
 COMPUTE $\$ 2.50$ January, 1982 Issue 20
 Vol. 4, No. 1 63379
 The Journal For Progressive Computing"

INVEST:
 A Real Estate Analysis Program In BASIC

Apple Addresses: A Program To Cross Reference Addresses Between Languages

VIC-20

Color Tips

Cryptogram: A Code Game For Your Atari

Now Including Home And Educational COMPUTING!"

MOSSUSYSTEM"FROM MOUNTAN BORMUTER.

MusicSystem generates the sound of any musical instrument-real or imagined! Solo or sextet. Rock or classical. Laid-back or loud. At home, the concert hall, or the classroom. MusicSystem sets new standards for computer generated music.

- Works in your Apple ${ }^{@}$.
- Digital Synthesizer with 16 voices.
- Stereo output.
- Polyphonic-multivoice chords and note sequences.
- Additive synthesis of instruments.
- Waveforms are fully programmable for each voice to create instrument definitions and music dynamics.
- 35 Khz sample rate.
- Frequency resolution is .5 Hz steps.
- Graphical input of sheet music with a graphics printer.
- Complete software operating system.
- Graphical music editor using light pen (provided), game paddles, or keyboard.
- Pre-entered music provided for immediate playing and enjoyment.
- Thorough documentation and tutorial user's manual.

Drop by your Apple® Dealer and ask to hear "Mountain Music" for yourself.
NOW ONLY \$99500 suggested retail

300 El Pueblo, Scotts Valley, CA 95066
TWX: 910 598-4504 14081438-6650

[^0]

Everyone expected it would happen sooner or later. . . with WordPro PLUS ${ }^{\text {ww }}$ it already has! Now all the marvelous benefits of expensive and advanced word processing systems are available on Commodore computers, America's largest selling computer line. WordPro PLUS, when combined with the new 80 column CBM 8032, creates a word processing system comparable to virtually any other top quality word processor available-but at savings of thousands of dollars!

New, low cost computer technology is now available at a fraction of what you would expect to pay. This technology allowed Commodore to introduce the new and revolutionary CBM 8032 Computer.

WordPro PLUS turns this new CBM 8032 Computer into a sophisticated, time saving word processing tool. With WordPro PLUS, documents are displayed on the computer's screen. Editing and last minute revisions are simple and easy. No more lengthy re-typing sessions. Letters and documents are easily re-called from memory storage for editing or printing with final drafts printed perfectly at over five hundred words per minute!

Our nationwide team of professional dealers will show you how your office will benefit by using WordPro PLUS. At a price far less than you realize.

Invest in your office's future... Invest in WordPro PLUS...
Call us today for the name of the WordPro PLUS dealer nearest you.

Professional Software Inc.

 166 Crescent Road Needham, MA 02194 (617) 444-5224TELEX: 951579

TM WordPro is a Registered Trademark of Professional Software, Inc. WordPro was written by Steve Punter.

For the Commodore 8000

Now there is an interactive General Accounting System designed especially for the first time user. The user is led through each function by highlighted prompts explain-
ing the required input at each point. And all input requests are prompted with complete verification. Plus, a step-bystep instruction manual guides the user through the
program. The user prompts and the detailed manual make it virtually impossible for the first time user to get lost or to accidentally crash.

Accounts Receivable, Accounts Payable, Payroll and other programs. Also provides user customized financial statements. Up to 1000 accounts and up to 99 departments.

Series Computer System

Accounts Receivable

Invoices and Monthly Statements as well as Credit and Debit Memos. Accomodates full or partial payments. User sets finance charge rate and period. User also sets invoice aging reports and aging breaks. Invoices may be distributed among nine different General Ledger accounts with

Accounts Payable

Accounts Payable checks with full voucher detail. Detailed check register. Automatic application of Credit Memos. User sets invoice aging reports and aging breaks. Invoices may be dis-

Payroll

Payroll checks with full deductions and pay detail. Pays regular, overtime, holiday and piece work hours. Accommodates Weekly, Bi-Weekly, Semi-Monthly and Monthly employees. Up to eight miscellaneous deductions or payments per
automatic updating to the General Ledger. During invoice data entry the invoice is displayed on the screen and typed exactly as if in a typewriter. File capacity is 2000 minus number of customers multiplied by 1.4 . Five hundred customers allows room for 2100 invoices.

tributed among nine different General Ledger accounts with automatic updating to the General Ledger. File capacity is 2000 minus the number of vendors multiplied by two.

See your nearest Commodore dealer for a demonstration.

TASC. The Applesoft Compiler: If turns your Apple info a power fool.

Step up to speed. TASC, the Applesoft Compiler, converts a standard Applesoft BASIC program into super-fast machine code. By increasing program execution speed up to 20 times, Microsoft gives you a power tool for Applesoft BASIC programming.
Highest capacity available. TASC will compile and run larger programs than any other Applesoft Compiler. As a disk-based system, it doesn't require the simultaneous presence of compiler and program in memory. The memory you save allows you to compile significantly bigger programs.
Power without bulk. Code expansion of up to 100\% severely restricts other compilers. TASC's special code compression schemes typically limit code expansion to only 25%. You'll really appreciate that with complex programs or programs that utilize Apple's hi-res graphic pages.
More BASIC power. TASC's powerful new cornmands increase Applesoft BASIC programming capability. Chain with COMMON allows compiled programs to share variables, so a main menu
supports several programs in a single runtime environment. TASC's True Integer Arithmetic and Integer FOR ... NEXT capabilities maximize the execution speed of compiled programs. TASC's near total compatibility with Applesoft speeds compilation of existing programs with little or no modification. What about mistakes? You perfect your programs interactively with Applesoft. If something does slip by, TASC recovers from errors discovered in compilation and traps all runtime errors. It even permits graceful interruptions during compilation.
See for yourself. Ask for a demonstration of TASC at your Microsoft dealer. Discover the software package that turns your Apple into a power tool.

The Editor's Notes
Ask The Readers
Computers And Society
The Beginner's Page: Loops
Applications
INVEST
Developing A Business Algorithm
Anti-Hesitation Programming: A Tutorial On Arrays
How Random Are Sequences Of Random Numbers?
Telecommunications: Getting Outside The Computer
Robert Lock, Rich
Robert Lock, 10

Education
.. 76
Friends Of The Turtle
Learning With Computers
The Apple Gazette Glenn M. Kleiman And Mary M. Humphrey, 79

Apple Addresses
Bill Grimm 83
More Apple Hi-Res Shape Writer
Lower Case With Unmodified Apple
Chris Dupuy, 86
COMPUTE! Overview: Individual Tax Plan
Joseph Wrubel, 89
The Atari Gazette
98
..................................... 103
Cryptogram .. Ronald And Lynn Marcuse, 103
SuperFont
Word Search
Review: Screen Printer Interface (Version 2.0)
From Macrotronics
INSIGHT: Atari
The OSI Gazette
David D. Thornburg, 118 Bill Wilkinson, 120
....... 136
Part I: A Small Operating System: OS65D The Disk Routines T. R. Berger, 136
The PET Gazette
143
A Yuletide Tale
143
Renumbering An Appended Routine Only
BRANCH NEVER And QUIF Assembling On SuperPET
PET Repairs For The Amateur
Realtime Clock On Your PET Screen \qquad
Tape Load Test And Head Alignment .
\qquad
. Charles Brannon, 110
........... Bob Jones, 116

MICROMON: An Enhanced Machine Language Monitor
Self-Modifying Programs In BASIC \qquad R. Arthur Cochrane, 160

VIC-20 Update

 David Williams, 174TINYMON1: A Simple Monitor For The VIC
VIC Color Tips
VIC Memory Map Above Page Zero ZAP!!
CAPUTE! Corrections And AmplificationsNew Products
\qquad

Advertisers Index
 Advertisers Index

 1831 189COMPUTE! The Journal for Progressive Computing (USPS: 537250) is published 12 times each year by Small System Services, Inc., P.O. Box 5406, Greensboro, NC 27403 USA. Phone: (919) 275-9809. Editorial Offices are located at 625 Fulton Street, Greensboro, NC 27403.

Domestic Subscriptions: 12 issues, $\$ 20.00$. Send subscription orders or change of address (P.O. Form 3579) to Circulation Dept., COMPUTE! Magazine, 515 Abbott Drive, Broomall, PA 19008. Controlled circulation postage paid at Greensboro, NC 27403 and additional mailing offices. Entire contents copyright © 1981 by Small System Services, Inc. All Rights reserved. ISSN 0194-357X.

TOLL FREE Subscription Order Line 800-345-8112 In PA 800-662-2444

Introducing the premier award of the software industry.

the Atari Star

Win $\$ 25,000$ in cash, plus prizes and an ATARI STAR by entering your software in the ATARI ${ }^{\circ}$ ASAP competition.

ATARI is looking for some of the greatest software from the brightest stars in the software field. And naturally, we're willing to reward you for it .

Every three months, ATARI will be presenting ATARI STARS to the writers of software programs judged first, second and third place in the following categories: consumer (including entertainment, personal interest and develop. ment); education; home business (personal finance and record keeping); and system software. The decision of the ATARI judges is final.

Quarterly prizes will be from $\$ 750$ to $\$ 3,000$ worth* of selected

ATARI products and an ATARI STAR. The annual Grand Prize will be the coveted Super Star trophy and $\$ 25,000$ in cash.**

To be eligible, your software idea must be submitted to and published in the ATARI Program Exchange catalog. Submit your program on the official entry form which we'll rush to you if you send in the attached coupon.

The ATARI STAR Awards are in addition to the percentage of revenues you will automatically be entitled to as
a result of sales of your software programs in the ATARI Program Exchange.

If you're a star, ATARI wants to reward you. Send in the coupon today, or call toll-free 800-538-1862,

For more contest details, call 800-5381862, in California 800-672-1850.
Send to: ATARI Software Acquisition Program, 1196 Borregas, P.O. Box 427, Sunnyvale, CA 94086 Yes, I want to enter the ATARI ASAP competition. Please rush me my entry form.
Name
Address
City
State/Zip

We've Brought The Computer Age Home."

Staff of COMPUTE!

Robert C. Lock, Publisher/Editor Kathleen Martinek, Managing Editor Richard Mansfield, Assistant Editor Alice S. Wolfe, Publisher's Assistant Georgia Papadopoulos, Art Director/ Production Manager
Harry Blair, Director, Advertising Sales/ Promotion
Terry Cash, Typesetting/Production Assistant
De Potter, Production Assistant
Dai Rees, Production Assistant
Kate Taylor, Production Assistant
Charles Brannon, Editorial Assistant
Sonja Whitesell, Dealer Coordinator
Bonnie Valentino, Accounting Coordinator
Fran Lyons, Circulation Coordinator

Associate Editors

Jim Butterfield, Toronto, Canada Harvey Herman, Greensboro, NC

Contributing Editors

Marvin DeJong, Dept. of Mathematics
-Physics, The School of the Ozarks
Pt. Lookout, MD 65726
Eric Rehnke, 1067 Jadestone Lane,
Corona, CA 91720
David Thronburg, P.O. Box 1317,
Los Altos, CA 94022
Bill Wilkinson, Optimized Systems
Software, 10379-C Lansdale, Ave.
Cupertino, CA 95014
Gene Zumchak, 1700 Niagara St.,
Buffalo, NY 14207

Subscription Information
 (12 Issue Year):
 COMPUTE! Circulation Dept.
 515 Abbott Drive
 Broomall, PA 19008 USA

U.S. \$20.00

Canada \$25.00 (U.S. funds)
Europe: Surface Subscription, \$25.00
(U.S. funds)

```
TOLL FREE
Subscription Order Line 800-345-8112 In PA 800.662-2444
```

Canadian Retail Dealers should contact: Micron Distributing
409 Queen Street West
Toronto, Ontario M5V 2A5
416-361-0690

Advertising Sales

If you're in Oklahoma, Texas or the
Western States, we're now represented by Phoebe Thompson and Associates. Give them a call for space reservations, contract/insertion information or questions.You can reach them through the following office:
Phoebe Thompson and Associates
101 Church Street
Suite 13
Los Gatos, CA 95030
408-354-5553
PHOEBE THOMPSON
If you're in the East, we're now represented by The Gittleman Company.
You can reach them through the following offices:
New England, New York State:

The Gittleman Company

Statler Office Building
Suite 582
20 Providence Street
Boston, MA 02110
617-451-0822
JOAN DONAHUE

The Gittleman Company

Summit Office Centre
7622 Summit Avenue
Fort Washington, PA 19034
215-646-5700
DOUG JOHNSON
New York City Metro Area,
Mid-Atlantic and Southeastern States: Local Numbers:
New York 212-567-6717
Atlanta 404-523-1252
If you're in the Midwest, we're now
represented by GB \& Associates. You can reach them through the office of:

GB \& Associates

P.O. Box 335

Libertyville, IL 60048
312-362-1821
GORDON BENSON

COMPUTE! Home Office Contacts

Advertising Sales Manager, Harry Blair Advertising/Production Coordinator, Alice S. Wolfe

Address all advertising materials to:
625 Fulton Street
Greensboro, NC 27403 USA
Mailing address: COMPUTE!
Post Office Box 5406
Greensboro, NC 27403 USA
Telephone: 919-275-9809

Authors of manuscripts warrant that all materials submitted to COMPUTE! are original materials with full ownership rights resident in said authors. By submitting articles to COMPUTE!, authors acknowledge that such materials, upon acceptance for publication, become the exclusive property of Small System Services, Inc. No portion of this magazine may be reproduced in any form without written permission from the publisher. Entire contents copyright © 1981, Small System Services, Inc. Rights to programs developed and submitted En authors are explained in our author contract. Unsolicited materials not accepted for publication in
 COMPUTEI will be returned if author provides a self-addressed, stamped envelope. Program listings should typed copy (upper and lower case, please) with double spacing. Each page of your article should bear the title of the article, date and name of the author. COMPUTE! assumes no liability for errors in articles or advertisements. Opinions expressed by authors are not necessarily those of COMPUTE!
PET is a trademark of Commodore Business Machines, Inc.
PET is a trademark of Commodore Business Machines,
Apple is a trademark of Apple Computer Company.
ATARI is a trademark of Atari, Inc.

Small System Services, Inc. publishes:

COMPUTE
 The Journal For Progressive Computing

COMPUTE!Books

Robert C. Lock, President
W. Jerry Day, Corporate Comptroller
Kathleen Martinek, Assistant To The President
Ellen Day, Accounting Manager
Carol Holmquist Lock, Research Assistant

Corporate offices are located at 625 Fulton Street,
Greensboro, NC 27403 USA

COMPUTE! Subscription Rates

US

$$
\$ 20
$$

(one yr.)

Canada and
Foreign Surface Mail
\$25
Air
Europe, US Possessions
\$38
Middle East, Central America and North Africa \$48
South America, South
Africa, Far East and Australia
\$88

Coming In The
 February Issue of COMPUTE!:

Insurance Inventory:
A Daiabase Program For Household Insurance Inventories
Transposition:
Mathematically
Transpose Musical Compositions

VIC- 20 Secrets

And Much, Much More...

POWER produces a dramatic improvement in the ease of editing BASIC on Commodore's computers. POWER is a programmer's utility package (in a 4 K ROM) that contains a series of new commands and BASIC Interpreter. Designed for the CBM BASIC user, POWER contains special editing, programming, and software debugging tools not found in any other microcomputer BASIC. POWER is easy to use and is sold complete with a full operator's manual written by Jim Butterfield.
POWER's special keyboard 'instant action' features and additional commands make up for, and go beyond the limitations of CBM BASIC. The added features include auto line numbering, tracing, single stepping through programs, line renumbering, and definition of keys as BASIC keywords. POWER even includes
new "stick-on" keycap labels. The cursor movement keys are enhanced by the addition of auto-repeat and text searching functions are added to help ease program modification. Cursor UP and cursor DOWN produce previous and next lines of source code. COMPLETE BASIC program listings in memory can be displayed on the screen and scrolled in either direction. POWER is a must for every serious CBM user.

Call us today, for the name of the Professional Software dealer nearest you.

Professional Software Inc.
166 Crescent Road
Needham, MA 02194
Tel: (617) 444-5224 Telex \#951579

Robert C. Lock

 Publisher/Editor
Injunctions, Injunctions, And More Injunctions Atari, Inc., Goes To War

And I'm not talking about the popular Eastern Front WW II simulation, either. If you picked up a computer magazine recently, you couldn't help. noticing the full-page software piracy ads Atari Personal Computer Systems has been running everywhere. Atari has been moving quickly and quietly against major and minor software vendors whose products step on the toes of Atari arcade games.

One vendor on the West coast, recently losing a round of injunctions and counter-injunctions, serves as a case in point. The popular game, developed by the vendor from "scratch" for the Atari computer, mirrors in part a very successful Atari arcade game. Does Atari, Inc. have the software out for the personal computers? Well no, but that's not the point. In spite of the fact that the computer version of the game is significantly expanded, quite original in coding (there was none before this version), and rumored to be a real pleasure, the current state of software law appears to side with Atari ... at least it did at the end of the current round of claims. The visual image and theme of the game are decidedly Atari's, thus we end up with protection based to some extent on concept. Pure and simple.

Let The Vendor Beware

The way we hear it, Atari informed these vendors that they would have to stop the sale or distribution of this software. The vendors pointed out that they had developed the game and its program code originally, etc... To no avail, it turned out; Atari obtained an injunction to halt distribution. The vendors asked Atari to license the game to them, thus generating royalties for Atari, and permitting the vendors to pursue sale and distribution. Atari said no, but did apparently ask the vendors if they would consider developing a version of the game for Atari! Predictably enough, the vendors declined, and went to court, obtaining an injunction allowing sale and distribution. Whereupon, Atari went back and emerged victorious, for the moment, quashing that injunction (I believe that was Round 2 ?), and obtaining the one that's currently in force
(Round 3?).

Then Linda Turned To John And ...

First of all, I fully support Atari's right to protect their proprietary software. That principle has to be firmly embedded in the computer industry to allow it to grow and nurture even more exciting future growth. But there does seem to be a grey area here which needs to be more fully explored. I suspect, with this recent flurry of legal activity, that the screen is becoming cloudy, as it were. I assume no one is arguing whether this game is original, unique program code. I assume no one argues that it took months to develop, perfect, refine, and yes, enhance.

So, we're back to concept, visual image, style of presentation... Would it have made any difference if the imagery had been uniquely different? Can it be? I mean there are only so many ways to program an arcade style game on a 10 or 12 inch screen. One begins with chasers and chasees, and proceeds from there. The general form is that chasers have sophisticated weaponry, and grow more sophisticated as the game progresses (we call these "skill levels"). Chasees have various means of fighting back. And that, with allowance for creative variation, is the backbone of computer-based gaming, arcade style.

At this point in the analysis, we're several stages removed from actual program code. Its uniqueness has become moot for the moment. In this case there is no computer software to check against the twice-released game. Atari hasn't developed it yet. If the existing game is a direct "copy" of the Atari arcade game, I would guess they'll end up the winners, and software vendors will be a bit wiser for it.

Let The Good Times Scroll

Here's the danger of it ... depending on the tightness of court interpretations of this portion of the fight, we're leery of ending up in a situation so broadly defined it defeats "competitive" gaming. Given that we're arguing concepts and imagery, rather than written program code and precisely comparable listings, a broad interpretation of the rights to "player-missile graphics" would cripple the software industry, leaving access to a few. Those few, at this point, would be the companies currently holding the reins on the arcade market. Two biggies, by the way, are Atari and Commodore. Com-

Right for the time. Finally someone invented an RS-232C compatible calendar/clock system, complete with 6 -digit display .. and selling for only $\$ 249$. Hayes did it!

Introducing the Hayes Stack Chronograph, the newest addition to the Hayes Stack microcomputer component series. It allows your computer to accurately record all of your system activities by date and time ... down to the second. Thanks to a battery back-up system, you never have to reset the time when your computer is off, and it will keep on ticking even when there's a power failure. A writeprotect switch prevents accidental

Sayes
Stack
Microcomputer Component Systems
changing of day, date or time.
Right for the job. The Hayes Stack Chronograph is ideal for any home or business application requiring accurate timekeeping. Use it for timing everything from lights, burglar alarms, or sprinkler systems ...to sending mail electronically (with the Hayes Stack auto-dial Smartmodem and your computer) ...logging and recording reports or time-sharing access time...
and batching all your messages to send at night, when rates are lowest. Chronograph helps do it all.

And Chronograph stacks

 up. Keep your computer system up-to-date with the Hayes stackables, including the RS-232C compatible Smartmodem, the most sophisticated 300 -baud originate/ answer modem you can buy. And yet, it's probably the easiest to use too.The Hayes Stack Chronograph and Smartmodem are available wherever fine computer products are sold. It's time. And it's now.

The Hayes Stack Chronograph. There's no better time.

modore, you see, has the right to produce all Bally arcade games for the new VIC-20.

We're confident the courts would not allow a TV producer to claim proprietary rights to "soap operas," police shows, or westerns. Let's hope the situation that's just now shaping up in the computer gaming industry will avoid the same undue constraints, while protecting the rights of all.

An Apology, And A New Year

Our 1982 production schedule is finalized and, as you should discover with this issue, we're back on schedule. You should be receiving your magazine around the first of the cover date month (or perhaps a bit earlier). That's the way we want it. Never quite wishing to bow to the needs of newsstand distribution overseas, we don't see much point in sending you the February issue in December. We'll stay on this schedule now, our production department is rolling along, and COMPUTE! grows on. And, oh yes, the next time we schedule publication of a book, we'll know whereof we speak when we calculate our production time! Thanks for your patience.

Best wishes for a happy and productive New Year from all of us at COR^{2} PUTE!

Matbematics, Basic Skills
 Paper Exercises in Arithmetic
 For use with
 -PET/CBM Computer \& Printer plus
 Compatible Disk System

The Teacher's Aide

Computer programs designed for use by the classroom teacher as a primary source of exercises in mathematics, basic skills. Through simple question and answer, and with the use of only one computer system, a teacher may satisfy all individualized, inclass and bomework requirements for drill in arithmetic. Students work directly upon exercise sheets. Difficulty level is easily adjustable. Answers are always provided. 23 programs included, covering integers, decimals, fractions, percent and much more.

On Disk $\$ 99.99$

Algebra

Explicitly Produced Exercises in Algebra

Sixteen programs in linear and fractional equations, simultaneous equations, quadratics, signed and complex number arithmetic.

On Disk \$99.99

(Arizona residents please add 4% sales tax:) Please add 51.50 for postage and bandling.

T'Aide Software Company

 P.O. Box 65El Mirage, Arizona 85335

With the Hayes direct-connect Micromodem IITM your Apple II can communicate by phone with the outside world. You can access information networks like The Source for a variety of business and personal applications, exchange programs with friends anywhere in North America, and even use your Apple II when you're away from your home or office.

Dependable. The

 Micromodem II is so dependable it comes with a two-year limited
warranty, That's another reason why it's the largest selling directconnect modem for Apple II computers.

Programmable.

 Automatic dialing and answering? Of course! We include programs on disk that dial phone numbers for you,sendmessages while you're away, andmuchmore! Complete. You get everything you need to communicate with other Bell 103 compatible modems at 110 or 300 baud. The serial interface
is built-in, and we even include our FCC-approved Microcoupler ${ }^{\text {M }}$ that plugs directly into any modular telephone jack in the U.S. you don't even need the phone!

S-100, too. The Hayes Micromodem 100 gives S-100 microcomputers all the advantages of our Micromodem II!

Put the outside world inside your computer with a data communications system from Hayes. Available at computer stores nationwide - call or write for the location nearest you. And don't settle for anything less than Hayes.

The Hayes Micromodem II opens up your Apple II to the outside world.

Ask The Readers

Robert Lock, Richard Mansfield And Readers

If you have any questions (or answers to the questions printed below) please write to: Ask The Readers, COMPUTE! Magazine, P.O. Box 5406, Greensboro, NC 27403.

Answers

"There is a small design flaw in the way that Commodore BASIC chains between programs. The flaw is small, but, will result in certain strings disappearing (and being replaced by a string of BASIC tokens).

Strings defined in a program as a constant (i.e. $A \$=$ "Hello") are not allocated space in RAM. The pointer to that string points back into the program to the line containing the literal. This is normally fine, but when the program chains into another program, the string pointers now point to some piece of your new program. Now what?

The solution is to not use any strings assigned as a constant. The assignment above should be replaced by $A \$=$ "Hello" + " ". The null concatenation insures that BASIC will copy the string to RAM somewhere, and it will still exist after chaining to the next routine. Please note that DATA statements count as constants in this context. Use READ A\$:A\$=A\$+"" to copy the string to upper RAM.

This is all wasteful if you do not chain to other routines, or if you don't use the old variables in the new routine, but be careful. Certain tokens (like RETURN) will redefine the character set or window size, a real problem if you don't realize why it happened."

Michael Schaffer
"I would like to respond to the question raised in "Ask The Readers," COMPUTE! \#16, regarding the future of the 6502. I keep hoping some manufacturer will do a 16 bit version of the $6502 \ldots$ as good as the 6809 seems to be, it is still a traumatic switch for those who have cut their teeth on the 6502, to say nothing of the software and hardware investment in the 6502 machines. To me, this shift to the 6809 seems more like a lateral - rather than a forward-looking move for the future.

If I must switch, my choice would be to opt for a 16 bit machine such as the 68000. Then my present 6502 unit would become a smart terminal to access the power of the 16 bit unit. In the interim, maybe some clever and enterprising reader will create a dual (parallel operation?) 6502 machine to emulate 16 bit operation.

I believe that if there must be a change (and there will be, as progress demands) then COMPUTE! magazine will demonstrate immeasurable foresight by choosing to lead the way into the 16 bit personal computer world. Dr. Charles DeSantis
"I have been following the discussions about 'software piracy' in various publications and I am quite impressed, with the arguments about 'protection' vs. 'backupability.' I'm in favor of the backupists in general. As the King of Siam is reputed to have said, 'Is a puzzlement!'

I kind of hate to do this, but all of the discussion so far has left out one other part of the problem. I have a PET 2001 with Upgrade ROM. There is a lot of good software out there for the Apple, Atari, and others that I can't just LOAD and RUN. Say I have a friend with an Apple. He bought a $\$ 200$ program that I covet. If I convert it to PET and use it, I'm a pirate? I certainly won't buy it unconverted and, after all that work, I'm in no mood to pay the producer... After all, he ignored me! I don't know the answer to this searing, burning question either, but I thought I could stir the pot with it.

I'm looking forward to the articles about the 2.1 and 2.5 DOS. Let me throw in one thing that I've learned the hard way. COPYDO TO D1 doesn't work in DOS 2.5 unless both disks have the same ID! During the copy sequence, if the next source program is cataloged on a different Directory block, you get DISK ID ERROR. In partial answer to M.J. Band, the U3 through U9 commands access RAM locations where you can put disk control programs of your own. If you knew the disk environment. The possibilities are fascinating! For instance, a sort routine could be put in there which would presort the output of your file while the PET did other work. Or maybe one that would recognize only $C H R \$(13)$ as a delimiter so you wouldn't have to use all those GETs to recover ordinary text with commas in it. (Make that delimiter an option, I have a program that doesn't put RETURNS at the end of a line, just CHR\$(29)s at the beginning. It's in ROM, I can't fix it.)"
R. Vanderbilt Foster

Questions

"I had read that you may double your disk's holding capacity by cutting out the proper notches on the backside of your disk's envelope. So, I grabbed my Wabash single density disks, a scissor and went snipping away. Several problems arose after trying to use the backsides on my Atari 810 disk drive. First I received many 144 errors (device done) while formatting the disk under DOS 2.0S, but successful (I thought) under DOS 1. My second problem occurred when I failed to be able to copy any files to disk. I had the speed and head pressure adjusted but still no luck."

Thomas M. Krischan

JINSAM

Data Manager selected by NASA, Kennedy Space Center

SAVE TIME! SAVE MONEY! JINSAM saves taxpayers 100 's of thousands of \$

"Much more powerful than you can imagine!"

Robert Baker Kilobaud Microcomputing

JINSAM is an integrated system. It makes it easy to use your information to its fullest. No more will hundreds of valuable hours be spent searching or analyzing needed information nor re-entering information for various reports.

JINSAM transforms your desk-top computer into the "state of the art" data processing machine with features and accessories found nowhere, even at 10 times the price. NASA, Kennedy Space Center selected JINSAM 8.0 and saved approximately $\$ 95,000$ over other software/hardware costs. Riley County, Kansas also selected JINSAM 8.0 and saved approximately $\$ 90,000$ over other software/hardware costs.

JINSAM is designed for you. It is forgiving. It has help commands for every option, available at the touch of a button. The amount of information you store, its structure and/or your hardware can change but your data won't have to be re-entered. Recovery utilites are included even for catastrophes, security passwords are built in for privacy, simple editing and entry includes auto recall, and deleting records is easy and the space is reclaimed. JINSAM includes TWO FREE accessories for reports and labels. You have unlimited report formats with summing and lined up decimals and the label printer prints up to 5 across - any size and even allows single envelopes or index cards.

JINSAM 1.0 allows fast and easy file handling, manipulation and report generation for any CBM computer with CBM 2040 disk drive. It features a menu for ease, has encrypted passwords, 3 deep sorts, .5 to 3 second recall.

JINSAM 4.0 for CBM 4000 series adds JINSORT, user accessible machine sort of 1000 records in 15 seconds; compaction/expansion of information, automatic list maintainance, unlimited - number of fields, unlimited record length and much more.

JINSAM 8.0 for CBM 8000 series has all 4.0 features plus unlimited sort, horizontal format, and search by key or record number.

JINSAM 8.2, NEW FOR ' 82 expands 8.0 capabilities by adding information search by word, key or record number and machine language print, format and manipulation routines.

* CUSTOM DATA FILES * CUSTOM REPORTS/LABELS * KEYED RANDOM ACCESS * FAST/EASY/MENU DRIVEN * MULTIPLE SEARCH KEYS * PRIVACY ACCESS CODES * WILD CARD SEARCH

JINSAM EXECUTIVE version (soon to be released) is our most powerful professional system for the CBM 8000 and 9000 series. Executive will have 8.2 extended features plus allow multiple users with in-use lockout protection, executive command files, automatic math relations, join, merge or link files, greatly increased record capacity and machine information search by word, as well as by key or record number and many, many more features.
There are currently 7 more interfacing modules and more under development, including independent interfaces between JINSAM and business pack, ages for your $G / L, A / R, A / P$ needs. We announce the availability of modules and enhancements in JINSAM's quarterly newsletter.

WORDPROPACK - Intelligent interface for WordPro $3,3+, 4,4+$, creates lists of information from JINSAM files. It allows up to 10 conditions based on each item of information. Produce individualized letters, report cards, special reports, checks, invoices, etc.
MULTI-LABEL - Prints multiple labels per record with up to 2 lines for messages and consecutive numbering. Produce inventory, caution labels, bulk mail labels, etc.

MATHPACK - global calculator/editor,+ , *, /, by another field or constant; null (remove contents) of a field or replace contents of a field with any word, number or phrase. Sum multiple fields in each record or running sum of single field in all records. Extract information or effect permanent change. Replace in the same field or place in a waiting field.
DESCRIPTIVE STATPACK - Determine MEAN, MEDIAN, MODE, STANDARD DEVIATION, VARIANCE, RANGE. Generate HISTOGRAMS from 1 to 25 steps, and produce Z-SCORE reports.

ADVANCED STATPACK - (You must also acquire DESCRIPTIVE STATPACK) Generate one, two or three way CROSSTABS (number of occurance) CHI SQUARE, LINEAR REGRESSION, with graphic representation and prediction, LINEAR CORRELATION and SIMPLE ANALYSIS OF VARIANCE.
CALCPACK - 2 way interface to VisiCale or any user program. It lets you use VisiCalc for complex manipulation, editing, placing results in JINSAM for sorting, storing or moving data to WordPro as well as giving the ability for exchange with your own applications.
INTERAC - Interface which can read VisiCalc files, WordPro files and almost any sequential files
to build JINSAM databases automatically. For example: You could "download" information on holerith cards to sequential files and INTERAC would place them into JINSAM files.
All accessories are accessed thru the JINSAM menu and require security password to gain entrance.
JINSAM gives you FREEDOM OF CHOICE.
Start with JINSAM 1.0 and upgrade hardware and data at any time. Choose from accessories at any time. The JINSAM Newsletter brings the latest updates, user input and uses and keeps an eye on the future.
JINSAM stands alone by placing "a lot of potential computing power in one integrated program package" (Fred Klein, Ferson div. of Bausch \& Lomb). "The JINSAM package is justification for buying a system no matter what the hardware, be it Vector or Commodore or whatever the system" (Larry Colvin, Micro Computer Systems). It is a "grandfather" in this young field. JINSAM EXECUTIVE will be the third generation in development. All JINSAM systems are sophisticated and flexible yet easy to use. JINSAM is saving its users valuable time and money in government, educational and research institutions, business and industry worldwide.

JINSAM is a Commodore approved product. See your local dealer for a demonstration.

JINSAM is a trademark of JINI MICRO-SYSTEMS, Inc. WordPro is a trademark of Professional Software, Inc. VisiCalc is a trademark of Professional Software, Inc. CBM is a trademark of Commodore Business Machines, Inc.

JINSAM Data Manager

Additional Information and nearest dealer Newsletter Subscription (\$5 US/\$8 Worldwide) JINSAM Demo Disk (\$15, plus shipping \& tax) User's Guide ($\$ 40.00$, plus shipping \& tax)

Please send to
Name
Position \qquad
Company
Address
City, State, Zip
Phone ()
Computer, Disk
Application

JINI MICRO-SYSTEMS, Inc.
Box 274C • Kingsbridge Station Riverdale, New York 10463
(212) 796-6200

Dealer Inquiry Welcome

Although it is possible, in theory, to record on both sides of ordinary disks, it is not a good idea. Some disks are designed to be "double-sided" and provisions are made to thicken and strengthen the disk so that the recordings on each side will not interfere with one another. "Print-through," where the information being magnetized on one side also appears on the second side, can obviously play havoc with whatever was already on the second side.

In addition, disk surfaces are so delicate that a single cigarette ash, floating onto the disk, can render it useless. This would suggest that cutting holes in the outer envelope might deform the surface, or worse. One final drawback: attached to the inner surface of the envelope is a soft, textured fabric designed to trap any stray particles and keep them off the disk surface. Using the opposite disk side causes it to spin in the opposite direction, dislodging and redepositing any foreign matter back onto the surface.
> "This is first and foremost a great big thank you letter. Thank you for existing so that numbskulls like me have a place to turn to in their ignorance.

> Last winter I wrote another computer magazine a letter deploring the dearth of PET material in their columns. Almost as soon as the issue with my letter in it hit the post-boxes, I was inundated by letters from helpful guys (especially Jim Butterfield) who turned me on to you all. Thank goodness! Wish I had the time to thank each of them individually.

> One big cloud still hangs over my head though. Why does everybody have to be so much smarter than I? Acronyms fly all over the place in everything I read. And a body would think that you all were more at home inside your PET than you are in your own living rooms. When I open up my 2001, I'm lucky if I can tell back from front! Is there any way short of becoming an electronics wizard for us above referenced numbskulls to get to know what you all are talking so glibly about? Tell me please, how do I get to address \$A000 from here?

> A kind word which you may wish to pass on to your advertisers is this: If you want us numbskulls to buy your products, stop writing your ads in shorthand!"
> J. Paul Morris

We strive to provide articles and programs which are clearly written and easily utilized by all readers. Nevertheless, computer terms are confusing and new ones are added every year. One solution is to buy a dictionary of microcomputer terms - most bookstores carry several. From time to time, we reprint glossaries and we include a number of articles each month which are, essentially, tutorial. Also, "The Beginner's Page" explores a different
subject each month (this month it's loops) with extensive definitions of terms and example programs. Finally, "Ask The Readers" itself has become a popular forum for the exchange of information.
"How can you get access to all 48 K of memory in a 48 K Atari? Is it possible to write a self-booting program (somehow) which doesn't need to use a cartridge at all? Or is there a way to remove the cartridge while in DOS, load the object code in binary form, and execute it directly?" Rick Grosckiewicz

When you remove the cartridge from a 48 K Atari, the top 8 K is accessible as RAM, but without a programming language, how do you use it? You can use 6502 "machine language" in which programs can be written to "boot" (automatically load) in when the computer is turned on. They can be in the form of a cassette boot (see "SHOOT," COMPUTE! \# 16) or with DOS as an AUTORUN.SYS file. Commercial software such as Microsoft BASIC, Visicalc, or BASIC A + all can use this extra RAM. There is more information on this in the DOS Manuals and in COMPUTE!'s Atari Gazette.
"I would like to know where I can get a list of furniture manufacturers who make desks to house my Atari 800 and peripherals."

Robert Fersch

> Having trouble learning to use your computer?
Reference manuals don't teach. Most BASIC texts don't cover specific personal computers.
TIS solves these problems with step-by-step books tailored for your machine.
For PET/CBM
Understanding Your PET/CBM \$16.95
Vol 1: Basic Programming
PET Graphics
For OSI CIP/C4P
Understanding Your C1P/C4P............ \$ 9.95
A Workbook of BASIC Exercises
For VIC
Understanding Your VIC \$13.95
Vol. 1: Basic Programming
Money Back Guarantee. VISA/MC accepted.
All prices include UPS or 1st Class postage.
TIS inc
Total Information Services, Inc.
Box 92l, Dept. C
Los Alamos, NM 87544

Computers

 SocietyDavid D. Thornburg
Innovision
Los Altos, CA

Further Ramblings On The Mind ...

When I first started reading Douglas Hofstadter's book, Goedel, Escher and Bach, I thought I would be lucky to finish reading it by 1990. While the book is fascinating and I pick it up from time to time, I have had to set it aside for more pressing matters. It was thus with some trepidation that I bought a copy of The Mind's I, a recently published book (Basic Books) by Douglas Hofstadter and Daniel Dennett.

Hofstadter's field is artificial intelligence, and Dennett's is philosophy. Dennett recently published a collection of his essays on epistemology (Brainstorms, Philosophical Essays on Mind and Psychology, MIT Press). It appeared that these two powerhouse thinkers decided to collaborate on a book which covered an area of immense interest to each of them - the nature of the mind.

At first glance, Mind's I appears to be a collection of articles from various sources, each of which deals with one perspective on the concept of the mind. Hofstadter's and Dennett's notes after each article provide a cohesive framework which helps the book hang together. For example, Alan Turing's landmark article "Computing Machinery and Intelligence," in which the famous Turing test is described, is followed by "The Turing Test: A Coffeehouse Conversation," an article Hofstadter first published in Scientific American.

The Turing Test

Turing's test, in its simplest form, has an experimenter sitting at two terminals - one of which is connected to a computer and the other of which is connected to a similar terminal manned by another human being. The experimenter is free to direct questions through each terminal and is supposed
to deduce, from the responses, which terminal is connected to the computer. Turing suggested that if the experimenter is not able to do this reliably, then we can say that the computer is, in fact, thinking.

he concentrates in the idea that the mind is an intentional system ...

In Hofstadter's article, the issue is raised as to whether a good simulation of thinking is the same thing as thinking itself. This theme recurrs several times in the book and is not easily answered.

The collection of articles in this book cover the concept of the mind from a multitude of approaches. Hofstadter and Dennett provide a balanced picture. The strict reductionist view of life and mind resulting from a seething molecular soup in which small units, accidentally formed, are subjected to fierce competition for resources with which to replicate, is presented by an excerpt from Richard Dawkin's book, The Selfish Gene. A more mysterious quality for the mind is suggested by Harold Morowitz's article "Rediscovering the Mind" which first appeared in Psychology Today. One cannot help but be struck by the tremendous diversity of opinion expressed in this book. There is something to please and infuriate any reader, regardless of his or her philosophical leanings.

The function of this book is less to present a particular view than to raise the level of conversation about the topic. After all, it is senseless to ask if machines can think when we have yet to agree on just what thinking or consciousness is.

Dennett's book, Brainstorms, has a different goal. The collection of essays in this book are designed to elucidate Dennett's own philosophical view of the mind - a view which is aided by the experimental evidence being accumulated in many fields. His theory differs from other models in important ways. The physical model of the mind, for example, implies that when two creatures have the same thought in common (e.g., the belief that snow is white), then they have something physical in common too (their brains are in the same physical state). This is extremely unlikely, as Dennett points out.

Intentional Systems

His theory does not deny the possibility of a correspondence between mental and physical states. Instead he concentrates on the idea that the mind is an intentional system - one whose behaviour can, at least sometimes, be explained and predicted by treating it as though it had beliefs and desires.

If one looks only at external views of the system, it is logical to ask if this model applies to machines as well as to human minds. Consider a computer programmed to play chess. One can examine this system from three perspectives. By taking the design stance, one can predict the game's behavior by knowing the details of the computer and its program. As long as the system behaves as programmed, predictions made from this analysis will be true. This stance is most useful when dealing with simple systems (strike a match and it will light). The physical stance bases predictions on the actual physical state of the system, and then uses the laws of nature to predict what will happen next. This approach is most difficult to apply to a machine as complex as a digital computer.

Chess playing computers are practically inaccessible to prediction from either the design or physical stance. Even their own designers would have a hard time describing these machine's be-
havior from the design stance. The best strategy for someone playing against such a machine is to treat it as if it followed the rules and goals of chess. One assumes that the computer will both function as designed and that it will "choose" the most optimal move.

This attribution of rationality to the system is the cornerstone of the intentional stance. One predicts behavior in such systems by assuming them to possess certain information and to be directed by certain goals. This ascription of beliefs and desires to machines appears to suggest that machines are capable of "thought."

The aspect of Dennett's argument which I find most appealing is its reluctance to tackle thought on a microscopic scale. As long as he is able to deduce the characteristics of a system from its behavior, he is unlikely to get much criticism from any of us who feel that it is nonsense to suggest that machines are capable of what we, as humans, would call consciousness or thought.

Both The Mind's I and Brainstorms are fascinating books. You should approach them cautiously - they are not light reading. You might decide that the real issue is not whether machines are capable of thought, but just what constitutes thought in the first place.

NOW COMMODORE TALKS. AND LISTENS.

COGNIVOX VIO-1002 is a speech recognition and voice output peripheral for Commodore computers. It offers state-of-the-art capabilities with pleasant sounding natural voice output and recognition performance equal to that of units costing many times more. Its capabilities, the very affordable price and its variety of uses makes it a "must have" peripheral.

Many uses

With COGNIVOX your imagination is not the limit, as the saying goes. It is the starting point. Use if for data entry when the hands and/or eyes are busy. As an educational tool. As an aid to the handicapped. Or as a foreign language translator, a sound effects generator, a telephone dialing device, an answering machine, a talking calculalor or clock. Use it in conjunction with the IEEE 488 port to control by voice instruments, plotters, test systems. And all these devices can talk back to you telling you their readings, alarm conditions, even their names. Or use it with a BSR controller interface (see Compute, Oct. 81) to control by voice lights and appliances in the house.

Some specifications.
COGNIVOX can be trained to recognize words or short phrases drawn from a vocabulary of up to 32 entries chosen by the user. To train COGNIVOX to your vocabulary, all you have to do is repeat the entries three times at the prompting of the computer. The voice output vocabulary can also have up to 32 words or phrases of your choice. Data rate is approximately 700 bytes per word. Vocabularies can be stored and recalled from disk, giving in effect unlimited selection of entries.

COGNIVOX VIO-1002 will work with all Commodore computers (old, new and newer ROMs) with at least 16 K of RAM. It comes complete with assembled and tested hardware in a quality instrument case, speaker/amplifier, power supply, microphone, cassette with software and detailed user manual.

Easy to use

All you need to get COGNIVOX up and running is to plug it in the user port and load one of the programs supplied. Load the demon program and start talking to your computer right away. Or load one of the games and discover the magic of voice control.

It is easy to write your own talking and listening programs too. A single statement in BASIC is all that you need to say or to recognize a word. Full instructions on how to do it are given in the manual.

Order your COGNIVOX now.

To order by mail send us a check or money order for $\$ 249$ plus $\$ 5$ shipping and handling (CA residents add 6% tax). You may also order by phone and charge it to your VISA or MASTERCARI). Call us at (805) 685-1854, 9AM to 5PM, PST, M-F. Foreign orders are welorme, please add 10% for air mail shipping and handling.

P.O. Box 388, Goleta, CA 93116

1982 will find more OEM's, businesses, dealers and personal computer users turning to MICROTEK than ever before.

80 Column Dot Matrix Printer

 (Formerly BYTEWRITER-1)The Tekwriter-1 printer is, dollar for dollar, the finest value in the industry. And we've proved it by comparing the Tekwriter-1 to the Epson MX-80. Our print speed is 14 lines per minute faster, our life expectancy is longer, the character sets are the same, and the interface, warranty and printhead replacement cost are all identical.* But the biggest difference is the price. The Tekwriter-1 is about $\$ 300$ less.

Our extensive testing has proved that the Tekwriter-1 interfaces problem-free to the TRS-80, the Apple II and the Atari 400 and 800.
The Tekwriter-1 is tough to beat for performance and quality.
-Data Source: Epson MX-800 Operation Manual

TckWriter-2

NEW! 80/132 Column Dot Mattix Printer

The Tekwriter-2 is perfectly suited to personal, business or OEM applications. Tekwriter-2 is designed to accept single sheet, roll or pin feed paper. It has a 9 -wire dot matrix impact print head which produces crisp characters and has underlining capability. The printer is manufactured to run extremely quietly even while operating at peak output levels.

Tekwriter-2 is especially well suited to handle an abundance of text entry because of its data buffer expansion capability to 25 K . This ability makes it an efficient graphics generator.

Parallel interface (Centronics type). Interfaces all models of TRS-80, Apple, and Atari 400/800, and most computers with
Centronics printer interface.
\$695

Peripherals

16K Memory Board, AMB-16 16K 4116 RAM (200NS)

- Assembled and tested • No modifications - hardware or soffware - Compatible with Atari 800
32K Memory Board, AMB-32
32K 4116 RAM
(200NS) • Assembled and tested - No modifications hardware or software Compatible with Atari 400/800

Atari (RS-232) Serial

Printer Cable
Pre-tested 3^{\prime} length \cdot DB15 to DB25 connectors

Atari Parallel Printer Cable

Pre-tested • 3 ' length • Centronics compatible •DB15 to Amphenol 57-30360
16K Apple Memory Card Expands Apple II to 64K RAM memory. Works with MICROSOFT Z-80 Softcard, Apple PASCAL and Visicalc software.

Quantity and OEM discounts available.
Continuing our quest for excellence.

TRS-80 is a trademark of Radio Shack, Inc.
Apple II is a trademark of Apple Computer, Inc.
Atari 400/800 are trademarks of Atari, Inc.
Microsoft is a trademark of Microsoft Consumer Products, Inc.
Z-80 is a trademark of Zilog, Inc.
Visicalc is a trademark of Personal Software, Inc.

MICROTEK

9514 Chesapeake Drive
San Diego, CA 92123
(714) 278-0633

Outside CA call
Toll Free (800) 854-1081
TWX. 910-335-1269

The Beginner's Page Loops

Richard Mansfield
Assistant Editor

You'll hear the term algorithm from time to time. It merely means a procedure, a way of getting something done. For example, let's assume that your programming becomes so impressive that you decide to start a software business. You want to generate a list of possible names for your new venture and then pick out the best one. You could make a list yourself, but you are a programmer and you have a computer which could make your list in a jiffy. All you need to figure out is the algorithm: the steps your computer needs to follow to create the list. Most algorithms, especially for jobs involving lists, use loops.

First put all your favorite words about software into a table of DATA statements. This will give the computer something from which to make its list. Then, you use a nested loop to combine the data in all possible ways.

Loop Forms

The loop is one of the primary ways that a computer does its work: FOR $I=1$ TO 10. (Do something. Print the variable I, for example). NEXT I. This structure means: as long as I is still between 1 and 10 , print I on the screen. Raise the value of I by one (NEXT I) and loop (jump back to the FOR statement which will check to see if I is still within bounds). We, ourselves, loop every day (and we ask others to loop for us), but we don't think of it as looping. If you were about to make a list (by hand), you might start off by taking a sheet of paper and writing down the numbers 1.2.3. etc. along one side. This is precisely the loop in our example above.

Another common loop form is "please find me the map; it's in that pile." (FOR I = 1 TO 50: IF X $\$(\mathrm{I})=$ "MAP" THEN PRINT "HERE IT IS.": NEXT I) Of course, when you use the "IF" structure, you cannot put NEXT I on the same line. If you did, the NEXT part would only loop IF $\mathrm{X} \$(\mathrm{I})=$ "MAP." Anything following IF is governed by that IF and will not be carried out unless the IF comes true.
"Will you please wait two seconds before telling me your name?" (FOR I = 1 TO 2000: NEXT I: PRINT "MY NAME IS COMPUTER.") This is called a delay loop because the computer does nothing between the FOR and the NEXT. It just
waits until it counts to 2000 which takes about two seconds.

Nesting

If you put a loop within a loop, the inner one is called a nested loop. "Ask all six people in this room what their three favorite foods are." (FOR I = 1 TO 6: FOR J = 1 TO 3: PRINT "WHAT'S A FAVORITE FOOD OF YOURS?": NEXT J: NEXT I) It's easiest to grasp nested loops by working from the inner loop out. The J loop is asking the question three times before it transfers the control back to its master loop I. The total number of loopings (iterations is the technical term) will be 18 (I'siterations multiplied by J's).

Why do we use I for our counting variables in loops? It's just conventional. It must have once meant increments or iterations or index, but that hardly matters. It is convenient because you can then remember never to use I elsewhere in your programs for other variables - I is always your master loop variable. Then, logically, it is common practice to use J for a nested loop within the I loop. Also, for timing delay loops, it is a good habit to reserve the variable T as we did above. T, of course, stands for Time. It is not used anywhere else in programs (for the same reasons).

Picking A Company Name

Our algorithm for listing possible company names is a nested loop. We picked eight adjectives we liked and came up with seven nouns. This means we have two lists which we want to combine into one list. We put the adjectives and nouns into their own separate DATA lines and READ them into two arrays. An array is a table or list - a grouping of items which are somehow related to each other so we want them stored together under the same name. In this case we set up two string arrays: ADJECTIVE\$ \# 1 through \#8 and NOUN\$ \# 1 through \#7. The loop in line 120 hangs unique tags on each word in the DATA statement as it reads and memorizes each item. For example, when it READs "super" it tags it with the variable name ADJECTIVE\$(2). If you finished RUNning the program and directly asked the computer ? ADJECTIVE\$(5) it would print "QUALITY." For information on string arrays on the Atari see COMPUTE! \# 11 pg. 103 and COMPUTE! \# 16 pg. 36.

Knowing that putting a noun before an adjective usually results in nonsense (apple red) we decided to refine our list of potential names for our company by only permitting adjectives to modify nouns. This means we want to list a noun and go through all eight possible adjectives for it before listing the next noun. This is very like asking six people to name three favorite foods.

The nesting is in lines 140 to 180 . Notice that

Our High Quality Software Is More Than A Stroke Of Genius... It's A Work Of Art.

- PM EDITOR: by Dennis Zander (Atari, 16 K)

Create your own fast action graphics game for the Atari 400 or 800 using its player missile graphics features. By using player data stored as strings, players can be moved or changed (for animation) at machine language speed. All this is done with string variables ($\mathrm{PO} \$(\mathrm{Y})=\mathrm{SHIP4}$). This program is designed to permit creation of up to 4 players on the screen, store them as string data and then immediately try them out in the demo game included in the program. instructions for use in your own game are included. PM EDITOR was used to create the animated characters in ARTWORX RINGSOF THE EMPIRE and ENCOUNTERAT OUESTARIV. PRICE
$\mathbf{\$ 2 9 . 9 5}$ cassette $\mathbf{\$ 3 3 . 9 5}$ diskette
\square ROCKET RAIDERS by Richard Petersen (Atari 24 K)
Defend your asteroid base against pulsar bombs, roc kets, lasers, and the dreaded "stealth saucer" as aliens attempt to penetrate your protective force field. Precise target sighting allows you to fire at the enemy using mag. netic impulse missiles to help protect your colony and its vital structures
PRICE
$\mathbf{\$ 1 9 . 9 5}$ cassette $\mathbf{\$ 2 3 . 9 5}$ diskette

- INTRUDER ALERT! by Dennis Zander (Atari, 16K)

This is a fast paced action game in which you must escape from the "Dreadstar with the secret plans your ship in order to escape If you fail the rebellion your ship in order to escape. If you fail, the rebellion

- THE RINGS OF THE EMPIRE: by Dennis Zander
(Atari 16 K)
The Empire has developed a series of battle stations protected by one or more rings of energy. You must des troy these weapons by attacking them in your Y-wing blast through with Zydon torpedoes. Each station the Empire develops a news station with more protective rings PRICE $\mathbf{\$ 1 6 . 9 5}$ cassette $\mathbf{\$ 2 0 . 9 5}$ diskette
- FOREST FIRE!: by Richard Petersen (Atari, 24 K) Using excellent color graphics, your Atari is turned in to a fire scanner to heip you direct operations to contain a forest fire. You must compensate for changes in wind, weather and terrain. Not protecting valuable property can result in startling penalties. Life-like variables make FOREST FIRE a very suspenseful and challenging simu lation. PRICE $\$ 16.95$ cassette $\mathbf{\$ 2 0 . 9 5}$ diskette
- PILOT: by Michael Piro (Atari, 16K)

Pilot your small airplane to a successful landing using both joysticks to control throttle and attack angle. PILOT produces a true perspective rendition of the runway pilot proficiency. PRICE
$\mathbf{\$ 1 6 . 9 5}$ cassette $\mathbf{\$ 2 0 . 9 5}$ diskette
\square ALPHA FIGHTER: by Douglas McFarland (Atari, 16K) Consisting of two different programs, ALPHA FIGHTER requires you to destroy the alien starships. As you and harder. PRICE $\$ 14.95$ cassette $\$ 18.95$ diskette

GIANT SLALOM: by Dennis Zander (Atari, 16K)
Bring the Winter Olympics to your computer anytime of the year! Use the joystick to guide your skier's path
down a giant slalom course consisting of closed gates choose course consisting of difficulty. Take practice runs or compete against from two to eight additional skiers
PRICE
$\$ 15.95$ cassette $\$ 19.95$ diskette

- HODGE PODGE: by Marsha Meredith
(Apple 48K, Applesoft or Integer BASIC) This captivating program is a marvelous learning device or children from 18 months to 6 years. HODGE PODGE consists of many cartoons, animations and songs which appear when any key on the computer is depressed. A must for any family containing young children and an Apple.
PRICE
$\$ 19.95$ diskette
\square STUD POKER: by Jerry White (Atari, 16K)
This is the classic gambler's card game. You will find the computer to be a worthy opponent who occasionally Atari's sound color and Srab PRICE
$\mathbf{\$ 1 4 . 9 5}$ Cassette $\mathbf{\$ 1 8 . 9 5}$ diskette

ARTWORX is offering the fantastic TYPE- N-TALK'* from Vortrax*. This easy-to-use unit connects to your computer's serial port. Text is automatically translated into electronic speech enabling the TYPE-'N-TALK'" hobbyist to use and enjoy it immediately PRICE
\$329.00

The following ARTWORX programs are available for TYPE-N-TALK
STUD POKER (Atari,24K)
$\$ 16.95$ cassette
520.95 diskette

TEACHER'S PET (Atari, 24 K ; North Star) $\$ 16.95 / \mathbf{2 0}$ / $\mathbf{\$ 1}$. BRIDGE 2.0 (Atari, 24K;North Star) ... \$19.95/\$23.95 NOMINOES JIGSAW (Atari, 24K) \$17.95 / \$21.95 Please specify "TNT" version when ordering programs.
\square CRANSTON MANOR ADVENTURE: by Larry Ledden (Atari, North Star and CP/M) You must enter mysterious Cranston Manor and attemp to collect its many treasures. This extemely challenging program will provide you with many hours (days?) of
adventure. The program may be interrupted at will and adventure. The program may be in your sta
\$21.95 diskette

- BLOCKADE: by Edward Schneider (Atari, 16K)

Every games library needs Blockade program, and this is one of the best. Choose from three levels of diffi culty and play against another person or by yourself against the clock
PRICE
$\$ 14.95$ cassette $\$ 18.95$ diskette
QTEACHER'S PET: by Arthur Walsh (Atari, Apple, TRS.80,PET, North Star and CP/M (MBASIC) systems) ing tool for the young computerist (ages 3.7) The pro ing tool for the young computerist ager 3 . The pro gram provides counting practice, PRICE
$\$ 14.95$ cassette $\$ 18.95$ diskette

- FORM LETTER SYSTEM: (Atari, North Star and Apple)

This is the ideal program for creating personalized form letters!' FLS employs a simple.to-use text editor for pro ducing fully justified letters. Addresses are stored in a separate file and are automatically inserted into your form letter along with a personalized salutation. Both letter files and address files are compatible with ART. WORX MAIL LIST 3.0 and TEXT EDITOR programs PRICE
$\$ 39.95$ diskette

- TEXT EDITOR: (Atari and North Star)

This program is very user friendly yet employs all essential features needed for serious text editing with minimal memory requirements. Features include com mon sense operation, two different justification techni ques. automatic line centering and straightforward text merging and manipulation. TEXT EDITOR files are compatible with ARTWORX FORM LETTER SYSTEM. PRICE
\$39.95 diskette

MAIL LIST 3.0: (Atari, Apple and North Star)
The very popular MAIL LIST 2.2 has now been up graded. Version 3.0 offers enhanced editing capabilities ocomplement the many other features which have made this program so popular. MAIL LIST is unique in its diskette store a maximum number of addresses on one diskette (typically between 1200 and 2500 names!.) Entries can be retrieved by name, keyword(s) or by zip codes. They can be written to a printer or to another ie os complete file management. The program produces 1,2 or 3 -up address labels and will sort by zip code (5 or 9 digits) or alphabetically (by last name). Files delete duplicate entries! The address files created with MAIL LIST are completely compatible with ARTWORX FORM LETTER SYSTEM. PRICE
$\$ 49.95$ diskette
\square THE VAULTS OF ZURICH: by Felix and Ted Herlihy
(Atari, $24 \mathrm{~K}, \mathrm{PET}$)
Zurich is the banking capital of the world. The rich and powerful deposit their wealth in its famed impregnable vaults. But you, as a master thief, have dared to undertake the boidest heist of the century. You will journey down a maze of corridors and vaults, eluding the most sophisticated security system in the world. Your goal is to reach the Chairman's Chamber to steal the most trea sured possession of all: THE OPEC OIL DEEDS! PRICE $\$ 21.95$ cassette $\mathbf{\$ 2 5 . 9 5}$ diskette
BRIDGE 2.0 by Arthur Walsh (Atari (24K), Apple TRS. 80. PET, North Star and CP/M (MBASIC) systems) Rated \#1 by Creative Computing, BRIDGE 2.0 is the only program that allows you to both bid for the contract and play out the hand (on defense or offense!). Interesting hands may be replayed using the "duplicate" bridge feature. This is certainly an ideal way to finally learn to play bridge or to get into a game when no other (human) players are available.
PRICE
$\mathbf{\$ 1 7 . 9 5}$ cassette $\mathbf{\$ 2 1 . 9 5}$ diskette

- ENCOUNTER AT QUESTAR IV: by Douglas McFarland (Atari, 24 K) As helmsman of Rikar starship, you must detend Questar Sector IV from the dreaded Zentarians. Using Zentarian mines and death phasers, you struggle to stay alive. This BASIC/Assembly level program has super sound full player missile graphics and real time action. PRICE $\mathbf{\$ 2 3 . 9 5}$ cassette $\mathbf{\$ 2 7 . 9 5}$ diskette

THE NOMINOES JIGSAW PUZZLE:
by C. Minns/B. Brownlee (Atari, 24 K , TRS 80 , and Apple) We quote. "A brainteaser supreme. . the concept of NOMINOES JIGSAW is brillant. . . this video jigsaw zarne is so clever and completely original that only ed."-ELECTRONIC GAMES MAGAZINE
PRICE $\$ 17.95$ cassette (also available for TRS. 80 color computer) \$21.95 diskette

A Highest Quality
 Software*, Guaranteed.

150 North Main Street Fairport, NY 14450 (716) 425-2833

masce charye 800-828-6573 In New York. Alaska. Hawaii call: (716).425-2833 All orders are processed and shipped within 48 hours.
 Shipping and handling charges:

Within North America: Add\$2.00
Outside North America: Add 10\% (Air Mail)
New York State residents add 7\% sales tax
Quantity Discounts:
Write for FREE Catalogue listing more information about these and other Ask for ARTWORX at your local computer store. quality ARTWORX programs.
the NEXT J will always loop back to line 150 until the FOR J condition (count up to eight) is satisfied. Then the program will execute the NEXT I.

Can we nest at even deeper levels? Sure. Typing a new line: 165 FOR T=1 TO 2000: NEXT T will provide a short delay loop between each item as it appears on the screen. Could we see the list backwards? Change two lines: 140 FOR $\mathrm{I}=7$ TO 1 STEP -1 and: 150 FOR J $=8$ TO 1 STEP -1. Every other name? 150 FOR J = 1 TO 8 STEP 2. Only names beginning with the letter A ? 155 IF LEFT\$ (ADJECTIVE\$(J),1) <> "A" THEN GOTO 170. (For Atari: 165 IF ADJECTIVE\$(J*20-19,J*20-19 く> "A" THEN 180)

As you can see, all kinds of choices, refinements, or modifications are possible within loops by merely changing a few instructions to the machine. The combination of loops and branches (lines starting with IF or ON) coupled with the computer's great speed (you try to count from one to 2000 in two seconds) is the essence of the great power of computers.

```
Microsoft Version
I\emptyset\emptyset DATA SUPER,ACME,AMERICAN,RAINBO
        W,QUALITY,INTERGALACTIC,RE
        LIABLE,FOOLPROOF
11\emptyset DATA PROGRAMS,SOFTWARE,COMPUTER
    WARE,CODE,LISTINGS,INFORMA
    TION,MAGIC
12\emptyset FOR I = l TO 8: READ ADJECTIVE$
        (I): NEXT I
130 FOR I = 1 TO 7: READ NOUN$(I):
    NEXT I
140 FOR I = 1 TO 7
150 FOR J = 1 TO 8
160 PRINT ADJECTIVE$(J)" "NOUN$(I)
170 NEXT J
180 NEXT I
```


Atari Version

160 DATA SUPER, ACME, AHERICAN, RAINE LITY, INTEFGGLACTIC, REL IAELE, FOOLPR 110 DATHA FROGRAMIS, SOFTWARE, COMPUTE CODE, LISTINGS. IFFORMATION, HAGIC
 Fま (20) LI (6) L2 (7)
130 FOR $I=1$ TO $8:$ READ TEIF $\$$: ADJECT
 I
140 FOR $I=1$ TO 7 : FEAO TEMF: : HOUN W
 $150 \mathrm{FOR} \mathrm{I}=1$ TO 7
160 FOR $J=1$ TO 8
170 FRINT ADJECTINE $\$(J-1)$ *20 +1 , (\downarrow

(I)

1801 HEXT I
190 HEXT I

Every PET Needs a Friend.

CURSOR is the best friend your Commodore PET will ever have. Since July, 1978 we have published 150 of the most user-friendly programs for the PET available anywhere. When we write or edit a program, we spend lots of time fussing about how it will treat you. We pay attention to lots of little things that help make using a computer a pleasure instead of a pain.
Naturally, CURSOR programs are technically excellent. Each program that we purchase is extensively edited or rewritten by a professional programmer. But imagination is just as important as being user-friendly and technically good! We delight in bringing you off-beat, unusual programs that "show off" the abilities of your PET or CBM.
CURSOR is user-friendly, technically great and full of imaginative programs. And every issue of CURSOR is still available! We continue to upgrade previously published programs so that they'll work on the three varieties of Commodore ROM's (Old, New, and 4.0). New issues also work on the 80 column CBM.
For only $\$ 4.95$ you can buy a sample issue and judge for yourself. Or send $\$ 18$ for a four-issue subscription. Each CURSOR comes to you as a C-30 cassette with five programs and a graphic Front Cover, ready to LOAD and RUN on your PET.
Who knows? After your PET meets CURSOR, things may never be the same!

AUTHORIZED DISTRIBUTORS:

Great Britain
AUDIOGENIC, Ltd.
P.O. Box 88 Reading, Berkshire Holland COPYTRONICS Bergemeester Van Suchtelenstraat 46 7413 XP Deventer

Japan
SYSTEMS FORMULATE CORP. Shin-Makicho Bldg. 1-8-17 Yaesu, Chuo-ku, Tokyo 103

Australasia

MICROCOMPUTER HOUSE, LTD. 133 Regent Street Chippendale, Sydney

$\overline{\text { THECODE }}$ WORKS

Box 550
Goleta, CA 93116 805-683-1585

It's Here! The Computer Strategy Game with Bounce!

abstract strategy game designed exclusively for the computer owner... is both. And loads of fun.

You maneuver your blocks, both to protect your own goal from attack and to hit your opponent's goal. Two launchers to fire. Your shots ricochet off the blocks, earning you points on the way to their targets. It's twice as challenging because the position changes with both your own and your opponent's moves and shots.

You don't have to play alone, either. Play against any one of four different opponents (each a different personality) inside your computer, or against another human.

And Ricochet is truly competitive... if you want it to be. A "smart clock" lets you put more pressure on your opponent by forcing him to play faster than you. But you've got to win two out of three (or three out of five) games to claim victory. Your computer rates you after each match, so you can compare your mastery of the game with that of other players-perfect for tournament play. So perfect that MIND TOYS and Automated simulations are sponsoring the first national Ricochet tournament. See your local dealer to find out how you can become a regional or national champion.

Price $\$ 19.95$

INVEST

Gregory R. Glau
P.O. Box 1627
Prescott, AZ 86302

Editor's Note: Program 1 is the Microsoft version. Program 2 contains the lines which should be changed to permit "INVEST" to run on the Atari. Lines 1200014999 are the printer routine and might need slight modifications for different printers. For the Atari, change all PRINTs to LPRINT and remove the TAB statements. - RTM

Other than having a place to live, there's only one reason to buy real estate: to make money.

INVEST will give you a head start if you're considering this unique investment medium. It'll show you how real estate leverage, inflation, and rent income will all add up to put real cash into your pocket: if you make the right investment decisions.

And once you find some properties to consider, INVEST will detail the benefits to you, to aid you in making that right decision.

You may have heard lots of stories about real estate - many are true! - about how you can buy property for little or no cash down, and then let your wonderful tenants pay for the property for you! About how the government allows a real tax break for real estate investors (called depreciation) which will put cold cash into your pocket come tax time. And, these days, depreciation works a double advantage for us because, while we're allowed to depreciate the property on our tax returns, the building is actually increasing in value every day often as much as 15 or 20% in a year's time.

Stocks and bonds and gold and jewelry simply can't match this.

There are four areas which give you a return on your realty investment: cash flow, equity buildup, asset appreciation, and tax savings.

The whole purpose of INVEST is to let you figure, by changing the data, exactly what an investment will do for you and detail that information for all four factors (cash flow, appreciation, etc.). Then it's your job to find some properties and use INVEST to help you determine which is the best for you!

Learning The Vocabulary

Cash flow is simply what's left after you collect your rents and then make the payments, pay any expenses, etc. For instance, if your rents (for, say, a
duplex you want to buy) are $\$ 500$ per month, you'll have a total income of $\$ 6000$ per year ($\$ 500$ per month x 12 months).

If your monthly payments and expenses total $\$ 400$ per month, you'll have a yearly cost of $\$ 4800$ ($\$ 400$ per month x 12 months). This will give you a positive cash flow of $\$ 1200$ per year ($\$ 6000$ collected less the $\$ 4800$ spent).

Sometimes, particularly with an investment which has a low down payment, you could have a negative cash flow. For instance, if your payments plus expenses ran $\$ 7000$ per year, you'd be $\$ 1000$ in the hole at the end of the year ($\$ 6000$ collected less $\$ 7000$ spent equals a minus $\$ 1000$). This isn't always bad, as we'll see in a moment.

Equity buildup is the second area where you get a return on your investment. As you make the payments on the property, part of the payment goes for interest, and part for principal. At the start, this interest section eats up most of the payment and, as time passes, the part devoted to principal gets larger and larger.

Note that this is not cash which you'll get as you do when you collect the rents. It's like a savings account - you'll get this part of your investment when you sell the property, because each part of your payment that goes against the principal reduces what you owe on the property.

For instance, if you bought a $\$ 100,000$ fourplex with $\$ 10,000$ down, you'd have to borrow $\$ 90,000$. If you sold it to me tomorrow for, say, $\$ 120,000$, you'd come out of the deal with a $\$ 20,000$ profit, right?

However, say you held it for a year and then sold it for the same price. At the end of the year, your payments would have reduced the amount you owed on the property - the actual reduction would depend on the interest rate and length of the loan. But let's say that it, the principal, had been reduced $\$ 5,000$ over the course of that year. Now, you'd end up with $\$ 25,000$ (instead of the $\$ 20,000$ above) - while the extra $\$ 5,000$ is not profit, it does come back to you, just as if you'd put it into a savings account.

1st example:	
Selling price	$\mathbf{\$ 1 2 0 , 0 0 0}$
still owe	$-90,000$
down payment	$-10,000$
cash	$\mathbf{2 0 , 0 0 0}$
(all profit)	

$\left.\begin{array}{lrl}\text { 2nd example (hold the property for a year): } \\ \begin{array}{lrl}\text { selling price } \\ \text { still owe }\end{array} & \mathbf{\$ 1 2 0 , 0 0 0}\end{array} \quad \begin{array}{l}\text { remember-our pay- } \\ \text { ments have reduced the } \\ \text { principal from } \$ 90,000 \\ \text { down to } \$ 85,000\end{array}\right\}$

It's time Your Computer stopped just playing games

and started doing some work around the house!

Let Creative Software’s home programs turn your ATARI® or VIC® into a really useful household appliance-the results may well amaze you!

TITLE	ATARI 400/800	VIC (cassette only)
- Household Finance.	34.95 cassette 39.95 disk	34.95
- Home Inventory	19.95 cassette 24.95 disk	14.95
- Car Costs	19.95 cassette 24.95 disk	14.95

CREATIVE
 SOFTWARE

201 San Antonio Circle, \#270 Mountain View, CA 94040
(415) 948-9595

Ask about our many other recreational and home applications! TO ORDER: VISA/MasterCard, check or money order accepted. If charge, please include expiration date of card. Add $\$ 1.50$ for shipping and handling. Calif. residents add sales tax.

Of this, $\$ 20,000$ is your profit and $\$ 5,000$ represents a return to you of your equity just as if you'd saved this money in a bank. And each payment you make (actually it's those wonderful tenants who make the payments for you, right?) increases the equity, your ownership, in the property.

The third way you get a return on your investment is through asset appreciation. This is the amount a building increases in value because of rising prices, inflation. In many cases in recent years, income property has gone up in value faster than the rate of inflation.

And, as you may already know, there are two types of inflation: normal inflation and forced inflation. But even if normal inflation slows down and don't bet that it will - you can use forced inflation ... fixing up a property to make it rent for more, thus making it worth more.

Perhaps you could buy a property for, say, $\$ 65,000$ and with some paint and carpeting and cleaning increase its value to $\$ 75,000$. And, of course, you can always combine the two types of inflation, and really increase the return on your investment.

Finally, tax savings is the fourth method of return on a real estate investment. Tax savings stems from depreciation, the concept that everything wears out and thus, at some time in the future, it will have to be replaced. The Congress of the US has recognized this fact, particularly in regard to investment real estate, and allows the owner of such property to depreciate a part of the building and of its contents each year (just as if he took X amount of cash and put it into a bank) to help pay for the replacement cost of the building or contents.

Depreciation is based on what accountants call "useful" life, and varies on a building with its age, condition, etc. An old building might have a "useful life" of only 10 or 12 years, while a new structure might be expected to last 30 years.

The actual length for depreciation for any particular property must be determined by your accountant.

Obviously, the shorter the "useful life," the more depreciation you can take per year, and the more the tax savings will be.

For instance, let's picture that you bought (or want to buy) a triplex which will cost you $\$ 100,000$. First, we have to deduct the value of the land land cannot be depreciated, it doesn't wear out. Let's say that you figure, from tax records and property comparisons, that the land value is about 15% of the total purchase price. This means the land cost was $\$ 15,000$ (15% of $\$ 100,000$). Deducting this from the purchase price of $\$ 100,000$, you now have $\$ 85,000$ left.

Now, the carpeting drapes, appliances, and so
on will wear out faster than the building, so you're allowed a faster rate of depreciation on these items. Again, ask your accountant. In INVEST, we figure that about half the value of the furnishings are in items that have a three year "useful life" for depreciation, and then about half the value is in items that would have a seven year "useful life," so we've taken them and lumped them together, and figured an average of a five year useful life.

In this example, if you have furnishings worth 5% of the value of the property, you'd have furnishings worth $\$ 5,000$ (5% of $\$ 100,000$).

So, you deduct the value of the furnishings $(\$ 5,000)$ from the net property value (after the land has been removed) of $\$ 85,000$, which gives you a net building value of $\$ 80,000$.

Let's further assume that your accountant tells you that this building has a "useful life" of 20 years.

Now, to figure the depreciation: you have an $\$ 80,000$ building, with a life of 20 years...you simply divide the value by the years, to get a per-year amount for depreciation. $\$ 80,000$ divided by 20 years equals $\$ 4,000$ per year. This is the amount of depreciation per year allowed on this building.

INVEST takes things a step farther, by asking you how many months this year you'll own this property. It will then give you two displays and printouts - one for this year, the number of months you'll own the property, and then for next year, which is figured at a full twelve months. Obviously, if you're buying the building in June, you wouldn't own it for a full year, so INVEST automatically will calculate the exact depreciation (and tax savings) for the part of the year you'll actually own the property.

Added to the building depreciation is the depreciation you're allowed on its contents. Remember that we had $\$ 5,000$ worth of carpeting, drapes, appliances, and so on. We're using an "average useful life" of five years, so we divide the amount of $\$ 5,000$ by five years, for an allowable depreciation of $\$ 1,000$ per year on the building's contents.

Total depreciation, then, is the building depreciation of $\$ 4,000$ per year plus the contents depreciation of $\$ 1,000 \ldots$ for a total of $\$ 5,000$ per year.

The Tax Savings

This is the amount you can deduct from your income tax. To figure your tax savings (how much less you'll have to pay in taxes, or how much cash they'll send back to you), multiply your tax bracket by the amount of depreciation.

For example, if you're in the 30% tax bracket, you'd save 30% of $\$ 5,000$ depreciation, or $\$ 1,500$ on your taxes.

Not from Commodore!

So why should the desk look like wood? A pleasant cream and charcoal trimmed desk looks so much better with Commodore systems. One look and you'll see. Interlink desks are right. By design.

The specifications only confirm the obvious:

-Cream and charcoal color beautifully matches the Commodore hardware and blends with your decor.
-An ideal 710 mm (28") keyboard height yet no bumping knees because a clever cutout recesses the computer into the desk. top.

- High pressure laminate on both sides of a solid core for lasting beauty and strength.
- Electrostatically applied baked enamel finish on welded steel legs-no cheap lacquer job here.
-T-molding and rounded corners make a handsome finish on a durable edge that won't chip.
- Knocked down for safe, inexpensive shipment.
-Patented slip joints for quick easy assembly.
-Leveling glides for uneven floors.
-Room enough for a Commodore printer on the desk, yet fits into nearly any den or office nicheH: 660 mm (26") W: 1170 $\mathrm{mm}\left(46^{\prime \prime}\right) \mathrm{D}: 660 \mathrm{~mm}$ ($26^{\prime \prime}$). - Matching printer stand available with slot for bottom feeding.

Price:\$299

In short, as Commodore dealers, we won't settle for anything that looks good only in the catalog! Our customers won't let us. They don't buy pictures. And neither should you. This is why we will let you use one of our desks for a week and then decide. If for any reason you don't like it, just return it in good condition for a cheerful refund.

If your Commodore dealer doesn't carry our desks yet, send a check for $\$ 299$ and we will ship your desk freight paid!
Name

Address

City
\qquad
Interlink, Inc., Box 134, Berrien St Zip

Master Charge and Visa welcome. Call our order line:
616-473-3103

CONNECT

Your Commodore PET/CBM, HP-85, Osborne-1 to any RS-232 Serial Printer, Plotter, CRT Terminal, Modem, or other device.

TNW-1000 ONE CHANNEL
OUTPUT ONLY

TNW-2000

ONE CHANNEL
INPUT/OUTPUT \$229
TNW 232D
TWO CHANNELS INPUT/OUTPUT

+ RS-232 Control Signals \$369
TNW-103
AUTO ANSWER/AUTO DLAL
(use with DAA) \$389

All units are addressable IEEE-488 devices. Comes complete with cabinet, documentation, one year warranty. Brochure available other products.

3444 Hancock St., Dept. C, San Diego, CA 92110 (714) 296-2115 TWX 910-335-1194

VISA/Mastercharge Welcome \bullet Dealer inquiries invited

HAVE YOUR CAKE AND EAT IT TOO

TTSA PIECE OF CAKE TO CONNECTAN ACTTK TRIXI I INTERFACE TO YOUIR OLVETTI PRAXIS 30 OR 35 CORRECTING ELECTRONIC TYPEWRITER. DAISY WHEEL QUALTTY AT DOT MATRIX PRICES!

[^1]It's important to note that these savings - tax savings - return to you in the form of cash, either in a tax refund or because you will pay less in taxes than you would have had to without them, as compared to equity buildup and asset appreciation, which return to your wallet only when you sell the property.

In fact, the tax savings are often enough to offset any negative cash flow you might have from a property. So, while you might have $\$ 100$ a month in negative cash flow, perhaps at the end of the year you'll get back that cash, just as if you'd saved it in a bank every month!

INVEST will show you exactly what your results will be.

So, these are the four vital areas we need to consider for any real estate investment: cash flow, equity buildup, asset appreciation, and tax savings.
"INVEST" will not only show you what each item will do, based on your own data, but will also summarize and total them, compare them to your down payment, and provide you with a return on your investment percentage.

And this, your return on investment, is really the important figure for any investment program. All the various parts of any investment, such as the real estate we've been examining here, are combined in this figure.

It's fascinating to see this in action, because many of us think in terms of savings accounts (perhaps 5 or 6% on our money) ... or certificates of deposit (perhaps 14\%) ... or stocks (what will the market do tomorrow?) ... or limited edition prints (nice to hang on the wall, but who can we sell it to?) ... or money market accounts (10 or 12%) ... and when you see what real estate can do for you - even a small duplex or triplex - you will be astonished.

Using INVEST

Once you get a printout of a specific set of data, the program will automatically end. Up to that point - before you ask for a printout - you can alter any data any number of times, to display different results. Then, when you have the display you want, you can request a hard copy.

There's a delay at the end of page two of the instructions: while you're reading them, your computer is reading array information into its RAM. We're using three double-dimension arrays:
Q is the information used to get your monthly payment. The program will multiply the amount of your loan(s) by the proper monthly figure, to arrive at a monthly payment. You can input up to 3 loans, for 15,20 or 25 years, and at interest rates from 10% to 18%, in $.5 \%$ steps. Then "INVEST" will total the payment, display it, and let you change the amount, if you wish to. This situation might
occur if you happen to be assuming an old loan, at less than 10% - you can answer 10%, and then change the payment total to match your correct figure.

E1 ... is the array with the figures for the first-year equity buildup.
E2 ... is the array for the second-year equity buildup.
Two arrays are used here because the equity buildup is different for each year - you will pay more on the principal of your loan during the second year than you did the first. The actual multipliers are based on the length and terms of your loan - a loan at 10% for 15 years will have a much faster and higher equity buildup than one at 16% for 25 years.

Total rents are just that - if the property you're considering is a fourplex, input total rents from all units.

If you don't know the actual amount of taxes and insurance, or expenses, use your best estimate.

Your accountant will know your approximate tax bracket, or you can check the tables on Form 1040, or look back at your latest tax return.

When you're asked to input payment information, you must input something - if you skip around and just put the payment amount in (without the interest rate or length of the loan), you won't get credit for any equity buildup - the computer just can't tell what equity buildup will actually be better than what's shown.

Following is a list of the major variables used in INVEST. There are others used mathematically, so if you change the program, please read through it to make sure you don't use something already used.

Table 1.

INVEST

Major variables:

A\$. . . property address
M1\$. . misc. information (1)
M2\$. . misc. information (2)
PR ... asking/purchase price of the property
L estimated life for depreciation
A \% estimated annual asset appreciation
R current rents
AR . . . anticipated rents
M months of ownership this year
T estimated taxes and insurance per month
E estimated expenses per month
V \% land value (as a percent of the price)
B the tax bracket you're in
DP . . . down payment amount
F \% furnishing's value (\% of the price)
F1 ... first year cash flow
F2 ... second year cash flow (full year)
EB ... equity buildup, first year
ET ... equity buildup, second year
A5 ... asset appreciation, first year
A6 ... asset appreciation, second year

Figure 1：Sample Run

$16,22,81$
FROPERT＇T RKAL＇T＇SIS REFORT FORE A SAMFLE FOURFLEK INWESTMEMT
：A：：F FREFFREE FDR COMFUTE！MAIFE IME＊＊＊：
AEKINGMFFERING FEICE 1EG，EEG EE


```
    CASH FLOW ESTIMATE, EHSEE ON DWNING THIS FROFERT'T FDR E MONTHS
    THE FIRET 'TEAR, 12 MONTHS THE SECOND 'TEAR. FIFET 'TEAR EFSH FLOH
    EHSED ON CUREENT EENTS OF LEED MONTHL'T', AND THE ZND TEFR IS EFSED ON
    AWTILIPATED REHTS OF 1PEE FER MDNTH. ESTIFHTED
    FFFFEEIATION IS 
    FLL FIGILRES FREE FFFFOMIMATE
\begin{tabular}{|c|c|c|}
\hline MIDNTHL＇T＇FEENTE & 1தT＇T＇EFF： アご区 E & ZND＇TEAR A5． 58.815 \\
\hline MGFTGFGE FH＇t｜terdTE & \(7 \geq 36\) V1 & 14．ETE W1 \\
\hline THXES＋INSUREFNEE & 2481 E15 & 486． \\
\hline MISE：EXFENSES & ड651．E10 & E60．E0 \\
\hline ESTIMETED EASH FLOW & －6．6．51 & －15E．E1 \\
\hline
\end{tabular}
```

RETURN ON INVESTMENT ANAL＇T＇EIS
$1 \Xi T$＇TEAR： $2 N D$＇TEFR：

CFEH FLOW GFEOM FEOVE ？－ETE． 01 －156． 91
FESET FFFRECIATIDM 4EME．EE
242.21567 .86

EDUIT＇T＇EUILDUF \＆AFFFROXIMATE
TOUR ESTIMATED TH\％SHWINGS ARE
EASED DN A TA\％ERACKET DF $3 \triangle \%$
FND A LIFE FOR：DEFEEEIATION
DF 20 ＇TEFES DEFREEIFTIDN
THE FIFET T＇EAE IS 250日 AND
THE ZND＇TEAE IS SEME
THE FLIENISHINGS HRE WORTH 5
\therefore DF THE FRIDFERT＇EDET．

TOUR RETLIEN IN INWESTMENT IS	4314．201	9911． 85
TOULE \because RETURN ON INWESTMENT IS	43.14%	99.12%

Program 1.

```
4 GOSUB210\emptyset\emptyset
5 \mp@code { G O S U B 1 7 \emptyset \emptyset \emptyset }
7 \text { REM PAYMENT PERCENTAGE FIGURES ~}
        ARE HERE
```


DALEY'S SOFTWARE

Software with a difference.

THE MAIL LIST
 A Proven Performer

Proven Performance with The Mail List is now in use by many satisfied customers.

It has been nearly two years since the first version of The Mail List was introduced. Only the BEST software will stand this test of time.
The Mail List has been specially designed to be used by the novice computer operator. All operations in the system are menu driven with built in user protection. This insures that you can have hassle free and error free operation.

Why waste time with other inferior mailing lists? Compare these features:

1. User defined data structures. You are the best judge of how your files should be organized. DR. DALEY'S mailing list package is unique in this feature. With The Mail List you can divide each record to suit your needs.
2. User defined label format. You can print from one to eight labels across and up to 10 lines per label.
3. Interface to WordPro 3 or 4.
4. Fast and easy input and editing.
5. Easy to use 'wild card' sorting. This will allow searches through the file using up to 3 fields.
6. Multiple disk files. Maximum capacity is 80 disks per file.
This powerful package comes on diskette with nearly 100 pages of documentation. It is packaged in an attractive binder.

When ordering please specify the version you are ordering. It is available for the following systems:
Version 4.4
$\$ 159.95$
(Any computer with Commodore BASIC 4.0 and 32 K memory with the 4040 (or upgraded 2040) disk drive.)

Version 4.8
 $\$ 179.95$

(Commodore 8032 with the 8050 disk drive.) Call or write for details of our other software.

NOTE OUR NEW ADDRESS

DR. DALEY'S SOFTWARE
Water Street
Darby, MT 59829
Phone: (406) 821-3924

(Hours: 10 a.m. to 6 p.m. Mountain Time)

Do vou know all the innotative
On cassette or diskette*, our magazines are designed explicitly for vour computer. Included every month are $6-10$ readv-to-load programs ranging from games, home entertainment, and personal finance, to more of our unque "teaching" programs. We will alor keep vou informed of the latest harduare, wftware, and publications compatible with vour microcomputer Our January issue will include:

FOOTBALL
Grand Prix Road Race
. Home Budget Analysis
Geometry with graphic
Two more of our special "Teaching" Programs! The latest products and peripherals for vour micro.
.... and as always you get our 100% commit. ment to excellence and vervice from the Programmer's Institute.
(Back isues are available!)
Later isues will include hackgammon, home hudget, forezasting, stock market, and many more. The price is 550 per year, 530 per , year, and 510 for a trial isue Don't miss out on our January issue.

If you order now, you will receive our complete home accounting system (Reg. 39.45) ABSOLUTELY FREE with any $\$ 50.00$ order. Purchace both above packages and your net

THE PROGRAMMER'S INSTITUTE
A Futurehouse Company
P.O. Box 3191 Dept. C

Chapel Hill, N.C. 27514
(919) 489.2198

MC \& Visa Welcome
Programmer's Program
name
address
\qquad

Year Subuription U hoth Trial lssue
Diskette
*All software available on cassette for the TRS-80 Model 1, Color Extended Basic, Atari 400/800. On diskette for the Model III. Apple II (Add $\$ 5.00$ for each diskette order).

Look Out!
 MX 80 PRO/WRITER IS HERE

PROIWRITER OFFERS YOU MORE

- Tracter \& Friction Feed
- Paper Cut Off
- The Tightest Dot Matrics You've Ever Seen
- Hi Res. Kee \& Dot Graphics
- 100 CPS
- Proportional Spacing
- Math Symbols
- And More For Less
$\$ 595.00$
Call (916) 272-6808
Poquette's
14530 Lynshar Road
Grass Valley, California 95945

WHY BUY FROM THE BEST? Service... Support... Software...

MULTI-GLUSTER
For Commodore Systems. allows 3 CPU's (Expandable to 8) to access a single Commodore Disk MUL TI-CLUSTER 3 CPU'S) \$ 995 Each Additional CPU (up to 8) - 995 \$ 250

16K B (16K RAM-40 Column) - Lim. Qty . \$995
32K B (32K RAM-40 CIm.) - Lim. Qty . \$1295
4016 (16K RAM 4.0 Basic-40 CIm.) . 995
4032 (32K RAM 4.0 Basic-40 CIm.) . $\$ 1295$
8032 (32K RAM 4.0 Basic-80 CIm.) . $\$ 1495$
8050 Dual Disk (1 Meg Storage) . $\$ 1795$
4040 Dual Disk (343 K Storage)
8010 IEEE Modem . 280
C2N Cassette Drive . 75
CBM - IEEE Interface Cable
IEEE - IEEE Interface Cable \$ 40

VIC 20 Home/Personal Computer . \$ 295

EPSON PRINTERS

CALL NEECO FOR ANY OF YOUR COMMODORE COMPUTER NEEDS

NEC SPINWRITER PRINTERS

5530 (Parallel)

$\$ 3055$
5510 (Serial)
5520 (KSR-Serial)

Tractor Option
Tractor Option \$ 225

APPLE

16K APPLE $\|^{+} \ldots \ldots . . \begin{aligned} & \$ 1330 \\ & \text { 32K APPLE } \|_{+} \ldots \ldots \ldots .\end{aligned} \$ 1430$

48K APPLE II+ $\$ 1530$

APPLE DISK w/3.3 DOS . \$ 650
APPLE DRIVE Only \$
w/Monitor +
Info Analystpak $\$ 4740$

AMDEK MONITORS INTERTEC COMPUTERS

Video $10012^{\prime \prime} B+W$
\$ 179 Video 300 12" Green \$ 249 Color I 13"Low Res \$ 449 Color II 13^{n} High Res

64K Superbrain
(360 Disk Storage), CP/M ${ }^{\text {™ }}$
64K QD Superbrain
(700K Disk Storage), CP/M ${ }^{\text {™ }}$

ATARI COMPUTERS

Atari 400 (16 K RAM)
Atari 800 (32K RAM) - good thru $8 / 31$
Atari 410 RECORDER
Atari 810 DISK DRIVE
NEECO carries all available ATARI Software and Peripherals
$\$ 3495$

JUST A SAMPLE OF THE MANY PRODUCTS WE CARRY, CALL US FOR OUR NEW 6O-PAGE CATALOG.
. $\$ 399$. $\$ 1080$
. 889.95
. $\$ 599.95$
WordPro 18 K . 10 \$ 29.95 WordPro 3 (40 CIm.) 16K WordPro ${ }^{3+}$ \$ 199.95 WordPro 4 \$ 295 WordPro 4 (80 CIm.) 32K \$ 375 WordPro 4^{+}

INTRODUCES THE CBM VIC-20 COMPUTER!

C Commodore

 breaks the computer price barrier

CBM VIC-20 PERSONAL COMPUTER

VIC-20 SPECIFICATIONS

- 8 colors - built in
- sound generation - built in
- programmable function keys
- 5K memory expandable to 32 K
- standard PETBASIC in ROM
- full-size typewriter keyboard
- graphics character set
- plug-in program/memory cartridges
- low-priced peripherals
- joystick/paddles/lightpen
- self-teaching materials
* WORKS WITH ANY HOME TELEVISION

CALL NEECO TODAY FOR ADDITIONAL VIC-20 INFORMATION . . .
As the CBM VIC-20 is a "new" product, prices and specifications are subject to change w/o notice.

