1422 $9.95

WRITING
BASIC ADVENTURE

PROGRAMS
FOR THE

TRS-80

Create exciting computer games while
you learn valuable new programming techniques!




WRITING
BASIC ADVENTURE

PROGRAMS
FOR THE

TRS-80

BY FRANK DACOSTA

TAB BOOKS Iinc.

BLUE RIDGE SUMMIT, PA. 17214




FIRST EDITION

FIRST PRINTING

Copyright © 1982 by TAB BOOKS Inc.
Printed in the United States of America

Reproduction or publication of the content in any manner, without express
permission of the publisher, is prohibited. No liability is assumed with respect to
the use of the information herein.

Library of Congress Cataloging in Publication Data

DaCosta, Frank.
Writing BASIC adventure programs for the
TRS-80.

Includes index.

1. Games—Data processing. 2. Fantasy games—
Data processing. 3. TRS-80 (Computer)—Programming.
4. Basic (Computer program language) |. Title.

1. Title: Writing B.A.S.1.C. adventure programs
for the TRS-80.
GV1469.2.D032 1982 794  82-5945

ISBN 0-8306-2422-8 AACR2

ISBN 0-8306-1422-2 (pbk.)

Cover illustration courtesy by Robb Durr.



Contents

Introduction

Adventure Beneath the Keyboard
What an adventure program is and whatyou need to create
one.

Mapping a Basement Scenario
All of the elements and variables an adventure program
must support, from treasures to travel tables.

Structuring the Program
Special techniques to organize the BASIC code, speed up
data access, and reduce memory usage.

Entering the Basement
How the program is initialized, how scenes are described,
and how commands are input and executed.

Traveling in the Scenario
Motion commands, obstacles, and the use of magic words
Jor travel in the basement.

Affecting the Scenario
How doors are opened and locked, and how items can be
carried by the adventurer.

39

61

81



7

10

11

12

13

Battling the Enemy
Creatures that roam the labyrinth, the weapons that slay
them, and the commands with which to fight.

Auxiliary Commands
Saving the present game status on tape for later playing,
calling up the current score, and how to “give up” grace-

Sully.

Basements and Beasties: The Listing
The entive BASIC code for an adventure program that is
structured for rapid response to input commands.

Improving the Program

Special features, variations, and the use of machine-
language subroutines for increased speed and less mem-
ory.

Graphic Adventures: The Concepts

How they compare to text-oviented adventures, the game
display, as well as command formats, goals, and obsta-
cles, and internally mapping the graphic maze.

Graphic Adventures: The Segments

Line-by-line explanation of the program, the Executive,
and all related subroutines and handlers.

Mazies and Crazies: The Listing
The complete BASIC listing, ready to type in and run.

Summary

Index

109

120

132

144

168

184

206

220

221



Introduction

If you are an adventurer who can find your way out of the most
sophisticated mazes, and if you have overcome fantastic threats to
win priceless treasures, you are a serious computer adventurer.
You have probably thought of writing your own adventure prograrn.

You can begin in BASIC. This book will help you create an
expert adventure—with a TRS-80 Model I or III microcomputer,
just 16K memory, and a tape system. You need some instructionand
some examples, which this book provides. It uses two example
programs, Basements and Beasties and Mazies and Crazies.
Their organization—from execution loops, to subroutines, to han-
dlers, to commands—is explained in detail. You will learn how to
access machine-language subroutines from BASIC to jncrease the
speed of your BASIC adventures. You will learn a variety of ways to
access arrays and to store information. You will also learn—
painlessly—the logical discipline of structured programming.

Everything you learn from Writing BASIC Adventure Pro-
grams will increase your skill as an adventure writer—and inspire
your imagination.
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Chapter 1

Adventure Beneath the Keyhoard

Board game manufacturers made an unusual discovery some years
ago. They discovered that there was a market for complex role-
playing games. Not content merely to manipulate a token around a
board, players wanted games they could “step into” to exercise
their imaginative and strategic skills. A new breed of board games
resulted, and a player can now do anything from recreating historic
battles to fighting dragons and underworld armies.

Then the age of home computing was upon us, and the imagina-
tive gaming enthusiasts predicted that an alliance between the two
fields would not be far off. Imaginative or simulative gaming is, after
all, complex, and there are times in which the sheer logistics of
playing the game hinder the effectiveness of the simulation. But, ifa
microcomputer could be used to keep score, manipulate parts,
describe situations . . . why, the player could play instead of work. It
seemed an ideal union.

This sort of union has taken place, but the direction it has taken
has been shaped by one other factor: the existence of imaginative
gaming programs for larger computers. It was quite a few years ago
that Crowther and Woods first cranked out their Adventure pro-
gram, an amusing simulation placing the player in a danger-filled
cavern, fighting troll and snake, dragon and dwarf, as he searches for
treasure. This prototype adventure was written for the PDP-10 and
was a popular pastime on university campuses long before its
little-cousin microcomputer version became available.



Now you can leat through popular computing magazines and
find many adventure and fantasy simulation programs for the home
computer—some like the original Adventure, others with new
twists. Some are in BASIC, since most home computers at present
have ROM-resident BASIC; others are quick, efficient machine-
language works.

It occurred to me, however, that no one has taken the time to
explain how these various adventure programs work—the pro-
gramming aspect, that is—and how you might approach the task of
constructing one yourself. It is this consideration that this book
studies. To simplify the teaching process this book deals with
writing an adventure program in BASIC, as opposed to assembly
language. This should hold your interest, since all sorts of inventive
maneuvers become necessary to make bulky BASIC perform effi-
ciently enough for such a complex type of program.

In this book I use the generic term “adventure” program to
refer to any program having the same general play structure and
objectives as Crowther and Woods' original offering. My explana-
tions and examples are not taken from the actual code of any
commercially available programs. Rather, as you will see, a whole
new game program, Basements and Beasties, has been written
specifically for this book. My aim s to teach programming skills, not
to prevent other hardworking programmers from selling their fine
creations.

As an additional example, a second adventure program, called
Mazies and Crazies, can be found in Chapters 11 through 13. This
program is a somewhat different brand of game, making full use of
the TRS-80 graphics capabilities to produce a real-time adventure
experience.

WHAT IS AN ADVENTURE PROGRAM?

Inits simplest form an adventure programis like a travel folder
or a very descriptive map. The player is dropped into a scenario,
such as a gloomy dungeon, a steamy rain-forest, or a haunted
mansion, and is allowed to move about. The computer describes, in
a short paragraph, what the space looks like. (Some recent pro-
grams actually draw a map, but let’s keep it simple.) The size of the
scenario in terms of number of rooms or locations is limited primar-
ily by the available memory of the home computer.

T addition to the descriptive function of the adventure pro-
gram, the player has a means of communicating with the program to
affect his simulated environment. This is accomplished by entering
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YOU ARE STANDING IN AN OPEN FIELD
THERE IS A JEWEL HERE!

A RAGING BULL PAWS THE GROUND. READY
TO CHARGE!

* TAKE JEWEL
OKAY

* NORTH
HERE IS A SMALL BARN. OLD AND MUSTY

* ENTER
THE DOOR IS LOCKED!

Fig. 1-1. Sample run of a hypothetical adventure program.

simple one- or two-word command phrases that are recognized by
the program’s limited vocabulary (Fig. 1-1). With a handful of
phrases the player can move, open and close doors, take objects, or
interact with the scenario in other ways.

The goal of the game is for the player to find and keep various
articles of worth, “treasures,” hidden about the artificial world. He
is hindered in his attempt by monstrous creatures, such as trolls,
dragons, and spiders—or perhaps more conventional enemies like
marauding Huns. The player can die in the fictitious world; usually,
he canalsobe resurrected to continue playing, albeit with a substan-
tial point-loss. The game is not really over until all enemies are
vanquished and all treasures are won.

Figure 1-2 gives a sample of the sort of player/computer
interchange you can expect in a classic adventure program. Note
that the program does not understand all possible inputs, but the
cleverer the command interpreter, the better the program.

WHAT YOU NEED?

Adventure programs are one of the last bastions of commercial
programming. Home computer enthusiasts have already written
their own space war games; with a little instruction adventure
programs can also become simple to handle. Relax. You, too, can
design computerized labyrinthes and adventures complete with
scaly, green things!

First, you'll need a home computer. This book makes the
assumption that you own a Radio Shack TRS-80 Model I or IT1 with
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Fig. 1-2. Adventure program /player interaction.

16K bytes of memory. Both of these units operate under Microsoft
BASIC, and all programming in this book uses this particular
BASIC. However almost any principle in this book can be applied to
other BASIC home computers, and the programs themselves
should run on other machines with only minor changes.

Also, for storage and recall of the program, a cassette tape
(rather than disk) system is assumed. My target reader for this
book, obviously, is the TRS-80 owner with a minimal system, the
owner that cannot afford all of the extras. How much can be done
with only 16K and a tape machine? You'll soon see!

Second, you'll need imagination. You probably have more
imagination than you think and simply need to exercise it. Three-
quarters of the fun of adventure programming is dreaming up
bizarre and unexpected descriptions of the scenario, monsters, and
opponents. Read hooks by J.R.R. Tolkien, Anne McCaffrey, and
C.S. Lewis. Read some old mythology and look over some fantasy
calendars; you'll be surprised at the ideas you'll get.

Finally, you'll need some good examples. This book provides
them. I provide the full listing for a new adventure program called
Basements and Beasties. Each chapter describes some detail in the
construction of this program and gives some options that you may
wish to take. No doubt, this introductory program will play only a
foundational part in your own, much more complex adventure pro-
gram.
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WHAT WILL YOU LEARN?

Games are fun, but life is more than just fun and games. So
there are some special programming techniques that you’ll gain by
the end of this exercise; you'll never feel like you are studying in the
process!

For one thing, you'll learn the wonders of structured program-
ming. That sounds formidable, but don’t worry. All it means is that
you'll experience the joy of knowing where to find a given sub-
routine in a long program without having to pick the whole program
apart line by line. By the end of the book, you'll wish you had written
all of your personal programs with some structure. It’s easier than
you think. (Incidentally, please permit me the use of the term
“structured programming” in a much more general, nontechnical
sense than is usually meant. Those students of the more formal
definition might otherwise wonder if I know what I'm talking about
at all)

You'll also learn many methods of memory economy. Adventure
programs are, to put it mildly, memory hogs. They eat bytes with
long text descriptions, vocabulary lists, and map tables. Remember
that the earliest were for big computers. If you have disks and disks
to spare, memory is no problem. But, we're writing for a tape-based
16K TRS-80. You'll learn how to conserve and still get what you
want.

One final thing you'll learn a lot about is man/machine interface.
By this I mean how well your program understands inputs from the
keyboard and how well it responds. You'll get an education in how to
make a simple machine seem far more intelligent that it really is.
You'll learn to tailor your program to enhance that link between the
scenario and the participant—the sense that the player is really
there in that maze, desert, burning fort, or Martian dome.

If by now I have sold you on the benefits of writing an adventure
program, then you're ready. Grab a pencil and paper, switch on your
computer, and get ready to make the imaginative leap.



Chapter 2

Mapping a Basement Scenario

The primary function of an adventure program is to surround the
player with an artificial world, a preprogrammed environment with
which he can interact. This substitute environment is effected by a
series of textual descriptions and sustained by the presence of
objects that can be lying about. This artificial realm is called a
scenario.

The type of scenario depends on the imagination of the pro-
grammer. The original, classic scenario is the underworld cavern
environment, in which the player fights mythical beasts to obtain
treasures—a medieval land of magic, swordplay, and stone. The
sample program in this book, Basements and Beasties, makes use of
such a scenario. There are many other possible scenarios, as tradi-
tional or as bizarre as the programmer cares to make them. It all
depends on your ability to write creatively; if you can describe it, it
can be a scenario.

For instance, consider the following possible scenarios:

@ The player is trapped in a haunted mansion. He must find all of the
treasures hidden in the musty house, while ghosts and ghouls of
various sorts hide behind every door.

@The player is lost in a zoo after closing hours—and all of the
animals are loose. He must face hungry lions, muscular apes, and
angry ostriches as he searches for various items.

® The player is breaking into a top-secret government installation
after dark. He must find a number of confidential documents and not
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be caught or killed by the many security devices active on the
premises.

@®The player has crash-landed on an alien planet. He must avoid
attacks from the hostile natives while attempting to locate impor-
tant pieces from his ship’s engine, pieces that were scattered on
impact.

As you can see, an adventure scenario may be set just about
anywhere-—as long as there are three parameters active. The first
parameter is the background itself, a large environment with room
to move about. The second is a set of objects to pursue and locate as
the primary goal of the game. The third is a host of obstacles, both
living (such as enemies to fight) and inanimate (such as locked
doors) to add to the difficulty of the game.

The first of these three factors must be designed before work
on the program can progress very far; this chapter deals with
creation of the basic scenario. The second and third parameters are
handled in the next chapter.

The sample scenario I use is the underground cavern of Base-
ments and Beasties. Your first task is to learn how to map the
basement.

START WITH ROOMS T0 SPARE

A scenario, for example, our basement, requires the illusion of
size. This is accomplished by dividing the scenario into individual
units called rooms. These may correspond to actual rooms in a
building, separate caverns in a labyrinth, or clearings in a forest,
depending on the type of scenario. The adventure program as-
sociates each of these rooms with a descriptive paragraph and
usually with a short name of two or three words for easy identifica-
tion. The program provides information about what objects or crea-
tures (if any) can be present in the room when the player enters it.
The room is defined uniquely by a preprogrammed description of
entrances and exits, that is, directions in which the player must
move to reach or leave the room.

Once the programmer has the basic idea and sets out to create
his scenario, he starts with a set of undescribed, unspecified rooms.
Operating in BASIC with only 16K of user RAM, you are severely
limited in this regard. For the sake of demonstration, Basements
and Beasties consists of only twenty rooms. (Some refined
methodology and machine language can more than double this
number.) With these blank rooms before him, the programmer
begins to weave a web of pathways between them, until every room
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bears a spatial relationship to the others. In other words, he creates
a map of the scenario.

This map of pathways is based on the notation of motion most
commonly used in adventure programs, and that is compass-point
travel. When the player wishes to move, he may choose to go north,
south, east, or west. He may additionally move in one of the
diagonal directions, such as northeast or southwest. Finally, up and
down are also possible directions. This provides ten explicit travel
choices for the player. In mapping a room’s relationship to other
rooms, then, the programmer must define what will happen if the
player tries each of these directions while in a given room.

Figure 2-1 shows a diagram representing the possible move-
ment between four rooms. Use a large sheet of graph paper to draw
your own map. (A standard 20-by-28-inch sheet of desk blotter
paper is great for this.) Then, using a compass, or even better, a
plastic template available from an office supply store, draw every
room on the sheet. They need not bear any relationship to each
other this early in the task—they are simply spaced evenly and in
several rows. The map for Basements and Beasties, for example,
consists of five rows of four rooms each, for 20 rooms total. Leave
plenty of margin between rooms to allow for connecting lines to be
drawn from circle to circle.

GETTING FROM ROOM TO ROOM

Think a moment about what happens when you move about
from room to room. As you stand in a room in your own house, there
are basically three things that can happen if you choose tomove ina
given direction. These are:

@ You may end up in another room. If you go north, and there is a
north door, you will find yourself in a new room.

@ You may move about in the same room. If you are in a large room,
you may go north for quite a while and find that you are still in the
same room.

@ You may go nowhere. If you go east, you may run into a wall.
Ordinarily, you cannot go up or down, either.

Now, imagine that for each room you have a table listing all ten
possible directions the player could move. (You can do better than
imagine; look at Fig. 2-2.) In each empty space in the table fill in the
resulting location of the move. That is, the table tells what room the
player will be in if he moves in a direction. Such a device can be
called a travel table.

8



S CLOSET

FALL

Fig. 2-1. Symbology for the scenario map.

Now, let’s look at the three possibilities again. If the player is
in room 1, and a north move takes him to room 2, you may write 2in
the space next to NORTH. This is easily represented on your
scenario map; simply draw a line from room 1 toroom 2 andput anN
inside the room 1 circle right at the line. This symbolizes that if the
player goes north, he exits the room and ends up in room 2.
(Returning works similarly. An S by that line in room 2 indicates
that southward travel returns the player to room 1.)

Next, consider option two. In order to give a room the appear-
ance of size, it might be desirable to make certain directions result in
no exit at all-—simply endless travel. (This is good for outdoor rooms
like forests, trackless deserts, etc. When you consider mazes later,
this will also be useful.) In such a case, enter the same room number
beneath the direction word. If eastward travel leaves a player wan-
dering in room 1, place a 1 in that space. On the scenario map this is
designated by a looped arrow, as shown in Fig. 2-1. The E in the
center of the looped arrow indicates that eastward motion results in
no real progress. The player remains in the same, large room.

Now for the final option. If a player cannot go in a given
direction, either because a wall prevents him or because there is no
special opening available (in the case of UP and DOWN), this is
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indicated by entering a zero in the respective space. There is no
room 0; rather, the zero alerts the program of an attempt to travelin
an illegal direction. The program responds by printing a warning
message, such as, “You cannot go that way!” The player stays in the
room as before. In the scenario map this is the unspecified case; that
is, any direction not specified by some other symbol is assumed to be
an illegal direction with a value of zero in the travel table. In Fig. 2-1,
for instance, attempted motion from the closet going north will result
in no final motion and a warning message.

There is, in fact, a fourth option, which is a special case. What
happens, for example, if a westward direction leads the player off the
edge of a precipice and results in his death amid the rocks below?
Deathis not a destination room, and yet it certainly represents more
than endless motion or an illegal direction. Later, you'll see that a
special number can be assigned to such a death (a non-room number
of some sort, larger than the highest room number in the scenario) as
an indicator to the program. When the program encounters that
number in the travel table, it knows to assume that the player died
(the clod!) and must be resurrected if further play is desired. In
Basements and Beasties, for example, the largest room number is
20; so the number 22 represents death by fire, and 23 represents
death by falling. There is room for expansion.

CREATING A COMPLEX PUZZLE

Figure 2-3 shows the complete travel table for Basements and
Beasties. When you actually write the program in BASIC, this table
is resident as a series of data statements, one data statement per
line. It would be helpful, then, if you actually created a form like this
one, with as many lines as there are rooms in your scenario, and with
ten columns for motion.

Wait a moment! Aren't there supposed to be only ten columns,
one for each of the ten possible directions of travel? Why is there an
eleventh column, marked “Default?” Well, as you will see when you
tackle the problem of travel-command input, there are times when a
player is not explicit enough about his wishes. What if he types the
cryptic “GO IN,” or “JUMP?” What direction do they imply? For
such inputs you must decide a direction in advance, one of the
standard ten, that such an input command implies. This eleventh
factor is called the default direction.

In the eleventh column you do not put a room number. Rather,
you enter a direction number from 0 to 9; wherein 0 refers to
NORTH, 1 refers to NORTHEAST, and so on. It is up to you to

11
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second-guess the player about the most likely inexplicit command he
wil enter. For instance, in room 1, there is a hole in the ground. If
the player types “JUMP,” the most likely default response is
DOWN, or direction 9. Much later you'll see how this works in full.

Note that it isn't absolutely necessary to know the description
of all of the rooms in the scenario before you weave the web between
them. You may find it helpful, however, and if so, you may want to
read the section on room descriptions that appears later in this
chapter. The present section deals with elements of the web—the
structure and relationships that make for an interesting and complex
puzzle.

There are four factors that go into a clever scenario labyrinth.
These are a home base room, bottlenecking, mazes, and obstacles.
Let’s consider these one by one.

The first room to create for thescenariois known as home base.
This is usually a room that is separate or outside of the bulk of the
scenario. It serves several purposes. The program begins with the
player at home base; it is a launching-point for his adventure. Home
base is also a place of refuge and a place for safe storage of treasures.
The program scores the player on the basis of how many treasures
he safely conveys back to home base. This room may correspond,
say, to a camp in a hostile jungle, a spaceship in an alien city, or a
bathyscaphe in an undersea scenario. In Basements and Beasties
home base is a rock pit in which the player, an adventurous ar-
chaeologist, has broken through to an underground passage. The
home base room is room 1.

Home base represents one access-point to a large closed net-
work of rooms. It is traditional, but by no means necessary, to have
at least one more room that provides another access to the bulk of
the scenario. Basements and Beasties designates room 2 as an area
of ruins with a steel grate set in the rocky floor below—obviously,
another doorway into the underworld. A player can travel freely
between room 1 and 2, but most motion occurs through the web of
rooms underground.

You'll note from the travel table that most of the motion options
for rooms 1 and 2 are looped arrows. The purpose of this s to produce
the illusion of size. A player can go a long way in room 2 and still be
lost in the ruins. Only a few specific directions, however, lead to the
pit, home-base room 1. This is a good device to use in outdoor
sitnations. Note, too, there are almost no illegal directions (up is the
only one), since in a wide-open outdoor environment a person’s
travel is unrestricted. The zero value finds its use much more

14



naturally in a closed environment, such as a building or a series of
caverns.

THE BOTTLENECK PRINCIPLE

The best way to heighten interest in a scenario is to limit the
player’s options as he moves. That is, he must be made to travel with
the maximum effort to see the rooms he desires. One way to do this
is by building sections of the web in branches, as shown in Fig. 2-4.
Once in room A the player has to choose what avenue to explore.
Once the choice is made, the player must return to room A before he
can examine a different avenue. This is a good example of
bottlenecking, forcing a player’s motion through a selected room.
The end result of several such bottlenecks is a sort of segmented
scenario with the ever-present possibility of the player finding new
sections previously unexplored.

Another method of bottlenecking is to provide one-way paths.
This is a situation in which a player traveling from room A to room B
cannot get back to room A by the same path; he is forced to take a
more circuitous route. In such a situation the scenario map notation
leaves out a return direction on the path line contacting room B. In
the travel table a zero takes the place of a return value—or perhaps a
different room altogether—as long as no direct return path to room
A exists.

Such situations can have various explanations in a scenario
description. Perhaps room A is high above room B, and the player

Fig. 2-4. Demonstration of room layout to produce the bottleneck effect.
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could jump down to B, but he cannot climb back up. Perhapsrooms A
and B are at opposite ends of a department store escalator. Base-
ments and Beasties has a ledge with a stream far below. You can
jump into the river and survive; but you'll never get back up to the
ledge. You get the picture: one way travel only.

A more subtle sort of bottleneck is a disguised path. The
strength of this sort of method lies in your ability as a describer.
Ordinarily, the room description paragraph tells what doorways or
paths are immediately visible around the player. These described
doors correspond to the travel table pathways. Nothing says that
you have totell everything, though! Perhaps if the player walks right
into those bushes to the north, he'll find a clearing (a new room) that
can’t be seen. Maybe that south wall isn’t as solid as it looks! There
may be a waterfall to the east—but, lo and behold, look what happens
when you walk right into the water! The idea is to hint at possible
secret doors and hope that you'll keep the player in the dark as long
as possible.

LOST IN THE MAZE

An adventure program is hardly complete without a maze. Of
course, the entire scenario is a maze in one sense of the word, but
let’s use the term in a narrower sense. An adventure maze is a set of
rooms with identical or very similar descriptive paragraphs, such
that it is very easy for the player to get hopelessly lost among them.
When the player is in such a room, he may choose to move in a
direction. If the description of his next roomis “YOU ARE LOST IN
A MAZE,” he wonders, “AmIin a different maze or the same one?”
It doesn’t take many maze rooms to make an effective mantrap!

Figure 2-5 shows a small three-room maze, identical to the one
used in Basements and Beasties. There are three basic elements to
a set of maze rooms. I have already stated the first: nondistinctive
descriptions. The second is a characteristic that need not be re-
stricted to mazes: it is the use of nonmatching directions in the travel
table. Notice, for instance, that a player moves from maze A to maze
C by traveling east, but he returns by going northwest, not west.
This pattern is carried on throughout the maze, such that the player
can never be certain of returning to a given room. You can imagine
the frustration, can’t you?

The third element is the extensive use of looped-arrow paths.
Notice that every maze roomhas three looped paths. The prohahility
is high that a player can make several moves in several directions,
thinking that he is visiting entirely new rooms—while in truth he is
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Fig. 2-5. A three-room maze with only one exit.

stuck where he is! The effective use of these three factors can
assure player confusion without very many rooms at all.

The standard method used by an experienced adventurer to get
out of a maze is to drop an object he is carrying, then move. If the
room is described as containing his dropped object, he knows that it
is the same room and that he has not yet left it. In this manner, he can
effectively tag each room with an object (as long as he has things to
drop!) to find his way around. The average adventurer, however,
almost never tries this the first time in the maze. Instead, he
attempts to run blindly, dashing about randomly until by sheer
chance he breaks out!

THOSE ANNOYING OBSTACLES!

Let’s take alook at the finished Basements and Beasties map as
it looks with all the bottlenecks and flourishes (Fig. 2-6). Ignore the
room names for the moment (I'll describe them later) and notice
some of the remaining features of the web.

Forinstance, remember what I said about directions that lead to
death, either in fire or by falling. There are three such rooms in
“Basements,” as you can easily tell from the travel table. Recall that
22 represents a fiery death and 23 represents death by falling.
Rooms 6, 10, and 20 have one of these two numbers as a travel-
result value. Look, now, at how they are represented on the

17



HOME BASE

RUSHING

STREAM
ALL

Fig. 2-6. The complete scenario map for Basements and Beasties.

scenario map. A simple arrow marking the travel direction points to a
word describing the death: FIRE or FALL.

Realize, please, the manner in which this represents an ohsta-
cle. You need not tell the player that a direction is fatal; a hint is
enough. Let him make the foolish, presumptious error of testing it.
Room 101is a good example. The description makes both the stream
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to the west and the chasm to the east sound equally deadly. If the
player tries the stream, he finds a whole different half to the
scenario! This tempts him to suppose that perhaps there is more
adventure awaiting him in the chasm. He is wrong—dead wrong.

Death is not final in an adventure program; the player can be

resurrected, but usually he loses points. He is revived at home base,
far from where he died. That means he must make up the distance.
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There is, however, an entire class of special objects called
obstacles, whose sole purpose for existence is to impede the pro-
gress of the adventurer. The adventure program maintains a current
list of the status of these obstacles, indicating what pathways they
obstruct and whether they are still present. This list is, ordinarily
enough, called an obstacle list. It is an array of variables maintained
by the adventure program in BASIC.

There are two specific types of obstacles. The first type is the
living obstacle. These are usually monsters or beasts of some sort
that guard a specific room doorway. They usually are overcome by
some kind of battle with a given weapon. The second type is the
inanimate obstacle. These are things like doors and steel grates.
They are removed as obstructions by opening or unlocking with a
key. The value of these obstacles as frustrations is increased by the
need of special objects—weapons, keys—to deal with them. If, for
example, that all-important key is somewhere deep in the scenario,
there are several rooms and treasures that the player never sees
until he can find the key. Play-time and interest can be extended by
such devices.

Let’s study the inanimate obstacles first, since they are the
most complex to use. On the Basements and Beasties scenario map,
notice that there are three such obstacles: a steel grate separates
rooms 2 and 8, a door stands between rooms 6 and 12 and another
door divides rooms 4 and 11.

In the case of an ordinary door, there are really three possible
states. A door or grate may be closed-and-locked, closed-and-
unlocked, or open-and-unlocked. It simplifies handling such obsta-
cles if you reduce the number of possibilities to two. Thus, an
obstacle is either passable or nonpassable, a simple either-or
proposition. The way to visualize this in the scenario is to treat all
doors and gates as if they are in one of two possible positions. For
programming A can represent closed and locked and nonpassable
doors; B can represent unlocked and freely opened and passable
doors.

This simplification affects the realism of the scenario only
mildly, but it reduces the complexity of obstacle-handling signifi-
cantly. If the player tries to go in a direction blocked by a door with a
status of A, he is prohibited by a message that says, “THE DOORIS
CLOSED AND LOCKED.” If he tries to open or unlock it without
having a key, the program simply responds, “YOU HAVE NO
KEY!” If he does have the key, the program changes the door status
to B and informs the player by saying, “WITH A CREAK, THE
DOOR SWINGS OPEN.” Ever after, an attempt to move in that

20



direction is successful—the door is ignored as an obstacle, because
its status is B. The player can shut the door and return the obstacle
status to A. A message proclaims, “THE DOOR SWINGS SHUT
AND THE LOCK CATCHES,” and any progress in that direction is
subsequently prohibited.

It is obvious that such an obstacle cannot simply be treated as if
it were an object sitting in a room. For a door opens onto two rooms;
if you open the door while in room A, that same door must now be
open if you are standing in adjacent room B. For every inanimate,
door-type obstacle then, there needs to be two status numbers: one
for each of two rooms affected. The program must simultaneously
change the status of both numbers if that door is opened or shut.

CREATING OBSTACLE-LIST ENTRIES

Let's see how the obstacle list and its various entries are
created to support the obstacles in an adventure program. Doing so
is one of the tougher tricks discussedin this book, so read carefully.

For each door there are two distinct sets of status information
that are necessary for the program to properly simulate the obstacle.
The following pieces of information are needed:

® What room is affected? This number, naturally, is A for room A and
B for room B, the two rooms divided by the door.

® What direction is obstructed? Perhaps the door is on the north wall
of room A and the south wall of room B. A direction number of 0 to 9
for each room specifies the direction of motion impeded.

@ What kind of obstacle is it? This is primarily to tell the program
what messages to print, for example, whether to print “THE DOOR
IS OPEN” or “THE GRATE IS OPEN.” This number is, of course,
the same for both rooms affected.

®Is the obstacle presently passable? This is the actual status indi-
cator that tells whether or not the door is closed and locked. Again, it
is always the same for both rooms affected.

Since this obstacle-status data is arranged in a list (the obstacle
list), there must be one more piece of information. There must be a
number telling the program where the other status information of the
two sets is located in the list. After all, once a door is opened, the
data needs to be changed not only for the room in which the player
stands, but also for the adjacent room. The program can find the
status information for the present room easily, but where is the mate
to this block of data?
®Where is the companion status data? For simplicity, the pair of
status blocks are always placed next to each other in the obstacle list.
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But, if you're looking at one, is the other one right after it or before
it? One simple number can answer that easily by representing
“hefore” or “after.” This data is the opposite for the companion
block. The first of the pair points to its companion as following,
“after;” the second to its mate, “before.”

You've just been through a difficult concept, so let’s review and
simplify a bit. For each door-type obstacle, two rooms are affected.
For each of the two rooms, there must be an entry in the obstacle
list. This entry must somehow convey five facts: the room number,
the direction blocked by the obstacle, the kind of obstacle, the status
of the obstacle, and the location of the other entry in the list.

All of these facts can be represented by numbers: two sets of
five numbers.

There is fortunately a simpler, more compact way to handle all
of these numbers. You can condense all five of these relatively small
numbers into one large number. How? Because you can break a
large integer into its many digits and allot one or two digits for each
piece of data. This is extremely helpful in saving memory space and
comes in handy in several places throughout an adventure program.

Figure 2-7 shows the standard format for an integer in Mi-
crosoft BASIC. Such an integer has a range of from —32768 to
+32767 inclusive. That s, the largest integer you can create has five
digits and a sign of plus or minus. As long as the fifth digit is no larger
than 3, and as long as you are careful about the fourth digit, you can

MOST POSITIVE INTEGER

+
IMPLIED 3 2 7 6 7

MOST NEGATIVE INTEGER

Fig. 2-7. How a standard Microsoft BASIC integer can be broken down for
efficient data storage.
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SIGN | DIGIT | DIGIT | DIGIT pDiGIT | DIGIT
FIVE FOUR | THREE | TWO ONE

+NONPASSABLE ROOM NUMBER
—~ PASSABLE (1-20)
OBSTACLE
TYPE
1=CREATURE DIRECTION
LOCATION OF MATING 3_..88’825 BL?&.Q‘)ED
OBSTACLE LIST ENTRY

0=PREVIOUS ENTRY
1=NO MATING ENTRY
2=NEXT ENTRY

Fig. 2-8. Assigning significance to integer digits to produce an obstacle list
entry.

deal with the individual digits and assign any significance or use to
them that you need.

Figure 2-8 demonstrates how this method (I call it integer
analysis) is used to assemble an entry for the obstacle list. First, you
need a room number. Room numbers can be as large as 20 (even if
there are more in your program, you are not likely to exceed 99).
The point is, you'll need two digits of an integer to tell the room
number. The first and second digits will do.

Next, you'll need the direction blocked. There are, remember,
ten possible directions: the eight compass-points plus up and down.
You can assign these numbers of 0 through 9 and plug the data into
digit 3. The fourth digit can represent the obstacle type, if you
arbitrarily assign numbers from 0 to 9 to them. Digit 5 points to the
location of the companion list entry (arbitrarily, a 0 means the other
entry is before this one, and 2 means it is after).

Finally, how can you tell if the door is open or closed? Let the
sign be the status indicator. If it is positive, the obstacle is non-
passable (closed); if negative, it is passable (open). Useful, right?

The obstacle list——at least as far as inanimate, doorlike obsta-
cles are concerned—consists of a series of integers in pairs, each
pair representing a given door. Figure 2-9 shows this portion of the
Basements and Beasties obstacle list as it appears when all of the
blocks are closed. Take a few moments and try to understand what
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ENTRY 22902
ENTRY 2808
ENCIRY ' 23306
EN{;’TRY 3712
ENTRY 23404
ENTRY
6 3011
’J\WW——“__J

Fig. 2-9. The first portion of the obstacle list.

each digit represents. For instance, the first list entry is 22902. You
should be able to see that:

@The affected room is room 2.

@ The blocked direction is direction 9 (DOWN).

@®The obstacle is type 2 (grate).

@The companion-list entry is affer this one which 2 indicates.
@The grate is closed and locked, which a positive value indicates.

Walk through entry 2 the same way. Remember that if a digit
value is zero, it can vanish altogether—at least on surface inspec-
tion. In entry 2 the value of the fifth digit is zero; so the entry appears
as a four-digit number. Don’t worry, think of it as a five-digit number
with an invisible, leading zero.

How could an adventure program use the obstacle list to pro-
cess obstructions? Let’s say the player types, “CLOSE DOOR.”
The program knows two pieces of information: it knows the room
where the player is (it always keeps track of this), and it knows that
the player wants to close a door, a type 3 obstacle. The program
proceeds to hunt through the list, looking for an entry that matches
these two criteria. Having found it, the program can set the value of
that entry as positive, closing the door for that room. Using the fifth
digit the program knows where to look for the second entry it needs
to change. Once found, the second entry is also set positive—and a
message is printed saying, “THE DOOR SWINGS SHUT AND THE
LOCK CATCHES.”

There are all sorts of peripheral factors to check, of course.

X~ £1. Alan
What if the door was au\,uuy closed? The program could tell "“’ the

sign of the list entries and would say, “IT'S ALREADY SHUT! y The
list entries are the key to the seeming intelligence of the program.

24



One more thing needs to be said about the obstacle list. Since
the entries require updating from time to time, the list cannot simply
be a series of numbers in a DATA line in BASIC. The original values
may start off in DATA statements, but these must be loaded into a
variable array, so that the individual elements can be set positive or
negative as the player interacts with his environment.

BEASTIES AS OBSTACLES

If you’ve managed to survive this far, you'll have no trouble with
the second type of obstacle—the living obstacle. Creatures that
inhabit the scenario are much easier to use in the obstacle list.

Consider, first, that doors required two entries in the obstacle
list, because in a sense they occupied two rooms at once. Creatures,
however, are objects that exist in only one room at a time. Thus (joy
of joys!), creatures only require one entry each in the list. There is
no need to worry about changing two numbers if a creature’s status
changes.

Take alook at the scenario map again in Fig. 2-6. You'll soon see
that there are four creatures acting as obstacles: one each in rooms
4, 6, 14, and 18. For instance, a player is prevented from traveling
northeast in room 4; the Giant Mantis will not let him pass! If the
player is in room 5 trying to get to room 4, the Mantis lets him enter,
as if the player is sneaking behind him. This reiterates the fact that
creature-type obstacles are one-way obstacles only. That's why
they only need one entry in the list.

Now, look at the completed obstacle list for Basements and
Beasties given in Fig. 2-10. The original three pairs of passive-
obstacle entries are there; four new single entries, one for each
creature, have been added.

The first creature list entry is 11104. Analyze what it says
concerning the obstacle. The block is in room 4. It obstructs motion
indirection 1, which happens to be northeast. The obstacle is type 1,
which I'll arbitrarily define as “creature.” The creature is present,
blocking the passageway, since the value of the entry is positive.
Now, what about the fifth digit, which was used to point to a second
entry? You don't have a second entry with creatures; the fifth digit is
set to 1, which means that there is only one entry involved in this
obstacle. Later, when you study the actual BASIC code that
analyzes list entries, you'll see why the numbers 0, 1, and 2 were
chosen for digit 5.

The three other single entries work in the same manner.
Searching down through the list, the adventure program can under-
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1 22902 STEEL

2 2808 GRATE

3 23306

4 3712 DOGR

5 23404

6 3011 DOOR

7 11104 MANTIS

8 11118 IGUANA

9 11714 SPIDER
10 11306 TERROR

Fig. 2-10. Complete obstacle list for Basements and Beasties.

stand that a given single entry represents a specific creature in a
specific room guarding a specific pathway. It cannot tell whether it is
a mantis or a spider from this list; that distinction is handled by a
different list, which you'll soon see. At this point it is helpful just to be
able to register this much with a short series of numbers.

How does a creature-type obstacle change status? Thatis, how
does it become either passable or nonpassable? The standard means
for this change is battle. If the player has the proper weapon and the
random factors of the fight go well, he slays the beast, and the
obstacle is resolved. If he fails, the creature continues to guard the
path. I don’t deal with how battles are fought until Chapter 7, but the
part of the program that decides the outcome of the battle is respon-
sible for setting the list entry to negative, indicating a passable
obstacle.

Both living and inanimate obstacles are effective in promoting
the realism of the adventure scenario. You should appreciate,
though, that this luxury is not purchased cheaply. Now you have a
variable array that needs maintenance. In fact, every time the player
tries to move, the obstacle list must be consulted to see if the
attempted direction is blocked or not.

An important consideration of programming that is active in any
program of complexity is the trade-off between features and speed.
Adding obstacles to a scenario is possible, but the programmer pays
for it in processing time. If you're clever, you can keep this handling
delay to a minimum.

LOCATING OBJECTS

An adventure scenario consists of more than just rooms, path-
ways, and doors. There are objects to find as the player wanders
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through the artificial environment you paint about him. Objects vary
in their uses, though. A key that opens a door (and thus renders an
obstacle passable) is one sort of object. A sword that slays a certain
beast (thus rendering a completely different obstacle passable is
another. There are also treasures and other incidentals, such as a
lamp or torch to light the way in a dark basement. I've even hinted
that creatures are more than obstacles—they are objects in their
own right.

In an adventure program there are two factors that define an
object: its existence at a specified location (a given room), and its
usefulness under special circumstances.

The second of these two factors is wholly arbitrary and is up to
the programmer. When a programmer writes a routine that handles,
say, the opening of doors, he knows that he has to designate one
object as a key. He may choose to treat object 11 as a key. The only
thing that makes it a key is the way the open-door routine works.
The programmer writes it so that it looks for the presence of object
11 before it can open a door. This goes for other types of objects as
well. The only thing that makes object 4 a treasure is that the scoring
routine looks for that object number and awards high points for
finding it. Object usefulness is flexible.

The location of an object is simpler to handle. In an adventure
program the writer simply sets up a variable array in BASIC, as-
signing one variable for each object in the scenario. Then he merely
sets each value to the room number corresponding to its location. If
object 10isinroom 6, the array variable for that object is set at 6. For
instance, if the variable for object 3 equals 18, it means that object 3
is lying on the floor in room 18. Simple!

Most objects in a given scenario are made to be found and used
by the player. That is, each object starts off at an initial location, a
given room. When the player enters that room, the program tells
him that the object is lying there. He may choose to leave it there, or
he may use a TAKE command to pick the object up and put it in his
hypothetical carrying sack. In this way he can cart treasures out of
the basement and back to home base where he is awarded points for
them. (There is, usually, a programmed limit to how many objects
can be carried in the sack at one time.)

This raises a good question. When the object, say, a key, is on
the floor, it is in the room. Where is the key when the player is
carryingit? That is, what value is placed in the array variable for that
object? This ambiguity is answered by assigning a fictitious room
number to the player’s carrying sack. Thus, objects are being carried
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when their location number is the number of the sack. If the player
drops the object, its location number is immediately changed to the
present room number.

In Basements and Beasties, which has 20 rooms, the unused
number 21 is assigned to the player’s carrying sack. (Yourecall that
unused numbers 22 and 23 are assigned to violent deaths that result
from travel in dangerous directions.) The sack number is a helpful
item. If the player wants an inventory of what he is carrying, the
program simply searches through the object location array, looking
for any object with a location of 21. These objects are listed.

HELPFUL SCENARIO VARIABLES

An adventure program such as Basements and Beasties makes
use of several variables and arrays to keep track of things. I just
discussed one such array, the array of locations for objects. I refer to
this as the object status array. It has 16 elements in it, since the
program has 16 distinct objects. In describing a room, the program
must always make one pass through the object status array to see if
there are any objects present to describe.

There is a sense in which the player, himself, is an object, at
least since he can exist at a location and move from room to room.
One variable must always be maintained, apart from the previous
array, to keep track of the player’s present room number. Let's call it
the player location variable. This variable is updated chiefly by the
player’s use of motion commands.

There are a handful of other useful variables that you need to
update from time to time. You need a counter to keep track of the
number of steps the adventurer has taken, since this canfigureinto a
scoring scheme. There should be a variable to tell how many objects
the player is carrying, so that the program can refuse to let him pick
up more than he can bear. Another variable should keep track of how
many times the player has been killed, again for scoring purposes.
And there are a couple of lesser counters that I touch on later.

I already spoke at length about another important array—the
obstacle list. The size of this array depends on the scenario map and
the types of obstacles created. Reference is made to it every time a
motion is attempted.

One last array needs to be described at this juncture. When the
player first steps into a room, the program gives a paragraph-long
room description to orient the adventurer. After that first visit,
however, the player should not be bothered with a long, drawn-out
description. Rather, the program should note that he has already
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been there once and given him a very abbreviated description, a
simple room title. (If he wants the long description again, naturally,
he can request it.)

For this feature to work some sort of flag needs to be main-
tained for each and every room, a flag that indicates whether or not
that room has been visited before. The variable is a zero until the
room is entered; it is then permanently set to a one. This array of
variables is the room status array. The existence of this array is also
helpful in scoring, which usually includes some points for number of
rooms explored.

This simple yes-or-no sort of flag can simply occupy one digit of
the integer stored in the element of the array, allowing the other
digits to represent other characteristics of the room. Integer
analysis makes this sort of expansion possible.

So what do you have? Figure 2-11 shows all of the variables and
arrays used by Basements and Beasties, each with a short explana-

VARIABLE DEFINITION
CT(0) PLAYER LOCATION VARIABLE
CT(1) NUMBER OF STEPS TAKEN
CT(2) NUMBER OF OBJECTS CARRIED
CT(3) TOTAL DEATHS OF PLAYER
CT(4) SLAIN ORCS x 25 POINTS
CT(5) NUMBER TO BE ANALYZED
CT(6) ~ CT(11) NUMBER TO BE SYNTHESIZED
CT(12) ORC APPEARANCE COUNTER
TX$(0) - TX$(1) ROOM DESCRIPTIONS (TEMP.)
TX$(2) - TX$(3) INPUT WORDS (TEMP.)
DA(1) TRAVEL TABLE VECTOR
DA(2) WORD TABLE VECTOR
DA(3) MESSAGE BLOCK VECTOR
DA(4) OBJECT DESC. BLOCK VECTOR
DA(5) ROOM DESC. BLOCK VECTOR
RM(1)-RM(20) 'ROOM STATUS ARRAY
0B(1.0)-0B(16,0) OBJECT STATUS
0B(1.,1)-0B(16,1) OBJECT LOCATION
BK(1)-BK(10) OBSTACLE LIST

Fig; 2-11. Array variables used in Basements and Beasties.
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tion. Some of the lesser variables will be described at length in the
chapters to come.

DESCRIBING ROOMS AND SCENES

So far we have been speaking of the adventure scenario in very
general, structural terms, to convey the methodology or logic behind
the idea. When the player enters the scenario, though, he does not
see a web of interconnected circles, nor does he see lists and tables.
His impression of the scenario is created and sustained entirely by
the printed descriptions that are displayed on the computer monitor.
These descriptions “paint the picture” in which the player moves and
interacts; all of the arrays and tables merely serve as the mechanics
to call the proper descriptions.

As the programmer creates a scenario, he starts with a central
theme around which to build. I already suggested quite a few—
caverns, haunted mansions, office complexes. Once the program-
mer has an overall environment, the rooms themselves are implied
and come easily. The programmer makes a sheet, numbered from
one to the maximum number of rooms (in Basements and Beasties it
is 1to 20). Next to the numbers he lists all the different sublocations
a player might expect in this type of scenario.

Suppose your scenario is a large office complex. You might list
the secretarial pool, the boss’ office, the cafeteria, the water cooler,
the lavatories. Then there are various halls, the lobby, several
offices differentiated by color or size, perhaps a copy-machine room.
Once your mind is active, you can probably come up with far more
locations than your maximum room count allows! Remember to
assign room 1 to your home base, the access point to the larger
scenario. In this example, room 1 is probably the lobby, or even the
sidewalk or parking lot outside of the building.

Figure 2-12 gives the room list for Basements and Beasties for
ease of reference. As you think of rooms, you'll think of little
distinguishing characteristics that will be incorporated into the room
descriptions later. These may be noted next to the short titles, as
shown. The ideais to generate one or two-word identifiers for each
room. These are used as the short-form description that is printed
for rooms previously visited.

For each room a paragraph description is stored in a DATA
statement in the adventure program. The short-form title is also
stored along with the larger description. When the player moves into
a given room, the program accesses the corresponding DATA
statement and retrieves these two pieces of data. Then, depending
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on whether or not the player has seen the room before, the program
displays either the long or short description. There is also a LOOK
command that specifically requires a reprinting of the long descrip-
tion. After the room list is created, the next test is to write the long
description paragraphs for each room.

There are five rules or guidelines concerning the writing of
room descriptions. The first is their special format. The entire text
of the paragraph must fit on one BASIC program line, sharing that
line with the BASIC instruction DATA and also the short title, with a
separating comma. This limits the length of the paragraph to about
240 characters, or just over three and one-half lines of text on the
TRS-80 monitor. If any commas or semicolons form a part of the
paragraph, the whole paragraph must moreover be enclosed in
quotes, to prevent BASIC from misinterpreting the DATA state-
ment. The paragraph may also include line-feed characters (which
the programmer inserts by typing a shifted down-arrow) to improve
the appearance of the paragraph and prevent words from being split
in two between lines of text.

The second guideline is the inclusion of pathway hints. It is only
fair for the description to say, explicitly, “THERE IS A DOOR TO
THE NORTH AND A HALL LEADS EAST,” in most cases. If no
such hints are given, the player is forced to try all ten possible
directions to find exits. Note, though, that not all exits need be
explicitly told; an occasional room description can even say,
“THERE ARE MANY DOORS AROUND HERE.” Remember the
concept of disguised pathways, too. If the north wall is merely a
mirage and really is an exit, just say, “THE NORTH WALL SHIM-
MERS WITH A STRANGE GLOW,” and let the player experiment
on his own.

A third guideline is the use of nonoriented language. By this, I
mean that the programmer must not make any assumptions about
how the player entered the room he is now examining. For instance,
imagine a room with two entrances: a trap door above and a steel
grate in the wall. Itis foolish to display, “YOU FALLINTO A DARK
SLIMY ROOM.” Even if the trap door is the first means of entrance
to the room, there is also the grate. What if the player re-enters the
room through the grate later on? The description would be inac-
curate. Always describe the room as if the player has suddenly,
inexplicably, appeared in the midst. Describe most entrances and
exits—even the one he most likely just crawled through.

Afourth guideline is to avoid the use of nonexistent objects; that
is, objects not supported by the program itself. This is a hard task

32



and may even be impractical at times, but keep it as a goal. You are
bound to get into trouble if you describe some object as a part of the
scenery that is not found in the object status array. Why? Because if
the description says it’s there, the player is bound to try and pick it
up! If your program does not make allowances for its existence, that
pseudo-object fouls up the realism of the simulation by refusing to
budge, or even causing the program to crash. If you must include
unprogrammed objects in your description, add something to dis-
courage the player from trying to move it. If your office scenario has
a water cooler, say, “THE WATER COOLER SITS NEARBY,
RIVETED TO THE WALL.” At least there is then an explanation, if
only a lame one, for the object’s refusal to act like an object.

A fifth and final guideline is to use creative description. Much of
the realism of the adventure program depends on your flamboyant,
misty-eyed story-telling. There are many ways to make a descrip-
tion stick in the player’s mind. The use of color, size, and shape to
describe aroom are all helpful. Is the room cold and clammy, hot and
dry, dark and foggy, tainted by magic, smelling of sea weed, dusty
and in disarray? The idea is to convey images above and beyond the
explicit words you use.

