
c\ OSBORNE/McGRAW-HILL

6809 ASSEMBLY LANGUAGE SUBROUTINES
ee

Assembly language
subroutines for the
6809

L.A. LEVENTHAL

and

S. CORDES

McGRAW-HILL BOOK COMPANY

London - New York: St Louis - San Francisco - Auckland
Bogota - Guatemala - Hamburg - Lisbon - Madrid - Mexico
Montreal - New Delhi - Panama: Paris - San Juan- Sao Paulo
Singapore - Sydney - Tokyo - Toronto

Published by
McGRAW-HILL Book Company (UK) Limited
MAIDENHEAD °* BERKSHIRE * ENGLAND

British Library Cataloguing in Publication Data

Leventhal, Lance A, 1945-—

Assembly language subroutines for the

6809.
1. Motorola 6809 microprocessor systems.
Assembly languages
I. Title II. Cordes, S

005.2765

ISBN 0-07-707152-2

Library of Congress Cataloguing-in-Publication Data

Leventhal, Lance A, 1945-
Assembly language subroutines for the 6809 / L. A. Leventhal and S. Cordes

. em.
Includes index.
ISBN 0-07-707152-2
1. Motorola 6809 (Computer) -- Programming. 2. Assembler language

(Computer program language) 3. Subroutines (Computer programs)
I. Cordes, S. II. Title.

QA76.8.M689L49 1989
005.265--dc 19 88-39561

First published in Japanese
Copyright © 1985 L. A. Leventhal and S. Cordes
12348909
Typeset by Ponting-Green Publishing Services, London,
and printed and bound in Great Britain at the University Press, Cambridge

Copyright ©1989 McGraw-Hill Book Company (UK) Limited. All rights

reserved. No part of: this publication may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior permission of

McGraw-Hill Book Company (UK) Limited.

Contents

Preface

Nomenclature

introduction

Code conversion
1A_ Binary to BCD conversion 4
1B BCD to binary conversion 7
1C Binary to hexadecimal ASCII conversion 10
1D Hexadecimal ASCII to binary conversion 13
1E Conversion of a binary number to decimal ASCII 16
1F Conversion of ASCII decimal to binary 20

Array manipulation and indexing
2A Memory fill 26
2B___ Block move 30
2C Two-dimensional byte array indexing 35
2D Two-dimensional word array indexing 39
2E N-dimensional array indexing 43

Arithmetic
3A 16-bit multiplication 49
3B = 16-bit division 54
3C =Miultiple-precision binary addition 61

vi Assembly language subroutines for the 6809

Multiple-precision binary subtraction 65
Multiple-precision binary multiplication 69
Multiple-precision binary division 74
Multiple-precision binary comparison 81
Multiple-precision decimal addition 85
Multiple-precision decimal subtraction 88

3J_ Miultiple-precision decimal multiplication 92
3K Miultiple-precision decimal division 98
3L =Miultiple-precision decimal comparison 105

Bit manipulation and shifts 107
4A Bit field extraction 107
4B Bit field insertion 112
4C Multiple-precision arithmetic shift right 117
4D Miultiple-precision logical shift left 122
4E Miultiple-precision logical shift right 126
4F Multiple-precision rotate right 130
4G Miultiple-precision rotate left 135

String manipulation 140
SA String compare 140
5B String concatenation 146
SC Find the position of a substring 151
5D Copy asubstring from a string 157
SE Delete a substring from a string 164
SF Insert a substring into a string 170
5G Remove excess spaces from a string 178

Array operations 182
6A _ 8-bit array summation 182
6B 16-bit array summation 186
6C Find maximum byte-length element 190
6D Find minimum byte-length element 194
6E Binary search 198
6F Quicksort 204
6G RAMtest 216
6H Jump table 222

Data structure manipulation 225
7A Queue manager 225
7B Stack manager 233
7C Singly linked list manager 239
7D Doubly linked list manager 244

Contents

input/output
Read a line from a terminal 250
Write a line to an output device 261
Parity checking and generation 265
CRC16 checking and generation 269
I/O device table handler 275
Initialize I/O ports 287
Delay milliseconds 294

Interrupts
9A

9B

9C

9D

Unbuffered interrupt-driven input/output
using a 6850 ACIA 297
Unbuffered interrupt-driven input/output
using a 6821 PIA 307
Buffered interrupt-driven input/output
using a6850 ACIA =—s_- 317
Real-time clock and calendar 329

6809 instruction set summary

Programming reference for the 6821 PIA device

ASCIll character set

vii

250

297

338

344

349

Preface

This book is intended as both a source and a reference for the 6809
assembly language programmer. It contains a collection of useful sub-
routines described in a standard format and accompanied by an exten-
sive documentation package. All subroutines employ standard parameter
passing techniques and follow the rules from the most popular
assembler. The documentation covers the procedure, parameters,

results, execution time, and memory usage; it also includes at least one
example.

The collection emphasizes common tasks that occur in many applica-
tions. These tasks include code conversion, array manipulation, arith-
metic, bit manipulation, shifting functions, string manipulation, sorting,

and searching. We have also provided examples of input/output (I/O)
routines, interrupt service routines, and initialization routines for com-
mon family chips such as parallel interfaces, serial interfaces, and
timers. You should be able to use these programs as subroutines in
actual applications and as starting points for more complex programs.

This book is intended for the person who wants to use assembly
language immediately, rather than just learn about it. The reader could
be

@ An engineer, technician, or programmer who must write assembly
language programs for a design project.

e A microcomputer user who wants to write an I/O driver, a diagnostic
program, a utility, or a systems program in assembly language.

Assembly language subroutines for the 6809

@ An experienced assembly language programmer who needs a quick
review of techniques for a particular microprocessor.

e A system designer who needs a specific routine or technique for
immediate use.

© A high-level language programmer who must debug or optimize
programs at the assembly level or must link a program written in a
high-level language to one written in assembly language.

e A maintenance programmer who must understand quickly how
specific assembly language programs work.

e A microcomputer owner who wants to understand the operating
system of a particular computer, or who wants to modify standard I/O
routines or systems programs.

@ A student, hobbyist, or teacher who wants to see examples of working
assembly language programs.

This book can also serve as a supplement for students of the Assembly
Language Programming series.

This book should save the reader time and effort. The reader should
not have to write, debug, test, or optimize standard routines, or search
through a textbook for particular examples. The reader should instead
be able to obtain easily the specific information, technique, or routine
he or she needs.

Obviously, a book with such an aim demands feedback from its
readers. We have, of course, tested all programs thoroughly and docu-
mented them carefully. If you find any errors, please inform the pub-
lisher. If you have suggestions for better methods or for additional
topics, routines, or programming hints, please tell us about them. We
have used our programming experience to develop this book, but we
need your help to improve it. We would greatly appreciate your com-
ments, criticisms, and suggestions.

Nomenclature

We have used the following nomenclature in this book to describe the
architecture of the 6809 processor, to specify operands, and to represent
general values of numbers and addresses.

6809 architecture

Figure N-1 shows the register structure of the 6809 microprocessor. Its
byte-length registers are:

15 0

X — Index Register

Y — Index Register

U — User Stack Pointer

S — Hardware Stack Pointer

PA 8

Pointer Registers

Program Counter

Accumulators

O

7 0

Direct Page Register

7 0

eEyFLH} i [n[z] vic Condition Code Regis

Figure N-1 6809 register structure.

xi

Xi! Assembly language subroutines for the 6809

A (accumulator A)
B (accumulator B)
CC (condition code register)
DP (direct page register)

The CC register consists of bits with independent functions and mean-
ings, arranged as shown in Figure N-2.

The 6809’s word-length registers are:

D (double accumulator, same as A and B together with A being
the more significant byte)

PC (program counter)

Sor SP (hardware stack pointer)

U (user stack pointer)

X (index register X)

Y (index register Y)

6 5 43 2 #1

FED bbe .
arry

Overflow

Zero
Negative

IRQ Mask

Half Carry

FIRQ Mask

Entire Flag

Figure N-2 6809 condition code (CC) register.

The 6809’s flags (see Figure N-2) are as follows:

C (carry)
E (entire, used to differentiate between regular interrupts that save

all registers and fast interrupts that do not)
F (fast interrupt mask bit)
H (half-carry, i.e. carry from bit 3 of a byte)
I (regular interrupt mask bit)
N (negative or sign)
V_ (overflow)

Nomenclature xii

6809 assembler

Delimiters include

space After a label or operation code and before a comment on
the same line as an instruction

,(comma) Between operands in the address field and ahead of the
designations for zero offset indexing, autoincrementing,
and autodecrementing

[| Around indirect addresses
Before an entire line of comments
Optional after a label except not allowed in
EQU statements

/ Around strings in FCC pseudo-operations

Pseudo-operations include

END End of program
EQU Equate; define the attached label
FCB Form constant byte; enter byte-length data
FCC Form constant character string; enter character data
FDB Form double byte constant; enter word-length data
ORG Set (location counter to) origin; place subsequent object

code starting at the specified address
RMB Reserve memory bytes; allocate a specified number of

bytes for data storage
SETDP Specify memory page to be treated as the direct page in

subsequent assembly

Designations include

Number systems
% (prefix) or B (suffix) Binary
& (prefix) or D (suffix) Decimal
$ (prefix) or H (suffix) Hexadecimal
@ (prefix) or Q (suffix) Octal

The default mode is decimal; hexadecimal numbers using the H suffix
must start with a digit (i.e. you must add a leading zero if the number
starts with a letter).

Others
ASCII character

— Autodecrementing by 1 (before a register name)
—— Autodecrementing by 2 (before a register name)
+ Autoincrementing by 1 (after a register name)

Xiv Assembly language subroutines for the 6809

++ Autoincrementing by 2 (after a register name)
$ Current value of location (program) counter
< Force the assembler to use direct (page) addressing
> Force the assembler to use extended (direct) addressing
Immediate addressing (in front of an operand)
PCR Relative to the current value of the location counter (as in

DEST,PCR)

Defaults include:

Direct page is page 0 unless a SETDP pseudo-operation specifies
otherwise.

Unmarked addresses are either direct (if they are on the page specified
as the direct page) or extended (direct).

Unmarked numbers are decimal.

Introduction

Each description of an assembly language subroutine contains the
following information:

@ Purpose of the routine

@ Procedure

@ Entry conditions

@ Exit conditions

@ Examples

@ Registers used

@ Execution time

@ Program size

@ Data memory required

@ Special cases

The program listing also includes much of this information as well as
comments describing each section.
We have made each routine as general as possible. This is difficult for

the input/output (I/O) and interrupt service routines described in Chap-
ters 8 and 9 since in practice these routines are always computer-
dependent. In such cases, we have limited the dependence to
generalized input and output handlers and interrupt managers. We have

1

Assembly language subroutines for the 6809

drawn specific examples from the popular Radio Shack TRS-80 Color
Computer (with BASIC in ROM), but the general principles are applic-
able to other 6809-based computers as well.

All routines use the following parameter passing techniques:

1. A single 8-bit parameter is passed in accumulator A. A second 8-bit
parameter is passed in accumulator B.

2. A single 16-bit parameter is passed in accumulators A and B (more
significant byte in A) if it is data and in index register X if it is an address.

3. Larger number of parameters are passed in the hardware stack,
either directly or indirectly. We assume that the subroutine entry is via a
JSR instruction that places the return address at the top of the stack, and
hence on top of the parameters.

Where there is a trade-off between execution time and memory usage,
we have chosen the approach that minimizes execution time. We have
also chosen the approach that minimizes the number of repetitive calcula-
tions. For example, consider the case of array indexing. The number of
bytes between the starting addresses of elements differing only by 1 ina
particular subscript (known as the size of that subscript) depends only on
the number of bytes per element and the bounds of the array. This allows
us to calculate the sizes of the various subscripts as soon as we know the
bounds. We therefore use the sizes as parameters for the indexing
routines, so that they need not be calculated each time a particular array
is indexed.
We have specified the execution time for most short routines. For

longer routines, we provide an approximate execution time. The execu-
tion time of programs with many branches will obviously depend on
which path the computer follows in a particular case. A complicating
factor is that a conditional branch requires different numbers of clock
cycles depending on whether the processor actually branches. Thus, a
precise execution time is often impossible to define. The documentation
always contains at least one typical example showing an approximate or
maximum execution time.

Our philosophy on error indicators and special cases has been the
following:

1. Routines should provide an easily tested indicator (such as the Carry
flag) of whether any errors or exceptions have occurred.

2. Trivial cases, such as no elements in an array or strings of zero length,
should result in immediate exits with minimal effect on the underlying
data.

Introduction 3

3. Misspecified data (such as a maximum string length of zero or an
index beyond the end of an array) should result in immediate exits with
minimal effects on the underlying data.

4. The documentation should include a summary of errors and excep-
tions (under the heading of ‘Special cases’).

5. Exceptions that may actually be convenient for the user (such as
deleting more characters than could possibly be left in a string rather
than counting the precise number) should be handled in a reasonable
way, but should still be indicated as errors.

Obviously, no method of handling errors or exceptions can ever be
completely consistent or well-suited to all applications. Our approach is
that a reasonable set of subroutines must deal with this issue, rather

than ignoring it or assuming that the user will always provide data in the
proper form.

7 Code conversion

1A_ Binary to BCD conversion
(BN2BCD)

Converts one byte of binary data to two bytes of BCD data.

Procedure The program subtracts 100 repeatedly from the original
data to determine the hundreds digit, then subtracts 10 repeatedly from
the remainder to determine the tens digit, and finally shifts the tens digit
left four positions and combines it with the ones digit.

Entry conditions.

Binary datain A

Exit conditions

BCD data in D

Examples

1. Data: (A) = 6Dj¢ (109 decimal)
Result: (D) = 010946

1A_ Binary to BCD conversion (BN2BCD) 5

2. Data: (A) = B76 (183 decimal)
Result: (D) = 01834¢ a

Registers used A,B,CC

Execution time 140 cycles maximum, depends on the number of
subtractions required to determine the tens and hundreds digits

Program size 30 bytes

Data memory required 2 stack bytes
Sa en

Title: Binary to BCD Conversion
Name: BN2BCD

Purpose: Converts one byte of binary data to two
bytes of BCD data

t+ £ + + FF HF FH HF eH HF HF HF HF HF HF HF HF HF HF HF HF F

Entry: Register A = Binary data

Exit: Register D = BCD data

Registers Used: A,B,CC

Time: 140 cycles maximum

Size: Program 30 bytes

Data 2 bytes on stack

BN2BCD:
*

*CALCULATE 100'S DIGIT

*DIVIDE DATA BY 100 USING SUBTRACTIONS
* B = QUOTIENT

* A = REMAINDER
*

LDB #3 FF START QUOTIENT AT -1
DIOOLP: INCB ADD 1 TO QUOTIENT

SUBA #100 SUBTRACT 100 FROM DIVIDEND

DIOLP:

+ + + + F

SC1A:

Assembly language subroutines for the 6809

BCC D100LP JUMP IF DIFFERENCE STILL POSITIVE 4
ADDA). #100 IF NOT, ADD THE LAST 100 BACK
STB ,7Ss SAVE 100'S DIGIT ON STACK
*

*CALCULATE 10'S AND 1'S DIGITS

*DIVIDE THE REMAINDER FROM CALCULATING THE 100'S DIGIT BY 10
* B = 10'S DIGIT

* A = 1'S DIGIT
*

LDB #$FF START QUOTIENT AT -1
INCB : ADD 1 TO QUOTIENT
SUBA #10 SUBTRACT 10 FROM DIVIDEND
BCC D1OLP JUMP IF DIFFERENCE STILL POSITIVE
ADDA #10 IF NOT, ADD THE LAST 10 BACK
*

*COMBINE 1'S AND 10'S DIGITS
*

LSLB MOVE 10'S DIGIT TO HIGH NIBBLE
LSLB
LSLB

LSLB
STA 778 SAVE 1'S DIGIT ON STACK

ADDB yot COMBINE 1'S AND 10'S DIGITS IN B
*

*RETURN WITH D = BCD DATA
x

LDA ot RETURN 100'S DIGIT INA

RTS

SAMPLE EXECUTION

*CONVERT OA HEXADECIMAL TO 10 BCD

LDA #S0A

JSR BN2BCD D = 0010H (A = O00, B = 10H)

*CONVERT FF HEXADECIMAL TO 255 BCD

LDA #S FF

JSR BN2BCD D = 0255H (A = 02, B = 55H)

*CONVERT O HEXADECIMAL TO O BCD

LDA #0

JSR BN2BCD D = 0000 (A = 00, B = 00)

END

1B BCDto binary conversion (BCD2BN) 7

1B BCD to binary conversion
(BCD2BN)

Converts one byte of BCD data to one byte of binary data.

Procedure The program masks off the more significant digit and
multiplies it by 10 using shifts. Note that 10 = 8 + 2, and multiplying by
8 or by 2 is equivalent to one or three right shifts, respectively, of the
more significant digit. The program then adds the product to the less
significant digit.

Entry conditions

BCD data in A

Exit conditions

Binary datain A

Examples

1. Data: (A) = 9%.
Result: (A) = 6316 = 9910

2. Data: (A) = 2316
Result: (A) = 1716 = 2310

Registers used A,B, CC

Executiontime 46 cycles

Program size 18 bytes

8 Assembly language subroutines for the 6809

Data memory required 1 stack byte

Title: BCD to Binary Conversion

Name: BCD2BN

Purpose: Converts one byte of BCD data to two

bytes of binary data

e+ + + + + + HF FF HF HF HF HF HH HF HF HF HF HF HF HF HF HF HF F

Entry: Register A = BCD data

Exit: Register A = Binary data

Registers Used: A,B,CC

Time: 46 cycles

Size: Program 18 bytes

Data 1 byte on stack

BCD2BN:
*

*SHIFT UPPER DIGIT RIGHT TO MULTIPLY IT BY 8
*

TFR A,B SAVE ORIGINAL BCD VALUE IN B
ANDA #$FO MASK OFF UPPER DIGIT
LSRA SHIFT RIGHT 1 BIT

STA 78 SAVE UPPER DIGIT TIMES 8 ON STACK
*

*ADD UPPER DIGIT TIMES 8 TO LOWER DIGIT
*

ANDB #S0F MASK OFF LOWER DIGIT

ADDB pot ADD LOWER DIGIT TO STACK VALUE
STB 7798 SAVE SUM ON STACK
*

*SHIFT UPPER DIGIT TIMES 8 RIGHT TWICE
*THE RESULT IS UPPER DIGIT TIMES 2
*

LSRA MULTIPLY HIGH DIGIT BY 2
LSRA
*

*UPPER DIGIT * 10 = UPPER DIGIT * 8 + UPPER DIGIT * 2
*

ADDA pot ADD STACK VALUE TO TWICE HIGH DIGIT
RTS

+

* SAMPLE EXECUTION

1B BCDto binary conversion (BCD2BN)

SC1B:

*CONVERT O BCD TO O HEXADECIMAL

LDA #0

JSR BCD2BN A = 00

*CONVERT 99 BCD TO 63 HEXADECIMAL

LDA #$99
JSR BCD2BN A = 63H

*CONVERT 23 BCD TO 17 HEXADECIMAL

LDA #$23

JSR BCD2BN A = 17H

END

10 Assembly language subroutines for the 6809

1C Binary to hexadecimal ASCII conversion
(BN2HEX)

Converts one byte of binary data to two ASCII characters correspond-
ing to the two hexadecimal digits.

Procedure The program masks off each hexadecimal digit separately
and converts it to its ASCII equivalent. This involves a simple addition
of 30i6 if the digit is decimal. If the digit is non-decimal, we must add an

extra 7 to bridge the gap between ASCII 9 (3916) and ASCII A (4116).

Entry conditions

Binary datain A

Exit conditions

ASCII version of more significant hexadecimal digit in A
ASCII version of less significant hexadecimal digit in B

Examples

1. Data: (A)=FBie6
Result: (A) = 4616 (ASCII F)

(B) = 4216 (ASCII B)

2. Data: (A) =594¢6
Result: (A) = 3516 (ASCII 5)

(B) = 3946 (ASCII 9)

Registers used A,B, CC

Execution time 37 cycles plus 2 extra cycles for each non-decimal
digit

+ +e +e ee He HF He HF HH HF HF HF HF HF HF HF HF HF HF HF FF F HF OF

1C Binary to hexadecimal ASCII conversion (BN2HEX) 11

Program size 27 bytes

Data memory required None

Title: Binary to Hex ASCII
Name: BN2HEX

Purpose: Converts one byte of binary data to two
ASCII characters

Entry: Register A = Binary data

Exit: Register A = ASCII more significant digit

Register B = ASCII less significant digit

Registers Used: A,B,CC

Time: Approximately 37 cycles

Size: Program 27 bytes

Data None

BN2HEX:
*

*CONVERT MORE SIGNIFICANT DIGIT TO ASCII
*

TFR A,B SAVE ORIGINAL BINARY VALUE

LSRA MOVE HIGH DIGIT TO LOW DIGIT

LSRA

LSRA

LSRA
CMPA #9

BLS AD30 BRANCH IF HIGH DIGIT IS DECIMAL

ADDA #7 ELSE ADD 7 SO AFTER ADDING 'O' THE

* CHARACTER WILL BE IN ‘'A'..'F'

AD30: ADDA #'0 ADD ASCII O TO MAKE A CHARACTER
*

*CONVERT LESS SIGNIFICANT DIGIT TO ASCII
*

ANDB #3$0F MASK OFF LOW DIGIT
CMPB #9

BLS AD3OLD BRANCH IF LOW DIGIT IS DECIMAL

ADDB #7 ELSE ADD 7 SO AFTER ADDING 'O! THE

* CHARACTER WILL BE IN '‘A'..'F!

AD30LD: ADDB #'0 ADD ASCII O TO MAKE A CHARACTER

RTS

12

+ + + + &

SC1C:

Assembly language subroutines for the 6809

SAMPLE EXECUTION

*CONVERT O TO ASCII 'O0'

LDA #0

JSR BN2HEX *A='0'=30H, B='0'=30H

*CONVERT FF HEXADECIMAL TO ASCII 'FF!

LDA #$ FF
JSR BN2HEX *A='F'=46H, B='F'=46H

*CONVERT 23 HEXADECIMAL TO ASCII '23'
LDA #$23

JSR BN2HEX *A='2'=32H, B='3'=33H

END

1D Hexadecimal ASCII to binary conversion (HEX2BN) 13

1D Hexadecimal ASCII to binary conversion
(HEX2BN)

Converts two ASCII characters (representing two hexadecimal digits) to
one byte of binary data.

Procedure The program converts each ASCII character separately to a
hexadecimal digit. This involves a simple subtraction of 3015 (ASCII 0) if
the digit is decimal. If the digit is non-decimal, the program must subtract
another 7 to account for the gap between ASCII 9 (3916) and ASCII A
(4116). The program then shifts the more significant digit left four bit
positions and combines it with the less significant digit. The program does
not check the validity of the ASCII characters (i.e. whether they are
indeed the ASCII representations of hexadecimal digits).

Entry conditions

More significant ASCII digit in A, less significant ASCII digit in B

Exit conditions

Binary datain A

Examples

1. Data: (A) = 4446 (ASCII D)
(B) = 3716 (ASCII 7)

Result: (A) = D7i6

2. Data: (A) = 3116 (ASCII 1)
(B) = 4216 (ASCII B)

Result: (A) = 1Bi¢

Registers used A,B, CC

Execution time 39 cycles plus 2 extra cycles for each non-decimal digit

14

+e + + +e Fe + HF HF HE HF HF HF HE HF HF HF HF HF HF HF HF HK

*

*

*

Assembly language subroutines for the 6809

Program size 25 bytes

Data memory required 1 stack byte

Title:

Name:

Purpose:

Entry:

Exit:

Registers Used:

Time:

Size:

Hex ASCII to Binary

HEX2BN

Converts two ASCII characters to one

byte of binary data

ASCII more significant digit
ASCII less significant digit

Register A

Register B

Register A = Binary data

A,B,CC

Approximately 39 cycles

Program 25 bytes

Data 1 byte on stack

CONVERT MORE SIGNIFICANT DIGIT TO BINARY

HEX2BN:

SUBA
CMPA
BLS
SUBA

SHFTMS: LSLA

+ +

*

*

*

LSLA
LSLA
LSLA

#'0
#9

SUBTRACT ASCII OFFSET CASCII 0)
CHECK IF DIGIT DECIMAL

SHFTMS BRANCH IF DECIMAL
#7 ELSE SUBTRACT OFFSET FOR LETTERS

SHIFT DIGIT TO MORE SIGNIFICANT BITS

CONVERT LESS SIGNIFICANT DIGIT TO BINARY

SUBB
CMPB
BLS

SUBB

#'0
#9

SUBTRACT ASCII OFFSET (ASCII 0)
CHECK IF DIGIT DECIMAL

CMBDIG BRANCH IF DECIMAL
#7 ELSE SUBTRACT OFFSET FOR LETTERS

COMBINE LESS SIGNIFICANT, MORE SIGNIFICANT DIGITS

CMBDIG:

STB ,78 SAVE LESS SIGNIFICANT DIGIT IN STACK

1D Hexadecimal ASCII to binary conversion (HEX2BN)

ADDA pot ADD DIGITS

RTS
*
*

* SAMPLE EXECUTION
*
*

S$C1D:

*CONVERT ASCII 'C7' TO C7? HEXADECIMAL

LDA #'C

LDB #'7

JSR HEX2BN A=C7H

*CONVERT ASCII '2F' TO 2F HEXADECIMAL
LDA #'2
LDB #'F

JSR HEX2BN A=2FH

*CONVERT ASCII '2A' TO 2A HEXADECIMAL
LDA #'2
LDB #'A

JSR HEX2BN A=2AH

END

16 Assembly language subroutines for the 6809

1E Conversion of a binary number to decimal ASCII
(BN2DEC)

Converts a 16-bit signed binary number into an ASCII string. The string
consists of the length of the number in bytes, an ASCII minus sign (if
needed), and the ASCII digit. Note that the length is a binary number,
not an ASCII number.

Procedure The program takes the absolute value of the number if it is
negative. The program then keeps dividing the absolute value by 10
until the quotient becomes 0. It converts each digit of the quotient to
ASCII by adding ASCII 0 and concatenates the digits along with an
ASCII minus sign (in front) if the original number was negative.

Entry conditions

Base address of output buffer in X
Value to convert in D (between —32 767 and +32 767)

Exit conditions

Order in buffer:

Length of the string in bytes (a binary number)
ASCII — (if original number was negative)
ASCII digits (most significant digit first)

oO

Examples

1. Data: Value to convert = 3EB7i¢

Result (in output buffer):
05 (number of bytes in buffer)
31 (ASCII 1)
36 (ASCII 6)
30 (ASCII 0)
35 (ASCII 5)
35 (ASCII 5)
1.e. 3EB71¢6 = 16 05510

2. Data: Value to convert = FFC81¢

+ + + + + + He + HF HF HF HF HF HF HF HF HF HF HF HF HF + HF HF HF HF HF HH HK FF

1E Conversion of a binary number to decimal ASCII (BN2DEC) 17

Result (in output buffer):
03 (number of bytes in buffer)
2D (ASCII —)
35 (ASCII 5)
36 (ASCII 6)
1.e. FFC81¢ = —5619, when considered

as a signed two’s complement number

Registers used _ All

Execution time Approximately 1000 cycles

Program size 99 bytes

Data memory required 1 stack byte for each digit in the string. This
does not include the output buffer, which should be 7 bytes long.

Title:

Name:

Purpose:

Entry:

Exit:

Registers Used:

Time:

Size:

Binary to Decimal ASCII
BN2DEC

Converts a 16-bit signed binary number
to ASCII data

Value to convert

Output buffer address

Register D

Register X

The first byte of the buffer is the

Length, followed by the characters

Approximately 1000 cycles

Program 99 bytes

Data up to 5 bytes on stack

SAVE ORIGINAL DATA IN BUFFER

TAKE ABSOLUTE VALUE IF DATA NEGATIVE

18

BN2DEC:

IV10:

THOUSD:

+

HUNDD:

+

TENSD:

+

ONESD:

Assembly language subroutines for the 6809

STD 1,X SAVE DATA IN BUFFER
BPL CNVERT BRANCH IF DATA POSITIVE

LDD #0 ELSE TAKE ABSOLUTE VALUE

SUBD 1,X

INITIALIZE STRING LENGTH TO ZERO

CLR 7X STRING LENGTH = ZERO

DIVIDE BINARY DATA BY 10 BY SUBTRACTING POWERS

OF TEN

LDY #-1000 START QUOTIENT AT -1000

FIND NUMBER OF THOUSANDS IN QUOTIENT

LEAY 1000,Y ADD 1000 TO QUOTIENT
SUBD #10000 SUBTRACT 10000 FROM DIVIDEND
BCC THOUSD BRANCH IF DIFFERENCE STILL POSITIVE

ADDD #10000 ELSE ADD BACK LAST 10000

FIND NUMBER OF HUNDREDS IN QUOTIENT

LEAY -100,Y START NUMBER OF HUNDREDS AT -1

LEAY 100,Y ADD 100 TO QUOTIENT
SUBD #1000 SUBTRACT 1000 FROM DIVIDEND
BCC HUNDD BRANCH IF DIFFERENCE STILL POSITIVE

ADDD #1000 ELSE ADD BACK LAST 1000

FIND NUMBER OF TENS IN QUOTIENT

LEAY -10,Y START NUMBER OF TENS AT -1

LEAY 10,Y ADD 10 TO QUOTIENT
SUBD #100 SUBTRACT 100 FROM DIVIDEND

BCC TENSD BRANCH IF DIFFERENCE STILL POSITIVE
ADDD #100 ELSE ADD BACK LAST 100

FIND NUMBER OF ONES IN QUOTIENT

LEAY -1,Y START NUMBER OF ONES AT -1

LEAY 1,Y ADD 1 TO QUOTIENT

SUBD #10 SUBTRACT 10 FROM DIVIDEND

BCC ONESD BRANCH IF DIFFERENCE STILL POSITIVE
ADDD #10 ELSE ADD BACK LAST 10
STB ,7s SAVE REMAINDER IN STACK

*THIS IS NEXT DIGIT, MOVING LEFT

*LEAST SIGNIFICANT DIGIT GOES INTO STACK
* FIRST

INC 7X ADD 1 TO LENGTH BYTE

+ + +

+ + + SF

BUFLOAD:

+ +£ + H

SC1E:

BUFFER:

1E Conversion of a binary number to decimal ASCII (BN2DEC) 19

TFR Y,D MAKE QUOTIENT INTO NEW DIVIDEND
CMPD #0 CHECK IF DIVIDEND ZERO

BNE DIV10 BRANCH IF NOT - DIVIDE BY 10 AGAIN

CHECK IF ORIGINAL BINARY DATA WAS NEGATIVE
IF SO, PUT ASCII - AT FRONT OF BUFFER

LDA ,Xt+ GET LENGTH BYTE (NOT INCLUDING SIGN)
LDB 7X GET HIGH BYTE OF DATA

BPL BUFLOAD BRANCH IF DATA POSITIVE

LDB #'- OTHERWISE, GET ASCII MINUS SIGN
STB 7X+ STORE MINUS SIGN IN BUFFER

INC -2,X ADD 1 TO LENGTH BYTE FOR SIGN

MOVE STRING OF DIGITS FROM STACK TO BUFFER
MOST SIGNIFICANT DIGIT IS AT TOP OF STACK
CONVERT DIGITS TO ASCII BY ADDING ASCII O

LDB pot GET NEXT DIGIT FROM STACK, MOVING RIGHT
ADDB #'0 CONVERT DIGIT TO ASCII
STB ,X+ SAVE DIGIT IN BUFFER
DECA DECREMENT BYTE COUNTER
BNE BUFLOAD LOOP IF MORE BYTES LEFT
RTS

SAMPLE EXECUTION

*CONVERT O TO ASCII 'O'
LDD #0 D=0

LDX #BUFFER X=BASE ADDRESS OF BUFFER
JSR BN2DEC CONVERT

* BUFFER SHOULD CONTAIN
* BINARY 1 (LENGTH)
* ASCII O (STRING)

*CONVERT 32767 TO ASCII '32767'

LDD #32767 D=32767

LDX #BUFFER X=BASE ADDRESS OF BUFFER
JSR BN2DEC CONVERT

* BUFFER SHOULD CONTAIN
* BINARY 5 (LENGTH)

* ASCII 32767 (STRING)
*CONVERT -32767 TO ASCII '-32767'

LDD #-32767 =-32767

LDX #BUFFER X=BASE ADDRESS OF BUFFER
JSR BN2DEC CONVERT

* BUFFER SHOULD CONTAIN
* BINARY 6 (LENGTH)
* ASCII - (SIGN)
* ASCII 32767 (STRING)

RMB 7 7-BYTE BUFFER
END

20 Assembly language subroutines for the 6809

1F Conversion of ASCII decimal to binary
(DEC2BN)

Converts an ASCII string consisting of the length of the number (in
bytes), a possible ASCII + or — sign, and a series of ASCII digits to two
bytes of binary data. Note that the length is an ordinary binary number,
not an ASCII number.

Procedure The program checks if the first byte is a sign and skips over
it if it is. The program then uses the length of the string to determine the
leftmost digit position. Moving left to right, it converts each digit to
decimal (by subtracting ASCII 0), validates it, multiplies it by the
corresponding power of 10, and adds the product to the running total.
Finally, the program subtracts the binary value from zero if the string
started with a minus sign. The program exits immediately, setting the
Carry flag, if it finds something other than a leading sign or a decimal
digit in the string.

Entry conditions

Base address of string in X

Exit conditions

Binary value in D
The Carry flag is 0 if the string was valid; the Carry flag is 1 if the string
contained an invalid character.
Note that the result is a signed two’s complement 16-bit number.

Examples

1. Data: String consists of
04 (number of bytes in string)
31 (ASCII 1)
32 (ASCII 2)
33 (ASCII 3)
34 (ASCII 4)
i.e. the number is + 123416

Result: (D) = 04D21¢ (binary data)

+ + FF Fe Oe OF

IF Conversion of ASCII decimal to binary (DEC2BN) 21

1.€. +1234: = 04D216

2. Data: String consists of

06 (number of bytes in string)
2D (ASCII —)
33 (ASCII 3)
32 (ASCII 2)
37 (ASCII 7)
35 (ASCII 5)
30 (ASCII 0)

i.e. the number is —32 7504)

Result: (D) = 801646 (binary data)
le. —32 75010 = 8012146

eee

Registers used A,B,CC, X,Y

Execution time Approximately 60 cycles per ASCII digit plus a
maximum of 125 cycles overhead

Program size 154 bytes

Data memory required 2 stack bytes

Special cases

1. If the string contains something other than a leading sign or a
decimal digit, the program returns with the Carry flag set to 1. The
result in D is invalid.

2. Ifthe string contains only a leading sign (ASCII + or ASCII —), the
program returns with the Carry flag set to 1 and a result of 0.

Title: Decimal ASCII to Binary
Name: DEC2BN

Assembly language subroutines for the 6809

Purpose: Converts ASCII characters to two bytes

of binary data

*

*
*

* Entry: Register X = Input buffer address
*

* Exit: Register D = Binary data

x If no errors then

* Carry = 0

* else

* Carry = 1
*

* Registers Used: ALL
*

* Time: Approximately 60 cycles per ASCII digit

* plus a maximum of 125 cycles overhead
*

* Size: Program 154 bytes
* Data 2 bytes on stack
*

*

*

* SAVE BUFFER POINTER, INITIALIZE BINARY VALUE TO ZERO

*

DEC2BN:

TFR X,Y SAVE BUFFER POINTER TO EXAMINE SIGN LATER

LDD #0 INITIALIZE BINARY VALUE TO ZERO

PSHS D SAVE BINARY VALUE ON STACK

LDA eX+ GET BYTE COUNT

*

* CHECK IF FIRST BYTE OF ACTUAL STRING IS SIGN

*

LDB 2Xt+ GET FIRST BYTE OF ACTUAL STRING

CMPB #'- CHECK IF IT IS ASCII -

BEQ STMSD BRANCH IF IT IS

CMPB ot CHECK IF IT IS ASCII +

BEQ STMSD BRANCH IF IT IS

*

* FIRST BYTE IS NOT A SIGN

* SET A FLAG, MOVE POINTER BACK TO START AT FIRST DIGIT

* INCREASE BYTE COUNT BY 1 SINCE NO SIGN INCLUDED

*

CLR -2,K INDICATE NO SIGN IN BUFFER

LEAX -1,X MOVE POINTER BACK TO FIRST DIGIT

INCA ADD 1 TO BYTE COUNT

*

* START CONVERSION AT MOST SIGNIFICANT DIGIT IN BUFFER

* COULD BE UP TO SIX BYTES INCLUDING SIGN

*

STMSD:

CMPA #6 LOOK FOR 10000'S DIGIT

BEQ TENKD BRANCH IF FOUND
CMPA #5 LOOK FOR 1000'S DIGIT

BEQ ONEKD BRANCH IF FOUND
CMPA #4 LOOK FOR 100'S DIGIT
BEQ HUNDD BRANCH IF FOUND
CMPA #3 LOOK FOR TENS DIGIT

ENKD:

+ + & HE FH

ONEKD:

HUNDD:

TENSD:

1F Conversion of ASCII decimal to binary (DEC2BN) 23

BEQ TENSD BRANCH IF FOUND

CMPA #2 LOOK FOR ONES DIGIT
BEQ ONESD BRANCH IF FOUND

BRA ERREXIT NO DIGITS, INDICATE ERROR

CONVERT 10000'S DIGIT TO BINARY
10000 = 40*250

NOTE: MUL CANNOT MULTIPLY BY MORE THAN 255

LDB Xt GET 10000'S ASCII DIGIT

JSR CHVALD CONVERT TO BINARY, CHECK VALIDITY
CMPB #3 CHECK IF DIGIT TOO LARGE

BHI ERREXIT TAKE ERROR EXIT IF IT IS

LDA #40 MULTIPLY BY 10000 IN TWO STEPS
MUL FIRST MULTIPLY BY 40
LDA #250 THEN MULTIPLY BY 250
MUL

ADDD a) ADD PRODUCT TO BINARY VALUE
STD 7s SAVE SUM ON STACK

CONVERT 1000'S DIGIT TO BINARY
1000 = 4*250

NOTE: MUL CANNOT MULTIPLY BY MORE THAN 255

LDB Xt GET 1000'S ASCII DIGIT

JSR CHVALD CONVERT TO BINARY, CHECK VALIDITY
LDA #4 MULTIPLY BY 1000 IN TWO STEPS
MUL FIRST MULTIPLY BY 4

LDA #250 THEN MULTIPLY BY 250
MUL

ADDD a) ADD PRODUCT TO BINARY VALUE
STD a) SAVE SUM ON STACK

CONVERT 100'°S DIGIT TO BINARY

LDB Xt GET 100'S ASCII DIGIT

JSR CHVALD CONVERT TO BINARY, CHECK VALIDITY
LDA #100 MULTIPLY BY 100
MUL

ADDD a) ADD PRODUCT TO BINARY VALUE
STD 79 SAVE SUM ON STACK

CONVERT TENS DIGIT TO BINARY

LDB Xt GET 10'S ASCII DIGIT

JSR CHVALD CONVERT TO BINARY, CHECK VALIDITY
LDA #10 MULTIPLY BY 10
MUL !

ADDD a) ADD PRODUCT TO BINARY VALUE
STD 79 SAVE SUM ON STACK

CONVERT ONES DIGIT TO BINARY

24 Assembly language subroutines for the 6809

ONESD:

LDB Xt GET ONES ASCII DIGIT

JSR CHVALD CONVERT TO BINARY, CHECK VALIDITY
CLRA EXTEND TO 16 BITS

ADDD 78 ADD DIGIT TO BINARY VALUE
STD) SAVE SUM ON STACK

*

* CHECK FOR MINUS SIGN
*

LDB 7Y CHECK IF THERE WAS A SIGN BYTE
BEQ VALEXIT BRANCH IF NO SIGN

LDB 1,Y GET SIGN BYTE

CMPB #'- CHECK IF IT IS ASCII -
BNE VALEXIT BRANCH IF IT ISN'T

*

* NEGATIVE NUMBER, SO SUBTRACT VALUE FROM ZERO
*

LDD #0 SUBTRACT VALUE FROM ZERO
SUBD 79

STD a) SAVE NEGATIVE AS VALUE
*

* EXIT WITH BINARY VALUE IN D
*

VALEXIT:

PULS D RETURN TOTAL IN D

CLC CLEAR CARRY, INDICATING NO ERRORS
RTS

*

* ERROR EXIT - SET CARRY FLAG TO RETURN ERROR CONDITION
*

ERREXIT:

PULS D RETURN TOTAL IN D

SEC SET CARRY TO INDICATE ERROR
RTS

RHI III III III III III IIIT III KKK KERR RRA KAI IAAI AREER ERE KKK

*ROUTINE: CHVALD

*PURPOSE: CONVERTS ASCII TO DECIMAL, CHECKS VALIDITY OF DIGITS
*ENTRY: ASCII DIGIT IN B

*EXIT: DECIMAL DIGIT IN B, EXITS TO ERREXIT IF DIGIT INVALID
*REGISTERS USED: B,CC
FI III II III IIIT III III HII IKEA ERE RRR EKR RIKER ERA ERERERAKRK KK KEK

CHVALD: SUBB #'0 CONVERT TO DECIMAL BY SUBTRACTING

BCS EREXIT BRANCH IF ERROR (VALUE TOO SMALL)
CMPB #9 CHECK IF RESULT IS DECIMAL DIGIT

BHI EREXIT BRANCH IF ERROR (VALUE TOO LARGE)
RTS RETURN DECIMAL DIGIT IN B

EREXIT: LEAS 2,8 REMOVE RETURN ADDRESS FROM STACK
BRA ERREXIT LEAVE VIA ERROR EXIT

SAMPLE EXECUTION

+ + + +

ASCII 0

SC1F:

$1:

Se:

$3:

1F Conversion of ASCII decimal to binary (DEC2BN) 25

*CONVERT ASCII
LDX
JSR

*CONVERT ASCII
LDX
JSR

*CONVERT ASCII
LDX
JSR

FCB
FCC

FCB
FCC
FCB
FCC
END

"1234" TO 04D2 HEX
#S$1 X=BASE ADDRESS OF $1
DEC2BN D=04D2 HEX

'+32767' TO 7FFF HEX
#S2 X=BASE ADDRESS OF S2
DEC2BN D=7FFF HEX

'-32768' TO 8000 HEX

#83 X=BASE ADDRESS OF $3
DEC2BN D=8000 HEX

4

11234/
6
1+32767/
6
/-32768/

Array manipulation
and indexing

2A Memory fill
(MFILL)

Places a specified value in each byte of a memory area of known size,
starting at a given address.

Procedure The program simply fills the memory area with the value
one byte at a time.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Value to be placed in memory

More significant byte of area size (in bytes)
Less significant byte of area size (in bytes)

More significant byte of base address
Less significant byte of base address

26

ZA Memory fill (MFILL) 27

Exit conditions

The area from the base address through the number of bytes given by
the area size is filled with the specified value. The area thus filled starts
at BASE and continues through BASE+SIZE—1 (BASE is the base
address and SIZE is the area size in bytes).

Examples

1. Data: Value = FFi¢

Area size (in bytes) = 038016
Base address = 1AE04¢

Result: FFy6 placed in addresses 1AE016— 1E5F1¢

2. Data: Value = 12). (6809 operation code for NOP)
Area size (in bytes) = 1C654¢
Base address = E34Ci¢

Result 1216 placed in addresses E34C,¢ — FFB01¢

Registers used A,CC, X,Y

Execution time 14 cycles per byte plus 38 cycles overhead

Program size 18 bytes

Data memory required None

Special cases

1. A size of 0000,6 is interpreted as 10000,.. It therefore causes the
program to fill 65 536 bytes with the specified value.