10 DATA $10.746,9.650,9.087,11.054$ ， 9．984，9．44
12 DATA $11.366,10.3219,9.8013$
13 DATA 11．6919，10．6643，10．1647
14 DATA $12.0017,11.0109,10.5323,12$ $.3253,11.3615,10.9036$
16 DATA $12.6525,11.7158,11.2784,12$ $.9832,12.0738,11.6565$
18 DATA $13.3175,12.4383,12.0377,13$ ． $6551,12.8,12.4217$
$2 \emptyset$ DATA $13.9959,13.1679,12.8084,14$ ． $34,13.5389,13.1975$
22 DATA $14.6871,13.9126,13.5889,15$ ． $0371,14.2891,13.9825$
23 DATA $15.3901,14.6681,14.378$
24 DATA $15.7458,15.0495,14.7753,16$ $.1043,15.4332,15.1743$
$3 \emptyset \operatorname{DIM} Q(18,4)$
$32 \operatorname{DIM} \operatorname{El}(18,4)$
34 DIM E2 $(18,4)$
$4 \emptyset \quad$ FORY $=1$ TOl 7
$5 \emptyset$ FORI $=1 \mathrm{TO} 3$
$6 \emptyset \operatorname{READQ}(\mathrm{Y}, \mathrm{I})$
$7 \emptyset$ NEXTI
$8 \emptyset$ NEXTY
1ØØ REM EQUITY FIRST YEAR BUILD－UP
110 DATA $30.3165,16.5472,9.47 \emptyset 2,29$ ． Ø169，15．5381，8．713
120 DATA $27.7628,14.5823,8.009,26.5$ 522，13．6764，7．3549
130 DATA $25.3853,12.8195,6.7496,24$ ． 2612，12．0094，6．1886
140 DATA $23.1776,11.2426,5.6695,22$ ． $132,10.5195,5.1902$
150 DATA $21.1306,9.8378,4.7482,20.1$ 653，9．1939，4．3401
160 DATA $19.2365,8.5881,3.9648,18.3$ 459，8．0195，3．6187
170 DATA $17.4898,7.4830,3.30 \emptyset 7,16.6$ 672，6．9813，3．0097
180 DATA $15.8796,6.5076,2.7419,15.1$ 234，6．0639，2．4964
190 DATA $14.4001,5.6481,2.2718$
20ø FORY＝1TO17
210 FORI＝1TO3
$220 \operatorname{READ} \operatorname{El}(\mathrm{Y}, \mathrm{I})$
240 NEXTI
250 NEXTY
300 只 $E M$ EQUITY BUILDUP FOR 2ND YEAR
310 DATA $33.4911,18.2799,10.4619,32$ $.2146,17.2504$
315 DATA 9.6733
320 DATA $30.9755,16.2697,8.9358,29$ ． 7719，15．3348，8．2467
330 DATA $28.6048,14.4453,7.6056,27$ ． 4737，13．5996，7．0081
340 DATA $26.3768,12.7945,6.4521,25$ ． 312，12．0309，5．9359
360 DATA $24.2863,11.3070,5.4573,23$ ． 2916，10．6193，5．0130
$38 \emptyset$ DATA $22.3289,9.9687,4.6022,21.4$ Øø 5，9．3547，4．2213
390 DATA 20．5028，8．7721，3．8693，19．6 351，8．2232，3．5456
$40 \emptyset$ DATA $18.7997,7.7043,3.2462,17.9$ 929，7．2145，2．9700
410 DATA $17.2170,6.7530,2.7162$
420 FORY $=1$ TO 17
430 FORI $=1 \mathrm{TO} 3$
$440 \operatorname{READE} 2(\mathrm{Y}, \mathrm{I})$
450 NEXTI
470 NEXTY
2øøø PRINT＂HIT ANY KEY TO CONTINUE．． ．＂；：GETL\＄
2øø4 HOME：PRINT
2005 PRINT：INVERSE：PRINT TAB（17）＂INV EST＂：NORMAL：PR：PRINT＂PL EASE ANSWER THE FOLLOWING
$20 \emptyset 7$ PRINT
$2 \emptyset \emptyset 8$ INVERSE：PRINT＂ANSWER＇END＇TO S TOP NOW＂：NORMAL：PRINT：PRIN T
$201 \emptyset$ INPUT＂TODAY＇S DATE＂；E\＄
$2 \emptyset 15$ IFE\＄＝＂END＂THENPRINT＂END OF P ROGRAM＂：END
$2 \emptyset 2 \emptyset$ PRINT
$2 \emptyset 3 \emptyset$ INPUT＂PROPERTY ADDRESS＂；A\＄
2032 HOME
$2 \emptyset 33$ PRINT＂MISC．INFORMATION IS ANY～ DATA THAT＂
2034 PRINT＂YOU＇D LIKE LISTED ON THE～ PRINTOUT，＂
$2 \emptyset 36$ PRINT＂PROPERTY（DUPLEX，TRIPLEX ），AND SO＂
2037 PRINT＂ON．IF YOU DON＇T WANT AN YTHING PRINTED＂
2038 PRINT＂FOR MISC．INFO，JUST HIT～ RETURN．＂：PRINT
$2 \emptyset 4 \emptyset$ PRINT：INPUT＂MISC INFO（1）＂；M1\＄
$205 \emptyset$ INPUT＂MISC INFO（2）＂；M2\＄
$206 \emptyset$ PRINT：PRINT：INPUT＂ASKING／OFFERI NG PRICE＂；PR
2065 IFPRく1THEN206も
$207 \emptyset$ HOME：PRINT
2072 PRINT＂DEPRECIATION，THE＇WEARIN G－OUT＇OF＂
2073 PRINT＂A PROPERTY，IS WHERE THE～ MAJOR＂
$2 \emptyset 74$ PRINT＂TAX SAVINGS FROM A REAL E STATE＂
2075 PRINT＂INVESTMENT COME FROM．＂ ：PRINT
2076 PRINT＂CONSULT WITH YOUR ACCOUNT ANT－－＂；INVERSE：PRINT＂PL EASE＂；：NORMAL
2077 PRINT＂AS TO THE USEFUL LIFE OF THIS＂
2078 PRINT＂PROPERTY．NATURALLY，TH E SHORTER＂
2079 PRINT＂THE BETTER．AS THE SHORT ER PERIOD WILL SAVE MORE I

N TAXES．＂：PRINT
$2 \emptyset 8 \emptyset$ PRINT＂YOU MIGHT ALSO WANT TO C HANGE THE BASIS FOR THE DE PRECIATION＂
$2 \emptyset 81$ PRINT＂IN THIS PROGRAM．＂：PRINT： PRINT＂TO SEE WHAT THE DIFF ERENCE IS IN＂
2 Ø82 PRINT＂TAX SAVINGS FOR，FOR INS TANCE， 15 YEARS OR $2 \emptyset$ YEAR S OR 25 YEARS，ETC．＂
$2 \emptyset 83$ INPUT＂ESTIMATED LIFE FOR DEPRE
CIATION IN YEARS＂；L：PRINT
2084 IFL＜ 1 THEN $2 \emptyset 7 \emptyset$
2085 HOME：PRINT
$2 \emptyset 86$ PRINT＂APPRECIATION IS WHAT INFL ATION WILL＂：PRINT＂DO TO A～ PROPERTY．IF YOU THINK
2087 PRINT＂THIS MIGHT GO UP IN VALU E 10% PER YEAR，ANSWER 10. YOU＇LL HAVE THE
2088 PRINT＂CHANCE TO CHANGE THIS AN SWER LATER ON，SO YOU＇LL B E ABLE TO SEE WHAT
2089 PRINT＂DIFFERENT INFLATION RATE S WILL DO TO YOUR RETURN．＂ ：PRINT
$2 \emptyset 9 \emptyset$ INPUT＂ESTIMATED APPRECIATION P ER YEAR＂；A
2091 HOME：PRINT
2092 INPUT＂CURRENT TOTAL RENTS PER M ONTH＂；R
2093 HOME：PRINT
$21 \varnothing \emptyset$ INPUT＂ANTICIPATED TOTAL RENTS P ER MONTH＂；AR
2102 HOME：PRINT
2108 PRINT
$211 \emptyset$ PRINT＂HOW MANY MONTHS WILL YOU～ OWN THIS＂
2115 PRINT＂PROPERTY THIS YEAR ？＂；M
2116 IF M＞ 12 THEN 2108
2117 IF M＜Ø THEN 2108
2118 PRINT：PRINT
2120 INPUT＂TAXES＋INSURANCE PER MON TH＂；T
2130 PRINT
2140 INPUT＂ESTIMATED EXPENSES PER M ONTH＂；E
2141 PRINT：PRINT：PRINT＂YOU CAN＇T DEP RECIATE THE LAND，SO＂：PRIN
T＂THE VALUE OF THE LAND HA S TO BE
2142 PRINT＂DEDUCTED FROM THE TOTAL P RICE，BEFORE
2143 PRINT＂THE DEPRECIATION CAN BE C ALCULATED．＂：PRINT
2144 PRINT＂AS A PERCENT OF THE TOTAL PRICE＂：PRINT＂（10\％＝10．．． 15各 $=15$ ，ETC．）＂；：INPUT V
$2145 \mathrm{~V} 5=\mathrm{V}: \mathrm{V} 5=\mathrm{INT}\left(\mathrm{V} 5 * 1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$
2147 HOME：PRINT

2150 INPUT＂\％TAX BRACKET YOU＇RE IN（ $3 \emptyset \%=3 \emptyset) \quad " ; B$
2155 IF B＜Ø THEN 2147
2156 IF $B>1 \emptyset \emptyset$ THEN 2147
2161 PRINT：PRINT＂（YOUR DOWN PAYMENT～ MUST BE AT LEAST＂：PRINT＂\＄1
－－FOR MATH PURPOSES＂：PRINT
2162 PRINT：INPUT＂DOWN PAYMENT＂；DP
2163 IF DP＜1 THEN 2161
2166 PRINT：PRINT＂$(2 \emptyset \%=2 \emptyset \quad 3 \emptyset \%=3 \emptyset)$ ET C．）
2167 PRINT＂FURNISHING AS A PERCENT O F THE PRICE＂：INPUT F
2168 IF $F>1 \emptyset \emptyset$ THEN 2167
2169 IF FくØ THEN 2167
$217 \emptyset$ PRINT
$2185 \mathrm{~F}=\operatorname{INT}\left(\mathrm{F}^{*} 1 \emptyset^{\wedge} 2+.5\right)$
$219 \emptyset$ GOSUB6øøø
2195 GOSUB5ø日ø：REM INPUT PAYMENT DA TA
$220 \emptyset$ HOME：PRINT
$221 \emptyset$ PRINT＂TOTAL MONTHLY PAYMENT＂；
2215 FOR C＝1 TO 3
$2220 \mathrm{P}(9)=\mathrm{P}(9)+\mathrm{P}(\mathrm{C})$
2230 NEXT C
2240 Z9＝P（9）：GOSUB 15øøø
2250 PRINT Z9\＄
2280 PRINT
2290 INPUT＂DO YOU WANT TO CHANGE TH IS＜l＝YES＞＂；Q
2300 IF $Q=1$ THEN 24 Ø
2310 GOTO 2420
$240 \emptyset$ REM CORRECT PAYMENT AMOUNT
$241 \emptyset$ PRINT：INPUT＂CORRECT PAYMENT TO TAL＂； P （9）
242 GOSUB7ø日ø
2430 GOTO9øøø：REM PRINT
3032 HOME：PRINT
50日Ø HOME：PRINT：PRINT＂NOW WE HAVE TO FIGURE YOUR＂
$5 \emptyset \emptyset 1$ PRINT＂MONTHLY PAYMENT FOR THIS～ PROPERTY．＂：PRINT：PRINT＂YOU CAN INPUT UP TO 3 PAYMENT S＂：PRINT
$5 \emptyset \emptyset 2 \mathrm{P}(8)=\emptyset: \mathrm{P}(3)=\emptyset$
$5 \emptyset \emptyset 3$ PRINT＂IF YOUR PAYMENT DATA IS D IFFERENT＂：PRINT＂THAT WHAT～
IS ASKED FOR，ANSWER
$50 \emptyset 4$ PRINT＂AS CLOSELY AS YOU CAN．＂：P RINT
5005 PRINT：INVERSE：PRINT＂YOU MUST IN PUT SOMETHING＂
$5 \emptyset \emptyset 6$ PRINT＂－－EVEN IF YOU CHANGE IT L ATER ON＂
$5 \emptyset \emptyset 7$ NORMAL：PRINT
$5 \emptyset 10$ PRINT：PRINT：PRINT＂ANSWER 1 TO C ONTINUE．．．
5015 PRINT＂ANSWER 2 WHEN DONE．．．．．＂
$5 \emptyset 20$ PRINT：INPUT Q

5030 IF $Q=1$ THEN $52 \emptyset \emptyset$
5040 IF $Q=2$ THEN 550ø：REM RETURN
5050 GOTO 5007
5200 REM TO ZERO OUT ALL PRIOR PAYME NT DATA
$5210 \mathrm{C}=\mathrm{C}+1:$ REM COUNTER
5250 INPUT＂YEARS（15－20－25）＂；Y（C）
5260 IF $Y(C)=15$ THEN $I=1: G O T O 5300$
527 IF $Y(C)=20$ THEN $I=2: G O T O 530 \emptyset$
528 Ø IF $Y(C)=25$ THEN $I=3: G O T O 5300$
5285 GOTO 525ø
$530 \emptyset$ PRINT：PRINT＂YOUR RATE CAN BE FR OM 10 TO 18＂
5305 PRINT＂IN ． 5 STEPS．＂：PRINT：PRINT
5310 INPUT＂PERCENT RATE＂；Q
5315 IF $\mathrm{Q}=10$ THEN $\mathrm{Y}=1: \mathrm{GOTO} 540 \emptyset$
5320 IF $Q=10.5$ THEN $Y=2$ ：GOTO $540 \emptyset$
5330 IF $Q=11$ THEN $\mathrm{Y}=3$ ：GOTO 540ø
5332 IF $\mathrm{Q}=11.5$ THEN $\mathrm{Y}=4:$ GOTO $540 \emptyset$
5334 IF $Q=12$ THEN $\mathrm{Y}=5: \mathrm{GOTO} 540 \emptyset$
5336 IF $Q=12.5$ THEN $Y=6: G O T O 540 \emptyset$
5338 IF $Q=13$ THEN $\mathrm{Y}=7$ ：GOTO $540 \emptyset$
5340 IF $Q=13.5$ THEN $Y=8: G O T O 540 \emptyset$
535 Ø IF $\mathrm{Q}=14$ THEN $\mathrm{Y}=9$ ：GOTO 5400
5352 IF $\mathrm{Q}=14.5$ THEN $\mathrm{Y}=10: G O T O 540 \emptyset$
5354 IF $Q=15$ THEN $Y=11: G O T O 540 \emptyset$
5356 IF $Q=15.5$ THEN $Y=12: G O T O 5400$
5358 IF $Q=16$ THEN $Y=13:$ GOTO 5400
5360 IF $Q=16.5$ THEN $Y=14: G O T O 5400$
5370 IF $Q=17$ THEN $Y=15$ ：GOTO $540 \emptyset$
5372 IF $\mathrm{Q}=17.5$ THEN $\mathrm{Y}=16:$ GOTO $540 \emptyset$
5382 IF $Q=18$ THEN $Y=17: G O T O 540 \emptyset$
$539 \emptyset$ GOTO 530ø
$540 \emptyset$ INPUT＂AMOUNT OF LOAN＂；A（C）
$541 \varnothing$ REM TO FIGURE PAYMENT AMOUNT
$542 \emptyset \quad \mathrm{P}(\mathrm{C})=\mathrm{A}(\mathrm{C}) * \mathrm{Q}(\mathrm{Y}, \mathrm{I})$
$5425 \mathrm{P}(\mathrm{C})=\mathrm{P}(\mathrm{C}) / 1 \emptyset \emptyset:$ REM TO PUT DECIMA LS IN THE RIGHT PLACES
$5428 \quad \mathrm{P}(\mathrm{C})=\mathrm{P}(\mathrm{C}) / 1 \emptyset$
5450 IF C＝3 THEN $550 \emptyset$
5490 GOTO 5010
$550 \emptyset$ RETURN
6ØØの HOME：PRINT
$60 \emptyset 1 \mathrm{~V} 5=\mathrm{V}: \mathrm{B} 5=\mathrm{B}$
601ø PRINT＂THIS SECTION WILL ALLOW～ YOU TO
$602 \emptyset$ PRINT＂CORRECT ANY DATA
6ø3Ø GOSUB 11Øøø
$6 \emptyset 5 \emptyset$ PRINT＂1．DATE＂；E\＄
6060 PRINT＂2．＂；A\＄
6070 PRINT＂3．＂；MI\＄
608の PRINT＂4．＂；M2\＄
61ØØ PRINT＂5．PRICE＂；PR
$611 \emptyset$ PRINT＂6．EST LIFE FOR DEPRECIA TION＂；
612 PRINT＂7．EST APPRECIATION／YEAR ＂；
6126 PRINT A
$613 \emptyset$ PRINT＂8．CURRENT RENTS＂；R
6140 PRINT＂9．ANTICIPATED RENTS＂；A

R
$616 \emptyset$ PRINT＂lø．MONTHS OF OWNERSHIP T HIS YEAR＂；M
6170 PRINT＂ll．EST TAXES＋INSURANCE ／MONTH＂；T
$618 \emptyset$ PRINT＂ 12 ．EST EXPENSES／MONTH＂； E
6190 PRINT＂ $13 . \%$ LAND VALUE＂；V5
$62 \emptyset \emptyset$ PRINT＂ 14 ．\％TAX BRACKET＂；B5
6210 PRINT＂ 15 ．DOWN PAYMENT＂；D9
6220 PRINT＂l6．\％FURNISHINGS OF VALU E＂；F
6225 GOSUB 11Øøø
6300 PRINT＂TO CHANGE，ANSWER THE NUM BER＂
6310 INPUT＂WHEN DONE，ANSWER－1＂；Q
6315 HOME：PRINT：PRINT
$632 \emptyset$ IF $Q=-1$ THEN $650 \emptyset$
6330 ONQGOTO6350，6360，6365，6370，639ø ，6400，6410，6420，6430，6440， 6450，6460，6470，6480
6331 GOTO 6490
6350 INPUT＂CORRECT DATE＂；E\＄
6355 GOTO 6øøø
6360 INPUT＂ADDRESS＂；A\＄：GOTO 6ø0ø
6365 INPUT＂MISC INFO＂；MI\＄：GOTO6øøø
6370 INPUT＂MISC INFO＂；M2\＄：GOTO6øøø
6380 INPUT＂ASKING／OFFERING PRICE＂； PR
6382 IF PR＜1 THEN 638 Ø
6385 GOTO 6ØøØ
$639 \emptyset$ INPUT＂LIFE FOR DEPRECIATION＂； L
6391 IF L＜1 THEN 6390
6395 GOTO 6øøø
$640 \emptyset$ INPUT＂\％APPRECIATION EXPECTED～ ＂；A
6405 GOTO 60øø
6410 INPUT＂CURRENT RENTS＂；R：GOTO 6 Øø \emptyset
$642 \emptyset$ INPUT＂ANTICIPATED RENTS＂；AR
6425 GOTO 6øøø
6430 INPUT＂MONTHS OF OWNERSHIP THIS YEAR＂；M
6432 IF M＞12 THEN 6430
6434 IF M＜も THEN 6430
6436 GOTO 6øøø
$644 \emptyset$ INPUT＂EST TAXES＋INSURANCE／MO NTH＂；T：GOTO6ØøØ
6450 INPUT＂EST EXPENSES PER MONTH＂ ；E：GOTO $6 \emptyset \emptyset \emptyset$
$646 \emptyset$ INPUT＂PERCENT LAND VALUE＂；V
$647 \emptyset$ INPUT＂TAX BRACKET＂；B：GOTO $60 \emptyset$ Ø
$648 \emptyset$ INVERSE：PRINT＂REMEMBER－IF YO U CHANGE
6482 PRINT＂YOUR DOWN PAYMENT，THE MO NTHLY PAYMENT SHOULD ALSO～
BE CHANGED＂：NORMAL：PRINT

6484 INPUT "DOWN PAYMENT";DP	$8 \emptyset 4 \emptyset$ REM M IS MONTHS YOU OWN IT THIS
6485 IF DP<l THEN 6484	YEAR
	8050 REM B IS TAX BRACKET
6487 GOTO 6øøø	$810 \emptyset$ REM FIGURE IST YEAR TAX SAVINGS
$649 \emptyset$ INPUT "FURNISHINGS \% OF VALUE " ;F:GOTO $6 \emptyset \emptyset \emptyset ~$	8210 TS=PR*V:REM THIS IS THE NET PRO
$650 \emptyset$ REM	8210 TS=PR*V:REM THIS IS THE NET PRO PERTY VALUE AFTER LAND IS ~
$690 \emptyset$ RETURN	DEDUCTED
7ØØØ HOME:VTABlø: HTABlø:PRINT"----DO ING MATH----"	$822 \emptyset$ F5 $=$ PR*F:REM F4 = VALUE OF THE FUR NISHINGS
$7002 \mathrm{~V}=100-\mathrm{V}$	8230 TS=TS-F5:REM TS IS NOW THE VALU
$7003 \mathrm{~V}=\mathrm{V} / 100$	E OF THE PROPERTY AFTER LA
$70 \emptyset 4 \mathrm{~B}=\mathrm{B} / 10 \emptyset$	ND AND
$7005 \mathrm{~F}=\mathrm{F} / 10 \emptyset$	8232 REM FURN ARE DEDUCTED
7010 R9=R*M : REM CURRENT RENTS THIS YEAR	8240 TS=TS/L:REM THIS IS WHAT YOU CA N DEPRECIATE PER YEAR
7015 R9 = INT (R9* $\left.1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$	8250 F5 F 5 / 5 : REM THIS IS THE AVERAGE
$7 \emptyset 20 \mathrm{P}(8)=\mathrm{P}(9) * \mathrm{M}:$ REM PAYMENTS THIS YEAR	8260 DEP ON FURNISHINGS
$7 \emptyset 25 \mathrm{P}(8)=\operatorname{INT}\left(\mathrm{P}(8) * 1 \theta^{\wedge} 2+.5\right) / 10 \emptyset$	REM PART OVER 3 YEARS AND PART OVER $7=5$ AVERAGE
$7030 \mathrm{~T} 9=\mathrm{M} * \mathrm{~T}:$ REM TAXES $\mathrm{Y}-\mathrm{T}-\mathrm{D}$ THIS YEA R	8270 D5 $=\mathrm{F} 5+\mathrm{TS}:$ REM THIS IS DEP FOR 1 S
$7035 \mathrm{~T} 9=1 \mathrm{NT}\left(\mathrm{T9*} 10^{\wedge} 2+.5\right) / 100$	8280 D6=D5
7040 E9 = E*M:REM EXPENSES Y-T-D THIS	8290 D $5=(\mathrm{D} 5 / 12)$ *M:REM THIS IS 1 ST YE
$7 \emptyset 45 \mathrm{E9}=\mathrm{INT}\left(E 9 * 1 \emptyset^{\wedge} 2+.5\right) / 10 \emptyset$	AR'S DEP, AND D6=2ND YEAR
$7050 \mathrm{Fl}=\mathrm{R} 9-\mathrm{P}(8)-\mathrm{T} 9-\mathrm{E} 9: \mathrm{REM} \mathrm{Fl}=\mathrm{CASH} \mathrm{FL}$ OW THIS YEAR	8300 TS=D5*B:REM THIS IS TAX SAVINGS
$7055 \mathrm{Fl}=\mathrm{INT}\left(\mathrm{Fl} * 1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$	8310 TT=D6*B.REM THIS IS TAX SAVINGS
$\begin{gathered} 7210 \mathrm{~F} 2=\left(\mathrm{AR}^{*} 12\right)-(\mathrm{P}(9) * 12)-\left(\mathrm{T}^{*} 12\right)-\left(\mathrm{E}^{*}\right. \\ 12) \end{gathered}$	8310 TT=D6*B:REM THIS IS TAX SAVINGS 2ND YEAR
7215 REM **F2=CASH FLOW 2ND Y	$840 \emptyset$ REM RETURN ON INVESTMENT/EQUITY
	$8410 \mathrm{RO}=\mathrm{Fl}$
$730 \emptyset$ REM FIGURE ASSET APPRECI	YEAR EQUITY TOTAL
7310 A $5=(P R * A) / 10 \emptyset$	
7320 A $5=A 5 / 12$	YEAR EQUITY BUILDUP
7330 REM A5 $==$ MONTHLY ASSET APPRECIATI ON	$8430 \mathrm{RE}=\mathrm{INT}\left(\mathrm{RE}\right.$ * $\left.1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$
7340 A6=A5*12:REM FOR A FULL YEAR	$8440 \mathrm{RO}=\mathrm{INT}\left(\mathrm{RO*} 1 \emptyset^{\wedge} 2+.5\right) / 10 \emptyset$
7345 A5 =A5*M:REM APPRECIATION FOR	$85 \emptyset \emptyset$ TS $=1 N T\left(T S^{*} 1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$
E IS'T YEAR	$8510 \mathrm{~F} 5=\mathrm{INT}\left(\mathrm{F} 5 * 1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$
7350 A $5=I N T\left(A 5 * 10^{\wedge} 2+.5\right) / 10 \emptyset$	8520 D5 $=1 N T\left(D 5 * 1 \theta^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$
$736 \emptyset$ A6 $=1 N T\left(A 6 * 1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$	$8530 \mathrm{TT}=\mathrm{INT}\left(\mathrm{TT} \mathrm{C}^{1} 10^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$
$740 \emptyset$ REM FIGURE EQUITY BUILDUP	$8540 \mathrm{D} 6=I N T\left(D 6 * 10^{\wedge} 2+.5\right) / 10 \emptyset$
7410 REM $P(8)=$ TOTAL PAYMENTS THIS YE	$855 \emptyset \mathrm{~EB}=\mathrm{INT}\left(E B^{*} 1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$ $856 \emptyset \mathrm{ET}=\mathrm{INT}\left(\mathrm{ET*} \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$
7420 REM T9 = TAXES + INS THIS YEAR	890ø RETURN
7430 REM E9 ${ }^{\text {P }}$	$8999 \mathrm{~V}=20$
7430 REM E9=EXPENSES TOTAL THIS YEAR	$9 \emptyset \emptyset \emptyset$ HOME:PRINT:INVERSE:PRINT TAB (1
7440 REM Fl=CASH FLOW 1 ST YEAR	7) "INVEST
7450 REM F2 C CASH FLOW 2ND YEAR	90日1 : NORMAL:GOSUB1100ø
$7500 \mathrm{~EB}=\mathrm{P}(8)$ *El(Y,I):REM EQUITY BUIL DUP IST YEAR	ROPERTY "; M:PRINT"MONTHS T
$7505 \mathrm{~EB}=\mathrm{EB} / 10 \emptyset$	HIS YEAR. THE CASH FLOW":
$7510 \mathrm{ET}=(\mathrm{P}(9) * 12) * E 2(\mathrm{Y}, \mathrm{I}):$ REM EQUITY BUILDUP 2ND YEAR	$9 \emptyset \emptyset 2$ PRINT"IS BASED ON CURRENT RENTS
7515 ET=ET/løø	9003 PRINT"YEAR OF \$";R;"PER MONTH
$8 \emptyset \emptyset \emptyset$ REM L IS PROPERTY VALUE	AND OF ANTICIPATED RENTS F
$8 \emptyset 10$ REM V IS LAND VALUE \%	OR THE 2ND YEAR OF"
$8 \emptyset 2 \emptyset$ REM F=IS VALUE OF FURNISHINGS	$9 \emptyset \emptyset 4$ PRINT"\$";AR;"PER MONTH.":PRINT:
$8 \emptyset 30$ REM PR IS PRICE OF PROPERTY	PRINT"YOUR DOWN PAYMENT IS

A P Products 15\% OFF A P Hobby-Blox 15\% OFF

From Proutce/ Umenwarn Dita systoms

RS232 MODEM	SALE	$\$ 128$
IEEE 488 MODEM	SALE	$\$ 199$
RS232 CCITT	$\$ 170$	
IEEE 488 CCITT		$\$ 270$

We carry Apple II+ from Bell \& Howell

fullFORTH + for Appia II $\$ 75$

A full-featured FORTH with enhancements. Conforms to FORTH Interest Group standards.

VIC 3K RAM (with 2 ROM Sockets)
65
Write for VIC Software List

REVERSAL (Spracklen) 32K Apple	28.00
Data Manager (Lutus) 24 K Apple	40.00
Energy Miser - PET, Apple, Zenith	24.50
Histo-Graph (Boyd) 48K Apple	24.50
Data-Graph (Boyd) 48 K Apple	40.00
Apple II User's Guide (Osborne)	12.00
Introduction to Pascal (Sybex)	10.30
Pascal Handbook (Sybex)	12.00
Musical Applications of Micros (Chamberlin)	20.00
Basic FORTRAN (Coan)	7.25
CP/M Handbook (with MP/M) Zaks	11.85
Programming the 6502 : Zaks	10.00
Microprocessor Interfacing Techniques	13.00
PET/CBM Personal Computer Guide (Osborne)	12.00
PET and the IEEE-488 Bus (GPIB)	12.25
6502 Assembly Language Prog - Levanthal	13.50
Z-80 Assembly Language Prog - Levanthal	12.75
8080A/8085 Assembly Language Programming	12.75
z8000 Assembly Language Programming	16.00
6809 Assembly Language Programming	13.50
6800 Assembly Language Programming	12.75
The 68000 Microprocessor Handbook	5.75
BASIC and the Personal Computer (Dwyer)	11.00

Gcommodore

CBM-PET SPECIALS

list SALE
8023 Printer - $136 \mathrm{col}, 150 \mathrm{cps}$ bi-directional
(995) 775 8300 (Diablo 630) Daisy Wheel - 40 cps bi-directional
803280×25 CRT, business keyboard Micro Mainframe
8096 Board (extra 64 K RAM for 8032) 8050 Dual Disk Drive - 1 megabyte 8250 Dual Disk Drive - 2 megabyte CBM IEEE Modem
4016 full size graphics keyboard 4032 full size graphics keyboard 4040 Dual Disk Drive - 330,000 bytes 2031 Single Disk Drive - 165,000 bytes 4022 Tractor Feed Printer
C2N External Cassette Deck
VIC 20 Color Computer
(2250) 1725
(1495) 1100
(1995) 1600
(500) 400
(1795) 1345
(2195) 1760
(395) 199
(995) 795
(1295) 999
(1295) 999
(695) 560
(795) 630
(75) 65
(299) 259
(395) 315

VIC 1515 Graphic Printer
Used CBM/PET Computers
8024-7 High Speed Printer
(1995) 1345

WE WILL MATCH ANY ADVERTISED PRICE

*** EDUCATIONAL DISCOUNTS ***

Buy 2 PET/CBM Computors, recalve 1 FREE

WordPro 3 Plus - 32K CBM, disk, printer WordPro 4 Plus - 8032, disk, printer

200
OZZ Data Base System for CBM 8032
VISICALC for PET, ATARI, or APPLE
Sm-KIT - Super PET ROM Utllithes
Programmers Toolkit - PET ROM Utilities
PET Spacemaker II ROM Switch
2 Meter PET to IEEE or IEEE to IEEE Cable
Dust Cover for PET
IEEE-Parallel Printer Interface for PET
IEEE-RS232 Printer Interface for PET
The PET Revealed
Library of PET Subroutines
325

4 PART HARMONY MUSIC SYSTEM for PET
The Visible Music Monitor, by Frank Levinson, allows you to easily enter, display, edit, and play 4 part harmony music. Includes whole notes thru 64ths (with dotted and triplets), tempo change, key signature, transpose, etc. The KL-4M unit includes D to A converter and amplifier ready to hook to your speaker.
KL-4M Music Beard with VIMM Program
$\$ 60$

Watanabe Intelligent Plotter

wATAMABE WX4671 Patter

DISK SPECIALS

SCOTCH (3M) 5"
SCOTCH (3M) $8^{\prime \prime}$
Verdatim 8" Double Dens.
Verbatim 5" Datalife

10/2.75 50/2.65 100/2.60
10/2.80 50/2.70 100/2.65
10/3.45 50/3.35 100/3.20
10/2.45 50/2.40 100/2.35
(add 1.00 for Verbatim $5^{\prime \prime}$ plastic storage box)
BASF $5^{\prime \prime}$ soft
10/2.40 $\quad 20 / 2.35 \quad 100 / 2.30$
Wabash 5 " in Plastic Box $\quad 10 / 2.70$ 50/2.60 100/2.50
Wabash $8^{\prime \prime}$ in Plastic Box $\quad 10 / 2.75$ 50/2.65 100/2.55
WE STOCK MAXELL DISKS
Diskette Storage Pages
10 for 3.95
Disk Library Cases $\quad 8^{\prime \prime}-2.85 \quad 5^{\prime \prime}-2.15$
Disk Hub Rings $\quad 8^{\prime \prime}-50 @ 7.50 \quad 5^{\prime \prime}-50 @ 6.00$
CASSETTES - AGFA PE-611 PREMIUM
High output, low noise, 5 screw housings.
$\mathrm{C}-10$
$\mathrm{C}-30$
$\begin{array}{lll}10 / .56 & 50 / .50 & 100 / .48\end{array}$

All other lengths available. Write for price list

SPECIALS

EPSON MX-80 Priater
EPSOM MX-80 F/T Priator
EPSOM MX-70 Printor
EPSON MX-100 Priator
Centronics 739 Printer with dot graphics 675
STARWRITER Dalay Whow Printer
Zenith ZVM-121 Green Phosphor Monitor 1445
115
Amdek Color Monitor
355
ALL BOOK and SOFTWARE PRICES DISCOUNTED
OSBORNE/McGraw-Hill, HAYDEN, SYBEXetc

Synertak Systems

SYM-1 Microcomputer
SALE 199
SYM BAS-1 BASIC or RAE $1 / 2$ Assemble
KTM-2/80 Synertek Video and Keyboard
349
KTM-3/80 Synertek Tubeless Terminal

290-80 64 K
Z90-82 64K, 1 double dens. drive Z89-0 48 K
Z89-1 48K, 1 drive
Z67 10 Megabyte + Floppy Drive
Z37 1.3 Megabyte Dual Floppy
Z25 High Speed Printer
Z19 Video Terminal (NT-52 compatible)
2170

ZVM-121 Green Phosphor Monitor
2395

All Zenith Software discounted
 REPORT WRITER

for PET/CBM Compators

 MAILING LISTFLEX-FILE is a set of flexible, friendly programs to allow you to set up and maintain a data base. Print files with a versatile Report Writer or a Mail Label routine. Programmers will find it easy to add subroutines to their own programs to make use of Data Base files.

RANDOM ACCESS DATA BASE

Record size limit is 250 characters. The number of records per disk is limited only by the size of each record and the number of records per disk is limited only by the size of each record and the amount of free space on the disk. File maintenance lets you step forward or backward through a file, add, delete, or change a record, go to a numbered record, or find a record by specified field. The Find command locates any record when you enter all (or a portion of) the desired key. Field lengths may vary from record to record to allow maximum packing of information. Fites may be sorted by any field, and any field may be specified as a key. Sequential files from other programs may be converted to Flex-File format, and Flex-File records may be converted to sequential (WordPro, PaperMate, other word processors may also use Flex-File data). Maximum record size, fields per record, and order of fields may be changed at any time. MAILING LABELS
With typical record size of 127 characters, each disk can handle over 1000 records (about 2800 with 8050 drive). Labels may be printed any number wide, and may begin in any column position. There is no limit on the number or order of fields on a label, and two or three fields may be joined together on one line (like first name, last name, and title). A "type of customer" field allows selective printing.

REPORT WRITER

Print any field in any column. For numeric fields, use decimal point justification (and round to any accuracy). Define any column as a series of mathematical functions performed on other columns. These functions include arithmetic operations and various \log and trig functions. Pass results of operations such as running total from row to row. At the end of the report, print total and/or average for any column. Complete record selection, including field within range, pattern match, and logical functions can be specified individually or in combination with other parameters.
FLEX-FILE by Michaed Rillay
$\$ 60$
Please specify equipment configuration when ordering.

Low Cost Disk Drive for PET/CBM

PEDISK II from cgrs Microtech is a new disk system ready to plug into your large keyboard PET/CBM.
PEDISK II offers speed, reliability, IBM compatibility. Complete system prices with DOS and cable:
5" 40 track, 1 drive, 143 K
$\$ 525$
5" 40 track, 1 drive, 286 K 690
$8^{\prime \prime}$ IBM 3740 format, 77 track, 250 K 995

PROGRAM YOUR OWN EPROMS

Branding Iron for PET/CBM

EPROM Programmer with software for all ROM versions. Includes all hardware and software to program or copy 2716 and 2532 EPROMs.

CBM Software

$\begin{array}{ll}\text { Legal Time Accounting Package } & 445 \\ \text { Medical Accounting Package } & \end{array}$ Medical Accounting Package
Complata CBM Businass Softrine Preckyo
Can be tailored to meet most business requirements. Technician's Investment Analysis Package
Dow Jones Portfolio Management 129
Personal Tax Calculator 65
Tax Preparation System
Wordcraft 80 Wordprocessor Package 325
Pascal Development Package 325 Assembler Development Package 235

Intelligent Terminal Emulator
Softpac-1 (Competitive Software)

BY L C. Cargile and Michael Riley
\$50
Features include:
full FIG FORTH model.
all FORTH 79 STANDARD extensions.
structured 6502 Assembler with nested decision making macros.
full screen editing (same as when programming in BASIC).
auto repeat key.
sample programs.
standard size screens (16 lines by 64 characters).
150 screens per diskette on 4040,480 screens on 8050 . ability to read and write BASIC sequential files.
introductory manual.
reference manual.
Runs on any 16 K or 32 K PET/CBM (including 8032) with ROM 3 or 4 , and CBM disk drive. Please specify configuration when ordering.

Available soon:

Metacompiler for FORTH
\$30
simple metacompiler for creating compacted object code which can be executed independently (without the FORTH system).

PaperMate 60 command WORD
PROCESSOR
by Michael Riley

Paper-Mate is a full-featured word processor for CBM/PET. Paper-Mate incorporates 60 commands to give you full screen editing with graphics for all 16 K or 32 K machines (including 8032), all printers, and disk or tape drives.
For writing text, Paper-Mate has a definable keyboard so you can use either Business or Graphics machines. Shift lock on letters only, or use keyboard shift lock All keys repeat
Paper-Mate text editing includes floating cursor, scroll up or down, page forward or back, and repeating insert and delete keys. Text block handling includes transfer, delete, append, save, load, and insert.
All formatting commands are imbedded in text for complete control. Commands include margin control and release, column adjust, 9 tab settings, variable line spacing, justify text, center text, and auto print form letter (variable block). Files can be linked so that one command prints an entire manuscript. Auto page, page headers, page numbers, pause at end of page, and hyphenation pauses are included. Unlike most word processors, CBM graphics as well as text can be used. Paper-Mate can send any ASCII code over any secondary address to any printer.
Paper-Mate functions with $16 / 32 \mathrm{~K}$ CBM/PET machines, with any printer, and with either cassette or disk
To order Paper-Mate, please specify configuration.
Paper-Mate on disk or tape
40.00

BASIC INTERPRETER \$200
Designed to support the CBM 8096 (8032 with add-on 64 K board). A full interpreter implementation to automatically take advantage of the extra memory available to the 8032.
BPI General Ledger - 8032/8050
300
BPI Accounts Rocolvable - 8032/8050 300

Hayden Software

Complex Mathematics
12.70

Engineering Mathematics 12.70
General Mathematics
12.70

MCAP:Circuit Analysis Program
21.00

Energy Miser
24.50

Jukebox Saries for PET by LC Cargile
Excellent 4 part harmony music--write for list
Automated Simulations (EPYX) Fantasy Games
MICRO-REVERSI for PET by Michael Riley
super machine language version of Othello
Tunnal Vision / Kat \& Mouse by Michael Riley
\＄＂；DP；＂YOU＇RE IN THE＂；
$9 \emptyset \emptyset 5$ PRINTlØø＊B＂\％TAX BRACKET．＂：PRI NT＂THE ESTIMATED USEFUL LI
FE FOR＂：PRINT＂DEPRECIATION
$90 \emptyset 6$ PRINT＂IS＂；L；＂YEARS．＂：PRINT＂ THE FIRST YEAR DEPRECIATIO N IS \＄＂；D5；＂AND THE
$9 \emptyset \emptyset 7$ PRINT＂SECOND YEAR DEPRECIATION IS \＄＂；D6；＂：？：GOSUB 11øøø：
？
$9 \emptyset \emptyset 9$ PRINT＂HIT ANY KEY TO CONTINE．．． ＂；：GET L\＄：HOME：Q5＝5
$9 \emptyset 13$ PRINT＂RETURN ON INVESTMENT：＂
$9 \emptyset 14$ GOSUBIløøø：INVERSE：PRINT TAB（Q
5）＂YEAR 1＂，＂YEAR 2＂：NORMAL
$9 \emptyset 15$ GOSUBlløøø：PRINT＂CASH FLOW：＂
$9 \emptyset 16$ Z9＝Fl：GOSUBl5øøø
9017 PRINT TAB（Q5）Z9\＄，
9Ø18 Z9＝F2：GOSUB15øøø
9019 PRINTZ9\＄：PRINT
9Ø2Ø PRINT＂ASSET APPRECIATION：＂
$9 \emptyset 21$ Z9＝A5：GOSUB150øø
$9 \emptyset 22$ PRINT TAB（Q5）Z9\＄，
9ø23 Z9＝A6：GOSUB15øøø
$9 \emptyset 24$ PRINTZ9\＄：PRINT
$9 \emptyset 3 \emptyset$ PRINT＂EQUITY BUILDUP：＂
$9 \emptyset 32$ Z9＝EB：GOSUB15øøø
9034 PRINT TAB（Q5）Z9\＄，
9036 Z9＝ET：GOSUBl5øøø
$9 \emptyset 38$ PRINTZ9\＄：PRINT
$9 \emptyset 4 \emptyset$ PRINT＂TAX SAVINGS：＂
$9 \emptyset 42$ Z9＝TS：GOSUB15Øøø
$9 \emptyset 44$ PRINT TAB（Q5）Z9\＄，
$9 \emptyset 46$ Z9＝TT：GOSUB15øøø
9048 PRINTZ9\＄
$9 \emptyset 55$ GOSUBlløøØ
$9 \emptyset 6 \emptyset$ PRINT＂GROSS RETURN：＂
$9 \emptyset 62$ Z9＝RO：GOSUB15øøø
9064 PRINT TAB（Q5）Z9\＄，
$9 \emptyset 66$ Z9＝RE：GOSUB15øøø
9068 PRINTZ9\＄
$9 \emptyset 69$ GOSUB2øøøø
$9 \emptyset 71 \mathrm{G} 6=\mathrm{RO} / \mathrm{DP}: \mathrm{G} 6=\operatorname{INT}\left(\mathrm{G} 6^{*} 1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$
$9 \emptyset 72 \mathrm{G} 7=\mathrm{RE} / \mathrm{DP}: \mathrm{G} 7=\operatorname{INT}\left(\mathrm{G} 7 * 1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$
$9 \emptyset 73$ G6＝G6＊10ø：G7＝G7＊1øø
9074 PRINT＂RETURN ON EQUITY \％＂：PRINT TAB（Q5））G6；＂\％＂，G7；＂\％＂
$9 \emptyset 75$ GOSUB 2øøøø：PRINT＂HIT ANY KEY T O CONTINUE．．．＂；：GET L\＄
$9 \emptyset 79$ GOTO 1øøøø
$9 \emptyset 8 \emptyset \mathrm{~V}=\mathrm{V}$＊1øø
$9082 \mathrm{~V}=10 \emptyset-\mathrm{V}$
$9 \emptyset 83 \mathrm{~B}=\mathrm{B}$＊ 1 Øø
$9084 \mathrm{~F}=\mathrm{F}^{*} 10 \emptyset$
$910 \emptyset \mathrm{~V}=\operatorname{INT}\left(\mathrm{V}^{*} 1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$
$911 \emptyset \mathrm{~F}=\operatorname{INT}\left(\mathrm{F}^{*} 1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$
$912 \emptyset B=\operatorname{INT}\left(B^{*} 1 \emptyset^{\wedge} 2+.5\right) / 1 \emptyset \emptyset$
$913 \emptyset$ GOTOlø1ø6
1ØøØØ REM MENU
1øØ1の HOME：PRINT
10ø15 PRINT：PRINT
$1 \emptyset \emptyset 17$ INVERSE：PRINT TAB（17）＂INVEST ＂：NORMAL
：PRINT
1ØØ2Ø PRINT＂＜l＞TO SEE THE SAME DATA～ AGAIN＂
10025 PRINT
1øø3Ø PRINT＂＜2＞TO CHANGE OR PRINT TH E DATA＂
10035 PRINT
1øの4の PRINT＂＜3＞TO STOP NOW＂
10ø50 PRINT
1のø6も INPUTQ
$1 \emptyset \emptyset 7 \emptyset$ IFQ＝1THEN GOTO $9 \emptyset \emptyset \emptyset$
1øØ8Ø IFQ＝3THENPRINT＂END OF＂；：INVERSE ：PRINT＂INVEST＂；：NORMAL：PRI NT＂PROGRAM＂：END
1ØØ85 IFQ＞3THEN1Øøøø
1Øø86 IFQ＜1THEN1Øøøø
10ø9ø REM MENU
1Ø1ØØ HOME：PRINT
1ø1ø5 GOTO9ø8ø
101ø6 PRINT
10108 PRINT：PRINT：INVERSE：PRINTTAB（17 ）＂INVEST＂：N
ORMAL：PRINT：PRINT
1ø11Ø PRINT＂＜1＞CHANGE FINANCIAL DATA
10115 PRINT
1Ø12Ø PRINT＂＜2＞CHANGE THE PAYMENT DA TA＂
10122 PRINT
10125 PRINT＂＜3＞PRINT THE DATA＂
10126 PRINT
$1 \emptyset 127$ PRINT＂＜4＞STOP NOW＂
10130 PRINT
10135 INPUTQ
10140 IFQ＜1THEN1ø1øø
10142 ONQTOTO10150，10152，12000，10154
10150 GOSUB6øøø
10151 GOTO10155
$1 \emptyset 152 \mathrm{C}=\emptyset: \mathrm{P}(1)=\emptyset: \mathrm{P}(2)=\emptyset: \mathrm{P}(3)=\emptyset:$ GOSUB5 Øøø：REM C IS ZEROED TO RES TART COUNTER
1 Ø153 P（9）$=\emptyset:$ GOTO22øø：REM ZERO PAYMEN T AND THEN DO MATH TO ADD
UP NEW PAYMENTS
10154 PRINT＂END OF PROGRAM＂：END
$1 \emptyset 155$ GOSUB7Øøø：REM MATH
10158 GOTO9øø日：REM PRINT
1016の GOTOløøøø
10165 GOSUB7Ø日ø：REM MATH
10166 GOTO9øøø：REM PRINT
11ØもØ PRINT＂
－－－－－－－＂
11010 RETURN
12の日の HOME：PRINT
12005 VTAB6
$1201 \emptyset$ FLASH：PRINT＂TURN ON THE PRINTER ＂：NORMAL：PRINT
12015 PRINT：PRINT：GOSUBlløøø：PRINT：PR INT
$12 \emptyset 2 \emptyset$ PRINT＂ANSWER 1 TO CONTINUE．．．＂
$12 \emptyset 22$ PRINT＂ANSWER 2 TO STOP．．．．．．．＂
$12 \emptyset 24$ PRINT：INPUTQ
12025 PRINT：PRINT
12026 IFQ＝2THENPRINT＂END OF＂；：INVERS E：PRINT＂INVEST；＂：NORMAL：PR INT＂PROGRAM＂：END
$12030 \mathrm{D} \$=\mathrm{CHR} \$$（4）
12040 PRINTD\＄；＂PR\＃1＂
1205 PRINT＂＂
1210ø PRINT＂＂
1211日 FORCO＝1TO2日も：NEXTCO
12130 PRINTTAB（5）E \＄
12135 PRINTTAB（5）＂PROPERTY ANALYSIS R EPORT FOR＂；A\＄
12140 PRINT＂
12150 PRINTTAB（5）M1\＄：PRINTTAB（5）M2\＄
$1217 \emptyset$ PRINTTAB（5）＂ASKING／OFFERING PRI CE＂；
12171 Z9＝PR：GOSUB15øøø：PRINTZ9\＄
12172 PRINT＂＂
12179 PRINT＂＂
1218 Ø FORCO＝1TO7日：PRINT＂＊＂；：NEXTCO
12181 PRINT＂＂
$1219 \emptyset$ PRINT TAB（5）＂CASH FLOW ESTIMATE ，BASED ON OWNING THIS PRO PERTY FOR＂；M；＂MONTHS＂
$1220 \emptyset$ PRINTTAB（5）＂THE FIRST YEAR， 12 MONTHS THE SECOND YEAR．FI RST YEAR CASH FLOW＂
1221 ด PRINTTAB（5）＂BASED ON CURRENT RE NTS OF＂；R；＂MONTHLY，AND T HE 2ND YEAR IS BASED＂
12220 PRINTTAB（5）＂ON ANTICIPATED RENT S OF＂；AR；＂PER MONT．EST IMATED＂
12222 PRINTTAB（5）＂APPRECIATION IS＂；A ；＂\％े＂
12230 GOSUBl1øøø：PRINTTAB（5）＂ALL FIGU RES ARE APPROXIMATE＂：GOSUB 11ø0ø：PRINT＂
12232 FORCO＝1TO40日：NEXTCO
12235 PRINTTAB（29）＂lST YEAR 2ND YEAR＂
12237 FORCO＝1TO4øø：NEXTCO
$1230 \emptyset$ PRINTTAB（5）＂MONTHLY RENTS ＂；
12310 Z9＝R9：GOSUB1500ø
12320 Q9＝LEN（Z9\＄）
12330 PRINTTAB（11－Q9）Z9\＄；
$12340 \mathrm{Z9}=\mathrm{AR}$＊12：GOSUB150Øø
12350 Q9＝LEN（Z9\＄）
12360 PRINTTAB（11－Q9）Z9\＄；
1237 Ø PRINT＂
12372 FORCO＝1TO4øø：NEXTCO
$1240 \emptyset$ PRINTTAB（5）＂MORTGAGE PAYMENTS ＂；

1241の Z9＝P8：GOSUB15øøの
12420 Q9＝LEN（Z9\＄）
12430 PRINTTAB（11－Q9）Z9\＄；
$12440 \mathrm{Z9}=\mathrm{P}(9) * 12: G O S U B 15 \emptyset \emptyset \emptyset$
12450 Q8＝LEN（Z9\＄）
12460 PRINTTAB（2Ø－Q8）Z9\＄；
1247 Ø FORCO＝1TO40日：NEXTCO
$125 \emptyset \emptyset$ PRINTTAB（5）＂TAXES＋INSURANCE ＂；
12510 29＝T9：GOSUB15øøø
12520 Q9＝LEN（Z9\＄）
12530 PRINTTAB（11－Q9）Z9 \＄；
$12540 \mathrm{Z9}=\mathrm{T}$＊12：GOSUB15ø日も
12560 Q8＝LEN（Z9\＄）
12570 PRINTTAB（2Ø－Q8）Z9\＄；
1258 Ø FORCO＝1TO4の日：NEXTCO
$1260 \emptyset$ PRINTTAB（5）＂MISC．EXPENSES ＂；
$12610 \quad$ Z9＝E9：GOSUB15øøø
12620 Q9 $=$ LEN（Z9\＄）
12630 PRINTTAB（11－Q9）Z9\＄；
$12640 \mathrm{Z9}=\mathrm{E}^{*} 12: \mathrm{GOSUB} 1500 \emptyset$
12650 Q8＝LEN（Z9\＄）
12660 PRINTTAB（20－Q8）Z9\＄；
12690 PRINT＂
12695 FORCO＝1TO40日：NEXTCO
127ØØ PRINTTAB（5）＂ESTIMATED CASH FLOW ＂；
12710 Z9＝Fl：GOSUB150øø
12720 Q9＝LEN（Z9\＄）
12730 PRINTTAB（11－Q9）Z9\＄；
$12740 \mathrm{Z9}=\mathrm{F} 2: \mathrm{GOSUB} 15$ Øø
12750 Q8＝LEN（Z9\＄）
12760 PRINTTAB（20－Q8）Z9\＄；
12770 PRINT＂
1278 FORCO＝1TO4ø日：NEXTCO
12785 PRINT＂＂
12790 PRINT＂＂
$12795 \mathrm{FORCO}=1 \mathrm{TO} 4 \emptyset \emptyset: \mathrm{NEXTCO}$
128ØØ PRINTTAB（5）＂RETURN ON INVESTMEN T ANALYSIS＂
12810 PRINT＂＂
12815 FORCO＝1TO40Ø：NEXTCO
12820 PRINTTAB（40）＂1ST YEAR＂；
12822 PRINTTAB（11）＂2ND YEAR＂
12830 PRINT＂
12835 FORCO＝1TO400：NEXTCO
12900 PRINTTAB（5）＂CASH FLOW（FROM ABO VE）＂；
12910 29＝Fl：GOSUB150øø
12920 Q9＝LEN（Z9\＄）
12930 PRINTTAB（11－Q9）Z9\＄；
12940 Z9＝F2：GOSUB150øø
12950 Q8＝LEN（Z9\＄）
12960 PRINTTAB（2Ø－Q8）Z9\＄；
1297 Ø FORCO＝1TO400：NEXTCO
1300ø PRINTTAB（5）＂ASSET APPRECIATION
＂；
13010 Z9＝A5：GOSUB1500 Ø
13020 Q9＝LEN（Z9\＄）
13030 PRINTTAB（11－Q9）Z9\＄；
$13040 \mathrm{Z9}=\mathrm{A} 6: G O S U B 1500 \emptyset$
13050 Q8＝LEN（Z9\＄）
$1306 \emptyset$ PRINTTAB（20－Q8）Z9\＄；
13065 FORCO＝1TO400：NEXTCO
$1310 \emptyset$ PRINTTAB（5）＂EQUITY BUILDUP（APP ROXIMATE）＂；
1311ø Z9＝EB：GOSUB15øøø
13120 Q9＝LEN（Z9\＄）
13130 PRINTTAB（11－Q9）Z9\＄；
$13140 \mathrm{Z9}=\mathrm{ET}: G O S U B 150 \emptyset \emptyset$
13150 Q8＝LEN（Z9\＄）
$1316 \emptyset$ PRINTTAB（20－Q8） $29 \$$ ；
13165 FORCO＝1TO4の日：NEXTCO
$132 \emptyset \emptyset$ PRINT＂＂：PRINTTAB（7） ＂YOUR ESTIMATED TAX SAVING S ARE＂
$132 \emptyset 2$ PRINTTAB（7）＂BASED ON A TAX BRAC KET OF＂；B5；＂\％＂
13204 PRINTTAB（7）＂AND A LIFE FOR DEPR ECIATION＂
13213 PRINTTAB（7）＂OF＂；L＂YEARS．DEPR ECIATION＂
13215 PRINTTAB（7）＂THE FIRST YEAR IS＂ ；INT（D5）；＂AND＂
13217 PRINTTAB（7）＂THE 2ND YEAR IS＂；D 6；＂．＂
13218 PRINTTAB（7）＂THE FURNISHINGS ARE WORTH＂；F
13219 PRINTTAB（7）＂\％OF THE PROPERTY C OST．＂
13224 PRINT＂＂：FORCO＝1TO400：NEXTC 0
13225 PRINTTAB（5）＂TAX SAVINGS ＂；
$13230 \mathrm{Z9}=\mathrm{TS}:$ GOSUB1500 10
13240 Q9＝LEN（Z9\＄）
13250 PRINTTAB（20－Q9）Z9\＄；
13255 Z9＝TT：GOSUB1500 10
13260 Q8＝LEN（Z9\＄）
13270 PRINTTAB（20－Q8） $29 \$$ ；
13300 FORCO＝1TO7日：PRINT＂－＂；：NEXTCO
13305 PRINT＂
13310 PRINTTAB（5）＂YOUR RETURN ON INVE STMENT IS＂；
13320 Z9＝RO：GOSUB1500 15
13330 Q9＝LEN（Z9\＄）
13340 PRINTTAB（11－Q9）Z9\＄；
13350 Z9 $=$ RE：GOSUB1500 10
13360 Q8＝LEN（Z9\＄）
13370 PRINTTAB（20－Q8）Z9\＄；
13380 PRINT＂
13395 FORCO＝1TO400：NEXTCO
13400 PRINTTAB（5）＂YOUR DOWN PAYMENT W AS \＄＂；DP
13405 FORCO＝1TO40ø：NEXTCO
13410 PRINTTAB（5）＂YOUR \％RETURN ON IN VESTMENT IS＂；
13430 Z9＝10 0 ＊（RO／DP）：GOSUB150øの
13440 Q9＝LEN（Z9\＄）
13450 PRINTTAB（12－Q9）Z9\＄；＂\％＂；

$1347 \emptyset$ Q8＝LEN（Z9\＄）
1348 日 PRINTTAB（18－Q8）Z9\＄；＂\％＂；
$148 \emptyset \emptyset \mathrm{D} \$=\mathrm{CHR} \$$（4）
14810 PRINTD\＄；＂PR\＃Ø＂
14999 PRINT＂END OF＂；：INVERSE：PRINT＂I NVEST；＂：NORMAL：PRINT＂PROGR AM＂：END
15øøø REM PRINTUSING ROUTINE
15005 IFZ9＜øTHEN16Øøø
15010 REM $\mathrm{Z9}=$ VARIABLE TO BE CHANGED
 $=\operatorname{INT}(1 \emptyset \emptyset * 29) / 1 \emptyset \emptyset: G O T O 15 \emptyset 3 \emptyset$
$15 \emptyset 22 \mathrm{Z9}=(\operatorname{INT}(1 \emptyset \emptyset * Z 9)+1) / 1 \emptyset \emptyset$
15024 REM MOVE ALPHANUMERIC TO STRING VARIABLE
$15030 \mathrm{Z9}$ \＄＝STR\＄（Z9）
15035 REM ADD DOLLAR SIGN
15045 REM ADJUST DECIMAL IF REQUIRED
15050 Z9＝LEN（Z9\＄）：IFZ9＜＝2THEN1520Ø
15055 Y9\＄＝RIGHT\＄（Z9\＄，3）
1506も IFY9\＄く＝＂\＄99＂THEN1508も
1507 IFY9\＄＝＜＂．99＂THEN15220
$1508 \emptyset$ Y9\＄＝RIGHT\＄（Z9\＄，2）
1509 IFY9\＄く＝＂． 9 ＂THENZ9\＄＝Z9\＄＋＂Ø＂：GOTO 15210
1520の $29 \$=\mathrm{Z9}$ \＄＋＂． $0 \emptyset "$
15205 REM NOW TO ADD A COMMA，IF REQU IRED
1521 Ø $29=$ LEN（ $\mathrm{Z9}$ \＄）
1522の IFZ9＜8THEN1540Ø
15230 Y9\＄＝RIGHT\＄（Z9\＄，6）
15240 Y9\＄＝＂，＂＋Y9\＄
15250 Y $9 \$=\operatorname{LEFT}(\mathrm{Z} 9 \$,(\mathrm{Z} 9-6))+\mathrm{Y} 9 \$$
15255 REM Z9\＄IS THE EDITED FIELD
$1526079 \$=Y 9 \$$
15265 REM Z9 WILL CONTAIN THE LENGTH～ OF THE EDITED FIELD
15267 Z9＝Z9 1 ＋
$1540 \emptyset$ RETURN
15752 GOSUB11øøø：PRINT
160りの Z9\＄＝STR\＄（Z9）
16010 REM
16020 RETURN
17ØØØ HOME：PRINT：INVERSE：PRINTTAB（17） ＂INVEST＂：NORM AL：PRINT
17010 PRINT＂THIS IS A REAL ESTATE ANA LYSIS＂
17020 PRINT＂PROGRAM，WHICH WILL FIGUR E CASH FLOW，＂
$1703 \emptyset$ PRINT＂EQUITY BUILDUP，ASSET APP RECIATION＂
$17 \emptyset 4 \emptyset$ PRINT＂AND TAX SAVINGS FOR AN IN COME PROPERTY．＂
17050 PRINT
$1706 \emptyset$ PRINT＂IF THE LOANS YOU HAVE，OR ARE GETTING＂
$1797 \emptyset$ PRINT＂FOR A PARTICULAR PROPERTY ARE FOR＂
$17 \emptyset 8 \emptyset$ PRINT＂A DIFFERENT TERM，OR AT A

DIFFERENT＂
17090 PRINT＂RATE THAN WHAT THE PROGRA
$1707 \emptyset$ PRINT＂FOR A PARTICULAR PROPERTY ARE FOR＂
$17 \emptyset 8 \emptyset$ PRINT＂A DIFFERENT TERM，OR AT A DIFFERENT＂
$17 \emptyset 90$ PRINT＂RATE THAN WHAT THE PROGRA M ASKS FOR，＂
171øø PRINT＂INPUT THE ANSWER AS CLOSE AS POSSIBLE．＂
17105 PRINT
1711Ø PRINT＂FOR INSTANCE，YOU CAN USE AN INTEREST＂
$1712 \emptyset$ PRINT＂RATE FROM $1 \emptyset$ TO 18% IN ． 5 STEPS＂
17130 PRINT＂IF YOUR LOAN HAPPENS TO B E AT 11.75% ，＂
17140 PRINT＂USE THE CLOSEST ANSWER－－1 1．5\％＂
17150 PRINT
17152 PRINT：GOSUBl1øøø：PRINT
$1716 \emptyset$ PRINT＂HIT ANY KEY TO CONTINUE．． ．＂；GETL\＄
$1719 \emptyset$ HOME：PRINT
$1720 \emptyset$ PRINT＂IF YOU MAKE AN ERROR IN A NSWERING，＂
1721ø PRINT＂JUST CONTINUE，AS YOU＇LL～ HAVE THE＂
1722 PRINT＂CHANCE TO CORRECT YOUR DA TA IN A＂
1723 （PRINT＂MOMENT．＂
17240 PRINT
17250 PRINT＂ALSO，ONCE YOU HAVE THE D ATA INTO＂
17260 PRINT＂THE COMPUTER，YOU＇LL BE A LLOWED TO＂
$1727 \emptyset_{\text {＂}}$ PRINT＂CHANGE IT，AS YOU WISH．
17280 PRINT
1729 • PRINT＂SO，YOU MIGHT WANT TO SEE THE RESULTS＂
$1730 \emptyset$ PRINT＂OF AN INVESTMENT WITH $\$ 1 \varnothing$ ，ØøØ DOWN，＂
$1740 \emptyset$ PRINT＂AND SEE WHAT HAPPENS IF Y OU PUT＂
17410 PRINT＂\＄15，Øøø DOWN．OR IF YOU～ TAX BRACKET＂
17420 PRINT＂WAS A BIT HIGHER，OR IF T HE PAYMENTS＂
17430 PRINT＂STRETCHED OUT A BIT LONGE R，AND SO ON．＂
17440 PRINT
17450 PRINT＂WHEN YOU HAVE THE RESULTS YOU WANT，＂
17460 PRINT＂YOU CAN ASK FOR A PRINTOU T．ONCE＂
17470 PRINT＂YOU GET A PRINTOUT OF THE INFORMATION，＂
$1748 \emptyset$ PRINT＂THE PROGRAM WILL END．＂
17482 PRINT
17490 INVERSE：PRINT TAB（17）＂INVEST＂～

＂：NORMAL

178Øø RETURN
2øø1ø RETURN
$2100 \emptyset$ REM
21142 HOME：VTAB6
21143 HTAB 16
21144 SPEED＝255
21145 INVERSE：PRINT＂INVEST ＂：NORMAL：PRINT：PRINT：PR
INT
21150 NORMAL
21160 PRINT
21165 GOSUBlløøø：PRINT
$2117 \emptyset$ PRINT＂．．．．．．A REAL ESTATE ANALY SIS PROGRAM＂
21175 PRINT
$2118 \emptyset$ GOSUB11øøø
21190 PRINT
$212 \emptyset \emptyset$ PRINT＂．．．．．．．GREGORY R．GLAU＂
21210 PRINT＂P．O．BOX 1627＂
21220 PRINT＂PRESCOTT AZ 863ø2＂
21250 PRINT：GOSUB11ø日も：PRINT
21280 PRINT
21300 PRINT＂HIT ANY KEY TO CO NTINUE．．．＂；：GETL\＄
$219 \emptyset \emptyset$ SPEED＝255
$2200 \emptyset$ NORMAL
22010 RETURN

Program 2.

1 UFEH \＃1，4， 6 ＂K：＂

60 FEAD TEHF：IK Y ，I $=$ TEMF
220 FEAD TEFR $: E 1(Y, I)=T E H F$

2060 \because＂HIT HHY KEY TO COHTIHEE ．．＂；GET
\＃1，TEFF

20015 ？＂IFBEST
1＂：＂FLEGGE HHOER THE FOLLOWIHE
$206 G$ FRIHT＂HHELEF＇ERE＇TO STOF HOWU S ［00． 10
2010 FFIHT＂TOLHF G EATE＂：IHFUT E
2036 FRINT＂FFWFEFTY HENFESG＂：IHFUT A末
2032 ？＂ 2 CLEAR $\}^{"}$

2050 ？ F HISC INFO（2）＂；INFUT M2t
2060 ？：？：？＂ASKK INEAFFERING FRICE＂；PR
2070 ？＂ $2 C L E A)^{\circ}$
2076 ？＂COHSLLT WITH YORR ACCUUNTHTT－ 1 PLEGSE1＂
2081 ？＂ESTIHATEC LIFE FOR［EFFREC：IATIUN
IN VEAFE＂；：IHPOTT L：？
2685 ？＂\｛CLEAFK＂
2089 ？＂ESTIMATEU APPRECIATION FER YEAR＂ ；：IIFUT A

2090 ？＂\｛CLEART＂
2091 ？＂CIURREFT TOTHL RENTS PER MUNTH＂； INFUT R
2100 ？＂ANTICIFATEU TOTAL RENTS FER MONT H^{I} ；：INPUT AR
2115 ？＂FROFERTY THIS YEAR＂；：IHFUT M
2120 ？＂TAXES＋INEURATLE FER MORTH＂；：IH FUT T
2140 ？＂ESTIMATED EXPENSES FER HOUTH＂；I
NFUT E
2147 ？＂CLEARO＂
2150 ？$\%$ TAX BRACKED YOU＇RE IN（ $36 \%=30$ ）
＂；：INPUT B
2162 ？？＂＂OOHN FAHENT＂；INFUT DF
22060°＂ 2 CLEAF ＂
2290 ？＂［1］vod WAHT TO CHARHE THIS＜ $1=\mathrm{T} E$ S〉＂；IFPUT Q
2410？？？＂CORFECT FAHEENT TOTHL＂；：IHFUT
TEMF： $\mathrm{F}(9)=$ TEMF
3032 ？＂$\{C L E A R)^{\prime \prime}$
5060 ？＂\｛CLEARS＂：？：？＂HON LEE HANE TO FI GRE TURE＂？＂PVHTHLY PAYHENTS FOR THIS FROPERTY，＂
5001 ？＂YOU CAN INFUT UF TO 3 FAMENTS．＂ ：？
5065 ？？？＂YOU PAST INFUT SIAETHINAI＂
5006 ？＂－－ENEN IF YOU CHAHGE IT LATEF O $\mathrm{NI}^{\prime \prime}$
5007 ？
5250 ＂＂YEARS（15－20－25）＂；INFUT TEMF：Y $\mathrm{C}=$ TEMF
5310 FRINT＂FERTEENT RATE＂：：IHFUT Q

$=$ TEPAP
GOBET ？＂CLEGRO＂
6310 ？＂MHEN COHE，AHSWER－1＂；：IAFUTT Q
6.315 ？＂CLEAP＂：？
6.350 －＂COPRECT OATE＂；：IHFUT E

6360 ？＂ACLFESS＂；IHPUT A丰：GOTO E000
$6365 \div$＂MISC IHFO ${ }^{\prime} ;$ ：IFFUT MIF：GOTO E060
6370 ？＂MISC INFO＂；：IHFUT HEt：GOTO E0660
6380 ？＂AEKIHGOFFERING FRICE＂；IHFUT PR 63OU ？＂LIFE FOR GEFFECTGTION＂；：INFUT L
6406 ？＂\％AFFRECTATIOS EXFETED＂；IHFIT
A
E410 ？＂CURFENT FENTS＂；IHFIT R：GITO EEDG a
6420 ？＂AHTICIFATEU RENTS＂；INFUT AR
E430 ？＂FHNTHS OF OWHERSHIF THIS YEAF＂： IHFUT 11
 FUT T：COTO 60040
6450 ？＂EST EXFEHES FEF HONTH＂；：IFFUT E ：GOTO 60010
6460 ？＂\％LAHD UALUE＂；：IRFUT U

6470 ？＂TAX ERACKET＂；IHFUT B：GOTO E0060
G4801？＂IRETETEER－IF YOU CHATHEI＂
$648 c^{\circ}$ ？＂IYOUR MONTHLY FAMENTS，THE MONT H．YI＂
6483 ？＂IPATHENTS SHOULD ALSO EE CHANGED ．1＂：？
$6484 ?$＂COOHA PAMYMENT＂；：IRPUT CP
6490 ？＂FURNISHINES \％OF UALUE＂；：INPUT F ：GOTO 6800
7000 ？＂CLEARS＂：FUSITIOH 10，10：？＂－－－－

و060 ？＂CLEAR＂：FUSITIOH $17,1: \%$＂IIPNES

FROPERTY＂in：＂rodTHS THIS YEAR．THE CA SH FLOH＂
ghoid ？＂IS EASED OH CURPENT RENTS THE 15 T＂
9009 ？＂HIT AHF KEY TO COHTIHE ．．＂；：GET
\＃1，TEMF：？＂CLEFRO＂；： $\mathrm{Q}=5$
9014 GSLE 11060：FOKE 55，65： 7 ＂IYEAR 11 ＂ ＂IYEAR 21＂
9017 FUKE $55,05: 7$ 293，
9034 FOKE 55， $05: ? 293$ ：
9044 FUKE 85， $155: 7$ 299，
9064 FOKE $55,155:$ ？ 294 ，
9074 ？＂RETURA ION ENUITY \％＂：FOKE 85，10：？ G6；＂\％＂园；＂\％
9075 cosul 2061605 ＂ HIT Ahf KEY TO COHTI
NJE ．．．：GET \＃1，TEMF
10016 ？＂CLEAR＂
10017？＂I IKNEST
10680 IF $\mathrm{Q}=3$ THEN ？＂ERHI OF IIMNESTI FRO GRAM1＇：EHII
10100 ？＂CLEAR＂

IMNEST
12000 END
1282 IF $\mathrm{Q}=2$ THEN ？＂ERDD OF IINRESTI FRO
GRAH1＂：EMI
15655 Y9 $=29$（LEFN 294 ）－3）
15680 Y9 $=29$（LEFK 294）－2）
 ＂g＂：G0T0 15215
1529029 （LENK 295 ）+1 ）＝＂． $000^{\prime \prime}$
15210 29 LEM 294 ）
15330 ソ9 $=294(29-6)$

EMF $\ddagger: Y$ ：
17490 ？＂
IHNEST
$21142{ }^{\circ}$＂CLEAF）＂
21143 FOSITIUN 16,6
21144 FEM
21145 ？＂IIF地ST＂：？：？：？：？
$213000 \div$＂HIT AHN KEY TO CONTIM尼．．．＂；
: GET \#1.A
21900 REM 22000 FEM

Mr. Glau has offered to make disk copies of the program for Apple owners: send him $\$ 3$ and a disk in an SASE mailer.

D!SK DRIVE WOES?

PRINTER INTERACTION? MEMORY LOSS?
ERRATIC OPERATION?

Don't Blame The Software!

Power Line Spikes, Surges \& Hash could be the culprit!
Hash could be the culprit! Pat. \#4,259,705
Floppies, printers, memory \& processor often interact! Our patented ISOLATORS eliminate equipment interaction AND curb damaging Power Line Spikes, Surges and Hash.

- ISOLATOR (ISO-1) 3 filter isolated 3-prong sockets; integral Surge/Spike Suppression; 1875 W Maximum load, 1 KW load any socket
- ISOLATOR (ISO-2) 2 filter isolated 3-prong socket banks; (6 sockets total); integral Spike/Surge Suppression; 1875 W Max
load, 1 KW either bank
- SUPER ISOLATOR (ISO-3), similar to ISO-1 except double filtering \& Suppression
- ISOLATOR (ISO-4), similar to ISO-1 except unit has 6
individually filtered sockets
$\$ 94.95$
individually filtered sockets . \$106.95
- SUPER ISOLATOR (ISO-11) similar to ISO-2 except double
filtering \& Suppression
$\$ 94.95$
- CIRCUIT BREAKER, any model (add-CB) Add $\$ 8.00$
- CKT BRKRISWITCH/PILOT (-CBS) . Add $\$ 16.00$

AT YOUR
Master-Card, Visa, American Express Order Toll Free 1-800-225-4876 (except AK, HI, PR \& Canada)

(LABEL), Y (LABEL, X) LABEL + INDX-1

Before you buy that off-brand Assembler/Text Editor, note that EHS is the only company that provides a line of compatible ASM/TED's for the PET/APPLE/ATARI/SYM/KIM and other microcomputers.
When you make the transition from one of these 6502-based microcomputers to another, you no longer have to relearn peculiar Syntax's, pseudo ops, and commands. Not only that, EHS ASM/TED's are the only resident 6502 Macro Assemblers availiable and they have been available for several years. Thus you can be sure they work. Our ASM/TED's may cost a little more but do the others provide these powerful features: Macros, Conditional Assembly, String Search and Replace, or even up to 31 characters per label? Before you spend your money on that other ASM/TED, write for our free detailed spec sheet.

MACRO ASM/TED

- For APPLE/ATARI/PET/SYM/KIM
- Other than our MAE, no other assembler is as powerful.
- Macros/Conditional Assembly.
- Extensive text editing features
- Long Labels
- Designed for Cassette-based systems.

MAE ASM/TED

- For APPLE/ATARI/PET
- The most powerful ASM/TED
- Macros/Conditional and Interactive Assembly
- Extensive text editing features
- Long Labels
- Control files
- Designed for Disk-based Systems. \$169.95 $\$ 49.95$

Eastern House Software
PHONE ORDERS
Winston-Salem, N. C. 27106 USA (919) 924-2889
(Dealer Inquiries Invited)
(919) 748-8446

os

Developing A Business Algorithm
 Keith Falkner
 Venice, FL

The heart of a computer program is its algorithm procedure. This is the case in this program. The purpose of the program is to solve a simple and fairly common problem in business: if a customer wishes to lease a durable article, with a view toward buying it at the end of the lease, what should the rental payment be? As written, this program limits the term to 6 or 12 or 24 or 36 months, and includes consideration of an annual charge for insurance. These considerations were part of a specific user's business environment.

The program uses an algorithm to calculate the lease payment and then verifies its result by simulating the passage of time and showing that the expected result actually happens. This will be illustrated in detail later. What is more important is how the algorithm was developed.

Creating An Interest Algorithm

Almost always, the idea behind an algorithm is very simple. This is certainly true here. The main idea is that interest is the product of principal, rate, and time. This is the simple formula which most of us have forgotten since high school.

Applying a simple formula can be a complex task, but is usually understandable in small pieces. For an example see Diagram 1, which merely illustrates that P dollars will grow to $\mathrm{P}+\mathrm{P} * \mathrm{R} * \mathrm{~T}$ dollars in T at rate R . This process can be treated in reverse: if money is to accumulate at interest in order to be worth P dollars at future time T at rate R, the present value of that money is $P /(1+R * T)$ dollars. These simple formulae are the heart of all interest calculations, however complicated they become.

Diagram 2 shows the values of each of six

DIAGRAM 1

$\stackrel{\text { PAST }}{\longleftrightarrow}$ time $T \longrightarrow$	PRESENT
$\$ \mathrm{P} \longrightarrow \mathrm{P}+\mathrm{P}^{*} \mathrm{R}^{*} \mathrm{~T}$	
$\$ \mathrm{P} /\left(1+\mathrm{R}^{*} \mathrm{~T}\right) \longrightarrow$	

How money increases when the interest rate is R during time T.
payments of P dollars each, at intervals of unit time (that time which is the basis of the interest rate, e.g. 2% per month, unit time would be one month).

DIAGRAM 2

The above is simple high school math. To add up the values of the six payments, we need another idea from high school. The sum of a geometrical progression of N terms, first A , ratio X :

$$
\begin{aligned}
S & =A+A * X+A * X \uparrow 2+A * X \uparrow 3+\ldots+A * X \uparrow(N-1) \\
& =A * \frac{X \uparrow N-1}{X-1}
\end{aligned}
$$

By substituting $\mathrm{P} /(1+\mathrm{R}) \uparrow 6$ for A , and $(1+\mathrm{R})$ for X , we get:

$$
\begin{aligned}
S & =\frac{P}{(1+R) \uparrow 6} * \frac{(1+R) \uparrow 6-1}{1+R-1} \\
& =\frac{P}{R} *\left(1-\frac{1}{(1+R) \uparrow 6}\right)
\end{aligned}
$$

The value S above is the present value of what the customer will eventually pay in lease payments, six of them in this example. That money must equal the present value of the contract, which is the value of the article being leased, reduced by the value it will fetch after the lease is done, and increased by some fee for insurance.

Let's delve into the specific workings of the program. Table 1 identifies the variables used.

TABLE 1

| Variable | |
| :---: | :--- | Meaning \quad| D | Fraction to buy it after lease |
| :---: | :--- |
| F | = 1+R (for convenience) |
| I | Annual insurance premium factor |
| P | Payment each month of lease |
| Q | Optional price to buy after lease |
| R | Rate of return as \% monthly |
| S | State sales tax rate |
| T | Number of months and payments |
| V | Value of the article being leased |
| W | Worth of contract (computed) |
| Z | Insurance factor (computed) |

The program collects input values for I, R, S, T, and D; since I, R, and S will usually not change, the program knows standard values for these, which should be set to your standards, not those

 ATARI 400/800

EASY TO USE - Letter Perfect is a single load easy to use program. It is a menu driven, character orientated processor with the user in mind. FAST machine language operation, ability to send control codes within the body of the program, mnemonics that make sense, and a full printed page of buffer space for text editing are but a few features. Screen Format allows you to preview printed text. Indented margins are allowed. Data Base Merge with DATA PERFECT by LJK, form letters, accounting files and mailing labels only with MAIL MERGE/UTILITY by LJK. FEATURES - Proportional/ Incremental spacing * Right Justification * File Merging * Block movement * Headers * Footers * Print Multiple Copies * Auto Page Numbering * Scroll forward/backward * Search and Replaces * Full cursor control * Underlining * Boldface * Superscripts * Subscripts * Auto page numbering * Insert character/line * Delete character/line * Centering * Horizontal tabs/changeable * Multifunction format line (line spacing - left margin - page width - lines/page - change fonts - top/ bot margin adjust) MUCH MORE! \$149.95

ATARI VERSION 2.0 \# 2001

Compatible with Atari DOS. Uses proportional font, right justified with Atari 825/Centronics* 737, 739 printers. Uses EPSON MX*Series + Graftraxlitalicized font. Can mix type fonts on same page; mix boldface and enhanced font in same line with justification. Can be used with 16K Atari/400.
"Compared to the price of many other word processors, this package is a steal. It does everything the advertisement claims and more. On top of this the software is very easy to use." A.N.A.L.O.G. MAGAZINE

APPLE VERSION 5.0 \# 1001

DOS 3.3 compatible - Use 40 or 80 column interchangeably (Smarterm - ALS; Videoterm-Videx; Full View 80 - Bit 3 Inc.; Vision 80 - Vista; Sup-R-Term - M\&R Ent.) Reconfigurable at any time for different video, printer, or interface. USE HAYES MICROMODEM II* LCA necessary if no 80 column board, need at least 24 K of memory. Files saved as either Text or Binary. Shift key modification allowed. Data Base Merge compatible with DATA PERFECT* by LJK.
"For $\$ 150$, Letter Perfect offers the type of software that can provide quality word processing on inexpensive microcomputer systems at a competitive price." INFOWORLD

DATA PERFECT
 T.M. LJK

APPLE \& ATARI
 DATA BASE MANAGEMENT

$\$ 99.95$
Complete Data Base System. User orientated for easy and fast operation. 100% Assembly language. Easy to use. You may create your own screen mask for your needs. Searches and Sorts allowed, Configurable to use with any of the 80 column boards of Letter Perfect word processing, or use 40 column Apple video. Lower case supported in 40 column video. Utility enables user to convert standard files to Data Perfect format. Complete report generation capability. Much More!

EDIT $6502^{\text {т.м. LJк }}$
This is a coresident - two pass ASSEMBLER, DISASSEMBLER, TEXT EDITOR, and MACHINE LANGUAGE MONITOR. Editing is both character and line oriented. Disassemblies create editable source files with ability to use predefined labels. Complete control with 41 commands, 5 disassembly modes, 24 monitor commands including step, trace, and read/write disk. Twenty pseudo opcodes, allows linked assemblies, software stacking (single and multiple page) plus complete printer control, i.e. paganation, titles and tab setting. User can move source, object and symbol table anywhere in memory. Feel as if you never left the environment of BASIC. Use any of the 80 column boards as supported by LETTER PERFECT, Lower Case optional with LCG.

LJK DISK UTILITY

APPLE \$29.95
This menu driven program allows the user to manipulate a variety of different file types. Binary, Text, and Source files may be easily converted into each other. The program may be used with APPLESOFT*, VISCALC*, and other programs. These program files may be readily adapted for multiple use including editing with LETTER PERFECT word processings.

MAIL MERGE/UTILITY APPLE \& ATARI This menu driven program combined with LETTER PERFECT allows user to generate form letters and print mailing labels. With the Atari, you may CONVERT ATARI DOS FILES, or Visicalc files compatible for editing with LETTER PERFECT. Utility creates Data Base files for Letter Perfect.

LOWER CASE CHARACTER GENERATOR

\$34.95

What

Lower Case Character Generator for the Rev. 7, Apple II or II+ computers. When installed, this Eprom will generate lower case characters to the video screen. Lower case characters set has two dot true descenders. Installation instruction included. Manual includes listing of software for full support and complete instructions for shift key modification. Compatible with LETTER PERFECT.

LJK ENTERPRISES INC. P.O. Box 10827

DEALER INQUIRES INVITED

[^2]actually shown in the listing.
Lines 140 to 170 calculate the insurance factor Z . For a six-month lease, Z is half the annual insurance factor I . For leases longer than a year, Z is I plus the present value of I for each future year of the lease.

Line 190 computes the total worth of the contract (the value of the article) plus the fee for insurance, minus the present value of the article's eventual selling price. That present value is expressed as D*V/F/F T. In plain English, that is the purchase-fraction D (for example . 10 to buy at 10% of original price), times V the item's value, divided by F T to bring the future selling price into the present, further divided by F, so that the customer can buy the article, not on the day of the final payment, but a month later.

At last the payment P can be computed, since W (as calculated in line 190) is equal to the sum of the series of payments calculated above as S . The payment amount P is finally calculated in line 210, and is truncated to the last cent, not rounded to the nearest cent.

The loop in line 250 simulates the behaviour of the lease as time passes. Each month the indebtedness X is multiplied by F the interest factor, then a payment of P reduces that debt. Any debt remaining after all T payments have been made, represents the result of having ignored all the fractions of pennies which were dropped in line 230.

Well, you didn't think we were going to let the customer get away with fractions of pennies, did you? So the calculation in line 270 will show an amount slightly greater than the purchase-fraction D times the value V. Taxation laws may insist upon some minimum purchase fraction, and the above methods ensure that the final price will be at least D times V, and usually a few cents more.

The results of all this are promptly displayed on the screen. The value of the monthly payment is shown, and the eventual optional purchase price is shown, both before and after state sales tax.

Add this program to your bag of tricks, and you will have a new and potent way to attract investors. To verify that, just take a modest (nowadays) interest rate such as 2% per month, and calculate the investor's annual rate of return, which is $(1+R) \quad 12-1$. I leave to you the task of exploiting that algorithm.

Program 1.

```
I\emptyset\emptyset REM LEASE CALCULATION
ll\emptyset REM WITH OPTION TO BUY
120 REM
130 GOSUB550
140 REM CALC INSURANCE
150 IFT=6THENZ=I/2:GOTOl8\emptyset
160 Z=I:IFT>12THENZ=Z+I/F^1.2
```

$17 \emptyset$ IFT>24THENZ=Z+I/F^24
180 REM CALC WORTH OF LEASE
$19 \emptyset \mathrm{~W}=\mathrm{V}+\mathrm{V} * \mathrm{Z}-\mathrm{D}^{*} \mathrm{~V} / \mathrm{F} / \mathrm{F}^{\wedge} \mathrm{T}$
$2 \emptyset \emptyset$ REM CALC PAYMENT
$210 \mathrm{P}=\mathrm{R}^{*} \mathrm{~W} /\left(\mathrm{l}-\mathrm{F}^{\wedge}-\mathrm{T}\right)$
220 REM ROUND TO LAST CENT
$230 \mathrm{P}=. \emptyset 1 * \mathrm{INT}(\mathrm{P}$ *løø)
240 REM CALC FINAL PRICE
250 X=W:FORN=1TOT: $X=X * F-P: N E X T N$
260 REM BUY IT 1 MONTH LATER
270 Q $=\mathrm{X} * \mathrm{~F}+\mathrm{D}^{*} \mathrm{~V}$
280 REM PRINT RESULTS
29 Ø X=P:GOSUB4 $3 \emptyset$
$3 \emptyset \emptyset$ PRINT:PRINT"MONTHLY PAYMENT IS ~
..."; TAB (25); Z\$
310 PRINT:PRINT"AFTER ";T;" PAYMENT S, THE"
$320 \mathrm{X}=\mathrm{Q}$: GOSUB4 30
330 PRINT"PRICE WILL BE ..."; TAB(25); Z\$
$340 \mathrm{X}=\mathrm{Q}+\mathrm{Q}$ *S:GOSUB43ø
$35 \emptyset$ PRINT"TAX INCLUDED, THAT'S ..." ; TAB (25) ; Z \$
360 END
370 REM NUMERIC INPUT:
$38 \emptyset$ REM PRESET X\$, XH, \& XL
390 PRINTX\$;:INPUT"";
$4 \emptyset \emptyset$ IFX>XHTHENPRINT"TOO HIGH!":GOTO 390
410 IFX<XLTHENPRINT"TOO LOW!":GOTO3 $9 \emptyset$
$42 \emptyset$ PRINT:RETURN
430 REM ROUND \& FORMAT MONEY:
$440 \mathrm{Z}=. \emptyset 1 * I N T(X * 1 \emptyset \emptyset+.5)+. \emptyset \emptyset 1$
$450 \mathrm{Z} \$=\operatorname{STR}(\mathrm{Z}): \mathrm{Z}$ = LEFT $(\mathrm{Z} \$$, LEN $(\mathrm{Z} \$)-$ 1)

460 Z\$=RIGHT\$(" \$"+Z\$,14)
$47 \emptyset$ RETURN
$48 \emptyset$ REM ANSWER YES-OR-NO
490 REM PRESET XS
5øø PRINTX\$;:INPUT" "; Z\$:PRINT
510 Z \$=LEFT\$ $(\mathrm{Z} \$, 1)$
520 IFZ $=$ = Y "THENOK=1:RETURN
530 IFZ $\$=$ "N"THENOK= \varnothing : RETURN
$54 \emptyset$ PRINT"PLEASE ANSWER 'Y' OR 'N'. ":GOTO5øø
550 REM INITIALIZATION
560 FORK=1TO24:PRINT:NEXT
$57 \emptyset$ PRINTTAB(12)"LEASE WITH OPTION TO BUY."
580 PRINTTAB(12)"BY: KEITH FALKNER ~ - 1981."

