279 \\
\hline DC HAYES Smartmodem & 219 \\
DC Hayes Smartmodem \(1200 / 300\) & 519 \\
\hline
\end{tabular}

\section*{}

PROM QUEEN for C64 or VIC
Apple Emulator for Commodore 64 STAT Statistics Package for C64 Solid Oak 2 Level Stand for C64 or VIC C64NIC Switch (networking)
BACKUP VI.O tape copier for C64 or VIC CARDBOARD/6 Motherboard - VIC CARDBOARD/5 Motherboard - C64 CARD PRINT G Printer Int. with Graphics CARD PRINT B Printer Interface-C64NIC CARDBOARD/3s Motherboard - VIC CARDCO C64/VIC Calculator Keypad CARDRAM/16 RAM Expansion - VIC Complete CARDCO Line in stock CIE and VIE IEEE Interfaces in stock MSD SuperDrive for C64 or IEEE MAE Assembler for C64 Koala Pad Touch Tablet-C64 or VIC CBC \(4 / 12\) Analog to Digital 4 chan/12 bit MULTIPLAN for C64 79219 519

Dust Cover for C64 or VIC
Grand Master Chess for C64
COMAL Language for C64
with sprites, color graphics, sound, turtle graphics. BusCard II from Batteries Included ULTRA BASIC - 64 with Turtle Graphics Super Disk Utility - C64 - includes backup
MicroChess - C64-8 levels of play HES MODEM with software for C64 Commodore 64 Programmers. Reference Guide WordPro 3+/64 with Spellright VIController (also C64) - BSR Controller COM VOICE Synthesizer for C64 or VIC 95 29 129 20 4 56 72

VIC products in stock - call for extra discounts.
Victory Software for VIC and C64 in stock.

\section*{APPLE-FRANKLIN ITEMS}

FRANKLIN-complete line in stock
QUENTIN Drives for Apple/Franklin
189
Swapper Stopper
26
automatic switch between paddles and joystick KRAFT Apple Joystick

40
Kraft Apple Paddle Pair
Koala Pad Touch Tablet-Apple/Franklin
SPINNAKER Software in stock
Broderbund Software in stock
16K RAM Card for Apple
Multiplan-Microsoft
59
Solid Oak 2 Level Stand for Apple
Serial Card for Apple
MPC RAM/80 column card for lle (AP/TXI)
Z80 Softcard and CP/M (Microsoft)
RANA Elite I with Controller
185

RANA Elite I with Controller 185
29
89

Parallel Printer Interface/Cable 89

Microtek and MPC Interfaces in stock Grappier + Interface
DC Hayes Micromodem II, Ile with Smartcom
PFS: File or PFS: Report or PFS: Graph
Videx 80 Column Card
Apple Blue Book

\section*{ceominodore}

See us for Personal, Business, and Educational requirements. Educational Discounts available.
PETSCAN I \$245 base price
Allows you to connect up to \(30 \mathrm{CBM} / \mathrm{PET}\) Computers to shared disk drives and printers. Completely transparent to the user. Perfect for schools or multiple word processing configurations. Base configuration supports 2 computers. Additional computer hookups \(\$ 100\) each.

\section*{COMPACK/STCP \$115}

Intelligent Terminal Package for PET, CBM, C64
Includes ACIA Hardware / STCP Software
SCREE M AKER 80 Column Adapter for C64 139
Provide big screen capability for business applications.
Copy-Writer Word Processor for C64
49
Full-featured package with 800 lines of text in memory. Includes double column printing, graphic capability, full printer support.
Special Screenmaker/Copy-Writer Combo 179

\section*{VICTORY Software for VIC and C64}

Metamorphosis 16 Creator's Revenge
16
\(\begin{array}{llll}\text { Labyrinth of Creator } & 16 & \text { Galactic Conquest } & 16\end{array}\)
Kongo Kong
16 Annihilator
Chomper Man 16 Grave Robbers
\(\begin{array}{llll}\text { Bounty Hunter } & 16 \text { Adventure Pack I or II } 16\end{array}\)
PAPER CLIP Word Processor - CBM/C64 60
ORACLE Data Base from Batteries Included
SPINNAKER Software C64, Apple, IBM, Atari
Compute!'s First Book of PET/CBM
POWER ROM Utilities for PET/CBM
WordPro 4+-8032, disk, printer
VISICALC for PET, ATARI, or Apple
Compute's First Book of 64 Sound \& Graphics
SM-KIT enhanced PET/CBM ROM Utilities
PET Spacemaker II ROM Switch

\section*{DISK SPECIALS}


Scotch (3M) \(5^{\prime \prime}\) ss/dd Scotch (3M) 5" ds/dd Scotch (3M) 8" ss/sd Scotch (3M) 8" ss/dd

10/2.10 50/1.90 100/1.86
10/ \(2.6550 / 2.45100 / 2.40\) 10/2.20 50/2.00 100/ 1.98

We stock VERBATIM DISKS
Write for Dealer and OEM prices.
\(\begin{array}{llllll}\text { Sentinal } 5^{\prime \prime} \mathrm{ss} / \mathrm{dd} & 10 / 1.80 & 50 / 1.75 & 100 / 1.65\end{array}\) \(\begin{array}{llllllllll}\text { Sentinal } 5^{\prime \prime} \text { ds/dd } & 10 / 2.40 & 50 / 2.35 & 100 / 2.25\end{array}\)

\section*{We stock Dysan disks}
\begin{tabular}{lllll} 
Wabash 5 " ss/sd & \(10 / 1.50\) & \(50 / 1.45\) & \(100 / 1.40\) \\
Wabash \(5^{\prime \prime}\) ss/dd & \(10 / 1.80\) & \(50 / 1.75\) & \(100 / 1.65\) \\
Wabash \(5^{\prime \prime}\) ds/dd & \(10 / 2.50\) & \(50 / 2.45\) & \(100 / 2.35\)
\end{tabular}

\section*{We stock MAXELL DISKS}

\section*{Write for dealer and OEM prices.}

Disk Storage Pages 10 for \(\$ 4\) Hub Rings 50 for \(\$ 6\)
Disk Library Cases \(8^{\prime \prime}-3.005^{\prime \prime}-2.25\)
Head Disk Cleaning Kits 12
AMARAY Disk Storage Systems in stock.
Innovative Concepts FLIP 'N' FILES in stock.
CASSETTE TAPES—AGFA PE-611 PREMIUM
\begin{tabular}{llll} 
C-10 & \(10 / .61\) & \(50 / .58\) & \(100 / .50\) \\
C-30 & \(10 / 85\) & \(50 / .82\) & \(100 / .70\)
\end{tabular}
C-30
\(\begin{array}{lll}10 / .85 & 50 / .82 & 100 / .70\end{array}\)

\title{
ZEnuth \\ data systems
}
\begin{tabular}{lrlr} 
ZVM-122A & 99 & ZVM-123G & 89 \\
ZVM-131 & 300 & ZVM-135 & 490
\end{tabular}

Z100 16-bit/8-bit System ZVM-135 CALL
Z29 Terminal (DEC and ADM compatible) 680
Z-150 IBM PC COMPATIBLE CALL
Z-160 PORTABLE PC
CALL
We stock entire Zenith line.
USI Video Monitors - Green or AMBER 20 MHz hi-res Dealer and OEM inquiries invited

\section*{WRITE FOR IBM PC COMPATIBLE PRICES}

Multiplan-IBM or Apple
Quadboard for IBM available
KOALA PAD Touch Tablets-Apple, Atari, IBM, CBM
Peachtext 5000 Software Package
PFS Software for IBM and Apple in stock
SPINNAKER Software C64/VIC, Apple, IBM, Atari
VOTRAX Personal Speech System
BMC 9191 Color Monitor
BMC 12A 12" Green Monitor
Dynax (Brother) DX-15 Daisy Wheel Printer
Brother HR-25 Daisy Wheel Printer ( 25 cps )
Itoh Prowriter Parallel Printer
Panasonic 1090 Printer with Correspondence Mode Gemini 10X
EPSON, Okidata, Star Micronics printers in stock USI CompuMOD 4 RF Modulator
We Stock AMDEK Monitors
A P Products
\(15 \%\) OFF
COMPUTER COVERUPS IN STOCK
BROOKS 6 Outlet Surge Suppressor/Woise Filter
Surge Suppressor-6 outlet
Electrohome 1302-2 13" Hi-res RGB Monitor
Panasonic 12" Monitor ( 20 MHz ) with audio 29
135
Synertek SYM-1 Microcomputer

\section*{Hewlett Packard}

Write or call for prices.


DATASHIELD BACKUP POWER SOURCE \(\$ 265\) Battery back up Uninterruptible Power Supply with surge and noise filtering. The answer to your power problems.

ATARI - WE STOCK ENTIRE LINE SPINNAKER and Broderbund Software in stock.

\title{
Computers And Society
}

\title{
Computers In The Workplace
}

I can't remember the exact occasion, but about three years ago my son (who was then seven years old) was being taken to lunch by a friend of mine in downtown Palo Alto. As the two of them walked down the street, my boy looked in the window of an office where he saw a woman typing some correspondence. "What is she doing?" my son asked. "She is typing a letter," my friend replied. At that, my son looked again and said, "That's funny; I thought only men typed."

I thought it was pretty funny too-for a while. My son knows that I spend a lot of time at a keyboard, much of it writing articles and books. In fact, I am happy he sees that keyboards are not the sole domain of female typists, but are becoming increasingly used by men. But any stereotype is dangerous; it is as dangerous for my son to think of men as typists as it is for women to be typecast in that role.

\section*{A Difference In Use}

As I thought about the incident some more, it became apparent that there was perhaps a distinction in the ways that keyboards were being used by men and women, especially in business. In most businesses it appears that male keyboard users are using spreadsheet programs, or performing other analytical or forecasting activities with computers, while the majority of women employees are using keyboards connected to

\footnotetext{
David Thornburg is an author and speaker who has been heavily involved with the personal computer field since 1978. His main interest is in making computers responsive to people's needs. He is the inventor of the KoalaPad graphics tablet and is the author of nine books about programming. His recent series Computer Art and Animation (AddisonWesley) includes four books on Logo for the Atari, Commodore, Radio Shack and TI computers. Discovering Apple Logo (Addison-Wesley) shows how Logo can be used as a tool for exploring the art and pattern of nature. He has been called "an enthusiastic advocate for a humanistic computer revolution," and his editorial opinions have appeared in COMPUTE! since its inception.
}
nothing more sophisticated (or career-enhancing) than an electric typewriter. In general, it appears that men compute and women type.

Because those who compute tend to earn more than those who type, it is worth exploring the potential of the business computer in eliminating sex-stereotyped jobs. I refer to sex stereotypes rather than discrimination because, as we shall see, a good portion of the job-selection process is induced by the very people who end up perpetuating the stereotype of women as typists.

\section*{No Access To The Professions}

It is one of my pleasures to spend part of my time as a teacher. Sometimes my students range from third to sixth grade, and other times they are firstyear graduate students in product design. In my graduate classes, I will often have only four or five women among my 40 students. Since product design is among the more "artsy" of the engineering fields, you would expect this number to be higher (assuming that you believe women are more interested in the arts than men).

In fact, I find it quite disappointing that there's such a small percentage of women. But the reasons for it are not hard to discern. In order to gain entrance to graduate school in an engineering field, students must have majored in engineering or the physical sciences in college. This, of course, requires a very solid background in mathematics.

As I look at the younger children I sometimes work with, I find that many of the girls are turned off to mathematics by the time they reach fourth grade, and that those who are not turned off have spent time with teachers who have a deep love and understanding of mathematics themselves. The mathphobia that sets in at an early age has a significant destructive power.

To allow any group to consider itself incapable of mastering mathematics is to essentially deny that group access to the professions. For whatever reasons, most of the high-paying technical, business, and medical professions require a significant number of advanced mathematics courses in col-

\title{


}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{SOFITAREFORC-64} \\
\hline \multicolumn{2}{|l|}{Business} \\
\hline Multiplan & \$ 89.00 \\
\hline WordPro \(3+164\) w/SpellRight Plus & \$ 79.00 \\
\hline Spellinight Plus & \$ 55.00 \\
\hline Calc Result (Advanced) & \$ 95.00 \\
\hline Calc Result (Easy) & \$ 45.00 \\
\hline Mirage Concepts (data base) & \$ 95.00 \\
\hline Mirage Concepts ( 40 \& 80 clm W/P with Dictionary) & y) . . \(\$ 95.00\) \\
\hline Home Accountant (Continental) & \$ 69.00 \\
\hline Tax Advantage (Continental) & S 49.00 \\
\hline Southern Solutions Accounting & \\
\hline \multicolumn{2}{|l|}{Utilities} \\
\hline Super Basic 64 & \$ 35.00 \\
\hline Super Copy 64 & S 35.00 \\
\hline Sketch Pad 64. & S 75.00 \\
\hline 64 Forth & \$ 45.00 \\
\hline \multicolumn{2}{|l|}{MTS Terminal Package} \\
\hline Simons Basic. & \$ 19.95 \\
\hline 80 Column Expander & \$ 55.00 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ACCESSORIES} \\
\hline Solo Flight (Simulator) & S 34.9 \\
\hline \multicolumn{2}{|l|}{Oscar by Databar} \\
\hline (Bar Code Reader) & 79.95 \\
\hline CBM 1541 Disk Drive & S 249.00 \\
\hline Concord Parallel Disk Drive & S 345.00 \\
\hline Concord Slave Drive & Call \\
\hline MSD Super Disk (Single) & S 395.00 \\
\hline MSD Super Disk (Dual). & S 695.00 \\
\hline Vic 1650 Automatic Modem & S 109.95 \\
\hline Hayes Smart 300 Modem & S 249.00 \\
\hline Hayes Smart 1200 Modem & S 629.00 \\
\hline Vic 1530 Datasette & S 65.00 \\
\hline CBM 1520 Printer Plotter & S 179.95 \\
\hline 5 Slot Expander (64) & S 65.00 \\
\hline Printer Utility Program (Cardco) & S 19.95 \\
\hline 64 Relay Cartridge & S 45.00 \\
\hline Numeric Key Pad & S 49.00 \\
\hline Alien Voice Box (Talks \& Sings) & \$ 119.00 \\
\hline When I'm 64 (Disk) & 35.00 \\
\hline Texas Instruments LCD Progra & 55. \\
\hline \multicolumn{2}{|l|}{Verbatim Diskettes:} \\
\hline Single Sided/Single Density & 26.00 \\
\hline Single Sided/Double Density & 30.00 \\
\hline Double Sided/Double Density & 42.00 \\
\hline \multicolumn{2}{|l|}{Vic 20:} \\
\hline 3-Slot Expander & \$ 39.00 \\
\hline 6-Slot Expander & 79.95 \\
\hline 16 K Memory & 79.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline CBM 4023 Ribbons & \$ 12.00 \\
\hline CBM 8023 Ribbons & \$ 14.95 \\
\hline Flip N ' File \(10,15,25,50\) & Call \\
\hline Power Strips w/surge stopper & Call \\
\hline Computer Care Kit & 19.9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{INIEREACES} \\
\hline Interpod (full compatibility!!) & \\
\hline (Intelligent IEEE \& RS232) & Call \\
\hline The Connection (By Tymac) & \\
\hline (Commodore Graphics + 2 K Buffer) S & S 95.00 \\
\hline Cardco +G Parallel Interface ........ S & S 79.00 \\
\hline Vic Switch. . . . . . . . . . . . . . . . . . S & \$ 149.95 \\
\hline ADA 1800 (Parallel-8032 only) . . . . . . \$ & \$ 129.00 \\
\hline ADA 1450 (Serial-8032 only) . . . . . . . \$ & \$ 149.00 \\
\hline Pet-to-IEEE Cable . . . . . . . . . . . . . . . S & \$ 39.00 \\
\hline IEEE-to-IEEE Cable . . . . . . . . . . . . . . . & \$ 49.00 \\
\hline 4 Prong AV Cable . . . . . . . . . . . . . . . \$ & \$ 15.00 \\
\hline Centronics Cable (male to male) . . . . \$ & \$ 34.95 \\
\hline RS232 Cable (male to male) . . . . . . . \$ & \$ 31.95 \\
\hline Custom Computer Cables & Cll \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{MONITORS} \\
\hline CBM 1702 Color Monitor & \$ 269.00 \\
\hline Panasonic CT-160 Color & Call \\
\hline Panasonic TR-120 (Green) & Call \\
\hline Panasonic TR-120 (Amber) & Call \\
\hline Panasonic DT-1300 (RGB) & \$ 395.00 \\
\hline Monitor Stand (Tilt \& Swivel) & S 29.95 \\
\hline RGB Monitor Cable: & \\
\hline ET-100C (Apple). & § 33.80 \\
\hline ET-101C (IBM) . & \$ 33.80 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{LETTER QUAMITY PRINIERS} \\
\hline Transtar 120 (80 column). & . 5335.00 \\
\hline Transtar 130 (132 column) & . 725.00 \\
\hline CBM 6400 Printer & . 1425.00 \\
\hline NEC Spinwriter . & Call \\
\hline Cardco LQ/1 Printer & . 565.00 \\
\hline
\end{tabular}
\(\frac{\text { DOT MATRIX PRINIERS }}{\text { CBM MPS-801 Printer ( } 50 \mathrm{cps} \text { ) } \ldots \ldots . \$ 245.00}\)

DEALERS INQUIRIES WELCOME Call to Order
1-800-527-1738
All Others Call
1-214-231-2645
Micro-Sys
\begin{tabular}{|c|c|}
\hline Okidata 82A & \$ 412.50 \\
\hline Okidata 83 & \$ 635.00 \\
\hline Okidata 84P & . \(\$ 1165.00\) \\
\hline Okidata 92P & . 519.00 \\
\hline Okidata 93P & \$ 810.00 \\
\hline Panasonic KX-P1090 Printer. & Call \\
\hline Panasonic KX-P1091 Printer & \\
\hline Panasonic KX-P1092 Printer. & \\
\hline Panasonic KX-P1093 Printer & \\
\hline Star Gemini 10X & \$ 295.00 \\
\hline Star Gemini 15 & \$ 499.00 \\
\hline Star Gemini Delta 10. & \\
\hline
\end{tabular}

COMMODORE BUSINESS MACHINES
\begin{tabular}{|c|c|}
\hline Executive 64 portable (new) & \\
\hline B128-80 128k Bus. Machine (new) & Call \\
\hline SuperPet (5 languages) & \$1059.00 \\
\hline CBM 8032 & \$ 625.00 \\
\hline CBM 2031 single disk & \$ 295.00 \\
\hline CBM 8050 Dual Disk 1 meg. & \$ 995.00 \\
\hline CBM 8250 Dual Disk 2 meg. & \$1295.00 \\
\hline 64 K Expansion Board & \$ 275.00 \\
\hline SuperPet Upgrade Kit & S 695.00 \\
\hline
\end{tabular}


TERMS

Orders under 50.00 add 10.00 Handling fee
MasterCard, VISA, Money Order, Bank Check
COD (add 5.00)
Add 3\% For Credit Cards
All Products In Stock Shipped Within 24 Hours
F.O.B. Dallas, Texas

All Products Shipped With Manufacturers
90 Day Warranty
PRICES ARE SUBJECT TO
CHANGE WITHOUT NOTICE.
lege. By allowing some of our youngsters to become math illiterate, we are confining them to the lower end of the wage scale years before they seek their first jobs.

\section*{Working In A Man's Field}

Unfortunately, mathematics is generally con-: sidered a man's field. In an attempt to counter this perception, Teri Perl wrote a book several years ago that should be on the shelves of every bookstore in the nation. This book is Math Equals (Addison-Wesley), a brief history of women in mathematics. Rather than presenting a dry historical treatise, Teri Perl portrays the women of her study as complete human beings and talks about their frustrations of being good in a man's field when they were expected instead to tend to matters of the home.

Of all the people who should read this book, among the most important would be the teachers of grammar school who pass on their own frustration and fear of mathematics to their female students, who in turn embrace them as their own.

But what does mathphobia have to do with men using computers while women type? The answer can be found in a myth that is as wrong as the belief that women aren't good at mathema-tics-that you need to be good at math in order to use computers. I would venture a guess that many

of you are "good at computers," but are probably not "good at math." You already know that mathematics is not a prime requisite for computer literacy. And yet you are viewing the problem from the other side of the bridge-you have already made the passage.

\section*{Reinforcing The Myth}

Imagine the plight of the woman with a degree in the arts or the humanities who wants to find a job in business. When offered an opportunity to learn about computers, many women say, "Oh, I couldn't learn how to use computers, I never was good at math"; or "I never was good at technical subjects." By making statements of this sort, these women are removing themselves from career paths that lead to high-paying jobs.

Because these fears are, in fact, unfounded, those who express them are allowing the persistence of a myth to restrict their professional growth.

While I don't know a sure-fire way to break through to people who hold themselves back in this way, two authors have done a marvelous job in trying to show working women the road to computer confidence and higher-paying jobs.

These authors are Dorothy Heller and June Bower, and their book is Computer Confidence- \(A\) Woman's Guide, published by Acropolis Books (\$9.95 paperback). Because of the timeliness of its topic and its lucid style, this book deserves a wide readership. You could do your community a favor by seeing that your local bookstore has plenty of copies in stock.

\section*{A Highly Personal Book}

As women who entered the computer field from backgrounds in the humanities, the authors have the rare perspective of those who have walked both sides of the street. The book is a highly personal account; in fact, it is the book they wish they had had (but couldn't find) when they entered the computer field. Topics range from a short history of women who "made it big" in computers, to case histories of working women who use computers without knowing how to solve partial differential equations. By blending case histories with enough technical data to make the reader a savvy shopper for computer technology the authors prepare the reader for the main goal of the book: to show women how they can enter career paths with unlimited upward potential.

This assistance covers the spectrum from worksheets to help the reader identify appropriate career choices, to practical tips on how to handle job interviews, and especially how to handle the inevitable objections that arise when the interviewer finds that the educational and work background of the applicant doesn't include the "right" degrees from the "right" schools.


\title{
SAVE MORE THAN EVER ON... 3M Scotcho DISKETIES \\ AND OTHER COMPUTER NEEDS!
}

NEW!
Lower Prices

\section*{3M Scotch \({ }^{\circ}\) Diskettes}
are boxed in LIFETIME WARRANTY!
10's with labels, envelopes and reinforced hubs on \(51 / 4^{\prime \prime}\) diskettes.


51/4" SSQD-96TPI (746) \$2.60 ea. 51/4" DSQD-96TPI (747) \$3.25 ea. \(8^{\prime \prime}\) SSSD (740) \$2.05 ea. \(8^{\prime \prime}\) SSDD (741) \$2.50 ea. \(8^{\prime \prime}\) DSDD (743) \$3.10 ea.

3DISK CADDIES
.the original flip-up disk holder for 10 diskettes. Beige or grey only.
\(5 /{ }^{5 / 4} \$ 1+5_{+20}^{\text {ea }}\)
20 Shpng. \(8^{\mathbf{\prime \prime}} \mathbf{\$ 2} \mathbf{2 9}_{+20}^{\text {ea }}\)

\section*{RIBBONS!}
at bargain prices.
\begin{tabular}{|c|c|}
\hline SONM & \$3 \\
\hline EPSON & \$6.99 ea. + 25 Sh \\
\hline Okidata Micro 84 & \$3.66 ea. + . 25 Shpn \\
\hline Diablo 630 Mylar & \$2.60 ea. +.25 Shpn \\
\hline Diablo 630 Nylon & \$2.93 ea. + 25 Shp \\
\hline
\end{tabular}

\section*{DISKETTE 70 STORAGE}

WE WILL BEAT ANY NATIONALLY ADVERTISED PRICE!
Nationwide: 1-800-621-6827 Illinois: 1-312-944-2788

Hours: 9 AM-5 PM Central Time Minimum Order: \(\$ 35.00\)


FLIP 'N FILE
Redesigned for better appearance and greater ease of use. FLIP 'N FILE 25 holds \(255^{1 / 44^{\prime \prime}}\) diskettes; FLIP 'N FILE 50 holds \(5051 / 4\) " diskettes.
FLIP 'N FILE 50
Retail \(\$ 39.95\)
․DW Price
\(\$ 26.95\)
\(+\$ 5.00\) Shpng.

Shipping: \(51 / 4^{\prime \prime}\) DISKETTES—Add \(\$ 3.00\) per 100 or fraction thereof. \(8^{\prime \prime}\) DISKETTES-Add \(\$ 4.00\) per 100 or fraction thereof. OTHER ITEMS: Shipping charges as shown in addition to diskette shipping charges. Payment: VISA or MasterCard. COD orders only, add \$3.00. Taxes: Illinois customers, please add \(8 \%\).

Authorized Distributor Information Processing Products

\title{
On The Road With Fred D'Ignazio
}

\title{
The Morning After: Anti-Computer Backlash And The Arrival Of The Mass-Market Home Computer
}

Part 1

\begin{abstract}
This is the text of the speech Fred delivered at the West Coast Computer Faire in late March. We are printing the speech in two parts.
\end{abstract}

We are at a watershed in home computing. The watershed has been caused by the computer price wars of 1983, the introduction of simple and inexpensive, yet powerful, new computer programs and peripherals, and the entry of IBM into the home computer market.

Over the next year, home computing users, vendors, and enthusiasts will divide into two major camps: the computer intimates and the computer literates. By the end of 1986 these two groups will have fused into a third camp: the neoprogrammers, who will represent the bulk of the users of home computers through the next decade.

\section*{Literates Vs. Intimates}

Hackers, computer professionals, old-line computer educators, programming teenagers, and computer hobbyists will make up the bulk of computer literates. Computer literates will stress the importance of learning how to program and learning how computers work. The computer itself will continue to be the prime concern of this group.

Computer intimates will far outnumber the computer literates. Computer intimates will consist of all the millions of Americans who were roped or forced into using computers and who demand
that they be easier to use and more practical.
Computer intimates will believe that software and computer input devices are far more important than the computer itself. As a group they will preach ignorance of computer programming and ignorance of the computer's insides as virtues. The motto of the computer intimates will be: "You don't have to know how a computer works, only how to make it do work for you."

\section*{The Computer Freight Train}

On December 6, 1983, I appeared on ABC's Good Morning America TV show as a computer expert. My task was to advise families on the type of computer they should purchase for Christmas. In less than seven and a half minutes I led the show's viewers and its two hosts, David Hartman and Joan Lunden, through a bewildering array of computer hardware and computer programs.

I am sure that when the segment was over, most viewers still couldn't tell the difference between a disk drive, a program recorder, or a touch pad. But I'll wager that they did have a better feeling for the risk involved in investing in a personal computer, for the daunting complexity of becoming a first-time user, and for the flood of computer products and the dearth of reliable guidelines for making a purchase.
"Most consumers see personal computers as a high-speed freight train," I told viewers. "They feel they have to take the risk of hopping on now,

\title{
(NTIEPMATPIE Software that's priced UNDER the competitions'
}

\section*{COMMODORE 64 \\ \& ATARI \\ COMPUTER CLASSICS}
ENTERIANMENTI
Just for You!
Temple of Apshai (D\&C) ............. \$26 Upper Reaches Apshai (D\&C) ....... \$16
Gateway to Apshai (CT)
DragonRiders of Pern (CT) \(\$ 26\)
Jumpman (CT)......... Jumpman J
Broderbund Chopliffer (CT).
Broderbund Lode Runner (D)
First Star Flip Flop (D\&C)
First Star Bristles (D\&C)
HesWare Gridrunner (CT)
Infocom Zork I, II, III (D) infocom Witness (D)
infocom PlanetFall (D)

\section*{ARKER}
Parker Q Bert (CI)
Parker Star Wars (CT).
Parker James Bond (CT)
Parker Gyruss (CT)
Parker Popeye (CT)
Parker Frogger (CT)
SYNAPSE
Synapse Blue Max (D\&C) Synapse fort Apocalypse (D\&C) Synapse Necromancer (D\&C) Synapse Pharh Curse (D\&C). Synapse Zeppelin (D\&C) Sega Star Trek (CT) Sega Congo Bongo (CT) Sega Buck Rogers (CT). Screenplay DunZhin (D) Sublogic Pinball (D\&C) Sublogic Flight Simulator

\section*{EDUCAIION}

\section*{SPINNAKER}
Alf Color Caves (CT) ages 3-6 Alphabet Zoo (CT) ages 3-8 Delta Music (CT) Delta Drawing (CT) Face Maker (CT) ages 3-8 Kids On Keys (CT) ages 3-9 KinderComp (CT) ages 3-8 Bubble Burst (CT) ages 4-8 Grandma's House (D) ages 4-8 Story Machine (CT) ages 5-9 Ranch West (CT) ages 5-10 Fraction Fever (CT) ages 7-12 JukeBox (CT) ages 8-adult Aegean Voyage (CT) ages 8 -adult Up For Grabs (CT) ages 8 -adult Adventure Create (CT) ages 12 \& up \$2 HAYDEN (ages 4-10)
MicroAddition (D\&C) MicroSubtraction (D\&C) MicroDivision (D\&C)
MicroMultiplication (D\&C) Monkey See-Spell (D\&C) AMERICAN EDUCATIONAL COMPUTER (DISK ONLY
Learn About Sounds (grades K-3) Words in Reading I (grades 1-3) Words in Reading II (grades 1-3). Reading Compreh I (grades (1-4) Reading Compreh II (grades 3-7) Reading Compreh III (grades 6-8) Vocabul Word Blder (grades 2-8) Grammer Word Skill (grades 2-8) US Geography Facts (grades 2-8) World Geography (grades 2-8)

\section*{HOME APPLICAIIONS}
Spinnaker Aerobics (D)

\section*{PRERONAL FINANCE}

Continental Home Accountant (D) .. \$47 Continental Tax Advantage (D) ..... \(\$ 33\) Continental FCM First Class Mail

\section*{ELECIRONIC ARIS}

Pinball Construction Set (D)
M.U.LE. (D)

Worms? (D\&C)
Archon (D\&C)
Hard Hat Mack (D\&C)
Murder on the Zinderneuf (D)
The Cut \& Paste Word Processor (D) D Bug (D)
Axis Assassin (D)


\section*{GAVES}


FREE DISKEIIE
with each purchase of Electronic Arts software

\section*{COM 64 EXCLUSIVES!}

\section*{PERSONAL FINANCE}

\section*{fimeworks Swiftax (D)}

39
Creative Household Finance (D) ....... \(\$ 23\)
Creative Household Finance (C)..... \$19
HesWare Finance Manager (D)
Cardco Tax Survival Program (D)
WORD PROCESSINC

Cardco Write Now! (D)
\$39
Timeworks Word Writer (D) On-Line HomeWord (D) Creative Joe's Writer (D) HesWare OmniWriter \& Spell (D) Blue Sky Script 64 \& Spell (D) WordPro 3 Plus SpellRight (D)

\section*{SPREADSHEESS}

HesWare Multiplan (D)
HesWare Omnicalc (D) MSI Practicalc (D\&C) MSI Programmable Spreadsheet (D) . \$55 Sim Home Calc (D\&C).
Creative Jack's Calc (D)
Handic Calc Result Advanced (D) \(\$ 75\)

\section*{DATABASES}

Creative Fred's Filer (D)
TimeWorks Data Manager (D\&C)
TimeWorks Data Manager II (D\&C) CodeWriter Home Filewriter (D) Entech Data Base 64 (D). MSI Practifile (D)

\section*{BUSINESS SOTWARE}

\section*{Cymbal General Ledger ( \(D\) )}

\section*{\(\$ 42\)}
\(\$ 39\)
\$39
\(\$ 42\)
\(\$ 49\)
\$69
\(\$ 69\)
\$75
7
\(\$ 35\)
\(\$ 55\)
\(\$ 26\)

42

\section*{ \\ GRAPHICS TABLEI}

CHALKBOARD POWERPAD . . . . . . . . . . \(\$ 79\)
(C64 \& Atari)
Software Packages
Logic Master
\(\$ 27\)
. . \(\$ 27\)
Programmers Kit
BearJam
\(\$ 27\)
\(\$ 19\)

KOALAPAD ATARI C64
\(\$ 25\)
MONITORS
BMC \(13^{\prime \prime}\) Composite Color Plus . .... \$229 BMC 12" Low Res Green. . . . . . . . . . . . . \$85
USI 12" Green Hi-Hi Res . . . . . . . . . . . . . . \(\$ 129\)
USI \(12^{\prime \prime}\) Amber Hi-Hi Res . . . . . . . . . . . . . . \(\$ 139\)


\section*{Sucth A Deal}

12629 N. Tatum Blvd. Suite 138
Phoenix, AZ 85032
CALL TOLL FREE 1-800-431-8697/602-957-3619
For Customer Service Call: 602-955-3857
or they feel they will be run over or left behind."

\section*{The Hottest Thing Under The Christmas Tree}

More computers were sold as Christmas gifts this year than in any year prior to 1983. By early 1984 over eight million Americans had personal computers.

Unfortunately, soon after Christmas, many of these Americans began suffering from "morning after" regrets and resentments. Too many Americans who had seen the slick commercials on TV and who had heard the daily press reports about the computer revolution were now wondering what they had gotten themselves into.

Most Americans have heard the word software but have only a vague idea what the word means. They have no understanding of what comprises a "complete" computer system. They have no appreciation of what operating or programming a computer entails.

Most Americans don't even know how to hook up a computer's cables, plug it in, or turn it off. I know of one family who finally turned their computer off at one in the morning, but who only did so after hours of agonized, fruitless searching of the manual. They were afraid they might break the computer if they turned it off the wrong way.

\section*{The Computer Kit}

Why do people buy computers? Most Americans buy computers out of curiosity, for their work, to play games, or as an educational aid and tool for their children.

Most Americans buy computers at bargainbasement prices, usually at discount houses. Most Americans get their basic knowledge about computers from news stories and TV commercials.

When a person buys a computer, he thinks he has bought something equivalent to what he has seen on TV. He expects his computer to be able to do roughly the same things as the TV computer.

The average new-computer purchaser brings his computer home, struggles with the manuals, cables, and plugs, and finally powers the computer up. After all this effort, what does he get?

A blank screen.
After still more struggling with his manual, the astute newcomer finally realizes that what he has bought is a kit-like a bicycle or a puzzle that comes in a million pieces. Only it's worse. The kit's pieces are invisible. You don't get to see them until they appear on the computer's display screen after you have typed them in at the keyboard.

The pieces, of course, are the commands in the computer's BASIC programming language. Computer commands are more difficult to use than puzzle pieces for two reasons. First, puzzle
pieces are combined in some sort of visual order to make up a picture. Second, pieces in a puzzle can usually be combined in only one way. And the picture fragment on each piece is a clue to where the piece belongs.

But computer commands are different. They carry no picture fragment that helps you see where in a picture (or a program) they belong. And they can be combined in an infinite number of ways. There is no set order to reach any given solution.

Most kits-for a bicycle, a lawn chair, a toaster oven, a sandbox, or swing set-come with explicit, printed directions. Computer kits don't usually come with printed directions. Instead, they come with a dictionary of commands organized, alphabetically, from A to Z . You get all the building blocks, but little or no help in how to put them together. And, before long, you realize, with a sinking feeling, that they can be put together in a million ways.

But where do you start?

\section*{Buying Half A Computer}

It finally dawns on the consumer that what he has bought is only half a computer. Until he buys some software and some more equipment-a program recorder or disk drive, cassettes, disks, cartridges, and a printer-he can't do anything useful.

Of course this isn't exactly true. He can always assemble the kit himself. There are dozens of magazines and hundreds of books with prerecorded programs for his kind of computer. All he has to do is follow the blueprints-the listingsin the books and magazines, and soon he will be the proud owner of a real computer.

Of course he will need to spend dozens of hours entering in the programs, and dozens of hours more poring over the listings, trying to figure out why his programs don't work.

And he will have to invest in a storage device, so he can save his delicate, precious programs.

And he still needs a printer if he plans to use the computer as an electronic typewriter, bookkeeper, or filing cabinet, the three most popular home computer applications.

\section*{Voting No To The Home Computer}

After the average consumer has forked over from \(\$ 50\) to \(\$ 300\), is he likely to invest another \(\$ 100\) to \(\$ 1000\) for additional hardware and software to "finish off" his computer?

After the consumer has made his purchase and found that he has only half a computer, is he likely to feel positively toward computers and computer companies?

After the average consumer has realized that he has bought a kit, is he likely to roll up his sleeves, master a programming language, or pa-
tiently enter in hundreds of lines of unintelligible commands?

The answer to all these questions, for the average consumer, is no.

\section*{The After-Christmas Backlash}

Under these circumstances, the average person who bought or received a computer for Christmas is not likely to become a computer enthusiast.
Instead, he is likely to become part of a growing anticomputer backlash.

More and more individuals and groups in society are coming to the conclusion that personal computers have not lived up to their promise. At the very least, they have not lived up to their commercials.

These individuals and groups are becoming more organized and outspoken. Like me, they see personal computers as a high-speed freight train, and they are set on derailing that train.

The other night I was listening to National Public Radio's "All Things Considered." A socalled computer expert was on the show decrying the use of computers in education. In his opinion, most people were using computers as fancy, expensive, electronic flash cards. He warned American parents and teachers that the computer industry was deceiving them in a major way.

Two nights later I read in USA Today that the American Academy of Pediatricians was warning against using computers with small children. The Academy reaffirmed its decade-old statement that "Advertising that promotes ... learning environments, programs, or systems is often guiltproducing, misleading and potentially destructive of human development and values." The Academy scolded parents who create a "superbaby syndrome" in which parents buy computers for small children and enroll them in computer classes even before they are toilet-trained.

\section*{Fighting Back}

The American public has been dazzled by the glamour and high-tech chic of personal computers. On the surface, the public's attitude toward computers seems to have undergone a dramatic change. On the surface, it appears that most Americans approve of computers, if not for themselves, at least for their children. And even if they don't approve of them, they see them as inevitable.

This is, indeed, how Americans feel-on the surface. But what is going on beneath the surface?

I submit that the public's current attitude toward computers is superficial and can easily be changed. I further submit that the situation is becoming increasingly ripe for public opinion to take a swing in the opposite direction. This swing may be dramatic and quick.

The American public has been put on the defensive by the rapid spread of personal computers. But the public is likely to regain the offensive at the first opportunity. Beneath the thin veneer of approval lurk people's old prejudices and stereotypes against computers. These prejudices and stereotypes are fortified and aggravated by the bad experiences millions of people are having, firsthand, with computers.

The American public just needs a champion. As soon as groups and individuals appear who can articulate the public's feelings against computers, the public will rally around them. And then a major backlash against computers will begin.

\section*{A Consumer Uprising}

People who are alienated by computers are not ignorant Luddites who oppose computers just because they are new and different.

Many people already oppose computers out of ignorance and prejudice. But many more may soon oppose computers because they feel computers have been misrepresented and oversold.

An anticomputer backlash may be in the cards. If so, it should not be viewed by those of us in the computer industry as an ignorant neoLuddite rebellion. We should see it for what it is: a legitimate uprising by irate, unhappy consumers.

\section*{VIC software 64}

More Games, Challenging Problems and Programs Than You Can Shake A Joystick At!


FREE PROGRAMS
Write for Details.
ComputerMat •P.O. Box \(1664 \mathrm{C} \cdot\) Lake Havasu City, Arizona 86403

\section*{Learning With Computers}

\title{
Ready-to-Run Magazines
}

We met our first personal computer, an 8 K PET, back in 1978. Soon thereafter we purchased one of the "new" PETs-a-state-of-the-art machine with 16K RAM memory, a full-size keyboard and a cassette recorder for external memory.

In those long gone days of almost six years ago, we eagerly sought information about our new machine, but little was available. It came with very little documentation, and what was provided was barely understandable. Today almost every bookstore has a large selection of computer books and even some drugstores carry computer magazines, but no books or magazines were readily available back then.

One source of valuable information was Cursor magazine, published by Ron Jeffries. Not a traditional magazine, Cursor arrived, somewhat irregularly, on a cassette tape. Each issue contained six programs that we could load and run right away. The programs were a mix of graphics and sound demonstrations, games, puzzles, programming utilities, educational programs, and simple applications programs (for example, for calculating mortgage rates). All the programs were at least reasonable; some were true gems.

\section*{A First Look}

The programs in Cursor magazine gave us our first sense of the potential uses of personal computers. In addition, we could list and analyze the programs to learn new programming techniques. Cursor also has claim to being the all-time best buy in the personal computer industry. The price of a six-issue subscription was originally \(\$ 20\).

Cursor magazine continued publishing through May 1982. Copies of all 30 back issues are still available, and some of the programs have been made available for the Commodore 64. Another early cassette magazine for TRS-80 computers, \(C L O A D\), continues to publish and is now available on disk also.

The idea of "magazines" of ready-to-run pro-

Dr. Glenn M. Kleiman is an educational psychologist and software developer. He is the author of Brave New Schools: How Computers Can Change Education (Reston/ Prentice Hall) and the designer of Square Pairs, an educational game program (Scholastic, Inc.).
grams has grown. Two new magazines on disk have recently appeared, both focusing on education about and with computers. In this column, we review and compare Microzine and Window. Our reviews are based on the first three issues of Microzine and the second and third issues of Window. Both magazines are now available for Apple computers, and versions for other computers are being developed.

\section*{Microzine, Captivating For Children}

Microzine, published five times a year by Scholastic, Inc., is designed for children ages 10 and up. Each issue contains four programs and a 48-page printed manual that supplements the onscreen instructions and provides additional ideas for using some of the programs.

One of the four programs in each issue is a Twistaplot story. These are stories in which the plot details and outcome are controlled by decisions the reader makes. For example, one issue contains a crime-solving adventure called "Mystery at Pinecrest Manor." This is an old-fashioned whodunit which makes the reader an active participant in the story. As the reader and participant, you study files containing background information about each of the suspects, search for clues, and spy on suspects. You play the part of a character in the story, deciding where to go and what to do at each choice point. You can reread the story many times, changing your responses and thereby encountering different events and outcomes each time.

The flexibility of the stories, excellent graphics, and the active role played by the reader make Twistaplots captivating for children. Interactive stories are an exciting new genre of fiction, and Twistaplots demonstrate some of the advantages of using computers to present these stories.

\section*{Educational Programs}

Each Microzine also contains one or two computer tool programs. These provide a means for children to explore and learn about different uses of computers.