2. Filling areas occupied or used by the program itself will cause
unpredictable results. Obviously, filling the stack area requires special
caution, since the return address is saved there.

Assembly language subroutines for the 6809

Title: Memory Fill

Name: MFILL

Purpose: Fills an area of memory with a value

Entry: TOP OF STACK

High byte of return address

Low byte of return address

Value to be placed in memory

High byte of area size in bytes

Low byte of area size in bytes

High byte of base address

Low byte of base address

Exit: Area filled with value

Registers Used: A,CC,U,X

Time: 14 cycles per byte plus 38 cycles overhead

Size: Program 18 bytes

OBTAIN PARAMETERS FROM STACK

FILL:
PULS Y SAVE RETURN ADDRESS IN Y
PULS A GET BYTE TO FILL WITH

LDX 2,8 GET BASE ADDRESS
STY 2,8 PUT RETURN ADDRESS BACK IN STACK

PULS Y GET AREA SIZE
*

x FILL MEMORY ONE BYTE AT A TIME
*

FILLB:

+ +¢ + +

SC2A:

STA 7X+ FILL ONE BYTE WITH VALUE

LEAY -1,Y DECREMENT BYTE COUNTER

BNE FILLB CONTINUE UNTIL COUNTER = O

RTS

SAMPLE EXECUTION

*

*FILL BF1 THROUGH BF1+15 WITH 00

2A Memory fill (MFILL) 29

*®

LDY #BF1 BASE ADDRESS
LDX #S1ZE1 NUMBER OF BYTES

LDA #0 VALUE TO FILL WITH
PSHS A,X,Y PUSH PARAMETERS

JSR MFILL FILL MEMORY
*

*FILL BF2 THROUGH BF2+1999 WITH 12 HEX (NOP'S OPCODE)
*

LDY #BF2 BASE ADDRESS

LDX #SIZE2 NUMBER OF BYTES
LDA #$12 VALUE TO FILL WITH
PSHS A,X,Y PUSH PARAMETERS
JSR MFILL FILL MEMORY

SIZE1 EQU 16 SIZE OF BUFFER 1 (10 HEX)

SIZE2 EQU 2000 SIZE OF BUFFER 2 (07D0 HEX)
BF1: RMB SIZE1 BUFFER 1
BF2: RMB SIZE2 BUFFER 2

END

30 Assembly language subroutines forthe 6809

2B Block move
(BLKMOV)

Moves a block of data from a source area to a destination area.

Procedure The program determines if the base address of the desti-
nation area is within the source area. If it is, then working up from the
base address would overwrite some source data. To avoid this, the

program works down from the highest address (sometimes called a
move right). Otherwise, the program simply moves the data starting
from the lowest address (sometimes called a move left). An area size
(number of bytes to move) of 0000;6 causes an exit with no memory

changed. The program provides automatic address wraparound mod
64K.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

More significant byte of number of bytes to move
Less significant byte of number of bytes to move

More significant byte of base address of destination area
Less significant byte of base address of destination area

More significant byte of base address of source area
Less significant byte of base address of source area

Exit conditions

The block of memory is moved from the source area to the destination
area. If the number of bytes to be moved is NBYTES, the base address
of the destination area is DEST, and the base address of the source area

is SOURCE, then the data in addresses SOURCE through SOURCE +
NBYTES — 1 is moved to addresses DEST through DEST + NBYTES
— 1.

2B Block move (BLKMOV) 31

Examples

1. Data: Number of bytes to move = 02004¢

Base address of destination area = 05D14¢

Base address of source area = 035Ei¢
Result: The contents of locations 035E;.-055Di¢ are moved to

05D 116 —O7D04¢.

2. Data: Number of bytes to move = 1B7Aj¢
Base address of destination area = C9464.

Base address of source area = C3001,
Result: The contents of locations C300; — DE791¢ are moved to

C946,6«-E4BF 16-

Note that Example 2 presents a more difficult problem than Example 1
because the source and destination areas overlap. If, for instance, the
program simply moved data to the destination area starting from the
lowest address, it would initially move the contents of C300,¢ to C946i6.
This would destroy the old contents of C946,¢, which are needed later in
the move. The solution to this problem is to move the data starting from
the highest address if the destination area is above the source area but
overlaps it.

Registers used All

Execution time 20 cycles per byte plus 59 cycles overhead if data can
be moved starting from the lowest address (i.e. left); 95 cycles overhead
if data must be moved starting from the highest address (i.e. right)
because of overlap.

Program size 55 bytes

Data memory required None

Special cases

1. A size (number of bytes to move) of 0 causes an immediate exit with
no memory changed.

32

wort € +e € + + HF + HF + HF He HF HF HF HF He HH HF He HH FF HK HF HF HF HF HF FE HF HF HF OF HF SH HF HF HF FF

+ + + + HF HF

Assembly language subroutines for the 6809

2. Moving data to areas occupied or used by the program itself or by
the stack will have unpredictable results.

Title: Block Move
Name: BLKMOV

Purpose: Move data from source to destination

Entry: TOP OF STACK

High byte of return address

Low byte of return address

High byte of number of bytes to move

Low byte of number of bytes to move

High byte of base address of

destination area

Low byte of base address of

destination area

High byte of base address of source
area

Low byte of base address of source
area

Exit: Data moved from source to destination

Registers Used: ALL

Time: 20 cycles per byte

Overhead is: 59 cycles if no problem with

overlap, 95 cycles if overlap

Size: Program 55 bytes

EXIT IMMEDIATELY IF AREA SIZE IS 0

LKMOV:

LDD 2,8 GET AREA SIZE

BEQ BLKEXIT RETURN IMMEDIATELY IF SIZE IS ZERO

DETERMINE IF DESTINATION AREA IS ABOVE SOURCE AREA AND
OVERLAPS IT (OVERLAP CAN BE MOD 64K). OVERLAP OCCURS
IF BASE ADDRESS OF DESTINATION AREA MINUS BASE ADDRESS
OF SOURCE AREA (MOD 64K) IS LESS THAN NUMBER OF BYTES
TO MOVE

LDD 4,8 GET BASE ADDRESS OF DESTINATION
SUBD 6,8 SUBTRACT BASE ADDRESS OF SOURCE

*

*

*

MVLEFT:

BYTEL:

+ + +

MVRIGHT:

BYTER:

BLKEXIT:

+ + + +

SRC1
SRC2
DEST

LEN

SC2B:

++ +

2B Block move (BLKMOV) 33

CMPD 2,8 COMPARE DIFFERENCE TO AREA SIZE
BLO MVRIGHT BRANCH IF OVERLAP PROBLEM

NO OVERLAP SO MOVE BLOCK STARTING FROM LOWEST ADDRESS

PULS D,X,Y GET RETURN ADDRESS, SIZE, DESTINATION
LDU a) GET SOURCE ADDRESS

STD a) PUT RETURN ADDRESS BACK IN STACK

LDA ,Ut+ GET NEXT BYTE FROM SOURCE
STA 7Yt+ MOVE IT TO DESTINATION

LEAX -1,X DECREMENT BYTE COUNTER

BNE BYTEL CONTINUE UNTIL COUNTER = OQ
RTS

OVERLAP SO MOVE BLOCK STARTING FROM HIGHEST ADDRESS
TO AVOID DESTROYING DATA

LDD 4,8 GET BASE ADDRESS OF DESTINATION

ADDD 2,8 ADD LENGTH TO OBTAIN TOP ADDRESS

TFR D,Y SAVE TOP ADDRESS OF DESTINATION

LDD 6,S GET BASE ADDRESS OF SOURCE

ADDD 2,8 ADD LENGTH TO OBTAIN TOP ADDRESS

TFR D,U SAVE TOP ADDRESS OF SOURCE

PULS D,X GET RETURN ADDRESS, SIZE

LEAS 2,58 ADJUST STACK POINTER TO REMOVE EXTRA BYTES

STD 79 PUT RETURN ADDRESS BACK IN STACK

LDA ,7U GET NEXT BYTE FROM SOURCE

STA ,7Y MOVE IT TO DESTINATION

LEAX -1,X DECREMENT BYTE COUNTER

BNE BYTEL CONTINUE UNTIL COUNTER = 0

RTS

SAMPLE EXECUTION

EQU $1000 BASE ADDRESS OF FIRST SOURCE AREA

EQU $2008 BASE ADDRESS OF SECOND SOURCE AREA
EQU $2010 BASE ADDRESS OF DESTINATION AREA
EQU $11 NUMBER OF BYTES TO MOVE

MOVE 11 HEX BYTES FROM 1000-1010 HEX TO 2010-2020 HEX
DEMONSTRATES MOVE LEFT (LOWEST ADDRESS UP)

LDU #SRC1 BASE ADDRESS OF SOURCE AREA

LDY #DEST BASE ADDRESS OF DESTINATION AREA

LDX #LEN NUMBER OF BYTES TO MOVE

PSHS U,X,Y SAVE PARAMETERS IN STACK

34

+ + + + HF

Assembly language subroutines for the 6809

JSR BLKMOV MOVE DATA FROM SOURCE TO DESTINATION

MOVE 11 HEX BYTES FROM 2008-2018 HEX TO 2010-2020 HEX
DEMONSTRATES MOVE RIGHT CHIGHEST ADDRESS DOWN) SINCE
SOURCE AND DESTINATION AREAS OVERLAP AND DESTINATION
IS ABOVE SOURCE

LDU #SRC2 BASE ADDRESS OF SOURCE AREA

LDY #DEST BASE ADDRESS OF DESTINATION AREA
LDX #LEN NUMBER OF BYTES TO MOVE

PSHS U,X,Y SAVE PARAMETERS IN STACK

JSR BLKMOV MOVE DATA FROM SOURCE TO DESTINATION
END

2C Two-dimensional byte array indexing (D2BYTE) 35

2C Two-dimensional byte array indexing
(D2BYTE)

Calculates the address of an element of a two-dimensional byte-length
array, given the array’s base address, the element’s two subscripts, and
the size of a row (i.e. the number of columns). The array is assumed to
be stored in row major order (i.e. by rows), and both subscripts are
assumed to begin at 0.

Procedure The program multiplies the row size (number of columns
in a row) times the row subscript (since the elements are stored by rows)
and adds the product to the column subscript. It then adds the sum to
the base address.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

More significant byte of column subscript
Less significant byte of column subscript

More significant byte of the size of a row (in bytes)
Less significant byte of the size of a row (in bytes)

More significant byte of row subscript
Less significant byte of row subscript

More significant byte of base address of array
Less significant byte of base address of array

Exit conditions

Address of element in X

Examples

1. Data: Base address = 3C00i¢

Column subscript = 0004;¢

36

+ + + + & HF HS FH

Assembly language subroutines for the 6809

Size of row (number of columns) = 001816
Row subscript = 000316

Result: Element address = 3C00;¢6 + 000316 X 0018:6 + 0004;6 =

3C00i6 + 004816 + 000416 = 3C4Ci¢

i.e. the address of ARRA Y(3,4) is 3C4Cj¢.

2. Data: Base address = 6A4A4¢6

Column subscript = 003716
Size of row (number of columns) = 005046
Row subscript = 000216

Result Element address = 6A4Aj6 + 000216 X 005016 + 003716 =

6A4Ai6 + OOA0 16 + 003716 = 6B21146

i.e. the address of ARRAY(2,35) is 6B21 16.

Note that all subscripts are hexadecimal (e.g. 3716 = 5540).
The general formula is

ELEMENT ADDRESS = ARRAY BASE ADDRESS + ROW SUB-
SCRIPT xX ROW SIZE + COLUMN SUBSCRIPT

Note that we refer to the size of the row subscript; this is the number of
consecutive memory addresses for which the subscript has the same
value. It is also the distance in bytes from the address of an element to
the address of the element with the same column subscript but a row
subscript 1 larger.

Registers used CC, D, xX, Y

Execution time Approximately 785 cycles

Program size 36 bytes

Data memory required None

Title: Two-Dimensional Byte Array Indexing
Name: D2BYTE

Purpo

Exit:

Regis

Time:

Size:

MUL16:

LEFTSH:

2C Two-dimensional byte array indexing (D2BYTE) 37

se: Given the base address of a byte array,

two subscripts 'I' and 'J', and the size

of the first subscript in bytes, calculate

the address of ALI,J]. The array is assumed

to be stored in row major order (A{0,0],
ACO,1],...,ACK,L]), and both dimensions
are assumed to begin at zero as in the
following Pascal declaration:

A:ARRAYCO..2,0..7] OF BYTE;

TOP OF STACK

High byte of return address

Low byte of return address

High byte of second subscript (column element)
Low byte of second subscript (column element)
High byte of first subscript size, in bytes

Low byte of first subscript size, in bytes

High byte of first subscript (row element)

Low byte of first subscript (row element)

High byte of array base address

Low byte of array base address
NOTE:

The first subscript size is the length of
a row in bytes.

Register X = Element address

ters Used: CC,D,X,Y

Approximately 785 cycles

Program 36 bytes

*

*ELEMENT ADDRESS = ROW SIZE*ROW SUBSCRIPT + COLUMN
* SUBSCRIPT + BASE ADDRESS
*

LDD #0 START ELEMENT ADDRESS AT 0
LDY #16 SHIFT COUNTER = 16
*

*MULTIPLY ROW SUBSCRIPT * ROW SIZE USING SHIFT AND
* ADD ALGORITHM
*

LSR 4,8 SHIFT HIGH BYTE OF ROW SIZE
ROR 7S SHIFT LOW BYTE OF ROW SIZE

BCC LEFTSH JUMP IF NEXT BIT OF ROW SIZE IS 0
ADDD 6,S OTHERWISE, ADD SHIFTED ROW SUBSCRIPT

* TO ELEMENT ADDRESS

LSL 7,8 SHIFT LOW BYTE OF ROW SUBSCRIPT
ROL 6,S SHIFT HIGH BYTE PLUS CARRY

38

+ + &€ &

SC2c:

*

*DATA
*

SUBS1:

SSUBS1:

SUBS2:

ARY:

Assembly language subroutines for the 6809

LEAY -1,Y DECREMENT SHIFT COUNTER

BNE MUL16 LOOP 16 TIMES
*

*ADD COLUMN SUBSCRIPT TO ROW SUBSCRIPT * ROW SIZE
*

ADDD 2,8 ADD COLUMN SUBSCRIPT

ADDD 8,S ADD BASE ADDRESS OF ARRAY

TFR D,X EXIT WITH ELEMENT ADDRESS IN X
*

*REMOVE PARAMETERS FROM STACK AND EXIT
*

PULS D GET RETURN ADDRESS

LEAS 6,S REMOVE PARAMETERS FROM STACK

STD 79 PUT RETURN ADDRESS BACK IN STACK

RTS

SAMPLE EXECUTION

LDU #ARY BASE ADDRESS OF ARRAY

LDY SUBS1 FIRST SUBSCRIPT

LDX SSUBS1 SIZE OF FIRST SUBSCRIPT

LDD SUBS2 SECOND SUBSCRIPT

PSHS U,X,Y,D PUSH PARAMETERS

JSR D2BYTE CALCULATE ADDRESS

*FOR THE INITIAL TEST DATA

*X = ADDRESS OF ARY(2,4)

* ARY + (2%*8) + 4

* = ARY + 20 CCONTENTS ARE 21)

*NOTE BOTH SUBSCRIPTS START AT O

FDB 2 SUBSCRIPT 1

FDB 8 SIZE OF SUBSCRIPT 1 (NUMBER OF BYTES
* PER ROW)

FDB 4 SUBSCRIPT 2

*THE ARRAY (3 ROWS OF 8 COLUMNS)
FCB 1,2,3,4,5,6,7,8
FCB 9,10,11,12,13,14,15,16
FCB 17,18,19,20,21,22,23,24

END

2D Two-dimensional word array indexing (D2WORD) 39

2D Two-dimensional word array indexing
(D2WORD)

Calculates the address of an element of a two-dimensional word-length
(16-bit) array, given the array’s base address, the element’s two subs-
cripts, and the size of a row (i.e. the number of columns). The array is
assumed to be stored in row major order (i.e. by rows), and both
subscripts are assumed to begin at 0.

Procedure The program multiplies the row size (number of bytes in a
row) times the row subscript (since the elements are stored by rows),
adds the product to the doubled column subscript (doubled because
each element occupies 2 bytes), and adds the sum to the base address.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

More significant byte of column subscript
Less significant byte of column subscript

More significant byte of the size of a row (in bytes)
Less significant byte of the size of a row (in bytes)

More significant byte of row subscript
Less significant byte of row subscript

More significant byte of base address of array
Less significant byte of base address of array

Exit conditions

Base address of element in X
The element occupies the address in X and the next higher address

Examples

1. Data: Base address = 5E14i¢6
Column subscript = 000816

40 Assembly language subroutines for the 6809

Result:

2. Data:

Result:

Size of row (in bytes) = 001Cj¢ (i.e. each row has 00144
or 000E16 word-length elements)

Row subscript = 000516
Element base address = 5E14i6 + 000516 X 001Ci¢ +

000816 X 2 = 5E1446 + 008Ci¢ + 001016 = SEBO, 6

i.e. the base address of ARRAY(5,8) is 5EBOi. and the
element occupies addresses 5EB0,. and SEB1\¢.

Base address = B1001¢

Column subscript = 00021.

Size of row (in bytes) = 000816 (i.e. each row has four
word-length elements)
Row subscript = 00064¢

Element’s base address = B100;¢ + 000616 < 000816

+ 000216 X 2 = B100i6 + 003016 + 000446
= B134i6

i.e. the base address of ARRAY(6,2) is B134,6 and the
element occupies addresses B1341¢ and B1354¢.

The general formula is

ELEMENT’S BASE ADDRESS = ARRAY BASE ADDRESS +
ROW SUBSCRIPT xX ROW SIZE + COLUMN SUBSCRIPT x 2

Note that one parameter of this routine is the size of a row in bytes. The
size for word-length elements is the number of columns per row times 2
(the size of an element in bytes). The reason for choosing this parameter
rather than the number of columns or the maximum column index is
that it can be calculated once (when the array bounds are determined)
and used whenever the array is accessed. The alternative parameters
(number of columns or maximum column index) would require extra
calculations during each indexing operation.

Registers used CC,D, X, Y

Execution time Approximately 790 cycles

Program size 38 bytes

+ + + +e Fe He He HF HF HF HF HF HF HF HF HF KH HF HF HF HF HF HF HF HF FHF HF HF HF F FF FF HF FOF KF KF OF HF OF

2D Two-dimensional word array indexing (D2WORD) 41

Data memory required None

Title: Two-Dimensional Word Array Indexing
Name: D2WORD

Purpose: Given the base address of a word array,

two subscripts 'I' and 'J', and the size

of the first subscript in bytes, calculate

the address of ALI,J]. The array is assumed

to be stored in row major order (AC0,0],

ACO,11,...,ACK,L1), and both dimensions

are assumed to begin at zero as in the

following Pascal declaration:

A:ARRAYLO..2,0..7] OF WORD;

Entry: TOP OF STACK

High byte of return address

Low byte of return address

High byte of second subscript (column element)

Low byte of second subscript (column element)

High byte of first subscript size, in bytes

Low byte of first subscript size, in bytes

High byte of first subscript (row element)

Low byte of first subscript (row element)

High byte of array base address

Low byte of array base address

NOTE:

The first subscript size is the length of
a row in words * 2,

Exit: Register X = Element's base address

Registers Used: CC,D,X,Y

Time: Approximately 790 cycles

Size: Program 38 bytes

D2WORD:
*

*ELEMENT ADDRESS = ROW SIZE*ROW SUBSCRIPT + 2*COLUMN

* SUBSCRIPT + BASE ADDRESS
*

LDD #0 START ELEMENT ADDRESS AT Q

LDY #16 SHIFT COUNTER = 16
*

*MULTIPLY ROW SUBSCRIPT * ROW SIZE USING SHIFT AND
* ADD ALGORITHM
*

42 Assembly language subroutines for the 6809

MUL16:

LSR

ROR

BCC

ADDD

LEFTSH:
LSL

ROL

LEAY
BNE
*

*ADD
*

ADDD
ADDD
ADDD

TFR
*

4,8

5,8

LEFTSH
6,S

7,8
6,S
-1,Y
MUL16

SHIFT HIGH BYTE OF ROW SIZE
SHIFT LOW BYTE OF ROW SIZE

JUMP IF NEXT BIT OF ROW SIZE IS QO

OTHERWISE, ADD SHIFTED ROW SUBSCRIPT
* TO ELEMENT ADDRESS

SHIFT LOW BYTE OF ROW SUBSCRIPT

SHIFT HIGH BYTE PLUS CARRY
DECREMENT SHIFT COUNTER
LOOP 16 TIMES

COLUMN SUBSCRIPT TWICE TO ROW SUBSCRIPT * ROW SIZE

ADD COLUMN SUBSCRIPT
ADD COLUMN SUBSCRIPT AGAIN
ADD BASE ADDRESS OF ARRAY

EXIT WITH ELEMENT ADDRESS IN X

*REMOVE PARAMETERS FROM STACK AND EXIT
*

PULS
LEAS
STD

RTS

nm + + + + C2D:

LDU

LDY

LDX

LDD

PSHS

JSR

*

*DATA
*

SUBS1: FDB

SSUBS1: FDB

SUBS2: FDB

*THE ARRAY (3

ARY: FDB

FDB
FDB

END

SAMPLE EXECUTION

#ARY
SUBS1
SSUBS1
SUBS2
U,X,Y,D

D2WORD

2
16

4

GET RETURN ADDRESS

REMOVE PARAMETERS FROM STACK

PUT RETURN ADDRESS BACK ON STACK

BASE ADDRESS OF ARRAY

FIRST SUBSCRIPT

SIZE OF FIRST SUBSCRIPT

SECOND SUBSCRIPT

PUSH PARAMETERS

CALCULATE ADDRESS

*FOR THE INITIAL TEST DATA

*X = ADDRESS OF ARY(2,4)

* = ARY + (2%*16) + 4 * 2

* = ARY + 40 (CONTENTS ARE 2100H)

*NOTE BOTH SUBSCRIPTS START AT OQ

SUBSCRIPT 1

SIZE OF SUBSCRIPT 1 (NUMBER OF BYTES
* PER ROW)

SUBSCRIPT 2

ROWS OF 8 COLUMNS)

0100H,0200H,0300H,0400H,0500H,0600H,0700H,0800H
0900H,1000H,1100H,1200H,1300H,1400H,1500H,1600H
1700H,1800H,1900H,2000H,2100H,2200H,2300H,2400H

2E N-dimensional array indexing (NDIM) 43

2E N-dimensional array indexing
(NDIM)

Calculates the base address of an element of an N-dimensional array
given the array’s base address and N pairs of sizes and subscripts. The
size of a dimension is the number of bytes from the base address of an
element to the base address of the element with an index 1 larger in the
dimension but the same in all other dimensions. The array is assumed to
be stored in row major order (i.e. by rows), and both subscripts are
assumed to begin at 0.

Note that the size of the rightmost subscript is simply the size of an
element in bytes; the size of the next subscript is the size of an element
times the maximum value of the rightmost subscript plus 1, and so on.
All subscripts are assumed to begin at 0. Otherwise, the user must
normalize them (see the second example at the end of the listing).

Procedure The program loops on each dimension, calculating the
offset in it as the subscript times the size. After calculating the overall
offset, the program adds it to the array’s base address to obtain the
element’s base address.

Entry Conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

More significant byte of number of dimensions
Less significant byte of number of dimensions

More significant byte of size of rightmost dimension
Less significant byte of size of rightmost dimension

More significant byte of rightmost subscript
Less significant byte of rightmost subscript

More significant byte of size of leftmost dimension
Less significant byte of size of leftmost dimension

More significant byte of leftmost subscript

Assembly language subroutines for the 6809

Less significant byte of leftmost subscript

More significant byte of base address of array
Less significant byte of base address of array

Exit conditions

Base address of element in X
The element occupies memory addresses START through START +
SIZE — 1, where START is the calculated address and SIZE is the size
of an element in bytes.

Example

Data: Base address = 3C00i6

Number of dimensions = 000316

Rightmost subscript = 000516
Rightmost size = 000346 (3-byte entries)
Middle subscript = 000316
Middle size = 001216 (six 3-byte entries)
Leftmost subscript = 000416

Leftmost size = 007Ei¢ (seven sets of six 3-byte entries)
Result: Element base address = 3C00i¢ + 000516 < 000316 + 000316 x

0012;6 + 0004,6 K OO7Eig = 3C00i6 + OOOFi6 + 003616 +

O1F816 = 3ECD 46,

i.e. the element is ARRAY(4,3,5); it occupies addresses
3E3D 16 — 3E3Fi6. (The maximum values of the various subs-

cripts are 6 (leftmost) and 5 (middle), with each element
occupying 3 bytes.)

The general formula is

ELEMENT BASE ADDRESS = ARRAY BASE ADDRESS +

‘>, SUBSCRIPT; x SIZE,
where:

N is the number of dimensions

SUBSCRIPT; is the ith subscript
SIZE; is the size of the ith dimension

Note that we use the size of each dimension as a parameter to reduce the
number of repetitive multiplications and to generalize the procedure.

+ + + + + FE HF HF HF He HF HF HF HF HF HF HH HF FF HF HF HF HF

2E N-dimensional array indexing (NDIM) 45

The sizes can be calculated and saved as soon as the bounds of the array
are known. Those sizes can then be used whenever indexing is per-
formed on the array. Obviously, the sizes do not change if the bounds
are fixed, and they should not be recalculated as part of each indexing
operation. The sizes are also general, since the elements can themselves
consist of any number of bytes.

Registers used All

Execution time Approximately 720 cycles per dimension plus 67
cycles overhead

Program size 49 bytes

Data memory required None

Special case If the number of dimensions is 0, the program returns
with the base address in X.

Title: N-Dimensional Array Indexing
Name: NDIM

Purpose: Calculate the address of an element in an

N-dimensional array given the base address,

N pairs of size in bytes and subscripts, and

the number of dimensions of the array. The
array is assumed to be stored in row major

order (e.g., AL0,0,01,AL0,0,11,...,A00,1,0],

ACO,1,11,...). Also, it is assumed that all
dimensions begin at O as in the following
Pascal declaration:

A:ARRAYLO..10,0..3,0..5] OF SOMETHING

Entry: TOP OF STACK

High byte of return address

Low byte of return address

High byte of number of dimensions

46

+ +e + + & + + He HF HF HF HF HF FH HF HF HF HF HE HF FF HF HH HF FF HF HF

Assembly language subroutines for the 6809

Low byte of number of dimensions

High byte of dim N-1 size

Low byte of dim N-1 size

High byte of dim N-1 subscript

Low byte of dim N-1 subscript

High byte of dim N-2 size
Low byte of dim N-2 size

High byte of dim N-2 subscript

Low byte of dim N-2 subscript

High byte of array base address

Low byte of array base address

NOTE:

All sizes are in bytes.

Exit: Register X = Element's base address

Registers Used: ALL

Time: Approximately 720 cycles per dimension plus
67 cycles overhead

Size: Program 49 bytes

*

* EXIT IMMEDIATELY IF NUMBER OF DIMENSIONS IS ZERO
*

NDIM:
PULS U SAVE RETURN ADDRESS

LDX 2,8 GET BASE ADDRESS IF ZERO DIMENSIONS
LDY pott GET NUMBER OF DIMENSIONS

BEQ EXITNDIM BRANCH IF NUMBER OF DIMENSIONS IS ZERO
*

*ELEMENT ADDRESS = BASE ADDRESS + SIZECI)*SUBSCRIPT(I) FOR
* I = 0 TO N-1
*

LDD #0 START ELEMENT ADDRESS AT ZERO
x

*MULTIPLY ROW SUBSCRIPT * ROW SIZE USING SHIFT AND
* ADD ALGORITHM
*

NEXTDIM:

LDX #16 SHIFT COUNTER = 16
MUL16:

LSR 7S SHIFT HIGH BYTE OF ROW SIZE
ROR 1,8 SHIFT LOW BYTE OF ROW SIZE

BCC LEFTSH JUMP IF NEXT BIT OF ROW SIZE IS 0

ADDD 2,8 OTHERWISE, ADD SHIFTED ROW SUBSCRIPT
* TO ELEMENT ADDRESS

LEFTSH:

LSL 3,8 SHIFT LOW BYTE OF ROW SUBSCRIPT

EXITNDIM:

+ + + &

SC2E:

2E N-dimensional array indexing (NDIM) 47

ROL 2,8 SHIFT HIGH BYTE PLUS CARRY

LEAX -1,X DECREMENT SHIFT COUNTER
BNE MUL16 LOOP 16 TIMES
*

*MOVE STACK POINTER PAST FINISHED DIMENSION
*

LEAS 4,8 REMOVE SIZE, SUBSCRIPT FROM STACK
*

*CONTINUE IF MORE DIMENSIONS LEFT
*

LEAY -1,Y DECREMENT NUMBER OF DIMENSIONS
BNE NEXTDIM BRANCH IF ANY DIMENSIONS LEFT
*

*ADD TOTAL OFFSET TO BASE ADDRESS OF ARRAY
*

ADDD a) ADD BASE ADDRESS OF ARRAY
TFR D,X MOVE ELEMENT ADDRESS TO X

STU 79 PUT RETURN ADDRESS BACK IN STACK

RTS

SAMPLE EXECUTION

*

*CALCULATE ADDRESS OF AY1[£1,3,0]
*SINCE LOWER BOUNDS OF ARRAY 1 ARE ALL ZERO, IT IS

* NOT NECESSARY TO NORMALIZE THEM
*

LDU #AY1 BASE ADDRESS OF ARRAY

LDY #1 FIRST SUBSCRIPT

LDX A1SZ1 SIZE OF FIRST SUBSCRIPT

LDD #3 SECOND SUBSCRIPT

PSHS U,X,Y,D PUSH PARAMETERS

LDU #A1SZ2 SIZE OF SECOND SUBSCRIPT

LDY #0 THIRD SUBSCRIPT

LDX #A1S723 SIZE OF THIRD SUBSCRIPT

LDD #A1DIM NUMBER OF DIMENSIONS

PSHS U,X,Y,D PUSH PARAMETERS

JSR NDIM CALCULATE ADDRESS

*AY = STARTING ADDRESS OF ARY1(1,3,0)

* = ARY + (1%*126) + (3%21) + (0*3)
* = ARY+189

*

*CALCULATE ADDRESS OF AY2C~-1,6]
* SINCE LOWER BOUNDS OF ARRAY 2 DO NOT START AT QO, SUBSCRIPTS

* MUST BE NORMALIZED
*

LDX #AY2 BASE ADDRESS OF ARRAY
LDD #-4 GET UNNORMALIZED FIRST SUBSCRIPT
SUBD #A2D1L NORMALIZE FIRST SUBSCRIPT (SUBTRACT

* LOWER BOUND

48 Assembly language subroutines for the 6809

PSHS D,X PUSH PARAMETERS
LDX #A2S71 SIZE OF FIRST SUBSCRIPT

LDD #6 GET UNNORMALIZED SECOND SUBSCRIPT

SUBD #A2D2L NORMALIZE SECOND SUBSCRIPT (SUBTRACT
* LOWER BOUND

PSHS D,X PUSH PARAMETERS

LDX #A2ST2 SIZE OF SECOND SUBSCRIPT
LDD #A2DIM NUMBER OF DIMENSIONS
PSHS D,X PUSH PARAMETERS
JSR NDIM CALCULATE ADDRESS

*AY = STARTING ADDRESS OF AY2(-1,6)
* AY2+00(-1)-(-5))*18)4+0(6-2) *2)
* = AY2+80

*DATA

*AY1 : ARRAYCA1D1L..A1D1H,A1D2L..A1D2H,A1D3L..A1D3H] 3-BYTE ELEMENTS
* co .. 3 , 0 . .5 , 0 ..6 J
A1DIM EQU 3 NUMBER OF DIMENSIONS
A1D1L EQU 0 LOW BOUND OF DIMENSION 1
A1D1H EQU 3 HIGH BOUND OF DIMENSION 1
A1D2L EQu 0 LOW BOUND OF DIMENSION 2

A1D2H EQU 5 HIGH BOUND OF DIMENSION 2
A1D3L EQU 0 LOW BOUND OF DIMENSION 3

A1D3H EQU 6 HIGH BOUND OF DIMENSION 3

A1SZ3 EQU 3 SIZE OF ELEMENT IN DIMENSION 3

A1SZ2 EQU CCA1D3H-A1D3L)+1)*A1SZ3 SIZE OF ELEMENT IN D2
A1SZ1 EQU CCA1TD2H-A1D2L)+1)*A1SZ2 SIZE OF ELEMENT IN D1
AY1: RMB CCATDIH-A1D1L)+1)*A1SZ1 ARRAY

*AY2 : ARRAY CA2D1L..A2D1H,A2D2L..A2D2H] OF WORD
* C -5 «21 -1 , 2 «. 10 J

A2DIM EQU 2 NUMBER OF DIMENSIONS
A2Dd1L EQU “5 LOW BOUND OF DIMENSION 1

A2D1H EQU -1 HIGH BOUND OF DIMENSION 1
A2Dd2L EQU 2 LOW BOUND OF DIMENSION 2

A2D2H EQU 10 HIGH BOUND OF DIMENSION 2

A2SZ2 EQU 2 SIZE OF ELEMENT IN D2
A2SZ1 EQU CCA2D2H-A2D2L)+1)*A2SZ2 SIZE OF ELEMENT IN D1
AY2: RMB (CA2D1H-A2D1L)+1)*A2SZ1 ARRAY

END

3 Arithmetic

3A 16-bit multiplication
(MUL16)

Multiplies two 16-bit operands obtained from the stack and returns the
32-bit product in the stack. All numbers are stored in the usual 6809
style with their more significant bytes on top of the less significant bytes.

Procedure The program multiplies each byte of the multiplier by
each byte of the multiplicand. It then adds the 16-bit partial products to
form a full 32-bit product.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

More significant byte of multiplier
Less significant byte of multiplier

More significant byte of multiplicand
Less significant byte of multiplicand

49

50 Assembly language subroutines for the 6809

Exit conditions

Order in stack (starting from the top)

More significant byte of more significant word of product
Less significant byte of more significant word of product

More significant byte of less significant word of product
Less significant byte of less significant word of product

Examples

1. Data: Multiplier = 001216 (1810)
Multiplicand = 03D 116 (97710)

Result: Product = 000044B2;¢ (17 586j0)

2. Data: Multiplier = 37D116 (14289;0)
Multiplicand = A0454¢ (41 02949)

Result: Product = 22F1AB551¢ (586 264 38110)

The more significant word of the product is incorrect if either operand is
a signed negative number. To handle this case, determine the product’s
sign and replace all negative operands with their absolute values (two’s
complements) before calling MUL16.

To reduce the product to a 16-bit value for compatibility with other
16-bit arithmetic operations, follow the subroutine call with

LEAS 2,8 DROP MORE SIGNIFICANT WORD

Of course, this makes sense only in cases (such as Example 1) in which
the more significant word is 0.

Registers used CC,D,U,X

Execution time Approximately 200 cycles

Program size 64 bytes

Data memory required 2 stack bytes

3A 16-bit multiplication (MUL 16) 51

Title: 16 Bit Multiplication
Name: MUL16

Purpose: Multiply two unsigned 16-bit words and
return a 32-bit unsigned product.

Entry: TOP OF STACK

High byte of return address

Low byte of return address

High byte of multiplier

Low byte of multiplier

High byte of multiplicand

Low byte of multiplicand

Exit: Product = multiplicand * multiplier
TOP OF STACK

High byte of high word of product
Low byte of high word of product

High byte of low word of product
Low byte of low word of product

+ + + F + + + + + + HF HF HF HF HF HF HF H HF HF HF HF HF F HF HF HF HF HF HF HF HF KH

Registers Used: CC,D,U,X

Time: Approximately 200 cycles

Size: Program 64 bytes

Data 2 stack bytes

MUL16:
*

* CLEAR PARTIAL PRODUCT IN FOUR STACK BYTES
*

LDU 3 SAVE RETURN ADDRESS

CLRA CLEAR 4-BYTE PARTIAL PRODUCT ON STACK

CLRB

STD ,9 USE BYTES OCCUPIED BY RETURN ADDRESS
PSHS D PLUS 2 EXTRA BYTES ON TOP OF STACK

*

* MULTIPLY LOW BYTE OF MULTIPLIER TIMES LOW BYTE

* OF MULTIPLICAND
*

LDA 5,5 GET LOW BYTE OF MULTIPLIER

LDB 7,8 GET LOW BYTE OF MULTIPLICAND

MUL MULTIPLY BYTES

STB STORE LOW BYTE OF PRODUCT

STA STORE HIGH BYTE OF PRODUCT NW . “nn

* MULTIPLY LOW BYTE OF MULTIPLIER TIMES HIGH BYTE

52

+t &

+ + +

MULHH:

+

t+ + & +

SC3A:

Assembly language subroutines for the 6809

OF MULTIPLICAND

LDA
LDB
MUL
ADDB

STB
ADCA

STA

GET LOW BYTE OF MULTIPLIER
GET HIGH BYTE OF MULTIPLICAND
MULTIPLY BYTES
ADD LOW BYTE OF PRODUCT TO

* PARTIAL PRODUCT

ADD HIGH BYTE OF PRODUCT PLUS CARRY
* TO PARTIAL PRODUCT

STORE HIGH BYTE OF PRODUCT

MULTIPLY HIGH BYTE OF MULTIPLIER TIMES LOW BYTE
OF MULTIPLICAND

LDA
LDB

MUL
ADDB

STB

ADCA

STA
BCC
INC

GET HIGH BYTE OF MULTIPLIER
GET LOW BYTE OF MULTIPLICAND
MULTIPLY BYTES
ADD LOW BYTE OF PRODUCT TO
* PARTIAL PRODUCT

ADD HIGH BYTE OF PRODUCT PLUS CARRY
* TO PARTIAL PRODUCT

BRANCH IF NO CARRY

ELSE INCREMENT MOST SIGNIFICANT
* BYTE OF PARTIAL PRODUCT

MULTIPLY HIGH BYTE OF MULTIPLIER TIMES HIGH BYTE
OF MULTIPLICAND

LDA
LDB

MUL
ADDB

ADCA

GET HIGH BYTE OF MULTIPLIER
GET HIGH BYTE OF MULTIPLICAND
MULTIPLY BYTES

ADD LOW BYTE OF PRODUCT TO PARTIAL
* PRODUCT

ADD HIGH BYTE OF PRODUCT PLUS CARRY
* TO PARTIAL PRODUCT

* HIGH BYTES OF PRODUCT END UP IN D

RETURN WITH 32-BIT PRODUCT AT TOP OF STACK

LDX
LEAS
PSHS
JMP

SAMPLE EXECUTION

GET LOWER 16 BITS OF PRODUCT FROM STACK

REMOVE PARAMETERS FROM STACK

PUT 32-BIT PRODUCT AT TOP OF STACK
EXIT TO RETURN ADDRESS

PRODMS:
PRODLS:

3A

LDY
LDX
PSHS
JSR

PULS
STX

STY

RMB
RMB

16-bit multiplication (MUL 16) 53

#1023 GET MULTIPLICAND
#255 GET MULTIPLIER
X,Y SAVE PARAMETERS IN STACK
MUL16 16-BIT MULTIPLY

*RESULT OF 1023 * 255 = 260865
* = 0003FBO1 HEX

X,Y GET PRODUCT
PRODMS IN MEMORY PRODMS = OOH

* PRODMS+1 = 03H
PRODLS * PRODLS = FBH

* PRODLS+1 = O1H

2 MORE SIGNIFICANT WORD OF PRODUCT
2 LESS SIGNIFICANT WORD OF PRODUCT

54 Assembly language subroutines for the 6809

3B 16-bit division
(SDIV16, UDIV16, SREM16, UREM16)

Divides two 16-bit operands obtained from the stack and returns either
the quotient or the remainder at the top of the stack. There are four
entry points: SDIV16 and SREM16 return a 16-bit signed quotient or
remainder, respectively, from dividing two 16-bit signed operands.
UDIV16 and UREM16 return a 16-bit unsigned quotient or remainder,
respectively, from dividing two 16-bit unsigned operands. All 16-bit
numbers are stored in the usual 6809 style with the more significant byte
on top of the less significant byte. The divisor is stored on top of the
dividend. If the divisor is 0, the Carry flag is set to 1 and the result is 0;
otherwise, the Carry flag is cleared.

Procedure If the operands are signed, the program determines the
signs of the quotient and remainder and takes the absolute values of all
negative operands. The program then performs an unsigned division
using a shift-and-subtract algorithm. It shifts the quotient and dividend
left, placing a 1 bit in the quotient each time a trial subtraction succeeds.
Finally, it negates (i.e. subtracts from zero) all negative results. The
Carry flag is cleared if the division is proper and set if the divisor is 0. A
0 divisor also causes a return with a result (quotient or remainder) of 0.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

More significant byte of divisor
Less significant byte of divisor

More significant byte of dividend
Less significant byte of dividend

Exit conditions

Order in stack starting from the top

More significant byte of result (quotient or remainder)
Less significant byte of result (quotient or remainder)

If the divisor is non-zero, Carry = 0 and the result is normal

3B 16-bit division (SDIV16, UDIV16, SREM16, UREM 16) 55

If the divisor is zero, Carry = 1 and the result is 0000,¢.

Examples

1. Data: Dividend = 03E016 = 99216

Divisor = 00B616 = 18216

Result: Quotient (from UDIV16) = 0005;6
Remainder (from UREM16) = 005216 = 008210
Carry = 0 (no divide-by-0 error)

2. Data: Dividend = D73Ai6 = —10 43810

Divisor = O2F1i6 = 75310

Result: Quotient (from SDIV16) = FFF3i6 = —1340

Remainder (from SREM16) = FD77i¢6 = —64949
Carry = 0 (no divide-by-zero error)

Note that this routine produces a signed remainder. Its sign is the same
as that of the dividend. To convert a negative remainder into an unsig-
ned one, simply subtract 1 from the quotient and add the divisor to the
remainder. The result of Example 2 is then

Quotient = FFF 216 = —1410

Remainder (always positive) = 006816 = 1044

Registers used A,B,CC, X, Y

Execution time: A maximum of 955 cycles plus an overhead of 10
(UREM16), 2 (UDIV16), 119 (SREM16), or 103 (SDIV16) cycles.
Execution time depends on how many trial subtractions are successful
and thus require the replacement of the previous dividend by the
remainder. Each successful trial subtraction takes 9 extra cycles.

Program size 145 bytes

Data memory required 3 stack bytes

Special case If the divisor is 0, the program returns with the Carry
flag set to 1 and a result (quotient or remainder) of 0.

or o Assembly language subroutines for the 6809 |

Title: 16-Bit Division

Name: SDIV16, UDIV16, SREM16, UREM16

Purpose: SDIV16

Divide 2 signed 16-bit words and

return a 16-bit signed quotient.