590 PRINT:PRINT:PRINT
$6 \emptyset \emptyset \mathrm{X}=$ ="SKIP INSTRUCTIONS? ":GOSUB4 $8 \emptyset$
$61 \emptyset$ IFOKGOTO75@
$62 \emptyset$ PRINT:PRINT"YOU ARE LEASING AN ~ receivable and insurance billingsystem for modern health care offices and clinics

CDESIGNED FOR COMMODORE 8000 SERIES COMPUTERS AND DISK DRIVES
－Help functions are always on－line
－Supports CPT，ICD and RVS medical coding
－Supports open item or balance for－ ward accounting systems
－Interfaces to popular word processing programs
－Multiple terminals may be added with Superbus 4.0
－Multiple disk drives may be used－no limit on number of patients or accounts

－Includes a data base and forms generator to fill out any insurance form
－Includes a computer aided instruction program to train new users

Includes these standard reports：
A／R aging A／R transactions
－General ledger Instant cash receipt
－Income analysis by physician
－Doctor referral report
－Patient／account cross reference
－Standard SuperBill insurance form

ITEM FOR A TERM OF＂
630 PRINT＂ $6,12,24$ ，OR 36 MONTHS． AFTER THAT，＂
640 PRINT＂THE CUSTOMER CAN BUY THE～ ITEM FOR SOME＂
650 PRINT＂FRACTION OF ITS PRICE．＂：P RINT
660 PRINT＂I CALCULATE THE MONTHLY P AYMENT．＂
67Ø PRINT：PRINT＂I NEED TO KNOW SOME THINGS：＂：PRINT
68Ø PRINT＂THE VALUE OF THE ITEM．＂
690 PRINT＂THE COST OF INSURANCE．＂
$7 \emptyset \emptyset$ PRINT＂THE MONTHLY IN＇TEREST RATE ．＂
$71 \emptyset$ PRINT＂THE LENGTH OF THE TERM．＂
$72 \emptyset$ PRINT＂THE LOCAL SALES TAX RATE． ＂
730 PRINT＂THE PURCHASE FRACTION．＂
740 PRINT
$75 \emptyset \times \$=" S T A N D A R D$ SET－UP？＂：GOSUB48Ø
760 REM HERE IS THE STANDARD SETUP：
$77 \emptyset \mathrm{I}=. \emptyset 2:$ REM 2% INSURANCE
$780 \mathrm{R}=.025:$ REM 2．5\％／MONTH
790 S＝． $04:$ REM 4\％FLORIDA TAX
$8 \emptyset \emptyset$ IFOKGOTO9ØØ
810 PRINT＂WHAT FRACTIUN OF THE ITEM ＇S VALUE IS＂
820 PRINT＂CHARGED EACH YEAR FOR INS URANCE？＂
$83 \emptyset \times L=\emptyset: X H=.2: X \$=" I N S U R A N C E:$＂：GOS UB37 $10: I=X$
$84 \emptyset$ PRINT＂WHAT IS THE MONTHLY INTER EST RATE？＂
850 PRINT＂（EXAMPLE：ENTER 3\％AS ．Ø 3 ）＂
$860 \times L=. \emptyset \emptyset 1: X H=. \emptyset 5: X \$=" I N T E R E S T: \quad$＂ ：GOSUB37Ø：R＝X
$87 \emptyset$ PRINT＂WHAT IS THE SALES TAX PER CENT？＂
880 PRINT＂（EXAMPLE：ENTER $\varepsilon \%$ AS．． 8 ）＂
$89 \emptyset \times L=\emptyset: X H=.3: X \$=" S A L E S$ TAX：＂：GOS UB370：S＝X
$9 \emptyset \emptyset$ PRINT：PRINT＂WHAT IS THE ITEM＇S～ VALUE？＂
910 XL＝5 ：XH＝5 $0 \emptyset \emptyset: X \$=" V A L U E \quad \$ "$ ：GOSUB37ø：V＝X
$92 \emptyset$ PRINT：PRINT＂HOW MANY MONTHS？（6 OR 12 OR 24 OR 36）＂
930 XL＝6：XH＝36：X\＄＝＂MONTHS：＂：GOSU B370：T＝X
$940 \mathrm{IFT}=60 \mathrm{RT}=120 \mathrm{RT}=240 \mathrm{RT}=36 \mathrm{GOTO} 96$ ด
950 PRINT＂I CAN＇T HANDLE THAT！＂：GOT 0920
OGの DRINT＂WHAT ERACTION OF THE ORIG INAL PRICE＂
$97 \emptyset$ PRINT＂WILL BUY THE ITEM AFTER T HE LEASE？＂
$980 \times \mathrm{LL}=\emptyset: \mathrm{XH}=.75: \mathrm{X} \$=$＂FRACTION：＂：GOS UB37 $0: D=X$
$990 \mathrm{~F}=1+\mathrm{R}:$ PRINT：PRINT＂OK，HERE WE G O！＂：PRINT：RETURN

Program 2：Atari Version

304 FRINT ：FRIHT＂MOHTHLY FHYHEHT IS
＂：FOOKE 85，25：FRINT 2
330 FRINT＂FRICE HILL EE ．．．＂；：FOKE 8,2 5：FRIHT Z $\$$
350 FRINT＂THR IHELUDES，THAT＇S ．．．＂；FO KE ES，25：PRINT Z
30 FRIHT $x_{i}:$ IRFUT X
45 活
，LENE Z

住：こも二てき，1：14
500 FRIHT 㲅：：IHRTT X
510 2
57 FOOE BS： $2:$ FRIHT＂LEGE WTTH OPTIOH TO EUH：＂
580 FOKE 85： 12 FRIMT＂EH＂：KEITH FHLKHER －1981＂

．AIM－ 65 USER

Would you be interested in a

Consulting Job

writing custom software on your own AIM－65？
If yes，are you：1．An expert in AIM－65 use？
2．Located in the Bay Area？
3．Familiar or ready to learn AIM－65 FORTH？
Please call：Dr．Gat 415 ，961－6823

INVENTORY CONTROL PLUS: *INVOICING - ORDER ENTRY - ACCOUNTS RECEIVABLE for CBM 8032 and 8050

*PARTRAC: Three separate but interconnected computer programs. All are "on line" or in the computer at the same time. It is not necessary to change disks with PARTRAC!

INVOICING SYSTEM

a. Instant stock check on any part \#
b. Instant price check on any part \#
c. Instant customer status check
d. Writes invoices and posts to accounts receivable automatically.
e. Writes credit memos and posts to accounts receivable automatically.
f. Writes daily totals reports.

INVENTORY SYSTEM

a. Keeps track of all information related to a part \# Prices, costs, quantities on order, in stock, back ordered and vendor.
b. Prints reports
1.) "Reorder Advice Report"
2.) "Price List Report"
3.) "Complete Parts Inventory Report" with total cost of inventory. (Your accountant will like that.)

ACCOUNTS RECEIVABLE

a. Posts all open account sales.
b. Prints "Accounts Receivable Report" with aging function.
c. Prints "Statements"
d. Prints "List of Accounts Names"
e. Allows partial payments.

PARTRAC is fully expandable because of modular design. The basic system handles 8000 part \#'s, 1000 accounts, 10,000 open invoices. This is expandable to about 20,000 part \#'s, 3,000 accounts and 25,000 open invoices.

GUARANTEED BEST PRICES!

commodore

VIC 20 \$259
Vic-TV Modual
S19.00
Vic Cassette
S69.00
Vic Disk Drive
s Call
Vic 6 Pack program -.-.-.-- $\$ 44.00$

Computer Systems

IN N.Y. CALL
914-434-3338 (800) 431-3400

GLEN WILD, N. Y. 12738

CBM Software

Epson MX-70
Epson MX-80
Epson MX-80 F
Diablo 630
S24.00
TEC 1500 Starwriter 45cps S1495.00

FREE FREIGHT--SAME DAY SHIPPING

Anti-Hesitation Programming: A Tutorial On Arrays

M. R. Smith
Calgary, Alberta, Canada

Abstract

Editor's Note: The delays discussed and corrected in this article are a problem common to Microsoft BASICs (Apple, PET/CBM, OSI, etc.). Because the Atari has a different variable storage format, no hesitation is observed using the structure of Program 1. Atari BASIC, though, is similar to Microsoft with respect to GOTO - it searches the program for the target from top to bottom. And the time-saving effect of relocating REMs can be seen on the Atari. - RTM

Have you ever had a series of hesitations or pauses occuring at the start of your BASIC program? It is particularly obvious when using loops or subroutines. First time into a FOR...NEXT loop, the program seems to hiccup and pause. Thoughts of the dreaded infinite loop occur, but then the program seems to recover. The second time into the loop, the response is so fast that the screen smokes. What causes this alteration in behaviour?

To demonstrate the effect, enter and run Program 1:

```
1 REM PROGRAM #1
20 PRINT "LINE 20" : DIM A(500), B(500), C(500)
30 PRINT "LINE 30"
40 FOR H = 1 TO 5: I =1
50 J = 1: K = 1: PRINT "LINE 50"
6 0 ~ N E X T ~ I ~
70 FOR I = 1 TO 5: PRINT "LINE 70"
80 L = 1:M = 1: P = 1 : PRINT "LINE 80"
90 NEXT I:STOP
```

You'll notice a pause between line 20 and line 30. More pauses occur before lines 50 and 80 . However, the next four times that the program gets to these lines, there is no pause.

On adding just one statement, line 10 , to this program, you'll notice a real difference.

```
1 REM PROGRAM #2
10 H = 0:I = 0:J = 0:K = 0:REM INITIALIZE
    VARIABLES
20 PRINT "LINE 20" : DIM A(500), B(500), C(500)
30 PRINT "LINE 30"
40 FORH = 1 TO 5:I = 1
50 J = 1: K = 1 : PRINT "LINE 50"
```

60 NEXT I
70 FOR I = 1 TO 5 : PRINT "LINE 70"
$80 \mathrm{~L}=1: \mathrm{M}=1: \mathrm{P}=1:$ PRINT "LINE 80 "
90 NEXT I : STOP
In this version, the pause before line 50 has disappeared. This change occurs because the simple variables, H, I, J and K, are names in line 10 of the program. This means that these variables are used before any of the arrays, $\mathrm{A}(500), \mathrm{B}(500), \mathrm{C}(500)$ are made.

To explain why all this is occurs, you have to understand how a BASIC interpreter stores things in the computer memory. In the middle of a program (say line 90 of Program 1), memory is split up like this:

```
----.---- - BOTTOM
PROGRAM
SIMPLE VARIABLES
ARRAYS
UNUSED
CHARACTER ARRAYS
---------TOP
```

For each variable, array or string used in the program, there is a definite place reserved in memory.

Before we ran the program, things looked a lot simpler.

```
-.......-BOTTOM
PROGRAM
UNUSED
-. -. --.-.--TOP
```

After line 20 in Program 1, things were different yet again.

```
-- -- -- -- - BOTTOM
PROGRAM
A(500)
B(500)
C(500)
UNUSED
--------- TOP
```

The first pause in the program, before line 30 , occurred while the arrays were being set up. The second pause occurred when the variables H and I were used for the first time. After line 40, the memory allocation was like this.

--------- BOTTOM

PROGRAM

H
I SIMPLE VARIABLES
------. -
A(500)
B(500) ARRAYS

INTRODUENG MTU~BASIL MICROSOFT BASIC+USER ORIENTED ENHANCEMENTS = MTU-BASIC

CAN YOU

- Save and load BASIC programs in either memory image or ASCII format?
- Input COMMANDS and data to BASIC from a disk file as well as from the keyboard, i.e. drive BASIC from an ASCII "job" file on disk?
- Execute ANY Disk Operating System command from a BASIC program?
- Redefine the effect of keyboard function keys and display legends on the CRT to indicate their present function?
- Use a lightpen to input actual X, Y coordinates on a 480 $\times 256$ pixel array in $1 / 60$ second?
- Obtain very precise coordinate input using a moveable crosshair positioned by the cursor keys?
- Plot high resolution images using screen coordinates or floating point coordinates with the necessary transformations and image clipping accomplished automatically?
- Easily extend BASIC's command set with your own application oriented machine language routine library (up to 8 at once)?

MTU-BASIC CAN DO all of the above yet is based on the industry standard, Microsoft BASIC. If you are missing even one of the above functions, you should find out how an MTU-130 computer can make your association with BASIC a lot more pleasant and better suited to your special needs.
The MTU-130 also comes with other standard features that most computers offer only as options at extra cost - such things as 19.6K Bytes/sec sustained disk data transfer rate, digitized speech playback, 4 voice music synthesis, $480 \times$ 256 bit mapped CRT screen display, fiber optic lightpen, RS-232 port, two parallel ports, hardware for cassette input and output, interface for local network, 80K RAM, 18 bit address bus, 8 bit audio DAC with 1 watt amplifier and a $3^{\prime \prime} \mathrm{x}$ $5^{\prime \prime}$ speaker.

EXAMPLES FROM MTU-BASIC

ENTER "TRANSFER3"

Reads in an ASCII text file as program statements.
SYSTEM "ASSIGN 1 BASICIN"
Redirects input from keyboard to disk file named BASICIN.
LEGEND 1, "First," "Second"
Relegends function keys 1 and 2 to read "First" and
"Second".
LTPEN F, X, Y
Sets $F=1$ and X, Y to coordinates when lightpen picks a point.
GRIN NW\$, X, Y
Displays crosshair and inputs X, Y location of its final position; NW\$ contains the exit key.
DRAW .0645, 3^{*} Y
Draw a vector from current location of graphic cursor to specified coordinates.
LIB "VGL," "IGL"
Select library extensions to be linked to BASIC.
The base MTU-130-1S system comes with one single-sided double-density $8^{\prime \prime}$ floppy disk, a $12^{\prime \prime}$ green phosphor CRT, and MTU-BASIC for $\$ 3995$. Three other models priced up to $\$ 4995$ contain 1 or 2 single or double sided drives for up to 2 Megabytes of storage. 4 Megabyte systems available on request.
We obviously cannot describe fully all of the details of the MTU-130 here. If you wish to know more about this complete desktop computer, call or write for our comprehensive 15 page descriptive literature. International requests include \$5.00 U.S.

COME TO MTU - for excellence in microcomputing systems.

Shouldn't you be using MTU-BASIC on an MTU-130 Computer?

Micro Technology Unlimited P.O. Box 12106 2806 Hillsborough St. Raleigh. NC USA 27605 (919) 833-1458

C(500)

UNUSED
-- -- -- -- TOP
To make room for the variable H , the BASIC interpreter had to first move the arrays A()$, \mathrm{B}()$ and C() higher up in memory. Then it had to move these arrays again to find room for variable I. During line 50 , the arrays needed to be moved twice more; first for variable J and then to place variable K . All this movement caused the second pause. The more there is to move and the more variables there to place, the longer the pause will be.

The second time around in the FOR...NEXT loop, places for the variables H to J were already available in memory, so no more pauses occurred. The pauses, however, started again when the arrays had to be moved three times to provide room for the variables L, M and P in line 80.

In BASIC, each time a simple variable is used for the first time, all the arrays then in existence have to be moved up in memory. This causes a pause in the execution of the program. If a large number of variables is introduced, these pauses can accumulate into a sizeable delay. To avoid the pauses, we have to initialize (that means establish) all simple variables before we introduce any arrays.

To understand how this improves things, consider the memory after line 20 in Program 2. It looked like this:
-.........- BOTTOM
PROGRAM
H
I SIMPLE VARIABLES
J
K
A(500)
B(500) ARRAYS
C(500)
UNUSED

- - - - TOP

This is very different to the appearance of the memory after line 20 of Program 1. When the program reaches line 40 , the variables H to J will have already been fitted into memory, so that the arrays will not need to be moved. Therefore the pauses will vanish. At line 80 , new variables will again have to be placed in memory, which means a pause while all the arrays move over. You can see the advantage of predefining all the simple variables before the arrays.

Systematic Initialization

Taking a systematic approach to the initialization
of variables in a program can prevent a lot of problems. Program 2, rewritten for systematic initialization, might look something like this:

```
1 REM PROGRAM #2 NEW
10 GOSUB 60000 : REM DO INITIALIZATION
20 PRINT "LINE 20
30 PRINT "LINE 30
40 FOR H = 1 TO 5:I = 1
50 = 1:K = 1 : PRINT"LINE 50"
6 0 ~ N E X T ~ I ~
70 FOR I = 1 : PRINT "LINE 50"
6 0 ~ N E X T ~ I ~
70 FOR I = 1 TO 5 : PRINT "LINE 70"
80 L = 1:M = 1:P = 1:PRINT"LINE 80"
90 NEXT I : STOP
59990 REM
60000 REM INITIALIZE SIMPLE VARIABLES
60010
                                    REM VARIABLES A - E
60020 H=0 0:I = 0:J = 0:REM VARIABLES F - J
60030 K=0:L = 0:M = 0:REM VARIABLES K-O
60040 P = 0 : REM VARIABLES P - T
6 0 0 5 0
                                    REM VARIABLES U - Z
60100 REM INITIALIZE ARRAYS
60110 DIM A(500), B(500), C(500)
6 0 2 0 0 ~ R E T U R N
```

This does seem to overdo things for such a short program, but this approach does have advantages for long programs.

1) Use a subroutine for initialization.

There is an obscure advantage of doing initialization using a subroutine. You could put equivalent statements to 60000-60200 at the beginning of a program. The advantage lies in the way that the BASIC interpreter handles GOSUB and GOTO commands. When a GOSUB command occurs, most BASIC interpreters skip to the beginning of the program. They then look at every line number (including those of REM statements) trying to find the line number wanted. Suppose that statements which are used only once in a program are placed at its start. There would be a tremendous waste of time while the interpreter unsuccessfully looks at these lines each time it searches for the line number it wants. Placing these lines at the end of the program makes for a great and simple way of speeding up your programs. This is particularly true when a GOTO command is issued from the middle of a FOR...NEXT loop near the end of the program.

The effect can be demonstrated by using the following program.

[^3]

BETA 32K BYTE EXPANDABLE RAM FOR 6502 AND 6800 SYSTEMS
AIM 65 KIM SYM PET S44-BUS

- Plug compatible with the AIM-65/SYM expansion connector by using a right angle connector (supplied)
- Memory board edge connector plugs into the 6800 S44 bus.
- Connects to PET using an adaptor cable.
- Uses +5 V only, supplied from the host computer.
- Full documentation. Assembled and tested boards are guaranteed for one full year. Purchase price is fully refundable if board is returned undamaged within 14 days.
Assembled with 32 K RAM.
.$\$ 349.00$
\& Tested with 16K RAM................... 329.00
Bare board, manual \& hard-to-get parts... 99.00 PET interface kit. Connects the 32 K RAM board to a 4 K or 8 K PET. . 89.00

See our full-page ad in BYTE and INTERFACE AGE
$8^{\prime \prime}$ or $51 / 4^{\prime \prime}$ flexible diskettes certified 100% error free with manufacturer's 5 -year limited warranty on all $8^{\prime \prime}$ media. Soft-sectored in boxes of 10 $51 / 4^{\prime \prime}$ available in 10 -sector.
(Add $\$ 3.00$ for plastic library cases)
$8^{\prime \prime}$ single sided, single density.
$\$ 27.50$
$8^{\prime \prime}$ single sided, double density: 35.50 $8^{\prime \prime}$ double sided, double density. 45.50 $51 / 4$ " single sided, single density. 27.50 $51 / 4 "$ single sided, double density. 29.50

PAPER TIGER PRINTERS

IDS 460G 9x9 Dot Matrix Printer........... 5890.00 IDS 560G Wide Carriage Printer.............. 1099.00

TERMINALS

ADDS Viewpoint	\$569.00
Tele Video 910	579.00
Tele Video 912C	679.00
Tele Video 920C	729.00
Tele Video 950	929.00

8" DISK DRIVES

Shugart 801R.................................. $\$ 399.00$
NEC FDI160 (double sided)............... 569.00
DYNAMIC RAMS
4116 (200ns)
set of 8
$\$ 24.00$
4164 (64 KxI) $\$ 18.00$

TERMS: Minimum order $\$ 15.00$. Minimum shipping and handling $\$ 3.00$. Calif. residents add 6% sales tax. Cash, checks, Mastercard, Visa and purchase orders from qualified firms are accepted. (Please allow two weeks for personal checks to clear before shipment.) Product availability and pricing subject to change without notice.
INTERNATIONAL ORDERS: Add 15% to purchase price for all orders. Minimum shipping charge is $\$ 20.00$. Orders with insufficient funds will be delayed. Excess funds will be returned with your order. All prices are U.S. only.

CONTROL!!!

We have a complete and affordable controller development system.

The controller board: MMC/03 comes with 1 K RAM, 2 K EPROM socket, 26522 s, 6503 CPU. Uses any AC or DC power supply.
Kits from $\$ 89.00$, assembled and tested from $\$ 119.00$.
IN-CIRCUIT EMULATOR: better than an EPROM simulator. Works with any 6502-based system including Apple, PET, AIM, KIM, SYM, OSI. Not $\$ 5,000.00$ but under $\$ 100.00$!

EPROM programming adaptor: complete with software driver, programs any 24 -pin +5 V EPROM including 2532 s . Battery powered: $\$ 40.00$, with AC power supply: $\$ 50.00$.

See COMPUTE! April 1981 for Eric Rehnke's review.
Call or write us for more information:

> R. J. Brachman Associates, Inc.
> P.O. Box 1077
> Havertown, PA 19083
(215) 622-5495

Coming soon: The MMC/02, complete with ICE: 1 K RAM, 6 K EPROM; or 3 K RAM, 4K EPROM.

Registered TM-Apple-Apple Computer Co., PET, KIM-Commadore, AIM-Rockwell International SYM-Synertek

470 GOTO 460
 480 NEXT J
 490 PRINT " 490 "

This is a short timing loop involving three interlinked GOTO statements. Measure the time it takes for the program to go between the two PRINT statements using the second hand of your watch. Now remove the REM statements and place them at the end of your program. Time again and notice the difference.

On my APPLE, the timing was 28 seconds with the REM's at the beginning compared to eight seconds with the REM's at the end. Quite a time saving. Shifting the initialization statements of your program can have the same effect. This also works the other way. If you have a subroutine that you use often, then place that at the beginning of the program. That way the BASIC interpreter can find it quickly.

2) List the variables in groups.

The main advantage of grouping the variables (A to E, F to I, etc.) on separate lines is that it becomes easy to determine if a variable has already been used.

It is not as obvious as you might think to determine whether or not a variable has already been used in a program. Consider a long program which uses variable YES at its beginning, and variable YEAR near its end. Many BASIC interpreters
consider (since these two variables have the same two starting letters) that they must both be equal to the variable YE. This means that, although you intended the two variables to be different, they are actually being treated as the same game by the interpreter. Spotting a conflict like this can absorb a lot of time. However, if you put all variables in one location, then you are more likely to spot possible conflicts in names.

Declaring (initializing) all the variables at the beginning of a program can decrease the number of strange pauses in the middle of a program. It also decreases the chance of accidentally getting two independent variables with the same name.

MEMOREX miexible discs

WE WILL NOT BE UNDERSOLDil Call Free (800)235-4137
for prices and information. Dealer inquires invited and C.O.D.s accepted

PACIFIC

EXCHANGES
100 Foothill Blvd
San Luis Obispo. CA
93401 In Cal call
(800)592-5935 or
(805)543-1037

How Random Are Sequences Of Random Numbers?

Brian J. Flynn
Vienna, VA

Chance is a word void of sense; nothing can exist without a cause. - Voltaire

> Editor's Note: RND is one of the more intriguing aspects of computers: how do you generate accidents in a world dedicated to logic? Though Mr. Flynn analyzes the TRS80 RND here, his approach and methods are applicable to any RND analysis. - RM

You turn on a Model I TRS-80 and key in "PRINT RND (0)." The response is ". 768709 ." You key in the same command. The response this time is ".781397." You do this again, and again, and again. Using a FOR NEXT loop, suppose you generate a "random" sequence of 1,000 numbers. Or perhaps you generate 10,000 . Or maybe even 100,000 . Have you ever wondered how such "random" sequences of numbers are?

Before performing a statistical experiment a short while ago, I wanted to make sure the TRS-80's random number generator was a good one. So I examined its degree of randomness using a few popular statistical tests and a few common sense indicators.

But before discussing these, first note that the phrase "a random number" is used popularly to denote a member of a "random sequence" of figures. Strictly speaking, however, the adjective "random" should modify only "sequence," unless we happen to be concerned with the digits which comprise a number. This is because 0.768709 is not any more or any less random than 0.5 or 0.372 or any other positive fraction. Each occurs with zero probability in the selection of one number from the infinitely dense continuum of fractions from 0 to 1 .

Executions of RND (0) on the TRS- 80 generate rational numbers between 0 and 1 , inclusive. "Rational," in this case, does not mean sensibility, but rather means that the fraction is expressible as a ratio of two integers. For instance, 0.625 is equiva-
lent to $5 / 8$. And the "ratio-nal" number 0.768709 , from above, equals 768709 divided by one million. Fractions generated by RND (0) are supposed to be distributed in roughly uniform fashion as in Figure 1. Almost as many fractions should fall between 0 and 0.1 as between 0.1 and 0.2 , and so on.

How close to uniformity are distributions of TRS-80 fractions? From machine-off to machine-on position, 100,000 executions of RND (0) generate the spread shown in Table 1. Non-TRS-80 owners may want to use the BASIC program listed here to see how well the random number generators on their machines compare.

The distribution in Table 1 is highly, but not perfectly, uniform. Less than perfect uniformity, however, is desirable. For if exactly 10,000 figures fell into each category, then the mechanism that generated this spread would seem awfully mechanical, too good to be true. While a good random number generator may father a perfectly uniform distribution, the probability of this is very low.

Just how close to uniformity should the distribution of fractions be? The chi (pronounced "ki") square goodness-of-fit statistic provides an answer:

$$
X^{2}=\sum_{i=1}^{k} \frac{\left(0_{i}-E_{i}\right)^{2}}{E_{i}}
$$

is the Greek capital letter sigma, for sum; k is the number of categories, also called cells or intervals; 0_{i} is the number of fractions observed in the $i^{\text {th }}$ interval; and E_{i} is the number expected. In our case, $\mathrm{K}=10$ and $\mathrm{E}_{\mathrm{i}}=100,000 / 10=10,000$.

Let's reveal the mystery of the formula. First, $0_{i}-\mathrm{E}_{\mathrm{i}}$ is the deviation of the expected from the actual number of observations for category "i." Next, this deviation is squared because $\quad\left(0_{i}-\mathrm{E}_{\mathrm{i}}\right)=0$. Finally, the squared deviation is divided by E_{i} to give equal importance to each category in cases where the E_{i} 's are different from one another. To clarify this last point, let $E_{1}=500$ and $E_{2}=1,000$ for the two-interval case. If 0_{1} and 0_{2} are 10% higher than E_{1} and E_{2}, respectively, then $\left(0_{1}-E_{1}\right)^{2}$ $=(550-500)^{2}=2,500$ and $\left(0_{2}-\mathrm{E}_{2}\right)^{2}=$ $(1,100-1,000)^{2}=10,000$. The second squared deviation is four times the first. Now, weighting each squared deviation relative to expected number, $\left(0_{1}-E_{1}\right)^{2} / E_{1}=2,500 / 500=5$ and $\left(0_{2}-E_{2}\right)^{2} /$ $\mathrm{E}_{2}=10,000 / 1,000=10$. The second term is now only twice as large as the first, just as E_{2} is twice as large as E_{1}.

$$
\mathrm{X}^{2}=12.07 \text { for } 100,000 \text { executions of RND }
$$ (0), grouped into 10 cells. As Figure 2 shows, 10% of all values in a chi-square distribution with nine degrees of freedom (number of cells minus one) are less than 4.2 and 10% are greater than 14.7. Our value does not fall within either of these ex-

treme percentiles. The sequence of fractions cannot, therefore, be accused of non-randomness on the basis of this test alone.

One test, however, is not conclusive evidence of randomness. The X^{2} test performed on 100,000 numbers may suggest global randomness while hiding locally non-random behavior. For example, the distribution of the first 500,000 numbers generated by RND (0) may be skewed towards 0 while the distribution of the second 50,000 is skewed towards 1 . The two distributions added together may appear uniform. To uncover such deception, the X^{2} test is performed on each successive block of 10,000 fractions, and on each cumulative block. Table 2 shows that the TRS- 80 random number generator produces an acceptable X^{2} value in each case examined.

Batteries of statistical tests such as the chisquare will never prove that a random number generator is a good one, however. But they may diminish doubt, for each passed test boosts confidence in the quality of the generator. To strengthen or shatter this faith, sequences of TRS-80 fractions are now "RUNS" tested.

Let's explain this procedure using a list of Presidents of the United States and their political parties. We start with Franklin Pierce to avoid the Whigs and Federalists before him.

PRESIDENT

Franklin Pierce	D	Woodrow Wilson	D
James Buchanan	D	Warren G. Harding	R
Abraham Lincoln	R	Calvin Coolidge	R
Andrew Johnson	R	Herbert Hoover	R
Ulysses S. Grant	R	Franklin D. Roosevelt	D
Rutherford B. Hayes	R	Harry S. Truman	D
James A. Garfield	R	Dwight D. Eisenhower	R
Chester Alan Arthur	R	John F. Kennedy	D
Grover Cleveland	D	Lyndon B. Johnson	D
Benjamin Harrison	R	Richard M. Nixon	R
Grover Cleveland	D	Gerald R. Ford	R
William McKinley	R	Jimmy Carter	D
Theodore Roosevelt	R	Ronald Reagan	R

Are Democrats (D) and Republicans (R) randomly distributed here? Notice the string of six Republicans from Lindoln to Arthur. And notice that Grover Cleveland appears twice! Let's compare your guess to the probabilistic answer of the Runs Test. We first count the number of runs of Democrats or Republicans:

$\underbrace{\text { D D }}_{1}$	$\underbrace{\text { RRRRRR }}$			$\underbrace{\text { D } \quad \mathbf{R} \quad \mathrm{D}}$		$\underbrace{\text { R R R }}_{6}$	D7	$\underbrace{\text { R R R }}_{8}$
		2						
$\underbrace{\text { D D }}$	R	$\underbrace{\text { D D }}$	$\underbrace{\text { R R }}$	D	R			
9	10	11	12	13	14			

A run is a succession of identical symbols
followed and preceded by the opposite symbol, or by no symbol at all. There are 14 runs in our sequence. The essence of the Runs Test is to determine if this number is "too many," or "too few," or "about right." "Too many" runs is best exemplified by a sequence where Democrats and Republicans perpetually alternate: D R D R D R ... and so on. It is highly unlikely that a random sequence will follow a pattern so mechanical. "Too few" runs, on the other hand, is exemplified in its most grievous form by a sequence of all Democrats or all Republicans: R R R R R R ... and so on. Again, it is highly unlikely that a random sequence will display this. The Runs Test formula (reference 2) is:

$$
\begin{aligned}
z= & \left.\frac{\frac{2 n_{1} n_{2}}{N}}{N}-R \right\rvert\,+c \\
& \sqrt{\frac{2 n_{1} n_{2}}{N}} \times \frac{2 n_{1} n_{2}-N}{N^{2}-N}
\end{aligned} \text {, where }
$$

This leaves "c," which is Yates' factor to make z's distribution better approximate a normal curve. Specifically,

$$
c=+0.5 \text { if } R<2 n_{1} n_{2} / N \text { and } c=-1.5 \text { if } R>2 n_{1} n_{2} / N
$$

Actually, the z-formula is supposed to be used only if n_{1} and/or n_{2} is more than 20; a special table is used otherwise. For our example, however, the table and the formula give the same result. We march with z to demonstrate its use.

In calculating z , first note that $2 \mathrm{n}_{1} \mathrm{n}_{2} / \mathrm{N}=$ $2 * 10 * 17 / 27=12.5926$. With $\mathrm{R}=14, \mathrm{c}=-1.5$. Therefore:

$$
z=\frac{\left|\frac{2 * 10 * 17}{27}-14\right|-1.5}{\sqrt{\frac{2 * 10 * 17}{27} * \frac{2 * 10 * 17-27}{27 * 27-27}}}=-0.04
$$

We reject with 95% confidence the assumption that a sequence is random whenever $z=1.96$ or more. Since our calculated value is less than this, the Runs Test won't allow us to call the sequence of political parties non-random.

To "Runs" test a sequence of fractions, replace the "D's" and "R's" with "+'s" and "-'s." A "-" denotes a fraction below the expected median, 0.5 , and a " + " denotes a fraction above it. For example, $[$ [. 3. 7. 1. 2 . 6] becomes $[-+--+$]. Executing the Runs Test on 100,000 TRS-80 fractions, and on blocks therein, gives the results shown in Table 2. Each sequence appear random.

The computer program also generates four

DTL
 - Accepts extensions to Basic implemented in RAM or ROM
 - Provides demanding two pass syntax and logic analysis
 - Improved Performance based on faster execution times
 - Large Programs (16K+| will benefit from memory savings
 - Security Key attaches to either cassette port

A Basic COMPILER for your Commodore Microcomputer by Drive Technology

DTL-BASIC is a Basic compiler for Commodore machines designed to convert existing programs to machine code and run them without modification. Compiled programs will run much faster and operate in exactly the same way as the un-compiled versions. Compiled code is typically 20 to 50% smaller than source code. For large programs this saving will more than offset the 4 K run-time library appended to each compiled program, providing additional internal memory space.

The compiler implements true integer arithmetic as well as real arithmetic. Use of integers can lead to significant speed improvements. Special compile time options make identification and conversion of real variables to integers a simple task.

A 'Compiler' security key, which plugs into
either cassette port, is supplied together with the DTL-BASIC compiler. This key must be used in order to compile a program or to run the compiled version. In order to allow for the distribution of compiled versions of user developed programs, a second type of key known as a 'Run-Time' key is available in any required quantities. Software developers can obtain private security key sets with unique serial numbers providing comprehensive protection of their products while allowing customers to make backup copies of compiled programs. DTL-BASIC is a disk based system requiring a 32K PET/CBM and comes complete with an indepth user manual and a Compiler Security Key. Three versions of the compiler exist for CBM 3032, CBM 4032, and CBM 8032 machines. Please specify machine type and disk type (4040 or 8050) on which compiler is to be supplied.

> DTL BASIC WITH MANUAL. AND SECURITY KEY $\$ 350.00$ RUN-TIME KEYS $\$ 50.00$ EACH

FROM
descriptive statistics useful in evaluating degree of randomness: mean and variance of the fractions, and covariance and correlation coefficient of successive fractions. The expected mean is 0.5 , or the midpoint of the uniform distribution of Figure 1. The expected variance is $1 / 12$; this can be derived using a bit of integral calculus. Finally, the remaining two statistics are expected to be zero since the elements of our sequence of numbers are supposed to be independent. Table 3 shows results for the first three statistics. All conform very closely to expectations.

The X^{2} test, the Runs Test, and a small battery of descriptive statistics suggest that RND (0) is a decent random number generator. But our evidence can never be conclusive, and the next test that we subject the generator to may be the one that it fails. So:

Be not too presumptuously sure in any business; for things of this world depend on such a train of unseen chances that if it were in man's hands to set the tables, still he would not be certain to win the game.

Herbert

References:

1. Knuth, Donald E. The Art of Computer Programming. Vol. 2. Reading: Addison-Wesley Publishing Company, 1971.
2. Langley, Russell. Practical Statistics Simply Explained. New York: Dover Publications, Inc., 1970.

TABLE 1
Distribution Of The First $\mathbf{1 0 0 , 0 0 0}$ Fractions Generated By RND (0)

INTERVAL	TALLY	\% OF TOTAL
0.1	9969	9.97
0.1 to <0.2	10084	10.08
0.2 to <0.3	9980	9.98
0.3 to <0.4	9904	9.90
0.4 to <0.5	9985	9.99
0.5 to <0.6	10099	10.10
0.6 to <0.7	10098	10.10
0.7 to <0.8	9938	9.94
0.8 to <0.9	9774	9.77
0.9	10169	10.17

Uniform Distribution Between 0 And 1

Relative Frequency

Figure 1.
Table 2. Test Results

Cumulative Number Of Fractions Generated	X^{2} Values		"RUNS" Values	
	Block	Cumulative	Block	Cumulative
10,000	13.87	13.87	1.34	1.34
20,000	10.16	14.14	0.19	0.80
30,000	7.20	6.71	0.03	0.69
40,000	4.23	8.55	0.03	0.58
50,000	4.99	6.21	1.50	0.16
60,000	11.59	10.06	1.47	0.75
70,000	5.51	9.77	0.63	0.46
80,000	5.35	12.33	0.85	0.73
90,000	12.19	10.87	1.40	1.18
100,000	5.26	12.07	0.21	1.05

Table 3. Descriptive Statistics

Cumula- tive						
Fractions Generated	Block	Cumulative	Block	Cumulative	Block	Cumulative
Expected	0.500		0.083		0.000	
Values						
10,000	0.498	0.498	0.085	0.085	-0.001	-0.001
20,000	0.499	0.499	0.083	0.084	0.001	-0.000
30,000	0.499	0.499	0.083	0.084	-0.001	-0.000
40,000	0.499	0.499	0.083	0.083	0.001	-0.000
50,000	0.502	0.500	0.083	0.083	-0.000	-0.000
60,000	0.503	0.500	0.083	0.083	0.001	0.000
70,000	0.504	0.501	0.084	0.083	-0.001	-0.000
80,000	0.501	0.501	0.084	0.084	0.001	-0.000
$\mathbf{9 0 , 0 0 0}$	0.496	0.500	0.084	0.084	0.001	0.000
100,000	0.501	0.500	0.083	0.083	-0.000	0.000

Relative

Frequency
Chi-Square Distribution With 9 Degrees Of Freedom

Figure 2.

computer

SUPERGRAPHIICS

128,000 ACCESSIBLE POINTS

Features

* 128,000 accessible points arranged in 200×640 grid
* 16 K static ram supplies memory mapping of pixels on separate board
* supported through extended Basic commands supplied in ROM
* uses no memory from the existing system
* mix standard CBM text and low-res graphics with hi-res displays
* easy to design and display user defined shapes
* normal or inverted display mode for partial or total screen
* switch graphic display on or off - continue output in passive mode
* save graphic images on a disk file
* recall images from disk with option to mix with existing display
* supports hardcopy to Epson MX-82 or Centronix 739 printers
* easy to follow Installation instruction included

Program 1.

```
10 REM EXAMIHIHG THE RFHHDOMUES OF A SEOUEHGE OF FEFCTIOHE
20 REM CHI-SQUARE TEST. RUHS TEST. DESORIPTIUE STATISTIOS
SQ REM ERIFH, J. FLYH四; WIHTER 19SG,81
40 REM MOD 1: IHITIFLIZE
5a GOSUE 10G6
GE REH MOD 2: GEHEFATE RFHDON HUMEEFS & TALLY'STATISTIOS
FG GOSUE 20G6
80 REM MOD S: PRIHT DISTEIEUTIOH OF FFFGTIOHE
90 GOSUE SE100
1GQ FEM MOD 4: PRIHT TEST STATISTICS
110 GOSUE 40616
120 REM MOD S: FRIHT DESIRIPTIUE STATISTICS
13Q GOSUE 5GOTE
140 EHD
```

```
1GGQ REM MODLILE 1
1010 REM UGFRIAELES
1020 REM NOTE: "ELK` MEFHS "ELOCK. "CUN" MEFHE CONH&RTIUE.
1GSQ FEM FOF EUEF', ELK` THEFE IS F CUN" FHFLGGUE.
104G REM H = TOTFL HUMEEF OF FFGGTIOHE TG GEHEFATE
105G REM E = HWMEER OF FRFCTIOHE FCEE ELOCK
106@ REM K = HHMEER GF CELLS FOR CHI-SOHFRE TEST
107E
1986
1096
11Ga
1118
1120
1130
1140
1150
1160
1170
11EQ REM SELKSS% = SUM OF FRESENT * FREUIOUS FFFOTIOHS
1190
1200
1210
1220
1230
1246
125@
1260
1270
1280
1296
1369
1315
1320 REM UELKK = FHCTUFLL UARIFHICE
13SQ REM CELK = RCTUFL COUPRIFIHCE
1340 REM HELK = FCTUFLL CORPELATIOHA EOEFFICIEHT
135G REM # OF FRFRCTIOHE, ELOCK SIZE, & # OF CHI SOUFRE CELLS
13EG DATA 10G6[40.1G646.10
13TG REFID H. B.K
138Q REM EXFECTED NFILUES
139E DFTA E., MES.0.g
1400 REFID E1,E2,ES.E4
1410 REM IHITIFLIZE
142G DIM QELKくK).QCUMくK`
143O FGR T=1 TO K:QELKKJ)=0:QCUMGT)=0:FENT
1440 FOR T=1 TO S:SELK<T)=0:SCUMGT)=区:HENT
```


THE TRAПAGER

The first truly user-friendly Database Management System available at reasonable cost.
This suite of programs is ideally suited for both the businessman and programmer, for use with the CBM 8032 .

For the Business User

- Uses Menu Options - no programming experience needed.
- Lets you enter data in the form you wish, then lets you recall it using any search criteria.
- Performs predefined calculations on the record in realtime as record is displayed on the screen.
- Reports can be produced using any search criteria and/or arithmetic functions.
- Useful applications can be developed quickly.

Typical Applications include -

- Inventory Control
- Mailing Lists
- Accounting systems
- Personnel
- Costing
- Gathering test data
- Budgeting
- Scheduling
- Examples of use included on disk supplied.

As Programmers Tool

- Uses standard PET ASCII files.
- Software interface is in Basic and available to the programmer.
- No special disk formatting so that word processing or other programs can be stored on the same disk.
- No ROM Based Security thus no need to open CPU.
- Fast ' n ' key Sort/Merge included.
- Full realtime intra \& inter record arithmetic performed on the screen as record is displayed.
- Professional software support including unique security available.

TRY IT!
IF YOU ARE
NOT SATISFIED WITHIN 30 DAYS WE WILL RETURN YOUR MONEY

1550 PRINT"HIT "EHTER' TO FROCEED."
1560 IHPUT"REFDV ";2
1570 RETURH

```

2 2ag FEM MODLLE 2
2018 EESH FAHDDOM FEFCTIOH
262G CLS：FEIHT＂GEHEEATIHG FEFCTIOHE ．．．

204 EEM CHI SQUFRE TFLL＇
2056
2664
2076
2086
2090
210 a
2110
2120
2136
2148
215 E
216 E
2170
2180
2190
2260
2210
2220
2230
2246
2251
2266
2270
2286
2296
2364
2316
2326
23S6
2346
2350 RETURH

SOGE REM MODULE
SO1E REM FORNATS
S020 F末く1）＝＂
303E F末に \(\mathrm{F}=\)＝＂

उ050 Fic 4 ）＝＂
उ0EG FF 5 （5）＝＂
\(3076 \quad F(G)="\)
3684
F本くア）＝＂＝
INTERUFI
TFLLY \(\because\) OF TOT．
CUMQLATIUE＂

REM HEFIDIHG

\title{
Model EP-2A-88 EPROM Programmer
}
\(\star\) Easy to use
\(\star\) Reliable
\(\star\) Field proven

Fast as Jackrabbits . . . Well, almost!
In Australia, two rabbits can reproduce over 13 million offspring in three years. At 105 seconds for 2716's, the EP-2A-88 can reproduce 1,892,160 EPROMS in three years. Single push button control, the EP-2A-88 checks if EPROMS are erased, programs and verifies. Many features, including self test, diagnostics and audio prompt.

The EP-2A-88-1 will accept Copy (CM) modules for the 2758, and 2716 EPROMS. The EP-2A-88-2 will accept copy modules for the 2716, 2732 and TMS 2532 EPROMS. Power requirements are 115 VAC \(50 / 60\) Hertz at 15 watts.

\section*{Part No. Description}

Price
EP-2A-88-1 EPROM Programmer \(\$ 490.00\)
EP-2A-88-2 EPROM Programmer 490.00

CM-50 Copy Module for 2716, TMS 2516 EPROMS 490.00

CM-70 Copy Module for 2758, TMS 2508 EPROMS 25.00

CM-20 Copy Module for 2732 EPROMS 25.00

CM-20-A Copy Module for 2732A EPROMS 25.00 33.00

CM-40 Copy Module for TMS 2532 EPROMS 25.00

Non Standard Voltage Option (Specify \(220 \mathrm{v}, 240 \mathrm{v}\), or 100 v )

\title{
Optimal Technology, Inc.
}

Phone (804) 973-5482
Blue Wood 127 Earlysville, VA 22936

NEED MORE MEMORY?
32K BYTE DYNAMIC RAM \& ROM EXPANSION BOARD

Expand Your 4K/8K PET
SYM/KIM/AIM -65 to 32K
- Easily connected to your computer via the expansion connecto
- Build huge and complex programs!
- Need 64K of RAM? Buy two boards.
on board configuration circuitry will allow you to expand to 64 K easily'
- New dynamic RAM technology brings you more memory in less space and at a lower cos \({ }^{\prime}\) !
- RAM chips are upgraded. compatible with the new 64 K RAM chips for tuture expansion!
- Operates on +5 volts only. supplied from your computer power supply. no on board generators to go bad.
- Requires A LOT less power than static RAM

- Has full invisible refresh operation does not interfere with processor operation
- Fully buffered DATA BUSS
- 5 on board sockets for 2716/2732 (2K/4K) type EPROMS addressable anywhere.
- Great for designing a two board computer system (CPU. 1/0-RAM ROM)
- Other specifications

Disable any 4 K block of RAM for 1/0 place RAM above or below 8000 HEX KIM-4 BUSS COMPATIBLE FOR CARD RACKS Adapter cables available for non rack use.
- All these features on a \(6 \times 45^{\prime \prime}\) board

ASSEMBLED \& TESTED BOARDS-GUARANTEED FOR 6 MONTHS PURCHASE PRICE IS FULLY REFUNDABLE IF RETURNED UNDAMAGED WITHIN 14 DAYS

List Price - \$289.88 Introductory Price - \$269.88
Include \(\$ 2.00\) for S\&H - Allow 4 weeks for delivery
Full informative documentation included with all our products. C.O.D. Orders Accepted (702) 361-6331 Mail Order Only.

\section*{PROTRONIIK \\ COMPUTER INNOVATIONS}

\title{
IBM COMPATIBLE 8" FLOPPY DISK for CBM/PET, Aim, Sym
}

- HIGH SPEED - at least FOUR times faster than the 488 bus disks.
- HIGH CAPACITY - up to 850 K bytes of storage in a three drive system.
- RELIABILITY - wide timing margins insure long trouble-free operation.
- SOFTWARE - the PDOS II disk software provides a full set of BASIC commands with standard syntax.
5½" MINI FLOPPY DISK SYSTEMS:
Model 540-1 Single Drive, Double Density (143K) \(\quad \$ 595.00\)
Model 540-2 Dual Drive, Double Density (286K) \(\$ 895.00\)
Model 580-1 Single Drive, Quad Density (286K) \(\$ 795.00\)
Model 580-2 Dual Drive, Quad Density (572K) \$1,195.00
8" MINI FLOPPY DISK SYSTEMS:
Model 877-1 Single Drive, IBM standard (295K)
\$1,095.00
Model 877-2 Dual Drive, IBM standard (590K)
\$1,695.00

\section*{full FORTH +}

FULL FEATURE "FORTH" FOR 6502 SYSTEMS
Interpreter - Cross-Compiler - Cond. Assembler -
Screen Editor - String Handling - Floating Point
SPECIFY PEDISK II, PET 2040 or 4040 DISK, OR APPLE

З169 CLS
3116 LFRIHT FもS
3126
3136
3140 5154 3160 3170

\section*{406 REM MODLLE 4 \\ 401E REM FGRMFTS}

4020
4030
4849
4650
406.6

407 Cl
4089
\(469 \mathrm{LFEIHT} F \$ \mathrm{~F}\)
4160 LFEIHT UEIHG FF（1）．EE
4119 LFEINT USING Fす勺2）：
4120 LFEIHT：LFRIHT FtC4）：LFRIHT F末GE
4130 REM EHI SQUFREE STRTISTICE
\(4140 \quad \times \mathrm{BLK}=\mathrm{E}: \times \mathrm{CLM}=0\)
4150 FOR \(T=1\) TOK


4130 NEKT T
4196 LFPIHT USIHG FFGED：KELKK BCUM
420 REM FUHS－TEST STFTISTIE：
4210
422 G
4230
4246
4256
42E日
4270
4286
4296
4361
\(4310 \quad\) CELLK \(=\) FHOM DEF


\(433 \mathrm{ZCUM}=\mathrm{FLM} \mathrm{DEF}\)

4550 LFFEIHT
4 SEE REM DEGREES OF FREEDOM

4SEG LFRIHT：LFRIHT：LFRIHT
4396 RETIIRH
```

SGMG REM MODHHE S
EO1G FEM FORMFTS
EQ2G FF\&S)="З. DESRRIPTIML ETRTISTIOS:"

```

5036
5048
\(506 \mathrm{~F}=1\)
5079 \(F\) 本く（ \()=\)＂

UGLUES
\＃\＃\＃．\＃\＃\＃

MEFH
\＃\＃\＃．\＃\＃\＃

COUFREIFHCE OF SUCOESSIUE
UARIFHCE
\＃\＃\＃．\＃\＃\＃

50 ECO REM HEFIDIVG
5690 CLS
5100 LFRIHT F末心
5110 LFRIHT USItGG F末 193 B
512 E LPRIHT USIHG F\＄C2）：I

5148 REM EXPECTED UPLUES
515 LFRIHT＂EXFECTED＂：
516E LFRIHT USIHG F末GB）SE1．E2．ES．E4
5170 REM MEFINE
5180 MELK \(=\) SELKC 1\(\rangle \mathrm{E}\)
5190 MCUM \(=\) SCUME1）I
5206 REM UFRIFIHCES \＆COUFIEIFHVES


5230 CBLK \(=\)（SELKく

5250 REM SERIFL COERELFITIOH COEFFICIEHT
5260 HBLK \(=\) CELK UBLK
5270 HCUM＝CCUM VCUM
5280 REM＂ELLOCK＇RESULLTS
5290 LFRIHT
5306 LPRIHT＂ELCICK＂：

5320 LPRINT＂EIFE＂；
5330 LFRIHT USIHG F末GS）：MELK－E1，JELKK －E2．CELK゙－ES．HELK－E4
5340 REM ＂CUMULATIUE＂FESILTS
5350 LPRIHT
536．LPRIHT＂CUMLLATIUE＂；
537 LFRIHT USIHG F末心S sMCUM．UCUM． CCUM．HCUM
5380 LFEINT＂EIAE＂：
539 LPRIHT USIHG F：（G）：MCUM－E1，UCUM －E2．CCLM－ES．HCUM－E4
5409 FOR \(J=1 T O\) 1S：LFFIHT：HENT I
5416 REM RESET＂ELQCK’ UFFIFELES \＆ GEHEFFITE MOFE FEFICTICHE，IF AFPRROFRIFTE
5420 IF I \(=H\) THEH E4E
5430 FOR \(J=1\) TO K：QELEKT \(=\) G：HENT \(T\)
5449 ABLK＝6：EBLK＝ \(195 E L K \%="\)＂SELKく1
 \(=9\)
5450 GOEUB 2020 ：GOEUE 3G2Q ：GOGUE： 4020 ：G0TO 562
54EE RETURH

\section*{TOLL FREE \\ Subscription Order Line 800－345－8112}


\section*{TELECOMMUNICATIONS}

\title{
Getting Outside The Computer
}

\author{
Michael E. Day \\ Chief Engineer \\ Edge Technology
}

Getting a computer to communicate with the outside world is not an easy task. In fact, many of the "internals" of the typical computer are devoted to the task of converting information from or to a form that the computer can understand.

Sometimes attached equipment (peripherals) is designed to meet the computer part way. This helps to reduce the circuitry and/or work that the computer needs to convert the information into or out of a form it can understand.

Keyboards are sometimes set up this way. Other times, due to the complexity of the work involved, a large amount of the work must be done by the computer.

Monitors, for example, can cause some difficulty since, if the computer is spending too much time "servicing" the attached devices, too little time is left to run the program. An example of an extreme case of this is the SINCLAIR ZX80 which actually spends all of its time servicing the monitor and keyboard. Because of this, it must stop servicing the display in order to run a program (causing the display to go blank). The ZX81 cures this problem by having a slightly improved display service routine which gives the computer a little time to squeeze in the program.

In order to solve this problem, IC manufacturers came up with a "Video Controller" IC. This little chip (a computer in its own right!) does all the service work for the computer, and allows the computer to do more important things like running your program.

\section*{The UART}

When the computer is to communicate over the phone line, the same problem occurs. The computer can spend a large amount of time doing the required work, or we can bring in another device to do it for the computer. This is called the UART (Universal Asynchronous Receiver Transmitter) or

USART (Universal Synchronous / Asynchronous Receiver Transmitter) depending on which flavor you like.

A UART accepts information from the computer in a form which the computer understands and converts it to the form necessary to transmit the information out of the computer. Additionally, it accepts information sent to the computer and converts it to a form which the computer uses.

Inside the computer, we deal with data in a form called byte. When this is translated to the form it takes on the outside it becomes a character. A byte is made up of eight bits, with bit being the simplest form of data representation inside a computer. A bit consists of nothing more than an ON or OFF condition. When a computer is using the information it works with all eight bits of the byte at once. This is called parallel operation since eight bits are used simultaneously. Since each bit has two possible conditions (on or off) and since we are working with eight bits at once, this means that by using these bits together we can represent two to the eighth (256) possible conditions.

By taking some of these 256 states and defining them as representing something such as characters in the alphabet, we provide a means for the computer to work with information as we humans understand it.

Since the computer must know whether data is your information or its own, one of the bits is usually set aside to indicate this. This leaves us two to the seventh (128) possible things which we can represent as our own information. When using the computer to communicate to other equipment, the equipment generally requires certain "control codes" to perform some of its functions - returning the carriage on a printer or clearing the screen on a video terminal. Generally, 34 of the possible representations* are set aside for the purpose of controlling equipment. This leaves 94 possibilities left to represent all the characters in the alphabet (both uppercase and lowercase letters) the numbers ( 0 through 9 ) and some of the more commonly used symbols.

When we want to send this information over the phone lines, we run into a problem. The phone network is an entirely different environment, and is not at all compatible with computerized information.

\section*{Digital Into Audio}

This is where the MODEM comes in. The MODEM changes the digital signals which the computer likes into the audio signals the phone network likes. (For this discussion we will assume that a BELL 103 compatible MODEM is being used in the originate mode.)


Introducing the \(M\) line
Now! Drive Systems for AIM, KIM and SYM Computers - from PERCOM.

\begin{abstract}
Assembled and tested systems start at only \(\$ 599.95\), including the drive controller circuit card, disk-operating system, interconnecting cable, drive and comprehensive users manual.
\end{abstract}
- The right storage capacity - Available in 1-, 2- and 3-drive systems, with either 40- or 80 -track drives.
- Flippy storage - Flippy drives (optional) let you flip a diskette and store data and programs on the second recording surface.
- High Storage Capacity - Formatted, one-side storage capacity is 102 Kbytes ( 40 -track drive), 205 Kbytes ( 80 -track drive).
- Proven Controller - The drive controller design is the same as the design used in the Percom 680X LFD mini-disk system. This system - introduced in 1977 - has given reliable service in thousands of applications. Two versions are available: the MFD-C65 for the AIM-65 expansion bus, and the MFD-C50 for the Sys-tem-50 (SS-50) bus.
- Includes an explicit data separator circuit that's reliable even at the highest bit densities.
- Provides for on-card firmware.
- Includes a motor inactivity time-out circuit.
- Capable of handling up to four drives.
- Capable of reading both hard- and soft-sectored diskettes.

\section*{PERCOM}

PERCOM DATA COMPANY, INC. 11220 PAGEMILL RD. DALLAS, TX 75243 (214) 340-7081

Toll-Free Order Number: 1-800-527-1222
PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE. c 1981 PERCOM DATA COMPANY, Inc.
- DOS included - The MFD disk-operating system works with the AIM monitor, editor, assembler, Basic and PL/ 65 programs, interface is direct, through user I/O and F1, F2 keys. Diskette includes DOS source code and library of 20 utility commands.
- Reliability assurance - Drives are burne d-in 48 hours, under operating conditions, to flag and remove any units with latent defects.
- Full documentation - Comprehensive hardware and software manuals are included with each system.

\section*{Now! Expand your AIM-65 with Low-cost System-50 Modules.}

The Percom M65/50 Interface Adapter connects your M-65 bus to Percom's System-50 (SS-50) motherboard, allowing you to expand your AIM, KIM or SYM with proven System-50 modules. You can add disk storage, memory modules, even a video display system. The M65/50 provides buffer-amplification of address, data and control lines. On-card decode circuitry lets you allocate address space either to the computer or to the expansion motherboard. Price: only \(\$ 89.95\), including System- 50 motherboard.
System Requirements: AIM-65, KIM or SYM computer with expansion bus and four Kbytes RAM (min).

\section*{Yes . . I'd like to know more about Percom MFD drive systems. \\ Rush me free literature.}

Send to
PERCOM DATA COMPANY, Inc., Dept. 65-C
11220 Pagemill Rd. Dallas, TX 75243


When an on condition is sent to the MODEM, it transmits a 1270 Hz signal. When an off condition is sent to the MODEM, it transmits a 1070 Hz audio signal.

This allows us to send digital signals, but we still have a problem. The computer is dealing with 256 possible combinations at any one time, but the modem can only handle two conditions at any one time. This is what the UART is for. The UART takes a byte that the computer feeds it and breaks it down into bits that can be sent through the MODEM. In order to do this it takes the eight bits which make up the byte and transmits them one at a time. The timing of this is critical. The computer at the other end (the remote unit) that is receiving this information has to have some way to reconstruct this sequence back into the byte that the computer can understand. It must have a UART to do this. We can't just send the information whenever we feel like it.

\section*{Timing Is Critical}

The first thing we have to do is define what a bit will be. This is defined as being an on or off condition for a specified period of time (This is referred to as the bit time or bit rate.) This way, the remote UART can know that, once it starts to receive the information, the first bit will be presented to it for one bit time. Then, the next bit will be presented to it for another bit time. This continues until the last bit has been sent.

We also must specify which bit is to be sent first. By taking the bits that make up a byte and labeling one of them as the Least Significant Bit (LSB), and another as the Most Significant Bit (MSB) we can define that we will send the LSB first followed by the next to the least significant bit until we reach the most significant bit which is the last one that gets sent. This allows the remote UART to know what order the bits are being sent and it can reconstruct a byte properly.

Since this is a time-dependent activity, we need to have a way to synchronize the two UARTs so that the one that is receiving the information is looking at the right bit at the right time. To do this, the UART adds an extra bit to the byte that is being sent called a start bit. When no information is being sent, the UART will send a continuous on signal to indicate that it is in an idle condition (sometimes referred to as a marking condition). When something is to be sent, the UART will send a single off bit to let the remote UART know that it should begin collecting bits.

Since the computer only uses seven bits to represent a character, the UART makes use of the eighth bit for itself. This is usually referred to as the parity bit. The parity bit is created by adding up the number of on bits in the character that is being
sent and, if there are an even number of on bits in the character, the parity bit is turned on. If there is an odd number, it is turned off (assuming that the standard even parity convention is being used). This lets the remote UART know if the information sent was lost or damaged during transmission. The remote UART does this by adding up the on bits it receives and then compares this sum to the parity bit that the first UART sends it.

\section*{One Final Problem}

Now we have only one final problem with which to deal. The remote UART knows that the transmission has begun when it receives the start bit, but what happens if the parity bit (which is the last bit sent) is an off bit like the start bit? The remote UART has to have some way of being able to recognize the next start bit. To do this, we have to insure that an idle condition always precedes the start bit so that there will always be an on condition prior to the off condition generated by the start bit. So, the UART adds one final bit to the information called the stop bit. The stop bit is always an on bit insuring that there is always an idle condition generated before the next is sent. This means that a sum total of ten bit times is required for the computer to send each character.

In the next column, I will discuss the interreaction of the UART and the computer with regard to timing.
* Note: the "space" as an alphabetic character does not exist. It is, in reality, a control function. It has come to be used and referred to as a character because it is simpler to represent this non-character condition in the context in which real characters are used. This is analogous to the number zero which is not really a number, but is used as one to represent the condition of nothingness.


\title{
FACTORY PRICING
}

IN STOCK!
IMMEDIATE DELIVERY!

\section*{ALL MOS TECHNOLOGY MPS 6500 ARRAYS-}

\section*{PLUS}
- MPS 6550 RAM for PET
- MPS 6530-002,--003 for KIM-1
- MANUALS
- KIM-3 8K STATIC RAM MEMORY BOARD
- KIM-4 MOTHERBOARD
- KIM PROMMER

MMS
6508
MICRO MODULE FAMILY

KIM-1 \& 4 Compatible Eprom Programmer
- KIMATH

Chips with Listing
- KIMEX-1 EXPANSION BOARD

KIM-1 Plugable PROM, Ram and I/O Board
- RS-232 ADAPTER

For KIM-1
- POWER SUPPLIES

\section*{STANDARD MICROSYSTEMS}
\(\star\) UART's \(\quad\) *FLOPPY DISC CONTROLLERS
\(\star\) BAUD RATE GENERATORS \(\quad \star\) CRT CONTROLLERS

\title{
FALK-BAKER \\ ASSOCIATES
}

\section*{DYNACOMP}

\section*{Quality software for*: \\ ATARI \\ PET \\ APPLE II Plus \\ TRS-80 (Level II)** NORTH STAR CP/M Disks/Diskettes}

\section*{CARD GAMES}

BRIDGE 2.0 (Available for all computeri)
 An all-incluive version of this mont populat of card games. This program both BIDS and PLAYS either contract of duplicate bridse. Depending on the contract, your computer opponents will either play the offense OR delense. If
you bid too high, the computer will dowble your contrat! BRIDGE 2.0 provides challenging entertinment for
advanced playert and is an excellent learning tool for the bridge novice. See the softwere review in so Softwwe advancod payert and is an excellent learni
Critique. Reted \(n\) by Crative Comptirs

HEARTS 1.5 (Avallable for all computers)
Price: S15.9s Casette/ 19.95 Daktetie An exciting and entertining computet verion of this populat card game. Hearts is a trick-oriented gane in which the purpose is sot to tate any hearts or the queen of spades. Play asaingt two computer opponents who we armed with
hardto-beat playing trategies. HEARTS 1.5 in an ideal game for introducing the uninitiated (your spouse) to com puters. See the soficure revicu in so Sofiwere Critique.
STUD POKER (Atari oaly)
Prike: 511.95 Cawetle/S15.33 Dakette This is the dasisic gambler's card same. The computer deals the cards one at a time and you (and the computer) bet on
 teview in COMPUTE.
POXER PARTY (Avallable for all computen) \(\qquad\) POKER PARTY is a draw poker simulation based on the book, POKER, by Oswald Jacoby. This is the most com prethenaive verrion availabie for mictocomputers. The party consits of yourself and six other (computer) play ern,
Each of thee players (you will get to know them) has a different persorality in the form of a vaying propensity to Each of thee players (you will set to know them) has a different persorality in the form of a varying propensity to
bluff or fold under presure. Practice with POXER PARTY before going to that expensive game tonight! Apple bluff or foid under presure. Practice win POX ER PARTY bere
casette and diskette verions require a 32 K (or larger) Apple II.
CRIBBAGE 2.0 (TRS-50 oaly)
Price: S14.95 Cauetle/sis.8s Dakette This is simply the best cribbage same avilable. It is an eccelient proyam for the cribbage player in seachat of a
worthy opponent as well as for the novice withing to improve his game. The graphics ate supert and asembly worthy opponent as well as for the novise wishing to improve his ame. The graphics at
language foutines provide rapid execution. See the sof ware review in so Software Critique.

\section*{THOUGHT PROVOKERS}

MANAGEMENT SIMULATOR (Atari, North Star and CP/M oaly)
This proyram is both an eccellent teaching tool as well as a stimulating intellectual game. Besed upon similar games played at eraduate business whools, each player or team controls a compeny which manufacturers three products.
Each player attempts to outperform his competiors by setting selling pricet, production volumes, narketing and teign expenditura etc. The most succesful firm is the one with the hifhert tock price when the simulation ends.

FLIGHT SIMULATOR (A vailable for all computern) Price: 517.9s Cemerte/s11.95 Daketie A realistic and extenive mathematical simulation of take-off, fight and landing. The proyram utilizet aerodymamic
equations and the characteriticic of a real sirfoil. You can practice isatrument approaches and navigation uring equations and the characterstar of rat and compas headings. The more advanced fyet can alio perform loopp, halffolls and similar aerobatic maneuvers. Athough this proyram does not employ araphics, it is exiting and very addictive. See the sofiware teview in COMPUTRONICS. Runs in 16 K Atari.
VALDEZ (Avalisble for all computers)
Frke: 1515.9 Casetit/519.95 Diketie VALDEZ is a computer simulation of supertanker navigation in the Prince William Sound/Valicez Narrows reqion of Alaska. Included in this simulation is a realistic and extensive \(256 \times 256\) element map. portions of which may be
viewed uning the thip', alphanumeric radar display. The motion of the ship itself is accurately modelled viewed using the ship's ajphanumeric radar display. The motion of the ship itself is accurately modelled mathematically. The nimuiting icebery). Chart your course from the Culf of Alaika to Vaidez Harbor! See the soft-
(outgoing tankers and drifing wate review in 50 Sofiware Critique.
BACKGAMMON 2.0 (Atarl, North Star and CP/M only)
Frike: 514.95 Cesmette/Sus.95 Dhakette This proyum testa your bacigammon will and will alioo improve your ame. A human can compete azsinst a com-
 cordance with the official rules of beckzammon and is sure to provide many facinating sestions of backgammon CHECKERS 3.0 (PET oaly)

Price: s16.95 Ceasette/sze.95 Dakette This is one of the most challenging checkers programs available. It has 10 levelis of play and allows the user to change at levels 9 and 10 .
CHESS MASTER (North Star and TRS- 90 only)
Prike: 519.98 Cameth/523.95 Diaktile This complete and very powerful proursm providea five levels of play. It includee castling, en pusast captures and of "book" play. To maximize aecution specd, the program is writuen in asembly language by SOFTWARE SPECIALISTS of Californias). Full araphika are employed in the TRS -30 verrion, and two widhs of alphanumeric EM LANDER (32X Apple Diak oaly)

Prict: 516.98 Dtakette Pilot your LEM LANDER to a safe landing on any of nine different sufface ranging from amooth to:

\section*{FOREST FIRE! (Atarf oaly)}

Price S16.9s Camete/s32.9s Dtaktere Pathe and terrain. Not protecting viluable
 and chalenging. No two games have the ame seting and there are 3 levels of difficulty.
NOMINOES JIGSAW (Atarl, Apple and TRS-80 oaly) Prike: 516.9s Caseste/320.98 Diakette
 will chalenge you with its three levels of difficulty. Scoring is based upon the number of guesses tuken and by the difin ELECTRONIC GAMES

\section*{MONARCH (Atari oaly)}

Prke: S11.9s Comette/S15.9s Dlakette MONARCH in a facinating economic simulation requiring you to survive an 8 -ycear term as your nation's leader.
You derermine the amount of acteage deroted to induatrial and agricultural use, how much food to diatribute to the
 and that it is not easy to make everyone happy.
CHOMPELO (Atarf oaly)
Prike: 511.95 Custte/ 151.95 Dhaketle HOMPELO is really too challenging umes in one. One in similer to NIM; You murt bite off part of a cookie, but
void tating the poisoned portion. The other game is the popular board game REVERSI. It fully uses the Atari't araphica capability, and is hard to beat. This package will fun on a 16 K yytem.
PrACE LANES (Avallable for all computers)
SPA, Soss Diketie
SPA SPACE LANES i a simple but exciting space transporavor and in to amass more net worth than your opponent. The economiks include stock purchases and company mersers. Watch your wealth arow

\section*{DYNACOMP OFFERS THE FOLLOWING}
- Widest variety
- Guaranteed quality
- Fastest delivery
- Friendly customer service
- Free catalog
- 24 hour order phone

\section*{AND MORE...}
 This is the classic Surrek simulation, but with several new faturts. For example, the Kingons now shoot at the
Enterprise without warning while albo attacking starbeses in other quadrant. The Klingons allo attack with both light and heayy cruisers and move when shot at! The situation is hectic when the Enterprise is besieged by three heavy ware Critique and Game Merchandising.
BLACK HOLE (Apple oaly)
Prike: 514.95 Cametie/s13.9s Dlaketie Thin is an exciting zraphical simulation of the problems involved in closely observing a biack hole with a space probe.
The object is to enter and maintin, for a precribed time, an orbit close to a mall black hole. This is to be achiered the objer asio mier and maintin, for a prescribed time, an orbir close to a mail black of the craft is realitically simulated uxing side jets for rotation and main thruaters for acceleration. This program employs Hi-Res graphics and ss well as challenging.
SPACE TILT (Apple and Atari oaly)
Prike: 510.98 Cuastu/314.95 Dakethe Use the game paddles to tilk the plane of the TV seren to "roll" a ball into a bole in the screen. Sound simple? Not
when the hole gets maller and smallet! A builtin timer allow you to measure your aill aginat others in this habit. forming action game.
MOVING MAZE (Apple and Atari only)
Prike: 510.95 Comentle/S14.95 Dakette MOVING MAZE emplogs the game paddies to direct a pock from one side of a maze to the other. Howver, the wizhout touching (or being hit by) \& wall. Scoring is by an elapped time indicator, and three levels of play are LPHA FIGHTER (Atari oaly)

Price: 514.95 Coustie/sis.9s Dakette Two ercalle passing through your sector of the galaxy. ALPHA BASE is in the path of an alien UFO invasion; let five UFO's get
by and the game ends. Both games require the joyztick and get progressively more difficult the higher you score! by and the game ends. Both games require the
ALPHA FIGHTER will fun on 16 K yysems.
THE RINGS OF THE EMPIRE (Atari oaly) Pries: si6.95 Casette/s20.9s Dakette The empire has developed a new battie station protected by roating rings of enerigy. Each time you blat through the rings and deatroy the sation, the empire develops a new sation with more protective rings. This ei
on 16 K syutems, employs exensive graphics and sound and can be played by one or two playern.
INTRUDER ALERT (Atari only)
Prike: S16.95 Cumetie/s30.9s Daketie This is a fast paced erraphics game which places you in the middile of the "Dreaditar" having just tolen its plars. The
 Prike: 514.95 Cametie/sis.9s Daskette This real-ime action yeme is guranteed addictivet Use the joystick to control your path hrough sialom courses consisting of both open and closed zates. Choose from different levels of difficulty, race aginat other players or simply
RIPLE BLOCKADE (Atari oaly)
Prike: 514.95 Caustte/s18.95 Diskette TRIPLE BLOCKADE is a two-to-three player graphica and sound action gume. Wi is based on the clasic video arcade screen without rurning into your opponent()). Athough the concept is simple, the combined yraphics and sound effect lead to "hish anjiety".
GAMES PACK I (Avallable for all computers) Pike: 510.9s Camete/314.ss Dakette
 They are individually accessed by a convenient menu, Thi collection is wort the price juut for the DYNACOMP ver.

AMES PACK II (Avallable for all computern)
GAMES PACK II includet the gumes CRAZY EIGHTS, JOTTO, ACEY-DUCEY, PIFE, WUMPUS 510.95 Canter 14.95 Dthette
 oy DYNACOMP's verion of CRAZY EIGHTS.
Why pay 57.95 or more per prouram when you can buy a DYNACOMP colletion for juat 510.95 ?
MOON PROBE (Atarl and North Star only)
Price: s11.95 Casette/s15.9s Deskette This is an extremely challenging "lunar lander" prouram. The user must drop from orbit to land at a predetermined
target on the moon's surface. You control the thruat and orientation of your craft plus direct the rate of deceat and target on the moon
approach angle.
SPACE TRAP (Atari oaly, 16K)
Prke: S14.95 Cawetie/S13.9s Dakets This alactic "Ihoot'em up" arcade ame place you near a black hole. You control your spacecraft using
stick and attempt to blat as many of the alien ahipa as possible before the black hole closes about you.
\begin{tabular}{|c|}
\hline ADVENTURE \\
\hline \begin{tabular}{l}
M only) \(\qquad\) Prex: :11.s patane \\
Star and CP/M dystern. CRANSTON MANOR ADVENTURE takes you into myaterious CRANSTON MANOR where you attempt to gather fabulous treasures. Lurking in the manor are wild animals and robots who will not give up the treasures without a fight. The number of rooma grams, making this game the top in its class. Play can be stopped at any time and the status stored on diakette. N available in \(5 \%\) " CP/M format.
\end{tabular} \\
\hline \begin{tabular}{l}
 \\

\end{tabular} \\
\hline
\end{tabular}

\section*{SPEECH SYNTHESIS}
 ble vocabulary avilable anywherel

Price: \(\$ 329.95\) (Please add \(\$ 4.00\) for shipping and handing)

\section*{TNT Software}

The following DYNACOMP programs are avilabie for use with TNT:
\[
\begin{aligned}
& \text { CHOMPELO (ALar, } 24 \mathrm{~K} \text { ) }
\end{aligned}
\]

TALK TO ME (T'N'T A tari oaly, 24K)
 ME will illustrate normal word senera
proyraming tips.

Please ipocify 'TNT' versions when ordering.

\section*{ABOUT DYNACOMP}

DYNACOMP is a leading distributor of small system software with sales spanning the world (currently in excess of 40 countries). During the past two years we have greatly enlarged the DYNACOMP product line, but have maintained and improved our high level of quality and customer support. The achievement in quality is apparent from our many repeat customers and the sofwart reviews in sort is as close as your phone. It is always friendly. The staff is highly trained and always willing to discuss products or give
- Erepen where noted, all model \(I\) software is available for the Model III. TRS-so diskettes are not suppled with DOS or

\section*{BUSINESS and UTILITIES}

SPELLGUARD \({ }^{\text {TM }}\) ( \(\mathbf{z}^{\prime \prime}\) CP/M oaly)
Lht Prike: S229, DYNACOMP Priker S219.95 Dakk




MAIL LIST 2.2 (Apple, Atari and North Star dakette oaly)
Prike: SM.
This proqpan a malched in ita sbility to tore a maximum number of addresea on one diakette (minimum of 1100 per dink


FORM LETTER SYSTEM rel. 2 (Atari, North Ster and Apple Dtakettes oaly)
Prike: 54.9s


FLS and MAIL LIST 2.2 are arvilble us a combined peckuge for 399.99 .
SORTIT (North Star oaly)
Price: 529.95 Dtakette
SORTIT ia a general purpose sorting proyran written in soso auembly languge. This proyram will sort sequential data file
generated by NORTH STAR BASIC. Primary and optional secondary key may be numeric of one to nine characer string. senersted by NORTH STAR BNSIC. Prinary and optional necondary key may be numeric of one to nine character string:
SORTIT is caily used with files geerated by DYNACOMP's MAIL LIST program and is very verutile in its capabilities for Sortir is asily used with files
all ocher BASIC data file sorting
PERSONAL FINANCE SYSTEM (Atari and North Star oaly)
Prict: SM. 3 D Daketle PPS i a single diakette, menu-oriented yytern componed of ten different proyums. Beiden recording your apense and tax
deductible items, PFs defined codes by moath or by pay se. PFS will even produce monthly bar \(y\) raphas of your expentec by categ ory! This powerfiul pachese recuires oaly ooe diak drive, minimal memory (24K Atari, 32 K North Star) and will store up to 600 records per disk (and over 1000 records pee diak by making a few simple changet to the prourtams). You can record checks pl.
that you can finally see where your monet goet and eliminate gueswork and tedious hand calculationa.
AMILY BUDGET (Apple oaly)
Prike: Sm.9s Dakette FAMILY BUDCET is a very convenient financial record -keeping progrom. You will be able to keep track of cash and credia
expenditura as well as incom, on a dally beais. You can record tux deductible items and charitable donations. FAMILY
 different expense secounts at well as to 9 payroll and tux sccounts. Data are casily retrieved siving the user complete control
over an otherwise complicated (and unorganized)) subject.
INTELINK (Atari oaly)
Price: \(\operatorname{seg}\).gs Diskette This softwre packuse contuins a menu-driven collection of programs for facilitating efficient two-way communications through a full duplex modem (required for use). In one mode of operation you may connect to a data serrice (e.s. The
SOURCE or MiroNet) and quickly load data such as sock quotations onto your diakette for later viewing. Tis yrealy reduce "conneet time" and thus the service charge. You may alho record the complete contents of a communications seasion.
Additionally, prozrms writen in BASIC, FORTRAN, etc. may be built off-line uxing the support text editor and later "up. Additionally, programs wium in BAI, he Atari a very mart terminal, Even Alari BASIC program may be uploaded.
 up your sequence of time-share commanda and proyrams, and the Atari will transmit them as needed; batch processing. All
this adda to to aring both conneet time and your time. TEXT EDITOR II (CP/M)

Prike: S29.9s Dukette/s33.4s Dakk
ins many new featurea. With TEXT This is the second release verrion of DYNA COMP's popular TEXT EDITOR I and continins many new featurea. With TEXT
EDITOR II you may build text files in chunks and asemble them for later display. Blocks of text may be appended, inserted or deleted. Files may be saved on disk/ diskette in right jutified centered format to be later printed by either TEXT EDTTOR it
 editor and processed. In fact, text files can be built using ED and later form
EDITOR II is an inexpensive, easy to use, but very fexible editing sytem.
DFILE (Atari and North Star diskettes only)
 stack of diaks which inveriably accumule
locating of the deired file or prouram.
FINDIT (North Star only)
Price: S19.9s
(es: lat name). This is a three-in-one prouram which maintuins information accessible by keywords of three types: Perional (es: last name). Commercial (es: plumber)) and Reference (es: magasine articles, record albums, etc). In addition to kerword searches, there SHOPPING LIST (Atari ont) OPPING LIST (A tari onty)
SHOPPING LIST stores information on items you purchase at the supermarker, Before going thopping, it will remind you of SHOPPING LST storea information on iems you purchase at the supermarker., Before soing thopping. it will remind you of
alt he thing you might ned, and then display (or optionally print) your thopping list and the total cost. Adding. deleting.
changing atd storing data is very eary. Rums with 16 K . TAX OPTIMIZER (North Star oaly)

Prike: Ss9.9s Datertie




\section*{EDUCATION}

HODGE PODGE (Apple oaly, 4BK Applesoft or lateger BASIC)
Let HODGE PODGE be your child's bety itter Preaing any kg on




TEACHER'S PET I (Avallable for all compateri)



\section*{MISCELLANEOUS}

CRYSTALS (Atari oaly)
 buil. No two petterns see the mame, and the comblined effect of the sound and graphica wre meermerixing. CRYSTALS has been NORTH STA \({ }^{k}\) SOFTWARE EXCHANGE (NSSE) LIBRARY
 for detuils riguring he coakna of he Nise collection. Price: 59.95 each/57.95 each (4 or more)
The complett colleation may The complete collection may be purchaned for 5149.9

\section*{DYNACOMP CASSETTES}

DYNACOMP now offers high quatity DYNACOMP brand neme C-20 casettes for computer use. Each casette is guranteed to
Box of 10 cassettes:
Box of 20 casette:

\section*{AVAILABILITY}

DYNACOMP software is supplied with complete documentation containing cleat explanations and ecamples. Uniess ocherwise



\section*{STATISTICS and ENGINEERING}

DIGITAL FILTER (Available for all computern)
 choose from a menu of filter forms. The filuer forms are subsequently converned into mon-rewurive convolution coefficients

 umoothed with a Hamning function. In addition, multi-tage Butterworth filters may be selected. Farures of DIGITAL
FILTER indude plotiting of he der norage, retilivil end ediling procedure.
DATA SMOOTHER (Not avillable for Atari) Proce: S19.8s Caurtie/s32.9s Dherete
 ploting of the input data and moothed resulta.

FOURIER ANALYZER (Avallable for all compaters) Prke: 519.9s Camette/523.9s Duktetie Use this proyrum to examine the frequency spectro of limited duration signals. The prouram featurez sutomatic saling and plotting of the input data and results. Pr
tronics, communications and butines.
FA (Transter Function Analyzer)
Prike: 319.98 Caunte/523.9s Dtaketie
This is a speciel sofiwere package which may be ured to evaluate the tranter functions of systems such as mi-fi amplifiers and engineering-oriented decibel verrus log:-frequency plot at well as data editigy fatures. Whereas FOURIER ANAL YZER is deriqned for esucational and scientific use, TFA is an engineering tool. Avilable for all computern.
HARMONIC ANALYZER (Avallable for all computern) Prike: 524.95 Cametie/523.9s Daketie HARMONIC ANALYZER was desiepned for the Ipectrum analyid of reperitive waveforms. Features indude data file genera tion, editing and atorase/retrieval as well as data and spectrum plotting. One particularly unique facility is that the input data required by the FFT alsorithm
FOURIER ANALYZER, TFA and HARMONIC ANALYZER may be purchased together for a combined price of si9.9s
REGRESSION I (A vallable for all computen)
Prike: S19.9s Casette/s21.9s Dathette
 tic.) and much more. In addition, new fiu may be tried without reenterits the data. REGRESSION 1 is certainly the corner

EGRESSION II (PARAFIT) (Avallable for all computers)
Prike: 519.98 Cumette/s22,9s Duthete
PARAFIT IA dealged to handie those cases in which the parameters are inbedided (posibly nonlinearly) in the fitting furc
 and PARAFIT for those complicated functions.
MULTILINEAR REGRESSION (MLR) (Avillable for all computers) Price: 524.95 Caustit/523.98 Dheketie MLR is a profesional sofiwre package for analyzing data vets containing two or more linearly independent variables. Besides functions, In addition, the user may interrogute the solution by ariables as
REORESSION I, II and MULTILINEAR REGRESSION may be purchased together for \(\$ 31.95\) (three casettes) or \(\mathbf{8 6 3 . 9 5}\)
(Ahree diketes)
NOVA (Not avallable for PET/CBM) \(\qquad\) Prike: 539.95 Crustle/SN3.95 Daketle In the past the ANOVA (analysia of variance) procedure has been limited to the large mainframe computers. Now
DYNACOMP has brought the power of this method to mall syztems. For those conversant with ANOVA, the DYNACOMP

 fesor in the subject) and served as an excellent introdiction to the subject. Accompanying ANOVA is a support program for BASIC SCIENTIFIC SUBROUTINES, Volumes 1 and 2 (Not avallable for Atar)

DYNACOMP is the excluaive diatributor for the softwane keyed to the popular texts BASIC SCIENTIFIC SUBROUTINES, to chapter. Included with each collection is a menu prozram which selects and demonstrates each subroutine.
Collection \(\boldsymbol{n}\) : Chapters 2 and 3 . Data and function plotring: complex variablee and functions Collection 12: Chapter 4. Extended matrix and vector operations
Collection n: Chapteris 5 and 6 . Radom number generatorn (Po

All three collections are avilibble for 539.95 (three cassetes) and 599.95 (three diakettes).
Volaser 2,
Collection
Colvection \(\boldsymbol{n}\) : Chapter 1 . Linear, polynomial, multidimensional, parametric least squares.
Colection \(\boldsymbol{\Omega}\) : Chapter 2. Series approximation techniques (econcmization, inverrion,


Collection es: Chapter 5. Tunction: interpolation, differentiation and integration (Newton, LaGrange, aplines).
Collection 15: Chapter 5 - Table interpolation, differentiation and inategration
Colvection W: Chapter 6 . Methods for finding the real roos of functions
Collection \(\boldsymbol{n}\) : Chapter 7 . Methods for finding the complex roox of function

All eight coliections are avilable for 599.95 (eight cassettes) and \(\$ 129.95\) (eight diakettes).
Al eight coliections are avilabie for 59995 (eight cassettes) and 5129.95 (eight diakettes).
Because the texta are v vital part of the documentation, BASIC SCIENTIFIC SUBROUTINES, Volumes I and 2 are avilable
from DYNACOMP: from DYNACOMP

BASIC SCIENTIFIC SUBROUTINES, Vol 1 (1919 pase): 519.95 + 756 potage
BASIC SCIENTIFIC SUBROUTINES, Vol \(2(790\) pasel): \(\$ 2299\) + \(\$ 1.50\) potage
See review in KILOBAUD and Dr. Dobbs. See reviens in Kilobaud and Dr. Dobbs.
ROOTS (A vallable for all computers)
Prike S10.95 Cumete/S14.Ss Diketie
In a nuthell, ROOTS simultansoculy) determines all the zeroes of a polynomial having real coefficients. There in no limit on required as input, and the calculated roots are substituted back into the polynomial and the residuals cisplayed.
 tive or pasive component circuit (e.s, a tranititor amplifier, band peas flier, etc.). The circuit may be probed at equal theps in frequenc, and the resulting complex (i.e., real and imavininy) voltages at sach component juncture eximined. By ploting the magnitude of these volugete, the frequency response of a fituer or amplifier may be completely determined with respoce to booth amplitude and phase. In addition, ACAP prints a tatiatical analywis of the range of voluge reaponsa, which resulk from
tolerance variations in the components. ACAP is eay to learn and use. Simply decribe the circuit in termi of the elements and
 ion or ary
LOGIC SIMULATOR (Apple oaly; 48K RAM)
With LOGIC SIMULATOR you maty eatiy test
Prike: S24.9S Camett/sas.9s Dakertle With LOGIC SIMULATOR you may eatily test your complicated digitul lopic design with rejpect to siven see of inputs to
determine how vell the circuit will poctat The cements wich may be inmulated include multiple input AND, OR, NOR. EXOR, EXNOR and NAND gates, as well as inverters, J-K and D nip-Aopp, and one-shots. The repponse of the pystem is


\section*{ORDERING INFORMATION}

All orders are processed and shipped within 48 hourn. Pleast enclose payment
formation. If paying by VISA or Master Card, include all numbers on card.
\(\qquad\)
DYNACOMP, Inc. (Dept. E)
1427 Monroe Avenue
Rochester, New York 14618 24 hour order phone: ( 716 ) \(442-8731\) recording
Office phone ( 9 AM -SPM EST): \((716\) ) \(442-8960\)

\title{
Education
}

\title{
Friends Of The Turtle
}

\section*{David D. Thornburg \\ Innovision \\ Los Altos, CA}

Welcome to a new Society - the Friends of the Turtle. A free membership in this society is available to all subscribers to this magazine, and our meetings will be held on these pages every issue. The goal of this society is to promote the type of computer graphics and robot environment that uses what is called "turtle geometry."

Turtle geometry is a key element in several user-friendly computer languages such as Atari PILOT, TI LOGO, and Apple LOGO. It may come as a surprise to some of you, but the types of graphics commands used in these languages are also obeyed by a programmable toy - the Milton Bradley Big Trak. Turtle geometry encourages exploration. It can be learned by first-time computer users of almost any age, and its power is so great that it can keep full-fledged computer wizards engrossed for years. The turtle is a graphics tool that makes it easy for you to get the computer to do what you want it to do.

In these pages we will share programs that illustrate many interesting ideas and developments in this field. Most of all, we will share beautiful designs that have come out of this computer environment.

\section*{Background - What Is A Turtle?}

If you have ever played with a Milton Bradley Big Trak, or used computer languages like Atari PILOT, LOGO, or WSFN, you have encountered a very special device called a turtle. Basically, a turtle is a "robot" that can move around the floor (or display screen) in response to messages you send it. Display turtles often have "pens" with which they can leave traces of their path as they move. This makes the turtle a handy tool for drawing pictures.

The difference between turtle graphics and conventional coordinate graphics can be demonstrated by drawing a square in both systems.


In coordinate geometry, the pen is moved to various coordinates on a grid. To draw a square 40 units on a side, we could use these five steps:

> GOTO 0,0 (put the pen at the origin) DRAWTO 0,40 (draw the left vertical line)
> DRAWTO 40,40 (draw the top horizontal line)
> DRAWTO 40,0 (draw the right vertical line)
> DRAWTO 0,0 (draw the bottom horizontal line)

This is illustrated below.
Figure 1a.
```

GOTO B,G

```

Figure 1b.
```

 DRAWTO 0,40
    ```

Figure 1c.

\section*{COLLEGE BOARD SAT PREPARATION SERIES \\ TRS-80, APPLE, PET, OSI, ATARI, CP/M, PDP-11}

Each program confronts the user with a virtually limitless series of questions and answers. Each is based on past exams and presents material of the same level of difficulty and in the same form used in the S.A.T. Scoring is provided in accordance with the formula used by College Boards.
S.A.T., P.S.A.T., N.M.S.Q.T. - Educator Edition set includes 25 programs covering Vocabulary, Word Relationships, Reading Comprehension, Sentence Completion, and Mathematics.

Price \$229.95
Independent Tests of S.A.T. series performance show a mean total increase of \(\mathbf{7 0}\) points in students' scores.
G.R.E. Series - Educator Edition includes 28 programs covering Vocabulary, Word Relationships, Reading Comprehension, Sentence Completion, Mathematics, Analytical Reasoning and Logical Diagrams.

Price \$289.95

\section*{COMPETENCY EXAM PREPARATION SERIES}

This comprehensive set of programs consists of simulated exam modules, a thorough diagnostic package, and a complete set of instructional programs. It is designed to teach concepts and operations, provide drill and practice and assess achievement levels through pre and post testing. The Competency Exam Preparation Series provides a structured, sequential, curriculum encompassing mathematical, reading and writing instruction.
This program is designed for individual student use or use in a classroom setting. Programs provide optional printer capability covering worksheet generation and performance monitoring. C.E.P.S. are available in three software formats.
\begin{tabular}{|c|c|}
\hline ies & \$1,299.00 \\
\hline N.Y.S. Regents Competency Test, Preparation Series & \$1,299.00 \\
\hline California Proficiency Assessment Test, Preparation Series & \$1,299.00 \\
\hline
\end{tabular}

If desired separate Mathematics and Verbal packages are available for \(\$ 7.99 .00\) ea. A Spanish language version of the Mathematics Instruction Package is available at no extra charge.

\section*{INQUIRE FOR UNIQUE M.I.T. APPLE \({ }^{\text {m }}\) LOGO APPLICATIONS SOFTWARE}

\section*{Time Traveler}

The best of the adventure games. Confronts the player with complex decision situations and the demand for real time action. Using the Time Machine, players face a challenging series of historical environments. To succeed you must build alliances and struggle with the ruling power. Each game is unique.
\(\$ 24.95\)

\section*{Odyssey In Time}

This spectacular adventure game adds a new dimension of excitement and complexity to Time Traveler.

Odyssey In Time includes all the challenges of Time Traveler plus 10 additional eras. Each game is different and may be interrupted and saved at any point for later play.
\(\$ 39.95\)


\section*{Sword of Zedek}

Fight to overthrow Ra, The Master of Evil. Treachery, deceit and witchcraft must be faced in your struggles as you encounter wolves, dwarves, elves, dragons, etc. Each of the twelve treasures will enhance your power by making you invisible, invulnerable, etc. Each game is unique in this spectacular and complex world of fantasy
\(\$ 24.95\)

\section*{5}

\section*{NEW}

Micro-Deutsch set includes 24 grammar lessons, covering all material of an introductory German course. Four test units also included. Grammar lessons use substitution transformation drills, item ordering, translations and verb drills. Drill vocabulary based on frequency lists. Suitable for use with any high school or college textbook. Extensively field tested at SUNY Stony Brook. Available for Apple II and PET/CBM. (PET version includes a special foreign language character chip.) Also available soon: MICRO-FRANCAIS, MICRO-ESPAÑOL MICRO-IVRIT, MICRO-YIDDISH, MICRO-CHINESE, MICROJAPANESE
\(\$ 179.95\)

\section*{से NEW}

\section*{Pythagoras and The Dragon \(\dot{\psi}\)} Mathematics in a fantasy game context. Based on The Sword of Zedek, Pythagoras and The Dragon introduces Pythagoras as a mentor to the player. When called on for aid, Pythagoras poses math questions, and depending on the speed and accuracy of the player response, confers secret information. With Pythagoras as an ally, the quest to overthrow Ra, The Master of Evil, assumes a new dimension of complexity. Depending on the level chosen, problems range from arithmetic through plane geometry.
\(\$ 39.95\)

Figure 1d.


Figure 1 e .


DRANTO B, B
Next, let's see how a square would be drawn in turtle geometry. We make the turtle draw lines by giving a sequence of instructions like this:

REPEAT 4 (repeat the following commands 4 times) FORWARD 40 (draw a line 40 units long)
RIGHT 90 (turn 90 degrees to the right)
Figure 2.


REPEAT 4
FGRWARD 46
RIGHT 96
While the turtle commands that draw a square are much simpler than the commands in coordinate geometry, this is far from being their only power. The coordinate representation we showed only describes a square with vertical and horizontal sides. Suppose you wanted to draw a square tilted at some angle (say 30 degrees). How would you draw that in coordinate geometry?

In turtle geometry, the description of one square is just the same as that for any other square, independent of its orientation. To draw a square tilted at 30 degrees, you first must turn the turtle by 30 degrees before having it draw the square.