One of my favorite descriptive devices for adventure scenarios
1s incongruity. That is, I always have a few rooms that don’t seem to
fit at all with the time-period or the mood of the scenario. (This goes
for objects and creatures, too.) For example, Basements and
Beasties describes an underground troll kingdom that for the most
part sounds mythical—caves, an oracle room, a room for armor—
but I threw in an office and a lunch room, just for surprises. Almost
anything goes when it comes to holding the player’s interest. Why
shouldn’t your Martian city scenario have a large, red building with a
flying fire-engine in it? Why shouldn't your undersea Atlantis
scenario have a shower stall that sprays air? Why shouldn’t your
old-West scenario have a corner horse-feed station with pumps that
dispense “regular” and “premium” hay? You get the idea.

One final word on room descriptions has to do with mazes.
Remember that all rooms in a maze should have identical descrip-
tions, to befuddle the wandering player. This can usually be a short
phrase like “YOU ARE LOST IN AMAZE,” or “HERE ISASMALL
FEATURELESS ROOM.”

In maze rooms the long and short descriptions need to be
identical. Why? Well, because you don't want the player to know in
which maze room he is. If one room gives him a shorter description,
he knows he's been there before. Just remember that even if you call
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those rooms something different in the room list—maze A, maze B,
maze C—when the DATA statements are written, the long and
short descriptions must be identical.

DESCRIBING WHAT YOU'VE FOUND

Once the room list is compiled and the room descriptions
written, it is time to create the object list with its descriptions. When
the player enters a given room, the room description is given. If any
objects are lying around a line of description is displayed for each of
these. This line of description is the long description of the object.
Each object also has a short description (analogously to rooms),
which is a one or two-word title. This title is used when the player
enters the INVENTORY command to examine the contents of his
sack.

Figure 2-13 shows the object list for Basements and Beasties.
The list is broken up into three basic divisions, each of whichI treat in
detail.

The first group of objects to create are treasures. These are the
objects of worth, finding them is the primary goal of the adventure.
In hypothetical spy adventures these treasures are confidential gov-
ernment documents that must be stolen. In Basements and Beasties
they are simply objects of monetary worth, such as one might find in
dwarfish halls of stone.

To simplify things it is a good idea to make the treasures as
unalike as possible, at least with regard to their names. This is to
avoid confusing the adventure program when it tries to determine to
which treasure the player may be referring. Use names that suffi-
ciently distinguish between the two. For example, each jewel-type
treasure is referred to by a specific type of jewel; the player can’t say
“TAKE JEWEL,” he must specify, “TAKE DIAMOND.” Even
object 1 is not just a jewel, but a jeweled crown.

Remember the principle of incongruity to make things in-
teresting. It would be perfectly acceptable and fun to have a dwarfish
transistor radio as a treasure.

The next group of objects to create are the tools. These are
objects that are necessary to overcome the variety of obstacles that
hinder the adventurer from recovering the treasures. What kinds of
tools you create depend largely on your obstacles and vary from
scenario to scenario. In cavern-oriented adventures, such as Base-
ments and Beasties, it is customary to have a lamp or torch, since
underground environments usually necessitate that kind of tool. The
program is tailor-made to limit the player’s subterranean motion
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based on his possession of the lamp or torch. Without the tool room
descriptions are prohibited and a message displayed: “BE-
WARE! IT IS VERY DARK IN HERE!"” Of course, this sort of tool
is out of place in an outdoor scenario in daylight conditions.

The key, too, is standard fare, because of door-type, inanimate
obstacles. The program refuses to open the door or grate unless the
key is in the player’s carrying sack. If the programmer really wants
to get fancy, he can have two or three kinds of keys, each matching a
specific door.

The other tools are weapons, basically. The program is con-
structed so that certain creatures are destroyed only by one or the
other weapon. Depending on the scenario, these may range from
shotguns to laser cannons. They may even seem harmless in them-
selves. A simple bottle of seltzer water may be just the thing to stop
a marauding robot creature in its own rust!

The last group of objects to dream up are the creatures. These
are the monsters that guard the passageways of dim caves, the
fully-human Huns of a barbarian scenario, the Martians, or the secret
police. Remember that these beasts are also obstacles, and every
one of them should have an entry in the obstacle list. When one of
them is overcome by fancy swordplay, the obstacle list entry is
changed, and the creature is considered dead. (To simplify things the
creature usually vanishes rather than allowing a dead body to remain
behind. This is done by changing the location of the creature in the
object status array to a zero, which amounts to sudden nonexis-
tence, since there is no Room Zero.)

How many objects of the three kinds may you have? That is
limited by memory restraints, since every object requires an object
status array variable, a long and short description, and programming
to handle the special cases that relate to its function. Too many
treasures take the fun out of the search; too many creatures are
boring. The number and proportions of objects listed in Fig. 2-13 are
probably optimum for a scenario of only 20 rooms.

I've already mentioned that, like rooms, all objects have long
and short descriptions—long ones for looking in a room, short ones
for inventory listings. What guidelines can you suggest for these?

The short descriptions are only one or two-word names for the
objects; these are simple. The long descriptions are usually any-
where from 48 to 96 characters long, which is up to a maximum of a
line and one-half of monitor text. Usually they are in the form of
“THERE IS A BLANK LYING HERE.” Treasures usually have
descriptions ending with an exclamation point, such as, “THERE IS
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A BEAUTIFUL STATUE HERE, ENCRUSTED WITH EM-
ERALDS!” Creatures, too, usually evoke an exclamation, and the
description is even more insistent, as in'“A GIANT WOOLLY
MAMMOTH STANDS NEARBY, READY TO CHARGE IN
FURY!”

The only warning is to avoid any mention in the description of
the immediate surroundings, since that may change. Don't say, for
instance, “THERE IS A SHINY COIN IN THE CASH REGISTER,”
because the player may take it and drop it in some other room that
has no cash register. This rule may be bent a bit in the case of
creatures, since they usually live out their existence in one room
only. (Helpfully, a part of the program prevents the player from
picking up that fire-breathing dragon and carting him off in his sack!)

Once you've created your object list and written the descrip-
tions, you need to add notations to the list, telling in which room each
object starts at the beginning of the game. Notice this column of
information next to the object names in Fig. 2-13. Where you choose
to place the objects is up to you, but here are a few random
suggestions. Tools should be placed where they slow progress down
a bit. That is, if your scenario has a key, don't give it to the player
right off; put it deep into the scenario, so he has to retrace his steps
to use it. Put the treasures behind locked doors and behind angry
creatures, but leave a few out, unattended, just to whet the player’s
appetite.

This series of room numbers telling the starting places of
objects will later be committed to memory—RAM—in the form of a
DATA statement. At the start of the program an initialization routine
simply reads these numbers and stuffs them into the brand-new
object status array.

THE UNEXPECTED ENEMY

Before I tie a tail to the present discussion of creating a
scenario, there is one more item for the program to support. To
explain, consider the fact that the creatures already mentioned are
pretty tame and fairly docile. True, they are ferocious enough when
attacked, but that's just it—they are passive. The adventurer can
walk around in the same room as that giant mantis without fear, as
long as he does not attack the beast. Now, what kind of challenge is
that?

What the program needs is what I term a fenacious creature.
Tenacious implies that the creature refuses to leave the adventurer
alone. There are three characteristics of such an enemy: it wanders
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T
OBJECT é DESCRIPTION %@OFWN%,

T
1 R CROWN OF JEWELS 4
2 E GOLDEN CUBE 7
3 A DIAMOND BEETLE 20
4 S SILVER BELT 11
5 u PLATINUM RING 5
6 R POLISHED ONYX 19
7 J1E COIN WORTH MILLIONS 7
] S HOURGLASS 6
9 (T) TORCH 2
10 o MAGIC AXE 3
77 L KEY 10
12 S ENCHANTED GRENADE 12
13 c GIANT MANTIS 4
14 R HUGE IGUANA 18
15 E WHITE SPIDER 14
16 /T\ NAMELESS TERROR 8

U

R

E

S

Fig. 2-13. Complete object list for Basements and Beasties.

freely about the scenario, it attacks without provocation, and it
follows the player from room to room.

You can see how formidable an enemy this sort of creatureis. It
wanders around randomly, until it ends up in the same room as the
adventurer. It attacks! The player tries toflee, but to his dismay, the
foul creature keeps up with him! The player must conquer or be
eaten.

Clearly, the tenacious creature is totally unlike the other, pas-
sive, creatures, and it is handled much differently. (Study the
specifics of the creation of the dreaded Orc in Chapter 4.)

THE NEARLY FINISHED SCENARIO

As you read this paragraph, congratulate yourself on how far
you've come (provided you aren’t skipping pages). This chapter
contains the meat of adventure programming, from the standpoint of
form. The remainder of the book actually deals with taking the
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concepts of this chapter and coding them into BASIC. If you've been
sweating through it all and wondering why you ever thought you
could handle this sort of programming, relax—the hard foundational
work is over.

Let’s briefly review the elements of an adventure scenario. As
we list each one, see if you can recall what its purpose and function
are. If you're foggy about a couple of them, flip back and review them
in detail.

1. A scenario is made up of rooms.

®You need a room list of short room names.

@You need a long description for each room.

@You need a room status array to indicate if a room is unvisited.
@ You need a scenario map of room interrelations.

®You need a travel table defining entrances and exits.

2. A scenario is made complex by obstacles.

@You need living obstacles such as creatures.

®You need inanimate obstacles such as locked doors.
@®You need an obstacle list defining the obstructions.

3. A scenario is occupied by objects.

@ You need treasures, tools, and creatures.

@ You need an object list of short object names.

® You need a long description of each object.

@ You need an object status array to locate the objects.

Now, at last, you have a feel for much of what it takes to make

an adventure program operate. Let’s go on now to the next chapter
and see how to use this foundation in BASIC programming.
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Structuring the Program

Most programming in BASIC is, sadly, haphazardly done. The
programmer starts out with a simple idea, and he writes a simple
program. Then, as he adds features to his program, the code grows
rapidly and unevenly. At last he is finished, and he has a massive,
unwieldy piece of work. The program runs, miraculously enough,
but if it needs an improvement here or a correction there, the
programmer is stuck. Where is that printer driver subroutine?
Where is the routine that updates variables? Lost in a maze of
unchecked program growth, the programmer cannot find what he is
after.

The writer of an adventure program cannot afford to be sloppy,
for at least three reasons. One is memory space. A program like
Basements and Beasties needs every byte it can find. Sloppy code is
likely to contain redundancies (that could be better organized sub-
routines) and other items of inefficiency. Speed is another factor. An
adventure program tries to do alot of processing in as short a time as
possible. Sloppy code is very difficult to streamline. Modification is
the final factor. Someone adventurous enough to write an adventure
program will eventually want to upgrade it in some way—extra
rooms, new creatures, more treasures. Sloppy code makes program
improvement a matter of more frustration than it is worth.

For these reasons, from the very start of your task, do your
programming in a very disciplined and thoughtful way. Abide by the
rules and partake of the advantages of what is known as structured
programrning.
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HOW TO BE STRUCTURED PAINLESSLY

Nothing sounds quite so ominous as structured programming.
In my mind it calls images of lengthy diagrams in obscure notation,
reams of flowcharting, and the like. It could put any would-be
adventure programmer to flight.

Actually, if you think about it, the rudiment of some sort of
program structure is right there in BASIC, staring up from the
screen. It is the line number. Think about it for a moment. In
Microsoft BASIC the programmer can use any line number from 0 to
65529 inclusive. What usually happens is that the programmer sim-
ply numbers his lines as 10, 20, 30, and so on. Then he squeezes
extra lines in between if he later needs to add program features.
Never does he utilize more than a minute percentage of the numbers
available to him.

What does this tell you? Simply this: if you have so many line
numbers that you can afford to choose them randomly, you can also
afford to choose them meaningfully. That is, you can assign certain
sets of line numbers to certain tasks. Then, if you ever need to make
changes, you know where to check the listing. Instead of scratching
your head and mumbling, “Hmmm, I think that routine was on line
639, or 369, or something like that,” you can know “That routine was
an initialization task; it is somewhere between 0 and 99.”

The first key to structured programming is putting the line
number to work for you. Use it, as in the example above, to organize
your program for easy readability. Later, you'll see how it will help
you speed up those important references to DATA statements.

The second key to structured programming has to do with
program flow. By this I mean the use of forethought in how a
program gets its work done. If you look closely at the flow of your
program, you'll see that there are many tasks that it handles simi-
larly, many repetitive paths. When you know what these are, you
can write the program so that there are sections of code that serve
for many of the program’s functions, not just one. That creates an
efficient, compact program—just what you need with only 16K of
available memory. There are two features of Microsoft BASIC that
make this sort of streamlining possible. One is the GOSUB-
RETURN feature, which gives you the ability to call subroutines.
The otheris the ONX GOTO feature, the ability to jump to handlers.
I take full advantage of these methods in Basements and Beasties.

Now, lest I stray too far into a general treatise on programming,
let's get back to your adventure program.
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WATCHING THE FLOW

Have you ever seen those drain cleaner ads on TV, the ones
with the transparent drainpipes? It is very easy to follow the flow of
the plumbing system if you have clear-plastic pipes. Wouldn't it be
nice if programming were like that? You could tell what sections of a
program get the most work-out.

Figure 3-1is a transparent-drainpipe illustration of the flow of an
adventure program. This sort of diagram is most helpful in dividing
the program into logical sections to simplify construction. Let’s
consider each pipeline and the part it plays.

The first section of the program is the initialization routine.
This portion of the code is executed only once and serves to set the
scenario to some predetermined starting state. What sorts of things
are involved in the initialization procedure? For one thing, any string
of numeric variable arrays must be created and sized properly. Then
those variables need to be set up to simulate the scenario properly.
The player-location variable must be set to the home-base room
number, for instance.

Several additional blocks of program code are made available to
the initialization routine to simplify the process. These are DATA

( INITIALIZATION )

v
v

| =—— =)

EXECUTIVE

Fig. 3-1. Transparent drainpipe view of the program flow.
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statements that contain the values necessary to preset those vari-
ables and arrays. One such is the obstacle initializatiors block. The
initialization code reads the values from this block and loads them
into the array known as the obstacle list (remember, the one that
deals with doorways and creatures). A second is the object initializa-
tion block. This contains all of the starting locations for all objects in
the scenario, which are loaded into the object status array. A third
block is the room initialization block. This is used to fill the room
status array, which indicates which rooms have been visited and
which remain unvisited.

One question that arises is this: why have along DATA list tofill
the room status array? Don'’t all rooms start off as unvisited? Can’t a
simple program loop be used to fill the room status array with zeroes
for this purpose? The answer to this question is future expansion. It
is conceivable that in the future there may be other status factors you
will need to keep track of for rooms. It makes sense to allow for
specific values to be loaded into the array, even though in this first
version of the program all elements equal zero. Remember that a
room status value could be broken into several digits in the future;
digit 1 could stand for the visit/nonvisit flag. Other digits could
represent other status flags. Accept for the moment that this may
prove helpful at some future date.

Now that the scenario has been initialized, the game canbeginin
earnest. The next section of code is called Executive. It is named this
because it is the part of the program primarily responsible for the
execution of the game; all other parts are subservient to it or
eventually loop back to it. (You'll notice how the many other
pipelines in the program return to the Executive sooner or later.)
The executive has two subsections. One is the description subsec-
tion. This routine describes the room in which the player stands,
including objects and enemies that may be nearby. The other is the
command subsection. This routine accepts input from the keyboard
and interprets the intent of the player.

Two DATA blocks are used by the description subsection, and
if your memory is clear, you should be able to tell me which ones. One
is the room description block. This holds the long and short descrip-
tions for each room, one DATA line per room. The other is the object
description block, which similarly, has one DATA line per object and
holds the long and short descriptions for objects.

There is another DATA block, one that comes into play every
time the player enters a command. That is the word fable. Essen-
tially, it consists of the basic vocabulary of the adventure program,
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together with corresponding numbers to help define the input word.
The command subsection searches through the word table every
time a word is entered. If the word is not in the table, the interpreter
cannot respond intelligently and must prompt the player for more
information.

The next level of code is the row of program units below
Executive. These are called handlers. There is one handler for each
sort of function possible in the adventure program. The command
subsection of Executive decides which handler is selected and
executed. For instance, if the player types “INVENTORY,” the
command subsection scans the word table for that word. Upon
finding it, the interpreter also reads a number in the table that
specifies which handler to execute. Some words are synonymous
and invoke the same handler. It is easy to see how the program
capabilities can be expanded with this scheme. The programmer
simply adds a new key command word to the word table and a
handler to perform the new function. The remainder of the code is
unchanged, but now the adventure program recognizes a new com-
mand. (See how structured programming reduces perspiration in
program improvement?)

The particular handlers for motion makes reference to an all-
important DATA block which was created in the last chapter. This is
the travel table, which contains the entrance and exit information for
each and every room. This motion handler and the travel table
probably get the most workout of any section of the program code
except for the command subsection of the Executive.

Two final divisions of the adventure program serve all handlers
and even the Executive. The first of these is a DATA section called
the message block. For many handlers there are special messages
that need to be displayed to indicate the status of that handler. If you
walk into a wall, a message says, “YOU CANNOT GO THAT
WAY!” If you walk off a cliff, a message says, “YOU FALL TO
YOUR DOOM . . ..” There are literally dozens of such simple
one-liners that must be kept on file for use.

The last division contains all subroutines called by the program.
There is a subroutine to locate entries in a DATA block. There is a
subroutine to analyze the travel table. There is a subroutine to
change the status of an entry in the obstacle list. Many other
often-called functions are located in subroutines, all of which reside
in a large common pool.

Now let’s stand back and look at how these many program
divisions are positioned with respect to BASIC line numbering.

43



PROGRAM STRUCTURE
LINE NUMBERS PROGRAM SEGMENT
—_— —
0-99 Initialization
100-199 Main Executive
200-999 Handlers
1000-1999 Subroutines
| 2000-2999 Room Initialization Block
3000-3999 Obiject Initialization Block
4000-4999 Qbstacle |nitialization Block
5000-5999 Travel Table
6000-6999 Word Table
7000-7999 Message Block
8000-8999 Object Description Block
9000-9999 Room Description Block

Fig. 3-2. How to assign specific program segments to specific ranges of line
numbers.

Figure 3-2is the program structure listing for an adventure program.
Notice that initialization code (which is executed earliest) is first in
the program structure. It may reside anywhere among the line
numbers from 0 to 99 inclusive. (I follow the practice of using even
line numbers within a block. Basements and Beasties initialization
runs on lines 2, 4, 6, 8, and so on.)

Executive is next, then handlers, and subroutines. Notice that
more room is given to handlers and subroutines than Executive,
since those two sections are more likely to expand. (Of course, you
still never come close to using hundreds of available line numbers.)

Next, in multiples of thousands, are the DATA blocks. First are
those three blocks used only in the initialization procedure. Then
come the two tables for vocabulary and room pathways. Finally,
there are the three text blocks, with messages, room, and object
descriptions. You'll discover that these text blocks are the real
memory-hogs of the program.

GRAB THE DATA AND RUN

Of the above twelve program sections, eight are blocks of data.
That means they contain long lists of numbers or words placed on
BASIC lines separated by commas and preceded by the DATA
keyword.
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You may not have realized it before, but getting data out of
BASIC DATA statements is rough. There are two BASIC com-
mands that relate to the process. The first is READ. Each time it is
executed, one item of DATA is obtained and placed in a desired
variable. The next READ instruction gets the next item, until all
have been read. The other command is RESTORE, which starts the
READ process over again at the very first item of the very first
DATA line in the program.

This is all very well and good up to a point. Whatif, in a DATA list
of 300 items, you want item 173? There is only one way to get it in
BASIC: do a RESTORE, then run a loop that executes READ
commands for 173 iterations until item 173 is read. Now, suppose
you want item 160. Can you read backwards to get it? Can you jump
to that item somehow? No, you must start all over with a RESTORE
and READ, READ, READ until you find it. The problem, then, with
BASIC DATA lines is that they require sequential access, that is, all
items must be read in sequence without skipping any.

You may ask, “So what? I'll just set up a simple FOR-NEXT
loop to do all of those useless READs.” Fair enough; but consider
the problems. The first is time. Your adventure program will muddle
along like a turtle if it has to read through all those DATA items
sequentially. (Remember that two-thirds of the program consists of
data.) Then, too, you'll need to calculate how many loops to do. If
you want item 17 in DATA block 4, how many loops do you need?
You have to start at the first block and read it, whether you needit or
not, thanks to the RESTORE command. To get that item, you must
add 17 to the total lengths of the other three blocks. That's work!

One final difficulty is that the data may be numeric in one block
and a string in another. If you try to do READ A repetitively, that is,
if you try to load the data into numeric variable A, the program
crashes if your loop crosses a block with strings of letters init! Again,
the reason is that you can't be choosy in BASIC. You can't skip a
block under any circumstances.

One common way out of this mess is to create a huge variable
array and read all of the DATA elements into it. Accessing individual
items then becomes easy. The problem with this typical approach is
memory space. Essentially the programmer ends up using twice as
much memory as the data actually requires! This sort of waste is
impractical. It would seem that the limitations of BASIC force us to
accept difficult data access or face scandalous memory demands.

Ah, but necessity is the mother of invention. BASIC, after all, is
only a program itself, with memory locations that control how it

45



operates. What you need to dois come up with a way to skip around
through DATA blocks so you can read what you want to read.
Somewhere in RAM memory, BASIC keeps a DATA pointer run-
ning that tells the READ command where to read. With a bit of care
you can change the value of this pointer to suit your own purposes.
To do that, though, you need to understand how DATA statements
are stored in memory.

Figure 3-3 shows the format of a DATA statement as it is stored
in memory. Notice the following six elements of the format:

®A zero, which separates the DATA statement from the previous
statement.
® A next-line pointer, which, coded in two memory locations, gives
the memory address of the corresponding nextline pointer of the
next BASIC program line.
®A BASIC line number, which is the line number coded in two
memory locations.
@A 136, which is the BASIC code for the word DATA
@A list of items, each separated by a comma, which appears in
memory as a 44
®A zero, the separator between this line and the next BASIC line,
which is just element 1 again

At first some of these numbers in memory take some getting
used to, but some simple conventions apply. First, remember thatin
a 16K TRS-80 all BASIC programs occupy the RAM locations from

POINTER |NUMBER

T T T
O NEXT-LINE[BASICLINE 136 [DATAITEM] 44 DATA ITEM %élTEM Q

1 i ]

\ | L A |

BASIC LINE 3 TS THE ASCT

NUMBER CODED CODE FOR A
IN TWO BYTES SEPARATING COMMA
ADDRESS OF THE EIRST DATATTEM SOME

NEXT LINES NEXT- INDETERMINATE

LINE POINTER" NUMBER OF BYTES

13515 THE BASIC 7ERO BYTE MARKS THE
ZERO BYTE TOMARK CODE FOR THE END OF THIS LINE AND

BEGINNING OF LINE KEYWORD "DATA" THE START OF THE NEXT

Fig. 3-3. How a DATA statement with its individual items is stored in mem-
ory.
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®FORMULA 1: GIVEN H AND L,
INTEGER | = Hx 256 + L.

®FORMULA 2:
GIVEN INTEGER |,

ADDRESS BYTE H H = FIX(1/256)

X +1 (0-255) (THAT IS, 1/256 ROUNDED
DOWN TO THE NEXT
INTEGER)

ADDRESS BYTE L

X (0-255) L=1-Hx256

Fig. 3-4. Two-byte code for storing integers.

17384 to roughly 32767. (For owners of the Model I this starting
location is 17128.) The content of 17384 is a zero and corresponds
to the first element above. It indicates that a BASIC program line
follows.

Now, the next-line pointer is in a two-memory-location code, as
shown in Fig. 3-4. To calculate the address, multiply the contents of
the second memory location by 256, and add the result to the
contents of the first memory location. Using this number (which is,
of course, between 17384 and 32767), BASIC can tell where each
successive line is located in memory. The next-line pointer at the
beginning of line A gives the memory location of the pointer in
subsequent line B, and so on. The next-line pointer in the very last
line of a program is set equal to zero, as a flag to indicate the end of
program.

When BASIC is first told to read through a series of DATA
statements, it sets a data pointer to the address of the zero that
precedes the very first DATA line. Each time a READ statement is
executed, this pointer is moved forward, past the piece of data just
read, to the comma before the next piece of data. When the last piece
of data in that line is read, the pointer points to the zero that marks
the end of the line. The next READ causes the pointer to advance,
searching for another DATA line and a comma to stop. All DATA
lines are read in this manner, until no more data remains. Then, any
attempt to read causes an error message. The data pointer in
memory always points either to a commaina DATA line or to a zero
preceding a line.

The TRS-80 data pointer is kept in the two memory locations
16639 and 16640, encoded as shown in Fig. 3-4. If you multiply the
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second number by 256 and add the first, you'll get the memory
address of either a comma or a zero preceding a line. The RESTORE
command resets the pointer to 17384, the zero at the very start of
the BASIC program.

If you know the memory address of the zero that precedes a
certain DATA line, you can put that memory address, in coded form,
into the data pointer. In this case, a READ statement does not start
at the beginning of the program; the program starts with the first
item in that DATA line—no matter where it is. Imagine that! Just by
changing the data pointer you can begin reading anywhere, skipping
hundreds of items if you wish!

The problem is how do you find out what these addresses are?
You have eight blocks of DATA statements. The first three are for
initialization and are read only once, but the last five are more
important. How can the program find the beginning of them?

Here is another benefit of structured programming. You know
the line numbers of the five important blocks. As you have seen,
each BASIC line contains its own line number in encoded form. What
you need s a routine to be placed in the initialization section that does
the following:

@®Find one at a time the first lines of each DATA block, i.e., 5000,
6000, 7000, 8000 and 9000

@Store these five all-important addresses in a numeric array for
future reference.

After this phase of initialization is completed, if a part of the
program needs to access a DATA block, it finds the proper address
in the array, subtracts one to point to the zero before the DATA line,
converts it into the proper two-byte code, and places it into the data
pointer. In Basements and Beasties the array is called DA(n), for
data access. Since you are concerned with the last five DATA
blocks, DA(x) has five elements, DA(L) through DA(5), containing
the proper pointer addresses.

Figure 3-5 gives the initialization code that creates the DA(x)
array. Let's step through it command by command and see how it
determines the proper addresses.

First, some variables are preset. The variable P is used for the
memory address itself and is incremented successively to the proper
address values. P is set to 17385, the address of the next-line
pointer for the very first BASIC program line. (Remember, 17384
fiolds the zero preceding this firsi line.) The variable N is in-
cremented from 1 to 5 to step through the elements of array DA(n).
It begins at 1.
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6 P=17385:N=1:FOR1=5000T09000STEP1000

8 IFI=PEEK(P+2)+PEEK(P+3)*256 THENDA(N
)=P:N=N+1:NEXTI:GOTO10:ELSEP=PEEK(P)+
PEEK(P+1)*256: 1FP=0THENCLS:PRINT"ERRO
R":END:ELSES

10 CT(0)=1:CT(12)=RND(10)+10:CLS

Fig. 3-5. Initializationcode that loads array DA(n) with the addresses of important
DATA blocks.

A loop s then set up, to step the variable I from 5000 to 9000 in
increments of a thousand. Naturally, I corresponds to the line num-
bers for which you are searching. Remember that the line number
for each BASIC line is stored in two-byte code early in the line. In the
loop you'll need to convert each such encoded line number you
encounter into the standard decimal value; if that value equals I,
you've found the line.

The first part of line 8 does this. Since P always points to the
first byte of the next-line pointer, the line number bytes are located
at P+2and P+3. Using our conversion formula, the valuesin these
locations are reconstructed into the original line number and com-
pared to /. If the line is found, the present value of P is saved in the
array at DA(N); N is incremented so that the next line’s address is
saved in the next array element. The loop is continued and exited
upon completion. (Line 10 is the continuation of the initialization
procedure.)

Obviously the first line number this routine encounters is not
line 5000. What happens when the line number does not matchI? In
that case the BASIC code following the ELSE is executed. P is
pointing to the present next-line pointer; now it is actually set to the
value of that pointer. The contents of the bytes at P and P+ 1 are
converted into a decimal number, and the result is placed in the
variable P. Now the search can continue, since P points to the next
available BASIC line. The routine repeats line 8 over and over again
until a line number match occurs.

Let’s review a moment. Using variable P the routine advances
through BASIC line by line using the next-line pointer bytes at the
start of each line. It looks at the encoded line number in each line,
trying to find line 5000. When it finds it, the value of P is saved in
DA(1). Then the process repeats for 6000 through 9000. The array
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DA() finally contains five memory addresses with which you can
locate your five major DATA blocks.

THE ACCESS SUBROUTINE

This part of the initialization routine does half of the work of data
access for you: it provides the location of the very start of each
DATA block. Now you need a subroutine that can make use of this
information to find specific data items. Each DATA block follows the
same basic format: it consists of several DATA lines, and each
DATA line has several items. The subroutine must do the following
things:
®Find the proper DATA block using the array DA(»)
®Find the proper row in the block, and
@®Set the DATA pointer to that proper row.

With the DATA pointer set, the main program can then use the
READ command to locate the desired item in the row. (It may then
have to doa READ loop to skip a few items; but the big skip has been
done already without any time-consuming loops.)

These three requirements, then, imply the need for two vari-
ables that must be set before the subroutine can do its job: a block
number and a row number. The biock number is a number from 1 to
5, and the row number ranges from 1 to the maximum number of
DATA lines in the selected block.

Figure 3-6 provides the code for a subroutine called Access.
(Like all adventure subroutines, it resides in BASIC from lines 1000
to 1999.) The main program calls the subroutine only after setting
two variables: the variable A is set to the DATA block number, and B
is set to the row number. After Access is complete, any successive
READ commands begin at the Bth line of DATA block A.

Access begins by finding the memory address of the beginning
of DATA block A, using the numbers stored in array DAWV). The
variable P is set to this address. Remember that this address points
to the next-line pointer of the first DATA line of that block.

What if the desired row number storedin B is 1, thatis, whatifit
is the first line of the block? If so, P already points to the proper line,
and the subroutine skips on to set the DATA pointer in line 1042. If
not, you must search for the right line. The method used is similar to
that in the initialization routine. The next-line pointer is read and
placed into variable P. Each time this is done a line is skipped and P
points to the next line. This skipping process is done as aloop from 1
to B minus 1; the loop skips the unwanted lines until P holds the
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NAME : ACCESS

TYPE: SUBROUTINE
INPUT: A

DATA BLOCK NUMBER
B

DATA ROW NUMBER
OUTPUT: DATA POINTER IS SET TO
PRECEDE THAT ROW

1040 P=DA(A):I1FB=1THEN1O42ELSEFORZ=1TO
B=1:P=PEEK(P)+PEEK(P+1)*256 :NEXTZ

1042 P=P-1:POKE16640,FIX(P/256):POKE16
639,P-FIX(P/256)*256 :RETURN

Fig. 3-6. Subroutine Access.

address of the desired line. In this way the proper row is found
rapidly.

Now all that is left is to set the DATA pointer so that the READ
statement properly reads that line. You may recall that in normal
operation the DATA pointer should point to the zero that precedes a
DATA line for the READ statement to start with the first datain the
line. Well, P already points to the next-line pointer in your DATA
line, and the zero marker is just one byte earlier. If you set the
DATA pointer to P minus 1, it is set just the way Microsoft BASIC
ordinarily does it—and READ works. Using the formula for encoding
numbers into two-byte code, P is converted and stored in memory
locations 16639 and 16640, which together form the DATA pointer.
That's it.

This Access subroutine really speeds things up. For instance, if
you need to know the short description for room 7, the procedure is
simple. Room descriptions are in DATA block 5, so you set A to 5.
The room number corresponds to the row number, so set B to 7.
Then call Access (GOSUB 1040). When it is finished, execute two
READ statements; since both are on the same DATA line one reads
the long description, one the short. In this manner you have intelli-
gently accessed data, quickly and efficiently, without the need to
read every preceding piece of data.
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Since any adventure program is at heart a data storage and
modification program, it should come as no surprise that several
other subroutines are related more directly to the kind of data
located in each DATA block. These subroutines use Access to find
what is needed. Access can thus be called (though I'll probably never
live it down) a sub-subroutine. This is the secret to any truly complex
program: simple routines to do simple tasks, other routines that use
several of the simple routines to do larger tasks, and so on upward.
The result, as you'll see, is that the Executive, the main program of
Basements and Beasties, is really rather short and sweet. Why?
Because it delegates the detail-work to layers of subroutines below
it, a sort of corporate executive routine.

Now that you have a good way of getting at data, what sub-
routines use this method? Let's look at a few.

GET THE MESSAGE

One function involving quick data access is the printing of
special messages. You have an entire data block, block 3, devoted to
messages. Life is easier if you assign these messages numbers;
when a message needs to be displayed, Access is used to find the
right one.

Enter the subroutine called Mesprt, as in message print. Figure
3-7 gives the BASIC code for this utility, which is located at line 1100
in the subroutiné section of the program. Only one piece of informa-
tion is needed for Mesprt to work: the message number from 1 to the
maximum number of messages. Mesprt takes over from there,
locating the message (using Access, of course), and printingit on the
video screen.

The program that wants a message displayed sets B equal to
the message number and calls Mesprt (GOSUB 1100). Now, in
order to use Access, remember, Mesprt must in turn provide two
pieces of information: block number and row number. The row
number is easy, since the message number is the row number—
each row in message storage holds one message. This number is
already in B, which is where Access would like it, too. The block
number is also no problem. Special messages are located in block 3.
So Mesprt sets A equal to three, just as Access expects. Mesprt
calls Access. Now all Mesprt has to do is a READ statement, and it
has the message in hand. The message is read, printed, and that’s
et

Using Mesprt really frees the adventure programmer from
keeping track of his messages. I have seen such programs that have
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NAME ¢ MESPRT

TYPE: SUBROUT INE

INPUT: B = MESSAGE NUMBER

OUTPUT: MESSAGE (S RETRIEVED AND
DISPLAYED

1100 A=3:GOSUB10LO:READA$:PRINTAS$:RETU
RN

Fig. 3-7. Subroutine Mesprt.

messages planted all over the place, some repetitively. With
Mesprt, the programmer piles his messages in one location, and
refers to them by number. This saves work, and as you know,
programmers can use all the help they can scrounge!

FOLLOWING THE PLAYER'S MOVES

The most frequently entered commands in an adventure pro-
gram are motion commands. As he progresses from room to roomin
the scenario, the player is first and foremost an explorer. The
programmer wants these commands to take little time to execute,
but a lot goes on when the player tries to move. It takes time to find
out which room he'll end up in if he moves in that particular direction.
Obviously, that block of data known as the trave] table really gets a
work-out. With Access subroutine, you can dig out the room num-
bers you need, but it is handy to have a slightly higher level sub-
routine, one designed strictly for accessing the travel table in the
most efficient manner.

So, create the subroutine in Fig. 3-8, which is dubbed Travec,
because it finds travel vectors, which are the end destinations of
certain moves. Travec resides on line 1120 in the subroutine area of
the program. Its primary purpose is to derive destination data from
the travel table, given the present room number and the desired
direction of travel.

Remember how the travel table is organized? There is one line
of resultant destinations for each room. There are eleven elements
on each line, the first ten corresponding to the ten possible directions
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NAME ¢ TRAVEC

TYPE: SUBROUT INE

INPUT: D = DIRECTION NUMBER
ATTEMPTED (1 - 11)

OUTPUT: A = DESTINATION OF ATTENMPTED

MOVE

1120 B=CT(0):A=1:GOSUB1040:FORY=1TOD:R
EADA:NEXTY:RETURN

Fig. 3-8. Subroutine Travec.

of travel, the eleventh for the default direction when an ambiguous
motion term is used (ENTER, for instance). To find the destination,
Travec must first find the DATA line corresponding to the room
where the player is. Then it must read across the line to the element
corresponding to the desired direction.

Travec uses Access to get to the data. Access asks for two
pieces of information: variable A must be the row number and
variable B must be the DATA block number. In using the travel
table, the present room number is the important thing. Row number
equals room number in the table, so Travec sets A equal to the
present room number. (The variable CT(0) contains the present
location of the player). The travel table is block 1 of the five blocks
Access covers; so Travec sets B to 1. Then, Access is used by
executing the proper GOSUB statement.

When Access is done, Travec knows that it can read the proper
line of information, but it needs to know which of 11 elements to
locate. For this purpose the program that calls Travec must supply
one more variable, D, to specify the direction of motion. Motion
numbers 1 to 8 correspond to compass-point directions; 9is up, 101is
down, and 11 is the default motion. With this number in D, Travec
knows just how far over to read. It sets up a short READ loop,
counting from 1 to ). When the loop is finished, the destination
number is stored in variable A.

There are several other subroutines in Basements and Beasties
that use Access to get at data. These are discussed in detail in later
chapters, as their necessity becomes evident.
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SQUEEZING DATA INTO INTEGERS

Organized programmers are never wasteful. They are always
searching for neater ways to store information, they are always
interested in how to compress and compact and combine data. With
your memory limitations (most of the 16K is eaten up by text), you
likewise cannot afford to pass up a good method for data compres-
sion. If you leave it up to Microsoft BASIC to decide, the creation of
numeric variables alone will swallow the last of your memory and
hand you a nice, big OM ERROR.

The last element of methodology I need to discuss in program
structuring is variable organization. Some forethought in this regard
should save a lot of trouble when you finally type RUN and hit
ENTER.

Let’s get the simple preparations out of the way first. For one
thing, the adventure programmer must exercise discipline in choice
of variable names as he writes the many parts of his program. If you
can't remember what variable you last used, don’t simply use
another. The end result is that most BASIC code is littered with
variables from A to Z, when in many cases just a couple would
suffice.

Why is this a problem? Well, every time you introduce a new
variable Microsoft BASIC proceeds to set up memory space for it.
Three bytes of memory are set aside for every variable name you
introduce, just as housekeeping, not including the bytes containing
the actual value of the variable. These allocated bytes are unused;
they simply sit there, wasted.

A good practice is to keep track, on paper, of which variables
you are using and for what functions. Whenever you need to use a
variable, force yourself to look back at that list and see if a previously
created variable will serve. The best example of this sort of organi-
zation is in FOR-NEXT loops. Conceivably, you can limit yourself to
a few specific variables, like I, J, and K, whose sole purpose is to be
used and reused inloops. Resist the urge toleap from letter to letter.

A second rule of thumb to follow has to do with the type of
variable you use. After all, not all variables are created equal. Look at
Fig. 3-9 and compare the number of bytes involved. The most
efficient of the variable types is the integer; it squeezes a number
into that two-byte code I've already been using. The precision of
integers is poor, since no fractions are allowed; that's why the
single-precision and double-precision variables were created. Ordi-
narily, though, precision variables are for mathematics-oriented
programs. Adventure programs have no real need for hair-splitting
precision.
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Ah, but if you don't tell BASIC what you want, it'll give you
more than you bargained for! Single-precision variables are the
default type. That is, unless you specify the kind of variable you
want, BASIC assumes you want single-precision. This means an
extra couple of bytes per variable—a 40 percent increase in variable
storage space! There must be a better way.

Of course, if you want to, you can specify “integer” every time
you create a variable, by appending a percent sign (%) to the variable
name. This is a nuisance, especially since BASIC provides a quicker
means, and one that won't accidentally forget to specify a variable
somewhere. It is the DEFINT statement.

By using a DEFINT statement in the initialization section of the
program, you can prespecify certain variables as integers. The form
Basements and Beasties uses is the widest form of the statement:
DEFINT A-Z. This effectively tells Level II to treat all numeric
variables that begin with a letter from A to Z (and that is all numeric
variables) as integers. Effectively you have handed BASIC a note
that says, “We’re hurting for space, please economize.”

MAKING EVERY DIGIT COUNT

The preceding remarks on variable choice are all based on
common sense and are nothing new. Now let’s get tricky. You have
already seen that an integer can hold quite a bit of information.
Integers in Microsoft BASIC range from — 32768 to +32767. The
sort of numbers you want to store are seldom larger than 10 and
almost always less than 100. It is to your advantage, then, to
squeeze as much as you can out of one integer.

That simple integer essentially has six areas of storage that are
easily accessible in BASIC. There are five digits, (which 1 number
digit 1 to digit 5 fromright to left) and one sign place (which s either
plus or minus). There are certain limitations to how we can use these
six areas. No digits can be assigned such that the final value of the
assembled integer exceeds the limits given here. Thus, digit 5 can
never equal 4; it must always be from 0 to 3. Digit 4 can be anything
from 0 to 9, as long as digit 5is less than 3; otherwise, the complete
integer may exceed 32767. The programmer in using this sort of
data compression can best eliminate such worries by assigning digit 5
to some function in which it never exceeds 2. Otherwise, he needs to
pay close heed to other digits.

M N ~la 1 ~
The sign place only conveys cne small piece of information,

since it is only in one of two states. Still, this is useful, and it doesn’t
really affect the number that follows it. Plus, as you'll see, the sign
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place is far easier to test and change than are the individual digits of
the integer.

Assuming you wish to use the places of an integer to store small
numbers, what methods can you use? There are no BASIC state-
ments that are designed to change the digits of a number directly. So
you need to write some routines of your own—two, in fact. One
subroutine should take an integer, split it up into five digits, and store
each digit value in a separate variable somewhere for easy examina-
tion and alteration. The other subroutine should take the values of
those five separate variables and reverse the process: assemble
them into a complete integer again.

AN INTEGER DIVIDED

The routine that divides a given integer into its digits is called
Analyz, and the code for it is shown in Fig. 3-10. The variables
CT(5) to CT(11) are dedicated to the integer under examination.
When the routine is finished, the first through fifth digits are storedin
variables CT(6) to CT(10), respectively. Additionally, the signof the
integer is saved in CT(11); a 1 if positive, a — 1 if negative.

A FOR-NEXT loop is established to clear the values of variables
CT(6) to CT(10). This is because digits of some previous integer
analysis may remain and confuse the results. Next, the integer must
be converted into a form in which the individual digits can be isolated.
As a numeric variable, CT(5) cannot be studied digit by digit; no
BASIC statement exists to do this. If the contents of CT(5) is
converted into a string, the various powerful string-handling state-
ments of Microsoft BASIC can be used to split the string into its
components.

The STR$ statement can perform this conversion. In this con-
version, the entire number is changed into a string—including the
sign! For the moment you simply want to isolate the five digits; a
leading sign character would just get in the way. Use the MID$
statement to exclude the first character of the new string. (This first
character is a space if the number is positive, a minus if it is
negative.)

STR$ converts CT(5) into a string. MID$ creates another
string from this one, beginning at the second character. Then, this
string is stored in memory as B$. Now a FOR-NEXT loop can be
used to analyze B$ on a character-by-character basis. The last
characier is digit 1, and the digii number increascs fromright to left.
Remember that the number may not have all five digits, depending
on its numerical value.
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NAME @ ANALYZ

TYPE: SUBROUT INE

INPUT: CT(5) = A GIVEN INTEGER

OUTPUT: CT(6) TO CT(10) = THE DIGITS
OF THAT INTEGER, AND CT(11) =

THE SIGN

1000 FORZ=6T010:CT(Z)=0:NEXTZ:B$=MID$(
STR$(CT(5)),2):FORZ=1TOLEN(B$):CT(6+LE
N(B$)-Z)=VAL(MID$(B$,Z,1)) :NEXTZ:IFCT(
5)<OTHENCT(11)=-1:RETURN:ELSECT(11)=1:
RETURN

Fig. 3-10. Subroutine Analyz.

The FOR-NEXT loop runs from 1 to the total number of
characters in the string: LEN$ determines this limiting value. The
string is evaluated from left to right, again using the MID§ state-
ment. AsZ increments, the MID$ selects each character. VAL does
the reverse of the earlier STR$ function; the selected character is
converted into a numeric value for storage in a CT(») variable.

The left-hand portion of the equation is designed to ensure that
the proper value ends up in the proper variable. For instance,
suppose that Z equals 1. The digit is the leftmost one in the string.
But, what is it, digit 5? digit 4? That all depends on the length of the
string; so the LEN statement plays a part. If the number has five
digits, the leftmost digit is placed in CT(6+ 5 —1), or CT(10), the
variable for digit 5. This is as it should be.

After the loop has loaded all digits into separate variables, the
last remaining task is to store the sign. If CT(5) is less than zero, a
- 1 is placed in CT(11); otherwise, a 1 is stored.

The result? Now if a program attributes some significance to
say, digit 3 of a stored variable, it simply calls Analyz using a
GOSUB 1000 and then examines CT(8). That makes life easier!

AN INTEGER REUNITED

Now, suppose a program used Analyz to check a digit in an
integer, and now wants to change that digit. You need a routine to
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NAME ¢ SYNTHE

TYPE: SUBROUT INE

INPUT: CT(6) = THE DIGITS OF A GIVEN
INTEGER, AND CT(11) = THE
SIGN

OQUTPUT: CT(5) = INTEGER

1020 CT(5)=CT(10)*10000+CT(9)*1000+CT(
8)*100+CT(7)*10+CT(6):CT(5)=CT(5)*CT(1
1) :RETURN

Fig. 3-11. Subroutine Synthe.

will take all of those digits, including the changed one, and reassem-
ble them into a new integer.

This converse of Analyz is called Synthe, and it is shown in Fig.
3-11. It sets CT(5) to the value resulting from the assembly of all five
digits in CT(6) to CT(10), even if some of these are only zero. Plus,
the sign of the variable is set by the presence of 1 or — 1in CT(11).

The whole thing can be done much like Analyz, using string-
handling functions to convert the digits to string characters, then to
concatenate them, then to reconvert the new string to a numeric
value. However, the method shown in Fig. 3-11 is quicker and
simpler.

After all, each digit really represents a place value in a number.
Digit 1 is the ones column, digit 5 is tens, and so forth. So, Synthe
multiplies each digit by the proper place factor and adds the results.
Then, to set the sign, CT(11) is used as a multiplier. The final result
is stored in CT(5), and we have come full circle in integer handling.

AND NOW A STEP DOWN

Well, now we've discussed many of the fine structural points
that go into creating a tight, efficient adventure program. It’s high
time that you opened that creaky trap door and stepped down into
the gloom. How are the room descriptions displayed? What about
objects? What about attacks from hostile enemies? All of these are
part of the main executive section of the adventure program, and all
are explained in the next chapter.
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Chapter 4

Entering the Basement

§ have compared the typical adventure program to a running
grravelog, providing views of the surrounding environment as the
adventurer walks about. The program really has two states of action.
T he first state is that in which rooms, objects, and the like are
described and the program sits dormant, waiting for a command.
The second state is that in which a command is entered, a handler is
invoked and some sort of result is produced. Ordinarily, the adven-
gure program runs a regular loop between these two states.

Before the first state can be initiated, the program must
undergo some preparation. Some of this initialization was described
in the previous chapter. Before stepping down into the basement
Jet’s complete a look at the preliminaries that allow the program to
pun.

TYPE RUN AND ENTER

Figure 4-1 shows the entire initialization sequence for Base-
ments and Beasties. When you type, “RUN,” and press ENTER
these lines set up the ground rules for the execution of the main
executive.

First things first. No game program is complete without a
snappy title display. It's a shame that you cannot afford to expend
precious memory space for helpful things such as rules to the game
or playing hints. A title has to do. CHR$(23), of course, places the
display into the 32-character mode, producing large attention-
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2 CLS:PRINTCHR$(23):PRINTQLGS, "WELCOM
lE' TO":PRINTQ522,"BASEMENTS & BEASTIES

4 CLEAR500:DEFINTA=Z:DIMTX$ (4),DA(5),
RM(20),0B(16,1),BK(10),CT(12):FORI=1T
020 :READRHN(1) :NEXT:FORI=1T0O16:READOR (
1,1),0B(1,0) :NEXT:FORI=1T010:READBK( {
J:NEXT

6 P=17385:N=1:FORI=5000T09000STEP1000

8 IFI=PEEK(P+2)+PEEK(P+3)*256 THENDA(N
)=P:N=N+1:NEXT!1:GOTO10:ELSEP=PEEK(P)+
PEEK(P+1)%256: 1 FP=0THENCLS: PRINT"ERRO
R":END:ELSES

10 CT(0)=1:CT(12)=RND(10)+10:CLS

Fig. 4-1. Initialization code.

getting letters. The PRINT@statements place the title lines just
where you want them.

(A note of caution is apropos here for users unfamiliar with the
32-character display mode. The width of the letters is doubled, and
every other byte in display memory is skipped. Thus, the PRINT@
statement must be used to address even-numbered screen locations
only! For demonstration purposes try to use PRINT@with an odd
number; the word is stored in memory, but the screen refuses to
display it.)

Next, youneed to attend to a number of housekeeping functions
within the computer. Some of these have to do with the allocation of
memory. Figure 4-1 shows how BASIC line 4 handles these needs.