UDIV16

Divide 2 unsigned 16-bit words and
return a 16-bit unsigned quotient

SREM16
Divide 2 signed 16-bit words and

return a 16-bit signed remainder

UREM16

Divide 2 unsigned 16-bit words and

return a 16-bit unsigned remainder

Entry: TOP OF STACK

High byte of return address

Low byte of return address

High byte of divisor

Low byte of divisor

High byte of dividend
Low byte of dividend

Exit: TOP OF STACK

High byte of result

Low byte of result

If no errors then

Carry := 0

else

divide by zero error

Carry := 1

quotient : = 0

remainder : = 0

Registers Used: A,B,CC,X,Y

Time: Approximately 955 cycles

Size: Program 145 bytes

Data 3 stack bytes

t+ + + + + e+ + + FHF HF HF HF HF HF HF HF HF HF HH HF HH HF HF HH HF HF HF HF HH HF FH HF HS FH KH HF HF HF HF HF HF HF HF HF HF HF HF FH H F

*

*SIGNED DIVISION, RETURNS REMAINDER

3B 16-bit division (SDIV16, UDIV16, SREM16, UREM16) 57

*

SREM16:

LDA #S$F F INDICATE REMAINDER TO BE RETURNED

STA 278 SAVE INDICATOR ON STACK

BRA CHKSGN GO CHECK SIGNS
*

*SIGNED DIVISION, RETURNS QUOTIENT
*

SDIV16:

CLR a79 INDICATE QUOTIENT TO BE RETURNED
*

*IF DIVISOR IS NEGATIVE, TAKE ITS ABSOLUTE VALUE AND INDICATE

* THAT QUOTIENT IS NEGATIVE
*

CHKSGN:

LDD #0 INDICATE QUOTIENT, REMAINDER POSITIVE
PSHS D . SAVE INDICATOR ON STACK
LEAX 5,8 POINT TO DIVISOR

TST 7X CHECK IF DIVISOR IS POSITIVE
BPL CHKDVD BRANCH IF DIVISOR IS POSITIVE

SUBD 7X ELSE TAKE ABSOLUTE VALUE OF DIVISOR
STD 7X

COM 1,$ INDICATE QUOTIENT IS NEGATIVE
BRA CHKZRO

*

*IF DIVIDEND IS NEGATIVE, TAKE ITS ABSOLUTE VALUE, INDICATE THAT
* REMAINDER IS NEGATIVE, AND INVERT SIGN OF QUOTIENT
*

CHKDVD:

LEAX 2,X POINT TO HIGH BYTE OF DIVIDEND
TST 7X CHECK IF DIVIDEND IS POSITIVE

BPL CHKZRO BRANCH IF DIVIDEND IS POSITIVE
LDD #0 ELSE TAKE ABSOLUTE VALUE OF DIVIDEND
SUBD 7X
STD 7X

COM 7S INDICATE REMAINDER IS NEGATIVE
COM 1,8 INVERT SIGN OF QUOTIENT

*

*UNSIGNED 16-BIT DIVISION, RETURNS QUOTIENT
*

UDIV16:

CLR 278 INDICATE QUOTIENT TO BE RETURNED

BRA CLRSGN
*

*UNSIGNED 16-BIT DIVISION, RETURNS REMAINDER
*

UREM16:

LDA #SFF INDICATE REMAINDER TO BE RETURNED

STA 7s
*

*UNSIGNED DIVISION, INDICATE QUOTIENT, REMAINDER BOTH POSITIVE
*

CLRSGN:

LDD #0 INDICATE QUOTIENT, REMAINDER POSITIVE

PSHS D

58 Assembly language subroutines for the 6809

*CHECK FOR ZERO DIVISOR
*EXIT, INDICATING ERROR, IF FOUND
*

CHKZRO:
LEAX 57S POINT TO DIVISOR

LDD 7X TEST DIVISOR
BNE STRTDV BRANCH IF DIVISOR NOT ZERO
STD 2,X DIVISOR IS ZERO, SO MAKE RESULT ZERO
SEC INDICATE DIVIDE BY ZERO ERROR
BRA EXITDV EXIT INDICATING ERROR

*

*DIVIDE UNSIGNED 32-BIT DIVIDEND BY UNSIGNED 16-BIT DIVISOR
*MEMORY ADDRESSES HOLD BOTH DIVIDEND AND QUOTIENT. EACH TIME WE

* SHIFT THE DIVIDEND ONE BIT LEFT, WE ALSO SHIFT A BIT OF THE
* QUOTIENT IN FROM THE CARRY AT THE FAR RIGHT

*AT THE END, THE QUOTIENT HAS REPLACED THE DIVIDEND IN MEMORY
* AND THE REMAINDER IS LEFT IN REGISTER D
*

STRTDV:
LDD #0 EXTEND DIVIDEND TO 32 BITS WITH O
LDY #16 BIT COUNT = 16
CLC START CARRY AT ZERO

*

*SHIFT 32-BIT DIVIDEND LEFT WITH QUOTIENT ENTERING AT FAR RIGHT
*

DIV16:

ROL 3,X SHIFT LOW BYTE OF DIVIDEND

* QUOTIENT BIT ENTERS FROM CARRY

ROL 2,X SHIFT NEXT BYTE OF DIVIDEND

ROLB SHIFT NEXT BYTE OF DIVIDEND
ROLA SHIFT HIGH BYTE OF DIVIDEND

*

*DO A TRIAL SUBTRACTION OF DIVISOR FROM DIVIDEND
*IF DIFFERENCE IS NON-NEGATIVE, SET NEXT BIT OF QUOTIENT.

* PERFORM ACTUAL SUBTRACTION, REPLACING QUOTIENT WITH DIFFERENCE.
*IF DIFFERENCE IS NEGATIVE, CLEAR NEXT BIT OF QUOTIENT
*

CMPD 7X TRIAL SUBTRACTION OF DIVISOR

BCS CLRCRY BRANCH IF SUBTRACTION FAILS
SUBD 7x TRIAL SUBTRACTION SUCCEEDED,

* SO SUBTRACT DIVISOR FROM
* DIVIDEND

SEC SET NEXT BIT OF QUOTIENT TO 1
BRA DECCNT

CLRCRY:
CLC TRIAL SUBTRACTION FAILED, SO

* SET NEXT BIT OF QUOTIENT TO O
*

*UPDATE BIT COUNTER
*CONTINUE THROUGH 16 BITS
*

DECCNT:
LEAY -1,Y CONTINUE UNTIL ALL BITS DONE
BNE DIV16

*

*SHIFT LAST CARRY INTO QUOTIENT

3B 16-bit division (SDIV16, UDIV16, SREM16, UREM 16) 59

ROL 3X SHIFT LAST CARRY INTO QUOTIENT
ROL 2,X INCLUDING MORE SIGNIFICANT BYTE

*

*SAVE REMAINDER IN STACK

*NEGATE REMAINDER IF INDICATOR SHOWS IT IS NEGATIVE
*

STD 7X SAVE REMAINDER IN STACK

TST 79 CHECK IF REMAINDER IS POSITIVE

BEQ TSTQSN BRANCH IF REMAINDER IS POSITIVE
LDD #0 ELSE NEGATE IT
SUBD 7X

STD 7X SAVE NEGATIVE REMAINDER
*

*NEGATE QUOTIENT IF INDICATOR SHOWS IT IS NEGATIVE
*

TSTQSN:

TST 1,8 CHECK IF QUOTIENT IS POSITIVE

BEQ TSTRTN BRANCH IF QUOTIENT IS POSITIVE
LDD #0 ELSE NEGATE IT
SUBD 7,8

STD 7,8 SAVE NEGATIVE QUOTIENT
*

*SAVE QUOTIENT OR REMAINDER, DEPENDING ON FLAG IN STACK
*

TSTRITN:

CLC INDICATE NO DIVIDE-BY-ZERO ERROR
TST 2,8 TEST QUOTIENT/REMAINDER FLAG
BEQ EXITDV BRANCH TO RETURN QUOTIENT

LDD 7X REPLACE QUOTIENT WITH REMAINDER
STD 7,8

*

*REMOVE PARAMETERS FROM STACK AND EXIT
*

EXITDV:

LDX 3,8 SAVE RETURN ADDRESS

LEAS 7,8 REMOVE PARAMETERS FROM STACK

JMP 7x EXIT TO RETURN ADDRESS

*
*

* SAMPLE EXECUTION
*

*

SC3B:
*

*SIGNED DIVIDE, OPRND1 / OPRND2, STORE QUOTIENT AT QUOTNT
*

LDY OPRND1 GET DIVIDEND
LOX OPRND2 GET DIVISOR

PSHS X,Y SAVE PARAMETERS IN STACK
JSR SDIV16 SIGNED DIVIDE, RETURN QUOTIENT
PULS X GET QUOTIENT

STX QUOTNT RESULT OF -1023 / 123 = -8
* IN MEMORY QUOTNT = FF HEX

60

*

*UNSIGNED
*

*

Assembly language subroutines for the 6809

* QUOTNT + 1 = F8 HEX

DIVIDE, OPRND1 / OPRND2, STORE QUOTIENT AT QUOTNT

LDY
LDX
PSHS
JSR
PULS
STX

OPRND1
OPRND2
X,Y
UDIV16
X
QUOTNT

GET DIVIDEND
GET DIVISOR

SAVE PARAMETERS IN STACK
UNSIGNED DIVIDE, RETURN QUOTIENT
GET QUOTIENT

RESULT OF 64513 / 123 = 524
* IN MEMORY QUOTNT = 02 HEX

* QUOTNT + 1 OC HEX

*SIGNED DIVIDE, OPRND1 / OPRDN2, STORE REMAINDER AT REMNDR
*

*

*UNSIGNED
*

*

*DATA
*

OPRND1
OPRND2
QUOTNT
REMNDR

LDY
LDX
PSHS
JSR
PULS
STX

OPRND1
OPRND2
X,Y
SREM16
X
REMNDR

DIVIDE, OPRND1 /

LDY
LDX
PSHS
JSR
PULS
STX

FDB
FDB

RMB
RMB
END

OPRND1
OPRND2
X,Y
UREM16
X
REMNDR

-1023
123

OPRND2,

GET DIVIDEND
GET DIVISOR

SAVE PARAMETERS IN STACK
SIGNED DIVIDE, RETURN REMAINDER
GET REMAINDER

REMAINDER OF -1023 / 123 = -39

* IN MEMORY REMNDR = FF HEX

* REMNDR + 1 C7? HEX

STORE REMAINDER AT REMNDR

GET DIVIDEND
GET DIVISOR

SAVE PARAMETERS IN STACK

UNSIGNED DIVIDE, RETURN REMAINDER
GET QUOTIENT

RESULT OF 64513 / 123 = 61

* IN MEMORY REMNDR O00 HEX
* REMNDR + 1 3D HEX

DIVIDEND (64513 UNSIGNED)
DIVISOR

QUOTIENT
REMAINDER

3C Multiple-precision binary addition (MPBADD) 61

3C Multiple-precision binary addition
(MPBADD

Adds two multi-byte unsigned binary numbers. Both are stored with
their least significant bytes at the lowest address. The sum replaces the
number with the base address lower in the stack. The length of the
numbers (in bytes) is 255 or less.

Procedure The program clears the Carry flag initially and adds the
operands one byte at a time, starting with the least significant bytes. The
final Carry flag indicates whether the overall addition produced a carry.
A length of 0 causes an immediate exit with no addition.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Length of the operands in bytes

More significant byte of base address of second operand (address con-
taining the least significant byte of array 2)
Less significant byte of base address of second operand (address con-
taining the least significant byte of array 2)

More significant byte of base address of first operand and sum (address
containing the least significant byte of array 1)
Less significant byte of base address of first operand and sum (address
containing the least significant byte of array 1)

Exit conditions

First operand (array 1) replaced by first operand (array 1) plus second
operand (array 2)

Example

Data: — Length of operands (in bytes) = 6
Top operand (array 2) = 19D028A193EAi6

62

+e + te He HF HF HF HF HF HF HF HF HF HF HE HF HF HF HF KH F

Assembly language subroutines for the 6809

Bottom operand (array 1) = 293EABF059C74¢
Result: Bottom operand (array 1) = Bottom operand (array 1) +

Top operand (array 2) = 430ED491EDB14,
Carry = 0

Registers used A,B, CC, U, xX

Execution time 21 cycles per byte plus 36 cycles overhead. For
example, adding two 6-byte operands takes

21 X 6 + 36 = 162 cycles

Program size 25 bytes

Data memory required None

Special case A length of 0 causes an immediate exit with the sum
equal to the bottom operand (i.e. array 1 is unchanged). The Carry flag
is cleared.

Title: Multiple-Precision Binary Addition
Name: MPBADD

Purpose: Add 2 arrays of binary bytes

Array1 := Array 1 + Array 2

Entry: TOP OF STACK

High byte of return address

Low byte of return address

Length of the arrays in bytes

High byte of array 2 address

Low byte of array 2 address

High byte of array 1 address

Low byte of array 1 address

The arrays are unsigned binary numbers

3C Multiple-precision binary addition (MPBADD) 63

Exit:

Time:

Size:

+e ee + Fe HF HF HF HF HF HEH HF HK F

MPBADD:
*

*CHECK IF

Registers Used:

with a maximum Length of 255 bytes,

ARRAYLO] is the least significant

byte, and ARRAYCLENGTH-1] is the

most significant byte.

Array1 := Array1l + Array2

A,B,CC,U,X

21 cycles per byte plus 36 cycles overhead

Program 25 bytes

LENGTH OF ARRAYS IS ZERO
*EXIT WITH CARRY CLEARED IF IT IS
*

CLC

LDB
BEQ
*

CLEAR CARRY TO START

2,8 CHECK LENGTH OF ARRAYS
ADEXIT BRANCH CEXIT) IF LENGTH IS ZERO

*ADD ARRAYS ONE BYTE AT A TIME
*

LDX
LDU

ADDBYT:
LDA
ADCA

STA
DECB
BNE
*

5,S GET BASE ADDRESS OF ARRAY 1
3,8 GET BASE ADDRESS OF ARRAY 2

/Ut+ GET BYTE FROM ARRAY 2

7X ADD WITH CARRY TO BYTE FROM ARRAY 1
7Xt+ SAVE SUM IN ARRAY 1

ADDBYT CONTINUE UNTIL ALL BYTES SUMMED

*REMOVE PARAMETERS FROM STACK AND EXIT
*

ADEXIT:
LDX

LEAS

JMP

+ + + +

SC3C:

LDY

LDX

LDA

PSHS
JSR

7S SAVE RETURN ADDRESS

7,8 REMOVE PARAMETERS FROM STACK
7X EXIT TO RETURN ADDRESS

SAMPLE EXECUTION

AY1ADR GET FIRST OPERAND

AY2ADR GET SECOND OPERAND

#SZAYS LENGTH OF ARRAYS IN BYTES

A,X,Y SAVE PARAMETERS IN STACK

MPBADD MULTIPLE~PRECISION BINARY ADDITION

*RESULT OF 12345678H + 9ABCDEFOH

*

* DATA
*

SZAYS

AY1ADR
AY2ADR

AY1:

AY2:

Assembly language subroutines for the 6809

EQU

FDB

FDB

FCB
FCB

* = ACF13568H

* IN MEMORY AY1 = 68H

* AY1+1 = 35H

* AY1+2 = F1H

* AY1+3 = ACH

* AY1+4 = OOH

* AY1+5 = OOH

* AY1+6 = QOH

7 LENGTH OF ARRAYS IN BYTES

AY1 BASE ADDRESS OF ARRAY 1

AY2 BASE ADDRESS OF ARRAY 2

$78 ,$56,$34,$12,0,0,0
$FO,$DE,$BC,$9A,0,0,0

3D Multiple-precision binary subtraction (MPBSUB) 65

3D Multiple-precision binary subtraction
(MPBSUB)

Subtracts two multi-byte unsigned binary numbers. Both are stored with
their least significant bytes at the lowest address. The subtrahend
(number to be subtracted) is stored on top of the minuend (number
from which it is subtracted). The difference replaces the minuend. The
length of the numbers (in bytes) is 255 or less.

Procedure The program clears the Carry flag initially and subtracts
the subtrahend from the minuend one byte at a time, starting with the
least significant bytes. The final Carry flag indicates whether the overall
subtraction required a borrow. A length of 0 causes an immediate exit
with no subtraction.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Length of the operands in bytes

More significant byte of base address of subtrahend
Less significant byte of base address of subtrahend

More significant byte of base address of minuend
Less significant byte of base address of minuend

Exit conditions

Minuend replaced by minuend minus subtrahend

Example

Data: — Length of operands (in bytes) = 4
Minuend = 2F5BA7C3i¢

Subtrahend = 14DF35B84¢

Result: Muinuend = 1A7C720Bi¢

Carry = 0, since no borrow is necessary

66

+ + + + FF HF HH + HF HF + HF HF FF HF HF HF HF OF HF HF HF FH HF HF HF HF

Assembly language subroutines for the 6809

Registers used A,B,CC, U, X

Execution time 21 cycles per byte plus 36 cycles overhead. For
example, subtracting two 6-byte operands takes

21 X 6 + 36 = 162 cycles

Program size 25 bytes

Data memory required None

Special case A length of 0 causes an immediate exit with the minuend
unchanged (i.e. the difference is equal to the minuend). The Carry flag
is cleared.

Title: Multiple-Precision Binary Subtraction
Name: MPBSUB

Purpose: Subtract 2 arrays of binary bytes

Minuend := Minuend - Subtrahend

Entry: TOP OF STACK

High byte of return address

Low byte of return address

Length of the arrays in bytes

High byte of subtrahend address

Low byte of subtrahend address
High byte of minuend address

Low byte of minuend address

The arrays are unsigned binary numbers

with a maximum length of 255 bytes,

ARRAYCOJ is the least significant
byte, and ARRAYCLENGTH-1] is the
most significant byte.

Exit: Minuend := Minuend - Subtrahend

Registers Used: A,B,CC,U,X

Time: 21 cycles per byte plus 36 cycles overhead

Size:

+ + + €

MPBSUB:

SUBBYT:

SBEXIT:

+ +¢ + &

SC3D:

* DATA

3D Multiple-precision binary subtraction (MPBSUB) 67

Program 25 bytes

*

*CHECK IF LENGTH OF ARRAYS IS ZERO

*EXIT WITH CARRY CLEARED IF IT IS
*

CLC CLEAR CARRY TO START

LDB 2,8 CHECK LENGTH OF ARRAYS

BEQ SBEXIT BRANCH CEXIT) IF LENGTH IS ZERO
*

*SUBTRACT ARRAYS ONE BYTE AT A TIME
*

LDX 3,58 GET BASE ADDRESS OF SUBTRAHEND
LDU 3,8 GET BASE ADDRESS OF MINUEND

LDA ,U GET BYTE OF MINUEND

SBCA 7Xt+ SUBTRACT BYTE OF SUBTRAHEND WITH BORROW
STA 7U+ SAVE DIFFERENCE IN MINUEND
DECB

BNE SUBBYT CONTINUE UNTIL ALL BYTES SUBTRACTED
*

*REMOVE PARAMETERS FROM STACK AND EXIT
*

LDX 7s SAVE RETURN ADDRESS

LEAS 7,8 REMOVE PARAMETERS FROM STACK
JMP 7X EXIT TO RETURN ADDRESS

SAMPLE EXECUTION

LDY AY1ADR GET BASE ADDRESS OF MINUEND

LDX AY2ADR GET BASE ADDRESS OF SUBTRAHEND
LDA #SZAYS GET LENGTH OF ARRAYS IN BYTES
PSHS A,X,Y SAVE PARAMETERS IN STACK

JSR MPBSUB MULTIPLE-PRECISION BINARY SUBTRACTION
*RESULT OF 2F3E4D5CH-175E809FH
* = 17DFCCBDH

* IN MEMORY AY1 = BDH
* AY1+1 = CCH

* AY1+2 = DFH
* AY1+3 = 17H
* AY1+4 = OOH
* AY1+5 = OOH

* AY1+6 = OOH

68

SZAYS

AY1ADR
AY2ADR

AY1:

AY2:

Assembly language subroutines for the 6809

EQU

FOB
FDB

FCB
FCB

END

td LENGTH OF ARRAYS IN BYTES

AY1 BASE ADDRESS OF ARRAY 1
AY2 BASE ADDRESS OF ARRAY 2

$5C,$4D,$3E,$2F,0,0,0
$9F,$80,$5E,$17,0,0,0

3E Multiple-precision binary multiplication (MPBMUL) 69

3E Multiple-precision binary multiplication
(MPBMUL)

Multiplies two multi-byte unsigned binary numbers. Both are stored
with their least significant byte at the lowest address. The product
replaces the multiplicand. The length of the numbers (in bytes) is 255 or
less. Only the less significant bytes of the product are returned to
provide compatibility with other multiple-precision binary operations.

Procedure The program multiplies the numbers one byte at a time,
Starting with the least significant bytes. It keeps a full double-length
unsigned partial product in memory locations starting at PPROD (more
significant bytes) and in the multiplicand (less significant bytes). The less
significant bytes of the product replace the multiplicand as it is shifted.
A length of 0 causes an exit with no multiplication.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Length of the operands in bytes

More significant byte of base address of multiplicand
Less significant byte of base address of multiplicand

More significant byte of base address of multiplier
Less significant byte of base address of multiplier

Exit conditions

Multiplicand replaced by multiplicand times multiplier

Example

Data: — Length of operands (in bytes) = 4
Multiplicand = = 0005D1F746 = 38143110
Multiplier = 0O000AB116 = 273710

Result: Multiplicand = 3E39D1C7 1.6 = 1043976647,

70

+ t+ + + € HF HF HF HF HF

Title:

Name:

Purpo

Assembly language subroutines for the 6809

Note that MPBMUL returns only the less significant bytes (i.e. the
number of bytes in the multiplicand and multiplier) of the product to
maintain compatibility with other multiple-precision binary arithmetic
operations. The more significant bytes of the product are available
Starting with their least significant byte at address PPROD. The user
may need to check those bytes for a possible overflow.

Registers used All

Execution time Depends on the length of the operands and on the
number of non-zero bytes in the multiplicand. If all bytes in the multipli-
cand are non-zero, the execution time is approximately

90 x LENGTH? + 90 x LENGTH + 39

If, for example, the operands are 4 bytes (32 bits) long, the execution
time is approximately

90 x 16 + 90 X 4 + 39 = 1440 + 360 + 39 = 1839 cycles

There is a saving of 90 x LENGTH cycles for each multiplicand byte
that is 0.

Program size 96 bytes

Data memory required 256 bytes anywhere in RAM for the more
significant bytes of the partial product (starting at address PPROD).
This includes an overflow byte. Also 2 stack bytes.

Special case A length of 0 causes an immediate exit with the product
equal to the multiplicand. The Carry flag is cleared.

Multiple-Precision Binary Multiplication
MPBMUL

se: Multiply 2 arrays of binary bytes

3E Multiple-precision binary multiplication (MPBMUL) 71

Registers Used:

Multiplicand := Multiplicand * multiplier

TOP OF STACK

High byte of return address

Low byte of return address

Length of the arrays in bytes

High byte of multiplicand address

Low byte of multiplicand address

High byte of multiplier address

Low byte of multiplier address

The arrays are unsigned binary numbers

with a maximum Length of 255 bytes,

ARRAYLO] is the least significant

byte, and ARRAYCLENGTH-1] is the

most significant byte.

Multiplicand := Multiplicand * multiplier

ALL

Assuming all multiplicand bytes are non-zero,

then the time is approximately:

(90 * lLength*2) + (90 * length) + 39 cycles

Program 96 bytes

Data 256 bytes plus 2 stack bytes

CHECK LENGTH OF OPERANDS

EXIT IF LENGTH IS ZERO

SAVE LENGTH FOR USE AS LOOP COUNTER

LDB 2,8 GET ARRAY LENGTH

BEQ EXITML EXIT (RETURN) IF LENGTH IS ZERO

PSHS B SAVE LENGTH AS MULTIPLICAND BYTE COUNTER

LEAS -1,8 RESERVE SPACE FOR MULTIPLICAND BYTE

CLEAR PARTIAL PRODUCT AREA (COPERAND LENGTH PLUS 1 BYTE FOR
OVERFLOW)

LDX #PPROD POINT TO PARTIAL PRODUCT AREA

CLRA GET ZERO FOR CLEARING

STA 7Xt+ CLEAR BYTE OF PARTIAL PRODUCT

DECB

BNE CLRPRD CONTINUE UNTIL ALL BYTES CLEARED

LOOP OVER ALL MULTIPLICAND BYTES

MULTIPLYING EACH ONE BY ALL MULTIPLIER BYTES

*

*

* Entry:
*

*

*

*

*

*

*

*

*

*

*

*

*

* Exit:
*

*

*

* Time:
*

*

*

* Size:
*

*

*

MPBMUL:
*

*

*

*

*

*

*

*

*

CLRPRD:

*

*

*

*

PROCBT:

LDU 5,5 POINT TO MULTIPLICAND

72

+ e+ e

MULSTP:

MULLUP:

OVRFL:

DECCTR:

+ + + e

MOVBYT:

*

SHFTRT:

*

Assembly language subroutines for the 6809

LDA
STA
BEQ

,U
79
MOVBYT

GET NEXT BYTE OF MULTIPLICAND

SAVE NEXT BYTE OF MULTIPLICAND

SKIP MULTIPLICATION IF BYTE IS ZERO

MULTIPLY BYTE OF MULTIPLICAND TIMES EACH BYTE OF
MULTIPLIER

LDB 4,8
CLRA
TFR D,U
LDY #PPROD
LDX 7,8

LDA Xt
LDB 7s
MUL
ADDB 7

STB 7Yt+

ADCA rv
STA 7X
BCC DECCTR

CLRA

INCA
INC A,Y
BEQ OVRFL

LEAU -1,U
BNE MULLUP

GET LENGTH OF OPERANDS IN BYTES

SAVE AS 16-BIT LOOP COUNTER IN
REGISTER U

POINT TO PARTIAL PRODUCT
POINT TO MULTIPLIER

GET NEXT BYTE OF MULTIPLIER
GET CURRENT BYTE OF MULTIPLICAND
MULTIPLY

ADD RESULT TO PREVIOUS PRODUCT

BRANCH IF ADDITION DOES NOT PRODUCE CARRY
OTHERWISE, RIPPLE CARRY

MOVE ON TO NEXT BYTE
INCREMENT NEXT BYTE

BRANCH IF CARRY KEEPS RIPPLING

DECREMENT BYTE COUNT

LOOP UNTIL MULTIPLICATION DONE

MOVE LOW BYTE OF PARTIAL PRODUCT INTO RESULT AREA
THIS OVERWRITES THE MULTIPLICAND BYTE USED IN THE

LATEST MULTIPLICATION LOOP

LDX
LDY
LDB
STB
STX

5,58
#PPROD
rv
7Xt+
5,58

POINT TO MULTIPLICAND AND RESULT
POINT TO PARTIAL PRODUCT AREA

GET BYTE OF PARTIAL PRODUCT

STORE IN ORIGINAL MULTIPLICAND

SAVE UPDATED MULTIPLICAND POINTER

SHIFT PARTIAL PRODUCT RIGHT ONE BYTE

LDB

LDA

STA
DECB
BNE
CLR

4,58

1,Y
7Y+

SHFTRT
yal

GET LENGTH OF OPERANDS IN BYTES

GET NEXT BYTE OF PARTIAL PRODUCT
MOVE BYTE RIGHT

DECREMENT BYTE COUNT

CONTINUE UNTIL ALL BYTES SHIFTED
CLEAR OVERFLOW

COUNT MULTIPLICAND DIGITS

DEC

BNE
1,8

PROCBT
DECREMENT DIGIT COUNTER

CONTINUE THROUGH ALL MULTIPLICAND DIGITS

*

*

*

EXITML:

PROD:

+ + + ¢ + UO + &

SC3E:

*

* DATA
*

SZAYS

AY1ADR
AY2ADR

AY1:

AY2:

3E Multiple-precision binary multiplication (MPBMUL) 73

LEAS 2,8 REMOVE TEMPORARIES FROM STACK

REMOVE PARAMETERS FROM STACK AND EXIT

LDU 79

LEAS 7,Ss
JMP ,U

DATA

RMB 256

SAMPLE EXECUTION

SAVE RETURN ADDRESS

REMOVE PARAMETERS FROM STACK
EXIT TO RETURN ADDRESS

PARTIAL PRODUCT BUFFER WITH OVERFLOW BYTE

LDX AY1TADR GET MULTIPLICAND

LDY AY2ADR GET MULTIPLIER

LDA #SZAYS LENGTH OF OPERANDS IN BYTESS

PSHS A,X,Y SAVE PARAMETERS IN STACK

JSR MPBMUL MULTIPLE-PRECISION BINARY MULTIPLICATION

*RESULT OF 12345H * 1234H = 14B60404H

* IN MEMORY AY1 = O4H

* AY1+1 = Q4H

* AY1+2 = B6H

* AY1+3 = 14H

* AY1+4 = OOH

* AY1+5 = OOH

* AY1+6 = QOH

BRA SC3E CONTINUE

EQU 7 LENGTH OF OPERANDS IN BYTES

FDB AY1 BASE ADDRESS OF ARRAY 1

FDB AY2 BASE ADDRESS OF ARRAY 2

FCB $45,$23,$01,0,0,0,0

FCB $34,$12,0,0,0,0,0

END

74 Assembly language subroutines for the 6809

3F Multiple-precision binary division
(MPBDIV)

Divides two multi-byte unsigned binary numbers. Both are stored with
their least significant byte at the lowest address. The quotient replaces
the dividend, and the address of the least significant byte of the remain-
der ends up in register X. The length of the numbers (in bytes) is 255 or
less. The Carry flag is cleared if no errors occur; if a divide by 0 is
attempted, the Carry flag is set to 1, the dividend is left unchanged, and
the remainder is set to 0.

Procedure The program divides using the standard shift-and-subtract
algorithm, shifting quotient and dividend and placing a 1 bit in the
quotient each time a trial subtraction succeeds. An extra buffer holds
the result of the trial subtraction; that buffer is simply switched with the
buffer holding the dividend if the subtraction succeeds. The program
sets the Carry flag if the divisor is 0 and clears Carry otherwise.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Length of the operands in bytes

More significant byte of base address of divisor
Less significant byte of base address of divisor

More significant byte of base address of dividend
Less significant byte of base address of dividend

Exit conditions

Dividend replaced by quotient (dividend divided by divisor).
If the divisor is non-zero, Carry = 0 and the result is normal.
If the divisor is 0, Carry = 1, the dividend is unchanged, and the
remainder is 0.

The remainder is stored starting with its least significant byte at the
address in X.

3F Multiple-precision binary division (MPBDIV) 75

Example

Data: — Length of operands (in bytes) = 3
Top operand (array 2 or divisor) = 000F4516 = 3909,

Bottom operand (array 1 or dividend) = 35A2F7,¢ =
351512710

Result: Bottom operand (array 1) = Bottom operand (array 1) /
Top operand (array 2) = 00038316 = 899;

Remainder (starting at address in X) = 0003A816 = 93649
Carry flag = 0 to indicate no divide by zero error.

Registers used _ All

Execution time Depends on the length of the operands and on the
number of 1 bits in the quotient (requiring a replacement of the dividend
by the remainder). If the average number of 1 bits in the quotient is four
per byte, the execution time is approximately

400 x LENGTH? + 580 x LENGTH + 115 cycles"

where LENGTH is the length of the operands in bytes. If, for example,
LENGTH = 4 (32-bit division), the approximate execution time is

400 x 47 + 580 x 4 + 115 = 8835 cycles

Program size 137 bytes

Data memory required 514 bytes anywhere in RAM for the buffers
holding either the high dividend or the result of the trial subtraction (255
bytes starting at addresses HIDE1 and HIDE2, respectively), and for the
pointers that assign the buffers to specific purposes (2 bytes starting at
addresses HDEPTR and DIFPTR, respectively). Also 2 stack bytes.

Special cases

1. A length of 0 causes an immediate exit with the Carry flag cleared,
the quotient equal to the original dividend, and the remainder undefined.

76 Assembly language subroutines for the 6809

2. A divisor of 0 causes an exit with the Carry flag set to 1, the quotient
equal to the original dividend, and the remainder equal to 0.

Title: Multiple-Precision Binary Division
Name: MPBDIV

Purpose: Divide 2 arrays of binary bytes

Array1 := Array 1 / Array 2

Entry: TOP OF STACK

High byte of return address

Low byte of return address

Length of arrays in bytes

High byte of divisor address

Low byte of divisor address

High byte of dividend address

Low byte of dividend address

The arrays are unsigned binary numbers

with a maximum length of 255 bytes,

ARRAYCO] is the least significant

byte, and ARRAYCLENGTH-1] jis the
most significant byte.

Exit: Array1 := Array1 / Array2

Register X = Base address of remainder
If no errors then

Carry := 0

else

divide-by-zero error

Carry := 1

quotient := array 1 unchanged
remainder := 0

Registers Used: ALL

Time: Assuming there are length/2 1 bits in the
quotient then the time is approximately

(400 * Length"2) + (580 * Length) +
115 cycles

Size: Program 137 bytes

Data 514 bytes plus 2 stack bytes

+ + + FH HF FE FH HF F HF HF HF HF HF HF HF FH HF HF HF HF HF HF HF HF FH HF HF HF HF HF HF HF HF HF HF H HF OF F OF HF HF

MPBDIV:

* EXIT INDICATING NO ERROR IF LENGTH OF OPERANDS IS ZERO

+ +¢ + + + HF

CLRHI:

+ + +

CHKZRO:

NITDV:

+

SHFTST:

*
*
*

SHFTQU:

3F Multiple-precision binary division (MPBDIV) 77

LDB 2,8

BEQ GOODRT
TEST LENGTH OF OPERANDS

BRANCH (GOOD EXIT) IF LENGTH IS ZERO

SET UP HIGH DIVIDEND AND DIFFERENCE POINTERS
CLEAR HIGH DIVIDEND AND DIFFERENCE ARRAYS

ARRAYS 1 AND 2 ARE USED INTERCHANGEABLY FOR THESE TWO

PURPOSES. THE POINTERS ARE SWITCHED WHENEVER A
TRIAL SUBTRACTION SUCCEEDS

LDX #HIDE1 GET BASE ADDRESS OF ARRAY 1
STX HDEPTR DIVIDEND POINTER = ARRAY 1

LDU #HIDE2 GET BASE ADDRESS OF ARRAY 2

STU DIFPTR DIFFERENCE POINTER = ARRAY 2

CLRA GET ZERO FOR CLEARING ARRAYS

STA 7Xt+ CLEAR BYTE OF ARRAY 1

STA ,U+ CLEAR BYTE OF ARRAY 2
DECB

BNE CLRHI CONTINUE THROUGH ALL BYTES

CHECK WHETHER DIVISOR IS ZERO

IF IT IS, EXIT INDICATING DIVIDE-BY-ZERO ERROR

LDB 2,8 GET LENGTH OF OPERANDS

LDX 3,8 GET BASE ADDRESS OF DIVISOR

LDA Xt EXAMINE BYTE OF DIVISOR

BNE INITDV BRANCH IF BYTE IS NOT ZERO
DECB CONTINUE THROUGH ALL BYTES
BNE CHKZRO

SEC ALL BYTES ARE ZERO - INDICATE
* DIVIDE-BY-ZERO ERROR

BRA DVEXIT EXIT

SET COUNT TO NUMBER OF BITS IN THE OPERANDS
(LENGTH * 8) COUNT

LDB 2,8 GET LENGTH OF OPERANDS IN BYTES
LDA #8 MULTIPLY LENGTH TIMES 8
MUL

PSHS D SAVE BIT COUNT AT TOP OF STACK

DIVIDE USING TRIAL SUBTRACTIONS

CLC START QUOTIENT WITH O BIT

LDX 7,8 POINT TO BASE ADDRESS OF DIVIDEND
LDB 4,8 GET LENGTH OF OPERANDS IN BYTES

SHIFT QUOTIENT AND LOWER DIVIDEND LEFT ONE BIT

ROL
DECB

,X+ SHIFT BYTE OF QUOTIENT/DIVIDEND LEFT
CONTINUE THROUGH ALL BYTES

78

+

SHFTRM:

+ + +

SUBDVS:

+ + + +

SETUP:

PLCDV:

Assembly language subroutines for the 6809

BNE SHFTQU

SHIFT UPPER DIVIDEND LEFT WITH CARRY FROM LOWER DIVIDEND

LDX

LDB

ROL

DECB

BNE

HDEPTR
4,8

Xt

SHFTRM

POINT TO BASE ADDRESS OF UPPER DIVIDEND

GET LENGTH OF OPERANDS IN BYTES

SHIFT BYTE OF UPPER DIVIDEND LEFT

CONTINUE THROUGH ALL BYTES

TRIAL SUBTRACTION OF DIVISOR FROM DIVIDEND
SAVE DIFFERENCE IN CASE IT IS NEEDED LATER

LDU

LDX

LDY

LDB

CLC

LDA

SBCA
STA
DECB
BNE

DIFPTR

HDEPTR

5,8

4,8

Xt

7Y¥+

,Ut+

SUBDVS

POINT TO DIFFERENCE

POINT TO UPPER DIVIDEND
POINT TO DIVISOR

GET LENGTH OF OPERANDS IN BYTES
CLEAR BORROW INITIALLY

GET BYTE OF UPPER DIVIDEND

SUBTRACT BYTE OF DIVISOR WITH BORROW
SAVE DIFFERENCE |

CONTINUE THROUGH ALL BYTES

NEXT BIT OF QUOTIENT IS 1 IF SUBTRACTION WAS SUCCESSFUL,
O IF IT WAS NOT

THIS IS COMPLEMENT OF FINAL BORROW FROM SUBTRACTION

BCC

CLC

BRA

RPLCDV

SETUP

BRANCH IF SUBTRACTION WAS SUCCESSFUL,
* I.E., IT PRODUCED NO BORROW

OTHERWISE, TRIAL SUBTRACTION FAILED SO

* MAKE NEXT BIT OF QUOTIENT ZERO

TRIAL SUBTRACTION SUCCEEDED, SO REPLACE UPPER DIVIDEND
WITH DIFFERENCE BY SWITCHING POINTERS

SET NEXT BIT OF QUOTIENT TO 1

LDX

LDU

STU

STX

SEC

DECREMENT

LDX

LEAX

STX
BNE

HDEPTR

DIFPTR

HDEPTR

DIFPTR

16-BIT

7s

-1,8

79

SHFTST

GET HIGH DIVIDEND POINTER

GET DIFFERENCE POINTER

NEW HIGH DIVIDEND = DIFFERENCE

USE OLD HIGH DIVIDEND FOR NEXT DIFFERENCE
SET NEXT BIT OF QUOTIENT TO 1

BIT COUNT BY 1

GET SHIFT COUNT

DECREMENT SHIFT COUNT BY 1

CONTINUE UNLESS SHIFT COUNT EXHAUSTED

SHIFT LAST CARRY INTO QUOTIENT IF NECESSARY

LASTSH:

*

*

*

GOODRT:

*

*

*

DVEXIT:

*

*

*

HDEPTR:

DIFPTR:

HIDE1:

HIDE2:

+ + &

SC3F:

* DATA

3F Multiple-precision binary division (MPBDIV) 79

LEAS

BCC

LDX
LDB

ROL

DECB

BNE

2,8

GOODRT

3,8
2,8

7Xt+

LASTSH

REMOVE SHIFT COUNTER FROM STACK
BRANCH IF NO CARRY

POINT TO LOWER DIVIDEND/QUOTIENT
GET LENGTH OF OPERANDS IN BYTES

SHIFT BYTE OF QUOTIENT

CONTINUE THROUGH ALL BYTES

CLEAR CARRY TO INDICATE NO ERRORS

CLC CLEAR CARRY - NO DIVIDE-BY-ZERO ERROR

REMOVE PARAMETERS FROM STACK AND EXIT

LDX
LDU

LEAS

JMP

DATA

RMB

RMB

RMB

RMB

HDEPTR

79

7,S

7U

2
2

255
255

SAMPLE EXECUTION

LDX

LDY

LDA

PSHS

JSR

BRA

AY1ADR

AY2ADR

#SZAYS

A,X,Y

MPBDIV

SC3F

GET BASE ADDRESS OF REMAINDER
SAVE RETURN ADDRESS

REMOVE PARAMETERS FROM STACK

EXIT TO RETURN ADDRESS

POINTER TO HIGH DIVIDEND

POINTER TO DIFFERENCE BETWEEN HIGH
* DIVIDEND AND DIVISOR

HIGH DIVIDEND BUFFER 1

HIGH DIVIDEND BUFFER 2

GET DIVIDEND
GET DIVISOR

LENGTH OF ARRAYS IN BYTES
SAVE PARAMETERS IN STACK

MULTIPLE-PRECISION BINARY DIVISION

*RESULT OF 14B60404H / 1234H = 12345H
* IN MEMORY AY1 = 45H

* AY1+1 = 23H
* AY1+2 = O1H

* AY1+3 = OOH
* AY1+4 = OOH

* AY1+5 = OOH
* AY1+6 = OOH

80

SZAYS

AY1ADR
AY2ADR

AY1:

AY2:

Assembly language subroutines for the 6809

EQU

FDB

FOB

FCB
FCB

7 LENGTH OF ARRAYS IN BYTES

AY1 BASE ADDRESS OF ARRAY 1 (DIVIDEND)
AY2 BASE ADDRESS OF ARRAY 2 (DIVISOR)

$04,$04,$B86,$14,0,0,0,0
$34,$12,0,0,0,0,0,0

3G Multiple-precision binary comparison (MPBCMP) 81

3G _ Multiple-precision binary comparison
(MPBCMP}.

Compares two multi-byte unsigned binary numbers and sets the Carry
and Zero flags. Sets the Zero flag to 1 if the operands are equal and to 0
otherwise. Sets the Carry flag to 1 if the subtrahend is larger than the
minuend and to 0 otherwise. Thus, it sets the flags as if it had subtracted
the subtrahend from the minuend.

Procedure The program compares the operands one byte at a time,
Starting with the most significant bytes and continuing until it finds
corresponding bytes that are not equal. If all the bytes are equal, it exits
with the Zero flag set to 1. Note that the comparison starts with the
operands’ most significant bytes, whereas the subtraction (Subroutine
3D) starts with the least significant bytes.

ac

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Length of the operands in bytes

More significant byte of base address of subtrahend
Less significant byte of base address of subtrahend

More significant byte of base address of minuend
Less significant byte of base address of minuend

Exit conditions

Flags set as if subtrahend had been subtracted from minuend

Zero flag = 1 if subtrahend and minuend are equal, 0 if they are not
equal

Carry flag = 1 if subtrahend is larger than minuend in the unsigned
sense, 0 if it less than or equal to the minuend

nanan

82 Assembly language subroutines for the 6809

Examples

1. Data: Length of operands (in bytes) = 6
Top operand (subtrahend) = 19D028A193EAi6
Bottom operand (minuend) = 4E67BC15A266i6

Result: Zero flag = 0 (operands are not equal)
Carry flag = 0 (subtrahend is not larger than minuend)

2. Data: Length of operands (in bytes) = 6
Top operand (subtrahend) = 19D028A193EA1¢
Bottom operand (minuend) = 19D028A193EAi¢6

Result: Zero flag = 1 (operands are equal)
Carry flag = 0 (subtrahend is not larger than minuend)

3. Data: Length of operands (in bytes) = 6
Top operand (subtrahend) = 19D028A193EA j¢
Bottom operand (minuend) = 0F37E5991D7Ci6

Result: Zero flag = 0 (operands are not equal)
Carry flag = 1 (subtrahend is larger than minuend)

Registers used All

Execution time 20 cycles per byte that must be examined plus
approximately 47 cycles overhead. That is, the program continues until
it finds corresponding bytes that are not the same; each pair of bytes it
must examine requires 20 cycles. There is a savings of 5 cycles if it finds
unequal bytes.