\section*{Figure 3.}


The commands look like this:

\section*{RIGHT 30 \\ REPEAT 4 \\ FORWARD 40 \\ RIGHT 90}

The power of turtle geometry is so great that we cannot begin to touch it in this first column. If you want more information between now and the next "meeting," you should read "Picture This! PILOT's Turtle Graphics for Atari" in the MayJune 1981, issue of Recreational Computing. Two important books on this topic have recently been published - Mindstorms: Children, Computers, and Powerful Ideas by Seymour Papert (Basic Books), and Turtle Geometry: The Computer as a Medium for Exploring Mathematics by Harold Abelson and Andrea diSessa (MIT Press). A new book (by the author), Picture This!, will be published by Addison Wesley in early 1982. This book focuses on the Turtle Language incorporated into Atari PILOT.

\section*{Why Do We Need Friends Of The Turtle?}

As we said before, turtle geometry is being incorporated in many of the computer languages that are just now beginning to be available on low-cost personal computers. Each of the various implementations of this environment has its special features and limitations. To the extent that the graphics environments in all these implementations are similar to each other, Friends of the Turtle will be a place where we can explore the turtle world in a machine independent fashion. We will describe all sorts of interesting experiments to do with turtles (since experimenting is probably the best way to learn geometry anyway), share our programs, provide a "Rosetta Stone" for various dialects of turtle languages, keep track of recent developments in the field, and generally have a good time. This last point is the most important, since the turtle is a marvelous device to play with.

So, welcome to friends of the Turtle. Please write to me with your ideas and programs. If you are new to this field you should know that we will spend a great deal of time dealing with the basics.

Turtles are for everyone, and so is this society. Please write to me at the following address:

David D. Thornburg
Friends of the Turtle
P.O. Box 1317

Los Altos, CA 94022


\title{
Learning With Computers \\ Glenn M. Kleiman and Mary M. Humphrey Teaching Tools: Microcomputer Services P.O. Box 50065 \\ Palo Alto, CA 94303
}

\section*{How might existing computer technology change schools in the near future?}

In this column, we recount a hypothetical visit to the Charles Babbage School, circa 1985. Our tour guide was the principal, Ada Lovelace, who told us the school has been using computers since 1982.

At Babbage School, children move about a great deal, working individually and in groups on different lessons and projects. The children have a lot of flexibility in which lessons they do when, and in how they approach studying a given topic. Everyday attendance is not compulsory, and some children often take lesson disks home to work on their own computers. Teachers generally work with individuals or small groups of children. Ms. Lovelace told us the teachers spend most of their time tutoring and directing children's learning. The students have a lot of choice, but the teachers make sure that each child engages in a balanced variety of activities each week. Very little time is spent in record keeping or grading - computers take care of that. Since computers make truly individualized instruction possible, grading is not emphasized as it once was.

Many lessons are very different from those in schools of 1980. For example, nine-year-old Jane showed us a computer lesson on ecology and pollution. The computer showed a lake with a variety of plants and fish. It also provided information about the food chain and reproduction rates of the species within the lake. Jane then told the computer that a certain pollutant had entered the lake. The computer responded that the pollutant had killed \(50 \%\) of the "glod" plants, and asked Jane to predict the effect of this on the other life in the lake over the next five years. Jane then compared her predictions to the actual effects calculated by the computer, finding that she had estimated much less damage than would have occurred.

This simulation certainly seemed to teach her the basic principles of an ecological system. Computer simulations are available at Babbage School
for many science lessons. Ms. Lovelace told us that she hopes to get simulation programs to teach principles of economics and social psychology. She pointed out that software development has lagged behind hardware advances ever since she first worked with computers.

\section*{Lessons As Games}

Other lessons take a more game-like format, often with two or more players. Competitive games requiring (and providing practice in) math and language skills are very popular. Several children were playing an adventure game in which they explore a complicated world created within the computer. They search through castles, caves, and mazes for treasures, while trying to avoid the dangers of creatures such as wizards, dragons, and gremlins. Lessons in reading comprehension, logic, and map reading were embedded within the game.

Ms. Lovelace said that some children spend a lot of time with these game-lessons, and that completing one adventure can take several weeks. Teachers can instruct the computer to modify the game as it is being played. They use this capability to introduce new vocabulary words and other educational material, and to encourage the children to do other lessons. For example, 12 year-old Jim (who told us that "adventure is a real classic computer game") often neglected his science lessons. A quick modification by one teacher added a wizard to the adventure. This wizard gave Jim instructions for finding a treasure which required knowledge about certain star constellations. We later saw Jim engrossed in an astronomy lesson.

Ms. Lovelace told us that the children learn a great deal by exploring environments simulated on the computer. For example, one program creates computer screen representations of gears, pulleys, wheels, levers and so on. The child can combine these simple machines on the screen to create devices to perform various jobs, such as moving heavy objects. The device created can be tested through computer simulations to see if it works as planned. The child can then modify and re-test the device, or build a new one.

Creating, testing, and modifying devices in this simulated environment produces an understanding of the principles of simple mechanical machines. Other programs available at Babbage School create environments in which children can explore geometry, physics, and simple computer operations. Ms. Lovelace expressed the hope that more such programs would be available soon since this type of learning makes abstract concepts more concrete and manageable for children. Also, children learn through active exploration, rather than just passively remembering information given
to them.

\section*{Writing And Typing Skills}

Several students were engaged in writing projects. All the writing was done using word processing programs. The children easily entered and then revised their writing. Everything from correcting spelling errors and adding or deleting words to

\section*{... teachers have time for individual tutoring ...}
rearranging paragraphs was done quickly on the screen. Using word processors makes writing more enjoyable and children are willing to revise their own work many times - something they are reluctant to do when they have to rewrite by hand each time.

We expressed surprise that all the children knew how to type so well. Ms. Lovelace told us that they had learned from a computer program. The program presents typing drills and measures how long it takes to complete the drill on the computer keyboard. Later drills are designed to give practice with letters or letter combinations the child has typed incorrectly or too slowly. Since practice is directed at specific problems, learning is very rapid.

Some of the children were writing articles or stories for the school newspaper. One child told us he was writing a science fiction story about what the world would be like without any computers. When he finished his story, he stored a copy on disk so the newspaper editor could edit it later. We were told that, after being approved by the editor, the newspaper was automatically formatted and printed by the computer.

Other children were writing letters. They told us the letters were for their pen-pals in Japan. The letters were sent via electronic mail and the children expected to receive answers the next day. One child asked us why they were called "pen-pals." After we explained, another child added "it's like why we say 'dial the phone' - it's left over from the old days."

\section*{Speech Synthesis For A Blind Student}

Later, we noticed a child wearing headphones attached to a small box next to a computer. The
box was a speech synthesizer. At the push of a button, it would convert the text on the screen to speech. Ms. Lovelace told us that John has been blind since birth, but with the speech synthesizer, a special keyboard, and some other electronic devices, he is able to progress with his lessons very well. She emphasized that computers have been a tremendous help in educating children with all types of handicaps and in making it possible for handicapped children to work in regular classroom settings.

Many lessons were about computers themselves. Computer studies are a standard part of the curriculum. All the children learn how to control computers to permit creative work. For some, this consists of writing computer programs. One group of children was working on a math drill program to be used by younger children in the school. After testing it on some five-year-olds, they told us that it was "a neat program, but some of the instructions mixed up the little kids. It still has to be more user-friendly."

Other children used a computer to write music. The program allowed them to enter musical notation, listen to the music, alter its pitch and tempo, and change the notes. It was like a word processor for music. Their work was to be transmitted via a computer network, to be entered into a statewide computer music contest.

We also saw a group of three children working on a computer art project. Each child would take a turn adding something to the computer display by drawing on a board next to the computer. They simply outlined what they wanted to draw and it appeared on the screen. After something was placed on the screen, it could be easily colored, moved, rotated, made larger or smaller, or erased. With a great deal of animated debate (one of the teachers had to ask them to settle down) a picture was gradually taking form. Later, a large version was printed to hang on the classroom wall, and three small copies were printed for the artists to take home.

We asked the teachers about the discipline problems so prevalent in schools a few years ago. One teacher, who had been teaching for 20 years, said that many problems have been minimized since education had become truly individualized. Students and teachers feel less frustration and a greater sense of accomplishment since there is so much flexibility in the content and methods of teaching and learning.

Children with learning problems receive a great deal of specific help. Teachers have time for individual tutoring, while computers provide unlimited practice at a level and pace appropriate to

\section*{NEW! EDUCATIONAL SOFTWARE FOR CHILDREN from MICROGRAMS, INC.}
- Designed to supplement curriculum in Grades K-8
- Classroom tested
- Programmed with sound and advanced motivational graphics

\section*{Expect more from your PET \(^{\circ}\). . .}
- Tutorial and Review Programs available for Math, Reading, Language, Science, Social Studies, Vocabulary, Spelling, and special interest areas
- Testing and Grading programs for Teachers

\section*{MICROGRAMS}

INCORPORATED
P.O. BOX 2146, LOVES PARK, IL 61130 PHONE 815/965-2464

Please send me a free catalog.

Please send me a sample program and a free catalog. I have enclosed \(\$ 2.00\) for postage and handling.

NAME
ADDRESS
CITY \(\qquad\)
STATE


PET is a registered
trademark of Commodore Business Machines.
each child. The problems that could lead to a child being labeled as "learning disabled" have been reduced. Debates among educators about such things as which is the best method of teaching reading have also decreased, since an optimal method can be used for each individual.

\section*{Is This Science Fiction?}

Is Babbage School science fiction? Such a school doesn't exist today, but the technology to do everything we have mentioned does exist. We believe that Babbage School could be a reality within the next few years.

Will your school take advantage of computers and other technological innovations? The aim of our columns is to help you make good use of these new and powerful tools for teaching and learning. In each column, we will discuss a general issue about learning with computers, issues such as: what is computer literacy? How can computers facilitate the education of handicapped individuals? What training is required for teachers to make good use of computers?

We will also point out some articles, books, software, hardware, and sources of information you may find useful. Relevant to this column, there are many books about the influence of computers in the near future. We particularly recommend the following four:

\section*{1. The Micro Millenium, by Christopher Evans} (Pocket Books, 1979). Discusses computers of the past, present, and future and their effects on society. Includes an account of the roles of Charles Babbage and Ada Lovelace in the history of computers.
2. The Third Wave, by Alvin Toffler (Bantam Books, 1980). Toffler's thesis, developed in some detail, is that our society is in the midst of a Computer Revolution, comparable in scope of its effects to the Agricultural Revolution (the first wave) and the Industrial Revolution (the second wave).
3. The Electronic Cottage, by Joseph Deken (William Morrow \& Co., 1981). A wide-ranging discussion of things computers can do, how they work, and how they may change our everyday lives.
4. Mindstorms: Children, Computers and Powerful Ideas, by Seymour Papert (Basic Books, 1980). A detailed description of some computer-created environments for children to explore, and the effects on the children's understanding of mathematical concepts.
©

\author{
MICRO-ED, Inc. • P.O. Box 24156
}

Minneapolis, MN 55424
or telephone us at (612) 926-2292


\section*{Apple Addresses}

The Apple II uses three types of addressing depending upon the language being used. Apple's machine language uses hexadecimal addresses in the range from \(\$ 0000\) to \(\$\) FFFF. Its Floating Point BASIC language uses decimal addresses in the range from 0 to 65535 . Its Integer BASIC uses decimal addresses in the range from 0 to 32767 to -32767 to -1. This means that, if you want to address a particular memory location, you must choose the correct address for the language you are using. Since I program in all three languages and my references are a mixture from all three, I needed an address cross-reference program. So I wrote "Apple Addresses."
"Apple Addresses" can be used "as is" to convert one language's address to another's, and to give the high and low byte values which need to be POKEd into a BASIC program to store that address. Alternatively, you could extract the subroutines in Apple Addresses which convert between hex and decimal numbers and insert them in your own program. See the last paragraph of this article for more details.

The program begins by asking the user which of the six possible conversions he would like to make. This is followed by a request to select the way the results of the conversions are to be displayed. There are four possible displays:
1. single conversions displayed on the monitor one at a time.
2. single conversions printed out on a Silentype printer* one at a time.
3. a range of conversions displayed on the monitor.
4. a range of conversions printed out on a Silentype printer*.
*With slight program modifications other printers could be used.

\section*{Subroutines}
"Apple Addresses" makes extensive use of subroutines. This helps in organizing the program as well as making it shorter and easier to debug. The
controlling or EXECutive routine is called Apple Addresses - Exec. It starts on line 100 and goes to line 310 . Since a picture is worth a thousand words, I made what I call a balloon diagram (Figure 1) to show how data flows through the program. These are the conventions I used to make the diagram;
1. Each balloon represents a subroutine. The name of the subroutine and the line numbers where it is located are placed in the balloon.
2. Data flows through a subroutine in the direction of the arrows on the outside of the balloon.
3. Data flows between subroutines in the direction of the arrows on the strings.
4. If conditions are placed on what data flows through a subroutine, these conditions are written in along the strings.
As an additional aid for understanding how the program works I have included the following variable descriptions list:

A( ) - each A(I) holds the decimal equivalent value of the Ith hexadecimal numeral in the hex number being created from a decimal number - appropriate numbers are then added to convert these to ASCII codes.
\(\mathrm{A} \$()\) - holds the characters represented by the ASCII codes in A().
CHOICE - holds the number of the conversion chosen - see lines 120 to 178.
DVL - holds the decimal value of the number being converted - may be either FP or INT decimal.
DVL \(\$\) - is the string equivalent of DVL and is used in the output routines.
FLAG - if FLAG \(=1\) then an invalid number was entered and the program returns to get a new number.
FRST - holds the FP BASIC address equivalent of the lowest address in the selected range.
FRST\$ - holds the smallest address chosen this address is then processed and stored in FRST.
HVL\$ - holds the hex number selected or the hex number resulting from the conversion - if no hex numbers are involved then it holds the converted decimal number.
LST - holds the FP BASIC address equivalent

of the largest address in the selected range.
LST\$ - holds the largest address chosen this address is then processed and stored in LST.
N - holds the decimal equivalent of each hex numeral in a hex number being converted to a decimal number.
PHI\% - holds the number that would be POKEd into the high byte when placing the address into memory.
PLO\% - holds the number that would be POKEd into the low byte when placing the address into memory.
POK - holds the address from which PLO\% and \(\mathrm{PHI} \%\) are derived.
SELECT - holds the type of output selected — see lines 462 to 470.
STP - holds the positive decimal stepping interval chosen.
STP\$ - holds the stepping interval chosen which is later changed and stored in STP.
TB - the horizontal tab value desired.
TN - holds the intermediate numbers of the
decimal address that is being converted into a hex address.VTB - used to control the vertical tabbing of the monitor output.

\section*{Some Suggestions}

I have found that the easiest way to debug a program while I am entering it is to first type in the EXEC program. Then, if I place return statements at all the branching locations, I can check the EXEC for bugs. Once the EXEC is free of bugs, I add one subroutine at a time in the order that the EXEC uses them, checking for bugs as I go.

If you have a need for subroutines which convert numbers from hex to decimal or from decimal to hex, two subroutines in this program may be of help. The first is called "decimal to hex converter" (lines 42 to 50 ). The input to this routine is TN which must hold a positive decimal number \(<65536\). The output is HVL\$ which holds the hex equivalent to the number in TN. The second is called "convert hex to INT or FP decimal" (lines 1000 to 1050). The input to this routine is HVL\$ which must hold a hex number \(<=\$\) FFFF and choice. If choice \(=1\) then you get the positive decimal equivalent. Otherwise you get Int BASIC's equivalent. The output is a decimal number in DVL.

\section*{A BRICHT NEW STAR FROM}

\section*{NEW ROM BOARD FOR THE APPLE II* \$125.00 WITH UTILITY ROM.}

With Andromeda's new ROM Board, you can plug many useful utility programs into your Apple II. Because ROM memory never forgets, you can access these utilities instantly without having to load them from disk.

The ROM Board comes with the utility ROM, which gives you five powerful options to apply to your Applesoft* programs. With the Utility ROM, you can do automatic line numbering, control a program list with a page mode, restore a crashed Applesoft* program in memory, alphabetize a disk catalogue and create a disk without DOS, giving you an extra 8K on your disk. Any of Soft Control Systems' other ROMS can be used, such as the Dual DOS in ROM, and 'Your'ple ROM

You can install 2 K PROMS, 4 K PROMS, or even 2 K RAM chips in each of the two memory sockets. So you can even have the Read - Write capability of RAM to develop PROM Programs yourself, or just have an extra 2K RAM for your machine - Language programs. Two 2732 PROMS allow a total of 8 K of memory on the Board.

\section*{Now with One Year Warranty.}

Don't forget the Andromeda 16K RAM Expansion Board \$195.00

\section*{ANDROMEDA}

INCORPORATED
P.O. Box 19144

Greensboro, NC. 27410 919 852-1482
Distributed By

P.O. Box 696

Amherst, NH. 03031
603 673-7375

\footnotetext{
* Apple II and Applesoft are trademarks
}

\section*{More Apple Hi-Res Shape Writer}

\author{
Chris Dupuy Gonzales, LA
}

Countless hours spent plugging ones and zeros on graph paper are now history, thanks to Mr. Hennig's "Hi-Res Shape Writer." [COMPUTE! \# 14] Shload miseries are not missed and drawing shapes other than right angles are now a breeze.

After creating one star cruiser after another, I was soon struck with the harsh realization that I could not SAVE these cosmic creations on my cassette recorder. Unfortunately for me, I belong to the one percent club of Apple owners who cannot afford the luxuries of a disk drive. Undaunted with the PEEKs and POKEs ahead of me, I proceeded to write a routine that would put all the bytes from the shape table into trusty DATA statements.

The program is intended to be added to the original "Apple Hi-Res Shape Writer" by Doug Hennig. However, the routine used to POKE DATA in DATA statements can be adapted to other programs where the user does not want to be bothered with the rules of STOREing and RECALLing arrays.

\section*{Program Operation}

REMark statements were omitted from the program in order to save valuable space, since memory size becomes a problem with complex shapes.

5-1084 Sets an array to the bytes POKEd into the shape table in original program.
13900-13906 Searches for the memory locations of the first blank DATA statement and sets \(Y\) equal to this.
13910-13970 POKEs \(Q\) to first item in DATA statement.
13930 Separates \(Q\) into individual digits.
13975 POKEs number of shape tables and reference numbers for shape tables.
14000-14075 POKEs bytes of shape table into the succeeding locations of the DATA statements.
14004 Searches DATA statement for a period (CHR\$(46)), in order to find location to insert next value.

14550-14630 Demonstration program to verify information in DATA statements.
14572 Checks DATA statement to verify additional space on current statement. If not, then READ asterisks and jump to next DATA statement.
14700-14710 DELetes main portion of program and leaves demo program with DATA statements to be SAVEd.
15000-15005 DATA statements with 184 periods (quantity is at your discretion), and 4 asterisks.

\section*{Variables Used}

Q Holds the number of bytes in the shape table.
\(\mathbf{V}()\) Stores individual bytes of shape table.
Y Keeps track of the DATA statement memory locations.
R Used to check memory locations for a period.
F,FF Holds LENgth of strings and uses that value in FOR-NEXT statements.
\(\mathbf{T}(), \mathbf{L}()\) Arrays that hold the individual digits of bytes from shape table.
E\$ User input.
X The location for bytes to be POKEd into shape table.
Y\$ Stores the DATA being READ from demo program. String is used to prevent error message when asterisk is READ.

\section*{Hints And Changes}

Those who have 32K Apples will encounter space problems when trying to run this longer program. DELeting the instructions, REMarks, disks subroutines, and combining statements will help avoid this obstacle.

Once all changes are made to your program, lines 13904 and 13906 may be DELeted. However, the memory location for the first DATA statement must be found. In machine language, the three bytes to look for are: 83002 E . The decimal location of 2E should then be set to Y in line 13900 . Remember - if this change is done, no other changes can be made in the program (except for DATA statements), without the information being POKEd into the wrong locations. If searching for memory locations is too tedious, then you might want to experiment by raising the value in line 13900 . Either one of these changes will save time in program execution.

Providing you have shaved off a good portion of the program, the value in line five may be raised to accomodate more complex shapes.

The major shortcoming in this program is the

\title{
SAVE on Software for APPLE II
}

\section*{SUPER SPECIAL - 50\% OFF ON THE FOLLOWING APPLE PROGRAMS}

APEX-The assembly language operating system for the Apple II-Total control of your Apple-fast program loading and execution-Fexibility-Efficiency.
Now only \(\qquad\) \(\$ 50.00\)

XPLO—A Block Structured—Pascal type high level language operating under APEX-
Now only
\(\$ 40.00\)
HANDY DISK—Utility programs and device handlers for the APEX operating system-A powerful alternative to Apple DOS.
Now Only
\(\$ 20.00\)
THE EXTENDER-Extends Applesoft \({ }^{\text {w }}\) by adding these functions:
- Print using - Auto Line Numbering
- Decimal/Hex Conversion - High

Resolution Screen Color Indication
- Single Color Screen Fill and more...

Now Only ........................ \(\$ 25.00\)

\section*{MORE APPLE SPECIALS}

PASCAL GENERAL LEDGER-Menu driven general ledger program based on the Osborne System. Customized utility for a true turn-key general ledger system.
\(\$ 149.00\)


PROM BLASTER-Programs all 1 K to 4K PROMS of 25 XX \& 27 XX single or multi-voltage types-With all personality modules and read/write software.
\(\$ 149.00\)

\section*{PROFESSIONAL FOOTBALL PREDICTIONS}
- Makes predictions for all 14 NFL games each week.
- Program's data base is updated weekly from your local newspaper's game statistics.
- Keeps complete record of all final scores and standings.
- Re-useable year after year.
- Very sophisticated program, yet easy to operate.

FOR YOUR APPLE II
*NOTE: Start saving your game results at the time of your order, APPARAT will provide the data base for the previous weeks games on the disk.

\section*{MISCELLANEOUS SUPPLIES DISKETTES}

Double density, soft sectored, replacement guaranteed, Spindle/Hub protected. ( \(5^{1 / 4} 4^{\prime \prime}\) only)
Verbatim Datalife \(51 / 4 " 40\) track
\(\$ 24.95\)
PAPER
81/2"×11" blank white, tractor feed paper, full box................. \(\$ 24.95\)
\(8 \frac{1 / 2 " \times 11^{\prime \prime}}{}\) blank white, tractor feed paper, half box .................... \(\$ 14.95\)
\(141 / 2^{\prime \prime} \times 11^{\prime \prime}\) green bar, tractor feed paper, full box ..................... \(\$ 34.95\)
\(31 / 2^{\prime \prime} \times 15 / 16^{\prime \prime}\) tractor feed mailing labels ...................................... \(\$ 19.95\)
OTHER
51/1/" plastic library case ................................................ \$ 1.95
51/4" Flip-sort............................................................... \(\$ 21.95\)
16K memory kits.............................................................. \(\$ 19.95\)
\begin{tabular}{|c|c|}
\hline APPARAT'S TOP 15 APPLE GAMES & \begin{tabular}{l}
SALE \\
PRICE
\end{tabular} \\
\hline 1. Castle Wolfenstein (Muse) & \$24.95 \\
\hline 2. Gorgon (Sirius) & 33.95 \\
\hline 3. Raster Blaster (Budgeco). & 24.95 \\
\hline 4. Snoggle (Broderbund). & 20.95 \\
\hline 5. Robotwar (Muse) & 33.95 \\
\hline 6. Alien Typhoon (Brod.) & 24.95 \\
\hline 7. Space Eggs (Sirius) & 24.95 \\
\hline 8. ABM (Muse) . & 20.95 \\
\hline 9. Ultima (Ca. Pacific) & 33.95 \\
\hline 10. Pool 1.5 (IDS) & 29.95 \\
\hline 11. Voyage of the Valkyrie (AOS). & 33.95 \\
\hline 12. Zork (Personal Software). & 33.95 \\
\hline 13. Shuffleboard (IDS) & 24.95 \\
\hline 14. Olympic Decathlon (Microsoft) & 24.25 \\
\hline 15. Apple Panic (Brod.) . . & 24.95 \\
\hline
\end{tabular}
inability to store more than one shape table at a time. Though a small amount of effort could change this, it would not be feasible if you are running low on memory. I hope this program brought some relief and enjoyment to you cassette owners out there.

\section*{5 DIM V(250)}
\(1082 Q=Q+1\)
\(1084 \mathrm{~V}(\mathrm{Q})=\mathrm{X}\)
13040 TEXT: HOME
13042 VTAB 10: HTAB 5
13045 PRINT "MEMORY LOCATIONS ARE BEING SCANNED"
\(13900 \mathrm{Y}=3500\)
\(13904 \operatorname{IF} \operatorname{PEEK}(\mathrm{Y})=131\) AND PEEK \((\mathrm{Y}+2)=46\) THEN
\(\mathrm{Y}=\mathrm{Y}+2\) 2: GOTO 13910
\(13906 \mathrm{Y}=\mathrm{Y}+1\) :GOTO 13904
\(13910 \mathrm{FF}=\) LEN(STR\$(Q))
13920 FOR X=1 TO FF
13930 T(X) \(=\) VAL \((\) MID \(\$(\) STR \(\$(\mathbf{Q}), \mathbf{X}, 1))\)
13940 POKE Y,T(X) + 48
\(13945 \mathrm{Y}=\mathrm{Y}+1\)
13950 NEXT
13970 POKE Y,44
13975 POKE Y + 1,49:POKE Y + 2,44: POKE Y + 3,48: POKE
Y + 4,44: POKE Y + 5,52: POKE Y + 6,44: POKE
Y + 7,48: POKE Y + 8,44
13997 TEXT: HOME
13998 VTAB 10: HTAB 2
13999 PRINT "DATA IS NOW BEING POKED INTO MEMORY"
14000 FOR QQ \(=1\) TO Q
14003 R = PEEK (Y)
14004 IF R〈> 46 THEN Y = Y + 1: GOTO 14003
\(14005 \mathrm{~F}=\mathrm{LEN}(\) STR \(\$(\mathrm{~V}(\mathrm{QQ})))\)
14010 FOR T=1 TO F
14019 L(T) \(=\) VAL(MID\$(STR\$(V(QQ)),T,1))
14040 POKE Y,L(T) +48
\(14050 \mathrm{Y}=\mathrm{Y}+1\)
14055 NEXT
14060 POKE Y,44
\(14070 \mathrm{Y}=\mathrm{Y}+1\)
14075 NEXT
14100 HOME
14500 PRINT "TYPE 'ESC' KEY TO DEMONSTRATE PROGRAM"
14510 GET E\$: IF E\$ < > CHR \$(27) THEN END
14550 POKE 232,0: POKE 244,64
14555 READ Q
14560 FOR \(X=16384\) TO \(16387+Q\)
14570 READ Y\$
14572 IF Y \(\$=\) "*" OR Y \(\$=\) "***" OR Y\$ = "***" OR Y \(\$=\) "****" THEN 14570
\(14575 \mathrm{Y}=\mathrm{VAL}(\mathrm{Y} \$)\)
14580 POKE X,Y
14590 NEXT
14600 POKE \(16388+\) Q, 0
14610 HGR: SCALE \(=1:\) ROT \(=0\)
14620 HCOLOR = 3
14630 DRAW 1 AT 140,80
14700 VTAB 22
14702 PRINT "TYPE 'ESC' TO FORM NEW PROGRAM"
14704 GET E\$: IF E\$ <> CHR\$(27) THEN END
14705 TEXT: HOME
14706 PRINT "PROGRAM IS NOW READY TO BE SAVED"

14710 DEL 5,14510 15000 DATA
****15001 DATA
****
15001 DATA

\(\qquad\)15002 DATA********
15003 DATA
****
15005 DATA


\section*{Lower Case With Unmodified Apple \\ Joseph Wrubel Aberdeen, NJ}

This article describes a program called LC.EDIT which can be used to build, modify, and print text files using both upper and lower case letters on an unmodified 48K APPLE II Plus. The editor supports most of the commonly used edit commands including find, locate, change, append, insert and delete. Also included are read and write disk commands.

Uppercase letters are entered by preceding them with a CTRL-A. Internally, the program adds 32 to the ASCII value of each lower case letter, thus setting up the string for output to the printer. On the screen, capital letters are converted to the inverse mode while the lowercase letters are converted back to uppercase for display only.

I purchased my APPLE II early in December 1980, and quickly realized that the BASIC language had changed a lot since I had used it last in 1968. The biggest change I noticed was the string handling ability of the new BASIC.

The first application program I decided to write required the use of strings. I quickly found the "write text" and "read text" programs on the master disk and as quickly decided I didn't like them. At work, I make use of text editors on PRIME and UNIVAC computers and find that each of them has certain features which the other doesn't support. So I backed myself into writing a text editor for my APPLE and decided to incorporate the features I liked best from each system.

The program is used the first time to create a text file. The procedure is to hit a carriage return when prompted for "FILE NAME." This puts the program in the input mode. Once the text is entered, a CR puts the program into the EDIT mode. The options available in the EDIT mode are described below. Note that a single letter followed by a space and then any needed parameters is the usual format within the program. In this version, capital letters are typed in by preceding them with a CTRL-A.

The edit options are as follows:
I - Insert new line behind the present line.
C - Change the first sub-string to the second sub-string in this line of text. Sub-strings are separated by /'s. Double //'s can be used to enter a new substring in front of the existing string or to delete the last part of the original string.
A - Append new string to the end of the original string on this line.
\(\mathbf{P}\) - Print a number of lines. Options include printing all lines from the present position to the end of the file by typing \(\mathrm{P}^{*}\).
S - Save file. It is saved with its original name if one has been previously entered. Otherwise, a file name is requested via a prompt. If you give a file name when using \(S\), the new name is used. This is a way of making an image of a text file for backup or modification.
\(\mathbf{N}\) - If alone the next line is displayed. \(\mathrm{N}+/-\) NUMB moves the pointer back and forth within file limits.
\(\mathbf{L}\) - Locate sub-string at any location in any line from the present line to the end of the file.
Q - Quit. Normal program exit.
F - Find sub-string at beginning of any line from the present line to the end of file.
\(\mathbf{R}\) - Retype present line completely.
\(\mathbf{H}\) - Help if you have forgotten how to use the program. Can be used at any time.
E-Enter new file name to be edited. Can be used to edit when finished with the first without having to re-run the program.
NN - NN is any valid line number in the file. This is a direct line number access to the entire file.

The program is well REMarked to help any new programmer understand not only what the program does, but also how it does it.

The printer I have is an EPSON MX-80, but I believe this program will work for any printer which supports lower case characters. Until the day this article was written, I had no idea that I could take advantage of the printer's lower case abilities, but my son persisted. This program was modified from my original upper-case only version in about four hours.

One necessary feature of this program is the amount of user error-checking which takes place. As of this writing, I am unaware of any way to make the program bomb. Most of the checks were installed originally, but a few were added when bomb-outs indicated an unexpected pitfall
such as typing "DELETE" instead of "D" to delete one line.

If anyone would like to save the effort of typing in the program send me a disk, \(\$ 3\), and an SASE mailer and I will provide a copy of this version and
the upper-case only version. My mailing address is:
Joseph N. Wrubel
27 Norwood Lane
Aberdeen, NJ 07747


\section*{SATURN SYSTEMS 32K RAM BOARD FOR APPLE}

Compatible with: Apple II®, Apple II + \({ }^{\oplus}\), Microsoft's \(Z 80\) Softcard \({ }^{\oplus}\), DOS 3.2, DOS 3.3, INTEGER Basic \({ }^{\oplus}\), Applesoft \({ }^{\oplus}\), PASCAL, FORTRAN, LISA \({ }^{\circledR}\), Personal Software's VISICALC \({ }^{\circledR}\)

Software included: 1. Relocation of DOS into SATURN 32 K board (recovers approximately 10 K of main board RAM).
2. Utility package for saving and loading Applesoft \({ }^{\oplus}\) and INTEGER \({ }^{\circledR}\) programs and data on the 32K RAM board; overlaying, chaining.
3. PSEUDO-DISK:Modifies DOS 3.3 to allow use of SATURN 32K RAM board(s) like another disk drive.

\section*{COMPREHENSIVE DOCUMENTATION • 1 YEAR WARRANTY}

\section*{ALL FOR ONLY \$239.00}

\section*{NEW!}

\section*{MEMORY EXPANSION SOFTWARE FOR VISICALC®}

Now you can expand the memory available to Personal Software's 16 sector VISICALC \({ }^{\circledR}\) using the SATURN 32K RAM BOARD!
With VC-EXPAND \({ }^{\text {T" }}\) and one or more SATURN 32K RAM BOARDS the memory available to VISICALC \({ }^{\circledR}\) is increased from 18 K to:

> 50 K with 1 SATURN 32 K BOARD
> 82K with 2 SATURN 32 K BOARDDS

In addition, VC-EXPAND \({ }^{\text {¹" }}\) will utilize your present 16 K RAM board to provide 66 K of usable VISICALC \({ }^{\circledR}\) memory.

\section*{VC-EXPAND supplied on 16 sector disk ONLY \$100.00}

\section*{DEALER INQUIRIES INVITED}

VISA/MasterCard Accepted

\section*{ALPHA LOGIC BUSINESS SYSTEMS, INC. \\ 3720 Winston • Hoffman Estates, IL 60195 •(312)870-8230}
```

118 REM CONVERT SINGLE LETTER ENTRY TO NUMERIC

```

395 NEXT ：FRINT ：RETUFN
450 REM
\(451 \mathrm{REM} * * * * * * * * * * * * * * * * * * * * * * * * ~\)
452 REM STRING DECOIE SUBROUTINE
\(45 \mathrm{REM} * * * * * * * * * * * * * * * * * * * * * * * *\)
454 REM
460 FOR \(M=3\) TO LEN（R \(\$\) ）
IF MID韦（R末，M，1）＞CHF \(R \Phi=L E F T \$(R \Phi, M-1)+C H R \$(A S C(M I D \$(F i, M, 1))-32)+M J D \$\) （R末w \(M\)＋1）
\(500 \mathrm{REM} * * * * * * * * * * * * * * * * * * * * *\)
501 REM FIND STFING ROUTINE
\(502 \mathrm{REM} * * * * * * * * * * * * * * * * * * * * *\)
503 REM
510 IF LEN（R中）＜ 3 THEN 580
\(520 \mathrm{~F} \$=\mathrm{MID}=(\mathrm{R} \phi, 3):\) REM STRING TO BE FOUND
530 FOR K \(=J+1\) TO I
540 IF LEFT\＄（Tक（K），LEN（F\＄））＝F\＄THEN 570
550 NEXT
560 PRINT＂NO FIND＂：GOTO 90
\(570 \mathrm{~J}=\mathrm{K}:\) GOTO 6300
```

580 PRINT "YOU MUST ENTER STRING": GOTO 100
750 REM
751 REM **********************
752 REM ENTER NEW FILE NAIME
753 REM *********************
754 REM
755 HOME
760 IF LEN (R婁) < 3 THEN 20
770 GOSUB 450:Z\$ = MID\$ (R$,3): GOTO 25
9 9 9 ~ R E M
1000 REM *********************
1001 REM BUILD FILE MODE
1 0 0 2 ~ R E M ~ *
1003 REM
1005 I = 0:J = 0
1007 PRINT "INFUT"
1010 PRINT J + 1:":";
1020 GOSLB 250:T$(J + 1) = T"\$
1030 IF LEN (Tक (J + 1)) = O GOTO 1100
1040 J = J + 1:I = I + 1
1050 GOTO 1010
1090 REM
1091 REM ********************
1092 REM ENTER EDIT MODE
1095 REM ******************
1094 REM
1100 PRINT "EDIT": GOTO 100
1200 REM
1201 REM ***********************
1202 REM CR TO ENTER INPUT MODE
1203 REM ***********************
1204 REM
1205 IF LEN (R\&) = 0 THEN 1500
1206 REM
1207 REM ***********************
1208 REM VALIDATE LINE POINTER
1209 REM *********************
1210 W = VAL (R\&)
1215 IF W<1 OR W > I GOTO 1240
1220 J = W
1230 T串= T串(J): GOSUB S5O: GOTO 100
1240 PRINT "ILLEEGAL. ENTRY": GOTO 100
1500 REM
1501 REM
1502 REM INPUT MODE
1503 REM ********************
1504 REM
1505 REM IF AT END OF FILEE DO EASY WAY
1507 IF J = I GOTO 1007
1509 REM THE HARD WAY
1510 PRINT "INPUT"
1515 PRINT J + 1!":":
15.20 GOSUB 250
1530 IF LEN (T\$) = O GOTO 1100: FEM RETURN TO EDIT MODE
1540 FOR K = I TO J STEP - 1.
1550 T車(K + 1) = Tक (K)
1560 NEXT
1570 Tक (J + 1) = Т名
1580 J = J + 1:I = I + 1.

```
```

1590
2000
2001
2002
2003
2004

```
```

2010 I = I + 1
2020 FOR K = I - 1 TO J STEF - 1
2030 T$(K + 1) = Tक (K゙)
2040 NEXT
2050 T$(J + 1) = MIDक (Rक,S)
2060 J = J + 1
2070 GOTO 100
2500 REM
2501 REM ********************
2502 REM RETYFE LINE
250S REM *******************
2 5 0 4 ~ R E M
25OE IF LEN (R串) \& S THEN PRTNT "EAD R": QOTO 100
2510 T韦(J)=MTD\$ (Fक,3)
2520 GOTO 100
3000 REM
3001 REM ***********************
3002 REM CHANGE PART OF LINE
300S REM ***********************
3004 REM
SOOS IF LEN (R员) \& S THEN PRTNT "EAD E": GOTO 1OO
3010 W\$ = MID)\$ (R\&,3)
3020 IF LEEFT婁(Wक,1) < > "/" OF RIGHT㐁 (W$, 1) < > "/" THEN 3060
3030 FOR K = 2 TQ L.EN (W$) -- 1
3040 IF MID\& (W$, K,1) = "/" GOTD 3070
3050 NEXT
3060 PRINT "MISSING DELIMITERS": GOTO 100
3070 Fक = MID& (W&,2,K - 2)
3075 H = LEN (T回(J))
3 0 8 0 ~ F O R ~ M = 1 ~ T O ~ H
3090 IF MID& (T$(J),M,K - 2) = F\& GQTO 3120
3100 NEXT
3110 PRINT "ND FIND": GOTD 100
3120 G\$ = MID\$ (W$,K + 1, LEN (W$) - K - 1)
3125 IF H - M + 1 - LEN (F\$) = O GOTO 3160
3127 IF K = 2 GOTO 3170
3128 IF M = 1 GOTO 3190

```

```

 (F|))
 3140 GOTO 6300
3160 T$(J) = LEFT叓 (T$(J),M - 1) + G$: GOTO 3140
3170 T$(J) = MID\$ (W$, उ, LEN (W$) - उ) + T\$(J): GOTO 3140
3190 T\& (J) = G\& + RIGHT串 (T史(J),H - M + 1 - LEN (F\&)): GOTO 3140
4 0 0 0 ~ R E M
4 0 0 1 ~ R E M ~ * ~
4 0 0 2 ~ R E M ~ A P P E N D ~ T O ~ P R E S E N T ~ L I N E ~
4 0 0 3 ~ R E M ~ * ~
4 0 0 4 ~ R E M
4005 IF LEN (Rक) < 3 THEN PRINT "BAD A": GOTO 100
4010 T\& (J) = T\& (J) + MID\& (R\&,J)
4 0 2 0 ~ G O T O ~ 6 3 0 0 ~
5 0 0 0 ~ R E M

```
\begin{tabular}{|c|c|}
\hline 5001 & REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 5002 & REM DELETE LINE（S） \\
\hline 5003 & REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 5004 & REM \\
\hline 5007 & \(L=L E N\)（R\＆） \\
\hline 5010 & IF L＞ 1 GOTO 5050 \\
\hline 5012 & REM A＂D＂ALONE DELETES ONE LINE ONLY \\
\hline 5020 & FOR K \(=\mathrm{J}\) TO I \\
\hline 5030 & T 中 \((\mathrm{K})=\mathrm{T}\) 中 \((\mathrm{K}+1): \mathrm{NEXT}\) \\
\hline 5040 & \(I=I-1: J=J-1:\) GOTO 100 \\
\hline 5050 & IF L＝ 2 GOTO 5110 \\
\hline 5055 & \(N=V A L\)（ MID\＄（R\＆，3）） \\
\hline 5060 & IF \(N>I-J+1\) THEN 5100 \\
\hline 5065 & IF \(N=0\) THEN PRINT＂BAD D＂：GOTO 100 \\
\hline 5070 & FOR K＝J TO I－N \\
\hline 5080 & \(T \$(K)=T \$(K+N): N E X T\) \\
\hline 5090 & \(J=J-1: I=I-N: G O T O 100\) \\
\hline 5100 & PRINT＂DELETE TOO BIG＂：GOTO 100 \\
\hline 5110 & PRINT＂ILLEGAL DELETE＂：GOTO 100 \\
\hline 6000 & REM \\
\hline 6001 & REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 6002 & REM PRINT SOME LINES \\
\hline 6003 & REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 6004 & REM \\
\hline 6007 & IF LEN（R中）＜ 2 THEN 6S00 \\
\hline 6010 &  \\
\hline 6020 & IF NUM\＄\(=\)＂＊＂GQTO 6150 \\
\hline 6030 & NUM \(=\) VAL．（NUM\＄） \\
\hline 6035 & IF NUM \(=0\) THEN Tक \(=\) Tक（J）：GOSLAB 350： \\
\hline 6040 & FOR K \(=J\) TO J＋NUM－ 1 \\
\hline 6050 & T串 \(=\) Tक（J）：GOSUB 350： \(\mathrm{J}=\mathrm{J}+\mathrm{J}+1\) \\
\hline 6060 & IF J \(>\) I GOTO 6100 \\
\hline 6070 & NEXT \\
\hline 6075 & \(J=J-1\) \\
\hline 6080 & GOTO 100 \\
\hline 6100 & PRINT＂EOF：＂；\({ }^{\text {P }}\)＂L．INES＂ \\
\hline 6104 & REM \\
\hline 6105 & REM THE END OF FILE WAS FOUND \\
\hline 6106 & REM \\
\hline 6110 & GOTO 90 \\
\hline 6150 & REM \\
\hline 6151 & REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 6152 & REM IS PRINTOUT WANTED \\
\hline 6153 & \(\mathrm{REM} * * * * * * * * * * * * * * * * * * * *\) \\
\hline 6154 & REM \\
\hline 6160 & PRINT ：INPUT＂FRINTOUT？＂：FRio \\
\hline 6170 & IF LEFT\＄（PR末，1）＝＂Y＂THEN 6350 \\
\hline 6180 & IF LEFT\＄（PR\＆；1）\(=\)＂N＂THEN 6200 \\
\hline 6190 & PRINT ：PRINT＂TRY AGAIN＂：GOTO 6160 \\
\hline 6200 & FOR K＝J TO I \\
\hline 6210 & T\＄\(=\) T\＄\((K):\) GOSUE 350：NEXT \\
\hline 6220 & GOTO 6100 \\
\hline 6300 & Tक \(=\) T事（J）：GOSUB S50：GOTO 100 \\
\hline 6350 & REM \\
\hline 6351 & REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 6352 & REM PRINT ENTIRE FILE \\
\hline 6.353 & REM＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ \\
\hline 6.354 & REM \\
\hline 6360 & PRINT D\＄：＂PR\＃1＂：PRINT CHR串（9）：＂80N＂ \\
\hline
\end{tabular}
```

6370 FOR K = J TO I
6374 REM IF PERIOD SKIF A LINE
6375 IF Tक(K) = "." THEN PRINT : GOTO 6385

```

```

6380 PRINT T$(ド)
6.385 NEXT
6390 PRINT D$:"PF\#\#": GOTO 6100
7000 REM
7001 FiEM *******************
7002 REM SAVE FILE
7003 REM *******************
7 0 0 4 ~ R E M
7006 IF LEN (R\&) > 2 THEN GOSUB 4SO:Zक = MID\& (R\&; S)
7008 IF LEN (Z\&) < > O THEN 7015
7010 PRINT : INPUT "FILE NAME ?":Z名
7 0 1 2 ~ I F ~ L E N ~ (Z \$) ~ = ~ 0 ~ T H E N ~ 7 0 1 0
7015 PRINT D$;"OPEN";Z$
7020 PRINT D$;"DELETE";Z$
7030 PRINT D\&:"OPEN";Z\$
7040 PRINT D$;"WRITE":Z$
7 0 5 0 ~ P R I N T ~ I ~
7060 FOR J = 1 TO I
7070 PRINT Tक(J): NEXT
7080 PRINT D和;"CLOSE":Z\$

```

```

8000 REM
8001 REM **********************
8002 REM RELATIVE MOVEMENT OF FOINTER
8003 REM *********************
8004 REM
8005 IF Rक < > CHRक (110) THEN 8030: REM A TRANSLATED "N"
8010 J = J + 1
8015 IF J > I THEN PRINT "EOF:";I;" LINES": GOTO 90
8020 T\& = T$(J): GOSUB 350: GOTO 100
8030 V = VAL (MID$ (R\&,2))
8040 IF V +J> I OR V +J< < GOTO 8100
8050 J = J +V
8060 T\$ = T古(J): GOSUB 350: GOTO 100
8100 PRINT "MOVE TOO BIG": GOTO 100
9 0 0 0 ~ R E M
9001 REM ***********************
9 0 0 2 ~ R E M ~ L O C A T E ~ S T R I N G ~
9003 REM **********************
9 0 0 4 ~ R E M
9007 IF LEN (Rक) < उ THEN PRINT "BAD L": GOTO 100
9010 F名 = MID)中 (R\&,3)
9020 FOR K = J + 1 TO I
9030 FOR M = 1 TO LEN (T$(K)) - LEN (F&) + 1
9040 IF F$ = MID\$ (T\& (K),M, LEN (F末)) GOTO 9070
9 0 5 0 ~ N E X T ~ M : ~ N E X T ~ K .
9060 PRINT "ND FIND": GOTO 90
9 0 7 0 ~ J ~ = ~ K : ~ G O T O ~ 6 3 0 0 ~
9 4 0 0 ~ R E M
9 4 0 1 ~ R E M ~ *
9402 REM HELP USER
9403 REM **********************
9404 REM
9 4 0 5 ~ H O M E ~
9407 PRINT : PRINT SPC(9):"TEXT EDITING FRQGRAM"