A Poster program provides a simple computer language for creating colorful, low-resolution

\section*{Specials Of The Month}
Atari 600XL ..... \(\$ 189\)
Atari 800XL .....  \(\$ 299\)
Atari 1030 Modem .....  \(\$ 115\)
Rana 1000 Disk Drive .....  \(\$ 339\)
1027 Letter Quality Printer ..... \$299
CommodoreSX64 Portable Computer \(\$ 959\)Commodore Automodem ........... \$ 95Commodore Graphics Printer . . . . . . . \(\$ 269\)
Verbatim Twin Pak ..... \$ 5.25
Elephant Disks S/S ..... \(\$ 19.50\)

\section*{Hardware Specials}

\section*{Printers}

Leading Edge Gorilla ....S189 NEC 8023A . . . . . . . . . . . . \(\$ 459\) Okidata ML 82A. Okidata ML 83A Okidata ML 84P Okidata ML 92PC. ITOH 8510 Prowriter C. ITOH 8510 SP Mannesmann Tally 160L
Gemini 10X
Recreation

Mannesmann Tally
Spirit
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Q Bert/CRT ............ S 35} \\
\hline Frogger/CRT & \\
\hline Popeye/CRT & \\
\hline Witnes & \\
\hline Planetfall & \\
\hline Deadli & \\
\hline \multicolumn{2}{|l|}{Zork I, II, III . . . . . . . . ea. \$ 29} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Enchanter .................. . S 36
Infidel ................. . . 36}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Temple of Apshai ....... S 27} \\
\hline \multicolumn{2}{|l|}{Pitstop . . . . . . . . . . . . . . 227} \\
\hline \multicolumn{2}{|l|}{Starleague Baseball ...... S 23} \\
\hline \multicolumn{2}{|l|}{Starleague Football . . . . . . S 23} \\
\hline \multicolumn{2}{|l|}{Blue Max . . . . . . . . . . . . . S 23} \\
\hline \multicolumn{2}{|l|}{Joust. . . . . . . . . . . . . . . . S 43} \\
\hline \multicolumn{2}{|l|}{Robotron 2084 ......... S 33} \\
\hline \multicolumn{2}{|l|}{Pole Position . . . . . . . . . . S 36} \\
\hline \multicolumn{2}{|l|}{Ms. Pac Man. . . . . . . . . . 536} \\
\hline \multicolumn{2}{|l|}{B-1 Nuclear Bomber (C) \$ 12} \\
\hline \multicolumn{2}{|l|}{Midway Campaign (C) ...S 12} \\
\hline \multicolumn{2}{|l|}{Nukewar (C) . . . . . . . . . . S 12} \\
\hline \multicolumn{2}{|l|}{Telengard (C) . . . . . . . . . . S 16} \\
\hline \multicolumn{2}{|l|}{Jumpman Jr./CRT . . . . . S 27} \\
\hline \multicolumn{2}{|l|}{Pitstop/CRT . . . . . . . . . . S 27} \\
\hline \multicolumn{2}{|l|}{Flight Simulator II/D ....S 39} \\
\hline \multicolumn{2}{|l|}{Night Mission Pinball . . . S 20} \\
\hline \multicolumn{2}{|l|}{Sammy Light Foot (CRT) S 20} \\
\hline \multicolumn{2}{|l|}{Apple Cider Spider ...... S 23} \\
\hline
\end{tabular}

\section*{Business}

\section*{EDUCATION}


\section*{Commodore}

CBS Addition/Subt. .......S17
CBS Multiplication/
Division
S17
Speed Reader II/D ........ S49
Word Attack/D .......... 536
Mathblaster/D ............s36
Spellakazan/D ............ 529
Crypto Cube/D ........... . \(\mathbf{S 2 9}\)
Master Type/D-CRT ......S29
Songwriter/D ............ 529
Alphabet Zoo/CRT . . . . . . 522
Fraction Fever/CRT....... 522
Delta Drawing/CRT ...... 522
Facemaker/CRT . .......... \({ }^{2} 25\)
Trains/D . . . . . . . . . . . . . . 529
Kidwriter/CRT . ........... \(\$ 25\)
Dungeons of Algebra
Dragons
S17
Juggles Rainbow .......... \(\$ 22\)
Bumble Bee ............... 529
Early Games Piece of Cake \(\$ 22\)
Early Games Match Maker \(\$ 22\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Atari} \\
\hline Atariwriter & S 79 \\
\hline Visicalc. & \$179 \\
\hline Financial Wizard & S 45 \\
\hline Letter Perfect & S 69 \\
\hline Data Perfect & S 79 \\
\hline Spell Perfect & S 65 \\
\hline Spell Wizard & S 45 \\
\hline Text/Spell Wizard & \\
\hline Combo & S 65 \\
\hline Bank Street Writer & S 49 \\
\hline Bank Street Speller & S 49 \\
\hline Homeword & S 49 \\
\hline Syn File + & S 65 \\
\hline Syn Text & S 23 \\
\hline Syn Mail & S 34 \\
\hline Home Accountant & S 48 \\
\hline Tax Advantage .... & S 39 \\
\hline Complete Personal & \\
\hline Accountant & S 65 \\
\hline Atspeller & S 33 \\
\hline Diskette Mailing List & S 21 \\
\hline Miles Payroll System & \$119 \\
\hline Atari Accounting & \$169 \\
\hline Family Finance & S 36 \\
\hline File Manager 800+ & S 65 \\
\hline
\end{tabular}

\section*{Commodore}

Easy Script 64/D ......... S 35
Easy Spell 64/D .......... S 16
Easy Finance I, II ea./D
Accts. Receivable/D ...... S 35
Payroll/Checkwriting/D
Assembler 64/D
Logo/D
Bank Street Writer/D .... S 49
Home Accountant/D ..... S 48
Tax Advantage ............ \(\$ 45\)
FCM
. \(\$ 35\)
Paper Clip Word
Processor
Delphi's Oracle
. 89
Practicalc 64.
S 89
Calc Result/Easy-CRT
Calc Result/Advanced-D \(\$ 109\)
Multiplan/D
. 56
General Ledger/D ........ S 59
Data Manager/D
. 517
Electronic Checkbook
Swif tax/D
\begin{tabular}{l}
\(S 17\) \\
\hline
\end{tabular}
Quick Brown Fox/D
Quick Brown Fox/CRT . . S 56


Information and Inquiries: (702) 796-0296 Order Status: (702) 369-5523.

\section*{Computer Outlet}

1095 East Twain, Las Vegas, NV 89109 Mon.-Fri. 8 a.m. to 6 p.m., Sat. 9 a.m. to 5 p.m.


SHIPPING: For fast delivery, cashier checks, money orders or direct bank wires. Personal and company checks, allow 3 weeks to clear.C.O.D. charges: \(\$ 3\) minimum or \(1 \%\) on orders over \(\$ 300\). Nevada residents add \(5 \% \%\) sales tax Shipping charges based on weight \(\$ 3\) minimum. APO and FPO orders: \(\$ 10\) minimum and \(15 \%\) on all orders over \(\$ 100\). School and business purchase orders welcome. All returns must be accompanied by return authorization number. Call (702) 369-5523 before returning goods for replacement. Prices reflect cash discount only and are subject to change. Catalogs: .50¢ U.S., \$1.00 foreign.
pictures. This program is a good introduction to both computer graphics and some rudimentary programming concepts.

An Electronic Card Filer program demonstrates how computers can be used to store, sort, and retrieve information. This program is well designed for introducing data base and information retrieval concepts, but it is limited to small amounts of information. Each card, or record, can contain only five fields of information, with up to 25 letters or numbers per field.

Another tool program, Melody Maker, is for creating music on the computer. With Melody Maker you can enter notes over a two-octave range and have the computer play your song. You can also have the computer create a visual display to go with your music. One type of display shows a musical staff and the notes; other types of displays create colorful patterns. You can save your songs on disk to play again later.

\section*{No Editing Feature}

The Melody Maker program can be very useful in helping children learn about reading music. Its main drawback is that it is difficult to change a song once you have entered it. You can go back and change any note to another note, but you cannot insert or delete new notes. Therefore, if you want to insert or delete a note at the beginning, you have to reenter the entire song.

There is also a program called Amazing Robot that is intended to introduce programming concepts. As you might expect, the commands the robot follows are like those of turtle graphics. You can instruct the robot to move forward or back a number of steps, or turn left or right a number of degrees. However, this robot does not draw with a pen, as turtles do. Instead, you command it to maneuver through different mazes and patterns displayed on the screen. This aspect of Amazing Robot is similar to Karel the Robot, which was reviewed in this column in January 1983.

Amazing Robot does introduce some programming concepts. But we found it to be awkward to enter and edit procedures. For example, if you make a typing mistake while entering a procedure or accidentally direct the robot to touch a wall, you are thrown out of the edit mode and have to use a reedit command. Amazing Robot does not encourage learning and exploration nearly as well as more complete programs such as Scholastic's Turtle Tracks, Spinnaker's Delta Drawing, or any of the available versions of Logo.

The remaining programs include one in which you select questions to see the answers actor Robert Macnaughton gave; a tutorial and simulation game about hot air balloons; a word game; and a chase game. None of these will teach children much or draw their attention away from Pac-

Man, Frogger, or whatever videogame is their current favorite.

\section*{Window Is A Screen Magazine}

Window, intended for adults as well as children, takes seriously its status as a magazine using the new medium of computers. No print materials are provided, except for a note about booting the disk and accessing the help screens. Everything else you need to know is shown on the computer screen.

Window provides a great deal of flexibility. It lets you take a guided tour of each issue. This is similar to skimming through a printed magazine. You control the speed of progress through the screens and you can stop, back up, or continue at any time. You can choose to explore any program further. While working with a program you can always stop and return to skimming or to the table of contents.

Each issue of Window has a central theme which is the focus of a feature program, one or more other programs related to the theme, several software reviews, columns, and some smaller programs called "window dressing." The themes of the two issues we have reviewed are data base programs and music programs.

\section*{Sample Data Bases}

The feature program of the data base issue is called Notebook. It allows up to 20 fields in each record, and it lets you obtain hard copies if you have a printer.

Window also provides a variety of sample data bases for you to explore and extend. Several are examples of data bases students and teachers have created. There is also a data base called clues. This is used in conjunction with another program called Adventurefile, which is a computer mystery. To solve the mystery, you have to use the Notebook program and the clue data base. The sample data bases provide a good starting point for novices learning about data base programs and the varied functions they can serve.

The same issue contains reviews of two software packages, Geography Search and Dueling Digits. Magazines on disk are an ideal vehicle for software reviews. Not only are the programs described and evaluated, but you also get to see actual screen displays and use interactive demonstrations of parts of the programs. These reviews gave us a much better sense of the programs than any written review ever could.

\section*{Some Fun Features}

The disk also contains two games, one a variation of Monopoly and the other a variation of Simon. The games are appropriately referred to as "window dressing," as they do not add a great deal to
the magazine. Finally, there is a VisiCalc column. This provides a template for multiplication tables, but you have to have VisiCalc to use it.

The feature program on the music issue of Window is called Mini-Songwriter. This program overlaps in function with Microzine's Melody Maker, but is different in style. You enter notes by moving a marker on a piano-like keyboard displayed on the screen and specifying the length of each note. You can play your songs, varying the speed as you go. You can easily edit and save songs. Window also provides sample songs and another program that uses the Mini-Songwriter. This is a Mystery Melody program that presents "name that tune" riddles.

There are comprehensive reviews of MECC's Music Theory program, Spinnaker's Snooper Troops, and Earthware's Volcanoes program. In the reviews, you get to try a set of "which note is wrong" problems like those presented by the MECC program; search for clues as you would in the actual Snooper Troops program; and see the type of data you would collect in the Volcanoes simulation program.

The rest of the disk contains an editorial about work with computer music and Logo at MIT; a sample of music created with the Songwriter program (the full version of the Mini-Songwriter, available from Scarborough Software); and a graphic demonstration of sorting algorithms. These are all interesting additions to the main features. There are also columns that provide VisiCalc templates and Logo procedures. These columns can be used only by people who have VisiCalc or MIT Logo.

\section*{Comparison of Microzine And Window}

Both Microzine and Window are exploring new terrain. So far, Window has been more innovative in its attempt to use the new medium of the computer without support of any printed materials. We had no difficulty using any of their programs with the information available on disk. We enjoyed skimming through the programs and viewing Window's experiments with different formats of displaying information on the computer screen. Window is inventively interactive-you interact with the computer in flexible ways with several programs.

Microzine is more conservative in its approach and depends upon printed materials to provide the instructions necessary for many programs. However, the print materials also provide useful suggestions for extending the computer activities.

In their first few issues, Microzine and Window have each provided simple data base and music programs, so these programs provide a good basis for direct comparisons. The programs in both
magazines are suitable for introducing novices to using computers for data bases and for creating music. However, none of the programs can replace full data base or music creating programs.

Overall, the programs in the two magazines are comparable. Window has an edge in the flexibility of its data base program and the ease of editing in the music program. Microzine's music program has more visual display options than Window's.

While we do not find major advantages in either magazine's programs, there are important differences in the overall presentations of how computers can be used for data bases and music. Window provides sample data bases, songs, and games that use the data base and music programs; Microzine does not. These extras provide good demonstrations, help people get started, and show how each program can be used in many ways. So we tend to favor Window's presentations of data base and music programs.

As for the other programs, Microzine's Twistaplots provide good examples of interactive fiction and contain excellent graphics. There is nothing in Window that is directly comparable. On the other hand, Window contains useful reviews of programs and ongoing columns for VisiCalc and Logo users.

The producers of both magazines can be expected to continue to experiment, explore, and improve. In fact, improvements are already evident within the first few issues. Our reviews and comparison should be read as a report on the status of these magazines as of the first few issues. Exciting prospects lie ahead for both, and we expect to see many more ready-to-run magazines in the near future.

\author{
Cursor Magazine \\ The Code Works \\ P.O. Box 6905 \\ Santa Barbara, CA 93160 \\ CLOAD Magazine \\ P.O. Box 1448 \\ Santa Barbara, CA 93102 \\ Microzine \\ Scholastic, Inc. \\ P.O. Box 641 \\ Lyndhurst, NJ 07071 \\ Window, Inc. \\ 469 Pleasant St. \\ Watertown, MA 02172
}

\footnotetext{
After this column was written, COMPUTE! Publications announced the availability of COMPUTE!'s GAZETTE DISK, premiering with the May 1984 issue of COMPUTE!'s GAZETTE. For more information, call TOLL FREE 800-334-0868 (in North Carolina 919-275-9809).
}

\title{
THE BEGINNER'S PAGE
}

\section*{A Random Leap}

One of the enjoyable things you can do with a computer is simulate real events: things which might be too dangerous, too expensive, or too time-consuming to try in real life. The Air Force and some commercial airlines use a flight simulator so true-to-life that it can serve for all but the most advanced pilot training.

We don't have enough RAM memory, or the computation speed, or the ultrahigh resolution screens necessary to create a flight simulation of breathtaking realism. But we can try a simple simulation and get a feel for how they are programmed. The basis of the simulation will be accidental, unpredictable events created by the RND (random) command in BASIC.

\section*{Lurching Across A Bridge}

Imagine a frog, lurching across a bridge. Every time he leaps, you don't know if it will be to the left or to the right. He doesn't know either. The one thing you can count on is that he will never leap straight ahead.

There are three possibilities in this game. He will either fall off the left or right side of the bridge, or safely reach the other side of the river. For this simulation, we're going to assume that the bridge is as wide as your computer screen and that the frog starts his journey midway between the left and right sides. That gives him a fair chance to make it across.

By setting up this simulation, we'll learn how to make use of the RND command as well as a way to animate characters on the screen. Let's look at the program line by line, to see what each BASIC command contributes to the overall effect. (Atari computers don't have a TAB command, so the animation technique discussed below will not work on them.)

First, we've got to define the size of the bridge, its width. Leave line 100 as it is if you have a Commodore 64 or any other computer which allows 40 characters per screen line. If you have a VIC, you should change line 100 to read: COLS \(=22\). The VIC has 22 characters per screen line. If you have a TI, change it to: \(C O L S=32\).

The variable Y in line 110 is going to signify the position of the frog each time it leaps. If Y is raised to a higher number, the frog will appear further to the right on the screen (and be nearer the right side of the "bridge"). If Y goes down, if something is subtracted from Y , the frog moves left. At the start of the game, though, we want to put the frog in the middle between the left and right sides of the bridge so we divide COLS by 2 . If you've got a 40 -column screen, Y starts off equaling 20. That means that the frog is 20 from the right edge and 20 from the left-smack in the middle.

\section*{Rounding Numbers}

The variable X in line 130 will tell us whether the frog should leap to the right or the left each time he leaps. This is the only complicated-looking line in the program, but it contains an important trick: the INT command. It "rounds off" a decimal number. INT (12.3) becomes 12. INT (12.7) becomes 12. Wait a minute. That's not rounding off as we usually think of it. 12.7 should become 13 since .7 is closer to 13 than to 12 .

In fact, INT merely throws away anything to the right of the decimal point. This isn't true rounding. That's why we need to add the +.5 in line 120. By adding .5, we force a number to be rounded correctly by INT. \(12.7+.5\) would be 13.2 and INT (13.2) would give us the right answer:
13. Likewise, \(12.3+.5\) would be 12.8 and INT (12.8)
would give us the correctly rounded answer: 12 .
It's not important to remember why you need to add .5 to any number you want rounded by INT; just remember to do it. In line 120 we're not rounding off 12 or 13 , all we want is an answer that tells us to go in one of two directions, to go either left or right. This is like tossing a coin, you get heads or tails. So here \(X\) will be either a 0 or a 1 after INT gets through rounding off RND(0). But what does RND(0) do for us? It creates a random number. But, by itself, the random number is a decimal fraction between 0 and 1 . Try this:

\section*{10 PRINT RND(0):GOTO 10}

When you RUN this, you'll see a series of decimal fractions, all kinds of different numbers. How would you get higher random numbers? Just multiply RND(0) by something. Try: PRINT \(\operatorname{RND}(0){ }^{*} 10\). If you just want whole numbers (called integers), use INT.

Anyway, in our frog simulation we don't need these higher random numbers. If X becomes a 0 in line 120, we move the frog to the left (in line 160). If \(X\) becomes a 1 in line 120, we move the frog to the right (in line 140). Line 130 is the test to see which number is in X .

Notice that we don't need to write a line like: IF \(X=1\) THEN 140 . You could write that test and put it in line 135 if you wanted to. It wouldn't do any harm. But you don't need to. The computer will go to line 140 all by itself if X is anything other than a 0 when it's tested in line 130 . The computer always performs each action in the order listed unless you force it not to with a GOTO, IF, or GOSUB command. If it doesn't come across one of those commands, it will go from line 140 to 150 to 160 and on up the list in simple line-number order.

Also on line 120 is another counter, the variable C. It will keep track of the total number of leaps the frog has made (either left or right). This lets us know how far he got before he fell off. It also sometimes shows that he's won the game. If he manages to leap a certain distance without falling, he's crossed the bridge.

But back to our simulation. After lines 130-160 make an adjustment to variable \(Y\) (our "position-of-the-frog" counter) we come to a series of tests in lines 170-190. Each of these tests will end the program in a different way. In 170, if the frog position is greater than (>) the total number of columns, he has fallen off the right side. In 180, if his position is less than 1, he has fallen off the left side. And, finally, in line 190, if he has taken more leaps than the width of the bridge, he made it across. You can change this line if you want to make it harder for him to cross the bridge. Just replace COLS with a higher number.

Line 200 prints the frog symbol on the screen to show us his position. The TAB command is
just like a TAB key on a typewriter: It moves over a certain number of spaces from the left side of the screen. In this case, the number of spaces is controlled by the position variable Y.

Finally, to slow the frog down a bit, we put in line 210. This is often called a delay loop or a donothing loop because it simply takes up some time and serves no other purpose. Here we're asking the computer to count from 1 to 10 before going back down to line 120 and figuring out the frog's next leap.
\begin{tabular}{|c|c|c|}
\hline \(1 \varnothing \varnothing\) & COLS \(=40\) : REM PUT YOUR SCREEN & SIZE HERE :rem 232 \\
\hline 110 & \(\mathrm{Y}=\mathrm{COLS} / 2\) & :rem 186 \\
\hline 120 & \(\mathrm{X}=\operatorname{INT}(\operatorname{RND}(\varnothing)+.5): \mathrm{C}=\mathrm{C}+1\) & :rem 176 \\
\hline 130 & IFX=ØTHEN16Ø & :rem 174 \\
\hline 140 & \(\mathrm{Y}=\mathrm{Y}+3\) & :rem 226 \\
\hline 150 & GOTO170 & :rem 103 \\
\hline 160 & \(\mathrm{Y}=\mathrm{Y}-3\) & :rem 230 \\
\hline \multirow[t]{2}{*}{170} & IFY>COLSTHENPRINT" >>>FROG FE & FELL OFF R \\
\hline & IGHT SIDE. IN"C"LEAPS.":END & :rem 120 \\
\hline \multirow[t]{2}{*}{180} & IFY<1THENPRINT" <<<FROG FELL & L OFF LEFT \\
\hline & SIDE. IN"C"LEAPS.": END & :rem 3ø \\
\hline \multirow[t]{2}{*}{190} & IFC>COLSTHENPRINT"FROG SAFELY & LY CROSSED \\
\hline & THE BRIDGE!": END & :rem 160 \\
\hline \(2 ø \emptyset\) & PRINTTAB(Y) "*" & :rem 14 \\
\hline 210 & FORT=1TOl \(\varnothing\) : NEXTT & :rem 13 \\
\hline 220 & GOTO120 & : rem 96 © \\
\hline
\end{tabular}


START USING YOUR COMPUTER FOR FUN and PROFIT!

\title{
BASIC Style Program Evolution
}

Jim Butterfield, Associate Editor

Sometimes you see programs that are so crisp and neat that you wonder how the programmer's mind can be so orderly. The statements come out in an elegant, incisive style. Every line zeros in on exactly the right thing to do.

How does a programmer develop an elegant style? Why can't you write like that? Sometimes a lowly hacker can feel inferior when facing such immaculate programming style. Yet the program you see is often a matter of evolution-rewriting and tidying up. It's not always written that way from the beginning.

I have been accused of writing "squeaky clean" programs. It seems to me that you might like to see how my murky first programs get reworked and tightened up into their final version. In some ways, programming style isn't what you write (at least at first)-it's knowing what to look for when you clean up.

\section*{A Simple Lister}

I needed to do an almost trivial job: list a file from disk to the printer. I had a minor extra feature to add: I wanted individual pages, so that the lines needed to be counted; I needed a title on each page; and at the end of the run, for the sake of neatness, I wanted the printer to eject the page.

It's not a demanding task, but I'd like to show you how I went about it. Even a simple job like that can be revised and tightened up extensively.

Here's my first program: I'll talk my way through the listing.

1øø OPEN 4,3
Open file number four to the screen. Why? So I can send the program's output to the screen and see that it's working right. After the program looks good, I'll change the above line to OPEN 4,4.

\section*{105 OPEN 1,8,3,"CONTROL"}

That's my input file to be listed.
```

11\emptyset REM START OF PAGE
12\emptyset FOR J=l TO 2:PRINT\#4:L=L+l:NEXT J
13\emptyset PRINT\#4,"{5 SPACES}TITLE{3 SPACES}":L
=L+1
140 PRINT\#4:L=L+l

```

This prints the page title. I know I'll come back here for each new page, so I'm placing a REM statement here to mark the place. I rigorously add 1 to the line count, L , each time I print a line.
```

150 INPUT\#l,AS:SW=ST
17\emptyset PRINT\#4,A\$:L=L+1

```

Here's where I input from disk and output (to the screen first, later to the printer). I need to save the value of ST (the status variable) so that later I can check to see if this is the last line from the file. ST will be changed by the PRINT\# command, so I save its input value in variable SW.
\(18 \emptyset\) IF L<62 GOTO 250
\(19 \emptyset\) IF L=66 THEN L=ø:GOTO 25ø
200 PRINT\#4:L=L+1:GOTO 190
If I have printed the maximum number of lines desired, I want to eject the paper by printing until the line count L equals 66 . Since each page has 66 lines, I'm now at the start of the next page and can set L back to zero.
```

25\emptyset IF SW<>\emptyset GOTO 3ø\emptyset
26\emptyset IF L=\emptyset GOTO 11\varnothing
27\emptyset GOTO 15ø

```

If I'm at the end of the input file ( \(\mathrm{SW}=0\) ), I'll go to line 300 and wind things up. Otherwise, I want to go back.

Here's a cute touch-perhaps too cute for some tastes. Variable L can only be equal to zero if I've just ejected a page. If so, I want to go back


ULTRABASIC-64...Add 50 commands: graphics, music, TURTLE and game features. Tutorial, demo plus. TAPE \(\$ 39.95\) DISK \(\$ 42.95\)

ASSEMBLER-MONITOR-64 High speed language development. Eleven function monitor. Screen editing of source file.DISK \(\$ 32.95\)

MERCURE-64...Simple, powerful file management with fast design, entry search report capabilities. Tutorial. DISK \(\$ 32.95\)

SYNTHY-64... Sets the standard for all of the rest. Best 64 -synthesizer anywhere. Samples and manual. CASSETTE \(\$ 29.95\) DISK \(\$ 32.95\). Also available: 3 great companion music albums; Classical, Christmas, and Ragtime Sing-Along. DISK \(\$ 12.95\) Each.
GRAPHICS DESIGNER-64... TINY FORTH-64/20...EX-Menu-driven drawings, floor citing language-low price. plans and illustrations etc.. Powerful, extensible, \(200+\) Slide program capability. DISK \(\$ 32.95\)
CHECMOOOK MAMAGERGA AMATOMY OF A COMMOSimple check account main- DORE-64 Complete quide. tainance. Optional screen or Full comment ROMS list, deprinter report and backup. tailed intemals, descriptions. DISK \$22.95

CHARTPAK-64...Professional qualtiy pie, line and bar charts. Menu driven, interactive, hardcopy. DISK \$42.95

ZOOM PASCAL-64...PRO- SUPER DISK UTILTTY-64. duces 6502 machine code Speed copy 4 ways: Total, for speed. Foating point, In- Bam, Append or File. Dump tegers, strings File handling. or modify sectors. More. DISK \(\$ 39.95\)

DISK \(\mathbf{\$ 2 2 . 9 5}\)
POOL-64/20...Play Fullrack SCREEN GRAPHICS-64Adds features as CHARTPAK-64 or nine ball using hires 24 hires, multicolor, sprite with high quality output to graphics. Vic-20 required 8 K commands to 64 -BASIC. plotters.
DISK
\(\mathbf{\$ 8 4 . 9 5}\) TAPE \(\mathbf{\$ 1 4 . 9 5}\) DISK \(\$ 17.95\) Demo tutorial and manual TAPE' \(\$ 24.95\) DISK \(\$ 27.95\)

FREE CATALOG Ask for a listing of other Abacus Software for Commodore-64 or Vic-20
istributors
reat Britain
ADAMSOFT
8 Norwich Ave. Rochdale, Lancs 1-788-8963
Nest Germany:
ATA BECKER
Aerowingerstr 30 000 Dusseld
\(211 / 312085\)

Belaium:
Inter. Services AVGuillaume 30 Brussel 1160, Belgium 2-660-1447

\section*{Sweden:}

TIAL TRADING PO 516 34300 Almhult 476-12304

France:
Micro Application
147 Avenue Paul-Doumer Rueill Malmaison, France 1.732.9254

Australia: CW ELECTRONICS 416 Logan Road Brisbane, Queens 07-397-0808

Canada East:
KING MICROWARE LTD 5950 Cote des Neiges Montreal, Quebec H3S 126 514/737-9335

\section*{New Zealand:} VISCOUNT ELECTRONICS 306-308 Church Street Palmerston North 63-86-696

\section*{AVAILABLE AT COMPUTER STORES, OR WRITE:} Abacus …initil Software

\section*{P.O. BOX 7211 GRAND RAPIDS, MICH. 49510}

For postage \& handling, add \(\$ 1.50\) (U.S. and Canada), add \(\$ 3.00\) for foreign. Make payment in U.S. dollars by check, money order or charge card. (Michigan Residents add 4\% sales tax).
to 110 and print a new title. If not, get another line from the input file starting at line 150.

\section*{\(3 \varnothing \emptyset\) IF L<>ø GOTO \(19 \emptyset\)}

Here's a supercute trick. I pondered this one for a while, since it's almost too clever; that sort of thing can trip up your logic. Here's the objective: If we're finished, but the paper hasn't been ejected, go back to line 190 and eject the paper. The program will branch back here again, but this time variable \(L\) will be zero and we can finish the job by closing the files.

\section*{\(31 \varnothing\) CLOSE 1 \\ \(32 \emptyset\) CLOSE 4}

That's it. It's really rather messy. It works, and for a temporary job that's all we would need.

But it doesn't feel right. The code feels messy: It seems to jump around, and I don't get a feeling of smoothness in the program. It's time to pick at the coding.

\section*{First Revision}

The first awkward spot is around lines 190 and 200. The routine to eject the paper works but looks clumsy. Besides, we call it twice (once at 62 lines, and again at end of file).

I have feelings about this part of the program, too. It's a unit to do a particular job. I would feel


better moving it to a separate subroutine where it can stand out as an identifiable action. Sometimes I create a subroutine out of some in-line code and then move it back later; it helps me identify the modules that make up the program. Let's move the eject routine to a subroutine at line 500, clean it up a bit, and see what we get:
1øø OPEN 4,3
\(1 \emptyset 5\) OPEN \(1,8,3\), "CONTROL"
\(11 \varnothing\) REM START OF PAGE
\(12 \emptyset\) FOR \(\mathrm{J}=1\) TO 2:PRINT\#4:L=L+1:NEXT J
\(13 \varnothing\) PRINT\#4," 45 SPACES \(\}\) TITLE \(\{3\) SPACES \(\} ": L\) \(=\mathrm{L}+1\)
140 PRINT\#4:L=L+1
150 INPUT\#1,AS:SW=ST
\(17 \emptyset\) PRINT\#4, A \(: ~ \mathrm{~L}=\mathrm{L}+1\)
\(18 \emptyset\) IF L<62 GOTO 250
190 GOSUB 5øø:GOTO \(25 \emptyset\)
\(25 \emptyset\) IF SW<>ø GOTO \(3 \varnothing \emptyset\)
\(26 \emptyset\) IF L=ø GOTO 11ø
\(27 \emptyset\) GOTO \(15 \emptyset\)
\(3 \varnothing \varnothing\) IF L<>ø GOTO \(19 \varnothing\)
310 CLOSE 1
320 CLOSE 4
330 END
5øø FOR J=L TO 66:PRINT\#4:NEXT J
\(51 \varnothing\) L= \(\varnothing\) : RETURN
We can see that the GOTO 250 on line 190 is now redundant since we'll go there anyway. But we have other things to do. We're still trimming the program and have some distance to go yet.

\section*{Digging Deeper}

Around lines 250 to 270, we jump around a lot. We have one jump forward to 300 and two jumps back to 110 or 150 . The logic seems scattered.

I have a thing about loops: I like to see them neatly nested, with short jumps entirely within longer jumps. It might even be summarized as a rule of thumb: Where possible, make short jumps as short as possible.

Using this rule, I want to get the loop back to 150 into logical order first. Then we'll work in the longer loop to 110 and finally the forward branch to 300 . We'll need to expand the logic using an AND operator, but that's not too hard.

As the routine is written, certain logical things start to fall together. For example, we don't have to GOTO forward to line 300. When we're finished writing the two loops, we'll fall into 300 naturally. ("Naturally" seems to be a key word in how programs seem to come together as you tighten them up.)

We can also tighten up the page eject conditions. If we write line 180 correctly, there will be no need to go back to get a page ejection. One option would be to call the subroutine at 500 twice. But if we think of what our objective really is at line 180, we can do it all correctly the first time through. Inverting the logic and adding an OR connective does the trick nicely.



Look at how far the original program has come:
100 OPEN 4,4
105 OPEN 1,8,3,"CONTROL"
110 REM START OF PAGE
120 FOR J=1 TO 2:PRINT\#4:L=L+1:NEXT J
130 PRINT\#4,"\{5 SPACES\}TITLE\{3 SPACES\}":L =L+1
140 PRINT\#4:L=L+1
\(15 \emptyset\) INPUT\#1,A\$:SW=ST
\(17 \varnothing\) PRINT\#4,A\$:L=L+1
\(18 \varnothing\) IF L>61 OR SW<>ø THEN GOSUB \(5 \varnothing \varnothing\)
\(25 \varnothing\) IF SW=ø AND L>ø GOTO \(15 \emptyset\)
260 IF SW=ø GOTO \(11 \varnothing\)
310 CLOSE 1
\(32 ø\) CLOSE 4
330 END
5øø FOR J=L TO 66:PRINT\#4:NEXT J
\(51 \varnothing\) L=Ø: RETURN
This is pleasing, but we can do even more.
The repeated SW \(=0\) test in lines 250 and 260 still irks a little: It seems clumsy. The whole business is tied up with whether to print a title or not. Is there a better way? Could the test of \(L>0\) be somehow shuttled up to the top of the loop instead of sitting at the bottom?

\section*{The Header Module}

While we're thinking about it, that whole business of printing a header is really a module-we must do the whole thing, title and all, or nothing. If we move it out to a subroutine, we might see the
 credit card cham, FLORIDA 33156 8764 S.W. 1
logic flow more clearly. Let's do it and work on the logic flow. We end up with this:
1øø OPEN 4,3
\(1 \emptyset 5\) OPEN \(1,8,3\), "CONTROL"
llø IF L=ø THEN GOSUB 6ØØ
150 INPUT\#1,A\$:SW=ST
170 PRINT\#4,AS:L=L+1
\(18 \emptyset\) IF L>61 OR SW<> \(\quad\) THEN GOSUB \(5 \emptyset \emptyset\)
\(26 \emptyset\) IF SW=Ø GOTO \(11 \varnothing\)
310 CLOSE 1
320 CLOSE 4
\(33 \varnothing\) END
5øø FOR J=L TO 66: PRINT\#4:NEXT J
\(51 \varnothing\) L= \(\varnothing\) : RETURN
\(60 \emptyset\) FOR \(\mathrm{J}=\mathrm{L}\) TO 2:PRINT\#4:L=L+1:NEXT J
\(61 \emptyset\) PRINT\#4," \(\{5\) SPACES \(\}\) TITLE \(\{3\) SPACES \(\} ": L\) = L+1
620 PRINT\# \(4: \mathrm{L}=\mathrm{L}+1\)
\(63 \varnothing\) RETURN
Look at that main section from lines 100 to 330. It now seems tight and concise like a finely tuned instrument.

Both subroutines-at lines 500 and 600-are called only once. If it seemed important, we could put them back into the main program stream. But I'm happy to see them as clearly isolated modules. At this stage I would add comments (line 499: REM PAGE EJECT and line 599: REM PAGE TITLE) to neaten things up.

\section*{Moral}

First, what you see published is not always the first idea that popped into the author's head. The programmer is not always smarter than you. Time has been taken to groom the program into its final shape. When many people are going to read your code, you like to take a few extra pains with its appearance.

Second, don't be afraid to revise your programs, even if they work correctly. Sure, a oneshot program often doesn't warrant picking over; use it and forget it. But sometimes the exercise can reveal, almost accidentally, powerful and effective programming methods.

Third, style isn't an inborn talent that some people have and some don't. You learn it as you go. Some things you will discover for yourself, and others you'll pick up by looking at other people's programs.

The odd thing is that we instinctively recognize better writing when we have written it. You may not know exactly why, but you often feel good about a certain piece of programming. Usually, it's because it has style.
Copyright © 1983 Jim Butterfield

\section*{COMPUTE! \\ The Resource.}

\title{
VIC／64 Memdata
}

\author{
Michael M．Milligan
}

\begin{abstract}
＂Memdata＂converts a machine language routine into DATA statements and then erases itself，allowing you to save the DATA to disk or tape for later use．
\end{abstract}

Transferring a machine language routine into DATA statements involves a lot of work．To sim－ plify the job，＂Memdata＂takes memory bytes between two addresses，inclusively，and returns DATA statements complete with BASIC line num－ bers．Once the program has generated those state－ ments，it automatically erases itself，leaving only the DATA－as you will see by typing LIST after the program is run．

The first part of Memdata is a modified ver－ sion of Jim Wilcox＇s＂Automatic Line Numbers＂ （COMPUTE！＇s First Book of VIC）．The line numbers are the decimal value for the address of the first byte in each line．This serves as a marker to be sure that every location is accounted for．Also， because many machine language subroutines are located at the top of RAM，it makes the data line numbers high enough to be appended to an exist－ ing BASIC program．The appending can be done with the Datassette or disk files，thus eliminating a lot of typing．

Once you save the DATA statements you have created，enter NEW and PRINT PEEK （43），PEEK（44）．Write down these two numbers． LOAD the program to which you wish to append the DATA．Next，enter POKE 43，PEEK（45）－2：POKE 44，PEEK（46）．Then，LOAD the DATA statements right in there with the first program．When it is loaded，POKE 43 and 44 with the numbers you wrote down after the earlier \(\operatorname{PEEK}(43)\) and PEEK（44）．This will merge the two programs if the DATA statement line numbers are higher than the highest line numbers in the original program．

Memdata erases itself in a novel way．Because line numbers used in Memdata are so high，the DATA statements will be the first lines in the BASIC program area．After the DATA statements are created，Memdata searches memory for DATA （token 131）following a line number．When it finds something besides a DATA token，it POKEs zeros into the high and low bytes of the link address for that line．These two zeros，plus the zero byte that
signals end－of－line，make up the three zero bytes that convince the LIST and SAVE functions that the end of the BASIC program has been reached． Because of this，it＇s important to save the program before you run it for the first time．

\section*{Memdaía}

Refer to the＂Automatic Proofreader＂article before typing this program in．
63720 PRINT＂\｛CLR\}太21 I彐": PRINT"\{RVS\}TO
\｛SPACE\}CONVERT MEMORY TO \{OFF\}"
：rem 159
63723 PRINT＂\｛RVS\}DATA STATEMENTS ENTER \｛OFF\}":PRINT"E21 U习习 :rem 61
63730 PRINT＂INCLUSIVE DECIMAL＂：PRINT＂MEMO RY LOCATIONS＂：PRINT：INPUT＂FROM＂；A
：rem 138
63733 PRINT：INPUT＂TO＂；C：PRINT：INPUT＂BYTES PER LINE＂； B ：rem 17ø
\(63735 \mathrm{C}=\mathrm{C} / 256\) ：POKE251，（C－INT（C））＊256：POKE 252，C ：rem 60
63740 POKE2，B：PRINT＂\｛CLR\}"; :rem 172
\(63750 \mathrm{~B}=\mathrm{A} / 256:\) POKE 253 ，（ \(\mathrm{B}-\mathrm{INT}(\mathrm{B})) * 256\) ：POKE 254，B ：rem 55
63755 PRINT：PRINTMIDS（STRS（A），2，LEN（STRS（ A））－1）；＂DATA＂；
：rem 247
\(6376 \emptyset\) FORI \(=\varnothing\) TOPEEK（ 2 ）－ 1
：rem 76
63763 AS＝STRS（PEEK（A＋I））＋＂，＂：rem 223
63765 IFA + I \(>\operatorname{PEEK}(251)+256 * \operatorname{PEEK}(252)\) GOTO63 \(78 \varnothing\)
：rem 221
63768 PRINTMID\＄（AS，2，LEN（AS）－1）；：rem 7
6377 Ø IFA \(+\mathrm{I}=\operatorname{PEEK}(251)+256\)＊ \(\operatorname{PEEK}(252)\) GOTO63 830 ：rem 212
63775 NEXTI：GOTO63830 ：rem 11
6378 PRINT＂\｛LEFT\} ":GOTO 6387ø :rem 241
63830 PRINT＂\｛LEFT\} ": POKE631+PEEK (198), 13 ：rem 72
\(6384 \emptyset\) PRINT＂GO6385ø＂：FORA＝631TO634：POKEA， 145 ：NEXT \(\overline{\text { ：POKEA，}} 13\) ：POKE636，13：POKE19 8，6 ：rem 147
63841 END ：rem 221
6385ø PRINT＂\｛2 UP\}":FORA=1TO3:PRINT"
\｛8 SPACES \}": NEXT:PRINT"\{3 UP\}"; ：rem 28
63860 A \(=\operatorname{PEEK}(253)+256 * \operatorname{PEEK}(254)+\operatorname{PEEK}(2): \operatorname{G}\) OTO6375ø
：rem 227
\(6387 \varnothing\) Q \(=\operatorname{PEEK}(43): \mathrm{U}=\operatorname{PEEK}(44) \quad:\) rem 29
6388 Ø \(\operatorname{IFPEEK}(\mathrm{Q}+4+256 * \mathrm{U})\)＜＞131GOTO639øø ：rem 79
\(6389 \varnothing\) Ql \(=\operatorname{PEEK}(Q+256 * \mathrm{U}): \mathrm{Ul}=\operatorname{PEEK}(\mathrm{Q}+1+256 * \mathrm{U})\)
： \(\mathrm{Q}=\mathrm{QL}: \mathrm{U}=\mathrm{Ul}\) ：GOTO6388 \(\quad\) ：rem 86
639 øø \(\mathrm{P}=\mathrm{Q}+256 * \mathrm{U}:\) POKEP，\(\varnothing:\) POKEP +1 ，\(\varnothing\) ：rem 173
\(6391 \varnothing\) PRINT＂\｛CLR\}区2l I习" :rem 177
63920 PRINT＂\｛RVS\}TYPE LIST TO SEE DATA \｛OFF\}"
：rem 145
63930 PRINT＂E21 U习习＂：rem 238 ©

\section*{Learning How}

A month or two ago, I stated that I couldn't possibly teach beginning machine language programming in this column-it would consume my entire output for a year or more. And yet I continue to get letters that ask me "How do you learn to write programs?"

I believe that those who ask the question are not asking for a tutorial on the foibles and pitfalls of the FOR-NEXT loop. Nor are they really asking about the intricacies of the 6502 instruction set. Most of them have already mastered the tutoriallevel material on their chosen language. What these perplexed people are really asking is "What good is all this programming stuff, anyway?"

And that is not really surprising. So many tutorials tell you how to write a program to do such and such. So few discuss why. Too often, learning to program is approached like learning a foreign language. Memorize the conjugations and punctuation; put sentences together like this; and if someone asks you "G'dye moya k'neega?" you know what to answer (providing you were studying Russian instead of Spanish).

\section*{Computer Conversations}

But the need to learn human languages is obvious: The first time you feel hungry in Paris, you can ask for directions to a restaurant in your best Berlitz French. You don't have to "design" a conversation. Not so with learning to program: "Okay, now I know all these neat keywords and syntax and punctuation. How do I start a conversation?" Well, as I hinted above, the secret is that you must design a program.

To some, this design process is simple and obvious. Others never really get the hang of it. (Would it surprise you to learn that many professional programmers never become expert at designing? They make their living implementing other people's designs.) And many, like myself, become somewhat proficient at a few kinds of designs while remaining incompetent at others. (My lament: I don't think I will ever achieve the level of creativity necessary to design a really good game.)