Examples:

1. Comparing two 6-byte numbers that are equal takes

20 X 6 + 47 = 167 cycles

2. Comparing two 8-byte numbers that differ in the next to most
significant bytes takes

20 X 2 + 47 — 5 = 82 cycles

Program Size: 30 bytes

+ + + + + + + He + FH HF HF HF HF HF HF HF HF HF HF HF HF HF HF HF HF KH H HF HF HF HF F HF OH H HF H H KH HN

+ + +

3G Multiple-precision binary comparison (MPBCMP) 83

Data memory required None

Special case A length of 0 causes an immediate exit with both the
Carry flag and the Zero flag set to 1.

Title:

Name:

Purpose:

Entry:

Exit:

Registers Used:

Time:

Size:

Multiple-Precision Binary Comparison
MPBCMP

Compare 2 arrays of binary bytes and

return the Carry and Zero flags set or
cleared

TOP OF STACK

High byte of return address

Low byte of return address

Length of operands in bytes

High byte of subtrahend address

Low byte of subtrahend address
High byte of minuend address

Low byte of minuend address

The arrays are unsigned binary numbers

with a maximum Length of 255 bytes,

ARRAYCO] is the least significant

byte, and ARRAYCLENGTH-1] is the
most significant byte.

IF minuend = subtrahend THEN
C=0,Z=1

IF minuend > subtrahend THEN
C=0,Z=0

IF minuend < subtrahend THEN

C=1,Z=0

IF array length = O THEN
C=1,Z=1

ALL

20 cycles per byte that must be examined plus
47 cycles overhead

Program 30 bytes

CHECK IF LENGTH OF ARRAYS IS ZERO
EXIT WITH SPECIAL FLAG SETTING (C=1, Z=1) IF IT IS

84

MPBCMP:

+ + + €

CMPBYT:

t+ + & +

EXITCP:

+ + + &

SC3G:

*

* DATA
*

SZAYS

AY1ADR
AY2ADR

AY1:

AY2:

Assembly language subroutines for the 6809

LDU
SEC
LDB

BEQ

COMPARE ARRAYS BYTE

a)

2,8
EXITCP

BYTES COMPARED

LDX
LDY
LEAX
LEAY

LDA
CMPA
BNE
DECB
BNE CMPBYT

SAVE RETURN ADDRESS

SET CARRY IN CASE LENGTH IS 0

GET LENGTH OF ARRAYS IN BYTES

BRANCH CEXIT) IF LENGTH IS ZERO
* C=1,Z=1 IN THIS CASE

AT A TIME UNTIL UNEQUAL BYTES ARE FOUND OR ALL

GET BASE ADDRESS OF MINUEND
GET BASE ADDRESS OF SUBTRAHEND

DETERMINE ENDING ADDRESS OF MINUEND

DETERMINE ENDING ADDRESS OF SUBTRAHEND

GET BYTE FROM MINUEND
COMPARE TO BYTE FROM SUBTRAHEND
BRANCH CEXIT) IF BYTES ARE NOT EQUAL

CONTINUE UNTIL ALL BYTES COMPARED
* IF PROGRAM FALLS THROUGH, THEN THE
* ARRAYS ARE IDENTICAL AND THE FLAGS ARE

* SET PROPERLY (C=0,2=1)

REMOVE PARAMETERS FROM STACK AND EXIT

BE CAREFUL NOT TO AFFECT FLAGS (PARTICULARLY ZERO FLAG)

LEAS
JMP

7,8
,U

SAMPLE EXECUTION

LDX
LDY
LDA
PSHS
JSR

EQU

FDB
FDB

FCB
FCB

END

AY1ADR

AY2ADR

#SZAYS
A,X,Y
MPBCMP

7

AY1
AY2

REMOVE PARAMETERS FROM STACK

EXIT TO RETURN ADDRESS

GET BASE ADDRESS OF MINUEND
GET BASE ADDRESS OF SUBTRAHEND
GET LENGTH OF OPERANDS IN BYTES
SAVE PARAMETERS IN STACK
MULTIPLE-PRECISION BINARY COMPARISON
*RESULT OF COMPARE (2F3E4D5CH,175E809FH)
* IS C=0,2=0

LENGTH OF OPERANDS IN BYTES

BASE ADDRESS OF ARRAY 1
BASE ADDRESS OF ARRAY 2

$5€,$4D,$3E,$2F,0,0,0
$9F,$80,$5E,$17,0,0,0

3H Multiple-precision decimal addition (MPDADD) 85

3H Miultiple-precision decimal addition
(MPDADD

Adds two multi-byte unsigned decimal (BCD) numbers. Both numbers
are stored with their least significant digits at the lowest address. The
sum replaces the number with the base address lower in the stack. The
length of the numbers (in bytes) is 255 or less.

Procedure The program clears the Carry flag initially and then adds
the operands one byte (two digits) at a time, starting with the least
significant digits. The final Carry flag indicates whether the overall
addition produced a carry. The sum replaces the operand with the base
address lower in the stack (array 1 in the listing). A length of 0 causes an
immediate exit with no addition.
meee

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Length of the operands in bytes

More significant byte of base address of second operand (address con-
taining the least significant byte of array 2)
Less significant byte of base address of second operand (address con-
taining the least significant byte of array 2)

More significant byte of base address of first operand and sum (address
containing the least significant byte of array 1)
Less significant byte of base address of first operand and sum (address
containing the least significant byte of array 1)

Exit conditions

First operand (array 1) replaced by first operand (array 1) plus second
operand (array 2)
a

Example

Data: — Length of operands (in bytes) = 6
Top operand (array 2) = 1960288193151.6
Bottom operand (array 1) = 2934716059871.

Result: Bottom operand (array 1) = Bottom operand (array 1) +
Top operand (array 2) = 489500425302,.
Carry = 0

en

86

+ oF t Fe Ee OH OF OH OH OE OH OH OOOOH OHO

Assembly language subroutines for the 6809

Registers used A,B,CC,U,X

Execution time 23 cycles per byte plus 36 cycles overhead. For
example, adding two 6-byte operands takes

23 X 6 + 36 = 174 cycles

Program size 26 bytes

Data memory required None

Special case A length of 0 causes an immediate exit with the sum
equal to the bottom operand (i.e. array 1 is unchanged). The Carry flag
is cleared.

Title: Multiple-Precision Decimal Addition

Name: MPDADD

Purpose: Add 2 arrays of BCD bytes
Array? := Array 1 + Array 2

Entry: TOP OF STACK

High byte of return address
Low byte of return address

Length of the arrays in bytes

High byte of array 2 address

Low byte of array 2 address

High byte of array 1 address

Low byte of array 1 address

The arrays are unsigned BCD numbers

with a maximum length of 255 bytes,

ARRAYLO] is the least significant.

byte, and ARRAYCLENGTH-1] is the
most significant byte

Exit: Array? := Array1 + Array2

Registers Used: A,B,CC,U,X

Time: 23 cycles per byte plus 36 cycles overhead

Size: Program 26 bytes

MPDADD:
*

*CHECK IF LENGTH OF ARRAYS IS ZERO
*EXIT WITH CARRY CLEARED IF IT IS

ADDBYT:

ADEXIT:

+

SC3H:

*

* DATA
*

SZAYS

AY1ADR
AY2ADR

AY1:

AY2:

3H Multiple-precision decimal addition (MPDADD) 87

*®

CLC CLEAR CARRY TO START

LDB 2,8 : CHECK LENGTH OF ARRAYS

BEQ ADEXIT BRANCH CEXIT) IF LENGTH IS ZERO
*

*ADD OPERANDS 2 DIGITS AT A TIME
* .

LDX 5,S GET BASE ADDRESS OF ARRAY 1

LDU 3,8 GET BASE ADDRESS OF ARRAY 2

LDA ,U+ GET 2 DIGITS FROM ARRAY 2

ADCA 7X ADD 2 DIGITS FROM ARRAY 1 WITH CARRY
DAA MAKE ADDITION DECIMAL
STA Xt SAVE SUM IN ARRAY 1
DECB

BNE ADDBYT CONTINUE UNTIL ALL DIGITS SUMMED
*

*REMOVE PARAMETERS FROM STACK AND EXIT
*

LDX a) SAVE RETURN ADDRESS

LEAS 7,8 REMOVE PARAMETERS FROM STACK
JMP 7X EXIT TO RETURN ADDRESS

SAMPLE EXECUTION

LDY AY1ADR GET FIRST OPERAND

LDX AY2ADR GET SECOND OPERAND

LDA #SZAYS LENGTH OF OPERANDS IN BYTES
PSHS A,X,Y SAVE PARAMETERS IN STACK

JSR MPDADD MULTIPLE-PRECISION BCD ADDITION

*RESULT OF 12345678H + 35914028H
* = 48259706H
* IN MEMORY AY1 = 06H

* AY1+1 = 97H

* AY1+2 = 25H

* AY1+3 = 48H
* AY1+4 = OOH

* AY1+5 = OOH

* AY1+6 = QOH

BRA SC3H REPEAT TEST

EQU 7 LENGTH OF OPERANDS IN BYTES

FOB AY1 BASE ADDRESS OF ARRAY 1

FDB AY2 BASE ADDRESS OF ARRAY 2

FCB $78,$56,$34,$12,0,0,0

FCB $28,$40,$91,$35,0,0,0

88 Assembly language subroutines for the 6809

31 Multiple-precision decimal subtraction
(MPDSUB)

Subtracts two multi-byte unsigned decimal (BCD) numbers. Both are
stored with their least significant digits at the lowest address. The
subtrahend (number to be subtracted) is stored on top of the minuend
(number from which it is subtracted). The difference replaces the min-
uend. The length of the numbers (in bytes) is 255 or less.

Procedure The program first clears the Carry flag and then subtracts
the subtrahend from the minuend one byte (two digits) at a time,
starting with the least significant digits. It does the decimal subtraction
by forming the ten’s complement of the subtrahend and adding it to the
minuend. The final Carry flag indicates (in an inverted sense) whether
the overall subtraction required a borrow. A length of 0 causes an
immediate exit with no subtraction.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Length of the operands in bytes

More significant byte of base address of subtrahend
Less significant byte of base address of subtrahend

More significant byte of base address of minuend
Less significant byte of base address of minuend

Exit conditions

Minuend replaced by minuend minus subtrahend

Example

Data: | Length of operands (in bytes) = 6
Minuend = 2934716059876
Subtrahend = 1960288193151.

+ + © € + € * He He + HF HF HF HF HF HH HH HF HF SF HF HF HF HF HF OF

3! Multiple-precision decimal subtraction (MPDSUB) 89

Result: Minuend = 0974427866721.

Carry = 1, since no borrow is necessary

Registers used A,B, CC, U, X

Execution time 27 cycles per byte plus 36 cycles overhead. For
example, subtracting two 6-byte operands takes

27 X 6 + 36 = 198 cycles

Program size 30 bytes

Data memory required None

Special case A length of 0 causes an immediate exit with the minuend
unchanged (i.e., the difference is equal to the minuend). The Carry flag
is set (1).

Title: Multiple-Precision Decimal Subtraction
Name: MPDSUB

Purpose: Subtract 2 arrays of BCD bytes

Minuend := Minuend - Subtrahend

Entry: TOP OF STACK

High byte of return address

Low byte of return address

Length of the operands in bytes
High byte of subtrahend address

Low byte of subtrahend address
High byte of minuend address

Low byte of minuend address

The arrays are unsigned BCD numbers with a

maximum length of 255 bytes, ARRAYLO] is the

least significant byte, and ARRAYLCLENGTH-1]
the most significant byte.

90 Assembly language subroutines for the 6809

* Exit: Minuend : = Minuend - Subtrahend
*

* Registers Used: A,B,CC,U,X
*

* Time: 27 cycles per byte plus 36 cycles overhead
*

* Size: Program 30 bytes
*

*

*

MPDSUB:
*

*CHECK IF LENGTH OF ARRAYS IS ZERO

*EXIT WITH CARRY SET IF IT IS

*

SEC SET CARRY TO START

LDB 2,8 CHECK LENGTH OF ARRAYS

BEQ SBEXIT BRANCH (CEXIT) IF LENGTH IS ZERO

*

*SUBTRACT OPERANDS 2 DIGITS AT A TIME BY ADDING TEN'S

* COMPLEMENT OF SUBTRAHEND TO MINUEND

*CARRY IS INVERTED BORROW IN TEN'S COMPLEMENT ARITHMETIC

*NOTE THAT DAA WORKS ONLY AFTER ADDITION INSTRUCTIONS

*BYTE OF TEN'S COMPLEMENT = 99 HEX + INVERTED BORROW

* - BYTE OF SUBTRAHEND. RESULT IS ALWAYS NON-NEGATIVE

* AND CARRY AND HALF CARRY ARE ALWAYS 0, SO NO PROBLEM

* WITH SUBTRACTING BCD OPERANDS
*

LDX 5,5 GET BASE ADDRESS OF MINUEND

LDU 3,8 GET BASE ADDRESS OF SUBTRAHEND

SUBBYT:

LDA #$99 FORM 2 DIGITS OF 10'S COMPLEMENT

ADCA #0 OF SUBTRAHEND

SUBA /Ut+

ADDA 7X ADD 2 DIGITS OF MINUEND

DAA MAKE RESULT DECIMAL

STA rX+ SAVE DIFFERENCE OVER MINUEND

DECB

BEQ SUBBYT CONTINUE UNTIL ALL DIGITS SUBTRACTED
*

*REMOVE PARAMETERS FROM STACK AND EXIT

*

SBEXIT:
LDX 9 SAVE RETURN ADDRESS

LEAS 7,8 REMOVE PARAMETERS FROM STACK

JMP Xx EXIT TO RETURN ADDRESS

*

*

* SAMPLE EXECUTION

*

*

SC3I:
LDY AY1ADR GET BASE ADDRESS OF MINUEND

*

* DATA
*

SZAYS

AY1ADR
AY2ADR

AY1:

AYe:

3! Multiple-precision decimal subtraction (MPDSUB) 91

LDX
LDA
PSHS
JSR

BRA

EQU

FDB
FDB

FCB

FCB

END

AY2ADR

#SZAYS
A,X,Y

MPDSUB

SC3I

7

AY1
AY2

GET BASE ADDRESS OF SUBTRAHEND

GET LENGTH OF OPERANDS IN BYTES

SAVE PARAMETERS IN STACK

MULTIPLE-PRECISION DECIMAL SUBTRACTION
*RESULT OF 28364150H-17598093H
* = 10766057H

* IN MEMORY AY1 = 57H

* AY1+1 = 60H

* AY1+2 = 76H
* AY1+3 = 10H

* AY1+4 = OOH
* AY1+5 = OOH
* AY1+6 = OOH
REPEAT TEST

LENGTH OF OPERANDS IN BYTES

BASE ADDRESS OF ARRAY 1
BASE ADDRESS OF ARRAY 2

$50,$41,$36,$28,0,0,0
$93 ,$80,$59,$17,0,0,0

92 Assembly language subroutines for the 6809

3J Miultiple-precision decimal multiplication
(MPDMUL)

Multiplies two multi-byte unsigned decimal (BCD) numbers. Both
numbers are stored with their least significant digits at the lowest
address. The product replaces the multiplicand. The length of the
numbers (in bytes) is 255 or less. Only the less significant bytes of the
product are returned to provide compatibility with other multiple-
precision decimal operations.

Procedure The program handles each digit of the multiplicand separ-
ately. It masks the digit off, shifts it (if it is the upper digit of a byte), and
then uses it as a counter to determine how many times to add the
multiplier to the partial product. The least significant digit of the partial
product is saved as the next digit of the full product, and the partial
product is shifted right 4 bits. The program uses a flag to determine
whether it is currently working with the upper or lower digit of a byte. A
length of 0 causes an exit with no multiplication.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Length of the operands in bytes

More significant byte of base address of multiplicand
Less significant byte of base address of multiplicand

More significant byte of base address of multiplier
Less significant byte of base address of multiplier

Exit conditions

Multiplicand replaced by multiplicand times multiplier

Example

Data: Length of operands (in bytes) = 4

3J Multiple-precision decimal multiplication (MPDMUL) 93

Multiplicand = 00035181.

Multiplier = 00006294.

Result: Multiplicand = 221422826,,

Note that MPDMUL returns only the less significant bytes (i.e. the
number of bytes in the multiplicand and multiplier) of the product to
maintain compatibility with other multiple-precision decimal arithmetic
operations. The more significant bytes of the product are available
starting with their least significant byte at address PROD. The user may
have to check those bytes for a possible overflow or extend the operands
with additional zeros.

eee

Registers used All

Execution time Depends on the length of the operands and on the size
of the digits in the multiplicand (since those digits determine how many
times the multiplier must be added to the partial product). If the average
digit in the multiplicand has a value of 5, then the execution time is
approximately

170 x LENGTH? + 370 x LENGTH + 80 cycles

where LENGTH is the number of bytes in the operands. If, for example,
LENGTH = 6 (12 digits), the approximate execution time is

170 x 67 + 370 x 6 + 80 = 170 X 36 + 2220 + 80
= 6120 + 2300
= 8420 cycles

Program size 164 bytes

Data memory required 511 bytes anywhere in RAM. This is tem-
porary storage for the high bytes of the partial product (256 bytes Starting
at address PROD) and for the multiplicand (255 bytes starting at address
MCAND). Also 3 stack bytes.

Special case A length of 0 causes an immediate exit with the multipli-
cand unchanged. The more significant bytes of the product (starting at
address PROD) are undefined.
me

94 Assembly language subroutines for the 6809

Title: Multiple-Precision Decimal Multiplication

Name: MPDMUL

Purpose: Multiply 2 arrays of BCD bytes

Multiplicand : = Multiplicand * multiplier

Entry: TOP OF STACK

High byte of return address

Low byte of return address

Length of the arrays in bytes

High byte of multiplicand address

Low byte of multiplicand address

High byte of multiplier address

Low byte of multiplier address

The arrays are unsigned BCD numbers

with a maximum length of 255 bytes,

ARRAYLO] is the Least significant

byte, and ARRAYCLENGTH-1] is the

most significant byte.

Exit: Multiplicand := Multiplicand * multiplier

Registers Used: ALL

Time: Assuming average digit value of multiplicand
is 5, then the time is approximately

(170 * lLength*2)+ (370 * Length) + 80 cycles

Size: Program 164 bytes

Data 511 bytes plus 3 stack bytes

+ + ee + HS HF HH KH HH H HF HF HF HF HF HH HF F HF HF HF FF HF HF HF HF HF HF HF HF FF FF + F HF KF OF

*

* TEST LENGTH OF OPERANDS
* EXIT IF LENGTH IS ZERO
*

MPDMUL:
LOB 2,58 GET LENGTH OF OPERANDS IN BYTES
LBEQ EXITML BRANCH CEXIT) IF LENGTH IS ZERO

*

* SAVE DIGIT COUNTER AND UPPER/LOWER DIGIT FLAG ON STACK,
* MAKE ROOM FOR NEXT DIGIT OF MULTIPLICAND ON STACK
*

CLRA CLEAR DIGIT FLAG INITIALLY (LOWER DIGIT)
PSHS A,B SAVE LENGTH, DIGIT FLAG ON STACK
LEAS -1,8 RESERVE SPACE ON STACK FOR NEXT DIGIT

* OF MULTIPLICAND

+ + + +

INITLP:

+ + + HE

+ £€ + +

PROCDG:

MASKDG:

DMULT:

ADBYTE:

3J Multiple-precision decimal multiplication (MPDMUL) 95

SAVE MULTIPLICAND IN TEMPORARY BUFFER (MCAND)

CLEAR PARTIAL PRODUCT CONSISTING OF UPPER BYTES

STARTING AT PROD AND LOWER BYTES REPLACING
MULTIPLICAND

LDX 6,58 GET BASE ADDRESS OF MULTIPLICAND

LDY #MCAND GET BASE ADDRESS OF TEMPORARY BUFFER
LDU #PROD GET BASE ADDRESS OF UPPER PRODUCT

LDA 7X MOVE BYTE OF MULTIPLICAND TO TEMPORARY
STA 7Yt+ BUFFER

CLRA

STA 7,X+ CLEAR BYTE OF LOWER PRODUCT

STA ,U+ CLEAR BYTE OF UPPER PRODUCT
DECB

BNE INITLP CONTINUE THROUGH ALL BYTES

STA /U CLEAR OVERFLOW BYTE ALSO

LOOP THROUGH ALL BYTES OF MULTIPLICAND

USE EACH DIGIT TO DETERMINE HOW MANY TIMES TO ADD
MULTIPLIER TO PARTIAL PRODUCT

LDU #MCAND POINT TO FIRST BYTE OF MULTIPLICAND

LOOP THROUGH 2 DIGITS PER BYTE
DURING LOWER DIGIT,

DURING UPPER DIGIT,

| oO DIGIT FLAG =

DIGIT FLAG = FF HEX

LDA ,U GET BYTE OF MULTIPLICAND
LDB 1,8 GET DIGIT FLAG

BEQ MASKDG BRANCH IF ON LOWER DIGIT

LSRA SHIFT UPPER DIGIT TO LOWER DIGIT
LSRA

LSRA

LSRA

ANDA #S0F MASK OFF CURRENT DIGIT

BEQ MOVDIG BRANCH (SKIP ADDITION) IF DIGIT IS ZERO
STA 79 SAVE DIGIT ON STACK

ADD MULTIPLIER TO PRODUCT NUMBER OF TIMES GIVEN BY
DIGIT OF MULTIPLICAND

LDB 5,58 GET LENGTH OF OPERANDS

LDY #PROD GET BASE ADDRESS OF PRODUCT

LDX 8,58 GET BASE ADDRESS OF MULTIPLIER

CLC CLEAR CARRY INITIALLY

LDA 7Xt+ GET NEXT BYTE OF MULTIPLIER

ADCA rv ADD TO BYTE OF UPPER PRODUCT
DAA MAKE SUM DECIMAL

STA 7Yt+ STORE AS NEW PRODUCT

DECB DECREMENT LOOP COUNTER

BNE ADBYTE CONTINUE UNTIL LOOP COUNTER = O

96

+ + +

MOVDIG:

LOWDGT:

*
*

*

SHFPRD:

SETSHF:

SHFARY:

+

HIDIG:

Assembly language subroutines for the 6809

LDA 7X ADD CARRY TO OVERFLOW BYTE

ADCA #0
DAA MAKE SUM DECIMAL
STA Pal SAVE NEW OVERFLOW BYTE
DEC 79 DECREMENT NUMBER OF ADDITIONS
BNE ADMULT CONTINUE UNITL ALL ADDITIONS DONE

STORE THE LEAST SIGNIFICANT DIGIT OF UPPER PRODUCT AS
THE NEXT DIGIT OF MULTIPLICAND

LDX 6,8 GET BASE ADDRESS OF MULTIPLICAND
LDY #PROD GET BASE ADDRESS OF UPPER PRODUCT
LDB ry GET LEAST SIGNIFICANT BYTE OF PRODUCT
ANDB #S0F MASK OFF LOWER DIGIT
LDA 1,8 GET DIGIT FLAG
BEQ LOWDGT BRANCH IF ON LOWER DIGIT
ASLB ELSE SHIFT PRODUCT DIGIT TO UPPER DIGIT

ASLB

ASLB
ASLB
ADDB 7X ADD TO UPPER DIGIT OF MULTIPLICAND BYTE

STB 7X+
BRA SHFPRD BRANCH TO SHIFT PRODUCT

STB 7X STORE DIGIT IN MULTIPLICAND

SHIFT PARTIAL PRODUCT RIGHT 1 DIGIT (4 BITS)

LDA #4 SHIFT ONE DIGIT (4 BITS)

LDB 5,8 GET LENGTH

INCB SHIFT LENGTH+1 BYTES TO INCLUDE OVERFLOW
LDY #PROD POINT TO PARTIAL PRODUCT
LEAY B,Y POINT PAST OVERFLOW BYTE
CLC CLEAR CARRY INTO OVERFLOW

ROR 77Y SHIFT BYTE OF PRODUCT RIGHT
DECB CONTINUE THROUGH ALL BYTES

BNE SHFARY
DECA DECREMENT SHIFT COUNT
BNE SETSHF CONTINUE THROUGH 4 1-BIT SHIFTS

CHANGE OVER TO NEXT DIGIT IF ON LOWER DIGIT

LDA #3 FF GET UPPER DIGIT MARKER
CMPA 1,8 COMPARE TO DIGIT FLAG
BEQ HIDIG BRANCH IF ON UPPER DIGIT
STA 1,8 ELSE SET DIGIT FLAG TO UPPER DIGIT
BRA PROCDG PROCESS NEXT DIGIT

MOVE ON TO NEXT BYTE IF ON UPPER DIGIT

CLR 1,8 CLEAR DIGIT FLAG TO INDICATE LOW DIGIT

*

*

*

EXITML:

PROD:

MCAND:

+ £€ + &

SC3J:

SZAYS

AY1ADR
AY2ADR

AY1:

AY2:

3J Multiple-precision decimal multiplication (MPDMUL) 97

LEAU

LDD

ADDD

STD

DEC

BNE

LEAS

a)
a)
ROCDG
S

PROCEED TO NEXT BYTE OF MULTIPLICAND
GET MULTIPLICAND POINTER
POINT TO NEXT BYTE

SAVE MULTIPLICAND POINTER

DECREMENT DIGIT COUNTER
PROCESS NEXT DIGIT

REMOVE TEMPORARY STORAGE FROM STACK

REMOVE PARAMETERS FROM STACK AND EXIT

LDU
LEAS
JMP

DATA

RMB
RMB

79

,U

256
255

SAMPLE EXECUTION

LDX
LDY
LDA

PSHS
JSR

BRA

EQU

FDB

FDB

FCB

FCB

AY1ADR
AY2ADR

#SZAYS
A,X,Y

MPDMUL

SC3J

7

AY1

AY2

$34,$12
$18 ,$57

,0
70

GET RETURN ADDRESS

REMOVE PARAMETERS FROM STACK
EXIT TO RETURN ADDRESS

PRODUCT BUFFER WITH OVERFLOW BYTE
MULTIPLICAND BUFFER

GET MULTIPLICAND
GET MULTIPLIER

GET LENGTH OF ARRAYS IN BYTES
SAVE PARAMETERS IN STACK

MULTIPLE-PRECISION DECIMAL MULTIPLICATION
*RESULT OF 1234H * 5718H = 7056012H
* IN MEMORY AY1 = 12H

* AY1+1 = 60H
* AY1+2 = O5H
* AY1+3 = O7H

* AY1+4 = OOH
* AY1+5 = OOH
* AY1+6 = OOH
REPEAT TEST

LENGTH OF ARRAYS IN BYTES

BASE ADDRESS OF ARRAY 1

BASE ADDRESS OF ARRAY 2

98 Assembly language subroutines for the 6809

3K Multiple-precision decimal division
(MPDDIV)

Divides two multi-byte unsigned decimal (BCD) numbers. Both
numbers are stored with their least significant digits at the lowest
address. The quotient replaces the dividend; the base address of the
remainder is also returned. The length of the numbers (in bytes) is 255
or less. The Carry flag is cleared if no errors occur; if a divide by 0 is
attempted, the Carry flag is set to 1, the dividend is unchanged, and the
remainder is set to 0.

Procedure The program divides by determining how many times the
divisor can be subtracted from the dividend. It saves that number in the
quotient, makes the remainder into the new dividend, and rotates the
dividend and the quotient left one digit. The program subtracts using
ten’s complement arithmetic; the divisor is therefore replaced by its
nine’s complement to increase speed.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Length of the operands in bytes

More significant byte of base address of divisor
Less significant byte of base address of divisor

More significant byte of base address of dividend
Less significant byte of base address of dividend

Exit Conditions

Dividend replaced by dividend divided by divisor
If the divisor is non-zero, Carry = 0 and the result is normal
If the divisor is zero, Carry = 1, the dividend is unchanged, and the
remainder Is zero
The base address of the remainder (i.e. the address of its least significant
digits) is in register X. The divisor is replaced by its nine’s complement

3K Multiple-precision decimal division (MPDDIV) 99

Example

Data: Length of operands (in bytes) = 4
Dividend = 221422984.
Divisor = 00006294.

Result: Dividend = 00003518;¢

Remainder (base address in X) = 00000006,,
Carry = 0, indicating no divide-by-0 error

Registers used All

Execution time Depends on the length of the operands and on the
size of the digits in the quotient (determining how many times the
divisor must be subtracted from the dividend). If the average digit in the
quotient has a value of 5, the execution time is approximately

410 x LENGTH? + 750 x LENGTH + 150 cycles

where LENGTH is the length of the operands in bytes. If, for example,
LENGTH = 6 (12 digits), the approximate execution time is

410 x 67 + 750 x 6 + 150 = 410 x 36 + 4500 + 150
= 14760 + 4650
= 19410 cycles

Program size 169 bytes

Data memory required 514 bytes anywhere in RAM. This includes
the buffers holding either the high dividend or the result of the trial
subtraction (255 bytes each starting at addresses HIDE1 and HIDE2,
respectively), and the pointers that assign the buffers to specific pur-
poses (2 bytes each starting at addresses HDEPTR and DIFPTR,
respectively). Also 3 stack bytes.

Special cases

1. A length of 0 causes an immediate exit with the Carry flag cleared,
the quotient equal to the original dividend, and the remainder
undefined.
2. A divisor of 0 causes an exit with the Carry flag set to 1, the quotient
equal to the original dividend, and the remainder equal to 0.

100

+ + + & He He He HE He HH HEH HE HF HH FH FF HE HF HF HH HF HF HF HF HF HF HH HF HH HF HF HF HF HF HF HF HF HF HF HF HF KF

Assembly language subroutines for the 6809

Title: Multiple-Precision Decimal Division

Name: MPDDIV

Purpose: Divide 2 arrays of BCD bytes

Quotient := Dividend / divisor

Entry: TOP OF STACK

High byte of return address

Low byte of return address

Length of operands in bytes
High byte of divisor address

Low byte of divisor address

High byte of dividend address
Low byte of dividend address

The arrays are unsigned BCD numbers

with a maximum Length of 255 bytes,
ARRAYCO] is the least significant

byte, and ARRAYCLENGTH-1] is the
most significant byte.

Exit: Dividend := dividend / divisor

If no errors then

Carry := 0
Dividend unchanged

remainder := 0

Registers Used: ALL

Time: Assuming the average digit value in the

quotient is 5, then the time is approximately
(410 * lLength”™2) + (750 * Length) + 150
cycles

Size: Program 169 bytes

Data 510 bytes plus 3 stack bytes

*

* CHECK LENGTH OF OPERANDS

* EXIT WITH CARRY CLEARED IF LENGTH IS ZERO

*

MPDDIV:

*

CLC CLEAR CARRY IN CASE OF ZERO LENGTH
LDB 2,S GET LENGTH OF OPERANDS

LBEQ EXITDV BRANCH (EXIT) IF LENGTH IS ZERO

SET UP HIGH DIVIDEND AND DIFFERENCE POINTERS

CLEAR HIGH DIVIDEND AND DIFFERENCE ARRAYS

+ + +

CLRHI:

+

CHKZRO:

*

*

*

NINESC:

NINESB:

+ + +

*

*

*

DIGSET:

3K Multiple-precision decimal division (MPDDIV) 101

ARRAYS 1 AND 2 ARE USED INTERCHANGEABLY FOR THESE TWO
PURPOSES. THE POINTERS ARE SWITCHED WHENEVER A
TRIAL SUBTRACTION SUCCEEDS

LDX
STX
LDU

STU
CLRA

STA
STA
DECB
BNE

#HIDE1

HDEPTR

#HIDE2
DIFPTR

Xt

,U+

CLRHI

GET BASE ADDRESS OF ARRAY 1
DIVIDEND POINTER = ARRAY 1

GET BASE ADDRESS OF ARRAY 2
DIFFERENCE POINTER = ARRAY 2
GET ZERO FOR CLEARING

CLEAR BYTE OF ARRAY 1

CLEAR BYTE OF ARRAY 2

CONTINUE THROUGH ALL BYTES

CHECK WHETHER DIVISOR IS ZERO - EXIT WITH CARRY SET IF IT IS

LDB

LDX

LDA
BNE

DECB

BNE
SEC

LBRA

CHKZRO

EXITDV

GET LENGTH OF OPERANDS
POINT TO DIVISOR

GET BYTE OF DIVISOR

BRANCH (EXIT) IF BYTE IS NOT ZERO
CONTINUE THROUGH ALL BYTES

ALL BYTES ARE ZERO - SET CARRY AND EXIT
INDICATING DIVIDE-BY-ZERO ERROR

TAKE NINES COMPLEMENT OF DIVISOR TO SIMPLIFY SUBTRACTION

LDB

LDX

LDA
SUBA
STA
DECB

BNE

SET COUNT
COUNT

LDB
CLRA
ASLB
ROLA
ADDD
PSHS
CLR

NINESB

GET LENGTH OF OPERANDS
POINT TO DIVISOR

TAKE NINES COMPLEMENT OF EACH BYTE

CONTINUE THROUGH ALL BYTES

TO NUMBER OF DIGITS PLUS 1
LENGTH * 2 + 1

2,8

7S

GET LENGTH OF OPERANDS

EXTEND LENGTH TO 16 BITS
MULTIPLY LENGTH TIMES 2

2 * LENGTH + 1

SAVE DIGIT COUNT ON STACK

SAVE TENS COUNT ON STACK

SET UP FOR DIGIT SHIFT

LDY
LEAY
STY

-1,Y
1,8

GET DIGIT COUNT

DECREMENT DIGIT COUNT

SAVE DECREMENTED DIGIT COUNT

102

*

*

*

DIGSHF:

*

*

*

SHFTQU:

+

SHFTUP:

+ + & &

SETSUB:

SUBDVS:

+ + +

Assembly language subroutines for the 6809

BEQ

LDA

CHKTNS

#4

DIGIT SHIFT

LDX
LSL
LDB

79

5,8

BRANCH IF ALL DIGITS DONE

FOUR BITS PER DIGIT

POINT TO DIVIDEND

SHIFT HIGH BIT INTO CARRY

GET LENGTH OF OPERANDS

SHIFT QUOTIENT AND LOWER DIVIDEND LEFT ONE BIT

ROL

DECB

BNE SHFTQU

SHIFT BYTE OF QUOTIENT/DIVIDEND LEFT

CONTINUE THROUGH ALL BYTES

SHIFT UPPER DIVIDEND LEFT WITH CARRY FROM LOWER DIVIDEND

LDX

LDB

ROL

DECB

BNE

DECA

BNE

HDEPTR

5,5

SHFTUP

DIGSHF

POINT TO BASE ADDRESS OF UPPER DIVIDEND

GET LENGTH OF OPERANDS

SHIFT BYTE OF UPPER DIVIDEND LEFT

CONTINUE THROUGH ALL BYTES

DECREMENT DIGIT BIT COUNT

LOOP UNTIL DONE

PERFORM DIVISION BY TRIAL SUBTRACTIONS

KEEP REMAINDER IN CASE IT IS NEEDED LATER

FINAL CARRY IS AN INVERTED BORROW

CLR

LDU

LDX

LDY

LDB

SEC

LDA
ADCA

DAA

STA

DECB

BNE

a)

DIFPTR

HDEPTR

5,58

7Y¥t+

SUBDVS

TENS COUNTER = O

POINT TO DIFFERENCE

POINT TO UPPER DIVIDEND

POINT TO DIVISOR

GET LENGTH OF OPERANDS IN BYTES

SET INVERTED BORROW INITIALLY

* TO FORM 10'S COMPLEMENT

GET BYTE OF HIGH DIVIDEND
SUBTRACT BYTE OF DIVISOR BY ADDING
* BYTE OF NINE'S COMPLEMENT

MAKE DIFFERENCE DECIMAL

SAVE DIFFERENCE

CONTINUE THROUGH ALL BYTES

IF DIFFERENCE IS POSITIVE (CARRY SET), REPLACE HIGH

DIVIDEND WITH DIFFERENCE AND ADD 10 TO 10'S COUNT

BCC
LDX
LDU
STU

DIGSET

HDEPTR

DIFPTR

HDEPTR

BRANCH IF DIFFERENCE IS NEGATIVE

GET HIGH DIVIDEND POINTER

GET DIFFERENCE POINTER

NEW HIGH DIVIDEND = DIFFERENCE

*

*

*

CHKTNS:

CSHIFT:

LSTSHF:

GOODRT:

*

*

*

EXITDV:

*

*

*

HDEPTR:

DIFPTR:

HIDE1:

HIDE2:

+ + & &

SC3K:

3K Multiple-precision decimal division (MPDDIV) 103

STX

LDA

ADDA

STA

BRA

DIFPTR

#$10

79

yo)

SETSUB

USE OLD HIGH DIVIDEND FOR NEXT DIFFERENCE
ADD 10 TO 10'S COUNT

SAVE SUM ON STACK

CONTINUE WITH TRIAL SUBTRACTIONS

DO LAST SHIFT IF TENS COUNT IS NOT ZERO

LDA

LEAS
BEQ
PSHS
LDA

LDX
LDB

LSL

ROL

DECB

BNE

DECA

BNE

LEAS

CLC

a)

3,8
GOODRT

LSTSHF

CSHIFT

1,8

GET TENS COUNT

REMOVE TEMPORARIES FROM STACK

BRANCH IF TENS COUNT IS ZERO

SAVE TENS COUNT

4 BIT SHIFT TO MOVE DIGIT

POINT TO QUOTIENT
GET LENGTH OF OPERANDS

SHIFT TENS COUNT INTO CARRY

SHIFT QUOTIENT LEFT 1 BIT

CONTINUE THROUGH ALL BYTES

CONTINUE THROUGH 4 BIT SHIFT

REMOVE TEMPORARY STORAGE FROM STACK

CLEAR CARRY FOR GOOD RETURN

REMOVE PARAMETERS FROM STACK AND EXIT

LDX
LDU

LEAS
JMP

DATA

RMB

RMB

RMB

RMB

HDEPTR

79

,U

255
255

SAMPLE EXECUTION

LDX

LDY

LDA

PSHS

AY1ADR

AY2ADR

#SZAYS
A,X,Y

GET BASE ADDRESS OF REMAINDER

SAVE RETURN ADDRESS

REMOVE PARAMETERS FROM STACK

EXIT TO RETURN ADDRESS

POINTER TO HIGH DIVIDEND

POINTER TO DIFFERENCE BETWEEN HIGH
* DIVIDEND AND DIVISOR

HIGH DIVIDEND BUFFER 1

HIGH DIVIDEND BUFFER 2

GET DIVIDEND

GET DIVISOR

LENGTH OF ARRAYS IN BYTES

SAVE PARAMETERS IN STACK

104

SZAYS

AY1ADR
AY2ADR

AY1:

AY2:

Assembly language subroutines for the 6809

JSR

BRA

EQU

FDB
FDB

FCB

FCB

END

MPDDIV

SC3K

7

AY1
AY2

MULTIPLE-PRECISION DECIMAL DIVISION

*RESULT OF 3822756 / 1234 = 3097
* IN MEMORY AY1 = 97H

* AY1+1 = 30H
* AY1+2 = OOH
* AY1+3 = QOH

* AY1+4 = OOH
* AY1+5 = OOH

* AY1+6 = QOH

REPEAT TEST

LENGTH OF ARRAYS IN BYTES

BASE ADDRESS OF ARRAY 1 (DIVIDEND)
BASE ADDRESS OF ARRAY 2 (DIVISOR)

$56,$27,%$82,$03,0,0,0
$34,$12,0,0,0,0,0,0

3L Multiple-precision decimal comparison 105

3L Multiple-precision decimal comparison

Compares two multi-byte unsigned decimal (BCD) numbers, setting the
Carry and Zero flags. Sets the Zero flag to 1 if the operands are equal
and to 0 otherwise. Sets the Carry flag to 1 if the subtrahend is larger
than the minuend and to 0 otherwise. It thus sets the flags as if it had
subtracted the subtrahend from the minuend.

Note This program is exactly the same as Subroutine 3G, the
multiple-precision binary comparison, since the form of the operands
does not matter if they are only being compared. See Subroutine 3G for
a listing and other details.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Length of the operands in bytes

More significant byte of base address of subtrahend
Less significant byte of base address of subtrahend

More significant byte of base address of minuend
Less significant byte of base address of minuend

Exit conditions

Flags set as if subtrahend had been subtracted from minuend

Zero flag = 1 if subtrahend and minuend are equal, 0 if they are not
equal

Carry flag = 1 if subtrahend is larger than minuend in the unsigned
sense, 0 if it less than or equal to the minuend

Examples

1. Data: Length of operands (in bytes) = 6
Top operand (subtrahend) = 196528719340;6

106 Assembly language subroutines for the 6809

Result:

2. Data:

Result:

3. Data:

Result:

Bottom operand (minuend) = 45678015326646

Zero flag = 0 (operands are not equal)
Carry flag = 0 (subtrahend is not larger than minuend)

Length of operands (in bytes) = 6
Top operand (subtrahend) = 1965287193404.
Bottom operand (minuend) = 1965287193404.
Zero flag = 1 (operands are equal)
Carry flag = 0 (subtrahend is not larger than minuend)

Length of operands (in bytes) = 6
Top operand (subtrahend) = 1965287193401.
Bottom operand (minuend) = 0737859910746
Zero flag = 0 (operands are not equal)
Carry flag = 1 (subtrahend is larger than minuend)

Bit manipulation and
shifts

4A _ Bit field extraction
(BFE)

Extracts a field of bits from a word and returns it in the least significant
bit positions. The width of the field and its lowest bit position are
specified.

Procedure The program obtains a mask consisting of right-justified 1
bits covering the width of the field. It shifts the mask left to align it with
the specified lowest bit position and obtains the field by logically
ANDing the mask with the data. It then normalizes the bit field by
shifting it right to make it start in bit 0.
we

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Starting (lowest) bit position in the field (0-15)

Width of the field in bits (0-15)

More significant byte of data
Less significant byte of data

107

108 Assembly language subroutines for the 6809

Exit conditions

Bit field in register D (normalized to bit 0)

Examples

1. Data: Value = F67Cy46 = 1111011001111100,

Lowest bit position = 4
Width of field in bits = 8

Result: Bit field = 0067;. = 0000000001100111,
We have extracted 8 bits from the original data, starting
with bit 4 (i.e. bits 4-11).

2. Data: Value = A2D4,. = 1010001011010100,

Lowest bit position = 6
Width of field in bits = 5

Result: Bit field = 000B;. = 0000000000001011,
We have extracted 5 bits from the original data, starting
with bit 6 (i.e. bits 6-10).

Registers used A,B,CC,U,xX

Execution time 27 x LOWEST BIT POSITION plus 85 cycles over-
head. The lowest bit position determines how many times the program
must shift the mask left and the bit field right. For example, if the field
starts in bit 6, the execution time is

27 X 6 + 85 = 162 + 85 = 247 cycles

Program size 67 bytes (including the table of masks)

Data memory required None

Special cases

1. Requesting a field that would extend beyond the end of the word
causes the program to return with only the bits through bit 15. That is,

+ t+ + + + + HH + HF FH HF HF HF HF HF HF HF FF HF H HH H HF HF HF F HF HF HF H He KH H H HF HF HF

BFE:

+

4A_ Bit field extraction (BFE) 109

no wraparound is provided. If, for example, the user asks for a 10-bit
field starting at bit 8, the program will return only 8 bits (bits 8 — 15).

2. Both the lowest bit position and the number of bits in the field are
interpreted mod 16. That is, for example, bit position 17 is equivalent to
bit position 1 and a field of 20 bits is equivalent to a field of 4 bits.

3. Requesting a field of zero width causes a return with a result of 0.

Title: Bit Field Extraction

Name: BFE

Purpose: Extract a field of bits from a 16-bit
word and return the field normalized
to bit QO.