```

9410
```

 PRINT : PRINT "EACH SINGLEE CHARACTER INSTRUCTION SHOWN"
 PRINT "BELDW IS TD BE FOLLDWED BY A SPACE AND"
 PRINT "AND THEN ANY NEEDED PARAMETERS."
 PRINT : PRINT "TO START A NEW FILE, FUSH RETURN WHEN"
 PRINT "YOU ARE PROMPTED FOR THE FILE NAME."
 PRINT "YOU MAY THEN ENTER YOUR TEXT FILE LINE
 PRINT "BY LINE. WHEN DONE, FUSH RETURN AGAIN"
 PRINT "TO ENTER THE EDIT MODE.
 PRINT : PRINT SPC(4):"** PUSH ANY KEY TO CONTINUE **"
 GET G$
 HOME
 VTAB 2: HTAB 10
 PRINT "TEXT EDITING PROGRAM"
 PRINT : PRINT "CODE FUNCTION"
 PRINT : PRINT " I INSERT NEW LINE OF TEXT"
 PRINT " "*"BEHIND THE PRESENT LINE"
 PRINT : PRINT " C CHANGE THE FIRST STRING TO "
 PRINT SPC(9),"THE SECOND), USE /"S TO"
 PRINT " ":"SEPARATE STRINGS"
 PRINT : PRINT " A": SPC(7):"APPEND STRING TO END OF LINE"
 PRINT " ", "LEAVE 1 SFACE BETWEEN"
 PRINT " ","THE A AND THE STRING"
 PRINT : FRINT " D": SPC(7):"DELETE "N" LINES; IF N OMITTED;":
 PRINT " ":"JUST THIS LINE IS DONE"
 PRINT : PRINT " P": SFC(7):"FRINT "N" LINES FROM HERE"
 PRINT " ","USE F* TO LIST ALLL..."
 PRINT : PRINT SPC: b):"** PUSH ANY KEY TO CONTINUE **"
 GET G西
 HOME : PRINT : PRINT "CODE FUNCTION"
 FRINT : PRINT " S":SFC(7):"SAVE FILE WITH NAME ENTERED"
 PRINT " ""IF NO NAME IS ENTEFED"
 PRINT " ""USE ORIGINAL FILE NAME"
 PRINT : PRINT " N": SPC(7):"NEXT LINE +/- NUMB IS PRINTED"
 PRINT : PRINT " L.": SPC(7):"LOCATE STRING FROM HERE"
 FRINT " "*"TO END OF FILE"
 FRINT : FRINT " ["; SFC(7):"OUIT"
 PRINT : PRINT " F": SPC(7):"FIND
 ","LINE FROM HERE TO END"
 PRINT " R": SPC(7):"RETYPE FRESENT LINE"
 PRINT * PRINT "H,NO(), RETYPE FRESENT LINE"
 FRINT : FRINT " H": SFC(7):"HELFP FROVIDED VIA THIS LIST"
 PRINT : PRINT GPC(7):"** FUSH ANY KKEY TO CONTINUE **"
 GET G舟
 HDME : PRINT : PRINT "CODE FUNCTION"
 PRINT : FRINT " E": SFC(7):"NAME FILE TO BE EDITEL""
 FRINT : PRTNT "(CR)": SFC(G): "USE CAFRTAGE FETURN TO
 PRINT SPC(9):"ENTER INPUT MODE"
 PRINT : PRINT : HTAE E: PRINT "** FUSH ANY KEY TO CONTINUE **"
 GET G$: GOTO 100
    ```
            Dealers - Reserve your copies of

\title{
COMPUTE! OVERVIEW: Individual Tax Plan
}

The "Individual Tax Plan" program by Aardvark Software, Incorporated is a highly sophisticated piece of computer software for the Apple computer system (II or Plus) with at least 48 K of RAM and two disk drives, DOS 3.3 or PASCAL. It also nicely lends itself to the computerist who, in essence, does not have a working knowledge of computers. As long as the manual is at least previewed, one will not have any trouble running this program.

It is a well-designed, easy to use system for comparing different filing alternatives in order to minimize the income tax liability for an individual taxpayer. It does an effective job of allowing a comparison of numerous different tax preparation schemes at one time. It does not, however, do all of the work and calculations necessary to complete a tax return. Perhaps a better name for the software package would have been "Individual Tax Comparison Scheme."

Up to five alternative tax preparation schemes may be entered at once. One alternative, for example, could include income averaging with schedule \(G\) while others could compare filing jointly vs. filing singly for a married couple. Side-by-side comparison of the calculated taxes for each of the alternatives is effectively done by the program. The program is only of value, however, after an individual has calculated many of the numbers that belong on the tax return. For example, tax credits is a single item to be entered. The taxpayer (or tax return preparer) must determine the tax credits for child care expenses and energy-saving expenses (each a percentage of actual expenses and each subject to dollar limitations and other limiting factors), and add them together. This sum is the value that is entered into the "Individual Tax Plan."

It should be stressed that this program is not oriented towards layman use, but towards the tax professional, who has had previous tax preparation exposure. To effectively use this powerful tool one must have a working knowledge of possible tax alternatives to pursue.

\section*{Updates}

Should changes in federal tax law occur in a calendar year, Aardvark Software will make available
revised programs reflecting these changes. Revisions will cost \(\$ 50.00\) and can be obtained from local Aardvark Software dealers. Annual updates reflecting changes in tax law and including program enhancements will be made available on or before November 1st of each calendar year.

Back-up copies of the included program and data disks are allowed using the standard Apple copy program. You should be able to save between 50 and 75 Tax Plan cases on each copy of the data diskette.

\section*{Using The Program}

During operation of the program the user enters data for up to 74 categories, such as filing status, interest, charitable contributions, and "long term capital gains-post 6/8/81." Unfortunately, the documentation does not follow the program exactly in the identification of the different categories. Items 12 through 32 are misidentified, most of the numbers being off by one. Once the changes are marked on two of the four pages which identify the various categories, there is no difficulty finding the various items, but the problem should never have occurred.

For each category a value can be independently entered for each alternative, or programming options can be used to calculate values for different alternatives. For example, if \(\$ 10,000\) is entered for the first filing alternative, then the remaining alternatives are calculated by the program at 20\% increments by simply entering "P20" for percent20 . Other options include " X " if only the next alternative is to be calculated on a percentage basis or "I" for "increment" if all subsequent alternatives are to differ from each other by a specific dollar amount.

After all of the data is entered, the program takes a few seconds to calculate the taxes for all of the alternatives. Any two alternatives (in any order) may be printed as hard copy for easy comparison of the alternatives in different columns. In a strange departure from the easy to use options, here " 999 " must be entered to indicate that the numbers of all of the desired options have selected. RETURN would have been far easier to use.

\section*{Flexibility}

One of the strengths of this software package is the ease with which a user can move from one part of the program to another. From a main menu single digit numbers are used to reach further menus which identify specific activities. Several options are offered for moving from category to category for data entry. To "select" a specific category " S " can be typed followed by the number of the category. To move "forward" to the next category " \(F\) " is used and " \(B\) " is used to "back up." For many of
the categories up to ten numbers can be entered five for the taxpayer and five for the spouse. The program is smart enough to fill up all of the alternatives with the value given for the first alternative unless it is specifically given new values for subsequent alternatives. To move from one specific "alternative to another " U " is used to go "up" and "D" is used to go "down." No control keys are required here - the editing is very easy to use.

ESCape can be used at nearly any time to exit from data entry and save on disk all of the values that have been entered for all of the alternative schemes. One minor irritant here is that the Pascal volume numbers are used to specify the disk drives. The documentation explains that disk drive \#1 needs to be specified as volume four and so on, but the program should have been written to accept simple drive numbers. The name that is given for the file is first checked against those currently on the disk in order to prevent inadvertent over writing of a file that should be maintained. An option is also provided to see the directory of items that have been stored.

There are no charts included to indicate which of the 74 possible tax input questions are to be entered if, for example one were filing "married
with a joint return." A glossary of terms would also be a welcome addition. However, execution speed is an outstanding feature of this program. All calculations are performed in under 60 seconds, regardless of complexity. The program appears to be written entirely in machine code, which would account for its exceptional speed.

While the ranges of input data appear to be sufficiently checked, disk error codes are vaguely defined. If RESET is pressed, all existing data not saved on disk is lost and the program requires rebooting for continued operation. This can be most annoying and could possibly prove fatal if done during a disk storage operation.

\section*{The Documentation}

Documentation for the individual tax plan program consists of an attractive 3-ring binder with a 31 page illustrated instruction manual which includes a simple appendix and printouts. The documentation, although sufficient for the tax professional, is not designed to be a comprehensive overview of tax preparation for the layman.

With the exception of the misnumbered categories, the documentation is clear and complete. About ten pages are used to lead the user through

\title{
ECHO [TM SPEECH SYNTHESIZER UNLIMITED VOCABULARY AT YOUR FINGERTIPS
}

Give your Apple* something to talk about with an ECHO ][ Speech Synthesizer. The ECHO ][ offers intelligible voice-output while using a minimum of RAM. The ECHO ][ uses LPC technology pioneered by Texas Instruments, coupled with a phoneme-based operating system allowing you to create any vocabulary desired. Variable stress, pitch and volume let your Apple ask questions or make exclamations while also allowing for optimal quality. Speech can easily be added to BASIC programs with PRINT statements.
The applications of synthesized speech are limited only by your imagination. From educational programs to games to business applications, speech-output adds a new dimension to your Apple's capabilities.
The ECHO ][ Speech Synthesizer comes complete with speaker and cable, instruction manual, speech editing features and a sample vocabulary. The ECHO ][ requires 48 K , Applesoft and at least one disk drive. Suggested list price is \(\$ 225\).
For further information, contact your dealer or Street Electronics Corporation.
Dealer inquiries welcome.
- Trademark of Apple Computer Company



STREET ELECTRONICS CORPORATION
two simple examples that do a good job of demonstrating how to move about in the program. Sample printed output for each of these examples is given in an Appendix (misidentified as Appendix " \(B\) "). About ten more pages are used to specifically describe the program options and to identify the various categories for data entry. Throughout the instructions, 27 photographs of screen images appear. The photographs were apparently taken with a wide angle lens and therefore appear distorted, but they are readable and provide an accurate representation of what the program displays.

\section*{General Overview}

Panelist \#1: "Negative and detracting hindrances:
(1) There should be a subroutine within the program which would enable the user to enter directly into a mini-directory to review a directive or procedure.
(2) The ability to only do the filing status routine should be looped so that only an individual taxpayer entry is verified and utilized when there is no spouse involved.
(3) Provision to exercise the use of only one disk drive should be available when only one is involved or necessary.
(4) An ending directive within the program (other than in the manual) should be provided after all statistics have been entered.
(5) A 'short form' alternative option could be incorporated.

\section*{Positive and useful aspects:}
(1) Exceedingly fast access time.
(2) Ease of use in the main menu parameters.
(3) Printer parameters and linefeed status changes.
(4) Aardvark's updating procedures )annually or when the tax structure/laws change)
(5) Comparative analysis of defined numerical statistics to take advantage of the lowest tax amount to be paid.
(6) The 'step' feature: accessing forward and backward through the program via a single keystroke.
(7) Ability to access any part of the program by entering the input of the area and return.
(8) User defined changes: save data ( \(\mathrm{Y} / \mathrm{N}\) ), screen or printer display, program user return (ability to re-enter your numerical statistics and make any changes necessary in any of the alternative figures prior to executing the calculations).
(9) Ability to handle positive and negative integers as well as figuring out its compound percent.
(10) User ability to make any and all necessary backup copies in the event of catastrophes."

Panelist \#2: "The software is easy to use and effectively compares calculations done on the basis of different tax preparation schemes. It does not do all of the calculations that a taxpayer needs to do, nor does it identify a correspondence between specific line numbers on form 1040 and the categories within the program. The software package could be very useful for professional tax preparers, but is not likely to be worth the expense for an ordinary taxpayer. For someone with substantial capital gains to declare, it could be helpful, but that person is probably going to benefit from advice from a professional anyway. Whom should you select as that professional? Someone who has an Apple and Aardvark's Individual Tax Plan."
Panelist \#3: "This program was designed by a group of CPA's with over 17 years of "Big Eight" experience to meet the needs of the professional tax practitioner.

This program is not, nor was it designed to be, everyone's answer to H \& R Block. With some additional documentation, a much wider range of people could benefit from it. While not intended for the layman, the professional tax preparer should find this program an outstanding value."

\section*{Sample Output}

Table 1.
\begin{tabular}{lr}
1981 & ALTERNATIVE \\
FILING STATUS & 1 \\
EXEMFTIONS & JOTNT \\
WAGES, SALARIES & 2 \\
INTEFEST AFTEF EXCLUSION & 23,480 \\
DIVIDENDS AFTER EXCLUSION & 350 \\
CAFITAL GAIN/LOSS & 0 \\
FAFTNEFSHIF INCOME/LOSS & 0 \\
OTHEF INCOME/LOSS & 0 \\
TOTAL TNCOME & 2,000 \\
ADJUSTMENTS TO INCOME: & 30,830 \\
ADJUSTED GROSS INCOME & 1,600 \\
\hline
\end{tabular}

DEDUCTIONS
MEDICAL \& DENTAL EXFENSES 170
STATE \& LOCAL INC TAXES 1,681
OTHEF TAXES O
INTEREST EXFENSE 1.690
CHAFITABLE EONTFIBUTIONS 943
CASUALTY LOSS 1.090
MISCELLANEOUS
787
TOTAL DEDUCTIONS
6,361
ZERD EFAACKET AMOUNT
3, 400
EXCESS ITEM. DEDUCTIONS
2,961

TAX TABLE INCOME
EXEMFTIONS TIMES \$1.OOO

\section*{TAXAELE TNCOME}

TAX - TAX TABLES/XYZ
TAX - DUAL. CAF. GAINS
TAX - INCOME AVERAGING
TAX - MAXIMUM TAX
TAX SELECTED
ADDITIDNAL TAXES
GROSS REGULAF TAX
CFEDITS
NET REGULAR TAX
MINIMUM TAX
ALTEFNAT IVE MINIMLIM TAX
OTHEF TAXES
TOTAL TAX LIABILITY
FEDERAL FAYMENTS
BALANCE DUE (FEFUND)
Individual Tax Plan. Aardvark Software, Inc., 783 North Water Street, Milwaukee, WI 53202. 48 K Apple, two disk drives, DOS 3.3 or Pascal, \(\$ 250\).

\section*{Common Cents}

\author{
FORECASTER
}


With your computer, you can forecast the stock market like the Wall Street experts. FORECASTER, a mutual and money market fund tracker, monitors the stock market and helps you make timely decisions to program tracks, estimates and predicts future movements in the market and selected mutual funds based on an extensive data base.
- AVOID CONFUSION
- ACHIEVE HIGH YIELDS
- preserve capital
- LOW RISK
- top interest rates
- TAKES LESS THAN \(\frac{1}{2}\) HOUR PER WEEK

FORECASTER \(1 s\) written in simple, clear language. No advanced knowledge of mathematics, computer programming, or investing experience \(1 s\) required. Send \(\$ 10.00^{*}\) for programming report and
user's manual, or \(\$ 75.00\). for complete software packag specify Apple IIt (Applesoft), CP/M Bas1c 80, or TRS 80 Level II. (Apple II + and Applesoft are trademarks of Apple Computers, CP/M. is a trademark of Digital Research, Basic 80 is a trademark of MicroSoft, and TRS 8018 a trademark of Tandy Corp. Add \(\$ 2.00\) for postage and handling
New Mexdco residents also add \(4 \%\) tax

META SOFTWARE ENGINEERING
P. O. Box 18056

Albuquerque. NM 87115

4,359* 4.359

4,359

4,359
0

4,359
4, 998
\(-639\)
26. 269
** \(N / A\)
** \(N / A\)
** \(N / A\)
** N/A

0

0



D 1

\section*{The "Everything" I/O Board for the Apple II \& II+}

OMNI is a multi-function input/output board for the Apple II or II+ computer. It provides, on a single board, most of the "missing" features needed to make the Apple a complete computer. With OMNI your Apple can have:

- Parallel I/O with handshaking - RS232 Level serial I/O |software driven)
- 24 Hr. Real Time Clock with Alarm 2 K EPROM with graphics, I/O driver, and screen editor firmware 256 Byte PROM supervisory firmware
- Six 2K PROM/EPROM expansion sockets software selectable (one socket used for Eclectic firmware, 5 available for user)

\section*{INPUT:}
- Generate full ASCII character set from keyboard
- Optional shift key detection
- User-definable "soft" keys with screen legends
- Integrated text line editor full cursor movement, insertion/ deletion modes
- Key legend stickers included - Demonstration Diskette with programming examples and a Soft Character Editor

\section*{OUTPUT:}
- Full 96 character ASCII display
- Concurrent 64 user-definable "soft" characters
Optional character overstrike and EOR on background
- Optional double-width color characters
- Character rotation in \(90^{\circ}\) steps

Never before have so many functions been available on a single board. OMNI was designed with one major goal in mind, flexibility. The OMNI system consists of some extremely simple but very sophisticated hardware, a large amount of powerful firmware (programs permanently residing in Read Only Memory chips), and an equally extensive amount of software (programs residing on diskette that are loaded into RAM as needed). In addition, OMNI comes with extensive documentation.


To order TOLL FREE: 1-800- 527-3135 or Order by Mail Below
Eclectic Systems Corporation, P.O. Box 1166, Addison, TX 75001
Here's my order for OMNI at \(\$ 268\) plus 53 for shipping and handling
(UPS surface, unless specified), \(\$ 5\) overseas.
\(\square\) My check is enclosed.
\(\square\) Please charge my VISA \(\qquad\) Mastercard \(\qquad\)
Account \# \(\qquad\) Expires \(\qquad\)
Name \(\qquad\)
Address \(\qquad\)
City/State Zip \(\qquad\)
Signature

\section*{THE MOSAIC 32K RAM FOR ATARI}

\section*{11 \(=: 3=-78\)}

\begin{tabular}{|c|c|c|}
\hline THE MOSAIC ADVANTAGE & \begin{tabular}{l}
MOSAIC \\
32K RAM
\end{tabular} & OTHER 32K RAMS \\
\hline Works in both Atari 400 \& 800 & ■ & \(\square\) \\
\hline Gold edge connectors for better reliability & \(\square\) & ■ \\
\hline Fits Atari 400 without modification & - & \\
\hline Custom components for better performance \& reliability & ■ & \\
\hline Highest quality components for the best screen clarity & - & \\
\hline Full year warranty & \(\square\) & \\
\hline Designed to take advantage of Atari 800's superior bus structure. & ■ & \\
\hline Can be used with \(8 \mathrm{~K}, 16 \mathrm{~K}\) and future products. & \(\square\) & \\
\hline Allows Atari 800 to have 2 slots for future expansion & - & \\
\hline Designed so there's no danger of damaging your computer & ■ & \\
\hline Designed for inter-board communication in Atari 800 & ■ & \\
\hline Easy to follow instructions for simpler no-solder installation in Atari 400 & ㅂㅡㅜ & \\
\hline Available companion board (\$5) to allow running 32 K board independent of other boards & ■ & \\
\hline Full flexible memory configuration & ■ & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Atarl 800 Memory Configuration & with the MOSAIC 32K RAM & with other 32 K Boards \\
\hline Empty & \multirow[t]{3}{*}{4BK RAM 40K With BASIC Cartridge} & \multirow[t]{3}{*}{48K RAM 40K With BASIC Cartridge} \\
\hline 32K & & \\
\hline 16 K & & \\
\hline Empty & \multirow{3}{*}{40 KRAM} & \multirow[t]{3}{*}{Dangerl This Configuration Can Damage Compute} \\
\hline 32K & & \\
\hline 8K & & \\
\hline Empty & \multirow[t]{3}{*}{48K RAM 40K With BASIC Cartridge} & \multirow[t]{3}{*}{Danger I This Configuration Can Damage Compute} \\
\hline 16 K & & \\
\hline 32K & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Atari 800 Memory Configuration & with the MOSAIC 32K RAM & with other 32K Boards \\
\hline Empty & \multirow{3}{*}{40K RAM} & \multirow[t]{3}{*}{Dangerl This Configuration Can Damage Computer} \\
\hline 8K & & \\
\hline 32K & & \\
\hline 8K & \multirow[t]{3}{*}{48K RAM 40K With BASIC Cartridge} & \multirow[t]{3}{*}{Dangerl This Configuration Can Damage Compute} \\
\hline 32K & & \\
\hline 8K & & \\
\hline Empty & \multirow{3}{*}{32K RAM} & \multirow[t]{3}{*}{Dangerl This Configuration Can Damage Compute} \\
\hline Companion & & \\
\hline 32 K & & \\
\hline
\end{tabular}

Now from your
nearest Mosaic dealer

\title{
\(\$ 179.95\)
}

Direct from Mosaic \(\$ 189.95\)


\section*{Cryptogram}

\section*{Ronald and Lynn Marcuse Freehold, NJ}

Word games are just one of many applications which can be programmed on the versatile ATARI computers. While not challenging your reflexes as does Space Invaders or Star Raiders, they do challenge your mind. With the number of graphic action games approaching infinity in our house, we predicted that our two school-age offspring will be competent space shuttle pilots by the time they reach 18. Unfortunately, they may not be able to read. An educational computer word game may be capable of swinging the pendulum the other way, or at least slow down the onrushing invaders.

Most of the electronic word games currently being marketed are variations of the "hangman" game, where you are required to guess an unknown word by specifying its letter content within a certain number of tries. If you fail, you are then "hanged" or punished in some similar manner. A cryptogram, however, challenges your ability to decipher coded phrases or messages. Not wanting to generate an "unbreakable" code, we used a simple letter substitution. Each letter in the statement is replaced uniformly by some other alphabetic character. For example, all of the A's may appear as G's, the B's as Y's, etc. Don't bother to memorize these relationships because the structure of the code changes each game. Spaces between words and punctuation remain intact.

There are two skill levels in the game, selectable through the OPTION key. With the first, the program will decipher the vowels for you, leaving you only the consonents to decode. With the second option you are on your own. We had originally programmed three options, the third being a compression of the statement into one long string (removal of spaces), but deciphering of the phrase became rather difficult. The SELECT key is utilized to vary the number of participants. For the two person version, one player would enter a statement for the other to decode. In the one player game, the computer will randomly select one of fifty popular (?) expressions stored in the program. These phrases appear as the DATA statements in
lines 1010-1500. You may change this list if you desire. Just make sure that you wind up with exactly 50 statements and that each one is no longer than 75 characters (including spaces and punctuation). You may use any punctuation with the exception of the comma.

\section*{How To Play}

A game in progress may be saved to either disk or tape. Program 1 contains the disk version. Program 2 displays changes required for the recorder. In saving the game, the disk version will request a three character (or less) name which will be appended to the file name. The tape version will require you to insert a blank tape in the recorder. Make a note of the recorder counter. The procedure for loading a saved game is similar, but you must supply either the file name extender or tape that has been positioned (using the counter) in the recorder.

To start a game type " N " to the program prompt "SHOULD I LOAD A SAVED GAME" and then pick the skill level and number of players by pressing the OPTION and SELECT keys. Press the START key to begin. You may need to depress the keys for a second or two to register your action. This may be speeded up by shortening the timing loop at line 990. If you had chosen the two player option, the program will prompt you to enter a phrase or message to be encoded. This must be from 20 to 75 characters in length. Shorter phrases are actually harder to decipher than long ones. In the one player option, the program will randomly select one of the fifty DATA statements.

After the encoding process is completed (it takes approximately 15 seconds to generate the code and substitute the letters), the game screen is displayed. At the top of the display is a table showing the code letters and values that you have assigned to the code. The next group of lines contain the "secret phrase" and your working translation. These alternate if the phrase is longer than one line in length. If skill level 1 had been selected, the vowels would have already been translated for you. At the bottom of the display is the input area for code letters and values. Enter a code letter and then the substitution you would like to perform. An arrow cursor alternates between the two input lines. To erase a previous entry, first type the code letter and then press the space bar.

When you have correctly substituted all of the characters，the program will notify you graphically． You may also press the ESCAPE key to end the game．This will allow you to save the game，quit，or try a new phrase．If you are short on RAM（under 24 K ），the REMARK statements may be omitted with no ill effects．

Lines 18 through 30 comprise the＂house－ keeping＂section of the program．The left screen margin is set to 1 （POKE 82，1）for those TV sets that overscan，the keyboard is OPENed and the variables are DIMensioned here．The alphabet is stored in \(\mathrm{A} \$\) ，the substitution code in \(\mathrm{B} \$\) ，and the table entries for the game display in \(\mathrm{T} \$, \mathrm{P} \$, \mathrm{C} \$\) ， and \(Q \$\) are the actual phrase，the coded phrase， and the working translation，respectively．The array X （with 26 elements）is used by the code generation routine．

If a saved game is being reloaded（prompt in line 40），the data is input and control is sent directly to the main game display at line 400 ．Otherwise， the variables are cleared（lines 80－90）and the option screen is generated（starting at line 100）． Memory location 53279 is the register used to read the console keys on the ATARI computer．The address is first cleared by POKE 53279，8 and then queried by PEEKing at it in the loop from lines 120 through 180．We are concerned with the binary value that is stored in that address．

The START key is assigned to bit 0 ，the SE－ LECT key to bit 1 ，and the OPTION key to bit 3．A value of zero in the bit position means that the key was pressed．For example，if the START key is hit， the SELECT and OPTION keys would register decimal values of 2 and 4 in their respective bit positions．The START key would return a zero in the low order bit，giving a total of 6 （decimal）． Likewise，the SELECT key would equal a decimal 5 \((4+1)\) and the OPTION key would be \(3(2+1)\) ．

If the two player option was selected，the phrase would be input in line 220，otherwise the program will randomly select one of the fifty data statements in line 240．In lines 250 through 290， the program generates the substitution code．A random letter（from \(\mathrm{A} \$\) ）is selected and，if that element of the X array is still set to zero，the \(\mathrm{B} \$\) sub－string position is equated to the letter．The array is used to check off letters that have already been used．This type of algorithm could easily be expanded to a card shuffling routine if you prefer poker to word games．

The substitution of the code letters into the phrase is done in lines 300 to 380 ．If skill level 1 was selected \((\mathrm{SK}=1)\) then the ATASCII value of the phrase letter is checked to see if it is a vowel （values of \(1,5,9,15\) ，and 21）．If it is，the letter is moved into the translation line \(\mathrm{Q} \$\) ，otherwise the
character＂－＂occupies that position．The program must also count backwards from 38 looking for the first space to break the line on．

The game board is displayed in lines 400－430 and the input of code letters and substitutions is performed in lines 500－520．After the data is re－ ceived，the modified table elements are redisplayed in line 530 and the revised translation line in 540－ 560．If the translation is the same as the phrase （line 560），you are sent to the winners circle at line 700，otherwise you go back to 510 for more data． Pressing the ESCAPE key（an ATASCII value of 27）would cause a jump to line 800 for your exit options．The POP statement in line 915 is necessary to reset the stack pointer for the non－RETURN exit out of the subroutine．

The remainder of the program is routines for the winning and losing displays，input and printing of data，the exit options，and the saving of games in progress．The variables saved，either on disk or tape，are \(\mathrm{P} \$, \mathrm{C}\) ，and \(\mathrm{Q} \$\)（the original phrase，the coded phrase the the current translation），T\＄（the assignment table），and the lengths of the phrase （L）and its first line segment（L1）．For the disk version of the program，the format of the saved game is D：CRYPTG．＋the 3 character name that was entered．

\section*{Program 1.}


11 FEF \％\％ ＊
12 REF＊FOHALD \％LiMH HARCUGE，FREEHOL ［1HJ＊
13 REH ＊ ＊
䊾娄娄娄
15 FEM
18 FOKE 8，1：OPEH \＃4，4，白，＂K：＂
20 OIH A

25 ［IH W W（3），Ft（12）
 9001：\(F=40\)
36 FEM
37 FEN LITES 40 THFU 70 ALLOH THE LOAOIH G OF A SHDED EAHE OH DISK
36 FEM SEE LISTIHE 2 FDR TAPE UERSIOH
39 FEEH
 （Y为）＂


T\＃2，Fま

\section*{Santa Cruz Educational Software * Tricky Tutorials * Santa Cruz Educational Software *Tricky Tutorials * Santa Cruz Educational Software *Tricky \\ \\ ATARI (tm) GRAPHICS AND SOUND MADE EASY!} \\ \\ ATARI (tm) GRAPHICS AND SOUND MADE EASY!}

\section*{SANTA CRUZ EDUCATIONAL SOFTWARE HAS WRITTEN A SERIES OF AFFORDABLE PROGRAMS THAT DEMONSTRATES MANY OF THE SPECIAL "TRICKS"' THAT ONLY THE ATARI 400/800 COMPUTER IS CAPABLE OF DOING. WE OFFER EVERYTHING FROM A PROGRAM THAT DOES FANTASTIC HIGH RESOLUTION GRAPHICS TO ONE THAT ACTUALLY DIALS YOUR PHONE.....}

MASTER MEMORY MAP(tm) - This is really the key to us ing the ATARI'S capabilities. We start out by explaining how to PEEK and POKE values into memory so that even new programmers can use this. Then: we give you over 15 pages of the memory locations that are the most useful. The information is condensed from both the ATARI'S Operating System Manual and various articles and programs. It is. of course, useful even for experienced programmers as a reference. Also, we highly suggest that dealers offer this Memory Map to customers who request to be told how to use the power of the machine. We guarantee it will answer many of the questions you have about the machine. \(\mathbf{\$ 5} .95\)

\section*{TRICKY TUTORIALS(tm)}
\#1: DISPLAY LISTS - This program teaches you how to alter the program in the ATARI that controls the format of the screen. For example: when you say graphics 8 the machine responds with a large graphics 8 area at the top of the screen and a small text area at the bottom. Now. you will be able to mix the various modes on the screen at the same time. Just think how nice your programs could look with a mix of large and small text, and both high and low resolution graphics. this program has many examples plus does all of the difficult caluculations! \$14.95
\#2: HORIZONTAL/VERITCAL SCROLLING - The information you put on the screen, either graphics or text. can be moved up, down or sideways. This can make some nice effects. You could move only the text on the bottom half of the screen or perhaps create a map and then move smoothly over it by using the joystick. \(\mathbf{\$ 1 4 . 9 5}\)
\#3: PAGE FLIPPING - Normally you have to redraw the screen every time you change the picture or text. Now you can learn how to have the computer draw the next page you want to see while you are still looking at the previous page. then flip to it instantly. You won't see it being drawn, so a complicated picture can seem to just appear. Depending on your memory size and how complicated the picture, you could flip between many pages, thus allowing animation or other special effects with your text. \$14.95
\#4: BASICS OF ANIMATION - Shows you how to animate simple shapes using the PRINT and PLOT commands, and also has nice little PLAYER/MISSILE Graphics demo to learn. This would be an excellent way to start making your programs come alive on the screen. Recommended for new owners. \$14.95
\#5 PLAYER MISSILE GRAPHICS - This complex subject is demonstrated by starting with simple examples, and building up to a complete game and also an animated business chart on multiple pages! As always. the computer does most of the calculations. Requires 32 K disk or tape and costs \(\mathbf{\$ 2 9 . 9 5}\)
\#6: SOUND - From explaining how to create single notes to demonstrating complex four channel sound effects, this newest tutorial is great. Even those experienced with ATARI's sound capabilities will find the menu of sound effects a needed reference that can be used whenever you are in the need of a special sound for your programs. Everyone will learn something new! Written by Jerry White. \$14.95

Tricky Tutorials (except \#5) require 16 K memory for cassette orders and 24 K for disk. The price is \(\$ 14.95\) each. You may order \(1,2,3, \& 4\) for \(\$ 49.95\) ! All six in a colorful binder cost \(\$ 89.95\).

THE GRAPHICS MACHINE!! - Turn your computer into an incredible graphics tool with advanced commands like circle. box, fill. polygon, line, help. etc. 3 colors in graphics 8 with instant text!!! Create colorful business charts or beautiful drawings and then save or retrieve them from disk in 5 SECONDS. YES. it's that fast. Needs all 48 K disk. and costs \$19.95


MINI-WORD PROCESSOR - This is for those of you who have a printer, but don't want to spend \(\$ 100\) or more for a fancy word processor. It is suitable for simple editing of text. accepts most control characters for your printer. and text is stored on disk for easy retrieval. Holds \(21 / 2\) typed pages at a time. Requires 32 K . disk or tape. \(\mathbf{\$ 1 4 . 9 5}\)

BOB'S BUSINESS - 14 small business type programs for home or office, all chosen from a nice menu. Supports printed output. 169 sectors of output require 16 K tape. or 32K disk. \$14.95

KID'S \#1 - Includes the following: 1) TREASURE search for the lost treasure while trying to keep from falling into the sea. Nice graphics if you find it!: 2)DIALOGUE talk back to the computer about four subjects: 3) MATH QUIZ - Nice musical and graphical rewards for good scores. Parents input the level of difficulty.
KID'S \#2 - A spelling quiz. a "scrabble" type game, and a version of Touch with the computer giving all the directions! Both Kid's programs require 16 K tape or 24 K disk and cost \(\mathbf{\$ 1 4 . 9 5}\) each.

MINI-DATABASE/DIALER - This unique new program stores and edits up to 8 lines of information such as name address. and phone numbers, or messages, inventories or anything you want. It has the usual sort, search, and print options, but it also has an unusual feature: If your files in clude phone numbers and you have a touch-tone phone. the program will DIAL THE PHONE NUMBERS FOR YOU! This is perfect for those who make a lot of calls like salesmen. teens. or those trying to get through to busy numbers (acts as an auto-redialer). It is also a lot of fun to use. Requires 16 K cassette or 24 K disk and costs \(\$ 24.95\)

FONETONE - For those who only want to store name and phone numbers and have the dialer feature as above, we offer this reduced version. Same memory requirements, but only costs \(\mathbf{\$ 1 4 . 9 5}\). Don't forget you must have a touchtone phone.

PLAYER PIANO - Turns your keyboard into a mini-piano and more. Multiple menu options provide the ability to create your own songs. save or load data files using cassette or diskette. fix or change any of up to 400 notes in memory. and play all or part of a song. The screen displays the keyboard and indicates each key as it is played from a data file or the notes you type. You don 't have to be a musician to enjoy this educational and entertaining program. Requires 24 K cassette or 32 K disk. \(\mathbf{\$ 1 4 . 9 5}\)

BOWLERS DATABASE - Provides the league bowler with the ability to record and retrieve bowling scores providing permanent records. The data may then be analyzed by the program and displayed or printed in summary or detail form. Data may be stored on cassette or diskette and updated quickly and efficiently. The program proivdes such information as highest and lowest scores by individual game. (first. second, and third games throughout the season), high and low series. current average. and more. The program listing and documentation provided are a tutorial on ATARI basic and record keeeping. Requires 16 K for cassette or 24 K for disk. \(\mathbf{\$ 1 4 . 9 5}\)
By the time you read this all computers \((400 / 800)\) being produced should have the fabled GTIA chips included. ATARI service may upgrade older computers...call and ask (it's easy to do yourself). We have one and the improvements that graphics modes 9.10. and 11 offer are great!! To help you figure out what to do with the new modes a new Tricky Tutorial will be offered in March on Modes 9 to 11. Either give us a call or write around thattime

60 IHPUT \＃2，Ot：IHPIT \＃2，Qi：IHPUT \＃2，Tis：I HFUT \＃2，L：IFFUT \＃2，L1
 GOTO 480
70 CLOSE \＃2：？＂UTABIUISK ERRORI＂：GOSUE 990：GUTO F
 ： \(\mathrm{FL}=1\) ： \(\mathrm{SK}=1\) ：RESTORE
90 FOR \(I=1\) TO 80 STEF \(10: C\) C \(I\) Y＝＂ ＂：区 \＆（I）＝＂＂：FEXT I
97 FEEM
98 FEM OPTION SELECTION MERH
99 REM
100 GFAPHICS 17：SETCOLOR \(9.3,10: 5 E T C O L O R\) \(4,3,2\)
105 FUSITION \(4,2: ?\) \＃6；＂CRFTO－GEH！＂：PORE 53279,8
110 FOSITIOH 3．5：？\＃6；＂娄＊＊＊＊＊中＂
120 FOSITIOH 2，11：？\＃6；＂SKILL LEUEL－＂； SK
130 FOSITION 1．14：？\＃6：＂\＃OF FLAYERE－＂
； PL
140 FOSITION 4，20：？\＃6；＂FRESS START＂：？\＃ 6；＂TO EEGIH＂
150 GOSUB 990： \(\mathrm{A}=\mathrm{FEER}(5379\) ）：IF \(\hat{A}=6\) THEN
204
160 IF \(\mathrm{H}=5\) THEN \(\mathrm{FL}=\mathrm{FL}+1\) ：IF FL＞ \(\mathrm{THEH} \mathrm{FL}=\) 1 170 IF A＝3 THEN SK＝SK＋1：IF SK 2 THEH SK＝ 1
1806070120
206 GGUE 960：OH FL GOTO 240，216
207 REH
208 FEH TWO FLAER OFTIOH
209 FEM
2107 ＂2 DHAP ENTER FHFASE（20 T0 75 C HARMCTEFS YTHWD＂

THEH 210
230 FOTO 250
237 FEM
236 FEM ORE FLAEER OFTIOH，COHPUTER FICK 5 FitidOU FHRHEE
239 FEM

F末：F FERT I
247 FEM
248 REM GLFHABETIC GJESTITUTIOH COEE GEN ERATED
249 REM
 WHILE I GEFIERATE＂
 \(E^{\prime \prime}:\) FOR \(I=1\) T0 26
279 IHT FHOC \(4 \times 26\) ）\(+1:\) IF \(8(1)=1\) THEN 27 ■

280 IF \(S K=1\) THEN IF \(I=1\) 㫙 \(I=5\) OR \(I=9\) OR
\(I=15\) OR \(I=21\) THEH \(T+(J, J)=4 \neq(I, I)\)

297 FEM
298 REM CHARACTEES IH FHRASE SLESTITUTEU WITH CONE LETTERS
299 KEM

）：IF I＝＂＂THEN 360

：GOTO 360


350 IF \(S K=1\) THEN IF \(J=1\) OR \(\quad 1=5\) OR \(J=9\) OR上15 OR J＝21 THEH 日果（I）\(=1\)
360 FHEXT I
\(365 \mathrm{~L}=\mathrm{L}\) ：IF L 38 THEH 46
367 REM
366 PEM FIROT LIHE SFHEIHI NEGGUREU
369 FEM
 ＂ThEH \(L 1=I\) ：GJTO 400
380 揹則 I
397 FEM
398 FEM MAIH GAFE EOARC OIGFLAVEU
399 FEN
460 GUSUE 916：FOEITIOH \(2,3: 7\)＂CULT＂：FUR

410 FUSITIOH \(3+\) IHTCHE \(6.3+4-1 H T(145) \%\)

 FUSITIOH 1，13：7 C＋1＋1）
430 GOSUE 950
497 REM
498 REN PROAFTS FOR IHFIT OF COE MHE LE TTER
499 KEM
500 FUSITIOH 3，20：？＂ENTER DUE LETTER＂：




 ：？T \(\mathrm{T}(\mathrm{H}, \mathrm{H})\)
 ， I\()=\mathrm{T}=(\mathrm{CH}, \mathrm{H})\)
550 HEXT I
560 GUSUE 950：IF FF＝0．THEH 706
590 FOSITION \(24,22: ?\)＂＂GOTO 510
697 FEM
698 FEM WIH HER SREEH OISPLAVEU
699 FEM
764 FOR \(1=0\) T0 14 STEF 2 GPGFHIS \(18:\) SET OOLOR 4，J，2：FOSITIOH 3，5



\section*{WARLOCK'S REVENGE}

\section*{NEW FROM}


Synergistic Software

\section*{AN EXCITING ATARI* HIGH-RES ADVENTURE GAME}


SYNERGISTIC SOFTWARE
5221 120th Ave. S.E.
Bellevue, Washington 98006
(206) 226-3216

Over 100 high resolution pictures in this two disk adventure, guide you to treasure as well as dangers. As you explore caverns and castles you use your various skills to obtan the riches therein, while eluding the pitfalls and creatures that abound. You provide the Atari. Warlock's Revenge provides the challenge. Requires at least a \(40 \mathrm{~K} .400 / 800\) with Atari Basic and disk. \(\mathbf{\$ 3 5 . 0 0}\)

Available for the Apple II Computer as Oldorf's Revenge
from Highlands Computer Services


ATARI* 400/800 are trademarks of Atari Computers Inc.

\section*{RAM \\ For ATARI \\ 48K RAM BOARD FOR THE 400}
- Increases memory capacity
- Reduces power consumption
- Reduces heat

\section*{48K Board (400) \$299 32K Board (800) \(\$ 150\) Intec Peripherals Corp}

3389 Del. Rosa Avenue San Bernardino, CA 92404
(714) 864-5269

A collection of 10 challenging programs created to provide a unique entertainment value - and 2 personal/business programs with broad functional value. In disk and/or cassette as indicated.

GAMES - HELICOPTER BATTLE Req. -16 K RAM/Cassette \(\$ 9.95\)
- HORSE RACING Req. - 16 K RAM/Cassette
- KENO Req - 8K RAM/Cassette
- LIGHTNING BOLTS
and REACTION
- the mad marble
- MUSIGAME (2 Games)
- SUPERMASTER Req. - 8K RAM/Cassette
- TAG
- tractor beam
- war at sea

BUSINESS - CCA Data
Management System
- LETTER WRITER

\(720 \mathrm{FOR} K=10250 \mathrm{STEF}\) i0：SURTORI日， 15：HEXT K
730 gusue gota：guge 950
746 FOR K＝250 TO 0 STEF－10：SUH0 \(10 \mathrm{~K}, 16\) 15：HEXT K
750 HEXT ：GOHNO 0．0．0．6

FLHi MGIN（Y／N）＂；
FLAU AGAIH（Y／N）＂；
765 GOSUE 970：IF I \(=\)＂\(\%\)＂THEH 60
770 GOTO 880
797 FEM
798 FEM ENO OF GHE（H0 WItHER）OFTIOHS
799 FEM
 ＂


AGAIK＂

：IF I \(=\)＂ \(\mathrm{S}^{\mathrm{n}}\) THEN BS
830 IF Is＝＂Q＂THEH GOSE G60：GOTO 68
840 IF I \(=\)＂F＂THE GUSUE S80：G070 86
845 EOTO 8040
847 FEM
848 FEH GME IS GRUET TS DIS，SEE LIST
WH 2 FDR TAFE UERSIOA
849 FEH

F ：TFAF 400 A


80 TRAFHICS 8 EH
897 FEM
898 FEM FRIHT QRPTO－GRAH TITLE
899 FEM
96G GRAFHICS 日：SETCOLOR \(1,3,16:\) SETCOLOR
\(2,3,2: F O K E \quad 752,1\)
 D－GRAけ＂：RETUPN
917 REM
918 REM EHARACTER IHFUT EUITIHE
919 FEM
920 FUSITION 21，K：？＂＝＝＞\｛LEFT；＂；：GET \＃4
，A
925 IF A＝27 THEN FOF ：FOTO Sidu
930 IF \(\hat{H}=32\) AHD \(K=22\) THEN 940
935 IF \(A<65\) OR \(A>90\) THEN 920
940 FOSITION \(21, K: ? "\) ；CHFE（ \(A\) ）FRETURH
947 KEM
948 REM FRINT AHSWUER
949 REM
950 FOSITION 1，11：？甠（1，L1）：IF L＞L1 THE
N POSITION 1，15：？甠（ \((1+1)\)
S55 RETURN

957 REM
958 REM DISK FILE SAMED WITH PERSOHS HAM E（3 CHAR）
960 ？＂KDOWHO ENTER 3 LETTERS OF HAME \(\Rightarrow\) ＂；：INPUT N\＄：F末＝＂0：CENFTG．＂

567 FEI

969 FEM

97 REH

979 FEH

 \(S\) IT HAS ：＂

FERT I：SUHN 6， \(6,6,0 \cdot\) RETUFH
987 FEM
988 FEN DELH：LOUP
599 FE
990 FOR \(I=1\) TO 164 HEXT I：RETUR4
997 FEM
998 REM THE STORED FHEABES FOLOH，HARIM
Uf OF 50 H MLOED
999 FEM EACH NUST EE HDER 75 HHAFHETERG LOHE
10010 FED
IOIE GATA A STITCH TH TIME GMUE HIAE 1020 DATA EARL＇Y TO EEC HW EARLY TO FTSE HARES A MAH HEC THY WCALTH GHO MIGE 1030 dATA THE EAPLY EIRO GATCHES THE WHE 1

1040 UATA DO MTO GHEEG AE WE WOE HA IE OTHEFS OO HTTO VTH
1050 CATH FLOF FLOF FIZZ FIZZ OH LHHT A FELIEF IT IS
106G data a loht time mg in a galak Fo R FAR M蜼 \({ }^{\prime}\)
1070 GATH WH DIU THE CHICKER GROG THE FOMए？
1680 ［ATA TO EE OR HOT TO EE．THAT IS TH E DUESTIOH
1090 CATA THDU SHALT HOT DOUET THY HEIEH BOFS WIFE
1100 DATA HAH ThE FORCE EE WITH YOJ
1110 ［AATA EEGIHAERS ALL－FURFUSE SHEOLIC IHBTENCTION DUNE
1120 LATA WE THE FEUFLE OF THE INIITED ST ATES OF AHERTCA
1130 ［ÂTH［OH＇T FIRE UNIIL VOJ GEE THE U HITES OF THEIF EYES
1140 CATA YOU CAH FOUL SUIE OF THE FEOFL E HLL OF THE TIHE
 FROCUST

1160 gata die stall stef for hant: bile gi AHT STEF FOR MAHKINO
 OPFOSITE REACTIOH
1180 dATA I HODE HOT YET EEGU TO FIGHT
1190 data faster that a bullet; mare fund ERFIL THAPH A SFEEDIt, LICOHTTUE
12010 DATA LHO WAS THAT HASKEU MÄt
1216 [ATA THEIRS HOT TO REASOH WHY: THEI
RS EUT DIU OR DIE
1200 data to erre is hulith. to forgive oi UIHE
1236 gata a Little Lemphing is a dahligero US THING
1248 DATA HE'O FLY THOULGH THE AIR WITH THE GREATEST OF EASE
1250 DATA Lanleh ard The worla lavigh wit H YOU; CRY AHE YOU CRY ALOME
1260 data MARRIED IN HASTE; WE MAY REFEA T AT LEISJIRE
1270 GATA O CAFTAIN! Hy CAFTAIN! GHR FEA
FFLU TRIF IS [日G)
1280 [ATA THESE ARE THE TIMES THAT TRY M EN'S SOLLS
1290 [ATA TIGER! TIGER! BUPHING ERIGHT I N THE FORESTS OF THE HIGHT
 ROW
1310 [ATA I THIHK THAT I SHALL : A FOEM LOUELY AS A TREE
130 GATA FIR FINS FIGH IH MHERE AHELS fegre TO Treat
 0
 le var Eafs
1350 ghta frol the hals of hotezlita to THE SHPRES OF TRIFULI
 COLDMESS GAILED THE OCEAH ELIE
1376 gata hary hat a little late its fle ECE AS WHITE AS SHITH
1389 [ata I shot mil affol into the gir: IT FELL TU EARTH I MEN WOT WHERE
 TRY TRY MGAIH
 AI TURH AHO FIGHT ABDTHE [AM
1410 GATA IT TAKES A HEAF OF LIUING IH A HOUSE TO MAKE IT HOE
1420 GAATA OH HHAT FIH IT IS TO RIDE IN A
OHE HORSE OFEN SLEIGH
1430 [ifto IT WAS A OHE-EYED OHE-HOFHED F LYIMG FIRFLE PEGFLE EATEF
 ETHING

1450 [ATA SAY THE SECRET WORD AFD MIH A hardere cillars
 AHEALI
1470 data The The hight eerure christha 5 AHD ALL THROUGH THE HOUSE 1480 data hey miter targurine mot flai A SOUT FOR ME
1496 GATA EUEFTHINL THAT GUES IF MIST C OHE COUH
15ga data hickory efocory guck the muge RAFH LIF THE CLICK

\section*{Program 2.}

15 REM FOR TAPE VERSION, USE THESE LINES INSTEAD
16 REM YOU MAY ALSO DELETE LINES 960-965
17 REM
50 TRAP 70:OPEN \#2, 4,0, "C:": INPUT \#2, P串
65 CLDSE \#2: TRAF 40000:GOTO 400
70 CLOSE \#2:? "[B]tape error": GOSUE 990:GOTO \(R\)
850 R=800: TRAF 70: DPEN \#2,8,0, "C:": TRAF 40000


\title{
SuperFont
}

\author{
Charles Brannon Editorial Assistant
}

The ability to redefine the character set is one of the more useful features of the Atari. In a previous article, "Character Generation on the Atari," (COMPUTEI \#9) I explained the principles and techniques of customizing the character set. Basically, it involves the plotting of a character on an eight by eight matrix and then converting each row into a binary number.

This process, however, is slow and tedious for the programmer. Fortunately, it is an obvious candidate for computerization. The computer could display a grid, let you set and clear points on it, and then do the binary-to-decimal conversion for you. It could also let you save and load completed fonts (character sets) from tape or disk.

Although SuperFont may lack some of the features of commercial products, it is quite powerful and versatile. SuperFont is written in BASIC, but what makes it special is that it has several machine language subroutines as well. One of these (thanks to DLI) enables the redefined character set to be displayed on the screen at the same time as the regular one. This permits you to see the effects of your changes without letting the command menu or prompts turn into starships.

SuperFont uses player/missile graphics for fast updates and a colorful grid. Since the special character window is set off in a different color than the rest of the screen (again via DLI's), you get eight different colors to delight the eye. The human interface is enhanced with the use of a joystick to plot points in the eight by eight grid.

SuperFont has 18 commands:
\begin{tabular}{|c|c|}
\hline E:Edit & R:Restore \\
\hline F:Copy From & X:Switch \\
\hline T:Copy To & C:Clear \\
\hline O:Overlay & I:Invert \\
\hline S:Save Font & L:Load Font \\
\hline :Delete & :Insert \\
\hline :Scroll Left & :Scroll Right \\
\hline W:Write Data & Q:Quit \\
\hline :Reverse & G:Graphics \\
\hline
\end{tabular}

This menu is displayed on the screen along with a "checkerboard" plotting grid, the 128 characters of the character set, and the 128 characters of the alternate character set. Some commands require you to select a character. A cursor will be placed on each of the character sets. You can move the cursors around the sets simultaneously. When the cursor is
on the desired character, press the fire button to indicate it. An explanation of each command follows:

Edit: The basic editing command. The selected character is copied into the grid and a flashing cursor is homed into the grid. You move the cursor with the joystick. Pressing fire will set a point (if a point is clear) or reset (clear) a point (if a point is already set). You can draw lines by holding down the button while moving the joystick. Any changes are immediately visible in the character set and the character displayed in GRAPHICS mode one and two lines at the bottom of the screen. To completely redesign a character, use the Clear command, and then design the character from scratch.
Restore: This command will "fix" a character by copying the original bit pattern into it. Very useful if you have mangled a character or changed the wrong one.
Copy From: You select a character which is copied into the current character. The grid is updated, and you can further edit the character.
Copy To: The current character is copied to (replaces) the indicated character.
Switch: Exchanges the current character's bit pattern with the selected character.
Overlay: The selected character is overlaid upon the current character. This lets you combine two characters to form a new one.
Clear: Clears out the current character. For creating unique characters.
Invert: Turns the current character "upside down." For example a re-defined M could be inverted and copied to the W.
Save Font: Saves the alternate character set in compact form with a machine-language routine. Answer "Filename?" with either C: or D:filespec. If you see an error message, press a key to return to the menu.
Load Font: Retrieves a character set from tape or disk. Answer the "Filename" prompt as you did in Save Font.
Cursor-up or SHIFT-DELETE: Similar to Delete Line in BASIC. The line of dots the cursor rests on is deleted; the following lines are pulled up to fill the gap.
Cursor-down or SHIFT-INSERT: Similar to Insert Line in BASIC. A blank line is inserted at the cursor position. The bottom line is lost.
Scroll left: The bit pattern of the character is shifted to the left.
Scroll right: The bit pattern of the character is

\section*{\(\mathrm{ATARI}^{\text {TM }} 400 / 800^{*}\) SOFTWARE}

AT LAST！A NEW GAME for your ATARI computer！！

Here is a game unlike any you have played before．

Requires a good memory for detail．Rewards strategy．

\section*{STACK ATTACK！！}

For details urite：
COLOR COMPUTER CONCEPTS
1275 Terry Drive， Idaho Falls，ID 83401
or
Order a copy for \(\$ 14.95\) ． Specify Disk or Cassette． 32K l6K
＊\({ }^{\text {radademark of ATARI，INC．}}\)

\section*{ATARI \\ ＂QUALITY DESIGN \\ WITH THE USER IN MIND＂}

DRUG BUST－Exciting new game that puts you in the midst of drug trafficking． Buy at rock bottom prices and resell for enormous profits．But，don＇t get caught holding！One or two players．Requires 16K
Cassette
\＄19．95
Diskette \＄24．95

DIRECTORY－Load this user friendly program and you can view diskette contents，select and run programs． Menu selection approach as found in many larger computers．Program is transferrable to any diskette．Requires 3 K Diskette only \＄18．95

ROLL－EM－System generated dice roll． Excellent graphics for use in any game of chance requiring dice．Included as a bonus when both above programs are ordered．Requires 6K．

\section*{Cassette}

Diskette \＄11．95
Catalog included in all above orders． For catalog only，send \(\$ 1.00\) to cover postage and handling to：

年
Esplanade Enterprises 2042－312 Peach Orchard Drive Falls Church，VA 22043

Add 5\％Virginia sales tax．Sorry，no C．O．D．orders please．


The aliens have swept undefeated across the galaxy． You are an enterprising star ship captain－the final defender of space．
As the aliens attack，you launch a deadly barrage of missiles．Flankers swoop down on your position． Maneuvering to avoid the counterattack，you disintegrate their ships with your magnetic repellers．
As your skill improves，the attackers increase their speed．And as a last resort，the aliens use their invisible ray to slow the speed of your missile launcher．

GALACTIC CHASE provides Atari owners with the most challenging one or two person game in the galaxy．

\section*{凡。 \\ ATARI}

Atari \(400 / 800\) 16k．Written in machine language．Requires joysticks．
Payment：Personal Checks－allow three weeks to clear．
American Express，Visa，\＆Master Charge－include all numbers on card．Please include phone number with all orders． 24.95 for cassette or 29.95 for disk plus 2.00 shipping．Michigan residents add 4\％．
Check the dealer in your local galaxy．Dealer inquiries encouraged．
Galactic Chase（c） 1981 Stedek Software．
shifted to the right.
Write Data: The internal code (0-127) of the current character is printed in reverse-field followed by the eight bytes (in decimal) of the character. If you want a printout of the entire character set, use the auxiliary program CHPRINT (Program 3). Pressing any menu selection key will erase the nine bytes.
Graphics: Toggles the TEXT/GRAPHICS option of the GRAPHICS mode one and two lines to let you see each half of the character set.
Reverse: Puts the character in reverse field: all dots become blanks, and all blanks become dots. Reverse field versions of the characters are not normally stored in the character set, but you may want this for special graphics, such as reverse-field text in GRAPHICS modes one or two.
Quit: Exits program.
The commands offer flexibility in working with character sets, but there may be other functions you may want to add. The program is modular in structure; just follow the branching IF statements after line 790 to 1370 and replace the 520 (IF K <> ASC("G") THEN 520) with a link to your additional command(s). You may also want to change the colors. Besides the SETCOLOR statements in line 170 , change the zero in line 300 (POKE 1538,0 ) to COLOR (0-15)* \(16+\) LUMINANCE ( \(0-14\) ). Similarly, you can play with the player/missile colors in line 360 .

It is also possible to use the character set data on tape or disk directly. It is written as a series of 1024 bytes: the bytes of the character set - no more, no less. I have included two extra utility programs which access the character data. Program 2 simply loads the set into memory and changes CHBASE (756) to point to it. Program 3 produces a formatted hex or decimal dump of the character set. Both programs should have the "filespec" changed to the filename of your character set.

The code of the main program is fairly straight forward. It uses several machine language subroutines: (1) A Display List Interrupt handler to maintain the special character window. (2) Copies the ROM character table into the RAM CHSET table (avoids the 15 second delay in BASIC). (3) A LOGIC subroutine that permits AND, OR, EOR (and any other 6502 function such as ROR) to be used on a binary level (see also "Make Your Atari a Bit Wiser," COMPUTE! \# 12, p. 74). (4) Implements a fast machine language memory save thanks to the IOCB PUTREC and GETREC commands.

You can do a lot with this capability: custom fonts (Greek, "Computeristic," script), graphics
characters (special line drawing characters, spaceships, "invaders," bombs, tanks, planes, ships, even little people! (INTRUDER ALERT! INTRUDER ALERT!) SuperFont makes your task easier, even fun!

\section*{Program 1.}


470＂＂Ha Write［etz lolut＂
「るFhics＂
490 FOF \(1=6\) TO 3：FOR \(1=0\) T0 \(31: F O E\) SUt

HERT IVERT I
FW POE B2， 2 PRTTO B，

\(520 \mathrm{~F}=\mathrm{FEER}, \mathrm{G} 4\) ：IF \(F=2 E \mathrm{THEN} 5 \mathrm{O}\)
50 IF \(F=60\) THE 50
\(54 \mathrm{IF} F=3 \mathrm{TH}\) FUE \(64,16 \mathrm{G}\)
55 GET H2，K
EGU IF K XAGC＂E＂THE THE
57 GOLE 175



606 M＝0：JH
EIG FMGITIO \(\mathrm{N}+4, \mathrm{H}+1\)

6.3 IF GTRIGOOD HET 5

0
650 ST＝STICGO ：IF ST＝ 5 THEN GO
660 IF STRIGG：THEH FR I＝E TO 1 GU ETE

EG FOGTTIOA \(\mathrm{H}+4, \mathrm{H}+1: 6\) ：
\(606 \mathrm{~N}=\mathrm{H}+6 \mathrm{C}=7\) ） \(\mathrm{ST}=11)\)
696 \(H=1 \%+6 T=13)-8 T=14\)
7 TU IF JN THEH \(N=7\)
710 IF 18\(\rangle 7\) THEN \(\mathrm{H}=0\)
7 CB IF J《G THE H F
73 IF JY7 THE \(\quad \mathrm{H}=5\)
740 GOTO F 5 O


 E F \(\mathrm{C}+\mathrm{H} \mathrm{H} 4+\mathrm{B}=\mathrm{HE}\)
 ：60HP 6，6． 6
TG GOTO 50

B64 S＝C：BGE 1759


E20 E＝S日T0 50

846 EN：EOSUB 1750

E CHEET＋CX \(\mathrm{C}, \mathrm{H}: \mathrm{HEXT}\) I
\(860 \mathrm{C}=50 \mathrm{BOTO} 60 \mathrm{E}\)

86日 S＝E：GOGE 1756

 ： \(\mathrm{A}=\mathrm{GER}\) LIGIO

\(910 \mathrm{E}=\mathrm{GOTO} 50\)

936 FOR \(I=6\) TO 7 FDE CHET \(+\% B+I\) ，FEEK E


 I：GOTO 580

G76 FOF \(I=6\) TG 7 PAE GHET＋ \(\mathrm{CH}+25 E-F E\)


90050606170

KE CHET＋GW＋FEEGCRET＋DE＋1 ：POE CH
GET＋Q＋+6 GT I GTO 50



T－I MEX ITGO 2 S

LIFE：AHES ACG


6：GOTG 56


106 FER \(\bar{F}=7\) TG GTEF－：PGE CHET＋
B＋I，FEEK OHET＋XG＋1－1）：VET I：FRE OHE
T＋6S＋M，G：GTG


IF HecE THEN H＝O－ 25








1160 GUE UEO：FPE 195

1180 H＝UEG \(15 G\) OAET？
1150 CLIEE H：TCE 460 HE FEEG 35 TH
EH 1266
120 FUE 54Q 19200706
1216 IF K्र日G＂：THEH 1200
1220 GOUG 6 G：FEE 195.8
1236 TRAF \(125 \mathrm{G}: \mathrm{DFH} \# \mathrm{H}, 4, \mathrm{E}, \mathrm{FH}\)
\(1246 \quad \mathrm{H}=\mathrm{BC} 16 \mathrm{G}, \mathrm{CHET}\)
1250 CLUSE \＃1 TRAF 4060 IF FEEK \(1950=0\)
THEH 1200
 EEKC195；＂＊＂
1276 IF FEEK \(764 \times 25\) THEA FUSITIOH 14,0




By；怔斯 I：

\(\mathrm{EEF} \mathrm{CHSET}+\mathrm{C}+1+123\)
\(133650 \mathrm{H} D \mathrm{~A}, \mathrm{C} 5+1 \mathrm{~N}+5 \mathrm{D}, 16,6\)


135 IF FEECG \(64=25 \mathrm{HE} 1350\)
1360 FOTTIO \(2,16: F \mathrm{~F}=1\) TO \(3: 7\) ＂：HEST I：GTO 50

\(1360 E F=1-F: F E \quad 1549\) FH－G＋2\％F
1306 GOTO 50
146 GFAFHIC \(2+6\) SETCOLR \(4,1,4:\) FGEII


UEITIOH \(2,7: 7\) \＃；＂
1420 FDF \(I=156\) TO 16 G：FEGD \(H: F D E I, H:\)

\(143050 \mathrm{~F} D \mathrm{0}, \mathrm{6}, \mathrm{B}\), RETUR
1440 DHTH \(2,169,106,141,10,216\)
1450 ［ 1 TH \(141,24,260,14,26,206\)
1460 DHTA \(169,6,14,9,212,104\)
1476 ［1िTH \(64,164,164,133,204,104\)
1480［19TH \(133,203,16,0,133,26\)
\(140 \mathrm{OHTH} 169,24,5 \mathrm{SO}, 162,4\)
1500 DHTH \(160,6,17,206,145,265\)

150 ［MTH 20 20 2 24646
150 ［HTH \(152,16,1 E, 9,15\) E

15EG DHTH 15 ， \(6,3,16\)
150 DHTA \(2,169415 \div\)

150［HTH 162，i6， \(65,75,5\)
156 DHTA \(6,9,16460.5,5,5\)

161日 FOGTTION 14， \(6:\)＂Filerame？＂；
\(16 \mathrm{c}^{6} \mathrm{FH}={ }^{11:}: \mathrm{K}=6\)
1630 FOKE 20 O 0


1650 IF FEEK \(20<16\) THEH 1640
 （1） 163
16G日 GET \＃2，H
168 IF \(\hat{H}=155\) THE \(\overline{3}\) ：\(:\) FOF \(I=1\) TO LEH
 160 IF H＝1E HR LEHFH\＆ン1 THEH FH\＆＝FH
 0） 1630
 （A）：GOTO 168

\(=65\) HID \(\hat{H}=50\) OR \(H=46\) THEN 170
1710 MTO 1630
1720 IF LEWFHY 14 THEH FH\＆LEHFHक＋1

173050701630
1748 EF
1750 CD GE CHOTE PHEQATE

\(1776 \mathrm{E}=\mathrm{x}+\mathrm{C}\)
1700 FOE \(5+C+4+4+4+120\)
1790 FUEE GOL＋\(+\mathrm{CH} 4 \mathrm{C}+4+2 \mathrm{C}\)


1816 ST＝STIXG）IF GT＝ 5 THEH IGU
\(180^{0} \mathrm{FHE} 53 \mathrm{G}=\mathrm{g}\)
1830 BO 196

\((5 T=13)\)

1660 IF \(\mathrm{C}>31\) THE \(\mathrm{CO}=\mathrm{B}: \mathrm{CO}=\mathrm{CH}+1\)
1876 IF 060 THE \(5=3\)
1804 IF CH＞THEN EY＝9
1800 COTO 176


1920 FETURH

\section*{Program 2.}

1GO FEM CHLOAD－－CHARACTER SET LOADER
110 CHSET＝FEEK 106－ \(8: F\) FOK 756 ，CHET
\(120 \mathrm{CHSET}=\mathrm{CHSET}\) K 26
130 TFAF＇ 150
140 OFEE \＃1，4，0，＂IIFONT＂：REH YOUR FILENA re HERE
\(150 \mathrm{FOR} \mathrm{I}=0 \mathrm{TO} 1023\)
169 GET \＃1，A：FTKE CHET +1 A
176 HEXT I
180 CLOSE \＃1

\section*{Program 3.}

LGO FEH CHPRIMT－－CHAFACTER GET PRIHTOUT
110 TRAF 344
120 OFER \＃1．4， 1, ＂D：FINT＂：FEM YOUR FILEHA HE HERE
 FITR SUREEH
 T TYFE
150 ［IM HEXま（16）Fも（3）
160 HExま＝＂01234567GMETEF＂
165 LSE \(=-1\)
170 FUR \(I=0\) TO 1023 STEF 6

190 IF TYFE= THEF F


\(\mathrm{HEE}+1\)

230 HIHE \(=1 H T(L S E / 6\) : LOHEELSE-16WIHE
249 FRIHT \#2; HEX (HINE 1 , HINFE+1):HEX
LOMHE+1, LOHEB+1);": ";
250 FOR J=0 T07
260 GET \#1.A
270 F末=" ": IF TYFE=2 THEN F


300 FRINT \#2: HE
LOAFEE+1, LOAFYE+1);" ";
310 FERT J
360 FRIHT \({ }^{2} 2\)
330 HEXT I
340 CLOSE \#1:CLOSE \#Z


(C) Rom Cattrioge
(D) DISKETTE
(T) CASSETTE TAPE

\section*{REPRESENTING OVER 30 COMPANIES WITH \(400+\) PROGRAMS AND HARDWARE. \\ Write for a FREE catalog to:}

\section*{COMPUTER HOUSE \\ P.O. Box 369, Dept. 10, Mammoth Lakes, CA 93546 (714) 934-6538}

Terms: FOR FAST DELIVERY, send certified checks, money orders or Visa or MasterCard number and expiration date. Personal checks require 3 weeks to clear. ADD \(\$ 1.50\) for postage. Orders over \(\$ 100.00\) we pay shipping. All foreign orders add \(\$ 10.00\). CALIFORNIA residents add \(6 \%\) tax. Prices subject to change.

\title{
Word Search
}

Bob Jones
Cranbury，NJ
Basically this program creates two matrices．The first matrix，the A matrix，is the one we shall hide the words in．Since the ATARI and many other BASICs I have run across do not permit the use of strings in a matrix，I have found that the next best thing to do is use the ASCII value of the characters instead．In this case it seems to be even simpler． The A matrix is initialized in line 10 to a random set of numbers between 65 and 91，（the ASCII value of the letters A thru Z）．The C matrix will be our control matrix and our answer key．In line 10， all locations in C are initialized to 42，（the ASCII value for the character＂＊＂）．

Next the user is asked to input 12 words，（the subroutine called by line 15）．Lines 3015 through 3130 simply set \(\mathrm{A} \$\) equal to the word to be pro－ cessed，selected by the variable I．Line 45 sets L equal to the length of the word and if it is too long， （greater than ten letters）asks the user to input a shorter word．In line 50 we convert letters of the word to their ASCII values and place them in the \(B\) array，（a numeric array also initialized to all zero＇s by line 10）．This array is our workhorse． Line 60 serves two functions：first，to generate a random starting location within both matrices and， second，to generate a random direction for the word to go in．

Now comes the math．Line 70 directs the program to one of eight subroutines，each one representing a different possible direction for the word to travel in．I shall only go over the first one， （lines 500 to 550）as the others work the same way． Line 500 checks to see that the word will fit within the matrix，if not the program is directed back to line 60 to generate a new starting location and direction．In line 510 we check the position of the word against the C or control matrix for possible conflicts with words already placed within that matrix．If a conflict exists the program is again directed back to line 60 ．Line 520 checks for a crossover with a previous word and if there is one it sets a flag，（the variable F）equal to 1．Line 630 directs the program to lines 2000 to 2020，these lines would have been repeated 8 times，once for each direction subroutine so in order to save me－ mory they are only listed once and called upon when needed．The use of the＇GOTO＇instead of the＇GOSUB＇command is necessary in order to conditionally return to other portions of the pro－ gram without confusing the computer by jumping
in and out of subroutines．In these lines，（2000 to 2020）we continue to process our word，if there is a crossover（ \(\mathrm{F}=1\) ），or we have tried 300 times to find one，（determined by the variable R ）we continue， otherwise we go back to line 60．Line 2020 gets us back into our original subroutine．Line 550 is the last line of our subroutine，it places our word into the A and C matrix＇s and sends us on to get a new word．

Line 80 determines if we have processed all of our words，and if so sends us on．In line 100 we print our hidden word matrix by printing the letters represented by our ASCII values，and when we are ready，line 110 prints our C matrix which is now our answer key．

This program requires more than 8 K of me－ mory as stands to run，though it will load into 8 K of memory．It is a simple matter to shorten it by cutting out some of the possible direction subrou－ tines．Also you can ask for the words to be INPUT as they are needed rather than storing them in string arrays．This program can be run on almost any computer using BASIC as stands，the only possible modifications that might be needed are with the GOTO statements like＇GOTO D＊100＇． These may be changed to＇ON D GOTO 500，600， \(700,800,900,1000,1100,1200\)＇．Or you could use the＇IF．．．THEN＇statements，though the program won＇t be as much fun．A＇？＇is simply a PRINT command．The POKE statements are not necessary： they simply speed up the program．（Thanks to Ed Stewart，COMPUTE！\＃11．）

\footnotetext{
1 FEM WURO SEAFOH WRITTEN ET EUE NUEG 5 FOKE 559，日：DIH A
特（11），K
 \(=1\) TO \(13: E(X)=0 \cdot F O R Y=1\) TO \(16: A S, Y)=I H T\)

15 HENT Y：NERT X：R＝306：GGIE 36060 GUTO 4 4
20 FOR \(\mathrm{X}=1\) T0 13：FOR \(Y=1\) T0 16
\(30 \mathrm{~F}=\mathrm{C}\)
40 cosue 365
\(45 \mathrm{~L}=\mathrm{LE}+\mathrm{H}(\mathrm{H} ⿻ \mathrm{t}):\) IF L＞10 THEH 3150



70 G0T0［10． 100
 559 ，0：IF \(\mathrm{I}=12 \mathrm{THEH} 100\)

\section*{90601030}

106 FOKE 559，34：FOR \(8=1\) T0 \(13: 7\) LFRIHT

}

Ft（CXXY）：HEXT Y：NEKT \(X\)
105 ？＂TO SEE ARGERG FRES FETUEN KEM：
IfFIIT 袜
116 LFRIAT ：LFRIHT ：FOR \(\mathrm{X}=1\) T0 13：LFFIHT


120 LFRIHT ：LFRINT ：LFRINT ：LFRIHT ：LFRI
NT ：END
5010 IF \(\mathrm{Y}+\mathrm{L}-1>16\) THEN 6 m

X： \(1+2 \times \mathrm{C}(2+1)\) THEN 60
520 IF \(\mathrm{C}(X, Y+Z)=\mathrm{E}(2+1)\) THEN \(F=1\)
53060102000
 5：G0T0 60
606 IF \(\mathrm{Y}-\mathrm{L}+1<1\) THEN 66
610 FOR \(2=1-1\) TO 0 STEF－1：IF C（x， \(1-2) 4\)

620 IF \(\mathrm{C}(\mathrm{X}, \mathrm{Y}-2)=\mathrm{E}(2+1)\) THEN \(F=1\)
636100702064
 S．GOTO 80
70 IF \(\mathrm{X}+\mathrm{L}-1>13\) THEN 64

\(\mathrm{X}+2, Y \times>\mathrm{E}(2+1)\) THEN 60
720 IF \(\mathrm{C}(\mathrm{X}+2, \mathrm{Y})=\mathrm{E}(2+1)\) THEN \(\mathrm{F}=1\)
730607020001
\(750 \mathrm{C}(\mathrm{X}+5, Y)=\mathrm{E}(\mathrm{S}+1): \mathrm{H}(\mathrm{X}+\mathrm{S}, \mathrm{Y})=\mathrm{E}(\mathrm{S}+1)\) ：WE HT S：G0T0 80
806 IF \(\mathrm{K}-\mathrm{L}+1<1\) THEN 6 D
810 FOR \(Z=L-1\) TO 0 STEF -1 ：IF \(\mathrm{C}(\mathrm{X}-2, Y) 4\)
2 ATは（ \((x-2, Y)<\mathrm{E}(2+1)\) THEN 60
\(82(1 F\) IF \(\mathrm{C}(\mathrm{X}-2, Y)=\mathrm{E}(2+1)\) THEN \(F=1\)
830607020061
\(650(\mathbb{C}(\mathrm{~S}, \mathrm{Y})=\mathrm{E}(\mathrm{S}+1): \mathrm{H}(\mathrm{K}-5, Y)=\mathrm{E}(\mathrm{S}+1)\) ：FE KT 5：G070 80
950 IF \(\mathrm{X}+\mathrm{L}-1>13\) or \(\mathrm{Y}+\mathrm{L}-1>16\) ThEH 66
 \(\mathrm{C}(\mathrm{X}+2, \mathrm{Y}+2 \times \mathrm{C}(2+1)\) THEH G
920 IF \(\mathrm{C}(\mathrm{X}+2, \gamma+2)=E(Z+1)\) THEH \(F=1\)
93060102000
\(950[(x+5, \gamma+5)=E(6+1): \%(x+5, \gamma+5)=E(5+1):\)
NERT S：GOTO 60
10010 IF \(8-L+1<16\) OR \(Y-L+1<1\) THEH 60
1010 FOR \(2=L-1\) T0 6 STEF \(-1:\) IF \(\mathrm{CX}-2, \mathrm{Y}-2\)
） 42 ATD \(\mathrm{CX}-2,4-2 \times \mathrm{YE} 2+1)\) THEH 60
1020 IF \(\mathrm{C}(x-2,-\overline{2})=\mathrm{EC}(2+1\) ）THEH \(F=1\)
103060702060
\(1056(x-5, \gamma-6)=E(6+1): A(8-5, \gamma-5)=E(5+1)\)
：FEXT S：GUTO B6
1100 IF \(\mathrm{Y}-\mathrm{L}+1<1\) of \(\mathrm{X}+\mathrm{L}-1>13\) THEH 60
1110 FOR \(z=0\) TO \(L-1\) ：IF \([(X+2, Y-2) 42\) AHO \(\mathrm{C}(\mathrm{X}+2, \mathrm{Y}-2) \times \mathrm{B}(\mathrm{Z}+1)\) THEH G
1120 IF \(\mathrm{C}(\mathrm{X}+2, \mathrm{Y}-2)=\mathrm{E}(Z+1)\) THEH \(\mathrm{F}=1\)
1130607020010

：WEMT S：GOTO 80
12010 IF \(Y+L-1>16\) OR \(X-L+1<1\) THEN EO
1210 FUR \(Z=L-1\) T日 0 STEF -1 ：IF \(C(X-2, Y+2\)

1220 IF \(\mathrm{C}(\mathrm{X}-2, \mathrm{Y}+2)=\mathrm{E}(2+1)\) THEN \(\mathrm{F}=1\)
1230 GTO 2000
\(1250(\mathrm{X}-5, \mathrm{Y}+5)=\mathrm{E}(\mathrm{S}+1): \mathrm{A}(\mathrm{X}-5, \gamma+\mathrm{Y})=\mathrm{E}(\mathrm{S}+1)\)
：FEXT S：GOTO 80

2010601060

3006 FOKE \(559,34: ?\)＂TYFE WRRD ARD THEN H


3015 IF I＝0 THEH A \(\ddagger=\) Eも
3000 IF \(I=1\) THEH \(\mathrm{A} \ddagger=\mathrm{C}\)

3046 IF \(I=3\) THEN \(A \$=E \neq\)
3050 IF \(I=4\) THEN \(\hat{H} \ddagger=F\)
3060 IF \(I=5\) THEN \(A \$=\mathrm{G}\)
307 C IF \(\mathrm{I}=6\) THEN \(\mathrm{A} \ddagger=\mathrm{H} \ddagger\)
3000 IF \(I=7\) THEN \(A \$=1\)
3090 IF I＝6 THEN A \(\ddagger=\) 生
3100 IF \(I=9\) THEN H \(\ddagger=1 \mathrm{~K}\)
3110 IF \(\mathrm{I}=10\) THE H 家 \(=\mathrm{L} \ddagger\)
3120 IF \(\mathrm{I}=11\) THEH \(\mathrm{H} \ddagger=\mathrm{F}\)
3130 FETUFN

HD GREATER THAH 10 LETTERS TRU MHOTHER WRED \({ }^{1 \prime}\) ：IHFUT A A FODE 559， \(0:\) GOTO 45

\section*{SPACE SHUTTLE}

Launch and Ascent to Orbit
Simulation Software for the ATARI \(800^{\circ}\)
Using a joystick interface．you steer the Space Shuttle through launch and into orbit． Not a game，but a serious simulation． Requires 24 K RAM and 1 joystick．
－ATARI is a trademark of ATARI，Inc． Cassette Only \(\$ 10.95\)（ages 12 to adult）

STARBOUND SOFTWARE P．O．BOX 214
COCOA BEACH，FLORIDA 32931

\section*{Review:}

\section*{Screen Printer Interface} (Version 2.0) From Macrotronics

\author{
David D Thornburg \\ Innovision \\ Los Altos, CA
}

More than anything else, I use my Atari computer for the creation of pictures. For various reasons, it is not enough for me to see these pictures on a TV screen - I also need copies of them on plain paper. Fortunately, there is an exceptionally well designed product which makes this a very simple task. That product is the screen printer Interface from Macrotronics. This program allows the user to transfer any image from the display screen to a suitable graphics printer with a single keystroke. The printed image can (if you choose) preserve grey scales, and can be printed in any size from a single sheet to a poster which would cover a wall. The user can choose among several printers (Trendcom, IDS, Centronics, Epson), and does not need the Atari 850 interface unit. Instead of the 850 , Macrotronics provides a printer interface cable which connects to joystick ports 3 and 4 . The screen printer software comes on a disk containing DOS 1 , and they also provide a copy of the utility which is compatible with DOS 2.

The manual is clearly written and contains many examples showing the use of this interface with all language environments presently supported by Atari (BASIC, Assembler, PILOT).

\section*{Setting It Up}

To use the system, one first connects the printer to the joystick ports with the cable provided and then boots the system from the disk supplied. During the boot process, the screen prompts the user for information on the printer being used. Once this is done, the rest of the program is loaded (the total utility occupies less than 3 K bytes) and the familiar blue screen appears.

From this point on, the printer driver software is tucked safely inside the computer where it re-
mains to do your bidding until the computer is turned off. Any command which sends information to device P: will cause this information to be printed. BASIC commands such as LPRINT behave just as they would for an Atari printer connected through the serial port.

While this system supports all text printing functions, the real value of this interface package is the power it gives as a graphics printing tool. Any time this system is in the computer you can get a dot-by-dot copy of the screen image by simply typing CTRL-P. Macrotronics has created some default printer conditions which cause most images to be printed quite nicely. The user has total control over the system parameters and can change the settings of various registers to create many different effects.

For example, the printed image can be scaled independently in both axes by POKEing a number between 1 and 16 in each of two memory locations. The default scale (16) produces a figure which fits nicely on 8.5 " wide paper. As the scale values are decreased, the image size increases by \(16 / \mathrm{n}\) where n is the scale value. Wide images are printed in multiple strips which can then be glued together. On multiple strip printouts, each strip overlaps the previous one by a little bit to make strip alignment simple. This attention to making life simple for the user is beautiful!

In addition to using the scale variables to make large pictures, they can also be used to adjust for the fact that most dot matrix printers have different inter-dot spacings on each axis. To get an accurate square on the Epson MX-100, for example, the vertical scale should be set to 14 (with the horizontal scale left at 16). The result is almost perfect.

In addition to scaling, the user can select positive or negative images, grey scale or black and white, determine grey scale from either hue or luminance data, print data which has been "fine scrolled," and print players and missiles.

In short, if your Atari computer can generate it, the Macrotronics screen printer can print it.

I use this software almost every day. So far I have used it to print the illustrations for three book manuscripts, numerous articles, several large posters and some custom bumper stickers.

\section*{The Only Error}

The only error I have uncovered is that the default grey scale setting uses thue data rather than luminance data, but this is just a documentation error - the software works perfectly.

To see more examples of printouts made with this utility, look at any "Friends of the Turtle" colume in COMPUTE!, or at the book Picture This!, soon to be published by Addison Wesley.

Figure 1.


Figure 2.


Figure 3.


Figure 4.



\section*{ALTERNATE REALITY SOFTWARE}

Presents for the Atari

\section*{THE I CHING}

THE ANCIENT CHINESE BOOK OF DIVINATION
- The complete text of the world's oldest book on disk
- 40K program
- 73 disk files (155,000 bytes)
- Occupying 1211 disk sectors
- High Resolution Graphics
- Animation
- Music and Sound Effects
- Instructional text material
- Calculates and Displays Hexagrams
- Displays Judgement, Image, Moving Lines for primary \& secondary Hexagrams
- \$44.95
order from:
Alternate Reality Software
2111 W. Arapahoe Drive
Littleton, Colorado 80120

Dealer inquiries invited
Atari is a T.M. of Atari, Inc.

\title{
INSIGHT: ATARI
}

\author{
Bill Wilkinson \\ Cupertino, CA
}

I have recently seen a copy of the complete \(\mathrm{De} R e\) Atari (by Atari's own Chris Crawford, author of SCRAM and EASTERN FRONT, et al). Since two out of three people I talk to say "Huh?" when I mention the name, I have personally subtitled it Everything You Ever Wanted to Know About the Atari Computers But Didn't Know Enough to Ask. The book concerns itself with foibles, tricks, innards, hardware, software, and everything in between: there are even tricks using Atari BASIC (that are "obvious" upon discovery) which we never thought about when we designed the thing! I must heartily recommend that every serious Atari programmer trade in his or her left thumb, if necessary, for a copy of this book.
"De Re" (the insiders' appellation) is currently being serialized in BYTE magazine (I guess Atari's trying to impress the non-Atari world), but seeing the book in one piece is somehow more instructive. "De Re" is generally a fantastic resource, but it does often assume that the reader has intimate knowledge and understanding of the Atari Hardware Reference Manuals, etc. This is not a fault (the authors forewarn the reader); and, besides, it does leave room for columns like this. I don't intend to duplicate material in either Atari's manuals or "De Re", but there is bound to be some overlap. I intend to present the "hows" and "whys" to supplement Atari's "whats."

I try to write this column for the programmer: the person who knows software, but is unfamiliar with Atari hardware and/or Atari's system level software. If this column stretches your understanding of the Atari and/or its software, that's probably good. And I am constantly amazed at the questions which beginners on the Atari come up with; they often show "insights" to solution methods that I wouldn't dream of. The first questions are arriving in my mailbox. Send more!

This month's column is part three of the series on the Atari Operating System. Next month we will cover screen output, including graphics, to formally end the series. I have a few ideas on what should come next for you non-BASIC Atari users, but I would welcome some input. Also, this month, we begin a series which will explore the inner workings of Atari BASIC.

\section*{Atari I/O, Part 3: Device Handlers}

As we noted before, Atari's OS is actually a very
small program (approximately 700 bytes). Even so, it is able to handle the wide variety of I/O requests detailed in the first two parts of this series with a surprisingly simple and consistent assembly language interface. Perhaps even more amazing is the purity and simplicity of the OS interface to its device handlers.

Admittedly, because of this very simplicity, Atari's OS is sometimes slower than one would wish (probably only noticeably so with PUT BINARY RECORD and GET BINARY RECORD) and the handlers must be relatively sophisticated. But not overly so, as we will show.

\section*{The Device Handler Table}

Atari OS has, in ROM, a list of the standard devices ( \(\mathrm{P}:, \mathrm{C}:, \mathrm{E}:, \mathrm{S}:\), and \(\mathrm{K}:\) ) and the addresses thereof. So far, so good. But notice that, for example, the disk handler (D:) is not listed there; how does OS know about other devices? Simple. On SYSTEM RESET, the list is moved from ROM to RAM, and OS then utilizes only the RAM version. To add a device, simply tack it on to the end of the list: you need only specify the device's name (one character) and the address of its handler table (more on that in a moment). To reassure you that it is this simple, let me point out that this is exactly how the "D:" (Disk) handler is attached when the disk is booted.

In theory, all named device handlers under Atari OS may handle more than one physical device. Just as the disk handler understands "Dl:" and "D2:", so could a printer handler understand "P1:" and "P2:". In practice, of all the standard Atari handlers only the Disk and Serial Port handlers can utilize the sub-device numbers. Incidentally, Atari OS supplies a default sub-device number of " 1 " if no number is given (thus " \(D\) :" becomes "D1:"). A project for those of you with two printers (there
\begin{tabular}{|c|c|c|c|}
\hline \multirow{14}{*}{HTABS} & * \(=\) & \$031A & \\
\hline & & & ; the Printer device \\
\hline & .WORD & PDEVICE & ; and the address of its driver \\
\hline & .BYTE & 'C' & ; the Cassette device \\
\hline & .WORD & CDEVICE & \\
\hline & .BYTE & 'E' & ; the screen Editor device \\
\hline & .WORD & EDEVICE & \\
\hline & .BYTE & 'S' & ; the graphics Screen device \\
\hline & .WORD & SDEVICE & \\
\hline & .BYTE & & ; the Keyboard device \\
\hline & .WORD & KDEVICE & \\
\hline & .BYTE & 0 & ; zero marks the end of the table \\
\hline & .WORD & 0 & ; ...but there's room for up to \\
\hline & \begin{tabular}{l}
.BYTE \\
et cetera
\end{tabular} & 0 & ; ...9 more devices \\
\hline
\end{tabular}

Figure 1.


MICROWORLD, an adventure within your computer. is available on the ATARI and the TRS-80. You are transformed into an electroid. and must explore the circuits of your computer. Over 80 locations and many original problems exist within the maze of transformers and transistors. We dare you to explore the maze of bit cells' Each version of Microworld explores the workings of its respective computer. Atari or TRS-80. Microworld comes with a booklet defining terms and describing the function of the mystifying inner workings of home computers. Come face to face with a staticon! Explore the Microworld!

\section*{SATISFACTION GUARANTEED!}

If for any reason you are not satisfied with our products, return your order within 14 days for a prompt and cheerful refund.

\section*{ORDERING INFORMATION}

Orders are processed within five working days. Shipping and handling charge of S 1.00 will be added to all orders within the U.S. and Canada. Overșeas orders please add \(\$ 3.00\) for air post.

Atari Microworld Atari 400 and 800
32K Cassette
\(\$ 19.95\)
Atari 400 and 800
32K Diskette.
. \(\$ 22.95\)
TRS-80 Microwrold TRS-80 Model I and Model III Level II 16K Cassette . . . . . . . . . . . . . . . . . . . . . . . . . . .

S19.95
TRS-80 Model I and Model III Level II 32K Diskette
\(\$ 22.95\)

- TRS-80


MED SYSTEMS SOFTWARE
P.O. Box 2674. Chapel Hill. NC 27514

1-800-334-5470

\section*{Fantasy for your ATARI Ali Baba and the forty thieves}

\author{
By Stuart Smith
}


Guide your alter ego. Ali Baba, through the thieves mountain den in an attempt to rescue the beautiful princess. Treasure, magic, and great danger await you! One or more human players can guide up to seventeen friendly characters through the many rooms, halls, and caves. Some characters wander around randomly, making each adventure a little different.

ALI BABA AND THE FORTY THIEVES is written in high resolution color graphics and includes music and sound effects. Adventures can be saved to disk and resumed at a later time. Requires 32 K .

On Diskette Only - \(\$ 32.95\)

\section*{Graphics for your ATARI Charracter Magic}


It's easy to create your own character sets and save them to diskette or cassette with CHARACTER MAGIC. But this is not just another character editor. CHARACTER MAGIC helps you use all the character types that the Atari is capable of, including descending characters ( \(8 \times 10\) dots) and two types of five-color character graphics not supported by Atari's Operating System. Documentation includes examples of display lists that let you use these "secret" graphics modes. Requires 32 K .

Cassette or Diskette - \(\$ 29.95\)

\section*{FOR OUR COMPLETE LINE OF ATARI SOFTWARE PLEASE WRITE FOR OUR CATALOG}

ASK FOR QUALITY SOFTWARE products at your favorite computer store. If necessary you may order directly from us. MasterCard and Visa cardholders may place orders by calling us at (213) 344-6599. Or mail your check or bankcard number to the address above. California residents add \(6 \%\) sales tax. Shipping Charges: Within North America orders must include \(\$ 1.50\) for shipping and handling. Outside North America the charge for airmail shipping and handling is \(\$ 5.00\). Pay in U.S. currency.
must be one or two of you）：presumably one of them is connected via the MacroTronics interface；if so，try modifying the MacroTronics handler so that＂Pl：＂ refers to the Atari 850 interface while＂P2：＂refers to the MacroTronics．It＇s really a fairly easy project， presuming you have the listings of Atar＇s OS（which are available from Atari）．

\section*{Rules For Writing Device Handlers}

Each device which has its handler address placed into the handler address table（above）is expected to conform to certain rules．In particular，the driver is expected to provide six action subroutines and an initialization routine．（In practice，I believe the current Atari OS only calls the initialization routines for its own pre－defined devices．Since this may change in future OS＇s and since one can force the call to one＇s own initialization routine，I must rec－ ommend that each driver include one，even if it does nothing．）The address placed in the handler address table must point to，again，another table， the form of which is shown in Figure 2.

Notice the six addresses which must be speci－ fied；and note that，in the table，one must subtract one from each address（the＂－ 1 ＂simply makes CIO＇s job easier．．．honest）．A brief word about each routine is in order．

The OPEN routine must perform any initiali－ zation needed by the device．For many devices， such as a printer，this may consist of simply checking the device status to insure that it is actually present． Since the X－register，on entry to each of these routines，contains the IOCB number being used for this call，the driver may examine ICAX1（via LDA ICAX1，X）and／or ICAX2 to determine the kind of OPEN being requested．（Caution：Atari OS preempts bits 2 and \(3, \$ 04\) and \(\$ 08\) ，of ICAX 1 for \(\mathrm{read} / \mathrm{write}\) access control．These bits may be exam－ ined，but should normally not be changed．）

The CLOSE routine is often even simpler．It should＂turn off＂the device if necessary and if possible．

The PUTBYTE and GETBYTE routines are just what are implied by their names：the device handler must supply a routine to output one byte to the device and a routine to input one byte from the device．However，for many devices，one or the other of these routines doesn＇t make sense（ever tried to input from a printer？）．In this case the routine may simply RTS and Atari OS will supply an error code．

The STATUS routine is intended to imple－ ment a dynamic status check．Generally，if dynamic checking is not desirable or feasible，the routine may simply return the status value it finds in the user＇s IOCB．However，it is not an error under Atari OS to call the status routine for an unOPENed
device，so be careful．
The XIO routine does just what its name implies：it allows the user to call any and all special and wonderful routines that a given device handler may choose to implement．OS does nothing to process an XIO call except pass it to the appropriate driver．

Note：In general，the AUXilliary bytes of each IOCB are available to each driver．In practice，it is best to avoid ICAX1 and ICAX2，as several BASIC and OS commands will alter them at their will． Note that ICAX3 through ICAX 5 may be used to pass and receive information to and from BASIC via the NOTE and POINT commands（which are actually special XIO commands）．Finally，drivers should not touch any other bytes in the IOCBs， especially the first two bytes．

Notice that handlers need not be concerned with PUT BINARY RECORD，GET TEXT RECORD，etc．：OS performs all the needed house－ keeping for these user－level commands．

\section*{HANDLER}

> .WORD
> .WORD
> .WORD
> .WORD
> .WORD
> .WORD
> JMP


Figure 2.

\section*{Rules For Adding Things To OS}

We touched on this subject last month，in the section titled＂The Easiest Way of Making Room？＂，but a review and an addition are in order．Both Atari FMS（File Manager System，otherwise known as DOS and／or the Disk Device Driver）and the serial port handlers follow the same scheme when they add themselves to OS，so it is safe to assume that this method may be considered the de facto Atari standard．We enumerate：

1．Inspect the system MEMLO pointer（at \＄2E7，I called it LOMEM last month，which is BASIC＇s name for it）．
2．Load your routine（including needed buf－ fers）at the current value of MEMLO．
3．Add the size of your routine to MEMLO．
4．Store the resultant value back in MEMLO．
5．Connect your driver to OS by adding its name and address into the handler address table．
6．Fool OS so that if SYSTEM RESET is hit steps 3 through 5 will be re－executed（because SYSTEM RESET indeed resets the handler
address table and the value of MEMLO).
In point of fact, step 2 is the hardest of these to accomplish. In order to load your routine at wherever MEMLO may be pointing, you need a relocatable (or self-relocatable) routine. Since there is currently no assembler for the Atari which produces relocatable code, this is not an easy task. (However, I just happen to have a method which works. But it will have to wait for a later article.)

Step 6 is accomplished by making Atari OS think that your driver is the Disk driver for initialization purposes (by "stealing" the DOSINI vector) and then calling the Disk's initializer yourself when steps 3 through 5 are performed. This is a fairly simple process, but again, details must await a future article.

\section*{Yet Another Real Live Example}

I promised last month that we would present a driver for a "peripheral" device found in every Atari, yet not supported by any Atari device handlers. I could have been cagey and presented a driver for a "Null" device. (A handy thing to have, actually: One can throw away one's output very fast when trying to debug a program. See De Re Atari for a simple implementation of one. Better yet, try to write one from the information presented herein.) Being a glutton for punishment, I undertook to write a truly useful handler for Atari's overlooked device: RAM memory!!

After the snickers and sarcastic comments die down, let me point out how truly useful such a device is to BASIC programs: program one can "write" data to RAM and then chain to program two, which then "reads" the same data back. Voila! Chaining with COMMON in Atari BASIC. So herewith the "M:" (Memory) driver, presented in its entirety in Figure 3.

\section*{Does It Work?}

Some words of caution are in order. This driver does not perform step 6 as noted in the last section (but it may be reinitialized via a BASIC USR call). It does not perform self-relocation: instead it simply locates itself above all normal low memory usage (except the serial port drivers, which would have to be loaded after this driver). If you assemble it yourself, you could do so at the MEMLO you find in your normal system configuration (or you could improve it to be self-modifying, of course).

Other caveats pertain to the handler's usage: it uses RAM from the contents of MEMTOP (\$2E5) downward. It does not check to see if it has bumped into BASIC's MEMTOP ( \(\$ 90\) ) and hence could conceivably wipe out programs and/or data. To be safe, don't write more data to the RAM than a FRE(0) shows (and preferrably even less).

In operation, the M: driver reinitializes upon an OPEN for write access (mode 8). A CLOSE followed by a subsequent READ access will allow the data to be read in the order it was written. More cautions: don't change graphics modes between writing and reading if the change would use more memory (to be safe, simply don't change at all). The M: will perform almost exactly as if it were a cassette file, so the user program should be data sensitive if necessary: the M: driver will not itself give an error based on data contents. Note that the data may be re-READ if desired (via CLOSE and re-OPEN).

\section*{Installing The M: Driver}

The most obvious way to install this driver (Program 1) is to type in the source and assemble it directly to the disk. Then simply loading the object file from DOS 2 (or \(\mathrm{OS} / \mathrm{A}+\) ) will activate the driver and move LOMEM as needed. You could even name the resulting file "AUTORUN.SYS" so that it would be automatically booted on power up.

If you don't have an assembler and/or disk, the problem is a little more difficult. If you are comfortable writing BASIC programs that load assembly language data to memory, you migth use the techniques described in last month's "Make Room?" to reserve the required memory. Then a simple POKEr program which uses DATA statements would suffice.

But the assembly listing given here is designed for a disk system and would waste 5 K bytes or so in a cassette system. So, if you can't reassemble it and/ or write that POKEr program, you will just have to be patient: I will try to give you a simplified BASIC POKEr program next month.

A suggested set of BASIC programs is presented:

\section*{Ending of Program 1:}

9900 OPEN \#2,8,0,"M:"
9910 PRINT \#2; LEN(A\$)
9920 PRINT \#2; A\$
9930 CLOSE \#2
9940 RUN "D:PROGRAM2"
Beginning of Program 2:
100 JUNK \(=\) USR (7984)
[ to insure the M: driver is linked, in case of RESET]
110 OPEN \#4,4,0,"M:"
120 INPUT \#4, SIZE
130 DIM STRING \(\$\) (SIZE)
140 INPUT \#4, STRING\$
150 CLOSE \#4
BASIC A + users might find RPUT/RGET and BPUT/BGET to be useful tools here instead of PRINT and INPUT. And, of course, users of any other language(s) might find this a handy interprogram communications device.

\section*{BASIC, Part 1: Why?}

The first "Why?" I usually hear is "Why not Microsoft BASIC?" After a little probing, I find that the question really boils down to "Why not string arrays?" There is no simple answer to that question, so I hope to save myself time in the future by pointing toward these articles. Because I intend to give the true and not-so-simple answer, along with some (hopefully) very interesting information.

Believe it or not, Atari BASIC pretty much works the way it was designed and specified. And yours truly must take a large part of the brickbats or roses you might throw because of those specifications. We (that is, at the time, Shepardson Microsystems) were just finishing the highly successful and very powerful Cromemco 32K Structured BASIC. And, while a few Cromemco users had carped about the lack of string arrays, on the whole the real power of the language is extraordinarily impressive. All this "power" probably went to our head(s), so of course we had to duplicate the feat for Atari.

Oops. A small problem: Cromemco gave us 32 K bytes for Structured BASIC; Atari gave us 10 K bytes. What comes out? Wrong question! What can stay in?! Of course, Atari had some ideas, too, and the important features that we ended up with include (in my opinion):

\section*{Decimal Arithmetic}

Long Variable Names
Long Strings (more than 255 bytes)
Flexible I/O
Reasonable Assembly Language Interface Syntax Check at entrh time

That last item won't be appreciated by those of you who haven't used a BASIC that doesn't do it, so I will try to describe the horrors to you: You type in a long program which includes a line such as:


Beware as you enter the Crypts Of Terror. No one has survived this horror. Only your unrelenting nerve and determination will drive you deeper into the unknown.

\section*{Find what lurks in these ancient crypts!!}

At last we have found an adventure with full graphics, sound and intrigue for your ATARI 400/800 computer.
- CRYPTS OF TERROR is the first adventure game that was completely designed for the Atari computers only. The graphics are the finest available using the full potential of the Atari.
爪。
ATARI
Atari 800/400 16K requires joysticks.
Payment: Personal Checks - allow three weeks for check to clear.
American Express, VISA, MasterCard - include all numbers on card. Please include phone number with all orders.
Orders from USA \$29.95 (US funds)
Orders from Canada \(\$ 39.95\) (Canadian funds)
Plus \(\$ 2.00\) for shipping.
Ontario residents add 7\% R.S.T.
Check your local computer dealer for Crypts Of Terror. Dealer inquiries encouraged.

> INHOME SOFTWARE

PH. 1-416-961-2760

1560 Yonge St. P.O. Box 10 Toronto Ontario Canada M4T 1 Z7

\section*{ATARI CENTRAL GOES NATIONAL!!!}

HW ELECTRONICS-THE \# 1 SOURCE FOR QUALITY ATARI PRODUCTS!
ATARI \(400 / 800\) TECHNICAL USER NOTES
A MUST for anyone wishing to delve into the powers of the ATARI computer system. Includes detailed information of the hardware (including schematics) as well as the Operating System. Cat No. 3141
\(\$ 27.00\)
AN INVITATION TO PROGRAMMING 2
Learn how to write programs in BASIC. These lessons cover library functions, FOR...NEXT loops, subroutines, and READ, DATA, DIMension, PEEK and POKE statements. They also cover flow charting and programming structure. Includes two cassettes and a workbook.
Cat No. 3250 8K, Cass.
\(\$ 24.95\)

\section*{AN INVITATION TO PROGRAMMING 3: SOUND \& GRAPHICS}

The sound cassette covers simple music theory and ATARI BASIC commands for setting the sound registers to the desired pitch, purity, and loudness levels. The Graphics cassette teaches you to use the color registers, the graphics characters, the SETCOLOR and POSITION statements, and graphics modes 0 through 5. Includes two cassettes and a workbook.
Cat No. 32518 K , cass.
\$24.95
LE STICK
by DATASOFT
The joystick of the future. Internal motion detectors manuever your sights in any direction with simple one handed movements. The large pushbutton provides a quick response to your firing commands.
Cat No. 2925

\section*{EASTERN FRONT}

EASTERN FRONT simulates Operation Barbarossa, the German invasion of Russia during World War II. The use of intricate artificial intelligence routines and high-resolution, smooth-scrolling terrain maps eliminate the usual drudgery of playing wargames. To top it off, multiprocessing permits simultaneous moves by both you and the computer. Cat No. 3294 16K, cass.
\$26.95
Cat No. 3295 32K, disk
\$29.95

\section*{HOW TO ORDER}

Mention this ad and WE PAY SHIPPING (UPS ground-USA). Call or write. Pay by check, M/C, Visa, or COD (add \(\$ 1.40\) for COD).
Offer expires Feb. 1, 1982.
НИ ELECTRONICS
19511 Business Center Dr. Dept. G1 Northridge, CA 91324 (800) 423-5387 (213) 886-9200

3034 IF SYSTEMERROR THEN PINT "Bad Disk Drive": GOTO 4090

Did you catch it? It says 'PINT' where it should say 'PRINT'. Most microcomputer BASICs will happily gulp that line in with nary a burp. Now, 13 months later, when that dreaded 'systemerror' actually occurs, your user (who lives in Hong Kong, naturally) sees the helpful message
***SYNTAX ERROR at LINE 3037
When you have fathomed the implications of that, calm your nerves so we can continue.

Needless to say, we were more than happy to include the Syntax Check feature. However, this inclusion had implications that rippled throughout the rest of the design of BASIC. First, you don't get something for nothing: such syntax checking uses memory, perhaps one to two kilobytes. Second, pre-syntaxing implies that the user program will be "tokenized": that is, the user's source will be converted into internal tokens for ease of execution and efficiency. Even Microsoft BASICs tokenize the keywords of the language; Atari BASIC tokenizes everything: keywords, variables, constants, operators, etc. Thirdly, the decision to have strings longer than 255 characters (coupled with the tight memory requirements) simply precluded any implementation of string arrays. (In fact, I do not know of any small-machine BASIC that supports string arrays with elements longer than 255 characters.)

Before perusing some quickie programs to show the effects of tokenizing, I should like to give some credit where it is due. Though I participated in the specifications for Atari BASIC, I had little to do with the actual implementation. More history: Atari asked us (in September, 1978) to bid on producing a custom "consumer-oriented" BASIC
for them. Sometime in October, the specifications were finalized and Paul Laughton and Kathleen O'Brien (with a very little help from three more of us) began to work in earnest. The contract called for delivery by April 6, 1979, and included delivery of a File Manager System (DOS 1). Atari planned to take an early, 8 K Microsoft BASIC to the Consumer Electronics Show (in Las Vegas) in January, 1979, and then switch later. The actual purchase order took a while to get through Atari's red tape, and the final version thereof is dated 12/28/78about one week after both BASIC and DOS were delivered to Atari! Atari took Atari BASIC to CES.

\section*{Investigating BASIC's Tokens}

There are three fundamental types of tokens in Atari BASIC, each of which occupies exactly one byte of RAM memory, with only two special cases. The token types are statement name tokens, operator name tokens (which include function names and some other miscellany), and variable name tokens. The special cases are numeric and string constants, which begin with an operator name token, but are followed by the actual value of the constant.

Statement name tokens can only occur as the first item of a statement and, thus, have their own keyword and tokenizing table. In theory, Atari BASIC's structure could support up to 256 types of statements. Variable name tokens and operator name tokens are intermixed throughout the rest of a statement and are distinguished by the state of their upper bit: variable name tokens have their upper bit on, operators don't.

A few of the statement types are also special cased in that they are not followed by operator and variable tokens. These special cases include the
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(=\) ALL ATARI \({ }^{\odot}\) HARDWARE \(15 \%-25 \%\) OFF LIST PRICE} \\
\hline Atari \(400 \mathrm{w} / 16 \mathrm{~K}\) & \[
\begin{gathered}
\text { OUR PRICE } \\
\ldots \quad \$ 320
\end{gathered}
\] \\
\hline Atari \(800 \mathrm{w} / 16 \mathrm{~K}\) & \$810 25\% \\
\hline Atari 410 cassette & \$ 67 25\% \\
\hline Atari 810 disk drive & \$480 20\% \\
\hline ATARI® ACCESSORIES & 10\%-20\% OFF LIST PRICE \\
\hline 8 K Memory Board & \$45 10\% \\
\hline 16 K Memory Board & \$80 20\% \\
\hline Joysticks (pair) & \$17 15\% \\
\hline Paddles (pair) & \$17 15\% \\
\hline \begin{tabular}{l}
To order Call 617.964.3080 \\
Ask for mall order, or write
\end{tabular} & \multirow[t]{4}{*}{PLUS 10\%-20\% OFF ALL ATARIO SOFTWARE ALSO 3RD PARTY HARDWARE AND SOFTW/ARE AT COMPARABLE SAVINGS} \\
\hline The Bit Buchet & \\
\hline  & \\
\hline  & \\
\hline
\end{tabular}

\section*{A Revolutionary Concept In Software For The ATAR|* 400 and 800 Computers}

\title{
Ohe Interactive Storybook
}

\author{
Sammy The Sea Serpent \\ A Storybook Program For Children Ages 4 to 7.
}

\section*{Sammy The Sea Serpent}
is the story of an imaginery sea creature who is lost and trying to find his way home. The
story is read aloud to your child by a professional actress. While the tale is being told, the child uses the joystick to help Sammy out of some tight spots.
The A side of the cassette contains the interactive story; the B side contains games that the child plays with Sammy.
The program uses voice, sound effects, music, color and mixed graphics.
Sammy The Sea Serpent can be used with either the ATARI 400 or 800 and requires 16 K . It is available in cassette format only. Price is \(\$ 16.95\) plus \(\$ 2.00\) shipping and handling.
Also available at fine computer stores.

Program Design, Inc./ 11 Idar Court Greenwich, CT 06830 203-661-8799

ATARI is the registered trademark of ATARI. Inc.


\section*{ABUSE}

\section*{For the ATARI 400/800}

Match wits with your computer in an insult war! With ABUSE your computer becomes a slightly demented, smart-aleck insult-exchanger.
- Millions of different insults.
- Understands and responds to user input.
- Hybrid BASIC/machine language program.
- Game feature: become a Master of ABUSE.
- Many surprises to discover.

Release your aggressions! Inflict ABUSE on anyone who's got it coming!

\section*{REQUIRES 40K RAM AND BASIC CARTRIDGE}

Dealer inquiries welcome
Available soon for the Apple II

At your computer store or send \(\mathbf{\$ 1 9 . 9 5}+\$ 2.00\) handling to:
DON'T ASK - 2265 Westwood Blvd. B-150 - Los Angeles, CA 90064 - (213) 397-8811
Calif. residents add 6\% sales tax.
obvious REM and DATA and the not-so-obvious ERROR (the statement name given to lines containing a syntax error).

Since each variable is reduced to a single byte (with its upper bit set), there are a maximum of 128 different variable names per program. There is the further implication that BASIC must remember the association of name to token in order to LIST your program back to you. The actual ATASCII names are stored in the "Variable Name Table," and we investigated its structure in COMPUTE! \#17 under the heading of "VARIABLE,

VARIBLE, VARABLE." (Briefly, the names are simply stored one after the other, with the upper bit of the last character of each name turned on.)

The statement and operator names are obviously predefined in the BASIC ROM cartridge, and we offer herewith a program (Program 2) which prints out the token numbers and corresponding keywords. When you run the program, you will notice that some operators (especially the left parenthesis) appear to be repeated. They are. We will find out why next month.

\section*{Program 1.}

A sample device driver for Atari's os
--....- general remarks .........
```

 ".....general remarks"
    ```

```

 1020 %
 1030 ; The "M:" driver -....
 1040; Usimg memory as a device
 1.050
 1060 % Treludes installation program
 1.070
 1080 ; Written bs Eill Wilkimsom
 1090 ; for Jamwary, 1982, COMFUTE!
 1100 %
    ```



Imagine being able to print the letter＂ A ＂ and get a multi－color space ship．Using THE NEXT STEP and a minimum of programming effort，you can do it in no time at all．
 novice and professional alike．

THE NEXT STEP features full joystick control for ease－of－use

THE NEXT STEP contains well－written，easy－to－use documen tation with simple BASIC programming examples that show you how THE NEXT STEP can help develop colorful graphic displays．Graphics you never thought possible until now．

THE NEXT STEP is a user friendly，menu driven graphics tool kit that allows you to create new character sets or redefine characters to make shapes for use with your basic or machine anguage programs．THE NEXT STEP allows you to save these ＂new＂characters on disk for future use．

THE NEXT STEP is perfect for use on shapes for animation and features a joystick controlled color menu to make your graphics come alive．THE NEXT STEP even generates its own code to help you incorporate new characters and shapes into your programs．

THE NEXT STEP allows you to see your shapes as you make them．Now you can determine ahead of time how characters will interact with one another when creating shapes for Charac－ ter Set or Player－Missile Graphics．

THE NEXT STEP helps you to mix any of ATARI＇s 14 graphics modes in the same display．THE NEXT STEP is a perfect graphics utility for the BASIC or machine language programmer－ and quick editing

THE NEXT STEP runs on any 32K ATARI 400／800 with a disk drive and is available for \(\$ 39.95\) at your local computer store or order direct from

N－LINE \({ }^{\text {systems }}\)


VISA，MASTERCARD，CHECK，C．O．D．


Add \(\$ 1.00\) for Shipping 36575 MUDGE RANCH ROAD • CDARSEGDLD，CH 93614•209－6日3－6日5日


A sample device driver for Atari＇s 06
The driver itself
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{7}{*}{1．F3E：}} & 1.970 & －FABE＂The sriver itself＂ \\
\hline & & 1.980 & \％ \\
\hline & & 1990 & \％Fecal I tinat ald orivers must \\
\hline & & 2000 & ；be comrected to 0S through \\
\hline & & 2010 & ；Briver routimes adoress table． \\
\hline & & 2020 & ； \\
\hline & & 2030 & M咸下TVEF \\
\hline 1F3E： & 4CIF & 2040 & －WOFD MOFFiN．\％The aconvesses must \\
\hline 1F30 & 6FIF & 2050 &  \\
\hline 1F3F & \(921 F\) & 2060 & －WOFD MGETE．－．．\％．．order and must \\
\hline 1F41 & 851F & 2070 &  \\
\hline 1F43 & 9F1F & 2080 & －WOFD MSTATUS 1 \％＊．than the actual． \\
\hline 1F45 & 491 F & 2090 &  \\
\hline \multirow[t]{12}{*}{1．F47} & 4C4AIF & 2100 & JMF MXNXT ；This is for safety only \\
\hline & & \％110 & \％ \\
\hline & & 2120 & \％For mary drivers，some of these \\
\hline & & 2130 & ；rontimes are not meeded，amd \\
\hline & & 2140 & ；can effectively be mul routines \\
\hline & & 2150 & \\
\hline & & 2160 & ；A rull routime should return \\
\hline & & 2170 & ；a one（ 1 ）intine Y－register \\
\hline & & 2180 & ；to indicate success． \\
\hline & & 2190 & \(\ddagger\) \\
\hline & & 2200 & MXIO \\
\hline & & 2210 & MINIT \\
\hline 1F4A & A001 & 2220 & LD．\＃I ；success \\
\hline \multirow[t]{10}{*}{1F4C} & 60 & 2230 & RTS \\
\hline & & 2240 & ； \\
\hline & & 2250 & ＊If a routine is omitted because \\
\hline & & 2260 & t itt is illegal（readirig from a \\
\hline & & 2270 & ；primter，etc＊），simply pointirig \\
\hline & & 2280 & ；to an FiTs is adequate，since \\
\hline & & 2290 & ；Atari OS preloads Y with a \\
\hline & & 2300 & ；Fonction Not Implemented＇error \\
\hline & & 2310 & ；retura code＋ \\
\hline & & 2320 & ； \\
\hline
\end{tabular}

A sample device oriver for Atarís \(0 S\)
The driver fumetion rontimes
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{8}{*}{1F4D} & & 2330 & \multicolumn{4}{|c|}{－FAGE＂The driver function routimes＂} \\
\hline & & 2340 & \multicolumn{4}{|l|}{} \\
\hline & & 2350 & \multicolumn{4}{|l|}{＋} \\
\hline & & 2360 & \multicolumn{4}{|l|}{；Now we begin the code for tine} \\
\hline & & 2370 & \multicolumn{4}{|l|}{；routimes that bo the actual．} \\
\hline & & 2380 & \multicolumn{4}{|l|}{\％work．} \\
\hline & & 2390 & \multicolumn{4}{|l|}{；} \\
\hline & & 2400 & MOFEEN & & & \\
\hline 1F4D & ED4A03 & 24.10 & L．．．DA & ICAUXI． X & Check type of oper & \\
\hline 1．F50 & 2908 & 2420 & AND． & \＃OFOUT & Operr for output？ & \\
\hline 1．F5\％ & F00D & 2430 & EEE & OFENFORREAD & \％No．．．3ssume for & riput \\
\hline 1F54 & ADE50\％ & 2440 & L．．．D．A & ME：1TOF & & \\
\hline 1．F57 & 8DD 2 F & 2450 & STA & MSTAF゙T & We start storimg & \\
\hline 1．F5A & ACFE 602 & 2460 & L．．．DY & ME゙的TOF＋1 & ＊．．the bytes & \\
\hline 1．F5D & 88 & 2470 & D）EY & \％ & ＊．one page below & \\
\hline 1．F5E & 8CD31F & 2480 & STY & MSTAFT＋1 \％ & the supposed top o & mem \\
\hline
\end{tabular}

the most advanced maze game available to the ATARI \({ }^{8}\) owner

A new game by Craig Patchett which uses machine language routines, 5 -color, high-resolution graphics and sound effects.

The player's goal is to guide an imaginary robot through and out of a 3 -dimensional maze.

20 game variations insure countless hours of enjoyment. CAPTIVITY can be used with any ATARI \({ }^{\circledR}\) computer with at least 24 K . It is available in cassette format only. Price is \(\$ 24.95\) plus \(\$ 2.00\) shipping and handling.
Available at fine computer stores or write us directly.


Program Design, Inc. 11 Idar Court Greenwich, CT 06830 203-661.8799

> ATARI 400/800 OWNERS: THERE'S A MICROCONNECTION \({ }^{\text {w }}\) FOR YOU!

Now you can direct-connect to the telephone with or without the 850 \({ }^{\text {m }}\) interface, there's also a serial port to drive a printer, optional autodial and autoanswer, and smart terminal software! Prices start at \(\$ 199.50\) For more details write or phone:
the mıcroper!phera! corporat!on
2643A - 151st PI. N.E. Redmond, WA 98052 (206) 881-7544 VISA

800 Computer \(16 \mathrm{k}, \ldots, \ldots 729,00\) The Educator \(, \ldots, \ldots, \ldots \$ 99,00\) savirigs from;

800 Computer \(32 \mathrm{k} ., \ldots, \ldots 769,00\) 800 Computer \(48 \mathrm{k}, \ldots . . \$ 839,00\) 825 Printer ( 80 col) , \(\$ 599,00\) 810 Disk Drive, ....... \(\$ 429,00\) 850 Intf. Mod \(, \ldots,+,+\$ 155.00\) 822 Thermal Frinter , \(\$ 329,00\) 820 Printer . . . . . . . . . . \(\$ 259,00\) 410 Recorder , , . . . . . . . . \(\$ 65,00\) 830 Modem . . . . . . . . . . . . \(\$ 145,00\)

Special Software Fack:ges
The Entertainer, ,..... \(\$ 69,00\)
Star Rziders, Missile
Conmand, and Joysticks.
The Frogrammer . . . . . . . . \(\$ 54,00\) EASIC Programmirig language, Self teaching guide to EASIC, and BASIC reference manusl

410 Kecorder, EASIC Atari
programming language, and States and Capitals.

TOF SELLINE FROGFAME
Missile Command......... \(\$ 33,96\)
Asteroids , . . . . . . . . . . . . \(\$ 33,96\)
Invitation to Fros, 2, \(\$ 16,96\)
Irvitation to Frog, 3,.\$16.96
Assemiler/Editor.,.,....,\$48.96
Jaw Ereak.er . . . . . . . . . . . \(\$ 25,95\)
Cranstori Mañor . . . . . . . . . \(\$ 29.95\)
Doóge Racer . . . . . . . . . . . . \(\$ 19,95\)
Atari Word Frocessor, , \(\$ 129,95\)
Atari Horld \(, \ldots, \ldots, \ldots, \ldots, 559,95\)
Star Raiders. . . . . . . . . . . \(\$ 39,96\)
Intruder Alert., ., . . . . . \(\$ 14,95\)
Sammy the Sea Serpent., \(\$ 14,95\)

Atari Frogram Exchange Adventure International Crystal
F.D.I,
L.J.K.

Dyriacomp
Qublity Software
Avalori Hill
Epyx
Computer consultants
Syrizpse
Datasoft
Uniter Software
Or-Lirre
0.5 .5 .

Software Street

Software Street
3392 Clipper Dr.
Chino, CA 91710
(714) 591-3061

Software Sireet is your Mail order Atari discount center.

Shipping costs:
Software-minimum \(\$ 2,00\)
Hardware-prices will vary
(please call)

ATAFI IS A REGISTEFED
TRADEMAFA:



3630 3640 3650 3660 3670 3670
3680
\begin{tabular}{lll} 
1FCO & ACCE IF & 3680 \\
1FC & D003 & 3690 \\
1FCS CECF1F & 3700 \\
& & 3710 \\
1FC8 CECE1FF & 3720 \\
1FCE A001 & 3730 \\
1FCD 60 & 3740
\end{tabular}
\％Y register indicetirg OK status． ＊NOTE that the A register is
；left uradisturbed． ；
D） ECO CNFENT
\begin{tabular}{|c|c|c|c|}
\hline & L．．．）Y & MCいF゙F゙：NT & Check L．．SE＇s value \\
\hline & ENE & DECLOW & ＊if ron－zero，MSE \\
\hline & DEEC & MCUF以ENT＋1 & \％iff zero，rieed to \\
\hline DECCLOW & & & \\
\hline & DEC & MCUFFENT & \％How bump the L．SE \\
\hline & L．D Y & \＃STATUSOK & \％as promised \\
\hline & ETS & & \\
\hline
\end{tabular}

FTS

A sample device driver for Atari．s 0 B FAM ぃsage and olean up
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{15}{*}{1．FCE：}} & 3750 & ＋FAGE＂以AM usage and cleam & up＂ \\
\hline & & 3760 & \％ & \\
\hline & & 3770 &  & \\
\hline & & 3780 & ； & \\
\hline & & 3790 & ；END OF CODE & \\
\hline & & 3800 & ； & \\
\hline & & 3810 & ； & \\
\hline & & 3820 & ；Now we define our storage & \\
\hline & & 3830 & ；locations． & \\
\hline & & 3840 & ； & \\
\hline & & 3850 &  & \\
\hline & & 3860 & ； & \\
\hline & & 3870 & ； & \\
\hline & & 3880 & ；MCuRFENT nolds the pointer to & \\
\hline & & 3890 & ；the rext byte to be FuT or GET & \\
\hline \multirow[t]{6}{*}{1FCE：} & 0000 & 3900 & MCUFFENT WOFD 0 & \\
\hline & & 3910 & \％ & \\
\hline & & 3920 & \％MSTOF is set by Close to point & \\
\hline & & 3930 & ；to the last byte FUT，so GET & \\
\hline & & 3940 & ；won＇t try to go past tine end & \\
\hline & & 3950 & ；of data＊ & \\
\hline \multirow[t]{7}{*}{1．FD 0} & 0000 & 3960 & MSTOF＊WOFD 0 & \\
\hline & & 3970 & & \\
\hline & & 3980 &  & \\
\hline & & 3990 & ；and points to the first byte & \\
\hline & & 4000 & ；stored．The bytes are stored & \\
\hline & & 4010 & \％in descendimg adoresses mmtil． & \\
\hline & & 4020 & ；MSTOF is set by Close & \\
\hline \multirow[t]{4}{*}{1FD2．} & 0000 & 4030 & MSTAFT WOFD 0 & \\
\hline & & 4040 & ； & \\
\hline & & 4050 & ；DRTVERTOF becomes the rew & \\
\hline & & 4060 & \％contents of MEitio & \\
\hline \multirow[t]{8}{*}{2000} & & 4070 & DFTUEFTOF \(=\)＊＋的FF会级FF00 & \\
\hline & & 4080 & \％（sets to rext page bonraisry） & \\
\hline & & 4090 & ； & \\
\hline & & 4100 & \％ & \\
\hline & & 41： 0 & ；The rollowiry is how צou make & \\
\hline & & 4120 & \％a LOAD－AND－－foie mramer & \\
\hline & & 4130 & ＊Atari 5 D0S 2 & \\
\hline & & 4140 & ； & \\
\hline 1FD 4 & & 4150 & \％\(=\) \＄2E0 & \\
\hline 02 E 0 & 001 F & 4160 & －WOFD LOADANDGO & \\
\hline & & 4170 & ； & \\
\hline
\end{tabular}


\section*{Program 2.}

100 FEM listirıs of a Frosram to frint token values
101 FEM arid their ATASCII equivalerits
200 ？＂The STATEMENT Tokeri List＂：？
210 AIILF \(=42161:\) SK゙IF \(=2:\) TOKEN \(=0\)
220 GOSUB 1000 ：FEM call the tokeri fririter
300 ？＂The OFEFATOF Token List＂：？
310 ALIIF \(=42979:\) SK゙IF \(=0:\) TOK゙EN \(=16\)
320 GOSUB 1000 ：FEEM asairı call to frint tokeris
400 ENI

1000 FiEM Suhroutirie to fririt a kesword table
1001 FiEM Ori eritry：
1002 FiEM AIIIF＝the address of the kesword table
1003 FiEM SK゙IF＝rumber of butes to skiF
1004 FEM between kesword stririss
1005 FEM TOKEN \(=\) the startiris tokeri rimmber for
1006 FiEM this table
1007 FEM
1050 IF NOT FEEN゙（ALILIF）THEN ？：？：FETUFN
［roote：both tables end with a zero bute］
1060 FFINT TOK゙EN，：FiEM the tokeri riamber
1100 FEM Frint the ATASCII striris for this toren

1120 IF BYTE＜ 128 THEN ？CHF゙ \((\mathrm{BYTE})\) ：GOTO 1100
1130 FFINT CHFक（BYTE－128）：FEM last character
irl kesword has hefer bit ori
1140 ALILF \(=A L M F i+S K I F:\) FEM ari address for stmts
1150 TOKEEN \(=\) TOKEEN +1 ：FiEM to riext keyworg
1160 GOTO 1000


\section*{Part I:}

\title{
A Small Operating System: OS65D The Disk Routines
}

\author{
T. R. Berger \\ Coon Rapids, MN
}

\begin{abstract}
Editor's Note: In this first part of a two-part series, Mr. Berger presents valuable information for all disk drive users. The article concludes next month with a memory map of the disk routines and flowcharts for all the major subroutines. - RTM
\end{abstract}

In this article I will examine the disk routines in OS65D (V3.2 NMHZ). To understand these subroutines, it is neither necessary to know precise details about the physical functioning of a disk drive, nor to know about various methods of storing data on a diskette. However, such background makes it easier to understand what is involved in an operating system, and why certain processes are done as they are. There are several articles [1-3] which offer very good general descriptions of disk drives. Further, manufacturers' drive manuals usually give fairly complete descriptions of individual drives. I only discuss those aspects which are immediately applicable to the functioning of OS65D.

\section*{The Disk Drive}

The typical diskette looks as in Figure 1. A magnetically coated round piece of plastic is enclosed in a protective cardboard envelope which has an inner, slippery plastic liner. The hub of the disk drive engages the large hole in the middle of the plastic diskette causing it to spin very rapidly inside its envelope. There is a long slot in the envelope enabling the head of the drive to make contact with the plastic diskette.

Imagine a large number of concentric circles drawn on the plastic diskette so that part of each circumference is visible through the slot. We call each circle a track on the diskette. When the diskette is in the drive, the head is precisely positioned
under one of these circular tracks, and contact is made with the diskette. The spinning of the diskette causes this track to continually pass over the head. If we imagine the track to be a continuous loop of magnetic cassette recorder head, we can appreciate how one might store data on the disk. If we envision each track as being a different loop of tape then we can begin to see the power of a disk drive.

In some minifloppies, inserting the diskette and closing the drive door brings the head into contact with the diskette. On other drives, there is a little lever with a soft pad attached directly above the head which is below the diskette. On drives swith such a lever, there is a switch which causes this slapping. Turn the switch on and the head engages the diskette; turn it off and the head loses contact with the diskette.

The head can slide back and forth along the long slot in the diskette accessing all the concentric tracks on the diskette. This sliding motion is generally accomplished in one of two ways. The head may be on a screw. Spinning the screw one way or another moves the head in or out. The head may be on a flat metal band which is looped over some shafts, or it may be on a wire which is wound around some shafts. Spinning a shaft causes the head to move. The slide rule dial on most radios works by a similar principle: i.e. the dial pointer is mounted on a string strung over pulleys and wound around the tuning knob shaft. Twisting the knob moves the pointer across the dial. Thus the back and forth motion of the disk head is caused by the turning motion of a motor shaft.

Since the tracks on a disk are very close together, the motor only needs to spin a small fraction of a revolution in order to move the head one track. Very special motors called stepper motors are used for this purpose. When the motor is pulsed, it spins a fixed fraction of a revolution then stops. If pulsed again, it will spin that same fraction again. Clockwise or counterwise motion of the motor shaft translates into back or forth motion of the disk head. Consequently, there are two switches which control this motor: one to determine direction, the other an ON/OFF switch. If we set the direction switch as desired then flick the ON/OFF switch first to on then to off, the disk will move one track.

If we have a memory location in the computer which tells us the track number (say, Track 27) on

GALAXIAN -4 K . One of the fastest and finest arcade games ever written for the OSI, this one features rows of hard-hitting evasive dogfighting aliens thirsty for your blood. For those who loved (and tired of) Alien Invaders. Specify system - A bargain at \(\$ 9.95\) OSI

LABYRINTH - 8K. This has a display background similar to MINOS as the action takes place in a realistic maze seen from ground level. This is, however, a real time monster hunt as you track down and shoot mobile monsters on foot. Checking out and testing this one was the most fun I've had in years! - \(\$ 13.95\). OSI

\section*{THE AARDVARK JOURNAL}

FOR OSI USERS - This is a bi-monthly tutorial journal running only articles about OS systems. Every issue contains programs customized for OSI, tutorials on how to use and modify the system, and reviews of OSI related products. In the last two years we have run articles like these!
1) A tutorial on Machine Code for BASIC programmers.
2) Complete listings of two word processors for BASIC IN ROM machines.
3) Moving the Directory off track 12.
4) Listings for 20 game programs for the OSI.
5) How to write high speed BASIC - and lots more -
Vol. 1 (1980) 6 back issues - \(\$ 9.00\)
Vol. 2 (1981) 4 back issues and subscription for 2 additional issues - \(\$ 9.00\)

\section*{ADVENTURES!!!}

For OSI, TRS-80, and COLOR-80. These Adventures are written in BASIC, are full featured, fast action, full plotted adventures that take \(30-50\) hours to play. (Adventures are interactive fantasies. It's like reading a book except that you are the main character as you give the computer commands like "Look in the Coffin" and "Light the torch".)

Adventures require 8 K on an OSI and 16 K on COLOR-80 and TRS-80. They sell for \$14.95 each.

ESCAPE FROM MARS (by Rodger Olsen)
This ADVENTURE takes place on the RED PLANT. You'll have to explore a Martian city and deal with possibly hostile aliens to survive this one. A good first adventure.

PYRAMID (by Rodger Olsen)
This is our most challenging ADVENTURE. It is a treasure hunt in a pyramid full of problems. Exciting and tough!

TREK ADVENTURE (by Bob Retelle)
This one takes place aboard a familiar starship. The crew has left for good reasons - but they forgot to take you, and now you are in deep trouble.

DEATH SHIP (by Rodger OIsen)
Our first and original ADVENTURE, this one takes place aboard a cruise ship - but it ain't the Love Boat.

VAMPIRE CASTLE (by Mike Bassman)
This is a contest between you and old Drac and it's getting a little dark outside. \$14.95 each.

\section*{NEW-NEW-NEW}

OSI TINY COMPILER
The easy way to speed in your programs. The tiny compiler lets you write and debug your program in Basic and then automatically compiles a Machine Code version that runs from 50-150 times faster. The tiny compiler generates relocatable, native, transportable machine code that can be run on any 6502 system.

It does have some limitations. It is memory hungry -8 K is the minimum sized system that can run the Compiler. It also handles only a limited subset of Basic - about 20 keywords including FOR, NEXT, IF THEN, GOSUB, GOTO, RETURN, END, STOP, USR (X), PEEK, POKE, \(\dot{i}=,!,\langle\langle \rangle, V\) ariable names A-Z, and Integer Numbers from 0.64 K .

TINY COMPILER is written in Basic. It can be modified and augmented by the user. It comes with a 20 page manual.
TINY COMPILER - \$19.95 on tape or disk OSI

\section*{SUPERDISK II}

This disk contains a new BEXEC* that boots up with a numbered directory and which allows creation, deletion and renaming of files without calling other programs. It also contains a slight modification to BASIC to allow 14 character file names.

The disk contains a disk manager that contains a disk packer, a hex/dec calculator and several other utilities.

It also has a full screen editor (in machine code on C2P/C4)) that makes corrections a snap. We'll also toss in renumbering and program search programs - and sell the whole thing for SUPERDISK II \$29.95 ( \(511^{\prime \prime}\) ) OSI

\section*{BARE BOARDS FOR OSI C1P}

MEMORY BOARDS!!! - for the C1P - and they contain parallel ports!

Aardvarks new memory board supports 8 K of 2114's and has provision for a PIA to give a parallel ports! It sells as a bare board for \$29.95. When assembled, the board plugs into the expansion connector on the 600 board. Available now!
PROM BURNER FOR THE C1P - Burns single supply 2716 's. Bare board - \(\$ 24.95\).
MOTHER BOARD - Expand your expansion connector from one to five connectors or use it to adapt our C1P boards to your C4/8P. . \(\$ 14.95\).
16K RAM BOARD FOR C1P - This one does not have a parallel port, but it does support 16 K of 2114 's. Bare Board \(\$ 39.95\).


\section*{WORD PROCESSING THE EASY WAYWITH MAXIPROS}

This is a line-oriented word processor designed for the office that doesn't want to send every new girl out for training in how to type a letter.

It has automatic right and left margin justification and lets you vary the width and margins during printing. It has automatic pagination and automatic page numbering. It will print any text single, double or triple spaced and has text centering commands. It will make any number of multiple copies or chain files together to print an entire disk of data at one time.

MAXI-PROS has both global and line edit capability and the polled keyboard versions contain a corrected keyboard routine that make the OSI keyboard decode as a standard typewriter keyboard.

MAXI-PROS also has sophisticated file capabibilities. It can access a file for names and addresses, stop for inputs, and print form letters. It has file merging capabilities so that it can store and combine paragraphs and pages in any order.

Best of all, it is in BASIC COS65D 51/4" or \(8^{\prime \prime}\) disk) so that it can be easily adapted to any printer or printing job and so that it can be sold for a measly price.
MAXI-PROS - \(\$ 39.95\). Specify \(51 / 4\) or \(8^{\prime \prime}\) disk.
SUPPORT ROMS FOR BASIC IN ROM MA-
CHINES - C1S/C2S. This ROM adds line edit functions, software selectable scroll windows, bell support, choice of OSI or standard keyboard routines, two callable screen clears, and software support for \(32-64\) characters per line video. Has one character command to switch model 2 C1P from 24 to 48 character line. When installed in C2 or C4 (C2S) requires installation of additional chip. C1P requires only a jumper change. - \(\$ 39.95\)
C1E/C2E similar to above but with extended machine code monitor. - \$59.95 OSI

\section*{ARCADE GAMES FOR OSI, COLOR- 80 AND} TRS-80 ( 8 K OSI, 16 K TRS-80 AND COLOR-80)

TIMETREK - A REAL TIME, REAL GRAPHICS STARTRECK. See your torpedoes hit and watch your instruments work in real time. No more unrealistic scrolling displays! \$14.95.
STARFIGHTER - This one man space war game pits you against spacecruisers, battlewagons, and one man fighters, you have the view from your cockpit window, a real time working instrument panel, and your wits. Another real time goody. \(\$ 9.95\)
BATTLEFLEET - This grown up version of Battleship is the toughest thinking game available on OSI or 80 computers. There is no luck involved as you seek out the computers hidden fleet. A topographical toughie. \(\$ 9.95\)
QUEST - A NEW IDEA IN ADVENTURE GAMES! Different from all the others, Quest is played on a computer generated mape of Alesia. Your job is to gather men and supplies by combbat, bargaining, exploration of ruins and temples and outright banditry. When your force is strong enough, you attack the Citadel of Moorlock in a life or death battle to the finish. Playable in 2 to 5 hours, this one is different every time. 16 K COLOR-80 OR TRS-80 ONLY. \(\$ 14.95\)
which the head is currently positioned, and we move the head outward one track on the diskette (the outermost track is Track 0 ) then we may decrease the number in memory by one (to Track 26). In other words, we may move from any track to any desired track just by stepping and counting. A single step occurs very rapidly, more than 100 steps per second are usually possible. Of course, this stepping method will only work if we know the current track number on which the head is located.

Most drives have a special indicator to tell when the head is positioned over the outermost track (Track 0). Moving the head out until this indicator comes on allows us to set a track counter to 0 precisely when the head is at Track 0 .

When the head is down on a particular track, several operations are possible. The head can read (playback) data from the diskette, or it can write (record) data on the diskette. In addition, an erase function can be switched on. If we erase only, the track will be erased. However, if we erase and write at the same time, the erase function narrows the data stream keeping it from widening into neighboring tracks. The disk has a switch which causes the head to write if on and read if off. An additional switch turns the erase function on and off.

If you look down on some spinning circular object (e.g. a turning phonograph record), you will

\section*{Table 1.}

DISK STATUS LINES
PAO DRIVE 1 READY
PA1 HEAD AT TRACK 0
PA2 FAULTINDICATOR
PA3 SECTOR HOLE
PA4 DRIVE 2 READY
PA5 DISK WRITE PROTECTED
PA7 INDEX HOLE
DISK CONTROL LINES
PB0 ENABLE WRITE FUNCTION
PB1 ENABLE ERASE FUNCTION
PB2 STEP MOTOR DIRECTION (IN)
PB3 STEP MOTOR ON (OFF)
PB4 FAULT RESET
PA6 DRIVE \(1 / 2\) SELECT
PB5 DRIVE \(1 / 2\) SELECT
PB6 SET HEAD RECORD CURRENT TO LOW
PB7 PUT HEAD ONTO DISKETTE
The disk PIA has two ports ' \(A\) ' and ' \(B\) '.
PORT A \(\quad \$ \mathrm{C000}\) (with bits PA0-PA7)
PORT A CONTROL REGISTER \$C001
PORT B \$C002 (with bits PB0-PB7)
PORT B CONTROL REGISTER \$C003
The disk has an ACIA
SERIAL PORT
\$C011
STATUS/CONTROL REGISTER \$C010
OS65D configures this port for 8 bit bytes with even parity and 1 stop bit (\$58).
see that the outer edge is moving much more quickly than any inner part. In particular, on a diskette, each track moves at a different speed past the head. These radical changes in head speed from inner to outer tracks pose difficult problems in obtaining uniform recordings on all tracks of the diskette. Some drives compensate by having two possible recording levels: one for inner tracks, the other for outer tracks. A switch is needed to move between these two modes.

If you own more than one drive, there are switches which allow the computer to select any one of these drives.

In Table 1, under CONTROL LINES, you will see that the computer has a bit to control each of the switches just described. Other than a serial port through which data flows and its associated control location, these are all the control lines used by OS65D to run the disk.

As already mentioned, there are also STATUS LINES to the computer which indicate current conditions at the disk. There is an indicator to tell

Table 2.
8 INCH FLOPPY TIMING
\begin{tabular}{|c|c|c|c|c|}
\hline \#Sectors & Total Pages & Pages Last Sector & Time & DT \\
\hline 1 & 13 & 13 & 162768 & 3900 \\
\hline 2 & 13 & 10 & 166203 & 464 \\
\hline 3 & 13 & 10 & 166638 & 29 \\
\hline 4 & 12 & 1 & 163209 & 3458 \\
\hline 5 & 12 & 1 & 163144 & 3023 \\
\hline 6 & 12 & 1 & 164079 & 2588 \\
\hline 7 & 12 & 1 & 164514 & 2153 \\
\hline 8 & 12 & 1 & 164949 & 1718 \\
\hline 9 & 12 & 1 & 165384 & 1283 \\
\hline 10 & 12 & 1 & 165819 & 848 \\
\hline 11 & 12 & 1 & 166254 & 413 \\
\hline 12 & 12 & 1 & 166689 & -22 \\
\hline \multicolumn{5}{|l|}{\(t(\) us. \()=8101+12864 \times \mathrm{pp}-1000 \mathrm{xr}+435 \mathrm{xn}\)} \\
\hline \multicolumn{5}{|c|}{\[
\begin{aligned}
& \mathrm{p}=\text { number of pages in track } \\
& \mathrm{r}=\text { number of pages in last track } \\
& \mathrm{n}=\text { number of sectors }
\end{aligned}
\]} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
166667 us. \(=\) time on one track \\
DT = time left on track
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{MINIFLOPPY TIMING} \\
\hline \# Sectors & \begin{tabular}{l}
Total \\
Pages
\end{tabular} & Pages Last Sector & Time & DT \\
\hline 1 & 8 & 8 & 193986 & 6014 \\
\hline 2 & 8 & 3 & 199641 & 359 \\
\hline 3 & 8 & 4 & 199296 & 704 \\
\hline 4 & 8 & 4 & 199951 & 49 \\
\hline 5 & 7 & 1 & 179478 & 20522 \\
\hline 6 & 7 & 1 & 180133 & 19867 \\
\hline 7 & 7 & 1 & 180788 & 19212 \\
\hline 8 & 8 & 1 & 205571 & -5571 \\
\hline
\end{tabular}
\(t(\) us. \()=8307+24128 \times p-1000 \times r+435 \times n\)
200000 ux. \(=\) time on one track

\section*{SPEED POWER EFFICIENCY}

\section*{for}
OSI
65D3 SYSTEMS

\section*{SPUL65: Printer Spooler Virtual Indirect File}
- STOP WAITING for your printer!
- PROCESS words, write programs...all while printing!
- QUEUE lets you pile on print jobs
- TWO printers may be accomodated on any two ports.
- MULTIPLE COPIES with top and bottom page margins.
- SYSGEN relocates and permits extensive customization
- VIRTUAL INDIRECT FILES on disk. End space problems when using temporary files. Now do extensive editing of BASIC with your word processor.

XREF: BASIC Cross Referencer
- TABULATES: Referenced line numbers, variable names (numeric, string, array), and defined functions.
- FAST machine language program
- DISK based for large BASIC source files on any drive.


Data Resource Corporation
Suite 203
1040 Lunaai Street
Kailua, HI 96734
(808) 261-2012
\$95/\$10

FBASIC: BASIC Compiler
\$155/\$10
- FAST machine code written with the ease of BASIC.
- SPEED-optimized, native-code compiler.
- INTEGER subset of OSI-supplied BASIC.
- DISK based to allow largest source and object files.
- EXTENSIONS to BASIC:
- Simple interface to system hardware and software.
- Direct access to 6502 registers.
- Array initialization and optional absolute location.
- WHILE and other structures.
- Combine compiler and interpreter advantages.
- UTILITIES (plus source), manual, and many examples.

R-EDIT: Edit any program or text!
- FULL CURSOR control. Edit anywhere on the screen.
- INSERT, replace, add, delete with RAM-resident editor.
- ONE KEY stroke and you're editing.
- BASIC, assembler, etc. edited without reloading R-EDIT.
- SYSGEN relocates R-EDIT and permits extensive customization.

CP/M to OSI
Disk Translation Service
Frustrated by all those good CP/M disks that won't run on your OSI CP/M system? It's that special OSI disk format! And we can fix that. Just send us your disk, \$15, and you'll soon have an OSI compatible disk.

Manual orders applied to softwate purchases. Programs supplied on 8 -in, single-density. single-sided disks. Hawaii residents add 4\% tax
if a drive is ready (i.e. if the drive door is closed indicating a diskette is mounted and ready). There may be an indicator to tell if a diskette is write protected. Finally there is an index hole detector. These indicators are all listed in Table 1 under STATUS LINES. You will see a few more than mentioned here. These are not used by OS65D.

Let's examine the function of the index hole a little more closely. In Figure 1 you will see a small, off-center hole punched in the diskette. (It is off center to prevent functioning if the diskette is inserted into the drive wrong side up.) As the diskette spins, the drive detects when this hole passes over a special indicator. This passage marks the beginning of a track. To find the beginning of a track, the computer moves the head to a track, puts the head on the diskette, and waits for the index hole to flash by.

Once the index hole has passed, the data format on the diskette becomes important. The few methods for encoding data magnetically on the diskette are standardized and adhered to by almost all drive manufacturers. Thus one bit sent to BRAND X drive will be recorded in just about the same way as one bit sent to BRAND Y (i.e. the bit will be recorded in one of about three standard ways). There are a few exceptions to this rule.

This standardization allows computer manufacturers to use drives from different disk manu-
facturers on the same computer. OSI supplies computers with Shugart, Siemans, and other drives without explicitly telling the buyer which drives he is getting.

Most computer manufacturers send bits from their computers to disk drives as a steady stream of bits, eight bits per byte, and a fixed number of bytes per stream. At the end of a stream are two more bytes called a checksum of cyclic reduncancy

Figure 1.


Drive
Hub
check (CRC). These two bytes are usually the sum of all the previous bytes in the stream. On reading the stream, the checksum can be recomputed from the stream and compared with the checksum recorded on the diskette at the end of the stream. If there is a mismatch, an error has occurred somewhere in the stream.

OSI does not follow this format. They treat disk communication as an asynchronous communication line. In other words, except for the speed of the bits, the computer sends bits to the disk drive in the same way it sends bits to a modem: through a special serial port called an Asynchronous Communication Interface Adapter (for short, an ACIA, UART, or just serial port). OS65D requires 11 bits to be recorded on the diskette for each eight-bit byte. The first bit is a start bit indicating that the byte is beginning. The next eight bits (bits 2-9) are the actual data byte. The tenth bit is a parity bit indicating whether the byte contains an even or an odd number of value one bits. The last bit is a stop bit indicating the end of the byte.

The disadvantages of this method are twofold. First, it is nonstandard. OSI owners cannot interchange disks made by computers of other manufacturers. Second, OSI can store only \(8 / 11\) as much on a disk as other manufacturer's computers.

The advantages are reliability and simplicity. An inexpensive ACIA performs many chores simplifying software and hardware. No cyclic redundancy checks are needed. Each byte can be individually checked for an error by the ACIA. If there is a disk error, usually all but a few bytes can be recovered correctly using the EXAMINE command of OS65D. Other systems make recovery much more difficult. A bit error can cause all bits in a stream to shift by one. In other words, bit two of a byte may be read as bit one, and bit zero of a byte may be read as bit seven in the previous byte. OS65D does an excellent job of error detection. It is a shame that, in a system with such excellent opportunities for error recovery, OS65D has absolutely none. If BASIC encounters a disk error, a program stops with a terse error message.

\section*{Track Format}

Figure 2 gives the actual data format for an OS65D diskette track. Note that the Track 0 format differs from all other tracks. In particular, Track 0 can only be used by the bootstrap ROM. Track 0 contains the major portion of OS65D and is given added protection by this scheme, but I believe OSI blundered in choosing this format. All tracks should be recorded the same way to maximize flexibility.

The data on a track commences 1 ms . past the index hole (about 23 bytes in time at 44 us./byte). Two bytes are written to indicate the beginning of

Figure 2.
FORMAT FOR TRACKS (>0)
\begin{tabular}{llllllll}
\begin{tabular}{l} 
Index \\
Hole
\end{tabular} & 1 ms. & \(\$ 43\) & \(\$ 57\) & Track \# & \(\$ 58\) & 6615 us.
\end{tabular}\(\ldots\)

FORMAT FOR TRACK 0
\begin{tabular}{lllll}
\begin{tabular}{lll} 
Index \\
Hole
\end{tabular} & lms. & \begin{tabular}{c} 
Load \\
vector high
\end{tabular} & \begin{tabular}{c} 
Load \\
vector low
\end{tabular} & \#Pages \\
\hline
\end{tabular}
... That many Pages of Data ...
a track. The bytes should be carefully chosen so as to be an unusual combination. OS65D always writes \(\$ 43\) then \(\$ 57\). When the track is read, reading does not commence until the \(\$ 43\) and \(\$ 57\) have been found. A simple encryption method would be to change these bytes. Since the EXAMINE command will even read such a track, this encryption is not terribly secure. OS65U uses different bytes, so OS65U tracks cannot be read by OS65D without minor changes to the operating system.

Next the track number is written in binary coded decimal (BCD). This recorded value is always compared with the stored track number in memory to make certain the head is positioned on the correct track. Then a stop byte \((\$ 58)\) is recorded on the disk (this byte is never checked on a read).

This data constitutes the Track Header. On Initialization, a track is erased then the Track Header is written on the Track. This Track Header is not rerecorded at any future read or write.

There is a lull after the Track Header of just under 6.6 ms . (about 149 bytes). This time differs greatly from the time given in the OS65D GUIDE. You will see why in the following discussion.

During a sector seek operation, a "previous sector" length number \(p\) is saved. This value is set to four if we seek Sector 1 (otherwise the "previous sector" length number would be zero, which is not allowable). Then a subroutine waits px800 \(\mu \mathrm{s}\). The OS65D GUIDE says that between Sector N and Sector \(n+1\) there is a gap of \(\mathrm{px} 800 \mu \mathrm{~s}\). This is not quite correct. After the end of a sector, OS65D waits quietly for \(\mathrm{px} 800 \mu \mathrm{~s}\). The write function is then switched on. A further \(185 \mu \mathrm{~s}\). is allowed to pass. Then the erase function is switched on. We now wait an additional \(\mathrm{px} 800 \mu \mathrm{~s}\). before starting to write data. In other words, the time from the last byte of sector \(n\) to the first byte of sector \(n+1\) is about px \(1600+185 \mu \mathrm{~s}\). For Sector 1, p is taken to be four. In all other cases, \(p\) is the length (in pages, i.e. multiples of 256 bytes) of the "previous sector."

This description requires modification. It applies to systems with a 1 MHZ clock. On cold
start, OS65D measures the timing on a serial port to calculate the clock speed. (Remember, a 300 baud port must remain 300 baud no matter what the clock speed.) Then a timing constant in the 1 ms . subroutine is set. However, this calculation does not affect the 100 us. routine used in sector spacing. (I assume this clock versatility is the reason for the NMHZ in the title of this version of OS65D.) In other words, the 100 us. routine is really a 100/ T us. routine where T is the clock speed in MHZ.

This calculation accounts only for the wait loops in intersector timing. In addition, there is quite a bit of inline code which adds to intersector timing. This timing can be calculated. A crude estimate would be to add an additional \(30 \mu \mathrm{~s}\). after each sector. In other words, the sector spacing is \((\mathrm{p} \times 1600+215) / \mathrm{T}\)
where \(T\) is the clock speed in MHZ, and \(p\) is the number of pages in the preceding sector. Your disk does not necessarily write diskettes identically with mine, though either computer should read the other's diskettes.

All of this says there is some kind of empty space between the end of the Track Header and the start of Sector 1. Each sector is completely rewritten each time it is addressed in a write operation. A sector is written as follows.

We put a sector start code \((\$ 76)\) on the disk. Next comes the sector number \(s\), then the sector length \(p\) in pages (each page is 256 bytes). The smallest unit of disk storage in OS65D is one page. The sector number \(s\) is verified on a read operation with the value in memory. The sector length is used on read to calculate the number of bytes to load from the disk.

Now comes the actual data. The amount of data is px 256 bytes where p is the number of pages in the sector. After this data comes two end check bytes \((\$ 47, \$ 53)\) marking the end of a sector. Thus the sector if \(5+\mathrm{px} 256\) bytes long. The gap between sectors has already been described. Each succeeding sector follows the same format. This format is pictured in Figure 2. This discussion does not apply to Track 0 .

Before discussing Track 0 , let's make a few calculations. We assume we have 8 " floppies and a 1 MHZ clock (this latter enters in only for the timing between sectors). We discuss how many and what kind of sectors may be put on a track. The discussion is important for the following reason: on a write operation, OS65D checks for the index hole when seeking a Track Header. This keeps the computer from "hanging" on uninitialized tracks (i.e. tracks without a Track Header). In writing sector n , the computer must read the preceding sectors \(1,2, \ldots, \mathrm{n}-1\). For each of these, while the computer is searching for the sector start code, it
also watches for the index hole to come around again (also to avoid "hanging" on a sector seek). After the start of the preceding sector, the computer no longer checks to see if we pass the index hole. The reason for this is simple. At 1 MHZ with 8 " floppies there is just not enough time between input or output bytes from the disk to check for the index hole and to do all the other operations required during a read or write operation.

If the index hole passes, we are back to the beginning of the track. If 1 ms . passes, we're over the Track Header again. Obliterating the Track Header destroys the readibility of the Track. Experienced programmers may salvage matters using the EXAMINE command, but this is not a task you want to face. Moral: Don't pass the index hole a second time on a write operation.

If you're not a whiz at algebra, skim over this part until we start drawing conclusions.

We wish to derive a formula for the time from the index hole to the time the head stops writing on the diskette after sector \(n\). If this time occurs before a second appearance of the index hole, then \(n\) sectors will fit on a track. We must account for all the time from the first appearance of the index hole until the write function is switched off after the last sector.

The disk spins at 360 rpm . Thus one revolution takes \(166,667 \mu \mathrm{~s}\). The disk data clock runs at 250 KHZ. In particular, each bit takes four \(\mu \mathrm{s}\). Since an OSI byte uses 11 bits, \(44 \mu \mathrm{~s}\). are required per byte. If we could pack a track, this means we could fit 3,787 bytes on a track. But a track is not packed. It is formatted, and we must calculate the formatting time.

We use 1000 us. from the index hole to the Track Header. The Header is four bytes long using 176 us. more. As we have seen, from the Track Header to the start of Sector one, we use \(4 \times 1600+215\) or 6615 us. In particular, \(7791 \mu \mathrm{~s}\). are spent between the index hole and the start of Sector one.


Each sector contains an integral number of pages. Thus, all sectors contain, as an aggregate, \(p\) pages. Each byte takes 44 us. and there are 256 bytes per page. Thus all these pages account for \(11264 x p\) us.

Each sector has five extra bytes. Thus, for \(n\) sectors, we have 220 xn 山s.

Next we must account for all the wait time after each of the \(n\) sectors. Recall that the wait from one sector to the next is \(q \times 1600+215 \mu \mathrm{~s}\). where \(q\) is the number of pages in the preceding sector. Since we assume \(n\) sectors are on a track, there are only \(n\) - 1 spaces between \(n\) sectors. If the last sector has \(r\) pages, then the preceding \(n-1\) contain \(p-r\) pages altogether. Thus, the total intersector wait time is \(1600 x(p-4)+215 x(n-1) \mu \mathrm{s}\).

Finally, we must account for the time after the last sector is written until the write and erase functions are switched off. Write and erase continue for 600 xr us. after the last byte is written. Then write is switched off and erase continues for 525 \(\mu \mathrm{s}\). more before it too is switched off. This total trailing time is \(525+600 \mathrm{xr} \mu \mathrm{s}\).

By adding all our derivations, we can make the following statement. For 8 " floppies with a one MHZ clock, the total recording time for \(n\) sectors is
```