For instance, you need to tell the TRS-80 how much memory
space to set aside for the purpose of constructing and saving strings.
You may know that, upon power reset, BASIC goes right ahead and
sets aside 50 bytes of space for strings; this space is located in high
memory near the memory-size border. You need more than that,
though. The printed descriptions for each room have a maximum
length of 240 characters, and even the short descriptions used for
the objects tend to be at least a line long (64 characters). So line 4
contains the CLEAR 500 statement. This allocates a good 500 bytes
of working space for the few string variables used in Basements and
Beasties. CLEAR 500 aiso, of course, resets all variables, a good
thing to do as an early part of program initialization.

In the previous chapter I mentioned the need to define numeric
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variables as integers, in the noble interest of saving bytes. DEFINT
A-Z alerts the TRS-80 that every numeric variable beginning with a
letter from A toZ (in effect, all such variables) should also be treated
as an integer.

Also, any variables that you have chosen to organize into an
array must be properly sized or “dimensioned.” In the TRS-80, all
arrays begin with eleven levels of value in any direction (zero
through ten) unless the program specifically indicates otherwise.
Thus, if you refer in some line to A(3), BASIC sets up the array A(),
where » may range from zero through ten. If you never intend to use
more than a few of the elements of that array, all of the others
represent a memory waste. On the other hand, if you try to refer to
something like A(22), the result is a dimension error; you have
exceeded the predetermined size of the array.

To save space in the case of small arrays and to make larger
arrays possible, the DIM statement is used. Notice that in Fig. 4-1
the single statement DIM is used across five different arrays. In
order, the text-string array TX() is sized, then the data-access
array DA(n), then the room status array RM(z), then the object
status array OB(n, #), then the obstacle list array BK(10).

The remainder of line 4 performs the initialization of three of
these important statuses. Perhaps you recall that the first three data
blocks in the program are for the setting up room, object, and
obstacle states. Figure 4-2 shows how each of the relevant arrays

RM(X) )
, YY) 2000
1]2]3 45£ 16{17[18]19]20 DATA . ..
< < -~
OB(X.Y)

YY) 3000
1|1.12]2]3, 15.,15,16,/16, DATA
1{ol1]|o]1 1]lol1o0

“TTBK(X < 4

&) 4000

112|3|a| 5|6 |7]8]|9]0 DATA . ..

Fig. 4-2. How the major arrays are initialized from the first three DATA
blocks.
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are loaded from these three blocks. Since the data-read pointer is
reset to the very beginning of the BASIC program buffer, upon
power reset the first READ statement accesses the first DATA
statement, and subsequent READs continue through the blocks that
follow. After these initial setups, however, all data access is done
using the special methods outlined in the previous chapters: the
data-read pointer is controlled by POKE statements within the
program, not primarily by BASIC.

The initialization performed in lines 6 and 8 have already been
described in the previous chapter. When these two lines are exe-
cuted, the data-access array DA(#) contains the memory addresses
of the beginning of each of five important data blocks. These ad-
dresses are then used for quick access to the selected data block,
skipping previous blocks.

Line 10 is the final bit of preparation you need to begin the
game. Array element CT(0) contains the present room location of
the intrepid adventurer. The player begins in room 1, the home
base; so CT(0) is set to 1. Next, the counter that controls the
appearance of the tenacious creature, called Orc, must be initialized.
CT(12) is set to some random value of from 10 to 20, using the RND
function. At last the screen is cleared, removing the game title and
preparing the display for the room descriptions coming along.

DESCRIPTION

Lines 100 to 199, as you may recall, contain Executive, that
portion of the code that really gets a workout; most other sections
loop back to Executive. Figure 4-3 lists Executive in its entirety.
The first two lines, 100 and 102, constitute the description subsec-
tion of Executive. They paint the picture of the adventurer’s im-
mediate surroundings. Line 104 jumps to a section of code that
handles the activity of the tenacious Orc. The remainder of the lines,
105 to 110, are the command subsection. These lines receive input
from the keyboard, parse the command, and direct program flow to
the appropriate handler. Let's first take a look at the description
subsection.

There are three descriptive tasks for this subsection to ac-
complish:
®Describe the room itself,

®Describe any objects in the room
&Describe a tenacious enemy in the room

Consider first the description of the room itself. There are, of
course, two ways to describe a room: the long description and the
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100 CT(5)=RM(CT(0)):GOSUB1000:C=CT(6):
GOSUB1160:GOSUB1180: I FB=0ANDC=0THENCT(
6)=1:G0OSUB1020:RM(CT(0))=CT(5):ELSEIFB
=1THENN=RND(100): IFNC20THENB=5:G0OSUB11
00:GOTO0580

102 GosuBl1iuo

104 GOTO1l1l2

105 INPUTA$

106 GOSUB1060:A$=TX$(2):GOSUB1080

108 CT(5)=N:GOSUB1000:IFCT(10)=00RN=0T
HENB=7:GOSUB1100:G0T0104

110 ONCT(6)+CT(7)+*10G0T0200,220,240,26
0,280,3060,320,340,360,380,400,420,460,
480,500,520,540,560,580,600,620,640,66
0,680,700

Fig. 4-3. The Executive, divided into the description and command subsec-
tions.

short description. Which descriptive paragraph/phrase should be
displayed? The rule is, if this is the first visit to the room, display the
long paragraph. On subsequent visits, show the short phrase de-
scription. The first piece of information to check, then, is whether
this room has been visited before or not.

The room status array, RM(»), contains this information. If the
first digit of the integer stored in RM(x) is a zero, then the room has
never been visited; if it is a one, then it has been visited one or more
times. You need to check that digit; so the Analyz subroutine,
located at line 1000, comes in handy. Analyz divides any integer
temporarily placed in variable CT(5) into its five digits, which are
stored in variables CT(6) through CT(10). After using Analyz (CT(6)
contains the first digit, which would tell you which description to use.

Line 100 begins by setting CT(5) equal to the room status
integer for the present room and then calling Analyz. [Note that
CT(0) holds the number of the present room; thus, RM(CT(0)) gives
the desired status integer. ] When Analyz is finished, CT(6) is either
a zero or a one, depending on whether the room has been visited or
not.

This proves to be a convenient arrangement. The subroutine
that actually prints the room description (its name is Viewrm) prints
either the long or short form, depending on the following criterion: if
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the variable C is a zero the long form is used, otherwise the short
phrase is used.

CT(6) already meets this requirement (not by chance, I assure
you). All you need to do is set C equal to CT(6) and call Viewrm; the
proper description will be displayed on the screen.

It’s clear that you'll need to take a good look at how the room is
described, and so we must take a detour from our analysis of
Executive. Figure 4-4 gives the code for Viewrm and one more
helpful routine called Darkck. Don’t worry, I'll explain how it all
hangs together.

Before Viewrm can describe the room, regardless of long or
short description, there is one final consideration—is it too dark to
see in there? Remember that in Basements and Beasties (and in a
number of similar adventure programs) much of the action takes
place beneath the earth’s surface, in gloomy caves. Standard equip-
ment in such cases is a torch or lantern to see by (that is object 9 in
your program). Thus, there are two questions to answer: Is the
adventurer in a dark room? Does the adventurer have the torch?

The subroutine Darkck (from DARK Check) evaluates these
two questions, which is why Viewrm calls Darkck before it does
anything else. Look at line 1180. Using the following logic Darkck
sets the variable B to a one if the player cannot see his surroundings.
If the player doesn’t have the torch, and if he’s not above ground,
thenit’s too dark to see. The array element OB(9, 1) tells where the
torchis. If the adventurer is carrying it, OB(9, 1) should equal 21, the
location number for all things being carried. Then, the only two
rooms above the ground and not needing extra light are rooms 1 and
2. If CT(0), the present player location, does not equal 1 or 2, atorch
is needed. Darkck uses these comparisons and sets B accordingly.

Getting back to Viewrm, Darkck s called. If B equals 1itis too
dark to describe the room. In such a case the message “IT IS TOO
DARK ... YOU MAY FALL INTO A PIT!” is displayed in lieu of a
description. This message is message 39; all that is needed is to set
B to this message number and call Mesprt (message-print) at line
1100. The message is displayed and Viewrm returns. (Check the
previous chapter on the workings of Mesprt for review.)

If the adventurer can see, though, Viewrm continues on. The
long and short descriptions of the rooms are kept in the room
description block of data. Using Access (lines 1040 through 1042),
the specific long paragraph and shorter phrase descriptions can be
read from the DATA line and stored in two separate string variables.
The long version is stored in TX$(0), the shorter in TX$(1).
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NAME ¢ VIEWRM
TYPE: SUBROUT INE
INPUT: C

0 FOR LONG DESCRIPTION
C

1 FOR SHORT DESCRIPTION

OUTPUT: ROOM S DESCRIBED (F THERE IS
ENOUGH LIGHT; IF NOT, A
WARNING MESSAGE S DISPLAYED

1160 GOSUB1180:1FB=1THENB=39:GOSUB1100
tRETURN:ELSEA=5:B=CT(0):GOSUB1040:READ
TX$(0),TX$(1): tFC=0THENPRINTTX$(0):RET
URN:ELSEPRINTTX$(1):RETURN

NAME : DARKCK

TYPE: SUBROUTINE

INPUT: NONE

QUTPUT: B =1 IF IT IS TOO DARK TO
SEE

B 0 OTHERWISE

1180 (FOB(9,1)<>21ANDCT(0)<>1ANDCT(0)<
>2THENB=1ELSEB=0
1182 RETURN

Fig. 4-4. Subroutines Viewrm and Darkck.

Remember that Access requires two main pieces of informa-
tion: the block number in variable A and the entry number in variable
B. The number for the room description block is 5, and the entry
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number is equal to the present room number in CT(0). So Viewrm
sets these two variables and calls Access. When Access is done, the
data pointer in BASIC is at the beginning of the data line that holds
the two descriptions. They are read into TX$(0) and TX$(1) with
ease.

The final consideration is which description to use. Ah, way
back in Executive we set variable C to select the right description!
Viewrm just checks the value of C and prints out either TX$(0) or
TX$(1). That’s simple!

Reviewing what we've just seen, Executive needs to describe
the room. It calls Viewrm, which may print either a long description
or a short one—or it may choose to print no description if the room is
too dark.

One more thing needs attention regarding the room. Now that
the room has been visited, you need to change the room status array
element to reflect the fact. The digits of that element are still kept in
variables CT(6) through CT(10). You can simply change CT(6) to 1.
Then a call to the subroutine Synthe reassembles the digits and put
them into a complete integer in CT(5). (Synthe, described in the
previous chapter, is the inverse of Analyz.)

It would not be good to make this change if the room was dark
and no description had been printed. Why? Because if the adventurer
returns later, torch in hand, he just gets a short description; he was
there before, even though he couldn’t see. That would be grossly
unfair (and adventurers need all the help they can get). So, before
you change the room status to visited, ask, “Did he see anything?”
That means another call to Darkck, which sets B accordingly.

IF B is a zero, and C (which a long time ago was set to the status
of the room) is a zero, change the room to visited. In that case, set
CT(6) to a 1 and call Synthe (line 1020). CT(5) is the new room
status, and you can place this into RM(CT(()).

What if the room is dark? In that case, play a little game on the
poor adventurer. Remember the message “IT IS PITCH DARK IN
HERE... YOU MAY FALL INTO A PIT”? Well, provide him with
that chance. Using the BASIC RND function to provide a random
number from 0 to 100, give the player a 20 percent chance of falling
into a pit and being killed by the fall. The variable NV is set to arandom
number; if N isless than 20, his doom s sealed. Message 5is printed
using Mesprt (“YOU FALL TO YOUR DOOM . . .”) and the
program jumps out to a handler that takes care of dead adventurers.
This may seem cruel and unfalr, but it is merely a means to Keep
smart-alecky players from attempting to travel through the entire
scenario without the aid of a torch!
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KEEPING TRACK OF OBJECTS

Now that the room has been described, the objects come next.
Note that this includes passive creatures that do not attack unless
irritated by the adventurer. Executive relies on yet another sub-
routine for this requirement. Line 102 of Executive calls it.

Figure 4-5 shows line 1140, which is the subroutine Listob (as in
list-objects). Its task is to search through the entire object status
array, find those objects that are located in the present room, and
print their description.

By now you are probably not surprised by the first few state-
ments. It just makes sense once again that if it is too dark to see, no
object descriptions can be printed! Here we go again . . . another call
to Darkck, and a check to see how variable B has been set. Listob
returns wordlessly if the environment is too dark.

In the normal case, though, the objects are seen and Listob
prepares to describe them. The object descriptions are kept in data
block number 4, and Access is used. Variable A is set to 4 in
expectation of repeated calls to Access. The other variable that
Access expects to see, variable B, is set by the loop that follows.

In the object status array, the elements OB(x, 1) yield the room
number where the object is located. Which objects are in the present
room? AFOR-NEXT loop is set up for 16 iterations, since there are

NAME ¢ LISTOB

TYPE: SUBROUT INE

INPUT: HNONE

OUTPUT: ALL OBJECTS IN THE ROOM ARE
DESCRIBED F THERE IS
ENOUGH LIGHT TO SEE BY

1140 GOSUB1180:IFB=1THENRETURN:ELSEA=4
¢FORB=1TO16:1FCT(0)<>0B(B,1)THENNEXTB:
RETURN:ELSEGOSUB104LO :READTX$(4) : PRINTT
X$(4):NEXTB:RETURN

Fig. 4-5. Subroutine Listob.
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16 objects. If an object is not in the room indicated by CT(0), thenitis
skipped. Otherwise, itis a nearby object and needs to be described.

On such objects, a call is made to access to get the object
description. The variable A has already been set to locate the proper
data block. Access now needs the variable B to tell it which entry in
the block to point to.

Fortunately, we thought to use B in the FOR-NEXT Iloop.
Thus, B already equals the desired object number, and access has
everything it needs to seek the descriptive sentence to be printed.
When Access is done, Listobis ready to access the description with a
standard BASIC READ statement. The sentence is stored in TX$(4)
and is immediately printed. The remainder of line 1140 completes
the loop, checking the other objects.

So far the descriptive subsection of Executive has described the
room itself and listed any objects sitting around. This also covers the
dormant creatures. Now, what about the real fiend of the scenario,
the tenacious creature Orc?

ROAMING MONSTERS

The final descriptive task of the Executive is to alert the ad-
venturer to the existence and attacks of the tenacious creature Orc.
This creature is unique in that it does not simply pose an obstacle to
getting through a given door. Nor does it sit there, refusing to bite
until threatened. The tenacious creature Orc as its name implies,
never gives up. Once it finds you, it will follow you from room to
room, until either you or it is laid to rest. It attacks randomly and just
as randomly may succeed in killing the stalwart player. The BASIC
code controlling this creature’s activity is located in Executive.

Figure 4-6 shows the routine for the tenacious creature, Orc.
Three variables are used to control the appearance and activity of the
foul beast. Array variable OB(0,1), an unused element in the ohject
status array, is used to store the room location of the Orc. Variable
0OB(0,0), onthe other hand, is a flag. Ifit equals zero, the Orchas not
yet stumbled upon the adventurer. If it is a one, the Orc and the
player are in the same room. Finally, variable CT(12) is a counter
used to control how often the hero runs into the Orc.

How does the Orc find the player? There are many ways this
can be done. For instance, I had one version in which a random
number generator bounced the Orc from room to room, until he
landed on the plaver. The prohlem with this approach, and several
others like it, is that it was too random. The Orc might never appear
in some rounds; in others, he’'d keep popping in every other move!
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112 (FOB(0,0)=0ANDCT(0)>2THENCT(12)=CT
(12)-1:(FCT(12)<=0THENCT(12)=RND(10)+1
0:08(0,1)=CT(0):0B(0,0)=1:GOTO116:ELSE
105

114 (FCT(0)<3THENOB(0,0)=0:GOTO105:ELS
E0B(0,1)=CT(0)

116 B=42:GOSUB1100:B=RND(100):IFB>75TH
EN10SELSEB=43:GOSUB1100:B=RND(100):1FB
>60THENB=44 :GOSUB1100:GOTO580:ELSEL05

/ R
gi @ 4-6. Routine governing the tenacious creature Orec.

Clearly, he must have limits placed on his random wanderings.

In this version the variable CT(12) is a counter that is set to
some random number between 10 and 20. This counter is dec-
remented with every move made by the player. When it runs out,
th e player meets the Orc! You may choose to change the frequency
of meeting, but the concept itself works well.

Let’s follow the routine. The first task is to decrement that
counter, CT(12). The counter should be decremented under two
conditions only. First, the Orc and player should not yet be together,
gince that is what the counter is preparing for. Second, the player
should not be in room 1 or 2, since these are above-ground rooms
and Orcs hate the outdoors! OB(0,0) is the flag that satisfies the first
qualiﬁcation, CT(0) the other. If the player is above ground, or if the
Orc is with him, the rest of that line is skipped. Otherwise, CT(12) is
jessened by one.

Now, what if CT(12) finally runs down to zero? Then the Orc
appears! First, CT(12) is reset to some level, to control the next Orc

hat comes along. Second, the Orc is moved right into the player’s
room (0B(0,1), the Orc’s location, is set equal to CT(0), the hero’s
jocation). Then, the Orc chooses whether or not to attack inline 116.
1f CT(12) has not yet run out, the routine is finished for the time
peing and returns to the input portion of the program.

If the player is above ground, or if the Orcis with him, line 114 is
executed. In the first case, the Orc leaves the player alone if the
player moves above ground. Then, OB(0,0) is set to zero, indicating
that the Orcis nolonger at the hero’s throat. (This starts the counter
CT(12) back into its downcount for a future meeting.) In the second
case the Orc follows the player; so the Orc’s location number in
0B(0,1) is equated with the player’s in CT(0). Line 116 handles
possible attacks by the Orc. In line 116 three possibilities are gener-
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ated: the Orc does not attack, the Orc attacks but does not kill, the
Orc attacks and kills the adventurer.

Before these three options are juggled, message 42 is dis-
played, which warns, “THERE IS AN ANGRY ORC NEARBY!” A
random number from 0 to 100 is generated. If this number is greater
than 75, the first option above comes true: the Orc does not attack,
and the program continues on.

In the 75 percent chance that the Orc does attack, message 43
exclaims, “HE SWINGS OUT AT YOU WITH A BLACK SCI-
MITAR!” Then the fate of the duel is determined with a second
random number. A value of greater than 60 means death for our
hero. In that case, message 44 laments, “YOU ARE SLASHED IN
PIECES.” Then program control skips to a routine that provides
handy resurrection and re-entry into the scenario, Otherwise, the
program continues on to the input segment.

(I hardly need to tell creative programmers who read this
volume that these probabilities are arbitrary. You can demonstrate
your capacity either for compassion or cruelty depending on the
numbers you choose for the comparisons in line 116!)

With that done, Executive fills a portion of the screen with
descriptive material. It now awaits input from the player, who
doubtlessly would like to swing his own sword at the Orc before the
percentages backfire. The command subsection of Executive now
comes into play.

AT YOUR COMMAND

Lines 105 to 110 constitute the command subsection. Through
this section, the one or two word phrases entered by the player are
broken down and analyzed, and the desired action is performed.

Now, there are far more elegant adventure programs in terms
of command parsing (interpretation). Some allow prepositional
phrases, adverbs, and so on. Those touches are fine—if you have
both the memory and the program speed to handle alarge vocabulary
and a number of options quickly. You're limited to BASIC and 16K.
Don’t quail: two-word commands are enough, as long as you choose
your vocabulary well,

Figure 4-7 shows the grammar we chose. Every input from the
keyboard contains one or two words, either a verb or noun by itself
(NORTH or OPEN), or a verb with a noun (TAKE DIAMOND or
GO WEST).

It is the place of word 1 to specify the type of task being
requested, so that an appropriate routine or handler can be invoked.
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1 S VNI
WORD 1 SPACE
N G NN

NN
\/"V—\/\-—*"——v—\__/
SINGLE COMMAND OPTIONAL SECOND
WORD. A SELF~— WORD WITH SPACE
EXPLANATORY AS SEPARATOR—
VERB OR NOUN USUALLY A NOUN
EX; “WAIT," "EAST" EX: "DROP AXE”

Fig. 4-7. Simplified grammar of Basements and Beasties.

For instance, if the player types in “SCORE,” a handler is called that
displays the present score and then returns to Executive.

Word 2, on the other hand, specifies the parameters relating to
the task implied by the first word. Suppose you typed “TAKE.”
What does the program do? It invokes the handler called Take, but
what object in the room should the adventurer take? The second
word removes the ambiguity by supplying additional data.

In either case the words of the command must be recognized to
be useful. This involves that dreaded trick of the programmers’
trade, the table search. A word table must be maintained in memory
so that each input word can be compared to the table elements for
identification.

The word table for Basements and Beasties comprises data
block 2. It is not enough, of course, simply to have a long list of
words; each word should have some data associated with it, to
instruct the command interpreter on how to define it. Each word in
the table is paired with an integer known as the word ID number.
Each of the digits of this integer contains information to define its
accompanying word.

Figure 4-8 gives the breakdown of the word ID number. There
are three fields of information that aid in identifying a given word.
The first is digit 5; if it is a one, the word is a valid first word term and
should be interpreted as such. Any word in the table with an ID
number of from 1000 to 19999 invokes a handler, but which han-
dler? The answer is in the field consisting of digits 1 and 2. These
specify one of 99 possible handlers that this word can imply. If you
enter the word SCORE, it is found in the word table with an ID
number of 10012. The command interpreter then knows to invoke
handler 12.
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WORD ID NUMBER
. | worp ! "
= | TvpE DEL|NEIEATOH IDENW;IFIEH
0IF EXTRA HANDLER No.
A NOUN INFORMATION (IF A VERB)
11F IF HANDLER OR
A VERB REQUIRES IT OBJECT No.
(IF A NOUN)

Fig. 4-8. Digit assignment for the word 1D number.

A third field is added, made up of digits 3 and 4. In some special
handlers extra information can be carried through this field. The
simplest example of this usage is a handler called Liners. This
handler simply gives a one-line answer to a one-word input. If the
player types “WAIT,” he gets the message, “TIME PASSES.”
Many different words can invoke Liners, but which message should
Liners print? To simplify matters the third field in the ID number
contains the message number that Liners use for that word. In the
word table the word WAIT is paired with the integer 13809. This
tells the interpreter to invoke handler 9 (which is Liners). It tells
Liners to print message 38 (which is, “TIME PASSES”). There are
other handlers that use this third field, too, but you get the idea.

Let’s get back to the first field. If it's a one, you have a valid first
word; if it’s a zero, it’s a valid second word. The handler needs some
additional information, such as the name of an object to TAKE or a
creature to KILL. In the case of a second word identification, the
second field (first and second digits) represent the ohject number to
which the word refers. (The third field is not used.) Essentially,
object names in the word table are simply paired with their numbers,
since all other digits in the ID number are zeroes.

Note, too, that many different words stored in the word table
refer to the same object; they all must be paired with identical ID
numbers. That is why the words JEWEL and CROWN both are
paired with ID numbers of 1, because they both refer to the first
object, which is the jeweled crown.

Now it is time to consider the actual code that makes use of the
word table and the word ID numbers, and see how the handlers are
invoked. Use Fig. 4-3 as a reference to the discussion.
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The first step is simple—getting the input string. The BASIC
statement INPUT A$ produces a question-mark prompt on the
TRS-80 screen and loops until the player types in a series of charac-
ters terminated by ENTER. The input string is stored in the variable
AS.

Now, think for a moment: where is the first or second word in
that variable A$? To the TRS-80 A$ is just a series of characters!
There must be a process to break A$ into one or two input words.
This process is embodied in the subroutine called Getcom. It resides
at line 1060. Figure 4-9 shows its contents.

Givena string in A$, the purpose of Getcom is to isolate the one
or two words init and place these in the variables TX$(2) and TX$(3)
as the first and second words, respectively. If there is only one word
in A$, it is placed in TX$(2) as the first word, and TX$(3) is nulled to
indicate no second word.

The key to this isolation process is the space character. If the
input string stored in A$ contains a space, it is assumed that this is
the separator between the first and second words. If there is no
space, A$ is considered to be one entire first word. Getcom must
systematically search through A$, looking for a space.

Fortunately, Microsoft BASIC contains some very helpful
string manipulation functions. The LEN(X$) function can determine

NAME: GETCOM

TYPE: SUBROUTINE
INPUT: A$ = COMMAND INPUT LINE

Li}

OUTPUT: TX$(2) WORD 1

TX$(3)

WORD 2, I[F ANY

1060 FORI=1TOLEN(A$):IFMID$(AS,1,1)O"

"THENNEXT1:TX$(3)="":TX$(2)=A$:RETURN
tELSETX$(3)=MID$(A$, 1+1):TX$(2)=LEFTS$(
A$,1-1):RETURN

Fig. 4-9. Subroutine Getcom.
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the length of the input string, so you'll know how far to search. The
MID$(X$,y,z) function can extract specific characters out of the
string for your examination.

Here's how it’s done. A loop is set up to gsearch the string from
the first to the last character. Each character in the string is com-
pared to a space. The expression MID(A$,1,1) selects one character
from A$, specifically the one that is I characters from the beginning
of the string. As I changes value, each and every character is
checked to see ifit is a space. Each time a character is found not tobe
a space, the loop continues.

If the loop runs out without having found a space, TX$(3) is set
to a null length, meaning that no second word exists in the string. A$
is interpreted as being only one word, and it is stored in TX$(2) as
first word. Getcom is finished and returns.

If a space is found, however, Getcom makes the assumption
that all of the characters to the left of the space are word 1; and all of
the characters to the right of the space are word 2. First, word 2 is
stored in TX$(3); the expression MID$(A$,I+1) extracts all charac-
ters from position + 1to the end of the input string. (Note that this
excludes the space itself.) Then, a word 1; is stored in TX$(2). The
expression LEFT$(A$ I—1) extracts all characters from the begin-
ning of the input string up to and including position/ — 1. (Again, the
space is excluded.) Getcom's task is finished; so it returns.

You may be asking, “What if there are more than two words in
the input string?” Well, think it through. Getcom makes the division
at the very first space it can find. It doesn't continue to see if there
are more spaces or words. Therefore, if you type in “KILL SPIDER
QUICKLY,” word 1is “KILL” and word 2 is “SPIDER QUICKLY.”
You'll see in a moment that the useless third word is safely ignored
when the interpreter figures out what creature is intended by the
second word.

Back to the command interpreter itself. After it calls Getcomto
divide the input string, it has a first word with which to work. The
next thing to dois to find that word in the word table, get the word 1D
number, isolate the handler number, andinvoke the handler. Simple!

The thing that makes it simple is yet another subroutine; this
one is called Idword; Figure 4-10 gives the code for it. The in-
terpreter sets A$ equal to the first word and calls Idword. Idword
takes the word in A$ and locates the word in the word table. Upon
finding the word, it sets the variable N equal to the word ID number
paired with the word.
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NAME: I DWORD

TYPE: SUBROUT INE

INPUT: A$ = WORD

OUTPUT: N = WORD D NUMBER IF FOUND
IN WORD TABLE
N = 0 OTHERWISE

1080 (FLEN(A$)>STHENA$=LEFT$(AS$,5)
1082 A=2:B=1:GOSUB1040

1084 READBS$,N:IFB$=","ORB$=A$THENRETUR
NELSE1084

Fig. 4-10. Subroutine Idword.

The first step in the process is in line 1080. Essentially, all this
line does is limit the word in A$ to a maximum length of five
characters. You may have wondered, if you looked at the word table,
why all the object names and other terms are all only five letterslong.
This is strictly to save space. It turns out that five is an optimum
length for word recognition in adventure programs; certainly fewer
than four letters causes some ambiguities and erroneous identifica-
tions. This also allows for a bit of input abbreviation. The player can
type “INVEN,"” and the program knows he is asking for aninventory.
Fumble-fingered typists lost in the heat of adventure play always
appreciate a break!

Next, Idword gets ready to begin its long reading through the
word table. The word table is data block 2, and Idword wants to
begin searching at the first entry. It sets variables A and B accord-
ingly and calls the ever-ready subroutine Access to position the
BASIC DATA pointer at the head of the table. Subsequent READ
statements access the elements of the word table.

The search performed by Idword is a good, old-fashioned se-
quential search: the word table is not alphabetically sorted. As it
turns out, the time delay involved in finding the word is not too long;
so I never wrote a fancy binary search routine. (Chapter 10 of this
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this book, however, does provide a way to use an alphabetized word
table to speed up the search.)

Sticking with the sequential search, Idword reads data in pairs,

grabbing a word into variable B$ and placing its corresponding ID
number in variable N. Then it performs a compare operation. Obvi-
ously, if B$ equals the input word A$, the job is finished and Idword
returns with the ID number still in N. But another comparison is
performed, to see if the character “.” has been read from the table.
The last elements in the word table always are a period paired with
anID number of zero. Thus, if Idword reads a period inits search, it
knows it has reached the end of the table without finding the word it
is after. Just the same, it takes no more action; it returns. The
variable N, though, now contains a zero, which is a reserved ID
number indicating a search failure. If the program that called Idword
(the interpreter) gets back an N with zero value, it knows that the
input word is not in its vocabulary, and it can respond accordingly.

Once again, back to the interpreter. Now that it has the variable
N, the interpreter can begin to break down and make use of N.

You naturally remember the subroutine Analyz, which isolates
the digits of a given integer. The interpreter places the value of N
into variable CT(5) and calls Analyz. When that routine is completed,
the five digits of the ID word reside in CT(6) to CT(10).

Now the interpreter needs to make a few decisions. What if the
player entered a single word that is not really a valid first word, like
“SPIDER?” Or what if the player typed two words, but the first is
not a valid first word, such as, the phrase “SPIDER KILL?” The
interpreter rejects both of these entries by checking the value of the
fifth digit in the ID word. That digit must be a 1 to be a valid first
word. If it is not, the interpreter plays dumb: it sets variable B to
message 7 and calls Mesprt. The result is the displayed question,
“WHAT DID YOU SAY?” The program-flow loops back to the
INPUT A$ statement, allowing a new command input from the
player.

At the same time the interpreter checks the value of N to see if
the input word was recognized from the word table at all. If N equals
zero, once again the interpreter professes ignorance and prompts
the player for another command with the question in message 7,
looping back to line 104 and INPUT AS$.

You're skeptical; I can hear you again! You are asking why the
interpreter is so dumb. After all, it should be smart enough to ignore
word order in that input example, “SPIDER KILL.” It is obvious to
dumb humans what that phrase was intended to mean: why not to a
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dumb computer? Again, it's a case of personal preference. The
command subsection of Executive can be refined to become quite
literate and comprehensive, if the programmer is willing to sacrifice
some memory space and speed.

If the program gets through these few input constraints, it
decides that it is ready to invoke a handler; the first and second digits
of the analyzed ID word, now in CT(6) and CT(7), are the handler
number. To reconstruct that number from the two separated digits
it’s necessary to multiply the second digit by ten (since it was the
tens column of the original ID number) and add it to first digit. The
result is a handler number from 1 to 99.

Many thanks to the man who first suggested that BASIC should
include the calculated GOTO. This function, in the form ON X
GOTO A,B,C, . . . Z, makes the control of program flow an easy
thing. The ON . .. GOTO statement is followed by a list of BASIC
line numbers; a GOTO occurs to the line in the list position specified
by the variable in the statement. If the variable is the handler
number, ON. . . GOTO matches that number with its location in the
program and jumps to it. (Be warned, if the variable is to equal zero,
no GOTO occurs and the next statement is executed. Also, if the
variable exceeds the number of line numbers in the list, an error
occurs.)

For a period of time, the program is under the control of one of
the handlers. Depending on the function of the handler, the flow
eventually returns to Executive at one of two points of entry. The
first is the description subsection. After the player makes a move in
the scenario, he needs to see the room into which he has moved. The
descriptive portion of Executive is the logical return point. The other
entry point is the command subsection. Some commands do not
need a second description of the immediate environment; commands
like SCORE, INVENTORY, or TAKE. After these handlers do their
task, they simply return for another command.

This, then, forms the core of the adventure program. Hereis a
bit of review on the procedure of the program from the moment you
type RUN and ENTER.

1. Initialization

® Display the game title.

®Set up variables.

@ Load object status array and obstacle table.

®Create data access array.

@Move player to Room 1, clear the screen, and reset the tenacious
creature.
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2. Executive
®Description Subsection
Describe the Room.
Describe the Objects nearby.
Describe the “tenacious” creature if nearby.
Handle any attack from the “tenacious” creature.
®Command Subsection
Input a command string.
Evaluate it as one or two words.
Look up the first word in the Word Table.
If possible, invoke a handler from that word.

All of the preceding has simply set the stage for an effective
game of Basements and Beasties. Now it's time to find out how each
of the handlers actually sustain the play. The logical starting-place is
to study the handlers that move the adventurer around. That is the
topic of the next chapter.
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Chapter 5

Traveling in the Scenario

Once the player has entered Basements and Beasties, he is placedin
a room and told what it all looks like. The initiative is left with the
player. What should he do? The command interpreter awaits input,
and a score of handlers stand ready to do the player’s bidding.

The first command an adventurer usually enters is a motion
instruction. (Obviously, he wants to get a broader picture of his
surroundings.) When he does, a handful of handlers come into play.

When traveling about in an adventure scenario, there are
primarily three sorts of travel commands you can input. These are
explicit travel commands, implicit travel commands, and magic
travel commands.

Explicit travel commands give complete information on the
direction of travel. As coveredin Chapter 2, a player cantravelin one
of ten directions, eight compass points plus up and down. An explicit
travel command tells the command interpreter the exact path de-
sired. The player can type, “GONORTH,” or simply, “NORTH,” or
even “N.” In all of these cases, the interpreter knows what is
expected and can proceed to move the player along that path (as-
suming there are no obstacles).

Implicit travel commands, on the other hand, indicate only that
motion is desired; they do not specify the direction. The interpreter
must somehow perceive the direction that is intended based on the
scenario. For instance, the player can be standing near a ledge. If he
types, “JUMP,” he has not specified a direction-—but the interpreter
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assumes the direction is down. Similarily, if there is a room with only
one door, to the north, the interpreter understands the command
“EXIT” to mean the same as “GO NORTH"” in this context. Implicit
travel commands require more intelligence from the interpreting
handler.

Magic travel commands are a stock item in adventure programs
and usually come in handy in dangerous situations. These commands
usually depend on a magic word or words that are immediately
understood by the handler and produce a preprogrammed motion
response. Magic travelis typically teleportation: rather than moving
one step in a compass direction, the player is suddenly depositedina
different room, sometimes quite far from the point of origin. There
are other factors involved (such as how the destination is deter-
mined), but I'll cover those in due time.

The key to these three modes of travel lies in the handlers
associated with them. Therefore, let’s examine these routines case
by case.

EXPLICIT TRAVEL

For explicit commands of motion, there is a specific handler
termed Xmove. It is the first handler in the program area designated
for such routines, and Fig. 5-1 gives the code for it.

NAME ¢ XMOVE
TYPE: HANDLER
FUNCTION: EXPLICITLY-DEFINED MOTION

200 D=CT(8)+CT(9)*10=-1:FORK=1T010:CT(5
)=BK(K) :GOSUB1000:1FD<>CT(8)ORCT(0)<>C
T(6)+CT(7)*10THENNEXTK:GOTO202:ELSEIFB
K(K)<OTHENZ202ELSEB=CT(9):G0T0206

202 D=D#1:G0SUB1120:(FA=22THENB=4:GOTO
20L :ELSEIFA=23THENB=5:GOTO20L :ELSEIFA=
OTHENB=6:G0TO206 :ELSECT(0)=A:CT(1)=CT(
1)+1:G0T0100

204 GOSUB1100:GOTO580

206 GOSUBLLOU:GUTOLUG

Fig. 5-1. Handler Xmove.
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CODE CODE
A B DIRECTION A B DIRECTION
0 1 NORTH 5 6 SOUTHWEST
1 2 NORTHEAST 6 7 WEST
2 3 EAST 7 8 NORTHWEST
3 4 SOUTHEAST 8 9 upP
4 5 SOUTH 9 10 DOWN

Fig. 5-2. Direction code chart. Code A is used if only one digit of storage is
available for a direction.

Recall from the last chapter that the command interpreter, upon
receiving an input, isolates the first word and looks it up in the word
table. Upon finding the word, the ID number for that word is also
retrieved. Inherent in that number is the handler number that such a
command should invoke.

In the word table, there are sixteen words whose ID numbers
request the attention of Xmove. These are the following:

@®The eight abbreviated compass points: N, S, E, W, NE, SE, NW,
and SW

©The four major compass points; NORTH, SOUTH, EAST, and
WEST

@ The vertical directions with abbreviations; UP, DOWN, U, and D.

Each of these sixteen words, when entered by themselves,
result in the execution of Xmove, because each has an ID number
ending in 01, the handler number for Xmove.

(What about the use of these words with words like “GO?” A
command like “GO NORTH?” is explicit because of “NORTH.” But
the word “GO” is handled by the implicit travel handler temporarily.
You'll see this later. The explicit information is in the inclusion of the
direction word “NORTH.”)

The word ID number contains more than just the handler
number. Digits 3 and 4 have been set aside to convey extra informa-
tion, so that one general handler can respond to many individual
words with varied results. In the case of these direction words, each
ID number uses digits 3 and 4 to tell the handler what direction is
meant. Together, those digits have a value of from 1 to 10, according
to the chart in Fig. 5-2.

As in other cases of words with synonymous meanings, if a
direction word is an abbreviation of another, the two have the same
ID number. “SOUTH"” and “S” are synonyms, and both have an ID
number of 10501. The first 1 indicates that both are valid as a first
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word. The 05 indicates a southern course and the final 01 invokes the
handler Xmove.

If you review the code for the command interpreter in the
previous chapter, you'll notice that when Xmove (or any other
handler) is invoked, some information is ready for use. First, the
variable N still contains the ID number for word 1 of the input
command. Second, the variables CT(6) through CT(10) still contain
the five digits of N, isolated. Third, the strings TX$(3) and TX$(4)
contain word 1 and word 2 unchanged. All of these help a given
handler do its job.

THE DECISIONS OF XMOVE

Figure 5-1 shows the handler Xmove, which is probably the
most overworked handler in Basements and Beasties. To aid in
discussion of the code, here is a list of its tasks.

@ Check the obstacle list to see if motion in that direction is in any
way restricted.

®Check the travel table to see if motion in that direction is either
deadly or impossible.

@Perform the motion if possible and increment the counter that
keeps track of the number of steps taken.

The first task is a tough one. If the player chooses to go north,
there may be an obstacle in his way. Way back in Chapter 2, you saw
that there are two types of obstacles: active (like creatures) and
passive (like locked doors). To keep track of these, the array BK®)
with special numbers that describe where the obstacles are, what
directions they block, and more.

Figure 5-3 shows the way these numbers in BK(») are as-
signed. Digits 1 and 2 of the number tell which room the obstacle is
in. Digit 3 tells which direction is blockaded by the obstacle (using 0
through 9 as the ten possible directions). Digit 4 gives the message
number of the line that is printed if the obstacle is encountered
(message 1, 2 and 3 are set aside for obstacles).

Digit 5indicates if there is another number in BK(#) that relates
to this one and where it is (such as in the case of a door, which is
simultaneously in two rooms). Paired obstacle numbers of this kind
in BK(») are always immediately adjacent to each other; digit 5 tells
whether the other part of the pair is before it, after it, or simply
nonexistent. (Creature obstacles ccoupy only one roem, and thus
require only one number in the BK () array.) Finally, the sign of the
number indicates if the obstacle is passable or not. If the number is
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SIGN 5 4 3 2 1
STATUS LOCATION OBSTACLE DIRECTION ROOM
OF OF MATING TYPE BLOCKED NUMBER
OBSTACLE ENTRY 1-3 0-9 1-20
+ OR ~ 0-2

Fig. 5-3. Assignment of digits in elements of Obstacle List array BK(n).

positive, the obstacle is nonpassable; if negative, it is passable. (The
door can be open or closed, for example.)

Now, Xmove knows what direction is being attempted. What it
needs to do is search through every entry in BK(n). If it finds no
entries that match the room, motion is possible. If it finds no entries
that match the desired direction, motion is possible. If it finds the
obstacle is passable, motion is possible, but a match in all three areas
results in an obstacle.

Xmove begins by checking the obstacle list, BK (%), for matches
with the room and direction. The direction, remember, is a part of
the extra information embedded in the ID number of words like
“NORTH?” or “UP.” The ID number is still in variable N, so Xmove
needs to isolate that direction information.

The first expression in Xmove does this very thing. CT(6)
through CT(10) still contain the digits 1 to 5 of the ID number, and
CT(8) and CT(9) contain the direction value, from 1 to 10. The
expression CT(8)+CT(9)*10 retrieves that value, but you needit in
the form of 0 to 9, since that is the form used in the obstacle list. The
value is lessened by one, and the result is placed in D.

Next, Xmove needs to set up a loop to test each of the numbers
in the array BK(#). In order to compare specific digits in those
numbers, each and every element needs to be broken down, using
the subroutine Analyz. So, a loop must fetch a number from BK (%),
place it in CT(5) for analysis, call Analyz, and then do the desired
comparison. Xmove uses a FOR-NEXT loop with the variable K;
there are ten entries in BK(#); so the loop is set to that limit.

Each time the loop selects an entry from BK(z), Xmove tests
the entry. Is the desired direction (stored in D) the same as the
blocked direction (stored in digit 3, or CT(8), of the obstacle
number)? Also, is the present room (stored in CT(0) as always) the
same as the room where the obstacle is? (The expression
CT(®)+CT(7)*10 recreates the room number from digits 1 and 2.) If
not, the examination loop continues with another entry from the
obstacle list. If no matches are found, program control goes to line
202, which checks for other travel restrictions.
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What if an obstacle match occurs? In that case there is still a final
question: is it passable? Sure, there’s a door here—but it may be
open! The way to checkis to see if the number is less than zero. If so,
the obstacle is passable and can beignored. If not, the obstacle poses
difficulty and motion is prohibited.

Digit 4 of the obstacle number contains the message number to
be used in printing the explanation for the difficulty. In Basements
and Beasties, this digit is a 1 for creatures, a 2 for steel grates, and a
3 for doors. Message 2, for instance, says, “THE GRATE IS
CLOSED AND LLOCKED."” Line 206 calls Mesprt to display the line
and then returns to Executive.

(An obstacle can be made passable, of course, if you know how.
Commands like UNLOCK for doors and KILL for creatures are
discussed in their proper chapters.)

CHECKING THE TRAVEL TABLE

This is all very well and good. Perhaps there isn’t any locked
door in the way. Now Xmove must consult the authoritative travel
table, the map of the scenario. From it, the handler can tell what
room is the destination of the desired direction, or if that direction
leads to some sort of horrible doom.

Figure 5-4 gives a small portion of the actual travel table, which
is data block 1. Inits entirety, the table has twenty lines, one for each
room. For each line, there are ten numbers, plus an extra that is
used by another hander for implicit travel. These ten numbers
correspond to the ten possible directions. Each number is the
number of the room which is the destination of a move in that
direction. Thus, if aroutine needs to know where the player will end
up if he is inroom 3 and tries to go southeast, it is simple. It finds the
third line (for room 3) and the fourth number (for the fourth direction,
southeast). The table says that the player will end up in room 10,
provided no obstacles are in the way.

Wait a moment! What are all of those zeroes in that line? There
isn't aroom 0, is there? True. In addition to travel resulting in arrival
at aroom, travel can also result in no motion—because there may be
awallin that direction. The room number zero represents a wall, and
any attempt to move in that direction results in the message, “YOU
CAN'T GO THAT WAY.” Plus, travel can result in death, if the
player falls off a cliff or steps into a wall of flame. The unused room
number 22 represents death by falling and 22 represents death by

fire. If the player moves in a direction indicated by a 22 or 23 in the
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Fig. 5-4. The first several lines of the travel table as it is stored in a DATA
block.

travel table he dies, and a special handler called Resur (for resurrec-
tion) is called to give the player a new start.

To help Xmove search the travel table for these all-important
numbers, there is a subroutine called Travec (for travel vector).
Given a direction number from 1 through 10 stored in variable D,
Travec finds the destination number in the table line for the present
room and returns with that number in variable A. Xmove already has
the direction number in D in the form 0 through 9; it adds one to D
and calls Travec. (Check Chapter 3 for the discussion on Travec and
how it uses Access to locate the numbers.)

Since A has been set to the destination number, it is easy to
compare A to the three special case numbers, 22, 23, and 0. In the
first two special cases, a death-notice message must be displayed.
The variable B is set to message number 4 (for a fiery death) or 5 (for
afalling doom), and Mesprt is called. Then the special death-handler
Resur is executed from line 204. If the destination number equals
zero, then the message number for “YOU CAN'T GO THAT WAY”
is placed in B and Mesprt is called. The handler loops back to the
command subsection of Executive to receive a new command.

If Xmove has managed to elude all of these special cases, then
the motion finally takes place. CT(0), the room number is changed to
A, the destination number. At the same time, the variable CT(1) is
increased by one. CT(1) is the counter that records the number of
steps taken, which is always of interest to players trying to get
through the basement in the minimum number of steps. Xmove then
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terminates by looping back to the description subsection of Execu-
tive, so that the adventurer can see his new location.

See how complex mere motion can be? And that’s only explicit
travel.

IMPLICIT TRAVEL

Implicit travel comes into play with motion words that do not
specify the intended direction of travel. For these words, thereis a
second handler, called Imove (for implicit move). Figure 5-5 shows
the entire BASIC routine.

Imove is handler 2. In the word table there are presently five
words whose ID numbers request the execution of Imove. These
are IN, OUT, GO, ENTER, and EXIT.

Strangely enough, all five have identical ID numbers. The
question that comes is this: how is Imove to know which direction to
infer from those words? None specify extra information in their ID
words.

The answer is found in the travel table. Remember that for
every room there is a line; and for every line there are ten regular
destination numbers, plus an unused eleventh number. That
eleventh number now comes into play as the default direction. It is
not a room number; it is a direction number from 0 through 9. In any
case in which direction is not explicit, this default direction number is
used.

Consider the case of room 1, the above-ground pit, which has a
hole in the ground leading to the basement. Down is the default for
room 1; so that IN or ENTER result in the logical motion of entering
the hole. True, EXIT and OUT do not fit, and GO could be inter-
preted in any direction. What the default direction does is limit the
amount of code necessary to handle implicit travel. Without it, for
every room there would need to be a separate number for each
implicit word used. There are some possible compromises, but for
the moment this method of choosing direction works quite well.

Imove is understandably quite simple. There are three cases in
which it is executed. In the first, the implicit-travel word can be input
alone, as in GO. In the second, the implicit-travel word may be input
paired with another implicit-travel word, as in GO IN. In the third,
the implicit-travel word can be input paired with an explicit-travel
word, as in GO NORTH. Imove can handle all three cases.

The first case is evaluated firet. If the player merely types in
“GO,” there is a word 1 with no word 2. Thus, the string TX$(3),
which holds word 2, is empty. Imove checks to see if TX$(3) is null.

88



NAME: IMOVE
TYPE: HANDLER
FUNCTION: IMPLICITLY-DEFINED MOTION

220 (FTX$(3)=""THEND=11:GOSUB1120:N=A*
100+10101:GO0TO108:ELSEA$=TX$(3):G0T010
6

Fig. 5-5. Handler imove.

If it is, Imove seeks out the default-direction number. Setting the
variable D to 11 and calling Travec, the default-direction number is
obtained in A. From this number it creates an artificial ID number,
the sort of ID number that an explicit-travel word might have. The
expression A*100+10101 results in an ID word that requests the
explicit handler Xmove and specifies a desired direction of 1 through
10.

Finally, Imove injects this artificial ID number into Executive at
line 108. At that point Executive acts as if it had received an
explicit-travel command and proceeds accordingly.

If two input words are used, the second word is placed in A$. It
re-enters in Executive at line 106. At that point, Executive acts as if
only one word, the second one, has been input. In the case of GO
NORTH, Executive now sees NORTH and has no trouble knowing
what to do. In the case of GO IN Executive sees IN and eventually
requests Imove again, which uses the default direction.

That takes care of two of the kinds of travel possible in the
adventure program. There remains one more to consider.

MAGIC TRAVEL

Magic travel in adventure programs is usually included to help
the player out of some sort of a trap or to provide a way to complete
the game in the least possible steps. At root, magic travel permits
the adventurer to circumvent the standard rules of scenario motion
and make a sizable leap into a far distant room, ignoring any walls or
obstacles that may be in the way.

This sort of travel is accomplished by the use of a magic word of
some sort. Part of the challenge of an adventure game is to find out if
magic travel exists and what word triggers it off. Perhaps the word is
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written on a wall of one of the rooms. Maybe it is in a hook. Maybe
one of the creatures said it at times. Whatever the case, the word is
hidden somewhere and must be unearthed.