Now, all the above philosophizing surely has some purpose, you hope. Indeed, I think it does.

\section*{Kibitzing}

I have been promising for a few months now that I would provide patches to allow the Atari 1050 drive to work in enhanced mode with good old Atari DOS 2.0s. Well, I finally gathered enough information to begin the task, and I thought you might enjoy looking over my shoulder while I tackle the problem.

This will be a kind of short diary of what I have gone through. There have been more sidetracks and bugs and flat-out boo-boos than I can find room for here. And I won't even tell you how many assemblies I have made (though I will say I made about 10 or 12 just looking for the best of several possibilities for a series of shift instructions).

Even though I admire and strive for a "clean" design, I am apt to take the course of least resistance if I am confident it will work properly. With that in mind, then, let us begin tackling our task.

Note: I will make frequent reference to the listing of Atari DOS 2.0s as published in the book Inside Atari DOS from COMPUTE! Books. Page numbers and line numbers in square brackets [131: 1350] refer to the book.

It will not be necessary to own the book to understand most of what is going on, but having the book available will make it easier. Also, if you do not understand machine language, neither the book nor my explanations will be easy to follow, but you can still use the results (which will appear next month).

\section*{The 1050 And DOS 2.0s}

The first thing we must always do is define the task. Here, that is deceptively simple to do: Make the enhanced density mode of the Atari 1050 drive work with Atari DOS 2.0s.

The next step is much harder: Design the implementation of the task. And, actually, this single step consists of many substeps. For example, let's first investigate the facts which I knew when I started.

The drives:
Item: An Atari 810 drive has 40 tracks of 18 sectors of 128 bytes each. That's a total of 720 sectors.

\title{
ATARI NEwnppactis" \\ ATARI is a trademark of ATARI, INC. LOWE
}

ATARI 800XL
Atari 1050
Disk Drive
Atari 1010
Recorder.
Atari 1027
Printer
Call
77.00

Atari 850
Interface
Call
MOSAIC
64K Ram/400 .... 149.00
64K Ram + Cable Kit
400/800......... 169.00
48K Ram Kit \(\ldots . .94 .00\)
16/32 Expander \(\ldots .64 .95\)
32K Ram.........77.95
Mosaic Adaptor .... 49.95

Memory Expansion for Atari 600XL
3RD Party Printer Interfaces
Interfast I
Apeface w/cable included
PRINTERS
\begin{tabular}{|c|c|}
\hline 00 . . 229.00 & \\
\hline Axiom AT-550 . 329.00 & Alphacom \\
\hline Rite & Okidata 92A \\
\hline
\end{tabular} Call for assorted Printata 92A
\begin{tabular}{|c|c|}
\hline A T A & \\
\hline \multicolumn{2}{|l|}{ATARI} \\
\hline Conversational Lang. - \(T\) & 44.95 \\
\hline My First Alphabet - D . & 26.95 \\
\hline Touch Typing - T & 19.95 \\
\hline Home Filing Mgr. - D & 37.95 \\
\hline Star Raiders - Cart & 32.95 \\
\hline Assembly Editor - Cart & 46.95 \\
\hline Macroassembler - D & . . 67.95 \\
\hline Invitation to Program \(1 T\) & . 1995 \\
\hline Basketball - Cart. & . . 2695 \\
\hline Graph-it - T. & 1595 \\
\hline Qix - Cart & 3295 \\
\hline Dig Dug - Cart & 3295 \\
\hline Atariwriter-Cart & 74.95 \\
\hline Donkey Kong - Cart & 37.95 \\
\hline Ms. Pac-Man - Cart & 3995 \\
\hline Tennis - Cart & 35.95 \\
\hline Eastern Front - Cart. & 32.95 \\
\hline Donkey Kong Jr. - Cart & 39.95 \\
\hline Pengo - Cart & 35.95 \\
\hline Logo-Cart. & 79.95 \\
\hline Robitron-Cart. & . 35.95 \\
\hline Pole Position - Cart & 39.95 \\
\hline Microsoth Basic II - C & . 67.95 \\
\hline Paint - D & 33.95 \\
\hline Caverns of Mars - Cart & 32.95 \\
\hline Joust - Cart. & 39.95 \\
\hline Visicalc - D & 159.95 \\
\hline \multicolumn{2}{|l|}{SIERRA ON-LINE} \\
\hline Homeword - D. & 49.95 \\
\hline Dark Crystal - D & . 27.95 \\
\hline Frogger - D/T & 23.95 \\
\hline Quest For Tires - D & 23.95 \\
\hline Ultimal-D & . 23.95 \\
\hline Ultima II- D & . 41.94 \\
\hline Wizard/Princess - D & 22.95 \\
\hline \multicolumn{2}{|l|}{infocom} \\
\hline Deadline - D & . 34.95 \\
\hline Witness - D & . 34.95 \\
\hline Zork 1. II, III - D & 27.95 \\
\hline Starcross - D & . 27.95 \\
\hline Planettall - D & 34.95 \\
\hline Suspended - D & 34.95 \\
\hline Enchanter - D & 34.95 \\
\hline Infidel-D. & 34.95 \\
\hline Sorcerer - D & 34.95 \\
\hline \multicolumn{2}{|l|}{BRODERBUND} \\
\hline AE-D. & 23.95 \\
\hline Arcade Macnine - D & . 41.95 \\
\hline Bank St. Writer - D & 49.95 \\
\hline Lode Runner - D & 23.95 \\
\hline Drol-D. & 23.95 \\
\hline Spare Change - D & 23.95 \\
\hline Choplitter-D . . & . 23.95 \\
\hline \multicolumn{2}{|l|}{PARKER BROS.} \\
\hline Astrochase - Cart & 34.95 \\
\hline Frogger - Cart & 34.95 \\
\hline Q-Bert-Cart & 34.95 \\
\hline Popeye - Cart & 34.95 \\
\hline
\end{tabular}

Conversational My First Alphabet - D. Touch Typing - T . .
Home Filing Mgr. Home Filing Mgr.
Star Raiders - Cart Assembly Editor - Cart Macroassembler - D Invitation to Program I Basketball - Cart Graph-it Dig Dug - Cart . Atariwriter - Cart Donkey Kong - Cart Ms Pac-Man-Cart Tennis - Cart - . .
Eastern Front - Cart Donkey Kong Jr. - Cart Pengo - Cart Logo - Cart. Robitron - Cart Pole Position - Cart Paint - D
Caverns of Mars - Cart Joust - Cart Visicalc - D

SIERRA ON-LINE Homeword - D. . Frogger - D/T Quest For Tires - D Quest For Tires
Ultima II - D.
Wizard/Princess - . .
INFOCOM
Deadline - D Witness - D . Zork I. II. III - D Starcross - D Planetfall - D Suspended - D Enchanter - D Infidel - D.
Sorcerer - D
BRODERBUND
AE - D
Arcade Macnine -
Bank St. Writer - D
Lode Runner - D
Drol - D
Spare Change - D
Choplifter - D

\section*{PARKER BROS.}

Astrochase - Car
Frogger - Cart
Popeye-Cart
34.95

Call
Trak
Concorde
Indus GT

RS232 Modem
Adaptor (Through
\(\frac{\text { serial port) . . . . . . } 39.95}{\text { Koala Touch Tablet }}\)
Cart or Disk . . . 69.95

\section*{MONITORS} USI . .
AMDEK.
STIMUTECH SUBLIMINAL SOFTWARE FOR ATARI AND CBM 64
Expando-Vision Interface w/one Free Cart . . . . 99.00 Weight Control Study Habits Stress Control Drinking Control Smoking Contro Career Success Sexual Confidence Addit'l. Rom Carts \(\$ 29.95\) ea

\section*{COMMODORE 64E}

CBM 64
Call
1541 Disk Drive ................. 249.00
152580 Column Printer ...... 229.00
1530 Datasette ................... 66.00
1702 Color Monitor............ 249.00
1650 AD/AA Modem ........... 89.00
RS 232 Interface ................ 44.00

\section*{COMMODORE 64 SOFTWARE}
\begin{tabular}{|c|c|}
\hline rogram Ref. Guide. . . 19.95 & The Manager-D. . . 37.95 \\
\hline Assembler - D . . . . . . 17:95 & General Ledger- . . 37.95 \\
\hline Easy Finance & Accts. Rec.-D . . . 37.95 \\
\hline I, II, III, IV-D. . . . . . . 19.95 & Accts. Pay.-D . . . 37.95 \\
\hline Easy Calc-D . . . . . . . 64.95 & Code Writer-D . . 37.95 \\
\hline Easy Mail-D . . . . . . . 17.95 & Zork I,IIorIIID . . . . 29.95 \\
\hline Easy Script-D . . . . . . 39.95 & Suspended-D . . . 29.95 \\
\hline Easy Spell-D . . . . . . . . 19.95 & Starcross-D..... . . 29.95 \\
\hline Logo-D . . . . . . . . . . . 39.95 & Deadline-D . . . . . 29.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline EPYX & LJK \\
\hline Gateway To Apshai - Cart 27.95 & Letter Perfect - D . . . . . . 74.95 \\
\hline Pitstop - Cart . . . . . . . . . 27.95 & Data Perfect - D . . . . . . . . 74.95 \\
\hline Swat Rescue-Cart . . . . . 27.95 & Spell Perfect - D . . . . . . . 64.95 \\
\hline Silicon Warrior - Cart . . . 27.95 & \\
\hline Fun With Music - Cart . . . . 27.95 & MISCELLANEOUS FOR ATARI \\
\hline Jumpman Jr. - Cart . . . . . 27.95 & \\
\hline Dragonriders of Pern - D/T 27.95 & Castle-Wolfenstein - D . . . 20.95 \\
\hline Temple of Apshai - D/T . . 27.95 & Home Accountant - D . . . . 52.95 \\
\hline Hellfire Warrior - D/T . . . . . 20.95 & Master Type - D/Cart . . . . . 27.95 \\
\hline Fun With Art - Cart . . . . . . 27.95 & Spelunker - D . . . . . . . . 27.95 \\
\hline & Flight Simulator II - D . . . 37.95 \\
\hline DATA SOFT & Zombies - D/T . . . . . . . . 23.95 \\
\hline Money Wizard - D . . . . . . . 49.95 & Mr. Robot - D . . . . . . . . 23.95 \\
\hline Letter Wizard - D . . . . . . 49.95 & 95 \\
\hline Spell Wizard - D . . . . . . . 34.95 & \begin{tabular}{l} 
Diskey - D . . . . . . . . . . . . 34.95 \\
Chatterbee - . . . \\
\hline
\end{tabular} \\
\hline Genesis - D/T . . . . . . . . 20.95 & Rally Speedway - Cart . . . . . 34.95 \\
\hline Heathcliff-D/T . . . . . . 20.95 & Ultima III - D . . . . . . . . . . 41.95 \\
\hline Pooyan - D/T . . . . . . . . 20.95 & Miner 2049'er - Cart . . . . . 34.95 \\
\hline Zaxxon-D/T . . . . . . . 27.95 & Scraper Caper - Cart . . . . . . 34.95 \\
\hline Micropainter - D . . . . . . . 23.95 & Basic XL - Cart . . . . . . . 74.95 \\
\hline & Monkey Wrench II - Cart . . 49.95 \\
\hline SPINNAKER & Omnimon . . . . . . . . . . . 82.95 \\
\hline Up For Grabs - Cart . . . . 27.95 & Star Trek - Cart . . . . . . . 27.95 \\
\hline Cosmic Life - Cart . . . . . 23.95 & Starbowl Football - D/T . . . 22.95 \\
\hline Facemaker - Cart . . . . . . 23.95 & Hockey - Cart . . . . . . . . 27.95 \\
\hline Alphabet Zoo - Cart . . . . 23.95 & Computer War - Cart . . . . . 27.95 \\
\hline Fraction Fever - Cart . . . . 23.95 & Flip Flop - D/T . . . . . . . . 20.95 \\
\hline Kids on Keys - Cart . . . . . 23.95 & Boulder Dash - D/T . . . . . 20.95 \\
\hline Delta Drawing - Cart . . . . 27.95 & Carrier Force - D . . . . . . . 41.95 \\
\hline Story Machine - Cart . . . . . 27.95 & Combat Leader - D/T . . . . 27.95 \\
\hline Rhymes \& Riddles - D . . . 20.95 & Encounter - D/.T . . . . . . 23.95 \\
\hline Amazing Things - D . . . . 27.95 & Quasimoto - D/T . . . . . . 23.95 \\
\hline Hey Diddle Diddle - D . . . 20.95 & N.Y.C. - D/T . . . . . . . . 23.95 \\
\hline Snooper Troops 1 or 2-D . . 30.95 & Compute Books . . . . . . . . Call \\
\hline Trains - D . . . . . . . . . . 27.95 & Hundreds of items available for the \\
\hline Aerobics - D . . . . . . . . . . 30.95 & Atari and CBM \(64 \ldots\). . please call. \\
\hline
\end{tabular}

COMMODORE 64 SOFTWARE

\section*{ATARISOFT}

\section*{Pac-Mac}
Centipe . . . . . . . . . . . 34.95
Centipede . . . . . . . . . . . . . . . . . 34.95
Defender . . . . . . . . . . . . 34.95
Dig Dug . . . . . . . . . . . . . . . . 34.95
Donkey Kong . . . . . . . 34.95
Donkey Kong . . . . . . . . . . . . . . 34.95
Stargate . . . . . . . . 34.95
Stargate . . . . . . . . . . . . . . . . 34.95
Robotron . . . . . . . 34.95
\(\begin{array}{llll}\text { Neutral Zone - D/T . . . . . . } & 26.95 \\ \text { Spritemaster - D/T } & \ldots . . . & 2795\end{array}\)
Beachhead - D/T . . . . . . . . . 26.95

\section*{BLUE SKY}

Calc Result/Easy - Cart . . . . Call
Calc Result/Advanced - D . . . Call
Script 64 - D
BATTERIES INCLUDED
Paper Clip
Delphi Oracle
DATA 20
Video Pak 80
Z80 Video Pack

\section*{HES}

Multiplan - D . . . . . . . . . . . 7495 64 Forth - Cart . . . . . . . . . . 41.9 HES Writer - Cart . . . . . . . . 32.95 HES Mon-Cart . . . . . . . . . . 27.95 Turtle Graphics - Cart . . . . 41.95
Mutant Camels . . . . . . . 20.95 \begin{tabular}{l} 
Mutant Camels . . . . . . . . 20.95 \\
HES Modem \\
\hline
\end{tabular}

CIMMARON
Instaspeed - D/T . . . . . . 74.95
Instawriter-Cart . . . . . . 55.95
\(\begin{array}{ll}\text { Instawriter - Cart . . . . . . . } & 55.95 \\ \text { Instamail - D/T . . . . . . . . } & 29.95\end{array}\)
SIRIUS
Blackpoole - D . . . . . . . . . 2795
Repton - D . . . . . . . . . . . . . . 27.95
Repton - D . . . . . . . . . . . . 27.95
Type Attack - D
Type Attack - D . . . . . . . . . . . 27.95
Wayout - D . . . . . . . 27.95
Wayout - D
SYNAPSE
\begin{tabular}{|c|c|}
\hline & Blue Max - D/T . . . . . . 23.95 \\
\hline & Zaxxon-D/T . . . . . . . . . . 23.95 \\
\hline & Morgul - D/T . . . . . . . . . 23.95 \\
\hline & Shamus II- D/T . . . . . . . . 23.95 \\
\hline & Sentinal - D/T . . . . . . . . 23.95 \\
\hline & Pharoah's Curse - D/T . . . . 23.95 \\
\hline & Slamball - D/T . . . . . . . . 23.95 \\
\hline & MISCELLANEOUS FOR CBM 64 \\
\hline
\end{tabular}

Flight Simulator II - D . . . . 37.95
Night Mission/Pinball - D . . 20.95
Praticalc PS - D . . . . . . . . 59.95
M-File - D . . . . . . . . . . . 84.95
Word Pro 3+/Spell D. . . . . 74.95
Home Accountant - D . . . . 52.95
Step by Step - D/T . . . . . . 44.95
Barron's Sat - D . . . . . . . . 59.95
Money Manager - D/T . . . . 19.95
Bristles - D/T . . . . . . . . . . 20.95
Telestar 64 - Cart . . . . . . . 37.95
Star League
Baseball - D/T . . . . . . . . 22.95
Zombies - D/T . . . . . . . . . 23.95
Castle Wolfenstein - D . . . 20.95
Swashbuckler - D . . . . . . . 23.95
Sorcerer - D . . . . . . . . . . 34.95
Computer Baseball - D . . . . 27.95
Ringside Seat - D . . . . . . . 27.95
Professional Golf - D . . . . . . 27.95
Congo Bongo - Cart . . . . . . 27.95
Mastertype - Cart . . . . . . . 27.95
Solo Flight - D . . . . . . . . . . . 23.95
Vic Switch . . . . . . . 124.95
Cardco + G . . . . . . . . . . . . . . . 64.95
ACCESSORIES
WICO Joystick . . . . . . . . . . . Call
Flip'n' File Trunks . . . . . . 20.95
Flip'n' File Cart . . . . . . . . 20.95
Joysensor . . . . . . . . . 24.95
Elephant Disks
(Box of 10) . . . . . . . . . . 20.95
WICO Trakball . . . . . . . . 37.95
KRAFT Joystick . . . . . . . 15.95

D - Disk
T-Cassette
Cart-Cartridge

Item: An Atari 1050 drive has 40 tracks of 26 sectors of 128 bytes each, for a total of 1040 sectors.
Item: A 1050 will automatically read either density diskette (single or enhanced), but it formats a new diskette according to the format command it receives. In particular, a! command ( \(\$ 21\) ) causes single-density formatting, while a " command (\$22) causes enhanced density.

The software:
Item: DOS 2 is capable of accessing both 810 drives and their double-density equivalents (drives with 40 tracks of 18 sectors of 256 bytes each).
Item: There is an inherent limit of 1024 sectors in DOS 2, since it allows only a 10-bit sector number in the link field of each sector. Also, on a single density diskette, DOS 2 accesses only 719 of the 720 sectors.
Item: The listing of Atari DOS. Actually, this is not a "known" item, and much of what follows is a discussion of what I learned and applied from reading the listing several times.

\section*{Finding The Format}

Armed with these knowns, let's tackle the unknowns. It seemed to me that the first point to attack was the disparity between what the 1050 was capable of and what DOS 2 would request of it. All of a sudden, DOS 2 must be able to understand three different kinds of disk formats. Question: How can DOS tell what format a particular diskette is?

The answer is to be found in the DOS listing [66: 2213-2222]. During initialization, a status request is made of each drive. When the drive responds, one of the bytes it returns to the computer describes the drive's type. In particular, the listing makes it clear that a double-density disk has bit \(5(\$ 20)\) set on. DOS 2 uses this bit to differentiate between 128 -byte and 256 -byte sectors.

All very well, even assuming that an enhanced mode 1050 returns a zero bit here (which it does, thus properly indicating 128 -byte sectors). But what distinguishes an enhanced density diskette? I confess that I obtained the answer to this question through a simple experiment: I simply booted a system with an Indus 1050-compatible drive as D2 and looked at the status value it returned during DOS initialization. Lo and behold, it returned \(\$ 80\). Not surprisingly, the high bit is off in 810 and double-density modes. Voilà.

\section*{Sector Limits}

The second major question to investigate is "How many of the 1050 's sectors can we make DOS 2
utilize?" Well, we already know that 1024 is an upper limit. Is there any other limiting factor? The answer is in the layout of the Volume Table Of Contents (VTOC) under DOS 2. The VTOC contains a single bit for each accessible sector on the disk (a scheme known as a bitmap, though Atari literature often uses VTOC and bitmap interchangeably). If a bit is on (1), the corresponding sector is available. If a bit is off (0), the sector is in use. With eight bits per byte, then, there must be 90 bytes in the bitmap.

DOS 2 allows only a single sector (in this case, 128 bytes) for the VTOC of each diskette. While we could circumvent this restriction, it would require a lot of work, and might cause some secondary problems. (I don't want to go into this subject more now, but it cost me four to six hours of investigation before I decided against a two-sector VTOC.)

In 128 bytes, there are 1024 bits. So it would seem that the limit on number of sectors is indeed 1024. Alas, it is not to be. The description of the VTOC clearly calls out usages for the first six bytes (DOS type, maximum number of sectors, current number of sectors, write-required flag) and reserves the next four. So now we are down to 118 bytes and 944 sectors. Is that our limit?

\section*{A Final Of 976 Sectors}

At first, I was inclined to say it is. But I pored over the listing a couple more times, checked every memory reference that was related, and finally concluded that we could use the four reserved bytes. Which gives us 122 bytes and a final maximum of 976 sectors. Well, that doesn't seem too bad. We are only 64 sectors away from the theoretical maximum and surely a lot better off than with a limit of 720 sectors.

So this is our plan: Use the upper bit (\$80) of the drive status to recognize an enhanced density diskette; allow 975 sectors (DOS 2 always throws away the first possible sector); displace the bitmap in the VTOC by 4 bytes on the low end and lengthen it to 122 bytes.

\section*{Implementing Our Plan}

By the time I had decided on a plan, over half the time I had allotted to this project had elapsed. As I write this, all the allotted time is gone, and I am not done yet. Sounds like a typical software project. Anyway, this month I will tell you of the difficulties I faced. Next month we can decide how well I faced them. In any case, let's begin the next step.

Before I could start the actual coding of the modifications, I had to find all the places in DOS which would be affected by my scheme. While many parts of DOS are affected by a change in density (from 128 - to 256 -byte sectors), there are
only a few routines which actually care about such things as disk status, where the VTOC's bitmap is, and how many sectors are available.

Some of the routines I could successfully ignore. For example, when you delete a file and free up its sectors for later use, you must bump the count of free sectors. But if the rest of DOS is working, you don't have to check for validity of the bumped value. The same thing is true when we allocate a free sector and must decrement the count. And the boot process cares whether we are using 128- or 256-byte sectors, but it doesn't care how many sectors are on the disk.

\section*{Some Areas Need Patching}

But there are several spots which definitely need attention, so let's discuss them now (next month we discuss the solutions).
1. In the BSIO (Basic Sector Input Output) routine, there is a check for a format command [65: 2144]. DOS 2 simply compares the current command with \(\$ 21\) (!) and makes a decision according to an exact match. Now, though, we must allow for either \(\$ 21\) or \(\$ 22\) (") as format commands.
2. In DOS initialization [66: 2218], each accessible drive is checked for its status. DOS 2 ignores all bits of the status except bit 5 (\$20) and stores a 1 or 2 (single or double density) in the drive table (DRVTBL) for each drive so checked. We need to find a way to capture and use bit 7 (\$80), preferably by keeping it in DRVTBL, also. Fortunately, the only other routine which accesses DRVTBL is SETUP, which we discuss below.
3. In XFORMAT [79: 3510], the actual format command is stored in the DCB (for use by BSIO, as above). We need to allow for either \(\$ 22\) or \(\$ 21\), while DOS 2 allows only \(\$ 21\).
4. Also in XFORMAT [79: 3547, 3552], the maximum number of sectors and number of sectors available are stored in the VTOC which is being created (for the newly formatted disk). Currently, DOS 2 simply uses LDA \# (load immediate value) to store what it thinks is the only possible count (707). We must provide for the enhanced density count as well.
5. Again in XFORMAT [80: 3559-3570], there are several assumptions made about how big the bitmap is and where the directory and boot sectors are to be represented in the map. Since we will move the base of the map down four bytes, we must provide for variable numbers here, as well.
6. In FRESECT [90:5166], the base of the bitmap is assumed to be byte \(10(\$ 0 \mathrm{~A})\) of the VTOC. We must change the assumption.
7. In GETSECTOR [91: 5199, 5202, 5239], similar assumptions about the bitmap are coded via immediate loads.
8. In SETUP [92: 5288], which is called by
every major routine in DOS 2, the type byte stored in DRVTBL (see item 2, above) is simply transferred to a global location (DRVTYP) for use by other routines. If we change what is stored in DRVTBL, we need to change how and what we store in DRVTYP.

\section*{Keeping The Patches Small}

And that's it. Not too bad, right? If only that were true. Remember, our goal here is to patch the standard version of DOS without affecting.its normal operations and without requiring a reassembly of the whole thing to make our patches fit. In general, then, the smaller and fewer the patches, the better.

The real problem here is the number of load immediate instructions, used to implement what are now to become invalid assumptions. If these were three-byte instructions (such as loads from a non-zero page memory location), we would have a simple task: Change the values in the locations being loaded.

Since they are load immediate instructions, though, our only choices are to either make large and cumbersome patches (generally JSRs to subroutines which will do the work, but remember that JSR occupies three bytes), use loads from zero page (a neat alternative, but we have no zero page available to us), or to continue to use load immediate.

\section*{Self-Modifying Routines}

My choice? Continue to use load immediate. But how? By producing some (shudder at this next phrase, please) self-modifying routines. Remember how I said at the beginning that I sometimes took the path of least resistance? This is one of those sometimes.

The "trick" which allows my scheme to work is relatively simple: Every routine which needs a load immediate changed is only used by DOS 2 after a call has been made to SETUP. Basically, SETUP examines the disk number and drive type and produces various pointers and values in fixed locations for use by other, higher-level routines. What would be more appropriate than for SETUP to also set up the needed values which will be loaded in immediate mode?

And this is, indeed, the plan I tried. At the point where SETUP stores the drive type [92: 5288], I placed a JSR to my patch-it routine. And my patch-it routine used the disk type information to determine which of a pair of immediate values would be used in each of the cases noted above. It looked like it would work.

\section*{Fitting The Patch Into DOS.SYS}

Except (You knew that was coming, didn't you?) where do I put the patch? I have discussed this subject before, so let me succinctly say that the only sizable patch area in DOS.SYS is at location
\$1501, in the gap between DOS.SYS and MiniDUP (the root of DUP.SYS). There are exactly 63 bytes available there. And my routine was about 85 bytes long.

The story of how I pared my patch down to fit (just barely) will have to wait for next month. Fortunately, it is a short patch. Also fortunately, there are a couple of small patch spaces still floating around in DOS.

Incidentally, if you were looking for the continuation of my notes on how to load saved binary files, keep looking. It turns out that the subject has direct bearing on what we are doing here, so it seemed not inappropriate to postpone it a month (or possibly two).
\[
\begin{aligned}
& \text { Use the handy } \\
& \text { reader service cards } \\
& \text { in the back of the } \\
& \text { magazine for } \\
& \text { information on } \\
& \text { products advertised in } \\
& \text { COMPUTE! }
\end{aligned}
\]

\section*{Program Your Own EPROMS}

\section*{\(\rightarrow\) VIC 20 \\ C 64 \\ \(\$ 99.50\)}

PLUGS INTO USER PORT. NOTHING ELSE NEEDED. EASY TO USE. VERSATILE.
- Read or Program. One byte or 32K bytes!
OR Use like a disk drive. LOAD,
 SAVE, GET, INPUT, PRINT, CMD, OPEN, CLOSE-EPROM FILES!
Our software lets you use familiar BASIC commands to create, modify, scratch files on readily available EPROM chips. Adds a new dimension to your computing capability. Works with most ML Monitors too.
- Make Auto-Start Cartridges of your programs.
- The promenade \({ }^{\text {tu }} \mathrm{C} 1\) gives you 4 programming voltages, 2 EPROM supply voltages, 3 intelligent programming algorithms, 15 bit chip addressing, 3 LED's and NO switches. Your computer controls everything from software!
- Textool socket. Anti-static aluminum housing.
- EPROMS, cartridge PC boards, etc. at extra charge.
- Some EPROM types you can use with the promenade \({ }^{\text {tw }}\).


Call Toll Free: 800-421-7731
In California: 800-421-7748
JASON-RANHEIM
580 Parrott St., San Jose, CA 95112 Mxicers

Commodore 64
and
VIC-20
\[
\$ 149^{95}
\]

Telecommunications

\section*{with a difference!}

Unexcelled communications power and compatibility, especially for professionals and serious computer users. Look us over; SuperTerm isn't just "another" terminal program. Like our famous Terminal-40, it's the one others will be judged by.
- EMULATION-Most popular terminal protocols: cursor addressing, clear, home, etc.
- EDITING-Full-screen editing of Receive Buffer
- UP/DOWNLOAD FORMATS - CBM, Xon-Xoff, ACK-NAK, CompuServe, etc.
- FLEXIBILITY - Select baud, duplex, parity, stopbits, etc. Even work off-line, then upload to system!
- DISPLAY MODES-40 column; 80/132 with side-scrolling
- FUNCTION KEYS-8 standard, 52 user-defined
- BUFFERS-Receive, Transmit, Program, and Screen
- PRINTING-Continuous printing with Smart ASCII interface and parallel printer; buffered printing otherwise
- DISK SUPPORT - Directory, Copy, Rename, Scratch

Options are selected by menus and EXEC file. Software on disk with special cartridge module. Compatible with CBM and HES Automodems; select ORIG/ANS mode, manual or autodial.

Write for the full story on SuperTerm; or, if you already want that difference, order today!
Requires: Commodore 64 or VIC-20, disk drive or Datasette, and compatible modem. VIC version requires 16 K memory expansion. Please specify VIC or 64 when ordering.

\section*{Smart ASCII Plus . . . \$599}

The only interface which supports streaming -sending characters simultaneously to the screen and printer - with SuperTerm.
Also great for use with your own programs or most application programs, i.e., word processors. Print modes: CBM Graphics (w/many dot-addr printers), TRANSLATE, DaisyTRANSLATE, CBM/True ASCII, and PIPELINE.
Complete with printer cable and manual. On disk or cassette.
VIC 20 and Commodore 64 are trademarks of Commodore Electronics, Ltd.
Send for a free brochure.
MAIL ORDER: Add \(\$ 1.50\) shipping and handling ( \(\$ 3.50\) for C.O.D.); VISA/Mastercard accepted (card\# and exp. date). MO residents add \(5.625 \%\) sales tax. Foreign orders payable MIPWEST
MiCRO nc.

\title{
A BASIC Cross-Reference
}

\author{
Jim Butterfield, Associate Editor
}

\begin{abstract}
"Cross-Ref" is a valuable programming tool that serves several purposes. Not only does it locate all line number and variable references in a program, but it also helps you prepare documentation and even tighten up your program. It's for BASIC programs stored on disk and will output to the screen or printer. For PET/CBM (Upgrade and 4.0 BASIC) and Commodore 64.
\end{abstract}
"Cross-Ref" and "Cross-Ref64" will analyze a BASIC program stored on disk and give you information on all line number references and all variable references.

It works only with programs written in BASIC; it does not work with programs stored on tape. A program SAVEd on disk may be manipulated as if it were a data file; but a program on tape cannot be handled in that way.

All types of variables are detected and listed: regular variables, strings, integer variables, and arrays. This includes special variables such as TI, TI\$, or ST. If a variable name contains more than two characters, only the first two will be shown. (They're the only ones used by BASIC.) So HOUSE is the same variable as HONK.

\section*{While Everything Is Fresh In Your Mind}

If you have completed writing a program, the Cross-Ref output will serve as a valuable piece of documentation. As each line and variable is listed, you may note its purpose while everything is fresh in your mind: "Line 300 is the start of the analysis: variable \(\mathrm{A} \$\) is the name of the input file...."

Even if your program is not complete, CrossRef can be useful. In large programs, you may wonder what variable names have been used; you want to pick a fresh variable name that won't conflict with anything else. Alternatively, a test run may reveal a problem that shows up within the subroutine that starts at line 750: You can find all calls to that subroutine.

If you're thinking of tightening up your program, you may want to pack two or three lines of
code together into a single line. But you can't do this if some of the lines are referenced elsewhere in the program. Cross-Ref will tell you the story.

And if you're looking at somebody else's program, and don't know, say, what variable V3 is being used for, you can run Cross-Ref and find every occurrence of V3.

\section*{Running The Program}

LOAD and RUN Cross-Ref. Be sure you place the disk with the program you want to cross-reference into the disk drive.

When Cross-Ref asks PROGRAM?, type in the name of the program you wish to analyze. You may use pattern matching if you wish: For example, \(\mathrm{BAG}^{*}\) will match program name BAGELS.

Everything happens very fast. The disk runs for about the same amount of time that is needed to load the program in question. Then you are asked PRINTER? At that time, the cross-reference is complete; the program wants to know where to deliver the results. Answer Y or N.

Output may be to screen or printer. The line number cross-reference appears first. The referenced line number appears, followed by a colon, then the lines where it is used.

Then the variable cross-reference appears, in alphabetical order. Arrays are shown with a single left parenthesis, so that \(A(M+N V \%)\) will be shown as A (-and there will also be other entries for M and \(\mathrm{NV} \%\), of course.

Sometimes a variable or line number will be used more than once on a single line of your program, for example, " \(100 \mathrm{X}=\mathrm{X}+7\) :IF \(\mathrm{X}>20\) THEN \(X=0^{\prime \prime}\). In this case, the cross-reference for \(X\) will show line 100 only once.

\section*{Machine Language For Speed}

It's written mostly in machine language for speed. An early BASIC version of this program appeared in COMPUTE!, May/June 1980 (that's Issue 4); being a BASIC program, it ran slo-o-o-owly. But it worked on identical principles to this version of Cross-Ref.

If you're interested in the mechanics, the next few paragraphs give an insight into the unusual logic of both the original BASIC version and the machine language program presented here.

Because of the plethora of characters to be analyzed, an unusual approach was taken. It might be called a "state transition" program.

Here's the general idea. When we begin the analysis of a BASIC line, we start in state A. In this state, we are interested in only a few characters: an alphabetic, which signals the start of a variable; a GOTO, THEN, or GOSUB, which signals that a line number may be coming; a REM, which indicates we should ignore everything up to the end of the line; quote marks, which tell us that the next few characters will not be of interest to us; and binary zero, which signals end of line.

If we don't see any of these characters, we remain in state \(A\) and get the next character, throwing the old one away. But if we do see a character of interest, we switch to a new state.

Suppose we're looking at a line that says:
\[
\text { FOR J = } 1 \text { TO 9:X35\$ = "HELLO":GOTO } 500
\]

We start in state A . The first thing we get is the FOR-it's not a character, but a specially coded token. Throw it away; it's not on our list. Continuing on our line, we see a space, which we trash, followed by the letter J. Aha! It's an alphabetic, which tells us "we're in a variable-start collecting characters." At this point we don't know if the variable is called J, J5, JEEPERS, or JR\$. We collect the J and switch to state B.

In state B, we are looking for a whole different set of characters. Alphabetic and numeric characters will be collected into our variable name and will move us to state C. On the other hand, a dollar or percent sign will also be collected, but will move us to state E , where we look for a possible array. Continuing the options: a left parenthesis would signal an array; collect it and wrap up this label. A space will be ignored. Almost anything else (in our example, the equals token) will cause the label to be wrapped up and put away, returning us to state A.

Back in state A again, we throw away the equals, the 1 character, the space, the TO token, the 9 , and the colon. Suddenly we hit the \(X\) : Collect it, and we're off to state B again. This time, state C finds a numeric, collects it, and switches us to state D. State D throws away the 5 . We stay in state D and discover the dollar sign, which is duly collected, and we flip to state \(E\). The equals sign drops us back to state A; but we wrap up the collected characters X3\$ and enter them into the results table. And so on. Each individual state searches for its own set of characters which trigger an action and a movement to another state.

The program to do all this is surprisingly
small. The state transition table that directs the program from one state to another is surprisingly big.

There are tricky bits, some of which involve the strange syntax of the PRINT statement. It's possible to write BASIC lines such as:

\section*{PRINT A\$B\$C\%D(3)E}

I'd much rather use semicolons to separate those variables, but since we're allowed to code that way, extra programming must be added to CrossRef to pick out the variables when they are mushed together like that.

\section*{Typing Cross Reference}

Both the PET/CBM and 64 versions of this program use a special technique to attach the machine language to the BASIC portion of the program. The ML is located immediately following the end of the BASIC program, then the zero-page pointer to the end of the program is changed to point to the end of the ML. This fools the computer into treating the ML as part of the BASIC program.

To enter the PET/CBM version, first type in Program 1. You must enter it exactly as it is shown because the ML must begin at exactly the end of BASIC. You can check by typing the following line in direct mode:

\section*{PRINT PEEK(1261),PEEK(1262),PEEK(1263)}

If you have entered Program 1 correctly, you'll see:
\(58 \quad 160 \quad 52\)
If these are not the values you get, check for spaces added or left out. When you have Program 1 entered correctly, type the following line in direct mode:

\section*{POKE 41,10:POKE 2560,0:NEW}

Then type in and RUN Program 2. Program 2 will check for DATA statement errors as it POKEs the ML into the proper locations. If no errors are detected, the program will change the pointers in zero page to attach the ML to the BASIC from Program 1. When you type LIST after Program 2 is finished, you should see the lines from Program 1. Although it doesn't show, the ML POKEd by Program 2 is also in place. You should immediately SAVE a copy of the completed Cross-Ref program. You will not need the old Program 1 or 2 again.

\section*{The 64 Version}

To enter the 64 version (Program 3), you must use the MLX machine language editor. If you have not already typed in MLX from a previous issue of COMPUTE!, there's a copy elsewhere in this issue. Be sure you read the accompanying article and understand how to use MLX before you begin typing in the data from Program 3. The MLX listing in Program 3 contains the BASIC as well as the ML portions of Cross-Ref, so no separate BASIC
program must be typed in. MLX makes things much easier-it's a program worth SAVEing for this, and future, programs.

Because Cross-Ref begins at the default start-of-BASIC address (where MLX would normally be located), you must adjust the 64 so that the BASIC area for MLX is above the area of memory which Cross-Ref will occupy. Do this by typing the following line in direct mode (no line number):

\section*{POKE 44,16:POKE 642,16:POKE 4096,0:NEW}

If you do not finish typing all of Program 3 in one session, see the instructions in the MLX article on saving an unfinished version of your work. Note that you must also type the direct mode line above before loading MLX again to continue your work.

When MLX is first RUN, it will ask you for a starting and ending address. For Cross-Ref, the proper values are:
\begin{tabular}{ll} 
starting address & 2049 \\
ending address & 3398
\end{tabular}

Use the MLX Save option to make a copy of your work. The version of Cross-Ref created by MLX can then be LOADed and RUN like a regular BASIC program.

An early version of Cross-Ref for PET/CBM, called XREF, was published in Cursor magazine (which came on cassette tape), issue 25. The details are different, but the program's general speed and other characteristics are about the same.

Could Cross-Ref be expanded to analyze other features? For example, FOR/NEXT loop matches or OPEN and CLOSE statements together with associated file usage? Perhaps, but I think not. Whether or not it's a good idea, BASIC allows a single FOR statement to be matched with more than one NEXT (and vice versa, for that matter). Files can be opened, closed and used with variable logical file numbers-for example, PRINT\#X, "HELLO"-so that a single file's activity is difficult to trace. Cross-Ref wasn't constructed to follow the logic of your program, only the mechanics. You should find Cross-Ref a very useful programming support tool. You might discover that it leads to better programming.