NOTE: IF THE REQUESTED FIELD IS TOO

LONG, THEN ONLY THE BITS THROUGH
BIT 15 WILL BE RETURNED. FOR
EXAMPLE, IF A 4 BIT FIELD IS

REQUESTED STARTING AT BIT 15, THEN
ONLY 1 BIT (BIT 15) WILL BE
RETURNED.

Entry: TOP OF STACK

High byte of return address

Low byte of return address

Lowest (starting) bit position in

the field (0..15)

Width of field in bits (1..16)
High byte of data

Low byte of data

Exit: Register D = Field (normalized to bit 0)

Registers Used: A,B,CC,U,X

Time: 85 cycles overhead plus

(27 * lowest bit position) cycles

Size: Program 67 bytes

LDU rs SAVE RETURN ADDRESS

EXIT WITH ZERO RESULT IF WIDTH OF FIELD IS ZERO

110

+ + + +

+ + + +

SHFTMS:

GETFLD:

+ + +

SHFTFL:

*

*

*

EXITBF:

*

Assembly language subroutines for the 6809

CLRB MAKE LOW BYTE OF FIELD ZERO INITIALLY

LDA 3,8 GET FIELD WIDTH
BEQ EXITBF BRANCH (EXIT) IF FIELD WIDTH IS ZERO

* NOTE: RESULT IN D IS ZERO

USE FIELD WIDTH TO OBTAIN EXTRACTION MASK FROM ARRAY

MASK CONSISTS OF A RIGHT-JUSTIFIED SEQUENCE OF 1 BITS

WITH LENGTH GIVEN BY THE FIELD WIDTH

DECA SUBTRACT 1 FROM FIELD WIDTH TO FORM INDEX

ANDA #S$0F BE SURE INDEX IS 0 TO 15
ASLA MULTIPLY BY 2 SINCE MASKS ARE WORD-LENGTH

LEAX MSKARY,PCR GET BASE ADDRESS OF MASK ARRAY
LDX A,X GET MASK FROM ARRAY

SHIFT MASK LEFT LOGICALLY TO ALIGN IT WITH LOWEST BIT

POSITION IN FIELD

LDA 2,8 GET LOWEST BIT POSITION
ANDA #S0F MAKE SURE VALUE IS BETWEEN O AND 15

BEQ GETFLD BRANCH WITHOUT SHIFTING IF LOWEST
* BIT POSITION IS 0

STA 79 SAVE LOWEST BIT POSITION IN STACK TWICE

STA 1,8 TO COUNT SHIFTS OF MASK, RESULT
TFR X,D MOVE MASK TO REGISTER D FOR SHIFTING

ASLB SHIFT LOW BYTE OF MASK LEFT LOGICALLY

ROLA SHIFT HIGH BYTE OF MASK LEFT
DEC PS) CONTINUE UNTIL 1 BITS ALIGNED TO

BNE SHFTMS FIELD'S LOWEST BIT POSITION

OBTAIN FIELD BY LOGICALLY ANDING SHIFTED MASK WITH VALUE

ANDB 5,58 AND LOW BYTE OF VALUE WITH MASK

ANDA 4,8 AND HIGH BYTE OF VALUE WITH MASK

NORMALIZE FIELD TO BIT O BY SHIFTING RIGHT LOGICALLY FROM

LOWEST BIT POSITION

TST 1,8 TEST LOWEST BIT POSITION
BEQ EXITBF BRANCH (EXIT) IF LOWEST POSITION IS 0

LSRA SHIFT HIGH BYTE OF FIELD RIGHT LOGICALLY

RORB SHIFT LOW BYTE OF FIELD RIGHT
DEC 1,8 CONTINUE UNTIL LOWEST BIT OF FIELD IS

BNE SHFTFL IN BIT POSITION 0

REMOVE PARAMETERS FROM STACK AND EXIT

REMOVE PARAMETERS FROM STACK

EXIT TO RETURN ADDRESS
LEAS 6,S

JMP 7VU

ARRAY OF MASKS WITH 1 TO 15 ONE BITS RIGHT-JUSTIFIED

MSKARY:

SC4A:

*DATA

VAL

NBITS
POS

4A

FDB

FDB

FDB

FFB

FDB

FDB

FDB

FDB

FDB

FDB

FDB

FDB

FDB

FDB
FDB

SAMPLE EXECUTION

LDA
LDB
LDX
PSHS
JSR

BRA

FDB

FCB

FCB

Bit field extraction (BFE)

%0000000000000001
%0000000000000011
40000000000000111
%0000000000001111
%0000000000011111
40000000000111111
%0000000001111111
%0000000011111111
%0000000111111111
%0000001111111111
40000011111111111
40000111111111111
4£0001111111111111
40011111111111111
40111111111111111

POS

NBITS
VAL
A,B,X
BFE

SC4A

$1234

GET LOWEST BIT POSITION

GET FIELD WIDTH IN BITS
GET DATA

SAVE PARAMETERS IN STACK
EXTRACT BIT FIELD

*RESULT FOR VAL=1234H, NBITS=4
* POS=4 IS D = 0003H

DATA

FIELD WIDTH IN BITS
LOWEST BIT POSITION

111

112 Assembly language subroutines for the 6809

4B Bit field insertion
(BFI)

Inserts a field of bits into a word. The width of the field and its lowest
(starting) bit position are the parameters.

Procedure The program obtains a mask consisting of right-justified 0
bits covering the width of the field. It then shifts the mask and the bit
field left to align them with the specified lowest bit position. It logically
ANDs the mask and the original data word, thus clearing the required
bit positions, and then logically ORs the result with the shifted bit field.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Starting (lowest) bit position in the field (0-15)

Width of the field in bits (0-15)

More significant byte of bit field (value to insert)
Less significant byte of bit field (value to insert)

More significant byte of data
Less significant byte of data

Exit conditions

Result in register D

The result is the original data value with the bit field inserted, starting at
the specified lowest bit position

Examples

1. Data: Value = F67Ci¢ = 1111011001111100,
Lowest bit position = 4
Number of bits in the field = 8
Bit field = 008B,._ = 0000000010001011,

4B Bit field insertion (BFI) 113

Result: Value with bit field inserted = F8BC,. =
1111100010111100,
The 8-bit field has been inserted into the original value
starting at bit 4 (i.e. into bits 4— 11)

2. Data: Value = A2D4i6 = 1010001011010100,
Lowest bit position = 6
Number of bits in the field = 5
Bit field = 001516 = 0000000000010101,

Result: Value with bit field inserted = A554,. =

1010010101010100,
The 5-bit field has been inserted into the original value
starting at bit 6 (i.e. into bits 6 — 10). Those five bits were
01011, (OBi6) and are now 10101, (1546).

Registers used A,B,CC,U,X

Execution time 30 x LOWEST BIT POSITION plus 91 cycles over-
head. The lowest bit position of the field determines how many times
the program must shift the mask and the field left. For example, if the
starting position is bit 10, the execution time is

30 x 10 + 91 = 300 + 91 = 391 cycles

Program size 67 bytes (including the table of masks)

Data memory required None

Special cases

1. Attempting to insert a field that would extend beyond the end of the
word causes the program to insert only the bits through bit 15. That is,
no wraparound is provided. If, for example, the user attempts to insert a
6-bit field starting at bit 14, only 2 bits (bits 14 and 15) are actually
replaced.

2. Both the lowest bit position and the length of the bit field are
interpreted mod 16. That is, for example, bit position 17 is the same as

114 Assembly language subroutines for the 6809

bit position 1 and a 20-bit field is the same as a 4-bit field.

3. Attempting to insert a field of zero width causes a return with a
result equal to the initial data.

*

*

*

*

* Title:

* Name:

*

*

*

x Purpose:
*

*

*

*

*

*

*

*

* Entry:

*

*

*

*

*

*

*

*

*

*

* Exit:
*

* Registers Used:
*

* Time:
*

*

* Size:
*

*

*

BFI:
LDU

+ EXIT WITH

LOD
TST
BEQ

Po)

Bit Field Insertion

BFI

Inserts a field of bits which is

normalized to bit 0 into a 16-bit word.

NOTE: IF THE REQUESTED FIELD IS TOO LONG, THEN

ONLY THE BITS THROUGH BIT 15 WILL BE

INSERTED. FOR EXAMPLE, IF A 4-BIT FIELD

IS TO BE INSERTED STARTING AT BIT 15,

THEN ONLY THE FIRST BIT WILL BE INSERTED

AT BIT 15.

TOP OF STACK

High byte of return address

Low byte of return address
Bit position at which inserted field will

start (0..15)

Number of bits in the field (1..16)
High byte of value to insert

Low byte of value to insert

High byte of value

Low byte of value

Register D = Value with field inserted

A,B,CC,U,X

91 cycles overhead plus

(30 * Lowest bit position) cycles

Program 6/7 bytes

SAVE RETURN ADDRESS

DATA AS RESULT IF FIELD WIDTH IS ZERO

GET DATA

CHECK FIELD WIDTH

EXITBF BRANCH (EXIT) IF FIELD WIDTH IS ZERO
* RESULT IN D IS ORIGINAL DATA

+ + + +

+ + + €

SHFTLP:

*

*

*

INSERT:

*

*

*

EXITBF:

+ + +

MSKARY:

4B Bit field insertion (BFI) 115

USE FIELD WIDTH TO OBTAIN MASK FROM ARRAY

MASK HAS A NUMBER OF RIGHT-JUSTIFIED O BITS GIVEN
BY FIELD WIDTH

LDA 3,8 GET FIELD WIDTH

DECA CONVERT FIELD WIDTH TO ARRAY INDEX
ANDA #S0F MAKE SURE INDEX IS O TO 15

ASLA MULTIPLY BY 2 SINCE MASKS ARE WORD-LENGTH

LEAX MSKARY,PCR GET BASE ADDRESS OF MASK ARRAY
LDX A,X GET MASK FROM ARRAY

SHIFT MASK AND FIELD TO BE INSERTED LEFT TO ALIGN THEM WITH
THE FIELD'S LOWEST BIT POSITION ©

LDA 2,58 GET LOWEST BIT POSITION

ANDA #30F BE SURE POSITION IS 0 TO 15

BEQ INSERT BRANCH IF POSITION IS O AND NO SHIFTING

* IS NECESSARY

STA 7s SAVE LOWEST POSITION IN STACK FOR USE
* AS COUNTER

TFR X,D MOVE MASK TO REGISTER D FOR SHIFTING

SEC FILL MASK WITH ONES
ROLB SHIFT LOW BYTE OF MASK LEFT, PUTTING A

* 1 IN BIT O

ROLA SHIFT HIGH BYTE OF MASK LEFT
ASL 5,S SHIFT LOW BYTE OF INSERT VALUE LEFT
ROL 4,58 SHIFT HIGH BYTE OF INSERT VALUE LEFT
DEC 7s
BNE SHFTLP CONTINUE UNTIL INSERT VALUE'S LEAST

* SIGNIFICANT BIT IS IN LOWEST BIT
* POSITION

USE MASK TO CLEAR FIELD, THEN OR IN INSERT VALUE

ANDA 6,58 AND HIGH BYTE OF VALUE WITH MASK

ANDB 7,8 AND LOW BYTE OF VALUE WITH MASK

ORA 4,8 OR IN HIGH BYTE OF INSERT VALUE

ORB 3,8 OR IN LOW BYTE OF INSERT VALUE

REMOVE PARAMETERS FROM STACK AND EXIT

LEAS 8,S REMOVE PARAMETERS FROM STACK

JMP ,U EXIT TO RETURN ADDRESS

MASK ARRAY USED TO CLEAR THE BIT FIELD INITIALLY

HAS 0 BITS RIGHT-JUSTIFIED IN 1 TO 15 BIT POSITIONS

FDB 41111111111111110
FDB 4£1111111111111100
FOB 4£1111111111111000

116

+ + & +

SC4B:

*DATA

VAL
VALINS
NBITS

POS

Assembly language subroutines for the 6809

FDB

FDB
FDB

FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB
FDB

41111111111110000
%1111111111100000
41111111111000000
41111111110000000
%41111111100000000
%1111111000000000
%1111110000000000
%1111100000000000
%1111000000000000
%1110000000000000
%1100000000000000
%41000000000000000

SAMPLE EXECUTION

LDA POS
LOB NBITS
LDX VALINS

LDY VAL
PSHS A,B,X,Y

JSR BFI

BRA SC4B

FDB $1234

FDB SOOOE
FCB 4

FCB $OC

END

GET LOWEST BIT POSITION OF FIELD

GET FIELD WIDTH IN BITS

GET VALUE TO INSERT

GET VALUE

SAVE PARAMETERS IN STACK

INSERT BIT FIELD

*RESULT FOR VAL=1234H, VALINS=O0EH,

* NBITS = 4, POS = OCH IS
* REGISTER D = E234H

DATA VALUE

VALUE TO INSERT

FIELD WIDTH IN BITS

LOWEST BIT POSITION IN FIELD

4C Multiple-precision arithmetic shift right (MPASR) 117

4C Multiple-precision arithmetic shift right
(MPASR)

Shifts a multi-byte operand right arithmetically by a specified number of
bit positions. The length of the operand (in bytes) is 255 or less. Sets the
Carry flag from the last bit shifted out of the rightmost bit position. The
operand is stored with its least significant byte at the lowest address.

Procedure The program obtains the sign bit from the most significant
byte, saves that bit in the Carry, and then rotates the entire operand
right 1 bit, starting with the most significant byte. It repeats the opera-
tion for the specified number of shifts.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Number of shifts (bit positions)

Length of the operand in bytes

More significant byte of base address of operand (address of its least
significant byte)
Less significant byte of base address of operand (address of its least
significant byte)

Exit conditions

Operand shifted right arithmetically by the specified number of bit
positions. The original sign bit is extended to the right.

The Carry flag is set from the last bit shifted out of the rightmost bit
position. It is cleared if either the number of shifts or the length of the
operand is 0.

Examples

i. Data: — Length of operand (in bytes) = 8

118 Assembly language subroutines for the 6809

Operand = 85A4C719FE06741E4¢6
Number of shifts = 4

Result: Shifted operand = F85A4C719FE06741 46.
This is the original operand shifted right 4 bits
arithmetically. The four most significant bits thus all take
on the value of the original sign bit (1).
Carry = 1, since the last bit shifted from the rightmost bit
position was 1.

2. Data: Length of operand (in bytes) = 4
Operand = 3F6A42D316
Number of shifts = 3

Result: Shifted operand = O7ED485A4¢.

This is the original operand shifted right 3 bits
arithmetically. The three most significant bits thus all take
on the value of the original sign bit (0).
Carry = 0, since the last bit shifted from the rightmost bit
position was 0).

Registers used A,B,CC,U,X

Execution time NUMBER OF SHIFTS xX (28 + 13 x LENGTH OF
OPERAND IN BYTES) + 50 cycles.

If, for example, NUMBER OF SHIFTS = 6 and LENGTH OF
OPERAND IN BYTES = 8, the execution time is

6 x (28 + 13 x 8) + 50 = 6 X 132 + 50 = 842 cycles

Program size 39 bytes

Data memory required None

Special cases

1. Ifthe length of the operand is 0, the program exits immediately with
the operand unchanged and the Carry flag cleared.

2. Ifthe number of shifts is 0, the program exits immediately with the
operand unchanged and the Carry flag cleared.

+ + + + + + HF HF FE FE HF HF HF HF HF HF HF HF HF HF H HF HF HF HF HF HF HH HF HF HF HF HF HF HF HF KH F

*

4C Multiple-precision arithmetic shift right (MPASR) 119

Title: Multiple-Precision Arithmetic Shift Right
Name: MPASR

Purpose: Arithmetic shift right a multi-byte operand
N bits.

Entry: TOP OF STACK

High byte of return address

Low byte of return address

Number of bits to shift

Length of the operand in bytes

High byte of operand base address

Low byte of operand base address

The operand is stored with ARRAYCO] as its

Least significant byte and ARRAYCLENGTH-1]
as its most significant byte

Exit: Operand shifted right with the most

Significant bit propagated.

Carry := Last bit shifted from least

significant position.

Registers Used: A,B,CC,U,X

Time: 50 cycles overhead plus

(13 * length) + 28 cycles per shift

Size: Program 39 bytes

LDU 79 SAVE RETURN ADDRESS

EXIT IF LENGTH OF OPERAND OR NUMBER OF BITS TO SHIFT
IS ZERO. CARRY IS CLEARED IN EITHER CASE

CLC CLEAR CARRY INITIALLY

LDA 2,8 GET NUMBER OF BITS TO SHIFT

BEQ EXITAS EXIT IF NUMBER OF BITS TO SHIFT IS ZERO
LDA 3,58 GET LENGTH OF OPERAND

BEQ EXITAS EXIT IF LENGTH OF OPERAND IS ZERO

SAVE POINTER TO MOST SIGNIFICANT BYTE OF OPERAND

DECA OFFSET OF MOST SIGNIFICANT BYTE =
* LENGTH OF OPERAND - 1

LDX 4,8 GET BASE ADDRESS OF OPERAND

120

+ + Fe e

ASRLP:

+ + + F

ASRLP1:

+

*

*

*

EXITAS:

t+ + +

SC4C:

*

Assembly language subroutines for the 6809

LEAX A,X POINT TO MOST SIGNIFICANT BYTE

STX 79 SAVE POINTER TO MOST SIGNIFICANT BYTE

SHIFT ENTIRE OPERAND RIGHT ONE BIT ARITHMETICALLY

USE SIGN OF MOST SIGNIFICANT BYTE AS INITIAL CARRY INPUT
TO PRODUCE ARITHMETIC SHIFT

LDX 79 POINT TO MOST SIGNIFICANT BYTE
LDA Xt GET MOST SIGNIFICANT BYTE

ASLA SHIFT BIT 7 TO CARRY FOR SIGN EXTENSION
LDB 3,8 GET LENGTH OF OPERAND IN BYTES

SHIFT EACH BYTE OF OPERAND RIGHT ONE BIT

START WITH MOST SIGNIFICANT BYTE

ROR 7 7X ROTATE NEXT BYTE RIGHT
DECB
BNE ASRLP1 CONTINUE THROUGH ALL BYTES

COUNT NUMBER OF SHIFTS

DEC 2,8 DECREMENT NUMBER OF SHIFTS

BNE ASRLP CONTINUE UNTIL DONE

REMOVE PARAMETERS FROM STACK AND EXIT

LEAS 6,S REMOVE PARAMETERS FROM STACK
JMP ,U EXIT TO RETURN ADDRESS

SAMPLE EXECUTION

LDA SHIFTS GET NUMBER OF SHIFTS

LDB #SZAY GET LENGTH OF OPERAND IN BYTES

LDX AYADR GET BASE ADDRESS OF OPERAND

PSHS A,B,X SAVE PARAMETERS IN STACK

JSR MPASR ARITHMETIC SHIFT RIGHT

*RESULT OF SHIFTING AY=EDCBA087654321H

*4 BITS IS AY=FEDCBA98765432H, C=0

* IN MEMORY AY = 032H

* AY+1 = O54H

x AY+2 = 0O76H
* AY+3 = 098H
* AY+4 = OBAH

* AY+5 = ODCH

* AY+6 = OFEH

BRA SC4C

*DATA SECTION

SZAY

SHIFTS:

AYADR:

AY:

4C Multiple-precision arithmetic shift right (MPASR)

EQU
FCB
FDB
FCB

END

7 LENGTH OF OPERAND IN BYTES
4 NUMBER OF SHIFTS

AY BASE ADDRESS OF OPERAND
$21,$43,$65,$87,$A9,$CB,S$ED

121

122 Assembly language subroutines for the 6809

4D Multiple-precision logical shift left
(MPLSL)

Shifts a multi-byte operand left logically by a specified number of bit
positions. The length of the operand (in bytes) is 255 or less. Sets the
Carry flag from the last bit shifted out of the leftmost bit position. The
operand is stored with its least significant byte at the lowest address.

Procedure The program clears the Carry initially (to fill with a 0 bit)
and then shifts the entire operand left 1 bit, starting with the least
significant byte. It repeats the operation for the specified number of
shifts.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Number of shifts (bit positions)

Length of the operand in bytes

More significant byte of base address of operand (address of its least
significant byte)

Less significant byte of base address of operand (address of its least
significant byte)

Exit conditions

Operand shifted left logically by the specified number of bit positions.
The least significant bit positions are filled with Os.

The Carry flag is set from the last bit shifted out of the leftmost bit
position. It is cleared if either the number of shifts or the length of the
operand is 0.

Examples

1. Data: Length of operand (in bytes) = 8
Operand = 85A4C719FE06741Ei¢

Number of shifts = 4

4D Multiple-precision logical shift left (MPLSL) 123

Result: Shifted operand = 5A4C719FE06741E0j¢.
This is the original operand shifted left 4 bits logically.
The four least significant bits are all cleared.
Carry = 0, since the last bit shifted from the leftmost bit
position was 0.

2. Data: Length of operand (in bytes) = 4
Operand = 3F6A42D34¢
Number of shifts = 3

Result: Shifted operand = FB521698,..
This is the original operand shifted left 3 bits logically.
The three least significant bits are all cleared. |
Carry = 1, since the last bit shifted from the leftmost bit
position was 1.

Registers used A,B,CC,U, xX

Execution time NUMBER OF SHIFTS x (24 + 13 x LENGTH OF
OPERAND IN BYTES) + 32 cycles.

If for example, NUMBER OF SHIFTS = 6 and LENGTH OF
OPERAND IN BYTES = 8, the execution time is

6 x (24 + 13 x 8) + 32 = 6 x 128 + 32 = 800 cycles

Program size 31 bytes

Data memory required None

Special cases

1. Ifthe length of the operand is 0, the program exits immediately with
the operand unchanged and the Carry flag cleared.

2. Ifthe number of shifts is 0, the program exits immediately with the
operand unchanged and the Carry flag cleared.

124 Assembly language subroutines for the 6809

Registers Used:

a)

Multiple-Precision Logical Shift Left

MPLSL

Logical shift left a multi-byte operand

N bits.

TOP OF STACK

High byte of return address

Low byte of return address

Number of bits to shift

Length of the operand in bytes

High byte of operand base address

Low byte of operand base address

The operand is stored with ARRAYCOJ as its
least significant byte and ARRAYCLENGTH-1]

as its most significant byte

Operand shifted left filling the least

significant bits with zeros.

CARRY := Last bit shifted from most

significant position

A,B,CC,U,X

32 cycles overhead plus

((13 * Length) + 24) cycles per shift

Program 31 bytes

SAVE RETURN ADDRESS

EXIT IF LENGTH OF OPERAND OR NUMBER OF BITS TO SHIFT
CARRY IS CLEARED IN EITHER CASE IS ZERO.

CLEAR CARRY

GET NUMBER OF BITS TO SHIFT

EXITLS EXIT IF NUMBER OF BITS TO SHIFT IS ZERO

3,8 GET LENGTH OF OPERAND

EXITLS EXIT IF LENGTH OF OPERAND IS ZERO

SHIFT ENTIRE OPERAND LEFT ONE BIT LOGICALLY

USE ZERO AS INITIAL CARRY INPUT TO PRODUCE LOGICAL SHIFT

*

*

*

*

* Title:

* Name:
*

*

*

* Purpose:

*

*

* Entry:
*

*

*

*

*

*

*

*

*

*

*

* Exit:
*

*

*

*

*

*

* Time:
*

*®

* Size:
*

*

*

MPLSL

LDU
*

*

*

*

CLC

LDA

BEQ

LDA

BEQ
*

*

*

*

LSLLP:

+ + +

LSLLP1:

*+

*

*

*

EXITLSL:

+ + + HE

SC4D:

*

4D Multiple-precision logical shift left (MPLSL) 125

LDX 4,8 POINT TO LEAST SIGNIFICANT BYTE

LDB 3,8 GET LENGTH OF OPERAND IN BYTES

CLC CLEAR CARRY TO FILL WITH ZEROS

SHIFT EACH BYTE OF OPERAND LEFT ONE BIT

START WITH LEAST SIGNIFICANT BYTE

ROL ,X+ SHIFT NEXT BYTE LEFT
DECB

BNE LSLLP1 CONTINUE THROUGH ALL BYTES

COUNT NUMBER OF SHIFTS

DEC 2,8 DECREMENT NUMBER OF SHIFTS
BNE LSLLP CONTINUE UNTIL DONE

REMOVE PARAMETERS FROM STACK AND EXIT

LEAS 6,58 REMOVE PARAMETERS FROM STACK
JMP ,U EXIT TO RETURN ADDRESS

SAMPLE EXECUTION

LDA SHIFTS GET NUMBER OF SHIFTS

LDB #SZAY GET LENGTH OF OPERAND IN BYTES
LDX AYADR GET BASE ADDRESS OF OPERAND

PSHS A,B,X SAVE PARAMETERS IN STACK

JSR MPLSL LOGICAL SHIFT LEFT

*RESULT OF SHIFTING AY=EDCBA087654321H
*4 BITS IS AY=DCBA9876543210H, C=0

*DATA SECTION
*

SZAY

SHIFTS:

AYADR:

AY:

* IN MEMORY AY = 010H

* AY+1 = 032H

* AY+2 = 054H

* AY+3 = 076H

* AY+4 = 098H

x AY+5 = OBAH

* AY+6 = ODCH
BRA SC4D

EQU 7 LENGTH OF OPERAND IN BYTES

FCB 4 NUMBER OF SHIFTS

FDB AY BASE ADDRESS OF OPERAND

FCB $21,$43,$65,$87,$A9,$CB,SED

END

126 Assembly language subroutines for the 6809

4E Miultiple-precision logical shift right
(MPLSR)

Shifts a multi-byte operand right logically by a specified number of bit
positions. The length of the operand (in bytes) is 255 or less. Sets the
Carry flag from the last bit shifted out of the rightmost bit position. The
operand is stored with its least significant byte at the lowest address.

Procedure The program clears the Carry initially (to fill with a 0 bit)
and then shifts the entire operand right 1 bit, starting with the most
significant byte. It repeats the operation for the specified number of
shifts.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Number of shifts (bit positions)

Length of the operand in bytes

More significant byte of base address of operand (address of its least
significant byte)
Less significant byte of base address of operand (address of its least
significant byte)

Exit conditions

Operand shifted right logically by the specified number of bit positions.
The most significant bit positions are filled with Os.

The Carry flag is set from the last bit shifted out of the rightmost bit
position. It is cleared if either the number of shifts or the length of the
operand is 0.

Examples

1. Data: Length of operand (in bytes) = 8

4E Multiple-precision logical shift right (MPLSR) 127

Operand = 85A4C719FE06741Ej¢6
Number of shifts = 4

Result: Shifted operand = 085A4C719FE06741¢.

This is the original operand shifted right 4 bits logically.
The four most significant bits are all cleared.
Carry = 1, since the last bit shifted from the rightmost bit
position was 1.

2. Data: Length of operand (in bytes) = 4
Operand = 3F6A42D316

Number of shifts = 3
Result: Shifted operand = O7ED485A4¢.

This is the original operand shifted right 3 bits logically.
The three most significant bits are all cleared.
Carry = 0, since the last bit shifted from the rightmost bit
position was 0.

Registers used A,B,CC, X,U

Execution time NUMBER OF SHIFTS x (23 + 13 x LENGTH OF
OPERAND IN BYTES) + 48 cycles.

If, for example, NUMBER OF SHIFTS = 6 and LENGTH OF
OPERAND IN BYTES = 8, the execution time is

6 X (23 + 13 x 8) + 48 = 6 X 127 + 48 = 810 cycles

Program size 37 bytes

Data memory required None

Special cases

1. Ifthe length of the operand is 0, the program exits immediately with
the operand unchanged and the Carry flag cleared.

2. If the number of shifts is 0, the program exits immediately with the
operand unchanged and the Carry flag cleared.

Assembly language subroutines for the 6809 128

* ok

*

*

* Title:

* Name:
*

*

*

* Purpose:
*

*

* Entry:
*

*

*

*

*

*

*

*

*

*

*

* Exit:
*

*

*

*

* Registers Used:
*

* Time:
*

*

* Size:
*

*

*

MPLSR

LDU 79

*

Multiple-Precision Logical Shift Right
MPLSR

Logical shift right a multi-byte operand

N bits.

TOP OF STACK

High byte of return address

Low byte of return address

Number of bits to shift

Length of the operand in bytes

High byte of operand base address
Low byte of operand base address

The operand is stored with ARRAYC[O] as its
least significant byte and ARRAYCLENGTH-1]

as its most significant byte

Operand shifted right filling the most

significant bits with zeros.

Carry := Last bit shifted from least

significant position.

A,B,CC,U,X

48 cycles overhead plus

((13 * Length) + 23) cycles per shift

Program 37 bytes

SAVE RETURN ADDRESS

EXIT IF LENGTH OF OPERAND OR NUMBER OF BITS TO SHIFT

IS ZERO. CARRY IS CLEARED IN EITHER CASE

CLC CLEAR CARRY INITIALLY
LDA 2,8 GET NUMBER OF BITS TO SHIFT

BEQ EXITLS EXIT IF NUMBER OF BITS TO SHIFT IS ZERO
LDA 3,8 GET LENGTH OF OPERAND

BEQ EXITLS EXIT IF LENGTH OF OPERAND IS ZERO

SAVE POINTER TO END OF OPERAND

LDX 4

LEAX A
rs

7X

STX 79

GET BASE ADDRESS OF OPERAND

CALCULATE ENDING ADDRESS OF OPERAND

SAVE ENDING ADDRESS OF OPERAND

LSRLP:

+ + + €

LSRLP1:

EXITLS:

Oo + + + C4E:

*

4E Multiple-precision logical shift right (MPLSR) 129

SHIFT ENTIRE OPERAND RIGHT ONE BIT LOGICALLY

USE ZERO AS INITIAL CARRY INPUT TO PRODUCE LOGICAL SHIFT

LDX) POINT TO END OF OPERAND

LDB 3,58 GET LENGTH OF OPERAND IN BYTES

CLC CLEAR CARRY TO FILL WITH ZEROS

SHIFT EACH BYTE OF OPERAND RIGHT ONE BIT
START WITH MOST SIGNIFICANT BYTE

ROR 77X SHIFT NEXT BYTE RIGHT
DECB

BNE LSRLP1 CONTINUE THROUGH ALL BYTES

COUNT NUMBER OF SHIFTS

DEC 2,8 DECREMENT NUMBER OF SHIFTS
BNE LSRLP CONTINUE UNTIL DONE

REMOVE PARAMETERS FROM STACK AND EXIT

LEAS 6,S REMOVE PARAMETERS FROM STACK
JMP 7U EXIT TO RETURN ADDRESS

SAMPLE EXECUTION

LDA SHIFTS GET NUMBER OF SHIFTS

LDB #SZAY GET LENGTH OF OPERAND IN BYTES

LDX AYADR GET BASE ADDRESS OF OPERAND
PSHS A,B,X SAVE PARAMETERS IN STACK
JSR MPLSR LOGICAL SHIFT RIGHT

*RESULT OF SHIFTING AY=EDCBA087654321H
*4 BITS IS AY=OEDCBA98765432H, C=0

*DATA SECTION
*

SZAY

SHIFTS:

AYADR:

AY:

* IN MEMORY AY = 032H

* AY+1 = O54H

* AY+2 = 0O76H

* AY+3 = 098H

* AY+4 = OBAH

* AY+5 = ODCH

* AY+6 = OOEH
BRA SC4E

EQU 7 LENGTH OF OPERAND IN BYTES

FCB 4 NUMBER OF SHIFTS

FDB AY BASE ADDRESS OF OPERAND

FCB $21,$43,%$65,$87,$A9,$CB,SED

END

130 Assembly language subroutines for the 6809

4F Miultiple-precision rotate right
(MPRR)

Rotates a multi-byte operand right by a specified number of bit positions
as if the most significant bit and least significant bit were connected. The
length of the operand (in bytes) is 255 or less. Sets the Carry flag from
the last bit shifted out of the rightmost bit position. The operand is
stored with its least significant byte at the lowest address.

Procedure The program shifts bit 0 of the least significant byte of the
operand to the Carry flag and then shifts the entire operand right 1 bit,
starting with the most significant byte. It repeats the operation for the
specified number of rotates.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Number of rotates (bit positions)

Length of the operand in bytes

More significant byte of base address of operand (address of its least
significant byte)
Less significant byte of base address of operand (address of its least
significant byte)

Exit conditions

Operand rotated right by the specified number of bit positions. The
most significant bit positions are filled from the least significant bit
positions.

The Carry flag is set from the last bit shifted out of the rightmost bit
position. It is cleared if either the number of shifts or the length of the
operand is 0.

4F Multiple-precision rotate right (MPRR) 131

Examples

1. Data: Length of operand (in bytes) = 8
Operand = 85A4C719FE06741E1.¢
Number of rotates = 4

Result: Shifted operand = E85A4C719FE06741,¢.
This is the original operand rotated right 4 bits. The four
most significant bits are equivalent to the original four
least significant bits.
Carry = 1, since the last bit shifted from the rightmost bit
position was 1.

2. Data: Length of operand (in bytes) = 4
Operand = 3F6A42D34¢
Number of rotates = 3

Result: Shifted operand = 67ED485A ig.
This is the original operand rotated right 3 bits. The three
most significant bits (011) are equivalent to the original
three least significant bits.
Carry = 0, since the last bit shifted from the rightmost bit
position was 0.

ee

Registers used A,B,CC, U, xX

Execution time NUMBER OF ROTATES x (32 + 13 x LENGTH
OF OPERAND IN BYTES) + 48 cycles.

If, for example, NUMBER OF ROTATES = 6 and LENGTH OF
OPERAND IN BYTES = 8, the execution time is

6 x (32 + 13 x 8) + 48 = 6 x 136 + 48 = 864 cycles

Program size 40 bytes

Data memory required None

Special cases

1. Ifthe length of the operand is 0, the program exits immediately with
the operand unchanged and the Carry flag cleared.

132 Assembly language subroutines for the 6809

2. Ifthe number of rotates is 0, the program exits immediately with the
operand unchanged and the Carry flag cleared.

Title: Multiple-Precision Rotate Right

Name: MPRR

Purpose: Rotate right a multi-byte operand

N bits.

Entry: TOP OF STACK

High byte of return address

Low byte of return address

Number of bits to rotate

Length of the operand in bytes

High byte of operand base address

Low byte of operand base address

The operand is stored with ARRAYL[O] as its

Least significant byte and ARRAYCLENGTH-1]

as its most significant byte

Operand rotated right

Carry := Last bit shifted from least

significant position.

Registers Used: A,B,CC,U,X

Time: 48 cycles overhead plus

((13 * Length) + 32) cycles per shift

+ + & OF He OF OF OF Oe OH HO OH OO OHHH HHH HHH HHO

Size: Program 40 bytes

MPRR
LDU 739 SAVE RETURN ADDRESS

*

* EXIT IF LENGTH OF OPERAND OR NUMBER OF BITS TO ROTATE

* IS ZERO. CARRY IS CLEARED IN EITHER CASE
*

CLC CLEAR CARRY INITIALLY

LDA 2,8 GET NUMBER OF BITS TO ROTATE

BEQ EXITRR EXIT IF NUMBER OF BITS TO ROTATE IS ZERO

LDA 3,58 GET LENGTH OF OPERAND

BEQ EXITRR EXIT IF LENGTH OF OPERAND IS ZERO

+ SAVE POINTER TO END OF OPERAND

+ OF OF OF

RRLP:

+

*

*

*

EXITRR:

t+ + Fe + F

SC4F:

4F Multiple-precision rotate right (MPRR) 133

GET BASE ADDRESS OF OPERAND LDX 4,58
LEAX A,X POINT TO END OF OPERAND
STX 79 SAVE POINTER TO END OF OPERAND

ROTATE ENTIRE OPERAND RIGHT ONE BIT
USE PREVIOUS LEAST SIGNIFICANT BIT AS INITIAL CARRY INPUT

TO PRODUCE ROTATION

LDX 4,8 POINT TO LEAST SIGNIFICANT BYTE
LDA 7X GET LEAST SIGNIFICANT BYTE
LSRA SHIFT BIT 0 TO CARRY FOR USE IN ROTATION
LDB 3,8 GET LENGTH OF OPERAND IN BYTES
LDX a) POINT TO END OF OPERAND

SHIFT EACH BYTE OF OPERAND RIGHT ONE BIT
START WITH MOST SIGNIFICANT BYTE

ROR 7X SHIFT NEXT BYTE RIGHT
DECB
BNE RRLP1 CONTINUE THROUGH ALL BYTES

COUNT NUMBER OF ROTATES

DEC 2,58 DECREMENT NUMBER OF ROTATES
BNE RRLP CONTINUE UNTIL DONE

REMOVE PARAMETERS FROM STACK AND EXIT

LEAS 6,8 REMOVE PARAMETERS FROM STACK
JMP ,U EXIT TO RETURN ADDRESS
RTS

SAMPLE EXECUTION

LDA ROTATS GET NUMBER OF ROTATES
LDB #STZAY GET LENGTH OF OPERAND IN BYTES
LDX AYADR GET BASE ADDRESS OF OPERAND
PSHS A,B,X SAVE PARAMETERS IN STACK
JSR MPRR ROTATE RIGHT

*RESULT OF ROTATING AY=EDCBA087654321H
*4 BITS IS AY=1EDCBA98765432H, C=O
* IN MEMORY AY = 032H

* AY+1 = 054H

* AY+2 = O76H

* AY+3 = 098H
* AY+4 = OBAH

* AY+5 = ODCH

* AY+6 = O1EH

134 Assembly language subroutines for the 6809

BRA SC4F

*

*DATA SECTION
*

SZAY EQU C LENGTH OF OPERAND IN BYTES

ROTATS: FCB 4 NUMBER OF ROTATES

AYADR: FDB AY BASE ADDRESS OF OPERAND

AY: FCB $21,$43,%$65,$87,$A9,$CB,SED

END

4G Multiple-precision rotate left (MPRL) 135

4G Miultiple-precision rotate left
(MPRL)

Rotates a multi-byte operand left by a specified number of bit positions
as if the most significant bit and least significant bit were connected. The
length of the number (in bytes) is 255 or less. Sets the Carry flag from
the last bit shifted out of the leftmost bit position. The operand is stored
with its least significant byte at the lowest address.

Procedure The program shifts bit 7 of the most significant byte of the
operand to the Carry flag. It then shifts the entire operand left 1 bit,
starting with the least significant byte. It repeats the operation for the
specified number of rotates.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Number of rotates (bit positions)

Length of the operand in bytes

More significant byte of base address of operand (address of its least
significant byte)
Less significant byte of base address of operand (address of its least
significant byte)

Exit conditions

Operand rotated left by the specified number of bit positions (the least
significant bit positions are filled from the most significant bit positions).

The Carry flag is set from the last bit shifted out of the leftmost bit
position. It is cleared if either the number of shifts or the length of the
operand is 0.

Examples

1. Data: Length of operand (in bytes) = 8

136 Assembly language subroutines for the 6809

Operand = 85A4C719FE06741E4¢6
Number of rotates = 4

Result: Shifted operand = 5A4C719FE06741E8¢.
This is the original operand rotated left 4 bits. The four
least significant bits are equivalent to the original four
most significant bits.
Carry = 0, since the last bit shifted from the leftmost bit
position was 0.

2. Data: Length of operand (in bytes) = 4
Operand = 3F6A42D34¢6
Number of rotates = 3

Result: Shifted operand = FB521699;¢.

This is the original operand rotated left 3 bits. The three
least significant bits (001) are equivalent to the original
three most significant bits.
Carry = 1, since the last bit shifted from the leftmost bit
position was 0.

Registers used A,B,CC, U, X

Execution time NUMBER OF ROTATES x (34 + 13 x LENGTH
OF OPERAND IN BYTES) + 50 cycles.

If, for example, NUMBER OF ROTATES = 6 and LENGTH OF

OPERAND IN BYTES = 8, the execution time 1s

6 X (34+ 13 X 8) + 50 = 6 X 138 + 50 = 878 cycles

Program size 41 bytes

Data memory required None

Special cases

1. Ifthe length of the operand is 0, the program exits immediately with
the operand unchanged and the Carry flag cleared.

2. Ifthe number of rotates is 0, the program exits immediately with the
operand unchanged and the Carry flag cleared.

+ + £ + + + + FF HF HF + HF HF HF HF HF HF FE HF F HF HF FHF HF FE HF HF HF HF F HF HF HF HF HK K

*

4G Multiple-precision rotate left (MPRL) 137

Title:

Name:

Purpose:

Entry:

Exit:

Registers Used:

Time:

Size:

LDU Pa)

Multiple-Precision Rotate Left
MPRL

Rotate left a multi-byte operand
N bits.

TOP OF STACK

High byte of return address

Low byte of return address

Number of bits to rotate

Length of the operand in bytes

High byte of operand base address

Low byte of operand base address

The operand is stored with ARRAYLO] as its
Least significant byte and ARRAYLLENGTH-1]
as its most significant byte

Number rotated left

Carry := Last bit shifted from the most

significant position.

50 cycles overhead plus

((13 * Length) + 34) cycles per shift

Program 41 bytes

SAVE RETURN ADDRESS

EXIT IF LENGTH OF OPERAND OR NUMBER OF BITS TO ROTATE
IS

CLC

LDA
BEQ
LDA
BEQ

SAVE

DECA

LDX

LEAX

ZERO. CARRY IS CLEARED IN EITHER CASE

CLEAR CARRY

2,58 GET NUMBER OF BITS TO ROTATE

EXITRL EXIT IF NUMBER OF BITS TO ROTATE IS ZERO
3,8 GET LENGTH OF OPERAND

EXITRL EXIT IF LENGTH OF OPERAND IS ZERO

POINTER TO MOST SIGNIFICANT BYTE OF OPERAND

> & <n

OFFSET OF MOST SIGNIFICANT BYTE =
* LENGTH OF OPERAND - 1

GET BASE ADDRESS OF OPERAND

POINT TO MOST SIGNIFICANT BYTE

138

ama + + + & LLP:

LLP1:

+

*

*

*

EXITRL:

+ + + +

SC4G:

Assembly language subroutines for the 6809

STX 79 SAVE POINTER TO MOST SIGNIFICANT BYTE

ROTATE ENTIRE OPERAND LEFT ONE BIT

USE PREVIOUS MOST SIGNIFICANT BIT AS INITIAL CARRY INPUT
TO PRODUCE ROTATION

LDX 79 POINT TO MOST SIGNIFICANT BYTE

LDA Xt GET MOST SIGNIFICANT BYTE

ASLA SHIFT BIT 7 TO CARRY FOR USE IN ROTATION
LDB 3,8 GET LENGTH OF OPERAND IN BYTES

LDX 4,8 GET BASE ADDRESS OF OPERAND

SHIFT EACH BYTE OF OPERAND RIGHT ONE BIT
START WITH LEAST SIGNIFICANT BYTE

ROL 7X SHIFT NEXT BYTE LEFT

DECB
BNE RLLP1 CONTINUE THROUGH ALL BYTES

COUNT NUMBER OF ROTATES

DEC 2,8 DECREMENT NUMBER OF ROTATES

BNE RRLP CONTINUE UNTIL DONE

REMOVE PARAMETERS FROM STACK AND EXIT

LEAS 6,S REMOVE PARAMETERS FROM STACK

JMP ,U EXIT TO RETURN ADDRESS

SAMPLE EXECUTION

LDA ROTATS GET NUMBER OF ROTATES
LDB #SZAY GET LENGTH OF OPERAND IN BYTES

LDX AYADR GET BASE ADDRESS OF OPERAND

PSHS A,B,X SAVE PARAMETERS IN STACK

JSR MPRL ROTATE LEFT

*RESULT OF ROTATING AY=EDCBA087654321H
*4 BITS IS AY=DCBA987654321EH, C=0

* IN MEMORY AY = O1EH

* AY+1 = 032H

* AY+2 = O54H

* AY+3 = O76H

* AY+4 = 098H

* AY+5 = OBAH

* AY+6 = ODCH

BRA SC4G

4G Multiple-precision rotate left (MPRL)

*DATA SECTION
*

SZAY EQU
ROTATS: FCB
AYADR: FDB
AY: FCB

END

7 LENGTH OF OPERAND IN BYTES
4 NUMBER OF ROTATES
AY BASE ADDRESS OF OPERAND
$21,$43,$65,$87,$A9,$CB,$ED

139

5 String manipulation

5A String compare
(STRCMP)

140

Compares two strings and sets the Carry and Zero flags accordingly.
Sets the Zero flag to 1 if the strings are identical and to 0 otherwise. Sets
the Carry flag to 1 if the string with the base address higher in the stack
(string 2) is larger than the other string (string 1), and to 0 otherwise.
Each string consists of at most 256 bytes, including an initial byte
containing the length. If the two strings are identical through the length
of the shorter, the longer string is considered to be larger.