In Basements and Beasties, as you'll find, the magic word is
written in ashort poem on the wall of Room 6. If the player enters the
command READ, he hears the poem. The magic word is
AARDVARK (don't ask me why; it just sounded right). There are
two ways of using it. The player can enter the command “SAY
AARDVARK,” and get magic travel. The player may simply type in
the word “AARDVARK,” and it will still work. There are limitations
on the effectiveness of the word, as we'll see shortly.

Right off the bat, you can see that you need three handlers to
support the use of magic travel as it has been described. You need:

©One handler to recognize the word READ
@One handler to recognize the word SAY
®One handler to recognize the word AARDVARK

The first handler to examine is the handler called READ. It
starts at line 400. Figure 5-6 is the listing.

There are two cases in which the player might use the command
READ: either when he is in room 6 or when he is somewhere else
(how simple). In the room description for room 6, the player is
informed that an oracle “HAS LEFT A MESSAGE ON THE
WALL.” There is no reading material anywhere else in the base-
ment. You can expect only two responses to the command READ. If
the player is inroom 6, he hears the poemrecited. Ifhe is elsewhere,
he hears nothing of interest. The handler READ, then, should be
able to determine where the adventurer is and be prepared to print
one of two messages depending on the location.

NAME: READ
TYPE: HANDLER
FUNCTION: READING OF SPECIAL

MESSAGES
400 (FCT(O0)<>6THENB=32:GOTOLO2:ELSEB=3
3
402 GUSUB1100:GOUTOL1UL

Fig. 5-6. Handler Read.
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NAME : SAY
TYPE:  HANDLER
FUNCTION: SAYING OF MAGIC WORDS

460 IFLEFT$(TX$(3),5)<>"AARDV"THENB=34
:GOSUB1100:GOTO104:ELSES60

Fig. 5-7. Handler Say.

Line 402 of READ is a call to the subroutine Mesprt, to display
the message chosen. Line 400 selects the message. If CT(0), the
present room location, equals 6, the poemis printed. The poemhasa
message number 33. In any other room message 32 is displayed:
“NOTHING HERE TO READ . .. HOW DULL!”

The poem that is displayed is no great work of art, but it does
the job:

THE DANGER HERE

IS PRETTY THICK.

BUT SAY AARDVARK
YOU'LL GET OUT QUICK!

It should be noted, as an aside, that the poem is contained, as
are all messages, on a one-line DATA statement. But how is it that it
is displayed in four neat little stanzas like that? The secret is in how it
is typed into the DATA line. The down-arrow of the TRS-80 inserts
a line-feed into the text. When message 33 is being created, the
programmer inserts a line-feed in between each of the four sections
of the poem. The DATA statement doesn’t care, but the end result is
catchy when it is displayed.

The next handler to take a look at is SAY. First, if the player
enters the input “SAY AARDVARK,” the handler should respond
exactly as if the player had simply said the magic word by itself and
initiate magic travel. Second, if he enters the input “SAY XYZ,”
where XYZ is anything but the magic word, nothing should occur and
a message should be displayed.

The second case is checked at the start of the handler SAY, in
Fig. 5-7. If the player enters “SAY AARDVARK,” word 2, which is
kept safely in variable TX$(3), is the word “AARDVARK.” The
handler looks at the first five letters of the second word 2, just to see
if they fit this case. The BASIC expression LEFT$(X$,n) is used to
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extract the desiredletters of TX$(3). If a match does not occur (and
woe to the player who misspells “AARDVARK”), then Mesprt is
called to display message 34, which says, “NOTHING HAPPENS.”
Then Executive is re-entered.

Note that this sort of message is desirably noncommittal. It
does not say, “I DON'T RECOGNIZE THAT WORD,” even if that
second word is absent from the word table. The idea is to leave the
player in doubt as to whether or not that second word may still be
useful. In any new game experienced adventure players try to use
old magic words that they picked up from similar games. Thus, they
will type, “SAY ABRACADABRA,” or, “SAY OPEN SESAME,” or
whatever. Since this handler only states that nothing happened, it is
possible (reasons the player) that the command might work in some
different room or under different circumstances. This sort of am-
biguity prolongs the mysteries of the game.

What if he says “SAY AARDVARK?” In that case the handler
goes ahead and jumps to line 560, which is the beginning of yet
another handler. This is the handler AARDVARK (see Fig. 5-8).
Lines 560 and 562 actually determine whether the player experi-
ences magic travel or not.

The limitations of magic travel vary from adventure program to
program. In some games the player must be holding some particular
object in order to travel. In others, he must be in a specific room. In
some games, the travel amounts to a random teleportation. In
others, magic travel is limited to a two-way path between two
predetermined rooms.

In Basements and Beasties magic travel occurs between two
rooms only: room 6 and room 1. This is helpful for two reasons.
First, room 6 contains a dangerous creature who guards the only
doorway out of the room. If the player wanders into the room, he
finds a treasure and a trap! The only way out of the room is magic
travel. Second, room 1 is the bottom of the pit room, and it is the
home base of Basements and Beasties.

For any new-found treasures to be registered in the player’s
score, they must be smuggled out of the basement and up to room 1.
It is very helpful to have a magic pathway to home base; the slower
method is to travel on foot all of the way through the basement,
risking an encounter with a hungry creature.

The handler AARDVARK brings about travel between these

. M1 YTYOAN Al s een 3
itwo rooms. Checking CT®), the present room location, AARD-

VARK determines which way the travel should go. If the adventurer
is in room 6, he is switched to room 1 simply by changing the value
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NAME ¢ AARDVARK
TYPE: HANDLER
FUNCTION: OPERATION OF MAGIC WORD

560 IFCT(0)=6THENCT(0)=1ELSEIFCT(0)=1T
HENCT(0)=6ELSEB=34 :GOSUB1100
562 GOTO1lo00

Fig. 5-8. Handler Aardvark.

of CT(0). If he in room 1, he is transported to room 6. What if he is
somewhere other than room 1 or 6? If that’s the case, that ambigu-
ous message 34 is displayed: “NOTHING HAPPENS.” Again, the
player is left with the question of under what circumstances the
word “AARDVARK’ works.

TRAVELING, IN REVIEW

Looking back, you have seen the three types of travel that are
available to the adventurer, along with their associated handlers.
These are explicit travel accomplished by the handler Xmove, im-
plicit travel accomplished by the handler Imove, and magic travel
accomplished by the handlers SAY and AARDVARK and supported
by the handler READ.

Realistic travel conditions form one part of the believability of an
adventure scenario. The ability to interact with objects within the
scenario forms another. In the next chapter, you'll see how such
interaction is effected in Basement and Beasties.
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Chapter 6

Affecting the Scenario

How would you feel if you were walking around in someone’s home,
and you tried to pick something up, but it wouldn’t budge? Just when
you thought you'd gotten a good grip on that magazine, you lifted it
.. . but it stayed put. Then you tried to leave; you reached out to
open the front door . . . but it refused to open. How much more
nightmarish could it get?

A world in which nothing can be changed is an unreal world. In
order for the artificial world of the adventure program to sustain a
simulated reality, the wandering adventurer must be able to bring
about changes in it. Doors must open and close; objects must be
movable.

Two sets of input commands are implied by this requirement of
simulated reality. These are:

@® Commands to unlock and open doors and to close and lock them;
® Commands to pick up and carry objects and to drop them.

For each of these commands there are associated handlers,
tables, and arrays that are affected by them, specifically, the object
status array and the obstacle list.

BEHIND CLOSED DOORS

In order to understand how handlers that open and close doors
work, we need to review the obstacle list for a few moments.
Remember that the array BK(») contains a set of numbers that
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describe obstacles that impede the progress of the adventurer. The
three types of obstacles are doors, steel grates, and creatures.
Doors and grates are subject to the handlers under discussion now;
creatures can only be handled by battle, as described in the next
chapter.

Doors and grates are unique things, since they actually occupy
two rooms at once. For this reason, each door or grate needs two
entries in the array BK(%), one for the status of the obstacle in each
room. If a door is closed and locked, it must pose an obstacle to the
adventurer regardless of which side of the door he is on. Thus,
whatever handler opens and closes doors and such, it must be able to
change both status numbers for that door in BK(x).

In Basements and Beasties as in similar adventure programs,
there exists a key (object 11) that unlocks doors and grates. Without
this key the status of those obstacles in BK(x) cannot be altered.
Unlike other programs, however, doors and grates exist in one of
only two states: closed and locked or unlocked and open. Other
programs may permit an intermediate state of “closed yet un-
locked,” but this seemingly simple addition complicates obstacle
handling quite a bit. (That doesn’t keep you from adding it if you think
it’s worth the trouble.)

Consider first a hypothetical handler that opens doors. Such a
handler must answer the following questions:

@®Did the player tell what he wanted to open?
®If he did, is that door or grate nearby?

®If it is, is the door or grate closed?

olf it is, does the player have a key?

The handler that answers these questions and opens the door is
handler 5 and is called Open. Figure 6-1 provides the Open listing.
There are two words in the word table whose ID numbers request
the execution of Open. These are OPEN and UNLOCK. This makes
sense, because to unlock a door in this program also causes it to
swing open and to lock it implies that it is closed. Thus, the two
words can be treated as synonymous.

Open begins by checking to see if the player provided enough
information for a valid response. If the player merely types
“OPEN,” that may not be good enough; there may be two doors that
are adjacent to a given room. Open checks for this case by looking at
word 2, which is stored in TX$(3). If TSX$(3) is of null length, then
Open does not bother to proceed any further. Rather, it issues the
standard “play-dumb” statement, message 7, by setting the variable
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NAME ¢ OPEN
TYPE: HANDLER
FUNCTION: OPENING OF DOORS AND

GRATES

280 IFTX$(3)=""THENB=7:GOT0O284 :ELSEA$=
TX$(3):G0SUB1080:CT(5)=N:GOSUB1000:A=C
T(8):GOSUB1200:{FA=0THENB=12:GOTO234:E
LSEIFBK(A)<OTHENB=13:GOT0284 :ELSEIFOB(
11,1)<>21THENB=16:G0T0284 :ELSEGOSUB122
0:B=12+CT(9)

284 GOSUB1100:GOTO104

Fig. 6-1. Handler Open.

B to 7 and calling Mesprt in line 284. Message 7 simply asks,
“WHAT DID YOU SAY?” and gives the player another chance tobe
more lucid.

Assuming that the player did enter some sort of second word
along with the key word “OPEN” or “UNLOCK,” the handler tries
toidentify the meaning of that word 2. It calls the subroutine Idword,
which begins at line 1080. Idword takes the word stored in the string
variable A$ and searches the word table for it. If it is found, it returns
with the ID number for that word in the variable N. If it is not in the
program’s vocabulary, it returns with N set to zero. Open saves
word 2 in A$ and lets Idword loose on it.

When Idword is finished, Open is interested in the individual
digits of the ID number stored in N. Since this is so, it calls Analyz to
break N up into digits. Analyz takes the contents of CT(5) and places
digits 1 to 5 in CT(6) to CT(10). Open sets CT(5) equal to N, and
Analyz does the rest. Note, for the moment, that if N equals zero
(because the second word was not found in the word table, Analyz
simple places zeros in all of the variables CT(6) to CT(10).

Now that Open has all of the digits laid bare, it is interested in
only one of them: digit 3. Recall that for objects the digits 1 and 2 of
the object’s ID number represent the object number. If, for exam-
ple, you look up the word “SPIDER” in the word table, the ID
number has the value 15in digits 1and 2, because the spider is object
15 in the list of objects for Basements and Beasties.

Things ke doors and grates, however, are special. They are
not objects in the regular sense; they cannot be carried away or
dropped. Thus, there is no object number for a door or a grate.
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Rather, they are assigned a special object number of 17. Digits 1 and
2 of the ID numbers for the words “DOOR” and “GRATE” have a
value of 17. Later, you'll see that when the player tries to pick up and
carry anything with an object number of 17, the program refuses,
telling him that “IT IS IMMOVABLE.” This prevents some pretty
embarrassing program inconsistencies!

If the ID number of word 2 that Open just analyzed does not
have a useful object number, what good is the ID number at all? The
other digits do not have any designation, do they? The answer is,
yes, they do. There are three types of obstacle, remember. It can be
very useful to Open if the ID number can convey which type of
obstacle. Only for the two words “DOOR” and “GRATE,” digit 3 of
their ID number is assigned to be the obstacle type: type 2ifitis a
grate and type 3 if it is a door. (Type 11is a creature, but you don’t
open and close creatures.)

The reason that Open is interested in the obstacle type is simply
that the obstacle-type number is used in the entries of the obstacle
list, BK(n). There are two questions that Open needs to answer
from the obstacle list: (1) is there any obstacle in this room and (2) if
80, is it the same obstacle that the player wants to open or unlock?

Each entry in the obstacle list contains the answer to both of
these questions. Digits 1 and 2 of each entry give the room numbey
where the obstacle is, and digit 4 is the type number, 1, 2, or 3. So
the handler Open now must search the obstacle list and do two
comparisons. First, it must find any entries that match the present
room number, which (as always) is in CT(0). Second, of those
entries it must find any entries whose obstacle type matches the
type number presently in CT(8), the obstacle input by the player as
the second word of his OPEN command.

There exists a handy subroutine to search the obstacle list. It is
called Ckobs (as in check obstacles), and it is given in Fig. 6-2.
Essentially, it takes each and every entry in BK(#), breaks it up into
its digits, and performs these two comparisons. If it finds such an
entry, it returns with the position of the entry placed in the variable
A. If no matching entry is found, A is set to zero. Using this value 4,
Open can find and change the appropriate entries in the obstacle list,
BK®).

Ckobs begins by setting up a FOR-NEXT loop of from 1 to 10,
since there are ten entries in BK(). Each entry is broken down by a
call to the subroutine Analyz (using GOSUB 1000). The handler
Open has previously set the variable A to the obstacle type for which
itis looking. So Ckobs compares the room number and obstacle type
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NAME 3 CKOBS
TYPE: SUBROUT INE

INPUT: A TYPE OF OBSTACLE (1 - 3)

k]

OUTPUT: A

OBSTACLE LIST ENTRY
NUMBER IF FOUND

A = 0 OTHERWISE

1200 FORQ=1T010:CT(5)=BK(Q):GOSUB1000:
IFCT(6)+CT(7)*10<>CT(0)ORCT(9)<>ATHENN
EXTQ:A=0:BELSEA=Q

1202 RETURN

Fig. 6-2. Subroutine Ckobs.

with every element of BK(n). The expression CTT(6)+CT(7)*10
recreates a room number from digits 1 and 2 of the obstacle list
entry. If this value doesn’t match the present room number in CT(0),
or if digit 4 in CT(9) doesn’t match the obstacle type stored in the
variable A, the FOR-NEXT loop continues the search. If the loop
runs out without finding a match, A is set to 0 and the subroutine
returns. If a match is found, then 4 is set equal to @, the variable
used for the FOR-NEXT loop. Thus, if the fourth entry is a match, A
equals 4.

Now to answer a question you may be keeping. Awhile back, a
word-table search was made to find word 2. If a word is not found in
the word table, the handler Open cannot check the word. If a player
types in something like “OPEN CUCUMBER,” what is to keep the
handler from making an erroneous response?

Ckobs filters this out. Remember that if a word is not found in
the word table, the subroutine Idword returns a zero. This breaks
down into five zero digits. When Open calls upon Ckobs to perform
the two comparisons of room and obstacle type, a match cannot
occur. Why? Because an unrecognized word 2 would be requesting
to open an obstacle of type zero! Such an obstacle doesn't exist; no
entry in BK(») has an obstacle type of zero. So the response to a
command like “OPEN KANGAROQ" is the same as to a command
ke “OPEN DOOR” in a roem with no doors.

The handler Open now has an obstacle list entry number from 1
to 10, or zeroif no entry is found that matches the command request.
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Open begins to act on this new information. What if no such obstacle
exists? If so, A is a zero. Open tests for this and calls Mesprt to
display message 12, which reads, “I SEE NOTHING OF THE
SORT HERE!”

Next, Open must decide if the door or grate needs to be
opened. Obviously, if it is already swinging in the breeze, it is
ridiculous for the handler to go through the act of opening it all over
again. The way that Open determines this case is by referring to the
obstacle list entry. A equals the position of the entry that was found,
and BK(A) is the entry itself. The obstacle list indicates whether or
not an obstacle is passable using the sign of the entry. That is, if the
entry is anegative number, then the obstacle is passable: the door or
grate is unlocked and open. Otherwise, it is closed and locked and
needs to be opened. Open checks to see if BK(A) is less than zero,
and if it is, it calls for the display of message 13, which reads, “YOU
DON'T NEED TO.”

The final contingency is the possession of the key. Without the
key, which is object 11, no door or grate can be opened. The key
must be in the player’s possession; that is, he must be carryingit. It
cannot simply be lying nearby in the room. Open checks the object
status array to find where the key is. The variable OB(11,1) betrays
the key’s room nurmnber at that time. Anything that the adventurer is
carrying is assigned a room number of 21. Thus, the player can only
open the door or grate if OB(11,1) equals 21. If it does not, the
handler calls for the display of message 16, which reads, “YOU
HAVE NO KEY!”

Once Open manages to execute all these steps, it is ready to
unlock and open the door or grate. To do this, Open calls upon a
subroutine called Revobs (for reverse obstacle), which is given in
Fig. 6-3. Given an obstacle-list entry number from 1 to 10in variable
A Revobs performs two functions: it reverses the sign of the entry
indicated by A, and if a corresponding entry exists in the list, it
reverses the sign of that entry as well.

Note that Revobs reverses the sign of the entry. That means
that if the door or grate is closed, it will be opened. Revobs can also
close open doors. Revobs comes in handy to input commands like
LOCK GRATE. Note also that it finds a corresponding entry (if
there is one) and complements it. That way, a door becomes open
on both sides, in both rooms it connects. If there is no corresponding
entry (as in the case of creature obstacles), Revobs performs only
the first function. REVOBS also is used to make unpassable crea-
tures passable, when we discuss battle commands in the next chap-
ter.
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NAME s REVOBS

TYPE: SUBROUTINE

INPUT: A = OBSTACLE LIST ENTRY
NUMBER

OUTPUT: THE STATUS OF THAT ENTRY AND
OF ITS MATING ENTRY ({F ANY)

ARE COMPLEMENTED

1220 BK(A)==BK(A):CT(5)=BK(A):GOSUB100
0:1FCT(10)=1RETURNELSEBK(A=1+CT(10))==~
BK(A=1+CT(10)):RETURN

Fig. 6-3. Subroutine Revobs.

The first function is simple. Variable A already carries the
obstacle list entry number. So Revobs negates the variable BK(4).
The second function takes some figuring. In the obstacle-list entry
digit 5is assigned the task of telling routines whether or not thereis a
second entry, and if so, where it is. Remember that the two paired
entries for a door or grate in the obstacle list are always immediately
adjacent one to the other. Digit 5 allows three possibilities, indicated
as follows by a number from 0 to 2:

0. There is a corresponding entry immediately before this one.
1. There is no corresponding entry; this is the only one.
2. There is a corresponding entry immediately after this one.

The numbers 0, 1, and 2 were not chosen arbitrarily. Revobs
aready knows that entry BK(A) needs to be changed. Now, the
entry BK(A—1) or BK(A+1) or neither needs to be changed. Now,
the previous element can be expressed as (A—1)+2. Thus, Revobs
can use the numbers 0, 1, and 2 to identify the entry number of the
corresponding entry, if one exists.

Study Listing 6-3 to see how this is done. CT(10) contains digit
5:the numbers 0, 1, or 2. REVOBS returns if this is a 1, because it
has already complemented the sign of entry CT(A). Otherwise,
Revobs complements entry BK(A-1+C1(10)), which is the cor-
responding entry either before or after it. Then the subroutine is
ended and returns to Open, which called it.
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Someone is bound to ask this question, so I'll answer it now.
Since there are only ten entries in the obstacle list, why not use digit
5as anumber from 0 to 9, corresponding to the ten entries? Then, an
entry could specify exactly where its mate is, and the corresponding
entry would not need to be right next to the first one.

The answer is that this automatically limits the size of the
obstacle list to ten entries, with no room for expansion. The present
Basements and Beasties has only two doors, one grate, and four
creatures as obstacles. That’s really a bit skimpy. The present
system using relative location of paired entries allows the obstacle
list to be as large as need be.

The handler Open has one last task after Revobs is finished, and
that is to inform the adventurer that the door or grate has been
opened. Digit 4 of the obstacle-list entry is a number from 1 to 3,
indicating which kind of obstacle has been changed. In the message
block in memory, the messages announcing the opening of a door or
grate are placed next to each other, injust the right order to simplify
matters. Obstacle type 2 is a grate, and type 3 is a door; so the
message for the opening of a grate precedes the one for a door. The
expression 12+CT(9) results in a value of 14 for a grate and 15for a
door. Message 14 states, “WITH A CREAK, THE GRATE FALLS
OPEN.” Message 15 says, “THE DOOR SWINGS OPEN WIDE.”
Notice that in both cases, the message is the same whether the
original command was “OPEN DOOR?” or just “UNLOCK DOOR.”
Either command has the same result.

LOCK THE DOOR BEHIND YOU

The other handler that relates to doors and grates is called
Close. Itis handler 6, given in Fig. 6-4. In the wordlist the two words
whose ID numbers request the execution of Close are “CLOSE” and
“LOCK.”

In many ways, Close operates exactly like Open, with a few
simplifications. The questions that Close must answer are:

@ Did the player tell what he wanted to close?
®]f he did, is that door or grate nearby?
®If it is, is the door or grate open?

If you are sharp-eyed, you noticed the one important difference
between Open and Close (other than the end result). That is the
requirement of a key. To close and lock a door or grate, the adven-
turer does not need the key. It simply swings shut and, as the
accompanying message reads, “THE LOCK CATCHES.”
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NAME ¢ CLOSE

TYPE: HANDLER

FUNCTtON: CLOSING OF DOORS AND
GRATES

300 (FTX$(3)=""THENB=7:GOTO304 :ELSEAS$=
TX$(3):GOSUB1080:CT(5)=N:GOSUB1000:A=C
T(8):G0SUB1200:1FA=0THENB=12:GOTO30L4:E
LSEIFBK(A)>0THENB=13:GOTO0304 :ELSEGOSUB
1220:8=17

304 GOSUB1100:GOTO104

Fig. 6-4. Handler Close.

Close performs the first decision by checking word 2. If word 2
in TX$(3) is nonexistent, the message “WHAT DID YOU SAY?” is
displayed. Otherwise, Close takes the word in TX$(3) and passes it
to Idword in the string variable A$. Idword returns with the word ID
number stored in the variable N. Close calls Analyz to isolate the five
digits of the ID number. Then it takes digit 3, the obstacle type, and
lets the subroutine Ckobs determine if the obstacle intended by word
2is really there in the room or not. If not (as indicated by a value of
zeroin variable A), message 12 is displayed: “I SEE NOTHING OF
THE SORT HERE.” Finally, the sign of the entry is checked. Ifit is
positive, then the door or grate is already closed and locked, and
message 13 tells the player, “YOU DON'T NEED TO.”

If the input command stands valid after all three tests, Close
goes ahead and reverses the status of the obstacle using the sub-
routine Revobs. The opened door or grate is set to a closed condition
by the changing sign of the obstacle list entry, along with a change of
the corresponding entry in the list.

When the time comes to tell the player what has been done,
Close does not make a distinction between doors and grates, as
Open did. Rather, the general message 17 is used, which reads, “IT
SLAMS SHUT AND THE LOCK CATCHES.”

One intriguing final note should be made about the difference
between the handlers Open and Close. Open requires a key, and
Close does not, as we have seen. This means it is quite possible for a
poor, misguided adventurer to walk through an open door into a
room with only the one exit, and slam the door shut behind him, all
without a key. Both rooms 6 and 11 are traps like this, if a player is so
foolish. Room 11 does provide an out, though; the magic word
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“AARDVARK? teleports the player to freedom. Room 6 can be a
terrible place to spend the remainder of one’s game!

TAKE THE TREASURE AND RUN

Now that I've covered the specific scenario interaction affecting
doors, I can move on to the general set of commands controlling
Carrying objects. The simple actions of picking up and dropping
articles are not so simple after all. What objects are movable? How
much can the adventurer carry? Questions like these must be
answered by the relevant handlers.

Two handlers relate to the tasks of object-toting. These are
Take and Drop, and they are invoked by the corresponding com-
mand words, TAKE and DROP, followed by the name of the object.
Two other words, STEAL and THROW are synonyms with the first
two command words, respectively.

_ Let’slook at Take first. Logically, a handler to bring about the
Picking-up of objects must answer the following list of questions and
act accordingly:
® Does the adventurer already have too much to carry?
® Does the adventurer command ungrammatically?
® Does the adventurer want to take a creature?
® Does the adventurer want to take something immovable?
® Does the adventurer already have the object in his sack?
®Is the object requested either nonexistent or not in that room?

The first question has to do with the maximum amount an
adventurer can carry. In Basements and Beasties this maximum is
set strictly on the basis of quantity. An adventurer can only carry five
objects, regardless of size or shape. This is unrealistic in some ways,
but it is simpler to handle.

If the adventurer could carry more than five objects, each and
€very movable object would have to be assigned a mass number or
something of that sort. Then, the handler Take would determine its
response by adding up all of the mass numbers of the objects now
carried and comparing the result to some arbitrary maximum. If you
care to do this, it should be a simple matter to assign the unused
elements of the object status array, OB(X,0), as object mass num-
bers ranging in value from 0 to 255. Then a maximum total mass of
around 500 could be set to limit what the adventurer carries. Small
objects like the coin and the key would have mass numbers in the
50s, and heavy objects like the golden cube would have a value of
overr 100. An example of this method is provided for you in Chapter
10.
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You might ask what is the purpose of a carry-limit anyway. The
primary reason is to require the adventurer to make several succes-
sive trips into the basement in order to get all treasures out. If he
could carry anything and everything, he would make one long excur-
sion, get everything, get back to home base, and end the game. With
a maximum limit based either on quantity or mass, he must forever
fight his way back to the entrances—that adds to the challenge.

At any rate, the present version of Basements and Beasties
sets an upper limit of five objects. The variable CT(2)is set aside to
keep track of the number of articles the adventurer has. The handler
Take must check to see if CT(2) is already at its maximum of five.

Figure 6-5 gives Take. The first question is answered by
comparing the value in CT(2) with the value of five. If CT(2) equals
or surpasses the maximum, Take refuses to pick up the requested
Object. It notifies the player of this refusal by setting variable B to 36
and calling the subroutine Mesprt. This prints message 36: “YOUR
ARMS ARE FULL . .. YOU CAN CARRY NO MORE.” If CT(0) is
less than five, though, Take proceeds to consider the other ques-
tions.

The next question has to do with the player’s grammar. The
command has taken the form, “TAKE X,” where X is some word. In
order for the handler to know which object to pick up, it must try to
define that word X. It must submit that word to a search of the word
table to find it in the vocabulary.

The grammar problem is this: what if the second word in the
command is in the word table but is not an object? For instance, a
player might type “TAKE OPEN.” The word “OPEN"is in the word
table—but it is a verb, not an object. The handler should not permit
such an ungrammatical possibility.

Fortunately, the program can determine between valid objects
and verbs. Each word in the word table is, of course, paired with its
1D number. This ID number has a one in digit 5if the associated word
is averb. That is, any word with an ID number of 10,000 or greater is
a verb. Thus, the handler Take finds the ID number of the second
word of the command and checks it against a value of 10,000.

Take uses the subroutine Idword to obtain the ID number. The
second word of the command is stored in TX$(3). By setting A$
equal to TX$(3) and calling Idword, the variable N is set to the value
of the ID number. If the word is not found in the word table, N equals

The handler compares N to 9999. If N is greater, the player
entered an ungrammatical command. The result is the display of
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NAME ¢ TAKE

TYPE: HANDLER
FUNCTION: PICKING UP OF OBJECTS

240 tFCT(2)>=5THENB=36:G0SUB1100:G0T01
OLsELSEAS=TX$(3):G0SUB1080:IFN>9999THE
NB=7:G0TO2L42:ELSE{FN>12ANDN<170RN=18TH
ENB=40:G0T0O242

241 IFN=17THENB=8 :GOTO242:ELSEIFOB(N,1
)=21THENB=9:GOTO242:ELSEIFOB(N,1)<>CT(
0)0RN=0THENB=12:GOTOZ&2:ELSEOB(N,1)=21
:B=11:CT(2)=CT(2)+1

242 GOSUB1100:G0TO104

Fig. 6-5. Handler Take.

message 7, which asks, “WHAT DID YOU SAY?” If N is less than
10,000, the command s at least grammatical, though it remains to be
determined whether or not the command can be executed.

The third question is asked because of wise-guy adventurers.
Almost certainly, someone will try to pick up and carry a creature.
Before I added this consideration, I had a play-tester who could not
get past the giant mantis. So what did he do? He carried the silly
creature out of the room! After groaning longly and loudly, Iinterpo-
lated this third question.

There are, of course, two kinds of creatures: the passive guard
creatures and the more dangerous tenacious creature (the Orc).
Passive creatures have object numbers from 13 to 16. The Orc,
although his position information is kept in OB(0,1), has an object
number of 18 in the ID number of the word table. When the handler
Take finds the ID number for the object to be carried, it must
compare that number to those of the creatures.

If N, the ID number, is both greater than 12 and less than 17,
then a passive creature is intended. Or, if N equals 18, the Orc is
intended. In either case, the command is rejected by a call to Mesprt
for message 40: “YOU MANIFEST SOME PRETTY SUICIDAL
TENDENCIES, FELLA!” That'll keep them from dragging your
dragons away!

The fourth question relates to immovable objects. Every room
has a somewhat elaborate description, telling its features, its colors,
and so on. In some cases such a description may mention the
presence of some article which nevertheless is not an object. Note,
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for instance, that the description for room 14 includes the statement,
“THERE ARE COBWEBS EVERYWHERE.” Now, suppose that
the player typed in the command, “TAKE COBWEBS.” Since Cob-
webs are not an object with an element in the object status array,
how can such a command be executed? If the word COBWEBS is left
out of the word table altogether, the response to that command
would be “I SEE NOTHING OF THE SORT HERE,” which would
sound ridiculous, since the room description just said that they were
there. Yet, if you put the word COBWEBS into the word table, what
ID number do you give it? You can presumably expand the object
status array to cover all these descriptive articles, but that would be
wasteful.

To simplify the situation, all descriptive articles are added into
the word table. Rather than unique object numbers, however, all are
assigned the value 17 in their ID number. The adventure program
knows how to treat all objects 17—as recognizable, but less than
true objects.

The handler Take checks to see if the article within reach is an
object 17. If it is, the command is rejected. Unfortunately, there is
little logical ground for refusing the command. If there are cobwebs
there, why can’t the adventurer take them? So, rather than giving
any real explanation, Mesprt is called to display message 8, which
avoids the subject but remains firm: “YOU TRY UNSUCCESS-
FULLY ... IMMOVABLE!” Granted, this is less than satisfying,
but the only simpler choice is to write room descriptions that don't
even hint at furniture or articles other than legitimate objects. That
can result in a boring scenario.

The next question checks to see if the command is even neces-
sary. Maybe he already has the object and doesn’t need to take it!
How can you tell? All objects that are in the player’'s possession are
given a location of value 21. That is, they no longer reside in the room
where he stands; they reside in room 21, which is the player’s sack.
If the adventurer already has the object, the handler Take knows by
checking the object status array.

Since the variable N gives the object number of the article, the
element OB(N, 1) gives the object’s physical location. If OB(N,1) is
equal to 21, the command is rejected and message 9 is displayed:
“YOU ALREADY HAVE IT!”

The final question is whether or not the requested object is
available for the taking. There aie two cases to nandle. In one Case,
the object may be in another room altogether. In the other, the
requested article may not exist in the word table. In either situation,
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the handling is the same—the handler replies that it doesn’t see the
article nearby.

As in the previous question, since N equals the object number,
OB(N, 1) gives its location. CT(0) tells the room number where the
adventurer is. Thus, if OB(N,1) doesn’t equal CT(0), the object
simply is not there. On the other hand, if the player asked to pick up
an article unknown to the program’s vocabulary (as in “TAKE
WOMBAT?"), the variable N would equal zero, because that is the
result of an unsuccessful word table search using the subroutine
Idword. If N equals zero, or if the other case occurs, the commandis
rejected with message 12, which says “I SEE NOTHING OF THE
SORT HERE.” Note that this does not reveal the program’s ignor-
ance of the article mentioned in the command; the player may find a
Wombat elsewhere!

If the handler Take gets through all six of the above contingen-
cies it is ready to perform its function. It does this in three steps.
First, the object must be transferred into the player’s possession.
This is done by removing it from the room and placing it in the
carry-sack. The variable OB(V,1) is set equal to 21 to effect this
transfer. Second, the program must keep track of how many articles
the adventurer is now carrying. Take performs an update by adding
one to the present value of CT(2), which records his inventory total.
Finally, the player must be notified of the success of the transaction.
For this, message 11 is printed: “OKAY.” As usual, a deceptively
simple message is used, obscuring the complex decision-making that
led up to it!

That takes care of picking up objects. Now we need to examine
how objects are dropped back into the room.

DROP THAT TREASURE!

There are two key words in the word table that are treated as
synonymous and relate to the dropping of carried objects: DROP and
THROW. Both of these invoke the handler Drop, which is given in
Fig. 6-6.

The operation of Drop is similar to, but simpler than, that of
Take. There are three questions this handler seeks to answer before
it can execute the command:

® Does the adventurer command ungrammatically?
® Does the adventurer have the object in his carry-sack?
®[s the adventurer dropping the Enchanted Grenade?

All three questions depend on the object number of the article to
be dropped. Idword is therefore called to locate the word stored in
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NAME ¢ DROP
TYPE: HANDLER
FUNCTION: DROPPING OF OBJECTS

260 A$=TX$(3):G0SUB1080:(FN>9999THENB=
7:GOSUB262:ELSEIFOB(N,1)<>21THENB=10:G
0T0262 :ELSE{FN=12THENSL40:ELSEOB(N,1)=C
T(0):B=11:CT(2)=CT(2)~-1

262 GOSUB1100:GOTO10kL

Fig. 6-6. Handler Drop.

TX$(3) somewhere n the word table and to place the word's ID
number in variable N. (For objects, the ID number equals its object
number.)

The first question is handled just as in the handler Take. If the
player has used a verb as the object of the command DROP, the
value of N exceeds 9999; that is, it is 10,000 or greater, since digit 5
is set to one for verbs. If this happens, message 7 gives the player
another chance with “WHAT DID YOU SAY?”

The next question is handled analogously to the handler Take,
with converse results. In this case the command is rejected if the
player does not have the object in his possession. If OB(N, 1) does
not equal 21, the object is not in the carry-sack. Mesprt is called tc
print message 10: “YOU DON'T HAVE IT!”

The final question cannot be fully explained until the next chap-
ter; there is one object that responds very strangely to the action of
dropping or throwing, and that is the Enchanted Grenade. It’s object
number is 12; if the handler Drop finds that object 12 is being thrown,
it refers the whole affair to line 540, which is the start of the handler
called Bomb. You'll see later that a number of things may happen
when Bomb is invoked, but that is another story.

With these exigencies considered, the transfer can now occur.
As before, there are three steps. The object’s location is changed,
by setting OB(N,1) equal to the room number stored in CT(0). The
inventory total in CT(2) must be updated by subtracting one. Lastly,
the simple message “OKAY,” message 11, is displayed.

The adventurer is making gradual progress. A few chapters
back he could merely walk about and look at things. Now he can
touch those things, take them with him, and cpenandclose doors. In
the next chapter, the adventurer learns to defend himself against the
creatures that roam unchained in the dark corridors of the basement.

108




Chapter 7

Battling the Enemy

The danger factor differentiates an adventure program from a mere
Easter egg hunt. If all the adventurer has to do is wander around and
find treasures, there is no challenge! There must be something to
defy his attempts, something to hinder his progress, even to
threaten his life. That is why adventure programs have creatures.

Various programs handle their creatures differently. Some
creatures wander aimlessly about the scenario, bumping into the
adventurer at random. Some have a stationary post that they guard
continually. Some do not attack unless threatened. Others cannot be
slain by normal weapons. Battles may be decided on purely random
factors, or arecord may be kept of the combatant’s strength levels to
determine who should rightly be the victor.

Basements and Beasties has a combination of many of these
variations in its method of battle simulation. An attempt is made to
keep the algorithms simple while maintaining the illusion of an actual
struggle. There are three classes of battle in the program:

@ Attack/retaliation with certain passive creatures,
@ Special weapon against certain other passive creatures
@ Defense/offense against the tenacious creature

Figure 7-1 shows the beasts that wait in the wings. You recall
that there are really two basic kinds of creatures in any adventure
program. One type might be called passive creatures. Their main
purpose is to guard or block some passageway in the scenario. As
such, they are also bona fide obstacles and are present in the
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TYPE CREATURE WEAPON ROOM
PASSIVE GIANT MANTIS AXE 4
PASSIVE HUGE IGUANA AXE 18
PASSIVE WHITE SPIDER GRENADE 14
PASSIVE NAMELESS TERROR GRENADE 6
ACTIVE ANGRY ORC AXE

Fig. 7-1. The creatures of Basements and Beasties.

obstacle table. Other obstacles, like doors, are rendered passable by
the “OPEN" command. Passive creatures are rendered passable by
battle. They do not attack on their own, but if they are attacked, they
always retaliate. Since they are not immediately hostile, it is not
necessary for the adventurer to engage them in battle. However,
the player gains points for every creature killed, and there are
certain treasures he can never retrieve without passing a passive
creature.

To add to the challenge, not all passive creatures can be beaten
in the same manner. Of the four passive creatures, there are two
subsets of two each. One set may be engaged in the attack/
retaliation cycle and eventually slain. The other set is totally immune
to the standard weapon (the Axe), but may retaliate nevertheless.
The only way to kill these two creatures is with the Enchanted
Grenade.

Separate from the passive creatures is the much more danger-
ous tenacious creature, the Orc. Class 3 battle is called defense/
offense because the Orc attacks without provocation. He can be
killed in the usual manner (with the Axe), but he follows the adven-
turer from room to room. The player’s only escape is either to slay
the Orc or run back above ground, where the Orc can not follow.

A number of sections of code interact to support this battle
simulation. I already discussed one of these in the examination of
Executive a few chapters ago. That section handles the motion of the
tenacious creature, whether he attacks, and how successful he is.
The standard battle handler is called Fight, and it controls the
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Axe. Another handler, called Bomb controls the effect of the En-
chanted Grenade on those two creatures that have tough skin and
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are Axe-resistant. Finally, there is a handler called Resur, which is
invoked when the adventurer dies. It resurrects him outside of the
basement, adjusts the score, and handles a few other details.

FIGHT THE GOOD FIGHT

In the word table there are three words that relate to standard
battle. These are KILL, FIGHT, and SLLAY. All three are treated
synonymously and invoke the same routine: handler 7, the section
called Fight. Figure 7-2 gives the code for it.

The handler Fight answers the following questions when it is
invoked:

@]s the tenacious creature there?

®Is any passive creature there?

®[s the standard weapon at hand?

®Is the creature resistant to the standard weapon?

Assuming that a battle does ensue, Fight moderates the skirmish
according to the following set probabilities:

@®There is a 70 percent chance that the creature is killed this turn.
®If this is not a tenacious creature, there is a 30 percent chance that
the adventurer is killed in retaliation.

Note that the 30 percent retaliation figure applies only to pas-
sive creatures. The handler Fight does not cause the tenacious Orc
to fight back. Rather, Executive handles the Orc’s response.

The first question to be asked is whether or not the enemy
being challenged is in fact the Orc. Recalling the discussion of
Executive, the unused elements of the object status array, OB(0,0)
and OB(0,1), are set aside for the tenacious creature. OB(0, 1) gives
his location, and Executive moves him around randomly. As long as
the Orc is not in the same room as the player, OB(0,0) is kept at a
value of zero. If the Orc stumbles across the adventurer, however,
OB(0,0) is set to one. From then until the player either kills the Orc
or escapes to the surface, the Orc tracks the player from room to
room.

The element OB(0,0), then, is an easy way to tell if the Orc is
around. If it equals one, Fight automatically assumes that the player
is trying to slay the Orc. The handler proceeds down to the next line
to handle the other questions.

This raises an intriguing consideration. If the player enters the
command KILL, and if there are two creatures in the room, Fight
always defaults to the tenacious creature Orc first. In this way, the
player need not specify the creature’s name in the heat of battle, and
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NAME ¢ FIGHT
TYPE: HANDLER
FUNCTION: BATTLE WITH CREATURES

320 (FOB(0,0)=1THEN322ELSEFORK=13T016:
IFOB(K,1)<>CT(O0)THENNEXTK:B=41:GOSUB11
00:GOTO104

322 IFOB(10,1)<>21THENB=23:G0T0326:ELS
E1FK=150RK=16THENB=24 :GOTO324 :ELSEX=RN
D(100):1FOB(0,0)=1THEN328ELSEIFX>70THE
NB=26 :GOT0324 :ELSEOB(K,1)=0:A=1:GOSUB1
200:G0SUB1220:B=25:G0T0326

324 GOSUB1100:B=27:GOSUB1100:X=RND{100
) IFX<LOTHENB=29:GOSUB1100:GOTO580:ELS
EB=28

326 GOSUB1100:G0T0105

328 IFX>70THENB=26:G0SUB1100:G0T0112:E
LSEOB(0,0)=0:0B(0,1)=0:B=25:CT(4)=CT (4
)+25:G0T0326

Fig. 7-2. Handler Fight.

the handler is not confused by two types of creatures at once. This
assumption is not too hard to accept, since the Orc is hard to ignore,
and only a fool would waste his time provoking a sleepy, passive
creature while the Orc is leaping at his throat all the time.

The next question is whether any other creatures are present in
the room. To check this out, a FOR-NEXT loop is set up to scan the
object status array. Passive creatures are objects with numbers in
the range from 13 to 16. For each of the four creatures, it’s location is
compared to CT(0), the location of the player. The loop continues
until a match is found. If the match occurs, program control drops to
the next line for further questions. If no match occurs, i.e., if no
passive creatures are there, the loop runs out. The handler can only
assume that the poor delirious adventurer has tried to attack and kill
a rock or something. It sets the variable B to 41 and uses the
subroutine Mesprt to display the message, “SAVE YOUR STAM-
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I might add that this section of Fight was added to cover up an
embarrassing situation. I had a play-tester who sat down and found
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this flaw. He entered a room that had no creatures at all, entered the
command Fight, and suddenly, a nonexistent creature appeared,
leapt at his throat, and killed him! Programmer, beware. If you
haven’t thought out all of the possible options, your player will
stumble on a few beauties!

The third question is whether the player even has a weapon
with which to fight! The standard weaponis object 10, the Axe. Ifitis
in the adventurer's carry-sack, OB(10,1) equals 21, the location
number indicating possession. If not, the player is unarmed, and the
handler responds with message 23, which asks, “WITH WHAT
WEAPON?” Notice that this question procludes use of the En-
chanted Grenade through this handler. If the player wishes to bomb
his opponent, he must enter the specific command key word BOMB.

Even if the player has the Axe, there are two creatures with
skin too tough to harm. These are the White Spider and the Name-
less Terror, which have object numbers of 15 and 16. If the adven-
turer swings his Axe at either creature, the handler displays mes-
sage 24, “YOUR AXE SWINGS ARE DYNAMIC. . . BUT INEF-
FECTIVE!” The creature suffers no harm, but the handler con-
tinues on from that point to the next line, which controls retaliation.
Thus, a player may die in learning the secret that the Axe cannot kill
these two beasts.

With all four preliminaries out of the way, the player’s attack can
be simulated. The variable X is randomly set to some number from 0
to 100. This number provides the probability percentage for the
success or failure of his attack. Before that probability can be
evaluated, however, the program forks in two possible directions. If
the creature is tenacious, his doom or survival is handled differently
than that of a passive creature. Line 328 takes care of this; and you'll
see it in a moment.

For the passive enemy, though, the random percentage is
examined. If X is greater than 70 (a 30 percent chance), then the
attack was unsuccessful and the creature survived. If this is the case,
message 26 is displayed: “MISSED IT! FIE!” Program control
proceeds to the next line, as the creature is given a chance to
retaliate.

What if X is less than or equal to 70? If so, the Axe has met its
mark, and the handler must remove the creature. This requires a
few steps. First, the creature must be removed from the room so
that it is not described by the description subsection of Executive.
The most effective way to do this is to move it to room 0, the
“nonexistent” room. OB(K,1) gives the location of the creature,
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since if this is a passive creature, K equals its object number due to
the FOR-NEXT loop up in line 320. Setting OB(K, 1) to zero sort of
dispatches the creature to limbo.

That's not all. The passive creature is not just an object. It is
also an obstacle, with an entry in the obstacle list. The handler Fight
must change this obstacle list entry so that the player can move
freely through the passageway previously guarded by the creature.
This is done through two subroutines. The first, Ckobs, finds the
obstacle list entry of the creature. The second, Revobs, toggles the
status of the entry from unpassable to passable. (A more detailed
description is available in the previous chapter.)

The subroutine Ckobs, located at line 1200, needs to know the
obstacle type and the present room number in order to find the
entry. The room number is always in CT(0); the obstacle type must
be stored in variable A. The handler sets A equal to 1 (the obstacle
type for creatures) and calls Ckobs. When the subroutine is done, A
is set to the entry number, which is a number from 1 to 10.

The subroutine Revobs, located at 1220, needs to know the
obstacle list entry number in order to change the entry’s status. It
expects this number to be in variable A. Fortunately, Ckobs used A
for that number, so no preparation is necessary; Revobs can be
called right after Ckobs. When that subroutine is done, the obstacle
list entry indicates that the passageway is open for travel.

The final step in handling the slaying of a passive creature is the
death notice. The subroutine Mesprt displays message 25, which
reads, “YOUR MAGIC AXE CONNECTS! THE CREATURE
VANISHES IN A PUFF OF FOUL SMOKE!” The handler is then
finished and returns to the command subsection of Executive.

The past few paragraphs have dealt with attacking a passive
creature. Before looking at its retaliation, let’s see what happens if
the enemy is the tenacious creature. Line 328 handles the attack in
this case. The variable X is still some random number from 0 to 100
as before. If X is greater than 70 (a 30 percent chance), then the Orc
has avoided the player’s Axe. Message 26 is shown (“MISSED IT!
FIE!™), but instead of skipping to a routine to provide retaliation,
program control leaps back to the Executive, right before the de-
scription of the Orc. That passage of Executive causes the Orc to
launch his own offensive. Splitting things up this way provides a
means for Orc to attack repeatedly, relentlessly, possibly every
turn. making him the toughest of creatures to beat.

If the probability value in X is less than or equal to 70, the Orc
has met his match. Note, though, that his demise is handled
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uniquely. The variable OB(0,1) controls where he is; this is set to
zero, sending him to the “non-room.” The variable OB(0,0) controls
his actions. This is set to zero, which puts him into 2 waiting mode. In
short, the Orc never really dies. He is just temporarily sent to room
0. Executive sets him traveling again on a random basis. Thus, the
adventurer soon meets the Orc again in his travels. The best way to
think of this feature in the scenario is that the basement is full of
wandering Orcs, and that each one that comes along is a new one.
This randomly reoccurring danger adds to the interest of the game.

Even though the Orc (or an Orc, if you will) returns, the
message printed is a death notice identical to that for vanquished
passive creatures: message 25.

After each Orc is killed, the variable CT(4) is increased by a
factor of 25. The next chapter explains this, but for now, recognize
that this is for scoring purposes. The player receives an extra 25
points for every Orc he slays.

That takes care of the attack portion of the handler Fight. Line
324 provides the retaliation attempt. It begins with a GOSUB to
Mesprt , since other parts of the handler enter this line with mes-
sages to show. It prints a message of its own, message 27, which
exclaims, “THE HIDEOUS MONSTER LEAPS AT YOUR
THROAT!”

Then the probabilities are calculated for the success or failure of
the creature’s retaliation. As before, the variable X is set to a value
from 0 to 100. If X is less than 30 (a 30 percent chance), then the
creature has been victorious and the adventurer is slain. If so,
message 29 is called up and displayed, lamenting, “IT FINISHES
YOU OFF!!” At this point, program control is vectored to line 580,
which is the routine Resur. This handler (or sub-handler) arranges
for the player’s re-entry into the game.

There is a 70 percent chance, though, that the creature’s
retaliation does not succeed. In this case, message 28 is issued,
relating a nervous, “SOMEHOW YOU FEND IT OFF!!” Allis well,
as the Executive is re-entered and the player gets a chance to catch
his breath before typing another “KILL” or “SLAY.”

THE PLAYER'S RESURRECTION

Even the most experienced adventurer gets eaten once in
awhile. To provide a fair second chance, the handler Resur brings
the player back for more. There is a cost, of course, to his score.
(This prevents players from being reckless instead of clever.)