The programs are set up for normal Commodore printers. If you have a printer that specifically needs a line feed character to be sent, you should modify Cross-Ref64 only as follows:

> POKE 3181,10
> POKE 3223,10

\section*{Program 1: BASIC Portion Of PET/CBM Version 1øø PRINT"\{CLR\}CROSS REF":PRINT" \\ \{SHIFT-SPACE\}\{4 SPACES\}JIM BUTTERFIEL D" \\ \(115 \mathrm{~W}=6: \operatorname{IFPEEK}(328 \emptyset 8)=32\) THENW \(=11\) \\ 120 CLOSE1:INPUT"NAME OF PROGRAM";N\$ \\ \(13 \varnothing\) OPEN1, 8, 3, N\$+", P, R": GET\#l, X\$, Y\$: IFX\$ < >CHR\$ (1)GOTO12ø}

190 SYS \(1668:\) CLOSEl:INPUT"PRINTER"; \(\mathrm{ZS}: \mathrm{P}=3\) : IFASC \((\mathrm{ZS})=89 \mathrm{THENP}=4: \mathrm{W}=11\)
2øø OPEN4, P: PRINT\#4,"CROSS-REF: ";N\$:POKE 2ø8,W:SYS21ø2:PRINT\#4:CLOSE4

\section*{Program 2: Loader For PET/CBM ML Portion}

1øø SA=1267:SL=2øø
\(11 \varnothing\) FOR I=ø TO 8
\(12 \emptyset \mathrm{CK}=\varnothing: \mathrm{AD}=\mathrm{SA}+(\mathrm{I} * 12 \varnothing): \mathrm{LN}=\mathrm{SL}+(\mathrm{I} * 15 \emptyset)\)
\(13 \varnothing\) FOR J=ø TO 119
\(14 \emptyset\) READ BY:CK=CK+BY: POKE AD+J, BY
\(15 \emptyset\) NEXT J:READ CV:IF CK<>CV THEN \(19 \emptyset\)
160 NEXT I:PRINT "MACHINE LANGUAGE IS LOA DED"
17ø POKE 4ø,1:POKE 41,4:POKE 42,43:POKE 4 3,9
\(18 \emptyset\) POKE 44,43: POKE 45,9:POKE 46, 43: POKE \{SPACE\} 47,9: END
\(19 \emptyset\) PRINT "DATA ERROR IN LINES"; LN;"-";LN +140:STOP
\(2 \varnothing \varnothing\) DATA \(\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing\)
\(21 \varnothing\) DATA \(\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 11,11\)
220 DATA \(11,11,11,11,11,11,11,11\)
230 DATA \(11,11,11,11,11,11,11,11\)
\(24 \emptyset\) DATA \(11,11,11,11,11,11,11,11\)
250 DATA \(11,11,11,11,11,11,11,5\)
260 DATA \(11,3,3,3,11,4,11,11\)
\(27 \emptyset\) DATA \(11,9,11,11,11,2,2,2\)
280 DATA 2,2,2,2,2,2,2,8
290 DATA 11,11,11,11,11,11,1,1
\(3 \emptyset \emptyset\) DATA \(1,1,1,1,1,1,1,1\)
\(31 \emptyset\) DATA \(1,1,1,1,1,1,1,1\)
320 DATA \(1,1,1,1,1,1,1,1\)
\(33 \emptyset\) DATA \(11,11,11,11,11,11,11,11\)
340 DATA \(11,11,11,11,11,11,11,11\)
345 DATA 774
\(35 \emptyset\) DATA \(11,11,11,11,11,11,11,11\)
\(36 \emptyset\) DATA \(11,11,11,11,11,11,11,11\)
\(37 \emptyset\) DATA \(11,11,11,11,11,11,11,11\)
380 DATA \(7,11,11,11,11,11,10,10\)
\(39 \varnothing\) DATA \(11,11,1 \varnothing, 11,6,11,11,11\)
\(40 \emptyset\) DATA \(11,11,11,11,11,11,11,11\)
410 DATA \(11,11,11,11,11,11,11,11\)
420 DATA \(11,9,11,11,10,11,11,11\)
\(43 \varnothing\) DATA \(11,11,11,11,11,11,11,11\)
\(44 \emptyset\) DATA \(11,11,11,11,11,11,11,11\)
\(45 \emptyset\) DATA \(11,11,11,11,11,11,11,11\)
460 DATA \(11,11,11,11,11,11,11,11\)
470
480
490
49
50
51
52
53
540 DATA \(12,12,12,12,12,12,12,12\)
\(55 \emptyset\)
560 DATA \(48,12,12,60,12,12,24,34\)
\(57 \emptyset\) DATA \(24,24,12,24,24,24,24,24\)
\(58 \emptyset\) DATA \(24,0,36,36,36,36,36,36\)
590 DATA \(36,36,36,36,36,0,48,48\)
\(6 \emptyset \emptyset\) DATA \(48,48,48,48,48,12,48,48\)
\(61 \varnothing\) DATA \(48, \varnothing, 224,212,12,12,24,36\)
\(62 \emptyset\) DATA \(48,12,6 \emptyset, 6 \emptyset, 12, \varnothing, 72,72\)
\(63 \emptyset\) DATA \(12,12,24,36,48,12,12,60\)
\(64 \emptyset\) DATA \(12,0,12,212,12,12,24,36\)
645 DATA \(35 \emptyset 7\)
\(65 \emptyset\) DATA \(48,12,60,60,12,0,236,236\)
\(66 \emptyset\) DATA \(248,140,24,36,48,12,12,6 \emptyset\)
\(67 \emptyset\) DATA \(12, \varnothing, 1 \varnothing 8,1 \varnothing 8,248,14 \varnothing, 24,36\)
\(68 \emptyset\) DATA \(48,12,12,60,12,0,120,12\)
690 DATA \(12,140,24,36,48,12,12,60\)
\(7 \emptyset \emptyset\) DATA \(12,162,1,32,198,255,32,54\)
710 DATA 7,169, \(0,133,190,169,11,133\)
720 DATA 191,169,6,133,185,162,13,189
730 DATA \(29,9,157,249,10,202,16,247\)
740 DATA \(48,7,32,204,255,96,32,179\)
750 DATA \(7,32,228,255,32,228,255,240\)
760 DATA \(241,169,0,133,192,169,10,133\)
\(77 \emptyset\) DATA \(193,32,228,255,133,9 \emptyset, 32,228\)
\(78 \emptyset\) DATA \(255,133,89,162,12,134,184,32\)
\(79 \varnothing\) DATA \(228,255,2 \emptyset 1,32,240,249,17 \emptyset, 189\)
795 DATA 12998
\(8 \emptyset \emptyset\) DATA \(0,5,168,177,184,16,3,32\)
\(81 \varnothing\) DATA \(11,7,41,127,164,184,133,184\)
\(82 \emptyset\) DATA \(2 \emptyset 1,84,176,7,192,84,144,3\)
\(83 \emptyset\) DATA \(32,64,7,2 \emptyset 1,12 \emptyset, 2 \emptyset 8,19,192\)
\(84 \emptyset\) DATA \(12 \emptyset, 2 \emptyset 8,15,142,122,2,32,64\)
850 DATA \(7,174,122,2,169,12,133,184\)
\(86 \emptyset\) DATA \(2 \emptyset 8,2 \emptyset 5,2 \emptyset 1, \varnothing, 24 \emptyset, 16 \emptyset, 2 \emptyset 8,191\)
\(87 \emptyset\) DATA \(41,127,72,2 \emptyset 1,84,240,2 \emptyset, 138\)
\(88 \emptyset\) DATA 162, \(0,18 \emptyset, 84,192,32,24 \emptyset, 7\)
890 DATA \(232,224,5,208,245,240,18,149\)
9øø DATA \(84,240,14,138,162, \emptyset, 18 \emptyset, 85\)
\(91 \varnothing\) DATA \(148,84,232,224,4,208,247,133\)
\(92 \emptyset\) DATA \(88,104,96,162,4,169,32,149\)
\(93 \emptyset\) DATA \(84,2 ø 2,16,251,96,72,165,192\)
\(94 \emptyset\) DATA \(164,193,56,233,7,133,186,176\)
945 DATA 14445
950 DATA \(1,136,132,187,201,0,152,233\)
\(96 \emptyset\) DATA \(1 \varnothing, 144,2 \varnothing, 16 \varnothing, 4,185,84, \varnothing\)
\(97 \emptyset\) DATA 2ø9,186,2ø8,5,136,16,246,48
980 DATA \(73,165,186,164,187,208,219,165\)
990 DATA 192,164,193,133,188,132,189,56
1ØøØ DATA 233,7,176,1,136,133,186,132
1ø1Ø DATA 187,2ø1, Ø,152,233,1ø,144,21
\(1 \varnothing 2 \emptyset\) DATA \(16 \varnothing, 6,56,177,186,145,188,249\)
\(1 \varnothing 3 \emptyset\) DATA \(84, \varnothing, 136,16,246,144,6,165\)
\(1 \varnothing 4 \emptyset\) DATA \(186,164,187,208,214,160,6,185\)
\(1 \emptyset 5 \emptyset\) DATA \(84, \varnothing, 145,188,136,16,248,24\)
1060 DATA \(165,192,165,7,133,192,144,2\)
\(107 \emptyset\) DATA 23Ø,193,32,54,7,104,96,96
\(108 \emptyset\) DATA \(165,190,164,191,133,186,132,187\)
\(1 \varnothing 90\) DATA \(56,165,192,233,0,141,122,2\)
1095 DATA 15395
\(110 \emptyset\) DATA \(165,193,233,10,141,123,2,13\)
\(111 \emptyset\) DATA \(122,2,24 \emptyset, 227,24,173,122,2\)
1120 DATA 1ø1,186,133,190,133,188,173,123
1130 DATA \(2,1 \varnothing 1,187,133,191,133,189,32\)
1140 DATA \(39,8,165,192,56,233,7,164\)
1150 DATA 193,176,1,136,133,192,132,193
1160 DATA 2ø1, \(0,152,233,10,144,184,165\)
\(117 \emptyset\) DATA \(188,164,189,56,233,7,176,1\)
1180 DATA \(136,133,188,132,189,160,6,56\)
\(119 \emptyset\) DATA \(177,186,145,188,241,192,136,16\)
\(12 \varnothing \varnothing\) DATA \(247,144,6,32,39,8,76,25 \emptyset\)
\(121 \varnothing\) DATA \(7,160,6,177,192,145,188,136\)
1220 DATA \(16,249,48,190,165,186,164,187\)
1230 DATA 56,233,7,176,1,136,133,186
1240 DATA \(132,187,96,162,4,134,84,32\)
1245 DATA 15168
\(125 \emptyset\) DATA 2ø1,255,169, Ø,16Ø,11,133,186
1260 DATA \(132,187,16 \emptyset, 4,185,84, \varnothing, 2 \emptyset 9\)
\(127 \emptyset\) DATA \(186,2 \emptyset 8,5,136,16,246,48,34\)
1280 DATA 169,13,32,210,255,169,10,32
1290 DATA \(21 \varnothing, 255,160,0,177,186,153,84\)
\(13 \varnothing \varnothing\) DATA \(\varnothing, 32,21 \varnothing, 255,2 \emptyset \emptyset, 192,5,144\)
\(131 \emptyset\) DATA \(243,169,58,32,210,255,169, \emptyset\)
\(132 \emptyset\) DATA \(133,188,230,188,165,188,197,2 ø 8\)
\(133 \emptyset\) DATA \(144,22,169,13,32,210,255,169\)
1340 DATA \(10,32,210,255,160,5,169,32\)
156 COMPUTE! May 1984

1350 DATA \(32,210,255,136,16,248,48,222\)
1360 DATA 16Ø,5,177,186,133,90,2ø0,177
\(137 \emptyset\) DATA \(186,133,89,32,225,255,164,151\)
\(138 \emptyset\) DATA 2øø, 2ø8, 248,32,192,8,24,165
\(139 \emptyset\) DATA \(186,164,187,165,7,144,1,2 \emptyset \emptyset\)
1395 DATA 16229
\(14 \varnothing \varnothing\) DATA \(133,186,132,187,197,190,165,187\)
\(141 \varnothing\) DATA 229,191,144,134,96,169, 0,162
\(142 \emptyset\) DATA \(2,157,122,2,2 \varnothing 2,16,25 \emptyset, 12 \varnothing\)
1430 DATA \(248,160,15,6,89,38,90,162\)
1440 DATA 2,189,122,2,125,122,2,157
145 D DATA \(122,2,2 \emptyset 2,16,244,136,16,235\)
1460 DATA \(216,88,162,0,169,48,133,189\)
\(147 \emptyset\) DATA \(134,192,189,122,2,72,74,74\)
148 D DATA \(74,74,9,48,32,16,9,104\)
\(149 \emptyset\) DATA \(41,15,9,48,224,2,208,2\)
\(150 \emptyset\) DATA \(198,189,32,16,9,166,192,232\)
\(151 \varnothing\) DATA \(224,3,144,220,96,197,189,2 \varnothing 8\)
\(152 \emptyset\) DATA \(4,169,32,2 ø 8,2,198,189,76\)
\(153 \emptyset\) DATA \(21 \varnothing, 255, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing\)
\(154 \emptyset\) DATA \(\varnothing, 78,79,78,69,32, \varnothing, \varnothing\)
1545 DATA 12648

\section*{Program 3: MLX Listing For 64}
\(2 \emptyset 49\) : Ø43, øø8,1øø, øøø,153,ø34,ø83
\(2 \varnothing 55\) : Ø32, Ø67, ø82, Ø79, Ø83, Ø83,177
\(2 \emptyset 61\) : \(032, \varnothing 82, \varnothing 69, \varnothing 7 \varnothing, \varnothing 34,058,1 \varnothing 2\)
\(2 ø 67\) : 153, ø34,16ø, ø32, ø32, ø32,2ø6
\(2 \varnothing 73\) : Ø32, \(074, \boxed{6} 3, \boxed{67, \varnothing 32, \boxed{6}, 123}\)
\(2 \varnothing 79\) : Ø85, Ø84, ø84, Ø69, Ø82,ø7ø,249
\(2 ø 85\) : ø73, ø69, ø76, ø68, ø34, øøø,1ø1
\(2 ø 91\) : Ø52, Øø8,115, øøø, Ø87,178,227
\(2 \varnothing 97\) : Ø48, Ø54, øøø, Ø81, Øø8,120,1ø4
\(21 \varnothing 3\) : øøø,16Ø, ø49, Ø58,133, Ø34,233
2109 : Ø78, Ø65, Ø77, Ø69, Ø32, 079,205
2115 : Ø7ø, Ø32, ø8Ø, Ø82, Ø79, Ø71,225
2121 : ø82, ø65, ø77, ø34, ø59, ø78,212
2127 : Ø36, øøø,126, øø8,13ø, øøø,123
2133 : 159, Ø49, ø44, ø56, Ø44, ø51,232
2139 : ø44, ø78, ø36,17ø, ø34, ø44,241
2145 : Ø8ø, Ø44, Ø82, Ø34, Ø58,161, 044
2151 : Ø35, Ø49, ø44, ø88, Ø36, Ø44,143
2157 : Ø89, Ø36, ø58,139, Ø88, Ø36, Ø43
\(2163: 179,177,199,040,049,041,032\)
2169 : 137, Ø49, Ø5ø, ø48, øøø,176, Ø69
2175 : øø8,19ø, øøø,158, Ø50, Ø54, Ø75
2181 : Ø57, Ø5Ø, ø58,160, Ø49, Ø58,ø53
2187 : 133, ø34, ø8ø, ø82, ø73, ø78,1ø7
2193 : Ø84, Ø69, ø82, ø34, Ø59, ø90, Ø51
2199 : Ø36, ø58, ø8ø,178, Ø51, Ø58,1øø
\(22 \emptyset 5: 139,198, \varnothing 4 \emptyset, \varnothing 9 \emptyset, \varnothing 36,041,189\)
2211 : \(178, \varnothing 56, \boxed{57}, 167, \varnothing 80,178,111\)
2217 : \(052, \varnothing 58, \varnothing 87,178,049,049,130\)
2223 : øøø, 224, øø8, 2øø, øøø,159,254
2229 : \(\varnothing 52, \varnothing 44, \varnothing 8 \varnothing, \varnothing 58,152, \varnothing 52,1 \varnothing 7\)
2235 : Ø44, Ø34, ø67, ø82, Ø79, Ø83,ø64
2241 : ø83, ø45, ø82, ø69, ø7ø, Ø58, ø88
2247 : Ø32, Ø34, Ø59, Ø78, Ø36, Ø58, 24ø
2253 : 151, ø49, ø57, Ø48, Ø44, Ø87,129
2259 : Ø58, 158, ø51, Ø49, Ø51, Ø54,12ø
2265 : \(058,152,052,058,160,052,237\)
2271 : Øøø, Øøø, øøø, Øøø, Øøø, Øøø,223
2277 : \(\varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, 229 ~\)
2283 : Øøø, Øøø, øøø, Øøø, Øøø, øøø, 235
2289 : Øøø, Øøø, øøø, Øøø, øøø, øøø,241
2295 : Øøø, øøø, øøø, øøø, øøø, øøø, 247
2301 : \(\varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing \varnothing \varnothing, \varnothing 11, \varnothing 11,019\)
2307 : \(011,011,011,011, \varnothing 11, \varnothing 11,069\)
2313 : \(011,011,011,011,011,011,075\)
2319 : ø11,ø11,ø11,ø11,ø11,ø11,ø81
2325 : \(\varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 11, \varnothing 87\)

2331
,011,011,011,011,011,093
: Ø11, Ø05, Ø11, Øø3, Øø3, Ø03, Ø69
2343 : Ø11, ØØ4, Ø11, Ø11, Ø11, Ø09, Ø96
2349 : Ø11, Ø11, Ø11, Øø2, Ø02, Øø2, Ø84
2355 : Øø2, Øø2, Øø2, ØØ2, Øø2, Øø2, Ø63
2361 : Øø2, Øø8, Ø11, Ø11, Ø11, Ø11,111
2367 : Ø11, Ø11, Øø1, Øø1, Øø1, Øø1, Ø89
2373 : Øø1, Øø1, Øø1, Ø01, Ø01, Øø1, Ø75 2379 : Øø1, Øø1, Øø1, ØØ1, Ø01, Øø1, Ø81 2385 : ØØ1, Øø1, Øø1, ØØ1, Ø01, ØØ1, Ø87 2391 : Øø1, ØØ1, Ø01, Øø1, Ø11, Ø11,113 2397 : Ø11, Ø11, Ø11, Ø11, Ø11, Ø11,159 2403 : Ø11, Ø11, Ø11, Ø11, Ø11, Ø11,165 2409 : Ø11, Ø11, Ø11,Ø11,Ø11,Ø11,171 2415 : Ø11, Ø11, Ø11, Ø11, Ø11, Ø11, 177 2421 : Ø11, Ø11, Ø11, Ø11, Ø11,011,183 2427 : Ø11, Ø11, Ø11, Ø11, Ø11, Ø11, 189 2433 : Ø11, Ø11, Øø7,Ø11,011, Ø11,191 2439 : Ø11, Ø11, Ø1Ø, Ø1Ø, Ø11, Ø11,199 2445 : \(01 \varnothing, \varnothing 11, \varnothing \varnothing 6, \varnothing 11, \varnothing 11, \varnothing 11,201\) 2451 : Ø11, Ø11, Ø11, Ø11, Ø11, Ø11,213 2457 : Ø11, Ø11, 011, Ø11,011,011,219 2463 : Ø11, Ø11, Ø11, Ø11, Ø11,ØØ9, 223 2469 : Ø11, Ø11, Ø1Ø, Ø11, Ø11, Ø11,23Ø 2475 : Ø11, Ø11, Ø11, Ø11, Ø11,Ø11, 237 2481 : Ø11, Ø11, Ø11,011, Ø11, Ø11,243 2487 : Ø11, Ø11, Ø11, Ø11, Ø11, Ø11, 249 2493 : Ø11, Ø11, Ø11, Ø11, Ø11, Ø11, 255 2499 : Ø11, Ø11, Ø11, Ø11, Ø11, Ø11, Øø5 \(25 \emptyset 5\) : \(011, \varnothing 11, \varnothing 1 \varnothing, \varnothing 11, \varnothing 11,011, \varnothing 1 \emptyset\) 2511 : Ø11, Ø11, Ø11, Ø11, Ø11,Ø11,Ø17 2517 : Ø11, Ø11, Ø11, Ø11,011,011, Ø23 2523 : Ø11, Ø11, Ø11, Ø11, Ø11, Ø11, Ø29 2529 : Ø11,011,011,011,011,011,035 2535 : Ø11, Ø11, Ø11, Ø11, Ø11, Ø11, Ø41 2541 : Ø11, 011,011,011,011,011,047 2547 : Ø11, Ø11, Ø11, Ø11, Ø11,011, Ø53 2553 : Ø11, Ø11, Ø11, Ø11, Ø11, Ø11,059 2559 : Ø11, Øøø, Ø12, Ø12, Ø12, Ø12, Ø58 2565 : Ø12, Ø12, Ø12, Ø12, Ø12, Ø12, Ø77 \(2571: Ø 12, \varnothing \varnothing \emptyset, 224, \varnothing 72, \varnothing 12, \varnothing 12, \varnothing 87\) 2577 : Ø24, Ø36, Ø48, Ø12, Ø12, Ø6Ø, 209 2583 : Ø12, øøø, Ø24, Ø24, Ø24, Ø24, 131 2589 : Ø12, Ø24, Ø24, Ø24, Ø24, Ø24,161 \(2595: \varnothing 24, \varnothing \emptyset \emptyset, \emptyset 36, \emptyset 36, \varnothing 36, \varnothing 36,2 \emptyset 3\) \(26 \varnothing 1: \emptyset 36, \emptyset 36, \emptyset 36, \varnothing 36, \varnothing 36, \varnothing 36, \varnothing \emptyset 1\) 2607 : Ø36, Øøø, Ø48, Ø48, Ø48, Ø48, Ø19 2613 : \(\emptyset 48, \varnothing 48, \varnothing 48,012,048, \varnothing 48, \varnothing 49\) 2619 : Ø48, Øøø, 224, 212, Ø12, Ø12, Ø55 2625 : Ø24, Ø36, Ø48, Ø12, Ø6Ø, Ø6Ø, Ø49 \(2631: \varnothing 12, \varnothing \varnothing \varnothing, \varnothing 72, \varnothing 72, \varnothing 12, \varnothing 12,251\) 2637 : Ø24, Ø36, Ø48, Ø12, Ø12, Ø60, 013 2643 : Ø12, Øøø, Ø12, 212, Ø12, Ø12, Ø87 2649 : Ø24, Ø36, Ø48, Ø12, Ø6Ø, Ø6Ø, Ø73 2655 : Ø12, Øøø, 236, 236, 248,140,199 \(2661: \varnothing 24,036, \varnothing 48, \varnothing 12, \varnothing 12, \varnothing 60, \varnothing 37\) 2667 : Ø12, Øøø,1ø8,1Ø8,248,140,211 2673 : Ø24, Ø36, Ø48, Ø12, Ø12, Ø6Ø, Ø49 2679 : Ø12, ØøØ, 120, Ø12, Ø12,140,159 \(2685: \varnothing 24,036, \varnothing 48,012,012,060,061\) \(2691=\emptyset 12,162, \varnothing 01, \varnothing 32,198,255, \varnothing 23\) 2697 : Ø32, Ø54, Ø11,169, ØøØ,133, Ø24 \(27 \varnothing 3: \varnothing 75,169, \varnothing 15,133, \varnothing 76,169, \varnothing 12\) \(27 \emptyset 9\) : Ø1Ø, 133, Ø7Ø, 162, Ø13,189, 214 2715 : Ø52, Ø13,157,249, Ø14,2Ø2, Ø74 \(2721: \emptyset 16,247, \varnothing 48, \varnothing \emptyset 7, \varnothing 32,2 \emptyset 4,2 \emptyset 3\) 2727 : 255, Ø96, Ø32,179, Ø11, Ø32, Øø4 \(2733: 228,255,032,228,255,240,131\) \(2739: 241,169, \varnothing 00,133, \emptyset 77,169,2 \emptyset 0\) 2745 : Ø14, 133, Ø78, Ø32, 228, 255, 157 \(2751: 133,093,032,228,255,133,041\) 2757 : Ø92,162, Ø12,134, Ø69,Ø32,186

2763
2769 : 17ø, 189, øøø, øø9,168,177,154 2775 : Ø69, Ø16, øø3, Ø32,ø11, Ø11,1ø1
2781 : Ø41, 127,164,069,133, 069,056
2787 : 2ø1, ø84,176, Øø7,192, ø84,2ø3
2793 : 144, Øø3, Ø32, Ø64, Ø11,2ø1,176
\(2799: 120,2 ø 8,019,192,120,208, ø 82\)
2805 : Ø15,142, Ø6ø, Øø3, Ø32, Ø64,049
2811 : Ø11, 174, ø60, Ø0 \(1,169,012,168\)
2817 : 133, Ø69, 2ø8, 2ø5,2Ø1, Øøø, Ø49
2823 : \(240,160,2 \emptyset 8,191,041,127,206\)
2829 : \(\varnothing 72,201, \varnothing 84,24 \varnothing, \varnothing 2 \emptyset, 138, \varnothing \varnothing \varnothing\)
2835 : 162, øøø,18ø, ø87,192, Ø32,160
2841 : 240, \(007,232,224,005,208,173\)
2847 : 245,24ø, ø18,149, ø87,24ø,242
2853 : \(014,138,162, \varnothing \varnothing 0,180, \varnothing 88,107\)
2859 : 148, Ø87,232,224, Ø04,2ø8,178
\(2865: 247,133,091,104,096,162,114\)
2871 : \(0 \varnothing 4,169, \varnothing 32,149, \varnothing 87,2 \varnothing 2,186\)
2877 : \(016,251,096,072,165,077,226\)
2883 : 164, ø78, ø56, 233, øø7,133,226
2889 : \(071,176,001,136,132,072,149\)
2895 : 2ø1, øøø,152,233, Ø14,144, ø55
2901 : Ø20,160, Ø04,185, 087, Øø0, Ø29
\(29 \varnothing 7\) : 2ø9, \(071,2 \varnothing 8, \varnothing \varnothing 5,136, \varnothing 16,224\)
\(2913: 246,048, \varnothing 73,165,071,164,096\)
2919 : \(072,2 \varnothing 8,219,165, \varnothing 77,164,24 \varnothing\)
2925 : \(078,1.33,073,132,074,056,143\)
2931 : 233, øø7,176, Øø1,136,133, ø33
2937 : Ø71,132, ø72,2ø1, Øøø,152,237
2943 : 233, Ø14,144, Ø21,160, øø6,193
2949 : 056,177,071,145,073,249,136
2955 : \(\varnothing 87, \varnothing \varnothing \varnothing, 136, \varnothing 16,246,144, \varnothing \varnothing \varnothing\)
2961 :øø6,165,071,164,072,2ø8,ø63
2967 : 214,160, Øø6,185, Ø87, øøø, Ø35
2973 : \(145,073,136,016,248,024,031\)
2979 : 165, Ø77,105, øø7,133, Ø77,215
2985 : 144, øø2,230, Ø78, Ø32,054,197
2991 : Ø11,1ø4, ø96, ø96,165, Ø75,21ø
2997 : 164, Ø76,133, Ø71,132, 072, Ø61
3øø3 : Ø56,165, Ø77,233, Øøø,141, Ø91
\(3 \emptyset \emptyset 9: ø 6 \emptyset, \emptyset \emptyset 3,165,078,233, \varnothing 14,234\)
\(3 \varnothing 15: 141, \varnothing 61, \varnothing \varnothing 3, \varnothing 13, \varnothing 60, \varnothing 03,224\)
\(3 \emptyset 21\) : 240, 227, Ø24,173, Ø6ø, Øø3,164
\(3 \varnothing 27\) : 1ø1, ø71,133, ø75,133, ø73, ø29
\(3 \varnothing 33: 173, \varnothing 61, \varnothing \emptyset 3,1 \varnothing 1, \varnothing 72,133,248\)
\(3039: ø 76,133,074,032,039,012,077\)
\(3045: 165, \varnothing 77,056,233,007,164,163\)
\(3 \emptyset 51\) : \(078,176, \emptyset \emptyset 1,136,133, \varnothing 77,068\)
\(3 \emptyset 57\) : 132, Ø78,2ø1,øøø,152,233,ø13
\(3 \emptyset 63\) : \(014,144,184,165,073,164,223\)
\(3 \emptyset 69\) : \(074, \varnothing 56,233, \varnothing \emptyset 7,176, \varnothing \emptyset 1, \varnothing 32\)
\(3075: 136,133,073,132,074,160,199\)
\(3 ø 81\) : øø6, Ø56,177, Ø71,145, ø73,ø25
\(3 \varnothing 87\) : 241, \(077,136,016,247,144,1 \varnothing 8\)
\(3 \varnothing 93\) : øø6, Ø32, ø39, ø12, ø76,25ø,18ø
\(3 \varnothing 99\) : Ø11,16ø, øø6,177, 077,145, ø91
\(3105: 073,136,016,249,048,190,233\)
3111 : 165, Ø71,164, ø72, Ø56,233, Ø32
3117 : øø7,176, Øø1,136,133, Ø71, ø57
\(3123: 132, \varnothing 72,162, \varnothing \varnothing 9,181, \varnothing 69,164\)
3129 : 157, ø8ø, øø3,2ø2, Ø16,248,251
3135 : ø96,162, øø9,189, ø8ø, øø3, ø9ø
3141 : \(149,069,2 \varnothing 2,016,248,162,147\)
3147 : øø4,134, ø87, ø32,2ø1,255, ø2ø
3153 : 169, øøø,16ø, Ø15,133, Ø71,117
\(3159: 132,072,160,004,185,087,215\)
3165 : øøø, 2ø9, ø71,2ø8, Øø5,136,21ø
3171 : Ø16, 246, 048, Ø34,169,013,113
3177 : Ø32,21ø,255,169, Ø32, Ø32, Ø67
3183 : 21ø, 255,16ø, øøø,177, Ø71,216
```

```
3189 :153,ø87,øøø,ø32,21ø,255,ø86
```

```
3189 :153,ø87,øøø,ø32,21ø,255,ø86
3195 :2ø\emptyset,192,ø\emptyset5,144,243,169,ø52
3195 :2ø\emptyset,192,ø\emptyset5,144,243,169,ø52
32ø1 :ø58,ø32,21ø,255,169,øø\emptyset,ø85
32ø1 :ø58,ø32,21ø,255,169,øø\emptyset,ø85
32ø7 :133,ø73,230,073,165,073,114
32ø7 :133,ø73,230,073,165,073,114
3213 :197,190,144,022,169,013,108
3213 :197,190,144,022,169,013,108
3219 : Ø32,210, 255,169,032,032,109
3219 : Ø32,210, 255,169,032,032,109
3225 :210,255,160,0ø5,169,032,216
3225 :210,255,160,0ø5,169,032,216
3231 : ø 32, 21\varnothing, 255,136, ø16,248,ø32
3231 : ø 32, 21\varnothing, 255,136, ø16,248,ø32
3237 : Ø48,222,160, ø05,177,071,ø8\emptyset
3237 : Ø48,222,160, ø05,177,071,ø8\emptyset
3243 :133,093,2ø0,177,ø71,133,210
3243 :133,093,2ø0,177,ø71,133,210
3249 : Ø92,ø32,225,255,24ø,ø31,ø28
3249 : Ø92,ø32,225,255,24ø,ø31,ø28
3255 :165,2ø3,010,010,144,245,192
3255 :165,2ø3,010,010,144,245,192
3261 :ø32,215,012,024,165,071,196
3261 :ø32,215,012,024,165,071,196
3267 :164,\varnothing72,1ø5,øø7,144,øø1,176
3267 :164,\varnothing72,1ø5,øø7,144,øø1,176
3273 :2ø0,133,071,132,072,197,238
3273 :2ø0,133,071,132,072,197,238
3279 : Ø75,165,072,229,076,144,2ø\emptyset
3279 : Ø75,165,072,229,076,144,2ø\emptyset
3285 :131,ø96,169,øøø,162,øø2,ø\emptyset5
3285 :131,ø96,169,øøø,162,øø2,ø\emptyset5
3291 :157,ø6\emptyset,ø\emptyset3,2ø2,ø16,250,139
3291 :157,ø6\emptyset,ø\emptyset3,2ø2,ø16,250,139
3297 :120,248,160,015,\varnothing06,092,098
3297 :120,248,160,015,\varnothing06,092,098
33ø3 : Ø38,093,162,0ø2,189,060,øø7
33ø3 : Ø38,093,162,0ø2,189,060,øø7
33Ø9 : Ø\emptyset3,125,060,0ø3,157,060,133
33Ø9 : Ø\emptyset3,125,060,0ø3,157,060,133
3315 : Ø\emptyset3,2ø2, Ø16,244,136,ø16,ø92
3315 : Ø\emptyset3,2ø2, Ø16,244,136,ø16,ø92
3321 :235,216,088,162,000,169,095
3321 :235,216,088,162,000,169,095
3327 :048,133,074,134,077,189,142
3327 :048,133,074,134,077,189,142
3333 :ø6ø,øø3,\varnothing72,\varnothing74,\varnothing74,\varnothing74,1\varnothing6
3333 :ø6ø,øø3,\varnothing72,\varnothing74,\varnothing74,\varnothing74,1\varnothing6
3339 : Ø74,øø9,ø48,ø32,ø39,ø13,226
3339 : Ø74,øø9,ø48,ø32,ø39,ø13,226
3345 :1Ø4,ø41,ø15,øø9,048,224,2ø2
3345 :1Ø4,ø41,ø15,øø9,048,224,2ø2
3351 :ø\emptyset2,2ø8,ø\emptyset2,198,ø74,ø32,ø27
3351 :ø\emptyset2,2ø8,ø\emptyset2,198,ø74,ø32,ø27
3357 : Ø39,013,166,077,232,224,012
3357 : Ø39,013,166,077,232,224,012
3363 : Ø\emptyset3,144,22Ø,096,197,074,øø1
3363 : Ø\emptyset3,144,22Ø,096,197,074,øø1
3369:2ø8,\varnothing\varnothing4,169,ø32,2ø8,\varnothing\varnothing2,152
3369:2ø8,\varnothing\varnothing4,169,ø32,2ø8,\varnothing\varnothing2,152
3375:198,ø74,076,210,255,øø0,092
```

```
3375:198,ø74,076,210,255,øø0,092
```

```


```

```
3387 : 078,ø79,078, 069,032,øøø,139
```

```
3387 : 078,ø79,078, 069,032,øøø,139
3393 : Øø\emptyset,ø13,ø13,013,013,013,130
```

3393 : Øø\emptyset,ø13,ø13,013,013,013,130

```
```

3243 :133,093,200,177,071,133,210

```
```

3243 :133,093,200,177,071,133,210

```


SOUTHERN
AUDIO VIDEO ELECTRONICS INC


MICROSOFT MULTIPLAN

FOR IBM, APPLE, C64
AEROBICS
SNOOPER TROOPS I\&II
CALL!
CALL!


DATA MGR. II
BUSINESS SYST. A/R, G/L, ETC.

\section*{HIGH SPEED DISK DRIVES}
\begin{tabular}{lll} 
64 COMPATIBLE & \(\mathrm{C}-321 \mathrm{P}\) & \(\$ 299\) \\
IBM COMPATIBLE & \(\mathrm{C}-522\) & \(\$ 299\) \\
APPLE COMPATIBLE & \(\mathrm{C}-111\) & \(\$ 199\)
\end{tabular}

APPLE DISK CONTROLLER CARD C-130 \$74


Call TOLL FREE 1-800-241-2682 Send \$2 for complete catalog - CREDIT with purchase

\section*{Name}
:Address
City

\title{
File Processing Part 3
}

This month C. Regena concludes her three-part discussion on creating data files.

\section*{A Birthday List}

Program 1 prints a birthday list of the students in a class. The same data file is used, and the information is arranged in order by birthdate. Line 180 is the OPEN statement for the printer (use your own printer configuration). Line 190 is the OPEN statement for the disk drive to read in information.

Line 210 reads in the date-again, in the same order that the items were saved. We will ignore some of the information, but all the items must be read in order. Line 250 combines several of the items into one variable T\$. The birthday BD and \(\mathrm{T} \$\) are actually arrays, so the items may be sorted. Lines 280-350 contain the sorting procedure to sort by birthday.

Line 360 and lines 510-560 print the header. Lines 370-480 print the information. Lines 380-400 print the month and day from the BD number that was saved. Line 410 prints a blank line between months. Lines 420-450 use POS and SEG\$ to separate the T\$ item back into its parts, then line 460 prints the information in columns using the IMAGE statement of line 200.

\section*{The Report Writer}

Program 2 generates reports using the data saved in Program 1 of Part 2 (April 1984). Lines 160-200 present the option to print the report for one of the reading groups or for the whole class.

These reports will use a 132 -column line, or compressed print ( 16.5 characters per inch). Line 210 OPENs device \#1 for the printer. The previous reports used an 80 -column line, which is the default value for most printers. VARIABLE 132 is used to designate a longer line before a carriage return. Line 230 sets \(m y\) printer (TI 825, which is like the TI 840) to use compressed print. You will probably need a different command.

Some printers can use a certain CHR\$
number. Other printers may require you to set certain hardware switches. I have used compressed print and the 132 -column line so more can fit on the one line. The other two reports in this program may be printed with the regular printing.

Line 240 is the OPEN statement to read the data from the data file created by Program 1 (Part 2, April). Again, the variables are in the same order as they were saved. Line 280 checks for the end of the file. Lines 290-300 check to see if a particular group was chosen or if the whole class is to be printed. Lines 310-480 then print the first report. The student's R\$ tally is separated using SEG\$. Line 360 and line 410 are used to print information if only part of the ten weeks is used. If you have a different number of weeks in your report, you can change the 10 in lines 130, 410, \(520,560,600\), and 670, and the titles in lines 140 and 930-950.

\section*{Total Values}

Variable names starting with T are total values. Lines \(440-450\) print total presentations divided by total possible weeks and the individual's percentage. Lines 500-630 print the totals for each week.

A bar graph report is printed in lines 640-700. Each asterisk represents a report, and the appropriate number of asterisks is printed for each week as a graph.

The final report in this program is to rank the students from high score to low score by percentage. Lines 720-780 contain the sort routine. The percentages were stored in the P array with the corresponding names in NN\$. Lines 790-850 print the percents and names. Line 810 and the subroutine in lines 1000-1150 alphabetize the names of all students who have a zero score.

\section*{Console BASIC}

You can, in fact, do file processing without Extended BASIC and all the peripherals. I used Extended BASIC mainly because of the ease in formatting the printing-lining up the columns. In regular console BASIC you can use subroutines to
line up columns of numbers and the TAB function to start the columns right．See my January 1984 column in COMPUTE！for some suggestions on formatting and screen scrolling．

To use a printer you need the RS－232 interface plus the printer．A number of different name brands of printers can be used with the TI－99／4A． The printer manuals should tell you what features the printer has and how to control different fea－ tures，such as the number of characters per inch and form feeds．Using the printer and RS－232 manuals，you can determine the appropriate print－ er configuration necessary for the OPEN state－ ment．Without a printer，you can print on the screen－just keep within the 28 print columns and print a screen at a time or use a scrolling delay method so you can read the information as it is printed．

To use a disk drive you also need the disk controller or disk controller card for the Peripheral Expansion box．The disk controller or card comes with a command module and a manual that de－ scribes disk procedures．To use a cassette，simply change the＂DSK1．－－－＂statements to＂CS1＂and change the VARIABLE to FIXED．The cassette system works fine－it just takes longer than the disk system．

\section*{Program 1：Birthday List}

8め REM TI EXTENDED EASIC
9＠REM DISK，PRINTER
\(1 \varnothing \emptyset\) REM EIRTHDAY LIST
110 CALL CLEAR
120 DISPLAY AT（12，5）：＂BIRTHDAY LIST ＂
13め OPTION EASE 1

150 FOR \(I=1\) TO \(12:=\operatorname{READ} M \$(I):=N\) EXT I
1OD DATA JAN，FEB，MAR，APR，MAY，JUN，JU L，AUG，SEF，OCT，NOV，DEC

189 OPEN \＃1：＂RS232．BA \(=6\) g \(9 "\)
19め OPEN \＃ड：＂DSK1．SAMFLE＂，INTERNAL， INFUT，VARIABLE 192
2وめ IMAGE＂と5 SPACES？\＃\＃\＃\＃\＃ \｛3 SPACES 3 \＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃ \＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\｛3 SF．ACES？\＃\＃\＃\＃\＃\＃\＃\＃\＃ \＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃＂
215 INPUT \＃S：G，Nक，Fi，A末，Pक， \(\mathrm{BD}\{(\mathrm{I}), \mathrm{R} \$\) ，टक
220 IF C \(\$=\) MMOVED＂THEN 210
2Sg IF Nक＝＂ZZZ＂THEN 27タ
24亿 IF \(P \$="\) THEN \(F=\) \(\$=\)＂\(\{4\) SPACES\}"

\(2601=1+1\) ：：GOTO 210
\(279 \mathrm{I}=\mathrm{I}-1\) ：：CLOSE \＃S
289 DISPLAY AT \((23,1): " S O R T I N G "\)
299 B＝1
उめg \(\mathrm{B}=2 * \mathrm{~B}:=\mathrm{IF} \mathrm{B}<=I\) THEN Sめg
310 \(\mathrm{B}=\mathrm{INT}(\mathrm{B} / 2):\) ：IF \(\mathrm{B}=\mathrm{M}\) THEN S O
329 FOR \(J=1\) TO I－B ：：\(C=J\)
उЗ9 \(D=C+B\) ：：IF \(B D(C)<=B D(D)\) THEN 35 Ø
उ4 \(\quad A A=B D(C):\) ：\(T T=T=(C): B D(C)=B D\)
（D）：：T\＄（C）＝T末（D）：\(B D(D)=A A::\) \(T \$(D)=T T \$: \quad C=C-B: I F C>D T\) HEN उSG
उ5g NEXT J ：：GOTO 316
उดด GOSUB 51日
37Q FGR J＝1 TO I
 ：：GOTO 42
39＠ \(\operatorname{BD} \$=S T R क(B D(3)): ~ M=V A L\{S E G \$(E D\) \＆\(, 1, \operatorname{LEN}(B D(1)-2)\) ）：：\(D=V A L\)（SEG \((B\) D末，LEN（ED\＄）－1，2））

\(410 \mathrm{~L}=\mathrm{L}+1:\) ：PRINT \＃1：：L \(=\mathrm{B}=\mathrm{D}\)
\(42 \mathrm{~F}=\mathrm{POS}(\mathrm{T}\)（ \((3), " / ", 8)\)
430 NA＝SEGq（T\＆（J），1，P－1）
\(440 \mathrm{~F}+=\)＂586－＂\＆SEG\＄（T\＄（J），P \(+1,4\) ）
45月 A \(=\) SEGक（T\＄（J），P＋5，LEN（T末（J））\(-P+\) 4）
 \＄
47 6 \(L=L+1\) ：：IF \(L=48\) THEN PRINT \＃ \(1:\) CHRक（12）：\(: ~ L=0:\) GOSUE 510
4SG NEXT J
490 PRINT \＃1：CHRक（12）
5めg STOF
516 PRINT \＃1：TAE（34）；＂SAMPLE CLASS＂
52Q FRINT \＃1：：TAB（ 34 ）：＂HIRTHDAY LI ST＂
530 FRINT \＃1：：TAB\｛33）；＂APRIL 15， 1 984＂
540 FRINT \＃1：：：TAE（5）；＂EIRTHDAY＂； TAE（15）；＂NAME＂；TAB（41）；＂PHONE＂； TAE（54）：＂ADDRESS＂
55，PRINT \＃1：TAB（5）；＂－－－－－－－－＂；TAB： 15）；＂－－－－＂；TAB（41）；＂－－－－－＂；TAE（ 54）；
560 RETURN
579 END

\section*{Program 2：Report Writer}

8ø REM TI EXTENDED BASIC
9め REM DISK，PRINTER
\(1 め \varnothing\) REM REPORT WRITER
\(11 \emptyset\) OPTION GASE 1
\(12 め\) DIM D\＄（1め），T（1め），TT（1め），NNक（14め ），\(P(140)\)
139 FOR \(I=1\) TO \(1 \varnothing:=R E A D \quad D \$(I):=N\) EXT I
140 DATA JAN 1，JAN 8，JAN 15，JAN 22， JAN 29，FEG 5, FEG 12 ，FEB 19 ，FEB 26，MAR 4
15め DISPLAY AT（4，6）ERASE ALL：＂REPOR T WRITER＂
160 DISPLAY AT \((7,3):\)＂CHOOSE：＂：：DI SPLAY AT \((8,5): " 1\) GROUP \(1 ":=D I\) SPLAY AT \((9,5): " 2\) GROUP 2 ＂
170 DISPLAY AT（10，5）：＂3 GROUP \(3 ":\) DISPLAY AT \((12,5): " 4\) COMPLETE \(C\) LASS＂
189 CALL KEY（O，KEY，ST）
190 IF KEYく 49 OR KEY＞52 THEN 1 B
\(20 め G 1=K E Y-48:=\) CALL HCHAR \(\{7,3,32\) ， 192）
 132
220 REM SET FOR COMPRESSED PRINT
2З＠ESC \(=\) CHR \(\$(27):\) PRINT \＃1：ESCक \({ }^{\circ} "\) P＂\＆＂D＂\＆ESCक\＆＂\＂
249 OPEN \＃S：＂DSK1．SAMFLE＂，INTERNAL， INPUT，VARIABLE 192
\(25 \emptyset 1=\emptyset:=L \neq " A "\)
26 GOSUB 889：：GOSUB 936

280 IF Nक＝＂ZZZ＂THEN 47夕
29め IF G1＝4 THEN 310
उめめ IF G1く＞G THEN 27 O
31＠IF SEG\＄（C\＄，1，5）＝＂AUDIT＂THEN 27 め
 N L \(\$=C=:\) PRINT \＃ \(1: ~ L=L+1\)
 （44）：
उ4＠\(T A=\emptyset: ~: ~ T F=\emptyset\)