Procedure The program first determines which string is shorter. It
then compares the strings one byte at a time through the length of the
shorter. It exits with the flags set if it finds corresponding bytes that
differ. If the strings are the same through the length of the shorter, the
program sets the flags by comparing the lengths.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

5A_ String compare (STRCMP) 141

More significant byte of base address of string 2
Less significant byte of base address of string 2

More significant byte of base address of string 1
Less significant byte of base address of string 1

Exit conditions

Flags set as if string 2 had been subtracted from string 1. If the strings
are the same through the length of the shorter, the flags are set as if the
length of string 2 had been subtracted from the length of string 1.

Zero flag = 1 if the strings are identical, 0 if they are not identical.

Carry flag = 1 if string 2 is larger than string 1, 0 if they are identical or
string 1 is larger. If the strings are the same through the length of the
shorter, the longer one is considered to be larger.

Examples

1. Data: String 1 = 05‘PRINT” (05 is the length of the string)
String 2 = 03‘END?’ (03 is the length of the string)

Result: Zero flag = 0 (strings are not identical)
Carry flag = 0 (string 2 is not larger than string 1)

2. Data: String 1 = 05‘PRINT” (05 is the length of the string)
String 2 = 02‘PR’ (02 is the length of the string)

Result: Zero flag = 0 (strings are not identical)
Carry flag = 0 (string 2 is not larger than string 1)

The longer string (string 1) is considered to be larger. To determine
whether string 2 is an abbreviation of string 1, use Subroutine 5C (Find
the position of a substring). String 2 is an abbreviation if it is part of
string 1 and starts at the first character.

3. Data: String 1 = 05‘PRINT? (05 is the length of the string)
String 2 = 06°‘SYSTEM?” (06 is the length of the string)

Result: Zero flag = 0 (strings are not identical)
Carry flag = 1 (string 2 is larger than string 1)

We are assuming here that the strings consist of ASCII characters.
Note that the initial length byte is a hexadecimal number, not a charac-
ter. We have represented this byte as two hexadecimal digits in front of
the string; the string itself is surrounded by single quotation marks.

This routine treats spaces like other characters. Assuming ASCII
strings, the routine will, for example, find that SPRINGMAID is larger

142 Assembly language subroutines for the 6809

than SPRING MAID, since an ASCII M (4Dj¢) is larger than an ASCII

space (2046).
Note that this routine will not order strings alphabetically as defined

in common uses such as indexes and telephone directories. Instead, it
uses the ASCII character order shown in Appendix 3. Note, in par-
ticular, that:

1. Spaces precede all other printing characters.

2. Periods, commas, and dashes precede numbers.

3. Numbers precede letters.

4. Capital letters precede lower-case letters.

This ordering produces such non-standard results as the following:

1. 9TH AVENUE SCHOOL would precede CAPITAL CITY
SCHOOL (or, in fact, any string starting with a letter). 9TH
AVENUE will not be treated as if it started with the letter N.

2. EZ8 MOTEL would precede East Street Motel since a capital Z
precedes a lower-case a.

3. NEW YORK would precede NEWARK or NEWCASTLE since a
space precedes any letter.

Registers used A,B, CC, U, X

Execution time

1. If the strings are not identical through the length of the shorter, the
execution time is approximately

45 + 20 X NUMBER OF CHARACTERS COMPARED

If, for example, the routine compares five characters before finding a
disparity, the execution time is approximately

45 + 20 x 5 = 45 + 100 = 145 cycles

2. If the strings are identical through the length of the shorter, the
execution time is approximately |

66 + 20 X LENGTH OF SHORTER STRING

5A String compare (STRCMP) 143

If, for example, the shorter string is 8 bytes long, the execution time is

66 + 20 X 8 = 66 + 160 = 226 cycles

Program size 36 bytes

Data memory required None

Special case If either string (but not both) has a 0 length, the pro-
gram returns with the flags set as though the other string were larger. If
both strings have 0 length, they are considered to be equal.

ee nae jw SSL.
*

* Title

* Name:
*

* Purpose:
*

Entry:

Exit:

Registers Used:

Time:

Size:

String Compare
STRCMP

Compare 2 strings and return C and 2 flags set
or cleared.

TOP OF STACK

High byte of return address

Low byte of return address

High byte of string 2 address
Low byte of string 2 address

High byte of string 1 address

Low byte of string 1 address

Each string consists of a length byte

followed by a maximum of 255 characters.

IF string 1 = string 2 THEN
Z=1,C=0

IF string 1 > string 2 THEN
Z=0,C=0

IF string 1 < string 2 THEN
Z=0,C=1

A,B,CC,U,X

45 cycles overhead plus 20 cycles per byte plus
21 cycles if the strings are identical through
the Length of the shorter one.

Program 36 bytes

*DETERMINE WHICH STRING IS SHORTER

*LENGTH OF SHORTER = NUMBER OF BYTES TO COMPARE

144

BEGCMP:

CMPLP:

EXITSC:

+

SC5A:

Assembly language subroutines for the 6809

LDX

LDU
LDB
CMPB
BCS

LDB

*

4,8

2,8

7Xt+

,U+
BEGCMP

-1,U

GET BASE ADDRESS OF STRING 1

GET BASE ADDRESS OF STRING 2

GET LENGTH OF STRING 1
COMPARE TO LENGTH OF STRING 2
BRANCH IF STRING 1 IS SHORTER
* ITS LENGTH IS NUMBER OF BYTES TO COMPARE
OTHERWISE, STRING 2 IS SHORTER
* ITS LENGTH IS NUMBER OF BYTES TO COMPARE

*COMPARE STRINGS THROUGH LENGTH OF SHORTER

*EXIT AS SOON AS CORRESPONDING CHARACTERS DIFFER
*

TSTB

BEQ

LDA
CMPA
BNE

DECB

BNE
*

EXITSC

Xt

EXITSC

CMPLP

CHECK IF SHORTER STRING HAS ZERO LENGTH
BRANCH CEXIT) IF IT DOES

GET CHARACTER FROM STRING 1
COMPARE TO CHARACTER FROM STRING 2

BRANCH IF CHARACTERS ARE NOT EQUAL
* 2,C WILL BE PROPERLY SET OR CLEARED

COUNT CHARACTERS
CONTINUE UNTIL ALL BYTES COMPARED

*STRINGS SAME THROUGH LENGTH OF SHORTER

*SO USE LENGTHS TO SET FLAGS
*

LDA
CMPA
*

*REMOVE PARAMETERS FROM
*

LDU
LEAS
JMP

C4,S]
[2,8]

73

,V

SAMPLE EXECUTION:

LDY
LDX
PSHS
JSR

BRA

TEST DATA

FCB

FCC

#S1

#S2
X,Y
STRCMP

SC5A

$20
/STRING 1

GET LENGTH OF STRING 1
COMPARE LENGTH OF STRING 2

STACK AND EXIT

SAVE RETURN ADDRESS

REMOVE PARAMETERS FROM
EXIT TO RETURN ADDRESS

STACK

BASE ADDRESS OF STRING 1
BASE ADDRESS OF STRING 2
SAVE PARAMETERS IN STACK

COMPARE STRINGS
*COMPARING "STRING 1" AND "STRING 2"

* RESULTS IN STRING 1 LESS THAN

* STRING 2, SO Z=0,C=1

LOOP THROUGH TEST

$2

5A String compare (STRCMP)

FCB
FCC

END

$20

/STRING 2

145

146 Assembly language subroutines for the 6809

5B String concatenation
(CONCAT)

Combines (concatenates) two strings, placing the second immediately

after the first in memory. If the concatenation would produce a string
longer than a specified maximum, the program concatenates only
enough of string 2 to give the combined string its maximum length. The
Carry flag is cleared if all of string 2 can be concatenated. It is set to 1 if
part of string 2 must be dropped. Each string consists of at most 256
bytes, including an initial byte containing the length.

Procedure The program uses the length of string 1 to determine

where to start adding characters, and the length of string 2 to determine

how many characters to add. If the sum of the lengths exceeds the

maximum, the program indicates an overflow. It then reduces the

number of characters it must add to the maximum length minus the

length of string 1. Finally, it moves the characters from string 2 to the

end of string 1, updates the length of string 1, and sets the Carry flag to

indicate whether characters were discarded.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Maximum length of string 1

More significant byte of base address of string 2
Less significant byte of base address of string 2

More significant byte of base address of string 1
Less significant byte of base address of string 1

Exit conditions

String 2 concatenated at the end of string 1 and the length of string 1

increased accordingly. If the combined string would exceed the

maximum length, only the part of string 2 that would give string 1 its

5B String concatenation (CONCAT) 147

maximum length is concatenated. If any part of string 2 must be
dropped, the Carry flag is set to 1. Otherwise, the Carry flag is cleared. eS ES eee eee

Examples

1. Data: Maximum length of string 1 = OEy¢ = 141
String 1 = 07 JOHNSON’ (07 is the length of the string)
String 2 = 05‘, DON’ (0S is the length of the string)

Result: String 1 = OC-JJOHNSON, DON’ (0Cig = 1210 is the
length of the combined string with string 2 placed after
string 1)
Carry = 0, since no characters were dropped

2. Data: String 1 = 07‘JOHNSON’ (07 is the length of the string)
String 2 = 09‘, RICHARD’ (09 is the length of the string)

Result: String 1 = OE‘JOHNSON, RICHA’ (OEi¢ = 1410 is the
maximum length allowed, so the last two characters of
string 2 have been dropped)
Carry = 1, since characters had to be dropped

Note that we are representing the initial byte (containing the string’s
length) as two hexadecimal digits in both examples.

Registers used All

Execution time Approximately

17 x NUMBER OF CHARACTERS CONCATENATED plus 95
cycles overhead

NUMBER OF CHARACTERS CONCATENATED is usually the
length of string 2, but will be the maximum length of string 1 minus its
current length if the combined string would be too long. If, for example,
NUMBER OF CHARACTERS CONCATENATED is 1446 (2010), the
execution time is

17 X 20 + 95 = 340 + 95 = 435 cycles

The overhead is an extra 28 cycles if the string must be truncated.

148

+ + %

+t + + + He He HE He He He He He HF HF HE HE HH HF HF HF He HH HF F

Assembly language subroutines for the 6809

Program size 59 bytes

Data memory required None

Special cases

1. If the concatenation would make the string exceed its specified
maximum length, the program concatenates only enough of string 2 to
reach the maximum. If any of string 2 must be truncated, the Carry flag
is set to 1.

2. If string 2 has a length of 0, the program exits with the Carry flag
cleared (no errors) and string 1 unchanged. That is, a length of 0 for
either string is interpreted as 0, not as 256.

3. Ifthe original length of string 1 exceeds the specified maximum, the
program exits with the Carry flag set to 1 (indicating an error) and string
1 unchanged.

Title String Concatenation
Name: CONCAT

Purpose: Concatenate 2 strings into one string.

Entry: TOP OF STACK

High byte of return address

Low byte of return address
Maximum length of string 1

High byte of string 2 address

Low byte of string 2 address

High byte of string 1 address

Low byte of string 1 address

Each string consists of a length byte

followed by a maximum of 255 characters.

Exit: String 1 := string 1 concatenated with string 2
If no errors then

Carry := 0

else

begin

Carry := 1

if the concatenation makes string 1 too

long, concatenate only the part of string 2
that results in string 1 having its maximum
Length

if lLength(string1) > maximum Length then

5B String concatenation (CONCAT) 149

* no concatenation is done
* end
*

* Registers Used: ALL
%

* Time: Approximately 17 * (length of string 2) cycles
* plus 95 cycles overhead
*

* Size: Program 59 bytes
*

CONCAT:

LDU 9 SAVE RETURN ADDRESS
*

*DETERMINE WHERE TO START ADDING CHARACTERS
*CONCATENATION STARTS AT THE END OF STRING 1
*END OF STRING 1 = BASE 1 + LENGTH1 + 1, WHERE
* THE EXTRA 1 IS FOR THE LENGTH BYTE
*

CLR 1,8 INDICATE NO TRUNCATION NECESSARY
LDX 5,58 GET BASE ADDRESS OF STRING 1
LDA x GET LENGTH OF STRING 1
LEAX A,X POINT TO LAST BYTE IN STRING 1
LEAX 1,X POINT JUST BEYOND END OF STRING 1
*

*NEW CHARACTERS COME FROM STRING 2, STARTING AT
* BASE2+1 (SKIPPING OVER LENGTH BYTE)
*

LDY 3,8 GET BASE ADDRESS OF STRING 2
LDB 7X+ GET LENGTH OF STRING 2 AND POINT TO

* FIRST DATA BYTE
BEQ SETTRN BRANCH CEXIT) IF STRING 2 HAS ZERO LENGTH

* NO. ERROR IN THIS CASE
*

*DETERMINE HOW MANY CHARACTERS TO CONCATENATE
*THIS IS LENGTH OF STRING 2 IF COMBINED STRING WOULD
* NOT EXCEED MAXIMUM LENGTH
*OTHERWISE, IT IS THE NUMBER THAT WOULD BRING COMBINED
* STRING TO ITS MAXIMUM LENGTH - THAT IS, MAXIMUM LENGTH
* MINUS LENGTH OF STRING 1
*

STB 79 SAVE LENGTH OF STRING 2 IN STACK
ADDA 78 ADD STRING LENGTHS TO DETERMINE LENGTH

* OF COMBINED STRING
BCS TOOLNG BRANCH IF LENGTH WILL EXCEED 255 BYTES
CMPA 2,58 COMPARE TO MAXIMUM LENGTH
BLS DOCAT BRANCH IF LENGTH DOES NOT EXCEED MAXIMUM
*

*COMBINED STRING IS TOO LONG
* INDICATE STRING OVERFLOW WITH FF MARKER IN STACK
* SET NUMBER OF CHARACTERS TO CONCATENATE = MAXLEN ~ S1LEN
* SET NEW LENGTH OF STRING 1 TO MAXIMUM LENGTH
*

TOOLNG:

COM 1,8 INDICATE STRING TRUNCATION (MARKER = FF)
LDB 2,58 NUMBER OF CHARACTERS TO CONCATENATE =

150 Assembly language subroutines for the 6809

SUBB (5,$] MAXIMUM LENGTH - STRING 1 LENGTH
BLS SETTRN BRANCH CEXIT) IF ORIGINAL STRING WAS

* TOO LONG

LDA 2,8 NEW LENGTH = MAXIMUM LENGTH
*

*CONCATENATE STRINGS BY MOVING CHARACTERS FROM STRING 2

* TO THE AREA FOLLOWING STRING 1
*

DOCAT:

STA (5,S] SAVE NEW LENGTH IN STRING 1'S LENGTH BYTE

TSTB CHECK NUMBER OF BYTES TO CONCATENATE

BEQ SETTRN BRANCH CEXIT) IF NO BYTES TO CONCATENATE

CATLP:

LDA Yt GET BYTE FROM STRING 2

STA ,Xt+ MOVE BYTE TO AREA FOLLOWING STRING 1

DECB CONTINUE UNTIL ALL BYTES MOVED

BNE CATLP

*

*SET CARRY FROM TRUNCATION INDICATOR IN STACK

*CARRY = 1 IF CHARACTERS HAD TO BE TRUNCATED, O OTHERWISE
*

SETTRN:
ROR 1,8 SET CARRY FROM TRUNCATION INDICATOR

* CARRY = 1 IF TRUNCATION, O IF NOT

*

*REMOVE PARAMETERS FROM STACK AND EXIT

x

LEAS 7,8 REMOVE PARAMETERS FROM STACK

JMP ,U EXIT TO RETURN ADDRESS

*

* SAMPLE EXECUTION:
*

SC5B:
LDY #$1 GET BASE ADDRESS OF STRING 1

LDX #82 GET BASE ADDRESS OF STRING 2

LDA #$20 GET MAXIMUM LENGTH OF STRING 1

PSHS A,X,Y SAVE PARAMETERS IN STACK

JSR CONCAT CONCATENATE STRINGS

*RESULT OF CONCATENATING
* "LASTNAME" AND ", FIRSTNAME"

* IS $1 = 13H,"LASTNAME, FIRSTNAME"

BRA SC5B LOOP THROUGH TEST

*

*TEST DATA

*

$1: FCB 8 LENGTH OF S71 IN BYTES

FCC /LASTNAME / 32 BYTE MAX LENGTH

S2: FCB $0B LENGTH OF S2 IN BYTES

FCC /, FIRSTNAME / 32 BYTE MAX LENGTH

END

5C Find the position of a substring (POS) 151

5C Find the position of a substring
(POS)

Searches for the first occurrence of a substring within a string. Returns
the index at which the substring starts if it is found and 0 otherwise. The
string and the substring each consist of at most 256 bytes, including an
initial byte containing the length. Thus, if the substring is found, its
starting index cannot be less than 1 or more than 255.

Procedure The program moves through the string searching for the
substring. It continues until it finds a match or until the remaining part
of the string is shorter than the substring and hence cannot possibly
contain it. If the substring does not appear in the string, the program
clears register A; otherwise, the program places the substring’s starting
index in register A.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

More significant byte of base address of substring
Less significant byte of base address of substring

More significant byte of base address of string
Less significant byte of base address of string

Exit conditions

Register A contains index at which first occurrence of substring starts if
it is found; register A contains 0 if substring is not found

Examples

1. Data: String = 1D‘ENTER SPEED IN MILES PER HOUR’
(1D16 = 2940 is the length of the string)

Substring = 05‘MILES’ (05 is the length of the substring)
Result: Register A contains 1015 (1610), the index at which the

substring ‘MILES’ starts

152 Assembly language subroutines for the 6809

2. Data: String = 1B‘SALES FIGURES FOR JUNE 1981’ (1Bi¢
= 2740 Is the length of the string)
Substring = 04’JUNE’ (04 is the length of the substring)

Result: Register A contains 1316 (1910), the index at which the
substring ‘JUNE’ starts

3. Data: String = 10‘LET Y1 = X1 + R7 (106 = 1610 is the length
of the string)
Substring = 02‘R4’ (02 is the length of the substring)

Result: Register A contains 0, since the substring *R4’ does not
appear in the string LET Y1 = X1 + R7

4. Data: String = 07‘RESTOREP’ (07 is the length of the string)
Substring = 03‘RES’ (03 is the length of the substring)

Result: Register A contains 1, the index at which the substring
‘RES’ starts. An index of 1 indicates that the substring
could be an abbreviation of the string. Interactive pro-
grams, such as BASIC interpreters and word processors,
often use abbreviations to save on typing and storage.

Registers used All

Execution time Data-dependent, but the overhead is approximately
100 cycles, each successful match of one character takes 20 cycles, and
each unsuccessful match of one character takes 58 cycles. The worst case
is when the string and substring always match except for the last charac-
ter in the substring, such as

String = ‘AAAAAAAAB’
Substring = ‘AAB’

The execution time in that case is

(STRING LENGTH — SUBSTRING LENGTH + 1) x (20 x (SUB-
STRING LENGTH ~1) + 58) + 100

If, for example, STRING LENGTH = 9 and SUBSTRING LENGTH

= 3 (as in the example above), the execution time is

(9 -—3+4+1) x (20 x 3 — 1) + 58) + 100 =7 x 98 + 100
= 686 + 100
= 786 cycles.

+ +

t+ + + + + + HF HF HF HF HF HF HF HF HF HF HF HF HF F HF H OH NH

5C Find the position of a substring (POS) 153

Program size 71 bytes

Data memory required 2 stack bytes

Special case

1. If either the string or the substring has a length of 0, the program
exits with 0 in register A, indicating that it did not find the substring.

2. If the substring is longer than the string, the program exits with 0 in
register A, indicating that it did not find the substring.

3. If the program returns an index of 1, the substring may be regarded
as an abbreviation of the string. That is, the substring occurs in the
string, starting at the first character. A typical example would be a string
PRINT and a substring PR.

4. If the substring occurs more than once in the string, the program
will return only the index to the first occurrence (the one with the
smallest starting index).

Title Find the Position of a Substring
Name: POS

Purpose: Search for the first occurrence of a substring
in a string and return its starting index.
If the substring is not found, a 0 is returned.

Entry: TOP OF STACK

High byte of return address

Low byte of return address

High byte of substring address

Low byte of substring address
High byte of string address

Low byte of string address

Each string consists of a length byte
followed by a maximum of 255 characters.

Exit: If the substring is found then
Register A = its starting index

else

Register A = 0

Registers Used: ALL

Time: Since the algorithm is so data dependent

154

+ + +£ + + HF HF HF HH HF HF HF HF HH HF HF KF F

POS:

Assembly language subroutines for the 6809

a simple formula is impossible but the

following statements are true and a

worst case is given below:

100 cycles overhead.

Each match of 1 character takes 20 cycles

A mismatch takes 58 cycles

Worst case timing occurs when the

string and substring always match

except for the last character of the

substring, such as:

string = 'AAAAAAAAAB'

substring = 'AAB'

Size: Program 71 bytes

Data 2 stack bytes

LDU a) SAVE RETURN ADDRESS
*

*EXIT, INDICATING SUBSTRING NOT FOUND, IF STRING OR SUBSTRING

* HAS ZERO LENGTH OR IF SUBSTRING IS LONGER THAN STRING
*

CLRA INDICATE SUBSTRING NOT FOUND
LDX 2,8 GET BASE ADDRESS OF SUBSTRING
LDY 4,8 GET BASE ADDRESS OF STRING
LDB 7Yt+ GET STRING LENGTH
BEQ EXITPO BRANCH CEXIT) IF STRING LENGTH IS ZERO

TST 7X CHECK SUBSTRING LENGTH
BEQ EXITPO BRANCH CEXIT) IF SUBSTRING LENGTH IS ZERO
SUBB 7X COMPARE STRING LENGTH, SUBSTRING LENGTH

BCS EXITPO BRANCH (EXIT) IF SUBSTRING IS LONGER THAN
* STRING

*

*SAVE INITIAL LOOP VARIABLES IN STACK

*THESE ARE (BOTTOM TO TOP):
x ADDRESS OF FIRST CHARACTER IN SUBSTRING
* LENGTH OF PART OF STRING THAT MUST BE EXAMINED

* LENGTH OF SUBSTRING
* ADDRESS OF FIRST CHARACTER IN STRING CPOINTER TO

* INITIAL SECTION TO BE EXAMINED)
*

I NCB LENGTH OF PART THAT MUST BE EXAMINED IS
* STRING LENGTH - SUBSTRING LENGTH + 1

* REMAINDER IS TOO SHORT TO CONTAIN

* SUBSTRING

LDA eXt+ GET SUBSTRING LENGTH, MOVE POINTER TO
* FIRST CHARACTER IN SUBSTRING

STX 2,8 SAVE ADDRESS OF FIRST CHARACTER IN
* SUBSTRING

STD 7s SAVE LENGTHS IN STACK AS INITIAL VALUES
* FOR COUNTERS

PSHS Y SAVE ADDRESS OF FIRST STRING BYTE

CMPPOS:

CHBYTE:

NOTFND:

REMTMP:

EXITPO:

5C Find the position of a substring (POS) 155

*

*SEARCH FOR SUBSTRING IN STRING

*START SEARCH AT BASE OF STRING
*CONTINUE UNTIL REMAINING STRING SHORTER THAN SUBSTRING
*

LDY PS) GET CURRENT STARTING POSITION IN STRING
LDX 4,S GET BASE ADDRESS OF SUBSTRING
LDB 2,8 GET SUBSTRING LENGTH
*

*COMPARE BYTES OF SUBSTRING WITH BYTES OF STRING,
* STARTING AT CURRENT POSITION IN STRING
*

LDA 7Yt+ GET BYTE OF STRING
CMPA Xt COMPARE TO BYTE OF SUBSTRING
BNE NOTFND BRANCH IF NOT SAME, SUBSTRING NOT FOUND
DECB CONTINUE THROUGH SUBSTRING
BNE CHBYTE
*

*SUBSTRING FOUND - CALCULATE INDEX AT WHICH IT STARTS IN
* STRING
*

LDD rs GET STARTING ADDRESS OF SECTION CONTAINING
* SUBSTRING

SUBD 6,8 SUBTRACT ADDRESS OF STRING'S LENGTH
* BYTE. DIFFERENCE ENDS UP IN B

TFR B,A SAVE INDEX IN A
BRA REMTMP EXIT, REMOVING TEMPORARIES FROM STACK
*

*ARRIVE HERE IF SUBSTRING NOT FOUND
*MOVE STRING POINTER UP 1 FOR NEXT COMPARISON
*COUNT NUMBER OF COMPARISONS
*

LDD a) MOVE CURRENT (STARTING) POSITION IN
ADDD #1 STRING UP 1 CHARACTER
STD 79
DEC 3,8 SEARCH THROUGH SECTION OF STRING
BNE CMPPOS THAT COULD CONTAIN SUBSTRING
CLRA SUBSTRING NOT FOUND AT ALL - MAKE

* STARTING INDEX ZERO
*

*REMOVE TEMPORARY STORAGE, PARAMETERS FROM STACK AND EXIT
*

LEAS 2,8 REMOVE TEMPORARIES FROM STACK

LEAS 6,8 REMOVE PARAMETERS FROM STACK
JMP ,U EXIT TO RETURN ADDRESS

SAMPLE EXECUTION:

156

SC5C:

STG:

SSTG:

Assembly language subroutines for the 6809

LDY #STG GET BASE ADDRESS OF STRING

LDX #SSTG GET BASE ADDRESS OF SUBSTRING
PSHS X,Y SAVE PARAMETERS IN STACK

JSR POS FIND POSITION OF SUBSTRING
* SEARCHING "AAAAAAAAAB" FOR "AAB"
* RESULTS IN REGISTER A=8

BRA SC5C¢ LOOP THROUGH TEST

TEST DATA

FCB SOA LENGTH OF STRING
FCC /AAAAAAAAAB / 32 BYTE MAX
FCB 3 LENGTH OF SUBSTRING
FCC /AAB / 32 BYTE MAX

END

5D Copya substring froma string (COPY) 157

5D Copy a substring from a string
(COPY)

Copies a substring from a string, given a starting index and the number
of bytes to copy. Each string consists of at most 256 bytes, including an
initial byte containing the length. If the starting index of the substring is
0 (i.e. the substring would start in the length byte) or is beyond the end
of the string, the substring is given a length of 0 and the Carry flag is set
to 1. If the substring would exceed its maximum length or would extend
beyond the end of the string, then only the maximum number or the
available number of characters (up to the end of the string) are placed in
the substring, and the Carry flag is set to 1. If the substring can be
formed as specified, the Carry flag is cleared.

Procedure ‘The program exits immediately if the number of bytes to
copy, the maximum length of the substring, or the starting index is 0. It
also exits immediately if the starting index exceeds the length of the
string. If none of these conditions holds, the program checks whether
the number of bytes to copy exceeds either the maximum length of the
substring or the number of characters available in the string. If either is
exceeded, the program reduces the number of bytes to copy accord-
ingly. It then copies the bytes from the string to the substring. The
program clears the Carry flag if the substring can be formed as specified
and sets the Carry flag if it cannot.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Number of bytes to copy

Starting index to copy from

More significant byte of base address of substring
Less significant byte of base address of substring

More significant byte of base address of string
Less significant byte of base address of string

Maximum length of substring

158 Assembly language subroutines for the 6809

Exit conditions

Substring contains characters copied from string. If the starting index is
0, the maximum length of the substring is 0, or the starting index is
beyond the length of the string, the substring will have a length of 0 and
the Carry flag will be set to 1. If the substring would extend beyond the
end of the string or would exceed its specified maximum length, only the
available characters from the string (up to the maximum length of the
substring) are copied into the substring; the Carry flag is set in this case
also. If no problems occur in forming the substring, the Carry flag is
cleared.

Examples

1. Data:

Result:

2. Data:

Result:

3. Data:

Result:

String = 10‘LET Y1 = R7 + X4 (1016 = 1640 is the length

of the string)
Maximum length of substring = 2
Number of bytes to copy = 2
Starting index = 5
Substring = 02‘Y1’ (2 is the length of the substring).
We have copied 2 bytes from the string starting at charac-
ter #5 (i.e. characters 5 and 6)
Carry = 0, since no problems occur in forming the sub-
string

String = 0E‘8657 POWELL ST’ (OEi6 = 1410 is the length
of the string)
Maximum length of substring = 1046 = 1610

Number of bytes to copy = 0D46 = 1310

Starting index = 06
Substring = 09‘POWELL ST’ (09 is the length of the
substring)
Carry = 1, since there were not enough characters avail-
able in the string to provide the specified number of bytes
to copy

String = 169414 HEGENBERGER DRIVE’ (1616 =
2210 is the length of the string)
Maximum length of substring = 1016 = 160

Number of bytes to copy = 11i6 = 1710

Starting index = 06
Substring = 100HEGENBERGER DRIV’ (1016 = 1610 is
the length of the substring)

5D Copyasubstring from a string (COPY) 159

Carry = 1, since the number of bytes to copy exceeded the
maximum length of the substring

Registers used All

Execution time Approximately

17 x NUMBER OF BYTES COPIED plus 150 cycles overhead

NUMBER OF BYTES COPIED is the number specified if no problems
occur, or the number available or the maximum length of the substring
if copying would extend beyond either the string or the substring. If, for
example, NUMBER OF BYTES COPIED = 1219 (0Cj¢), the execution
time is

17 X 12 + 150 = 204 + 150 = 354 cycles

Program size 85 bytes

Data memory required None

Special cases

1. If the number of bytes to copy is 0, the program assigns the sub-
string a length of 0 and clears the Carry flag, indicating no error.

2. Ifthe maximum length of the substring is 0, the program assigns the
substring a length of 0 and sets the Carry flag to 1, indicating an error.

3. If the starting index of the substring is 0, the program assigns the
substring a length of 0 and sets the Carry flag to 1, indicating an error.

4. Ifthe source string does not even reach the specified starting index,
the program assigns the substring a length of 0 and sets the Carry flag to
1, indicating an error.

5. If the substring would extend beyond the end of the source string,
the program places all the available characters in the substring and sets
the Carry flag to 1, indicating an error. The available characters are the
ones from the starting index to the end of the string.

160 Assembly language subroutines for the 6809

6. If the substring would exceed its specified maximum length, the
program places only the specified maximum number of characters in the
substring. It sets the Carry flag to 1, indicating an error.

* Title Copy a Substring from a String
* Name: COPY
*

Purpose: Copy a substring from a string given a starting
index and the number of bytes.

Entry: TOP OF STACK

High byte of return address

Low byte of return address

Number of bytes to copy

Starting index to copy from

High byte of destination string address

Low byte of destination string address

High byte of source string address

Low byte of source string address

Maximum Length of destination string

Each string consists of a length byte

followed by a maximum of 255 characters.

Exit: Destination string := The substring from the

string.

If no errors then

Carry := 0

else

begin

the following conditions cause an

error and the Carry flag = 1.

if Cindex = 0) or (maxlen = 0) or

(index > length(source) then

the destination string will have a zero

length.

if Cindex + count - 1) > lLength(source))

then

the destination string becomes everything

from index to the end of source string.

end

Registers Used: All

Time: Approximately (17 * count) cycles plus

150 cycles overhead

Size: Program 85 bytes

+ + + + HF FH HE EH He BH HF H HF FH HF HF HF HF FE SF HF HF HF FF F

COPY:

REDLEN:

5D Copyasubstring froma string (COPY) 161

LDU a) SAVE RETURN ADDRESS
*

*EXIT IF ZERO BYTES TO COPY, ZERO MAXIMUM SUBSTRING
* LENGTH, OR ZERO STARTING INDEX

*LENGTH OF SUBSTRING IS ZERO IN ALL CASES
*

CLR 79 LENGTH OF SUBSTRING = 0

LDA 2,8 CHECK NUMBER OF BYTES TO COPY
BEQ OKEXIT BRANCH IF ZERO BYTES TO COPY, NO ERROR

* SUBSTRING WILL JUST HAVE ZERO LENGTH
LDA 8,S CHECK MAXIMUM LENGTH OF SUBSTRING

BEQ EREXIT TAKE ERROR EXIT IF SUBSTRING HAS ZERO
MAXIMUM LENGTH

LDA 3,8 CHECK STARTING INDEX
BEQ EREXIT TAKE ERROR EXIT IF STARTING INDEX IS

* ZERO (LENGTH BYTE)
*

*CHECK IF SOURCE STRING REACHES STARTING INDEX
*TAKE ERROR EXIT IF IT DOESN'T
*

LDX 6,8 GET ADDRESS OF SOURCE STRING
CMPA 7X COMPARE STARTING INDEX TO LENGTH OF

* SOURCE STRING
BHI EREXIT TAKE ERROR EXIT IF STARTING INDEX IS

* TOO LARGE

*

*CHECK IF THERE ARE ENOUGH CHARACTERS IN SOURCE STRING
* TO SATISFY THE NEED
*THERE ARE IF STARTING INDEX + NUMBER OF BYTES TO COPY - 1
* IS LESS THAN OR EQUAL TO THE LENGTH OF THE SOURCE
* STRING
*

CLR 1,8 INDICATE NO TRUNCATION NEEDED
LDB 2,8 COUNT = NUMBER OF BYTES TO COPY
ADDA 2,8 ADD COUNT TO STARTING INDEX
BCS REDLEN BRANCH IF SUM IS GREATER THAN 255
DECA CALCULATE INDEX OF LAST BYTE IN AREA

* SPECIFIED FOR COPYING
CMPA 7X COMPARE TO LENGTH OF SOURCE STRING
BLS CHKMAX BRANCH IF SOURCE STRING IS LONGER
*

*CALLER ASKED FOR TOO MANY CHARACTERS
*JUST RETURN EVERYTHING BETWEEN STARTING INDEX AND THE END OF
* THE SOURCE STRING

*COUNT := LENGTHC(SSTRG) - STARTING INDEX + 1
*INDICATE TRUNCATION OF COUNT
*

LDB 7X GET LENGTH OF SOURCE STRING
SUBB 3,8 COUNT = LENGTH - STARTING INDEX + 1
INCB

COM 1,8 INDICATE TRUNCATION OF COUNT BY

* SETTING MARKER TO FF
*

*DETERMINE IF THERE IS ENOUGH ROOM IN THE SUBSTRING

162

CHKMAX:

MOVSTR:

MVLP:

OKEXIT:

EREXIT:

EXITCP:

SC5D:

Assembly language subroutines for the 6809

*CHECK IF COUNT IS LESS THAN OR EQUAL TO MAXIMUM LENGTH
* OF DESTINATION STRING. IF NOT, SET COUNT TO

* MAXIMUM LENGTH
*IF COUNT > MAXLEN THEN COUNT == MAXLEN
*

CMPB 8,S COMPARE COUNT TO MAXIMUM SUBSTRING LENGTH

BLS MOVSTR BRANCH (NO PROBLEM) IF COUNT IS LESS
* THAN OR EQUAL TO MAXIMUM

LOB 8,S OTHERWISE, REPLACE COUNT WITH MAXIMUM
*

*MOVE SUBSTRING TO DESTINATION STRING
*

STB 7s SAVE COUNT (LENGTH OF SUBSTRING)
LDA 3,8 GET STARTING INDEX
LEAX A,X POINT TO FIRST CHARACTER IN SOURCE STRING
LDY 4,8 POINT TO BASE OF DESTINATION STRING
LEAY 1,Y POINT TO FIRST CHARACTER IN SUBSTRING

LDA 7X+ GET BYTE FROM SOURCE STRING
STA 7Y¥t+ MOVE BYTE TO DESTINATION STRING
DECB CONTINUE THROUGH SPECIFIED NUMBER OF

BNE MVLP BYTES (COUNT)

ROL 1,8 MAKE CARRY INDICATE WHETHER REQUEST WAS
* FULLY SATISFIED (1 IF IT WAS, O IF NOT)

BCS EREXIT
*

*MAKE CARRY INDICATE WHETHER ERRORS OCCURRED

*Q0 IF NOT, 1 IF THEY DID
*

CLC CLEAR CARRY, GOOD EXIT

BRA EXITCP
SEC SET CARRY, ERROR EXIT
*

*SET LENGTH OF SUBSTRING (COUNT)
*

LDA 7S
STA C4,8]
*

*REMOVE PARAMETERS FROM STACK AND EXIT
*

LEAS 9,S

JMP ,U

GET SUBSTRING LENGTH

SAVE LENGTH IN SUBSTRING'S LENGTH BYTE

REMOVE PARAMETERS FROM STACK

EXIT TO RETURN ADDRESS

SAMPLE EXECUTION:

LDA MXLEN MAXIMUM LENGTH OF SUBSTRING

PSHS A SAVE MAXIMUM LENGTH IN STACK

LDY #SSTG BASE ADDRESS OF SOURCE STRING

LDX #DSTG BASE ADDRESS OF DESTINATION STRING

5D Copya substring from a string (COPY) 163

LDB IDX STARTING INDEX TO COPY FROM
LDA CNT NUMBER OF BYTES TO COPY

PSHS A,B,X,Y SAVE PARAMETERS IN STACK
JSR COPY COPY SUBSTRING

*COPYING 3 CHARACTERS STARTING AT INDEX 4
* FROM '12.345E+10' GIVES '345'

BRA SC5D LOOP THROUGH TEST

*

*DATA SECTION
*

IDX FCB 4 STARTING INDEX FOR COPYING
CNT FCB 3 NUMBER OF CHARACTERS TO COPY
MXLEN FCB $20 MAXIMUM LENGTH OF DESTINATION STRING
SSTG FCB SOA LENGTH OF STRING

FCC /12.345E+10 / 32 BYTE MAX
DSTG FCB 0 LENGTH OF SUBSTRING

FCC / / 32 BYTE MAX

END

164 Assembly language subroutines for the 6809

5E Delete a substring from a string
(DELETE)

Deletes a substring from a string, given a starting index and a length.
The string consists of at most 256 bytes, including an initial byte con-
taining the length. The Carry flag is cleared if the deletion can be
performed as specified. The Carry flag is set if the starting index is 0 or
beyond the length of the string; the string is left unchanged in either
case. If the deletion extends beyond the end of the string, the Carry flag
is set to 1 and only the characters from the starting index to the end of
the string are deleted.

Procedure The program exits immediately if either the starting index
or the number of bytes to delete is 0. It also exits if the starting index is
beyond the length of the string. If none of these conditions holds, the
program checks whether the string extends beyond the area to be
deleted. If it does not, the program simply truncates the string by setting
the new length to the starting index minus 1. If it does, the program
compacts the string by moving the bytes above the deleted area down.
The program then determines the new string’s length and exits with the
Carry cleared if the specified number of bytes were deleted, and with
the Carry set to 1 if any errors occurred.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Number of bytes to delete

Starting index to delete from

More significant byte of base address of string
Less significant byte of base address of string

Exit conditions

Substring deleted from string. If no errors occur, the Carry flag is
cleared. If the starting index is 0 or beyond the length of the string, the
Carry flag is set and the string is unchanged. If the number of bytes to

5E Delete a substring from a string (DELETE) 165

delete would go beyond the end of the string, the Carry flag is set and
the characters from the starting index to the end of the string are
deleted.

ee

Examples

1. Data: String = 26‘SSALES FOR MARCH AND APRIL OF
THIS YEAR’ (2616 = 38; is the length of the string)
Number of bytes to delete = 0Aj6 = 10j0
Starting index to delete from = 10,6 = 164

Result: String = 1C‘SALES FOR MARCH OF THIS YEAR’
(1Cig = 2810 is the length of the string with 10 bytes
deleted starting with the 16th character — the deleted
material is ‘AND APRIL’)
Carry = 0, since no problems occurred in the deletion

2. Data: String = 28°THE PRICE IS $3.00 ($2.00 BEFORE JUNE
1)’ (2816 = 40 o is the length of the string)
Number of bytes to delete = 3016 = 4810
Starting index to delete from = 1316 = 1919

Result: String = 12‘THE PRICE IS $3.00’ (12:6 = 1810 is the
length of the string with all remaining bytes deleted)
Carry = 1, since there were not as many bytes left in the
string as were supposed to be deleted

Registers used All

Execution time Approximately

17 x NUMBER OF BYTES MOVED DOWN + 120 cycles overhead

NUMBER OF BYTES MOVED DOWN is 0 if the string can be
truncated and is STRING LENGTH — STARTING INDEX —
NUMBER OF BYTES TO DELETE + 1 if the string must be com-
pacted. That is, it takes extra time if the deletion creates a ‘hole’ in the
string that must be filled.

Examples

1. STRING LENGTH = 204¢ (3210)
STARTING INDEX = 194¢ (2510)

166

*

+ + + + + HF HF F

Assembly language subroutines for the 6809

NUMBER OF BYTES TO DELETE = 08

Since there are exactly 8 bytes left in the string starting at index 1946,
all the routine must do is truncate it (i.e. cut off the end of the string).
This takes

17 x 0 + 120 = 120 cycles

2. STRING LENGTH = 4046 (6410)
STARTING INDEX = 1946 (2510)
NUMBER OF BYTES TO DELETE = 08

Since there are 2016 (3219) bytes above the truncated area, the routine

must move them down eight positions to fill the ‘hole’. Thus NUMBER

OF BYTES MOVED DOWN = 3219 and the execution time is

17 xX 32 + 120 = 544 + 120 = 664 cycles

Program size 80 bytes

Data memory required None

Special cases

1. If the number of bytes to delete is 0, the program exits with Carry

flag cleared (no errors) and the string unchanged.

2. Ifthe string does not even extend to the specified starting index, the

program exits with the Carry flag set to 1 (indicating an error) and the

string unchanged.

3. Ifthe number of bytes to delete exceeds the number available, the

program deletes all bytes from the starting index to the end of the string

and exits with the Carry flag set to 1 (indicating an error).

Title Delete a Substring from a String

Name: DELETE

Purpose: Delete a substring from a string given a

starting index and a length.

Entry: TOP OF STACK
High byte of return address
Low byte of return address

Number of bytes to delete (count)

Starting index to delete from Cindex)

5E Delete a substring from a string (DELETE) 167

High byte of string address

Low byte of string address

The string consists of a length byte

followed by a maximum of 255 characters.

Exit: Substring deleted.