Resur is given in Fig. 7-3. There are a handful of tasks for it to
handle:
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NAME ¢ RESUR
TYPE: HANDLER
FUNCTION: RESURRECTION OF SLAIN
PLAYER
580 CT(3)=CT(3)+1:B=35:G0SUB1100:0B(9,
1)=2:FORI=1T012:1FOB(I,1)=21THENOB(!,1

)=CT(0):NEXT:ELSENEXT
582 CT(0)=1:CT(2)=0:G0T0100

Fig. 7-3. Handler Resur.

®To keep track of the number of deaths for later scoring

@To inform the player of his situation

@To make certain the player can get a torch for his next venture
@To empty his carry-sack into the room where he died

@To move the player back to home base

®To update his inventory load total to zero

Resur begins by recording this death in the variable CT(3).
Later on, when the score is computed, CT(3) is consulted, and the
total score is docked by 20 points per death.

Next, message 35 is printed, to inform the player of his dire
situation. It reads, “WELL, FINE ADVENTURER! YOUAREIN
AREALJAM! FORTUNATELY, WE CAN BRING YOU BACK!
... POOF! . ..” At this point you may wish to insert some sort of
FOR-NEXT loop in the handler simply for delay. It might help
support the illusion of great effort being taken to reassemble the
fallen adventurer.

The next step is to make sure the player, once resurrected, is
able to re-enter the basement. When he returns, he is outside,
above ground. He needs a torch to travel underground-—and he
dropped his torch “down there, somewhere!” The only fair thing to
dois to drop a torch somewhere in reach so that he can return to the
basement and reclaim his treasures. Resur takes the torch, which is
object 9, and moves it to room 2, above ground. The player canfind it
easiiy up there.

Now Resur must steal everything in the adventurer’s carry-
sack. If he died in a given room, by all rights his possessions should
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have fallen on the floor there! A FOR-NEXT loop scans through the
list of portable objects (of which there are twelve; the others are
creatures). Any objects with location number 21 are in the player’s
possession. Each such object is transferred to the room where the
player lies dead, as determined by CT(0).

The last two steps occur in line 582. By setting CT(0) to 1, the
player is whisked out of the basement and dropped at home base, or
room 1, the excavation pit. Also, since the player no longer is
carrying anything, CT(2) must be set to zero. CT(2) is used by the
Take handler to determine if the player is carrying too much. At this
point, it is reset.

BOMBING THE ENEMY

We have one final handler to examine that relates to the adven-
turer fighting for his life. Of the four passive creatures, remember,
there are two that are impervious to the player’s hasty ax swings.
Both the White Spider and the Nameless Terror cannot be killed by
an ax attack; but they retaliate! Woe to the adventurer whois trapped
in the Oracle Room with nothing but his ax. His only escape is to
teleport out, for the Nameless Terror guards the only exit, and the
Terror laughs at axes.

Fortunately, there is a weapon that kills either of these two
hardy beasts. It is the Enchanted Grenade, also known as object 12.
If this magic bomb is thrown at one of these tougher creatures, it
detonates and blows the beast away in an ethereal burst of light. The
grenade cannot operate or explode against any other object; so the
adventurer is bound to waste a turn or two trying to blast down a
locked door with it.

The handler that controls the operation of the Enchanted Gre-
nade is called Bomb (naturally), and it is given for you in Fig. 7-4.
There are two ways in which Bomb is activated. The first was
mentioned in the previous chapter when I described the handler
Drop. One of the questions that Drop asks is, “Is the adventurer
dropping the grenade?” If so, Drop relinquishes the whole matter to
Bomb. Since there are basically two forms of the command that
invokes Drop, you have two commands right from the start that can
activate Bomb; these are “DROP GRENADE” and “THROW
GRENADE.”

The adventurer can be more specific, however. In the word
table, there are two keywords that specifically request the activation
of handler 17 (Bomb). These two words are “BOMB” and “BLOW.”
As you'll see, the handler ignores word 2 of the command altogether.
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NAME @ BomMB
TYPE: HANDLER

FUNCTION: OPERATION OF ENCHANTED
GREMADE

540 IFOB(12,1)<>21THENB=20:GOTO544L :ELS
EOB(12,1)=CT(0):CT(2)=CT(2)=1:FORK=15T
016:1FOB(K,1)<>CT(O)THENNEXTK:B=21:GOT
0544 :ELSEOB(K,1)=0:A=1:GOSUB1200:GOSUB
1220:B=22

544 GOSUB1100:GOTOlOL

Fig. 7-4. Handler Bomb.

The player can enter “BOMB CREATURE” or “BLOW UP
SPIDER,” or whatever, and the program still understands the
player’s intention.

The handler Bomb must determine the following factors before
following through with a grenade explosion:

@Does the adventurer have the grenade?
eIs one of the tough creatures nearby?

Bomb begins by checking to see if the player is bluffing. Does he
have a grenade to throw? The Enchanted Grenadeis object 12. If the
player possesses it, then the variable OB(12,1) equals 21, the
location number of the carry-sack. If this is not true, Mesprt is called
and prints message 20, “YOU HAVE NO BOMB!”

Assuming that the adventurer does carry the grenade, the
handler goes ahead and drops it on the floor. This is done in two
steps. First, the grenade is transferred from the carry-sack to the
present room by setting OB(1,1) equal to the value in CT(0). Sec-
ond, since the player’s carry-sack is now a bit lighter, this fact must
benoted. The variable CT(2), the inventory total, is decremented by
one.

The next questionis whether or not alegitimate target is within
range. The only two creatures whose presence trigger the grenade
are the Spider and the Terror, Objects 15 and 16. A short FOR-
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NEXT loop checks these two to see if either is in the room, by
comparing their locations to CT(0). If neither is in the room, the
grenade fizzles. Message 21 is printed, which announces, “THE
GRENADE FALLS TO THE FLOOR AND NOTHING HAP-
PENS.”

(Note, additionally, that the grenade is never “used up.”
Whether or not it explodes, it ends up still lying on the floor. It canbe
picked up and used later against the other of the two tough crea-
tures. Don’t say I never gave you anything!)

If one of the two creatures is in the room, the handler destroys
it. The first step is simple. By setting OB(K, 1) equal to zero, the
creature is banished to the nonexistent room 0, from which it never
returns. The real task, though, is to adjust the associated entry in
the obstacle list so that the guarded doorway can be declared pass-
able. This is handled just as it is in the handler Fight. The variable A
is set to one, to indicate the obstacle type, i.e., a creature, and the
subroutine Ckobs is called. Ckobs searches the obstacle list and
finds the proper entry. The handler calls Revobs, which toggles the
obstacle status from unpassable to passable.

The final job is to print a message notifying the adventurer of his
triumph. Message 22 fills the bill: “THE GRENADE EXPLODESIN
A SILENT FLASH OF WEIRD BLUE LIGHT . . . AND THE
CREATURE IS GONE!”

The adventurer is now ready for anything. Axe in one hand,
grenade in the other, he can face any beast—be it Orc, Mantis, or
Terror. All he needs to know is which weapon works on which
creature!

SAFE AND SOUND

The past few chapters have covered, in detail, the major ele-
ments of an adventure program. The player can roam through the
scenario, looking at each room, just enjoying the view. The player
can also affect his environment, swinging doors shut, carrying ob-
jects, and so on. And the player can do battle, fighting off beasts with
special weapons, winning or sometimes losing.

There are quite a few other commands the adventure program
recognizes; however, they are auxiliary to the action of the game.
For instance, the player may want to know his score, or perhaps he
wishes to examine his carry-sack. These auxiliary commands are
described in the next chapter.
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Chapter 8

Auxiliary Commands

Most adventure program commands control the motion or action of
the adventurer within the scenario. He moves, he opens doors, he
takes articles, he fights monsters. Quite a few commands, however,
are actually instructions to the program itself, controlling how the
game is played or requesting certain information. These are
auxiliary commands.

There are seven remaining handlers that support these extra
commands. Two of the seven supply information about the sur-
rounding scenario. Two more provide the score, one of which
results in game termination. Two more make use of the tape re-
corder supplied with the TRS-80 to store the present status of the
game for later retrieval, so that the player may stay long in the
basement. The final handler responds to certain inputs with one-
liners, strictly for effect.

TAKE A SECOND LOOK

As the adventurer travels from room to room, the program
keeps track of which rooms he has been to before and which rooms
are new to him. Based on this information, a room is described in one
of two ways: with a long paragraph upon first visit, or with a short
room title upon subsequent visits. This saves eye strain and bore-
dom from seeing the same long paragraph displayed every time a
room is re-entered.

The only problem with this helpful little feature is that players
forget. The player is bound to walk into the Cobweb Room and forget
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what it looks like. Where are the doors? Are there any dangerous
cliffs to avoid?

For this reason the adventure program must have the command
LOOK. With this command the long description of the room is
repeated so that entrances and exits may be clearly seen.

Figure 8-1 gives the handler called Look. It is handler 10 and is
invoked only by the command word LOOK. It performs the following
two functions:

®Describe the room in detail
®List all nearby objects

Really, this is not so different than what is done by the descrip-
tion subsection of Executive each time a room is entered. All that
Look does is ignore the stored information concerning whether or
not a room has been visited.

Two subroutines come into play in Look. The first is Viewrm,
which prints either the long or short description of a room, based on
the value stored in variable C. If C equals zero, Viewrm prints the
long room description. (Look sets C to zero and calls line 1160.)
Note, though, that Viewrm performs the necessary checks con-
cerning visibility. If the player is below ground and he does not have
the torch, Viewrm refuses to give any description and warns the
player, “IT IS PITCH DARK! YOU MAY FALL INTO A PIT!”

The other subroutine is Listob at line 1140, Listob runs through
the entire list of objects, finds all of the objects that reside in the
room, and describes these for the player. Again, if it is too dark, the
description does not occur. In this case, however, no warning
message is issued.

It may be desirable to review the workings both of Listob and
Viewrm. These are described in the chapter detailing the operation
of Executive.

TAKING STOCK
Often it is helpful to know what one possesses. If the player

NAME : LOOK
TYPE: HANDLER
FUNCTION: LONG DESCRIPTION OF ROOM

380 C=0:60SUB1160:G0SUB1140:GOTO10L
Fig. 8-1. Handler Look.
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NAME ¢ INVEN

TYPE: HANDLER

FUNCTION: LISTING OF OBJECTS
CARRIED

340 B=18:GOSUB1100:FORJ=1T016:1FOB(J,
1)<>21THENNEXTJ:GOTO10L :ELSEA=4:B=J:G
OSUB1040 :READB$,B$ : PRINTB$ ¢:NEXTJ:GOTO
104

Fig. 8-2. Handler inven.

encounters the angry Orc, he may or may not remember whether or
not he has the Axe among his possessions. Or, upon finding a
treasure, he may be told that he is carrying too much. So he must
make a decision concerning what to keep and what to drop.

Handler 8 provides an easy way to rummage through the ad-
venturer’s carry-sack. It is called Inven and is given in Fig. 8-2.

Basically, Inven takes an inventory of everything the player
presently carries. Much like the subroutine Listob, this handler
scans the object status array in search of any objects that reside in
the carry-sack. These objects are then described by a short-form
name.

Inven begins by a preliminary message, message 18, which
states, “YOU HAVE THE FOLLOWING:” Then a FOR-NEXT loop
is established, and each object location is compared to 21, the
carry-sack location. For each object that matches location 21, the
short-form name is accessed and displayed.

Every object has two descriptions: a long one about 64 charac-
ters maximum and a short one that is one or two words long. These
are stored as pairs, one pair to a line, in the object description-block
among the DATA statements. For each object to be listed, Inven
must find the proper line and short name.

Inven uses the subroutine Access at line 1040 to find the short
name. Access expects to see variable A equal to the data block
number, and variable B equal to the row number in that block. The
objeci-description block is numbered 4; 5o A is sct accordingly.
Since J equals the object number, and the descriptions are stored in
rows by that number, Inven sets B equal to /. When Access is
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finished, Inven begins reading data and finds the long and short
object-descriptions immediately.

Inven only cares about the second of the two descriptions, the
shorter one. So the statement “READ B$,B$"” results in the short
name being storedin B$. The handler prints this name and then loops
back. This process continues until all objects have been checked to
see if they are being carried.

It may be a bit inconsistent, but note that the player can take
inventory at any time and still be able to tell what's in his sack—even
in pitch darkness. (Maybe he can identify the objects by size and
shape!)

DRAGONS 10, HEROES O

As the adventurer makes his way from danger to danger, he
needs to know how well he is doing—either as an incentive to go on
or as a warning to quit while he is still alive. To provide this valuable
service, the player can type, “SCORE,” and see his progress or lack
thereof.

Basements and Beasties uses a very simple scoring algorithm
as follows:

® 5 points for every room visited

® 10 points for every treasure at home base

® 20 points for every passive creature killed

@ 25 points for every tenacious creature (Orcs) killed
@ - 20 points for every death of the adventurer

Figure 8-3 gives the code for two portions of the program. Line
420 is the handler Score, which is invoked by entering that same
word at the Keyboard. All Score really does is call a subroutine
named Points, which is also shown in Fig. 8-3. This was done so that
other handlers can make use of Points, notably the handler that ends
the present game.

Points begins by printing a preliminary line, message 30, which
reads, “YOUR SCORE IS:” Then the contents of CT(4) is dumped
into A. Remember from the previous chapter that CT(4) keeps track
of how many tenacious creatures (Orcs) have been killed; CT(4) is
incremented by 25 for every slain Orc. The variable A begins with a
sizable positive bias if several Orcs are slain in the game.

Next, Points checks the status of each room and awards 5
points for each room that the adventurer has visited. In the room
status array RM(x), digit 1 of the integer is a one, if the room was
visited, and zero if not. Points isolates digit 1 in two steps: first, by
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NAME ¢ SCORE
TYPE: HANDLER

FUNCTION: DISPLAY OF CURREHNT POINTS
L20 GOSUB1240:GOTO104

NAME ¢ POINTS

TYPE: SUBROUT INE

FHPUT: NONE

OUTPUT: THE PRESENT SCORE IS

CALCULATED AND DISPLAYED

1240 B=30:GOSUB1100:A=CT(L):FORI=1T020
t{FRIGHTS$(STRS(RM(1)),1)="1"THENA=A+5
1242 NEXTI:FORI=1TO8:1FOB(1,1)=1THENA=
A+10
1244 NEXT!:FOR$=13T016:1FO0B(1,1)=0THEN
A=A+20

1246 NEXTI:A=A=CT(3)*20:PRINTA:PRINTCT
(1);"STEPS":RETURN

Fig. 8-3. Handler Score and the related subroutine Points.

converting the integer into a string with the STR$ function, then by
selecting the rightmost character of the new string using the
RIGHTS$ function. Points performs this analysis for each room,
looping from 1 to 20. Each time a one is found, the score increases by
five points.

The treasures are tallied next. In order for any treasure to
count towards the player’s score, it must be safely dropped in room
1, the home base location. Objects 1 through 8 are treasures; so
Points checks the location of these special items. Looping through
the object status array, a 10-point award is given for each treasure
with location number 1.

Now the victorious fighter is shown honor. The hero faces four
passive creatures and any number of tenacious Orcs. The Orcs were
taken into account at the start of the subroutine; the slain passive
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beasts are now evaluated. When such a creature is killed, it is
removed from the scenario by banishing it to the nonexistent room
zero. Thus, Points can easily find out how many passive enemies
were killed by checking their location. Points sets up a loop to check
objects 13 to 16, which are the regular creatures. Each creature that
resides in room 0 earns the adventurer an extra 20 points.

Finally, the player is docked 20 points for each time he fell into a
pit, burned in flames, or was eaten. The variable CT(3) keeps track
of these failures, and it is multiplied by a factor of 20 and subtracted
from the score.

Now Points displays the results. Two pieces of information are
printed on the screen. First, the actual score is shown by printing the
value of variable A. Second, the number of steps taken so far is
displayed. The variable CT(1) is used by Executive to accumulate
the steps taken; so Points prints its value.

Basically, the player is given two measures of his effectiveness
as an adventurer. First, he has a raw score. This score can be as high
as 260 if the player is careful not to get killed and can be much higher
if chance sends him a few bonus Orcs to vanquish at 25 points a shot.
Second, he has an efficiency standard.

The avid adventure gamer first strives for a high raw score.
Once he has that in hand, he replays the game for speed and the least
number of steps.

WHEN ALL ELSE FAILS

The player always has the option of ending the game if he is
either too bored or too frustrated to continue. Of course, he can do
this by inelegantly punching BREAK with his thumb. This is the
quickest way to call it quits, but just for the sake of style Basements
and Beasties includes a QUIT command.

When the player types “QUIT,” he invokes handler 14, called
Quit, which is given in Fig. 8-4. Quit performs three simple tasks. It
issues a sign-off message. This is message 31 in the message block,
and it reads, “DO VISIT THE BASEMENT AGAIN!” Whether the
player wishes to do so or not is his problem.

Second, Quit displays the adventurer’s final raw score and the
number of steps taken throughout the game. You have already seen
how this is done, using the subroutine Points. Quit simply executes a
GOSUB to 1240, and this task is taken care of.

Finally, Quit terminates the program for good. The END
statement allows no continuing via a Cont command, so the player
shouldn’t say “QUIT” until he really means it.
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NAME ¢ QuIT
TYPE: HANDLER

FUNCTION:  GAME TERMINAT(ON
4,80 B=31:GOSUB1100:GOSUB1240:END

Fig. 8-4. Handler Quit.

SAVING THE GAME ON TAPE

Sometimes the adventurer has to quit when he doesn’t want to.
Dinner won’t go away just because he is trapped in the Maze with an
Orc at his throat. Even adventurers need sleep now and then. To
lend some semblance of normalcy to the player’s life, it is helpful to
provide the option of saving the game, as is, on tape for resumption
later.

Basements and Beasties has two handlers to support tapebased
adventure interruption. The first stores all crucial variables on tape;
the second recalls them from tape. The input key word SAVE
invokes the first handler, and RESTORE activates the second one.

Now, what really needs to be saved on tape to preserve the
present status of an adventure program? The handler Save writes
the following variables out to the cassette port.

@ The present room location of the player
@ The number of steps taken so far

@ The inventory total count

@ The present number of player deaths

@ The present number of Orcs killed

@ The status of all rooms

@ The status of all objects

In writing this handler a rather difficult trade-off presented
itself, as we’ll see in a moment. The trade-off revolves around the
operation of the BASIC statements for tape data files, which are
PRINT#-1 and INPUT#-1. These two statements can be usedin a
variety of ways, some more and some less efficient.

Consider that data is saved on tape, using the PRINT#-1
statement, in bursts of up to 255 bytes of data. Each burst of data is
preceded by a synchronization leader signal of about five seconds.
Thic meang that the mogt fime taken unin data file tapesis due to the
leader signals. Clearly, if you want efficient tape storage, you must
keep these leaders to a minimum.
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Of course, since there is a five-second leader to each data burst,
your goal should be to store the desired data in as few bursts as
possible. A burst ranges from 1 to 255 bytes in length. To minimize
leader time, the Save handler records as many variables as possible
in each burst.

Look at Fig. 8-5, though, for two examples of how to save a
series of variables on tape. In the first example there is an array A(x)
with ten elements to store. A FOR-NEXT loop is set up to store
each of the ten elements using a repeated PRINT#-1. The problem
is this: each time the statement PRINT#-1 is reexecuted, a new
leader signal is recorded and a new data burst initiated. The result is
that method 1 produces a long tape file consisting of ten separate
bursts, each just over five seconds long. One simple array takes
almost a minute to store~and to reload!

Now look at the second example in Fig. 8-5. This time, instead
of looping to save each array element, all ten elements are explicitly
specified with commas as separators. All ten are stored with only
one executed PRINT#-1 statement. The result is that all ten array
elements are stored in one single burst with only one leader. (Ten
integer variables at about five bytes a piece are only 50 bytes.)
Instead of a minute to save or reload the array as before, it now only
takes five or six seconds. What a difference!

Here’s the catch—the handler Save has a lot of variables to
record. The second method is fast and efficient with regard to tape,
but wasteful of BASIC code in memory. Imagine that all 20 elements
of the room status Array, all ten of the obstacle list, and so on, are all
spelled out explicitly! This takes up quite a few lines and alot of bytes
in memory.

As usual, a sort of compromise can be struck, which is neither
as fast as possible, nor as lengthy as the extra speed requires. The
final version is shown in Fig. 8-6; this version saves all of the crucial
variables in nine densely packed bursts, for a total record length of
about 48 seconds. If it is done using many FOR-NEXT loops and no
comma separators, it takes 52 inefficient bursts, or well over four
minutes,

20 FOR I=1 TO 10: PRINT#=1,A(1): NEXT

A(6),A(7),A(8),A(9),A(10)

Fig. 8-5. Two ways to save a variable array.
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NAME 2 SAVE

TYPE: HANDLER

FUNCT ION: SAVING GAME PARAMETERS ON
TAPE

500 B=19:GOSUB1100:INPUTA:FORI=0TO8:PR

INT#-1,08(1,0),08B(1,1),0B(1+8,0),0B(1t+

8,1),RM(1),RM(1+8),RM(1+12),BK(1),BK(1
+2),CT(1):NEXT:GOTO104

Fig. 8-6. Handler save.

The handler Save first prompts the player with message 19,
which instructs, “PREPARE TAPE RECORDER AND HIT
(ENTER).” The subsequent statement, INPUT A, holds the
handler in suspension until ENTER is pressed, to allow the recorder
to be loaded and started.

As soon as ENTER is hit, the handler performs a loop from 0 to
8 (which adds up to nine loops total). Let’s look at how each array is
saved in this loop. You'll see that some variables are actually saved
twice, but this redundancy actually helps keep the loops simpler and
more efficient.

The first array to be saved is the object status array. The first
two items in the list after the PRINT#-1 statement save OB(0,0) to
OB(8,0) and OB(0,1) to OB(8,1) in the various bursts.

What about the rest of the array? The next two list items add
eight to the value of the loop counter in referencing the array
elements to be saved. Elements OB(8,0) to OB(16,0) and OB(8,1)
to OB(16, 1) are saved. Now, OB(8,0) and OB(8,1) are saved twice
by this scheme, but as it turns out that small redundancy is more than
compensated by the density of the bursts.

Next to be saved in each burst are the elements of the room
status array. One item of the list saves RM(0) to RM(8). The next
adds eight to the loop counter, so RM(8) to RM(16) are recorded.
The next item adds 12 to the loop counter, such that RM(12) to
RM(20) are stored away. Note, again,that a handful of individua!
array elemenis are repeated, bui this is compensaied. The idea s (o
make one FOR-NEXT loop cover everything, to keep the number of
loops minimal.
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Next in line is the obstacle list. The first applicable item saves
BK(0) to BK(8). The next adds two to the counter, so BK(2) to
BK(10) are stored. Again, there is redundancy, but also simplicity.

The last array to be saved is CT(X), the general-purpose
record-keeping variables. The most crucial of these are CT(0)
through CT(4), but Save keeps everything up to CT(8) at any rate.

Save records all of the major variables of Basements and
Beasties in only nine data bursts. Each burst is still somewhat
inefficient, since a maximum of about 80 bytes is stored each time—
about a third of what is theoretically possible. The only way to
increase this efficiency is to shorten the loop and lengthen the list of
explicitly stated array elements. I wrote one version that ranin only
five loops—but it took twice the memory space in the program!

Corresponding to the handler that saves these variables on tape
is one that recalls them to resume a game. The handler Restore is
given in Fig. 8-7.

I don’t need to go into detail on Restore, since in most respects
it is identical to Save. The only difference is that instead of the tape
output statement PRINT#-1, there is the tape input statement
INPUT#-1. The close similarity between the two handlers assures
that all variables are properly loaded. The state of the game before
Save is identical to the state after restore.

By the way, you might be wondering if there is a way to save
code somehow, since the two handlers are so alike. Can't they
share, somehow? Not easily, since the majority of either handler is
so closely tied to the input or output statement.

At one point in the development of the program, I attempted to

manage this by writing a small routine that changed the PRINT#-1

NAME ¢ RESTORE
TYPE: HANDLER
FUNCTION: LOADING GAME PARAMETERS

FROM TAPE

520 B=19:GOSUB1100:INPUTA:FORI=0TO8:IN
PUT#-1,0B8(1,0),08(1,1),08(1+8,0),0B(1+
8,1),RM(1),RM(1+8),RM(1+12),BK(1),BK(I
+2),CT(1):NEXT:GOTO10kL

Fig. 8-7. Handler Restore.
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NAME s LINERS
TYPE: HANDLER
FUNCTION: ONE-LINE RESPONSES TO

KEYWORDS

360 CT(5)=N:GOSUB1000:B=CT(9)*10+CT(8)
:GOSUB1100:GOTO104

Fig. 8-8. Handler Liners,

statement into an INPUT #-1 statement, using the POKE command.
(After all, both statements are stored in memory as a specific
one-byte code.) However, the small routine kept growing faster
than I expected and didn’t save enough memory to justify the trou-
ble.

SNAPPY REMARKS

Believe it or not, there is only one handler left that you have not
examined. It provides one of the fine points of adventure program-
ming that really adds to the feel of the game. In short, it provides
snide remarks to specific inputs.

Figure 8-8 is the handler called Liners. It has one function: to
output a specific message in response to a specific command key
word.

In order to use Liners, the desired trigger key-words are
stored in the word list. Remember that verbs in the word list point to
their handler using digits 1 and 2 of their ID number. All trigger
key-words have “09” in digits 1 and 2 to invoke handler 9, which is
Liners.

Some verbs, though, make use of digits 3 and 4 for special
purposes. Direction verbs use these digits to pass a direction
number along to the handler Xmove, for example. To keep every-
thing simple, trigger key-words use digits 3 and 4 to pass along a
message number, i.e., the number of the message that is printed in
response to that input.

At present there are only two trigger key-words in the word
list. The first is HELP. In a number of adventure programs that run
on farger machines, ihe cominand HELD provides a iengthy intro-
duction to the program with an explanation of how to play. Alas, you
don’t have the memory to waste on such luxuries. Instead, pull the
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player’s leg. The ID number of HELP causes message 37 to be
printed, which reads, “YOUR CRIES GO UNHEARD, PITIFUL
WRETCH.”

The other trigger command is WAIT. In some programs the
player can enter this command and expect some situation to change.
For instance, if a magic beanstalk is growing, the adventurer can
WAIT and the stalk grows before his eyes. Again, Basements and
Beasties pokes fun. Message 38 is called, which says, “TIME
PASSES. . ..”

The operation of the handler Liners is simple. The variable N
already contains the ID number of the input word, thanks to the able
assistance of Executive. Liners sets variable CT(5) equal to N and
calls the subroutine Analyz. This breaks the ID number down into its
five digits. Next, Liners needs to isolate the message number
embedded in the ID number. Digits 3 and 4 are now stored respec-
tively in CT(8) and CT(9). The expression CT(9)*10+CT(8) re-
creates the message number, which is stored in variable B. Finally, a
call to Mesprt displays the desired message.

What other sorts of one-liner responses might be added?
Sometimes, an adventurer who suspects that the program recog-
nizes a magic word tries one of his own, like ABRACADABRA. That
can be placed in the word list and used to trigger the response,
“OLD, WORN-OUT MAGIC WORDS HAVE NO EFFECT
HERE!” Or, the player standing on a bridge might enter the com-
mand JUMP. The program could respond, “HOW HIGH?” You get
the idea.

BOY, WAS THAT SIMPLE!

Amazing as it seems, you have covered all the code in Base-
ments and Beasties. You've seen how the program initializes all
variables. You've examined Executive and seen it describe rooms
and other things. You've followed input key-words from keyboard to
word list to handler, with subroutines as supporting cast. You've
studied how the adventurer walks about, opening doors, taking
treasures, slaying beasts, and getting killed. Finally, you've seen
how the program itself is enhanced with special features.

Where does this leave you? With two final tasks. One is to
compile all of the preceding bits of code into one complete listing with
various tables, annotations, and so on, so that you can load and run
Basements and Beasties. That is done in the next chapter. The other
is to suggest a number of optional improvements to the adventure
program, either to increase speed, efficiency, or capability. That is
reserved for the following chapter.
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Chapter 9

Basements and Beasties: The Listing

Finally, after much tedium, toil and talk, you have arrived at a
complete listing of the program Basements and Beasties. Before
you roll up your sleeves and tackle the task of typing it in, a couple of
comments are in order.

First, you'll notice that there are no REM statements what-
soever in the listing. (Hopefully, the remarks in the text make
remarks in the listing superfluous.) The reason, obviously, is that
remarks take up memory space, just what you are trying to con-
serve.

What may be more discomforting is that there are no spaces,
except for lines containing strings to be displayed on the screen.
Again, the rationale was memory savings, since BASIC doesn’t
really need spaces everywhere. This can certainly generate some
frustration when it comes time to type! Everything runs together so
that variable names are hard to separate from BASIC key words, and
so on. Words and expressions can get chopped in half between
succeeding lines.

Be careful while you type. If your keyboard has noticeable
keybounce, keep an eye on the screen, because errors of this kind
are harder to find in these tightly packed program lines. It may even
be advisable to read each line before you type it, deciphering the
line in order to be prepared for expressions you mignt mistype.

Finally, you may wish to put spaces into some lines for clarity;
go ahead. But if you do, I suggest that you avoid spaces in the word
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HANDLER LINE HANDLER LINE
XMOVE 200 READ 400
{MOVE 220 SCORE 420
TAKE 240 SAY L60
DROP 260 QuUIT 480
OPEN 280 SAVE 500
CLOSE 300 RESTORE 520
FIGHT 320 BOMB 540
INVEN 340 AARDVARK 560
LINERS 360 RESUR 580
LOOK 380

Fig. 9-1. Handlers for Basements and Beasties.
SuB+ SuB+
ROUTINE LINE ROUTINE LINE
ANALYZ 1000 LISTOB 11490
SYNTHE 1020 VIEWRM 1160
ACCESS 1040 DARKCK 1180
GETCOM 1060 CKOBS 1200
IDWORD 1080 REVOBS 1220
MESPRT 1100 POINTS 1240
TRAVEC 1120

Fig. 9-2. Subroutines for Basements and Beasties.
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table. Why? Because in the next chapter, you'll be implementing a
machine-language routine that scans the word table at high speed.
The routine assumes no spaces in the table, and leaving them out
now will prevent having to remove them later.

Prior to the listing itself, there are two lists included for your
reference. One lists the handlers and the other the subroutines, in
order and by line numbers. This may in part make up for the lack of
REM statements with regard to finding specific segments of code.

2 CLS:PRINTCHR$(23):PRINT@L468, "WELCOM
E TO":PRINT@522, "BASEMENTS & BEASTIES

L CLEARS00:DEFINTA=-Z:DIMTX$(4),DA(5),
RM(20),08B(16,1),BK(10),CT(12):FORI=1T
020 :READRM( 1) :NEXT:FORI=1T016 :READOB(
l,1),OB(|,0):NEXT:FOR!=1T010:READBK(l
YeNEXT

6 P=17385:N=1:FOR!=5000T0O9000STEP1000

8 IFI=PEEK(P+2)+PEEK(P+3)*256 THENDA(N
Y=P:N=N+1:NEXTI1:G0TO10:ELSEP=PEEK(P)+
PEEK(P+1)%256 : 1 FP=0THENCLS:PRINT"ERRD
R"™:END:ELSES

10 CT(0)=1:CT(12)=RND(10)+10:CLS

100 CT(5)=RM(CT(0)):G0SUB1000:C=CT(6)
:GOSUB1160:G0SUB1180:1FB=0ANDC=0THENC
T(6)=1:G0SUB1020:RM(CT(0))=CT(5):ELSE
1 FB=1THENN=RND(100): 1FN<20THENB=5:G0S
UB1100:G0T0580

102 GOSUB1140

104 GOTOl1l2

105 iNPUTAS

106 GOSUB1060:A%$=TX$(2):G0SUB1080

108 CT(5)=N:GOSUB1000:{FCT(1G)=00RN=0
THENB=7:G0SUB1100:GOT0O104

110 ONCT(6)+CT(7)*10G0T0200,220,240,2
60,280,300,320,340,360,380,400,420,46
6,480,500,520,540,560,580,600,620,640
,660,680,700

112 1FOB(0,0)=0ANDCT(0)>2THENCT(12)=C
T(12)=1:1FCT(12)<=0THENCT(12)=RND(10)
+10:0B(0,1)=CT(0):0B(0,0)=1:G0T0116:E
LSE105

114 {FCT(0)<3THENOB(0,0)=0:GOTO105:EL
SEOB(0,1)=CT(0)

Fig. 9-3. The complete listing for Basements and Beasties for the TRS-80 Model
Il computer. To run the program on the Mode |, in line 6 you must change the
number 17385 to the number 17129,
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116 B=42:GOSUB1100:B=RND(100):(FB>75T
HENI1OSELSEB=43:GOSUB1100:B=RND(100):!
FB>60THENB=44 :GOSUB1100:GOTO580 :ELSE1
05

200 D=CT(8)+CT(9)*10~1:FORK=1T010:CT(
5)=BK(K):GOSUB1000: 1FD<>CT(8)ORCT(0)<
>CT(6)+CT(7)*10THENNEXTK:GOT0202:ELSE
IFBK(K)<OTHEN202ELSEB=CT(9):G0T0206
202 D=D+1:GOSUB1120:1FA=22THENB=4:GOT
0204 :ELSEIFA=23THENB=5:G0TO204 : ELSE(F
A=0THENB=6:GOT0206:ELSECT(0)=A:CT(1)=
CT(1)+1:G0OT0100

204 GOSUB1100:GOTO580

206 GOSUB1100:GOTO104

220 IFTX$(3)=""THEND=11:G0SUB1120:N=A
*100+10101:GOTO108:ELSEAS$=TX$(3):G0TO
106

240 IFCT(2)>=5THENB=36:GOSUB1100:G0TO
104 :ELSEA$=TX$(3):G0SUB1080: (FN>9999T
HENB=7:GOTO242 :ELSEIFN>12ANDN<170RN=1
8THENB=40:G0OT0242

241 IFN=17THENB=8:GOTO242:ELSEIFOB(N,
1)=21THENB=9:GOTOZ#Z:ELSEIFOB(N,I)()C
T(O)ORN=0THENB=12:GOTOZhZ:ELSEOB(N,l)
=21:B=11:CT(2)=CT(2)+1

242 GOSUB1100:GOTO104

260 A$=TX$(3):GOSUB1080:1FN>I999THENB
=7:GOSUB262:ELSEIFOB(N,1)<>21THENB=10
:GOTO262:ELSE!FN=12THEN540:ELSEOB(N, 1
)=CT(0):B=11:CT(2)=CT(2)~-1

262 GOSUB1100:GOTO104

280 IFTX$(3)=""THENB=7:G0T0284 :ELSEA$
=TX$(3):GOSUB1080:CT(5)=N:GOSUB1000:A
=CT(8):GOSUB1200:IFA=0THENB=12:G0T028
L:ELSEIFBK(A)<OTHENB=13:G0T0284 :ELSE |
FOB(11,1)<>21THENB=16:GOT0284 :ELSEGOS
UB1220:B=12+CT(9)

284 GOSUB1100:GOTO104

300 IFTX$(3)=""THENB=7:GOTO304 :ELSEA$
=TX$(3):GOSUB1080:CT(5)=N:GOSUB1000:A
=CT(8):GOSUB1200: I FA=0THENB=12:G0T030
4L:ELSEIFBK(A)>O0THENB=13:G0T0O304 :ELSEG
0SUB1220:B=17

304 GOSUB1100:G0TO104

320 1FOB(0,0)=1THEN322ELSEFORK=13T016
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:lFOB(K,1)<>CT(0)THENNEXTK:B=h1:GOSUB
1100:GOTO104

322 {FOB(10,1)<>21THENB=23:G0T0326:EL
SE(FK=150RK=16THENB=24 :GOTO324 :ELSEX=
RND(100):1FOB(0,0)=1THEN328ELSEIFX>70
THENB=26:GOT032L4 :ELSEOB(K,1)=0:A=1:GO
SUB1200:GOSUB1220:B=25:G0T0326

324 GOSUB1100:B=27:GOSUB1100:X=RND(10
0):1FX<40THENB=29:GOSUB1100:GOTO530:E
LSEB=28

326 GOSUB1100:GOTO0105

328 IEX>70THENB=26:GOSUB1100:G0T0112:
ELSEOB(0,0)=0:08(0,1)=0:B=25:CT(4)=CT
(4)+25:G0T0326

340 B=18:GOSUB1100:FORJ=1T016: IFOB(J,
1)<>21THENNEXTJ:GOT0104 :ELSEA=L:B=J:G
OSUB1040:READB$,B$:PRINTB$:NEXTJ:GOTO
104

360 CT(5)=N:GOSUB1000:B=CT(9)*10+CT(8
):GOSUB1100:GOTO104

380 C=0:GOSUB1160:GOSUB1140:GOTO104
400 IECT(0)<>6THENB=32:GOTO402:ELSEB=

33

402 GOSUB1100:GOTO104

420 GOSUB1240:GOTO104

460 (FLEFT$(TX$(3),5)<>"AARDV"THENB=3
4:GOSUB1100:GOTO10L :ELSE560

480 B=31:GOSUB1100:GOSUBL240:END

500 B=19:GOSUB1100: INPUTA:FORI=0TO8:P
RINT#-I,OB(I,O),OB(l,l),OB(l+8,0),OB(
l+8,1),RM(|),RM(!+8),RM(l+12),BK(t),B
K(1+2),CT(1):NEXT:GOTO104

520 B=19:GOSUB1100:INPUTA:FORI=0TO3:1
NPUT#-I,OB(I,O),OB(I,l),OB(l+8,0),OB(
l+8,1),RM(I),RM(I+8),RM(I+12),BK(I),B
K(1+2),CT(1)sNEXT:GOTO10L

540 {FOB(12,1)<>21THENB=20:GOTO54k4:EL
SEOB(12,1)=CT(0):CT(2)=CT(2)-1:FORKF1
5T016: {FOB(K,1)<>CT(0)THENNEXTK:B=21:
GOTOS544:ELSEOB(K,1)=0:A=1:GOSUB1200:G
0SUB1220:B=22

544 GOSUB1100:GOTO104

560 {ECT(0)=6THENCT(0)=1ELSEIFCT(0)=1
THENCT(0)=6ELSEB=34:G0SUB1100

562 GOTO0100

580 CT(3)=CT(3)+1:B=35:G0SUB1100:0B(9

Fig. 9-3. Continued from page 1385.
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#1)=2:FORI=1T012:(FOB(1,1)=21THENOB(!
+1)=CT(0) :NEXT:ELSENEXT

582 CT(0)=1:CT(2)=0:G0T0100

1000 FORZ=6T010:CT(Z)=0:NEXTZ:B$=MID$
(STR$(CT(5)),2):FORZ=1TOLEN(B$):CT(6+
LEN(B$)-Z)=VAL(MID$(B$,Z,1)) :NEXTZ: IF
CT(5)<O0THENCT(11)=~1:RETURN:ELSECT(11
)J=1:RETURN

1020 CT(5)=CT(10)*10000+CT(9)*1000+CT
(8)*100+CT(7)*10+CT(6):CT(5)=CT(5)*CT
(11):RETURN

1040 P=DA(A):IFB=1THEN1OL2ELSEFORZ=1T
0B=1:P=PEEK(P)+PEEK(P+1)#256:NEXTZ
1042 P=P-1:POKE16640,F1X(P/256):POKEL
6639,P-F1X(P/256)*256 :RETURN

1060 FORI=1TOLEN(CA$):IFMIDS$(AS,1,1)<
" UTHENNEXTI:TX$(3)="":TX$(2)=A$:RETU
RN:ELSETX$(3)=MID$ (A$, 1+1):TX$(2)=LEF
T$(A$,1=1):RETURN

1080 IFLEN(A$)>5THENAS=LEFT$(AS$,5)
1082 A=2:B=1:GOSUB1040

1084 READB$,N:1FB$=","ORB$=A$THENRETU
RNELSE1084

1100 A=3:GOSUB1040:READA$:PRINTAS$:RET
URN

1120 B=CT(0):A=1:GOSUB1040:FORY=1TOD:
READA:NEXTY:RETURN

1140 GOSUB1180:1FB=1THENRETURN:ELSEA=
4:FORB=1T016:1FCT(0)<>0B(B,1)THENNEXT
B:RETURN:ELSEGOSUB10LO :READTX$(4): PRI
NTTX$ (L) :NEXTB:RETURN

1160 GOSUB1180:(FB=1THENB=39:G0SUB110
0:RETURN:ELSEA=5:B=CT(0):G0SUB1040 :RE
ADTX$(0),TX$(1): IFC=0THENPRINTTX$(0):
RETURN:ELSEPRINTTX$(1):RETURN

1180 1FOB(9,1)<>21ANDCT(0)<>1ANDCT(0)
<>2THENB=1ELSEB=0

1182 RETURN

1200 FORQ=1T010:CT(5)=BK(Q):GOSUB1000
$IFCT(6)+CT(7)*10<>CT(0)ORCT(9)<>ATHE
NNEXTQ:A=0:ELSEA=Q

1202 RETURN

1220 BK(A)==-BK(A):CT(5)=BK(A):GOSUB10
00:1FCT(10)=1RETURNELSEBK(A=1+CT(10.))
==BK(A~1+CT(10)):RETURN

1240 B=30:GOSUB1100:A=CT(4):FORI=1T02
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0: §FRIGHT$ (STR$(RM(1)),1)="1"THENA=A+
5

1242 NEXTI:FOR1=1TO08:1FOB(I,1)=1THENA
=A+10

1244 NEXTI:FORI=13T016:1FOB(1,1)=0THE
NA=A+20

1246 NEXTt:A=A~-CT(3)*20:PRINTA:PRINTC
T(1);"STEPS":RETURN

2000 DATA 0,0,0,0,0,0,0,0,0,0,0,0,0,0
.0,0,0,0,0,0

3000 DATA 4,0,7,0,20,0,11,0,5,0,19,0,
7,066,0,2,0,3,0,10,0,12,0,&,0,18,0,1&
/0,6,0

4000 DATA 22902,2808,23306,3712,23404
,3011,11104,11218,11714,11306,0

5000 DATA1,2,2,1,1,1,1,1,0,3,9

5002 DATA2,2,2
5004 DATAG,0,L
5006 DATA0,5,0
5008 DATA0,0,0
5010 DATAO0,0,0
5012 DATAO0,0,0
5014 DATA0,0,0
5016 DATA9,0,1
5018 DATA23,23
L

5020 DATAL4,0,0,
5022 DATAO,0, 13
5024 DATAO0,0,0,
5026 DATA8,0,0,0
5028 DATA15,0,15,0
5030 DATA1l5,16,16,
5032 DATA13,18,18,
3,0

5034 DATA12,19,0,0,0,0,
5036 DATA14,0,0,0,0,18,
5038 DATA22,22,22,22,22
2,8

6000 DATAJEWEL,1,CROWN,1,GOLDE,2,CUBE
.2,D1AMO,3,BEETL,3,SILVE, L, BELT, L, PLA
T1,5,RING,5,0NYX,6,CO0IN,7,HOURG, 8
6001 DATATORCH,9,AXE,10,KEY,11,GRENA,
12,MANT(,13,1GUAN, 1L ,SPIDE, 15, NAMEL,1
6, TERRO,16,0RC,18

6002 DATAO0ZE,17,DESKS,17,CABIN,17,B0
DiE,17,C0KE,17,MACHI ,17,C0BWE,17,CASE

~Ne OO O WO
® O % 3 O~ N

Hs OO O OO>

NO O O DO v 1O \ILO\\QOQ\Q
S Y NOOY O

,9
0,
o,
'5
23
0,
0,
,0
7o

Fig. 9-3. Continued from page 137.
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$,17,COFF!1,17,D00R,317,GRATE,217,U,10
901,0,11001,N,10101,NE,10201,E,10301,
SE§52401,S,10501,SW,10601,W,10701,NW,
10

6003 DATANORTH,10101,SOUTH,10501,EAST
»10301,WEST,10701,UP,10901,D0WN,11001
+SCORE,10012,QU1T,10014,KILL,10007,F1
GHT,10007,SLAY,10007,8BL0%W,10017,B0OMB,
10017

6004 DATAWAIT,13809,HELP,13709,READ,1
0011,SAY,10013,L0CK,10006,UNLOC,10005
»OPEN,10005,SHUT,10006,CLOSE,10006,L0
0K,10010, INVEN,10008

6005 DATATAKE,10003,DROP,10004, THROW,
10004 ,STEAL,10003,1N,10002,0UT,10002,
GO0,10002,ENTER,10002,EX1T,10002,SAVE,
10015,RESTO0,10016,AARDV,10018,,,0
7000 DATA "“THE CREATURE WILL NOT LET
YOU PASSI"

7001"DATA"THE GRATE {S CLOSED AND LOC
KED1

7002 DATA"THE DOOR IS TIGHTLY SHUT AN
D LOCKED,"

7003 DATAYYOU BURN IN THE FLAMES!"
7004 DATA"YOU FALL TO YOUR DOOM..."
7005 DATA"YOU CANT GO THAT WAY"

7006 DATA"WHAT DID YOU SAY?"

7007 DATA"YOU TRY UNSUCCESSFULLY...IM
MOVABLE!"

7008 DATA"YOU ALREADY HAVE (TI"

7009 DATA"YOU DONT HAVE ITI"

7010 DATA"OKAY,"

7011"DATA"I SEE NOTHING OF THE SORT H
ERE.

7012 DATAM™YOU DONT NEED TO."

7013 DATA"WITH A CREAK, THE GRATE FAL
LS OPEN."

7014 DATA"THE DOOR SWINGS OPEN WIDE,"

7015 DATA"YOU HAVE NO KEY!"

7016 DATA™IT SLAMS SHUT AND THE LOCK
CATCHES."

7017 DATA"YOU HAVE THE FOLLOWING:"
7018 DATA"PREPARE TAPE RECORDER AND H
IT <ENTER>,"
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7019 DATA"YOU HAVE NO BOMB{"

7020 DATA"THE GRENADE FALLS TO THE FL

OOR AND NOTHING HAPPENS."

7021 DATA"THE GRENADE EXPLODES IN A S

ILENT FLASH OF WEIRD BLUE

L{GHT...AND THE CREATURE 1S GONE!"

7022 DATA"WITH WHAT WEAPON?"

7023 DATA"YOUR AXE SWINGS ARE DYNAMIC

oo <BUT INEFFECTIVEL™

7024 DATA"YOUR MAGIC AXE CONNECTS! TH

E CREATURE VAN{SHES (N

A PUFF OF FOUL SMOKE!"

7025 DATAYMISSED (T! FIEL"

7026 DATA"THE HIDEOUS MONSTER LEAPS A

T YOUR THROAT!™

7027 DATA"SOMEHOW YOU FEND IT OFFI"

7028 DATA™IT FINISHES YOU OFF!!®

7029 DATA"YOUR SCORE (S:"

§930 DATAYDO VISIT THE BASEMENT AGAIN

7031 DATA"NOTHING HERE TO READ...HOW

puLLt™

7032 DATAYTHE DANGER HERE

IS PRETTY THICK,

BUT SAY <AARDVARK>;

YOULL GET OUT Quicki®

7033 DATA"NOTHING HAPPENS,"

7034 DATA"™WELL, FINE ADVENTURER! YOU

ARE tN A REAL JAM!

FORTUNATELY, WE CAN BRING YOU BACK!

looPOOF!!ooe"

7035 DATA"YOUR ARMS ARE FULL...YOU CA

N CARRY NO MORE."

7036 DATA"YOUR CRIES GO UNHEARD, PIT{

FUL WRETCH."

7037 DATA"TIME PASSES..."

7038 DATAYIT (S PITCH DARK! YOU MAY F

ALL INTO A PITI"

7039 DATA"YOU MANIFEST SOME PRETTY SU

I CIDAL TENDENCIES, FELLAI"

7040 DATAYSAVE YOUR STAMINA, TURKEY!

it SEE NO REAL THREATIY

30&1 DATA"THERE 1S AN ANGRY ORC NEARB
!

7042 DATAMHE SWINGS OUT AT YOU VITH A
BLACK SCiMITARI"

Fig. 9-3. Continued from page 139.
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7043 DATA"YOU ARE SLASHED (N PIECES,"

8000 DATA "THERE 1S A CROWN OF JEWELS
HERE!","JEWELED CROWN"

8001 DATA"THERE 1S A GOLDEN CUBE HERE
1", "GOLDEN CUBE"

8002 DATA"THERE 1S A DIAMOND HERE CAR

VED LIKE A BEETLE!","DIAMOND BEETLE"

8003 DATA"THERE 1S A FINE SILVER BELT
HERE!",'"SILVER BELT"

8004 DATAMTHERE IS A RING HERE OF PUR

E PLAT INUM!", "PLATINUM RING"

8005 DATA"THERE (S A POLISHED ONYX HE

REIY, "ONYX"

8006 DATA"THERE 1S A COIN HERE WORTH

MILLIONSE", MCOIN"

8007 DATA"THERE (S AN ANCIENT HOURGLA

SS HERE!'',"HOURGLASS"

8008 DATA"THERE (S A BURNING TORCH HE

RE, ", TORCH

8009 DATA"THERE 1S A HEFTY MAGIC AXE

HERE.",AXE

8010 DATA"THERE (S A LARGE KEY HERE,'"

+KEY

8011 DATAMTHERE IS AN ENCHANTED GRENA

DE HERE,'", GRENADE

8012 DATAYA GIANT MANTIS CROUCHES NEA

RBY, READY TO POUNCE!"