36日 FOR \(J=1\) TO LEN（Rも）
 N TA＝TA＋1

3日6 IF \(A\) क＂：＂1＂OR \(A \$=" 6 "\) THEN TP＝TF＋ \(1:: T(J)=T(J)+V A!(A \Phi):: T(J)=\) TT（J）＋
SЯ＠PRINT \＃1：A末；＂\｛4 SFACES\}":
4 5 W NEXT J
410 FOR \(3 J=J\) TO \(16:\) PRINT \＃1：＂
（E SPACES3＂；：NEXT JJ



450 PRINT \＃1，USING＂ 116 SPACES？\＃\＃／\＃\＃
（S SFACES \(\# \# \# \#\)＂：TA，TP，P（I）
\(469 \mathrm{~L}=\llcorner+1\) ：：IF \(L=48\) THEN GOSUB 879 ：：GOSUF 932

470 IF \(A \neq "-"\) THEN \(I=I-1\)
486 GOTO 276
496 GUSUE G5ig
5めめ PRINT \＃1
5im PRINT \＃1：TAR（1碚：＂REPORTS：＂；TA E（42）；
S20 FOF J＝1 TO 10
5Зด FRINT \＃1，USING＂\＃\＃\＃＂：T（J）；
540 TAT \(=\) TAT \(+T(J):: ~ N E X T\) J
55＠PRINT \＃I：：TAB\｛1g）；＂ENROLLED：＂ ；TAE（42）；
56め FOR J＝1 TO 10
579 FRINT \＃1，USING＂\＃\＃\＃＂：TT（J）；
5S贝 TE＝TE＋TT（J）：：NEXT J
599 PRINT \＃1：：：TAE（19）；＂FERCENT R EFORTS：＂；TAB（42）；
SWQ FOR J＝1 TO 1 9
616 PRINT \＃1，USING＂\＃\＃\＃＂：T（J）＊1めめ ／TT（J）：
E2\％NEXT J
BSG FRINT \＃1：TAB（12g）：INT：TAT＊1＠G／T E）
649 GOSUR 879
 Q）：＂REPORTS＂
Sめ日 PRINT \＃1：TAB（1Ø）；＂－－－－＂；TAB（ड囚） ；＂－－－－－－－＂：
67 F FOR J＝1 TO 1め
59め A\＄＝KPT\＄（＂＊＂，T（J））
690 PRINT \＃1：：TAB（1め）；D\＄（J）；TAB（З

\(76 め\) NEXT J
71日 GOSUE 87
\(720 \mathrm{~B}=1\)
\(730 \mathrm{~B}=2 * \mathrm{~B}:=1 F \mathrm{~B}<=1\) THEN 73め
74 ＠ \(\mathrm{B}=\) INT \((\mathrm{B} / 2):\) ：IF \(\mathrm{B}=\varnothing\) THEN 79 g
750 FOR \(J=1\) TO \(I-B: C=J\)
\(769 \mathrm{D}=\mathrm{C}+\mathrm{B}:=\mathrm{IF} \mathrm{F}(\mathrm{C})<=\mathrm{F}(\mathrm{D})\) THEN 789
\(77 \emptyset A A=P(C):=A A \$=N N \$(C):: P(C)=P(D\) ）：：\(N N \$(C)=N N \$(D):=P(D)=A A::\) \(N N \$(D)=A A \$: \quad C=C-B: I F C>\Phi T\) HEN 76日
\(78 \varnothing\)
790
8めめ
TO \(1=1\) STEP－ 1
810 IF \(P(J)=\emptyset\) AND FL＝め THEN GOSUA 1 Øめめ
820 PRINT \＃1：TAB：46）：
83め PRINT \＃1，USING＂\＃\＃\＃\｛8 SPACESふ\＃\＃ \＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃\＃＂：P（J），N No（J）
\(840 L=L+1\) ：\(:\) IF \(L=48\) THEN GOSUE 37 ＠ ：：GOSUB 97め
85 NEXT J
860 STOF
87＠PRINT \＃1：CHR末（12）
88め PRINT \＃1：TAB（58）；＂SAMPLE CLASS＂
89＠IF G1＝4 THEN 910
9めछ FRINT \＃1：：TAB（GQ）；＂GROUP＂；G1
910 FRINT \＃1：：TAB（5S）：＂EOOK REPORT S PRESENTED＂
920 FRINT \＃1：：TAB（57）：＂FIRST TERM 1984＂：：RETURN
93Q PRINT \＃1：：：TAB：43）：＂JAN JAN JAN JAN JAN FEG FEG FEB FEG MAR \({ }^{\text {＂}}\)
940 PRINT \＃1：TAB（1g）；＂NAME＂；TAB（43） ： 1 \｛4 SPACES\}8\{3 SPACES\}15
〔3 SPACES\}22^S SPACES329
\｛4 SPACES\}5\{3 SPACES\}12
\｛3 SPACES 17 \｛3 SFACES3：26
\｛4 SPACES？4＂；TAB（110）：＂TOTAL＂：T AB（121）；＂\％＂
Э5ด PRINR \＃ \(1:\) TAE（16）；＂－－－－＂；TAB（43） ；＂－－－－－－－－－－－．－－－－－ －－－－－＂；TAE（12g）；＂－．－＂：
\(960 \mathrm{~L}=9\) ：：RETURN
979 PRINT \＃1：：：TAB（44）：＂PERCENT＂： TAB（57）：＂NAME＂
98日 PRINT \＃1：TAE（44）；＂－．－－－－－＂：TAE： 57）；＂－－－－＂：：
99月 \(L=G\) ：：RETURN
10月以 \(F O R K=1\) TOJ
\(10105=\operatorname{POS}(N N क(K), " n=1)\)
1026 SI＝FOS（NNF（K），＂＂，S＋1）：：IF S1 \(=6\) THEN 1 GS 0 ELSE \(5=51\)
 （k））-5 ）\(s ", \quad " \& S E G A(N N 末(K), 1, S-1\) ）
1 W9G NEXTK
\(105 \% \mathrm{H}=1\)

1 67g \(B=I N T(E / 2):\) IF \(B=\) W THEN 1129
1086 FOR \(K=1\) TO \(3-B:=C=K\)
1 g90 \(\mathrm{D}=\mathrm{C}+\mathrm{B}:\) ：IF \(\mathrm{NN}=(\mathrm{C}) \geqslant=\mathrm{NN}=\mathrm{D}(\mathrm{D})\) THEN 111 ゆ

 N 1090
1116 NEXT \(k:=\) GOTO \(197 め\)
1120 FOR \(K=1\) TO \(J: S=P O S\)（NN末 \((K)\) ：＂ ，＂，1）
1136 UN \(\$(K)=\) SEG \(\$(N N \$(K), S+2, L E N(N N \$\) （K）\()-S+1\) ）\＆＂＂\＆SEG\＄（NN末（K），1，S－ 1）
1140 NEXTK
\(1150 \mathrm{FL}=1\) ：：RETURN
1160 END

\title{
A Program Critique
}

\section*{Part 2}

This month we continue with comments on Bud Rasmussen's program to copy files on the Commodore 64 with a single disk unit. At this point the program has obtained a filename. The filename is kept in two forms: the short form
("FILENAME") and the longer form for writing ("FILENAME,P,W"). We will use the short form when we open the file for reading.

In this session, we'll track the mnemonics that open the error channel, initialize the disk, and input the file into RAM memory.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|l|}{; DISK I/O ROUTINE} \\
\hline & & & \multicolumn{3}{|l|}{;} \\
\hline & & & DIOR & & \\
\hline C18A & A9 00 & 00 & DIOR & LDA \#0 & ; CLEAR \\
\hline C18C & 8D 60 & \(60 \quad 03\) & & STA ISF & ;INPUTSTAT FLAG \\
\hline C18F & 8D 61 & 6103 & & STA IEC & ;INPUTERR CODE \\
\hline
\end{tabular}

This is probably overkill. The flags should be zeroed close to where they are used, if necessary.
\begin{tabular}{lllll} 
C192 & A2 & 22 & LDX \#IPBML & ;PRINT \\
C194 & A0 & C1 & LDY \# \# IPBM & ;INPUT \\
C196 & A9 & AD & LDA \#<IPBM & ;PHASE BEGUN \({ }^{\prime}\) \\
C198 & 20 & 75 & C1 & JSR PR
\end{tabular}

\section*{A Friendly Message}

In keeping with the friendly style, a message is printed telling the user what's going on. We'll find the message in-line very shortly.
\begin{tabular}{|c|c|c|c|c|c|}
\hline C19B & A9 & OF & LDA & \#15 & ;SET \\
\hline C19D \({ }^{\text {d }}\) & 'A2 & 08 & LDX & \#8 & ;COMMAND \\
\hline C19F & A0 & OF & LDY & \#15 & ;CHANNEL \\
\hline C1A1 & 20 & BA FF & JSR & SETLFS & \\
\hline C1A4 & 20 & C0 FF & JSR & OPEN & ;OPEN COMMD CH \\
\hline
\end{tabular}

The command channel is opened. This is quite important: We'll get all our error messages from this channel. It should always be opened before other disk activities are started.
\begin{tabular}{lllllll} 
C1A7 & 20 & \(3 F\) & C4 & JSR & ID & ;INIT DISK \\
C1AA & 4 C & CF & C1 & JMP & SNI & ;GOTO SETNAME \\
& & & & & INPUT
\end{tabular}

We send the initialize command to the disk over the command channel. This is not vital, but a good precaution. It's a subroutine within the program; we'll meet it much later.

We need to jump over the message to continue with the program. Here's the message:
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{} \\
\hline C1AD 0D 0D 12 & IPBM & .BYTE\$0D,\$0D,\$12 \\
\hline C1B0 2A 2 A - 2 A & & .ASC \({ }^{\prime * * * *}\) INPUT PHASE BEGUN ***" \\
\hline C1CD 0D 0D & & .BYTESOD,\$0D \\
\hline & IPBML & \(={ }^{*}\)-IPBM \\
\hline
\end{tabular}

Now we're ready to open the input file in preparation for reading it. We use the short name, since the last four characters \((, \mathrm{S}, \mathrm{W})\) aren't needed or wanted for an input file.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{\multirow[t]{2}{*}{; OPEN INPUT}} \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{C1CF} & \multirow[t]{2}{*}{AD AA 02} & \[
\stackrel{;}{\text { SNI }}
\] & LDA & IFNL & ;LOAD INPUT \\
\hline & & & & & FNAMELEN \\
\hline C1D2 & A2 40 & & LDX & \#<FNA & ; LOAD FILENAME LO \\
\hline C1D4 & A0 03 & & LDY & \#>FNA & ; LOAD FILENAME HI \\
\hline C1D6 & 20 BD FF & & JSR & SETNAM & \\
\hline
\end{tabular}

We're doing things backwards from the equivalent BASIC coding. If we code OPEN 2,8,2,"HOTDOG" in BASIC, we've now placed the "HOTDOG" part of the command. Now let's put in the \(2,8,2\) sequence:
\begin{tabular}{llll} 
& \multicolumn{3}{l}{; } \\
& SET LOGICAL FILE (INPUT) \\
C1D9 A9 02 & SLFI & LDA \#2 & ; LOAD LOGICAL \\
C1DB A2 08 & & LDX \#8 & FILE \# \\
LOAD DEVICE
\end{tabular}


\section*{Error Check}

Now we'll check to see if the OPEN took place without error:
\begin{tabular}{llllll} 
C1E5 & A5 & 90 & & LDA IOS & ;TEST \\
C1E7 & F0 & 0B & & BEQ OCI & ;STATUS \\
C1E9 & 8D & 60 & 03 & STA ISF & ;STORE STATUS \\
& & & & FLAG \\
C1EC & A9 & 01 & & LDA \#1 & ;SET/STORE \\
C1EE & 8D & 61 & 03 & STA IEC & ;ERROR CODE \\
C1F1 & 4C & 4F & C2 & JMP IE & ;INPUTERROR
\end{tabular}

Location \$90-called IOS here- is the familiar BASIC ST flag. If it's zero, we are OK and can proceed to read the file. If not, we must advise, abort, or take other appropriate action.

But this flag is not enough. ST, or hex 90, tells us only if the transfer of information (in this case, filename) has been passed to the disk correctly. After the information gets to the disk, there may be other problems.

If the file does not exist, or for any other reason cannot be opened, the disk will know there's an error; but the computer will not. The computer must ask the disk to deliver information on possible errors over its command channel. The command channel is open and ready to receive this data (we opened 15 , remember), but we must ask for it.

To do the job right, we must think about coding along the following lines:
\begin{tabular}{lll} 
LDX & \#15 & ; command channel \\
JSR & \$FFC6 & ; input \\
JSR & \$FFE4 & ;get a character \\
PHA & & ;stash it \\
JSR \$FFCC & \begin{tabular}{l}
;close channel \\
PLA
\end{tabular} & ; instash character \\
CMP \#\$30 & ;is it 0? \\
BNE & ERROR & ;nope, we have problem
\end{tabular}

\section*{A Better Way}

The above is minimum coding. It would be better to create a more elaborate subroutine which brings in the whole message from the error channel and stores it in memory. (The message would end with \$0D, the Return character.) Then we could check the first character for \(\$ 30\) (ASCII zero, start of the OK message); if not, we'd be able to print the whole error message.

Here comes the coding for a good OPEN:
I wish the comments said "connect channel" rather than "open channel." The OPEN (as we know it in BASIC) has been performed successfully. Now, we're establishing a connection to the input file preparatory to reading.


Just before reading, we set up the memory address into which we will start to read. The low part of the address is zero; the high part is stored as a constant in the program (SP undoubtedly stands for Start Page). Immediate addressing could be used to set the start page if preferred.


\section*{CHRIN Or CHRGET}

Rasmussen uses the CHRIN routine (\$FFCF) to get from the file. I prefer CHRGET (\$FFE4), but the difference is minor with files. Either call gets from the file rather than keyboard/screen because we have switched the input channel with our call to CHKIN (\$FFC6).

Some programmers would prefer to step the \(Y\) register through its range rather than change the indirect address each time. In principle, the \(Y\) register technique is faster; but in this case, it's doubtful that the speed difference could be observed. Timing of this whole section is governed almost totally by disk speed.

The program checks carefully to make sure that the data does not overrun the memory space available.

\section*{TEST INPUT STATUS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline C228 & A5 & 90 & & TIS & LDA & IOS & ;LOAD STATUS \\
\hline C22A & F0 & E7 & & & BEQ & IL & ;IF 0, CARRYON \\
\hline C22C & C9 & 40 & & & CMP & \#EOFI & ;TESTFOR \\
\hline C22E & F0 & 23 & & & BEQ & EOF & ;EOF \\
\hline C230 & 8D & 60 & 03 & & STA & ISF & ;STORESTATUS FLAG \\
\hline C233 & A9 & 03 & & & LDA & & ;SET/STORE \\
\hline C235 & 8D & 61 & 03 & & STA & IEC & ;ERROR CODE \\
\hline C238 & 4 C & 4 F & C2 & & JMP & IE & ;INPUTERROR \\
\hline
\end{tabular}

Again we test the ST status byte (IOS); in this case, we're primarily interested in an end-of-file signal which would be flagged by a value of hex 40 (decimal 64) in ST.

Once again, the error routines are quite elaborate. It's my opinion that there is little need to check the disk error channel during the read phase; error notices will wait until we ask for them at end of file.

\section*{Opening The File}

If we run out of memory, we come to DSP:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{4}{|l|}{DECREMENT START PG BY HEX 10 AND TRY AGAIN, TO GIVE YOU 16 MORE BLKS.} \\
\hline C23B & 38 & DSP & SEC & & \\
\hline C23C & AD 3D & C4 & LDA & SP & ; LOAD START PG \\
\hline C 23 F & E9 10 & & SBC & \# H 10 & ;SUBT HEX10 \\
\hline C241 & 8D 3D & C4 & STA & SP & ;STOREIT BACK \\
\hline C244 & 20 CC & FF & JSR & CLRCHN ; & ; CLEAR CHANNEL \\
\hline C247 & A9 02 & & LDA & \#2 & ; SETCH2 \\
\hline C249 & 20 C3 & FF & JSR & ClOSE & ;FOR CLOSE \\
\hline C24C & 4 C CF & C1 & JMP & SNI & ;START ALL OVER \\
\hline
\end{tabular}

I'm not sure what is going on here. The coding intention is this: If it doesn't fit, allocate an extra 4 K and try again.

\section*{An Endless Loop}

This is puzzling. If the 4 K was available, why not make it available in the first read and save the trouble?

There's also a pitfall here. Suppose we allocate the extra 4 K , and the program still doesn't fit into memory. We'll end up in an endless loop, since we will come back to DSP, do it again, and so on, and so on.

I'd prefer to allocate as much memory as possible right away, and quit if the program doesn't fit.


This is a programmer's error termination. The program will stop and break to the monitor, if there is a monitor in place. The programmer
can then examine memory locations to see what the trouble is.

If there is not a monitor in the machine, the program will terminate with a READY statement and no other explanation.

\section*{Extra Work}

For general use, the program would benefit from additional work in this area so that the user would see a meaningful message. This is almost out of character: The messages are so well presented in other parts of the program that their absence here is very noticeable indeed.


\section*{Wrapping It Up}

The end address (plus one, of course) is stored away, and the file disconnected. I would check the disk error channel at this point. Any errors that may have accumulated during the input phase will be waiting.

Now we may close the file and print an advisory message:


The input phase is complete. Next time, we'll take a look at output.

\title{
Atari Softkey
}

Thomas A Marshall

This utility allows you to GOTO any line in a program while it's running, simply by pressing a console key. See the "Automatic Proofreader" article on page 180 before typing in programs.

To access the OPTION, SELECT, and START keys on the Atari keyboard console, you can use the following BASIC program:
```

M. GOTO 1@
6C 1 ? "OFTION":GOTO 2@
EK 2 ? "SELECT":GOTO 2@
8J 3 ? "START ":GOTO 2g
FG1@? "This is a demonstration of th
e"
g% 11 ? "use of Atari*s console keys."
HK 2@ IF PEEK(53279)=3 THEN GOTO 1
HO S\varnothing IF PEEK(53279)=5 THEN GOTO 2
IB 4@ IF PEEK (53279)=6 THEN GOTO }
AR 5\emptyset GOTO 2\emptyset

```

However, this requires that the computer be tied up in a loop, lines 20 to 50 .

A much better way to accomplish the same thing is for a machine language program to check the console keys during the vertical blank period. (This is the time that the television's electron beam ends at the lower right corner of the screen until it begins again at the top left corner of the screen.) If a console key is pressed, the machine language program will execute a "GOTO line number" where the line number corresponds to the following keys pressed:
```

GOTO 1 for OPTION
GOTO 2 for SELECT
GOTO 3 for START
GOTO 4 for SHIFT \& OPTION
GOTO 5 for SHIFT \& SELECT
GOTO }6\mathrm{ for SHIFT \& START

```

Note that we have doubled the effective number of console keys by adding the SHIFT key. Using this technique, the BASIC programmer can go directly to any portion of his program without
stopping the program and typing GOTO line number.

\section*{An Automatic RUN}

If you are really lazy, you can have the BASIC line, 3 RUN, so that your BASIC program will RUN when the START key is pressed, regardless of whether the BASIC program was running beforehand or not.

Program 1 creates an AUTORUN.SYS file. Note that this file resets the memory location, MEMLO, that points to the beginning of a BASIC program. Thus, the vertical blank machine language routine resides safely below the BASIC program. The drawback to this technique is that the machine language program will be erased when you go to DOS.

\section*{Also Autoruns}

An additional feature included in the disk version of "Atari Softkey" is the ability to autorun any BASIC program saved on the disk. Program 2 is a demonstration program which will be RUN automatically by the AUTORUN.SYS file. So, Program 2 should be saved on the disk with the filename as in the AUTORUN.SYS file. Program 2 currently has the filename GOTO.BAS, defined in line 40 of Program 1 by F\$ = "RUN D:GOTO.BAS".

\section*{The Tape Version}

For Atari owners who do not have a disk drive, Program 3 POKEs Softkey into page 6. You need to initialize the machine language (ML) routine with the USR statement in line 120. Program 3 is essentially the same as Program 1, but with the autorun feature removed. Again, whenever the console keys are pressed, lines 1-6 in Program 2 will be executed as described above.

However, remember that if there is no line number in the BASIC program corresponding to the console key pressed, an "ERROR 12", line not found, will occur.

The ML program is initialized by placing the
low and high address of the start of the ML pro－ gram into memory addresses 736－737（RUNAD \＄2E0－\＄2E1）．Upon completion of DOS．SYS load， the computer will run the ML program pointed to by this address．After resetting several vectors， the ML program sets the Vertical Blank Interrupt （VBI）vector using the deferred mode．

\section*{The Deferred Mode}

I have used the deferred mode（accumulator \(=7\) ）， since there are about 20,000 machine cycles avail－ able versus about 3800 cycles in the immediate mode（accumulator \(=6\) ）．Thus，the ML routine checks whether the SHIFT and the console keys are pressed during the vertical blank period．Once the keys are pressed，the ML program jumps to the subroutine that sounds the keyboard click and resets the pointer to the editor routine so that the ML can perform the GOTO line number input． It then simulates a press of the BREAK key so that the editor buffer is emptied and the new editor pointers are executed．Once the BASIC G．line number is in the editor buffer，the editor pointer is reset．A RETURN，CHR\＄（155），is placed in the editor buffer to execute the GOTO line number statement．

Softkey has many applications．I have found it most useful in a program that required the modification of DATA statements．You can RUN the BASIC program simply by pressing the START key．Another application is to go directly to sub－ routines without going through a menu selection．

\section*{Program 1：Atari Softkey}

\section*{Ki 1 g REM Atari Softkey}

EX \(2 \emptyset\) GRAFHICS \(Q:\) ？＂Insert a DOS \(2 . \infty S\) diskette＂：？＂with DOS．SYS in dri ve \(1^{\prime \prime}\)
FN \(\triangle Q\) ？？＂Fress RETURN when you have done this＂
N0 4 W DIM \(F \$(18): B=め: F \$=" R U N\) D：GOTO．BA \(S^{\prime \prime}: F(\$(4,4)=\) CHFi \((34):\) REM \(34=A S C I I\) FOR＂
EN 5¢ IF PEEK \((764)=12\) THEN POKE 764，25 5：GOTO 7＠
AE SQ GOTO \(5 め\)
H月 ？：？＂NOW writing the AUTORUN．SY 5 file＂
DE 8め TRAP 1 ＠ \(6:\) CLOSE \＃1
KC9 OFEN \＃ 1,8 ，以，＂D：AUTORUN．SYS＂：TRAP 4：GOTO 11g
FM 1 gQ CLOSE．\＃1：？：？＂Can＇t open AUTOR UN．SYS file＂：END
JH 11 Q FOR \(I=1\) TO 292：TRAF 18曰：READ A： \(B=B+A: T R A F 210: P U T\) \＃1，\(A: N E X T\) I： TRAP 4 Øめめめ
80126 IF \(A<>96\) THEN 179

OA 14 G FOR I＝1 TO 18 －LEN（Fक）：PUT \＃1， 32 ：NEXT I
LA 15G FOR \(I=L E N(F \$) T O 1\) STEP－ \(1:\) FUT \＃1，ASC（Fक（I））：NEXT I：CLOSE \＃1
FN1SQ ？？＂DATA ok，write successfu 1．＂：END
0E 170 ？？？＂There are too many DATA e ntries＂：GOTO 2め夕

OM 189 ？＂There are not enough DATA en tries＂：GOTO 2めめ
fP 19G ？：？＂Bad number in DATA statem ents＂
HL 2øÐ CLOSE \＃1：？＂RECHECK the entries ！＂：END
BG 210 ？：？：？＂Error－＂；PEEK（195）；＂wh en attempting disk write．＂：CLOS
E \＃1：END
HI 220 REM
FH 2Jg FEM The following is the decimal
\(K 024\) REM equivalent of the machine
6A 25\％REM language．It must be typed
CA 2GQ REM perfectly in order to
B6 270 REM function．
HO 28G REM
FI 290 DATA \(255,255,0,39,243,30\)
GP उGQ DATA \(165,12,141,57,36,165,13,14\) \(1,58,36,169,56,133,12,169,36,13\) \(3,13,32,63,36,169,244,141,231,2\) ，169，30，141，232
LF S W DATA \(2,173,243,36,246,16,169,26\) \(5,141,89,36,169,6,141,96,36,16 母\) ，105，162，36，169，7，32，92，228，96， \(32,64,21,32\)
FI 329 DATA \(19,39,96,169,85,141,33,3,1\) \(69,36,141,34,3,96,169,6,141,35\), \(3,169,228,141,34,3,96,251,243,5\) 1，246，229
HA S SG DATA \(3 \Omega, 163,246,51,246,6 め, 246,7\) \(6,228,243,51,46,71,6,7,169,8,14\) \(1,31,298,173,31,298,205,164,3 \emptyset\), \(24 め, 1 め め, 141,1 め 4\)
C1 340 DATA \(30,2 め 1,7,24 め, 93,141,1 め 4,3 め\) ，173，193，उ6，268，85，173，164，उ6， 2乡1，उ，2め8，19，169，49，141，1めめ，उめ，1 \(73,15,216,41,8\)
60 उ5め DATA \(2 冈 8,51,169,52,141,1 め め, 3 \varnothing, 2\)毋8，44，201，5，208，19，169，5め，141，1 め，उめ，173，15，210，41，8，2め8，28，16 \(9,53,141,1 め \infty\), उめ
PF उGG DATA \(208,21,2\) W1，6，2め8，32，169，51 \(, 141,160,39,173,15,216,41,8,208\) \(, 5,169,54,141,10 め, 30,169,3,141\) ， 1 103， \(36,32,216\)
MK उ7Q DATA \(252,32,63,39,169,0,133,17\), \(76,98,228,172,1 め 3,30,240,9,185\) ， 99，उめ，2め6，1め3，उゆ，160，1，96，32，74 ，30，169，155
\(N J\) उ89 DATA \(160,1,96,18\)
AK З9＠DATA \(224,2,225,2, \emptyset, 3 \emptyset, 2 \emptyset 6,6,255\) ， 6
FC 4 Øめ DATA \(172,243,3 め, 240,9,185,237,6\) ，2め6，243，उめ，16め，1，96，32，74，3め， 1 \(69,220,141,89,30,169,30,141,99\), \(36,169,155,160\)
HL 410 DATA 1,96

\section*{Program 2：Atari Softkey Test Program}

M．G GOTO 1 \％
011 ？＂\｛TAB\} OFTION\{UP\}": END
\(082 ? "\) \｛TAB\}SELECT\{UP\}":END
PA ？＂\｛TAB\}START \{UP\}":END
OH 4 ？＂\｛TAB？SHIFT－OFTION\｛UF\}" =END
H 5 ？＂\｛TAB\}SHIFT-SELECT\{UP\}": END
106？＂\｛TAB\}SHIFT-START \{UF\}": END
E019？＂This is a test of＂

\section*{M 11 ？＂Atari Softkey！＂}

\section*{Program 3：}

\section*{Atari Softkey（ML）For Tape Drive Users}

EA 1 gG FOR \(I=\emptyset\) TO 2 g \(4: R E A D ~ A: B=B+A: P O K\) E \(15 \leq 6+I, A: N E X T\) I
 echeck DATA statements.":? "The \(y\) do not correctly total": END
(L. 120 A=USR(1536)

EG200 DATA \(164,169,1,133,2,169,6,133\), \(3,165,9,9,2,133,9,166,67,162,6\), \(169,7,32,92,228,96,169,47,141,3\) \(3,3 \quad 169,6,141,34,3,96,169,0,14\)
KD 210 DATA \(169,6,141,34,3,96,169,0,14\) \(1,33,3,169,229,141,34,3,96,251\), \(243,51,246,192,6,163,246,51,246\) ,69,246,76
CE 220 DATA \(228,243,49,46,71,6,7,169,8\) , 141, 31, 208, 173, 31, 208, 205, 66,6 , 240, 196, 141, 66,6, 291, 7, 240,93, 141,66,6
OH 2SQ DATA \(173,65,6,208,85,173,66,6,2\) Q1, 3, 2088, 19, 169, 49, 141, 62, 6, 173 , 15, 210, 41, 8, 268,51, 169,52,141, 62, 6, 2018
FF 240 DATA \(44,201,5,208,19,169,50,141\) \(, 62,6,173,15,210,41,8,208,28,16\) 9,53, 141, 62,6, 208, 21, 201, 6, 208, 32, 169,51
JA 259 DATA \(141,62,6,173,15,219,41,8,2\) @8, 5, 169,54,141, 62,6,169,3,141, \(65,6,32,216,252,32,25,6,169,0,1\) 33, 17
HH 26G DATA \(76,98,228,172,65,6,249,9,1\) 85, 61, 6, 206, 65, 6, 169, 1, 96, 32, 36 ,6,169,155, 169,1,96
N 27@? "Now type in program listing
G8 29@ ? " number 2 to demonstrate"
C0 290

\section*{DISK WIZARD II}

\section*{THE MOST COMPLETE UTILITY PACKAGE} FOR ATARI* COMPUTERS AT ANY PRICE 100 \% MACHINE LANGUAGE - SINGLE LOAD - MENU DRIVEN

THIS USER FRIENDLY PACKAGE INCLUDES THE FOLLOWING POWERFUL PROGRAMS FOR THE ATARI* 400/800/XL SERIES COMPUTERS (40K REQUIRED)

DISK BACK-UP - SIngle/double density - Supports 1 OR 2 dRives - ALLOWS BACKUP OF DISKS PROTECTED BY BAD SECTORING • FAST COPY OPTION - SECTOR STATUS SUMMARY - OPTIONAL PRINTOUT OF SECTOR STATUS - DISK MAPPING

DISK EDIT - SINGLE/DOUBLE DENSITY - DISPLAY/MODIFY/PRINT ANY SECTOR - SECTOR DISPLAYED IN : HEXXASCII/ATASCII - WORKS WITH ANY FORMAT - SCAN SECTORS FOR A SERIES OF BYTES OR A STRING AND AUTOMATICALLY VERIFY DELETED FILES • FORMAT DISKS WITH AUTOMATIC LOCK OUT OF BAD SECTORS - DECIMAL/HEX NUMBER CONVERSION

DISASSEMBLER - Single/double density - disassemble from DISK BY SECTOR NUMBERS - DISASSEMBLE COMPOUND BINARY FILES GY FILE NAME - OUTPUT TO SCREEN OR PRINTER - SELECTAEL MNEMONIC DISASS

DISK SPEED - verifies/allows adjustment of disk speed - bad SECTORING (810 ONLY)
includes comprehensive manual with many usage examples

ORDERING INFORMATION
For fast delivery, send certified check or money order.
MASTERCARD \& VISA accepted. (N.Y. Residents add \(7 \%\) sales tax) and charges.

KS


SHIPPING \& mandling include
Ind
Manual Only \$10.95

\section*{SOFTWARE INC SOFTWARE INC. SOO QUARTZ WAY
SYRACUSE, N. Y. 13219}

ORDERS TOLL FREE 1-800-732-0320
Info. and N.Y. Residents -315-488-0485


In this month's column we will complete our look at line drawing in the 64's bitmapped graphics mode. We will deal with both hi-res and multicolor bitmapped graphics. Fortunately, the same general principles apply to both. Last month we saw how a routine to draw lines might look in BASIC. Actually executing the routine would show that BASIC is much too slow to be of much use for this task. At the end of last month's article we took the first step in putting together a set of machine language routines. This month we will complete the set.

First, here is a summary of the features of these drawing routines. The range of coordinates supported is 0 to 319 for \(X\), and 0 to 199 for Y, when in hi-res mode. For multicolor mode, the range is 0 to 159 for X , and 0 to 199 again for Y . It is up to the user to insure that coordinates are within these ranges. Using coordinates which are too far out of range could cause the 64 to crash. In both hi-res and multicolor mode, the location of 0,0 is found at the lower left corner of the display.

\section*{Saving Memory For BASIC}

The bitmap memory is placed at 57344 (\$E000), underneath the operating system ROM. This avoids taking memory away from BASIC. Since this makes the bitmap data difficult to PEEK directly from BASIC, a routine is provided to perform this function. The screen memory is placed at 51200 (\$C800), just below where the DOS Wedge loads. Use of these graphics routines should not conflict with the DOS Wedge, but may conflict with other BASIC enhancement software.

Last month we began by writing four of the required routines. This month we are going to upgrade two of those to accept arguments, and add six more. As was mentioned last time, we will execute these routines via a jump table at the beginning of the machine code. This will provide us fixed locations to SYS to, even if modifications or additions are made later. The following is a list of the routines found in the jump table:

\footnotetext{
Loc. Description
JT +0 Save screen parameters
JT +3 Restore saved screen parameters
\(\mathrm{JT}+6\) Enable graphics screen
JT +9 Clear graphics screen
\(\mathrm{JT}+12\) Move graphics cursor to \(\mathrm{X}, \mathrm{Y}\)
JT+15 Plot pixel at \(X, Y\)
JT +18 Draw line to \(\mathrm{X}, \mathrm{Y}\)
}
\[
\begin{array}{ll}
\text { JT + } 21 & \text { Set drawing mode } \\
\text { JT + } 24 & \text { Set drawing color (multicolor) } \\
\text { JT }+27 \text { Read bitmap byte (a function) }
\end{array}
\]

The jump vector location of these routines is shown as the variable JT plus an offset. To obtain the actual address, JT should be set to the base of the jump table, which is 49152 or \$C000. The following table gives the syntax for using each of the routines in the jump table.

SYS JV
SYS JV + 3
SYS JV + 6,MODE
:REM SAVE SCREEN :REM RESTORE SCREEN :REM ENABLE GRAPHICS MODE: \(0=\mathrm{HI}\)-RES, \(1=\) MULTICOLOR
SYS JV + 9, C0,C1
:REM CLEAR SCREEN
C \(0=\) "OFF" COLOR, \(\mathrm{C} 1=\) "ON" COLOR
USE IF HI-RES BITMAP MODE
SYS JV + 9,C0,C1,C2,C3 :REM CLEAR SCREEN C \(0=\) BACKGROUND, \(\mathrm{C} 1=\) FOREGROUND 1 \(\mathrm{C} 2=\) FOREGROUND 2, C3 = FOREGROUND 3 USE IF MULTICOLOR MODE
\begin{tabular}{ll} 
SYS JV + 12,X,Y & \(:\) REM MOVE \\
SYS JV + 15,X,Y & :REM PLOT \\
SYS JV + 18,X,Y & :REM DRAW \\
SYS JV + 21,DM & :REM SET DRAWING MODE
\end{tabular}

SYS JV + 21, DM :REM SET DRAWING MODE DM: \(0=\) FLIP, \(1=\) DRAW, \(2=\) ERASE
SYS JV + 24,C :REM SELECT COLOR WORKS ONLY FOR MULTICOLOR MODE

The last routine in the jump table (offset \(=27\) ) is handled differently because it should be called by the USR function. To set it up as the USR function, execute the statement:
POKE 785,PEEK(JV + 28) :POKE 786,PEEK(JV + 29)
Once this is done, you may read bytes from the bitmap memory with the statement

BYTE = USR ( OFFSET )
where OFFSET is the offset from the base address of the byte you wish to fetch.

\section*{A Graphics Cursor}

The philosophy behind this is that these graphics commands differ slightly for other graphics enhancements to BASIC. Typically, enhancements will add a line-drawing command which always requires both end points. In the routines above, an internal graphics cursor is maintained. Lines are drawn from this graphics cursor to a specified end point. Whenever a line is drawn, the new end point becomes the graphics cursor location. Thus, successive executions of the DRAW routine will create a series of connected lines.

Also, you have a choice of three drawing modes, flip, draw, and erase. The draw mode
causes points along the lines to be set to the on state, or to the selected color if in multicolor graphics. Erasing causes dots to be set to the off state or background color. The flip mode involves switching the pixels to their opposite state In the case of multicolor mode, pixels of the selected color are flipped to the background color, and vice versa. Pixels not of the selected color are flipped to the other nonselected color.

To provide a simple example of how to put these routines to use in a program, the following program draws an interesting circular pattern in hi-res mode. Once the pattern is drawn, the program will wait for you to press a key

\section*{\(1 \varnothing\) JT=49152:SYS JT:REM SAVE SCREEN}
\(2 \varnothing\) SYS JT+6, \(0: S Y S\) JT+9,1,2:REM INIT SCREE N
\(3 \emptyset\) SYS JT+21, \(\varnothing:\) REM FLIP MODE
\(4 \emptyset\) FOR I=Ø TO 6.24 STEP . Ø35
\(5 \emptyset \mathrm{X}=5\) 月 \(^{\mathrm{c}} \cos (\mathrm{I}): \mathrm{Y}=5 \emptyset * \operatorname{SIN}\) (I)
\(6 \emptyset\) SYS JT+12,16ø+X,1øø+Y:REM MOVE
\(7 \emptyset\) SYS JT+18,16ø-X,1øø-Y:REM DRAW
80 NEXT
9ø GET Z\$:IF Z\$="" THEN 9ø
løØ SYS JT+3:REM RESTORE TEXT SCREEN
To put the required machine code into memory, run the BASIC program shown below.

Next month we'll explore some of the more interesting aspects of the machine language source code listing.