t(\mus.)=8101+12864xp-1000xr}+435\times

```
where \(p\) is the total number of pages of data in the sectors and \(r\) is the number of pages in the last sector.

Remember, OS65D must run on all OSI machines, so this formula gives the "worst case" which must always be satisfied. In Table 2 you will see a few 'upper limit' values tabulated (dt gives the 'time remaining' in the track).

Recalculate \(t\) for your system. A minifloppy spins at 300 rpm . and the data clock is 125 KHZ . Experiment with a few values for \(n\) and \(p\) in the formula. Try actually recording this amount on a disk. Be sure to use an empty diskette track. What is wrong with filling the blank space between the index hole and the Track Header with data? (Think about \(\$ 43, \$ 57\).) The maximum allowable number (plus one) of pages per sector in OS65D is stored in \(\$ 27 \mathrm{ED}\). You may wish to change this for your experiments.

Notice that OSI recommends a maximum of 13 sectors when only one sector is written on a track, and eight sectors ( 12 sectors in early GUIDES) if more than one sector is written on a track. The early GUIDE value is "just barely wrong." The later value is obviously a shot in the dark meant to be conservative. It is probably the case that many drives would accept 12 single page sectors in a track. But even 11 sectors, including 12 pages, leaves very little room for errors.

\section*{INTRODUCING . . . TEACHER'S AID}

DR. DALEY'S SOFTWARE is excited about our latest software release-TEACHER'S AID.
TEACHER'S AID is the grade management system you've been waiting for. Its many features mean that you can be free from the drudgery of hours of record keeping and grade reporting. Now you can devote more time to the pleasures of teaching.
TEACHER'S AID is easy to use, menu driven and features-
1. Flexible class assignment structures. This means that you can set up and keep records of any combination of homework, quiz, test, lab, etc. scores.
2. Grade averaging done in a variety of ways. Grade averages can be prepared using weighted scores, possible scores, tables, percent, or a combination of these methods.
3. Student progress reports.
4. An individualized list of missing assignments.
5. Easy editing and additions to any of the files.
6. Reports on either the screen or printer.

All of this power is yours for only \(\$ 59.95\). TEACHER'S AID comes on disk complete with comprehensive, easy to read documentation, packaged in an attractive binder.
When ordering please tell us your computer configuration. TEACHER'S AID is available on these systems:
Apple II or Apple II Plus
( 32 K with single disk)
Pet or CBM 2000, 3000, or 4000 series
( 16 K with 2040 or 4040 disk)
TEACHER'S AID will be ready soon on the Atari 800 and TRS-80 Model I or Model III.

Call or write for details of our other software offerings.

NOTE OUR NEW ADDRESS
DR. DALEY'S SOFTWARE
Water Street
Darby, MT 59829


Phone: (406) 821-3924
(Hours: 10 a.m. to 6 p.m. Mountain Time)


\title{
A Yuletide Tale
}

\begin{abstract}
Editor's Note: We recently received the following query letter from a Mr. C. Pickins. While we will not be able to accept C's fictional endeavors, we felt his timely outline might be of interest to our PET/CBM readers. We have put C (not his real name surely) in touch with Dr. Chip. Perhaps we'll see the fruit of later joint collaboration. - RCL
\end{abstract}

\section*{Dear Mr. Lock,}

I have this great story outline that I thought COMPUTE! might like to follow up. It's just that I don't know if you publish fiction submissions.

It's this heartwarming story about a fellow called Scrooge Tramiel, who runs a pet shop in old London, or California, or Philadelphia or somewhere (funny, the location seems to shift every time I think of it). Anyway, he exhorts his lowly clerk, a fellow by the name of Cratchit Finke, to work through the holidays on a new computer system to be called the Humbug III, and leaves to go home.

Well, what should happen but this guy runs across the ghost of his former partner, Jacob Peddle, who rattles chains and chips and emits fearful moans in all directions. The upshot of this visitation is that Scrooge is going to be visited by three more spectres: the barrister of Christmas past, the solicitor of Christmas present, and the lawyer of Christmas future.

Faster than you can say, "restraining order", the Christmas past fellow pops up and reminds Scrooge of how helpful he used to be to others. "Spirit, why do you torture me so?" wails Scrooge. "Yes, I gave that young fellow a chip to play with ... and he promptly founded Apple Computers with it. Indeed, Radio Shack got its start in the time period between when I announced my computer and started delivering it."

Just then, the digital clock beeps and along comes Christmas present. Not a Christmas present, you understand; just the Ghost of a Christmas present, who shows retailers warming themselves over the glow of their CRT screens. "Everybody else's model three has failed," they seem to be saying, "will Scrooge come through for us?"

An announcement of the digital cuckoo clock heralds visitor number three, the spirit of Christmas future. The screen swirls uncertainly ... coughing and gasping, Scrooge peers through the orange smoke ... is that IBM gaining credibility? What's going on here? The Spirit intones, "I see unused joysticks by the fireplace..." But begging and pleading

and threats of countersuits reveal that it ain't necessarily so ... there's still time to reform.

Dawn is breaking. Maybe the light is dawning, too, for Scrooge rushes over to the window and shouts at a passing boy, "Bring me the biggest goose you can find! My competitors have all the turkeys!"

And the story ends with a traditional Christmas scene ... as Tiny Tim says, "God help us, every one!".

Whaddya say, Mr. Lock? Do you think you can use the story?

\title{
Renumbering An Appended Routine Only
}

\author{
Elizabeth Deal Malvern, PA
}

There is a way to append a program to another in the PET even if the line numbers are out of order. It will be shown here for the upgrade ROM tape system. It should work on other PETs. The scheme uses the Toolkit \({ }^{\text {TM }}\) or its equivalents.

Suppose that program A exists in the PET and that its line numbers range from 100 to 2000. Suppose, further, that we would like to append a program B with line numbers which are lower than (or overlap) those of program A: for instance 15 to 340. As long as program B contains no GOTOs and no GOSUBs, one renumbering of the entire A-plus-B package will set the line numbers in order. Consequently, target addresses in program A will remain meaningful.

When, however, program B contains GOTOs and GOSUBs, we are in violation of the "appended program must have higher line numbers" rule. And that means save one piece, put the other one in, renumber it, save again, load again ... ad infinitum. Disk people can do it in a jiffy. It's tough for tape owners though.

Some rules just beg to be broken and this is one of them. A simple solution consists of temporarily hiding program A from PET's view by swapping some pointers around. Just before loading program B we tell the PET that the BASIC area begins at the end of program A or exactly two (2) bytes back from the start of variables pointer (4243). We do this carefully by use of the Machine Language Monitor where we replace contents of \(\$ 28-29\) with contents of \(\$ 2 \mathrm{~A}-2 \mathrm{~B}\) minus 2 . Or by these direct BASIC commands:
```

AD = (PEEK(42) + PEEK(43))-2: AH% = AD/256
POKE40,AD-AH%*256:POKE41,AH%

```

This has to be entered correctly the first time or things get somewhat messy.

At this point we can append program B. It will be placed, in the usual manner, at address AD. We can list this program. And we can RENUMBER it, for instance, with 3000,10 parameters sent to the TOOLKIT.

To finish the process we reset the start of BASIC pointer to its original value, decimal 1025, hex \(\$ 0401\), or whatever other number we have jotted down in case of being in a partition. In BASIC, the reset can be done by:

\section*{POKE40,1:POKE41,4}

Using the Monitor, the reset to 1025 decimal is done by putting \(\$ 01\) into \(\$ 0028\) and \(\$ 04\) into \(\$ 0029\).

Program A reappears on the scene and the entire package is ready for use.
\begin{tabular}{cccc}
\hline \multicolumn{4}{c}{ Pointer addresses for various releases: } \\
& \multicolumn{3}{c}{ Original }
\end{tabular} \(\left.\begin{array}{c}\text { Upgrade } \\
\text { and } 4.0\end{array}\right]\)\begin{tabular}{ccccc} 
Start of Basic low byte & 122 & \(\$ 7 \mathrm{~A}\) & 40 & \(\$ 28\) \\
high byte & 123 & \(\$ 7 \mathrm{~B}\) & 41 & \(\$ 29\) \\
Start of variables low byte & 124 & \(\$ 7 \mathrm{C}\) & 42 & \(\$ 2 \mathrm{~A}\) \\
high byte & 125 & \(\$ 7 \mathrm{D}\) & 43 & \(\$ 2 \mathrm{~B}\) \\
\hline
\end{tabular}

\title{
OLD PET OWNERS NEVER DIE or ..........they JUST CALL on Us! is
}

Our innovative line of hardware products protect the investment in your original version \(4 \mathrm{~K} / 8 \mathrm{~K}\) PET by extending its life and usefulness. Our software works on most PET/CBMs.
- 2114-TO-6550 RAM ADAPTER

Replaces up to eight 6550 RAMs with low cost, reliable 2114 s-one at a time. Use two units for total 6550 replacement. Never worry about RAM availability again!
\begin{tabular}{|c|c|c|}
\hline PHB-001 & Bare Board & \$11.95 \\
\hline PHK-001S & Full Kit (No 2114s) & \$17.95 \\
\hline PH-001S & Assembled (No 2114s) (\$2.50 postage & \[
\$ 24.95
\]
handling \\
\hline
\end{tabular}

Installs easily internally. Uses eight 2114 Ls . Write protect provisions. Second expansion needs external +5 V power. "Soft-ROM" applications. Bigger programs!
\begin{tabular}{llr} 
PHB.002 & Bare Board & \(\$ 16.00\) \\
PHK.002 & Full Kit (No 2114s) & \(\$ 29.00\) \\
PH.002S & Assembled (No 2114s) & \(\$ 42.00\) \\
PH.002 & Assembled with 2114s & \(\$ 89.00\)
\end{tabular} ( \(\$ 3.00\) postage/handling per order)
- "REAL WORLD" SOFTWARE

For most PET/CBMs. Word Processor, Mailing List, Catalog, Satellite Tracker, Morse Code Keyer, Frequency Counter. Professional results at low cost!
\$17-\$25
Write for Free Catalog
PROMPT SHIPMENT!
ATISFACTION GUARANTEED
California Residents, add 6\% Tax
Foreign Shipping Higher


\title{
BRANCH NEVER And QUIF Assembling On SuperPET
}

\author{
Richard Mansfield \\ Assistant Editor
}

\section*{Ever hear of QUIF? Or HI, ISUPPER, STOI, FSEEK, TABLELOO, COMA, ORB, PULB, SEX,} COMB, or BRA? These are some of the 6809 mnemonics, utilities library macros, and "structured programming" statements available to you when you assemble on the SuperPET. The Waterloo 6809 Assembler permits machine language programming which is somewhat like programming in higher level languages. Along with the Assembler is an Editor, a Linker (to connect modules), and a monitor.

Making the transition to this assembler involves two major adjustments: you are now working with a 6809 and you are using a complicated assembler. If you are accustomed to working with simple assemblers (Supermon, Extramon, Micromon, or others), you will be baffled at first by the requirements of this assembler. Before looking into the significant differences between 6809 and our familiar 6502, let's see what is required if you decide you want to place the letter "a" in the upper left corner of your screen.
```

Simple 6502 Version:
0360 LDA \#\$41
0 3 6 2 ~ S T A ~ \$ 8 0 0 0 ~
0 3 6 5 ~ B R K
Waterloo 6809 Assembler Version:
lda \#'a
sta $\$ 8000$
swi
end

```

SWI means software interrupt and resembles BRK on the 6502. (There are three software interrupts available: SWI, SWI2, and SWI3.) The apostrophe allows you to enter the actual letter which will be translated into the correct value for you. Otherwise, it's fairly simple at this point. You are in the Editor here (no need for addresses yet - they will be created later). The creation of your final, "object" code takes several steps: you must save this
"file" to disk by typing p (for PUT) name.asm. Then, when the ASM file is on disk, you type BYE to get into the menu and select \(a\) (assemble) and you are asked for the filename, so you type: name. (It adds the ".asm" for you.)

The assembler makes two new files on the disk: name. 4 st and name.b09. The first is a fairly straightforward listing of the source code with line numbers, object codes, mnemonics, and any comments separated into appropriate fields on screen. Name.b09 is a file containing the object code to be used later by the Linker.

Your next step is to return to the Editor and make a fourth file:
"name"
org \(\$ 1000\)
"name.b09"
and PUT it to disk under the title "name.cmd." The first line here names the "load module," the second line defines the starting address of the object code, and the third line names the object code file to be used in the linking process.

Then you type BYE again, select Linker from the menu, and type: name. (The linker will add ".cmd" to the name.) The linker creates two more files (for a total of six): name.mod (executable load module) and name.map (tells how name. 609 was mapped into name.mod).

Now you are ready to run your program. You enter the monitor by typing " M " from the menu and then type: I name.mod (to load the "module"). You can then type : g 1000 and, voila!, an "a" appears on your screen.

\section*{The Monitor And Linker}

Like TIM (the resident monitor on PET/CBM computers) the SuperPET monitor has several commands which are useful for debugging (Bank, Clear, Dump, Fill, Go, Modify, Passthrough, Quit, Registers, Stop, and Translate). "Bank" allows you to access any of the 16 banks of upper RAM for reading or writing. "Stop" sets breakpoints and "Clear" clears them. "Dump" is equivalent to " M " on TIM. "Modify" permits the same changes as "Dump," but in the form M ff 1233 (where the byte at \(\$ 00 \mathrm{ff}\) now becomes \(\$ 12, \$ 0100\) becomes \$33). "Quit" is like TIM's "x." "Passthrough" sends all input to a host computer and permits all output from the host to appear on screen.
"Translate" is a disassembly. Curiously, there is no provision for single-stepping or for SAVEing from the monitor. A single-step program exists (it was used at Waterloo to create the SuperPET languages), but it was not included in the monitor. As for SAVE, it was planned, evidently, that modules should be only created from the upper levels of the development system, following the steps

\section*{OISHSHARE 900 Multi
User
System}
- Works with all combinations PET/CBM models.
- 100\% Hardware. No software required!
- No special commands, User TRANSPARENT!
- Up to 8 users can share a disk \&/or printer.
\(-10,15,20, \& 25\) foot cables available.
- Connects in minutes, no tools necessary.
- Ideal for EDUCATIONAL \& BUSINESS needs.
- Increases productivity - Reduces Costs!
\begin{tabular}{lll} 
DISKSHARE 9000-3 & 3 USER SYSTEM WITH 6ft. CABLES & \(\$ 895.00\) \\
DISKSHARE 9000-8 & 8 USER SYSTEM WITH: & \(\$ 1295.00\) \\
& -THREE Gft. CABLES \\
& -THREE 10ft. CABLES & \\
& -TWO 15ft. CABLES & \\
DISKSHARE 9001-6 & ADD-ON CABLE (6 FOOT LENGTH) & \(\$ 179.95\) \\
DISKSHARE 9001-10 & ADD-ON CABLE (10 FOOT LENGTH) & \(\$ 99.95\) \\
DISKSHARE 9001-15 & ADD-ON CABLE (15 FOOT LENGTH) & \(\$ 119.95\) \\
DISKSHARE 9001-20 & ADD-ON CABLE (20 FOOT LENGTH) & \(\$ 139.95\)
\end{tabular}

For More Information Call:

\section*{Questar International Inc.}

Suite 102
7270 Woodbine Avenue,
Markham, Ontario Canada
(416) 490-8044
dealer and distributor inquiries invited
outlined above which result in six files per module.
The linker knits the relocatable object modules (name.b09) into longer executable load modules. The linker is invoked by creating the name.cmd file mentioned above and including various commands in this file. "Org" specifies the desired starting address for the code. "Banksize" defaults to \$1000 if not specified and "Bankorg" defaults to \(\$ 9000\). Programs or modules may be loaded into specified banks with the "Bank" command. To merge external routines from the system library (or from your personal library of modules), use the "Include" command. Finally, "Export" sets aside some memory (Export bytespace \(=\$ 7 b 00\) ) which is named "bytespace" and reserved for tables, etc. Following its definition, "bytespace" can be referenced by any routine using the statement: xref bytespace.

\section*{The 6809}

As Figure 1 illustrates, the most obvious novelties in the 6809 are the addition of Accumulator B, the second (User) Stack, a Direct Page register, and half-carry, fast IRQ, and Entire State Saved condition flags. In addition, of course, the Y, X, and Accumulator registers and the stack pointers are
expanded to 16 bits. Some of these improvements facilitate simplified addressing since a 16 bit register can address an entire 64 K . Likewise, a stack can now be located anywhere in memory and be of any size desired. The A and B Accumulators can be concatenated to form Accumulator D ( A is the MSB). This allows 16 bit addition, subtraction, compare, and so forth, via a single mnemonic.

The \(S\) stack pointer is used for JSRs and interrupts as expected, but the U stack pointer is controlled completely by the user and is unaffected by hardware status. This permits variables to be passed between routines.

The direct page register (normally 0 ) is used to form the MSB of an effective address during "direct addressing." The offset is the byte following the direct addressing mode opcode. This is like the familiar zero page addressing, but with the added ability to set "zero" at any page. A half-carry is a carry from bit three during eight-bit addition. There is a fast interrupt request line which can be masked with the fast IRQ flag. The entire-statesaved flag signals that all registers (not simply the program counter and CC) have been saved on the stack.

Figure 1.


6502


Branch Never: Addressing and New Instructions
In addition to the familiar 6502 modes, the 6809 includes "Direct" addressing, "Long Relative" (16 bit relative, position independent), and various indexed and indirect modes including auto-incre-
ment and decrement by one or two bytes at a time. The efficiency inherent in 16 bit manipulations, new addressing modes, and new instructions permits greater programming freedom than is possible on the 6502. For example, the 6502 has approximately 56 mnemonics where the 6809 has nearly twice as many. (Mnemonic counts will vary depending on whether such instructions as ROL and ROL Accumulator are counted as distinct instructions.)

Among the more interesting new instructions is SWI (the entire machine state is saved and control is transferred through the vector at \$FFFA-B. SWI2 is the same except that the IRQ masks flags are not set and the vector is \$FFFA4-5). SEX means sign extended. BRA is branch always. Perhaps the most enigmatic new instruction is BRN, Branch Never. Though hundreds of uses for this spring to mind immediately, the assembler manual suggests that it can be used if you should become tired of NOP.

MUL multiplies accumulators A and B (unsigned) and stores the result in the \(D(A+B)\) accumulator. COMA and COMB complement these accumulators. ORB P inclusive ORs the value addressed by P , with B .

\section*{Assembler Expressions}

The assembler provides for extensive programming options through lables, external references, libraries, macros, operators, conditional assembly, etc. QUIF? It's Quit IF, one of the structured programming statements. HI is a condition which follows QUIF and is true if the carry and zero flags are both clear. Other statements are: IF, ENDIF, ELSE, GUESS, ADMIT, ENDGUESS, LOOP, ENDLOOP, and UNTIL. Like their counterparts in other languages, these statements can be used in the assembler, if that is your preference.

Also, a library of common routines is included and can be called into a program by typing the reference name followed by an "underbar" character, an underline which is created by hitting the back-arrow key. ISDELIM checks to see if the character in question is a delimiter (not alphabetic or numeric). STOI converts a decimal string to an integer. ISUPPER sees if you have an uppercase alphabetic character. FSEEK finds a record in a random file. In all, there are 67 library modules. The first parameter is passed on D , the rest on the stack. Results come back in D.

The "structured programming" statements, 100 mnemonics, 67 library names, 17 addressing modes, 96 K , two stacks, 16 memory banks. It's a bit of a transition. Nevertheless, 16 bit addressing, the freedom to MUL at will, and numerous other advantages all combine to make the 6809 option on the SuperPET exciting and promising for machine language programming.

\section*{NEW BARGAINS!}

votrax Type-N-Talk \(\$ 345\)
TU-PVE Connect your Video Monit or to PET/CBM for second display. Our leave user port available leave user port availab
for other accessories (NOT for 8032) \(\$ 39.95\)

CONNECT PET/CBM TO PRINTER: Simply plug in the interface and use your PET/CBM computer with popular "standard" printers, or add video monitor for second display. All interfaces assembled, tested, waranteed. No software required.
TU-65C Use NEC, Centronics, Xymec, or other industry standard parallel printers. Works with disk, other IEEE
TU-65CO As above, for Okidata......................................... \(\$ 129.95\)
Computer-Printer Interfaces by ESCON
    SELECTRIC to PET/CBM
SELECTRIC to Apple. TRS-80: Parallel
    SELECTRIC to Apple, TRS-80: RS-232 Serial
    MTST-1/O to Parallel
    Cables extra, \(\$ 20\) to \(\$ 90\). Installation \(\$ 100\)
SELECTRIC, Heavy Duty \(15^{\prime \prime}\), reconditioned, with ESCON for
    PET/CBM \(\$ 1195\) TRS-80 Mod 1,3 \(\$ 995\)
    \(\begin{array}{llll}\text { PET/CBM } & \$ 1195 & \text { TRS-80 Mod 1,3 } & \$ 995 \\ \text { APPLE } & \$ 1195 & \text { TRS-80 Model } 2 & \$ 1045 \\ \text { RS-232 } & \$ 1045 & & \end{array}\)
Virginia Micro Systems
14415 Jefferson Davis Highway
Woodbridge. Virginia \(22191 \quad\) (703) 491-6502
                                    \(\mathrm{VISA} / \mathrm{MC}, \mathrm{VA}+4 \%\)
                                    Factory auth
sales service
MWF \(12-8\), Sa \(9-3\)

\section*{}


The Wizard helps you quickly calculate 12 major types of Financial Transactions with ease and accuracy.
Created for businesses and individuals, this DISK PACKAGE has 9 programs plus instructions. The Wizard delivers answers on the screen or printer

\title{
PET Repairs For The Amateur
}

Louis F Sander
Piltsburgh, PA
My small keyboard PET has had several awfullooking symptoms over the past year, and each time I dreaded the size of the possible repair bill. But each time I was able to cure the problem myself, with no need for knowledge of digital electronics. Based on first-hand experience, and on many notes compared with others, here is what to look for when your PET is acting strange: loose connections, period.

Loose connections are probably the most frequent source of trouble in PET-like electronic equipment, and they are often the easiest to find and fix. You'll learn how I found mine, after a few words on safety. First, never look for trouble with your PET plugged in. Under normal circumstances, all lethal voltages are kept away from PET's main circuit board and other exposed parts, but when trouble comes, circumstances aren't normal. So always pull the plug when you're troubleshooting. Also, always take pains to avoid static electricity when you're poking around inside your PET. Tiny sparks that you can't see or feel can ruin some of the IC's in there, so don't take any chances. The best precaution is to ground yourself by touching bare metal on the cabinet whenever you touch an IC or the circuit board; it may look silly, but it's safe. Now for my war stories:

My first trouble was erratic operation. From time to time, I'd get a screen full of garbage, and my cassette motor would run and run. It looked like my reset button was locked down, but I knew it wasn't. On the advice of somebody who knew, I looked for an IC that was loose in its socket. When I found it, the trouble went away. With time and the flexing caused by neat, IC's all tend to walk out of their sockets. If you have symptoms of trouble, check this first. Open your PET and, with one hand touching the cabinet, firmly press down on both ends of every socketed IC, and walk them back into place. You'll be surprised how many are loose. Don't worry too much about flexing the printed circuit board itself - it can withstand a bit of bending.

My second problem came from a bad power connector. I'd lose everything on my screen, right in the middle of something important. At other times, I'd power up and not be able to get anything times, I'd power up and not be able to get anything
on the screen at all. When I found a hot power
connector, I knew the cause was found. The power connector attaches your main circuit board to the wires coming from the large transformer and electrolytic capacitor at the left rear of PET's base. If you are having problems, especially ones that crop up after some length of 'on' time, run your machine for an hour or so, then feel the power connector. If it's noticeably hot, it is a candidate for replacement. I replaced both ends of my connector with Radio Shack 274-226 and 274-236, for under \(\$ 3.00\) total. If you're not an experienced electronics person, turn this job over to an expert - it's easy, but the new connectors are far from exact replacements.

My biggest and most mysterious problem was caused by a dirty contact on the connector between the main board and tape drive \#1. For several months, I'd get strange screen messages and frequent system crashes whenever I tried to load a program that was other than the first one on a cassette. I'd say LOAD "RINKYDINK," the tape would start to move, and then I'd get some horribly misspelled version of ?ILLEGAL QUANTITY ERROR, sometimes before and sometimes after the PET had FOUND the programs preceding RINKYDINK. It got so bad that I gave up on ever being able to put more than one program on a tape. I could tell that the problem was associated with the unrecorded gaps between programs, but that's as far as it went.

I found the problem one day as I connected an audio amp to the tape READ line. The recorder was running a totally blank tape, and the noise on the READ line was tremendous. I accidentally jiggled the wire going from the recorder to the main board, and the noise stopped completely. Later I found that a poor ground contact on the PC board connector was allowing motor noise to get into the signal circuits, and that PET was trying to read the noise as data. No wonder it got an ILEGAL QUANIY ERRR! Two minutes with superfine sandpaper cured the problem, and now I can read through a whole C-60 with no system lockups. Keep your connectors clean.

By the way, I've had one minor problem unrelated to bad connections: My PET likes to read tapes a lot better without any amplifier connected to CB2. I don't know just why, but the machine definitely works better with nothing connected back there. So now I disconnect the amplifier whenever I'm through with a program that uses sound. I guess this really is another loose connection problem, but one of a different sort - in this one, loosest is best. But take it from one who knows more about it than he wants to - loose connections are common in your PET, and you can usually fix them yourself.

\title{
QUALITY ACCOUNTING SOFTWARE for the CBM COMPUTER
}

\begin{abstract}
THE GENERAL LEDGER SYSTEM
\(\$ 150.00\)
All entries are made via formatted, fill in the blanks, screens. There is a separate check stub format disbursements entry screen and eight digit account numbers to allow sub coding as required. Up to fifty user designated journals are available. All data is verified on input with balance enforced. All journals are available for print at any point in the accounting cycle. Any printout may be printed by department. The general ledger prints: balance forward, full detail of each transaction, total credits, total debits, and end balance for each account. Available reports include: journals, disbursements register, current trial balance, audit trial balance, budget trial balance, income statement, balance sheet, cash flow analysis, and comparison of budget vs. actual amounts for year to date, or the current period.
\end{abstract}

\section*{FUND ACCOUNTING SYSTEM}
\$200.00
The perfect accounting system for the municipal utility district, and the small city or school district. The system includes all features of the general ledger system with the added ability of printing all reports, and the general
ledger, by fund as well as by department
CLIENT ACCOUNTING SYSTEM
\(\$ 200.00\)
The accounting tool kit for the public accountant. This system includes all features of the general ledger system with the addition of a payroll check stub formatted screen for payroll check input. Also included are: a payroll disbursement register, a 1099 register, 941 reports, and W-2's.

\section*{INTERLOCKING MODULES}

The following modules are available for any of the general ledger based systems:
\begin{tabular}{lr} 
Accounts Payable & s 75.00 \\
Accounts Receivable & s 75.00 \\
Payroll & \$ 75.00 \\
Job Cost Payroll & \(\$ 100.00\) \\
Utility Billing System & \(\$ 100.00\)
\end{tabular}

Accounting software may be reviewed at your dealer, or via mail. Full catalog, demo disc, sample operations manual, (please specify which system), and a \(\$ 20\). credit coupon - only \(\$ 20.00\)
DEALERS! Please Write for Dealers Pack

\title{
ASERT yourself...with CFI's new Database Retrieval System WHO CAN USE ASERT?
}
libraries personnel departments dating services

schools
employment agencies accountants

\section*{ANY BUSINESS THAT KEEPS RECORDS CAN USE ASERT TO:}
- Create up to 21 fields per record
- Restructure fields at any time
- Sort on any field at any time
- Use FREE-TEXT area for comments
- Create up to 90 searchwords
- Search \& retrieve on any combination of 90 searchwords
- Search with MUST HAVE, MAY NOT HAVE and OPTIONAL operators
- Print out hardcopy including labels
- Output to any word processor
- Compile summary statistics
- Maintain 1900 records per disk with "virtual" 5K record length

\section*{ASERT - Aid for Search \& Retrieval of Text - \$495 complete \\ For the 8032 CBM and 8050 disk drive - Commodore Approved Software}

\author{
OTHER CFI SOFTWARE \\ Federal Income Tax Preparation System* Personal Tax Calculator* \\ Emergency Control Program* \\ VIC Animation Tutorial \\ *Distributed for CFI under the Commodore label
}

\section*{ALL CFI SOFTWARE AVAILABLE \\ from your local Commodore dealer or direct from CFI}

CFI

\title{
Realtime Clock On Your Pet Screen \\ Mark L. Robinson
}

\begin{abstract}
Editor's Note: In the version of Mr. Robinson's clock routine for 4.0 BASIC, the code has been moved up 38 (decimal) from the Upgrade version of Program 1. Add a value of 38 to his POKEs and references for the 4.0 version. - RTM
\end{abstract}

How many times have you sat down at your computer to fiddle around for a few minutes, returning to the real world hours (or days) later. This is not always a problem and I don't mind being splattered with cold suppers, missing parties, or aggravating my wife. But one night, I had some free moments to ponder the problem of losing track of time. Wouldn't it be great, I thought, if I could always have the correct time on the screen.

I knew that my PET had a 1/60 second counter which is updated during the internal interrupt cycle and some routines to print out the time. I started to study the memory map in Osborne's PET/CBM Personal Computer Guide and found the following items: jiffy memory, clock correction routine and the location of the interrupt addresses.

I figured if I could revector the interrupt through a small machine language program, I could capitalize on all three items - the jiffy clock to keep track of time, the interrupt addresses to return to the correct location and the clock correction routine to make up for the lost time of my program, if necessary.

Some other investigation showed that the routines that print the TIME \(\$\) use a lot of processing time and interact with memory locations that Basic uses. I figured it would be best to handle it completely as a separate little program. Then, the more I thought about it, I realized that once the time was set, I could follow it with a simple series of little counters rather than keep having to do long divisions. This also has the advantage of being able to jump back to the normal program whenever there is no carry up to the next most significant clock digit. This sayes over 50 percent of the time penalty of the screen clock.

To initialize the clock and load the machine language program, I wrote a small BASIC program.
and the symbolic listing of the machine language program along with the listing of the BASIC program. The machine language program is short enough to load with pokes rather than entering it using the machine language monitor. You can enter and run this as a normal basic program and, while the clock is running, you can use most BASIC programs. There is a small time penalty to use this while running BASIC, but if you are programming or game playing, it is not critical.

Incidentally, since the program is synchronized with the jiffy counter, you are automatically using the PET's internal correction routine. On a three hour run against a stop watch, the PET gained two seconds (so much for my stop watch). Two words of caution when you are writing programs: first, if you hit return on the line the time is on it will be entered in the listing and, second, if you have to load a program from the cassette, turn the clock off (POKE 144,46:POKE 145,230), load the program, and start the clock again (POKE 144,74 :POKE 145,3 ). To reset the clock poke the correct time digits to locations 833-838.

> Symbolic Listing Real Time on Screen

\section*{DEFINITIONS}

\section*{LOTB \(=\) Least significant time bit -} (Jiffy Counter)
TL0C1 Temporary holding location TLOC2 of prior jiffy count
BASE 1-7 Base of count, 10 or 6
IMAGE 1-7 Location of time in memory
SCT 1-7 Screen locations of time
INITIALIZE

LDA LOTB
ADC \#05
STA TL0C2
LDA \#Start
STA IRQ Low
START
LDA \#LOTB
STA TL0C1
CMP TL0C2
ADC \#05
SBC TLOC2
ADC TL0C1
STA TL0C2
INC IMAGE, 7
LDX \#07
COUNTER
LDA IMAGE, \(\mathbf{X}\)
CMP BASE, \(X\)
BNE UPDATE INIT
LDA \#00
STA IMAGE,X
DEX
BEQ UPDATE INIT
Initialize prior count set it ahead
to next. 1 second. Note 1
Revector interrupt to start

Check jiffies see if we've reached next. 1 sec

Yes-set TL0C2 for next. 1 sec , make sure that if more than 6 jiffs occurred we do not add too much

Increase. 1 sec memory location by 1 Initialize counter routine

Check to see if we've reached limit of base which produces a carry No - then go to Update Init
Yes-place 0 in digit position
Go to next number in sequence If we have done all 7 digits go to screen update
INC IMAGE, X
IMP COUNTER

Increment next digit by 1 (result of carry)


Software by MICROFEX
fits in 3.5 K

VIC-MAN
eats dots and monsters
in maze ...... \$14.95

\section*{VIC-20}


\section*{VIC-ROIDS}
shoot at asteroids as they float in space... \$14.95

ROM based terminal package for CBM 8000 with 8010 or TNW 2000 SYS8010 ROM ........... \$49.95 OR
FREE with purchase of 8010 modern! 8010 modern. \(\$ 279.00\)
PRIVATE I
Eliminates data errors when using a modern with an extension line
\(\$ 11.95\)

\section*{Pet Bulletin Board System}

Start a bulletin board with your 16K Pet or CBM. Use 4040, 8050 or 2031 drives. See it in operation at (414) 282-8118.

See Message Number 3.
PBBS software \(\$ 49.95\)

\section*{We also carry and demo} the entire Commodore and Jim-Pack lines of equipment.

Send check or money order with order. Allow \(\$ 5.00\) for shipping and handling.
PETTED microsystem 4265 W. Loomis
Milwaukee, WI 53221 under the "Shell" sign at \(1-894\) \& Loomis Rd. (414) 282-4181

PETTED
VISA \& MASTERCHARGE ACCEPTED
1. Software select one of two operating systems. (BASIC 2.0 / BASIC 4.0)
2. Software select utility ROMs at conflicting addresses.

\section*{\(\$ 125^{00}\)} (U.S.)
(\$150.00 Canadian) Add \(\$ 3.00\) shipping to all points outside Canada.

Master Charge and
VISA accepted.


For 24 Pin ROM Machines Only.

\begin{tabular}{|c|c|}
\hline UPDATE INIT & \\
\hline LDX \#07 & Initialize the screen update routine \\
\hline UPDATE & \\
\hline LDA IMAGE, X & Load time digit \\
\hline ADC \# \$30 & Convert to PET number code \\
\hline STA SCT, X & Store on screen \\
\hline DEX & \\
\hline BNE UPDATE & Have we done 7 digits? - no go back to update \\
\hline LDA \#3A & Yes-load and store colon on screen \\
\hline STA SCT, 0 & \\
\hline JMPIRQ & Return to PETIRQ routine \\
\hline
\end{tabular}

Note 1: The reason that five is added to the jiffy count and not six (to get the next \(6 / 60\) or .1 sec ) is that we are incrementing when the prior count location is less than the jiffy count. If the increment occurred on equality then you would add six. The reason for this is that I do not know if the jiffy count can count two sometimes in which case the equality would not occur for up to 12.8 seconds when the same binary digit again occurred. This is also the reason the program checks for more than six counts.

\section*{Program 1: Upgrade Version}

5 REM REAL TIME ON PET SCREEN
6 REM C M. ROBINSON 198ø
7 REM OK FOR PERSONAL USE
\(1 \emptyset\) FORA \(=1 \mathrm{TO} 1 \emptyset \emptyset\)
\(2 \emptyset\) READ B
\(3 \emptyset\) POKE \(825+A, B\)
\(4 \emptyset\) NEXT
\(1 \emptyset \emptyset\) PRINT" \{CLEAR\} HHMMSS"
\(11 \emptyset\) INPUT"TIME";A\$
\(120 \mathrm{TI} \$=\mathrm{A} \$\)
130 FORA=1 TO 6
\(140 \mathrm{D}=\operatorname{VAL}(\operatorname{MID} \$(\mathrm{~A} \$, \mathrm{~A}, 1))\)
150 POKE832+A,D
\(16 \emptyset\) NEXT
2øØ POKEl44,74:POKE145,3
250 NEW
\(1 \emptyset \emptyset \emptyset\) DATAl \(\varnothing, 1 \varnothing, 6,1 \varnothing, 6,1 \emptyset\)
\(1 \emptyset \emptyset 1\) DATAl \(\varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing\)
1ØØ2 DATAØ, Ø, 87,90,165,143
10ø3 DATAlø5,5,141,73,3,169
1004 DATA85,133,144,165,143,141
1005 DATA72,3,205,73,3,48
1006 DATA38,105,5,237,73,3
10ø7 DATAlø9,72,3,141,73,3
10ø8 DATA238,71,3,162,7,189
10ø9 DATA64,3,221,57,3,48
1010 DATAl4,169, 0,157,64,3
1011 DATA202,240,6,254,64,3
1012 DATA76,111,3,162,7,189
1013 DATA64,3,105,48,157,31
1014 DATAl28,2ø2,208,245,169,58
1015 DATAl41,31,128,76,46,230
\(1 \emptyset 16\) DATAø, \(\varnothing, \varnothing, \varnothing, \varnothing, \varnothing\)

\section*{Program 2: 4.0 Version}

10
\(2 \emptyset\) READB
\(3 \emptyset\) POKE863+A, B
\(4 \emptyset\) NEXT
\(1 \emptyset \emptyset\) PRINT" \{CLEAR\} HHMMSS"
11Ø INPUT"TIME"; A\$
\(12 \emptyset\) TIS=A\$
130 FORA \(=1\) TO6
\(14 \emptyset \mathrm{D}=\mathrm{VAL}(\mathrm{MID} \$(\mathrm{~A} \$, \mathrm{~A}, 1))\)
\(15 \emptyset\) POKE87Ø+A, D
\(16 \emptyset\) NEXT
\(17 \emptyset\) POKEl44,112:POKEl45,3
\(18 \emptyset\) NEW
864 DATA \(10,1 \emptyset, 6,1 \emptyset, 6,1 \emptyset\)
\(87 \emptyset\) DATA \(1 \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset\)
876 DATA Ø, Ø, 87, 9ø, 165, 143
882 DATA lø5, 5, 141, 111, 3, 169
888 DATA \(123,133,144,165,143,1\) 41
894 DATA 110, 3, 205, 111, 3, 48
\(9 \emptyset \emptyset\) DATA \(38,105,5,237,111,3\)
906 DATA \(109,110,3,141,111,3\)
912 DATA 238, l09, 3, 162, 7, 189
918 DATA \(102,3,221,95,3,48\)
924 DATA \(14,169, \emptyset, 157,1 \emptyset 2,3\)
930 DATA 202, \(240,6,254,102,3\)
936 DATA \(76,149,3,162,7,189\)
942 DATA \(102,3,105,48,157,31\)
948 DATA 128, 202, 208, 245, 169, 5 8
954 DATA 141, 31, 128, 76, 85, 228
\(96 \emptyset\) DATA \(\varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset\)
Statement of Ownership, Management And Circulation
As required by 39 U.S.C.. 3685
1. COMPUIE! The Journal For Progressive Computing

1a. 537250
3. Monthly 3A. 12 3B. \(\$ 20.00\)

625 Fulton Street, P.O. Box 5406, Greensboro, NC 27403
5. Same
6. Robert C. Lock, Publisher and Editor, 625 Fulton Street, Greensboro, NC 27403 Kathleen Martinek, Managing Editor, 625 Fulton Street, Greensboro, NC 27403 Small System Services, Inc.; Robert C. Lock, William E. Knox, Joretta E. Klepfer, Marlene R. Pratto; P.O. Box 5406, Greensboro, NC 27403
8. None
10. Extent and natur of circulation

Average no. copies each issue during preceding 12 months

31,961
15.232

10,516
25,748

26,876
26,876
3,597
1.488
31.961
C. Iotal the sements made by meabove are correctand complete. Roberi 40,040
c above are correct and complete. Robert C. Lock

\title{
Tape Load Test And Head Alignment \\ Louis F. Sander \\ Piltsburgh, PA
}

This article shows how to prepare and use a special test tape for the cassette recorder of any PET or CBM. When the tape is LOADed, its contents appear on the screen, allowing the user to see any tape errors as they occur. The tape error display is a sensitive indicator of the overall quality of the tape reading process, and one which can be used in curing such mysterious and aggravating problems as defective tapes and dirty or magnetized heads. The test tape can also be used as a working standard for head alignment.

\section*{Making The Load Test Tape}

The first step in creating your tape is to enter and SAVE the "Test Tape Maker" program that appears later in the article. Then RUN it and follow the instructions on the screen, but be sure you understand the material in this section first.

The instructions ask you to use your Machine Language Monitor. Don't worry if you've never used it before - it's easy. If you have an older PET with Original ROMs, LOAD your monitor from tape and RUN it, being careful not to lose the "Test Tape Maker" instructions from the screen. With any other ROMs, you have a built-in monitor. Activate it by entering SYS 1024.

Once the monitor is running, it will prompt you with a dot. Mount a fully rewound tape, and save the 1st pass program by entering the indicated line exactly as it appears in the "Test Tape Maker" instructions. Then rewind the tape again, and prepare to do something unusual - you are going to record a new header on top of the one already on the tape, but you're going to leave the rest of the tape unchanged! You will do it by initiating another machine language SAVE, this time hitting STOP as soon as the header has been recorded on the tape. Knowing when to hit STOP is the tricky part, but the following paragraphs will teach you the trick.

If you can hear your tapes as they save, your task is easy. Some CB2 amplifiers amplify tape sounds, too, and you're in luck if yours works this way. If it doesn't, just connect your amplifier tem-
porarily to pin eight of the user port connector, which is a convenient pickup point for the Tape Write signal. When you initiate your save, you'll hear about ten seconds of leader tone, followed by three seconds of buzz, followed by two more seconds of leader and a lot more buzz. The three seconds of buzz is the tape header, so you'll want to hit STOP the instant you start hearing the second section of leader tone.

Even if you have no way of listening to your SAVEs, you can tell when to hit STOP in making this tape. First, SAVE any program into a fully rewound tape. Then fully rewind it again and LOAD it, using a stopwatch to time the interval between pressing PLAY and seeing the FOUND message on the screen. Then, when recording LOAD TEST, wait exactly this length of time between pressing PLAY \& RECORD and hitting STOP. On my PET, this is just over 13 seconds, and it should be the same on yours, but you should use a stopwatch to be sure.

Now that you know when to hit STOP, let's go back to "Test Tape Maker." Use the Monitor to save LOAD TEST onto the rewound 1st pass tape, making the exact entries appearing on your screen. Press PLAY, and as soon as the header has been recorded (the right number of seconds, or the appearance of the second leader tone), hit STOP. The STOP key on the computer is preferable to the one on the recorder, but either one will work. The timing of this move is critical to a fraction of a second, so use your fastest finger.

As soon as you hit STOP, your tape is finished. To be sure you have a good one, rewind it and LOAD it. If all is well, you will see the FOUND LOAD TEST and LOADING messages; then your screen will begin to fill with solid green (or white) squares. Once the screen is full, these will be replaced one-by-one with a full screen of colons, then a screen of shaded squares, then one of minus signs. Finally, an OK will print at the bottom of your screen, and after about 30 seconds, a READY message will appear somewhere on screen. No other characters should appear at any time. The newer machines with dynamic RAMs will not show the last two screens, and 80 column machines will combine the first two on one screen. If you cannot get the perfect "LOAD" described above, either you have made a defective tape, or you have a problem with your recorder. Clean and demagnetize your heads \({ }^{1}\), and try a few more loads. If you still don't achieve perfection, try making a new LOAD TEST tape - you may have hit STOP too soon or too late, or you may be working with a defective cassette.

When you have a tape that loads perfectly at least once, load it several more times in succession.


\section*{forth}

\section*{for PET/CBM}

FORTH is a new concept in programming, with the speed of compilers and interactive ease of BASIC. Programs become a part of FORTH extending the power of FORTH and your PET.
\begin{tabular}{lll} 
8050,4040 disk, cassette all PET-CBMs & 16k+ \\
Starter & fig-FORTH w editor assembler & \(\$ 35\) \\
Personal & floating point; strings; source & \(\$ 75\) \\
Professional & furnkey development/data base & \(\$ 259\)
\end{tabular}


DEALERS INQUIRE


\section*{CBM/PET INTERFACES}


RS-232 SERIAL PRINTER INTERFACE - addressable baud rates to 9600 - switch selectable upper/lower, lower/upper case - works with WORDPRO, BASIC and other software - includes case and power supply.

MODEL - ADA1450 149.00
CENTRONICS/NEC PARALLEL INTERFACE - addressable - high speed - switch selectable upper/lower, lower/upper case - works with WORDPRO, BASIC and other software - has Centronics 36 pin ribbon connector at end of cable.
\[
\text { MODEL - ADA1600 } 129.00
\]

CENTRONICS 730/737 PARALLEL INTERFACE - as above but with Centronics card edge connector at end of cable.
\[
\text { MODEL-ADA730 } 129.00
\]

COMMUNICATIONS INTERFACE WITH SERIAL AND PARALLEL PORTS - addressable - software driven true ASCII conversion - selectable reversal of upperlower case - baud rates to 9600 - half or full duplex - XON, X-OFF - selectable carriage return delay - 32 character buffer - centronics compatible - much more.

MODEL - SADI 295.00
ANALOG TO DIGITAL CONVERTER - 16 channels -0 to 5.12 volt input voltage range - resolution is 20 millivolts per count - conversion time is less than 100 microseconds per channel.

MODEL - PETSET1 295.00
REMOTE CONTROLLER WITH CLOCK/CALENDAR - controls up to 256 devices using the BSR X10 remote control receivers - 8 digital inputs, TTL levels or switch closure - 8 digital outputs, TTL levels.

MODEL - PETSET2 295.00
All prices are in US dollars for 120VAC. Prices on 220 VAC slightly higher.
Allow \(\$ 5.00\) shipping \& handling, foreign orders add \(10 \%\) for AIR postage.
Connecticut residents add \(71 / 2 \%\) sales tax.
All prices and specifications subject to change without notice.
Our 30 day money back trial period applies. MASTER CHARGE/VISA accepted.
MENTION THIS MAGAZINE WITH YOUR ORDER AND DEDUCT 5\% FROM TOTAL.

IN CANADA order from: Batteries Included, Ltd., 71 McCaul Street, F6 Toronto, Canada M5T2X1, (416)596-1405. IN THE USA order from your local dealer or direct: Connecticut microComputer, Inc., 34 Del Mar Drive, Brookfield, CT 06804, (203)775-4595.

Dealer inquiries invited.


You should get perfect or near-perfect results every time. Anything other than smooth screen filling, with no unusual characters, is an indication of an imperfect load. If you fail to achieve perfection, refer to the material in the next section. Otherwise, consider your test tape ready for use. Mark it with the date it was made, and set it aside in a safe place. If you want a second copy, use "Test Tape Maker" to create one, since there is no way to copy a completed tape. It's a good idea to put a copy of "Test Tape Maker" immediately after LOAD TEST on your tape, so you will have both of them whenever you need them.

\section*{Using The Test Tape}

Now, whenever you have trouble LOADing a tape, you can evaluate the situation by loading LOAD TEST. If the screen fills properly, you know that your PET worked perfectly during the LOAD. The trouble is probably with your tape - it may be defective, or it may have been made on a recorder whose head is not aligned with yours. Read the Head Alignment section below.

If your screen doesn't fill properly, there may be a problem with your machine, and you can use the screen display to evaluate it. Every improper or misplaced character on the screen represents a mishandled byte. By using the second program copy recorded on every tape, PET can automatically correct up to 31 of these. LOAD TEST, by the way, lets you see this as it happens, when "proper" characters appear on the screen in place of the "bad" ones during the 30 seconds just before the READY message. Normally, you should have very few, if any, mishandled bytes. The more you have, the greater your problem. If you have more than a very few, even though PET can correct them, something is awry with your machine's LOAD process, and corrective action is called for.

The first corrective action, of course, is to clean and demagnetize your tape heads \({ }^{1}\). The second is to clean the contacts on the connector and the circuit board where your recorder plugs into your computer. If these steps fail to improve your situation, try a head alignment. If that also fails, see your serviceman.

\section*{Head Alignment}

For a tape to load properly, your PETs read/write head must be precisely aligned with the magnetic field on the tape. The tape's field is, of course, perfectly aligned with the head of the recorder that made it. A small amount of misalignment between tape and read head often shows up as mishandled bytes, a moderate amount as a ? LOAD ERROR, and a large amount as a complete failure to read the tape.
tapes if your machine's alignment has changed since you made the tape. It also occurs if a tape you are trying to read was recorded on a machine whose head is out of line with yours. Imperfect alignment between two PETs is quite common, and is often the cause of inability to load other people's tapes.

You can use your LOAD TEST tape to bring any recorder's head into alignment with the head that made LOAD TEST. Adjustment procedures have been published elsewhere \({ }^{2}\). Once you know how to make the adjustment, just load your test tape into the appropriate machine and adjust its head for perfect screen patterns. There is no need for any PEEKs to confirm the success of the LOAD, since you can see every mishandled byte right on the screen itself. You can even use LOAD TEST to adjust the head while the tape is loading, since it gives you 20-40 seconds of real-time feedback on the quality of your LOAD.

Always remember that you are adjusting the read head to the tape that it is reading. If the recorder which made it was misaligned from "standard," your test tape will be misaligned as well. Nevertheless, you should be able to get any recorder to read it. Now that you know how to make and use a "Load Test" tape, you need read no further. If you're interested in how and why it works, read on.

\section*{Theory Of Operation: Screen Images}

Let us consider what is recorded on the Load Test tape. By a series of POKEs, "Test Tape Maker" created a machine language "program" of 1024 "square," 1024 colons, 1024 shaded squared, 997 minus signs, a space, an ' O ' and a ' K ', all in memory locations 2768 to 6839 , ( \(0 \mathrm{AD} 0-1 \mathrm{AB} 8\) hex). When you saved that material as 1st pass, you made a tape whose header instructed PET to load it into those locations \({ }^{3}\). When you rewound the tape and did the second "computus interruptus" SAVE, you recorded a new header over the old one, but left the remaining material intact. The new header asks PET to load that material into memory locations \(32768-36839\), ( \(8000-8\) FE8 hex), which are very interesting locations.

Experienced PET owners know that "screen memory" occupies the 1000 locations between 32768 and 33767. POKEs to those locations, (such as POKE 33000,42), cause characters to appear instantaneously on the screen. "Load Test" uses a less-well-known fact about screen memory: that POKEs to the screen memory locations plus 1024, (and on some machines 2048 or 3072), will also put characters on the screen. Clear your screen and \(\operatorname{POKE}(33000+1024), 42\) to see it for yourself. This multiple POKEability exists because of a

\section*{Commodore 3.0/4.0/2.1 Dos Source Code!}

Complete annotated source code for 3.0 ROMs, 4.0 ROMs and 2.1 DOS ( \(4040 ; 8050\)-disk) now avallable. All entry points, routine/variable names, info on routine operation, register contents, etc. Included. 4.0 source code comes with 3.0 correspondence codes so you can change 3.0 machine-language programs to 4.0 and vice versa. Hardcopy only. \$129. each. All 3 (3.0, 4.0, 2.1 DOS) for \(\$ 310.00\). Source files on diskette on special order.

\section*{Software/Firmware}
- EXTRAMON extended monitor in 2K EPROM for any slot, 3.0/4.0 ROMs, plus hardcopy documentation. \$19.95
- DISK MONITOR \({ }^{\circ}\) - reads T/S from disk to screen at 0.21 seconds/blk. Allows editing like the resident monitor, updates dlsk, traces Ilnks, etc.


FAST! 31.1 Kbytes \(/ \mathrm{sec}\). \(\$ 49.95\)
- BULLETPROOF! \({ }^{\circ}\) - fullscreen input routine. Uses machine-language to get user input, places It In a user-defined varlable. Text on screen outside flelds impossible to disturb. Documented 1624 N.W. 9th Ave., Ft. Lauderdale, FL 33311 (305) 523-1351


\section*{PET/CBM \({ }^{\text {TM }}\) \\ 2000/3000/4000 Series}
not using a CRT, on display controller chip
\$275.00*
Select either
\(80 \times 25\) or \(40 \times 25\)
On The
Built-in
Display

\section*{From the keyboard or program}

Displays the full, original character set
Available from your local dealer or:
EXECOM CORP.
1901 Polaris Ave.
Racine, WI 53404
Ph. 414-632-1004
*Plus installation charge of \(\$ 75.00\)
Available only for Basic 3.0 \& Basic 4.0 PET\& CBM \({ }^{\top M}\) a
trademark of Commodore Business Machines
there really isn't any memory up there. These second, third, and fourth addresses for each screen position are sometimes called "images" of screen memory.

A little reflection on the above paragraphs will reveal that locations 32768 through 36839 include the screen memory plus its images, and that LOADing a program there will actually put the program material onto the screen up to four times in succession. There we can see the LOAD, and any errors, with our own two eagle eyes.

\section*{References}
1. "Getting the Most From Your PET Cassette Deck," COMPUTE!, \#10, March, 1981, page 42.
2. "Detecting Loading Problems and Correcting Alignment on Your PET," COMPUTE! \#8, January 1981, page 114.
3. "All About LOADing PET Cassettes," COMPUTE! \#16, September, 1981, page 129.

\footnotetext{
1øø PRINT"\{ø2 DOWN\}TEST TAPE MAKER - WORKING - (25 SECONDS)"
}

116 FORI=2768TO3791:POKEI, 160:NEXT

120 FORI \(=3792 \mathrm{TO} 4815\) :POKEI, 58 : NEXT
130 FORI \(=4816 \mathrm{TO} 5839\) :POKEI, 102:NEXT
140 FORI \(=5840\) T06836: POKEI, \(45:\) NEXT
150 POKEI, 32: POKEI +1, 15: POKEI +2,11
160 PRINT" \(\{\) CLEAR\}ACTIVATE THE ML MO vITOR, THEN MOUNT"
170 PRINT"A FULLY REWOUND TAPE AND ENTER:"
\(180 \operatorname{IFPEEK}(50 \emptyset 03)=\emptyset\) THEN 310
190 PRINT". S"CHR\$(34)"1ST PASS"CHR \$(34)", Ø1, ØAD \(\varnothing, 1 A B 8 "\)
\(20 \emptyset\) PRINT"THEN REWIND AND ENTER:"
210 PRINT". S"CHRS (34)"LOAD TEST"CH R\$(34)", ø1,8øøø,8FE8"
220 PRINT" 2 REV \}HIT STOP AS SOON AS ~ THE HEADER HAS BEEN"
230 PRINT" \(\{\) REV \}RECORDED. (SEE ARTIC LE FOR DETAILS).\{UP\}": END
\(3 \emptyset \emptyset\) REM ** INSTR FOR ORIGINAL ROMS
310 PRINT". S \(01,1 S T\) PASS, \(\emptyset A D \emptyset, 1 A\) B8"
\(32 \emptyset\) PRINT"THEN REWIND AND ENTER:"
330 PRINT".S Øl,LOAD TEST, 8øøø,8FE8 "

\title{
MICROMON An Enhanced Machine Language Monitor
}

\author{
R. Arthur Cochrane Beech Island. SC
}

> Editor's note: Micromon is for Upgrade and 4.0 BASICs, all memory sizes, all keyboards and is in the public domain. We present it here because many readers live where there are no computer clubs to permit the exchange of public domain programs. If you have enough memory, you can add the additional commands of "Micromon Plus" as well. "Plus" is from \(\$ 5\) B00 to \(\$ 5\) F48 and you will want to move Micromon from \(\$ 1000\) up to \(\$ 6000\).
> There is quite a bit of typing here so we've provided two checksum programs which will find and flag any errors. If you are unfamiliar with machine language programming, see the instructions for typing in "Supermon" in last month's COMPUTE!, page \(134 .-\) RTM

\section*{Background}

For those who may not know what Micromon is, I will start with a little background. Micromon started as Extramon which is an extended machine language monitor for the TIM monitor in the PET. Extramon was originally written by Bill Seiler.
It is for Upgrade BASIC and has the following commands;

A - A simple one line assembler.
B - Set a break point.
\(\mathbf{C}\) - Compare two ranges of memory and print the addresses of any differences.
D - Disassemble a range of memory.
\(\mathbf{F}\) - Fill a range of memory with a byte.
\(\mathbf{H}\) - Hunt a range of memory for a certain
HEX or ASCII pattern and print the addresses where they occur.
I - Do a memory dump or a range of memory by printing the HEX and ASCII values.
\(\mathbf{N}\) - New Locate a machine language program by adding an offset to the three byte instructions.
Q - Start execution of a machine language program and stop execution when the break point is reached.
T- Transfer a range of memory to another part of memory.

W-Single step execution of a machine language program.
Extramon loads into the address range \(\$ 1000\) to \(\$ 17 \mathrm{FF}\), but the T and N commands can be used to relocate Extramon to another part of memory.

Micromon is an improved version of Extramon and is also by Bill Seiler. Micromon has the same commands as Extramon plus those of the TIM monitor and works on Upgrade BASIC and BASIC 4.0. It works on both BASICs because only 4 ROM routines are used, two of these routines are in the jump table at the top of memory and the other two used by Micromon are found by checking a location to determine the BASIC. The ability to use the up and down cursor control keys to scroll the memory dump and disassembler is added.

\section*{Improvements}

Now Micromon has been improved by the addition of more instructions to make it a full 4 K program. The following instructions have been added:

E-Kill Micromon by restoring the TIM break vector and IRQ vector and return to BASIC.
K - Kill Micromon by restoring the TIM break vector and IRQ vector and do a BRK to the TIM monitor.
\(\mathbf{O}\) - Calculate a branch instruction offset given a starting and target address.
\(\mathbf{Z}\) - Change to the opposite character set from the one currently in use.
\$ - Print the decimal value, the ASCII values for the two bytes, and the binary value for an input HEX value.
\# - Print the HEX value, the ASCII values for the two bytes, and the binary value for an input decimal value.
\% - Print the HEX value, the decimal value, and the ASCII values for the two bytes for an input binary value.
"- Print the HEX value, the decimal value, and the binary value for an input ASCII value.
+ - Add two HEX numbers.
- - Subtract two HEX numbers.
\&c- Print the checksum for a range of memory.
An additional module (Micromon Plus) to work with Micromon is also available. This module is about an additional 1 K of program and it has the following commands:

I - Set form feeds and a heading for disassemblies and memory dump printouts.
\(\mathbf{P}\) - Switch output to a printer for hard copy
disassemblies and memory dumps.

The SM-KIT is a collection of machine language firmware programming and test aids for BASIC programmers. SM-KIT is a 4 K ROM (twice the normal capacity) which you simply insert in a single ROM socket on any BASIC 4 CBM/PET-either 80 column or 40 column. Includes both programming aids and disk handling commands.
ERROR DETECTION: the SM-KIT automatically indicates the erroneous line and statement for any BASIC program error.
LINE NUMBERING: the SM-KIT automatically numbers BASIC statements until you turn the function off.
SCREEN OUTPUT: the commands FIND, DUMP, TRACE and DIRECTORY display on the CRT while you hold the RETURN key (display pauses when the key is released). Continuous output is selected with shift-lock.
OUTPUT CONTROL to DISK or PRINTER: in addition to displaying on the CRT, you can direct output to either disk or printer.
HARDCOPY: allows screen displays to be either printed or stored on disk.
FIND: searches all or any part of a program for text or command strings or variable names. Either exact search or wild card search supported.
RENUMBER: the SM-KIT can renumber all or any part of a program. The selective renumbering allows you to move blocks of code within your program.
VARIABLE DUMP displays the contents of floating point, integer, and string variables (both simple and array). Can display all variables or any selected variables.
TRACE: SM-KIT can trace program execution either continuously or step by step starting with any line number. Selected program variables can be displayed while tracing.
DISK COMMANDS: as in DOS Support (Universal Wedge), the "shorthand" versions of disk commands may be used for displaying disk directory, initializing, copying, scratching files, load and run, etc.
LOAD: SM-KIT can load all or part of BASIC or machine language programs. It can append to a program in memory, overwrite any part of a program, load starting with any absolute memory location, and load without changing variable pointers.
MERGE: allows merging all or any part of a program on disk with a program in memory. SAVE and VERIFY: SM-KIT provides one step program save and verification. It also allows you to save any part of a program, or any address range.

\section*{A Programming Productivity Tool}


Developed by (and available in Europe from) SM Softwareverbund-Microcomputer GmbH, Scherbaumstrasse 29, 8000 Munchen 83 , Germany

\title{
PET/CBM * IEEE-488 TO PARALLEL PRINTERS By LemData Products
}

P.I.E.-C MEANS—Professional design, Indispensible features, Excellent quality and Cost effectiveness. You can't buy a better parallel interface for your PET/CBM.

Our P.I.E.-C will interface your PET/CBM through the IEEE-488 bus to . . . . . .
the NEC Spinwriter, the C. Itoh Starwriter, printers by Centronics, Epson, Anadex, Escon Products, the ALL OTHER parallel ASCII printers.

Assembled with custom case, CBM-TO-ASCII code converter and appropriate cable, the P.I.E.-C is only \(\$ 129.95\) ( + \$5 SEH). Md. Res. \(+5 \%\) tax. Specify printer and CBM models.
*PET/CBM are trademarks of Commodore Business Machines

J - Print the address at which a file loads.
Y - Load a file starting at a specific address and not the load address in the file.
> or @ - The DOS commands for reading the disk error channel, sending commands to the disk, or displaying the disk directory.
Micromon is very useful for debugging machine language programs. The disassembler allows the code tọ be examined and the single step command allows following the execution of code to spot bugs. The Transfer and New Locate commands allow code to be relocated to another part of memory without the need for reassembly. Micromon is a must for any PET machine language programmer.

There are several extended monitors available for the PET. Supermon is one example. Most of the other monitors have some of the same commands as Micromon and maybe a few others. One of the problems with these monitors is that there are different versions for Upgrade BASIC and BASIC 4.0. Micromon will work, as is, on either BASIC. It does not work on Original BASIC though it might be possible to modify it. There is a version of Supermon for each of the three BASICs if a super monitor is needed for Original BASIC.

Because the VIC-20 has Upgrade Basic it will be possible to modify Micromon for VIC use, giving it a powerful machine language monitor. The modification will involve checking the subroutine calls and modifying the scroll for the screen size of the VIC. If anyone is successful in this modification they should be sure to publish the results for others. Because the full Micromon is a 4 K program, it would be a good program for programming into a VIC plug-in program cartridge.

Micromon is free (so is Supermon), but where do you get it? A PET user group is one source. For those who would like source code, Micromon source code in Carl Moser's MAE assembler format is available. Micromon can be assembled and burned into an EPROM and plugged into an empty socket in the PET so Micromon is available with a SYS and does not have to be loaded each time the PET is reset or powered up.

I hope that you will pass Micromon on to your friends. This program is in the public domain and should be passed around freely. If anyone finds bugs or has comments please contact me about them.

I would like to thank James Strasma for all the information which he provided me for this work on Micromon.

\section*{Note To Other 6502 Users}

Because Micromon uses only four ROM routines (input a character, output a character, load a pro-
gram, and save a program) and a few zero page locations (IRQ vector, BRK vector, and screen line pointers) it may be possible for Apple, Atari, or other 6502 users to modify Micromon for their machine. If someone is successful at this be sure to pass the information on to others.

\section*{Micromon Instructions}

\section*{SIMPLE ASSEMBLER}

> .A 2000 A9 12 LDA \#\$12
> .A 2002 9D 00 80 STA \(\$ 8000\), X
> .A 2005 DEX:GARBAGE

In the above example, the user started assembly at 2000 HEX. The first instruction was load a register with immediate 12 HEX. In the second line the user did not need to type the A and address. The simple assembler retypes the last entered line and prompts with the next address. To exit the assembler, type a return after the address prompt. Syntax is the same as the Disassembler output. A colon (:) can be used to terminate a line.

\section*{BREAK SET}

\section*{.B 1000 00FF}

The example sets a break at 1000 HEX on the FF HEX occurrence of the instruction at 1000. Break set is used with the QUICK TRACE command. A BREAK SET with count blank stops at the first occurrence of the break address.

\section*{COMPARE MEMORY}

\section*{.C \(\mathbf{1 0 0 0} \mathbf{2 0 0 0} \mathbf{C 0 0 0}\)}

Compares memory from HEX 1000 to HEX 2000 to memory beginning at HEX C000. Compare will print the locations of the unequal bytes.

\section*{DISASSEMBLER}
.D 20003000
., 2000 A9 12 LDA \# \$12
., 2002 9D 0080 STA \(\$ 8000\), X
., 2005 AA TAX
Disassembles from 2000 to 3000 . The three bytes following the address may be modified. Use the CRSR KEYS to move to and modify the bytes. Hit return and the bytes in memory will be changed. MICROMON will then disassemble that line again.

Disassembly can be done under the control of the cursor. To disassemble one at a time from \(\$ 1000\).

\section*{.D 1000}

If the cursor is on the last line, one instruction can be disassembled for each pressing of the cursor down key. If it is held down, the key will repeat and continuous disassembly will occur. Disassembly can even be in reverse! If the screen is full of a disassembly listing, place the cursor at the top line of the screen and press the cursor up key.

\section*{EXIT MICROMON}
.E
Combine the killing of MICROMON and exit to BASIC.

\section*{FILL MEMORY}

\author{
.F 10001100 FF
}

Fills the memory from 1000 HEX to 1100 HEX with the byte FF HEX.

\section*{GO RUN}
.G
Go to the address in the PC Register display and begin run code. All the registers will be replaced with the displayed values.
.G 1000
Go to address 1000 HEX and begin running code.

\section*{HUNT MEMORY}
.H C000 D000 'READ
Hunt thru memory from C000 HEX to D000 HEX for the ASCII string "read" and print the address where it is found. Maximum of 32 characters may be used.
.H C000 D000 20 D2 FF
Hunt memory from C000 HEX to D000 HEX for the sequence of bytes 20 D 2 FF and print the address. A maximum of 32 bytes may be used. Hunt can be stopped with the STOP key.

\section*{KILL MICROMON \\ .}

Restore the Break vector and IRQ that was saved before MICROMON was called and break into the TIM monitor. A return to MICROMON can be done with a Go to the value in the PC register.
LOAD

\section*{.L "RAM TEST",08}

Load the program named RAM TEST from the disk. Note for cassette users: To load or save to cassette. Kill MICROMON with the K command to return to the TIM monitor. Then use the TIM monitor L and S commands to load and save to the cassettes. This has to be done because of the repeat keys of MICROMON. BASIC 4.0 users then can return to MICROMON with a Go command to the PC value but BASIC 2.0 users should return to BASIC then SYS to Micromon because the TIM overwrites the IRQ value for loads and saves with a filename.

\section*{MEMORY DISPLAY}

\section*{.M 00000008}
.: 000030313233343536371234567
.: 00083841424344454647 89ABCDE
Display memory from 0000 HEX to 0008 in HEX
and ASCII. The bytes following the address may be modified by editing and then typing a RETURN.

Memory display can also be done with the cursor control keys.

\section*{NEW LOCATER}

> .N 1000 17FF 60001000 1FFF
> .N 1FB0 1FFF 60001000 1FFF W

The first line fixes all three byte instructions in the range 1000 HEX to 1 FFF HEX by adding 6000 HEX offset to the bytes following the instruction. New Locater will not adjust any instruction outside of the 1000 HEX to IFFF HEX range. The second line adjusts Word values in the same range as the first line. New Locater stops and disassembles on any bad op code.

\section*{CALCULATE BRANCH OFFSET}
.O 033A 033A FE
Calculate the offset for branch instructions. The first address is the starting address and the second address is the target address. The offset is then displayed.

\section*{QUICK TRACE}

\section*{.Q 1000}

The first example begins trace at the address in the PC of the register display. The second begins at 1000 HEX. Each instruction is executed as in the WALK command, but no disassembly is shown. The Break Address is checked for the break on Nth occurrence. The execution may be stopped by pressing the STOP and \(=\) (left arrow on business) keys at the same time.

\section*{REGISTER DISPLAY}

\section*{.R \\ PC IRQ SR AC XR YR SP \\ .: 0000 E455 0102030405}

Displays the register values saved when MICROMON was entered. The values may be changed with the edit followed by a RETURN.

\section*{SAVE}
.S "1:PROGRAM NAME",08,0800,0C80
Save to disk drive \#1 memory from 0800 HEX up to, but not including, 0C80 HEX and name it PROGRAM NAME. See note in LOAD command for cassette users.

\section*{TRANSFER MEMORY}

\section*{.T 100011005000}

Transfer memory in the range 1000 HEX to 1100 HEX and start storing it at address 5000 HEX.

\section*{WALK CODE}
.W
Single step starting at address in register PC.
.W 1000
Single step starting at address 1000 HEX. Walk will cause a single step to execute and will disassemble the next instruction. Stop key stops walking. The \(J\) key finishes a subroutine that is walking then continues with the walk.

\section*{EXIT TO BASIC}
. X
Return to BASIC READY mode. The stack value saved when entered will be restored. Care should be taken that this value is the same as when the MONITOR was entered. A CLR in BASIC will fix any stack problems. Do not X to BASIC then return to MICROMON via a SYS to the cold start address. Return via a SYS to a BRK (SYS 1024) or SYS to the Warm start of MICROMON (Warm start = Cold start +3 ) An X and cold start will write over the TIM break vector that was saved.

\section*{CHANGE CHARACTER SETS}

\section*{. \(Z\)}

Change from uppercase/graphics to lower/ uppercase mode or vice versa.

\section*{HEX CONVERSION}
. \$4142 16706 A B 0100000101000010
A HEX number is input and the decimal value, the ASCII for the two bytes, and the binary values are returned. The ASCII control values are returned in reverse.

HEX conversion can also be scrolled with the cursor control keys.

\section*{DECIMAL CONVERSION \\ . 167067142 A B 0100000101000010}

A decimal number is input and the HEX value, the ASCII for the two bytes, and the binary values are returned.

\section*{BINARY CONVERSION}
. 0100000101000010414216706 A B
A binary number is input and the HEX value, the decimal number, and the ASCII values are returned.

\section*{ASCII CONVERSION}

\section*{"A 416501000001}

An ASCII character is input and the HEX value, decimal value, and binary values are returned. Because of the quote, the control characters can be determined also.

\section*{ADDITION}
.+ 111122223333
The two HEX numbers input are added, and the sum displayed.

\section*{SUBTRACTION}

\section*{.-3333 11112222}

The second number is subtracted from the first number and the difference displayed.

\section*{CHECKSUM}

\section*{.\& A000 AFFF 67E2}

The checksum between the two addresses is calculated and displayed.

\section*{MICROMON INSTRUCTIONS:}
```

A SIMPLE ASSEMBLE
B BREAK SET
C COMPARE MEMORY
D DISASSEMBLER
E EXIT MICROMON
F FILL MEMORY
G GO RUN
H HUNT MEMORY
K KILL MICROMON
L LOAD
M MEMORY DISPLAY
N NEW LOCATER
O CALCULATE BRANCH
Q QUICK TRACE
R REGISTER DISPLAY
S SAVE
T TRANSFER MEMORY
W WALK CODE
X EXIT TO BASIC
Z CHANGE CHARACTER SETS
\$ HEX CONVERSION

DECIMAL CONVERSION

% BINARY CONVERSION
" ASCII CONVERSION

+ ADDITION
- SUBTRACTION
\& CHECKSUM

```

MICROMON also has repeat for all keys.
MICROMON is executed by the following:
SYS 4096 as listed in Program 2 where it resides in \(\$ 1000\) to \(\$ 1\) FFF.

For 8032, make the following changes for MICROMON operation. In location the X stands for the start of MICROMON. Values in HEX.
\begin{tabular}{|c|c|c|c|}
\hline Location & Old Value & \multicolumn{2}{|l|}{New Value} \\
\hline X3E7 & 08 & 10 & To display 16 instead \\
\hline X3EC & 08 & 10 & of 8 bytes. \\
\hline X3F6 & 08 & 10 & \\
\hline X427 & 08 & 10 & \\
\hline XDA3 & 08 & 10 & \\
\hline XCFC & 28 & 50 & To fix scroll. \\
\hline XD7B & 28 & 50 & \\
\hline XE16 & 83 & 87 & \\
\hline XE20 & 28 & 50 & \\
\hline XE24 & C0 & 80 & \\
\hline
\end{tabular}
\begin{tabular}{lll} 
XE26 & 04 & 08 \\
XE37 & 27 & 4 F \\
XE46 & 28 & 50 \\
X681 & 24 & \begin{tabular}{l} 
00 To print all characters \\
in Walk command.
\end{tabular} \\
& &
\end{tabular}

Micromon Plus Instructions
PRINTING DISASSEMBLER
.(Shift) D 1000 1FFF
The same as the Disassembler but no ., printed before each line. Also the ASCII values for the bytes are output at the end of the line.

\section*{FORM FEED SET}

\section*{.I}

Sets a form feed for printout. Gives 57 printed lines per page. Works with the Shift D and Shift M commands.

\section*{.I "Heading"}

Sets form feed with a message to be printed at the top of each page.
.I X
Cancels form feed.

\section*{PRINT LOAD ADDRESS}

J "File name"
Read the load address of the file and print it in hex. Device number 8 is used.

\section*{KILL MICROMON ADDITIONS}
.(Shift) K
Kill MICROMON and its additions and BRK to the TIM monitor. This is the same as the unshifted K command except now a G command will reinitialize MICROMON and the additions.

\section*{LOAD FROM DISK}
.(Shift) L "filename"
This is the same as the normal load command except that the disk (device \#8) is used as the default, not the cassette.

\section*{PRINTING MEMORY DUMP}
.(Shift) M F000 F100
The same as the normal Memory dump, but does not print the :: and prints out 16 hex bytes and the ASCII for them.

\section*{PRINT SWITCHER}
. P
If the output is to the CRT then switch the output to the printer (device \#4). If the output is not the CRT then clear the output device and restore the output to the CRT.
.P 06
Make device \#6 the output device if the current out-
put is the CRT.

\section*{SEND TO PROM PROGRAMMER .U 067000 7FFF}

This command will send out bytes to a PROM programmer on the IEEE bus. The first byte is the device number and the two addresses are the range of memory to output. A CHR\$(2) is sent first to start the programmer. This is followed by the memory bytes as ASCII characters separated by spaces. After all bytes have been sent, a CHR\$(3) is sent to stop the programmer. MICROMON then does a checksum on the range to compare against the programmer checksum. Although this is for a particular programmer, it could be modified for others.

\section*{SPECIFY LOAD ADDRESS}
.Y 7000 "Filename"
This command allows a file to be loaded starting at the address you specify and not the load address it would normally load into. The disk (device \#8) is used for loading.

\section*{TEXT FLIP FOR 8032 \& FAT 40's}
.(Shift) Z
This is for 8032 and Fat 40's to go from Text to Graphics mode or vice versa.

\section*{DOS SUPPORT}
.@ or .>
This reads the error channel from disk device number 8 .
.@ disk command or .> disk command
This sends the disk command to disk device number 8 .
```