8013 DATAYA HUGE IGUANA PACES RESTLES

SLY NEARBY, KEEPING AN

EYE ON YOUL"

8014 DATA"A GIANT WHITE SPIDER, MAND!

BLES TWITCHING, TOWERS

ABOVE Youl"

8015 DATAYTHE NAMELESS TERROR ARISES

FROM A PIT, BLOCKING

YOUR RETREAT WITH SLIMY TENTACLES!!"

9000 DATA "YOU STAND AT THE BOTTOM OF
A LARGE PIT. AT YOUR FEET 1S A

NARROW HOLE JUST WIDE ENOUGH TO CRAWL
INTO.","BOTTOM OF PIT"

9001 DATAYHERE ARE THE RUINS OF AN AN

CIENT TROLL~CASTLE, NEARBY

IS A GRATE LEADING DOVIN (NTO DARKMNESS
oo, "RULNSY

9002 DATA"THIS WAS APPARENTLY ONCE A

WEAPONS ROOM, THOUGH THE
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CASES ARE ALL EMPTY NOW, THERES A HOL

E IN THE ROOF, AN ARCHWAY

TO THE EAST, AND A JAGGED HOLE IN THE
SOUTHEAST WALL.","WEAPONS ROOM"

9003 DATA"THE SIGNS OF A GREAT BATTLE
BETWEEN TROLLS AND TERRIBLE
BEAST-MEN ARE EVIDENT,..FROM THE LOOK
S OF IT, THE TROLLS LOST,

BODIES ARE EVERYWHERE. THERE IS A JAG

GED HOLE TO THE WEST, A

HALL NORTHEAST, AND A SOUTH DOOR.","L
0ST BATTLE"

9004 DATA"THE WALLS ARE LINED WITH CO
FFIN CASES...THIS (S

THE TROLL CEMETERY, T SEEMS. A SOUTH

WEST DOOR LEADS OUT.","TOMB ROOQM"
9005 DATA"THIS IS A SMALL, DARK ROOM
SMELLING OF MAGIC., THE

ORACLE HAS LEFT A MESSAGE ON THE WALL
. THERES A SOUTHEAST DOOR

AND A LARGE PIT NEAR THE DOOR.","QRAC
LE ROOM"

9006 DATA"AT LAST! THE TREASURE VAULT
! WHAT A SHAME THAT SO

MUCH OF THE ORIGINAL WEALTH HAS BEEN
REMOVED! THERE 1S A

SOUTHEAST DOOR OUT,.","TREASURE VAULT"

9007 DATA"THIS WAS ONCE THE MAIN GUAR
DPOST TO THE UNDERGROUND

KINGDOM OF THE TROLLS. THERE (S AN EN
TRANCE=GRATE SET IN THE

RO?ﬁ AND A SOUTH EXIT DOOR.","GUARD P
0S

9008 DATA"YOU ARE LOST IN A MAZE!","Y
OU ARE LOST IN A MAZEI"

9009 DATA"YOU WALK ALONG A NARROW LED
GE RUNN{NG NORTHWEST AND SOUTHEAST,
TO THE WEST (S A RAPID STREAM FAR BEL
OW, AND TO THE EAST IS A

BOTTOMLESS CHASMI"™,"NARROW LEDGE"
9010 DATA"THIS IS A SMALL PRISON CELL
. THROUGH THE BARS, YOU CAN

SEE A NfCE OFFICE,.,UNREACHABLE. THER
ES A NORTH DOOR,","CELL"

Fig. 9-3. Continued from page 141.
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WiTH EMPTY, RANSACKED DESKS AND
CABINETS. A BARRED WINDOW IN THE WALL
SHOWS A SMALL PRISON CELL

OF SOME SORT, THERE ARE TWO DOORS, TO
THE NORTHWEST AND EAST,

AND A ROCKY HOLE IN THE SOUTH WALL.",
"OFFICE"

9012 DATA"THIS 1S THE LUNCH ROOM, COM
PLETE WITH COKE MACHINE,..

EMPTY, UNFORTUNATELY. THERE 1S A DOOR
TO THE WEST.","LUNCH ROOM"

9013 DATA"WHAT A CREEPY PLACE! THERE

ARE COBWEBS EVERYWHERE! A

DOOR LEADS NORTH, A HALL GOES NORTHWE
ST, AND THERE (S A HOLE

IN THE FLOOR.","COBWEB ROOM"

9014 DATAM™YOU ARE LOST IN A MAZE!","Y

OU ARE LOST (N A MAZE!"

9015 DATAY"YOU ARE LOST (N A MAZE!","Y
OU ARE LOST IN A MAZE!"

9016 DATA'"YOU ARE SPLASHING ABOUT IN

A COLD, RUSHING STREAM!

NOTHING YOU DO SEEMS TO STOP YOUR PER
(LOUS RIDE TOWARDS A

NEARBY STONY CAVE ENTRANCE!","RUSHING
STREAM"

9017 DATA"YOU LIE ON THE SANDS OF A D

ARK, SLIMY CAVERN BY A

STREAM. THE WALLS ARE COVERED WITH DI
SGUSTING O0ZE. THERE (S

A HOLE IN THE NORTHERN ROCKS AND A PA

TH NORTHEASTWARD,","SLIMY CAVERN"
9013 DATA"SWEAT BEADS ON YOUR FACE AS
YOU STAND (N A STEAMY

CAVE. SMOKE RISES FROM A HOLE N THE
FLOOR, AND THERE IS

ANOTHER RAGGED HOLE IN THE ROOF W{THI
N REACH, THERES ALSO

ﬁ PATH GOING SOUTHWEST.","STEAMY CAVE

9019 DATA'"YOU ARE CROUCHING ON A FIER
Y SPIRE, A PINNACLE

SURROUNDED BY FLAMES! A LOW ROOF WITH
A HOLE HANGS A FOOT

ABOVE YOUR HEAD. IT IS UNBEARABLY HOT
I","FIERY SPIREY
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Chapter 10

improving the Program

Computer programmers are the most dissatisified class of people
you are likely to meet. It’s not enough for them to have a program
that plunges the player into a carefully constructed alternate reality
for hours. That's peanuts! The real challenge for programmers is to
write the program better, faster, more efficiently, with more style.

Now, I'd be foolish to claim that Basements and Beasties is as
optimized and efficient as can be. In fact, there are a number of tricks
that can be employed to squeeze the program even further. In this
last chapter, I really push BASIC to its limits and find out just how
much complexity I can get at high speed with little memory.

Of course, I ought to warn you where all of this is leading.
BASIC has served us well through these past chapters, but in my
heart of hearts, I know that Basements and Beasties ought to be
enlarged and rewritten in assembly language. Some remarks toward
the end of this chapter address how you might begin to attempt this
task.

One preliminary comment is in order. Several improvements
and modifications are described in this chapter, along with BASIC
code to implement them. Not all of them are compatible simply by
adding these new lines of code. Before attempting to implement
everything at once, review what variables have been changed and
what other sactions of code are affected, One small change creates a
ripple-effect that could leave your adventure program adrift in a sea
of syntax errors!
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A FASTER WORD SEARCH

In Chapter 3 you looked at the command subsection of Execu-
tive. When a one- or two-word command is input, that section of
code performs two initial functions. First, it divides the input into its
separate words (if that is necessary). Second, it takes the first word
and tries to identify it.

The key to the program’s interpretation of inputs is the data
block known as the word table. All words that the program is to
understand are listed in this table, paired with an ID number that aids
in definition. If a word is not found in the word table, the program
usually responds in ignorance with a message like, “WHAT DID
YOU SAY?”

There is a subroutine, called Idword, that is used to access and
use the word table. Given a word in the variable A$, Idword searches
the entire table, attempting to find a word that matches A$. If it
succeeds, it sets the variable N to the accompanying ID number. If it
fails, N is set to zero.

What is the fastest way to search a table? One method is a
simple sequential search. Every word in the table is checked, from

A @D QUESTION: | QUESTION: A
B @) “IS THIS “IS THIS ITEM B
ITEM THE | GREATER OR
C © LETTER LESS THAN THE | 'C
Ho" LETTER H?”

D 4\ D
E 6 E
F @ F
G [?)e G
H @) H
] ]
SEQUENTIAL BINARY J
METHOD: METHOD: K

8 LOOPS 3LOOPS

Fig. 10-1. Sequential versus binary searching. (Note that binary searching seeks
the approximate halfway point of each table segment it checks, rounding up if
necessary.)
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1080 IFLEN(A$)>5THENAS$=LEFT$(A$,5)
1082 A=2:B=1:GOSUB1040

1084 READB$,N:IFB$="."ORB$=A$THENRETU
RNELSEIFB$>A$STHENN=0: RETURN:ELSE108L

Fig. 10-2. The subroutine ldword revised. Note that the word table must be
alphabetized for this change to function.

the very start of the table, until a match is found. If no match occurs
the entire table is read, which is a waste of time.

A second method is called a binary search. In such a case, the
words in the table are set in alphabetical order. The middle entry is
checked for a match first. Depending on whether the sought word is
alphabetically less or greater than that entry, one half of the table is
eliminated from consideration. The middle entry of the remaining
half is checked, and so on, until a match does or does not occur. The
binary search method is very fast, indeed. (Fig. 10-1 compares these
two search methods.)

Now, after that big build-up, this chapter does ot give the code
for a binary search of the word table. Why not? The primary reasonis
that the items in the table are all in a series of DATA lines. Even with
improved data access methods used to POKE values into the BASIC
data pointer, it is cumbersome to find the middle entry of the table,
and the middle entry of half of the table, and so on. The READ
statement itself is by nature sequential. The code it would take to
maneuver the data pointer into a binary search is too complex to
justify it as the method.

So what do I suggest? As usual, a good compromise is better
than no progress at all. Take alook at Fig. 10-2. This is the code for
an improved version of the subroutine Idword. The underlined
statements are new and the rest is unchanged. Apart from these
additions, one other change is necessary: all words in the word table
must be placed in alphabetical order. In this way, the new Idword can
tell whether it has looked too long and too far for the desired word,
and when to give up.

Line 1084 is the crucial segment. Note that the search begins at
the very top of the table, just like a regular sequential search. For
each iteration of the search, a word from the table is read into B$ and
its accompanying ID number is read into N. The very last wordin the
table is a period with an ID number of zero. Thus, with each
iteration, Idword checks for one of two conditions. lf a match occurs
between B$ and A$, the subroutine returns, and N equals the ID
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number. Also, if B$ is a period, the search is over and N equals zero
to indicate failure. All of this is just as it was before.

Here’s the improvement. If neither of the above cases occur,
then maybe the word is still somewhere in the rest of the table. But,
you can eliminate some searching if you compare the word’s al-
phabetical position to that of the table entry. If the sought word
begins with a “D” and the previous table entry began with an “E”,
you know (assuming an ordered table) that further searching is
unnecessary. The search-time savings average out to about 50
percent.

How can this work? Looking at the listing, you see the expres-
sion, IF B$>A$. In Microsoft BASIC the comparison operators “>"’
and “<” canbe used to compare two strings for alphabetical relation-
ship. Thus, the word “DROP” is alphabetically “less than” the word
“LOOK.” In cases of shortened words, the dictionary order applies:
“ACT” comes before “ACTION” and is therefore alphabetically
less.

So, the new Idword makes a final test. If the table entry just
readis alphabetically greater than the desired word, the word cannot
be in the remainder of the table. The variable N is set to 0 to indicate
search failure and Idword returns. If you think about it, this is similar
to the way in which you verify that a word is not in a dictionary. Once
you are in the general area where the word should be, you look for a
match. If you find that one word and the next is greater, you don’t
need to search anymore. (Imagine if dictionaries weren't ordered
alphabetically!)

This upgrade to Idwordis one that can be made to the program
immediately. Once the word table is reordered alphabetically (get to
work), this improvement works without problems. Remember that
new words added to the table must be placed in the proper position.

HEAVY OBJECTS

In Chapter 6, which deals with how the adventurer can affect
the scenario, a lengthy explanationis provided for the handler called
Take. This handler, if you recall, is invoked by the keywords TAKE
or STEAL, and it controls the players ability to pick up objects and
tote them in his carry-sack. A number of limitations are placed on
the player in this regard. For instance, the adventurer is forbidden
to carry creatures.

The major parameter that limits the act of carrying, however, is
the maximum amount of five objects. The variable CT(2) is carefully
updated each time an object is taken or dropped. The handler Take
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does not permit a new item to be picked up if CT(2) is already at the
maximum total of five.

This sort of limitation is a simple one to maintain, but it lacks
realism. After all, the objects in Basements and Beasties range from
small rings to heavy golden cubes to unwieldy magic axes. It would
certainly be more realistic to limit the player by the weight and
bulkiness of an object rather than a simple total.

How might this be done? For one thing, each object must be
assigned a number that approximatesits value in terms of portability.
As a player gathers objects, their numbers (which may be called
mass numbers) are totaled and recorded. If the addition of a new
object with its unique mass number would cause the total to exceed
some arbitrary limit, a message warns the player that he cannot pick
it up without collapsing altogether!

Figure 10-3 shows the mass chart, in which each of the portable
objects in the scenario is assigned a mass number. These approxi-
mate mass numbers range from 1to 50 and are an evaluation both of
weight and ease of carrying. Obviously, the numbers are arbitrary.
The program descriptions never tell, for instance, how big the
Enchanted Grenade is or of what it is made. You may wish to revise
these numbers altogether.

That's the simple part. Where do you put these numbers so that
the handler Take (when it is modified) can access them? Fortunately,
you planned ahead. The object status array consists of OB(X,0) and
OB(X,1) for all objects. OB(X,1) gives the object’s location, but

OBJECT MASS OBJECT MASS
1 | CROWN 25 7| COIN 5
HOUR-
2 | CUBE 40 fis GLASS 20
3 | BEETLE 15 9| TORCH 15
4 | BELT 20 100 AXE 20
5 | RING 10 11| KEY 5
6 | ONYX 10 12| GRENADE | 25

Fig. 10-3. Proposed mass chart assigning an arbitrary mass factor to each
portable object.
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3000 DATA 4,25,7,40,20,15,11,20,5,10,
19,10,7,5,6,20,2,15,3,20,10,5,12,25,4
. ,0,18,0,14,0,6,0

Fig. 10-4. The revised object initialization block, such that the first 12
objects are assigned mass numbers.

OB(X,0) is unassigned. The mass number for each object can be
stored in these unused elements of the object status array.

How do you put the mass numbers into the proper variables? In
the initialization code of Basements and Beasties the object status
array is filled from a data block, the object initialization block on line
3000. Up until now, every other element in that data block was a
zero, unused; the other data are the beginning room locations for all
objects. Now replace those zeroes with the appropriate mass num-
bers.

Figure 10-4 shows the new version of line 3000. The first datais
the beginning location for object 1; the Crown of Jewels begins at
room 4. It has a mass number of 25. Once this block of data is read,
OB(X,0) can quickly be checked to determine if the object in ques-
tion can be carried.

The handlers Take and Drop look a bt different. It goes without
saying that the old system using CT(2) for the total number of
objects carried is eliminated. Thus, any references in other routines
that increment, decrement, or set CT(2) need to be removed.

Figure 10-5 shows the changes that need to be made in Take
and Drop. Let’s look at Take first, since it is modified the most. The
handler Take must determine if the addition of this new object is too
much for the player to handle. You must make two assumptions.
First, assume that the mass numbers are totaled and storedin CT(2)
each time an object s taken. Second, assume an arbitrary carry-sack
maximum of 75 total mass points.

In the original Take, it did not matter what object the player
tried to lift: if it pushed his total above five objects, it was prohibited.
The old Take did not need to decode what the object was until this
case was dismissed. The new Take, however, must know what the
object is before it decides if it is too much to carry. Line 240 begins by
a decoding of word 2 stored in TX$(3). The subroutine Idword is
used to locate the object’s name in the word table and return withits
ID number in variable N. For objects, the ID number equals the
object number.

With this information, Take can now perform a comparison.
CT(2) contains the player’s total burden in terms of mass points. If
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the addition of this new object’s mass, as foundin OB(N,0), results in
atotal that exceeds 75, it is too much to bear. If so, Take proceeds to
display message 36, as it did before: “YOUR ARMS ARE FULL
... YOU CAN CARRY NO MORE.” On the other hand, if the limit of
75 mass points is not exceeded, the handler goes ahead and allows
the object to be lifted. To keep track of the load, CT(2) is increased
by the added mass in OB(N,0).

Next, look at the handler Drop. If all of the prerequisites are
met, Drop permits the specified object to be taken away from the
carry-sack. Again, CT(2) is adjusted to keep track of the total
burden. The mass value of the object as stored in OB(X,0) is
subtracted from CT(2).

There are other routines that are affected by this improvement,
notably the Resur handler that resurrects the player with an emptied
carry-sack. Any other such modification is simple to make, following
the example of Take and Drop.

RUN-TIME BASEMENTS

The small computer market does not lack for adventure pro-
grams of every size, variety, and degree of complexity. If you study
the available programs, though, you'll discover that they generally
fall into one of two categories. The first category consists of fixed
labyrinth games, like Basements and Beasties, programs in which

240 A$=TX$(3):GOSUB1080:1FN>33SITHENB
=7:G0TO242:ELSEIFCT(2)+0B(N,0) >75THEN
B=36:G0SUB1100:GOT0104 : ELSEIFN>12ANDN
<170RN=18 THENB=40:GOTO242

241 |FN=17THENB=8:GOTO242:ELSE 1FOB(N,
1)=21THENB=9:GOT0242:ELSEIFOB(N,1)<>C
T(0)ORN=0THENB=12:GOT0O242 :ELSEOB(N,1)
=21 :B=11:CT(2)=CT(2)+0B(N,0)

242 GOSUB1100:GOTO104

260 A$=TX$(3):GOSUB1080:IFN>399ITHENE
=7 2 GOSUB262:ELSEIFOB(N,1)<>21THENB=10
:GOT0262:ELSEIFN=12THEN5L40:ELSEOB(N,1
)=CT(0):B=11:CT(2)=CT(2)-0B(N, Q)

262 GOSUB1100:GOTO104

Fig. 10-5. The revised versions of the handlers Take and L rop, respeciiveiy,
allowing for mass number assignments to objects.
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the treasures, creatures, and pathways are the same every time
they are played. As such, programs of this first type are like puzzles
that, once solved, are replayed primarily to increase speed and
score.

The second category, though, consists of variable labyrinth
games, in which the treasures and situations change locations each
time the program is run. Since the layout of the scenario is deter-
mined randomly when the game is first run, these programs are said
to have run-time scenarios.

There are a few drawbacks to run-time adventures. First, they
are more battle-oriented than solution-oriented. That is, specific
tests of the adventurer’s cleverness are not often included, since
these usually imply a fixed room location with fixed entrances and
exits. (Consider the narrow ledge in Basements and Beasties.)
Second, they sometimes downplay the role of on-screen description
of the rooms, since such descriptions cannot be explicit about door-
ways, which are always changing.

These objections are not universal, however, and you may be
wondering if Basements and Beasties might not be a bit more
interesting if there were more random factors included. For you,
let's discuss some ways of creating run-time basements.

At least in its present form, your program does not yield to
random pathway designation. The room descriptions tell where
every doorway is. These references all have to be deleted. Plus, the
function of obstacles depends heavily on the directions from which
the player exits a room.

For these reasons, it is best rather to think in terms of random
placement of objects, and specifically the treasures, at various places
throughout the scenario. Each time the game is played the adven-
turer does not know where the treasures are, and the chances of him
recovering them easily vary each time.

In Fig. 10-6, you can see a line of code that can be placed in the
initialization section of the program. A loop is set to affect objects 1
through 8, which are the treasures. For each treasure, its location,
as found in variable OB(,1), is set randomly. The expression
RND(17)+3 provides a room number from 3 to 20. This prevents
the player from finding treasures without even going down into the
basement; rooms 1 and 2 are excluded. (Of course, if you don’t care,
you can substitute the expression RND(19)-+1, which provides a
room number of from 1 to 20. In fact, the expression RND(20)
permits some treasures to be placed in limbo, room 0, so that in
some rounds of the game the total possible score is lessened.
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12 FORI=1TO8:0B(1,1)=RND(17 )+3:NEXTI

Fig. 10-6. Addition to the Initialization code to randomize object location,
specifically the treasures.

There is a way tomake the run-time basement evenriskier. For
the FOR-NEXT loop in the example, substitute a range of from 1 to
12. This provides for the random placement of such necessary items
as the Key and the Axe. Some miserable possibilities can turnup in
this case. For instance, the Key may be placed in a locked room!
Also, the player may have to do some hard searchingjust to find the
Axe to defend himself. However, do the poor adventurer a favor:
add the statement “CT(9,1)=2" after the loop. This ensures that the
torch is always available above ground. You don’t expect the pitiful
hero to grope around for it in the dark, do you?

Aside from this sort of random assignment of object locations,
there is one more sort of run-time approach that can be incorporated
into Basements and Beasties. Several programs have been written
that store entire scenarios in data files on tape. The player loads a
main program that in turn loads in whichever scenario the player may
choose. The net effect is that of a multi-floor scenario that is limited
only by the number of available files on tape.

How can this concept be implemented? Basically, all scenario
information, including room and object descriptions, travel table,
obstacle list, and so on, can be created on tape by using a special
program. The word table and message block are a part of the main
program that stays in memory from the start, but extensions to both
of these must be loaded from tape to support specifics of each floor of
the basement.

The key to the transition is that almost everything that now
residesin DATA statements will reside only on tape, untilloaded. At
that point, the data is stored in numeric and string variables. Thus, a
whole set of arrays needs to be set up to receive data from tape. For
example, for the 20 rooms (per floor) there needs to be an array
RD$(20,1) for room descriptions. RD$(x,0) contains the longform,
RD$(x,1) the short form. A similar array OD$(16,1) sexves for
object descriptions, and so on.

A CONDENSED TRAVEL TABLE

I your goalis to find ways of reducing thie use of memnor”y usage,
there are plenty of tricks that can be applied. For instance, thanks to
the inclusion of the PEEK and POKE statements in BASIC for the
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TRS-80, block of memory can be accessed and altered without the
use of other BASIC structures, such as, arrays and DATA lines. In
several cases, data managed by PEEK and POKE can be set up
more efficiently than by other means.

Let’s take alook at the best example of this: the travel table. In
its present form, the travel table consists of 20 DATA lines, one for
each room in the scenario. Each line contains eleven items, and each
item is a number from 0 to 23. Now, if you add together the number
of bytes taken for each number, plus the memory needed for DATA
block overhead, you discover that the travel table fills about 595
bytes of memory.

A lot of this space is really wasted. Since each data item is less
than 256, each needs only 1 byte. If so, the total memory consump-
tion would only be about 220 bytes: 11 iterns multiplied by 20 rooms.
The rest of the space is taken up by structures to permit the items to
be read by the READ command as DATA elements. Think ofit: 375
bytes are consumed in things like BASIC line numbers and pointers,
DATA keywords, and commas to separate the items! If PEEK and
POKE are used, most of this is superfluous, and a savings of well
over 60 percent could be realized.

Where do you put this magical block of bytes, this data block
without DATA structures? It may surprise you to hearit, but you can
put the data bytes right into a BASIC line. As long as you know the
exact memory location that begins the BASIC line, you can PEEK
the contents of the line to your heart’s content.

This unusual assertion needs some bolstering. The plainfact is,
BASIC for the TRS-80 really only makes a few stipulations concern-
ing what can be put into a line. The first restriction is a length
limitation of 255 characters (or bytes) maximum. You only need 220
of these for the travel table, so that is no problem. Second, any
character at all can be placed into a BASIC line (even special control
characters with ASCII values below 32) with one notable
exception—character zero. This is because BASIC uses a zero byte
to determine the end of the line. As long as you don't POKE zero
valuesinto aline, youare free to POKE anything else from 1 to 255.

The third stipulation is that the contents of a BASIC line can be
nonsensical as far as BASIC syntax, as long as the program does not
try to execute the line. That is, you can POKE numbers into a
BASIC line that spell out gibberish, and it does not crash the
program—as long as that line is avoided in execution. So youcanfilla
BASIC line with bytes that make sense to a data-access routine of
some sort, without worrying that it might somehow confuse BASIC.
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You don’t even need a REM statement to protect the line, if you
simply stay away from it.

One hasty interjection should be made. These stipulations refer
strictly to the proper running of a program. I haven't said anything
about listing the program. Obviously, if | POKE some unusual bytes
into a BASIC line, the listing may appear with graphics blocks or be
unreadable altogether due to control characters like clear-screen. A
garbled listing does not prevent the program from running, though.
In fact, those strange lines can even be edited from BASIC without
trouble.

Now, let’s get specific. In place of 20 DATA lines from 5000 to
5038, I propose one BASIC line, numbered 5000. Its exact location
in memory is stored in the data-access array DA(x) anyway, thanks
to the initialization segment of the program. The line will contain 220
bytes of information, corresponding to the present 220 DATA items
in the travel table.

Wait a minute! I hear some objections from somewhere. First,
some of those values in the travel table are zeroes, and that’s not
permitted as a byte in a BASIC line. Second, how are you to type all
of this in as you write the program? There are no keys for typingin all
of the characters with ASCII values less than 32. What do you do?

There is one answer to both questions: encode the data a bit.
You already know that the numbers in the travel table range from 0 to
23. If you add 65 to every value, the range is from 65 to 88--and
characters 65 to 88 are the letters A through X. Those letters are
safe on a BASIC line and are easily entered from the keyboard.
Whenever you access the travel table bytes using PEEK, though,
you need to remember to subtract 65 toreturn to the original value.

So much for theory; now on to code. Figure 10-7 gives two
sections of Basements and Beasties. The first is the actual travel
table, encoded and stored on one BASIC line, number 5000. Using
the correspondence factor that the letter A represents a zero, the
letter B a one, and so on, compare the listing to the DATA items in
the present version of the program.

The second listing is the new form of the subroutine called
Travec. Recall that when the program presently needs to access the
travel table, it sets variable D to anumber from 1 to 11, to choose the
specific item from a table row. (The row itself corresponds to the
room the player is in at the moment, which is stored in CT(0).) Then

g O P N A +1a
Travecis Caull, Wiulia finds the yrop"r DATA block and the proper

row, fetches the item, and stores it in variable A.
In the new version of Travec, the inputs and outputs are the
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5000BCCBBBBBADJCCCCCBBCAI JAAEKAAAABAL
AFAALADAAAEAAAAAEAAAAFAAAMAAAAAXD
AAAOAAAAAADAAAAOAAACAITJAQPJAAJAAH
XXXQRRRDAREEAAAAAAAAAAAANASAAGAAH
AAAAAAMAAAG IAAATAAHATEPAPAPQJAAAA
PQQAQAKJAABSSSSSSSSSSAMTAAAAAAAAA
OAAAASAAQUJIWWWWWWWWTWI

1120 A=(CT(0)-1)*11+(D=1)+DA(1)+L:A=P
EEK(A)-65:RETURN

Fig. 10-7. New encoded travel table and the revised version of the sub-
routine Travec. Line 5000 should be typed with no spaces at all.

same as before, but the method has been changed. The new Travec
must calculate the memory location at which to find the specific
travel vector byte. The memory address for the beginning of line
5000 is already stored in DA(1), but a factor must be added to this
address to locate a particular byte.

Take line 1120 expression by expression. First, although
nothing actually divides the bytes in the new travel table, they are
still organized in series of eleven, one series of eleven per room. If
the bytes for room 1 start at the beginning of the line, the bytes for
room 2 start eleven bytes later, and so on. The expression
(CT(0)—1)*11 helps Travec skip to the exact 11-byte series that
matches the present room. If it is room 1, the expression equals
zero, meaning that the bytes for room 1 are right at the start of the
line with no addition needed. For room 2, the expression equals 11,
meaning that 11 must be added to the memory address of the
beginning of the block to get to the series for room 2.

Once the right 11-byte series is found, the expression D—1 is
added. Remember that D is a number from 1 to 11. This expression
converts it into the form 0 to 10 to be added to the beginning of the
series. For example, if you want travel vector 1, it is the very first
byte in the series for the present room, and no addition need be made
or skipping done.

Finally, the expression DA(1)+4 adds all of the preceding to the
exact memory address of the first of the 220 bytes. DA(1) contains
the memory address of a part of the BASIC line called the line vector
(see elsewhere in this book for a fuller description), and the actual
contents of the line do not start until 4 bytes later in memory. All of
the expressions added together provide the address of a specific
character; this address is temporarily stored in variable A.

155



Reading the memory location is simple; the statement
PEEK(A) accesses the location and provides the value of the
character stored there. The value is from 65 to 88, and you needitin
the form 0 to 23. So, 65is subtracted from the PEEK value, and the
result is stored in variable A. Travec is finished and returns to the
calling program.

The user can expect two advantages to this approach. First,
you saw the vast savings in memory; some 370 bytes worth is
nothing to sniff at. Second, the user will probably notice a speed
difference in the execution of motion commands. Before, Travec had
to call another subroutine to move the data pointer down to a specific
DATA line, then READ across to the item using a FOR-NEXT loop.
Now, Travec simply evaluates an expression of medium complexity,
uses the value to read a byte, and subtracts a fixed value from the
result—which takes a lot less time than some of the FOR-NEXT
loops of the old method.

By the way, the listing of line 1120 is not even as simplified as it
can be; I left it that way for ease of explanation. The first part may
also read A=(CT(0)-1)*11+D+DAD)+3.

USR RUSES

For the entire book, I have been dealing with ways to accen-
tuate BASIC, because BASIC is so slow. I have seen adventure
programs that take an average of 20 seconds to respond to any one
command. This makes a boring game: hence the search for stream-
lining devices.

In the final analysis, of course, machine-language routines are
far faster than interpreted BASIC, and the best adventure program
is one written entirely in assembly language. Not everyone is ready
to tackle that sort of task, though, and BASIC makes things easier.

Fortunately, Microsoft BASIC provides for a third alternative,
hybrid programming, which allows BASIC to call fast machine code
routines on occasion. The statemment that supports this facility is
USR(N). Using this statement, BASIC can relinquish control of the
processor to assembly routines designed to handle more complex
oft-used functions in the most efficient manner.

You probably know some things about using USR(N). You know
that you need to POKE the starting address of the routine first in
two-byte form into memory locations 16526 and 16527. You know

S PRI I .- V_TICD/ +
that the expression X=USR{N} canbe used, and that the variables X

and N in that expression may be affected by the called routine.
One frequently discussed aspect of USR(N) is the question,
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“Where do I put the routine?” Machine-coded routines can be stored
in upper memory, but you must protect that space with the MEM-
ORY SIZE option, or else BASIC steals the memory for string
space. You can POKE routines into a string variable, as long as that
variable is left alone. There is waste involved, because the program
must include a BASIC subroutine to READ the machine codes froma
DATA line and to POKE them into the string. In the end the routine
is stored in two places: in a form able to be executed in the string and
in the DATA line as now-useless numbers.

Now for a rare piece of USR news. (It should come as no
surprise to you after reading the previous section of this chapter.) A
machine-code subroutine can exist right in a BASIC line! That way,
the routine is ready to use the minute the program is loaded from
tape; it does not have to be constructed by POKE commands and
FOR-NEXT loops.

As I've shown once before, there are restrictions on this sort of
thing. Your machine-code routine carmot exceed 255 bytes, or else it
will not fit in a single BASIC line. It must be avoided by BASIC, or
else a syntax error occurs; the line must either be skipped, or it must
be protected by a beginning REM marker. Finally, and most impor-
tantly, no zero bytes are tolerated. An ill-placed zero byte confuses
BASIC utterly. It takes some care to write an assembly routine that
avoids the use of zero byte, but it can be done.

The use of USR(N) requires that the address in memory of the
beginning of the routine be known. To simplify things a bit, it is a
good idea to put machine-language routines into the first lines of a
program. You know that BASIC storage starts at 17384 (or, for
Model I users, 17128), so specific routine addresses can be calcu-
lated from this fact. Since the program tries to execute these lines if
you type, “RUN,” you need to protect them by starting each line
with the REM statement. With four bytes taken for the encoded line
number and line vector, plus two bytes for the REM marker, a good
place to start the routine is at location 17391 in memory.

The next question is, how do you get the routine into the line?
The answer is, with a temporary POKE loop. Look ahead, briefly, to
Fig. 10-8. Use this short block of code to POKE a routine into the
first BASIC line in a storage, assuming that the line is created already
and filled with enough spaces to hold the routine. The last thing that
the code does is delete itself, because it is no longer needed. The
resulting BASIC line can be saved or loaded from tape with no
ill-effects, other than the rather distorted effect it produces during a
LIST command.

157



20 RESTORE: FOR 1=17391 TO 17308: REA
D N: POKE I,N: NEXT: DELETE 20-2b: EN
D

22 DATA 42,251,64,35,126,35,70,35,254
,65,32,5,120,254,68,40,7,94,35,85,35,
25,24 ,235,30,9,175,87,25,94,35,86,27,
213,42,249,64,126,95,35,70,35,78,355,2
54,3,32,9,120,183,32,5,121,254,65,40,
5,175,87,25,24

24 DATA 231,70,35,94,35,86,225,213,12
0,254,6,56,2,6,5,72,65,209,213,126,25
L,44,40,8,183,32,8,35,35,35,35,35,35,
24,237,254,46,32,2,225,201,26,19,190,
35,40,12,43,35,126,254,44,40,221,183,
40,218,24,245,16

26 DATA 214,126,254 ,44,40,8,183,32
5,35,35,35,35,35,35,205,90,30,225,
»42,249,64,126,95,35,70,35,78,35,2
2,32,9,120,183,32,5,121,254,78,40,5
75,87,25,24,231,209,115,35,114,201

10 CT(0)=1:CT(12)=RND(10)+10:CLS:POKE
16526,239:POKE 16527,67

1080 N=0:N=USR(0):RETURN

23
213
54,

.1

Fig. 10-8. This POKE routine creates a machine-code subroutineinline 1. Line
10 prepares BASIC for the USR statement, and line 1080 issues the call to the
new subroutine.

The procedure is simple. The programmer creates line 1 of the
BASIC program as a REM line full of following spaces. The number
of spaces depends on the number of bytes needed by the machine-
code routine. Then, he types in the lines in Fig. 10-8, making certain
that these DATA lines are the earliest DATA lines in the whole
program. When he types, “RUN 20,” the spaces in line 1 are
replaced by machine-code bytes, and finally the POKE code self-
deletes. Line 1 is ready for access by a USR call.

LOOKING UP WORD QUICKLY

If you do want to speed BASIC up by sprinkling in a few
machine-language segments, what functions should you augment?
BASIC is plenty fast in most cases, but what you want is to shorten
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the visible delay between command and response that is so obvious
in BASIC adventures. How do you do that?

If you trace the execution of Basements and Beasties by using
the TRON function of Microsoft BASIC, you'd find one routine in
particular that seems to take forever to execute. That routine is
Idword, the subroutine responsible for matching an input word with a
word table entry. If you have not alphabetized the word table, this
routine can take three or four seconds maximum, just to determine if
the word is in its vocabulary. Moreover, the maximum time occurs
every time the input word is not recognized. The player can enter
“STUPID GAME” and wait several boring seconds before getting
the response, “WHAT DID YOU SAY?” What you need is a
machine-language version of Idword. Such a routine can reduce the
word table scan time to mere milliseconds.

Figure 10-8 provides a BASIC routine to POKE a machine-
language version of Idword into memory. Remember from earlier
discussion that a substitute REM line full of spaces must be prepared
to receive the information. The machine code in this case requires
174 bytes, starting at memory location 17391, which is shortly after
the actual REM indicator in memory. Be sure to create line 1 with
this many spaces, plus one for the REM, at least.

When the BASIC routine is RUN, line 1 is filled with the new
subroutine, and the BASIC lines self-delete. The strange bytes in
line 1 do not interfere with the saving, loading, or running of the
program in any way. Just remember that the command LIST results
in garbage for line 1, but everything else should LIST fine.

Figure 10-8 also gives the few changes that need to be made in
the program as a whole to accommodate the new subroutine. The
initialization section of Basements and Beasties must POKE the
proper values into the USR pointer, so that a USR call results ina call
to memory location 17391. Secondly, the present BASIC version of
Idword must be replaced by the simplified line as shown. Note that
the variable NV is set equal to zero. As is explained in a moment, this
assures that the variable N exists in memory for the new subroutine
to find and manipulate. That way the routine need not be able to
Create new variables, a task that takes some complex operations.

(Some of the values in Fig. 10-8 are different for users of the
TRS-80 Model I. This is because the Model I begins its BASIC
storage area about 256 bytes earlier than the Model III. Therefore,
the POKE loop that stores the machine-language routine in memory
must begin with memory location 17135, not 17391. Also, when
setting up the USR pointer, you must POKE the values 239 and
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VARIAS
ARRAYS

IDWORD
1D1

1D2

1D3

1D4

1D5

ID6

EQU
EQU
ORG
LD
INC
LD
INC
LD
INC
cp
JR
LD
cp
JR
LD
{NC
LD
INC
ADD
JR
LD
XOR
LD
ADD
LD
INC
LD
DEC
PUSH
LD
LD
LD
INC
LD
INC
LD
INC
cp
JR
LD
OR
JR
LD
cp
JR
XOR
LD
ADD
JR
LD
INC
LD
{NC
LD

16633
16635
17135
HL, (ARRAYS)
HL

A, (HL)
HL

B8, (HL)
HL

65
NZ,1D2
A,B

68
Z,1D3
B, (HL)

HL

D, (HL)
HL
HL,DE
101
E,S

A

D,A
HL,DE
E, (HL)
HL

D, (HL)
DE

DE

HL, (VARTAS)
A, (HL)
E,A

HL
B, (HL)

HL
c, (HL)
HL

3
NZ, 1D5
A,B

A
NZ,1D5
A,C

65
Z,1D6
A

D,A
HL,DE
1D4
8, (HL)

HL
E, (HL)
HL
D, (HL)

107
ID8

1D9

1D10
ID11

1D11A

1D12

ID13

1014

poP
PUSH
LD
cpP
JR
LD
LD
LD
POP
PUSH

cp
JR
OR
JR
JR
DJUNZ
LD
cp
JR
OR
JR

INC
INC
{NC
INC
INC
{NC
CALL
POP
PUSH

NZ,1D11
HL

HL

HL

HL

HL

HL

1D8

46

NZ, ID11A
HL

A, (DE)
DE

(HL)
HL
Z,1D%3
HL

HL

A, (HL)
by
Z,1DY

A
Z,1D9
(D12
1D9

A, (HL)
L
Z,1D14
A

NZ. 1012

HL
HL
HL
HL
HL
HL
1E5AH
HL
DE

Fig. 10-9. The source listing of the new machine-language ldword.
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LD HL, (VARIAS) LD A,C
1D15 LD A, (HL) cpP 78

LD E,A JR Z,1D17

{NC HL iD16 XOR A

LD B, (HL) LD D,A

{NC HL ADD HL,DE

LD C, (HL) JR ID15

INC HL ID17 PoP DE

cp 2 LD (HL),E

JR NZ,1D16 INC HL

LD A,B LD (HL),D

OR A RET

JR NZ,1D16 END

66—not 239 and 67. The code for the routine itself does not change;
it is relocatable, or address-independent.)

The BASIC user who has never dabbled in machine language
can use the routine without being concerned with how it works. For
the bold, however, I think it's only fair to include a listing of the
assembly code that produced the routine, along with a brief descrip-
tion, which is given in Fig. 10-9.

Consider briefly the requirements of the subroutine, which I
continue to call Idword. The calling program stores the word to be
searched for in the string variable A$. Idword compares this word to
each of the entries in the word table, until it either finds a match or
reaches the end of the table. If the word is found, the accompanying
ID number is read and stored in the variable N; a search failure sets
N to 0.

A machine-language table-search is fairly easy to contrive. The
task that takes some thought, though, is how to interface to those
variables! Where are they in memory? What is their format? How do
you find them and change their values?

For the purposes of the discussion, refer to the diagrams in Fig.
10-10. You need to work with two structures in memory: straight
variables, such as N and A$, and variable arrays, such as DA(n).
These structures are stored by BASIC in the free memory space
that follows the actual program lines. Simple variables are stored
first, and not in any particular order; arrays come next. BASIC
maintains two pointers to help locate the memory areas where these
structures are. Locations 16633 and 16634 contain the address
where simple variables start. I call this pointer Varias. Locations
16635 and 16636 point to the start of the arrays, and this pointer is
termed Arrays.
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Note, by the way, that strings do not actually reside in the
immediate area where other variables are. Rather, the entry in that
area provides an address where the string can be found. Strings are
stored up near the top of available memory.

The first thing that the new Idword must do is find the beginning
of the word table. This address is stored in array variable DA(2),
since the word table is DATA block 2. Idword loads the beginning of
array space from the pointer Arrays. Then it searches for an array
entry that has the letter A in the second byte and the letter D in the
third byte, the reversed form of the name DA. The ASCII codes 65
and 68 correspond to these letters. Each array that does not corres-
pond to this name is skipped; this is done by using the value stored
in the fourth and fifth bytes, which tells how many bytes are left in
that variable. Idword loops until it finds DA(n).

When it has found the array, it needs to locate the value of the
specific entry DA(2). The actual values of the array elements begin
five bytes after the name characters, beginning with the value of
DA(0). Since each value takes two bytes, the value of DA(2) is found
atotal of nine bytes after the name characters. So Idword skips this
far ahead, reads the two-byte value, and stores it on the stack using
the PUSH instruction.

Now youneed the location in memory where A$ begins so you
can do comparisons. Using the pointer Varias, the routine performs
another search looking for two factors: a first byte equal to three,
indicating a string variable, and second and third bytes equal to zero
and 65 respectively, indicating a name character of A. (Single-letter
variables fill the remaining byte with 0). If a match of this kind does
not occur, the variable is skipped. This is done by skipping ahead by
the same number of bytes as the value of the first byte, the type
identifier. Type 2 variables, or integers, use two bytes to store a
variable; type 3 variables or strings use three bytes to point to the
string. Thus, the identifier number can tell Idword how far to ad-
vance in order to find the next variable. (Since the BASIC program
contains a DEFINT statement, expect to see these two types of
variables only, not single or double-precision variables. )

Once the variable A$ is found, the value of the fourth byte is
stored; this value tells how long A$ is. The next two bytes, which
give the starting address of the string in memory, are stored.
Finally, the length of A$ as stored in register Bis changed,; so it_is no
larger than five. In this way only the first five letters o any nput
word are considered significant. To save space no word-table entry
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is any larger than five letters. PUSH the string starting address onto
the stack for safe-keeping. The string length is hidden in register C
for later use.

Now the table search begins in earnest. Idword presets the
register B tothe length of A$, and DE is set to the starting address of
A$. HL acts as amemory counter, incrementing from the start of the
word table to the end. Then the comparison loop begins. Idword
checks a character in the word table to see if it is a zero or a comma
(ASCII 44). If so, the end of a DATA item is hit, and the next item
must be found. If azero is encountered, the end of the DATA line has
been reached and Idword must skip ahead five bytes to reach the
start of the next line. If a comma is found, one byte must be skipped
(the comma itself) to get to the next item. Then the routine loops
back to reset the values of B and DE for a new comparison. This is
because the present comparison is considered to have failed if the
end of the DATA item is reached this early.

If neither end-of-item code is found, one more preliminary
check is performed. If a period (ASCII 46) is encountered, then the
entire table search is considered a failure. Why? Because the last
word in the table is a period; if it is found, the table search has
reached an end without a successful word match. Idword cleans up
the stack a bit, using POP, and returns. N equals zero, indicating a
search fail, since N was set to zeroimmediately prior tothe USR call.

If none of the above codes are found, Idword performs the
actual comparison of words. A letter of A$, as pointed to by DE, is
compared to the corresponding letter of the table entry, as pointed
to by HL. If the match fails, a quick loop occurs which advances HL
past the remainder of the table entry up to the end-of-the-item
marker, either a zeroor a comma. Then, Idword loops back to reset
DE and B for another check.

If the comparison of the two letters is successful, however, Bis
decremented and the next two letters are compared. This loop
continues until B runs out to zero. When this occurs, Idword knows
that every letter in A§is in that table entry. That is not enough; what
if A$ is just a small part of that entry? (For instance, the input S
passes this test if the table entry is SE, but the two are not the same
command.) One more test is done. The next character in the table
entry is checked. If itis an end-of-item code, zero, or comma, then
the match is identical. If not, Idword jumps to the loop that skips the
rest of that entry and loops for another item.

If it is an identical match, the final task is to read the very next
item in the word table, which is the ID number, and store that
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numeric value in variable N. Idword advances to the next item
according to the kind of end-of-item code it encounters. Thenit calls
the address 1E5AH, which refers to a routine in the TRS-80 ROM.
This routine takes any ASClI-coded number pointed to by HL,
converts it to a binary value, and stores it in DE. Once this is done,
the stack is adjusted and the value in DE is temporarily stored on the
stack.

Finally, Idword must find the variable V in memory so that it can
change its value to that of the binary-coded ID number. A search is
performed, similar to the earlier search for A$. When N is found,
POP the value off of the stack and store it in the fourth and fifth bytes
of that variable. Idwordis finished, soit returns, ending the USR call.

There is one inconsistency in the routine that nevertheless
does not affect its performance. The routine searches every item in
the table for a match—including the ID numbers. (Technically, it
should skip these.) If a player types in a number instead of a word,
there is a chance that a match might occur. But even if this sort of
erroneous match occurs, nothing goes awry. Why not? Idword, upon
finding the match, sets N to the numeric value of the next item in the
table, thinking it to be an ID number. Since that next item actuallyis a
nonnumeric word, its numeric value (as computed by the ROM
routine at 1ESAH) is zero. Thus, a wrong match always results in N
equalling zero, telling the calling program that no acceptable match
occurred.

Is it worth the trouble to incorporate this routine into the
adventure program? Try it and see! Since at least 80 percent of the
delay from command to response is due to the word table search, the
speed increase of a machine-coded Idword is well worth the small
trouble of creating a new line 1 and typing in the simple POKE loop
of Fig. 8.

AND FINALLY

For most of you, a hybrid Basements and Beasties is plenty fast
for enjoyable adventuring. Some hard-driving programmers will still
thirst for precision and efficiency. Such readers eventually consider
the ultimate challenge—an adventure program completely in assem-
bly language. For these few hardy souls, some final comments and
suggestions are offered.

First of all the challenge of an assembly-code adventure is made
tougher by the limitations of one’s equipment. Remember that this
book assumes that you own a TRS-80 with only 16K bytes of usable
memory and tape I/0 instead of disk. The problem with this is that
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editor-assembler programs based on tape I/0 are abominable to use
when creating machine-code programs of any real size. It is imprac-
tical to try to create a program any larger than 1K of object code
using a tape-based assembler on a 16K machine.

This limitation can be circumvented by writing the program asa
series of assembled modules. The catch is that each module has no
way of knowing what addresses to use when addressing another
module, unless you explicitly state those addresses in each module.
One change in a module can then require changes in many other
modules at once. (Disk-based assemblers get around this by provid-
ing a program that links the modules, filling unresolved addresses in
one module with locations in others.)

Assuming you are willing to suffer these sorts of discomforts,
you must next contend with the problem of housekeeping. BASICis
nice, in that lines of text can be displayed simply by PRINT. What do
you do in machine code? When you want to print a line, how do you do
it? Or how do you get a command from the keyboard? Fortunately,
TRS-80 ROM contains some routines that can be called upon to do
some of these menial chores. Check Fig. 10-11 for a few examples.

Another aspect of housekeeping has to do with variables. In
BASIC you can say A=1. You don't have to look for a place in
memory for A to be stored—BASIC does that. The assembly lan-
guage adventurer needs to think ahead and set up areas of memory
to store all of the numbers that an adventure program needs to
maintain. Routines must be written to access these areas.