\section*{BASIC Program}

Refer to the "Automatic Proofreader" article before typing this program in.
1 READ LN, SA, EA: LN=LN+3 \(\emptyset\) :rem 146
\(1 \varnothing\) FOR I=Ø TO EA-SA :rem 232
\(2 \emptyset\) READ BY:POKE \(S A+I, B Y: S U M=S U M+B Y\)
:rem \(12 \emptyset\)
\(3 \varnothing\) IF INT \(((I+1) / 8) * 8<>(I+1)\) THEN \(6 \varnothing\)
:rem 242
40 READ CS:IF CS<>SUM THEN 8 8 :rem 123
\(5 \emptyset\) SUM= \(\emptyset: L N=L N+1 \varnothing\)
\(6 \emptyset\) NEXT
\(7 \varnothing\) PRINT "SUCCESSFUL LOAD":END
\(8 \emptyset\) PRINT "ERROR IN LINE";LN:END
\(50 \emptyset\) DATA 5øø
510 DATA 49152
: rem 254
:rem 165
:rem 105
:rem 104 :rem 68
:rem 181
\(52 \emptyset\) DATA 5øø87 :rem 181
530 DATA \(76,47,192,76,72,192,76,9,74 \emptyset\) :rem 57
540 DATA \(193,76,90,193,76,156,193,76,1053\)
:rem 255
550 DATA 59, 194, 76, 192, 194, 76,101,195,1ø8 7
:rem 53
560 DATA \(76,115,195,76,137,195, \varnothing, \varnothing, 794\)
:rem 99
\(57 \varnothing\) DATA \(\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 255,128,383\) :rem 11
\(58 \emptyset\) DATA \(\varnothing, 7,248, \varnothing, \varnothing, \varnothing, \varnothing, 173,428\) :rem 21
590 DATA \(\varnothing, 221,141,43,192,173,24,2 \emptyset 8,1 \varnothing \emptyset 2\)
:rem 212
\(60 \emptyset\) DATA \(141,44,192,173,17,2 ø 8,141,45,961\)
:rem 230
\(61 \varnothing\) DATA \(192,173,22,2 \emptyset 8,141,46,192,96,107\) \(\varnothing\)
: rem 25
\(62 \emptyset\) DATA \(173,43,192,141, \varnothing, 221,173,44,987\)
:rem 182

630 DATA \(192,141,24,208,173,45,192,141,11\) 16 :rem 68
\(64 \emptyset\) DATA \(17,2 \emptyset 8,173,46,192,141,22,2 \emptyset 8,1 \emptyset \emptyset\)
\(7 \quad: r e m 19\)
650 DATA \(96,72,173,14,220,41,254,141,1011\)
:rem 218
660 DATA \(14,220,165,1,41,253,133,1,828\)
:rem 69
\(67 \emptyset\) DATA \(104,96,72,165,1,9,2,133,582\)
:rem 242
680 DATA \(1,173,14,220,9,1,141,14,573\)
:rem 225
690 DATA \(220,104,96,164,254,240,13,160,12\) 51 :rem 65
\(7 \varnothing \emptyset\) DATA \(\varnothing, 145,251,2 \emptyset \varnothing, 2 \emptyset 8,251,23 \emptyset, 252,15\)
37
: rem 53

710 DATA \(198,254,2 \emptyset 8,243,164,253,240,10,1\) \(57 \varnothing\)
:rem 123
\(72 \emptyset\) DATA \(136,240,5,145,251,136,2 ø 8,251,13\) 72 :rem 67
730 DATA \(145,251,96,32,97,192,160, \varnothing, 973\)
:rem 144
\(74 \emptyset\) DATA \(132,251,160,2 \emptyset 0,132,252,160,232\), 1519
:rem 153
750 DATA \(132,253,160,3,132,254,32,131,109\) \(7 \quad:\) rem 12
760 DATA \(192,44,4 \varnothing, 192,16,2 \emptyset, 16 \emptyset, \varnothing, 664\) : rem 75
\(77 \emptyset\) DATA \(132,251,160,216,132,252,160,232\), 1535 :rem 161
780 DATA \(132,253,160,3,132,254,138,32,110\) \(4 \quad:\) rem 11
790 DATA \(131,192,169,0,133,251,169,224,12\) 69 :rem 84
\(8 \emptyset \emptyset\) DATA \(133,252,169,6.4,133,253,169,31,12\)
Ø4 :rem 72
810 DATA \(133,254,169,0,32,131,192,76,987\)
:rem 192
\(82 \emptyset\) DATA \(114,192,32,253,174,32,158,173,11\) 28 :rem 75
\(83 \emptyset\) DATA \(32,170,177,17 \varnothing, 152,96,32,234,1 \emptyset 6\)
\(3 \quad:\) rem 24
840 DATA \(192,141,34,192,142,35,192,32,960\)
:rem 234
850 DATA \(234,192,141,36,192,142,37,192,11\) 66
:rem 82
860 DATA \(96,32,234,192,240,2,169,128,1093\)
:rem 241
870 DATA \(141,40,192,173, \varnothing, 221,9,3,779\)
:rem 34
\(88 \emptyset\) DATA \(73,3,141,0,221,173,24,208,843\) :rem 76
\(89 \emptyset\) DATA 41, 7,9,8,9,32,141,24,271 :rem 92
9øø DATA 2ø8,173,17,2ø8,9,32,141,17,8ø5
:rem 131
\(91 \varnothing\) DATA \(2 \emptyset 8,44,4 \varnothing, 192,16,12,173,22,7 \emptyset 7\)
:rem 125
\(92 \emptyset\) DATA \(2 ø 8,9,16,141,22,2 ø 8,169,3,776\) :rem 9ø
\(93 \emptyset\) DATA \(2 \varnothing 8,10,173,22,208,41,239,141,104\) 2 :rem 10
940 DATA \(22,2 ø 8,169,7,141,41,192,73,853\)
:rem 141
950 DATA \(255,141,42,192,169,255,141,38,12\)
\(33:\) rem 82
960 DATA \(192,96,32,246,192,44,40,192,1034\)
:rem 241
\(97 \emptyset\) DATA \(48,21,173,36,192,10,10,10,50 \emptyset\)
:rem 65
980 DATA \(10,141,36,192,173,34,192,41,819\)
:rem 188
\(99 \emptyset\) DATA \(15,13,36,192,76,163,192,173,860\)
: rem 199
1øøø DATA \(36,192,10,10,10,10,141,36,445\) : rem 96 \(101 \emptyset\) DATA \(192,32,234,192,41,15,13,36,755\)
:rem 171
\(1 \emptyset 2 \emptyset\) DATA \(192,141,36,192,32,234,192,17 \varnothing, 1\) 189
:rem 121
\(1 \varnothing 3 \emptyset\) DATA \(173,34,192,141,33,2 \varnothing 8,173,36,99\) Ø
:rem 24
\(1 \emptyset 40\) DATA \(192,76,163,192,32,246,192,162,1\) 255
:rem 129 \(1 \emptyset 5 \emptyset\) DATA \(3,189,34,192,157,30,192,2 \emptyset 2,999\)
:rem 243
1060 DATA \(16,247,96,56,169,199,237,32,105\) 2
:rem 43
\(1 \varnothing 7 \emptyset\) DATA \(192,72,74,74,74,133,252,160,1 \varnothing 3\) \(1 \quad: r e m 2 \emptyset\) \(1 \varnothing 8 \emptyset\) DATA \(\varnothing, 132,251,74,1 \varnothing 2,251,74,1 \varnothing 2,986\)
:rem \(22 \varnothing\)
1090 DATA \(251,1 \varnothing 1,252,133,252,173,30,192\), 1384
:rem 161
\(110 \emptyset\) DATA \(174,31,192,45,42,192,44,40,760\)
:rem 172
1110 DATA \(192,16,6,10,72,138,42,17 \emptyset, 646\)
:rem 122
1120 DATA \(104,24,101,251,133,251,138,101\), 1103
:rem 133
1130 DATA \(252,133,252,104,41,7,24,101,914\) :rem 207
1140 DATA \(251,144,2,230,252,24,105, \varnothing, 1 \varnothing \emptyset 8\)
:rem 198
1150 DATA \(133,251,165,252,105,224,133,252\) , 1515
:rem 207
1160 DATA \(173,30,192,45,41,192,170,96,939\)
:rem 242
\(117 \varnothing\) DATA \(169, \varnothing, 168,44,39,192,16,7,635\)
:rem 94
\(118 \emptyset\) DATA \(8 \emptyset, 2,177,251,77,38,192,44,861\)
:rem 145
1190 DATA \(40,192,48,10,61,47,194,133,725\)
:rem 183
\(120 \emptyset\) DATA \(97,189,47,194,2 ø 8,8,61,55,859\)
:rem 161
1210 DATA \(194,133,97,189,55,194,73,255,11\)
\(9 \varnothing\)
:rem 94 1220 DATA \(49,251,5,97,145,251,96,128,1 \varnothing 22\)
:rem 234 1230 DATA \(64,32,16,8,4,2,1,192,319\)
:rem 126
1240 DATA \(48,12,3,32,156,193,32,97,573\)
:rem 85 \(125 \emptyset\) DATA \(192,32,171,193,32, \varnothing, 194,76,89 \varnothing\)
:rem 186
1260 DATA \(114,192,169,1,149,106,169,0,90 \emptyset\) :rem 228 1270 DATA \(149,167,56,189,34,192,253,30,10\) \(1 \varnothing\)
:rem 73 1280 DATA \(192,149,98,189,35,192,253,31,11\) 39 :rem 98 1290 DATA \(192,149,99,16,2 \varnothing, 169,255,149,1 \varnothing\) 49
:rem 99
\(13 \varnothing 0\) DATA \(106,149,107,56,169, \varnothing, 245,98,930\) :rem 238 1310 DATA \(149,98,169, \varnothing, 245,99,149,99,1 \varnothing \emptyset 8\) :rem 4 \(132 \emptyset\) DATA \(96,21,98,208,4,149,106,149,831\) :rem 192 1330 DATA \(107,96,165,99,74,133,103,165,94\) 2
:rem 39
1340 DATA \(98,1 \varnothing 6,133,102,24,169,0,229,861\)

1350 DATA \(98,133,104,169,0,229,99,133,965\)
:rem 250
1360 DATA \(1 \emptyset 5,96,24,165,102,101,1 \varnothing 0,133,8\) 26
:rem 56 \(137 \emptyset\) DATA \(1 \emptyset 2,17 \emptyset, 165,103,101,101,133,103\) , 978
:rem 151
1380 DATA \(197,99,144,19,208,4,228,98,997\)
:rem 224 1390 DATA \(144,13,138,56,229,98,133,102,91\) 3 :rem 32 1400 DATA \(165,103,229,99,133,103,56,96,98\) 4 :rem 40 1410 DATA \(32,246,192,32,97,192,162,0,953\)
:rem 184 1420 DATA \(32,74,194,162,2,32,74,194,764\)
:rem 137 1430 DATA \(165,98,197,100,165,99,229,101,1\) 154
:rem 137 1440 DATA \(144,62,32,130,194,36,107,16,721\)
:rem 221
\(145 \emptyset\) DATA \(10,32,159,193,56,169,0,229,848\)
: rem 194
1460 DATA 1ø8,133,108,32,171,193,32,0,777
:rem 227 \(147 \varnothing\) DATA \(194,230,104,208,4,230,105,24 \emptyset, 1\) 315
:rem 1ø3
\(148 \emptyset\) DATA \(1 \emptyset 2,238,30,192,208,3,238,31,1 \varnothing 4\) 2
:rem 11 1490 DATA \(192,32,154,194,144,9,24,173,922\)
:rem 241 1500 DATA \(32,192,1 \varnothing 1,1 \varnothing 8,141,32,192,32,83\) \(\emptyset \quad\) :rem 3 \(151 \varnothing\) DATA \(171,193,32,0,194,76,241,194,11 \varnothing\) \(1 \quad: r e m 15\) 1520 DATA \(162,1,181,98,180,10 \varnothing, 149,1 \varnothing 0,97\) 1 :rem 17 1530 DATA \(148,98,2 \varnothing 2,16,245,32,130,194,1 \varnothing\) 65 :rem 74 1540 DATA \(36,107,16,10,32,159,193,56,609\)
:rem 184
1550 DATA \(169, \varnothing, 229,1 \varnothing 8,133,1 \varnothing 8,32,171,95\)
Ø :rem 23
1560 DATA \(193,32, \varnothing, 194,230,104,240,31,102\)
\(4 \quad:\) rem 1 \(157 \emptyset\) DATA \(24,173,32,192,1 \varnothing 1,1 \varnothing 8,141,32,8 \emptyset\) \(3 \quad: r e m 1 \varnothing\) 1580 DATA \(192,32,154,194,144,8,238,30,992\) :rem 246 1590 DATA \(192,208,3,238,31,192,32,171,106\) 7
:rem 27
1600 DATA \(193,32, \varnothing, 194,76,60,195,32,782\)
:rem 137
1610 DATA \(159,193,76,114,192,32,234,192,1\) 192
:rem 132
\(162 \emptyset\) DATA \(41,3,73,3,106,106,106,141,579\)
:rem 12ø
1630 DATA \(39,192,96,32,234,192,41,3,829\)
:rem 144
1640 DATA \(170,189,133,195,44,40,192,16,97\)
9 :rem 45
1650 DATA \(3,141,38,192,96,0,85,17 \varnothing, 725\)
:rem 88
1660 DATA \(255,32,170,177,170,152,24,105,1\) Ø85 :rem 121 \(167 \emptyset\) DATA \(\varnothing, 133,251,138,105,224,133,252,1\) 236
:rem 109
1680 DATA \(32,97,192,160,0,177,251,32,941\)
:rem 187
1690 DATA \(114,192,168,169,0,108,5,0,756\)
:rem 139 ©

\section*{Atari Line Check Utility}

Ed Sisul
"Atari Line Check" lets you use a joystick to perform a line-by-line search for program bugs.

Quite often, the most effective way to debug a program is to check each line, one at a time, for mistakes. For those of us who are not fortunate enough to own a printer, this can be a very tedious task. The lines can be examined using LIST and CTRL-1 to scroll through the program, but it is difficult to find minor mistakes while staring at a whole screen filled with GRAPHICS 0 text. The lines can be displayed one at a time using the sequence LIST line number, SHIFT CLEAR, LIST line number, SHIFT CLEAR, etc.; but this approach is too slow and cumbersome.

\section*{Scrolling With A Joystick}

This program will step through a listing and display each line, one at a time, in large GRAPHICS 2 print. The best part is that the scrolling is controlled with a joystick. Pulling back on the stick advances through the listing, and pushing forward on the stick backtracks through the listing. With the stick centered, the displayed line stays on the screen for scrutiny. If a mistake is spotted, press the trigger button, and the line containing the mistake is redisplayed in the normal screen editing mode so it can be corrected. Once the error is dispatched, typing CONT will resume the line-by-line check, or typing RUN will terminate the line check and execute the main program. After typing in "Atari Line Check," LIST it to disk or cassette. Then, using the ENTER command, append it to the program to be checked. Plug a joystick into Port 1 and type GOTO 32000 to start checking lines.

\section*{Array Storage}

The heart of the program is lines 32010-32030. Lines 32010-32020 retrieve the program line numbers stored in memory and store them in the array LINUM. A complete explanation of the PEEKs used to do this can be found in Larry Isaacs' article "Inside Atari BASIC" in COMPUTE!'s First Book of Atari. Line 32025 opens the screen editor for input and output, lists a line on the screen, then retrieves the entire line, including its line number, and stores it in the variable LINE\$. The POKEs in line 32025 blank the screen during these operations. Line 32030 then reprints LINE \(\$\) on the screen in GRAPHICS 2 text in black letters on a white background.

Lines 32035-32055 contain the joystick controller routines to increment or decrement the subscript of the line number array or to redisplay a line for editing. Line 32000 initializes the variables, dimensions LINE \(\$\) to the maximum number of characters in a logical line, and dimensions the LINUM array to accommodate a 200 -line program. The POKE in line 32000 standardizes the left-hand margin on all systems. Line 32005 initially sets all elements of the LINUM array to zero. Should you encounter a program with more than 200 lines, simply change the dimensioned size of LINUM in line 32000 and the maximum increment of the loop in line 32005 accordingly.

\section*{Storage Characters}

Because each line is displayed in graphics mode 2, which uses the internal character set, some characters won't be displayed as originally typed. For instance, the special graphics characters will be displayed as numeric or punctuation symbols,


\section*{MASSIVE PRICE REDUCTION SALE！！}

Commodore 64 Vic－20 TRS－80 Color

\section*{Business \＆Home Software Reduced}

HABMONYTO ORDER CALL TOLL FREE 800－221－8927 OR 800－441－1144 2357 Coney Island Ave．Open Daily 9－6：30 Brooklyn．N．Y． 11223 Sunday \(10-4\)
Friday 9.2 （212）627－1000

Friday 9－2



For Info Dial（212）627－1000 No dealers on advertised spe－ cials，please！To order simply dial toll free 800－221－8927 or 800－441－1144 with your MasterCard or VISA and your order will arrive via UPS or send certified check or money order only to：HARMONY VIDEO AND ELECTRONICS， 2357 Coney is land Ave．，Brooklyn，N．Y．11223，and add approximate ship－ \(627-8888\) Mon－Fri． \(9-5\) ．Credit cards for phone orders only．All prices and availability subject to change without notice．Dealer inquiries invited！！MC，VISA．
and lowercase letters will be displayed as green uppercase letters．Also，the CLEAR charac－ ter，CHR\＄（125），will cause the screen to clear when it is printed． When this happens，just press the trigger button to see the characters in their original form．

\section*{Atari Line Check}

Refer to the＂Automatic Proofreader＂ article before typing this program in． OM З2めめめ POKE 82，\(: ~ S T=\emptyset: ~ Z ~\) \(Z=1:\) TRAF उ2めめ5：D IM LINE \(\$(12 \emptyset), L I\) NUM（2めめ）：TRAP 4め めめめ
IC З2めめ5 FOR \(N=0\) TO 2めg：L INUM（N）＝\(:\) NEXT N
\(M L\) З2以1＠AD＝PEEK（13 3\()+256\) ＊FEEK（137）
3832915 LINUM \((Z Z)=\) PEEK（A D）＋256＊PEEK（AD＋ 1 ）：IF LINUM \((Z Z)=3\) 2めめめ THEN END
0E \(32 め 2\) IF LINUM \((Z Z)=\emptyset \quad T\) HEN \(A D=A D+P E E K\)（A \(D+2)=G 0 T 0\) उ2015
HL 32925 OFEN \＃ \(1,13, め, " E:\) ＂：FOKE 7め9，8：FOK E \(710,8:\) POKE 712 ，8：LIST LINUM＜ZZ ）：POSITION め．1：I NPUT \＃1；LINE\＄：CL OSE \＃1
BF 32め3＠GRAPHICS \(18:\) POKE 7 78，2：POKE 712，8 ：POSITION \(9,2: ?\) \＃6；LINE \({ }^{\text {\＃}}\)
IC 32635 IF STRIG（贝）\(=\) TH EN ST＝1：GRAFHICS め：LIST LINUM（ZZ ）：STOP
EP 32＠4＠IF \(S T=1\) THEN \(S T=\) Q：GOTO 32025
MH 32645 IF STICK（0）\(=13 \mathrm{~T}\) HEN ZZ＝ZZ＋ \(1:\) GOTO 32め2め
MA 32め5め IF STICK（ø）\(=14 \mathrm{~A}\) ND \(Z Z>\) THEN \(Z Z=\) ZZ－1：GOTO 32
DF 32055 GOTO 32035
COMPUTE
The Resource
COMPUTE！
TOLL FREE
Subscription
Order Line 800－334－0868

In NC 919－275－9809

\title{
Commodore Word Wizard
}

Joe W. Rocke

\begin{abstract}
"Word Wizard" improves your writing skills by checking the readability of any written material. For the VIC-20, Commodore 64, and PET/CBM computers.
\end{abstract}

The term foggy writing was originated by Robert Gunning. Seeking ways to improve the readability of written text, he developed a fog index formula. The formula is based on counting the number of words and sentences in a sample paragraph of text. Long words and long sentences produce a high index number. This type of writing is called foggy because it can be harder to read and understand. Writing that is easy to read (and understand) should have a low fog index.

The fog index formula uses a 100 - to 200 -word sample of text. Words of three syllables or more are considered "long." Dividing the word count by the number of sentences provides the average sentence length. Adding the number of long words and performing a simple computation produce the fog index. Although the index number is rather arbitrary, it does provide a standard for measuring text readability.

Researchers have since learned that people prefer to read below their educational level. Thus the fog formula has been expanded to produce a reading level index number. The result is a number that represents the approximate grade level at which written material can be read and understood.

People are comfortable reading text that has a reader index ranging from 6 to 8 . Most of the writing in popular magazines and newspapers
has an index in this range. People are capable of reading at a higher level, but the concentration required can make such writing tedious. Even college professors find it uncomfortable to read something with an index of 12 or higher.

\section*{Computerized Word Check}

The computer is an ideal tool for checking text for readability. Large companies have developed programs of this type to check their product manuals. When used with word processing systems, this checking process takes little additional time.

Using "Word Wizard" is as simple as typing text onto a video screen instead of on paper, as with a typewriter. A 100 -word sample is all that is required. Almost all text-reading analysis is based on this sample size.

The program begins with a prompt. There is no cursor, but whatever is typed appears on the

\section*{Maxell Floppy Disks The Mini-Disks with maximum quality. \\ }

Dealer inquiries invited. C.O.D's accepted.

screen. The left arrow can be used to correct a typo without affecting the program. Use the RETURN key only when you are finished entering the sample. The screen then clears, and the text that has been typed to memory will begin to march across the screen. The text display will then be formatted to improve readability.

Type in the text sample without worrying how it looks on the video display. The text will wrap around the screen, causing some words to be broken midway and to continue on the next line. The display is primarily for reference so you can see what was originally typed.

\section*{The Display Phase}

Next, during its display phase, the program counts characters, words, and sentences. It also counts the number of words containing more than nine characters, which are presumed to consist of three or more syllables. Word groups ending with a semicolon or colon are counted as one sentence. This prevents a compound sentence from being counted as a single sentence. Naturally, any word group ending with a period, question mark, or exclamation mark is counted as a sentence.

The word-checking data is stored in simple variables and is then used to compute the reading index at the end of the display cycle. A continuation prompt concludes the display cycle to permit you to read the last display page.

Finally the word, sentence, and long word counts are displayed. The reading index, rounded to two decimal places, completes the text analysis. The program then asks you to repeat the analysis or exit the program.

An index of 6-9 indicates a good readability level. A higher index indicates that the text might benefit from some editing. You may want to use two shorter sentences which carry the same thought as a long one, or try to find shorter words. For example, it is easier to read city than the word metropolis.

\section*{wabash}

\section*{When it comes to Flexible Disks, nobody does it better than Wabash.}

\author{
MasterCard, Visa Accepted. Call Free: (800) 235-4137
}


\author{
PACIFIC EXCHANGES \\ 100 Foothill Blud. San Luis Obispo, CA 93401. (In Cal. call (805) 543-1037)
}

\section*{Variables}

A\$ The input string is confined to one character.
BE Beginning address of the memory storage area. ASCII value of AS, and the character counter. Character string used for the display cycle. Reading index. Lis the display line length counter. Long word count storage. Memory storage ending address. PEEK value of MS contents. Sentence count storage. Display cycle loop counter. Word count storage.
WC Input cycle word count.
Z \& Z\$ Prompts.

\section*{Housekeeping Chores}

Lines 10-30: Housekeeping chores are performed at the beginning of the program. The formula used to round the reading index is defined in line 10. Major variables are set to zero to prevent errors if the program is rerun. Variable MS in line 20 denotes the beginning memory storage address. A second variable is set to the same value for use in the display loop.

The value currently in the program works with an unexpanded VIC-20. Use MS \(=2300\) in line 20 if you have a PET/CBM or a 3 K expanded VIC. (Ignore the color commands if you have a PET.) For a VIC with 8 K or more of expansion memory, use MS \(=5900\). Try MS \(=3300\) for the Commodore 64. For other systems you will have to use an address above the BASIC program area.

Lines 35-150: The input cycle begins at line 60 with the GET A\$ keyboard scan for a key input. When a key is pressed, the input is checked for a backspace (left cursor). If it is a backspace, the invisible cursor moves one space to the left, and the memory storage is decreased by one. This is to prevent counting the backspace as part of the text. The program then loops back for a new key input.

If the key pressed is a text character, the key is displayed and converted to its ASCII equivalent. The ASCII value is then POKEd in memory address MS for storage. The input is then tested for a carriage return (CR); if not a CR, storage address MS is incremented by one, and the program loops back for another key input. Note that a CR breaks the input loop, jumping program flow to the continuation GOSUB.

\section*{The Word Count}

Line 110 performs a word count during the input cycle. The count value of 125 in line 120 limits input to a maximum of 125 words. These two lines are optional, but do insure keeping the input within sample limits. A smaller number of words can be used for a sample, of course.

Lines 160-300: The display and checking cycle begins upon user response to the continuation prompt. Variables used to accumulate wordchecking data are set to zero to prevent errors if the program is repeated. A FOR-NEXT loop is used for the display cycle, since storage beginning address BE and ending address MS were established during the input cycle.

The stored ASCII data is PEEKed from each memory address, converted to a string, and temporarily stored in string variable \(\mathrm{C} \$\) for display. \(\mathrm{C} \$\) now represents the keyboard character entered during the input cycle. The individual characters are counted and the count is stored in C. L is used to count characters for line display formatting.

Word-checking functions are performed by IF statements. These lines check for the space character that denotes a word end, or punctuation indicating a sentence end. A space increments the word count, W. A sentence end increments the sentence count stored in S and decreases the character count by one. The decrease prevents the punctuation from being counted as a word character. If the character count in C is equal to or greater than 9 , and a space indicates a word, then long word counter LW is incremented. The character counter is returned to zero value whenever a space or sentence end is encountered.

\section*{Screen Formatting}

Line 220 formats the text to reduce word wraparound.

Lines 320-400: The text analysis is performed in this portion of the program. The reading index is computed in line 320. Text data accumulated during the word-check cycle are displayed, followed by the reading index (ID). The rounding function is performed by the FNA(ID) formula which was established at the beginning of the program.

Lines 410-480: The remaining lines contain the user prompts. Conventional INPUT statements are used to keep the program short. END is used between the REPEAT prompt and the continuation GOSUB to prevent an error message when exiting the program. Line 470 prints the word input count and returns control to the continuation prompt of line 150.

\section*{Word Wizard}

Refer to the "Automatic Proofreader" article before typing this program in.
```

5 REM... * WORD CHECK *
1\varnothing DEF FNA(B)=INT(B* 1\varnothing\varnothing+.5)/1\varnothing\emptyset
2\emptyset MS=53ø\varnothing: BE=MS
3\emptyset C=\varnothing:L=\varnothing:LW=\varnothing:S=\varnothing:W=\varnothing:WC=\varnothing
35 REM...INPUT CYCLE
5\emptyset PRINT"{CLR}E7`BEGIN INPUT
:rem 145
:rem 92
:rem 165
:rem 137
:rem 2l4
:PRINT
6\emptyset GETA\$:IFAS=""THEN 60
:rem 169
:rem 239

```
\(7 \emptyset\) IFA \(=\) CHR ( 157 )THEN PRINTA\$; :MS=MS-1:GO
TO6Ø :rem 2 Ø9
\(8 \emptyset\) PRINT AS; :rem 149
\(9 \emptyset \mathrm{C}=\mathrm{ASC}(\mathrm{A}\) ) :rem 118
1øø POKE MS,C
:rem \(2 ø 7\)
\(11 \varnothing\) IFAS=" "THEN WC=WC+1 :rem 3
\(12 \emptyset\) IFWC \(\Rightarrow 125\) THEN 47Ø :rem l53
\(13 \varnothing\) IFAS=CHRS (13)THEN \(15 \emptyset\) :rem 64
\(14 \emptyset\) MS=MS+1: GOTO 60 :rem 71
150 GOSUB 440 :rem 174
155 REM...DISPLAY CYCLE :rem 143
\(16 \varnothing \mathrm{C}=\varnothing\) : \(\mathrm{L}=\varnothing: \mathrm{LW}=\varnothing: \mathrm{S}=\varnothing: \mathrm{W}=1 \quad\) :rem 125
170 PRINT"\{CLR\}" :rem 252
\(18 \emptyset\) FOR T=BE TO MS :rem 219
190 P=PEEK (T) :rem 241
\(2 \emptyset \emptyset \mathrm{C} \$=\mathrm{CHR}(\mathrm{P}) \quad\) :rem 216
\(210 \mathrm{C}=\mathrm{C}+1: \mathrm{L}=\mathrm{L}+1\) :rem 29
\(22 \emptyset\) IFC \(\$=\) " "AND L=>15THEN GOSUB \(46 \emptyset\)
:rem 84
230 PRINTC\$; :rem 196
240 IFC \(=\) =" "THEN W=W+1:C=C-1 :rem 222
250 IFC \(\$=\) ". "ORC \(\$=\) "! "ORC \(\$=\) "?"ORC \(=\) =": "ORC \(\$=\)
";"THEN \(S=S+1: C=C-1: C \$="\) " \(\quad\) rem 32
260 IFC \(=\) =" "ANDC=>9 THEN LW=LW+1 :rem 231
\(27 \varnothing\) IFC \(\$=\) " "THEN C= \(\quad\) :rem 239
\(28 \varnothing\) IFC \(\$=C H R \$(13)\) THEN \(31 \varnothing\) :rem \(7 \varnothing\)
\(29 \varnothing\) NEXT :rem 218
\(3 \varnothing \varnothing\) PRINT :rem 32
\(31 \varnothing\) GOSUB \(44 \varnothing \quad\) :rem 172
315 REM...* ANALYSIS * :rem 191
\(32 \emptyset\) ID \(=.4^{*}(\mathrm{~W} / \mathrm{S}+\mathrm{LW}\) * \(1 \varnothing \emptyset / \mathrm{W}) \quad\) :rem 36
330 PRINT"\{CLR\}" :rem \(25 \emptyset\)
\(34 \varnothing\) PRINTSPC(4)"** ANALYSIS **":PRINT
:rem 166
350 PRINT"WORDS \(\{2\) SPACES \(\}=" ; W\) : rem 199
360 PRINT"SENTENCES\{2 SPACES\}="; S: rem 221
\(37 \emptyset\) PRINT"AVG.WD/SENT ="; INT(W/S) : rem 8
380 PRINT"LONG WORDS \(\{2\) SPACES \(\}=\) "; LW
:rem 70
:rem 41

\(41 \varnothing\) PRINT:INPUT"REPEAT (Y/N)"; Z\$ :rem 209
415 IFZ \(\leqslant<\) "N"ANDZ \(\langle<\) "Y"THEN41ø :rem 223
420 IFZ\$="Y"GOTO \(2 \varnothing\) :rem 24
\(43 \varnothing\) PRINT"\{BLU\}\{CLR\}": END :rem 43
440 INPUT"PRESS <RETURN>"; Z :rem 232
\(45 \emptyset\) RETURN :rem 121
\(46 \emptyset\) PRINTC\$;CHRS (13):L=Ø:RETURN :rem \(14 \emptyset\)
\(47 \varnothing\) PRINT: PRINT"WORDS INPUT="; WC :rem løø
480 GOTO15ø :rem \(1 \varnothing 7\)

WE WILL NOT BE UNDERSOLDI Call Free (800)235-4137
for prices and information. Dealer inquines invited and C.O.D.'s accepted

\section*{PACIFIC}

EXCHANGES
100 Foothill Blud
San Luis Obispo. CA
93401 . In Cal. call (800) 592-5935 or (805) 543-1037

\title{
The Automatic Proofreader For VIC, 64, And Atari
}

\author{
Charles Brannon, Program Editor
}

\begin{abstract}
At last there's a way for your computer to help you check your typing. "The Automatic Proofreader" will make entering programs faster, easier, and more accurate.
\end{abstract}

The strong point of computers is that they excel at tedious, exacting tasks. So why not get your computer to check your typing for you?

With "The Automatic Proofreader" nestled in your VIC-20, Commodore 64, or Atari computer, every line you type in will be verified. It displays a special code, called a checksum, at the top of the screen. The checksum, either a number (VIC/64) or a pair of letters. (Atari), corresponds to the line you've just typed. It represents every character in the line summed together. A matching code in the program listing lets you compare it to the checksum which the Proofreader displays. A glance is all it takes to confirm that you've typed the line correctly.

\section*{Entering The Automatic Proofreader}

Commodore (VIC/64) owners should type in Program 1. Program 2 is for Atari users. Since the Proofreader is a machine language program, be especially diligent. Watch out for typing extra commas, or a letter O for a zero, and check every number carefully. If you make a mistake when typing in the DATA statements, you'll get the message "Error in DATA statements" when you RUN the program. Check your typing and try again.

When you've typed in The Automatic Proofreader, SAVE it to tape or disk at least twice before running it for the first time. If you mistype the Proofreader, it may cause a system crash when you first run it. By SAVEing a copy beforehand, you can reLOAD it and hunt for your error. Also, you'll want a backup copy of the Proofreader because you'll use it again and againevery time you enter a program from COMPUTE!.

When you RUN the Proofreader, the program will be POKEd safely into memory, then it will activate itself. If you ever need to reactivate it (RUN/STOP-RESTORE or SYSTEM RESET will disable it), just enter the command SYS 886 (VIC/64) or PRINT USR(1536) for the Atari.

\section*{Using The Proofreader}

Now, let's see how it works. LIST the Proofreader program, move the cursor up to one of the lines, and press RETURN. If you've entered the Proofreader correctly, a checksum will appear in the top-left corner of your screen.

Try making a change in the line and hit RETURN. Notice that the checksum has changed. All VIC and 64 listings in COMPUTE! now have a number appended to the end of each line, for example, :rem 123. Don't
enter this statement. It is just for your information. The rem is used to make the number harmless if someone does type it in. It will, however, use up memory if you enter it, and it will cause the checksum displayed at the top of the screen to be different, even if you entered the rest of the line correctly.

The Atari checksum is found immediately to the left of each line number. This makes it impossible to type in the checksum accidentally, since a program line must start with a number.

Just type in each line (without the printed checksum), and check the checksum displayed at the top of the screen against the checksum in the listing. If they match, go on to the next line. If they don't, there's a mistake. You can correct the line immediately, instead of waiting to find the error when you RUN the program.

The Proofreader is not picky with spaces. It will not notice extra spaces or missing ones. This is for your convenience, since spacing is generally not important. Occasionally proper spacing is important, but the article describing the program will warn you to be careful in these cases.

\section*{Nobody's Perfect}

Although the Proofreader is an important aid, there are a few things to watch out for. If you enter a line by using abbreviations for commands, the checksum will not match up. This is because the Proofreader is very literal: It looks at the individual letters in a line, not at tokens such as PRINT. There is a way to make the Proofreader check such a line. After entering the line, LIST it. This makes the computer spell out the abbreviations. Then move the cursor up to the line and press RETURN. It should now match the checksum. You can check whole groups of lines this way. Atari users should beware of using ? as an abbreviation for PRINTthey're not the same thing in the Proofreader's eyes.

The checksum is a sum of the ASCII values of the characters in a line. VIC and 64 owners may wonder why the numbers are so small, never exceeding 255. This is because the addition is done only in eight bits. A result over 255 will roll over past zero, like an odometer past 99999. On the Atari, the number is turned into two letters, both for increased convenience and to make the Proofreader shorter. For the curious, the letters correspond to the values of the left and right nybbles added to 33 (to offset them into the alphabet). This number is then stored directly into screen memory.

Due to the nature of a checksum, the Proofreader will not catch all errors. Since \(1+3+5=3+1+5\), the Proofreader cannot catch errors of transposition. In fact, you could type in the line in any order, and the Proofreader wouldn't notice. Anytime the Proofreader
seems to act strange，keep this in mind．Since the ASCII values of the number \(18(49+56)\) and \(63(54+51)\) both equal 105 ，these numbers are equal according to the Proofreader．There really is no simple way to catch these kinds of errors．Fortunately，the Proofreader will catch the majority of the typing mistakes most people make．

If you want the Proofreader out of your way，just press SYSTEM RESET or RUN／STOP－RESTORE．If you need it again，enter SYS 828 （VIC／64）or PRINT USR（1536）（Atari）．You must disable the Proofreader before doing any tape operations on the VIC or 64.

\section*{Hidden Perils}

The Proofreader＇s home in the VIC and 64 is not a very safe haven．Since the cassette buffer is wiped out during tape operations，you need to disable the Proofreader with RUN／STOP－RESTORE before you SAVE your program．This applies only to tape use．Disk users or Atari owners have nothing to worry about．

Not so for VIC and 64 owners with tape drives． What if you type in a program in several sittings？The next day，you come to your computer，LOAD and RUN the Proofreader，then try to LOAD the partially completed program so you can add to it．But since the Proofreader is trying to hide in the cassette buffer，it is wiped out！

What you need is a way to LOAD the Proofreader after you＇ve LOADed the partial program．The problem is，a tape load to the buffer destroys what it＇s supposed to load．

After you＇ve typed in and RUN the Proofreader， enter the following lines in direct mode（without line numbers）exactly as shown：

A \(=\)＝＂PROOFREADER．T＂：\(B \$="\{1 \varnothing\) SPACES \(\} ": ~ F O R\) \(\mathrm{X}=1 \mathrm{TO} 4: \mathrm{A}=\mathrm{A} \$+\mathrm{B}\) ： NEXTX

FOR \(X=886\) TO 1ø18：A\＄＝A\＄＋CHR\＄（PEEK \((X)):\) NEXTX
OPEN 1，1，1，A\＄：CLOSE1
After you enter the last line，you will be asked to press record and play on your cassette recorder．Put this program at the beginning of a new tape．This gives you a new way to load the Proofreader．Anytime you want to bring the Proofreader into memory without disturbing anything else，put the cassette in the tape drive，rewind，and enter：

\section*{OPEN1：CLOSE1}

You can now start the Proofreader by typing SYS 886．To test this，PRINT PEEK（886）should return the number 173．If it does not，repeat the steps above， making sure that A\＄（＂PROOFREADER．T＂）contains 13 characters and that \(\mathrm{B} \$\) contains 10 spaces．

You can now reload the Proofreader into memory whenever LOAD or SAVE destroys it，restoring your personal typing helper．

Incidentally，you can protect the cassette buffer on the Commodore 64 with POKE 178，165．This POKE should work on the VIC，but it has caused numerous problems，probably due to a bug in the VIC operating system．With this POKE，the 64 will not wipe out the cassette buffer during tape LOADs and SAVEs．

\section*{Program 1：vic／64 Proofreader}

1øø PRINT＂\｛CLR\}PLEASE WAIT...":FORI=886TO 1Ø18：READA：CK＝CK＋A：POKEI，A：NEXT
\(11 \varnothing\) IF CK＜＞17539 THEN PRINT＂\｛DOWN\}YOU MAD E AN ERROR＂：PRINT＂IN DATA STATEMENTS． ＂：END
\(12 \varnothing\) SYS886：PRINT＂\｛CLR\}\{2 DOWN \}PROOFREADER ACTIVATED．＂：NEW
886 DATA \(173, \emptyset 36, \varnothing \emptyset 3,2 \emptyset 1,150,2 \emptyset 8\)
892 DATA Øø1，Ø96，141，151，øØ3，173
898 DATA Ø37，øø3，141，152，øø3，169
\(9 \varnothing 4\) DATA 150，141，Ø36，øø3，169，øø3
\(91 \varnothing\) DATA 141，Ø37，øø3，169，øøø，133
916 DATA 254，Ø96，ø32，ø87，241，133
922 DATA 251，134，252，132，253，ØØ8
928 DATA 2ø1，ø13，24ø，ø17，2ø1，ø32
934 DATA 24ø，øø5，Ø24，1Ø1，254，133
940 DATA \(254,165,251,166,252,164\)
946 DATA 253，ø4ø，ø96，169，ø13，ø32
952 DATA 210，255，165，214，141，251
958 DATA Øø3，2ø6，251，øø3，169，øøø
964 DATA \(133,216,169, \varnothing 19,032,21 \varnothing\)
97ø DATA 255，169，ø18，ø32，21ø，255
976 DATA 169，ø58，ø32，21ø，255，166
982 DATA 254，169，øøø，133，254，172
988 DATA 151，øø3，192，ø87，2ø8，øø6
994 DATA Ø32，2ø5，189，Ø76，235，øø3
1øøø DATA \(\varnothing 32,2 \emptyset 5,221,169, \varnothing 32, \varnothing 32\)
\(1 \varnothing \emptyset 6\) DATA \(21 \varnothing, 255, \varnothing 32,21 \varnothing, 255,173\)
1012 DATA 251，øø3，133，214，076，173
\(1 \varnothing 18\) DATA Øø3

\section*{Program 2：Atari Proofreader}
\(10 \varnothing\) GRAPHICS \(\emptyset\)
11 FOR I＝1536 TO \(17 め \wp:\) READ A：POKE I ，\(A: C K=C K+A: N E X T\) I
120 IF CKく＞19め72 THEN ？＂Error in DA TA statements．Check typing＂：END
\(136 A=\) USR（ 1536 ）
140 ？：？＂Automatic Proofreader now activated．＂
150 END
1536 DATA \(104,160,0,185,26,3\)
1542 DATA \(201,69,249,7,200,20 め\)
1548 DATA \(192,34,208,243,96,200\)
1554 DATA \(169,74,153,26,3,26 \varnothing\)
1560 DATA \(169,6,153,26,3,162\)
1566 DATA \(0,189,6,228,157,74\)
1572 DATA \(6,232,224,16,298,245\)
1578 DATA \(169,93,141,78,6,169\)
1584 DATA \(6,141,79,6,24,173\)
1590 DATA 4，228，165，1，141，95
1596 DATA \(6,173,5,228,165\) ， 1
1602 DATA \(141,96,6,169,0,133\)
1698 DATA 203，96，247，238，125，241
1614 DATA \(93,6,244,241,115,241\)
1620 DATA \(124,241,76,205,239\) ， 0
1626 DATA \(9, \varnothing, \varnothing, \varnothing, 32,62\)
1632 DATA \(246,8,201,155,240,13\)
1638 DATA \(2 \varnothing 1,32,240,7,72,24\)
1644 DATA \(1 \varnothing 1,2 \emptyset 3,133,203,104,40\)
1650 DATA \(96,72,152,72,138,72\)
1656 DATA \(160,9,169,128,145,88\)
1662 DATA \(290,192,49,208,249,165\)
1668 DATA 203，74，74，74，74， 24
1674 DATA \(105,161,160,3,145,88\)
1680 DATA \(165,203,41,15,24,105\)
1686 DATA \(161,200,145,88,169,0\)
1692 DATA \(133,203,104,170,194,168\)
1698 DATA \(104,40,96\)

\section*{Atari Super Directory}

The character which appears as a grave（＇）in lines 5010 and 5020 of this program from the April issue （p．176）should actually be \｛．\}, CTRL-period. You may find it easier to replace these lines with the lines below，which build \(\mathrm{M} \$\) from DATA statements．
```

OM5\emptyset\emptyset\emptyset DIM M$(4\emptyset)=RESTORE 5\emptyset4\emptyset
NJ 5ø1\emptyset FOR I=1 TO 4\emptyset:READ A:M$(I)=C
HR\$(A):NEXT I
KI 5@S\emptyset RETURN
F65\emptyset4\emptyset DATA 1\emptyset4,2\emptyset1,2,24@,9,17\emptyset,24\emptyset
,5,1\emptyset4,104,202,208,251,96,1\emptyset
4,133,2\emptyset4,1ø4,13ड, 2\emptyset3,1\emptyset4
IK 5\emptyset5\emptyset DATA 104,133,2\emptyset5,160,\emptyset,177,2
Ø3,9,128,145,203,20\emptyset,196,205
,208,245,96,6,\emptyset

```

\section*{Roader For Atari And Color Computer}

The Atari version of this game from the March issue（p．66）may stop with an ERROR 141 mes－ sage．To prevent this，Edward Rybczyk suggests the following corrections：
\(38 \emptyset\) IF \(A=43\) THEN CLR：RUN
390 POKE 764，255̣：END
The Color Computer version requires Ex－ tended BASIC to run as published．Ron Crail suggests changes to allow the program to run in standard Color BASIC：Change the value of XLOC to 304 in line 220 and to 308 in line 230，and change COS to SIN in lines 260 and 310．Also，adding the line \(245 \mathrm{~N} \$=\)＂ X ＂will prevent an OS error．

\section*{VIC Barrier Battle}

A testing loop was inadvertently left in line 200 of this game program from the March issue（p．84）． Troy Pibus points out that the line should read：
2 Øø \(\mathrm{DD}=37154: \mathrm{Pl}=37151: \mathrm{P} 2=37152\)

\section*{64 MLX And Trident}

There is an error in the version of the＂MLX＂ machine language editor from the March issue（ \(p\) ． 182）．In line \(765, \mathrm{~K}=\mathrm{S}+1\) should be replaced with \(\mathrm{K}=\mathrm{S}\) ．This error will prevent the＂Trident＂game （p．100），published in MLX format，from working properly．Fortunately，the problem is quite easy to fix．First，load and correct MLX and save the corrected version．Then run MLX and use the MLX Load option to load in Trident．Use the start－ ing and ending addresses given in the Trident
article．Retype the first line of Trident（49152）， then use the MLX Save option to create a new copy of the game，which should now work prop－ erly．

\section*{Atari Trident}

Reader Jim Davis suggests the following improve－ ment to this game from the March issue（p．94）：
```

1ø5 Z=USR(ADR(MS),M,M+1,128):FOR I=15 TO
\emptyset STEP -\emptyset.\emptyset8:SOUND Ø,1\varnothing,8,I:NEXT I:Z
=USR(ADR(AS),48+C,1,144,51)

```

This adds an explosion sound when an incoming missile is destroyed．

\section*{Commodore Floating Subroutines}

Programs 1，2，and 3 for this article from the March issue（ \(p\) ．164）will print a range of hex address values which is one greater than the correct range， as shown in decimal．To correct this，Paul Mon－ tognese suggests changing the \(\mathrm{H}=\mathrm{C}\) in line 63994 to \(\mathrm{H}=\mathrm{C}-1\) ．

\section*{Chopperoids}

Some readers tried to create a binary file（MLX option F）for this Atari machine language program （December 1983，p．122）．As stated in the article， ＂Chopperoids＂must be put on a boot disk or boot tape．If you made a binary file，follow these steps to create a boot disk from your work：

1．Load the MLX program and make the fol－ lowing temporary changes：
```

75@ IF NOT READ THEN 1@4@
85め TRAP 4@めめ@:CLOSE \#2:? "Finished.
":LET FEAD=Q: BUFFER\$ (FIN-BEG+31)
=CHRक(@) : BUFFER$(उ1)= BUFFEFक(61)
 :GOTO 36@
1@めめ H=INT(ADR(EUFFERक)/256):L=ADR(E
 UFFER($) -H*25S:L=L+36:FOKE ICEAD
R+X,L: POKE ICBADR +X + 1,H

```

2．Run the modified MLX and use the ad－ dresses given in the original article．Specify the boot disk option．

3．Use the MLX Load command to load your binary file．All the data will be moved up five lines，as described in the February＂CAPUTE！＂ corrections．

4．Use the MLX New Address command to begin typing at line 6092 and enter the additional lines from February＂CAPUTE！＂（p．181）．Insert a new disk in the drive and use the MLX Save option to create a boot disk with the corrected data．

COMPUTE！ The Resource．

\title{
W Machine Language Entry Program For Commodore 64 charese Bicmmon frocram Eutior
}

\begin{abstract}
MLX is a labor-saving utility that allows almost fail-safe entry of machine language programs published in COMPUTE!. You need to know nothing about machine language to use MLX-it was designed for everyone.
\end{abstract}

MLX is a new way to enter long machine language (ML) programs with a minimum of fuss. MLX lets you enter the numbers from a special list that looks similar to BASIC DATA statements. It checks your typing on a line-by-line basis. It won't let you enter illegal characters when you should be typing numbers. It won't let you enter numbers greater than 255 (forbidden in ML). It won't let you enter the wrong numbers on the wrong line. In addition, MLX creates a ready-to-use tape or disk file. You can then use the LOAD command to read the program into the computer:
\[
\begin{array}{ll}
\text { LOAD "filename" } 1,1 & \text { (for tape) } \\
\text { LOAD "filename", } 8,1 & \text { (for disk) }
\end{array}
\]

To start the program, you enter a SYS command that transfers control from BASIC to machine language. The starting SYS number appears in the article.