.@\$0 or .>\$0

```

This reads the directory from disk device number 8. The SPACE BAR will hold the display and any other key will start it again and the STOP key will return to command mode.

\section*{CONTROL CHARACTERS}
.(Up arrow)G
This command will print the control character of the ASCII character input.

Examples of controls:

\section*{MICROMON ADDITIONAL INSTRUCTIONS}
（Shift）D PRINTING DISASSEMBLER I HEADING AND FORM FEED CONTROL J PRINT LOAD ADDRESS
（Shift）K KILL MICROMON ADDITIONS
（Shift）L LOAD FROM DISK
（Shift）M PRINT MEMORY DISPLAY
P PRINTER SWITCHING
U SEND TO PROM PROGRAMMER Y SPECIFY LOAD ADDRESS
（Shift）Z TEXT／GRAPHICS FLIP
＞DOS SUPPORT COMMANDS
（a）DOS SUPPORT COMMANDS
（Up arrow）CONTROL CHARACTERS

Program 1.
10 DATA 15463，14894，14290，11897，12 453，13919，14116，11715，1257 5，14571
20 DATA 13693，11853，12903，14513，12 \(137,15006,12654,13291,1243\) 6，13899
30 DATA \(15366,9999,11834,13512,128\) 92，14475，15149，14896，15782 ，9511
40 DATA 12171，8985
\(10 \emptyset \quad Q=4096\)
\(11 \emptyset\) FOR BLOCK＝1TO32
\(12 \emptyset\) FOR BYTE＝ØTO127
\(130 \mathrm{X}=\mathrm{PEEK}(\mathrm{Q}+\mathrm{BYTE}): \mathrm{CK}=\mathrm{CK}+\mathrm{X}\)
140 NEXT BYTE
150 READ SUM
160 IF SUM \(\langle>\) CK THEN PRINT＂ERROR IN BLOCK \＃＂BLOCK：GOTOl7Ø
165 PRINT＂
BLOCK＂
BLOCK＂IS CORRECT
\(17 \emptyset \quad C K=\emptyset: Q=Q+128\)
\(18 \emptyset\) NEXT BLOCK

Program 2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1000 & 4 C & ØC & 10 & 4 C & 6 F & 10 & 4 C & CF \\
\hline 1008 & FF & 4 C & D2 & FF & 78 & A5 & 92 & A6 \\
\hline 1010 & 93 & 8D & E5 & \(\emptyset 2\) & 8 E & E6 & \(\emptyset 2\) & AD \\
\hline 1018 & F6 & 1 F & AE & F7 & 1 F & 8D & E3 & ¢2 \\
\hline 1020 & 8E & E4 & \(\emptyset 2\) & AD & Fø & 1 F & AE & Fl \\
\hline 1028 & 1 F & 85 & 92 & 86 & 93 & A5 & \(9 \emptyset\) & A6 \\
\hline 1030 & 91 & CD & EE & 1 F & Dø & \(\emptyset 5\) & EC & EF \\
\hline 1038 & 1 F & \(F \emptyset\) & 10 & 8D & 9E & \(\emptyset 2\) & 8 E & F \\
\hline 1040 & \(\emptyset 2\) & AD & EE & 1 F & AE & EF & 1 F & 85 \\
\hline 1048 & 90 & 86 & 91 & AD & EC & 1 F & AE & ED \\
\hline 1050 & 1 F & E \(\emptyset\) & 80 & Bø & ø8 & 85 & 34 & 86 \\
\hline 1058 & 35 & 85 & 30 & 86 & 31 & A9 & 10 & 8D \\
\hline 1060 & 84 & \(\emptyset 2\) & 8D & 85 & \(\emptyset 2\) & A9 & Øø & \\
\hline
\end{tabular}

106886 ø2 8D A2 ø2 58 øø 38 \(107 \emptyset\) AD 7B ø2 E9 ø1 8D 7B ø2 1078 AD 7A ø2 E9 øø 8D 7A ø2

1080205519 A2 42 A9 2A 2ø
10882918 A9 52 Dø 23 A9 3F
109Ø 2Ø ø9 1ø \(2 \emptyset 55\) 19 A9 2E
109820 ø9 10 A9 øø 8D 94 ø2
1ØAØ 8D A2 Ø2 A2 FF 9A 2ø A4
10A8 18 C9 2E Fø F9 C9 \(2 \emptyset\) Fø
løBØ F5 A2 lD DD 92 lF Dø l3
1øB8 8D 87 Ø2 8A ØA AA BD Bø
løCø lF 85 FB BD Bl lF 85 FC
1øC8 6C FB øø CA 1ø E5 6C E3
løDø Ø2 A2 ø2 Dø ø2 A2 øø B4
løD8 FB Dø Ø9 B4 FC Dø Ø3 EE
10Eø 94 Ø2 D6 FC D6 FB 6Ø A9
løE8 øø 8D 8C Ø2 2ø 4F l2 A2 10FØ 09205219 CA Dø FA 60 løF8 A2 ø2 B5 FA 48 BD 91 ø2

11øø 95 FA 68 9D 91 ø2 CA Dø
llø8 Fl 60 AD 92 Ø2 AC 93 Ø2
1110 4C 17 11 A5 FD A4 FE 38
1118 E5 FB 8D 91 Ø2 98 E5 FC
112ø A8 ØD 91 ø2 6ø A9 øø Fø
1128 Ø2 A9 ø1 8D 95 02 20 E6
11301720551920131120
1138 3C \(18901 B 2 \emptyset 0 \mathrm{~A} 11 \mathrm{~B} \emptyset\)
1140 Ø3 4C C5 ll \(2 \emptyset 7 \mathrm{~F}\) ll E6
1148 FD Dø ø2 E6 FE \(2 \emptyset\) 3B 19
1150 AC \(94 \quad \emptyset 2\) Dø 45 Fø E5 \(2 \emptyset\)
1158 日A 1118 AD \(91 \quad 0265\) FD
\(116085 \mathrm{FD} 9865 \mathrm{FE} 85 \mathrm{FE} 2 \emptyset\)
1168 F8 10 20 7F 1120 ØA 11
\(117 \emptyset\) Bø \(532 \emptyset\) Dl 1020 D5 10
1178 AC 94 Ø2 Dø lD Fø EB A2
\(1180 \emptyset \emptyset \mathrm{Al} \mathrm{FB}\) AC 95 Ø2 Fø \(\emptyset 2\)
118881 FD Cl FD Fø ØB 2013
\(\begin{array}{lllllllllll}1190 & 18 & 2 \emptyset & 52 & 19 & 20 & A E & 18 & \mathrm{~F} \emptyset\end{array}\)
1198 Ø1 60 4C 9310206118
11AØ \(2 \emptyset\) ØB \(182 \emptyset A 4182 \emptyset 6 F\)
11A8 189017 8D \(89 \quad \emptyset 2\) AE 94
11Bの Ø2 D D 12 2ø \(13119 \emptyset\) ØD
11B8 AD \(89 \quad 0281 \mathrm{FB} 2 \emptyset\) 3B 19
11Cの D \(\emptyset\) EC 4C 8E 1ø 4C 9310
\(\begin{array}{lllllllll}11 C 8 & 20 & \emptyset 1 & 18 & 2 \emptyset & \emptyset B & 18 & 2 \emptyset & A 4\end{array}\)
11Dø 18 A2 Øø \(2 \emptyset\) A4 18 C9 27
llD8 Dø 1420 A4 18 9D A3 \(\emptyset 2\)
11Eの E8 2ø Ø6 10 C9 ØD FØ 22
11E8 EØ 20 Dø Fl Fø 1C 8E 97
11Fの Ø2 2ø 771890 CC 9D A3
11F8 ø2 E8 2ø ø6 10 C9 ØD Fø
\(120 \emptyset\) Ø9 2ø 6F \(189 \emptyset\) BC Eø \(2 \emptyset\) 1208 Dø EC 8E \(88 \quad \emptyset 2 \quad 2 \emptyset \quad 5519\) \(121 \emptyset\) A2 \(\emptyset \emptyset\) A \(\emptyset \emptyset\) Bl FB DD A3 1218 Ø2 Dø ØA C8 E8 EC 88 Ø2 1220 Dø F2 \(2 \emptyset\) 8E 1120 3B 19 1228 AC 94 Ø2 Dø ø5 201311 1230 Bø DE 4C \(931 \emptyset 203914\) \(12382 \emptyset 131190\) ØD Aø 2C \(2 \emptyset\) 1240 E7 10 20 AB 1220 AE 18 1248 DØ EE \(2 \emptyset\) B3 15 D \(\emptyset\) E3 \(2 \emptyset\) \(\begin{array}{lllllllll}1250 & 47 & 19 & 20 & 13 & 18 & 20 & 52 & 19\end{array}\) 1258 2ø ØE 1E 4820 ØВ 1368 \(12602 \emptyset 2213\) A2 Ø6 EØ Ø3 Dø 126814 AC 8B Ø2 Fø ØF AD 96 \(127 \emptyset\) Ø2 C9 E8 Bl FB Bø lD \(2 \emptyset\) 1278 Al 1288 DØ Fl ØE 96 Ø2

128ø 9ø ØE BD E9 1E 20 AD 15 1288 BD EF lE Fø Ø3 20 AD 15 1290 CA Dø D2 6ø \(2 \emptyset\) B7 12 AA 1298 E8 Dø Øl C8 98 2ø Al l2 \(12 \mathrm{~A} 日 8 \mathrm{~A} 8 \mathrm{E} 88\) Ø2 \(2 \emptyset\) 1A 18 AE \(12 A 888\) ø2 6ø AD 8B \(022 \emptyset\) B6 \(12 \mathrm{~B} \emptyset 1285 \mathrm{FB} 84 \mathrm{FC} 6 \emptyset 38 \mathrm{~A} 4\) 12B8 FC AA \(1 \emptyset \emptyset 1\) © 8865 FB 90 \(12 C \emptyset \emptyset 1 \mathrm{C} 86 \emptyset \mathrm{~A} 84 \mathrm{~A} 9 \emptyset \quad \mathrm{~B} 4 \mathrm{~A}\)
 12Dø 99 8ø 4A AA BD 98 1E Bø 12D8 04 4A 4A 4A 4A 29 ØF D \(\emptyset\) \(12 \mathrm{E} \emptyset \emptyset 4 \mathrm{~A} \emptyset 8 \emptyset \mathrm{~A} 9\) Øø AA BD DC l2E8 lE 8D 96 Ø2 29 Ø3 8D 8B 12Fø Ø2 9829 8F AA 98 AØ Ø3 12 F 8 E ■ 8A \(\mathrm{F} \emptyset\) ØB 4A \(9 \emptyset\) Ø8 4A
\(130 \emptyset 4 A\) Ø9 2088 D 0 FA C8 88 1308 Dø F2 \(6 \emptyset\) Bl FB \(2 \emptyset\) Al 12 131ø A2 ø1 \(2 \emptyset\) F1 10 CC 8B ø2 1318 C8 9ø Fø A2 ø3 Cø ø3 9ø 1320 Fl 6ø A8 B9 F6 1E 8D 92 1328 Ø2 B9 36 1F 8D \(93 \quad 02\) A9 1330 øø AØ Ø5 ØE 93 ø2 2E 92 1338 Ø2 2A 88 Dø F6 69 3F 2ø 1340 Ø9 10 CA D 0 EA 4C 5219 134820 Øl 18 A9 ø3 2ø AC 13 1350 Aø 2C 4C 5015 BD 05 Ø1 1358 CD F8 lF Dø ØB BD ø6 ø1 1360 CD F9 lF Dø ø3 2ø D7 18 1308 A5 97 CD 83 ø2 Fø 6A 8D \(137 \emptyset 83\) ø2 A9 1ø 8D 84 ø2 Dø 137824 C9 FF Fø \(2 \emptyset\) AD 84 Ø2
\(138 \emptyset\) Fø-ø5 CE 84 Ø2 Dø 16 CE 138885 Ø2 Dø 11 A9 ø2 8D 85 1390 Ø2 A5 9E Dø ø8 A9 øø 85

139897 A9 ø2 85 A8 AD F3 lF 13Aの 48 AD F2 1F 48 ø8 4848 13A8 48 6C \(9 \mathrm{E} \quad 02\) 8D \(89 \quad 0248\) \(\begin{array}{lllllllll}13 B \emptyset & 2 \emptyset & \text { A4 } & 18 & 2 \emptyset & 19 & 19 & \mathrm{D} & \mathrm{F} 8\end{array}\) 13B8 6849 FF 4C AE \(12 \begin{array}{llllll} & 2 \emptyset & 39\end{array}\) 13CØ 14 AE 94 ø2 Dø ØD \(2 \emptyset 13\) 13C8 \(1190 \quad 982 \emptyset\) D6 1320 AE 13DØ 18 Dø EE 4C 4A l2 \(2 \emptyset 55\) 13D8 19 A2 2E A9 3A \(2 \varnothing 19\) 18 13EØ \(2 \emptyset 52192 \emptyset 1318\) A9 \(\emptyset 8\) 13E8 \(2 \emptyset \quad \emptyset 319\) A9 \(\emptyset 8\) 2ø B9 13 13Fø A9 12 \(2 \emptyset\) Ø9 1ø Aø Ø8 A2 13F8 øø Al FB 29 7F C9 2ø Bø
\(14 \emptyset \emptyset\) Ø2 A9 2E \(2 \emptyset\) Ø9 1ø C9 22 \(14 \emptyset 8\) Fø Ø4 C9 62 Dø ØA A9 14 \(141 \varnothing 20 \quad 9910\) A9 \(222 \emptyset\) \(091 \varnothing\) 1418 2ø 3B 1988 Dø DB A9 92 14204 C Ø9 1ø \(2 \emptyset\) Ø1 18 A9 Ø8 \(14282 \emptyset\) AC \(132 \emptyset\) B3 1520 D6 143013 A9 3A 8D 6F ø2 4C 5C \(1438152 \emptyset\) Ø1 18 85 FD 86 FE 144020 ø6 10 C9 ØD Fø Ø3 2ø 1448 ø6 18 4C 5519 2ø 4C 18 \(145 \emptyset 85\) FD 86 FE A2 Øø 8E A4 1458 Ø2 \(2 \emptyset\) A4 18 C9 \(2 \emptyset\) FØ F4 \(146 \emptyset\) 9D 8D Ø2 E8 EØ Ø3 DØ Fl 1468 CA 3014 BD 8D Ø2 38 E9 \(147 \emptyset\) 3F Aø Ø5 4A 6E A4 Ø2 6E 1478 A3 ø2 88 Dø F6 Fø E9 A2
\(148 \emptyset\) Ø2 2ø Ø6 10 C9 ØD Fø 22
1488 C9 3A Fø lE C9 2ø Fø Fl
\(149 \emptyset 20\) A4 15 Bø ØF 2018418
1498 A4 FB 84 FC 85 FB A9 30
14Aø 9D A3 ø2 E8 9D A3 ø2 E8
14A8 Dø D7 8E 92 Ø2 A2 øø 8E
\(14 \mathrm{~B} \emptyset 94\) Ø2 A2 Øø 8E 89 Ø2 AD
14B8 94 Ø2 \(2 \emptyset\) C3 12 AE 96 Ø2
14Cø 8E 93 ø2 AA BD 36 1F 20
14C8 8415 BD F6 1E 208415
14DØ A2 Ø6 EØ Ø3 Dø 14 AC 8B
14D8 Ø2 Fø ØF AD 96 Ø2 C9 E8
14EØ A9 3ø Bø 1E \(2 \emptyset 811588\)
14E8 Dø F1 ØE 96 Ø2 9ø ØE BD
14 F Ø E9 le 208415 BD EF le
\(14 \mathrm{~F} 8 \mathrm{~F} \emptyset \emptyset 32 \emptyset 8415 \mathrm{CA} \mathrm{D} \emptyset \mathrm{D} 2\)

150ø Fø Ø6 \(2 \emptyset 8115208115\)
\(15 \emptyset 8\) AD 92 ø2 CD 89 ø2 Fø 03 15104 C 911520 3C 18 AC 8B 1518 Ø2 Fø 2E AD 93 Ø2 C9 9D 1520 DØ 1F \(2 \emptyset 131190\) ØA 98 1528 Dø 6F AE 91 Ø2 30 6A 10

1530 Ø8 C8 D 65 AE 91 Ø2 1ø
 1540 Ø3 B9 FC Øø 91 FB 88 D 1548 F8 AD 94 Ø2 91 FB AØ 41 1550 8C 6 F Ø2 \(2 \emptyset\) B3 15 2Ø E7 1558 10 2Ø AB 12 A9 20 8D 7 10 1560 Ø2 8D 75 Ø2 A5 FC \(2 \emptyset\) B8 156815 8E 71 Ø2 8D 72 Ø2 A5 \(1570 \mathrm{FB} 2 \emptyset \mathrm{~B} 815\) 8E 73 Ø2 8D \(\begin{array}{lllllllll}1578 & 74 & \emptyset 2 & \text { A9 } & 07 & 85 & 9 E & 4 C & 93\end{array}\)
\(158010 \quad 208415\) 8E 88 Ø2 AE 158889 Ø2 DD A3 Ø2 Fの ØD 68 159068 EE 94 Ø2 Fø Ø3 4C B2 1598144 C 8E 1ø E8 8E 89 Ø2 15AØ AE 88 Ø2 6Ø C9 3Ø 9Ø Ø3 \(15 A 8 \quad C 94760386 \emptyset C D \quad 8 C \quad \emptyset 2\) \(15 \mathrm{~B} \emptyset \mathrm{D} \emptyset \quad\) Ø 3 6 A9 91 4C Ø9 1Ø \(15 \mathrm{~B} 8 \quad 48 \quad 4 \mathrm{~A} 4 \mathrm{~A} \quad 4 \mathrm{~A} 4 \mathrm{~A} \quad 20 \quad 32.18\) \(15 C \emptyset \quad A A \quad 68 \quad 29 \quad \emptyset \mathrm{~F} \quad 4 \mathrm{C} \quad 3218\) 8D 15 C 8 7D Ø2 \(\quad\) Ø8 \(68 \quad 29\) EF 8D 7C \(15 \mathrm{D} \emptyset \quad \emptyset 2 \quad 8 \mathrm{E} 7 \mathrm{E} \quad \emptyset 2 \quad 8 \mathrm{C} 7 \mathrm{~F} \quad \emptyset 268\) \(\begin{array}{lllllllll}15 D 8 & 18 & 69 & \emptyset 1 & 8 D & 7 B & 02 & 68 & 69\end{array}\) 15Eの ØØ 8D 7A Ø2 A9 8 日 8D 86 15 E 8 Ø2 D D 21 AD 13 E 8 10 Ø3 \(15 \mathrm{~F} 日 \quad 4 \mathrm{C} \quad 55 \quad 13\) D8 68 8D \(7 \mathrm{~F} \quad \emptyset 2\) \(15 \mathrm{~F} 8 \quad 68\) 8D 7E \(\quad\) Ø2 68 8D 7D \(\quad\) Ø2

160ø 68 8D 7C Ø2 68 8D 7B Ø2 160868 8D 7A Ø2 A5 90 8D 82 161Ø Ø2 A5 91 8D 81 Ø2 BA 8E 1618 80 Ø2 20 D7 18 AD 12 E8 162058 AD 7 C Ø2 29 10 FØ Ø3 1628 4C 6F 10 2C 86 Ø2 5 0 1F 1630 AD 7A Ø2 CD 99 Ø2 DØ 6D 1638 AD 7B Ø2 CD 98 Ø2 DØ 65 1640 AD 9C Ø2 Dø 5D AD 9D Ø2 1648 Dø 55 A9 80 8D 86 Ø2 \(3 \emptyset\) 1650144 E 86 Ø2 9Ø D2 AE 8 1658 Ø2 9A AD F5 lF 48 AD F4 \(16601 \mathrm{~F} 48 \quad 4 \mathrm{C} \quad 1 \mathrm{~F} \quad 17 \quad 20 \quad 5519\) \(1668 \quad 2 \emptyset \quad 30198 D 89 \quad \emptyset 2\) AØ \(19 \emptyset\) \(167 \emptyset 20\) ØB 19 AD 7B Ø2 AE 7A \(1678 \quad \emptyset 285 \mathrm{FB} 86 \mathrm{FC} 205219\)

168Ø A9 24 8D 8C Ø2 \(2 \emptyset 52\) 12 1688 2ø E4 FF Fø FB C9 Ø3 DØ 169 Ø 14 4C 93 1Ø C9 4A Dø 56 1698 A9 Ø1 8D 86 Ø2 DØ 4F CE \(16 A \emptyset 9 D \quad 0\) CE 9C Ø2 AD 12 E8 16A8 C9 EE FØ Ø4 C9 6F DØ 3E \(16 \mathrm{~B} \emptyset\) A2 53 4C \(851 \emptyset\) A9 \(\emptyset \emptyset \mathrm{F} \emptyset\) 16B8 12 AD 9A Ø2 AE 9B Ø2 8D 16CØ 9C Ø2 8E 9D Ø2 A9 4 4 DØ

16 C 8 Ø2 A9 8 Ø 8D 86 Ø2 2ø Ø6 16 D 1 1 C 9 ØD F F 11 C9 \(2 \emptyset \mathrm{D}\) 16D8 5C \(206018 \quad 20\) FC 18 20 16Eの Ø6 1Ø C9 ØD DØ 4F 2Ø 55 16E8 19 AD 86 Ø2 Fø 2278 A9 \(16 \mathrm{~F} \emptyset \mathrm{~A} \emptyset\) 8D 4E E8 CE 13 E8 2C 16 F 8 12 E8 AD Fø 1F AE Fl 1 F
\(17 \emptyset \emptyset 8 \mathrm{D} 82\) Ø2 8E 81 Ø2 A9 3B \(17 \emptyset 8\) À2 Øஜ 8D 48 E8 8 E 49 E8 1710 AE 80 Ø2 9A 78 AD 81 Ø2 17188591 AD \(82 \quad 028590\) AD \(172 \emptyset 7 \mathrm{~A} \quad \emptyset 248 \mathrm{AD} 7 \mathrm{~B} \quad 0248 \mathrm{AD}\) 1728 7C Ø2 48 AD 7D Ø2 AE 7E 1730 Ø2 AC 7F Ø2 40 4C 8E 1 \(\begin{array}{lllllllll}1738 & 20 & 4 C & 18 & 8 D & 98 & 02 & 8 E & 99\end{array}\) \(174 \emptyset\) Ø2 A9 Øø 8D 9A Ø2 8D 9B 1748 Ø2 2の 5D 18 8D 9A Ø2 8E \(175 \emptyset 9 B \quad \emptyset 2\) 4C \(931 \emptyset 20\) E6 17 1758 8D AØ Ø2 8E Al Ø2 2の 5D 176Ø 18 8D 8D Ø2 8E 8E Ø2 2ø 1768 5D 18 8D 8F Ø2 8E 9 Ø Ø2 \(177 \emptyset 2 \emptyset \quad \emptyset 6\) 1Ø C9 ØD FØ ØA \(2 \emptyset\) 1778 Ø6 10 C9 57 DØ Ø3 EE 8C
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1780 & \(\emptyset 2\) & \(2 \emptyset\) & & 18 & AE & 94 & & Dø \\
\hline 1788 & 18 & 20 & \(\emptyset\) & 11 & 90 & 3 & C & C \\
\hline 1790 & \(\emptyset 2\) & D \(\emptyset\) & \(1 A\) & Bl & FB & \(2 \emptyset\) & C3 & 2 \\
\hline 1798 & AA & BD & F6 & 1E & DØ & \(\emptyset 6\) & \(2 \emptyset\) & E7 \\
\hline \(17 \mathrm{~A} 口\) & 10 & 4 C & 93 & 10 & AC & 8B & \(\emptyset 2\) & C \(\emptyset\) \\
\hline 17A8 & \(\emptyset 2\) & D \(\emptyset\) & 33 & Fø & \(\emptyset 3\) & 8C & 8B & \(\emptyset 2\) \\
\hline \(17 \mathrm{~B} \emptyset\) & 88 & 38 & Bl & FB & AA & ED & 8D & \(\emptyset 2\) \\
\hline \(17 \mathrm{B8}\) & C8 & Bl & FB & ED & 8E & \(\emptyset 2\) & 90 & 1 E \\
\hline 17 C ¢ & 88 & AD & 8 F & \(\emptyset 2\) & Fl & FB & C8 & AD \\
\hline 17 C 8 & \(9 \emptyset\) & \(\emptyset 2\) & Fl & FB & 90 & 10 & 88 & 18 \\
\hline 17D6 & 8A & 6D & Aø & \(\emptyset 2\) & 91 & FB & C8 & Bl \\
\hline 17D8 & FB & 6D & Al & \(\emptyset 2\) & 91 & FB & \(2 \emptyset\) & 3B \\
\hline 17 E ¢ & 19 & 88 & 10 & FA & 30 & 9 E & \(2 \emptyset\) & 4C \\
\hline 17E8 & 18 & 85 & FD & 86 & FE & 20 & 5D & 18 \\
\hline \(17 \mathrm{~F} \emptyset\) & 8D & 92 & \(\emptyset 2\) & 8E & 93 & \(\emptyset 2\) & \(2 \emptyset\) & A4 \\
\hline 17 F 8 & 18 & 20 & \(6 \emptyset\) & 18 & 85 & FB & 86 & FC \\
\hline
\end{tabular}
\(18 \emptyset \emptyset 6 \emptyset 2 \emptyset 4 \mathrm{C} 18\) BØ F6 \(206 \emptyset\) \(18 \emptyset 8 \quad 18 \mathrm{~B} \mathrm{\emptyset} \quad \emptyset 3205 \mathrm{D} 1885 \mathrm{FD}\) 181086 FE 60 A 5 FC 20 1A 18 1818 A5 FB 48 4A \(4 A 4 A\) AA 20 \(\begin{array}{llllllll}182 \emptyset & 32 & 18 & A A & 68 & 29 & \emptyset F & 2 \emptyset \\ 32\end{array}\) \(\begin{array}{lllllllll}1828 & 18 & 48 & 8 A & 2 \emptyset & 09 & 10 & 68 & 4 C\end{array}\) \(1830 \quad 99101869\) F6 90 Ø2 69 1838 Ø6 69 3A 6Ø A2 Ø2 B5 FA 184048 B5 FC 95 FA 6895 FC 1848 CA DØ F3 6Ø A9 Øø 8D 97 \(1850 \quad \emptyset 2\) 20 A4 18 C9 \(2 \emptyset\) FØ 99 \(\begin{array}{lllllllll}1858 & 2 \emptyset & 84 & 18 & \text { B } & \emptyset 8 & 2 \emptyset & \text { A4 } & 18\end{array}\)
\(186 \emptyset 2 \emptyset 6 \mathrm{~F} 1890 \quad 07 \mathrm{AA} 2 \emptyset 6 \mathrm{~F}\) 18681890 Ø1 60 4C 8E 10 A9 \(1870 \quad 008 \mathrm{D} 97 \quad 02\) 2の A4 18 C9 1878 2ø DØ Ø9 2の A4 18．C9 2ø

1880 Dø ØF \(18602 \emptyset 9918\) 日A 1888 ØA ØA ØA 8D 97 Ø2 \(2 \emptyset\) A4 189の 18209918 øD \(97 \quad\) ø2 38 1898 6ø C9 3A Ø8 29 ØF 28 9ø 18AØ Ø2 69 Ø8 \(602 \emptyset\) ø6 10 C9 18A8 ØD Dø F8 4C 9310 A5 9B 18Bも C9 EF Dø 07 Ø8 \(2 \emptyset\) CC FF l8B8 85 9E \(28602 \emptyset\) C6 18 AD 18C0 13 E8 6A 90 F7 60 2ø AE \(18 \mathrm{C} 818 \mathrm{D} \emptyset\) ØB \(2 \emptyset\) D7 18 A9 03 18Dø 85 Bø A9 Øø 85 AF \(6 \emptyset\) ø8 l8D8 78 AD \(4 \emptyset\) E8 ø9 10 8D 40 18Eø E8 A9 7F 8D 4E E8 A9 3C 18E8 8D ll E8 A9 3D 8D 13 E8 \(18 \mathrm{~F} \emptyset \mathrm{AD}\) EE 1 F 8590 AD EF lF 18F8 859128608 D 7 B 928 E

19øø 7A Ø2 6ø 8D 89 Ø2 Aø Øø \(19 \emptyset 82 \emptyset 5219\) Bl FB \(2 \emptyset\) 1A 18 \(19102 \emptyset\) 3B 19 CE 89 Ø2 Dø \(F \emptyset\) \(191860206 \mathrm{~F} 189 \emptyset\) ØВ A2 øø 192081 FB Cl FB Fø Ø3 4C 8E 1928 1ø \(2 \emptyset\) 3B 19 CE 89 Ø2 6ø 1930 A9 7C 85 FB A9 Ø2 85 FC 1938 A9 0560 E6 FB DØ 07 E6 1940 FC DØ Ø3 EE 94 Ø2 6098 19484820551968 A2 2E \(2 \emptyset\) 19502918 A9 20 2C A9 øD 4C 1958 Ø9 1ø A2 øø BD 76 lF \(2 \emptyset\) 1960 Ø9 10 E8 EØ 1C DØ F5 Aø 1968 3B \(2 \emptyset 4719\) AD 7A Ø2 2ø 1970 1A 18 AD 7B \(02201 A 18\) 1978205219 AD \(8102201 A\)

198018 AD 82 Ø2 \(2 \emptyset 1 A 1820\) 1988 3ø \(1920 \quad 0319\) 4C 9310 19904 C 8 E 10204 C 1820 FC \(1998182 \emptyset 5 D 18\) 8D 82 ø2 8E 19Aø 81 Ø2 2ø 3ø 19 8D 89 ø2 19A8 2ø A4 18201919 D 20 F8 19Bø Fø DB \(2 \emptyset 6 \emptyset\) 1C AE \(8 \emptyset \emptyset 2\) 19B8 9A 6C 94 øø 4C 8E 1ø Aø 19Cø Ø1 84 D4 8884 Dl 8496 19C8 84 9D A9 \(ø 285\) DB A9 A3 19DØ 85 DA \(2 \emptyset\) ø6 1ø C9 \(2 \emptyset\) Fø 19D8 F9 C9 日D Fø lA C9 22 Dø 19EØ DB \(2 \emptyset\) Ø6 10 C9 \(22 \mathrm{~F} \emptyset 36\) 19E8 C9 ØD FØ ØB 91 DA E6 Dl 19FØ C8 Cø lø FØ C7 Dø EA AD

19F8 87 ø2 C9 4C Dø El AD øø

1AØØ Cø C9 4 4 Dø ø6 2ø 22 F3 1Aø8 4C 12 1A C9 4C Dø AD \(2 \emptyset\) 1Alø 56 F3 \(2 \emptyset\) BC 18 A5 9629 1A18 lø Dø El 4C \(931 \emptyset 2 \emptyset \emptyset 6\) 1A2ø 10 C9 0D Fø D2 C9 2C Dø lA28 FØ 2Ø 6F 1829 ØF FØ C3 lA30 C9 Ø3 FØ FA 85 D4 \(2 \emptyset 06\) 1A38 10 C9 ØD Fø BA C9 2C Dø 1A4も E6 \(2 \emptyset\) F9 1720 Ø6 1ø C9 1A48 2C Dø F4 \(2 \emptyset 601885\) C9 1A5ø 86 CA \(2 \emptyset\) ø6 1ø C9 \(2 \emptyset\) Fø 1A58 F9 C9 ØD Dø EC AD 87 Ø2 1A6ø C9 53 Dø F7 AD øø C 0 C9 1A68 40 Dø ø6 20 A4 F6 4C 93 1A7ø 1ø C9 4C Dø D4 \(2 \emptyset\) E3 F6

\(\begin{array}{lllllllll}1 A 8 \emptyset & 19 & 2 \emptyset & 3 B & 19 & 2 \emptyset & \text { ØB } & 18 & 2 \emptyset\end{array}\) \(\begin{array}{lllllllllllll}1 A 88 & 52 & 19 & 20 & 13 & 11 & 90 & 98\end{array}\) 1A9の Dø 15 AD 91 Ø2 \(30101 \varnothing\) lA98 Ø8 C8 Dø ØB AD \(91 \quad \emptyset 21 \emptyset\) lAAØ Ø6 2Ø 1A 18 4C \(931 \emptyset 4 C\) lAA8 8E lø \(2 \emptyset\) Øl 18 2Ø CØ 1A 1ABØ 4C \(93102 \emptyset 5519\) A2 2E \(\begin{array}{llllllll}\text { lAB8 A9 } & 24 & 20 & 29 & 18 & 2 \emptyset & 13 & 18\end{array}\) 1ACØ 2Ø 2F 1B 2Ø E6 1A \(2 \emptyset 52\) lAC8 19 2Ø CC lA \(2 \emptyset\) CF lA \(2 \emptyset\) 1ADØ 5219 A2 ø4 A9 \(3 \emptyset 18\) ØE lAD8 92 ø2 2E 93 ø2 69 øø \(2 \emptyset\) 1AEの \(0910 \mathrm{CA} D \mathrm{DF} 6 \emptyset\) A5 FC 1AE8 A6 FB 8D 93 Ø2 8E 92 Ø2 1AFの \(2 \emptyset 5219\) A5 FC \(2 \emptyset\) FA \(1 A\) 1AF8 A5 FB AA \(2 \emptyset 5219\) 8A 29

1Bøø 7F C9 \(2 \emptyset\) Ø8 Bø ØA A9 12 1Bø8 20 ø9 1ø 8A 186940 AA 1Blø 8A \(2 \emptyset\) ø9 1ø C9 \(22 \mathrm{~F} \emptyset \emptyset 4\) lBl8 C9 62 Dø ØA A9 \(1420 \quad \emptyset 9\) 1B2ø 1ø A9 92 2ø 091028 Bø 1B28 05 A9 \(922 \emptyset\) ø9 10 60 \(2 \emptyset\) 1B3Ø 5219 A6 FB A5 FC AC Øø 1B38 CØ Cø 4Ø Dø Ø3 4C D9 DC 1B4の Cの 4C Dø Ø3 4C 83 CF 4C 1B48 8E 1ø \(2 \emptyset\) 5B lB Bø F8 2ø \(\begin{array}{lllllllll}\text { lB5 } & 52 & 19 & 2 \emptyset & 13 & 18 & 2 \emptyset & C 3 & 1 A\end{array}\) 1B58 4C \(931 \emptyset\) A2 Ø4 A9 Øø 85 1B60 FC 2017 1C 2083 1B 85 lB68 FB 2078 1B \(2 \emptyset 92\) lB CA \(\begin{array}{lllllllll}1 B 70 & \text { D } & F 7 & \text { Ø8 } & 2 \emptyset & 52 & 19 & 28 & 6 \emptyset\end{array}\) 1B78 2066 10 C9 日D Fø ØF C9

1B88 3A B \(\emptyset \quad\) BC 29 ØF \(6 \emptyset 6868\) 1B9ø \(186 \emptyset 85\) FE A5 FC 48 A5 \(1 \mathrm{~B} 98 \mathrm{FB} 48 \quad 06 \mathrm{FB} 26 \mathrm{FC} \quad \varnothing 6 \mathrm{FB}\) 1BAØ 26 FC 6865 FB 85 FB 68 1BA8 \(65 \mathrm{FC} 85 \mathrm{FC} \emptyset 6 \mathrm{FB} 26 \mathrm{FC}\) 1BBø A5 FE 65 FB 85 FB A9 \(\emptyset \emptyset\) 1BB8 65 FC 85 FC 602017 1C 1BCø 8D \(93 \quad \emptyset 24848205219\) lBC8 \(2 \emptyset 5219682 \emptyset 1 A 182 \emptyset\) lBDø 521968 AA A9 Øø \(2 \emptyset 36\) lBD8 1B \(2 \emptyset 521920\) CC 1A 4C 1BEØ \(931 \emptyset 2 \emptyset\) F4 lB \(2 \emptyset 5219\) \begin{tabular}{llllllll}
\(1 B E 8\) & \(2 \emptyset\) & 13 & 18 & \(2 \emptyset\) & \(2 F\) & \(1 B\) & \(2 \emptyset\) \\
\hline
\end{tabular} lBFØ 1A 4C 93 lø A2 ØF A9 Øø lBF8 \(85 \mathrm{FB} 85 \mathrm{FC} 2 \emptyset 17 \mathrm{lC} 2 \emptyset\)

1Cøø 83 1B 2ø 11 1C \(2 \emptyset 78\) 1B 1C08 2の ll 1C CA Dø F7 4C 52 1Clø 19 4A 26 FB 26 FC \(602 \emptyset\) 1Cl8 A4 18 C9 \(2 \emptyset\) Fø F9 60 A9 1C2の ø2 4D 4C E8 8D 4C E8 4C 1C28 \(93102 \emptyset\) ØB 18 4C F6 17 1C3ø \(2 \emptyset\) 2A 1C 18 A5 FB 65 FD 1C38 85 FB A5 FC 65 FE 85 FC lC40 4C 5 1 C 2ø 2A lC \(2 \emptyset 13\) \(1 \mathrm{C} 48 \mathrm{ll} 84 \mathrm{FC} A D 91 \quad 0285 \mathrm{FB}\) 1C50 \(2 \emptyset 52192 \emptyset 13184 C 93\) 1C58 10 \(2 \emptyset 60\) 1C øø 6C EC lF 1C6ø 78 AD E5 Ø2 AE E6 Ø2 85 1C68 928693 AD 9E 02 AE 9F 1C7ø ø2 \(859 \emptyset 869158602 \emptyset\)


1C8ø Aø øø 8C 92 Ø2 8C 93 Ø2 1C88 \(2 \varnothing\) i3 li 9ø iD AD 94 02 1C9ø Dø 18 Aø øø 18 Bl FB 6D 1C98 92 ø2 8D 92 ø2 98 6D 93 1CAØ Ø2 8D 93 Ø2 20 3B 19 4C lCA8 88 1C AD \(93 \quad 02\) 2ø 1A 18 lCBø AD 92 ø2 \(2 \emptyset 1 A 184 \mathrm{C} 93\) lCB8 10 AD A2 ø2 DØ Ø4 A5 9E 1CCØ Dø 0668 A8 68 AA \(684 \emptyset\) 1CC8 AD 6F ø2 C9 ll Dø 7D A5 lCDø D8 C9 18 Dø ED A5 C4 85 1 CD 8 FD A5 C5 85 FE A9 19 8D 1CEØ 9C Ø2 Aø Ø1 2ø 8C 1E C9 1CE8 3A \(\mathrm{F} \emptyset 1 \mathrm{~A} C 9\) 2C \(\mathrm{F} \emptyset 16 \mathrm{C} 9\) 1CFØ \(24 \mathrm{~F} \emptyset 12 \mathrm{CE} 9 \mathrm{C} \quad 0 \mathrm{~F} \quad \mathrm{CA}\) lCF8 38 A5 FD E9 2885 FD Bø
lDøø El C6 FE Dø DD 8D 87 Ø2 lDø8 2Ø 45 lE Bø B5 AD 87 Ø2 1D1ø C9 3A Dø 1118 A5 FB 69 1D18 \(0885 \mathrm{FB} 9 \emptyset \quad\) ø2 E6 FC \(2 \emptyset\)

1D2ø D6 13 4C 39 lD C9 24 Fø 1D28 1A \(2 \emptyset \quad\) ØE 1E \(2 \emptyset\) AB 12 A9 1D3ø øø 8D 8C ø2 Aø 2C \(2 \emptyset 4 F\) 1D38 12 A9 øø 85 9E 4C 4A 12 1D4の 4C C2 1C \(2 \emptyset\) 3B \(192 \emptyset\) B3 1D48 lA 4C 39 lD C9 91 Dø Fø 1D5ø A5 D8 Dø EC A5 C4 85 FD 1D58 A5 C5 85 FE A9 19 8D 9C 1D6Ø Ø2 AØ Øl 2ø 8C lE C9 3A lD68 Fø 1A C9 2C Fø l6 C9 24 1D7ø Fø 12 CE 9C \(02 \mathrm{~F} \emptyset 1518\) 1D78 A5 FD 692885 FD 90 El

1Døø El C6 FE Dø DD 8D 87 Ø2 lDø8 2ø 45 lE Bø B5 AD 87 ø2 lDlø C9 3A Dø ll 18 A5 FB 69 1D18 ø8 85 FB 9ø ø2 E6 FC \(2 \emptyset\) lD2ø D6 13 4C 39 lD C9 24 Fø lD28 lA \(2 \emptyset\) ØE lE \(2 \emptyset\) AB 12 A9 lD3ø Øø 8D 8C Ø2 AØ 2C \(2 \emptyset 4 F\) 1D38 12 A9 øø 85 9E 4C 4A 12 1D4ø 4C C2 1C 2ø 3B \(192 \emptyset\) B3 lD48 lA 4C 39 lD C9 91 Dø \(\mathrm{F} \emptyset\) 1D5ø A5 D8 Dø EC A5 C4 85 FD lD58 A5 C5 85 FE A9 19 8D 9C 1D6ø ø2 Aø øl 2ø 8C lE C9 3A lD68 Fø 1A C9 2C Fø l6 C9 24 1D7Ø Fø l2 CE 9C Ø2 FØ 1518 1D78 A5 FD 692885 FD \(9 \emptyset\) El
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline D80 & F & FE & 0 & DD & 8D & 87 & 02 & 2 \\
\hline 1D88 & 45 & 1 E & 90 & \(\emptyset 3\) & 4C & C2 & C & C AD \\
\hline 1 D90 & 87 & \(\emptyset 2\) & C9 & 3A & Fø & 06 & C9 & \\
\hline \(1 \mathrm{D98}\) & Fø & 1D & Dø & 27 & 20 & 15 & 1 E & \\
\hline 1 DAØ & A5 & FB & E9 & ø8 & 85 & FB & B0 & 0 \\
\hline 1 DA8 & C6 & FC & 20 & D9 & 13 & A9 & 0 & \\
\hline \(1 \mathrm{DB} \emptyset\) & 9 E & \(2 \emptyset\) & 40 & 1 E & 4 C & 96 & 10 & \\
\hline \(1 \mathrm{DB8}\) & 15 & 1 E & 20 & D5 & 10 & \(2 \emptyset\) & B6 & \\
\hline 1 DC 0 & 4 C & AD & 1D & \(2 \emptyset\) & 15 & 1 E & A5 & \\
\hline \(1 \mathrm{DC8}\) & A6 & FC & 85 & FD & 86 & FE & A9 & \\
\hline 1 DD 0 & 8D & 9 C & \(\emptyset 2\) & 38 & A5 & FD & ED & \\
\hline 1 DD8 & \(\emptyset 2\) & 85 & FB & A5 & FE & E9 & D0 & \\
\hline \(1 \mathrm{DE}{ }^{\text {l }}\) & FC & 20 & ØE & 1 E & \(2 \emptyset\) & AB & 12 & \\
\hline \(1 \mathrm{DE8}\) & 13 & 11 & Fø & \(\emptyset 7\) & B \(\emptyset\) & F3 & C & \\
\hline 1 DF ¢ & \(\emptyset 2\) & D \(\emptyset\) & Eø & EE & 8 B & \(\varnothing 2\) & AD & \\
\hline lDF8 & \(\emptyset 2\) & \(2 \emptyset\) & B9 & 13 & A2 & \(\emptyset \emptyset\) & A & \\
\hline
\end{tabular}

1Eøø 8E 8C Ø2 A9 2C 2ø 4D 19 1Eø8 \(2 \emptyset 52124 C\) AD lD A2 Øø 1Elø Al FB 4C C3 12 A9 8385 1E18 C8 85 FE A9 øø 85 C7 A9 1E2の 2885 FD AØ C0 A2 Ø4 88 lE28 Bl C7 91 FD 98 D 0 F8 C6 1E3ø C8 C6 FE CA Dø Fl A2 27

1E38 A9 2ø 9D øø 8ø CA 10 FA lE4ø A9 13 4C ø9 lø Cø 28 Dø le48 ø2 386020 8C lE C9 \(2 \emptyset\) lE5 \(\mathrm{F} \emptyset\) F3 \(882 \emptyset 75\) lE AA \(2 \emptyset\) lE58 75 lE 85 FB 86 FC A9 FF lE6ø 8D A2 Ø2 85 A7 A5 AA Fø 1E68＠A A5 A9 A4 C6 91 C4 A9 1E7Ø øø 85 AA \(186 \emptyset 2 \emptyset\) 8C lE 1E78 \(2 \emptyset 9918\) ØA ØA ØA ØA 8D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 180 & 97 & \(\emptyset 2\) & 0 & 8C & E & \(2 \emptyset\) & 9 & \\
\hline 1 E 88 & ดD & 97 & \(\emptyset 2\) & 60 & B1 & FD & C8 & 29 \\
\hline 1E90 & 7 F & C9 & 20 & B \(\emptyset\) & \(\emptyset 2\) & 09 & 40 & 60 \\
\hline 1E98 & 40 & \(\emptyset 2\) & 45 & ø3 & Dø & 08 & 40 & 0 \\
\hline 1EAØ & 30 & 22 & 45 & 33 & Dø & 98 & 40 & 仡 \\
\hline 1EA8 & 40 & ø2 & 45 & 33 & Dø & 08 & 40 & \\
\hline 1EBø & 40 & 02 & 45 & B3 & Dø & 08 & & 09 \\
\hline EB8 & Øø & 22 & 44 & 33 & Dø & 8 C & & \\
\hline 1 ECD & 11 & 22 & 44 & 33 & Dø & 8C & 44 & \\
\hline 1 EC8 & 10 & 22 & 44 & 33 & Dø & \(\emptyset 8\) & 40 & － \\
\hline 1ED® & 10 & 22 & 44 & 33 & Dø & 08 & 40 & 09 \\
\hline 1ED8 & 62 & 13 & 78 & A9 & \(\emptyset \emptyset\) & 21 & 81 & \\
\hline 1EEØ & \(\emptyset \emptyset\) & \(\emptyset \emptyset\) & 59 & 4D & 91 & 92 & 86 & \\
\hline 1EE8 & 85 & 9D & 2C & 29 & 2C & 23 & 28 & \\
\hline 1 EF & 59 & \(\emptyset \emptyset\) & 58 & 24 & 24 & øø & & A \\
\hline EF8 & C & 23 & 5D & 8B & 1 B & Al & & \\
\hline
\end{tabular}
lFøø lD 23 9D 8B lD Al Øø 29 lFø8 19 AE 69 A8 19232453
 1 Fl8 5B 5B A5 692424 AE AE 1F2の A8 AD 29 øø 7C øø 15 9C 1F28 6D 9C A5 6929538413 1F3Ø 34 ll A5 69 23 A 0 D8 62 \(\begin{array}{lllllllll}1 F 38 & 5 A & 48 & 26 & 62 & 94 & 88 & 54 & 44\end{array}\) 1F4の C8 546844 E8 94 Øø B4 \(\begin{array}{lllllllll}1 F 48 & 08 & 84 & 74 & B 4 & 28 & 6 E & 74 & F 4\end{array}\) 1F50 CC 4A 72 F2 A4 8A \(0 \emptyset\) AA \(\begin{array}{llllllll}1 F 58 & A 2 & A 2 & 74 & 74 & 74 & 72 & 44 \\ 68\end{array}\) 1F60 B2 32 B2 øø 22 øø 1A 1A \(\begin{array}{lllllllll}\text { lF68 } & 26 & 26 & 72 & 72 & 88 & C 8 & C 4 & C A\end{array}\) 1F7Ø 26484444 A2 C8 ØD \(2 \emptyset\) \(\begin{array}{lllllllll}1 F 78 & 2 \emptyset & 2 \emptyset & 2 \emptyset & 50 & 43 & 2 \emptyset & 2 \emptyset 49\end{array}\)
\begin{tabular}{lllllllll}
\(1 F 8 \emptyset\) & 52 & 51 & \(2 \emptyset\) & \(2 \emptyset\) & 53 & 52 & \(2 \emptyset\) & 41 \\
\(1 F 88\) & 43 & \(2 \emptyset\) & 58 & 52 & \(2 \emptyset\) & 59 & 52 & \(2 \emptyset\) \\
\(1 F 9 \emptyset\) & 53 & \(5 \emptyset\) & 41 & 42 & 43 & 44 & 46 & 47 \\
\(1 F 98\) & 48 & \(4 C\) & \(4 D\) & \(4 E\) & 51 & 52 & 53 & 54 \\
\(1 F A \emptyset\) & 57 & 58 & \(2 C\) & \(3 A\) & \(3 B\) & 24 & 23 & 22 \\
\(1 F A 8\) & \(2 B\) & \(2 D\) & \(4 F\) & \(5 A\) & \(4 B\) & 25 & 26 & 45 \\
\(1 F B \emptyset\) & \(4 D\) & 14 & 38 & 17 & 25 & 11 & 35 & 12 \\
\(1 F B 8\) & \(9 D\) & 11 & B5 & 16 & C8 & 11 & BF & 19 \\
\(1 F C \emptyset\) & BE & 13 & 55 & 17 & B9 & 16 & \(5 A\) & 19 \\
\(1 F C 8\) & BF & 19 & 29 & 11 & C9 & 16 & B5 & 19
\end{tabular}

1FDø \(4813 \quad 23149319\) AA 1 A lFD8 4A 1B BD 1B 301 C 43 1C 1FEの 7B lA \(1 F\) lC 59 1C E2 1B 1FE8 77 lC B2 19 øø 10 5513 lFFø EB 15 B9 lC C6 158 E lø


\section*{Program 3.}
```

10 DATA 15965,14778,13059,14282,14
416,17693,12979,12903,1767
6,21760
2\emptyset DATA 14416,17693,12979,12903
100 Q=23296
ll\emptyset FOR BLOCK=1T08
12\emptyset FOR BYTE=\emptysetTOl27
l30 X=PEEK (Q+BYTE):CK=CK+X
14\emptyset NEXT BYTE
150 READ SUM
160 IF SUM <> CK THEN PRINT" ERROR ~
IN BLOCK \#"BLOCK:GOTO170
165 PRINT" BLOCK"
BLOCK" IS CORRECT
170 CK=\emptyset:Q=Q+128
180 NEXT BLOCK
19\emptyset PRINT"ANY REMAINING PROBLEMS AR
E EITHËR WITHIN THE FINAL"

```
\(2 \emptyset \emptyset\) PRINT＂SHORT BLOCK OR WITHIN DAT A STATEMENTS IN THIS PROGR AM．＂

\section*{Program 4.}

5Bøø 78 A5 \(9 \emptyset\) A6 91 CD EE 6F
5BØ8 DØ Ø5 EC EF 6F Fø 3ø 8D \(5 \mathrm{Bl} \emptyset 9 \mathrm{E} \emptyset 2 \mathrm{8E} 9 \mathrm{~F} \emptyset 2 \mathrm{AD} \mathrm{EE} 6 \mathrm{~F}\) 5Bl8 AE EF 6F 85908691 A5 5B2ø 92 A6 93 8D E5 ø2 8E E6 5B28 Ø2 AD 3C 5F AE 3D 5F 8D 5B3ø E3 ø2 8E E4 ø2 AD Fø 6F 5B38 AE Fl 6F 85928693 AD \(5 \mathrm{~B} 4 \emptyset\) 3E 5F AE 3 F 5 F Eø \(8 \emptyset \mathrm{~B} \emptyset\) \(\begin{array}{lllllllll}5 B 48 & 98 & 85 & 34 & 86 & 35 & 85 & 30 & 86\end{array}\) 5B50 31 A9 10 8D 84 ø2 8D 85 5B58 Ø2 A9 Øø 8D 86 ø2 8D A2 5B6ø Ø2 8D E7 02 8D E8 ø2 58 5B68 日ø A2 øC DD 15 5F Dø 13 5B70 8D 87 Ø2 8A 0 A AA BD 22 5 B 785 F 85 FB BD 235 F 85 FC

5B8ø 6C FB øø CA 10 E5 4C 8E \(\begin{array}{lllllllll}5 B 88 & 60 & 2 \emptyset & 39 & 64 & 2 \emptyset & 13 & 61 & 9 \emptyset\end{array}\) 5B9 Ø 17 2ø EF 6ø 8E 8C \(022 \emptyset\)

5B98 \(52622 \emptyset\) AB 5B \(2 \emptyset\) AB 62 5BAø \(2 \emptyset 93\) 5C \(2 \emptyset\) AE 68 DØ E4 5BA8 4C 9B 6ø A2 lE \(2 \emptyset\) Fl 6ø 5BBø Aø øø Bl FB 2060 5C CC 5BB8 8B ø2 C8 9ø F5 6ø A5 Bø 5BCø C9 Ø3 Dø 1920 Ø6 6Ø AA 5BC8 A9 Ø4 Eø ØD Fø Ø9 2Ø 6F 5BDØ 6829 lF C9 Ø4 9ø AF \(2 \emptyset\) 5BD8 E3 5B 4C 9B 6020 CC FF 5BEø 4C \(936 \emptyset 85\) B 85 D4 \(2 \emptyset\) 5BE8 Ø9 5С AE Øø Cø EØ 40 Dø 5BFø ØB \(2 \emptyset\) BA Fø \(2 \emptyset\) 2D Fl A5


5Cøø 2ø D5 Fø \(2 \emptyset 48\) Fl 4C F7
5Cø8 5B A9 øø 8596 8D FC \(\emptyset 3\)
5 Cl Ø 85 ØD 8D E8 ø2 60 2039

\(5 C 2 \emptyset 619 \emptyset \quad\) В \(620315 \mathrm{C} 2 \emptyset 93\)
5 C 28 5C \(2 \emptyset\) AE 68 D \(\emptyset\) EB 4C A8
5C3ø 5B A2 ø5 \(2 \emptyset\) Fl \(6 \emptyset 2 \emptyset 13\)
5C38 68 A2 ø2 \(2 \emptyset\) Fl 60 A9 10
\(5 C 4 \emptyset 2 \emptyset \quad 0369\) A9 1ø \(2 \emptyset\) B9 63
5 C 48 A 2 Ø \(42 \emptyset \mathrm{Fl} 6 \emptyset \mathrm{~A}\) 1 \(1 \emptyset \mathrm{~A} 2\)
5C5ø øø Al FB \(2 \emptyset 6 \emptyset 5 \mathrm{C} 2 \emptyset\) 3B
5C58 6988 Dø F5 604 C 8E 60
5C6ø 297 F C9 \(2 \emptyset\) Bø Ø2 A9 \(2 \emptyset\)
\(5 C 68\) 4C ø9 60 20 ø6 60 C9 ØD
\(5 \mathrm{C} 70 \mathrm{~F} \emptyset 19 \mathrm{C} 920 \mathrm{D} \emptyset \quad 032 \emptyset 17\)
5C78 6C C9 58 Fø 5ø 2071 5D

5C8ø 8E E8 Ø2 A2 Ø2 20 A7 5C 5 C 88 4C 9B 60 A2 0420 Cl 5 C 5C9ø 4C 9B \(602 \emptyset 5569\) AE E7 5C98 Ø2 Fø 31 CE E7 Ø2 DØ 2C 5CAø AE E8 Ø2 Fø lA A2 Ø6 \(2 \emptyset\) 5CA8 Cl 5C A2 1420 Fl \(6 \emptyset\) BD 5CBø A3 ø2 \(2 \emptyset \emptyset 960\) E8 EC E8 5CB8 Ø2 Dø F4 A2 Ø3 DØ Ø2 A2 5CCø Ø9 \(2 \emptyset 5569\) CA D \(\emptyset\) FA A9 5CC8 39 8D E7 Ø2 60 A9 Øø 8D 5CDø E7 Ø2 8D E8 Ø2 4C 9B 6ø 5CD8 20 ø9 5C \(2 \emptyset\) CC FF \(2 \emptyset \quad 06\) 5CEØ 60 C9 日D Fø l6 C9 24 Fø \(\begin{array}{lllllllll}5 C E 8 & 24 & 48 & 20 & 9 E & 5 D & 20 & \emptyset 9\end{array}\) 5CFø 6ø 2ø ø6 6Ø C9 日D Dø F6 5CF8 4C DD 5B 20526920 C5

5Døø 5D 2の ø6 6ø C9 øD Fø Fø 5Dø8 2ø ø9 6ø Dø F4 A2 Øø \(2 \emptyset\) 5D1ø 82 5D \(2 \emptyset\) 8B 5D \(2 \emptyset 5569\) 5D18 \(2 \emptyset 5569\) Aø 03 Dø 02 Aø 5D2ø ø2 84 Dl A9 ø8 85 AF \(2 \emptyset\) 5D28 ø6 6ø AA A4 96 Dø \(362 \emptyset\) 5D3Ø Ø6 6Ø A4 96 Dø 2F C6 D1

5D38 Dø ED \(2 \emptyset 36\) 6B \(2 \emptyset 5269\) 5D4ø 2ø ø6 6ø Fø 0520 Ø9 60 5D48 Dø F6 205569 A9 Øø 85 5D5ø AF 2ø E4 FF Fø C9 Dø Ø5 5D58 2ø E4 FF Fø FB C9 \(2 \emptyset\) Fø 5D6ø F7 C9 ø3 Dø BA \(2 \emptyset 12\) 5E 5D68 \(2 \emptyset 55694 C 936 \emptyset 2 \emptyset 17\) 5D7ø 6C C9 22 Dø 7B A2 øø 2ø 5D78 ø6 6ø C9 øD Fø øC C9 22

5D8ø Fø ø8 9D A3 ø2 E8 Eø 4ø 5D88 9ø ED \(6 \emptyset 86\) Dl A9 A3 85 5D9ø DA A9 0285 DB \(2 \emptyset\) CC FF 5D98 2Ø F3 5D 4C C9 5D A9 Ø8 5DAø 85 D4 85 Bø AC Øø Cø Cø 5DA8 4ø DØ ØB \(2 \emptyset\) BA FØ A9 6F 5DBø 2ø 28 Fl 4C F7 5B Cø 4C 5DB8 Dø \(362 \emptyset\) D5 Fø A9 6F \(2 \emptyset\) 5DCø 43 Fl 4C F7 5B A9 6F 85 5DC8 D3 A9 0885 D 485 AF AC 5DDø øø Cø Cø 4ø Dø ØB \(2 \emptyset\) B6 5DD8 Fø A5 D3 20 64 Fl 4C F7 5DEØ 5B Cø 4C Dø ØB \(2 \emptyset\) D2 Fø 5DE8 A5 D3 20 93 F1 4C F7 5B 5DFø 4C 8E 6ø A9 ø8 85 D4 A9 5DF8 6ø 85 D3 AD øø Cø C9 4

5Eøø Dø Ø6 \(2 \emptyset 66\) F4 4C F7 5B 5Eø8 C9 4C Dø E4 2ø A5 F4 4C 5Elø F7 5B A9 Øø 85 AF AD Øø 5E18 Cø C9 4ø Dø Ø3 4C 8F F3 5E2ø C9 4C Dø CC 4C CE F3 A9 5E28 ø2 2C 4C E8 ø8 A9 ØE 28 5E3Ø Fø Ø2 Ø9 8ø 2ø Ø9 6Ø 4C 5E38 \(936020 \quad 09\) 5C 206 E 5D \(5 E 4 \emptyset 2 \emptyset 8 B 5 D 2 \emptyset \emptyset 6608 D\) FB 5E48 øø 2ø ø6 6ø 8D FC øø \(2 \emptyset\) 5E50 12 5E \(2 \emptyset 5269\) A9 24 A2 5E58 2ø \(2029682013684 C\) 5E6ø \(936 \emptyset 2 \emptyset 6 \emptyset 6 C\) Øø 6C 3E 5E68 5F Aø ø8 84 D4 Aø 4C 8C 5E7の 87 Ø2 Aの のの 4C C4 69 2ø 5E78 17 6C 29 9F 4C 34 5E 4C

5E8 \(8 \mathrm{E} 6 \emptyset 2 \emptyset\) A4 68 2ø 6F 68 5E88 29 1F C9 ø4 9ø Fl 85 D4 5E9 Ø 2ø 2A 6C A5 FD A6 FE 8D 5E98 92 ø2 8E 93 Ø2 20 3C 68 5EAØ A5 D4 \(2 \emptyset\) E3 5B A9 Ø2 \(2 \emptyset\) 5ЕA8 \(096 \emptyset 2 \emptyset 5269201361\) 5EBØ \(9 \emptyset \emptyset F A E 94 \emptyset 2\) DØ ØA Al 5EB8 FB \(2 \emptyset\) lA \(682 \emptyset\) 3B 69 D \(\emptyset\) 5ECØ E9 A9 ø3 \(2 \emptyset \emptyset 96 \emptyset 2 \emptyset\) EF


5EDØ 7D 6C 20 Ø9 5C \(2 \emptyset\) Ø1 68
5ED8 2ø 6E 5D 86 Dl \(2 \emptyset 045 \mathrm{~F}\) 5EEØ 2ø 8D 5D 2ø Ø6 6Ø 20 Ø6 5EE8 6ø A9 Øø \(85 \mathrm{AF} A D \quad \emptyset \emptyset \mathrm{C}\) 5EFØ C9 4 4 DØ 062052 F3 4C 5EF8 Ø1 5F C9 4C Dø 8120 8C

5Føø F3 4C 12 6A AD ØØ C0 C9
\(5 \mathrm{~F} \emptyset 840 \mathrm{D} \emptyset \quad 03\) 4C ØA F4 C9 4C
5 Fl の D \(\emptyset\) EA 4 C 49 F4 50 C4 49
5 Fl8 CD 40 3E DA 4A CB CC 5E
\(5 \mathrm{~F} 20 \quad 55 \quad 59 \mathrm{BE} 5 \mathrm{~B} \quad 89\) 5B \(6 \mathrm{~B} \quad 5 \mathrm{C}\)
\(5 \mathrm{~F} 28 \quad 16\) 5C D8 5C D8 5C 275 E
5 F 30 3A 5E 625 E 695 E 77 5E
\(5 \mathrm{~F} 38 \quad 82 \quad 5 \mathrm{E}\) D2 \(5 \mathrm{E} \quad 69\) 5B Øø 5 B
\(\begin{array}{lllllll}5 F 40 & 31 & 30 & 32 & 31 & 38 & 31\end{array} \mathrm{AA} A A\)

TOLL FREE Subscription Order Line 800-345-8112

\section*{PET/CBM COMPUTER5 Cross Referente Program}

FORMATTED LISTINGS
- Easy to read
. Multiple statement lines can be listed on separate lines or on one line, as on the screen

LINE NUMBER CROSS REFERENCE
. Shows all GOTO's, GOSUB's and ON GOTO/GOSUB's
Flags unresolved branches
VARIABLE CROSS REFERENCE
. Shows allocation of all variables and user
defined functions
. Variables sorted into alpha-numeric order
CODE OPTIMIZATION
. Shows the amount of memory wasted on remarks, long variables and unneeded spaces
स4
SPECIAL FEATURES FOR SUPERKRAM USERS
Will work on all PET 2001, CBM 4032 and CBM 8032,
and \(4840 / 8050\) disk drives.
Specify your hardware configuration.
Send \(\$ 29.95\) (includes postage and handling) to: OPPENHEIMER SOFTWARE 79 ST. BOAT BASIN \(\ddagger 39\) NEW YORK, N.Y. 18024 (212) 787-2416

PET \& CBM are trademarks of COMMODORE BUSINESS MACHINES, INC. SUPERKRAM is a trademark of UNITED SOFTWARE OF AMERICA. INC

\section*{Dealer Inquiries Invited}

NY State Residents add \(81 / 4 \%\) Sales Tax


MENU
TURNS ANY DISKETIE DIRECTORY INTO A NUMBERED PROGRAM MENU. PROGRAMS SELECIED BY NUMBER ARE LOADED AND RUN AUTOMATICALLY. MAY BE LINKED TO OTHER PROGRAMS TO CREATE MENU DRIVEN PACKAGES.

RETAIL \$39.95
software by sasso, p.o. box 969, laguna beach, ca 92652
(714) 497-2000

DEALER INQUIRIES INVITED

\title{
Self-Modifying Programs in BASIC
}

\author{
David Williams Toronto, Canada
}

The notion of a program which alters itself as it runs raises feelings of doubt and mistrust in many novice computer users. It seems that such a program would be doomed to failure through some kind of logical paradox. In fact this is not the case. Providing that the part of the program which guides the modification process is separate from that which is being changed, and that no attempt is made to execute program lines which are in the process of being modified, no problems need arise.

As a demonstration, try keying in the following program. As you do so, be careful not to include any spaces in lines 10 or 20 , or between the quote marks in line 120. Line 20 should consist of a string of exactly twenty \(\pi\) 's.
```

10 GOTOl0ø
2\emptyset ^^^^^^^^^^^^^^^^^^^^^
30 RETURN
106 FORI=826TO838:POKEI,32:NEXT
110 INPUTS\$
120 S$="GOTO200: "+S$+CHR$(13)
130 FORI=1TOLEN(S$):POKE838+I,ASC(MID$(S
 \neg$,I)):NEXT
140 POKE175,2:POKE212,2:POKE59408,
\negPEEK (59408) ANDNOT32: POKE188,0:
\negPOKE176,2
150 END
2øø POKE175,\emptyset:POKE176,3
210 I=\emptyset
220 PK=PEEK (517+I)
230 IFPK=\emptysetTHEN30\emptyset
240 POKE1038+I,PK
250 I=I+l
260 GOTO22\emptyset
300 FORI=ITO19:POKE1038+I,32:NEXT
40ø GOSUB2\emptyset
READY.

```

When you have finished entering the program, SAVE it before you first run it. If you have made any typing mistakes it is possible that the program may destroy itself or crash the PET when it is run. Having a copy on tape could save you a lot of
re-typing!
When the program is run, a question mark and flashing cursor should appear on the screen. This is the input line 110. Respond to this by typing in some simple instruction in BASIC, such as PRINT \(2+3 * 5\), and hit the return key. Within the next couple of seconds the number 17 (the correct response to our input instruction) should be printed, followed by the word READY and the flashing cursor.

The output from this program is less interesting than another result, which can be seen by LISTing the program after it has run. Line 20 will be found to have changed from a meaningless string of \(\pi\) 's to:

\section*{20 PRINT \(2+3 * 5\)}
the very same instruction that was entered while the program was running. In fact the \(\pi\) 's were there only to reserve a set of twenty addresses into which the new line was POKEd. There are still twenty characters in line 20, but most of them are now blanks, which are not visible in the listing and do not cause any problems when the line is executed. Since the number of characters in the line is unchanged, the program can be run repeatedly, altering the contents of this line each time.

Maybe you now think that the program is far more complicated than it needs to be to achieve the result of poking the desired instruction into line 20. Surely all that needs to be done is to poke the ASCII numbers corresponding to \(\mathrm{P}, \mathrm{R}, \mathrm{I}, \mathrm{N}, \mathrm{T}, \mathrm{etc}\). into the 20 addresses of the line. Write your own program to do this, if you want, but you're in for a disappointment. When your program is working properly, the new line will LIST exactly as it should, but when you try to execute it you will get a SYNTAX ERROR. The problem is that BASIC instruction words are stored in PET's memory as single token characters (the LISTing routine translates them back into English words) and the machine cannot understand them except in token form.

The demonstration program not only enters the new line in correct token form, it also does so without invoking the line editor, which would cause the erasure of any pre-existing variables, strings, etc. in memory. To provide this, enter " \(\mathrm{X}=5\) " in direct mode, then start the program without erasing memory by entering "GOTO 10 ". Put in any simple BASIC instruction, such as PRINT "DONE", when line 110 asks for it. When the program has finished, enter PRINT X in direct mode. The value 5 will be returned, showing that it is still in memory.

Let's now look at the program to see how it works. The first few lines are arranged so that the changeable line is as near the start of the program
as possible. This makes its addresses easy to find (e.g. by using the machine-language monitor), and also protects them from being messed around with by any editing of the rest of the program. Lines 100 to 130 take the input instruction, in string form, prefix it with "GOTO 200", and then POKE it, letter by letter, into the second cassette buffer in the PET starting several characters from the start of the buffer. This buffer is used by the program for one of its originally intended purposes, as an input/output device. Line 140 contains a set of POKEs which "persuade" the PET that a second cassette unit is present, that its "Play" key is pressed, and that this is the device from which it should take its next input and to which it should make its next output, starting at the beginning of the buffer.

At line 150, an END instruction is encountered. This makes the PET print READY into the start of the second cassette buffer and then to take the instructions which are waiting for it in the later locations in the buffer. These are first translated into token form (just what we wanted!) and entered into another buffer, from which they are later read by the routines which execute BASIC instructions. However, the first instruction to be executed is GOTO 200, which re-starts the program and leaves the instructions which we want to put into line 20, in token form, in the basic input buffer.

Line 200 restores the keyboard as the PET's input device and the screen as its output device. Lines 210 to 260 copy the desired text from the basic input buffer into the addresses occupied by line 20 , then line 300 fills the remainder of these addresses with blanks. Finally, line 400 demonstrates that the new line actually works, and the machine prints the word READY on the screen as the program ends.

There is an obvious criticism which can be made of this program as it stands. Why go to the trouble of copying the instructions into line 20 when they could have been executed directly from the basic input buffer? This is a valid criticism, provided the instructions are to be executed only once, and that they can legally be performed in direct mode. In practical applications of this technique, however, one or the other of these conditions is often not true.

So much for the mechanics of simple selfmodifying programs. Their potential usefulness is great. They represent a class of interactive programs which allow the user not only to supply the values of variables and to make simple choices, but also to give precise logical instructions to the program as it operates.

Probably the simplest applications are in general mathematical programs. These can easily be written to draw the graph of any function, to use
an iterative method to solve any equation, or any similar task. The program asks the user to enter the equation he is interested in, and then writes this into one of its own lines. This line can later be executed as many times as necessary for the program to complete its job.

I have recently written a self-modifying program with a very different purpose: to teach students how to set up computer programs in the form of flow-charts. The program allows a student to draw a flow-chart on the PET screen, with BASIC instructions placed on the diagram in the appropriate places. When the diagram is complete, its instructions can be executed without the student having to write a conventional program. The PET simply follows the logic lines on the diagram. When an instruction is encountered, it is written into one of several modifiable lines in the main program and executed appropriately.

I am sure there are thousands of other applications, but I'll leave them for you to discover...

\section*{NEW PET/CBM SOFTWARE}

\section*{Let Computer Mat turn your Pet into a Home Arcade!}

BLAST-IT - Its your ship vs. a swarm of killer gammaroidz. You are on a collision course and must destroy them before they blast you into the next galaxy. Four levels of play. Has hyperspace keys that move you around. Arcade style entertainment at its finest. GREAT GRAPHICS AND SOUND.
Cass. 8K
\(\$ 9.95\)
MUNCHMAN - How many dots can you cover? It's you against the computer munchers ZIP and ZAP. Can you clear the maze first or will they get you? Number keys move you up, down, right and left. GREAT GRAPHICS AND SOUND.
Cass. 8K
\(\$ 9.95\)
LAZER-ATTACK - Its you against a barrage of enemy lazers that are aimed at your ammo dumps. Sight in on the targets and score as many hits as you dare. As your skill increases so does the the difficulty - ( 10 levels to select). This is an arcade-style game with great graphics and sound effects. A must for your PET/CBM.
Cass. 8K
\(\$ 9.95\)

\section*{ALL OUR SOFTWARE RUNS IN \(8 K\) OLD.NEW ROM - 40 CHR. SCREEN}

WRITE FOR FREE CATALOG OF VIC/PET SOFTWARE PLEASE ADD \(\$ 1.00\) PER ORDER FOR SHIPPING
COMPUTER MAT • BOX \(1664 \mathrm{C} \cdot\) LAKE HAVASU CITY, AZ. 86403

\title{
VIC-20 Update
}

\title{
TINYMON1: A Simple Monitor For The VIC
}

Jim Butterfield Toronto, Canada

One of the things you may miss on the VIC is a Machine Language Monitor: it's not there.

Commodore will be releasing a very powerful MLM on a plug-in cartridge, and serious programmers will certainly want to use it. But for occasional use, a tape-loadable MLM might be very handy.

Here's an early version that may be of use. It should fit on any VIC, with or without extra memory added; and it honors all the commands from the built-in Monitors we know from PET/CBM usage. One minor syntax change: the two addresses of the Memory display command (.M) should be separated by a space rather than a comma.

It's not really practical to type TINYMON directly into a VIC. DATA statements in decimal would take up more room than is available in small VICs; and hex entry would need an MLM to be in place already. So I've prepared the program so that it can be entered on a PET and saved on tape. After it's been created once, the VIC can make its own copies. You'll need a PET with Upgrade ROM or 4.0 ROM to do the job, since the Original ROM PETs don't have a Machine Language Monitor and things would get too complicated.

TINYMON loads like a BASIC Program, and copies can be made with a simple LOAD and SAVE sequence as you would do with BASIC. When you load TINYMON and say RUN, however, some interesting things happen ... the monitor system is repacked into the top of memory, and it will stay there until you turn the power off. You can say .X to return to BASIC and load and run BASIC programs, providing they are not too big. TINYMON
grabs about 760 bytes of memory, so you lose a little space.

\section*{Find A Zero}

Once you're back in BASIC, the question arises: how can you invoke TINYMON when desired? Not an easy trick, since memory is more mobile in the VIC than in the PET/CBM. The thing to do is to find a zero value in memory and SYS to that location. If you have a basic (5K) VIC, SYS 4096 is safe. The sure way is to PEEK first and ensure that there's a zero there (location 10 is often zero).

TINYMON1 must be considered preliminary. It was designed with two major considerations: to use minimum space, and to automatically load into any VIC regardless of the memory fitted. The space consideration is fairly obvious: with 3500 -odd bytes available on a small VIC, you want to use up as little as posible. The automatic load feature was tricky to implement; VIC may relocate programs as it loads. What's more, the screen area tends to move around as you add memory.

I scratched my head over the .S (Save) command. If VIC automatically relocates programs during loading, will a SAVEd Machine Language program be safe? As it turns out, VIC has a new tape format available - when a tape is written, it may be defined as "absolute" and will not relocate when it loads. This seems the best compromise, but it has one drawback - the PET/CBM won't load this type of tape. Perhaps that's a design decision that will need to be revised...

\section*{Finding Space In Zero Page}

VIC is desperately short of zero page space; machine language programmers will have to cope with the shortage as best they can. I have used the same locations that the big Commodore MLM is expected to use. There's a difference, however, the Commodore job will swap out selected parts of zero page and put them back later; I didn't want to give up the space for that kind of luxury. As a result, you may be annoyed by some locations that are disturbed by TINYMON1.

For those unfamiliar with the PET/CBM Machine Language Monitor, the commands are:
.R - display 6502 registers;
Users can use screen editing to type over a display and change the registers;
.M FFFF TTTT - display memory (from .. to);

\section*{SOFTWMARE} . HARDWARE

\section*{COMMUNICATIONS AND COMPUTER TOOLS}
- UMI RS232 COMMUNICATOR INTERFACE

Our RS-232 Communicator Interface enables the VIC-20 to talk to most RS232 devices.
- VICTERM A

With the VICTERM A program, begin telephone communications
- UMI 3K RAM CARTRIDGE

The easiest way to have 6655 bytes of program memory in your VIC.
- UMI 3K RAM EXPANDER

For programmers, ROM developers and advanced users, our 3K RAM EXPANDER adds two ROM slots and 3 K of RAM memory to the Commodore VIC-20 to give a total of 6655 bytes of available user memory. An 8 -position dipswitch provides switch - selectable base address and single-socket enable/disable to two ROM sockets.
- UMI 8K RAM CARTRIDGE

Our 8K RAM CARTRIDGE adds 8 K of user memory to the VIC-20.
- UMI SOCKETED 8K RAM/ROM BOARD

Our 8 K board has four sockets for mixing and matching RAMS, ROMS, or EPROMS.
- BUTI (BASIC PROGRAMMER'S UTILITY ROM) A beauty of a ROM that plugs into CVH-0002, our 3 K RAM EXPANDER, or CVU-0006, our
RAM/ROM/EPROM Board.
- UMI VIC-20 REFERENCE CARD

Our \(8-1 / 2^{\prime \prime}\) by \(11^{\prime \prime}\) laminated reference card is packed with commonly needed Commodore VIC20 information.

\section*{PROGRAMS FOR THE} COMMODORE PET®
- SATELLITES AND METERORITES

Satellites and Meterorites is a greater challenge than most space pilots have met.
- SKYMATH

Decimal addition and subtraction with super PET graphics!
- MATH SERIES DISKETTE I

Pedagogically correct programs SKYMATH, SPACEDIV, and LONGDIV, on a 5-1/4" Diskette for Commodore Disk Drives
- SPACEDIV

Division practice with graphics that hold the child's interest.
- LONGDIV

20 problems of step-by-step long division with super graphics and 1 -inch high digits.
- SUPERHANGMAN
\(\$ 16.95\)
Superior graphic version of the popular spelling game.

\section*{GAMES AND ENTERTAINMENT}

\section*{- SIMON}

Your dexterity and memory are sorely tested by SIMON.
- SPIDERS OF MARS (CARTRIDGE)

You are a trapped space fly, fire at the horde of Martian Spiders wending their way to satisfy their urge to devour you
- BLASTOIDS

Blast the cruising junk from space miner's rock piles to smithereens before it crashes into you
- A-MAZ-IN

Fast action color game for one or two players.

\section*{- AMOK}

The halls of AMOK are populated by robots that obey one instruction - Get the intruder!
- ROBOT BLASTERS

Only blasts from your lasers can breach the near-impregnable rows of walls circling your only means of escape.
- ASTRO TRANSPORTER (CARTRIDGE)

As Captain your duty is to use your powerful thrustors to guide space barges to a soft landing on Earth.
- 3D INVADERS (CARTRIDGE)

A new view - from the wide-angle viewport of your movable laser. Tiers of attackers march back and forth above you, dropping bombs.
- MASTERWITS

Try to deduce the pattern of four markers, using 6 colors, MASTERWITS hides from you!
- KIDDIE CHECKERS
7.95

Checkers for very small children.
- WALL STREET
\$16.95
The thrill of stock market play comes to life.
- ALIEN BLITZ
\$24.95
Split second reactions at the superhuman 9 th level of ALIEN BLITZ, will find how good you really are.

\section*{EDUCATION}
- SUPER ADDITION, SUBTRACTION, DON'T FALL
\$14.95
One cassette contains all three educational games.
- SKYMATH
\$14.95
With excellent graphics, SKYMATH shoots 5 -digit, 3 -place addition and subtraction problems into screen's "sky" in 1 -inch high digits.
- SPACEDIV
\(\$ 14.95\)
Division practice with graphics that hold the child's interest.

GAME PROGRAM CARTRIDGES NOW AVAILABLE—ORDER NOW!
- DEALER INQUIRIES INVITED
- ATTENTION SOFTWARE DEVELOPERS

Please contact UMI for distribution and top royalties. Cartridge kits available in quantity.
- MASTERCARD/VISA Accepted
united microware industries inc. 3431 H Pomona Blvd Pomona. CA 91768
\(\qquad\)

> Users can use screen editing to type over a display and change memory;
> .X - exit to BASIC;
> It may be wise to type CLR in BASIC after exiting;
> .G AAAA - GOTO (execute) address;
> .S "PPPP",01,FFFF,TTTT - Save (program-name, device, from, to);
> .L "PPPP" - Load (program-name)
> There's a delicate tradeoff between features and memory space. There will undoubtedly be other small monitors with a different balance. In any case, I wrote one because I had nothing ... and others in the same position will undoubtedly greet TINYMON with glad cries.

\section*{Program 1: TINYMON1}

Enter on a PET/CBM, using the Machine Language Monitor. Do not try to RUN, but follow your entry with the checksum program, Program 2.

First, make the following change:

Now, enter TINYMON1:







 g518 2e 20 de + + 9 de 0 g
 05e t9 日 \(20+6+5\) 日 9 da



 ghat ee fa ge 20 ta for 90








-0.0 to al 40 4a 43 43

बहbe de + 468 40 +41868







ब6t 20 te 9617 \(49+8\)















Whew! TINYMON 1 for the VIC is now entered. Check it with the following program:

\section*{Program 2: A Checking Program}

Type the following direct line on the screen of your PET/CBM:
forj \(=1024\) to2071step8:t \(=0\) :fork \(=j t o j+7: t=t+\) peek (k):next:?t;:next

You should see the following numbers appear on the screen of your PET. Check them carefully. Each one represents one line of entry, starting at 0400 hexadecimal. If any of these totals is wrong, you've entered the line incorrectly.

The numbers in brackets appearing to the right won't appear on your screen; they are there to help you locate an incorrect line.

When you are satisfied that the program is entered correctly, SAVE it to cassette tape. It may now be loaded into your VIC.
\begin{tabular}{lcccccccl}
462 & 255 & 506 & 399 & 575 & 541 & 592 & 511 & \\
769 & 620 & 756 & 780 & 802 & 910 & 886 & 853 & \\
801 & 784 & 876 & 840 & 835 & 1383 & 753 & 0 & \\
1422 & 589 & 816 & 720 & 584 & 680 & 535 & 576 & \\
944 & 972 & 1130 & 845 & 876 & 1357 & 1010 & 1188 & \((0500)\) \\
1311 & 852 & 898 & 1109 & 1125 & 897 & 809 & 1021 & \\
1340 & 1078 & 1005 & 1212 & 905 & 902 & 770 & 1239 & \\
762 & 1133 & 1388 & 652 & 659 & 629 & 1072 & 803 & \\
748 & 150 & 617 & 413 & 1020 & 1030 & 1057 & 818 & \((0600)\) \\
944 & 844 & 705 & 831 & 939 & 1072 & 639 & 1033 & \\
943 & 824 & 1137 & 970 & 929 & 1149 & 1395 & 940 & \\
654 & 840 & 807 & 926 & 706 & 1146 & 1015 & 1146 & \\
1175 & 742 & 563 & 645 & 695 & 860 & 1064 & 1042 & \((0700)\) \\
1235 & 1202 & 1355 & 922 & 1445 & 1346 & 789 & 1068 & \\
1104 & 1204 & 975 & 1306 & 1339 & 1169 & 1168 & 1210 & \\
1340 & 1204 & 972 & 522 & 460 & 520 & 591 & 942 & \\
1010 & 1079 & 280 & & & & & & \((0800)\)
\end{tabular}

Copyright © 1981
Jim Butterfield


\title{
VIC Color Tips
}

\author{
Charles Brannon \\ Editorial Assistant
}

\begin{abstract}
Users of other computers, such as the ATARI or Apple, will find the VIC harder to use for color graphics because there are no dedicated statements for controlling these features. First time users will not know the difference, but this article should make things easier. Before we begin, it should be noted that there will soon be available a VIC Super Expander Cartridge that will add special sound and graphics commands to BASIC, as well as adding 3 K of memory.
\end{abstract}

\section*{"Poking" Graphics}

The only command that can be used for graphics besides PRINT is POKE. POKE places a number into a memory location. Its format is POKE A,B. \(A\) is the memory location, and \(B\) is the value to be placed there, zero to 255 . Some spots in memory can control Input/Output chips, such as the Video Interface Chip inside of the VIC. Location 36879 is the control register for background and border colors. To get each combination, you place a number from zero to 255 into 36879 , as previously mentioned. For any particular combination, you can look up the colors in the table at the end of this article (Table 2). There is an easier way, however, at least from a programming standpoint.

\section*{An Easier Way}

The DEF FN command allows the programmer to design his own function. The VIC has, for example, the standard INT function. INT(X) will give you the whole-number value of the argument X by dropping the fractional portion. It does not round X . To provide a rounding-up function, we can use the DEF FN command. To round dollar and cents amounts, the statement \(\operatorname{DEF} \operatorname{FNR}(\mathrm{V})=\mathrm{INT}\) \((\mathrm{V} * 100+.5) / 100\) is executed at the start of the program. After that, \(\mathrm{FNR}(\mathrm{X})\) will give you the rounded version of X , or any value in parentheses. PRINT FNR(3.1415927) will return 3.14, while PRINT FNR(500.076) will give 500.08 The R after the FN is a label to remind you what the function does. Here R stands for Round. These labels have the same format as numerical variable names.

What we want to do is to devise a formula which will give us the right number from the table for each color, one to sixteen. We will give the background color from one to sixteen through the FN routine, and it will give us the number ready
for POKEing. To get any background color from any of the sixteen possible colors, just multiply the color number by 16 and then subtract eight. We can code this as DEF FNC \((\mathrm{V})=\mathrm{V}^{*} 16-8\). Remember, V is just a dummy variable used to define the relationship of the argument (what we give the routine) in the formula. Next we use a little shorthand. The number 36879 (the color control) is a little hard to remember, and it does not look much different than any other memory location. We will make it easier to remember (make it mnemonic) by making it a variable, SCREEN \(=36879\). Now we can call forth any of our sixteen colors with the statement: POKE SCREEN, FNC (color), where color is the number from one to sixteen. This almost looks like a real graphics command.

\section*{Adding Border Colors}

What about the border colors? In addition to the background, you can have eight border colors, numbered from zero to seven. This is one less than the corresponding number on the color keys (CTRL-6 would be 5). Now just take this number and add it to the number that you POKE into SCREEN. Now we just use: POKE SCREEN, \(\mathrm{FNC}(\) color \()+\) border, where border is the border color, zero to seven. If you don't use border colors, or don't add anything to FNC (color), then the border will be black.

Remember that if the background is the same color as the text, the cursor will become invisible. If you need to, set things straight with POKE 36879,27 or hold down RUN/STOP and press RESTORE to reset.

The little program at the end of this article demonstrates what I've been talking about by displaying all the combinations of screen and border colors. It's simple to figure out so look it over, and get to work on your VICtorious applications!

Table 1. Screen/Border Colors
\begin{tabular}{|c|c|}
\hline Screen & Border \\
\hline Black & 0 Black \\
\hline White & 1 White \\
\hline Red & 2 Red \\
\hline 4 Cyan & 3 Cyan \\
\hline 5 Purple & 4 Purple \\
\hline 6 Green & 5 Green \\
\hline 7 Blue & 6 Blue \\
\hline 8 Yellow & 7 Yellow \\
\hline 9 Orange & \\
\hline 10 Light Orange & \\
\hline 11 Pink & \\
\hline 12 Light Cyan & \\
\hline 13 Light Purple & \\
\hline 14 Light Green & \\
\hline 15 Light Blue & \\
\hline 16 Light Yellow & \\
\hline
\end{tabular}
\(1 \emptyset \emptyset\) REM * ANOTHER RAINBOW *
\(11 \emptyset \operatorname{DEF} \operatorname{FNC}(V)=\mathrm{V} * 16-8\)
120 SCREEN=36879
130 FOR \(B K=1\) TO 16
\(14 \emptyset\) PRINT "\{CLEAR\}\{WHT\}";
\(15 \emptyset\) IF BK>1 THEN PRINT "\{BLK\}";
\(16 \emptyset\) PRINT "SCREEN"; BK
\(17 \emptyset \quad \mathrm{FOR} B D=\emptyset\) TO 7
\(18 \emptyset \quad\) POKE SCREEN,FNC \((B K)+B D\)
190 PRINT,"BORDER"; BD
\(2 \emptyset \emptyset \quad F O R W=1\) TO 5øø:NEXT W
210 NEXT BD
220 NEXT BK
230 POKE SCREEN, 27
240 END

Table 2. POKE Values


\title{
VIC Memory Map Above Page Zero
}

Jim Butterfield
Toronto, Canada

Editor's Note: Next month we'll have a VIC zero page map and Jim's comments on the VIC's memory. - RTM
\begin{tabular}{|c|c|c|}
\hline 0100-103E & 256-318 & Tape error log \\
\hline 0100-01FF & 256-511 & Processor stack area \\
\hline 0200-0258 & 512-600 & Basic input buffer \\
\hline 0259-0262 & 601-610 & Logical file table \\
\hline 0263-026C & 611-620 & Device 非 table \\
\hline 026D-0276 & 621-630 & Sec Adds table \\
\hline 0277-0280 & 631-640 & Keybd buffer \\
\hline 0285 & 645 & Serial bus timeout flag \\
\hline 0286 & 646 & Current color code \\
\hline 0287 & 647 & Color under cursor \\
\hline 0288 & 648 & Screen memory page \\
\hline 0289 & 649 & Max size of keybd buffer \\
\hline 028A & 650 & Repeat all keys \\
\hline 028 B & 651 & Repeat speed counter \\
\hline 028C & 652 & Repeat delay counter \\
\hline 028D & 653 & Keyboard Shift/Control flag \\
\hline 028E & 654 & Last shift pattern \\
\hline 028F-0290 & 655-656 & Keyboard table settup pointer \\
\hline 0291 & 657 & Keymode (Kattacanna) \\
\hline 0292 & 658 & \(0=\) scroll enable \\
\hline 0293 & 659 & VIC chip control \\
\hline 0294 & 660 & VIC chip command \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 0295-0296 & 661-662 & Bit timing \\
\hline 0297 & 663 & RS-232 status \\
\hline 0298 & 664 & \# bits to send \\
\hline 0299-029A & 665 & RS-232 speed/code \\
\hline 029 B & 667 & RS232 receive pointer \\
\hline 029 C & 668 & RS232 input pointer \\
\hline 029D & 669 & RS232 transmit pointer \\
\hline 029E & 670 & RS232 output pointer \\
\hline 029F-02A0 & 671-672 & IRQ save during tape I/O \\
\hline 0300-0301 & 768-769 & Error message link \\
\hline 0302-0303 & 770-771 & Basic warm start link \\
\hline 0304-0305 & 772-773 & Crunch Basic tokens link \\
\hline 0306-0307 & 774-775 & Print tokens link \\
\hline 0308-0309 & 776-777 & Start new Basic code link \\
\hline 030A-030B & 778-779 & Get arithmetic element link \\
\hline 0314-0315 & 788-789 & Hardware interrupt vector (EABF) \\
\hline 0316-0317 & 790-791 & Break interrupt vector (FED2) \\
\hline 0318-0319 & 792-793 & NMI interrupt vector (FEAD) \\
\hline 031A-031B & 794-795 & OPEN vector (F40A) \\
\hline 031C-031D & 796-797 & CLOSE vector (F34A) \\
\hline 031E-031F & 798-799 & Set-input vector (F2C7) \\
\hline 0320-0321 & 800-801 & Set-output vector (F309) \\
\hline 0322-0323 & 802-803 & Restore I/O vector (F3F3) \\
\hline 032.4-0325 & 804-805 & INPUT vector (F20E) \\
\hline 0326-0327 & 806-807 & Output vector (F27A) \\
\hline 0328-0329 & 808-809 & Test-STOP vector (F770) \\
\hline 032A-032B & 810-811 & GET vector (F1F5) \\
\hline 032C-032D & 812-813 & Abort I/O vector (F3EF) \\
\hline 032E-032F & 814-815 & USR vector (FED2) \\
\hline 0330-0331 & 816-817 & LOAD link \\
\hline 0332-0333 & 818-819 & SAVE link \\
\hline 033C-03FB & 828-1019 & Cassette buffer \\
\hline 0400-0FFF & 1024-4095 & 3K RAM expansion area \\
\hline 1000-1FFF & 4096-8191 & Normal Basic memory \\
\hline 2000-7FFF & 8192-32767 & Memory expansion area \\
\hline 8000-8FFF & 32768-36863 & Character bit maps \\
\hline 9000-900F & 36864-36879 & Video Interface Chip \\
\hline 9110-912F & 37136-37167 & 6522 Interface Chips \\
\hline 9400-95FF & 37888-38399 & Alternate Colour Nybble area \\
\hline 9600-97FF & 38400-38911 & Main Colour Nybble area \\
\hline A000-BFFF & 40960-49151 & Plug-in ROM area \\
\hline C000-FFFF & & ROM: Basic and Operating Syste \\
\hline
\end{tabular}

\title{
Dealers - Reserve your copies of \\ COMPUTE!'s first Atari and PET/CBM books today. Call 919-275-9809 for ordering information.
}

\section*{VIC usage: The 6560 V. I. Chip}


Values, where shown, are the normal default VIC values.
Light Pen and Potentlometer are Implemented in hardware but not used In ROM programs.

VIC Usage: The 6522-A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 59110 & \multicolumn{8}{|l|}{RS-232 or Parallel User Port} & 37136 \\
\hline 59111 & \multicolumn{8}{|l|}{unused - see S911F} & 37137 \\
\hline 59112 & \multicolumn{8}{|c|}{DDRB (for 59110 )} & 37138 \\
\hline 59113 & \multicolumn{8}{|c|}{DDRA (for S911F)} & 37139 \\
\hline 59114 & \multicolumn{8}{|l|}{T1-L RS-232 Send speed;} & 37140 \\
\hline 59115 & \multicolumn{8}{|l|}{T1-H Tape write timing} & 37141 \\
\hline 59116 & \multicolumn{8}{|l|}{T1 Latch} & 37142 \\
\hline 59117 & \multicolumn{8}{|l|}{T1 Latch} & 37143 \\
\hline 59118 & \multicolumn{8}{|l|}{T2-L RS-232} & 37144 \\
\hline 59119 & \multicolumn{8}{|l|}{T2-H Input timing} & 37145 \\
\hline s911A & \multicolumn{8}{|l|}{Shift Register (not used)} & 37146 \\
\hline 5911B & T1 Con & trol & T2C & & Cont & & PBLE & PALE & 37147 \\
\hline s911C & \multicolumn{3}{|l|}{RS-232 Send} & Cb1 cont & \multicolumn{3}{|l|}{Tape motor} & \[
\begin{aligned}
& \text { CA1 } \\
& \text { cont }
\end{aligned}
\] & 37148 \\
\hline S911D & NMI: & T1 & T2 & CB1: & & & CA1: & & 37149 \\
\hline S911E & NM1: & 1 & 12 & RS. 232
IN & & & RSIR
butn & & 37150 \\
\hline S911F & ATN out & Tape sens & & \[
\begin{aligned}
& \text { ystick } \\
& \text { itn } 0
\end{aligned}
\] & 1 & 2 & \begin{tabular}{l}
In; \\
Serl
\end{tabular} & In: Clok & 37151 \\
\hline
\end{tabular}

\section*{VIC Usage; The 6522-B}


\section*{ZAP!!}

\section*{Dub Scroggin Ft. Walton Beach, FL}
"Zap!!" is an exciting and challenging VIC-20 game program that is designed for up to six players and up to five rounds per player. Each player may select from any of five skill levels and may change levels each round, if desired. Using keyboard controls, players maneuver a block around the screen and through a field of randomly placed and color coded graphic figures. The object is to run over and erase as many of these figures as possible in two minutes, but also to avoid running into asterisks and being zapped. After the player block is moved it cannot be stopped, but the direction of movement may be changed. The higher the skill level, the faster the block moves and the more asterisks there are. The number of scoring figures is increased also so that a higher score is possible too.

The figures on the screen count differently toward the score. If a player is "zapped," he retains his score, but his time is over. Players may run off the screen, but may strike a hidden asterisk if they
do so. A vertical wraparound feature prevents players from wandering too far off the screen. A variety of colors, graphics, and sound effects add excitement to the program.

As with most computer games, proficiency at Zap! will take some practice and a lot of concentration.

The player block is moved around the screen by the computer PEEKing at the keyboard to determine the value of the last control key pressed. A direction factor is then assigned to the variable DR (steps 590-620). When moving left, DR is -1 , right is 1 , up is -22 and down is 22 . This factor is then added to the position of the block (B) (step 650). The old block is then erased by POKEing it to 32 (blank) and a new one is placed in position (step 570). This all happens so quickly that the illusion of motion is created.

Scoring and zaps are determined by PEEKs at the block's position to see if any other figure is there (steps 670-720). Depending on the figure found at "PEEK (B)", a score is assigned and the loop continues, or if the figure is an asterisk, a "Zap!!" routine is initiated and the round ends.

In each pass through the loop (steps 550-780), several things happen or are checked for. The elapsed time is printed and there is a check to see if the time is up. If so, the loop is terminated and the round ends. A block is POKEd into position B. Steps 580 and 585 provide the vertical wraparound effect. A check is made for direction change input from the keyboard. A tone is sounded based on the current direction of movement. The old position of the block is erased and a new position is calculated. A check is made to see if any figures have been struck. If so, they are either scored or, in the case of an asterisk, the loop is terminated. After a new total score is calculated and displayed, the loop begins again.

Steps 640 and 760 are time delay steps to slow the block's motion and to increase speed as the skill level increases. If a faster or slower movement is desired, these steps may be altered.

A number of REMarks have been included in the program listing as an aid to understanding it, but I recommend that they not be typed in on your computer. This program uses all but about 250 bytes of standard VIC-20 memory and including all the remarks may result in an "out of memory" error.

Good luck and I hope you enjoy the game.

\footnotetext{
10 PRINT" \(\left\{\right.\) CLEAR \({ }^{\prime \prime}\)
\(2 \emptyset\) DIM PL (6) , R(5)
\(3 \emptyset\) FORY=1TO5:FORX=1T06:Z \((X, Y)=\emptyset: N E X T X: N E\) XTY
}
\(4 \emptyset \mathrm{C}=3072 \emptyset: \mathrm{TB}=\varnothing: \mathrm{TS}=\emptyset\)
5ø POKE36879,239
\(6 \emptyset \mathrm{CP}=\emptyset: \mathrm{GOTO81} \mathrm{\emptyset}\)
\(7 \emptyset\) PRINTTAB(3)"\{ø6 DOWN\}BY DUB SCROGGIN"
\(8 \emptyset\) REM-4ø4 WOODROW ST.,FT. WALTON BEACH, FL 32548
\(9 \emptyset \mathrm{CP}=1\)
1øø FORT=1TO2øøø:NEXTT
110 PRINT" \{CLEAR\}"
120 PRINTTAB (5) "\{DOWN\}DIRECTIONS"
130 PRINTTAB (5) "7777777777"
140 PRINT"\{DOWN\}YOU WILL HAVE 2 MIN.":PRI NT"TO GET YOUR BEST SCORE"
\(15 \emptyset\) PRINT"\{YEL\}MOVEMENT: ": PRINT"\{DOWN\}CRS R DN=LEFT": PRINT"CRSR RT=RIGHT": PRINT"F5=UP"
\(16 \emptyset\) PRINT"F7=DOWN": PRINT" \(\{\) HOME \(\}\) \{ø4 DOWN \(\} "\)
\(17 \emptyset\) PRINTTAB(14)"\{ø3 DOWN\}\{WHT\}SCORING:"
\(18 \emptyset \operatorname{PRINTTAB(14)"\{ BLK\} W=1"~}\)
190 PRINTTAB (14) "\{CYN \(\} \overline{\mathrm{Q}}=2\) "
\(2 \emptyset \emptyset \operatorname{PRINTTAB(14)"\{ YEL\} } \bar{Z}=3 "\)
\(210 \operatorname{PRINTTAB(14)"\{ RED\} \overline {S}=5"~}\)
220 PRINTTAB (14) "\{WHT\} \(\frac{\bar{A}}{A}=1 \emptyset "\)
230 PRINT"\{DOWN\}YOU ARE: \{BLU\}\{REV\} \{OFF\} "

240 PRINT" \(\{D O W N\} D O N ' T\) HIT A \(\{P U R\} *\{B L U\} 0\) R": PRINT"YOU WILL GET \{PUR\}ZAPPE D."
\(25 \emptyset\) PRINT" \(\{\) WHT \} \{DOWN\} PRESS ANY KEY TO STA RT"
\(26 \emptyset\) GETAS:IFA\$=""THEN26ø
\(27 \emptyset\) PRINT" \(\{C L E A R\}\{W H T\}\) HOW MANY ROUNDS (15)"
\(28 \emptyset\) INPUTRN: IFRN<IORRN>5THENPRINT"HUH?": G OTO27ø
290 PRINT" 2 DOWN \} HOW MANY PLAYERS": PRINT" ( 1-6)";
\(3 \emptyset \emptyset\) INPUTPN:IFPN<1ORPN>6THENPRINT"HUH?":G OTO29 0
\(31 \varnothing\) FORR=1TORN
32 FORP=1TOPN: PRINT"\{BLU\}\{DOWN\}PLAYER \#" ; P
330 PRINT" \(\{\) DOWN \}WHAT SKILL LEVEL?"
340 PRINT"PRESS \(9,1,2,3\) OR 4";
\(35 \emptyset\) INPUT \(S\)
\(36 \emptyset\) IFS>4 ORS<ØTHENPRINT"HUH?":GOTO34ø
\(37 \emptyset\) PRINT" \{CLEAR\} \{BLU\} \{REV\}SCORE TO BEAT: "; TB: PRINT"\{REV\}SKILL LEVEL:"; SL
\(38 \emptyset\) PRINT" \(\{R E V\}\) PLAYER \#"; PB
\(39 \emptyset\) FORT=1TO2øøø:NEXTT:PRINT" \{CLEAR\}"
\(4 \emptyset \emptyset \operatorname{DEF} \mathrm{FN} A(\mathrm{~L})=\operatorname{INT}(\operatorname{RND}(1) * \mathrm{~L})+77 \emptyset 2\)
\(41 \emptyset\) FORF=1TO4 Ø-2*S:D=FNA (483)
\(42 \emptyset\) POKED, \(87:\) POKED + C, \(\varnothing: N E X T F\)
430 FORF \(=1\) TO25: D=FNA (483)
440 POKED, \(81:\) POKED \(+\mathrm{C}, 3: \mathrm{NEXTF}\)

460 POKED, 42 : POKED + C, \(4:\) NEXTE
\(47 \emptyset\) FORF \(=1 \mathrm{TO} 9: \mathrm{D}=\mathrm{FNA}(483)\)
480 POKED, \(9 \emptyset:\) POKED + C, \(7:\) NEXTF
490 FORF=1TO14:D=FNA (483)
\(5 \emptyset 0\) POKED, \(83:\) POKED + C, \(2: N E X T F\)
510 FORF=1TO9+S:D=FNA (565)

\section*{PET BITES VIC!}

VIC/PET programmers: How would you like to be able to connect all of your PET peripherals, through your PET, to your VIC? Print VIC programs, save or load on disk, or use a VIC joystick on the PET. Basic programs can call HESCOM subroutines to transfer any amount of memory in either direction between two VICs, two PETs, or a PET and a VIC.
For example, a 3.5 K Basic program can be transferred in half a second! Or, you could use an existing PET disassembler to look at the VIC ROMs by simply changing the input routine to get single bytes via HESCOM. Similarly, three-voice VIC sound can be used by PET programs. Full handshaking ensures reliability in block transfers; another mode allows real-time sampling of the user port for applications like two-machine games! Includes 5' cable, machine language software for PET and VIC, demo program, and documentation.
(VIC or 8K PET) \(\$ 49.95\)

\section*{Now also for the 8K VIC}

HESEDIT: change 22 lines of data by merely overtyping and insert, delete, and even duplicate linesall at once! Scroll forwards or backwards by any amount - it's also easy to edit files bigger than your memory. Why code a program to maintain each file? Use HESEDIT for mailing lists, notes or prepare assembler source for HESBAL. All keys repeat. FAST written in BASIC and assembler. \(\$ 12.95\)
0502 ASSEMBLER PACKAGE: HESBAL, a full-featured assembler with over 1200 bytes free (8K) \& HESEDIT; for less than \(\$ 25\) ! HESBAL is THE best 8 K assembler available: it uses only 1 tape or disk, yet includes variable symbol sizes, pseudo-opcodes, over 25 error messages and more than 70 pages of documentation.
\(\$ 23.95\)

Human Engineered Software 3748 İnglewood Blvd. Room 11 Los Angeles, California 90066


\section*{NEW RELEASES}

HESCOUNT by Jerry Bailey. A totally new concept in debugging! Machine language monitor aids debugging of any Basic program by counting the number of times each line is executed. Pinpoints bottlenecks to help you improve run times up to \(50 \%\). Shows code that was never executed, and lets you verify that loops and conditional statements are working as expected.
(VIC or 8K PET) \$23.95
HESLISTER 2.0 by Cy Shuster. Now 35\% faster, reveals program structure by untangling complicated Basic lines and indenting IF, FOR..NEXT statements, etc. Inputs from disk; outputs to screen or printer. (8K PET) \(\$ 15.95\) (includes disk)

GUARANTEED to load or replaced FREE. Order from your dealer or direct from us. Add \$2 postage, Cal. res. - \(6 \%\) sales tax. Disk versions - add \(\$ 3\) (disk included).

\section*{24 HOUR ORDER LINE (M/C OR VISA)} (213) 398-7259
```