On the other hand, consider the advantages. Since assembly
language is so fast, there are tricks that can save memory that would

ADDRESS

032AH The character In A Is printed
on the screen

25ATH A message line ending In a
zero byte and pointed to by
HL Is printed on the screen

1BB3H Up to 255 characters are Input
from the keyboard and stored
Iin a buffer; HL Is set to one
less than the buffer beginning

00L9H A single key Input is loaded
fnto A; the routine walts
untll the key Is pressed

Fig. 10-11. Some ROM-resident routines that can be called from a
machine-language adventure program.
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| FIVE-BIT ENCODING |

eALL CHARACTERS TO BE ENCODED ARE
ASSIGNED A NUMBER FROM 1 TO 31

°THE RESULTING NUMBERS REQUIRE 5 BITS;
THREE SUCH NUMBERS WILL FIT INTO 2 BYTES

°THE LETTER A-Z ARE NUMBERED 1-26, AND
THE COMMA, PERIOD, SPACE AND OTHERS ARE 27-31

CHARACTER CHARACTER CHARACTER
ONE TWO THREE
A A Al

( ) N )
LTI I O

BYTE 1 BYTE 2

UNUSED

Fig. 10-12. One of many methods forencoding characters for compression.
This method, though inefficient, is very easy to implement in assembly
language.

be impractical in slow BASIC. The best of these tricks is to use what
you might call “compressed descriptions.”

What is a compressed description? First, think of all of the
memory that room descriptions and object descriptions take up in
BASIC adventure programs. If these lines can be stored in com-
pressed form somehow, much space can be saved. A compressed
description is one in which text material is stored in encoded form
and is decoded only when displayed.

Figure 10-12 shows one method of encoding text for com-
pressing storage; there are many others. In this method the
characters in a section of text are limited to only 31 different charac-
ters: the 26 letters plus a handful of separators, such as, spaces and
periods. To encode a paragraph every three characters is com-
pressed into two bytes of memory, by giving each character a value
of from 1 to 31. Since a number in that range requires only five
binary bits, three encoded characters require a total of 15 bits,
which fits easily into two bytes. Thus, by some voluntary limitation
of one’s selection of letters, a savings of 33 percent can be achieved.
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Chapter 11

Graphic Adventures: The Concepts

After the last pages, you'd think that there is nothing that could be
added to the discussion of adventure programming. However, there
is a growing circle of microcomputer users that would take issue with
that statement. After all, the sort of text-oriented adventure pro-
grams that I've examined are merely the forefathers of today’s
computer-gaming genre. Newer types of adventure programs are
swiftly moving into the market, replacing the old. By far, the pre-
dominant form of these newer games is that of the graphic adventure.

Why is this true? At least one reasonis to take advantage of the
architecture of the modern-day microcomputer. In the earlier days,
computer use was time-shared and terminal-based, and the terminal
was not necessarily even a CRT, but possibly a teletypewriter.
Adventures were of necessity text-oriented. Today’s small comput-
ers are for the most part designed for quality graphics and cursor-
control. (Most other types of microcomputer games take advantage
of the versatile screen; why not adventures as well?

COMPARING ADVENTURES

There are several differences between the structure and oper-
ation of the text-based and the graphic adventures. Here are afew of
the differences. If you remember the earlier chapters, you may think
of others.

First, there is a less stringent memory requirement. What was
the real memory-hog in the older-type game? Clearly it was the

168



space required for text: room and object descriptions, special mes-
sages, and the word table. In the graphics form of the game, the
required textislessened dramatically. Room descriptions are entirely
replaced by graphic representations of the rooms. The object de-
scriptions, likewise, are replaced by representative characters that
appear on the screen to indicate each object. Not as many special
messages are required. Commands are entered by single key
strokes, replacing the need for aword table and its parsing routines.

The result, obviously, is that more free memory means more
possible rooms. Graphic adventures usually boast scores more
rooms than competing text games. As an example, compare Base-
ments and Beasties with the sample graphics game Mazies and
Crazies. The first game has only 20 rooms; the latter, a total of 90!
More rooms definitely increase the interest of an adventure game.

Second, graphic adventures are played in real time. In other
words, the passage of precious seconds is a real factor. The older
games are command-driven; things happen in response to each
entered command, but all action freezes until the next command.
The newer games are clockdriven; action goes on as you watch, and
you can choose to act or react at any time.

Again, the interest-level is increased. If a graphic creature is
attacking, you cannot simply walk away and take a snack break; you
must fight or die! Thus a new element, quick eye/hand response,
becomes crucial to success in the game.

Third, there is an emphasis on battle. In the older games,
creatures are largely obstructions to travel, except for the occa-
sional tenacious creature that might come along. In graphics games,
all creatures are tenacious, hostile, and battle the adventurer to the
death. In Basements and Beasties, battle was determined by ran-
dom numbers; in Mazies and Crazies, opponents possess strength
levels that affect the course of the conflict.

As a result, the new adventurer must be a wiser fighter. His
victory is no longer dependent on the computerized flip of a coin. He
must take into account the types of weapons he has available to him,
his own strength-level, how far away food and medicine might be,
and the strength of his opponent.

Fourth, the details of the scenario are subject to random initiali-
zation. The placement of most objects is determined at run time, not
at creation of the program. Thus, while the actual room map and
room details remain the same, the location of treasures and crea-
tures is new in every game.

Finally, from a structural standpoint, graphic adventures are
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easier to construct. Executive does not have to interpret many,
many possible variations of commands. Fewer commands mean
fewer handlers. Since objects are represented as special characters
on the screen, the screen itself can be considered as a form of
information storage; thus, fewer data need to be stored in arrays.

One case in which this generalization does #ot hold true is that
of the actual screen handling. In Basements and Beasties, all youhad
to do was PRINT. Now you must be concerned about how to
represent objects, creatures, and treasures graphically. You must
be careful about how you move them and be aware of what happens
when two moving things cross paths. You must write a screen
update routine that does not take two minutes to draw a newly
entered room. As you had to become a master at text handling
(command parsing, word table look-up, text access) in text adven-
tures, now you must become a master at graphics (what to POKE
and where) in graphic adventures.

DISPLAYING A ROCIM

The heart of graphic adventures is the video display of the
room. No longer can the programmer merely print a verbose,
image-provoking description; he must really paint the room on the
screen. Walls, vertical, horizontal and diagonal, must be plotted,
with doors in predetermined locations, and each article, animate and
inanimate, must be represented by a defined symbol.

In Mazies and Crazies, as in many other graphic adventures,
the screenis divided into two separate areas. The leftmost, larger
areais called the action field, and the area to the right is the status
field. Ttis in the action field that the roomis drawn and the adventurer
(or mazer) interacts with displayed items. The status field is an
all-text area, and displays frequently-updated information pertinent
to the playing of the game. Managing to paint your picture and print
your status data in separate areas with no overlap is part of your
ability as an accomplished programmer!

Let’s look at the action field in a bit more detail. Figure 11-1
shows a typical screen display in Mazies and Crazies, with the two
fields. The action field takes up 88 percent of the screen. The
current room is shown as an open square of graphic blocks, broken
by occasional blanks that are doors to adjacent rooms. Within the
frame are assorted walls (called features of the room), again painted
using graphic blocks. Finally, there are several standard characters
acattered abaut, each designated as a different type of obiect.

The first question that may be asked is this: why use such
coarse resolution for the graphics? The walls are plotted on a grid
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Fig. 11-1. Typical screen display for Mazies and Crazies.

that is 64 by 16, the same layout that is used for the display of
alphanumeric characters. Yet the TRS-80 supports a graphics grid
with the higher resolution of 128 by 48, using the BASIC statements
SET, RESET, and POINT. Wouldn’t high resolution improve the
appearance of the action field?

The reason for the choice of low-resolution graphics is to allow
easy interaction between graphics and alphanumeric characters.
Using a single alphanumeric character to represent an objectis very
easy to handle, especially for moving objects. Characters, however,
adhere to the 64 by 16 grid. For instance, if there is a door that is only
one unit wide in high-resolution mode, the single-character objects
aren't able to fit through it anyway. There is efficiency, also, in
treating everything in the display field in the same way. Objects and
walls alike are drawn by the POKE comrnand and examined by the
PEEK command. Overall, it is much easier (and quicker) to draw the
action field in this way than to create high-resolution multipoint
graphic symbols for each object and to move them about.

All walls are plotted by whiting out successive character-
locations on the screen. To do this POKE the graphic code number
191 into each desired screen location in screen memory (graphic
character 191 is a white rectangle). With a grid of 64 by 16, there are
1024 possible character locations, 896 of which are used for the
action field. Knowing that screen memory begins with address

171



15360, it is possible to draw any feature desired with the POKE
command.

Although the doors that appear in the outer walls look like
simple spaces, they are not. Most of the area within the ac tion field is
filled with space characters, character number 32; but doors are
represented by graphic character 128. This special character looks
blank, as if it is a simple space, so it makes a good door. It is
distinguishable from a mere space by the program, using a PEEK to
view screen memory and see a value of 128, not 32. In this manner,
as the player moves up to and contacts the door, the program can
invoke a routine to send the mazer into a new room.

For eachobject, there is an alphanumeric character that visually
represents it. The adventurer is seen as the “at” sign @ and moves
about freely. The creature or opponent is shown as an asterisk ()
and attacks atwill. A treasure is represented, naturally enough, by a
dollar sign ($).

There are various tools that can be present. The torch is an
exclamation point (!) and must either be carried or preseritina room
toallow the player to see. The number or pound sign (#) is aportal, a
mystic doorway which, when touched by the player, teleports him
into a randomly selected room. The shieldis aleft parenthesis, which
lessens the severity of wounds inflicted by an attacking creature.
The right parenthesis is a bow and the dash (—) is an arrow. The
potion, amedicine that restores full strength to the player, is seen as
aplus sign (). A period (.) is a kind of fruit that is stored inselected
rooms and nourishes the player. The sword is a slash (/) and is the
player’s primary battle weapon. A field of fire is suggested by the
block of ampersands (&) across which the player can go only pain-
fully. Finally, the zero (0) is a bomb, which can be safely carried, but
it destroys either the player or creature who blunders into it. (See
Fig. 11-2 for the complete object list.)

Note that there are several ASCII characters that can be dis-
played by the TRS-80 Models I and III that are not defined above.
The ones that are defined were chosen because, to degree, their
appearance suggests the objects they represent. Other characters
can be defined and accessed if they suggest a useful new object. The
angle bracket or greater than sign ( 1), for instance, may representa
sword that has been broken by an ill-fated attempt to hack away at a
shell-backed creature. An equals sign (=) may suggest a poison-dart
blowgun. Later you'll see how the structure of Mazies and Crazies
allows for easy expansion along these lines.

To the right of the action field is the status field, whichkeeps the
player informed of the progress of the game. The action field is filled

172



0BJ NO. TYPE SYMBOL CODE
1 Torch ! 33
2 " 34
3 Portal # 35
4 <Treasures> $ 36
5 % 37
6 Fire & 38
7 ' 39
8  Shied ( 40 Fig. 11-2. Object list for Mazies
9 Bow ) 41 and Crazies
10 <Creatures> . 42 :
11 Potion + 43
12 ' 44
13 Arrow - 45
14 Fruit . 46
15 Sword / 47
16 Bomb 0 48
17-48  Treasures $ 36
49-96 Creatures » 42
49-54  Spiders 73-78 Huge Bees
55-60 Snakes 79-84 Amoebae
61-66 Landcrabs 85-90 Trolls
67-72 Scorpions 91-96 Dragons

with text using the PRINT @ function of Microsoft BASIC, which
allows precise positioning of the wording without overlaps or car-
riage returns that would disturb the action field unintentionally.

The status field may itself be subdivided into four Windows,
each intended to display a different piece of status data. The topmost
is the message window. In it, responses to any given input commmand
are printed, as well as warning messages generated by the progress
of the game, such as, the proximity of a dangerous creature.

The next subdivision is the ro0om window, which always pro-
vides the number of the current room that the action field is display-
ing. The third subdivision is the inventory window. Init, the names of
any objects carried by the player are listed, arbitrarily numbered
from 1 to 8. The player may carry a maximum of eight objects. The
inventory window can be entirely blank, of course, if no objects are
being carried. Objects with specific names are listed; general ob-
jects, such as the 32 treasures, are indicated by treasure number (1
to 32) prefixed by TR.

The final subdivision is the strength window. Here the running
strength level of the player is continually displayed and updated.
Since this level is changing by the second, the strength window is of
all four windows the most rapidly updated. The player begins with a
strength of 10,000, but this amount wanes with time, with motion,
with exertion in battle, and most dramatically with wounds sustained
in battle. Only the consumption of fruit or a potion can raise the
strength level to a safer amount.
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SINGLE-KEY COMMANDS

Gone are the days of one - and two-word command sentences
that require interpretation. All commands in a graphic adventure are
now entered by single keystrokes. This is consistent with the nature
of the newer game as areal-time program. It makes sense to speed
up command-entry time in a game so much more oriented towards
quick decision-making and response. Then, too, it would never do to
have the whole real-time program stop in midstream while the player
types in a command word.

Using the INKEY$ function of TRS-80 BASIC, Mazies and
Crazies can scan the keyboard as it loops through its realtirne
Executive. Any key on the keyboard can be used to directly call
some handler, based on the character number generated by pressing
it.

Figure 11-3 shows the commands available in Mazies and
Crazies. Again, as in the case of object assignment, commands and
their associated handlers may be added as desired; the structure of
the program allows for lateral expansion.

Obviously, the primary function to control by command is mo-
tion. The four arrow-keys of the TRS-80 serve well in this capacity.
The player cannot move diagonally, except as the result of two
consecutive keystrokes. Later you'll see that the creatures are not
thus limited and can move diagonally as needed to intercept the
fieeing player.

Using the arrow keys, the player can move about, one step ata
time. Obviously, he cannot pass through walls (except through
doors). As he moves, the program is continually checking the path
ahead. Is there an obstacle? In most cases an obstacle in the player’s
way simply prevents motion. In two cases, the bomb and the portal,
motion is radically affected. Contact with the bomb is fatal. One final
special case is fire. The player can pass through fire, stomping it cold
as he goes, but it weakens his strength level by several points.

If the player attempts to leave by a door, his contact with the
graphic-character 128 alerts the program to access a certain table. In
this table the program can locate the end destination of the door, and

KEY. HANDLER /COMMAND
Arrows MOVE the Mazer
Fig. 11-3. Single-key command list T TAKE an Object
for Mazies and Crazies. 1-8 DROP an Object
F FIGHT with Sword
S SHOOT the Arrow
Q QUIT or Score
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the features of the new room so that it can be properly drawn. If the
torch is not being carried nor lying in the new room, however,
motion in that direction is impeded, with a warning that it is too dark
to enter the room.

After mere motion, the mazer wants ways to affect his envi-
ronment. In order to carry out his primary goal—the hoarding of
treasures——the mazer must be able to pick up objects and later drop
them in room 1, which is the home base for the maze. This implies
the next two commands.

Pressing T allows the player to take an object nearby, assuming
he is immediately adjacent to it. The program scans his surroundings
(starting at a point above and to the left of the player) and takes the
first portable article it finds. (Creatures, fire, walls, and such are not
portable.) Accordingly, if there are several portable objects nearby,
the player picks up one of them according to the scan sequence. The
only real limit is the maximum of eight placed on the player’s inven-
tory. As in other adventure games, it reduces the challenge if the
player can carry as much as he wants.

Conversely, the mazer may drop any one of his burdens selec-
tively. This is accomplished by pressing one of the numeric keys
from 1 to 8. In the inventory window of the status field, each item
carried is tagged with a number between 1 and 8, and each item can
be dropped by pressing the key matching this identifying number.
Dropped items are deposited in a circle around the player. If, for
some reasotl, there is no room around him for all items that he drops
(say, ifhe is in a corner or already closely surrounded by objects), a
warning message in the message window alerts him and he is
prevented from dumping his load.

The next activity that the player pursues is battle. He has two
primary weapons, the sword and the bow. The sword is used by the
F key, representing the command FIGHT. Assuming there is a
creature close by and that the sword is being carried, a percentage of
the creature’s strength-level is shorn, with a lesser depreciation of
the mazer’s own energy. Attempts to swing away at a creature too
far away or in a room with no enemy, or attempts to fight with no
sword, all generate appropriate responses in the message window.

The Skey allows the player to shoot anarrow at a creature. (He
must, of course, be carrying both the bow and the arrow.). Alas, the
arrow simply bournces off of a creature that is stronger than a given
level. Then, too, in many cases the arrow misses the mark and
clatters off into a corner of the room, where it must be retrieved to
be used again. If it does kill the creature, it does so swiftly and
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without a drain on the player's own strength. The arrow can be
plucked from the body of the creature for reuse.

Finally, there are auxiliary functions that can be helpful in the
process of conquering the maze. The Q key invokes the Quit func-
tion, which provides an instantaneous evaluation of the present
score. The scoreis based on the number and types of creatures slain
and treasures recovered, less penalties for deaths experienced
(since all deaths are recoverable by resurrection). The player can
choose to terminate the game then and there, or to go on as ifthe Q
key has never been hit. Incidentally, the Quit function makes use of
most of the status area. The area is refreshed properly if the player
chooses to continue the game.

The programmer may choose to add other single-key functions
as far as memory allows. H may invoke a Help function, which lists
the objects and their symbols in the status area, or perhaps lists all
commands. Perhaps an R key could call the Rest handler, which
could stave off death by allowing the player to regain strength in
sleep.

DOORWAYS TO WHERE?

In Basements and Beasties, a sizeable portion of code is dedi-
cated to the support of the travel table. A scenario, be it in text or
graphic adventures, is merely a set of rooms connected by an orderly
list of defined doorways as connecting paths. Without doorways,
there is no relationship between the rooms and no real sense of an
actual, mapped, travel experience.

How Mazies and Crazies handle doors is at once similar to and
yet different from the method used in Basements and Beasties. Let’s
compare the two approaches.

First of all the number of doors in a room in the old game is
limited by the number of directions in which the adventurer can go.
He has ten possible directions—the eight compass points plus up and
down—and usually uses only a few of these. Remember, too, that
there is no such thing as motion within a room; motion always takes
the player through a door into a new room.

In the new game doors can be defined at any of the 896 locations
that make up the action field. This is made possible by the wide
amount of intraroom motion allowed the player. The penalty of this
new liberty is that the new form of the travel table needs to specify

A A A lannts
thie exact 5uu Iocation of each door. That is, each door has an X or

horizontal coordinate and a Y or vertical coordinate, the two of which
plot the door on the action field.
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Then, too, it is not enough simply to specify the room destina-
tion at which the player arrives if he uses a given door. When the new
room is drawn, where should the player be placed? Surely not
randomly in the middle of the floor! No, the new travel table,
whatever form it takes, must specify both the final room number and
the coordinates (X, Y) at which the player is deposited. These
coordinates should place the player just inside a corresponding door
within the new room. Door coordinates and destinations must be
decided upon systematically and logically.

In place of a travel table, Mazies and Crazies has an explicit
string stored in program memory for each room. These room strings
contain coded information that specifies the coordinates of doors in
the room and their destination coordinates. Room strings also con-
tain data to plot the various features when that room is displayed.

REACHING THE GOAL

Ultimately, the player of Mazies and Crazies has three goals:
(1) to stay alive, (2) to collect all available treasures, and (3) to slay all
creatures.

Many factors in the game hinder reaching these goals. For
instance, even granting the lack of an active opponent, the player can
starve to death if he does not locate some food. Treasures are
plentiful, but they are scattered throughout the 90-room scenario
(and 90 rooms is a bunch!). Creatures are not easily slain, and they
“home in” on the player to attack. No, obtaining a high score in this
sort of game is no easy trick.

Fortunately, there are some aids that are designed into the
fabric of the game. Consider first that the game begins in room 1, the
home base, and two helpful tools are placed there for the mazer: the
torch and the sword. In addition, no creatures ever stray into rooms
1, 2, or 3; so the mazer always knows that in a pinch he can run for
these rooms.

What about hunger and exhaustion? The player's strength level
decreases while he rests and drops more quickly as he moves. Two
means of sustenance are provided. First, in certain selected rooms
there is a piece of magic fruit that regenerates itself after the room is
vacated. The strength level of the consumer is raised by a percen-
tage when he eats. The player, as he finds these rooms, should keep
track of them, and never stray too far from one of them.

In addition to the fruit, there is a potion, a sort of health
medicine that pops up in a room from time to time. When taken, the
potion restores the player to his full health of 10,000 strength points.
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The potion vanishes, to appear randomly in some other room. The
player may find the potion and not use it, but remember the room in
which it is located.

Now, lest the player get too lazy, he must remember the
following warning. Creatures like food and medicine, too! That’s
right; if a creature is in the room where your fruit supply is, he can
eat it just as easily as you! The same goes for the potion, which then
promptly vanishes for some other room. This can be frustrating, but
who says adventure gaming is a breeze?

Retrieving treasures is a fairly easy task, remembering the
usual limitations. You have an inventory limit of eight, and this really
means only about six treasures a trip, since you'll need to carry the
torch to see, and you are a fool if you leave your Sword behind. All
treasures need to be dropped at home base, room 1, in order for
them to count towards your score.

Killing the creature is not so easy. To make things easier, there
is never more than one creature in a room at a time. You'll find that
one is enough! The beasts range in size from a deadly spider to a
huge dragon, and the larger creatures start off with a strength-level
greater than your greatest. They attack without provocation and
repeatedly. They can move diagonally, while you can only move
horizontally or vertically.

You are doomed without weapons. You have your sword, which
inflicts a wound on the enemy proportionate to your strength level.
The beast must be very close for you to hack him with the sword.
You have a bow and arrow, which is more accurate the closer the
creature approaches. Even the closest of proximity does not assure
that the arrow will hit him. In fact, arrows bounce right off the
stronger creatures until their strength is worn down a bit.

There are some defenses as well. First, there is a shield, which
limits the wounds which a creature can inflict, somewhat. There is
the bomb, which can be dropped in the creature’s path. If the enemy
steps on it, he is blown to bits—so are you, if you are so clumsy as to
step onit. Finally, if the urge to turn yellow reigns supreme, there is
the portal, which can quickly be dropped, stepped into, and used to
whisk the player off to some random and (hopefully) safer room.

ROOM STRINGS

In Basements and Beasties, each room is associated with two
types of information. First, there is a room description block that
matches a block of text to each room, which serves to describe that
room in detail. (In that same block are the short-form names for the
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rooms that are used after the first visit.) Second, there is the travel
table, which defined the end destination resulting from travel in any
given direction within a selected room.

In Mazies and Crazies, these entities are superseded by dif-
ferent sets of information. Travel data is replaced by door informa-
tion, and the text descriptions are replaced by codes to plot a visible
room on the screen. Both of these types of information are stored in
what is called a room string.

Figure 11-4 shows the essential structure of a room string.
Each room has its own room string, which can be broken into two
sets of substrings. The first set is a group of door substrings, each of
which consists of numerical codes defining the location and operation
of all doors in that room. The second set is a group of feature
substrings, each of which contains numerical codes used to create
walls as well as other room features, such as, apatch of fire or a piece
of magic fruit. Separating the two sets of substrings is a dash. This
separator is always present, even in the hypothetical case in which
there are no subsequent feature substrings.

Let’s consider the door substrings first. Remember you must
keep track of three pieces of data for each door in your graphic
adventure. These are the screen location of the door in X and Y
coordinates, the number of the room to which the door leads, and the
screen location where the player is plotted when he arrives at the
destination room (in X and Y coordinates).

How much space does this data take up? In the case of the X and
Y coordinates, X is aninteger from O to 55, and Y is an integer from 0
to 15. For Item 1 you need four digits torepresent X and Y together;
four more digits from Item 3raise the total to eight digits. The room
number in Item 2 is an integer from 1 to 99; these additional two
digits result in a total door-substring length of ten digits.

DOOO
DOOCO
DOOO

myCcC~>»mm
my$C-~>»mm
muyCc—->»mmn

DOOR SEPARATOR FEATURE
SUBSTRINGS SUBSTRINGS

Fig. 11-4. Components of a room string.
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CHARACTERS DATA

1-2 Door X-Coordinate
3 =04 Door Y-Coordinate
50 Destination Room
7 -8 New X=Coordinate
9 - 10 New Y=Coordinate

Fig. 11-5. Components of a door substring.

Figure 11-b demonstrates how the door substring is divided.
Since every door substring is ten numeric characters long, there is
no need for some sort of character to separate them. Whatever
routine accesses these substrings knows to count in multiples of ten
characters to move from substring to substring without error. If the
routine sees a numeric character, it knows that anew door substring
is present; if it sees the dash separator, there are no more doors in
that room.

Walls and distinguishing features not only help to identify
individual rooms, they increase the challnge by making motionina
room more difficult. Also, certain special features, such as, the
magic fruit, require data to specify location.

There are six kinds of features available in Mazies and Crazies
to adorn a room. The first four are walls, available as horizontal,
vertical, and positive, and negative-slope diagonal lines. The fifth
feature is a field of fire, which can be placed to block a door if desired.
The sixth feature is the magic fruit.

In plotting these six features, different sorts of data are re-
quired. In the case of the first four features, which are straight lines,
an interpreting routine must be furnished with a number specifying
the type of line, a pair of numbers giving the starting X, Y coordi-
nates, and a number telling the length of the line. In the case of
features 5 and 6, no length is required, but the feature type and X, Y
coordinates are still necessary. Thus, there are two types of feature
substrings—a long one and a short one. The long one requires
seven characters, and the short one only five.

Figure 11-6 shows how the feature substring is divided, bothin
itsfive and seven-character forms. The routine that does the plotting
knows how long the substringis based on the beginning feature type
number and can thus find the start of the next feature substring
without any dividing marker.
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For ease of entry and location, the 90 room strings are stored
on separate program lines in a block of memory by themselves. In
order to allow easy access to the strings, they are equated to the
elements of a 90-deep string array. The use of string array names
does not recopy these explicit strings into free memory; rather, it
sets up a list of addresses that point to these strings in program
space. About 200 bytes of string-array variable-pointer space is
required, but the result is worth it—rapid access to the strings for
the quickest possible action field refresh.

THE 90-ROOM MAP

Just as a map or drawing of the interrelations between rooms is
necessary in Basements and Beasties, so must a map be drawn for
the scenario of the graphic adventure; however, it makes no sense to
label the interrelated pathways by the motion indicators N, S, E, and
so on. Compass points are no longer relevant. Now doors are in
specific screen locations in the action field.

Drawing a detailed scenario map in this case becomes impracti-
cal. It is still helpful, however, to map out the rooms and their
pathways without regard to the specific locations of the doors,
simply to show the end room destinations. Later, the exact door
coordinates can be chosen as desired to fit the rough layout of the
map.

CHARACTERS  DATA

1 Feature Type

2 - 3 Plot X-Coordinate
b - 5 Plot Y-Coordinate

(6 = 7) (Plot Length)

JYPE # EEATURE

1 Horlzontal Line ( - )
2 Positive Slope ( / )
3 Vertical Line 1)
I Negative Slope ( \ )
5 Fire (fileld of nine &'s)
6 Fruit (single ., )

Fig. 11-6. Components of a feature substring.
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Fig. 11-7. The complete Mazies and Crazies scenario map.
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Figure 11-7 provides the map for Mazies and Crazies. Note that
the positions of the connecting lines correspond roughly to the final
coordinates of the doors. See also that the locations of special
features, such as patches of fire and piles of fruit, are marked for
inclusion in the room strings.

The symmetrical form that this map takes was chosen for ease
of design. You will find that the general appearance of rooms in the
action field repeats the symmetry of the map. This is, of course,
arbitrary, being based on the room strings. Ideally, each and every
room is designed to look distinctly different.

The same rules that go for scenario mapping in text-type ad-
ventures also go here. Note the number of careful branches. They
are intended to limit options so that each branch chosen is followed.
The player finds new layers of rooms each time he leaves one of the
root nodes by a different door. This maximizes the suspense of the
game.

DOWN TO SPECIFICS

Now you are familiar with the general attributes that make a
graphic adventure such as Mazies and Crazies a different game than
the text-oriented programs. In several ways it is a much easier
program to write. Certainly, the executed code is shorter. For all its
simnplicity, the graphics make it an inviting game.

Now you are ready to move on to the specific details of Mazies
and Crazies from the assignment of variables to the structure and
operation of the handlers and subroutines themselves.

183



Chapter 12

Graphic Adventures: The Segments

Let’s start with program structure. As in the text adventures, a high
goalis to produce code that is easily followed and easily expanded or
modified. BASIC isn'’t that sort of language by birth; soitisupto the
programmer to supply the structure.

Figure 12-1 shows the program’s organization. Note the close
similarity to the organization used in Basements and Beasties.
Mazies and Crazies is notably simpler.

The first program segment is the Initialization section, desig-
nated in the area from BASIC lines 0 to 99 (though, of course, it only
uses a few of these). In this section all arrays are dimensioned, and
variables are preset. Note that the locations of objects, such as,
treasures or creatures, are randomly assigned in this section. T his,
of course, is in distinction to text-type adventures that preassign
these locations according to a strict lookup table.

Next comes the Executive loop, from lines 100 to 199. "This
section is called a loop because the program spends most of its time
circulating through this code. Even when the player is not selecting
specific commands, the program loops through this segment, up-
dating the player’s strength level, moving a creature (if there is one
nearby), and otherwise maintaining the status of things. Mazies and
Crazies deserves its description as a real-time game due to the
continnpug operation of the loop.

As in Basements and Beasties, player commands are serviced
by the invoking of specific handlers, tailored to bring about whatever
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LINES PROGRAM SEGMENT

0-99 Initialization

100-199 Executive Loop Fig. 12-1. Program organization
200-499 Handlers of Mazies and Crazies.
500-599 Display Section

900-999 Subroutines

1000-1099 Room Strings

effect is commanded. Handlers reside anywhere from lines 200 to
499 in the program. Generally speaking, there is one handler per
command, each of which is called by the pressing of a given key.

One special addition required is the display section, which can be
found from lines 500 to 599. This section is called whenever the
mazer enters a new room. It replots the walls and other features of
the room, and indicates the presence of any objects located in that
room. This routine makes heavy use of the information contained in
the room strings that are stored later.

Next is the subroutine section, from lines 900 to 999. These are
subroutines called either by the Executive loop, the display routine,
or individual handlers.

The final (and largest) of the program segments is the room
string section, delimited by program lines 1000 and larger. The room
string for each room resides in a single program line, such that the
strings for rooms 1 to 90 are on lines 1000 to 1089. Each line sets a
string array element equal to the room string; the room string
sectionis really a large subroutine, called by the initialization section,
which simply initializes variable pointers for each access to the room
strings. Accordingly, the last line of this section is terminated by a
RETURN statement.

ALL OF THE VARIABLES

Mazies and Crazies is a simpler game to maintain than the text
adventure games. The list of variables it needs for housekeeping are
shorter. Figure 12-2 provides the variable list.

There are 96 objects in the scenario, including 16 tools, 32
treasures, and 48 creatures. For each of these objects,a record is
required telling in which room each resides. The room location is
stored in the elements of array L(n), whereinn is the object number
from 1 to 96. (See the object list in Fig. 11-2). Similarly, the player
himself lives in a given room, and this location is stored in L(0).

The contents of the elements L(0) to L(96) can be an integer
from 1 to 90, specifying the room location. Also, if a creature has
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been slain, his L(n) value is set to 0; Room 0 is the grave. Objects
that are carried are in the player’s carry-sack and are assigned a
location value of 91.

Several other values are required for program operation, but it
saves some memory to assign these to further elements of the array
L(n). Why is this so? The reasonis that for each different variable set
up by a program, a variable pointer is created. You save a few bytes
by making the most out of an already created variable array.

Inanimate objects are assigned positions in the action field
largely on a random hasis (as you’ll see later). This is not true of the
player and his opponent creature (if there is one in the room), since
both must move above freely in a comprehensible manner. For this
reason a record is maintained and updated of their positions in the
room. These position records are storedin X, Y form, whereinthe X
coordinate refers to the horizontal character position from O to 55,
and the Y coordinate refers to the vertical character position from 0
to 15. L(97) and L(98) save the X, Y position of the mazer, and L(101)
and L(102) save the creature’s position. Obviously, if there is no
creature in the room, the contents of L{101) and L(102) are
irrelevant and ignored.

Next, a couple of facts concerning the player are required. The
strength-level of the player begins at a value of 10,000, and is
continually being affected by battle, exhaustion, or consumption of
nutrients. Element L(99) keeps track of the player’s running
strength. The player may failin his attempts to slay the foul beasts of

VARIABLE APPLICATION
L{0)-L(96) Object Room Number
L(97) Mazer X-Coordinate
L(98) Mazer Y-Coordinate
L(99) Mazer Strength-Level
L(100) Mazer Deaths
L(101) Creature X-Coordinate
L(102) Creature Y-Coordinate
+ _ : : ; L(103) Creature Strength-Level
:;?d éf aiie\slanables list for Mazies L(104) Creature Number
) L(105) Attack/Retreat Flag
L(106) Retreat Counter
L(107) Counter
R(1)-R(90) Room Strings
C(1)-G(8) Carry-Sack Contents|
TAS Inventory Name String
TB$ Creature Name String
CRS Current Room String
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the maze, dying in some obscure room. Since these deaths count
against the player’s final score, L(100) keeps a tally of them.

Most of the remainder of the L(n) elements deal with the
creature that might be in the room with the player. L(103) reveals
the strength level of the creature, which varies as widely as the
player’s own. The creature numberis storedin L(104). If there is no
creature in the room at the time, this value is set to 0, telling all
routines to ignore the values of other creature-related array ele-
ments.

The creature in the room always operates in one of two modes:
either attack or retreat. In attack mode it heads directly toward the
players; in retreat mode it heads directly away. Element L(105)
toggles between 1 and -1, to indicate attack or retreat mode
respectively. The creature operates in attack mode until it contacts
the mazer or until the mazer fends it off with an arrow or the sword.
It then remains in retreat for a random number of steps, as stored
and decremented in L(106), the retreat counter. When this counter
reaches zero, the creature returns to the offensive.

(Incidentally, you might note that all of these variable values
assume the presence of no more than one creature in a room. This is
all very proper, since the initialization sectionis written such that the
48 creatures are separated only one to a given room. The 32
treasures may be divided up between rooms in any old way.)

The final element L(107) is used as a timer. The Executive
loop reiterates fairly quickly; to decrement the strength levels both
of the creature and the player at thisrate is too rapid. Thus, the loop
is written to weaken the opponents by one degree every ten loops.
L(107) operates as a divide-by-ten counter, being refreshed to a
value of 10 each time it counts down to zero.

The next variable array is actually a string array, R(n). The
characteristic string-designator, $, is left off, since the statement
DEFSTR s usedin the initialization section to define R(n) as a string
array. This saves one byte per line in the 90-line room string section.
In that section each of the elements R(1) to R(90) are set equal to an
explicit room string present on the program line. This arrangement
does not make use of extra memory space used for strings in high
memory. Rather, variable pointers are set up to address the room
strings where they reside in the program. In this way, characteris-
tics of a given room can be found simply by reference to the appro-
priate element R(n), a quick method and an equitable trade-off.

The player can carry up to eight items in his carry-sack. You
already know that the carried objects are assigned a location value of
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91 in the L(n) array. Handling the carry-sack is vastly simplified if a
list of its contents is also kept current. The array C(n) performs this
function. In each of the elements C(1) to C(8), the object number ofa
carried object is recorded. Routines governing the taking and drop-
ping of objects dictate that in the case of fewer than eight carried
objects there are no gaps in the list. Thus, objects picked up are
recorded in the next available element of C(n), and all unused
elements are set to zero. If four objects are carried, for example,
their object numbers are stored in C(1) to C(4). The remaining
elements, C(5) to C(8), have values of zero. The subroutine that
updates the inventory window of the status field makes use of C(n) to
list the carried objects.

When the inventory window is updated, the object numbers in
C(n) must be translated into object names that are meaningful to the
player. So, an inventory name string is set up with a designation of
TA$. This string contains 16 six-letter names, one for each of
objects numbered 1 to 16, the tools. (Presently undefined objects
have a dummy name of “ABCDEF. ”’) The proper routine can extract
the correct six-letter name from this 96-character string using some
math and string-handling. Treasures, which can also be carried, are
not given names and are handled differently in the inventory window.

In similar fashion, different kinds of creatures have identifying
names. The 48 creatures are dividedinto eight kinds, from the weak
spider to the terrifying dragon. When one of these beasts is encoun-
tered in a room, the routine that handles the message window must
have access to a string of text that defines the eight creature names.
For this purpose a second text string, the creature name string, is
set up with a designation of TB$. This string contains eight eight-
letter names for the creatures; names shorter than eight letters use
spaces to fill their substring. Again, string-handling and some calcu-
lation can extract the correct name.

The final designated variable is the current room string, iden-
tified as CR$. The variable CR$ is really more of a convenience.
Whenever a new room is entered, CR$ is set equal to the current
room string, R(n). Subsequent routines can always refer simply to
CR$, without needing to access the specific string array element.
Otherwise, every reference to the appropriate room string would
require the cumbersome expression R(1(0)).

Having considered the variablesused to support the game, let’s
turn our attention to the program code itself. For the bulk of this
description, refer to the complete listing of Mazies and Crazies
provided later in Chapter 13.
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INITIALIZATION

The initialization section of the program performs the following
tasks:

@ Displays a welcoming message,

@ Establishes the size variables and string space
@ Places treasures randomly

® Places creatures randormly

® Defines text strings

® Places tools randomly or specifically

® Presets player values

Initialization begins with BASIC line 2. The game title is
printed, preceded by special character 23 to place the screen tem-
porarily in 32-character large-type mode, for appearance’s sake. A
CLS statement at the end of the initialization section returns the
screen to normal mode.

Next, string space and variable sizing is managed. The CLEAR
statement is used to reset all variables and to reserve 256 bytes of
string space, which is plenty for the nominal demand incurred by
occasional string-handling operations and the maintenance of the
current room string. (Most strings used in the game are explicitly
defined and stored in program space.) The DEFINT statement is
used to declare all variables beginning with A through Z to be
integers. This saves plenty of memory space and calculation time.

The major numeric arrays, L(n) and C(n), are sized using the
DIM statement. Next, DEFSTR declares variables beginning with R
to be strings. This is to save space in the case of the 90 explicit
references to elements of the string array R(n), which is then sized
using DIM. The elements of R(n) are then equated to their corre-
sponding room strings by a subroutine call to the room string
section located at lines 1000 and beyond.

Take a look at the room string section starting at line 1000.
Notice the structure of each program line, which defines an explicit
string. You should be able, with a little patience and some review of
the previous appendix, to dissect both the door substrings and the
feature substrings, and thereby to get a hint of what any given room
should look like. Later, you'll study the code that actually performs
this sort of analysis.

Line 4 of initialization scatters objects numbered 17 to 48 (the
treasures) to the four winds. The location array element L(n) for
each item is set to a random value from 4 to 90. Thus, the treasures
may be found in any room other than the home base (room 1) or the
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tworooms directly adjacent to the home base (rooms 2 and 3). Also,
more than one treasure may turn up in any one room.

The same cannot be said for the placement of creatures, which
is performed in lines 6 to 8. Because of the way in which creatures
are manipulated, it is necessary to limit them one to a room. To do
this, a scratchpad string, X$, consisting of one character per roomis
setup. Byaccessing the variable pointer for this new string using the
VARPTR statement, the memory address of the first character in
X$is stored in variable P. Then, for each of the creatures (objects 49
to 96), a random room number is generated.

The idea is to use X$ to record which of the rooms contain
creatures, and to flag those rooms as invalid choices if their numbers
randomly come up again during the FOR-NEXT loop. For each
randomly selected room number, the corresponding character of X$
is checked to see if it is a space (character 32) and therefore
available, or a dash (character 45) and therefore unavailable. Ifitis a
space, the creature is placed in that room, and the space is changed
to a dash, to eliminate the room from future selection. If it is not a
space, line 81loops toitself, generating random room numbers until it
finds an available room. The location array element L(n) is set to the
room number selected. When the room numbers are all selected, the
scratchpad string X$ is set to a null length, effectively removing it
from active service.

Notice again the use of the expression RND(87)+3, which
selects aroom number from 4 to 90. Creatures, as well as treasures,
are not found in those first three rooms of the scenario.

In line 10 the two text strings are explicitly defined. TA$, the
inventory-name string, and TB$, the creature-name string, are
created. Note that the spaces in each string are critical, since the
proper extraction of a name depends on counting through the string
character by character.

Line 14 places certain tools in random rooms, again from 4 to
90. Notice that a loop is not used (as in line 4), because not all tools
are to be placed randomly, nor are all objects from number 1 to 16
defined. (If an undefined tool is placed in a room, the action field
shows a symbol, such as a comma for object 12, which can be picked
up and carried, but serves no purpose. The inventory name is
“ABCDEF.”)

Next, line 16 selectively places certain tools in room 1. Objects
1 and 15, the torch and the sword, are really necessary for any
progress into the maze, and so these are helpfully placed at the home
base. Later you'll see that these are dropped back at home base if the
player is killed and resurrected.
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Finally, the player’s location and strength are set. L(0) is set to
1, placing the player at home base. His X,Y coordinates are set to
place him roughly at the center of the action field. His strength-level
is preset to its starting value of 10,000.

A CLS statement concludes the initialization operation by
clearing the screen (returning it to 64-character mode as well),
preparing for display of the first room. On the whole, the pregame
delay only amounts to four or five seconds.

DISPLAY

Although the next block of BASIC text is properly the executive
loop, one of the first things the loop does is plot the current room in
the action field. The task of reading the room strings and painting the
picture belongs to the display section. This section begins at line
500. It contains the subroutine which we'll refer to as Dsplay.

The steps taken by Dsplay to fill the action field and prepare the
player for entrance into the new room are:

. Reset pertinent variables.

. Paint an empty frame over the action field.

. Plot the doors.

. Plot the features.

. Plot the player.

. Plot all objects.

. Set variables related to the creature, if it’s present.

Dsplay starts by clearing L(104), the variable that specifies
which creature is present. Unless otherwise updated by step 7 of
this routine, the zero value indicates that no creature is in the room.
Then, the current room string (CR$) is created by accessing the
proper array element of R(n), using L(0) which contains the present
room number.

The next step is to paint the basic square frame that forms the
basis of the action field. This is done quickly by creating strings and
printing them at the proper screen locations. (This is far quicker than
looping through each screen location and to POKE individual
characters.) This has the additional advantage of erasing anything
that was previously within the boundaries of the action field, without
having to blank out the entire screen with a CLS statement. Thus, as
the player moves from room to room, the status field of the screen
remains undisturbed.

First, the top and bottom parts of the frame are drawn, by
printing two 56-character strings made up of white blocks (graphics
character 191). Then the internal portion is blanked out and the sides
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of the frame drawn by printing a series of strings consisting of spaces
and leading and trailing white blocks.

Now the routine is ready toloop through the room string CR$to
place doors on the screen. The string is examined using the MID$
statement with the variable N pointing to each successive character.
N is set to 1 at the end of line 500 in preparation for the loop.

Line 502 begins with a test of the character in CR$ being
pointed to by variable N. If that character is a dash:, the routine
knows that it has come to the end of the door substririgs and it can
proceed to the next step of the task. Otherwise, it begins to analyze
the next few characters according to the guidelines set up in Chapter
11.

Remember that each door substring consists of ten characters,
the first two being the two-digit X-coordinate of the door, and the
next two being the two-digit Y-coordinate. Using MIID$ these pairs
of characters are extracted, and they are converted to the original
numeric values using the statement VAL. With the variables X and Y
set to these values, POKE the door onto the screen using the
expression X-+64*Y+15360, which converts X,Y notation into a
specific screen memory address. Note that the door is represented
by the character numbered 128 which, though it looks like a space, is
really a blank graphics character distinguishable by the program.

After a given door substring is accessed, it is bypassed by
adding 10 to the variable N. Thenline 502 is executed again. Line 502
loops to itself in this manner until the dash is encountered. Thisis the
reason that all room strings require a dash, even if there are no
subsequent feature substrings. If there were no dash, Tine 502 would
try to read beyond the length of CR$, causing an error.

Once all doors are plotted, line 504 accesses the feature sub-
strings. Variable N is already set to the character position just one
past the dash, in readiness for this next scan. Line 504 begins with a
test to see if the end of CR$ has yet been reached. If not, the
subsequent characters are examined according to the format for
feature substrings presented earlier.

For all types of feature substrings, the second through the
fourth characters store the X, Y coordinates for the beginning of the
feature plot. These coordinates are extracted using MLID$ and VAL,
similarly to line 502. Then, the specific feature type must be
selected. The first character of the feature substring is a digit from 1
to 6. This digit is extracted and used to select the appropriate
program line for that feature, using the calculated juzmp statement
ON GO'TO. The program lines that handle the plotting of features
are located in the block of lines from 506 to 512.
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Feature type 1is a horizontal line. The code on line 506 allows
very rapid display of such lines, because it uses the BASIC PRINT@
function rather than plotting each point in the feature with POKE
commands. The expression X+64+*Y provides the screen location
for the PRINT@statement. A string is built of graphic characters
191. The length is determined by examining the sixth and seventh
characters of the feature substring; these are restored to true
numeric form and used to complete the STRINGS$ function. Once
this string is printed, the pointer variable N that keeps track of the
location in the room string is bumped by seven characters, thus
skipping on to the next feature substring. Looping back to line 504
checks to see if more features are encoded.

Line 508 handles the other three types of line features. The
variable S is assigned as a pointer to track the plotting of each point in
the line that reaches screen memory by a POKE. Using the already
extracted X and Y coordinates, S is set to the specific screen
memory location at which the line starts.

Now, if you think about it, there is an easy way to figure out
which memory location is next in the line plot. Consider first the
vertical line. Each point in the line is exactly 64 memory locations
further along than the previous point. That's because the TRS-80
screen is 64 characters wide. Thus, toplot a vertical line, the pointer
S is increased by 64 each time.

What if Sis increased by only 63? The next point is below and to
the left of the first. If this is repeated, a diagonal line of positive slope
is effectively plotted. Similarly, adding 65 to S creates a negative
sloping diagonal line.

The feature number which is the first character of the feature
substring was chosen in these three cases so that adding 61 to the
feature number produces the proper number to add to S. Line 508
extracts the feature number, convertsit and adds it to 61, storing the
result in variable D. Then aloopis set up, from one to the line length,
which is extracted as previously from characters 6 and 7 of the
substring. Using the contents of D to produce the proper line angle,
POKE the graphic character 191 successively into screen memory
locations. When the process is complete, the next substring is
sought.

Feature number 5 is a field of fire, as represented by nine
ampersands (&). This field is plotted around the point specified by
the X and Y coordinates already extracted. Again, to speed things
up, the PRINT@statement is used to print strings, rather than using
POKE. The field is created by printing three strings of three amper-
sands each, starting at the point to the left and above the location
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specified by the X, Y coordinates. This starting location, for the sake
of the PRINT@statement, is calculated by subtracting 65 from the
center point address.

Line 510 creates the fire field. Three times in arow, a string of
three ampersands is printed, increasing the starting location by 64
each time to assure that a perfect three-by-three box is generated.
Then the substring pointer, variable N, is bumped by five to access
the next substring.

The final feature is the magic fruit, which is simply a period ()
placed at the point specified by X and Y. Line 512 calculates this
memory address and use a POKE to place the number 46, the ASCII
code for a period, into that location. The substring is skipped and line
504 is again executed.

When all feature substrings are serviced, the player must be
plotted onto the action field. Array elements L(97) and L(98) give the
player’s X, Y coordinates in the room; these are reset by the routine
that moves the player. If the entrance is through a standard door,
this plotting location is right next to a door in the display. Using
POKE character 64 is placed in the proper location, displaying an at
sign @, which is the symbol for the player.

Next, all objects present in that room must be plotted. This
occurs in three stages, since there are three distinct categories of
objects.

The first objects to plot are the tools, with object numbers 1 to
16. A simple loop checks the location array elements for each tool.
Each object that has a location number corresponding to the present
room (stored in variable L(0)) is plotted. The character used is the
object number plus 32, which produces the symbols described ear-
lier for objects.

Where do you plot these tools? There are no variables that
store the X,Y coordinates of these objects. Therefore, they are
placed on the screen randomly. A subroutine is called to locate a
viable X, Y location for an object. This subroutine is called Randxy,
and it is found on line 940. Init random values for X, Y are generated;
X equals 1 to 54 and Y equals one to 14, which selects a random spot
within the outer frame of the action field. You do not want to plot that
object right on top of a feature just plotted! Randxy checks the
proposed location using PEEK. If there is a blank space there, it
returns; otherwise, it loops, proposing new random locations until it
finds a suitable spot.

The same procedure occurs for the treasures, objects 17 to48.
Randxy is used to find locations on the screen for treasures that are
located in the current room. This time, however, the number placed
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into screen memory (using a POKE) is character 36, the doilar sign
$.

Finally, the creatures, objects 49 to 96, are checked to see if
any are inthe room. The FOR-NEXT loop in this case is left openifa
match is found, because there is never more than one creature in a
room. A random location is found using Randxy, character 42, the
asterisk (), is put in the address using a POKE.

Assuming a creature is not found, Dsplay is done, and it returns
to the calling routine. If a creature is in the room, however, miscel-
laneous variables are set. L(101) and L(102), as the creature’s X and
Y coordinates, are set to the random values decided by Randxy.
Then L(104) (which is zero if no creature is present) is set to the
creature’s object number. Dsplay then returns.