\section*{Using MLX}

Type in and save MLX for your 64 (you'll want to use it in the future). When you're ready to type in an ML program, run MLX. MLX asks you for two numbers: the starting address and the ending address. These numbers are given in the article accompanying the ML program.

You'll see a prompt corresponding to the starting address. The prompt is the current line you are entering from the listing. It increases by six each time you enter a line. That's because each line has seven numbers-six actual data numbers plus a checksum number. The checksum verifies that you typed the previous six numbers correctly. If you enter any of the six numbers wrong, or enter the checksum wrong, the computer rings a buzzer and prompts you to reenter the line. If you enter it correctly, a bell tone sounds and you continue to the next line.

MLX accepts only numbers as input. If you make a typing error, press the INST/DEL key; the entire number is deleted. You can press it as many times as necessary back to the start of the line. If you enter three-digit numbers as listed, the computer automatically prints the comma and goes on to accept the next number. If you enter less than three digits, you can press either the comma, SPACE bar, or RETURN key to advance to the next number. The checksum automatically appears in inverse video for emphasis.

To simplify your typing, MLX redefines part of the keyboard as a numeric keypad (lines 581-584):


\section*{MLX Commands}

When you finish typing an ML listing (assuming you type it all in one session), you can then save the completed program on tape or disk. Follow the screen instructions. If you get any errors while saving, you probably have a bad disk, or the disk is full, or you've made a typo when entering the MLX program itself.

You don't have to enter the whole ML program in one sitting. MLX lets you enter as much as you want, save it, and then reload the file from tape or disk later. MLX recognizes these commands:

\section*{SHIFT-S: Save SHIFT-L: Load SHIFT-N: New Address SHIFT-D: Display}

When you enter a command, MLX jumps out of the line you've been typing, so we recommend you do it at a new prompt. Use the Save command to save what you've been working on. It will save on tape or disk as if you've finished, but the tape or disk won't work, of course, until you finish the typing. Remember what address you stop at. The next time you run MLX, answer all the prompts as you did before, then insert the disk or tape. When you get to the entry prompt, press SHIFT-L to reload the partly completed file into memory. Then use the New Address command to resume typing.

To use the New Address command, press SHIFT-N and enter the address where you previously stopped. The prompt will change, and you can then continue typing. Always enter a New Address that matches up with one of the line numbers in the special listing, or else the checksum won't work. The Display command lets you display a section of your typing. After you press SHIFT-D, enter two addresses within the line number range of the listing. You can abort the listing by pressing any key.

What if you forgot where you stopped typing? Use the Display command to scan memory from the beginning to the end of the program. When you reach the end of your typing, the lines will contain a random pattern of numbers. When you see the end of your typing, press any key to stop the listing. Use the New Address command to continue typing from the proper location.

\section*{MLX: Machine Language Entry}

10 REM LINES CHANGED FROM MLX VERSION 2.0 \(\emptyset\) ARE \(750,765,77 \varnothing\) AND 860 :rem 50
\(1 \emptyset \emptyset\) PRINT"\{CLR\}E6习"; CHR \(\$(142)\); CHRS ( 8 ) ; : POKE53281,1:POKE53280,1 :rem 67
\(1 \varnothing 1\) POKE \(788,52:\) REM DISABLE RUN/STOP


E＊ \(\operatorname{\exists }\{\mathrm{OFF}\} \underline{E} * \notin\{\mathrm{RVS}\} £\{\mathrm{RVS}\}\)
\(\{14\) SPACES \(\}\)＂；：rem 250
\(13 \varnothing\) PRINT＂\(\{\) RVS \(\}\{14\) SPACES \(\}\{R I G H T\}\) EGB \｛RIGHT\} \{2 RIGHT\} \{OFF\}£\{RVS\}£E* \｛OFF\}E*习\{RVS\}\{14 SPACES\}"; - rem 35
\(14 \varnothing\) PRINT＂\｛RVS\}\{41 SPACES\}" :rem \(12 \emptyset\)
\(2 \emptyset \varnothing\) PRINT＂\(\{2\) DOWN \}\{PUR\}\{BLK\} MACHINE LANG UAGE EDITOR VERSION \(2 . \emptyset 1\{5\) DOWN\}"
：rem 237
\(21 \varnothing\) PRINT＂ \(\mathbb{K} 5 习\{2\) UP \(\}\) STARTING ADDRESS？ \｛8 SPACES\}\{9 LEFT\}"; :rem 143
215 INPUTS： \(\mathrm{F}=1-\mathrm{F}: \mathrm{C} \$=\operatorname{CHR} \$(31+119 * \mathrm{~F})\)
：rem 166
220 IFS＜ 2560 R（ \(S>4 \emptyset 960\) ANDS \(<49152\) ）ORS \(>53247\) THENGOSUB3øøø：GOTO21 \(\quad\) ：rem 235
225 PRINT：PRINT：PRINT．：rem \(18 \varnothing\)

\｛8 SPACES \(\}\) \｛ 9 LEFT \(\}^{\prime \prime} ;:\) INPUTE \(: F=1-F: C \$=\) CHRS（ \(31+119 *\) F）：rem \(2 \emptyset\)
\(24 \varnothing\) IFE＜2560R（E＞4ø960ANDE＜49152）ORE＞53247 THENGOSUB3øøø：GOTO23 \(\quad\) ：rem 183
250 IFE＜STHENPRINTCS；＂\｛RVS \}ENDING < START \(\left\{2\right.\) SPACES \({ }^{\prime \prime}\) ：GOSUBIøøø：GOTO \(23 \varnothing\)
：rem 176
260 PRINT：PRINT：PRINT ：rem 179
\(3 \varnothing \varnothing\) PRINT＂\｛CLR\}"; CHR\$(14):AD=S:POKEV+21, \(\varnothing\) ：rem 225
\(31 \varnothing \mathrm{~A}=1:\) PRINTRIGHT\＄（＂øøø日＂+MID （STRS（AD）， 2），5）；＂：＂；：rem 33
315 FORJ＝ATO6 ：rem 33
\(32 \varnothing\) GOSUB \(57 \varnothing:\) IFN \(=-1\) THENJ \(=J+N\) ：GOTO \(32 \varnothing\)
：rem 228
390 IFN \(=-211\) THEN \(710 \quad\) ：rem 62
\(40 \varnothing\) IFN \(=-2 \varnothing 4\) THEN \(79 \varnothing \quad\) ：rem 64
\(41 \varnothing\) IFN \(=-2 \varnothing 6\) THENPRINT ：INPUT＂\(\{D O W N\}\) ENTER N EW ADDRESS＂；ZZ
：rem \(4 \overline{4}\)
415 IFN \(=-206\) THENIFZZ＜SORZZ＞ETHENPRINT＂ \｛RVS\}OUT OF RANGE": GOSUBIøøø:GOTO41ø
：rem 225
417 IFN \(=-2 \varnothing 6\) THENAD \(=\mathrm{ZZ}:\) PRINT：GOTO \(31 \varnothing\)
：rem 238
420 IF \(\mathrm{N}<>-196\) THEN \(480 \quad\) ：rem 133
430 PRINT：INPUT＂DISPLAY：FROM＂；F：PRINT，＂TO ＂；：INPUTT－：rem \(2 \overline{3} 4\)
\(44 \varnothing\) IFF＜SORF＞EORT＜SORT＞ETHENPRINT＂AT LEAS T＂； \(\mathrm{S}^{\prime \prime}\) \｛LEFT\}, NOT MORE THAN";E:GOTO43 \(\emptyset\)
：rem 159
450 FORI＝FTOTSTEP6：PRINT：PRINTRIGHT\＄（＂øøø \(\left.\emptyset^{\prime \prime}+\operatorname{MIDS}(\operatorname{STR}(I), 2), 5\right) ; ": " ; \quad\) rem \(3 \varnothing\)
451 FORK＝øTO5：N＝PEEK（I＋K）：PRINTRIGHT\＄（＂øø ＂＋MIDS（STRS（N），2），3）；＂，＂；：rem 66
460 GETAS：IFAS＞＂＂THENPRINT：PRINT：GOTO31ø
：rem 25
\(47 \varnothing\) NEXTK：PRINTCHR \((2 \emptyset)\) ；：NEXTI：PRINT：PRIN T ：GOTO \(31 \varnothing\)
：rem 50
\(48 \varnothing\) IFN \(<\varnothing\) THEN PRINT ：GOTO \(31 \varnothing\) ：rem 168
\(490 \mathrm{~A}(\mathrm{~J})=\mathrm{N}:\) NEXTJ \(\quad\) rem 199
\(5 \emptyset\) CKSUM \(=A D-\operatorname{INT}(A D / 256) * 256: F O R I=1 T O 6: C K\) SUM \(=(\) CKSUM + A（I））AND 255 ：NEXT ：rem \(2 \varnothing 0\)
\(51 \varnothing\) PRINTCHR\＄（18）；：GOSUB57Ø：PRINTCHR\＄（146 ）；：rem 94
511 IFN \(=-1\) THENA \(=6\) ：GOTO315 ：rem 254
515 PRINTCHR \((2 \varnothing)\) ：IFN＝CKSUMTHEN \(53 \varnothing\)
：rem 122
\(52 \varnothing\) PRINT：PRINT＂ LINE ENTERED WRONG ：RE－E NTER＂：PRINT： \(\bar{G} O S U B \overline{1} \varnothing \varnothing \varnothing: G O T \bar{O} 31 \varnothing:\) rem \(^{-1} 176\)
530 GOSUB2øøø
：rem 218
540 FORI \(=1\) TO6：POKEAD \(+I-1\), A（I）：NEXT ：POKE54 272，\(\varnothing\) ：POKE54273，\(\varnothing\)
：rem 227
\(550 \mathrm{AD}=\mathrm{AD}+6: I F \mathrm{AD}<\mathrm{E}\) THEN \(31 \varnothing\) ：rem 212
560 GOTO 710
：rem \(1 ø 8\)
\(57 \varnothing \mathrm{~N}=\varnothing: \mathrm{Z}=\varnothing\)

580 PRINT＂区£习＂；
：rem 81
581 GETAS：IFAS＝＂＂THEN581 ：rem 95
\(582 \mathrm{AV}=-\left(\mathrm{A} S=" \mathrm{M}^{\prime \prime}\right)-2 *(\mathrm{~A} \$=", ")-3 *(\mathrm{~A} \$=" \cdot ")-4 *\) （ \(\mathrm{A} S=\)＂J＂）\(-5^{*}\left(A S=" K^{\prime \prime}\right)-6^{*}(A \$=" L "):\) rem 41
\(583 \mathrm{AV}=\mathrm{AV}-7^{*}(\mathrm{~A}=" \mathrm{U} ")-8^{*}(\mathrm{~A} \$=" I ")-9 *(\mathrm{~A} \$=" \mathrm{O} "\) ）：IFAS＝＂H＂THENAS＝＂ ＂\(^{\text {I }}\) ：rem 134
584 IFAV \(>\) ØTHENAS \(=\) CHR \(\$(48+A V)\) ：rem 134
585 PRINTCHR \((2 \emptyset) ;: A=A S C(A \$): I F A=130 R A=44\) ORA \(=32\) THEN \(67 \varnothing\)
：rem 229
590 IFA \(>128\) THENN \(=-\) A ：RETURN
：rem 137
\(6 \varnothing\) IFA \(\langle>2 \varnothing\) THEN \(63 \varnothing\) ：rem 10
610 GOSUB69ø：IFI＝1ANDT＝44THENN＝－1：PRINT＂
\｛OFF \} \{LEFT\} \{LEFT\}";:GOTO690 :rem 62
620 GOTO57ø
：rem 109
630 IFA \(<480 \mathrm{RA}>57\) THEN58 0 ：rem 105
\(64 \emptyset\) PRINTAS；：\(N=N * 1 \emptyset+A-48 \quad\) ：rem \(1 \varnothing 6\)
\(65 \emptyset\) IFN \(>255\) THEN A＝2ø：GOSUB1 Øøø：GOTO6øø
：rem 229
\(66 \varnothing \mathrm{Z}=\mathrm{Z}+1\) ：IFZ＜3THEN5 \(8 \varnothing\) ：rem 71
\(67 \varnothing\) IFZ＝øTHENGOSUB1 \(\varnothing \varnothing \varnothing: G O T O 57 \varnothing\) ：rem 114
680 PRINT＂，＂；：RETURN ：rem 240
\(69 \varnothing \operatorname{S\% }=\operatorname{PEEK}(2 \varnothing 9)+256 * \operatorname{PEEK}(21 \varnothing)+\operatorname{PEEK}(211)\)
：rem 149
691 FORI \(=1\) TO3：T＝PEEK（S\％－I）：rem 67
695 IFT \ll 44ANDT＜＞58THENPOKES\％－I， 32 ：NEXT
：rem 205
\(7 \emptyset \emptyset\) PRINTLEFT\＄（＂\｛3 LEFT\}",I-1);:RETURN
：rem 7
\(71 \varnothing\) PRINT＂\｛CLR\}\{RVS\}*** SAVE ***\{3 DOWN \}" ：rem 236
715 PRINT＂\｛2 DOWN\} (PRESS \{RVS\}RETURN\{OFF\} ALONE TO CANCEL SAVE）\｛DOWN\}": rem \(1 \varnothing 6\)
\(72 \varnothing\) FS＝＂＂：INPUT＂\｛DOWN\} FILENAME";FS:IFFS= ＂＂THENPRINT：PRINT：GŌTO31ø ：rem 71
730 PRINT：PRINT＂\(\{2\) DOWN \(\}\) \｛RVS \}T\{OFF\}APE OR \｛RVS\}D\{OFF\} ISK: (T/D)" - rem 228
\(74 \emptyset\) GETAS：IFAS＜＞＂T＂ANDASइ＜＞＂D＂THEN74 4
：rem 36
\(75 \emptyset \mathrm{DV}=1-7\)＊\((\mathrm{A} \$=" \mathrm{D} "):\) IFDV＝8THENF \(\$=" \emptyset:\)＂\(+\mathrm{F} \$\) ： OPEN15，8，15，＂S＂＋FS：CLOSE15：rem 212
\(760 \mathrm{~T} \$=\mathrm{F} \$: \mathrm{ZK}=\operatorname{PEEK}(53)+256 * \operatorname{PEEK}(54)-\operatorname{LEN}\)（ T \＄ ）：POKE782，ZK／256
：rem 3
762 POKE 781 ，ZK－PEEK（ 782 ）＊256：POKE78 0 ，LEN（ T§）：SYS65469
：rem \(1 \varnothing 9\)
763 POKE78 1 ，1：POKE781，DV ：POKE782，1：SYS654 66 ：rem 69
\(765 \mathrm{~K}=\mathrm{S}\) ：POKE 254 ，K／256：POKE253，K－PEEK（254） ＊256：POKE780， 253 ：rem 17
\(766 \mathrm{~K}=\mathrm{E}+1\) ：POKE 782 ，K／256：POKE781，K－PEEK（ 78 2）＊ 256 ：SYS65496
：rem 235
\(77 \varnothing \operatorname{IF}\)（ \(\operatorname{PEEK}(783\) ）AND 1）OR（ 191 ANDST）THEN78 8
：rem 111
775 PRINT＂\(\{\) DOWN\} DONE . \{DOWN \}": GOTO31 \(\varnothing\)
：rem 113
\(78 \emptyset\) PRINT＂\｛DOWN\}ERROR ON SAVE. \(\{2\) SPACES \(\}\) T RY AGAIN．＂：IFDV＝1THEN72 20 ：rem \(17 \overline{1}\)
781 OPEN \(15,8,15\) ：INPUT\＃15，E1\＄，E2\＄：PRINTE1\＄ ；E2S：CLOSE15：GOTO72ø ：rem \(1 \varnothing 3\) 790 PRINT＂\｛CLR\}\{RVS\}*** LOAD ***\{2 DOWN \}" ：rem 212
795 PRINT＂\｛2 DOWN \} (PRESS \{RVS \}RETURN\{OFF \} ALONE TO CANCEL LOAD）＂：rem 82
 \(\$="\)＂THENPRINT：GOTO31 \(\emptyset^{-}\)：rem 144 \(81 \varnothing\) PRINT：PRINT＂\(\{2\) DOWN \}\{RVS\}T\{OFF\}APE OR \｛RVS\}D\{OFE\}ISK: (T/D)"
：rem 227 \(82 \emptyset\) GETAS：IFAS＜＜＂T＂ANDĀS̄＜＞＂D＂THENB2 \(\varnothing\) ：rem 34
\(83 \emptyset \mathrm{DV}=1-7\)＊\((\mathrm{A} \$=" \mathrm{D} "): I F D V=8\) THENF \(=" \varnothing: "+\mathrm{F} \$\)
：rem 157
\(84 \varnothing\) T \(\$=\mathrm{F} \$: \mathrm{ZK}=\operatorname{PEEK}(53)+256\)＊ \(\operatorname{PEEK}(54)\)－LEN（T \(\$\) ）：POKE782，ZK／256
：rem 2

841 POKE781, ZK-PEEK (782)*256: POKE780, LEN( T\$):SYS65469
: rem 107
845 POKE780, 1: POKE781, DV : POKE782, 1:SYS654 66 :rem 7ø
850 POKE780, Ø:SYS65493 :rem 11
\(86 \emptyset\) IF ( \(\operatorname{PEEK}\) ( 783 ) AND 1 ) OR ( 191 ANDST ) THEN87 \(\varnothing\)
:rem 111
865 PRINT" \(\{\) DOWN \}DONE. ": GOTO31ø :rem 96 \(87 \varnothing\) PRINT"\{DOWN\}ERROR ON LOAD. \(\{2\) SPACES \}T RY AGAIN. \{DOW̄N\}":IFDV=1THEN8øø
: rem 172
880 OPEN15, \(8,15:\) INPUT\# 15, E1\$, E2\$:PRINTE1\$ ; 2 2 : CLOSE15:GOTO8øø
: rem \(1 \not 12\)
\(1 \varnothing \varnothing \varnothing\) REM BUZZER :rem 135
\(10 \emptyset 1\) POKE54296,15:POKE54277,45:POKE54278, 165
: rem 207

COMPU-QUTIE T-SHIRTS
progrommere are
feal cureorel
on White, Tan, Blue, Gold 50 Cot150 Poly
Compu-Qutie Designs P.O. Box 956 Wickenburg, AZ 85358
Phone (602) 6842263
 2. I'm a Hacker in Disk-guise Only \(\$ 8.95\) VISA money order check Mastercard
Adult S(34-36) M(38-40) L(42-44) XL(46-48) Child XS(2-4) \(\mathrm{S}(6-8) \mathrm{M}(10-12) \mathrm{L}(14-16)\) -Dealer Inquiries Welcomed-
1 1ø2 POKE54276, 33:POKE 54273,6:POKE54272,
    5 : rem 42
1 1øб FORT=1TO2øø:NEXT: POKE54276,32:POKE54
    \(273, \varnothing\) :POKE54272, \(:\) RETURN :rem \(2 \varnothing 2\)
\(2 ø \varnothing \emptyset\) REM BELL SOUND :rem 78
\(2 ø \varnothing 1\) POKE54296, 15 : POKE54277, ø: POKE54278, 2
    \(47 \quad\) :rem 152
\(2 ø \varnothing 2\) POKE 54276,17:POKE54273, 40:POKE54272
    , \(\varnothing\) :rem 86
2 2ø3 FORT=1TO1øø:NEXT:POKE54276,16:RETURN
    :rem 57
\(3 \varnothing \varnothing \emptyset\) PRINTCS;"\{RVS\}NOT ZERO PAGE OR ROM":
    GOTO1øøø
    : rem 89


\section*{COMPUTEI's Gazette Back Issues}

JULY 1983: Commodore 64 Video Update, Snake Escape, Alfabug, VIC Marquee, Word Hunt, VIC Timepiece, product reviews, Learning To Program In BASIC, Quickfind, 64 Paddle Reader, Machine Language For Beginners, Enlivening Programs With Sound, Using Joysticks On The 64, Simple Answers To Common Questions, VICreations - Speedy Variables, 64 Explorer.

OCTOBER 1983: The Anatomy of Computers, Telegaming Today And Tomorrow,

Commodore's Public Domain Programs, Oil Tycoon, Re-Beep, product reviews, Aardvark Attack, Word Match, A SHIFTy Solution: The WAIT Command, Program Transfers, Machine Language For Beginners, Improved Paddle Reader Routine, How To Use Tape And Disk Files, Understanding 64 Sound Part 1, Speeding Up The VIC, Simple Answers To Common Questions, HOTWARE, Horizons 64 - Improving 64 Video Quality, VICreations - Using The VIC's Clock, News \& Products.

Back issues of July and August 1983 are \(\$ 2.50\) each. Issues from October forward are \(\$ 3\). Bulk rates are 6 issues for \(\$ 15\) or 12 issues for \(\$ 30\). All prices include freight in the U.S. Outside the U.S. add \(\$ 1\) per magazine order for surface postage. \(\$ 4\) per magazine for air mail postage. ALL BACK ISSUES ARE SUBJECT TO AVAILABILITY.

In the continental U.S. call
TOLL FREE 800-334-0868
(in North Carolina call 919-275-9809)
Or write to:

> COMPUTE!'s Gazette Back Issues P.O. Box 5406
> Greensboro, NC 27403

Prepayment required in U.S. funds. MasterCard, VISA, and American Express accepted. North Carolina residents please add \(4 \%\) sales tax.

\section*{NEWS\&PRODUCTS}

\section*{Memory Expander For VIC-20}

Letco has announced the 64 KV Memory Module, which adds more than 64 K of memory to your VIC-20.

The 64 KV houses 8 K in each of the VIC's blocks 1, 2, and 3 . Block 3 can also be paged, or swapped, under program control, with five other separate 8 K sections of memory. Each block has a separate enable switch and a write-protect switch, and there is a switch to make block 3 respond as though it is block 5 (the normal game block).

The module is priced at
\$109.95
Letco
7310 Wells Road
Plain City, OH 43064
(614) 873-4410

\section*{Authoring System And Teaching Tool}

CLAS, a teaching tool and authoring system for educators, has been released by Touch Technologies for the Apple II + and IIe, the IBM PC and PCjr, and the Commodore 64.

The software package functions as a teaching tool for any subject. Authoring procedures allow instructors to create lessons in their own teaching style. Up to 30 problem sets can be offered with each lesson. Questions take the form of true/false, multiple choice, short answer, or matching.

If desired, the questions can be presented in a different order


The Letco 64 KV Memory Module adds more than 64 K RAM memory to your VIC-20.
each time the lesson is used.
Sound is used to give feedback when a response is made to a question. A help mode is provided for the student, along with a review of problem areas and a summary of performance at the end of the lesson.

Memory requirement for Apple computers is 48 K . The IBMs must use DOS 2.0/2.1. CLAS is available for \(\$ 89.95\).
Touch Technologies
609 S. Escondido Blvd.
Ste. 101
Escondido, CA 92025
(619) 743-0494

\section*{Interface For TI-99/4A}

Mikel Laboratories, Inc., has announced an RS-232-C interface system for the TI-99/4A.

The \(\$ 145.95\) system is a freestanding unit which allows the TI-99/4A to use a printer and modem without a peripheral expansion unit.

The company also offers cassette interface systems (\$49.95), TI cassette cables (\$11.95), and printers and monitors. A line of personal computer accessories for the TI-99/4A will soon be available from Mikel Laboratories.
Mikel Laboratories
3341 W. El Segundo Blvd.
Hawthorne, CA 90250
(213) 679-2542

\section*{Life Insurance Program For Atari, Commodore}

Advanced Financial Planning has released Life Insurance Planning, a software package for the Atari 400 and 800 computers and the Commodore 64.

The program will calculate the inflation rate applicable to a user's budget; the user's total estate needs reduced into terms of today's dollars (such as future living expenses for the family,
college expenses, and funeral expenses); the total estate provided by all sources of income and assets; and the total shortfall needed to be provided by life insurance.

Life insurance needs can be calculated for any year over the planning period in order to help the user select the proper type of insurance policy.

Life Insurance Planning supports virtually any printer, and requires a disk drive. The Atari version requires the Atari BASIC cartridge and 32 K RAM. The package is priced at \(\$ 29.95\).
When purchased with Advanced Financial Planning's Retirement Planning program, the total price is \(\$ 49.95\) (shipping prices are included in this total).
Advanced Financial Planning 20922 Paseo Olma
El Toro, CA 92630
(714) 855-1578

\section*{Music Adventure Games For Apple II}

Syntauri Corporation has introduced Musicland, an advanced set of musical games for the Apple II.

The package is built from four basic games-Sound Factory, Timbre Painting, Music Doodles, and Music Blocks. The four games are integrated. Musicland is a foundation program from which advanced musical concepts and structures may be taught to young children.

The system attempts to maintain the interest of young students, while providing musical challenges for adult musicians as well. Aimed at musically untrained children, Musicland lets youngsters use joystick controls to discover musical form, timbre, orchestration, composition, and transposition.

Children can compose, edit, and play music as well. Interactive graphics aid exploration, from sketching a simple melody
to inverting a complex musical passage. Multipart pieces can be composed, orchestrated, and played back in stereo. Each of the four games covers a different range of musical learning experiences.

Musicland requires a 64 K Apple II computer system with one disk drive, plus synthesizers (the Mountain Computer MusicSystem) which plug into the Apple. The Musicland set with manuals sells for \(\$ 150\). The synthesizers are available for under \(\$ 400\).
Syntauri Corporation 4962 El Camino Real Suite 112
Los Altos, CA 94022
(415) 966-1273

\section*{Three Learning Programs For Atari, Commodore}

Three learning programs from Carousel Software have been released for the Commodore 64 and Atari computers on disk or cassette.

Telly Turtle is an introduction to computer programming which uses drawing routines and emphasizes logical thinking, problem solving, numbers sequencing, and visual discrimination.

Brain Strainers includes three learning games for from one to four players: Clef Climber, a multilevel, animated note recognition game; Finders Keepers, a multiscreen and multilevel concentration game; and Follow the Leader, a music and graphic pattern recognition game with up to 44 levels of difficulty.

Simulated Computer is an animated simulation of a computer in operation. Programs written by the user can be seen and heard flowing through the component parts of the computer. The program serves as a teaching tool about the way a computer works.

Telly Turtle (34.95) and Brain

Strainers (\$29.95) are meant for ages five to adult. Simulated Computer (\$29.95) is directed toward ages 12 to adult.
Carousel Software, Inc.
877 Beacon Street
Boston, MA 02215
(617) 437-9419

\section*{Games, Tutorial For Commodore 64}

Advanced Microware has introduced two new software products for the Commodore 64.

Casino Pac includes four games-Blackjack, Poker, Keno, and Slot Machine. Each simulates the new videogaming machines being used in gambling centers such as Las Vegas and Atlantic City. The games let you practice your betting strategy, try your own betting systems, or play for fun.

Casino Pac sells on tape or disk for \(\$ 39\).

64 Tour is a tour of the features and capabilities of the Commodore 64, with demonstrations of all the graphics modes, as well as music and sound effects. The package is priced at \(\$ 12\).

\section*{Advanced Microware}
P.O. Box 6143

Santa Ana, CA 92706
(714) 554-6470

New Product releases are selected from submissions for reasons of timeliness, available space, and general interest to our readers. We regret that we are unable to select all new product submissions for publication. Readers should be aware that we present here some edited version of material submitted by vendors and are unable to vouch for its accuracy at time of publication.

COMPUTE! welcomes notices of upcoming events and requests that the sponsors send a short description, their name and phone number, and an address to which interested readers may write for further information. Please send notices at least three months before the date of the event, to: Calendar, P.O. Box 5406, Greensboro, NC 27403.

\section*{COMPUTER MAIL ORDER}


NEC 2050
NEC 3550 NEC 3550

PERCOM／TAND
S999．00 －DROKIVES
5 Meg Hard w／Controller 10 Meg Hard w／Controller 15 Meg Hard w／Controller 20 Meg Hard w／Controller

\section*{AMDEK} 310A Amber Monitor DXY 100 Plotter
Color II．

\section*{AST RES}

SEARC Six Pak Plus．．．from．．．．．．．．．．\(\$ 279.00\)
Combo Plus II．．．from ．．．．．．．\(\$ 279.00\) Mega Plus．．．from ．．．．．．．．．．．．\(\$ 309.00\) I／O Plus．．．from．

QUADRAM
Quadink
Quadboa Quad 512 Plus．．．as low as．．．\(\$ 249.00\) Quadcolor．．．．as low as Chronograph． Parallel Interface
64K RAM Chips Kit MICROPRD WordStar／MailMerge ．．．．．． InfoStar
SpellStar
S229．00 CALL ．．．CALL CALL
\(\$ 169.00\) \＄599．00 S399．00 \＄309．00 S139．00
5479.00 \(\$ 249.00\)
S219．00 \(\$ 219.00\)
\(\$ 89.00\) 589.00
.589 .00 \＄59．00
\(\$ 349.00\) S299．00
S299．00
S 159.00 .599 .00
MICROSTUF
Crosstalk．．．．．．．．．．．．．．．．．
Multiplan．
\＄105．00
\＄159．00
ASHTON TATE
dBASE
\＄389．00
Friday！
\＄185．00
EasyWriter II
EasySpeller
IUS
EasySpelle
EasyFiler．
S249．00
\(\$ 119.00\)
CONTINENTAL SOFTWARE
1st Class Mail／Form Letter．．．s79．00
The Home Accnt．Plus
\＄88．00

\begin{tabular}{lrr} 
& IBM APPLE \\
VisiCalc & & 159.00 \\
VisiCalc 4 & 159.00 & \\
VisiCalc－Advanced \\
VisiWord／Spell & & 269.00 \\
Visitrend／Plot & 199.00 & \\
VisiLink & & 199.00 \\
VisiFile & 199.00 & 169.00 \\
VisiSchedule & 199.00 & 199.00 \\
Visidex & & 159.00 \\
VisiPlot & & 135.00 \\
VisiTerm & & 75.00 \\
Desktop Plan & 199.00 & 169.00 \\
Bus．Forecast Model & 75.00 & 75.00 \\
Stretch Calc & 75.00 & 75.00 \\
VisiTutor Calc & 59.00 & 59.00 \\
VisiTutor－Advanced & 75.00 & 75.00 \\
VisiTutor Word & 59.00 & 59.00 \\
Vision Calc & 249.00 & \\
Vision Graph & 129.00 & \\
Vision Mouse & 159.00 & \\
Vision Host & 319.00 &
\end{tabular}
\begin{tabular}{lrr} 
& \multicolumn{2}{c}{ Pfs } \\
& & \\
& APPLE & I日M \\
Write： & 79.00 & 89.00 \\
Graph： & 79.00 & 89.00 \\
Report： & 79.00 & 79.00 \\
File： & 79.00 & 89.00 \\
Solutions： as low as & 16.00 & 16.00
\end{tabular}

LロTUS
1－2－3．．．．．．．．．．．．．．．．．．．．．．．．．．． 5329.00
PROFESSIONAL SOFTWARE
PC Plus／The Boss．
\(\$ 349.00\)
SYNAPSE
File Manager

\section*{PRINTERS}
－


PRINTER CABLES
Available for Atari．Commodore．IBM． Apple．Epson．Kaypro．Televideo．Frank－ lin．Eagle．Sanyo．Osborne．NEC． Zenith and many others．We supply all your computer needs！

PAPER SUPPLIES
Prism 80．．．For Configurations．．．CALL
MANNESMAN TAL．LY
160 L.
180 L.
Spirit 80 ．．
Spirit \(80 . . . . . . . . . . . . . . . . . .\). ．．．．．．．． 5399.00


APPLE／FRANKLIN DISK DRIVES MICRO－SC
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{MICRO－SCI} \\
\hline ．．．．． & ．．．．．． \(\mathbf{5 2 1 9 . 0 0}\) \\
\hline A40 & ．．．． \(\mathbf{\$ 2 9 9 . 0 0}\) \\
\hline A70 & ． 5319.00 \\
\hline C2 Controller & S79．00 \\
\hline C47 Controller & ． 889.00 \\
\hline \multicolumn{2}{|c|}{RANA} \\
\hline Elite 1 & \＄279．00 \\
\hline Elite 2 & \＄389．00 \\
\hline Elite 3 & \＄569．00 \\
\hline
\end{tabular}

APPLE IIE STARTER PACK 64 K Apple lle．Disk Drive \＆Controller． 80 Column Card．Monitor II \＆DOS 3.3 COMPLETE
\begin{tabular}{|c|c|}
\hline & TERMINALS \\
\hline 914 & ． 5569.00 \\
\hline 924 & S689．00 \\
\hline 925 & \＄739．00 \\
\hline 950 & S929．00 \\
\hline 970. & ． 1039.0 \\
\hline
\end{tabular}

COMPUTERS
Teleport Portable ．．．．．．．．．．．．．．．．CALL
800A ……．．．．．．．．．．．．．．．．．．．．．．．．．．．．．\(\$ 10999.0\)

803．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 51949.00
\begin{tabular}{|c|c|}
\hline 806／20 & S4999．00 \\
\hline 816／40 & S9199．00 \\
\hline 1602. & 99．00 \\
\hline
\end{tabular}

603 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．S3399．00

\section*{MQNITQRS}



F FRANKLIN


ACE 1000 Color Computer．． ACE Family Pack System ACE PRO PLUS System
ACE 1200 OHfice Myt ．．．．．．．．CALL NOT IIE EXPENSIVE．．．CALL NE EXPENSIVE
s TeleVideo


\section*{MODEMS}

\section*{Mark I（RS． 232 ）}

Mark（RS． 232 ）
Mark ill（TTar）．
Mark III（T1．99）．
Matk IV（CBM）
Mark V（ Osborme）．
Mark Vil（Auto Ans／Auto Dial）
Mark XII（1200 Baud）．
TRS． 80 Color Computer
9 Volt Power Supply．．．．
Smartmodem 300 Smartmodem 1200.
Smartmodem 1200B Micromodem II
Micromodem II Plus
Micromodem IIE
Micromodem 100.
Smart Com II
Chronograph．
J－Cat．．．．．．．．．．
SmartCat 103
SmartCat \(103 / 212\)
AutoCat
212 AutoCat．
Apple Cat II．
212 Apple Ca
Apple Cat 212 Upgrade
Cat．
D．Cat
PC
PC．Cat
\(\mathrm{ZT}-1\)
\(\mathrm{ZT}-10\)
\(\mathrm{ZT}-11\)
ZENITH
\(\$ 79.00\)
579.00
\(\$ 79.00\)
S 109.00
S109．00
S 125.00
S 95.00
S 95.00
S 169.00
.
S1 19.00
.\(\$ 299.00\)
599.00
59.00
\(\$ 9.00\)
\(\$ 219.00\)
\(\$ 509.0\) \(\$ 509.00\)
S459．00 S459．00
\(\$ 265.00\)
S 299.00 S299．00
S 269.00
S299．00
\(\begin{array}{r}\$ 89.00 \\ \hline\end{array}\)
． 599.99
\(\$ 179.00\)
S 399.00
S 399.00
S 219.00
S 549.00
\(\$ 549.00\)
S249．00
\(\$ 249.00\)
S 569.00
S309．00
S 139.99
S 149.00
\(\$ 149.00\)
S 399.00
\(\$ 309.00\)
S 339.00
S 369.00

\section*{APPLE INTERFACE}

CARDS \＆BUFFERS
Choose from PKASO．Orange Micro
MPC．MicroMax．Tymac．Quadram \＆
Practical Peripherals

\title{
－WEST＝＝CANADA二 \(800.648 .3311 \quad 800.268 \cdot 4559\)
}

\title{
COMPUTER MALL ORDER
}


\section*{K commodore}

CBM 8023．．．\(\$ 599\) MSD SD1 Disk Drive MSD SD2 Disk Drive CBM 4032 CBM 8096 CBM 9000 B128．80．
CBM 64 K Memory Board 8032 to 9000 Upgrade 031LP Disk Drive 3050 Disk Drive 8250 Disk Drive 4023 Printer 8023 Printer 6400 Printer Z－RAM． Silicon Office The Manager Soft ROM
\＄349．00 5599.00
\(\mathbf{\$ 5 9 9}\) \(\mathbf{S 5 9 9 . 0 0}\)
\(\mathbf{\$ 8 6 9} 0\) S8999．00 \＄799．00 \(\$ 769.00\) \(\$ 269.00\)
\(\mathbf{S} 269.00\) \＄269．00 \(\$ 299.00\) \(\$ 949.00\) S1199．00 ．\(\$ 379.00\) ． 5569.00 \＄1399．00 S499．00 S499．00 ．\(\$ 199.00\) S125．00 ． 159.00

\section*{PROFESSIONAL} SOFTWARE Word Pro 2 Plus
．\(\$ 159.00\) Word Pro 3 Plus Whe Pro 3 ．．．．．．．．．．．\(\$ 189.00\) infoPro Administrator Power．
\(5 \times-64\)
PORTABLE

\section*{\(839^{\circ 0}\)}

VIC 20 \(\qquad\) 4. C1541 Disk Drive C1530 Datasette C1520 Color Printer／Plotter M－801 Dot Matrix Printer ． M－801 Dot Matrix Printer ．．．
C1526 Dot Matrix／Serial．．．． C1526 Dot Matrix／Serial．．．．S299．00 C1702 Color Monitor ．．．．．．．．s249．00 C1311 Joystick C1312 Paddles． C1600 VIC Modem． C1650 Auto Modem Logo 64
Pilot 64
Simon＇s Basic．
Word Pro 64 Plus． Parallel Printer Interface． Caic Result 64 Codewriter 64 Quick Brown Fox Word Pro 64 Plus． MCS 801 Color Printer．．． DPS 1101 Daisy Printer．．．．．
Magic Voice Speech Module． Magic Voice Speech Module．
Desk Organizer Lock．．．．．．．． Desk Organizer Lock．

KOALA PADS
Atari（Disk）．．．．．．．．．．．．．．．．．．．．． 575.00 Atari（ROM）．．．．．．．．．．．．．．．．．．．\(\$ 82.00\) C． 64 （ROM）
C－64（ROM）
BM
P／Franklin．

S82．00
S82．00
S99．00

We stock a full inventory of software for Commodore，such as： Artworx，Broderbund，Commercial Data，Creative Software， Epyx，HES，MicroSpec，Nufekop，Romox，Sirius，Synapse， Thorn EMI，Tronix，UMI，Victory，Spinnaker，Rainbow \＆Timeworks！
\begin{tabular}{|c|c|c|}
\hline Games for & \begin{tabular}{l}
ATARI \\
BM，App IBM／APP
\end{tabular} & C64 \＆VIC 20 c64／vic 20 \\
\hline Pac Man & 29.99 & 37.99 \\
\hline Centipede & 29.99 & 37.99 \\
\hline Dig Dug & 29.99 & 37.99 \\
\hline Donkey Kong & 29.99 & 37.99 \\
\hline Defender & 29.99 & 37.99 \\
\hline Robotron & 29.99 & 37.99 \\
\hline Star Gate & 29.99 & 37.99 \\
\hline
\end{tabular}
Star Gate

\section*{ATAR1 99}

\section*{\(\because\) With Purchase of} 1010 Program Recorder，

\section*{E．T．Phone Home \＆} C1311 Joysticks TOTAL SYSTEM PRICE \＄259

\section*{1010 Recorder 010 Recorder 020．Color Printer ．．．．．．．．．．．．S74．00} 025 Dot Matrix Printer．．．．．．S249．00 027 Letter Quix Printer．．．．．S339．00 1027 Letter Quality ．．．．．．．．．．S309．00
1030 Direct Connect Modem ．．．S119．00
1050 Disk Drive．．．．．．．．．．．．S339．00 ．S119．00 1050 Disk Drive．．．．．．．．．．．．．．S339．00 cx30 Paddle ．．．．．．．．．．．．．．．．．．．．．S 12.00 CX77 Touch Tablet ．．．．．．．．．．．．．S64．00 CX80 Trak Ball \(\quad 548.00\) Cx85 Keypad \(\quad\) S 105.00 Cx85 Keypad ．．．．．．．．．．．．．．．．．． 105.00 488 Communicator II．．．．．．．．S229．00 003 Assorted Education．．．．S47．00 4011 Star Raiders．．．．．．．．．．．．S33．00 4012 Missile Command ．．．．．S29．00 4013 Asteroids ．．．．．．．．．．．．．．．．．S29．00 5049 VisiCalc． 7097 Logo．
7101 Entertainer \(\begin{array}{r}\text { S } 159.00 \\ \hline\end{array}\) 7102 Arcade Champ 8030 E．T．Phone Home 8031 Donkey Kong 8033 Robotron．．． 8034 Pole Position 8036 Atari Writer 8040 Donkey Kong．Jr．． 8043 Ms．PacMan 8044 Joust

S69．00 S75．00 575.00
S33．00 S33．00 S39．00 S39．00
S35．00 S35．00
S39．00 539.00
579.00 S79．00 539.00
S39．00
539.00
\(\mathbf{S} 39.00\)

\section*{DISKETTES} MAXELL

\section*{5 \(1 / 4 \mathrm{MD}-1\)}

8＊FD－1（SS／DD）
8 FD－1（SS／DD）
8 FD－2（DS／DD）
529.00 VERBATIM S39．00 \(\$ 49.00\)

D
5 \(1 / 4\) DS \({ }^{\circ}\)
ELEPHANT 5 \(1 / 4 \cdot\) SSISD
1／4 SS DD
51／4 DS／DD
HEAD
51／4 Disk Head Cleaner
S26．99
S36．99
S18．49
S22．99 S28．99

DISK HOLDERS
INNOVATIVE CONCERTS
Flip－n－File 10
\(\begin{array}{r}\text { S3．99 } \\ \hline\end{array} 17.99\) Flip－n－File（400／800ROM）Holder S17．99

LJK ENTERPRISES
Atari Letter Perfect－Disk（40／80）．．S79．99 Atari Letter Perfect－Disk（40／80）．．．S79．99 Atan Letter Perfect \(\cdot\) ROM（ 40 col）．．．S79．99 Atari Letter Perfect－ROM（80 col）．．．S79．99 Atari Data Perfect－ROM（80 col）．．．．．S79．99 Atari Spell Perfect－DISK ．．．．．S59．99 Atari Utility／MailMerge ．．．．．．．．S21．00 Apple Letter Perfect．．．．．．．．．．．S99．00 Apple Data Perfect ．．．．．．．．．．．． 575.00 Apple LJK Utility ．．．．．．．．．．．．．．．S21．00 Apple Lower Case Generator ．．．S 19.00