If no errors then

Carry := 0

else

begin

the following conditions cause an

error with Carry flag = 1.

if Cindex = 0) or (index > length(string))
then do not change string

if count is too large then

delete only the characters from

index to end of string
end

Registers used: All

+ + + + + FF FH HF HF HF HF HF HF HF HF HF HF HF HF HF HF H H HF HF

Time: Approximately 17 * (LENGTH(CSTRG) -~INDEX-COUNT+1)
plus 120 cycles overhead

Size: Program 80 bytes

DELETE:

LDU 79 SAVE RETURN ADDRESS
*

*INITIALIZE ERROR INDICATOR (DELERR) TO O
*

CLR rs INDICATE NO ERRORS
*

*EXIT IF COUNT IS ZERO, STARTING INDEX IS ZERO, OR

* STARTING INDEX IS BEYOND THE END OF THE STRING
*

LDB 2,8 CHECK NUMBER OF BYTES TO DELETE
BEQ OKEXIT BRANCH (GOOD EXIT) IF NOTHING TO DELETE
LDA 3,8 CHECK STARTING INDEX
BEQ EREXIT BRANCH CERROR EXIT) IF STARTING INDEX IS

* ZERO - THAT IS, IN LENGTH BYTE
LDX 4,58 GET BASE ADDRESS OF STRING
CMPA 7X CHECK IF STARTING INDEX IS WITHIN STRING
BHI EREXIT BRANCH CERROR EXIT) IF STARTING INDEX

* IS BEYOND END OF STRING
*

*CHECK WHETHER NUMBER OF CHARACTERS REQUESTED TO BE
* DELETED ARE PRESENT
*THEY ARE IF STARTING INDEX + NUMBER OF BYTES TO DELETE - 1
* IS LESS THAN OR EQUAL TO STRING LENGTH

*IF NOT, THEN DELETE ONLY TO END OF STRING
*

ADDA 2,58 COMPUTE STARTING INDEX + COUNT

168

TRUNC:

CNTOK:

MVLP:

OKEXIT:

Assembly language subroutines for the 6809

BCS TRUNC TRUNCATE IF INDEX + COUNT > 255
DECA END OF DELETED AREA IS AT INDEX GIVEN BY

* STARTING INDEX + COUNT - 1

CMPA 7X COMPARE TO LENGTH OF SUBSTRING

BCS CNTOK BRANCH IF MORE THAN ENOUGH CHARACTERS
BEQ TRUNC TRUNCATE BUT NO ERROR CEXACTLY ENOUGH

* CHARACTERS)

COM 79 INDICATE ERROR - NOT ENOUGH CHARACTERS
* TO DELETE

*

*TRUNCATE THE STRING - NO COMPACTING NECESSARY
*SIMPLY REDUCE ITS LENGTH TO STARTING INDEX - 1
*

LDA 3,8 STRING LENGTH = STARTING INDEX - 1

DECA
STA 7X
*

*TEST ERROR INDICATOR AND EXIT ACCORDINGLY
*

LDA 7s TEST ERROR INDICATOR
BEQ OKEXIT NO ERROR, TAKE GOOD EXIT
BNE EREXIT OTHERWISE, TAKE ERROR EXIT
*

*DELETE SUBSTRING BY COMPACTING THE STRING

*MOVE ALL CHARACTERS ABOVE THE DELETED AREA DOWN
*

STA 1,$ SAVE INDEX TO END OF AREA TO BE DELETED

LDB 7X NUMBER OF CHARACTERS TO MOVE = STRING

SUBB 1,8 LENGTH - INDEX AT END OF AREA

INCA ADD 1 TO INDEX AT END OF DELETED AREA
* THUS GIVING FIRST BYTE TO MOVE DOWN

LEAY A,X POINT TO FIRST CHARACTER TO BE
* MOVED DOWN

LDA 3,8 GET STARTING INDEX

LEAX A,X POINT TO FIRST BYTE IN AREA TO BE DELETED

LDA 7Yt+ GET CHARACTER FROM ABOVE DELETED AREA

STA Xt MOVE IT DOWN TO COMPACT STRING

DECB CONTINUE THROUGH END OF STRING

BNE MVLP
*

*COMPUTE AND SAVE LENGTH OF STRING AFTER DELETION
*

LDX 4,8 POINT TO STRING LENGTH

LDA 7X GET ORIGINAL LENGTH

SUBA 2,8 SUBTRACT NUMBER OF BYTES TO DELETE

STA 7X DIFFERENCE IS NEW LENGTH
*

*CLEAR CARRY, INDICATING NO ERRORS
*

CLC CLEAR CARRY, NO ERRORS

BRA EXITDE
*

5E Deletea substring froma string (DELETE) 169

*SET CARRY, INDICATING AN ERROR
*

EREXIT:

SEC SET CARRY, INDICATING ERROR
*

*REMOVE PARAMETERS FROM STACK AND EXIT
*

EXITDE:

LEAS 6,S REMOVE PARAMETERS FROM STACK
JMP ,U EXIT TO RETURN ADDRESS

*

* SAMPLE EXECUTION:
*

SC5E:

LDX #SSTG GET BASE ADDRESS OF STRING
LDB IDX GET STARTING INDEX FOR DELETION
LDA CNT GET NUMBER OF CHARACTERS TO DELETE

PSHS A,B,X SAVE PARAMETERS IN STACK

JSR DELETE DELETE CHARACTERS

*DELETING 4 CHARACTERS STARTING AT INDEX 1
* FROM "JOE HANDOVER" LEAVES "HANDOVER"

BRA SC5E LOOP THROUGH TEST

*

*DATA SECTION
*

IOX: FCB 1 STARTING INDEX FOR DELETION
CNT: FCB 4 NUMBER OF CHARACTERS TO DELETE
SSTG: FCB 12 LENGTH OF STRING IN BYTES

FCC /JOE HANDOVER/

END

170 Assembly language subroutines for the 6809

5F Insert a substring into a string
(INSERT)

Inserts a substring into a string, given a starting index. The string and
substring each consist of at most 256 bytes, including an initial byte
containing the length. The Carry flag is cleared if the insertion can be
accomplished with no problems. The Carry flag is set if the starting
index is 0 or beyond the length of the string. In the second case, the
substring is concatenated to the end of the string. The Carry flag is also
set if the insertion would make the string exceed a specified maximum
length; in that case, the program inserts only enough of the substring to
reach the maximum length.

Procedure The program exits immediately if the starting index or the
length of the substring is 0. If neither is 0, the program checks whether
the insertion would make the string longer than the specified maximum.
If it would, the program truncates the substring. The program then
checks whether the starting index is within the string. If not, the pro-
gram simply concatenates the substring at the end of the string. If the
starting index is within the string, the program must make room for the
insertion by moving the remaining characters up in memory. This move
must start at the highest address to avoid writing over any data. Finally,
the program can move the substring into the open area. The program
then determines the new string length. It exits with the Carry flag set to
0 if no problems occurred and to 1 if the starting index was 0, the
substring had to be truncated, or the starting index was beyond the
length of the string.

Entry conditions

Order in stack (starting from the top)

More significant byte of base address
Less significant byte of return address

Maximum length of string

Starting index at which to insert the substring

More significant byte of base address of substring
Less significant byte of base address of substring

More significant byte of base address of string

5F Insert a substring into a string (INSERT) 171

Less significant byte of base address of string

Exit conditions

Substring inserted into string. If no errors occur, the Carry flag is
cleared. If the starting index or the length of the substring is 0, the Carry
flag is set and the string is not changed. If the starting index is beyond
the length of the string, the Carry flag is set and the substring is
concatenated to the end of the string. If the insertion would make the
string exceed its specified maximum length, the Carry flag is set and only
enough of the substring is inserted to reach maximum length.

Examples

1. Data: String = ODA‘SJOHN SMITH’ (0Aj6 = 10j0 is the length of
the string)
Substring = 08°WILLIAM ’ (08 is the length of the sub-
string)
Maximum length of string = 1446 = 2010
Starting index = 06

Result: String = 12‘SJOHN WILLIAM SMITH’ (1216 = 180 is the
length of the string with the substring inserted)
Carry = 0, since no problems occurred in the insertion

2. Data: String = OA‘JOHN SMITH?’ (0Aj6 = 1010 is the length of
the string)
Substring = OC'ROCKEFELLER’ (0Cig = 12i0 is the
length of the substring)
Maximum length of string = 1446 = 2010
Starting index = 06

Result: String = 14°JOHN ROCKEFELLESMITHW’ (1446 = 2010
is the length of the string with as much of the substring
inserted as the maximum length would allow)
Carry = 1, since some of the substring could not be
inserted without exceeding the maximum length of the
string

Registers used All

172 Assembly language subroutines for the 6809

Execution time Approximately

17 X NUMBER OF BYTES MOVED + 17 X NUMBER OF BYTES
INSERTED + 180 cycles

NUMBER OF BYTES MOVED is the number of bytes that must be
moved to make room for the insertion. If the starting index is beyond
the end of the string, this is 0 since the substring is simply placed at the
end. Otherwise, this is STRING LENGTH — STARTING INDEX +
1, since the bytes at or above the starting index must be moved.
NUMBER OF BYTES INSERTED 1s the length of the substring if

no truncation occurs. It is the maximum length of the string minus its
current length if inserting the substring would produce a string longer
than the maximum.

Examples

1. STRING LENGTH = 2016 (3210)
STARTING INDEX = 1946 (2510)
MAXIMUM LENGTH = 3046 (4810)
SUBSTRING LENGTH = 06

That is, we want to insert a substring 6 bytes long, starting at the 25th
character. Since 8 bytes must be moved up (NUMBER OF BYTES
MOVED = 32 — 25 + 1) and 6 bytes must be inserted, the execution
time is approximately

17 X 8+ 17 X 6+ 180 = 136 + 102 + 180 = 418 cycles

2. STRING LENGTH = 2046 (3210)
STARTING INDEX = 194¢ (2530)
MAXIMUM LENGTH = 2446 (3610)
SUBSTRING LENGTH = 06

As opposed to Example 1, here we can insert only 4 bytes the
substring without exceeding the string’s maximum length. Thus
NUMBER OF BYTES MOVED = 8 and NUMBER OF BYTES
INSERTED = 4. The execution time is approximately

17 X¥ 8+17 X 4+ 180 = 136 + 68 + 180 = 384 cycles

Program size 115 bytes

Data memory required None

+ +

+ + +£ + + F + + HF He HF HF HF HF HF HF HF HH HF HF HF HF HF HF KF FF

5F Inserta substring into a string (INSERT) 173

Special cases

1. Ifthe length of the substring (the insertion) is 0, the program exits
with the Carry flag cleared (no errors) and the string unchanged.

2. If the starting index for the insertion is 0 (i.e. the insertion would
start in the length byte), the program exits with the Carry flag set to 1
(indicating an error) and the string unchanged.

3. If the insertion makes the string exceed the specified maximum
length, the program inserts only enough characters to reach the
maximum length. The Carry flag is set to 1 to indicate that the insertion
has been truncated.

4. If the starting index of the insertion is beyond the end of the string,
the program concatenates the insertion at the end of the string and
indicates an error by setting the Carry flag to 1.

5. If the original length of the string exceeds its specified maximum
length, the program exits with the Carry flag set to 1 (indicating an
error) and the string unchanged.

Title Insert a Substring into a String
Name: INSERT

Purpose: Insert a substring into a string given a
starting index.

Entry: TOP OF STACK

High byte of return address

Low byte of return address

Maximum length of (source) string

Starting index to insert the substring

High byte of substring address

Low byte of substring address

High byte of (source) string address

Low byte of (source) string address

Each string consists of a length byte

followed by a maximum of 255 characters.

Exit: Substring inserted into string.
If no errors then

Carry = 0
else

begin

the following conditions cause the

Carry flag to be set.

if index = 0 then

do not insert the substring

if length(string) > maximum Length then

174 Assembly language subroutines for the 6809

* do not insert the substring

* if index > lLength(string) then

* concatenate substring onto the end of the

* source string

* if length(string)+lLength(substring) > maxlen

* then insert only enough of the substring
* to reach maximum Length
* end
*

* Registers Used: ALL
*

* Time: Approximately

* 17 * (LENGTHCSTRING) - INDEX + 1) +

* 17 * CLENGTHCSUBSTRING)) +

* 180 cycles overhead
*

* Size: Program 115 bytes

INSERT:
*

* START WITH ERROR INDICATOR CLEARED

* POINTERS INITIALIZED TO BASE ADDRESSES OF STRING, SUBSTRING
*

LDU rs SAVE RETURN ADDRESS

CLR 78 CLEAR ERROR INDICATOR (NO ERRORS)
LDX 6,8 GET BASE ADDRESS OF STRING
LDY 4,8 GET BASE ADDRESS OF SUBSTRING
*

*EXIT IF SUBSTRING LENGTH IS ZERO OR STARTING INDEX IS
x ZERO
*

LDA 3,8 GET STARTING INDEX

BEQ EREXIT EXIT, INDICATING ERROR, IF STARTING

* INDEX IS ZERO CLENGTH BYTE)
LDB 7Y GET LENGTH OF SUBSTRING (NUMBER OF

* CHARACTERS TO INSERT

BEQ OKEXIT EXIT IF NOTHING TO INSERT (NO ERROR)
*

*CHECK WHETHER THE STRING WITH THE INSERTION FITS IN THE
* SOURCE STRING (I.E., IF ITS LENGTH IS LESS THAN OR EQUAL
* TO THE MAXIMUM).

*IF NOT, TRUNCATE THE SUBSTRING AND SET THE ERROR FLAG
*

LDA 7X GET SUBSTRING LENGTH
ADDA 7x SUBSTRING LENGTH + STRING LENGTH
BCS TRUNC TRUNCATE SUBSTRING IF NEW LENGTH > 255
CMPA 2,8 COMPARE TO MAXIMUM STRING LENGTH

BLS IDXLEN BRANCH IF NEW LENGTH <= MAX LENGTH
*

*SUBSTRING DOES NOT FIT, SO TRUNCATE IT
*

TRUNC:
LDB 2,8 NUMBER OF CHARACTERS TO INSERT =
SUBB C6,S] MAXIMUM LENGTH ~- STRING LENGTH

BLS EREXIT TAKE ERROR EXIT IF MAXIMUM LENGTH < =

IDXLEN:

LENOK:

OPNLP:

MVESUB:

5F Inserta substring into a string (INSERT) 175

* STRING LENGTH

COM a) INDICATE SUBSTRING WAS TRUNCATED
*

*CHECK WHETHER STARTING INDEX IS WITHIN THE STRING. IF NOT,

* CONCATENATE SUBSTRING ONTO THE END OF THE STRING
*

STB 1,8 SAVE NUMBER OF CHARACTERS TO INSERT
LDA 7X GET STRING LENGTH

CMPA 3,58 COMPARE TO STARTING INDEX

BCC LENOK BRANCH IF STARTING INDEX IS WITHIN STRING
INCA ELSE SET STARTING INDEX TO END OF STRING
STA 3,8

LDA #3 F F INDICATE ERROR IN INSERT
STA 79

BRA MVESUB JUST PERFORM MOVE, NOTHING TO OPEN UP
*

*OPEN UP A SPACE IN SOURCE STRING FOR THE SUBSTRING BY MOVING
* THE CHARACTERS FROM THE END OF THE SOURCE STRING DOWN TO
* INDEX, UP BY THE SIZE OF THE SUBSTRING
*

*

*CALCULATE NUMBER OF CHARACTERS TO MOVE

* COUNT := STRING LENGTH - STARTING INDEX + 1
*

LDB 7X GET STRING LENGTH

SUBB 2,58 SUBTRACT STARTING INDEX
INCB ADD 1
*

*SET SOURCE AND DESTINATION POINTERS
*

LEAX A,X POINT TO END OF STRING

LEAX 1,X POINT JUST PAST END OF STRING

LDA 1,8 ADD NUMBER OF CHARACTERS TO INSERT

LEAY A,X POINT JUST PAST END OF DESTINATION AREA
*

*MOVE CHARACTERS UP IN MEMORY TO MAKE ROOM FOR SUBSTRING
*

LDA 77K GET NEXT CHARACTER

STA 77Y MOVE IT UP IN MEMORY

DECB DECREMENT COUNTER

BNE OPNLP CONTINUE THROUGH NUMBER OF CHARACTERS
* TO MOVE

*

*MOVE SUBSTRING INTO THE OPEN AREA
*

LDX 6,S GET STRING ADDRESS
LDA 3,8 GET STARTING INDEX

LEAX A,X POINT TO START OF OPEN AREA
LDY 4,8 GET SUBSTRING ADDRESS

LDB 1,8 GET NUMBER OF CHARACTERS TO INSERT
LEAY 1,Y POINT TO START OF SUBSTRING
*

176

MVELP:

OKEXIT:

EREXIT:

EXITIN:

SCSF:

*

Assembly language subroutines for the 6809

*MOVE SUBSTRING BYTE AT A TIME
*

LDA 7Y¥+ GET CHARACTER FROM SUBSTRING
STA 7Xt+ MOVE IT INTO OPEN AREA
DECB DECREMENT COUNTER
BNE MVELP CONTINUE UNTIL COUNTER = QO
*

*CALCULATE NEW STRING LENGTH
*NEW LENGTH = OLD LENGTH PLUS NUMBER OF CHARACTERS
* TO INSERT
*

LDX 6,S8 POINT TO STRING LENGTH
LDA 7X GET STRING LENGTH

ADDA 1,8 ADD NUMBER OF CHARACTERS TO INSERT

STA 7X SAVE SUM AS NEW STRING LENGTH
*

*CHECK ERROR FLAG
*

LDA Ps) CHECK ERROR FLAG

BNE EREXIT BRANCH IF ERROR OCCURRED
*

*SET CARRY FROM ERROR FLAG OR TEST

*CARRY = O IF NO ERRORS, 1 IF ERRORS
*

CLC NO ERRORS
BRA EXITIN

SEC ERROR EXIT
*

*REMOVE PARAMETERS FROM STACK AND EXIT
*

LEAS 8,S REMOVE PARAMETERS FROM STACK
JMP ,U EXIT TO RETURN ADDRESS

SAMPLE EXECUTION:

LDY #STG BASE ADDRESS OF STRING
LDX #SSTG BASE ADDRESS OF SUBSTRING
LDB IDX STARTING INDEX

LDA MXLEN MAXIMUM LENGTH OF STRING

PSHS D,X,Y SAVE PARAMETERS IN STACK
JSR INSERT INSERT SUBSTRING

*RESULT OF INSERTING '-' INTO '123456' AT
* INDEX 1 IS '-123456'

JMP SC5F LOOP THROUGH TEST

*DATA SECTION

IDX: FCB 1 STARTING INDEX FOR INSERTION

MXLEN:

STG:

SSTG

5F Inserta substring into a string (INSERT)

FCB

FCB
FCC

FCB
FCC

$20
6
1123456
1
/-

MAXIMUM LENGTH OF DESTINATION
LENGTH OF STRING

LENGTH OF SUBSTRING
/ 32 BYTE MAX

/ 32 BYTE MAX

177

178 Assembly language subroutines for the 6809

5G Remove excess spaces from a string
(SPACES)

Removes excess spaces from a string, including leading spaces, trailing
spaces, and extra spaces within the string itself. The string consists of at
most 256 bytes, including an initial byte containing the length.

Procedure The program exits immediately if the length of the string 1s
0. Otherwise, it first removes all leading spaces. It then sets a flag
whenever it finds a space and deletes all subsequent spaces. If it reaches
the end of the string with that flag set, it deletes the final trailing space as
well. Finally, it adjusts the string’s length.

Entry conditions

Base address of string in register X

Exit conditions

Excess spaces removed from string. The string is left with no leading or
trailing spaces and no groups of consecutive spaces inside it.

Examples

1. Data: String = OF‘ JOHN SMITH ’ (0Fi6 = 1510 is the length
of the string)

Result: String = OA‘SJOHN SMITH’ (OAi6 = 1040 is the length of
the string with the extra spaces removed)

2. Data: String = 1B‘ PORTLAND, OREGON ’(1Bi6 = 2710
is the length of the string)

Result: String = 10°PORTLAND, OREGON’ (1016 = 1640 is the
length of the string with the extra spaces removed)

Registers used All

+ + +

+ + + + FF + $F HH HF HF HF HF HF HF HF HF HH HF HF F

SPACES:

5G Remove excess spaces from a string (SPACES) 179

Execution time Approximately

35 X LENGTH OF STRING IN BYTES + 65

If, for example, the string is 1C hex (28 decimal) bytes long, this is

35 X 28 + 65 = 980 + 65 = 1045 cycles

Program size 61 bytes

Data memory required 2 stack bytes

Title

Name:

Purpose:

Entry:

Exit:

Registers Used:

Time:

Size:

*

Remove Extra Spaces from a String
SPACES

Remove leading, trailing, and extra

internal spaces from a string

Register X = Base address of string

The string consists of a Length byte

followed by a maximum of 255 characters.

Leading, trailing, and excess internal
spaces removed

ALL

Approximately .

35 * (LENGTHCSTRG) + 65 cycles overhead

Program 61 bytes

Data 2 stack bytes

*SAVE BASE ADDRESS OF STRING

*START COMPACTED STRING'S LENGTH AT ZERO

*INDICATE INITIALLY LAST CHARACTER WAS NOT A SPACE
*

TFR X,U
CLRA

CLRB

PSHS A,B
*

SAVE BASE ADDRESS OF STRING

INDICATE LAST CHARACTER WAS NOT A SPACE
COMPACTED STRING'S LENGTH = ZERO
SAVE INDICATOR, LENGTH IN STACK

*EXIT IF STRING LENGTH IS ZERO
*

LDB Xt GET STRING LENGTH

180

LEADSP:

MVCHAR:

MARKCH:

SVCHR:

CNTCHR:

Assembly language subroutines for the 6809

BEQ
*

EXITRE BRANCH CEXIT) IF STRING LENGTH IS ZERO

*REMOVE ALL LEADING SPACES
*

TFR X,Y

LDA Xt
CMPA #SPACE

BNE MARKCH

DECB
BNE LEADSP

CLR 7U

BRA EXITRE
*

START POINTERS TO BOTH ORIGINAL, COMPACTED
* STRINGS AT FIRST CHARACTER IN STRING

GET NEXT CHARACTER
IS IT A SPACE?
BRANCH IF CHARACTER IS NOT A SPACE

DECREMENT CHARACTER COUNT
BRANCH IF NOT DONE WITH STRING
STRING CONSISTED ENTIRELY OF SPACES

* MAKE ITS LENGTH ZERO

EXIT

*WORK THROUGH MAIN PART OF STRING, OMITTING SPACES

* THAT OCCUR IMMEDIATELY AFTER OTHER SPACES
*

*CHECK IF CURRENT CHARACTER IS A SPACE
*IF SO, CHECK IF PREVIOUS CHARACTER WAS A SPACE

*IF SO, OMIT CHARACTER FROM COMPACTED STRING

*IF NOT, MARK CHARACTER AS A SPACE
*

LDA
CMPA
BNE

TST

BEQ

COM
BRA
*

* INDICATE
*

CLR
*

#SPACE
MARKCH

79
CNTCHR

rs
SVCHR

GET NEXT CHARACTER
IS IT A SPACE?
BRANCH IF CHARACTER IS NOT A SPACE

CHECK IF LAST CHARACTER WAS A SPACE

BRANCH IF IT WAS
INDICATE CURRENT CHARACTER IS A SPACE

CURRENT CHARACTER IS NOT A SPACE

79 INDICATE CURRENT CHARACTER NOT A SPACE

*SAVE CURRENT CHARACTER IN COMPACTED STRING
*

STA
INC
*

*COUNT CHARACTERS
*

DECB

BNE
*

MVCHAR

SAVE CHARACTER IN COMPACTED STRING
ADD 1 TO LENGTH OF COMPACTED STRING

COUNT CHARACTERS
BRANCH IF ANY CHARACTERS LEFT

kOMIT LAST CHARACTER IF IT WAS A SPACE
*

TST

BEQ

DEC
*

7°

SETLEN

1,8

CHECK IF FINAL CHARACTER WAS A SPACE

BRANCH IF IT WAS NOT
OMIT FINAL CHARACTER IF IT WAS A SPACE

5G Remove excess spaces from a string (SPACES) 181

*SET LENGTH OF COMPACTED STRING
*

GET LENGTH OF COMPACTED STRING

SAVE AS LENGTH BYTE IN STRING

*REMOVE TEMPORARIES FROM STACK AND EXIT

SETLEN:

LDA 1,8 -

STA ,U
*

*

EXITRE:

LEAS 2,8
RTS

*

*CHARACTER DEFINITION
*

SPACE EQU $20

*

SC5G:

LDX #STG

JSR SPACES

*

*DATA SECTION
*

STG: FCB SOE

FCC / JOHN

END

SAMPLE EXECUTION:

REMOVE TEMPORARY DATA FROM STACK

ASCII SPACE CHARACTER

GET BASE ADDRESS OF STRING
REMOVE SPACES

*RESULT OF REMOVING SPACES FROM
* ' JOHN SMITH ' IS "JOHN SMITH!

LENGTH OF STRING IN BYTES
SMITH / STRING

6 Array operations

6A. 8-bit array summation
(ASUMS8)

182

Adds the elements of an array, producing a 16-bit sum. The array
consists of up to 255 byte-length elements.

Procedure The program starts the sum at 0. It then adds elements one
at a time to the sum’s less significant byte. It also adds the carries to the
sum’s more significant byte.

Entry conditions

Base address of array in register X
Size of array in bytes in register A

Exit conditions

Sum in register D

Example

Data: Size of array in bytes = (A) = 08

+ + + +

+ + + + + + HF HF

6A _ 8-bit array summation (ASUM8) 183

Array elements

F716 = 24710

2316 = 3510

3116 = 4910
71046 = 11210

SA16 = 9010
1616 = 2240
CBi6 = 20340

Elie = 22510

Result: Sum = (D) = 03D716 = 98310

Registers used A,B, CC, X, Y

Execution time Approximately 16 cycles per byte-length element
plus 26 cycles overhead. If, for example, the array consists of 1C1¢ (2810)
elements, the execution time is approximately

16 X 28 + 26 = 448 + 26 = 474 cycles

Program size 18 bytes

Data memory required None

Special case An array size of 0 causes an immediate exit with a sum
of 0

Title 8-Bit Array Summation
Name: ASUM8

Purpose: Sum the elements of an array, yielding a 16 bit
result. Maximum size is 255 byte-length
elements.

Entry: Register X = Base address of array

Register A = Size of array in bytes

Exit: Register D = Sum

184 Assembly language subroutines for the 6809

* Registers Used: A,B,CC,X,Y
*

* Time: Approximately 16 cycles per element plus

* 26 cycles overhead
*

* Size: Program 18 bytes
*

*

*TEST ARRAY LENGTH

*EXIT WITH SUM = O IF ARRAY HAS ZERO ELEMENTS

*

ASUM8:
TFR A,B SAVE ARRAY LENGTH IN B

CLRA EXTEND ARRAY LENGTH TO 16 BITS

TSTB CHECK IF ARRAY LENGTH IS ZERO

BEQ EXITAS BRANCH (EXIT) IF ARRAY LENGTH IS

* ZERO - SUM IS ZERO IN THIS CASE
*

*ADD BYTE-LENGTH ELEMENTS TO LOW BYTE OF SUM ONE AT A TIME

*ADD CARRIES TO HIGH BYTE OF SUM

*

TFR D,Y SAVE 16-BIT ARRAY LENGTH IN Y

CLRB START SUM AT ZERO CREMEMBER A IS

* ALREADY ZERO)

SUMLP:
ADDB Xt ADD NEXT ELEMENT TO LOW BYTE OF

* SUM

ADCA #0 ADD CARRY TO HIGH BYTE OF SUM

LEAY -1,Y CONTINUE THROUGH ALL ELEMENTS

BNE SUMLP

EXITAS:

RTS

*

* SAMPLE EXECUTION

*

*

SC6A:
LDX #BUF GET BASE ADDRESS OF BUFFER

LDA BUFSZ GET BUFFER SIZE IN BYTES

JSR ASUM8 SUM ELEMENTS IN BUFFER

SUM OF TEST DATA IS O7F8 HEX,

* REGISTER D = O7F8H

BRA SC6A LOOP FOR ANOTHER TEST

*TEST DATA, CHANGE FOR OTHER VALUES

SIZE EQU $10 SIZE OF BUFFER IN BYTES

BUFSZ: FCB SIZE SIZE OF BUFFER IN BYTES

BUF: FCB 0 BUFFER

FCB $11 DECIMAL ELEMENTS ARE 0,17,34,51,68

FCB $22 85,102,119,135,153,170,187,204

FCB $33 221,238,255

FCB $44

6A _ 8-bit array summation (ASUMS8) 185

FCB $55

FCB $66
FCB $77

FCB $88
FCB $99
FCB SAA
FCB $BB
FCB $CC
FCB $DD

FCB SEE
FCB $F F SUM = O7F8 (2040 DECIMAL)

186 Assembly language subroutines for the 6809

6B 16-bit array summation
(ASUM16)

Adds the elements of an array, producing a 24-bit sum. The array
consists of up to 255 word-length (16-bit) elements arranged in the usual
6809 format with the more significant byte first.

Procedure The program starts the sum at 0. It then adds elements to
the sum’s less significant bytes one at a time, beginning at the base
address. Whenever an addition produces a carry, the program adds 1 to
the sum’s most significant byte.

Entry conditions

Base address of array in X
Size of array in 16-bit words in A

Exit conditions

Most significant byte of sum in A
Middle and least significant bytes of sum in X

Example

Data: Size of array (in 16-bit words) = (A) = 08
Array elements
F7A]lie = 63 39340

239Bi6 =9 11546

31D5i6 = 12 75710

T0OF216 = 2891410
5A3616 = 2309410
166C 16 =5 74010

CBF5i6 = 52 21310

E1071¢6 = 57 60710

Result: Sum = O3DBA1i6 = 252 83310

(A) = most significant byte of sum = 0316
(X) = middle and least significant bytes of sum = DBA1i¢6

+ + + +

+ + + + + + € FF HF HF HF HF HH HF H HK F

ASUM16:

6B 16-bit array summation (ASUM16) 187

Registers used A,B, CC, X, Y

Execution time Approximately 20 cycles per 16-bit element plus 44
cycles overhead. If, for example, the array consists of 1216 (1810) ele-
ments, the execution time is approximately

20 X 18 + 44 = 360 + 44 = 404 cycles

This approximation assumes no carries to the most significant byte of
the sum; each carry increases execution time by 6 cycles.

Program size 27 bytes

Data memory required 1 stack byte

Specialcase An array size of 0 causes an immediate exit with a sum of 0

Title 16-Bit Array Summation

Name: ASUM16

Purpose: Sum the elements of an array, yielding a 24 bit

result. Maximum size is 255 16-bit elements.

Entry: Register X = Base address of array

Register A = Size of array (in 16-bit words)

Exit: Register A = High byte of sum

Register X = Middle and low bytes of sum

Registers Used: A,B,CC,X,Y

Time: Approximately 20 cycles per element plus

44 cycles overhead

Size: Program 27 bytes

*

Data 1 stack byte

*TEST ARRAY LENGTH
*EXIT WITH SUM
*

TFR A,B

= 0 IF ARRAY HAS NO ELEMENTS

MOVE ARRAY LENGTH TO B

188 Assembly language subroutines for the 6809

CLR

STA
TST
BEQ

*

A
78

EXITS1

EXTEND ARRAY LENGTH TO 16 BITS
MAKE MSB OF SUM ZERO
CHECK ARRAY LENGTH

BRANCH CEXIT) IF ARRAY LENGTH IS ZERO
* SUM IS ZERO IN THIS CASE

*ADD WORD-LENGTH ELEMENTS TO LOW BYTES OF SUM ONE AT A TIME
*ADD 1 TO HIGH BYTE OF SUM WHENEVER A CARRY OCCURS
*

TFR
CLR

SUMLP: ADD
BCC
INC

DECCNT:

LEA
BNE
*

B

D

Y

,X++
DECCNT
,S

SUMLP

MOVE 16-BIT ARRAY LENGTH TO Y

START SUM AT ZERO CREMEMBER A IS
* ALREADY ZERO)

ADD ELEMENT TO LOW BYTES OF SUM
BRANCH IF NO CARRY

ELSE ADD 1 TO HIGH BYTE OF SUM

CONTINUE THROUGH ALL ELEMENTS

*MOVE SUM TO A (MOST SIGNIFICANT BYTE) AND X (LESS SIGNIFICANT
*
*

EXITS1:
TFR

LDA

RTS

+

SC6B:

LDX
LDA

JSR

BRA

*TEST DATA, CHANGE FOR OTHER VALUES

SIZE EQU
BUFSZ: FCB

BUF: FDB

FDB

FDB

FDB

FDB

FDB

FDB

FDB
FDB

BYTES)

FDB
FDB

pot

SAMPLE EXECUTION

#BUF
BUFSZ
ASUM16

$C6B

$10
SIZE

0
$111
$222
$333
$444
$555
$666
$777
$888
$999
SAAA

SAVE LOW BYTES OF SUM IN X

MOVE HIGH BYTE OF SUM TO A

GET BASE ADDRESS OF BUFFER

GET SIZE OF BUFFER IN WORDS

SUM WORD-LENGTH ELEMENTS IN BUFFER

* SUM OF TEST DATA IS 31FF8 HEX,
* REGISTER X = 1FF8H

* REGISTER A = 3

LOOP FOR ANOTHER TEST

SIZE OF BUFFER IN WORDS
SIZE OF BUFFER IN WORDS

BUFFER
DECIMAL ELEMENTS ARE 0,273,546,819,1092
1365 ,1638,1911,2184,2457,2730,3003 ,3276
56797 ,61166,65535

6B

FDB

FDB

FDB

FDB

FDB

END

16-bit array summation (ASUM16)

$BBB
$CCC
$DDDD
SEEEE

SFFFF SUM = 31FF8 (204792 DECIMAL)

189

190 Assembly language subroutines for the 6809

6C Find maximum byte-length element
(MAXELM)

Finds the maximum element in an array. The array consists of up to 255
unsigned byte-length elements.

Procedure The program exits immediately (setting Carry to 1) if the
array has no elements. Otherwise, the program assumes that the ele-
ment at the base address is the maximum. It then works through the
array, Comparing the supposed maximum with each element and
retaining the larger value and its address. Finally, the program clears
Carry to indicate a valid result.

Entry conditions

Base address of array in register X
Size of array in bytes in register A

Exit conditions

Largest unsigned element in register A
Address of largest unsigned element in register X

Carry = Oif result is valid, 1 if size of array is 0 and result is meaningless

Example

Data: Size of array (in bytes) = (A) = 08
Array elements

3516 =5310 4416 = 6810
Abie = 16640 5916 = 8910

D216 = 21010 TA. = 12210

1Bie6 = 2710 CFi¢ = 20710

Result: The largest unsigned element is element #2
(D2i6 = 21010)

(B) = largest element (D216)
(X) = BASE + 2 (lowest address containing D2.)
Carry = 0, indicating that array size is non-zero and the
result is valid

+ + + H+

+e + + +£+ $$ FF + HF HF F

6C Find maximum byte-length element (MAXELM) 191

Registers used A,B, CC, X, Y

Execution time Approximately 14 to 26 cycles per element plus 27
cycles overhead. The larger number applies when the program must
replace the previous maximum and its address with the current element
and its address. If, on the average, that replacement is necessary in half
of the iterations, the time is approximately

(14+26)/2 x ARRAY SIZE/2 + 27 cycles

If, for example, ARRAY SIZE = 1816 = 2410 bytes, the approximate

execution time is

40/2 X 12 + 27 = 240 + 27 = 267 cycles

Program size 25 bytes

Data memory required None

Special cases

1. An array size of 0 causes an immediate exit with the Carry flag set to
1 to indicate an invalid result.

2. If the largest unsigned value occurs more than once, the program
returns with the lowest possible address. That is, it returns with the
address closest to the base address that contains the maximum value.

Title Find Maximum Byte-Length Element
Name: MAXELM

Purpose: Given the base address and size of an array,

find the largest element.

Entry: Register X = Base address of array

Register A = Size of array in bytes

Exit: If size of array not zero then

Carry flag = 0

Register A = Largest element

Register X = Address of that element

If there are duplicate values of the largest

192

+ + & + FE HE + HF HEH HF HF HF

MAXELM:

MAXLP:

MAXLP1:

EXITLP:

EXITMX:

Assembly language subroutines for the 6809

element, register X contains the address

nearest to the base address.

else

Carry flag = 1

Registers Used: A,B,CC,X,Y

Time: Approximately 14 to 26 cycles per byte
plus 27 cycles overhead

Size: Program 25 bytes

*

*EXIT WITH CARRY SET IF NO ELEMENTS IN ARRAY
*

SEC SET CARRY IN CASE ARRAY HAS NO ELEMENTS

TSTA CHECK NUMBER OF ELEMENTS

BEQ EXITMX BRANCH CEXIT) WITH CARRY SET IF NO

* ELEMENTS - INDICATES INVALID RESULT
*

*EXAMINE ELEMENTS ONE AT A TIME, COMPARING EACH ONE'S VALUE
* WITH CURRENT MAXIMUM AND ALWAYS KEEPING LARGER VALUE AND
* ITS ADDRESS. IN THE FIRST ITERATION, TAKE THE FIRST
* ELEMENT AS THE CURRENT MAXIMUM.
*

TFR A,B SAVE NUMBER OF ELEMENTS IN B
LEAY 1,X SET POINTER AS IF PROGRAM HAD JUST

* EXAMINED THE FIRST ELEMENT AND FOUND
* IT TO BE LARGER THAN PREVIOUS MAXIMUM

LEAX -1,Y SAVE ADDRESS OF ELEMENT JUST EXAMINED
* AS ADDRESS OF MAXIMUM

LDA 7X SAVE ELEMENT JUST EXAMINED AS MAXIMUM
*

*COMPARE CURRENT ELEMENT TO MAXIMUM

*KEEP LOOKING UNLESS CURRENT ELEMENT IS LARGER
*

DECB COUNT ELEMENTS
BEQ EXITLP BRANCH (EXIT) IF ALL ELEMENTS EXAMINED
CMPA 7Y¥t+ COMPARE CURRENT ELEMENT TO MAXIMUM

* ALSO MOVE POINTER TO NEXT ELEMENT
BCC MAXLP1 CONTINUE UNLESS CURRENT ELEMENT LARGER
BCS MAXLP ELSE CHANGE MAXIMUM
*

*CLEAR CARRY TO INDICATE VALID RESULT - MAXIMUM FOUND

CLC CLEAR CARRY TO INDICATE VALID RESULT

SC6C:

SZARY

ARY:

6C Find maximum byte-length element (MAXELM) 193

SAMPLE EXECUTION:

LDX #ARY GET BASE ADDRESS OF ARRAY

LDA #SZARY GET SIZE OF ARRAY IN BYTES
JSR MAXELM FIND LARGEST UNSIGNED ELEMENT

*RESULT FOR TEST DATA IS
* A = FF HEX (MAXIMUM), X = ADDRESS OF
* FF IN ARY.

BRA SCé6C LOOP FOR MORE TESTING

EQU $10 SIZE OF ARRAY IN BYTES
FCB 8
FCB 7

FCB 6
FCB 5
FCB 4
FCB 3
FCB 2

FCB 1
FCB $F F
FCB $FE
FCB $FD
FCB SFC

FCB $FB

FCB SFA

FCB $F9

FCB $F8

194 Assembly language subroutines for the 6809

6D Find minimum byte-length element
(MINELM)

Finds the minimum element in an array. The array consists of up to 255
unsigned byte-length elements.

Procedure The program exits immediately (setting Carry to 1) if the
array has no elements. Otherwise, the program assumes that the ele-
ment at the base address is the minimum. It then works through the
array, comparing the current minimum to each element and retaining
the smaller value and its address. Finally, the program clears Carry to
indicate a valid result.

Entry conditions

Base address of array in register X
Size of array in bytes in register A

Exit conditions

Smallest unsigned element in register A
Address of smallest unsigned element in register X

Carry = 0 if result is valid, 1 if size of array is 0 and result is meaningless

Example

Data: Size of array (in bytes) = (A) = 08
Array elements

3516 =5310 4416 = 6810
Abie = 16640 5916 = 8940

D216 = 21010 7A = 12210

1Bie6 = 2/10 CF i6 = 20710

Result: The smallest unsigned element is element #3

(1Bi6 = 2710)
(A) = smallest element (1Bj¢)
(X) = BASE + 3 (lowest address containing 1B4.)
Carry flag = 0, indicating that array size is non-zero and
the result is valid

+ + + +

+ + + F & F F HR eH HF FH

6D Find minimum byte-length element (MINELM) 195

Registers used A,B,CC, X,Y

Execution time Approximately 14 to 26 cycles per element plus 27
cycles overhead. The larger number of cycles applies when the program
must replace the previous minimum and its address with the current
element and its address. If, on the average, that replacement is neces-
sary in half of the iterations, the execution time is approximately

(14 + 26)/2 x ARRAY SIZE/2 + 27 cycles
If, for example, ARRAY SIZE = 14,6 = 2010, the approximate

execution time is

40/2 x 10 + 27 = 200 + 27 = 227 cycles

Program size 25 bytes

Data memory required None

Special cases

1. An array size of 0 causes an immediate exit with the Carry flag set to
1 to indicate an invalid result.

2. If the smallest unsigned value occurs more than once, the program
returns with the lowest possible address. That is, it returns with the
address closest to the base address that contains the minimum value.

Title Find Minimum Byte-Length Element
Name: MINELM

Purpose: Given the base address and size of an array,
find the smallest element

Entry: Register X = Base address of array
Register A = Size of array in bytes

Exit: If size of array not zero then

Carry flag = 0

Register A = Smallest element

Register X = Address of that element
If there are duplicate values of the smallest

INELM:

MINLP:

MINLP1:

EXITLP:

EXITMN:

*

Assembly language subroutines for the 6809

element, register X contains the address

nearest to the base address.

else
Carry flag = 1

Registers Used: A,B,CC,X,Y

Time: Approximately 14 to 26 cycles per byte

plus 27 cycles overhead

Size: Program 25 bytes

*

*EXIT WITH CARRY SET IF ARRAY CONTAINS NO ELEMENTS
*

SEC SET CARRY IN CASE ARRAY HAS NO ELEMENTS

TSTA CHECK NUMBER OF ELEMENTS

BEQ EXITMN BRANCH C(CEXIT) WITH CARRY SET IF NO
* ELEMENTS - INDICATES INVALID RESULT

*

*EXAMINE ELEMENTS ONE AT A TIME, COMPARING EACH VALUE WITH

* THE CURRENT MINIMUM AND ALWAYS KEEPING THE SMALLER VALUE

* AND ITS ADDRESS. IN THE FIRST ITERATION, TAKE THE FIRST

* ELEMENT AS THE CURRENT MINIMUM.
*

TFR A,B SAVE NUMBER OF ELEMENTS IN B

LEAY 1,X SET POINTER AS IF PROGRAM HAD JUST
* EXAMINED THE FIRST ELEMENT

LEAX -1,Y SAVE ADDRESS OF ELEMENT JUST EXAMINED
* AS ADDRESS OF MINIMUM

LDA 7X SAVE ELEMENT JUST EXAMINED AS MINIMUM
*

*COMPARE CURRENT ELEMENT TO SMALLEST

*KEEP LOOKING UNLESS CURRENT ELEMENT IS SMALLER
*

DECB COUNT ELEMENTS
BEQ EXITLP BRANCH CEXIT) IF ALL ELEMENTS EXAMINED

CMPA eYt+ COMPARE CURRENT ELEMENT TO MINIMUM

BLS MINLP1 CONTINUE UNLESS CURRENT ELEMENT SMALLER

BHI MINLP ELSE CHANGE MINIMUM
*

*CLEAR CARRY TO INDICATE VALID RESULT - MINIMUM FOUND

*

CLC CLEAR CARRY TO INDICATE VALID RESULT

RTS

SAMPLE EXECUTION:

SC6D:

SZARY

ARY:

6D Find minimum byte-length element (MINELM) 197

LDX

LDA

JSR

BRA

EQU

FCB
FCB
FCB
FCB

FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB
FCB

FCB

FCB

END

#ARY

#SZARY
MINELM

SC6D

—_= oS

=-— NWN WE UIA ~1 CO &%

$F F
SFE
$FD

SFC
$FB

SFA

$F9

$F8

GET BASE ADDRESS OF ARRAY
GET SIZE OF ARRAY IN BYTES
FIND MINIMUM VALUE IN ARRAY
*RESULT FOR TEST DATA IS
* A = 1 HEX (MINIMUM), X = ADDRESS OF
* 1 IN ARY.