THE EXECUTIVE LOOP

The Executive loop is the block of code stretching from line
100 to 130. Depending on the present environment, the Executive
loop performs the following functions:

@ Refreshes the message window and action field
@ Initializes the creature (if there is any)

® Refreshes the status field

® Updates the strength window

® Handles an input command

@® Directs the creature’s motion or attack

@ Handles the creature’s death

® Handles the player's death and resurrection

The first task is easy. A subroutine called Clrmes, located on
line 920, is called to clear the message window. (Clrmes simply
prints strings of blanks at the two message window lines, locations
56 and 120). Then a subroutine call to Dsplay refreshes the action
field. For the next step, the variable L(104) is checked to see if a
creature is present. If it is a zero, there is no creature and the third
step is performed. Otherwise, the strength level of the creature is
calculated and stored in L(103). This strength level depends on
which of the eight types of creature this one is. Using the creature’s
object number stored in L(104), the strength level is generated,
being from 5000 for the lowly spider to a full 12050 for the fearsome
dragon.

The message “BEWARE!” is printed in the message window,
along with the name of the creature. The creature name string, TB$,
is accessed and the proper eight-character name is extracted using
MID$ and some calculations on the object number. The resulting
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name is printed. Finally, L.(105) is set to 1. This variable represents
whether the creature is attacking or retreating; a value of 1 indicates
an attack, while —1 indicates a retreat.

Creature or not, the next step is to refresh the status field. This
is done by calling a subroutine named Status, whichis located onlines
900-902. Figure 12-3 shows the layout of the status field with the
screen addresses used by the PRINT@statement. Status first prints
the headings and appropriate values for the room window and
strength window, using PRINT@. Next, a loop scans the inventory
array C(n). For each element of C(n) that yields an object number
(and thus an object carried), the element number from 1 to 8 is
printed. If the object is a treasure, the prefix TR is printed, along
with the treasure number from 1 to 32 (which is simply the object
number minus 16). If the object is a tool, the inventory name string,
TAS$, is accessed to extract the proper six-character object name to
be printed. As soon as azero value is found in an element of C(n), the
loop is completed. To clean up remnants of a previous inventory
listing, a blark line is printed right after the last displayed carried
item. Next, the strength level of theplayer, stored in L(99), is
printed in the strength window.

The keyboard is scanned for any command input, using the
INKEY$ function. Commands fall into three categories: (1) the
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arrow-key commands that access the Move handler, (2) the
numeric-key commands which access the Drop handler, (3) the
alphabetic-key commands.

Pressing the arrow keys produce ASCII characters 8, 9, 10 and
91 through INKEY$. The Executive loop checks for this and jumps
to the handler Move, at line 260, if so. Otherwise, a call to Clrmes
prepares the message window for responses to the next commands.
(Clearing the message window between commands makes it easier
to tell when new messages are printed.)

The Executive loop jumps to Drop, at line 230, if a numerickey
is pressed. If a character comes in that is outside of the alphabetic
range, the program skips the command handling altogether.

Line 106 contains the vector list that provides the BASIC
addresses for each single-key command handler. There are 26
vector addresses, one for each letter of the alphabet. Letter inputs
that are not implemented are simply vectored past the command
handling and ignored. The handlers themselves, when they com-
plete their tasks, vector back to one of a few entry-points in the
Executive loop.

MOVING THE CREATURE

Assuming no command was input, the creature must now be
moved. Line 110 checks L(104) to see if there is a creature in the
room. If not, it skips on to the next step. Otherwise, a proposed next
position for the creature is generated, This is done by comparing the
present X,Y coordinates of both the player and the creature. The
new location of the creature is one degree closer to or farther from
the player. The attack or retreat variable L(105), which is eithera 1
or a —1, is used as a multiplier to determine which direction to

move.
The results of a move in the proposed direction are considered

before the move is performed. This check is done by examining the
contents of the new location on the screen, which is in ASCII-coded
form in variable D. There are six cases to deal with:

@ Contact with the player

@ Contact with the bomb

® Contact with the fruit

® Contact with the potion

® Contact with an empty space

@ Contact with an obstacle

In the case of contact with the player, line 112 prints a warning

message stating the name of the creature followed by “ATTACKS!”
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(The creature name string is accessed as before for the proper
name.) Next, to indicate that the player has just been bitten, the
location is blinked. This is done by quickly placing the all-white
graphic character 191 into the location (with a POKE), then restor-
ing it to character 64, the player symbol. The creature is set to
retreat mode by storinga —1in L(105). Subsequent moves arein the
opposite direction from the player. The retreat counter L(106) is set
to some random value from one to 20; a creature may flee far, or he
may attack again almost immediately.

The player’s damage due to attack is calculated. The player’s
strength level is reduced by one-eighth of the creatures’ strength
level. In that way the stronger the creature, the more the damage. If
the player carries the shield, he is somewhat protected. The location
of object 8 (the shield) is checked to see if it is in the carry-sack
(location 91). If so, the player’s strength level is boosted by 500
points after an attack. On line 114 the effects of the damage are
evaluated: did the player die? If not, the next step of the Executive
loop is performed. If so, line 128 is executed, handling the player’s
death and resurrection.

When the player dies a loop is set up, causing the inventory
array C(n) to clear all contents, and every object carried is moved to
the room where he died. Then L(100), which keeps track of the
number of player deaths for scoring purposes, is increased by one.
The screen is cleared, and a message is displayed. On line 128 an
INKEYS$ loop scans the keyboard, waiting for ENTER to be
pressed, indicating that the player is ready to continue. To continue
the program reenters at line 16, which dumps the player back into
home base (room 1) along with the torch and the sword (just to be
fair, since he couldn’t get far without them).

All of the above occurs if the creature contacts the player. What
if it contacts the bomb? On line 116 this case is checked. If so, aloop
is set up that effectively causes the bomb to blink in arandom pattern
of graphic characters; that is, it explodes. This spot is blanked out,
and the bomb (object 16) is randomly sent to a room from 3 to 90.

Line 124 handles the creature’s death. The creature’s symbol
on the action field is blanked out by inserting a space witha POKE. A
message in the message window proclaims, “AT LAST! IT'S
DEAD.” The creature’s location is set to zero (where only the
scoring routine can find it), and then L(104) is set to zero to indicate
to the Executive loop that the current room no longer contains a
creature. The program slips into line 126, which updates the play-
er’s strength level (as you'll see shortly).
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What if the creature hits the fruit or the potion line? Line 117
handles these cases. In the case of the fruit, the symbol for the fruit
is replaced with a space, again using POKE, and the creature’s
strength level is boosted by acertain random value. Ifit is the potion,
the symbol for the position is blanked. The creature’s strength level
is set to 10,000, and the potion (object 11) is sent to some random
room from 3 to 90.

What if the creature contacts empty space? If so, it is free to
move to that space. Line 118 blanks out the creature’s present
location, updates the creature’s X,Y coordinates in L(101) and
L(102), and puts its symbol into the new location—using a POKE. In
line 120, the retreat counter is updated if L(105) is a —1; if the
retreat counter runs down to zero, the attack or retreat flag L(105) is
toggled toa 1, and the creature switches to attack mode. Theninline
122, the creature’s strength is updated if the counter L(107) is ready
to overflow. (This counter divides the Executive loop iterations by
ten.) If the creature’s strength runs out, the routine handling its
death is executed on line 124.

Finally, what if the creature encounters some sort of obstacle,
such as, a wall or an object, other than those already handled? Line
119 sets the creature to attack mode ifit is retreating when it hits the
obstacle. Creatures rebound from obstacles, as if backed to the wall
and desperate. If the creature is already attacking but simply can’t
see its way clear to get at the player, it must choose an alternate
path. It does this by generating up to three possible new X,Y
coordinate pairs as random choices. If one of these random locatiens
contains only a space, the program jumps to line 118 and handles it
normally. Otherwise, the creature is blocked and must wait for the
next iteration of the execution loop to be freed.

REMAINDER OF THE LOOP

Line 126 completes the Executive loop by updating the
strength-level of the mazer himself. This update, as is true for the
creature, occurs only ence every ten iterations of the loop. The
counter L(107) is decremented; if it has still not overflowed, the loop
begins its next iteration starting with line 104, the command input
analyzer. If it does overflow, then it is reloaded with a value of ten.
Then the mazer’s strength is degraded by a point. If this degradation
results in a strength-level of zero, the mazer dies, and the program
continues on into line 128, which handles mazer death.

THE MOVE HANDLER

The four arrow-keys are used to invoke the handler called
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Mowe, located on lines 260 through 288. Move must determine the
proposed new location and handle contact with various items.

Move begins by deriving the net direction desired based on the
key pressed. Of the four arrow-keys, the up-arrow key is the
“oddball,” generating a character value of 91. The value of the key
pressed is still resident in variable D, in which it was placed by the
Executive loop. Line 260 changes the value of D to be more consis-
tent, such that the arrows yield values of 8, 9, 10, and 11. Using
these numbers, line 262 vectors to other lines that translate the
arrow direction into X and Y values: 1 if a positive motion, —1 if
negative, 0 if no motion. These numbers are then added to the
present X,Y coordinates of the player to generate a proposed new
position. The variable Q stores the screen contents of the new
position, examined by POKE.

If the motion causes contact with a space, line 274 blanks out
the mazer’s previous position, updates his X,Y coordinates in L(97)
and L(98), POKEs the player symbol onto the Action Field at the
new location, and depletes his strength-level by five points to
indicate gradual tiring in travel. If this tiring results in a strength-
level of zero or less, the player-death routine of line 128 is exe-
cuted; otherwise the Executive loop is reentered.

If the Bomb is touched, the message “BOOMM!! YOU FOOL”
is placed in the message window by line 276. A loop causes the bomb
on the screen to flicker with random graphic patterns. Then the
bomb is randomly moved to another room, and the player-death
routine is invoked.

If the portal is contacted, line 278 generates a random room
number from 3 to 90. If the torch is neither in that new room nor in
the player’s possession (as determined by checking L(1), the torch
location variable), the message “NOTHING HAPPENS!” is dis-
played and the Executive loop is re-entered. Otherwise, the word
“POOQF!” is printed right near the player in the Action Field. Then
after a delay, the player's location variable L(0) is set equal to this
random new room, and the Executive loopis re-entered early, such
that the action field is refreshed.

If fire is touched, then line 280 blanks the old location, and the
player is moved to the new location much like a regular move to a
space. However, in the process, his strength-level is docked by a
random amount, and the message “FIRE!! YEOWW!!” is shown. As
usual, if the player runs totally out of strength, the death-reutine is
executed.

If a door is contacted (character 128), line 282 checks to see if
the torch is being carried. If not, line 288 prohibits motion with the
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warning, “TOO DARK IN THERE". Otherwise, line 282 setsup a
loop to compare the door coordinates with those in the Current
Room String Door Substrings. Once a match is found, L(0), the
player location, is set to the room number extracted from the door
substring. If this new room number is 92, then it is not a destination
at all, but indication of death by falling into a pit; line 286 handles this
case with a message and a one-way trip to the player-death routine.
Otherwise, the X, Y coordinates of the player are set to the destina-
tion values extracted from the Door Substring, and the Executive
loop is reentered early, when the Action Field is refreshed.

THE HANDLER TAKE

Pressing the “T” key invokes the handler Take, located on lines
210 to 220. The following cases are considered by Take:

1. Is the mazer carrying too much?

2. Is there anything nearby to take?

3. Is the item a Fruit?

4. Is the item a Potion?

5. Is the item a Treasure?

Line 212 begins by counting through the inventory array with
variable K, seeking an empty or zero slot to place the new item. Ifit
finds none, the “TOO MUCH TO CARRY” message is displayed and
TAKE is done.

Line 121 then scans the immediate surroundings for portable
objects. The starting point for the scan is the screen location above
and to the left of the player. A nested loop using I and J checks nine
locations forming a three-by-three block around the player. If the
scan finds a symbol that is not a creature, a wall or fire, or the player
himself, the player can pick it up. If the scan completes without
finding such an item, a “NOTHING TO TAKE!” message is dis-
played and the Executive loop takes over.

Line 214 blanks out the object that is being taken, then checks
for special cases. If the object is a potion, the mazer’s strength-level
is restored to 10,000, an appropriate message is displayed, and the
potion is randomly sent to some other room. If the object is a fruit, a
randomincrease in strength-level occurs, a “THAT WAS TASTY!”
message is shown, and Take is finished.

Line 216 continues special checking. If the object isidentified as
a treasure, it must be determined which of the 32 treasures itis. A
loop looks for which treasures are in the current room; the first one
encountered in the loop is assumed to be the one presently being
taken.
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Treasure or not, the object is added to the player’s inventory by
setting its location number to 91 and plugging its object number into
C(K), where K is the next available inventory slot. A final message
acknowledges the transaction and returns the program to the
Executive loop.

THE HANDLER DROP

Pressing any numeric character from 1 to 8 invokees the handler
Drop, located on lines 230 to 236.

Line 230 sets up a scan area of three-by-three screenlocations,
just as Take did. This time, however, Drop is simply looking for a
blank space at which to drop a given item. If it cannot find a space
(character 32), it assumes the player is blocked in close, and refuses
to drop any item, warning, “NOWHERE TO DROP!”.

Otherwise, line 232 takes the ASCII value of the numeric key
pressed (still stored in variable D) and converts it to the value from 1
to 8 by subtracting 48. The Inventory slot referenced by this number
gives up its carried object; the location variable for the object is set to
the current room number. The last part of line 232 is added so that
treasures (i.e., portable objects numbered above 16) will be dis-
played using the proper symbol.

Line 234 POKEs the dropped object symbol into the located
nearby space. Then line 236 essentially compresses the remaining
entries in the Inventory array C(n), such that there are no spaces.
Drop is done, and the Executive loop is re-entered.

THE HANDLER QUIT

The key “Q” invokes the Handler Quit, which can be found on
lines 240 to 246. It performs the following functions:

1. Evaluates treasures retrieved

2. Evaluates creatures slain

3. Evaluates mazer deaths

4. Displays the current score

5. Gives player a chance to quit.

Line 240 sets variable ] to zero; J will be used to tally the score.
To evaluate the treasures, a loop counts through the location array,
finding treasures that reside at home base (room 1) . Fer each safe
treasure, points are added to score ] based on the treasure number.
Treasures are worth anywhere from 17 to 48 points each.

Next, line 242 evaluates the slain creatures. A loop awards
points for every creature found residing in “room zero” (having an
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L(n) value of zero), indicating that it has been killed. Based on the
size of the creature, points awarded range from 9 to 16 points each.

Finally, player deaths are subtracted from the total. Checking
L(100), which is used to keep track of these deaths, the player is
docked 30 points per death.

Using PRINT@statements, line 244 displays an explanatory
message which includes the total score at present. Quit uses most of
the status field to print this text. Then line 246 accepts input from the
player. A “N” answer to the question of “GIVE UP?” runs a quick
loop to blank out the entire status field, and the Executive loop is
re-entered at the point where the subroutine Status is called to
refresh that Field. An answer of “Y” places the cursor in the upper
left corner of the screen and terminates the BASIC program with an
End statement. Any other input simply loops line 246; this avoids the
frustration of ending a game by error.

THE HANDLER SHOOT

If the “S” key is pressed, the Handler Shoot is executed; it
resides in the block of lines beginning at 250. The following con-
tingencies must be allowed for by Shoot:

1. Does the mazer have a Bow?

2. Does the mazer have an Arrow?

3. Is there a creature in the Room?

4. Is the creature too tough for the Arrow?

5. Does the shot miss?

Line 250 checks the first three cases. By referring to the
Location array L(n), SHOOT can tell if the Bow is being carried; it
will have a Location value of 91. If not, a message proclaims, “YOU
HAVE NO BOW!” and the handler exits. Similarly, an absence of
the Arrow gives the warning, “YOU HAVE NO ARROW”. By
checking 1.(104), Shoot can determine if a creature is in the room. If
not, the message is “ZZINGG!!” and the arrow is randomly shot out
into the room.

Line 256 places the spent arrow in the Action Field. A call to
Randxy get a likely location. The corresponding L(n) value is set to
the room number, and the arrow symbol is POKEd into the random
location. Then a call is made to a subroutine termed SUBINV,
whose task is to remove a given object from the Inventory array
C(m); this subroutine is found on line 910,

SUBINV expects the object number of the object to be dropped
to be stored in variable A. It loops through the eight elements of
Inventory array C(n) until it finds the item. It then deletes the item
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by copying all subsequent elements of the array backwards by one.
C(8) is always set to zero, since it is set to the contents of the
always-unused C(9).

After calling SUBINV to remove the arrow from the inventory,
the variables that control the retreat mode of the creature are set
such that the creature is in retreat. Now, in this present case, there
is no creature, but changing these variables does not harmin such a
case. Soon, though, this same line 256 can be used to handle the case
in which the shot drives the beast away.

Assuming there is a creature in the room, line 252 checks tosee
how powerful it is. The arrow will bounce off of the hide of the
creature if its Strength-level exceeds 5000. If so, the message
“BOUNCES OFF HIM!” is printed and line 256 randomly drops the
useless arrow elsewhere in the room: otherwise, the arrow rmay hit
the creature.

To determine whether or not the arrow hits its mark, the actual
distance from the mazer to the creature is calculated, using the
square root of the sum of the squares of the X,Y coordinates. This
value may range anywhere from 1 to 55. The distance is subtracted
from 81 and used as the basis of a percentage test. A random
percentage is compared to the value, such that the closer the target,
the greater the chance of a hit. The maximum chance of hitting the
creature at any one shot is no better than 80 percent.

If the shot fails, the message “RATS!! MISSED!” is displayed
and line 256 again drops the used arrow somewhere in the room.
Otherwise, line 254 sets the arrow’s location to the room number,
and the arrow symbol is POKEd so as to replace the symbol of the
vanquished creature. SUBINV is called to remove the arrow from
the inventory array C(n). The Creature’s Location variable assumes
a zero value, and the variable L(104) is zeroed to indicate thie room

is no longer occupied by a creature. A message proclaims, “GOT
HIM! VICTORY!”, and the handler exits.

THE HANDLER FIGHT

Pressing the key “F” causes the execution of the handler Fight,
which is located from line 290 to 298. The following cases rriust be
handled by Fight:

1. Does the mazer have no sword?

2. Is there no creature to fight?

3. Is the creature too far away to hit?

Line 290 checks the location array to see if Object 15, the
sword, is present in the player's carry-sack. If not, the message
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window states, “YOU HAVE NO SWORD.” If L(104) betrays that
there is no creature in the room, the snide remark “FIGHTING
SHADOWS?” is shown.

By subtracting the X, Y coordinates of the two opponents and
taking the absolute values, a limit can be set on how close the
creature need to be hit with the sword. Line 292 determines that if
the creature is not directly adjacent to the player, the message,
“MISSED IT! FIE!” is displayed. Then line 298 decreases the
player’s strength level by 5 percent. If the player’s strength runs out
entirely, he dies, and the death routine at line 128 is executed.

If the sword hits the mark, line 294 subtracts from the crea-
ture’s strength-level an amount equal to 20 percent of the player’s
strength. If this does not totally drain the creature, the message “A
GOOD SLASH!” is shown in the message window. Also, a 50-50
chance is generated that the creature is put to flight (switched into
retreat mode) by the onslaught. If the swing does empty the crea-
ture’s strength level, line 296 prints the message “FINISHED HIM
OFF!” The creature is dispatched to room 0, the room is flagged as
having no creature, and the creature’s symbol is blanked out.
Whether or not the creature is killed by the blow, line 298 comes into
play, draining the player’s strength a bit.
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Chapter 13

Mazies and Crazies: The Listing

That’s all there is toit! All that remains to put Mazies and Crazies in
operation is to type it into your TRS-80. The full listing follows for
that purpose.

After running “Mazies,” you'll find that there are some things
you might wish to change. Perhaps the scoring values don’t suit you.
Maybe you wish there were a few more commands, or some dif-
ferent kinds of creatures. Almost certainly you will want to experi-
ment with the appearance of the individual rooms. Asin the text-type
adventures, the sky (or at least the memory size) is the limit.
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INITIALIZATION SECTION
2 CLS:PRINTCHR$(23):PRINT@532,"VELCO
ME TO":PRINT@590,"MAZIES & CRAZIES!"
:CLEAR256:DEFINTA-Z:DIML(107),C(9):D
EFSTRR:DIMR(90):GOSUB1000
4 FORN=17TO48:L(N)=RND(87)+3:NEXTN
6 X$=STRINGS$(30," "):P=PEEK(VARPTR(X
$)+1)+PEEK(VARPTR(X$)+2)*256-1:FORN=
437096
8 M=RND(87)+3:1FPEEK(P+M)<>32THENSEL
SEPOKEP+M,45:L(N)=M:NEXTN:X$=""
10 TA$="TORCH ABCDEFPORTALABCDEFABCD
EFABCDEFABCDEFSHIELDBOW  ABCDEFPOTI
ONACCDEFARROW FRUIT SWORD BOMB ":TB
$="SPIDER SNAKE LANDCRABSCORPIONH
UGE BEEAMOEBA TROLL DRAGON "
14 L(3)=RND(87)+3:L(8)=RND(87)+3:L(9
)=RND(87)+3:L(11)=RND(87)+3:L(13)=RN
D(87)+35:L(16)=RND(87)+53
16 L(1)=1:0L(15)=1:L(0)=1:L(97)=28:L(
98)=3:L(99)=10000:CLS

Fig. 13-1. Initialization section for Mazies and Crazies.

EXECUTIVE LOOP
100 GOSUB920:GOSUB500:1FL(104)<>0THE
NL(103)=(L(104)-49)*150+5000:PRINT@5
6,"BEWARE!"; :PRINT@120,MID$ (TBS,FIX(
(L(104)-4Y)/6)*8+1,8);:L(105)=1
102 GOSUBS09
104 PRINTQ@1016,L(99); :X$=INKEY$:IFX$
=""THEN110ELSED=ASC(X$):IFD>7ANDD<11
ORD=91THEN2GOELSEGOSUB920:1FD<57ANDD
>LETHEN230ELSEIFD<700RD>90THEN110
106 OND-64GOTOl110,110,110,110,110,29
o,110,110,110,110,110,110,110,110,11
o,110,240,110,250,210,110,110,110,11
0,110,110

110 IFL(104)=0THEN126ELSEX=L(101)+SG
N(CL(97)-L(101))*L(105):Y=L{102)+SGN(

Fig. 18-2. Executive loop for Mazies and Crazies.
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L(98)-L(102))*L(105):D=PEEK(X+6i4*Y+1
5360): I FD<>GUTHEN1LG

112 GOSUB920:PRINT@56,MID$(TBS, FIX((
L(104)-49)/6)*8+1,8);:PRINT@120,"ATT
ACKS!%; : POKEL(97)+64*L(98)+15360,191
:POKEL(97)+64*L(98)+15360,64:L(105)=
-1:L(106)=RND(20):L(99)=L(99)-L(103)
/8 1FL(8)=91THENL(99)=1(99)+500

114 (FL(99)>0THEN122ELSE128

116 IFD=48THENFORI=1T0O20:POKEX+GL*Y+
15360, RND(64)+128 s NEXT : POKEX+GL*Y+15
360,32:L(16)=RND(87)+3:GOTO124

117 tED=46THENPOKEX+64*Y+15360,32:1(
99)=L(99)+RND(4000)+2000:GOT0O120:ELS
EIED=43THENPOKEX+6L*Y+15360,32:L(99)
=10000:L(11)=RND(87)+3:G0T0120

118 IFD=32THENPOKEL(101)+64*L(102)+1
5360,32:L€101)=X:LC102)=Y:POKEX+Cl*Y
+15360,42:G0T0120

119 (FL(105)=-1THENL(105)=1ELSEFOR!=
1TO3:X=L(101)+RND(3)=2:Y=L(102)+RND(
3)=2:D=PEEK(X+64*Y+15360): I FD<>32THE
NNEXT:ELSE118

120 IFL(105)=-1THENL(106)=L(106)-1:1
FL(106)<=0THENL(105)=1

122 (FL(107)>1THEN126ELSEL(103)=L(10
3)-1:{FL(103)>0THEN126

124 POKELC101)+64*L(102)+15360,32:FR
INT@56,"AT LAST!"; :PRINT@120, "{TS DE
ADY; s LCLC10L))=0:L(104)=0

126 L(107)=L(107)=1:1FL(107)>0THEN1O
BELSEL(107)=10:L(99)=L(89)=1:1FL(99)
>OTHEN1OL

128 FOR(=1TO8:L(CC1))=L(0):C(1)=0:NE
XT1:L(100)=L(100)+1:CLS:PRINTQ@512,"Y
OU ARE QUITE DEAD. BUT WE CAN RESURR
ECT YOU!

WHEN YOU ARE READY, PRESS <ENTER>Y;
130 X$=INKEY$:IFX$=CHR$(13)THENCLS:G
OTO16:ELSEL30

Fig. 13-2. Continued from page 207.
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HANDLERS

"TAKE"
(Press T Key)

210 FORK=1TO8:IFC(K)<>O0THENNEXTK:PRI

NT@56,"TO0 MUCH";:PRINT@120,"TO CARR

Y";:G0TO110

212 N=L(97)+6L4*L(98)+15295:FORI=NTON

+128STEPGL : FORJ=0T02:A=PEEK(1+J)=32:

IFA>JANDACLI7ANDAC>10ANDAK>B6THEN2ILEL

SENEXTJ, 1 : PRINT@5G6,"HOTHING"; : PRINT@

120,"TO TAKE!";:G0TO0110

214 POKEI+J,32:1FA=11THENL(99)=10000

:PRINTASG,"HEALTHY"; : PRINTU120,"AGAL

N1'";:L(11)=RND(87)+3:GOTO110:ELSEIFA

=14THENL(99)=L(99)+RND(4000)+2000:PR

INTUS56,"THAT WAS"; :PRINT@120,"TASTY!

'";:60T0110

216 IFA=LTHENFORA=17TO48:IFL(0)<>L(A

JTHENNEXTA:

218 L(A)=91:C(K)=A

220 PRINTE56,"OKAY!"; : PRINT@120,"
;:60T0102

Fig. 13-3. Handler Take.

"DROP"
(Press Numeric Key)

230 N=L(97)+64+*L(98)+15295:FORI=NTON
+128STEP6L:FORJ=0TO2: t FPEEK(1+J)<>32
THENNEXTJ, | :PRINTQ5G, ""NOWHERE" ; : PRIN
T4120,"TO DROP!'"; :GOTO110

232 K=C(D-48):L(K)=L(0): IFK>1G6THENK=
M

234 POKEI+J,K+32

236 FORI=D-48T08:C(1)=C(t+1):NEXTI:C
0T0102

Fig. 13-4. Handler Drop.
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" QU ' T"
(Press Q Key)

240 J=0:FORI=17TOL8S: 1FL(t)I<OITHENNEX
T:ELSEJS=Jd+1 :NEXT
242 FORI=49T096: 8 FL(1)<>0THENNEXT:EL
SES=J+FIX((1=1)/6)+1:NEXT
2L J=J~L(100)=30:PRINTQ@L84,"{F YOU
W, . PRINT@24L8,"WERE TO "; :PRINT@312,
BSTOP NOW'; : PRINT@376,"YOUD W.:PR
INT@LLO,"HAVE A ";:PRINT@504,"SCORE
OF"; : PRINT@568,J;:PRINT@632, "VWANT T
0 ";:PRINT@696,"GIVE UP?'";:PRENT@760
2 (Y OR N)%;
246 X$=INKEY$: IFX$="N"THENFOR!=0TO1L
sPRINT@56+(#6h ," . :NEXT:GOTO
102ELSEIFX$="Y"THENPRINT@O,""; :END:E
LSE246

Fig. 13-5. Handler Quit

YSHOOTY
(Press S Key)

250 [FL(9)<>91THENPRINT@56,"YOU HAVE
W, :PRINT@120,"NO BOWI";:GOTO110:ELSE
(FL(13)<>91THENPRINT@56," YOU HAVE";:
PRINT@120,"NO ARROW"; :GOTO110:ELSEIF
L(104)=0THENPRINT@56,"ZZINGG! 1"; : PRI
NT@120," ", :G0T0256

252 (FL(103)>5000THENPRINT@56, "BOUNC
ES"; :PRINT@120,"OFF HIM!';:G0T0256:E
LSEN=SQR((L(101)~L(97)) [2+(L(102)~L(
98)) [2) :N=81=N: | FRND(100) DNTHENPRINT
@56, "RATS!1"; : PRINT@120,""MISSEDI";
0T0256 ,

254 L(13)=L(0):POKEL(101)+64*L(102)+
15360,45:A=13:GOSUBI10:L(L(104))=0:L
(104)=0:PRINT@56,"GOT HIMI"; :PRINT@1
20,"VICTORY!"; :GOT0102

256 GOSUBYL0:L(13)=L(0):POKEX+6L*Y+1
5360,45:A=13:GOSUBI10:L(105)=-1:L(10
6)=RND(20):GOT0102

Fig. 13-6. Handler Shoot.
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"MOVEY

(Press Arrow Key)
260 X=0:Y=0:1FD=91THEND=11
262 OND-7GOTO264,266,268,270
264 X=-1:G0T0272
266 X=1:G60T0272
268 Y=1:G070272
270 Y==-1:G0T0272
272 X=X+1(97):Y=Y+L(98):Q=PEEK(X+6hL=*
Y+15360)
274 (FQ=32THENPOKEL(97)+64*L(98)+153
60,32:L(97)=X:L(98)=Y:POKEX+6L4*Y+153
60,0L:L(99)=L(99)=5:1FL(99)>0THEN110
ELSE128
276 IFQ=LSTHENPRINTQ56,'"BOOMM!I I, : PR
INT@120,"YOU FOOL";:FOR!I=1TOLO :POKEX
+64*Y+15360, RND(64)+123 :NEXTt:L(16)=
RND(87)+3:G0T0128
278 IFQ=35THENI=RND(87)+3:1FL(1)<>91
ANDL(1)<>1THENGOSUBY20:PRINT@5G,"NOT
HING"; :PRINT@120,"HAPPENS!"; :GOTO0110
tELSEPRINTAX+6L4*Y,"POOF!"; :FORI=1T02
O:NEXTt:L(0)=1:G0TO100
280 I1FQ=38THENPOKEL(97)+04*L(98)+153
60,52:L(97)=X:L(98)=Y:POKEX+6L4*Y+153
60,04:L(99)=L(99)-RND(200)+100:G0OSUB
920 :PRINTGS56,"FIRE!!"; :PRINT@120,"YE
OWWII,; s IFL(Y99)>0THEN110ELSEL128
282 (FQ=128THENIFL(1)<>91THEN288ELSE
FORI=1TO91STEP1O0: 1 FX=VAL(MID$(CRS, I,
2))ANDY=VAL(IID$(CRS, 1+2,2))THENLO)
=VAL(MIDS(CR$, 1+4,2)):1FL(0)=92THEN2
8OELSEL(97)=VAL(MID$(CR$,1+6,2)):L(9
8)=VAL(MID$(CRS$,1+8,2)):GOTO100:ELSE
NEXTI
284 GOTO110
236 PRINT@56,"0OH NOOO!™"; :PRINT@120,"
A PITIHI"; :FORI=1T020:NEXT:G0T0128
288 GOSUB920:PRINT@56,"TO0 DARKY;:PR
INT@120,"IN THEREY;:G0TO110

Fig. 13-7. Handler Move.
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WEIGHTY
(Press F Key)

290 {FL(15)<>91THENPRINTE56 ,"YOU HAV
E'%;:PRINT@120,"NO SWORD";:GOTO110:EL
SEIFLC104)=0THENPRINT@56,"F IGHTING";
:PRINT@120,"SHADOWS?"; : GOTO 298

292 (FABS(L(97)=L(101))>10RABSCL(98)
=L (102))>1THENPRINT@56, " "MIS SED'; : PRI
NT@L20,"iIT! FIE!";:GOTO0298

294 L(103)=L(103)=-L(99)/5:1 FL(103)>0
THENPRINT@56,"A GOOD";:PRINTE@120,"SL
ASHIY; : {FRND(2)=2THENL(105) ==1:L(106
)=RND(20):G0OT0298:ELSE298

296 PRINT@56," FINISHED"; : PR INTE120,"
HiM OFF!"; :L(L(104))=0:L(104)=0:POKE
LC101)+64*L(102)+15360,32

298 L(99)=L(99)=L(99)/20:1FL(99)>0TH
ENI110ELSE128

Fig. 13-8. Handler Fight.

SUBROUT INES
"DSPLAY"Y

500 L(104)=0:CR$=R(L(0)):PRINTEO0,STR
1§4G$(56,191); :PRINTQ960,STR ING$(56,1
91); :FORI=64TO896GSTEP6L4 sPRE NT@I,CHRS$
(131);STRING$(54,32);CHR$ (L 91); :NEXT
I s N=1

502 IFMID$(CR$, N, 1)="="THEN N=N+1:GO0T
OGS O04ELSEX=VAL(MID$(CR$, N, 2D ):Y=VAL(H
IDS(CRS,N+2,2)) s POKEX+6L*Y+15360,128
s H=N+10:G0T0O502

5004 TFNDLENC(CR$)THENS20ELSE X=VAL(MID
$(CRS,N+1,2)):Y=VAL(MID$(CF2$,N+3,2))
s ONVAL(MID$(CR$,N,1))GO0T0506,508,508
.508.510,512:G0T0520

506 PRINTUX+64%Y,STRING$(VAL(MIDS(CR

Fig. 13-9. Subroutine Dsplay.
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$,H45,2)),191); :N=N+7:G0T0504

508 S=X+64*xY+15360:D=VAL(MID$(CRS$,N,
1))+61:FORI=1TOVAL(MIDS(CRS,N+5,2)):
POKES, 191 :5=S+D:NEXTI1 :N=N+7:G0T0O504
510 S=X+6L4*Y=65:PRINTES,"&&&"; :S=5+6
L:PRINT(CS,"&&&"; :S=S+6L : PRINT@S, "a&&
", :N=N+5:60T0504

512 POKEX+GL=*Y+15360,46:N=N+5:G0T050
Yy

520 POKEL(97)+6L4*1L(98)+153C0,6L4:FORt
=1TO16:tFLCI)=LCO)THENGOSUBI4D:POKEN
S1+32

522 HEATI:FORI=17TOL8:1FL(1)=L(0)THE
NGOSUB940: POKEN, 306

524% NEXTI:FORI=49TO96G:1FL(1)=L(0)THE
NGOSUB9LO :POKEN,42:L(101)=X:L(102)=Y
sL(104)=1:ELSENEXTI

526 RETURN

Fig. 13-9. Continued from page 212.

"STATUS"

900 PRINT@248,"ROOM";L(0); :PRINTWE952
,"STRENGTH"; : PRINT@1016G6,L(99);

902 FORI=1TO8:1FC(1)=0THENPRINTA312+
[ G4 ," ", tRETURM:ELSEPRINT@31
2+ %64 ,CHRS (1+48) ;" "; :HFC(I)>ICTHEN
PRINT"TR";C(1)=-16; :NEXT:RETURN:ELSEP
FINTMID$(TA$,C(I)*B-S,G);:NEXT:RETUR
\

Fig. 13-10. Subroutine Status.

"SUBIHVY

910 FORI=1TO8:IFC(1)<>ATHENNEXTI :RET
URN:ELSEFORJ=1T08:C(J)=C(J+1):HNEXTJ:
RETURN

Fig. 13-11. Subroutine Subinv.
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"CLRMES"

920 PRINT@56," ", :PRINT@1290,"
";:RETURN

Fig. 13-12. Subroutine Cirmes.

"RANDXY"

940 X=RND(5L):Y=RND(1h4):N=X+6L*Y+155
GOt FPEEK(N)<>32THENSLOELSERETURH

Fig. 13-13. Subroutine Randxy.

ROOM STRINGS

1000 R(1)="0006025408550703010622009
02714-401011125401111180418"

1001 R(2)="5508010106190004231400030
52&082015062501-30601123120312113073
9

1002 R(3)=''0006015407211507270155070
82109220009291h—10110273270&071280&2
2

1005 R(4)="2315021901240010511401.001
14014-504010810508453130904"

1004 R(5)="5508020109000212541100121
55405-1010850551040950202"

1005 R(6)="2500022014011514410126151
53201-305060910606275310704"

1006 R(7)="2700032114281516330139151
71401-1040451"

1007 R(8)="0009035407551018010555021
90110-3200105324031255310"

1008 R(9)="2915032201400020151450002
13414-23601124360112"

1009 R(10)="311504240100062254006=331
04081270909

Fig. 13-14. Room strings.
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11010 R(11)="40150401011000224414~108
05382460510"

$1011 R(12)="55110501020012235402-101
110203241005"

11012 R(13)="55030501120004235412-421
 01062330106"

1013 R(14)="41000601141315244501-101
12303300212"
i101h"R(15)="320006261h00072h5h07-101
0538

11015 R(16)="33000728145508250108-345
»01081210928"

11016 R(17)="14000739144215251601~101
104204010507

1017 R(18)="00050854105501260113=-317
-011052104113250110"

1016 R(19)="00100854025511260103-104
-09431200520"

1019 R(20)="15150940014300271714-4L2
01091200931"

1020 R(21)="34150930015509270109-10§
052910810293360510"

1021 R(22)="550610010644151110010315
' 285404-22806084230609"

1022 R(23)="550212011255121301040008
285408-101053510110353360504"

. 1023 R(24)="450014131455071501076900
- 285L414-25401102440110"

. 1024 R(25)="000816540816001742145000
,290110-34901051030545"

. 1025 R(26)="001318540100031954115508
 290107-315010731509063450110"

1026 R(27)="171520430100092154095215
- 290105-3130411"

| 1027 R(28)="550422031455082301G85514
F 24,09014615300501-45002052540905103006
4460510

1028 R(29)="001025500100072654039G05
2752140415305001-401060710812331400k

Fig. 13-14. Continued from page 214.
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0961804"

1029 R(30)="03002856145000290L142715
312901-32501101060542"

1030 R(31)="000632540855073301062900
302714-401011125401111150418"

1031 R(32)="'550831010619003423140009
3554082015362501-3060112312031211307
39"

1032 R(33)="000631540721153727015507
3801092200392914-101102732704071280%
22

1033 R(34)="231532190124004031140100
414014-304010810508453190904"

1034 R(35)=""550832010900024254110012
435403-1010850351040950202"

1035 R(36)="250032201401154441012615
453201-305060910606273310704"

1036 R(37)="270033211428154633013915
471401-1040451"

1037 R(58)="0009335407551045801055502
490110-3200105324031255310"

1038 R(38)="291533220140005015143000
513414-23601124360112"

1039 R(40)="31153424010006525406-331
04081270909"

1046 R(41)="40153401011000524414=-108
05382460510"

1041 R(42)="55113501020012535402-101
10203241005"

1042 R(L3)="55033501120004535412-1421
01062330106"

1043 R(44)="41003601141315544501-101
12303300212"

104k R(45)=""32005626140007545407-101
0538

1045 R(46)="33003728145508550108-345
01081210923"

1046 R(47)="14003739144215551601-101
042040105077

Fig.13-14. Continued from page 215.
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1047 R(L2)="00053354105501560113=317
011032104113250110"

1048 R(49)="00103354025511560103-104
09431200520"

1049 R(50)="1515394001430057171k=442
01091200931"

1050 R(51)="34153930015509,70109=-108
052910810293360510"

1051 R(52)="55006400100644154116010315
585404-22806034280609"

1052 R(53)="550242011255124301040008
585408-101053510110353360504"

1053 R(54)="450044131455074501070900
585414=25401102440110"

1054 R(55)="000846540316004742145000
590110-34901051030545"

1055 R(56)="001348540100034954115508
590107-315010731509063450110"

1056 R(57)="171550430100095154095215
590105-3180411"

1057 R(58)="550452031455085301085514
5409014615600301=-4500205254090510306
4460510"

1058 R(59)="001055500100075654080005
5752140415605001~4010607108123814604
0961804"

1059 R(G60)="030058461450005904142715
612901-32801101060542"

1060 R(61)="0006625L0855076301062500
602714-401011125401111180418"

1061 R(62)="550861010619006423140009
6554082015662501-3060112312031211307
39

1062 R(63)="000661540721156727015507
gg2109220009291u-10110273270u071280u
1063 R(64)="231562190124007031140100
714014~304010810508453190904"

1064 R(65)="550862010900027254110012

217



735403-1010850351040950202"

1065 R(66)="2500622014011574410120615
753201-305060910606273310704"

1066 R(67)="270063211428157CG33015915
771401-1040L51"

1067 R(68)="0009635407551073801055502
790110-3200105324031255310"

1068 R(69)="291563220140G080151430090
813414-23601124560112"

1069 R(70)="311564240100006825400-551
04081270909"

1070 R(71)="40156401011000824414=-123
05382460510"

1071 R(72)="55116501020012355402-101
10203241005"

1072 R(73)="55036501120004835412-42]
01062330106"

1073 R(74)="41006601141315344501-101
12303300212"
107h"R(75)=P320066261&00078&5&07—101
0558

1075 R(76)="33006728145508350103-3L5
01081210928"

1076 R(77)="14006739144215851601-101
04204010507"

1077 R(78)="00056354105501860113-3517
011032104113250110"

1078 R(79)="00106854025511860105-104
09431200520"

1079 R(80)="15156940014300871714=-LL2
01091200931"

1080 R(81)="34156930015509870109-1038
052910810293360510"

1081 R(82)="550670010644157110010315
885404-22806084280609"

1082 R(83)="5502720112551273010400038
885408-101053510110353360504"

1083 R(84)="450074131455077501070900

norft1h LN1T1N09I1. i
OO ALy~ 2.J~ru.A..s.u(_-r~'-7011n

Fig. 13-14. Continued from page 217.
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1084 R(85)="000876540816007742145000
890110-349010510305L5"

1085 R(86)="001378540100037954115533
890107-315010731509063450110"

1086 R(87)="171580430100098154095215
390105-3180411"

1087 R(88)="5504820314550683010385514
8409014615900301-45002052540905103506
L460510"

1088 R(89)="001085500100078654080005
8752140415905001-4010607108123814604
0961804"

1089 R(90)="0300834G1450008904142715
012901-32801101060542"

1090 RETURN

Fig. 13-14. Continued from page 218.
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Summary

How does anyone manage to summarize an entire book? I suppose
the best way is to reiterate the key concepts, seeking to clarify
things for some readers at the risk of boring others.

Let all who read heed concept one: structure your program-
ming. No program of any real complexity can avoid the debug-
correction cycle, and an unstructured program is difficult to correct.
Some of the problems themselves may be linked to lack of structure,
such as accidental re-use of variables best left untouched. One hour
to make a flow chart or table on paper is worth the ten hours of
confusion avoided at the keyboard later.

The second concept is even more crucial: consider your op-
tions. In an input-oriented program like Basements and Beasties,
someone is bound to phrase a command or try something in a way
you hadn't predicted—possibly with disastrous results to your pro-
gram flow! Do a lot of if-then thinking and testing before presenting
your adventure program to a prospective adventurer.

The final concept may take awhile: optimize your code. Find
ways to simplify your statements and speed up program execution.
Use calculated jumps (ON-GOTO) and subroutine calls (GOSUB).
Study anything you can read on the way BASIC actually works, and
find ways to manipulate it using PEEK and POKE. If you think
“adventure programming” has reached its zenith, surprise, there
are plenty of more tricks to be tried. You'll probably be the first to
find some of them.

After all, if you're ready to fight dragons with the Axe, then
maybe you're adventurous enough to be a programmer!
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A
Aardvark handler, 92
Access, sequential, 45
Access subroutine, data, 50
Adventure games, comparison of, 168
Adventure program, definition of, 2
Analyze subroutine, 59, 78
Arrays, 27, 29, 63, 65, 69, 85
ASCII characters, 172
Axe, 110, 113

B
Battles, 109, 175
Bomb handler, 110, 117
Bottlenecking, 14, 15

1+
Ckobs subroutine, 97, 114
Close handler, 101
Clrms subroutine, 195, 214
Commands, 53, 72, 81, 174
Command subsection, 42
Creature movement, 197
Creatures, 35, 70, 95, 105, 109, 195

D
Darkck subroutine, 66, 67
Data lists, 45
Data pointer, 47
Data statements, 11
Death, player, 11, 19, 198
DEFINT statement, 56
Description subsection, 42

Index

Direction, default, 11, 88

Direction, fatal, 19

Direction, illegal, 11

Display mode, 32-character, 62

Display subroutine, 191, 212

Doors, 95, 176

Drop handier, 103, 107, 149, 202,
209

E
Enchanted grenade, 108, 110, 117
Ending the game, 125
Entrances, 7
Executive, 42, 64, 184, 195, 207
Exists, 7

F
Fields, graphic, 170
Fight handler, 110, 111, 204, 212
Fire field, 193
Fiags, 29
Fruit, magic, 194

G
Getcom subroutine, 75
Giant Mantis, 25
Grammar, 72
Graphics, low-resolution, 171
Grates, 95

H

Handlers, 40, 43, 133, 184
Home base, 14
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i Restore handler, 126, 129

Idword subroutine, 76, 145, 160 Resur handler, 115
Imove handler, 89 Revobs subroutine, 99
Initialization, 36, 41, 49, 184, 183, Room descriptions, 30, 32, 42
207 Room display, 170

Integers, 22, 55 Room strings, 179, 214
Inven handler, 122 Run-time, 150

K s
Keys, 35, 95, 99 Sack, player's, 28

L Save handler, 126, 128
Labyrinth games, 150 Say handler, 91
Line numbers, program, 40 Scenario, 6, 14, 152, 176
Liners handlers, 130 Scenario, mapping the, 7, 181
Listob subroutine, 69 Score handler, 123
Look handler, 121 Scoring, 123

Shooting handler, 203, 210

. Status subroutine, 213

m::?gﬁ;ﬁn%‘fage' 157 Strength level, player, 196
! Subinv subroutine, 213

Mazes, 14, 16, 33 ;
BT T O Subroutines, 40, 43, 133
Memory, economic use of, 5, 22,62 g e suproutine, 60, 68

Mesprt subroutine, 52

Message block, 43 T

MICI'C;Z%ﬂ BASIC, 4, 22, 40, 55, 75, T,pe search, 73

Move handler, 200, 211 Take2 g;ndler, 103, 147, 149, 201,
N Title display, 61

Tools, 34, 36, 172, 194

Nameless Terror, 113, 117 Travec subroutine, 53, 154

0 Travel, 8, 81, 82, 88, 89
. L Travel table, 8, 10, 12, 87,
Object descriptions, 34, 42 152, 177, 179

Objects, 26, 173
Object toting, 103 Treasures, 27, 34, 36, 194

Obstacles, 14, 17, 20, 21, 25, 26, 11ON function, 158
35
v

Open handler, 95 . .
. Variables, 28, 56, 186
Orc, 37, 70, 100, 105 Viewrm subroutine, 65, 67, 121

P
Points subroutine, 124 W
Programming, hybrid, 156 Weapons, 35
Programming, structured, 5,39,40,48  White Spider, 113, 117
Windows, 173
1] Word ID number, 73
Quit handler, 126, 202, 210 Word search, faster, 145
Word table, 42, 73
R
Randxy subroutine, 214 X
Read handler, 90 Xmove handler, 82
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4 Writing BASIC h

Adventure Programs for the TRS-80

by Frank DaCosta

Find out how you can write your own original adventure programs
for your TRS-80 Model | or 11l with as littie as 16K of memory! Discover
how to use new programming tricks and techniques to gain memory
space and increase programming speed! Even learn how to construct
a full-feature graphic adventure! It's all here in this unique program-
ming guide, along with two brand new games devised by the author to
help you perfect your game-writing skills!

The first step is to find out what an adventure program contains
and how itis created. You'll learn to map a "basement” or scenariofor |
your adventure, including all the elements the program needs to
support—from writing the description of each room and its contents to
constructing a complex map containing surprises for the unwary
player. Structuring the program is covered and you'll learn special
techniques for organizing the BASIC code to speed up data access
and reduce memory usage.

You'll examine a sample adventure program called “Basements
and Beasties' to find out how programs areinitialized, how scenes are
described, and how commands are input and executed. Motion com-
| mands, obstacles, the use of magic words and action routines be-
|  come clear so that you'll be able to use them properly when you write
your own original game.

The how-to's for constructing a graphic adventure including the |
concepts, the semgnets, and listings are given along with a sample |
graphics adventure, “Mazies and Crazies.” If you're interested in
computer games and want to learn how to write your ownand improve
your programming skills at the same time, then this book is definitely
for you!

Frank DaCosta is a computerist who is experienced in both
hardware design and software development. A computer hobbyist, he
works professionally with many types of microprocessor- and
minicomputer-based systems.

OTHER POPULAR TAB BOOKS OF INTEREST |

30 Computer Programs for the Homeowner, in 67 Ready-To-Run Programs in BASIC: graphics,

BASIC (No. 1380 —$9 95 paper. $18 95 hard) home & business, education, games (No
33 Challenging Computer 6ames for TRS-80™/ 1195—$7.95 paper; $13.95 hard)
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