520 POKED,65:POKED+C,1:NEXTF
530 B=7932
540 TI\$="\emptyset\emptyset\emptyset\emptyset\emptyset\emptyset"
550 PRINT"{HOME}TIME:";120-INT(TI/60);"{L
EFT} "
56\emptyset IFTI/6\emptyset>=12\emptysetTHENGOTO93\emptyset
570 POKEB,160:POKEB+C,6
580 IFB<7636THENB=8229+B-7635
585 IFB>8229THENB=7636+B-8230
590 IFPEEK (197) = 31THENH=190:DR=-1:GOTO630
6\emptyset\emptyset IFPEEK(197)=23THENH=2\emptyset\emptyset:DR=1:GOTO630
610 IFPEEK (197)=55THENH=210:DR=-22:GOTO63
\emptyset
62\emptyset IFPEEK (197) =63THENH=220:DR=22
630 POKE36878,15: POKE36876,H
640 FORT=1TO30-5*S:NEXTT
60 POKEB, 32:B=B+DR
660 SC=\emptyset
67\emptyset IFPEEK (B)=42THENGOTO79\emptyset
680 IFPEEK (B) =87THENSC=1:GOTO740
69\emptyset IFPEEK (B)=81THENSC=2:GOTO740
7\emptyset\emptyset IFPEEK (B)=9\emptysetTHENSC=3:GOTO74\emptyset
710 IFPEEK (B)=83THENSC=5:GOTO740
72\emptyset IFPEEK (B) =65THENSC=1\emptyset:GOTO74\emptyset
730 GOT0760
740 TS=TS+SC
750 POKE36878,15:POKE36876,160+PEEK(B)
760 FORT=1TO3\emptyset-5*S:NEXTT
77\emptyset PRINT" {HOME} {DOWN}SCORE=";TS
780 GOTO550
790 POKE36878,15
8\emptyset\emptyset FORPI=1TO4\emptyset:POKE36876,18\emptyset-PI:NEXTPI

```

\section*{CAPUTE!}
1. COMPUTE! \#12, pg. 94. The authors suggest that the following lines should be changed to:
```

255 UG=GU:PRINT
257 IF GU = 0 THEN 270
290 WD=WI:WF=WI: WT=(12-WI)/2
370 IF WI>4 THEN 300
530 IF WT<0 OR WT = 0 THEN WT = 1: RN = 0
610 IF PEEK(KY)=251 THEN ME = ME-1: KK= -1
1060 IF WD<3 THEN PRINT "LITTLE";: GOTO 1200
1120 PRINT "CHEATER";
1200 PRINT "FOO";

```
2. COMPUTE! \# 17, pg. 112. The following changes to the "Atari Program Library" will lock all cataloged programs. Then, after adding new programs to a disk, only the unlocked (new) programs need to be cataloged:
```

420 IF B<3 THEN ? "DISK IS \#";VOL$:
 XI035,#3,0,0,"D:*.*":?:?"INSERT LIBRARY
 DISK"
370 IF IN$(1,1) = "*" OR DSN\$ = "DOS.SYS" OR
DSN\$ = "DUP.SYS" OR DSN\$ = "MEM.SAV" OR
DSN\$ = "DISK.CAT" THEN 310

```
3. COMPUTE! \#17, pg. 143. Mr. Swaim has suggested the following lines as an alternative way to load the \(\mathrm{X} \$\) array for business keyboard users and to correct an error in transcription:
```

110 X$(1)=CHR$(164):X$(2)=CHR$(175): X$(3)=
 CHR$(185): X$(4)= CHR$(162)
112 X$(5) = CHR$(18)+CHR$(184)+CHR$(146):
X$(6)=CHR$(18)+CHR$(183)+CHR$(146)
115 X$(7) = CHR$(18) + CHR$(163) + CHR$(146):
X$(8) = CHR$(18) + CHR$(32)+CHR$(146)

```
4. COMPUTE! \# 17, pg. 152. The correct SYS is 7168 in line 120.
5. COMPUTE! \# 17, pg. 162. Table 1 is missing number 9, Subtraction:

Load FPAC1 with subtrahend
\begin{tabular}{ll} 
LDA AL & source address \\
LDY AH & for minuend \\
JSR \$C58F &
\end{tabular}
(Addressed value is loaded into FPAC2, FPAC1 is subtracted from FPAC2 and result in FPAC1; FPAC2 unchanged.)

\section*{COMPUTE!'s Listing Conventions}

Many programs which are listed in COMPUTE! use cursor control keys, color keys, and so forth. We have established a listing convention which we bèlieve eases the task of typing programs in accurately.

\section*{Atari Conventions}

For the Atari, all the editing and cursor-control characters are spelled out and surrounded by brackets: [CLEAR] for "clear screen." Other characters, such as CTRL-T (the "ball" character) will be listed as the "normal" character, but within brackets: [T]. A series of identical control characters will be indicated by a number within the brackets: [3 DOWN] means type the cursor-down key three times; [12 R] means type CTRL-R twelve times.

Two control characters, \([=]\) and \([-]\) should be shifted. Any reverse field text will be enclosed within vertical lines. (Press the Atari logo key [ 凡] for each vertical line you see.)

\section*{PET/CBM/VIC Conventions}

Generally, PET/CBM/VIC programs will contain bracketed words for any special characters: [DOWN] means the cursor-down key; [3 DOWN] means type the cursor-down key three times.

If a program line runs over onto the next line down, the \(\sim\) symbol indicates where the line broke (in case the number of spaces is unclear between quotes). An underline means that that key is shifted.

\section*{8032/Fat 40 Conventions}
\begin{tabular}{ll} 
SET WINDOW TOP & [SET TOP] \\
SET WINDOW BOTTOM & [SET BOT] \\
SCROLL UP & [SCR UP] \\
SCROLL DOWN & [SCR DOWN] \\
INSERT LINE & [INST LINE] \\
DELETE LINE & [DEL LINE] \\
ERASE TO BEGINNING & [ERASE BEG] \\
ERASE TO END & [ERASE END] \\
TOGGLE TAB & [TGL TAB] \\
TAB & [TAB] \\
ESCAPE KEY & [ESC]
\end{tabular}

\section*{All Commodore Machines}
CLEAR SCREEN
HOME CURSOR
CURSOR UP
CURSOR DOWN
CURSOR RIGHT
CURSOR LEFT
INSERT CHARACTER
DELETE CHARACTER
REVERSE FIELD ON
REVERSE FIELD OFF

\section*{VIC Conventions}
\begin{tabular}{ll} 
& \\
SET COLOR TO BLACK & [BLK] \\
SET COLOR TO WHITE & [WHT] \\
SET COLOR TO RED & [RED] \\
SET COLOR TO CYAN & [CYN] \\
SET COLOR TO PURPLE & [PUR] \\
SET COLOR TO GREEN & [GRN] \\
SET COLOR TO BLUE & [BLU] \\
SET COLOR TO YELLOW & {\([Y E L]\)} \\
FUNCTION ONE & {\([F 1]\)} \\
FUNCTION TWO & {\([F 2]\)} \\
FUNCTION THREE & {\([F 3]\)} \\
FUNCTION FOUR & {\([F 4]\)} \\
FUNCTION FIVE & {\([F 5]\)} \\
FUNCTION SIX & {\([F 6]\)} \\
FUNCTION SEVEN & {\([F 7]\)} \\
FUNCTION EIGHT & {\([F 8]\)} \\
ANY NON-IMPLEMENTED & \\
\multicolumn{2}{l}{ FUNCTION } \\
&
\end{tabular}

COMPUTE! The Resource


\section*{Standard Features:}
- Full power to PET/CBM for a minimum of 15 minutes
- Installs within PET/CBM cabinet
- No wiring changes necessary
- Batteries recharged from PET/CBM integral power supply

\section*{Specifications:}
- Physical Size: \(5.5^{\prime \prime} \times 3.6^{\prime \prime} \times 2.4^{\prime \prime}\)
- Weight: 4.5 lbs .
- Time to reach full charge: 16 hours
- Duration of outputs: Minimum of 15 min .
- Voltages: \(+16,+9,-12,-9\)
- Battery Life Expectancy: 3 to 5 years
- Battery On-Off Switch

\section*{For Use With:}
- Commodore PET/CBM 2001 and 4000 series computer
- Commodore PET/CBM 8000 series computer (screen size will not be normal on battery back-up)
- Commodore C2N Cassette Drive

\title{
BATTERY \\ BACKUP SYSTEM \\ FOR COMMODORE PET/CBM COMPUTERS
}

Never again lose valuable data because of power shortages or line surges. BackPack supplies a minimum of 15 minutes reserve power to 32 K of memory, the video screen and tape drive. BackPack fits inside the PET/CBM cabinet and can be installed easily by even the novice user. BackPack is recharged during normal operation and has an integral on-off switch.
BackPack comes fully assembled and tested. Instructions included.
Also available, Back Pack unit for Commodore CBM 4040 and 8052 Dual Drive Floppy Disk.

Dealer and distributor inquiries invited.

Designed and manufactured by:

\section*{ELECTRONIC TECHNOLOGY CORPORATION} P.O. Box G, Old N.C. 42

Apex, North Carolina 27502
Phone: (919)362-4200 or (919)362-5671

\title{
thes connection \\ ATARPN \\ \\ \(51 / 4\) Floppy Disks \\ \\ \(51 / 4\) Floppy Disks \\ David's Midnight, Magic \\ Retail \$34.95 Now \$29.50 \\ Red Alert Retail \$29.95 Now \$24.50 Newest Broderbund release
}

\section*{51/4" Floppy Disks}

\section*{51/4" Floppy Disks}

Pathfinder Retail \$39.95 Now \$31.96 Blast your way through the maze filled with nuclear waste and radioactive monsters in this never-before released game by Gebell Software
Match Racer Retail \(\$ 29.95\) Now \(\$ 23.50\) Gebelli Software has you matching your wits and ability against your racecar opponent in a showdown of racing skill.
Andromeda 2 Retail \$34.95 Now \$27.96 First time ever for any machine by GebelliSoftware. Trapped inside a gigantic living organism you must find
your way out before the antibodies get you.


Now \$29.50 Intercept an alien force belore they destroy the plane
Nasir's latest graphic innovation.
Sneakers Retail \$29.95
Now \$24.50 Endless excitement by Sirius stomping Sneakers and endless other creatures.
Hadron Retail \$34.95 Now \(\$ 29.50\) Battle in an asteroid field in this brand new game by Sirius.

This pinball game by Broderbund is being offered for the first time.
Genetic Drift Retail \(\$ 2905\) turn unfriendly life forms into friendly Firebird Retail \(\$ 29.95\)
Now \(\$ 24.50\) All new by Nasir. Piggo, the fearless firefighter, battles the incredible Firebird.
Horizon V Retail \$34.95 Horizon V Retail \(\$ 34.9\) I
Now \(\$ 29.50\) Intercept an alien VISA

Apple Panic Retail \$29.95 Now \$23.50 dederbind. You by Broderbund. Russki Duck Retail \(\$ 34.95\) Now \(\$ 29.50\) First time released for any machine - recover the MX Missile plans hidden by foreign agents

Now \(\$ 33.50\) This Number 1 seller just re-released by Sirius. The earth has just entered a time warp and the battle has just begun.

Space Eggs Retail \(\$ 29.95\)

Now \(\$ 24.50\) This number 1 seller is a real crack-up from Sirius. Epoch Retail \$34.95 Now \$29.50 A Number 1 Now \(\$ 29.50\) A Number
seller from Sirius where your secret weapon is the fourth dimension.

The Software Connection
5133 Vista Del Ofo Way
Fair Oaks, CA 95628
MAIL ORDERS: Send check or money order for total purchase price plus \(\$ 1.50\) for postage and handing. California residents add 6\% Sales Tax.
Charge card orders may call
(916) 9893174 . Subject to stock on hand. Prices subject to change.
master charge 1-4


\section*{A LONE SPACE PIRATE ATTACKS THE GALACTIC EMPIRE}

the sole surviving Naval Commander of the Free Space Confederation. The Galactic Empire has overrun the entire solar system except for your remote outpost on a moon at the outer limits. Exploiting the unmatched ship SHADOW HAWK I you prey on the Empire's merchant fleet to capture enemy mate-
rial, which can be bartered for better
weaponry, shielding, missiles, etc., for SHADOW HAWK I. \({ }^{\text {TM }}\) But the Empire's interceptors, corvettes, lancers, destroyers, and cruisers are probing the galaxy for you. You must evade them and the deadly battle stations throughout.
Your skill is measured by nine rankings, up to STAR LORD. Warning: You must be very, very good to reach STAR LORD rank! Very good indeed!

7561 Crater Lake Hwy. White City. OR 97503 (503) 826-4640
- Apple II and Atari 800 are registered trademarks. respectively, of Apple Computer. Inc and Atari. Inc.



\section*{New Journal For Math And Science Teachers}

A new periodical for educators interested in using computers to teach mathematics and science is The Journal Of Computers In Mathematics And Science Teaching. The Journal is published by the Association for computers in Mathematics and Science Teaching, a professional nonprofit organization. It is published quarterly in September, December, March and June. ACMST membership is \(\$ 7.00\) per year and includes a subscription to the Journal. Single copy price is \(\$ 2.50\). Contact them at P.O. Box 4455, Austin, TX 78765.

\section*{Dental Computer Newsletter}

The DCN represents an international group of dentists, physicians and office management people who have interests in office computers. Though the emphasis is on micro computers, many members use minis. We cater to all makes and brand names. DCN offers members:
1. A monthly newsletter
2. Software exchange
3. Advice and experience
4. Access to members world wide
5. Computer bulletin board

1982 annual membership dues are \(\$ 15.00\). A little over a dollar per month. Overseas subscriptions are \(\$ 23.00\) (US). Membership runs from January to January. If you join mid year, we will supply you with the
year's back issues. Checks can be sent to:

Dental Computer Newsletter E. J. Neiburger DDS-Editor 1000 North Ave. Waukegan, IL 60085 USA
Orders: You may order past issues starting with V1:1 (Nov. '78) for \(\$ 15\) per year ... \(\$ 45\) for all past issues. Membership/ equipment listings are \(\$ 5.00\). Commercial software and DCN software exchange lists (24 pages + ) are \(\$ 4.00\).

Sue Neiburger RN Managing Editor
E. J. Neiburger DDS Editor/Publisher
Please feel free to call any Tuesday, Thursday, Saturday or Sunday 912 noon (CST) (312)223-5077.

> Capital Children's Museum And Reston Publishing Company To Develop Software

The Capital Children's Museum of Washington, DC and Reston Publishing Company (A PrenticeHall Company) are pleased to announce an agreement to produce a series of educational book/ software packages for microcomputers. The series is designed to promote a creative, interactive use of computers by children, parents, and teachers. The product will be implemented initially on the Atari 800 Personal Computer System; design and testing are being managed by Superboots, the software development arm of the Capital Children's

Museum.
The first package, entitled Paint, will be available in early 1982. Paint will be a versatile educational tool that will be suitable for use either in the home or in a classroom setting. The book accompanying the software will be a guide to a wide range of activities which parents or teachers can use to extend a child's interest in computer learning.

Early in 1981, Atari made a significant donation to the Capital Children's Museum in the form of 30 Atari microcomputer systems. This contribution has allowed the Museum to establish a computer learning environment called Future Center, to put computer programs in exhibits, and to utilize other computers in Superboots. Superboots is the software development lab where computer programs are created. Software is used both in Future Center and in exhibits and is marketed outside the Museum through Reston Publishing Company.

For more information, contact: Bob Evans, Administrator, Superboots, Capital Children's Museum, 800 Third Street, N.E., Washington, DC 20002 (202)543-8600. Nikki Hardin, Editor, Reston Publishing Company, 11480 Sunset Hills Road, Reston, VA 22090 (703)437-8900.

\section*{Artworx Announces New Atari Software}

Arthur M. Walsh, Manager of Software Products for Artworx Software Company, 150 N. Main St., Fairport, New York 14450, announced the addition of nine
\(4.8 \mathrm{~K}-\mathrm{w} /\) disk

At Crystal we are doing our best to provide the finest state-of-the-art graphic adventure software in the world. Our list of credits include the first indooroutdoor graphic adventure, the first multi-disk graphic adventure, and now for the Atari, the first graphic adventure in the world which includes screen scrolling and animation. The era of the text adventure and games which are simplecombinations of static graphics and text is rapidly drawing to a close. We attempt to utilize the full potential of your computer. True, many of our games use up to 48 K and we only deal in disk products, but there are a lot of users out there who have worked hard to upgrade their systems to the max and we think they deserve games that will give their computer system a run for its money.

\section*{\(\star \star \star\) ADVENTURE GAMES \(\star \star \star\)}

1-THE HOUSE OF USHER-Haunted house type adventure game with scrolling in the Atari version. Wander the creepy hallways of the three story castle based on Edgar Allen Poe's short story of the same name. Written in graphics, of course, with animation and sound. We have introduced a new mystery for another \(\$ 100\) prize. \(\$ 29.95 / 1\) disk
2-FANTASYLAND 2041 A.D.- The largest disk based adventure game in the world (that we know of). Enter the Hall of Heroes and prepare yourself for the greatest fantasy-role-playing game you will see for years to come. To win you must survive Congoland, Arabia, King Arthur, Captain Nemo, Olympus (a sea voyage), and Dante's Inferno (Hell itself). In both the Atari and Apple versions it takes up more than 400,000 bytes of memory and uses more than 400 hires screens. The winner of the contest described in the manual with this game will receive \(\$ 1000.00\) and a bronze trophy. We have pushed the award date forward to February 1982 to allow more people to participate in the contest. \(\$ 59.95 / 6\) disks
3-GLAMIS CASTLE- Yes, Pat and I are on our way to Britain to stay in the dreaded Glamis Castle. If we survive our real life adventure, we'll be measuring it and will be able to provide you with a 3-D game based on this ancient haunted site where King Duncan met his end at the hands of Macbeth. Our good friend, Mark Benioff, after much research, said there's a mystery room that has never been found in this castle and a half beast, half-man creature that guards a treasure therein. Our stay will be covered by the British media and we hope to share our experience with you through the writing of this game. \$49.95/2 disks
4-BENEATH THE PYRAMIDS-You are an archaeologist in 1932 and must find your way through the perilous chambers beneath the pyramids to discover a golden statue of the cat goddess Bast. This game is in hires graphics, includes sound, your little man actually moves through the corric ors which you can see on the screen. The monsters are animated and very agressive. There is a new \(\$ 100\) prize for the first to solve the mystery; which is a toughie! \$29.95/1 disk

\section*{\(\star \star \star\) SPACE GAMES \(\star \star \star\)}

5-GALACTIC QUEST-An excellent combination of Star Trek and Space Trader. Battle the animated Vegan fighters as you warp from galaxy to galaxy. At the same time, you may land on and trade with hundreds of planets. Super hires graphics and lots of sound. This has been one of our most popular games. \(\$ 29.95 / 1\) disk
6-SANDS OF MARS- Take an exciting voyage to the planet Mars via the Starship Herman. This game compared to the rest, is second only to Fantasyland 2041 A.D. It includes scrolling on the Atari and hundreds of full screen graphics. You can move your little man through the terrain of Mars; if, of course, you survive the exciting journey to Mars, which occupies the whole first disk. There is a new mystery and another \(\$ 100\) prize just waiting for some clever adventurer out there. Good luck! \(\$ 39.95 / 2\) disks

\section*{\(\star \star \star\) WAR GAMES \(\star \star \star\)}

7-WORLD WAR III- You Atari gamers will have to see this in the Atari version to believe it! lf your tired of war games which take 15 minu-es a move and have a manual the size of a telephone book; but still want a complex, real-time action war game-this is it It is designed for two arm-chair generals which may manuever up to 128 seperate type of units at a time. The game displays a map of Iran \& Iraq in the first scenario and later on you will find yourself moving nuclear submarines and battleships through two world wars. This is not a boring copy of a board based game but an original war game which takes a lot of skill and may take weeks to play. \(\$ 29.95 / 1\) disk
8-WATERLOO II-If you had been Napolean would you have done a few things differently? Well as you approach this final battle you are equipped with the same forces, face the same opposition, and survey the same terrain which he did. We have done a great deal of research to make this historically accurate as well as extremely complex. Even the angle of sight, fatigue of the individual soldier, and his psychological profile are included in the calculations. Oh by the way. your opposition is no slouch. You may find it more difficult to change the course of history than you thinkl \(\$ 49.95 / 2\) disks

\section*{\(\star \star \star\) ARCADIA \(\star \star \star\)}

9-LASAR WARS- Hires-3d space war simulation. Protect the earth from alien invaders. \(\$ 29.95\)
10-LITTLE CRYSTAL- The first of our line of education software, which will be completed by December. It includes a very fine version of Hangman, Mr. Music; which transforms the computer into a piano, Gunk-a hilarious shoot-em up game, and Storytime- an anthology of bedtime stories featuring Herman, the cat, Oscar, the Hamster. and of course, Little Crystal. \$39.95
11-IMPERIAL WALKER-A fine game pack written by our Atari programmer, Michael (graphics) Potter. Includes the Walker animation which is superb, Gunfight, and Lasar Nim, a game of 'how many robots'. \$29.95

14-THE WARRIOR- (\#7-8) \(\$ 64\)

\footnotetext{
Crystal has many other fine fantasy and space games. For a copy of CRYSTAL VISION which includes a complete catalog please send \(\$ 3.00\) to the address below.
}
"Having previewed over fifty of your competitors' games, I can assure you that your use of scrolling far exceeds anything I've seen for the Atari and, of course, for the Apple. I'm very impressed by the dedication and quality that your company exhibits by virtue of this demo. "David Sosna - Associate Producer, Universal Pictures Crystal has done its best to become the Porsche of thef computer game industry. New scrolling techniques, video disk games, a real-life fantasyland - our mad programmers toil onward with little food or sleep to produce some incredible fir'sts in the microcomputer world. If you are an unappreciated genius and want to join our staff to help create the world of tomorrow today, giveme a call. Our magazne Crystal Vison will within the next month have a circulation of 80,000 and we look forward very soon to producing our first full length motion picture. I'd liketot thank my friends at Votrax and Axlon for giving us the tools (128K RAM for Atari and a vocal text synthesizer) to truly produce some program

\section*{THE CRYPT}

 cend into the catacombs beneath the cemetery. This game is a liftle different from the others of our series because we use a lot of static graphics to set the mood. It is similar in some respects (without any copying intendedp to those of pur friends at On i ine who produce exceljent static graphic adventures. You must use all your will receive a \(\$ 200.00\) prize. \(\$ 49.952\) disks QUEST FOR POWER search of the Scroll of Truth. Explore the treachef Aht dedepths of the Caves
and grat prophets. The villogeseof Sundderland and teeds dot your path.
Gogmogo, hungry for human prey, roatis the forests. In Fantasyland trad tion sequences. Well worth

\section*{}

The year is 3021 , almost 100 yeaa Brisbane. It's nearly 80 years since Woflt War il. The Ames Rese wonder - the first ion-propelled vessel, sauger shaped Lady Jaanch deplet its celebrafes.its 150 th and those of Lemuria have now been deciphered ap dit appears strange new worlds await the ultimate adventure marvelous new technology; this craft must be flo heavens, beset by meteor show is a game unto itself

\section*{From Earthto Moon}
- On the race of burrowing creatures, who have built vast earthen cities with storehouses full of precious tomens. Gravity is
 Mists of Venus - On Venus is especially treacherous with all sorts of loathsome creatures and hardly any place dryepepough to land your ship. Beneath the green seas our adventurer may find the

Planet Herman \(\qquad\) ads and the surface begins marine Navigating around Herma is very dre mon board Lady Joanne marine. Navig
Master to rum

\section*{The Asteroid Belt}
\(\qquad\)
别 up. Perhaps you should find some expert help by rescuing a pilot, who thot,scaveng trading and you may wish to indulge yourself with a visit to the sen
Uranus - World of Ice
- A freezing place with nights of oot tall relative of Big Foot, fond of human flesh. Uranus also has a may have his own idea about your trespassing. Without proper clothing sed inner labyrinth with tr Master Disk to run)

\section*{Jupiter - Worid of Dwarfs}
- Ho
prepared to use 10 times the normal amount of fuel. Better find the fth ke The Crystal Planet - You will have to embark on this final portion excepting that the 7th world holds the ultimate key to winn his final portion of your expedition ignorant of


GLAMIS CASTLE - According to ancient legend and records this castle is one of the most haunted sites in Great Brifain- One Lady Glamis, known to be in league with the devil, liked to send out a destructive demon to harrass the townspeople. She finally was burnt at the stoke on Castle Hill, cursing as she died all future generations of the Lyon family. Her demon still seems to haunt that spot, murdering the curious who stray up to Castle Hill affer dark. The curse stipulated that each succeeding generation would have at least one child, often female, who would be a vampire. When an heir comes of age, there is a secret ceremony in which the heir, his father, and the steward take crowbars and chip away plaster concealing a hidden chamber, known only to, them, that Earl Patie used when he gambled with the devil. Another tradition says that a creature, half-man, half-beast stalks the passages in the walls of Glamis to ins to determine the location of this secret chamber. Our game, occupying 2 disks, will have as exact a replica of thee eastle as possible. It's definitely one of a kind! And we will be offering a \(\$ 500\) prize to the first person daring enough to solve the centuries-old mystery of Glamis Castle, \(\$ 49.952\) disks.

\footnotetext{
Crystal has many other fine fantasy and space games. For a copy of CRYSTAL VISION which includes a complete catalog please send
\(\$ 3.00\) to the address below.
(408) 778-2966

Our order lines are open 24 hrs. a day 7 days a week.
CRYSTAL COMPUTER 17120 Monterey Rd., Morgan Hill, CA 95037
}

new programs to its present line of software for home computers. All nine programs are available for the Atari computer. They include space games (ENCOUNTER AT QUESTAR IV, \(\$ 23.95\); ROCKET RAIDERS, \$19.95; SPACE TRAP, \$14.95), a flight landing simulator (PILOT, \$16.95), an excellent blockade game (BLOCKADE, \$14.95), two suspenseful adventures (CRANSTON MANOR, \(\$ 21.95\) diskette; THE VAULTS OF ZURICH, \(\$ 21.95\) ), a text editor (TEXT EDITOR, \(\$ 39.95\) diskette) and a "player missile" editor (PM EDITOR, \$29.95).

These and other Artworx programs are available at computer stores or can be ordered directly from Artworx toll free at 800-828-6573 or 716-425-2833.

\section*{Cimarron Releases File Handling System For The Commodore Business Computer}

Costa Mesa, CA - CIMARRON CORPORATION announced today that it is making its proprietary file handling system called CMAR available to systems houses and retailers who are developing business applications software for the Commodore line of small business computers.

CMAR is a keyed file access method that provides the foundation for CIMARRON'S Legal Time Accountinng and Medical Accounting packages marketed by Commodore nationally. CMAR is compatible with all present Commodore disc subsystems utilizing the existing disc format. It is written in 6502 machine language and interacts directly with Commodore Basic 4.0.

With its post "Binary Tree" technology referred to as Inverted Key File Method, CMAR offers a


\title{
\(\mathbb{N}^{r_{E}}\) PROGRAM STORE \\ CALL TOLL FREE 800424-2738
}


From Spectrum Computers An all machine language arcade game that combines challenging play with great graphics and sound. Insect-like alien ships form ranks above you, moving back and forth as they ready their assault. Suddenly they start breaking formation to swoop down on you, the lone defender. Fight them off with swift missiles . . . until their invisible ray slows your missiles down. May be played by 1 or 2 players, with two skill levels.
16K tape... \(\$ 24.95\)
32 K disk... \(\$ 29.95\)

\section*{TRICKY TUTORIALS}

From Santa Cruz Software
A novel approach to learning about the special programming functions of your Atari. Each TRICKY TUTORIAL combines printed information with several programs (complete with listings) that demonstrate the concept being presented. You are encouraged to modify and incorporate the programs in your own programming!
\#1 - DISPLAY LISTS
16K tape or disk... \(\$ 14.95\)
\#2 - HORIZONTAL \& VERTICAL SCROLLING 16K tape or disk... \(\$ 14.95\)
\#3 - PAGE FLIPPING
16K tape or disk... \(\$ 14.95\)
\#4 - BASICS OF ANIMATION
16K tape or disk... \(\$ 14.95\)
Also from Santa Cruz: BOB'S BUSINESS A baker's dozen programs for business and personal applications: amortization, mortgage, saviongs, averages, square feet/yards, paycheck, investment, mortgage comparisons, property expense, bar graphs, decimal/hex, U.S./metric, checkbook

\section*{32K tape... 14.95 \\ Air Traffic Controller}

\section*{-}


By David Mannering from Creative
Wonder if the air traffic controllers are really inder stress? Want to see what all the fuss is under stress? Want to see what all the fuss is about? This program will give you a taste of what goes on in those towers as you try to guide 26 aircraft safely through your airspace. This advanced version has five sep arate control areas from which to choose, as well as other enhancements.
16K tape... \(\$ 11.95\)


GIN RUMMY 3.0
By S. Silverman from Manhattan Software Using Atari sound for input cues, this program presents your hand, the discards and the computers moves. All input is via the joystick, and you can manipulate (reorder) the cards in your hand any time it's your turn. Scoring of both hands is done by the computer, as is the overall game scoring. It makes a good Gin Rummy opponent -- what more can we say?
32 K tape... \(\$ 16.95\)


By Don Ursem from Quality
Fight wave upon wave of Empire warriors as you carry out STARCOM orders and defend Starbase Hyperion. Very different fron the ar-cade-type space games, STARBASE HYPERION is a complex tactical simulation. You can choose from six levels of play with various scenarios within each level. Comes with full instructions and a Battle Manual.
24 K tape... \(\$ 19.95\)
24 K disk... \(\$ 22.95\)

\section*{EASTERN FRONT \(^{\text {FRO }}\) \\  \\ By Chris Crawford from APE} A map-based simulation of Operation Barbossa, the german invasion of Russia. A complex and accurate war game, EASTERN FRONT pits you, as German Commander, against the terrain, the weather, and the Russian forces. Good use of colorful graphics and sound, and well written documentation make this game a winner!
16K tape... \(\$ 26.95\)
32K disk... \(\$ 29.95\)
SHOOTING GALLERY

A remarkably realistic shooting gallery, complete with carnival music. Use your joystick to poot moving owls rabits, ducks, and thit stars and targets for more lay pipes. Hit stars and targets for more shots. If you can shoot them all, you'll get a ry at the raging bear; if any ducks fly south they'll eat your bullets. Great family fun!
16K tape... \(\$ 18.95\)


While the ATARI ASSEMBLER CARTRIDGE comes with an operating manual, it assumes that you already know assembly language. If you're new to the Atari or its 6502 processor this book is a must.
The Inmans guide you through the rudiments of this fascinating type of programing in clear, easy steps. Includes full listing and description of 6502 mnemonics and addressing modes.

\section*{\(\$ 12.95\)}

\section*{BULLETIN}

\section*{BOARD 2.0}

By Skip Potter from Showcase Software A complete package that allows you to set up your own computer bulletin board. Full documentation makes it easy to define the special functions to best serve your needs. Requires Atari \(400 / 800,810\) disk drive, auto-answer modem, and a phone line.
24 K disk... \(\$ 59.95\)


By M. Siegel from Datasoft
Utility programs to unlock the mysteries of your disk system. DETECTIVE lets you exam ine and modify your disks, sector by sector DISKMAP provides a graphic display of a disk, noting which tracks and sectors contain data and which do not. A must for disk drive owners.
16K disk...\$29.95

\section*{ADAMS}

\section*{ADVENTURES}

By Scott Adams from Adventure International Until you've played an Adventure, you can't appreciate the hours of challenge and fun buit into each program. Each tests your powers of reason and deduction as you attempt to accomplish your mission using the implements you have, find or devise. Tape for 24 K Atari
1. ADVENTURELAND \(\$ 19.95\)
2. PIRATE'S ADVENTURE \(\$ 19.95\)
3. MISSION IMPOSSIBLE \(\$ 19.95\)
4. VOODOO CASTLE \(\$ 19.95\)
5. THE COUNT \(\$ 19.95\)
6. STRANGE ODYSSEY \(\$ 19.95\)
7. MYSTERY FUN HOUSE \(\$ 19.95\)
8. PYRAMID OF DOOM \(\$ 19.95\)
9. GHOST TOWN \(\$ 19.95\)

Visit our other stores: Seven Corners Center • Falls Church, VA \& W. Bell Plaza • 6600 Security Blvd. Baltimore, MD

new level of efficient disc management for programs requiring sophisticated multi-key accessing. CMAR performs all read, write, change and delete functions and supports up to five opened keys concurrently. Future hard disc emulations with an unlimited number of secondary keys will provide a "big system" working environment at low cost.

With a random access speed gain of nearly \(60 \%\) and a sequential speed gain of over \(45 \%\), even programs with heavy posting routines, sorts and fetches can become practical and manageable.

CMAR integrates its dynamic file substructure with the application program and Commodore Basic. Since the file system is dynamic, no file reorganization is ever required as in ISAM and Binary Tree configurations.

CMAR requires less than 10 K bytes of memory and can be
expanded to any operational file size, limited only by disc storage capacity. Files can consist of 2,000 to 20,000 keys depending on key size. Additionally, two kinds of key files are permitted; a primary key and its associated data record both based on relative file format.

CMAR is available through CIMARRON and is priced at \(\$ 99.00\) dealer net. A multiple quantity discount structure for application developers is also offered. Documentation only can be purchased separately for \(\$ 10.00\) on diskette in WordCraft 80 format.

\section*{OSI Screen Editor}

Edit All is a full screen editor for OSI computers from DMP Systems, 319 Hampton Blvd., Rochester NY 14612. It replaces the standard I/O routines to allow
the user to edit any program line that is on the screen. As editing takes place, the line is dynamically expanded or contracted.

Edit All supports a scroll window screen handler that allows you to define where on the screen you want your output to go. All output to the screen is via a window whose length, height and width are all user changeable. Full cursor control is supported along with an instant screen clear. Edit All works with OS65D Basic and Assembler. Price is \(\$ 19.95\) for \(5^{1 / 4}\) disk.

\section*{World Book Encyclopedia Now On CompuServe}

\author{
Columbus, Ohio - The Compu-
} Serve Information Service today announced the signing of an agreement with World Book


\section*{FREE CATALOG}

We offer the most complete selection of name brands in the country. Stock items are shipped the same day. 30 day guarantee. Your satisfaction and UNICOMM prices made our reputation.

CA. 90401
(213)

451-8089
ATARI
800
16 K
\(\$ 74.9\)

\section*{Atari \(400 \mathrm{w} / 16 \mathrm{~K}\) \\ 410 Program Recorder.}
\(82580 \mathrm{col} 7 \times 8\)
\(82580 \mathrm{col} .7 \times 8\) Dot matrix Impact printer
82240 col . Quiet Thermal Printer.
Atarl 16 K Ram Module.
Atari 16K Ram Module. .....
Axton Ramcram 32 K Module

\section*{Video Monitors}

\section*{Amdek/Leedex Video \(10012^{\prime \prime}\) B\&W}

Amdek/Leedex Video 100G 12" Green Phospher . . . . . . 155 Amdek (Hitachi) 13" Color w/audio output. . . . . . . . 389 NEC \(12^{\prime \prime}\) Green Phospher Display JB-1201M .389
NEC \(12^{\prime \prime}\) Lo-Res Color Display
NEC \(12^{\prime \prime}\) Hi-Res RGB Color Display
Sanyo 9" B\&W Display
Sanyo 9" Green Phospher Display
Sanyo 12" B\&W Display.
Sanyo 12" Green Phospher Display
Sanyo \(13^{\prime \prime}\) Color Display
Zenith 12" Green Phospher Display ZVM-121


\section*{VIC20 \(\$ 259\)}

\section*{Personal}

Computer
Color • Sound • Graphics
Call or write for more info
Disk drives available soon!


\section*{APPLE II PLUS}

\section*{16K Now \(\$ 1025\) 48K now \(\$ 1089\) 64K* Now \(\$ 1199\)}

48 K Apple with 16 K RamBoard
APPLE DISK DRIVES
\$439
\(w /\) controller and DOS \(3.3 \$ 499\)
Apple Cards and Hardware Language System w/Pascal \& BASICS . . . . 379 Hayes Micromodem II Hayes Micromodem \(\begin{array}{r}.399 \\ .299 \\ \hline\end{array}\)
Novation Apple-Cat . . . . . . . . . . . . . . . . . . . 339
Videx Videoterm 80 column card 269
Videx Keyboard Enhancer . . . . . . . . . . . . . . . . . 115
2-80 Softcard by Microsoft
.299
16 K RamCard by Micros oft
.299
.169
Software for the Apple

\section*{VisiCalc version 3.3 . . . . . . . . . .
VisiFile (NEW data base manager) \\ Visifle (Ni/Wlara base manager)}

159
199
UB Master
169
WordStar (Apple 80 col. version)
.249
Dow Jones Portfolio Evaluator
Apple Post.
Apple Writer
Dow Jones News \& Quotes Reporter
Apple Plot.
. .45

Tax Preparer
. 85
Tax Preparer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
\(16 K\) RAMBOARD by ConComp
for Apple II Computers

\section*{FOR ONLY \\ s12995}

California Computer Systems
Floppy Disk Controller
\(\$ 369\)
64K Dynamic Ram Board, 200ns \(\$ 499\)
Z-80 CPU board w/monitor ROM \(\$ 269\)
16 K Static memory board, 200 ns
32K Static memory board, 200ns
S. 10012 Ster
S-100 12 Slot Mainframe
4-Port Serial Interface.
2-Port Serial/2-Port Parallel Interface
4-Port Parallel Interface
Printers
Silentype
w/Apple II interface
\$349
Epson
MX-80 or
MX-80 FT CALL

Anadex \(9501 \mathrm{w} / 2 \mathrm{~K}\) Buffer
1349
C. Itoh Starwriter 25 CPS dalsywheel Epson MX-70
Epson MX-80
Epson MX-100 MX-80 F/T
Epson MX-100
NEC 8023 Impact Dot Matrix.
Naper Tiger IDS (Latest models)
Paper Tiger IDS-445G w/graphics
Paper Tiger IDS-560G \(w\) /graphics
Paper
Igraphics.
Silentype Printer w/Apple interface
Qume Sprint Daisywheels (Latest models).

\section*{ORDER TOLL FREE 800-854-6654}

\section*{In California and}
outside continental U.S. (714) 698-8088

\section*{Telex 695-000 Beta CCMO}

\section*{Send Orders To:}

Ordering information: Phone orders using VISA, MASTERCARD.
AMERICAN EXPRESS, DINERSCLUB CARTE
AMERICAN EXPRESS, DINER'S CLUB, CARTE BLANCHE, bank wire transfer. cashier's or certitied check, money ordet, or personal
check (allow ten days to clear) Unless prepaid with cash, please add \(5 \%\) for shipping, handing and insurance. (minimum 5.00 ). California residents add 68 sales tax We accept CODs. OEMs. Institutions
and corporations please sead for and corporations please send for a written quotation. All equipment
is subject to price change and avalability without notice All equip. is subect to price change and avalabilty without notice. All equip.
ment is new and complete with manufactur's days). Showroom prices may differ from mail order prices.

\section*{ఆ๑గร凹mer}

GOMPMi
8314 Parkway Drive
La Mesa, Calif. 92041

Encyclopedia to cooperate in developing the on-line, electronic version of the encyclopedia.

Robert King, chairman of the board of directors at World Book, a subsidiary of Scott \& Fetzer Company, said, "We expect to develop significant new services utilizing our existing database, both for the home and business markets. This service will add a new dimension to the printed edition of World Book."

CompuServe subscribers can access the World Book service for the standard fee of \(\$ 5\) per hour weekday evenings, all day weekends and holidays. Weekday daytime access is also available. To use the service, a subscriber needs a personal computer or terminal, a telephone and a modem.

CompuServe also offers the latest news from major newspapers and a national wire service,
corporate stock and commodities information, home banking, electronic mail and real-time communications, computer games, family information and computing power for programming activities.

CompuServe is available through a local telephone call in more than 260 US cities. CompuServe is an H\&R Block Company.

> K-BYTE \({ }^{\text {TM }}\) Introduces K-RAZY SHOOT-OUT \({ }^{\text {TM }}\) Between Space Commanders And Alien Droids

It's a battle of wits and fast action, this game in ROM form for Atari \({ }^{\circledR} 400^{\text {TM }}\) or Atari \({ }^{\otimes} 800^{\text {TM }}\) Personal Computer Systems. KBYTE's K-RAZY SHOOT-OUT is available in a solid-state car-

tridge (ROM pack), individually tested to assure reliability and customer satisfaction.

K-BYTE's K-RAZY SHOOTOUT is destined to be a favorite of Atari enthusiasts across the country.


For details on K-RAZY SHOOT-OUT \({ }^{\text {TM }}\), contact Chuck Miller at K-BYTE \({ }^{\text {™ }}\), Division of Kay Enterprises Co., 1705 Austin, Troy, Michigan 48099. Phone: (313)524-9878.

\section*{The Stock Market Goes Home}

Marketscan, a new personal online stock market service was formally announced today by Barbara Hyland, Manager of Info Globe.
"We're introducing Marketscan to meet the demands for online information by personal computer users," says Hyland. With Marketscan a user can get daily quotations for all stocks listed on the Toronto, Montreal, Alberta, Vancouver, New York and American Stock Exchanges. The high, low, close, and trading volume are displayed in familiar formats. Marketscan provides a variety of services. A user can analyze a specific stock on one or several exchanges or several stocks at one time, monitor an

Authorized Commodore service center Repair of the complete line of Commodore products In a hurry? Check our modular exchangé program
HARDWARE:CBM 8032 Computer, 80 Column \(\$ 1095\)
CBM 8050 Disk Drive ..... 1340
CBM 4032 Computer, 40 Column ..... 995
CBM 4040 Disk Drive ..... 995
CBM 4022 Printer ..... 649
CBM VIC 20 Computer ..... 263
CBM VS100 Cassette ..... 68
PET to IEEE Cable ..... 33
IEEE to IEEE Cable ..... 39
BASF Diskette, Box of 10 ..... 30
SOFTWARE:
OZZ ..... \(\$ 299\)
Wordcraft 80 ..... 299
Tax Preparation System ..... 380
IRMA ..... 380
Dow Jones Portfolio Management System ..... 115
Personal Tax ..... 55
Pascal ..... 229
Assembler Development Package ..... 77
Wordpro 4+ ..... 329

\section*{Order TOLL FREE \(1+800-527-3135\) 10 AM to 4 PM CDT Monday through Friday}

Texas residents call 1+214-661-1370
VISA, MASTER CHARGE, MONEY ORDERS, AND C.O.D. "Certified Check" accepted. Units in stock shipped within 24 hours, F.O.B. Dallas, Texas.

All equipment shipped with manufacturer's warranty.
Residents of Texas, Louisiana, Oklahoma City and Tulsa, Oklahoma must add applicable taxes.
Eclectic shortly will be announcing products that are designed to work with CBM systems.
1. ROMIO: two RS232 ports - three parallel ports-26K EPROM memory-managed alternate character set, software controlled-EDOS (extended DOS).
2. Terminal program (options with ROMIO)
4. Front-end processor
3. EPROM programmer
5. Additional firmware to be announced

Be sure to write the address below for more information; dealer inquiries welcome.

for S100, Elf II, Apple
TRS-80, Level II*
From \(\$ 99.95\) kit
Now - teach your computer to talk, increasing interaction between you and your machine.
That's right: the ELECTRIC MOUTH actually lets your computer talk! Installed and on-line in just minutes, it's ready for spoken-language use in office, busi-
ness. industrial and commercial applications. and in games. special projects. ness. industrial and commercial applications, and in games, special projects.
R\&D. education, security devices - there's no end to the ELECTRIC MOUTH's R\&D. education, security devices- there's no end to the ELECTRIC MOUTH's usefulness. Look at these features
hundreds of words and phrases. Expandable on-board up to thousands of words and phr
speech ROMs (see new speech ROM described below) speech ROMs (see new speech ROM described below). - computers. GLECTRIC MOUTH to talk with either Basic or machine language (very easy to use complete instructions with examples included). - Uses National Semiconductor's "Digitalker.
- Includes on-board audio amplifier and speaker, with provisions for external speakers. -
Principle of Operation: The ELECTRIC MOUTH stores the digital equivalents of words in ROMs. When words. phrases and phonemes are desired. they
simply are called for by your program and then synthesized into speech. The ELECTRIC MOUTH systern requires none of your valuable memory space ex oept for a few addresses if used in memory mapped mode. In most cases. outpu ports (user selectable) are used


\section*{TO ORDER}

Call Toll Free: 800-243-7428
To Order From Connecticut, or For Technical Assistance, call (203) 354-9375

\section*{NETRONICS R\&D LTD. \\ 333 Litchfieid Road, New Milford, CT 06776}

Please send the items checked below:
```

S100 "Electric Mouth" kit w/Vox I
Apple "Electric Mouth" kit w/VoxI
VOXII (Second Word Set)

Add $\$ 20.00$ for wired tested units instead of kits VOX II postage \& insur
Total Enclosed s
Personal Check
\square Cashier's Check/Money Order
\square Visa \square Master Charge (Bank No.
Acct. No. Exp. Date

Signature

Print
Name
Add
City
entire exchange, or compare a stock's activity within a specific range of dates. Marketscan requires no specialized training.

For more information contact: Barbara Hyland 416-598-5250.

CUE Fall Conference Proceedings Available

Over 1400 people attended the Second Annual Fall Conference of Computer-Using Educators (CUE) in San Jose, California on October 2 and 3, 1981.

The conference led off on Friday, October 2 with 31 handson workshops at schools throughout the San Francisco Bay area and 19 field trips to local computer related companies. Over 650 people participated in these activities. Friday evening the keynote speaker was John D'Angelo of Texas Instruments, who discussed the language LOGO and displayed on a projection TV screen his company's implementation of that language.

On Saturday attendees heard Steve Jobs, Chairman of the Board of Apple Computer, Inc. and one of the inventors of that machine, discuss his image of the future of computers in education. For the remainder of the day conference-goers chose from 85 curriculum sessions, 50 commercial presentations, and 45 commercial exhibits.

The Proceedings for this conference will contain contributions from most of the speakers, and will be a valuable reference for those unable to attend, or those who missed particular sessions. To receive a copy of the Proceedings of the 1981 Fall Conference, send a check for $\$ 10$ (no purchase orders, please) to:

Don McKell
Conference Proceedings
Independence High School

1776 Education Park Drive San Jose, CA 95133
Proceedings from past conferences are still available in limited quantities: Fall $1980-$ $\$ 10$; Spring $1981-\$ 10$. Send requests to the same address.

Computer-Using Educators is a non-profit California corporation founded in 1978 to promote the educational uses of computers in schools and colleges. It sponsors 4 major conferences per year, issues a bi-monthly newsletter, and maintains a library of non-commercial, teacher-developed educational software for 5 popular microcomputers. Dues are $\$ 6$ per year, payable to CUE, c/o Don McKell, Independence High School, 1776 Education Park Drive, San Jose, CA 95133.

Commodore Enters Into Memory Disc And Tape Drive Manufacturing

Mr. Irving Gould, Chairman of the Board of Commodore International Limited (NYSE:CBU) announced Commodore's entry into the microcomputer memory disc and tape drive manufacturing business with the introduction of four new multimegabyte storage devices.

Mr. Gould stated that the "first two storage devices will be $5^{1 / 4}$-inch Winchester 6.4 meg abyte and 9.6 megabyte magnetic rigid disc drives capable of storing, respectively, up to 6.4 million and 9.6 million bytes of information. These two memory storage devices, which will be built and packaged to Commodore specifications, will be introduced at COMDEX '81. The exact price of these two microcomputer memory storage devices will be announced at that time," noted Mr Gould, "but they will be priced considerably lower than any com-

NO RISK • NO DEPOSIT ON PHONE, C.O.D. OR CREDIT CARD ORDERS.

	BOOKS and SOFTWARE	
For ATARI - PET/CBM - OSI - 6502		
8K Microsoft BASIC Rete. rence Manual		
horiati	${ }^{16 \mathrm{~K} / 32 \mathrm{~K}}$ Most powertul Editor/As	
	cor entios	
IC developed for	$16 / 32 \mathrm{~K}$ on cassetecin be started dire	
and later computers including		
OSI. PET and TRS80.		
Order-No. $141 \quad 89.95$	nitor. Translaes in threepases inIn eror in encoun-	
Expansion Handbook for		
6502 and 6802	Tered, automatic return to theefitor. Cosatie with DEMO.	
S. 44 Card Man		
the 45×65	Order.No. 3276 \$39.00	
Hs inct schematics	MONJANA/1 Makes Machine	
MUST for every KIM.	Language Programming Easy! In evety Cummodore CBM mere is on sore-rio socket	
and AlM owner		
	there is al spare ROM socket waiting for it's MONJANAII The new monJanali ma	
Reprint of Intel's most im	A/1 M3	
portant apolication not	Rom oters more user	
cluding 2708, 8085,		
6251 chips. Very neces	guidance and detrugaing aitis than any other monior	
the harcware buffer	available today Comprehen: sive manual included.	
Order.No.		
Complex Sound		
manual tor the Te		
ments SN 76477 Complex		
Board availioble (58.95).	JANA/1. Very powerful	
Order.No. $154 \quad 56.95$	Programming in Machine	
Small Business		
Complete istings	Language with the Commodore PET	
ness	This book includes EDITOR/	
Writiog, Mailing List and mu		
more Introduction	Jana EDITOR, ASSEM.	
Order.No. 156	SEMBLER, HEXDUMP and	
The First		
Scientic		
puters. Disyrams, Hardwa	Order-No. 165 BLANK CASSETTES B19.95	
and sot iware intormation no	Highest Quality C 10 cassettes Blank Cassettes (Quantity 10)	
previously availate		
compact source, 192 Dages.	Order.No. 80956 ${ }_{\text {ATARI OWNERS }}{ }^{\text {s4.93 }}$	
Order:No. $157 \quad \$ 7.95$		
The Second Book of Ohio	EPROMBURNE: ATH ATARI	
Scientif		
Ot OSt microcom		
ns. Introduction to 0	Order- No. $\mathbf{7 0 4 1} \quad \mathbf{8 9 9 , 0 0}$Invoice Writing for very small	
and OS65U Netw		
Hardware and Sotwart himt	business with AT ARI 400/800 16K RAM	
and tips. SVstems spui cations Business apolicanio		
Order-No. $158 \quad 57.95$	Order-No. 7022, cass. $\$ 29,85$ Order:No. 7200, disc. $\$ 39,99$ ATARI-BASIC -- Learning by	
The Fourth Book of OHIO		
Very Important Progy	Using	
Many interesting programs		
OSI computers. Sorring (Bi		
nary Tree). Differential Equi	priate for beginners as well as experienced computer	
on. Statistic, Astrolo		
Gas Consumplion. Gar	uets.	
Order.No. $160 \quad 59.95$		
VIP Packege - Above buok	Routires, Graphics and Sound. Pceks and Pokes and special	
plus a cassetle with the pro		
Order-No. 160 A $\quad \mathbf{8 1 9 . 9 5}$	$\begin{array}{lr}\text { Order.No. } 164 & \text { S9.95 } \\ \text { ATMONA. } & \text { Machine }\end{array}$	
Invoice Writing Program for OSICIPMF. C4P: Disk and	Language Monitor for the ATAR1 $400 / 800$	
	This powerful monitor pro vides you with the firmware	
Order-No. $8234 \quad \mathbf{8 2 9 . 8 0}$		
Mailing List for CiPmF	support that you nead to get the most out of your powerfu	
$5{ }^{1 / 4}{ }^{\text {disk) }}$	tridges required. Disussemble.	
Order-No. $8240 \quad 529.80$	(Change Memory Locations, Blocktranster. Fill memory	
	block. Save and Load Ma	
	chine Language Programs, Start Mach Lang Progr. (Prin	
Programs for the Challenger	(ter Options). ${ }_{\text {Order }}$ (7022 \& 19	
C1/c2 8 E	ATMONA 2 Superstepper	
(erdorocessor 59.95	A very powerful Trace	
der-No. 20	plore the ATARI ROM/AM	
Mailing List: 59.95	area, Stop at previousiv selec	
	Oteno 7049 lincluder AT.	
	Order:No. 7049 lincludes AT.	
	EDITOR/ASSEMSLER	
	ATARI $800,32 \mathrm{~K}$ RAM	
Care and Feeding of the Commodore PET	Editor/Assembler. (8K Source	
Eight chaplers exploring PET	code in about ${ }^{\text {a }}$ (econos,	
nardware, Includes repair and indetacing intormation. Pro.	Ordeer-No. 7098 S49.95	
intermming tricks and sche-	MACRO.Assomber for	
	ATARI-800, 48K RAM (cass)	
ELCOMP Publishing, Inc.		
53 Redrock Lane, Pomona, CA 91766 Phone: (714) 623.8314		
ayment. check, MonerOSTPAID or PREPAID in USA. 8500 handiling fee for C.O.orders ousside USA: ADD 15% shinping. CA odd 6% sales tax ETICEM is a repisterced Hadematk of Commodore Business Machines,		

parable products now available."
The first storage device to be manufactured by Commodore will be a $5^{1 / 4}$-inch Winchester 5 megabyte magnetic rigid disc drive capable of storing up to 5 million bytes of information. This device is scheduled for introduction in April. It too, will be priced considerably below any comparable product now available.

The fourth and final microcomputer memory storage device is based upon Commodore technology and is a state-of-the-art development. It is a $1 / 2$-inch wide magnetic tape multi-megabyte drive capable of storing up to 43 million bytes of information.

The 5 megabyte and 43 megabyte Commodore manufactured microcomputer memory storage devices are in a 2.2 -inch low profile format, meaning they are only 2.2 inches tall, or approximately two-thirds the size of a box of cigarettes.

More Powerful Apple III Features Mass Storage, New Software

Cupertino, CA - A more powerful version of the Apple III personal computer, with greatly
expanded mass-storage capability and professional application programs, will be delivered beginning in mid-December by Apple Computer Inc.

The new Apple III features an improved operating system, more reliable hardware, seven new or enhanced software packages and lower prices than the earlier product. In addition, Apple III supports up to 256 K bytes of internal memory.

The expanded storage capability is provided by the new Apple III/ProFile Personal MassStorage System. Designed to be integrated into Apple III systems, ProFile is a five-million-byte, Winchester-type, hard-disk system which gives Apple users nearly 35 times the mass-storage capacity of a single floppy disk.

The usefulness of the Apple III is further expanded by a total of seven new or enhanced application programs. One such program, Access III, allows Apple III computers to communicate with large mainframe computers. Apple IIIs for the first time can be used as remote data processing work stations, accessing information from the larger data base and returning completed work to the central computer.

Other new or enhanced programs introduced today include Apple Writer III for

Lyco Computer Marketing \& Consultants We Specialize in Quality, Knowledge, Service, and Microcomputers

717-435-5197

SPECIALS
800 16K....................... $\$ 744.00$
400 16K...................... $\$ 329.00$
$* * * * * *$

ATARI HARDWARE

410 CASSETTE RECORDER $\$ 57.00$
810 DISK DRIVE $\$ 444.00$
850 INTERFACE \$159.00
825 PRINTER $\$ 525.00$
830 PHONE MODEM $\$ 135.00$

PROGRAMMING SOFTWARE

CXL4001 EDUCATIONAL SYSTEM........... \$ 19.00

CX6001 U.S. HISTORY . \$ 22.00
CX6002 U.S. GOVERNMENT. \$ 22.00
CX6003 SUPERVISORY SKILLS \$ 22.00
CX6004 WORLD HISTORY....................... . \$ 22.00
CX6005 BASIC SOCIOLOGY $\$ 22.00$
CX6006 COUNSELING PROCED \$ 22.00
CX6007 PRINCIPLES OF ACCT. \$ 22.00
CX6008 PHYSICS . \$ 22.00
CX6009 GREAT CLASSICS. \$ 22.00
CX6010 BUS. COMMUNCIATION \$ 22.00
CX6011 BASIC PSYCHOLOGY................. \$ 22.00
CX6012 EFFECTIVE WRITING \$ 22.00
CX6014 PRINCIPLES OF ECON................ \$ 22.00
CX6015 SPELLING . \$ 22.00
CX6016 BASIC ELECTRICITY \$ 22.00
CX6017 BASIC ALGEBRA......................... S 22.00
CX4108 HANGMAN . \$ 12.00
CX4112 STATES \& CAPITALS \$ 12.00
CX4114 EUROPE COUNT. \& CAP. \$ 12.00
CX4121 ENERGY CZAR. \$ 12.00
CX4123 SCRAM . \$ 12.00
CX4102 KINGDOM................................... . . \$ 12.00
CX4102 KINGDOM.................................... 12.00

ENTERTAINMENT

CXL4004 BASKETBALL . \$ 29.00
CXL4005 VIDEO EASEL \$ 29.00
CXL4006 SUPER BREAKOUT. \$ 29.00
CXL4009 CHESS $\$ 29.00$
CXL4010 3-D TIC-TAC-TOE \$ 29.00
CXL4011 STAR RAIDERS \$ 30.00
CXL4012 MISSILE COMMAND \$ 30.00
CXL4013 ASTEROIDS . \$ 30.00
CX4015 BLACKJACK . \$ 12.00
CX4111 SPACE INVADERS \$ 16.00

ACCESSORIES

CX30 PADDLES.. . \$ 17.00
CX40 JOYSTICKS . \$ 17.00
CX853 16K RAM . \$ 85.00
******32K RAM by MICROTEK. $\$ 169.00$

WE CARRY MANY OTHER LINES OF MICROCOMPUTERS YOU CAN CALL FOR PRICES ON:

CPU's

COMMODORE
ALTOS
TEXAS INSTRUMENT ZENITH INTERTEC DATA AND OTHERS

DIABLO

PRINTERS
TEC
NEC
EPSON
ANADEX
AND OTHERS

At Lyco Computers we offer our expert services to help customers make their first computer purchase, schools establish a computer program, or evaluate multiterminal systems.
to help evaluate your needs, or if you wish to make a purchase.

CALL US AT 717-435-5197

LYCO COMPUTERS

P.O. BOX 10

COGAN STATION, PA 17728

ORDERS SHIPPED SAME DAY
NO COD CHARGES
WE PAY FREIGHT ON PRE-PAID ORDERS
word processing; VisiCalc ${ }^{\text {TM }}$ III and Business Graphics III for preparing and analyzing detailed business information; Business BASIC and Pascal III for developing advanced application programs; and Script III for formatting Pascal text into layoutperfect printouts. In addition, an updated version of Mail List Manager will soon be available for maintaining mailing lists and printing labels using an Apple III/Profile system.

Numeric Keypad With Calculator And VisiCale ${ }^{\text {TM }}$ Commands For Apple II ${ }^{\text {TM }}$

The Keyboard Company's Numeric Keypad lets hard-working professionals enter numbers, carry out arithmetic operations and input VisiCalc ${ }^{\text {M }}$ commands quickly and easily.

The keypad, clearly coordinated with the Apple computer in both color and design, increases operator efficiency by concentrating essential keys in a familiar format, and allowing the operator to place the keypad in a comfortable position.

In addition to the standard keypad with double zero and decimal point, The Keyboard Company's product has a full set of operator keys, complete with parenthesis, print, return and four basic arithmetic functions.

The VisiCalc section of the keypad uses three keys to control cursor movement. Two keys control the directional movement, and depressing the third

key will change the cursor horizontal movement to vertical.
Holding down either directional movement key initiates the autorepeat mode, which moves the cursor across the screen until the key is released. A fourth key deletes entries.

The keypad, complete with interface board, cord and directions, is available in Apple dealerships nationwide for $\$ 149.95$.

PET TINY BASIC COMPILER

Abacus Software's TINY BASIC COMPILER (TBC) supports a floating point subset of the PET BASIC programming language. The compiler reads your program and writes out a file containing 6502 object code that you then load and execute.

The TBC supports all floating point arithmetic and functions that are available in the full PET BASIC language. You can write, test and debug your program using the built-in interpreter before using the TBC to compile it.

The TBC package will run on all 40 -column model PET/ CBMs with a minimum of 8 K of memory. If you have at least 16 K of memory, then there is also a version (included in package) which will give you a full assembly listing of the compiled code.

Price is $\$ 25.00$ on cassette or diskette in US and Canada, and $\$ 30.00$ foreign. For further information contact Abacus Software, P.O. Box 7211, Grand Rapids, MI 49510 (616)241-5510.

New Product releases are selected from submissions for reasons of timeliness, available space, and general interest to our readers. We regret that we are unable to select all new product submissions for publication. Readers should be aware that we present here some edited version of material submitted by vendors and are unable to vouch for its accuracy at time of publication.

EXPANDOR MODULE
add 24 k without additional power supply plug-in open air board
$\$ 295.00$
*VIC - 20
\$299.00
"COMBINATION SPECIAL" Expandor \& *VIC-20
$\$ 550.00$
all prices add tax. shipping \& handling
send check or money order to:
QUANTUM DATA INC. 3001 Red Hill Ave. Bld. 4, Suite 105
Costa Mesa, CA 92626
(714) 754-1945

- a trademark of COMMODORE

EPSON
 DOT MATRIX PRINTERS SUPER DISCOUNTS ON
 MX-80F/T
 MX-80
 MX-100
 NOW IN STOCK

We also stock cables and interface cards for TRS 80, Apple, Atari, Pet, and serial.

GRAPHIC ROMS

 AVAILABLETO ORDER TOLL FREE
1-800-344-7493
In CA and for service (209) 667-2888/634-8888

MACROTRONICS, inc.
1125 N. Golden State Blvd. Turlock, California 95380

commodore SPECTACULAR

8032-32K 80 COL CRT REG \$1495 \$1095

64K ADD-ON MEMORY

 REG \$500 \$3959000 134K SUPER PET REG \$1995 \$1795
4032 32K 40 COL CRT REG \$1295 \$995 401616 K 40 COL CRT REG $\$ 995$ \$795
8050-DUAL DISK 950K REG \$1795 \$1395
4040-DUAL DISK 343K REG \$1295 $\$ 995$
2031-SINGLE DISK 170K REG $\$ 695$ \$555
C2N-CASSETTE DRIVE REG $\$ 75$ \$65
4022-80 COL PRINTER REG \$795 \$649
8023P-136 COL PRINTER REG $\$ 995$ \$849
8300P-40CPS LTR QLTY REG $\$ 2250$ \$1995 8024-MANNESMAN TALLEY REG $\$ 1995$ $\$ 1595$
8024L-LETTER TALLEY REG \$2495 \$1995
25CPS-STARWRITER
REG \$1895
\$1445
CBM-IEEE MODEM REG \$279 \$229
VOICE SYNTHESIZER

PET TO IEEE CABLE REG $\$ 39.95$ \$34
IEEE TO IEEE CABLE REG S49.95 \$39

VEG $\$ 299 \quad$ VIC 20

VIC 1540 DISK 170K REG $\$ 599$

VIC 1515 30CPS PRINTER REG $\$ 395$ \$349
VIC 1011 RS 232 INTER REG $\$ 49.95$

VIC 1112 IEEE INTER REG 599.95 \$79
YOU

		YOU
	$\underline{\text { LIST }}$	
	$\frac{\text { PAY }}{}$	
OZZ- The Information Wizard	$\$ 395$	$\$ 299$
Wordcraft 80	$\$ 395$	$\$ 299$
IRMA-Info		
Retrieval \& Mgmt Aid	$\$ 495$	$\$ 399$
Dow Jones Portfolio Mgmt.	$\$ 149$	$\$ 119$
Pascal Development Pkg.	$\$ 295$	$\$ 229$
EBS-Receivables, Inventory	$\$ 750$	$\$ 579$
BPI-General Ledger	$\$ 395$	$\$ 299$
Word Pro 3-40 Column	$\$ 250$	$\$ 179$
Word Pro 4-80 Column	$\$ 375$	$\$ 269$
Word Pro 4 Plus	$\$ 450$	$\$ 329$

PHILADELPHIA COMPUTER DISCOUNT®

C.O.D.'s Accept

Shipments Same Day

WEST COAST 1-800-235-3581
prices are subject to change WIO NOTICE.

NeC Color Monitor JC 1201 \$319

INTERTEC SUPERBRAIN 64K RAM $\$ 2799$
QD SUPERBRAIN $\$ 2999$
NEC 5510 SPINWRITER (7710) \$2345
NEC 5520 SPINWRITER (7720) \$2695
NEC 5530 SPINWRITER (7730) \$2345
NEC 12" MONITOR \$ 189
NEC COLOR 12" MONITOR \$ 339
NEC PC 8023 Printer 100 CPS Tractor \& Friction \$ 639
OKIDATA MICROLINE-80 \$ 379
OKIDATA MICROLINE-82A \$ 529
OKIDATA MICROLINE-83A \$ 749
DIABLO 630 \$1995
APPLE II PLUS 48K \$1139
APPLE DISK w/3.3 DOS Controller \$ 525
APPLE DISK w/o Controller \$ 449
EPSON MX-80 \$ 469
Interfaces:
IEEE \$55, TRS-80 CABLE \$35,
APPLE INTERFACE \& CABLE \$90,
RS-232 \$70
HAZELTINE 1420 \$ 799
NORTHSTAR HORIZON II 32K QD \$2925
ANADEX DP-9500/9501 \$1199
TELEVIDEO 912C \$ 699
TELEVIDEO 920C \$ 729
TELEVIDEO 950 \$ 929 PERIPHERALS AND ACCESSORIES.

NEC Green 12 Inch Monitor

 JB $1201 \$ 179$
NEC Friction Tractor Printer 100 CPS (Graphics, Bi-directional) \$635

CBM 8032 COMPUTER
\$1149
CBM 8050 DISK DRIVE \$1349
CBM 4032 COMPUTER CBM 4040 DISK DRIVE CBM 4022 \$1029 CBM VIC-20
LEEDEX/AMDEK 100
LEEDEX/AMDEK 100G LEEDEX/AMDEK COLOR-1

13" Color Monitor
MICROTEK 16K RAM BOARD for Atari
\$ 329 MICROTEK 32K79

ATARI 800 16K
ATARI 400 16K
ATARI 810 DISK DRIVE
ATARI 82040 Column Printer
ATARI 82240 Column Thermal Printer
ATARI 82580 Column Printer

EAST COAST
1-800-556-7586
OMEGA SALES CO 12 Meeting St.
Cumberland, RI 02864 1-401-722-1027

WEST COAST 1-800-235-3581

OMEGA SALES CO. 3533 Old Conejo Rd. \#102 Newbury Park, CA 91320 1-805-499-3678

DIABLO 630
$\$ 1995$

Advertisers Index

AB Computers 40,41,161
AG Associates 52
Aardvark Technical Services, Ltd. 137
Abacus Software 57
Actek 29
Adventure International 15
Alpha Logic Business Systems, Inc. 91
Alternate Reality Software 119
Andromeda Incorporated 85
Apparat, Inc 87
Artworx Software Co 23
Atari, Inc 6,7
Automated Simulations, Inc. 25
Basic Software Service 151
Batteries Included 153
Beta Computer Devices 57
The Bit Bucket 126
R. J. Brachman Assoc., Inc. 57
C-Mart 193
CE Software 107
CFI 151
CGRS Microtech 67
CMS Software Systems 2,3
Canadian Micro Distributors, Ltd. 61,63,65
Cascade Computerware 149
Color Computer Concepts 111
Commodore Computer Systems BC
Computer House 115
Computer Mail Order 201
Computer Mat 175
The Computerist's Directory 27
Connecticut microComputer, Inc 157
Consumer Computers 197
Creative Software 27
Crystal Computer 190,191
Cursor, The Code Works 24
Cyberia 51
Data Resource Corp. 139
Don't Ask 127
Dr. Daley's Software 33,142
Dynacomp 74,75
ETC Corp 187
Eastern House Software 47
Eclectic Systems Corporation 101,199
Elcomp Publishing, Inc. 202
Electronic Specialists, Inc 47
Esplanade Enterprises 111
Execom Corporation 159
FSS 157
Falk-Baker Associates 73
The Great Western Software Company 159
HW Electronics 125
Hayes Microcomputer Products, Inc. 11,13,126
High Country Microsystems 119
Horizon Simulations 188
Human Engineered Software 185
Huntington Computing 31
Impact Computer Sytems 53
Inhome Software 124
Intec Peripherals Corp 107
Interlink, Inc 29
Jini Micro Systems 16
Krell Software Corporation 77
LJK Enterprises 49
Leading Edge Products, Inc. IBC
LemData Products 161
Lo-Ball Computers 192
Lyco Computers 203
Macrotronics, Inc. 204
MED Systems Software 121
Meta Software Engineering 101
Micro Business World, Inc. 195
Micro-Ed, Inc. 82
Micro Spec Ltd. 179
Micro Technical Products 69
Micro Technology Unlimited 55
Micrograms, Inc. 81
Microsoft Consumer Products 4
MicroComputer Industries 19
Microperipheral Corp. 131
Microtek, Inc. 21
Mosaic Electronics 102
Mountain Computer, Inc. IFC
Muse Software 88
New England Electronics Company 34,35
Netronics 200
Olympic Sales Co. 58
Omega Sales Co. 206,207
On-Line Systems 12,129
Oppenheimer Software 173
Optimal Technology, Inc 67
Optimized Data Systems 144
Pacific Exchanges $47,52,58,72$
Percom Data Company, Inc. 71
PETTED Microsystems 153
Philadelphia Computer Discount 205
Poquette's 33
Pretzelland Software 141
Professional Software 1,9
Program Design, Inc. 126,131
The Program Store 194
The Programmer's Institute 33
Protronics 67
Quality Software 121
Quantum Data Inc. 204
Questar International Inc. 147
Santa Cruz Educational Software 105
Sebree's Computing 126
Skyles Electric Works 145,198
The Software Connection 188
Software by Sasso 173
Software Street 131
Spectrum Computers 111
Starbound Software 117
Street Electronics Corp 99
Syncro, Inc 115
Synergistic Software 107
T'Aide Software Company 12
T.H.E.S.I.S. 109
TIS Inc. 17
TNW Corporation 29
Unicomm, Inc 196
United Microware Industries, Inc. 177
Virginia Micro Systems 149
Voicetek 20

The 6502 Resource Magazine
New subscription rates for COMPUTE! readers
outside of the US.
$\square \$ 25$ Anywhere/Surface Mail (2-4 months delivery)
$\square \$ 38$ Europe/Air Delivery (7-10 days)
$\square \$ 48$ Middle East, North Africa, Central America/Air Mail
$\square \$ 88$ South America, South Africa, Far East, Australia/Air Mail
Name
Address

	ssajppe
əuoud	Kuedwos

$\xrightarrow[\text { ว1ม1 }]{\square}$

S甘3IกdW03 7พNOSH3d צvากdOd ISOW 81

 sianduon ieuosıad jo sıasn 01 palevipap sirjiponad 6! pue
 002 К।

 IวроW 08 -S甘1 S. ҮכR
 uejndod isow a41 to 81 aleniena pue aıedwor noर diay ilim

SELECTED EDP REPORTS
Characteristics, prices, user evaluations, comparisons YES Please send me the EDP Reports I have checked.
Name
Title
Company
Phone
Address
City
State Check enclosed \square Bill me, add $\$ 3.25$ handling.
\square Cila
C. DATAPRO RESEARCH CORPORATION
Ci805 Underwood Bivd.. Delan. NJ O8075

[^4]| |

 |
| :---: | :---: |
| | |
| | |
| | |
| | םy \forall O N7d |
| | $\\|\\|\\|$ zer ranamos |
| | 8006l $\forall d$ '\||lomoodg әл!̣ด HOqq \forall GLG əu!zo60w iヨlndwos |

REMEMBER.

Elephant ${ }^{\text {TM }}$ floppies.
They're guaranteed to meet or beat every industry standard for quality. They come standard with reinforced hub rings at no extra cost. They come in every popular $51 / 4$ "model, in both hard and
soft sector. And they sell at some of the lowest prices in the business. Elephant Flexible Disks.
They're heavy duty. They work for peanuts. They never forget. Get yourself a trunkful.

Distributed Exclusively by Leading Edge Products, Inc., 225 Turnpike Street, Canton, Massachusetts 02021 Call: toll-free 1-800-343-6833; or in Massachusetts call collect (617) 828-8150. Telex 951-624.

THE COMMODORECOMPUTERS "FROM '300 T0' 1995 , THEY COST LESS AND GIVE YOU MORE FOR YOUR MONEY. READ OUR CHART."

The idea of a computer in every office and home used to be science fiction. Now it's becoming a reality. The question is, with so many to choose from, which computer should you buy? When you consider the facts, the clear choice is Commodore.

COMPARE OUR \$995 COMPUTER

FEATURES	$\underset{4016}{\text { COMMODORE }}$	$\underset{\text { II }}{\text { APPLE }}$	IBM
Base Price	\$995	\$1,330	\$1,565
12" Green Screen	Standard	299	345
IEEE Interface	Standard	300	NO
TOTAL	\$995	\$1,929	\$1,910
Upper \& Lower Case Letters	Standard	NO	Standard
Separate Numeric Key Pad	Standard	NO	Standard
Intelligent Peripherals	Standard	NO	NO
Real Time Clock	Standard	NO	NO
Maximum 51/2" Disk Capacity per Drive	500K	143K	160K
Prices are as of the most recent published price lists, September, 1981 and approximate the capabilities of the (16 K) $\mathrm{PET}^{*} 4016$. Disk Drives and Printers are not included in prices. Models shown vary in their degree of expandability.			

Many experts rate Commodore Computers as the best desk-top computers in their class. They provide more storage power - up to $1,000,000$ characters on $5^{1 / 4^{\prime \prime}}$ dual disks - than any systems in their price range. Most come with a built-in green display screen. With comparable systems, the screen is an added expense. Our systems are more affordable. One reason: we make our own microprocessors. Many competitors use ours. And the compatibility of peripherals and basic programs lets you easily expand your system as your requirements grow. Which helps explain why Commodore is already the No. 1 desk-top computer in Europe with more than a quarter of a million computers sold worldwide.

WE WROTE THE BOOK ON SOFTWARE.
WE WROTE THE BOOK ON SOFTWARE. prehensive directory of over 500 programs for business, education, recreation and personal use Pick up a copy at your local Commodore dealer.

[^0]: The word "Mountain" in Mountain Computer and the logo are trademarks of Mountain Computer Inc.
 Apple is a Trademark of Apple Computer, Inc.

[^1]: - $10+$ CPS
 - 15 Minutieinstallation
 - hal sPACE JUSTIIICATION
 - Cable removes in Seconds
 - TYPEWRTTER FUNCT. UNIMPAIRED
 - AVAILABLE NOW:ATARIE APPE
 - OTHER DIRECT COMNECTIONS AND RS232AVAILABLE SOON
 - PRINTAND PRINT $\#$ N OPERATE
 - NO INTERFACE NEEDED: USESFRONT CONNECTOR-ATARI USES CONTROLLER PLUGG•APPLE
 - PRICE: $\$ 215$ - APPLE ADD $\$ 10$
 \dagger BASED ON WARDS PR3O PRICE
 - TYPEWRITER AND SERVICE WIDELY AVAILABLE
 Actek

 ## 12225 SW 2nd/SUITE 200-E P.O.B. CCC
 BEAVERTON, OR 97075

[^2]: - Trademarks of: Apple Computer - Atari Computer - Epson America - Hayes Microcomputers - Personal Software - Videx - Bit 3 Inc. - M\&REnt. - Advanced Logic Systems - Vista Computers

[^3]: 1 REM PROGRAM \#3
 10 PRINT "LINE 10"
 20 REM
 30 REM
 keep inserting statements until you have about 40 REM's
 430 REM
 440 FOR J= 1 TO 2500
 450 GOTO 470
 460 GOTO 480

[^4]: \square All About Personal Computers
 \square European User Ratings of Computer Systems
 \square Word Processing Systems User Ratings ...
 \square All About 278 Small Business Computers
 \square All About 246 Minicomputers
 \square All About 149 Microcomputers
 \square All About 114 Microprocessors
 \square User Ratings of Proprietary Software Packages \square A Buyer's Guide to Data Base Management Systems \square All About 136 User-Programmable Terminals \square All About 210 Alphanumeric Display Terminals \square Management Guidelines for Office Automation. All About 90 Word Processing Software Packages All About 125 Teleprinter Terminals

 All About Winchester Disk Drives All About 150 Word Processors