6ロロXL．．．．．．．\(\$ 189\) 80ロXL．．．．．．． 5299 12OOXL ．．．．CALL \(1400 \times\) ．．．．CALL
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{OEREDM} \\
\hline AT 88.51 & 1 ．．．．．．．．．．．．．．．．．．．． 5369.00 \\
\hline AT 88－A1 & 1 ．．．．．．．．．．．．．．．．．．．S259．00 \\
\hline AT 88－S1PD & 1 PD ．．．．．．．．．．．．． 5449.00 \\
\hline AT 88－DDA & DA ．．．．．．．．．．．．．．．．． 5119.00 \\
\hline RFD \(40 \cdot 51\) & S1 ．．．．．．．．．．．．． 5449.00 \\
\hline RFD \(40 \cdot \mathrm{Al}\) & A1 ．．．．．．．．．．．．．．．．．．S269．00 \\
\hline RFD \(40 \cdot \mathrm{~S} 2\) & S2 ．．．．．．．．．．．．． \(\mathbf{S 6 9 9 . 0 0}\) \\
\hline RFD 44．S1 & S1 ．．．．．．．．．．．．． \(\mathbf{S 5 3 9 . 0 0}\) \\
\hline RFD 44.52 & S2 ．．．．．．．．．．．．．．．．． 5869.00 \\
\hline & EXAS INSTRUMENTS \\
\hline TX 99．S1 & 1 ．．．．．．．．．．．．．．．．．．．S279．00 \\
\hline \multicolumn{2}{|r|}{RANA} \\
\hline 1000. & S329．00 \\
\hline \multicolumn{2}{|r|}{TRAK} \\
\hline AT－D2． & S389．00 \\
\hline \multicolumn{2}{|r|}{INDUS} \\
\hline －GT－Drive & S379．00 \\
\hline \multicolumn{2}{|l|}{MEMORY BOARDS} \\
\hline Axion 32K & 2K ．．．．．．．．．．．．．．．．．．． 559.00 \\
\hline Axion 48 K ． & 8K ．．．．．．．．．．．．．．．．．．．．S99．00 \\
\hline Axion 128K & 28K．．．．．．．．．．．．．．．．．． \(\mathbf{S 2 9 9 . 0 0}\) \\
\hline Intec 32K & K ．．．．．．．．．．．．．．．．．．．．．S59．00 \\
\hline Intec 48K & K ．．．．．．．．．．．．．．． 585.00 \\
\hline Intec 64K & K ．．．．．．．．．．．．．．．．．．．．．S99．00 \\
\hline Intec Real & eal Time Clock ．．．．．．． \(\mathbf{S 2 9 . 0 0}\) \\
\hline
\end{tabular}

ALIEN VOICE BOX Atari
\(\$ 119.00\) Apple

\section*{CONTROLLERS} JOYSTICKS wico
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ck ．．．．．．．．．．．．．．．．．．．．s．s21．99} \\
\hline way Joystick & S22．99 \\
\hline Famous Red Ball & S23．99 \\
\hline Power Grip & S21．99 \\
\hline BOSS Joystick & S17．99 \\
\hline ATARI／VIC Trak Bali & S34．9 \\
\hline Apple Trak Ball & S54．99 \\
\hline Apple Adapter & \＄15．99 \\
\hline Apple Analog & \\
\hline \multicolumn{2}{|l|}{KRAFT} \\
\hline Joystick & S4 \\
\hline Atari Single Fire & S12 \\
\hline Atari Switch Hitte & S15．99 \\
\hline Apple Paddles & \＄34．99 \\
\hline IBM Paddles & \＄34．99 \\
\hline IBM Joystick & 46 \\
\hline \multicolumn{2}{|l|}{AMIGA} \\
\hline 3100 Single & S13．99 \\
\hline 3101 Pair & \＄19．99 \\
\hline Joyboard & 9 \\
\hline \multicolumn{2}{|l|}{TG} \\
\hline ri Tr & \＄47．99 \\
\hline Apple Joystick & \＄47．99 \\
\hline & \\
\hline
\end{tabular}

\title{
EWEST＝＝CANADAZ＝EASTE 800．648．3311 800．268．4559 \\ In NV call（702）588－5654．Dept． 0506 \\ Order Status Number： 588.5654
P．O．Box 6689 ．Stateline．NV 89449 \\ oronto call（416）828．0866．Dept． 0506 Order Status Number：828－0866 Mississauga．Ontario Canada L5LIT1
}

\title{
Lyco Computer Marketing \& Consultants TO ORDER \\ CALL US TOLL FREE 800-233-8760 \\ In PA 1.717-327.1824
}


\section*{TRAK DISK DRIVES}


\section*{COMPUTER CARE}

\section*{BIB}

5 \(1 / 4\) DISK DRIVE
CLEANER......
COMPUTER CARE
KIT
.\(\$ 12.75\)
.\(\$ 19.75\)

BLANK DISKETTES ELEPHANT
Single Side SD (10)....... 817.75 Single Side DD (10)........ \(\$ 21.75\) Double SIde DD (10).......\$26.75 MAXELL
MD I (10) 328.75 MD II (10) 338.75

\section*{CERTRON CASSETTES}

CC-10 12 for
\(\$ 15.99\) CC-20 12 for ................ 317.99
INNOVATIVE CONCEPTS
Disk Storage (holds 10) .... 84.95
Disk Storage (holds 15).... \(\$ 9.95\)
Disk Storage (holds 50) . ...s26.95

commodore
1212 Programmers Ad. \(\$ 44.75\) 1213 Vicmon........... \(\$ 44.75\) Vic 20 dust cover........ 56.99 Vic 64 dust cover........ \(\$ 6.99\)

\section*{TIMEWORKS}

INVENTORY................ 359.75 ACCOUNTS REC. .......... 859.75 ACCOUNTS PAY. ......... 859.75 GENERAL LEDGER....... 859.75 PAYROLL.
CASH FLOW ................... 859.75 ELEC ANALYSIB....... 859.75 MONEY MANAGER ....... 859.75
DATA MANAGER.......... 859.75

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
CONTINENTAL \\
Home Accountant ........ \(\mathbf{S 5 1 . 7 5}\)
\end{tabular} & EPYX \\
\hline Book of Apple Software . \(\mathbf{\$ 1 6 . 7 5}\) BRODERBUND & \begin{tabular}{l}
Temple of Apshai........... \$26.95 \\
Star Warrior . ................ \(\$ 26.95\)
\end{tabular} \\
\hline Bank Street Writer ....... . \(\$ 49.75\) & Crush. Crumble \& Chomp . \(\mathbf{\$ 2 2} \mathbf{7}\). 75 \\
\hline AE ...................... \$24.75 & ADVENTURE \\
\hline LODE RUNNER D ......... \(\$ 24.75\) & \\
\hline Choplifter ............... \(\mathbf{\$ 2 4 . 7 5}\) & Saga\#1 Adventureland... \(\mathbf{\$ 2 9 . 9 5}\) \\
\hline David's Midnight........ \$24.75 & Saga\#2 Pirate Adventure. \(\mathbf{\$ 2 9 . 9 5}\) \\
\hline SPINNAKER & Saga\#3 Secret Mission... \(\mathbf{S 2 9 . 9 5}\) \\
\hline Kindercomp.............. \$21.75 & Stone of Sisyphus....... \(\mathbf{2 4 . 9 5}\) \\
\hline Story Machine .......... \$23.75 & ALIEN GROUP \\
\hline FaceMaker.............. \(\mathbf{\$ 2 3 . 7 5}\) & Atari Voice Box ........... \(\mathbf{S 9 9 . 0 0}\) \\
\hline Snooper Trooper......... \$29.75 & Apple Voice Box......... \$129.00 \\
\hline Delta Drawing............ \$34.75 & \\
\hline
\end{tabular}

CARDCO
Cardprinter / LQ1........ \(\$ 499.00\) Cardprint DM1 ........... \(\$ 10900\) 5 Slot Expansion 64 ...... 554.00 64 Write NOW............. \(\$ 39.00\) 64 Mail NOW.............. \(\$ 29.00\) 2f Write NOW............ \(\$ 29.00\) 64 Keypad ............... \(\$ 29.00\) Universal Cass. Int....... \$29.75 Printer Utility............. \(\$ 19.75\) 6 Slot Expansion......... \(\$ 79.95\) 3 Slot Expansion......... \(\mathbf{\$ 2 4} 95\) PRINTERINTERFACE........ \(\$ 39.75\) PRINTER INTERFACE with
full graphics ............... \(\mathbf{S 6 5 . 7 5}\)
LIGHT PEN ................... \(\$ 29.75\)
PARKER 20
Frogger (ROM)
QBert (ROM)
Tutankham (rom)

SPINNAKER 64
Kindercomp.
\(\$ 21.75\)
Story Machine
Face Maker .
Snooper Trooper............ \(\mathbf{\$ 2 9 . 7 5}\)
Delta Drawing................ 334.75
Shamus II c/d............. \(\mathbf{\$ 2 4 . 9 5}\)
Pinhead c/d \(\$ 24.95\)
\(\$ 22.95\)
QUICK BROWN FOX
QBF Word Processor .... \(\$ 49.95\) LJK
Letter Perfect............ \(\$ 105.00\)
Data Perfect.................. \(\$ 95.00\)
ADVENTURE INTERNATIONAL
S. Adams Adventure ..... \(\$ 28.75\) VIC-64
Household Finance C/D.. \(\$ 24.75\) VIC 20
King Arthurs Heir Cass ... \(\$ 24.75\)
Monster Maze Rom.un \(\$ 24.75\)

\section*{SYNAPSE}

BLUE MAX C/D ........ \(\mathbf{\$ 2 4 . 7 5}\) Ft. APOCALYPSEC/D... \(\$ 24.75\) PHAROAH'SCURSE C/D... \(\$ 24.75\)

FIRST STAR
ASTRO CHASE C/D.... \(\mathbf{\$ 2 2 . 7 5}\) BRISTOLS C/D..........S22.75 FLIP FLOP C/D .........S22.75

ALIEN GROUP
Voice Box 2.599 .75
DON'T ASK
Sam .......... \(\$ 41.75\) Abuse ....... \(\$ 15.95\) Teleatri....... \(\$ 27.95\) Poker Sam .. \(\mathbf{S 2 4 . 9 5}\)

APX

Computers for people. 0

600XL ... SCALL 800XL.........for 1400XL. . . Lowest 1450 ..... . Prices 1020 PRINTER........... NOW 1025 PRINTER...............IN 1027 PRINTER .........STOCK 1050 DISK DRIVE ....SSAVES
1010 RECORDER....... \(\$ 74.75\)

\section*{EPYX}

GATEWAY TO
ASPHI R...
....... \(\$ 28.75\)
PIT STOP R ....... \(\mathbf{\$ 2 8 . 7 5}\)
gateway to

\section*{SSI}

Battle of Shilo C/D.
\(\$ 26.75\)
Tigers in the Snow C/D.... \(\$ 26.75\)
Battle for Normandy C/D .. \$26.75
Knights of the Desert C/D. \(\mathbf{\$ 2 6 . 7 5}\)
Cosmic Balance C/D ...... \(\mathbf{\$ 2 6 . 7 5}\) ON-LINE
Frogger
\(\$ 24.95\)
Wizard \& Prin ............... \(\$ 26.95\) ROKLAN
Wizard of War............... S29.75
Gort ........................... \(\$ 29.75\)
Delux Invader ................ \(\$ 27.95\)
BIG 5
Miner 2049.

\section*{EASTERN HOUSE}

Monkey Wrench 2 ....... \(\$ 52.75\) BRODERBUND
LODE RUNNER D...... \(\$ 24.75\)
operation
WIRLWIND D ........ \(\$ 29.75\)
DROL D .................. \(\mathbf{S 2 4 . 7 5}\)

\section*{PARKER BROTHERS}

Tutankham R............. \(\mathbf{\$ 3 3 . 7 5}\)
Super Cobra R ........... \(\$ 33.75\)
Astro Chase R............ \(\$ 33.75\)
Frogger R ................. \(\$ 33.75\)
QBert R ................... \(\$ 33.75\)
Popeye R................. \(\$ 33.75\)
Risk R . . . . . . . . . . . . ...... \(\$ 42.75\)
Chess R \(\$ 42.75\)

\section*{SPINNAKER}

Story Machine R ........ S26.75
Face Maker R............. \(\mathbf{\$ 2 4 . 7 5}\)
Kinderomp R.............. \(\mathbf{\$ 2 0 . 7 5}\)
Fraction Fever R......... \(\mathbf{\$ 2 4 . 7 5}\)
Delta Drawing R.
. \(\$ 26.75\)

\title{
Lyco Computer Marketing \& Consultants TO ORDER \\ CALL US \\ \\ TOLL FREE 800-233-8760
} \\ \\ TOLL FREE 800-233-8760
}

\section*{PRINTER INTERFACING}

Available for IBM PC, Apple, Atari, Vic 20 \& Vic 64

LETTER QUALITY
SMITH CORONATP2... 5449.00
DIABLO 630 .. \(\$ 1719.00\)
ALPAHCOM \(42 \ldots \ldots . . \$ 89.00\)
ALPHACOM \(81 \ldots \ldots . . \$ 129.00\)
NEC \(8023 \ldots \ldots \ldots \ldots . \$ 369.00\)
NEC \(8025 \ldots \ldots \ldots . \$ 699.00\)
NEC PC-8200
COMPUTER \(\ldots \ldots . .\). SCALL

EPSON

\section*{OKIDATA}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{RX-80FT................... 0 S}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{FX-80 .................In-Stock}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{MX-80FT................EPRINTER} \\
\hline \multicolumn{2}{|l|}{mX-100............ssCaLls} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{MANNESMANN TALLY}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

SPIRIT 80 ................sCALL
MT 160L....................SCALL


ATARI 850
REPLACEMENTS
IN-STOCK

CITOH
GORILLA GX100 ..... \(\$ 179.00\) PROWRITER \(8510 \ldots . . \$ 339.00\) PROWRITER II ........ \(\$ 659.00\) 8600 ................... \(\$ 1025.00\) STARWRITER ......... \(\$ 1099.00\) PRINTMASTER ..... \(\$ 1499.00\)
STAR MICRONTICS
GEMINI 10X ............ \(\$ 269.00\) GEMINI 15X...............SCALL DELTA 10................ \(\$ 479.00\)

\section*{MODEMS}

ANCHOR MARK I .. 579.00 ANCHOR MARK II.. \(\$ 79.00\) HAYES SMART ... \(\$ 239.00\) HAYES MICRO II \$309.00 Micro Bit MPP-1000.......... \(\$ 129.75\) NOVATION CAT ................ \(\$ 144.00\) D-CAT ............. \(\$ 155.00\) J.CAT ............... \(\$ 115.00\) APPLE CAT \(11 . . . .5279 .00\) 212 APPLE CAT . \(\$ 589.00\)

\section*{DUST COVERS}

800
400
1200.

410 ..
\(810 .\).
1050.
PROWRITER
GEMINI 10X.
PERCOM DISK
VIC 20/64


APPLE DUMPIING GX
59975 APPLE DUMPUNG \(64 \quad 116\) Butters 17975 INFOCOM
Zork I. II, or III............... \$26.75
Deadline
\(\$ 33.75\)

\section*{HES 20}

\section*{HES MON Rom. \(\$ 25.75\)}

Turtle Graphics. \(\mathbf{\$ 2 5 . 7 5}\)

\section*{HES Writer... \(\$ 25.75\) Shamus...... \(\$ 25.75\) Protector..... \(\$ 25.75\)}

PERCOM

VIC 64/20


FIRST STAR 64 BRISTOLS C/D.......... \(\mathbf{S 2 2 . 7 5}\) FLIP FLOP C/D ......... \(\$ 22.75\)

\section*{SYNAPSE 64}

ZEPPELIN C/D blue max C/D. DIMENSION XC/D.

EPYX 64
ASPHIR... JUMPMAN JR
PIT STOP R
\[
4
\]
.\(\$ 3.99\)
\(\$ 3.99\)
.\(\$ 3.99\)
.\(\$ 3.99\)
\(\$ 3.99\)
\(\$ 5.99\)
\(\$ 5.99\)
. \(\$ 5.99\)
\$5.99
.\(\$ 5.99\)

\section*{\[
0
\] \\ - -}

\section*{BRODERBUND 64}

BANK STREET
WRITER............... \(\$ 49.75\)
CHOPLIFTER . . . . . ..... \(\$ 24.75\)
LODE RUNNER ......... \(\$ 24.75\)
DROL........................ \(\$ 24.75\)
KOALA TOUCH TABLET... \(\$ 69.75\)

\section*{AT88S1 . . \$299.00 RDF44SI \$449.00}

\section*{\(\$ 269.00\)}
\begin{tabular}{|c|c|c|c|c|}
\hline IBM & ATARI & APPLE & \multicolumn{2}{|l|}{48K RAM . . . \(\$ 75.00\)} \\
\hline PACMAN.............. \(\mathbf{5 2 7 . 9 5}\) & ... 529.75 & PACMAN.............. \(\mathbf{\$ 2 7 . 9 5}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{64K RAM . . . \(\$ 99.00\)}} \\
\hline DONKEY KONG........ \(\mathbf{\$ 2 7} 9.95\) & ....529.75 & DONKEY KONG........ \(\mathbf{\$ 2 7 . 9 5}\) & & \\
\hline DIG DUG .............. \(\$ 27.95\) & ... \(\mathbf{\$ 2 9 . 7 5}\) & DIG DUG .............. \(\mathbf{\$ 2 7 . 9 5}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ATARI WRITER ........ \(\mathbf{\$ 7 9 . 0 0}\)}} \\
\hline DEFENDER . . . . . . . . \(\mathbf{\$ 2 7 . 9 5}\) & ........ \(\mathbf{5 2 9 . 7 5}\) & DEFENDER . . . . . . . . \(\mathbf{\$ 2 7 . 9 5}\) & & \\
\hline CENTIPEDE ........... \(\$ 27.95\) & ............ \(\mathbf{\$ 2 9 . 7 5}\) & CENTIPEDE ........ .. \(\mathbf{\$ 2 7 . 9 5}\) & & \\
\hline & & & \multicolumn{2}{|l|}{BUSINESS} \\
\hline KOALATOUCH TABLET...S99.75 & KOALA TOUCHTABLET... \(\mathbf{\$ 6 9 . 7 5}\) & KOALA TOUCHTABLET... \(\$ 84.75\) & Visicalc .............. \(\mathbf{\$ 1 5 9 . 7 5}\) & \\
\hline DEADLINE ..........\$34.75 & .S34.75 & ...\$34.75 & Letter Perfect......... & \\
\hline ENCHANTER \(\ldots \ldots \ldots . .534 .75\) & ....................s34.75 &  &  & \\
\hline INFIDEL \(\ldots\)...... 534.75 & .................... 534.75 & \(\ldots . . . . . . . . . . . . . . . . . . .534 .75\) & & \\
\hline PLANETFALL \(\ldots\)....... \(\$ 34.75\) &  & \(\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . .1534 .75\) & TEXT WIZZARD....... \$34.75 & \\
\hline STAR CROSS \(\ldots \ldots . . .\). S34.75
SUSPENDED....... .534 .75 & ...... \(\mathbf{5 3 4 . 7 5}\) &  & SPELL WIZZARD ..... . 34.75 & T \\
\hline  & . & ..................... 534.75 & File Manager............ 869.75 & \\
\hline ZORKI .......... \(\$ 34.75\) & . 534.75 & . 534.75 & Home File Mgr.......... \(\$ 69.75\) & \\
\hline ZORK II .......... 534.75 & . 534.75 & . 534.75 & Bookeeper............. \(\$ 119.75\) & Computers for people. \\
\hline ZORK III ............ 334.75 & .. \(\$ 34.75\) & . 534.75 & C.R.I.S............... \(\$ 199.75\) & \\
\hline
\end{tabular}

\section*{POLICY}

In-stock items shipped within 24 hours of order. Personal checks require four weeks clearance before shipping. No deposit on C.O.D. orders. Free shipping on prepaid cash orders within the continental U.S. PA residents add sales tax. All products subject to availability and price change. Advertised prices show \(4 \%\) discount offered for cash. add \(4 \%\) for Master Card or Visa. DEALER INQUIRIES INVITED.


WITH A HAPPY ENHANCEMENT INSTALLED THESE ARE THE MOST POWERFUL DISK DRIVES FOR YOUR ATARI COMPUTER WARP SPEED SOFTWARE DISK READING AND WRITING 500\% FASTER

HAPPY BACKUP - Easy to use backup of even the most heavily protected disks HAPPY COMPACTOR - Combines 8 disks into 1 disk with a menu WARP SPEED DOS - Improved Atari DOS 2.0 S with WARP SPEED reading \& writing SECTOR COPIER - Whole disk read, write and verify in 105 seconds
1050 ENHANCEMENT - Supports single, 1050 double, and true double density 810 ENHANCEMENT - Supports single density

SPECIAL SUGGESTED RETAIL PRICE: Get the HAPPY ENHANCEMENT 810 or 1050 version with the HAPPY BACKUP PROGRAM plus the multi drive HAPPY BACKUP PROGRAM. plus the HAPPY COMPACTOR PROGRAM, plus the HAPPY DRIVE DOS. plus the HAPPY SECTOR COPY, all with WARP DRIVE SPEED. including our diagnostic. a \(\$ 350.00\) value for only \(\$ 249.95\), for a limited time only! Price includes shipping by air mail to U.S.A. and Canada. Foreign orders add \(\$ 10.00\) and send an international money order payable through a U.S.A. bank. California orders add \(\$ 16.25\) state sales tax. Cashiers check or money order for immediate shipment from stock. Personal checks require 2.3 weeks to clear. Cash COD available by phone order and charges will be added. No credit card orders accepted. ENHANCEMENTS for other ATARI compatible drives coming soon. call for information. Specify 1050 or 810 ENHANCEMENT, all 1050s use the same ENHANCEMENT Please specify H model for all 810 disk drives purchased new after February 1982. call for help in 810 ENHANCEMENT model selection. Dealers now throughout the world. call for the number of the dealer closest to you.

ATARI is a registered trademark of Atari Computer Inc
HAPPY COMPUTERS, INC. • P. O. Box 1268 • Morgan Hill, California 95037 - (408) 779-3830


\section*{DUST COVERS}

For Personal Computers, Peripherals, Game Units-Protective, Long-Lasting Vinyl Resists Both Dust and Liquids.
- Choice of colors -

Amdek
Apple
Atari
BMC
Commodore
Coleco
Epson
Franklin Ace IBM PC Mattel Rana Systems Sanyo Star Micronics TI 99/4 TRS 80 PLUS OTHERS

GROUP/VOLUME DISCOUNTS AVAILABLE

\section*{FOR FREE BROCHURE WRITE:}

ENCHANTED FOREST
P.O. Box 5261 , Newport Beach, CA 92662 (1129 W. Balboa Blvd.)
Dealer Inquiries Invited

RENT SOFTWARE
1-2-3 Lotus . . . . . . . . .99.00*
Home Accountant . . . .15.00*
PFS: Write . . . . . . . . . . 28.00*
VisiCalc . . . . . . . . . . . . 50.00*

\section*{FREE CATALOG}
*Ask about our membership
Games/Business/Utilities/Education
1-800-221-1031 California
1-800-221-4568 All Others
619-481-0559 San Diego
जी:जिए

\section*{(0) (0)}

Catalog of Computers and Supplies
Our prices are WHOLESALE + 10\% Samples!!!
ATARI 850 INTERFACE - \(\$ 220\) Compucat - \$163
ATARI 1027 PRINTER - \$350 Compucat - \$265

We support the complete ATARI and COMMODORE product lines Ask for our free price list.
You may order in the regular manner or download our TeleCatalog and order from your computer or terminal.
(408) 353-1836

Instant shipping (or as fast as we can). Mastercard \& Visa Accepted (no extra charge). Shipping \& handling add \(5 \%\). California customers add \(6.5 \%\) sales tax. Order by phone (Mon. - Fri. 10 am - 5 pm PST). Order by modem (daily \(6 \mathrm{pm}-9 \mathrm{am}\) ) from our online TeleCatalog.

\section*{COMPUCAT}

24500 Glenwood Hwy., Los Gatos, CA 95030


\section*{STOCK HELPER" \({ }^{m}\)}

\section*{Commodore 64}

Stock HELPER is a tool to maintain a history of stock prices and market indicators on diskette, to display charts, and to calculate moving averages. Stock HELPER was designed and written by a "weekend investor for other weekend investors.

VISA \(\$ 30.00\) plus \(\$ 1.25\) shipping.
Canadians may pay \(\$ 37.50\) CDN plus \(\$ 1.55\) shipping.
(M)agreeable software, inc.

5925 Magnolia Lane • Plymouth, MN 55442 (612) 559-1108

HELPER is a trademark of (M) agreeable Sotware. Inc. Commodore is a trademark of Commodore Electronics Lto.


A compact and inexpensive Eprom eraser for the hacker. It erases two chips per exposure, so if you are one of those smart people who only makes little mistakes and only needs to erase two Eproms at a time, this eraser is for you.



\section*{VIC-20 COMMODORE 64}

\section*{THE RECIPE BOX}

Now you can easily store and recall your favorite recipes on your Commodore computer. THE RECIPE BOX is a complete menu-driven disk system that comes with these additional features:
SEARCH BY INGREDIENT - Only have a pound of hamburger in the freezer? Let THE RECIPE BOX show you all the recipes that you have on file that use hamburger, or any other ingredient you choose. SEARCH BY CATEGORY/INGREDIENT combination of the above.
AUTOMATIC MEASUREMENT - THE RECIPE BOX will automatically scale up or down the amount of ingredients you need according to how many servings you want.
SCREEN OR PRINTED OUTPUT - Have printed copies to use in the kitchen or give to friends.
THE RECIPE BOX requires one disk drive and will run on a 5K VIC-20, Commodore 64. Please specify. Send check or money order for 21.95 to:

Aries Marketing Co.
P.O. Box 4196

4200 Shannon Drive Baltimore, MD 21205 MD residents add \(5 \%\) sales tax

\section*{Data base Management}

\section*{C= 64 Tape/Disk}
\(N \star\) Horizon Disk

\section*{TRS-80 Disk}

Define your own database; Add; Change; Delete; Print. Easy to use. Menu driven.
Only \(\$ 39.00\)
Melcomp
P.O. Box 1085

Melbourne, FL 32901


Manufactured by Aspen Ribbons, Inc. Buy direct from manufacturer \& save. Standard ink color is black. Red, green, blue, \& brown colors are available for \(\$ 2.00\) extra- nylon.
PRICES
\begin{tabular}{|c|c|}
\hline NEC \({ }^{*} 2000 / 3500\) & NEC \({ }^{\circledR}\) 2000/3500 \\
MS & Nylon \\
\(\$ 3.25\) to \(\$ 6.00\) ea. & \(\$ 4.75\) to \(\$ 9.00\) ea. \\
\hline
\end{tabular}

Price depends on quantity ordered.
CALL FOR FREE CATALOGUE.
-Aspen Ribbons, Inc. is not affiliated with any company mentioned in this ad.
Aspen Ribbons, Inc. 1700 N. 55th St Boulder. CO 80301-2796 (303)444-4054 Telex: 45-0055 End User: 800-525-0646 Wholesale: 800-525-9966


The low priced, high quality diskette with a LIFETIME WARRANTY. Packed in polybags of 10 with Tyvek envelopes, labels and reinforced hubs.
\(\begin{array}{ll}\text { One of the best buys we've seen. Lifetime warannty } \\ \frac{3 T 1}{\text { QTY. } 20} & 5^{\prime \prime} 1 / 4^{\prime \prime} \mathrm{DSDD} \text { ea. }\end{array}\)
DISKETTE 70-Holds \(705 \frac{1 / 4^{*}}{}\) diskettes in dust free safety
DISK CADDIES-Flip up style holds \(1051 /{ }^{\prime \prime}\) diskettes
\(\$ 1.65\) ea. + . 20 Shpng
Shipping: \(5 \frac{1}{4}\) " DISKETTES-Add \(\$ 3.00\) per 100 or fraction thereot. OTHER ITEMS: Shipping charges as shown in addition to diskette shipping charges. Payment: VISA or MC COD orders only, add \(\$ 3.00\). Taxes: illinois customers please add 8\%.

Nationwide: 1-800-621-6827
In Illinois: 1-312-944-2788
WE WILL BEAT ANY NATIONALLY ADVERTISED PRICEI
DISK WORLD:
Suite 4806 - 30 East Huron Street • Chicago, Illinois 60611

\section*{Advertisers Index}
Reader Service Number/ Advertiser ..... Page
102 Aardvark Action Software ..... 113
Abacus Software ..... 143
Abati LQ-20 Printer ..... 53
103 AB Computers ..... 127
Academy Software ..... 126
Aries Marketing Co. ..... 191
Artworx ..... 77
104 Aspen Ribbons, Inc. ..... 191
Atari, Inc. .....  4
105 Batteries Included ..... 31
106 Batteries Included ..... 43
107 Brady Communications, Inc. ..... 26.27
108 Cal-Abco/Peripherals Division ..... 95
CA.P. Software Inc. ..... 167
109 Cardco, Inc. ..... IBC
Cass-A-Tapes ..... 87
Commodore Computers ..... BC
110 Compucat ..... 191
Compu-Qutie Designs ..... 183
111 CompuServe .....  11
112 CompuServe ..... 75
ComputAbility ..... 149
The Computer Book Club ..... 99
113 Computer Mail Order ..... 186,187
114 ComputerMat ..... 135
115 Computer Outlet ..... 137
Computer Warehouse ..... 146
Cosmic Computers Unlimited ..... 125
Creative Software ..... 71
116 CTRL Health Software ..... 87
117 Datamost, Inc. ..... 69
DesignWare ..... 35
118 Disk World! ..... 131
119 Disk World! ..... 191
120 Disk World! ..... 191
121 Dymarc Industries, Inc. ..... 57
122 Eastern House ..... 122
Electronic Arts ..... 15
123 Elek-Tek Inc. ..... 131
Enchanted Forest ..... 190
Epyx ..... 39
Epyx ..... 41
French Silk ..... 72
Frontrunner Computer Industries ..... 122
Funsoft ..... 63
124 Futurehouse .....  7
Reader Service Number/ Advertiser Page
125 Gardner Computers Inc. ..... 167
126 Handic Software Inc. ..... 61
Happy Computers, Inc. ..... 190
127 Harmony Video \& Computers ..... 172
Hytec Systems ..... 51
128 IBM ..... 22,23
Indus Systems ..... 97
Jason-Ranheim ..... 152
129 Kalglo ..... 72
130 Krell Software Corp. ..... 81
Leading Edge Products, Inc. ..... IFC
131 Lyco Computer Marketing \& Consultants 188,189
(M) agreeable Software, Inc. ..... 191
Maxell ..... 19
Melcomp ..... 191
Micro-Sys Distributors ..... 129
132 Micro Ware ..... 72
Micro World Electronix, Inc ..... 119
133 Micro Worx ..... 115
Midwest Micro Inc. ..... 152
Mosaic Electronics, Inc. ..... 9
Muse Software ..... 55
134 Nibble Notch ..... 130
Pacific Exchanges ..... 173
Pacific Exchanges ..... 174
Pacific Exchanges ..... 175
Pacific Exchanges ..... 183
Parsec Research ..... 158
Powerbyte Software ..... 172
135 Precision Software, Inc. ..... 79
136 Professional Software Inc ..... 1
137 Protecto Enterprizes ..... 107
138 Protecto Enterprizes ..... 108,109
139 Protecto Enterprizes ..... 110,111
140 Reader's Digest ..... 47
Reston Computer Group ..... 17
Reston Computer Group ..... 21
Reston Software ..... 13
Reston Software ..... 25
141 Richvale Telecommunications ..... 83
142 SAVE ..... 158
Scholastic Wizware ..... 36,37
143 Screenplay ..... 67
SM Software Inc. ..... 144
SM Software Inc. ..... 144
Reader Service Number/ Advertiser PageSM Software Inc145
SM Software Inc. ..... 145
144 SoftPeople Inc. ..... 73
145 Softrent ..... 190
Software City ..... 119
Software Unlimited ..... 131
146 Sophisticated Software of America ..... 87
Spinnaker ..... 2,3
Strategic Simulations Inc. ..... 93
147 sublOGIC Corporation ..... 89
148 Such A Deal ..... 133
149 Systems Management Associates ..... 117
3-G Company, Inc. ..... 141
150 Timeworks, Inc ..... 59
Tri S/C Software ..... 191
Walling Co ..... 191
York 10 ..... 172
COMPUTE!'s GAZETIE BACK ISSUES ..... 183 ..... 65

\section*{COMPUTE'S \\ FREE Reader Information Service}

Use these cards to request FREE information about the products advertised in this issue.
Clearly print or type your full name and address. Only one card should be used per person. Circle the numbers that correspond to the key number appearing in the advertisers index.
Send in the card and the advertisers will receive your inquiry. Although every effort is made to insure that only advertisers wishing to provide product information have reader service numbers, COMPUTE! cannot be responsible if advertisers do not provide literature to readers.
Please use these cards only for subscribing or for requesting product information. Editorial and customer service inquiries should be addressed to: COMPUTE!, P.O. Box 5406, Greensboro, NC 27403. Check the expiration date on the card to insure proper handling.
Use these cards and this address only for COMPUTE!'s Reader Information Service. Do not send with payment in any form.

\section*{COMPUTE!}
\begin{tabular}{rrrrrrrrrrr}
101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 \\
112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 & 121 & 122 \\
123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 \\
134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 \\
145 & 146 & 147 & 148 & 149 & 150 & 151 & 152 & 153 & 154 & 155 \\
156 & 157 & 158 & 159 & 160 & 161 & 162 & 163 & 164 & 165 & 166 \\
167 & 168 & 169 & 170 & 171 & 172 & 173 & 174 & 175 & 176 & 177 \\
178 & 179 & 180 & 181 & 182 & 183 & 184 & 185 & 186 & 187 & 188 \\
189 & 190 & 191 & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 \\
200 & 201 & 202 & 203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 \\
211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 221 \\
222 & 223 & 224 & 225 & 226 & 227 & 228 & 229 & 230 & 231 & 232 \\
233 & 234 & 235 & 236 & 237 & 238 & 239 & 240 & 241 & 242 & 243 \\
244 & 245 & 246 & 247 & 248 & 249 & 250 & 251 & 252 & 253 & 254 \\
255 & 256 & 257 & 258 & 259 & 260 & 261 & 262 & 263 & 264 & 265 \\
266 & 267 & 268 & 269 & 270 & 271 & 272 & 273 & 274 & 275 & 276 \\
277 & 278 & 279 & 280 & 281 & 282 & 283 & 284 & 285 & 286 & 287 \\
288 & 289 & 290 & 291 & 292 & 293 & 294 & 295 & 296 & 297 & 298 \\
299 & 300 & 301 & 302 & 303 & 304 & 305 & 306 & 307 & 308 & 309 \\
310 & 311 & 312 & 313 & 314 & 315 & 316 & 317 & 318 & 319 & 320 \\
321 & 322 & 323 & 324 & 325 & 326 & 327 & 328 & 329 & 330 & 331 \\
332 & 333 & 334 & 335 & 336 & 337 & 338 & 339 & 340 & 341 & 342 \\
343 & 344 & 345 & 346 & 347 & 348 & 349 & 350 & & &
\end{tabular}

Circle 101 for a one year new U.S. subscription to COMPUTE: you will be billed for \$24.
Please print or type your full name and address Limit one card per person.
Name
Address
City
State/Province Zip

Country

\section*{COMPUTE!}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & \\
\hline 112 & 113 & 114 & 115 & 116 & 17 & 118 & 119 & 120 & 121 & 122 \\
\hline 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 \\
\hline 134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 \\
\hline 145 & 146 & 147 & 148 & 149 & 150 & 151 & 152 & 153 & 154 & \\
\hline 156 & 157 & 158 & 159 & 160 & 161 & 162 & 163 & 164 & 165 & 16 \\
\hline 167 & 168 & 169 & 170 & 171 & 172 & 173 & 174 & 175 & 176 & \\
\hline 178 & 179 & 180 & 181 & 182 & 183 & 184 & 185 & 186 & 187 & 188 \\
\hline 189 & 190 & 191 & 192 & 193 & 194 & 195 & 196 & 197 & & \\
\hline 200 & 201 & 202 & 203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 \\
\hline 211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 22 \\
\hline 222 & 223 & 224 & 225 & 226 & 22 & 228 & 229 & 230 & 231 & 23 \\
\hline 233 & 234 & 235 & 236 & 237 & 238 & 239 & 240 & 241 & 242 & \\
\hline 244 & 245 & 246 & 247 & 248 & 249 & 250 & 251 & 25 & 25 & 25 \\
\hline 255 & 256 & 257 & 258 & 259 & 260 & 201 & 262 & 263 & 20 & \\
\hline 266 & 267 & 268 & 269 & 270 & 271 & 272 & 273 & 274 & 2 & 27 \\
\hline 277 & 278 & 279 & 280 & 281 & 282 & 283 & 284 & 285 & & \\
\hline 288 & 289 & 290 & 291 & 292 & 293 & 294 & 295 & 29 & 207 & 29 \\
\hline 299 & 300 & 301 & 302 & 303 & 304 & 305 & 306 & 307 & 308 & \\
\hline 310 & 311 & 312 & 313 & 314 & 315 & 316 & 317 & 318 & 319 & 320 \\
\hline 321 & 322 & 323 & 324 & 325 & 326 & 327 & 328 & 329 & 330 & \\
\hline 332 & 333 & 334 & 335 & 336 & 337 & 338 & 339 & 340 & & \\
\hline 343 & 344 & 345 & 346 & 347 & 348 & 349 & 350 & & & \\
\hline
\end{tabular}

Circle 101 for a one year new U.S. subscription to COMPUTE: You will be billed for \$24.
Please print or type your full name and address. Limit one card per person.
Name
Address
City
\begin{tabular}{lll} 
State/Province & Zip & \\
\hline Country & \\
\hline Please include zip code. Expiration 7/31/84 & \(\mathrm{CO584}\)
\end{tabular}

\section*{COMPUTE!}
\begin{tabular}{rrrrrrrrrrr}
101 & 102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 \\
112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 & 121 & 122 \\
123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 \\
134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 \\
145 & 146 & 147 & 148 & 149 & 150 & 151 & 152 & 153 & 154 & 155 \\
156 & 157 & 158 & 159 & 160 & 161 & 162 & 163 & 164 & 165 & 166 \\
167 & 108 & 169 & 170 & 171 & 172 & 173 & 174 & 175 & 176 & 177 \\
178 & 179 & 180 & 181 & 182 & 183 & 184 & 185 & 186 & 187 & 188 \\
189 & 190 & 191 & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 \\
200 & 201 & 202 & 203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 \\
211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 221 \\
222 & 223 & 224 & 225 & 226 & 227 & 228 & 229 & 230 & 231 & 232 \\
233 & 234 & 235 & 236 & 237 & 238 & 239 & 240 & 241 & 242 & 243 \\
244 & 245 & 246 & 247 & 248 & 249 & 250 & 251 & 252 & 253 & 254 \\
255 & 256 & 257 & 258 & 259 & 260 & 261 & 262 & 263 & 264 & 265 \\
266 & 267 & 268 & 269 & 270 & 271 & 272 & 273 & 274 & 275 & 276 \\
277 & 278 & 279 & 280 & 281 & 282 & 283 & 284 & 285 & 286 & 287 \\
288 & 289 & 290 & 291 & 292 & 293 & 294 & 295 & 296 & 297 & 298 \\
299 & 300 & 301 & 302 & 303 & 304 & 305 & 306 & 307 & 308 & 309 \\
310 & 311 & 312 & 313 & 314 & 315 & 316 & 317 & 318 & 319 & 320 \\
321 & 322 & 323 & 324 & 325 & 326 & 327 & 328 & 329 & 330 & 331 \\
332 & 333 & 334 & 335 & 336 & 337 & 338 & 339 & 340 & 341 & 342 \\
343 & 344 & 345 & 346 & 347 & 348 & 349 & 350 & & &
\end{tabular}

Circle 101 for a one year new U.S. subscription to COMPUTE: you will be billed for \(\$ 24\).
Please print or type your full name and address. Limit one card per person.
Name
Address
City
State/Province
Zip

\section*{Country}



COMPUTEI Reader Service
P.O. Box 1177
Philadelphia, PA 19101

\title{
"Commodore-recay", . . . and ready for you NOW!
}

\section*{"Cardcorder" DC/1, Data Cassette Recorder/Player}

Introducing the "CARDCORDER", Model DC/1, the Computer Cassette that is "Commodore-ready," designed for storage and retrieval of computer data efficiently, economically; with consistent performance. Yet, this fine CARDCO product is priced lower than any similar product with special quality features.
Includes standard connector which is
"Commodore-ready"; LED "save" indicator light which confirms data recording on to the tape; handles up to 120 minutes ( 60 minutes on each side) of any standard tape including existing pre-recorded commercial as well as personal data tapes intended for use with Commodore Personal Computers; ready to go . . . just plug it in and record efficiently.
CARDCO's "CARDCORDER" COMPUTER
CASSETIE is a quality data cassette recorder/ player in an attractive polystyrene case, with all
the standard cassette functions: record . . . play . . . rewind . . . fast forward . . . stop and eject . . . pause. A solid-state designed product of the finest components with auto-stop.
The "CARDCORDER" DC/ 1 carries a 90 day warranty to original owners.

All CARDCO products are available at your local dealers.


\title{
Commodore
Magicpesk

Only From Commodore the magic of MAGIC DESK...the next generate, file and ed typuter the

\section*{ic Desk \\ as imply} \\ as imply}

Onlymodore brings yo Imagine t earning Just mo
of "user friendly" software! without lets and pap personal letters and minds are PICTURE to use like ready to go.

Your COMMODORE 64, CO. Filing operations to know any com manically saved on an unbeatable combina-but you don't have your text is an in each drawer and diskette. There are 3

CLOCK which helps you keep mistake! Just press
it's hard to make a mistake! to tell you
Not only is MAGIC DESK easy to use, of sever "help menus how the various picture
the COMMODORE Key and Special message make a mistake. Help messages wastebal
exactly what to do next.```


[^0]:    COMPUTE! welcomes questions, comments, or solutions to issues raised in this column. Write to: Readers' Feedback, COMPUTE! Magazine, P.O. Box 5406, Greensboro, NC 27403. COMPUTE! reserves the right to edit or abridge published letters.