LOOP FOR ANOTHER TEST

SIZE OF ARRAY IN BYTES

198 Assembly language subroutines for the 6809

6E Binary search
(BINSCH)

Searches an array of unsigned byte-length elements for a particular
value. The elements are assumed to be arranged in increasing order.
Clears Carry if it finds the value and sets Carry to 1 if it does not.
Returns the address of the value if found. The size of the array is
specified and is a maximum of 255 bytes.

Procedure The program performs a binary search, repeatedly com-
paring the value with the middle remaining element. After each com-
parison, the program discards the part of the array that cannot contain
the value (because of the ordering). The program retains upper and
lower bounds for the part still being searched. If the value is larger than
the middle element, the program discards that element and everything
below it. The new lower bound is the address of the middle element plus
1. If the value is smaller than the middle element, the program discards
that element and everything above it. The new upper bound is the
address of the middle element minus 1. The program exits if it finds a
match or if there is nothing left to search.

For example, assume that the array is

0146, 0216, 0516, 0716, 9916, 0916, OD 16, 1016, 2E16, 3716, SD16, 7E16, Alie,
B416, D716, E0i6

and the value being sought is 0D1.. The procedure works as follows.
In the first iteration, the lower bound is the base address and the

upper bound is the address of the last element. So we have

LOWER BOUND = BASE
UPPER BOUND = BASE + LENGTH — 1 = BASE + OF 1¢
GUESS = (UPPER BOUND + LOWER BOUND)/2

= BASE + 7 (the result is truncated)
(GUESS) = ARRAY(7) = 1016 = 1610

Since the value (ODj.6) is less than ARRAY(7), we can discard the
elements beyond #6. So we have

LOWER BOUND = BASE
UPPER BOUND = GUESS — 1 = BASE + 6
GUESS = (UPPER BOUND + LOWER BOUND)? = BASE + 3
(GUESS) = ARRAY(3) = 07

Since the value (0Dj¢) is greater than ARRAY(3), we can discard the

6E Binary search (BINSCH) 199

elements below #4. So we have

LOWER BOUND = GUESS + 1 = BASE + 4
UPPER BOUND = BASE + 6
GUESS = (UPPER BOUND + LOWER BOUND)/2 = BASE + 5
(GUESS) = ARRAY(5) = 09

Since the value (0D4¢) is greater than ARRAY(5), we can discard the
elements below #6. So we have
LOWER BOUND = GUESS + 1 = BASE + 6
UPPER BOUND = BASE + 6
GUESS = (UPPER BOUND + LOWER BOUND)/2 = BASE + 6

Since the value (0Dj.) is equal to ARRAY(6), we have found the
element. If, on the other hand, the value were 0E;., the new lower
bound would be BASE + 7 and there would be nothing left to search.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

Value to find

Size of the array in bytes

More significant byte of base address of array (address of smallest
unsigned element)
Less significant byte of base address of array (address of smallest unsig-
ned element)

Exit conditions

Carry = 0 if the value is found, 1 if it is not found. If the value is found,
(X) = its address.

eee

Examples

Length of array = 1016 = 164
Elements of array are 0116, 0216, 0516, 0716, 0916, 0916, ODi6, 1046, 2E16,

200

+ + + +

+ +e FF OF OF OH OF

Assembly language subroutines for the 6809

3716, 5Di6, TE16, Ali6, B416, D716, E016

1. Data: Value to find = 0Di6

Result: Carry = 0, indicating value found
(X) = BASE + 6 (address containing 0D16)

2. Data: Value to find = 9Bi¢
Result: Carry = 1, indicating value not found

Registers used All

Execution time Approximately 50 cycles per iteration plus 50 cycles
overhead. A binary search will require on the order of log, N iterations,
where N is the number of elements in the array.

If, for example, N = 32, the binary search will require approximately
logs 32 = 5 iterations. The execution time will then be approximately

50 x 5 + 50 = 250 + 50 = 300 cycles

Program size 64 bytes

Data memory required None

Special case A size of 0 causes an immediate exit with the Carry flag

set to 1. That is, the array contains no elements and the value surely
cannot be found.

Title Binary Search

Name: BINSCH

Purpose: Search an ordered array of unsigned bytes,

with a maximum size of 255 elements.

Entry: TOP OF STACK
High byte of return address

Low byte of return address

Value to find

Length (size) of array
High byte of base address of array

6E Binary search (BINSCH) 201

* Low byte of base address of array
*

* Exit: If the value is found then
* Carry flag = 0
* Register X = Address of value
* Else

* Carry flag = 1
*

* Registers Used: ALL
*

* Time: Approximately 50 cycles for each iteration of
* the search loop plus 50 cycles overhead
*

* A binary search takes on the order of log
* base 2 of N searches, where N is the number of
* elements in the array.
*

* Size: Program 64 bytes
*

*

BINSCH:
*

*EXIT WITH CARRY SET IF ARRAY CONTAINS NO ELEMENTS
*

LDU 78 SAVE RETURN ADDRESS
SEC SET CARRY IN CASE ARRAY HAS NO ELEMENTS
LDB 3,8 CHECK NUMBER OF ELEMENTS
BEQ EXITBS BRANCH CEXIT) WITH CARRY SET IF NO

* ELEMENTS - VALUE SURELY CANNOT BE FOUND
*

*INITIALIZE INDEXES OF UPPER BOUND, LOWER BOUND
*LOWER BOUND = BASE ADDRESS

x*UPPER BOUND = ADDRESS OF LAST ELEMENT =
* BASE ADDRESS + SIZE - 1
*

DECB INDEX OF UPPER BOUND = NUMBER OF
STB 1,8 ELEMENTS - 1

CLR 9 INDEX OF LOWER BOUND = O INITIALLY
LDX 4,8 GET BASE ADDRESS OF ARRAY
*

*ITERATION OF BINARY SEARCH
*1) COMPARE VALUE TO MIDDLE ELEMENT
*2) IF THEY ARE NOT EQUAL, DISCARD HALF THAT
* CANNOT POSSIBLY CONTAIN VALUE (BECAUSE OF ORDERING)
*3) CONTINUE IF THERE IS ANYTHING LEFT TO SEARCH
*

SRLOOP:
LDA 79 ADD LOWER AND UPPER BOUND INDEXES
ADDA 1,58
RORA DIVIDE BY 2, TRUNCATING FRACTION
*

*IF INDEX OF MIDDLE ELEMENT IS GREATER THAN UPPER BOUND,
* THEN ELEMENT IS NOT IN ARRAY
*

CMPA 1,8 COMPARE INDEX OF MIDDLE ELEMENT TO

202

RPLCLW:

FOUND:

NOTFND:

EXITBS:

Assembly language subroutines for the 6809

* UPPER BOUND

BHI NOTFND BRANCH (NOT FOUND) IF INDEX GREATER
* THAN UPPER BOUND

*

*IF INDEX OF MIDDLE ELEMENT IS LESS THAN LOWER BOUND, THEN

* ELEMENT IS NOT IN ARRAY
*

CMPA 79 COMPARE INDEX OF MIDDLE ELEMENT TO

* LOWER BOUND

BLO NOTFND BRANCH (NOT FOUND) IF INDEX LESS
* THAN LOWER BOUND

*

*CHECK IF MIDDLE ELEMENT IS THE VALUE BEING SOUGHT
*

LDB A,X GET ELEMENT WITH MIDDLE INDEX

CMPB 2,Ss COMPARE ELEMENT WITH VALUE SOUGHT

BLO RPLCLW BRANCH IF VALUE LARGER THAN ELEMENT

BEQ FOUND BRANCH IF VALUE FOUND
*

*VALUE IS SMALLER THAN ELEMENT WITH MIDDLE INDEX
*MAKE MIDDLE INDEX - 1 INTO NEW UPPER BOUND
*

DECA SUBTRACT 1 SINCE VALUE CAN ONLY BE
* FURTHER DOWN

STA 1,8 SAVE DIFFERENCE AS NEW UPPER BOUND

CMPA #3 FF CONTINUE SEARCHING IF UPPER BOUND DOES

BNE SRLOOP NOT UNDERFLOW
BEQ NOTFND EXIT IF UPPER BOUND UNDERFLOWED
*

*VALUE IS LARGER THAN ELEMENT WITH MIDDLE INDEX
*MAKE MIDDLE INDEX + 1 INTO NEW LOWER BOUND
*

INCA ADD 1 SINCE VALUE CAN ONLY BE FURTHER UP

STA 79 SAVE SUM AS NEW LOWER BOUND

BNE SRLOOP CONTINUE SEARCHING IF LOWER BOUND DOES
* NOT OVERFLOW

BEQ NOTFND EXIT IF LOWER BOUND OVERFLOWED
*

*FOUND THE VALUE - GET ITS ADDRESS AND CLEAR CARRY
*

LEAX A,X GET ADDRESS OF VALUE
CLC CLEAR CARRY, INDICATING VALUE FOUND

BRA EXITBS
*

*DID NOT FIND THE VALUE - SET CARRY TO INDICATE FAILURE
*

SEC SET CARRY, INDICATING VALUE NOT FOUND
*

*REMOVE PARAMETERS FROM STACK AND EXIT
*

LEAS 6,S REMOVE PARAMETERS FROM STACK

JMP ,U EXIT TO RETURN ADDRESS

6E Binary search (BINSCH) 203

by SAMPLE EXECUTION

SC6E:

*SEARCH FOR A VALUE THAT IS IN THE ARRAY

LDX #BF GET BASE ADDRESS OF BUFFER

LDB BFSZ GET ARRAY SIZE IN BYTES

LDA #7 GET VALUE TO FIND

PSHS D,X SAVE PARAMETERS IN STACK

JSR BINSCH BINARY SEARCH

*CARRY FLAG = O CVALUE FOUND)

*X = ADDRESS OF 7 IN ARRAY

*SEARCH FOR A VALUE THAT IS NOT IN THE ARRAY

LDX #BF GET BASE ADDRESS OF BUFFER

LDB BFSZ GET ARRAY SIZE IN BYTES

LDA #0 GET VALUE TO FIND

PSHS D,X SAVE PARAMETERS IN STACK

JSR BINSCH BINARY SEARCH

*CARRY FLAG = 1 (VALUE NOT FOUND)

BRA SC6E LOOP FOR MORE TESTS
*

*DATA
*

SIZE EQU $10 SIZE OF BUFFER IN BYTES

BFSZ: FCB SIZE SIZE OF BUFFER IN BYTES

BF: *BUFFER

FCB 1
FCB 2

FCB 4

FCB 5

FCB 7

FCB 9

FCB 10
FCB 11
FCB 23
FCB 50
FCB 81

FCB 123
FCB 191
FCB 199
FCB 250
FCB 255

END

204 Assembly language subroutines for the 6809

6F Quicksort
(QSORT)

Arranges an array of unsigned word-length elements into ascending
order using a quicksort algorithm. Each iteration selects an element and
divides the array into two parts, one containing all elements larger than
the selected element and the other containing all elements smaller than
the selected element. Elements equal to the selected element may end
up in either part. The parts are then sorted recursively in the same way.
The algorithm continues until all parts contain either no elements or
only one element. An alternative is to stop recursion when a part
contains few enough elements (say, less than 20) to make a bubble sort
practical.

The parameters are the array’s base address, the address of its last
element, and the lowest available stack address. The array can thus
occupy all available memory, as long as there is room for the stack.
Since the procedures that obtain the selected element, compare ele-
ments, move forward and backward in the array, and swap elements are
all subroutines, they could be changed readily to handle other types of
elements.

Ideally, quicksort should divide the array in half during each iter-
ation. How closely the procedure approaches this ideal depends on how
well the selected element is chosen. Since this element serves as a
midpoint or pivot, the best choice would be the central value (or
median). Of course, the true median is unknown. A simple but reason-
able approximation is to select the median of the first, middle, and last
elements.

Procedure The program first deals with the entire array. It selects the
median of the current first, middle, and last elements as a central

element. It moves that element to the first position and divides the array
into two parts or partitions. It then operates recursively on the parts,
dividing them into parts and stopping when a part contains no elements
or only one element. Since each recursion places 6 bytes on the stack,
the program must guard against overflow by checking whether the stack
has reached to within a small buffer of its lowest available position.

Note that the selected element always ends up in the correct position
after an iteration. Therefore, it need not be included in either partition.

Our rule for choosing the middle element is as follows, assuming that
the first element is #1:

1. If the array has an odd number of elements, take the centre one.

6F Quicksort (QSORT) 205

For example, if the array has 11 elements, take #6.

2. Ifthe array has an even number of elements and its base address is
even, take the element on the lower (base address) side of the centre.
for example, if the array starts in 0300; and has 12 elements, take #6.

3. Ifthe array has an even number of elements and its base address is
odd, take the element on the upper side of the centre. For example, if
the array starts in 03011. and has 12 elements, take #7.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

More significant byte of base address of array
Less significant byte of base address of array

More significant byte of address of last word in array
Less significant byte of address of last word in array

More significant byte of lowest possible stack address
Less significant byte of lowest possible stack address

Exit conditions

Array sorted into ascending order, considering the elements as unsigned
words. Thus, the smallest unsigned word ends up stored starting at the
base address. Carry = 0 if the stack did not overflow and the result is
proper. Carry = 1 if the stack overflowed and the final array is not sorted.

Example

Data: Length (size) of array = 0Ci6 = 1219
Elements = 2Bi6, 57165 1Di6, 26165

2216, 2E16, OCi6, 4416,
1716, 4Bi6, 3716, 2716.

Result: In the first iteration, we have:

Selected element = median of the first (#1 = 2Bi6),

middle (#6 = 2Ej6), and last (#12 = 27,6) elements. The

206 Assembly language subroutines for the 6809

selected element is therefore #1 (2B), and no swapping
is necessary since it is already in the first position.

At the end of the iteration, the array is

2716, 1716, 1D16, 2616,
2216, OCi6, 2Bie; 4446,

2E 16, 4Bie, 3716; 5716.

The first partition, consisting of elements less than 2By6, is
2716; 1716, 1D46, 2616; 22165 and OCy6.

The second partition, consisting of elements greater than
2Bie, 1S 44165 2E16, 4Bi6, 3716; and 5716:

Note that the selected element (2B,¢) is now in the correct

position and need not be included in either partition.
We may now sort the first partition recursively in the same
way:
Selected element = median of the first (#41 = 2746),

middle (#3 = 1Dy¢), and last (#6 = OCj¢) elements.
Here, #3 is the median and must be exchanged initially
with #1.
The final order of the elements in the first partition is:

OCi6, 1716, 1D 16, 2616, 2216, 2716.

The first partition of the first partition (consisting of ele-
ments less than 1D46) is OCj6, 1716. We will call this the
(1,1) partition for short.
The second partition of the first partition (consisting of
elements greater than 1Dj4¢) is 2616, 2216, and 2746.
As in the first iteration, the selected element (1Dj¢) is in

the correct position and need not be considered further.
We may now sort the (1,1) partition recursively as follows:
Selected element = median of the first (#1 = OCi¢),
middle (#1 = 0Ci¢), and last (#2 = 1716) elements. Thus

the selected element is the first element (#1 = 0Cj¢), and
no initial swap is necessary.
The final order is obviously the same as the initial order,
and the two resulting partitions contain 0 and 1 element,
respectively. Thus the next iteration concludes the recur-
sion, and we then sort the other partitions by the same
method. Obviously, quicksort’s overhead becomes a
major factor when an array contains only a few elements.
This is why one might use a bubble sort once quicksort has
created small enough partitions.

6F Quicksort (QSORT) 207

Note that the example array does not contain any identical
elements. During an iteration, elements that are the same
as the selected element are never moved. Thus they may
end up in either partition. Strictly speaking, then, the two
partitions consist of elements ‘less than or possibly equal
to the selected element’ and elements ‘greater than or
possibly equal to the selected element.’

References

M. J. Augenstein and A. M. Tenenbaum, Data Structures and PL/I
Programming, Prentice-Hall, Englewood Cliffs, NJ, 1979, pp. 460-

471. There is also a Pascal version of this book entitled Data Struc-
tures Using Pascal (Prentice-Hall, Englewood Cliffs, NJ, 1982) and a
BASIC version entitled Data Structures for Personal Computers (Y.
Langsam, co-author, Prentice-Hall, Englewood Cliffs, NJ, 1985).

N. Dale and S. C. Lilly, Pascal Plus Data Structures, D. C. Heath,
Lexington, MA, 1985, pp. 300-307.

D. E. Knuth, The Art of Computer Programming. Vol. 3: Searching and
Sorting, Addison-Wesley, Reading, MA, 1973, pp. 114-123.

Registers used All

Execution time Approximately N Xx log. N loops through PARTLP
plus 2 x N + 1 overhead calls to SORT. Each iteration of PARTLP
takes approximately 60 or 120 cycles (depending on whether an
exchange is necessary), and each overhead call to SORT takes approxi-
mately 200 cycles. Thus the total execution time is of the order of

90 x N x log, N + 200 x (2 x N + 1) cycles

If, for example, N = 16384 (21%), the total execution time should be
around

90 x 16384 x 14 + 200 x 32769 = 20600000 + 6600000
= about 27 200 000 cycles

This is about 27 s at a typical 6809 clock rate of 1 MHz.

208

+ +

+t + + *€ He + Fe +H HH HF HF HF HN HF HF HF HF HF HF F

+ + + + € + HF HF HF

Assembly language subroutines for the 6809

Program size 179 bytes

Data memory required 8 bytes anywhere in RAM for pointers to the
first and last element of a partition (2 bytes starting at addresses FIRST
and LAST, respectively), a pointer to the bottom of the stack (2 bytes
starting at address STKBTM). and the original value of the stack poin-
ter (2 bytes starting at address OLDSP). Each recursion level requires 6
bytes of stack space, and the routines themselves require another 4
bytes.

Special case If the stack overflows (i.e. comes too close to its boun-
dary), the program exits with the Carry flag set to 1.

Title

Name:

Purpose:

Entry:

Exit:

Registers Used:

Time:

Quicksort

QSORT

Arrange an array of unsigned words into

ascending order using a quicksort, with a

maximum size of 32767 words.

TOP OF STACK
High byte of return address

Low byte of return address

High byte of address of first word in array
Low byte of address of first word in array

High byte of address of last word in array

Low byte of address of last word in array

High byte of lowest available stack address
Low byte of lowest available stack address

If the stack did not overflow then

The array is sorted into ascending order.
Carry = 0

Else

Carry = 1

ALL

The timing is highly data-dependent but the

quicksort algorithm takes approximately

N * log (N) Loops through PARTLP. There will be
2

2 * N+1 calls to Sort. The number of recursions

will probably be a fraction of N but if all

data is the same, the recursion could be up to
N. Therefore, the amount of stack space should

be maximized. NOTE: Each recursion Level takes

6 bytes of stack space.

+ + £€ + + +

QSORT:

SORT:

$i

6F Quicksort (QSORT) 209

In the above discussion, N is the number of
array elements.

ze: Program 179 bytes

Data 8 bytes plus 4 stack bytes

PULS D,X,Y,U REMOVE PARAMETERS FROM STACK

PSHS D PUT RETURN ADDRESS BACK IN STACK
*

*WATCH FOR STACK OVERFLOW

*CALCULATE A THRESHOLD TO WARN OF OVERFLOW
* (10 BYTES FROM THE END OF THE STACK)

*SAVE THIS THRESHOLD FOR LATER COMPARISONS

*ALSO SAVE THE POSITION OF THIS ROUTINE'S RETURN ADDRESS

* IN THE EVENT WE MUST ABORT BECAUSE OF STACK OVERFLOW
*

STS OLDSP SAVE POINTER TO RETURN ADDRESS IN

* CASE WE MUST ABORT

LEAU 10,U ADD SMALL BUFFER (10 BYTES) TO

* LOWEST STACK ADDRESS
STU STKBTM SAVE SUM AS BOTTOM OF STACK FOR

* FIGURING WHEN TO ABORT
*

*WORK RECURSIVELY THROUGH THE QUICKSORT ALGORITHM AS
* FOLLOWS:

1. CHECK IF THE PARTITION CONTAINS O OR 1 ELEMENT.
MOVE UP A RECURSION LEVEL IF IT DOES.

2. USE MEDIAN TO OBTAIN A REASONABLE CENTRAL VALUE
FOR DIVIDING THE CURRENT PARTITION INTO TWO
PARTS.

3. MOVE THROUGH THE ARRAY SWAPPING ELEMENTS THAT
ARE OUT OF ORDER UNTIL ALL ELEMENTS BELOW THE
CENTRAL VALUE ARE AHEAD OF ALL ELEMENTS ABOVE
THE CENTRAL VALUE. SUBROUTINE COMPARE

COMPARES ELEMENTS, SWAP EXCHANGES ELEMENTS,
PREV MOVES UPPER BOUNDARY DOWN ONE ELEMENT,
AND NEXT MOVES LOWER BOUNDARY UP ONE ELEMENT.

4. CHECK IF THE STACK IS ABOUT TO OVERFLOW. IF IT
IS, ABORT AND EXIT.

>. ESTABLISH THE BOUNDARIES FOR THE FIRST PARTITION

(CONSISTING OF ELEMENTS LESS THAN THE CENTRAL VALUE)
AND SORT IT RECURSIVELY.

6. ESTABLISH THE BOUNDARIES FOR THE SECOND PARTITION

(CONSISTING OF ELEMENTS GREATER THAN THE CENTRAL
VALUE) AND SORT IT RECURSIVELY.

*

+t te +e + He HF He He HH HF HK HH HF H HF HK HH He F

*®

*SAVE BASE ADDRESS AND ADDRESS OF LAST ELEMENT
* IN CURRENT PARTITION
*

210

PARTLP:

Assembly language subroutines for the 6809

STX FIRST SAVE BASE ADDRESS
STY LAST SAVE ADDRESS OF LAST ELEMENT
*

*CHECK IF PARTITION CONTAINS O OR 1 ELEMENTS

* IT DOES IF FIRST IS EITHER LARGER THAN (0)

* OR EQUAL TO (1) LAST.
*

*STOP WHEN FIRST >= LAST
*

CMPX LAST CALCULATE FIRST - LAST
BCC EXITPR BRANCH (RETURN) IF DIFFERENCE IS

* POSITIVE - THIS PART IS SORTED
*

*START ANOTHER ITERATION ON THIS PARTITION
*USE MEDIAN TO FIND A REASONABLE CENTRAL ELEMENT
*MOVE CENTRAL ELEMENT TO FIRST POSITION
*

BSR MEDIAN SELECT CENTRAL ELEMENT, MOVE IT
* TO FIRST POSITION

LDU #0 BIT O OF REGISTER U = DIRECTION
* IF IT'S O THEN DIRECTION IS UP
* ELSE DIRECTION IS DOWN

*

*REORDER ARRAY BY COMPARING OTHER ELEMENTS WITH THE
CENTRAL ELEMENT. START BY COMPARING THAT ELEMENT WITH
LAST ELEMENT. EACH TIME WE FIND AN ELEMENT THAT
BELONGS IN THE FIRST PART (THAT IS, IT IS LESS THAN
THE CENTRAL ELEMENT), SWAP IT INTO THE FIRST PART IF IT
IS NOT ALREADY THERE AND MOVE THE BOUNDARY OF THE
FIRST PART DOWN ONE ELEMENT. SIMILARLY, EACH TIME WE
FIND AN ELEMENT THAT BELONGS IN THE SECOND PART (THAT
IS, IT IS GREATER THAN THE CENTRAL ELEMENT), SWAP IT
INTO THE SECOND PART IF IT IS NOT ALREADY THERE AND MOVE
THE BOUNDARY OF THE SECOND PART UP ONE ELEMENT.

*ULTIMATELY, THE BOUNDARIES COME TOGETHER
* AND THE DIVISION OF THE ARRAY IS THEN COMPLETE
*NOTE THAT ELEMENTS EQUAL TO THE CENTRAL ELEMENT ARE NEVER
* SWAPPED AND SO MAY END UP IN EITHER PART
*

+ + + + + HF HF HF HF F

*

*LOOP SORTING UNEXAMINED PART OF PARTITION

* UNTIL THERE IS NOTHING LEFT IN IT
*

TFR X,D LOWER BOUNDARY

PSHS Y
CMPD yott LOWER BOUNDARY-UPPER BOUNDARY
BCC DONE EXIT WHEN EVERYTHING EXAMINED
*

*COMPARE NEXT 2 ELEMENTS. IF OUT OF ORDER, SWAP THEM
*AND CHANGE DIRECTION OF SEARCH

* IF FIRST > LAST THEN SWAP
*

LDD 7X COMPARE ELEMENTS

CMPD rv
BLS REDPRT BRANCH IF ALREADY IN ORDER

REDPRT:

UP:

DONE:

6F Quicksort (QSORT) 211

*

*ELEMENTS OUT OF ORDER, SWAP THEM AND CHANGE DIRECTION
*

TFR U,D GET DIRECTION

COMB CHANGE DIRECTION

TFR D,U SAVE NEW DIRECTION

JSR SWAP SWAP ELEMENTS
*

*REDUCE SIZE OF UNEXAMINED AREA
*IF NEW ELEMENT LESS THAN CENTRAL ELEMENT, MOVE
* TOP BOUNDARY DOWN
*IF NEW ELEMENT GREATER THAN CENTRAL ELEMENT, MOVE
* BOTTOM BOUNDARY UP
*IF ELEMENTS EQUAL, CONTINUE IN LATEST DIRECTION
*

CMPU #0 CHECK DIRECTION
BEQ UP BRANCH IF MOVING UP
LEAX 2,X ELSE MOVE TOP BOUNDARY DOWN BY

* ONE ELEMENT
BRA PARTLP

LEAY -2,Y MOVE BOTTOM BOUNDARY UP BY ONE
JMP PARTLP ONE ELEMENT
*

*THIS PARTITION HAS NOW BEEN SUBDIVIDED INTO TWO
PARTITIONS. ONE STARTS AT THE TOP AND ENDS JUST
ABOVE THE CENTRAL ELEMENT. THE OTHER STARTS
JUST BELOW THE CENTRAL ELEMENT AND CONTINUES
TO THE BOTTOM. THE CENTRAL ELEMENT IS NOW IN
ITS PROPER SORTED POSITION AND NEED NOT BE
INCLUDED IN EITHER PARTITION

+ Fe +e Fe +e HF

*®

*FIRST CHECK WHETHER STACK MIGHT OVERFLOW
*IF IT IS GETTING TOO CLOSE TO THE BOTTOM, ABORT
* THE PROGRAM AND EXIT
*

TFR S,D CALCULATE SP - STKBTM
SUBD STKBTM
BLS ABORT BRANCH CABORT) IF STACK TOO LARGE
*

*ESTABLISH BOUNDARIES FOR FIRST (LOWER) PARTITION
*LOWER BOUNDARY IS SAME AS BEFORE
*UPPER BOUNDARY IS ELEMENT JUST BELOW CENTRAL ELEMENT
*THEN RECURSIVELY QUICKSORT FIRST PARTITION
*

LDY LAST GET ADDRESS OF LAST ELEMENT
PSHS X,Y SAVE CENTRAL, LAST ADDRESSES
LEAY -2,X CALCULATE LAST FOR FIRST PART
LDX FIRST FIRST IS SAME AS BEFORE
BSR SORT QUICKSORT FIRST PART
*

*ESTABLISH BOUNDARIES FOR SECOND (UPPER) PARTITION
*UPPER BOUNDARY IS SAME AS BEFORE

212

EXITPR:

ABORT:

Assembly language subroutines for the 6809

*LOWER BOUNDARY IS ELEMENT JUST ABOVE CENTRAL ELEMENT
*THEN RECURSIVELY QUICKSORT SECOND PARTITION
*

PULS X,Y GET FIRST, LAST FOR SECOND PART
LEAX 2,X CALCULATE FIRST FOR SECOND PART
BSR SORT QUICKSORT SECOND PART

CLC CLEAR CARRY, INDICATING NO ERRORS

RTS GOOD EXIT
*

*ERROR EXIT, SET CARRY TO 1
*

LDS OLDSP GET ORIGINAL STACK POINTER
SEC INDICATE ERROR

RTS RETURN WITH ERROR INDICATOR TO

* ORIGINAL CALLER

KRKEKKEKEKKEKKKKKKKKKKKKKRKRKK KKK KKK

*ROUTINE:
*PURPOSE:
*

*ENTRY:
*

*EXIT:
*

MEDIAN

DETERMINE WHICH ELEMENT IN A PARTITION

SHOULD BE USED AS THE CENTRAL ELEMENT OR PIVOT
ADDRESS OF FIRST ELEMENT IN REGISTER X
ADDRESS OF LAST ELEMENT IN REGISTER Y
CENTRAL ELEMENT IN FIRST POSITION
X,Y UNCHANGED

*REGISTERS USED: D,U
HK KKK KKK KKK KKK REE KRE

MEDIAN:
*

*DETERMINE ADDRESS OF MIDDLE ELEMENT

* MIDDLE := ALIGNEDCFIRST + LAST) DIV 2
* |

PSHS Y SAVE ADDRESS OF LAST IN STACK
TFR X,D ADD ADDRESSES OF FIRST, LAST
ADDD 79

LSRA DIVIDE SUM BY 2
RORB

ANDB #%11111110 ALIGN CENTRAL ADDRESS

PSHS D SAVE CENTRAL ADDRESS ON STACK

TFR X,D ALIGN MIDDLE TO BOUNDARY OF FIRST
CLRA MAKE BIT 0 OF MIDDLE SAME AS BIT
ANDB #%00000001 O OF FIRST
ADDD pott

TFR D,U SAVE MIDDLE ADDRESS IN U
*

*DETERMINE MEDIAN OF FIRST, MIDDLE, LAST ELEMENTS
*COMPARE FIRST AND MIDDLE
*

LDD 7U GET MIDDLE ELEMENT

CMPD 7X MIDDLE - FIRST

BLS MIDD1 BRANCH IF FIRST >= MIDDLE
* .

6F Quicksort (QSORT)

*WE KNOW (MIDDLE > FIRST)

* SO COMPARE MIDDLE AND LAST
*

LDD 7Y GET LAST ELEMENT
CMPD 7U LAST - MIDDLE
BCC SWAPMF BRANCH IF LAST >= MIDDLE

* MIDDLE IS MEDIAN
*

*WE KNOW (MIDDLE > FIRST) AND (MIDDLE > LAST)
* SO COMPARE FIRST AND LAST (MEDIAN IS LARGER ONE)
*

CMPD 7X LAST - FIRST
BHI SWAPLF BRANCH IF LAST > FIRST

* LAST IS MEDIAN
BRA MEXIT EXIT IF FIRST >= LAST

* FIRST IS MEDIAN
*

*WE KNOW FIRST >= MIDDLE

*SO COMPARE FIRST AND LAST
*

MIDD1:

LOD 7 GET LAST

CMPD x LAST - FIRST

BCC MEXIT EXIT IF LAST > = FIRST

* FIRST IS MEDIAN
*

*WE KNOW (FIRST >= MIDDLE) AND CFIRST > LAST)
* SO COMPARE MIDDLE AND LAST (MEDIAN IS LARGER ONE)
*

CMPD ,U LAST - MIDDLE

BHI SWAPLF BRANCH IF LAST > MIDDLE

* LAST IS MEDIAN
*

*MIDDLE IS MEDIAN, MOVE ITS POINTER TO LAST
*

SWAPMF:

TFR U,Y MOVE MIDDLE'S POINTER TO LAST
*

*LAST IS MEDIAN, SWAP IT WITH FIRST
*

SWAPLF:

BSR SWAP SWAP LAST, FIRST
*

*RESTORE LAST AND EXIT
*

MEXIT:

PULS Y RESTORE ADDRESS OF LAST ELEMENT
RTS

KA KKKKKEKKKKEKEREKREKKKEKEEK KKK

*ROUTINE: SWAP

*PURPOSE: SWAP ELEMENTS POINTED TO BY X,Y
*ENTRY: X = ADDRESS OF ELEMENT 1
* Y = ADDRESS OF ELEMENT 2
*EXIT: ELEMENTS SWAPPED

214 Assembly language subroutines for the 6809

*REGISTERS USED: D
HK KKK ERK KEKE EEE KERR EE

SWAP:
LDD 7X GET FIRST ELEMENT
PSHS D SAVE FIRST ELEMENT
LDD 7Y GET SECOND ELEMENT
STD 7X STORE SECOND IN FIRST
PULS D GET SAVED FIRST ELEMENT

STD 7Y STORE FIRST IN SECOND ADDRESS

RTS

*

*DATA SECTION
*

FIRST: RMB 2 POINTER TO FIRST ELEMENT OF PART
LAST: RMB 2 POINTER TO LAST ELEMENT OF PART

STKBTM: RMB 2 THRESHOLD FOR STACK OVERFLOW
OLDSP: RMB 2 POINTER TO ORIGINAL RETURN ADDRESS

*

* SAMPLE EXECUTION
*

*

*PROGRAM SECTION

SC6F:
*

*SORT AN ARRAY BETWEEN BEGBUF CFIRST ELEMENT)

* AND ENDBUF (LAST ELEMENT)

*LET STACK EXPAND 100 HEX BYTES
*

LEAU -$100,S BOUNDARY FOR STACK OVERFLOW
LDX #BEGBUF ADDRESS OF FIRST ELEMENT

LDY #ENDBUF ADDRESS OF LAST ELEMENT

PSHS U,X,Y SAVE PARAMETERS IN STACK
JSR QSORT SORT USING QUICKSORT

*RESULT FOR TEST DATA IS
* 0,1,2,3, «-- ,14,15

BRA SC6F LOOP TO REPEAT TEST

*

*DATA SECTION
*

BEGBUF: FDB 15
FDB 14
FDB 13
FDB 12
FDB 11

FDB 10

FDB 9

FDB

FDB

8
FDB lf

6

FDB 5

ENDBUF:

6F Quicksort (QSORT)

FDB
FDB
FDB

FDB

FDB

END

=a NW &

215

216 Assembly language subroutines for the 6809

6G RAM test
(RAMTST)

Tests a RAM area specified by a base address and a length in bytes.
Writes the values 0, FFi¢, 101010102 (AAj.), and 010101012 (5546) into
each byte and checks whether they can be read back correctly. Places 1
in each bit position of each byte and checks whether it can be read back
correctly with all other bits cleared. Clears the Carry flag if all tests run
correctly; if it finds an error, it exits immediately, setting the Carry flag
and returning the test value and the address at which the error occurred.

Procedure The program performs the single value tests (with 0, FFi6,
AAjo, and 5546) by first filling the memory area and then comparing
each byte with the specified value. Filling the entire area first should
provide enough delay between writing and reading to detect a failure to
retain data (perhaps caused by improperly designed refresh circuitry).
The program then performs the walking bit test, starting with bit 7; here
it writes the data into memory and reads it back immediately for a
comparison.

Entry conditions

Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

More significant byte of size (length) of test area in bytes
Less significant byte of size (length) of test area in bytes

More significant byte of base address of test area
Less significant byte of base address of test area

Exit conditions

1. Ifanerror is found:

Carry = 1
Address containing error in register X
Test value in A

2. Ifnoerror is found:

6G RAM test (RAMTST) 217

Carry = 0
All bytes in test area contain 0

Example

Data: Base address = 038016

Length (size) of area = 020046
Result: Area tested is the 02006 bytes starting at address 038046,

1.€. 0380;¢-057Fj¢. The order of the tests is:

1. Write and read 0
2. Write and read FFj¢

3. Write and read AAj¢ (101010102)
4. Write and read 5516 (01010101,)
5. Walking bit test, starting with 1 in bit 7. That is, start
with 10000000, (8016) and move the 1 one position right
for each subsequent test of a byte.

Registers used All

Execution time Approximately 268 cycles per byte tested plus 231
cycles overhead. Thus, for example, to test an area of size 0400. =
1024, would take

268 X 1024 + 231 = 274432 + 231 = 274 663 cycles

This is about 275 ms at a standard 6809 clock rate of 1 MHz.

Program size 97 bytes

Data memory required None

Special cases

1. An area size of 0000;¢ causes an immediate exit with no memory
tested. The Carry flag is cleared to indicate no errors.

2. Since the routine changes all bytes in the tested area, using it to test

218 Assembly language subroutines for the 6809

an area that includes itself will have unpredictable results.
Note that Case 1 means you cannot ask this routine to test the entire

memory, but such a request would be meaningless anyway since it
would require the routine to test itself.

3. Testing a ROM causes a return with an error indication after the
first occasion on which the test value differs from the memory’s
contents.

*

*

* Title RAM Test

* Name: RAMTST

*

* Purpose: Test a RAM (read/write memory) area as follows:
* 1) Write all O and test

* 2) Write all 11111111 binary and test

* 3) Write all 10101010 binary and test

* 4) Write all 01010101 binary and test
* 5) Shift a single 1 through each bit,
* while clearing all other bits
*

* If the program finds an error, it exits

* immediately with the Carry flag set and

* indicates the test value and where the

* error occurred.
*

* Entry: TOP OF STACK

* High byte of return address

* Low byte of return address
* High byte of area size in bytes

* Low byte of area size in bytes

* High byte of base address of area

* Low byte of base address of area
*

* Exit: If there are no errors then

* Carry flag equals Q

* test area contains OQ in all bytes

* else

* Carry flag equals 1

* Register X = Address of error

* Register A = Test value
*

* Registers Used: All
*

* Time: Approximately 268 cycles per byte plus
* 231 cycles overhead
*

* Size: Program 97 bytes

RAMTST:

WLKLP:

WLKLP1:

6G RAM test (RAMTST) 219

*EXIT INDICATING NO ERRORS IF AREA SIZE IS ZERO

PULS U SAVE RETURN ADDRESS

CLC INDICATE NO ERRORS
LDX 7s GET AREA SIZE

BEQ EXITRT BRANCH C(CEXIT) IF AREA SIZE IS ZERO

* CARRY = O IN THIS CASE
*

*FILL MEMORY WITH O AND TEST
*

CLRA GET ZERO VALUE

BSR FILCMP FILL AND TEST MEMORY

BCS EXITRT BRANCH CEXIT) IF ERROR FOUND
*

*FILL MEMORY WITH FF HEX CALL 1'S) AND TEST
*

LDA #$F F GET ALL 1'S VALUE

BSR FILCMP FILL AND TEST MEMORY

BCS EXITRT BRANCH CEXIT) IF ERROR FOUND
*

*FILL MEMORY WITH ALTERNATING 1'S AND O'S AND TEST
*

LDA #%410101010 GET ALTERNATING 1'S AND O'S PATTERN
BSR FILCMP FILL AND TEST MEMORY

BCS EXITRT BRANCH CEXIT) IF ERROR FOUND
*

*FILL MEMORY WITH ALTERNATING O'S AND 1'S AND TEST
*

LDA #%401010101 GET ALTERNATING O'S AND 1'S PATTERN
BSR FILCMP FILL AND TEST MEMORY

BCS EXITRT BRANCH CEXIT) IF ERROR FOUND
*

*PERFORM WALKING BIT TEST. PLACE A 1 IN BIT 7 AND
* SEE IF IT CAN BE READ BACK. THEN MOVE THE 1 TO
* BITS 6, 5, 4, 3, 2, 1, AND O AND SEE IF IT CAN
* BE READ BACK
*

LDX 2,8 GET BASE ADDRESS OF AREA TO TEST
LDY 7s GET AREA SIZE IN BYTES

CLRB GET ZERO TO USE IN CLEARING AREA

LDA #%10000000 MAKE BIT 7 1, ALL OTHER BITS 0

STA 7X STORE TEST PATTERN IN MEMORY
CMPA 7X TRY TO READ IT BACK

BNE EXITCS BRANCH C(CEXIT) IF ERROR FOUND

LSRA SHIFT PATTERN TO MOVE 1 BIT RIGHT

BNE WLKLP1 CONTINUE UNTIL PATTERN BECOMES ZERO

* THAT IS, UNTIL 1 BIT MOVES ALL THE
* WAY ACROSS THE BYTE

STB 7Xt+ CLEAR BYTE JUST CHECKED

LEAY -1,Y DECREMENT 16-BIT COUNTER

BNE WLKLP CONTINUE UNTIL AREA CHECKED

CLC NO ERRORS - CLEAR CARRY
BRA EXITRT

220

EXITCS:

EXITRT:

Assembly language subroutines for the 6809

*FOUND AN ERROR - SET CARRY TO INDICATE IT
*

SEC ERROR FOUND - SET CARRY
*

*REMOVE PARAMETERS FROM STACK AND EXIT
*

LEAS 4,8 REMOVE PARAMETERS FROM STACK

JMP ,U EXIT TO RETURN ADDRESS

KEKKEKEKEKEKKEKKEKKEEKEKKEKEKKKKKRKKKKKKKS

*ROUTINE:

*PURPOSE:
*

*ENTRY:

FILCMP
FILL MEMORY WITH A VALUE AND TEST

THAT IT CAN BE READ BACK

= TEST VALUE
STACK CONTAINS CIN ORDER STARTING AT TOP):

RETURN ADDRESS
AREA SIZE IN BYTES
BASE ADDRESS OF AREA

IF NO ERRORS THEN
CARRY FLAG EQUALS 0

ELSE
CARRY FLAG EQUALS 1

X = ADDRESS OF ERROR

A = TEST VALUE

PARAMETERS LEFT ON STACK

*REGISTERS USED: CC,X,Y
KHK KKK KKK ERE ERR KKK EKER KEKE KEKE

FILCMP:

FILLP:

CMPLP:

LDY 2,8 GET SIZE OF AREA IN BYTES

LDX 4,8 GET BASE ADDRESS OF AREA
*

*FILL MEMORY WITH TEST VALUE
*

STA Xt FILL A BYTE WITH TEST VALUE
LEAY -1,Y CONTINUE UNTIL AREA FILLED

BNE FILLP
*

*COMPARE MEMORY AND TEST VALUE
*

LDY 2,8 GET SIZE OF AREA IN BYTES

LDX 4,8 GET BASE ADDRESS OF AREA

CMPA Xt+ COMPARE MEMORY AND TEST VALUE

BNE EREXIT BRANCH CERROR EXIT) IF NOT EQUAL

LEAY -1,Y CONTINUE UNTIL AREA CHECKED

BNE CMPLP
*

*NO ERRORS FOUND, CLEAR CARRY AND EXIT
*

CLC INDICATE NO ERRORS

RTS
*

EREXIT:

+

SC6G:

6G RAM test (RAMTST) 221

*ERROR FOUND, SET CARRY, MOVE POINTER BACK, AND EXIT
*

SEC INDICATE AN ERROR

LEAX ~1,X POINT TO BYTE CONTAINING ERROR
RTS

SAMPLE EXECUTION

*

*TEST RAM FROM 2000 HEX THROUGH 300F HEX
* SIZE OF AREA = 1010 HEX BYTES
*

LDY #$2000 GET BASE ADDRESS OF TEST AREA
LDX #$1010 GET SIZE OF AREA IN BYTES
PSHS X,Y SAVE PARAMETERS IN STACK
JSR RAMTST TEST MEMORY

*CARRY FLAG SHOULD BE O

END

222 Assembly language subroutines for the 6809

6H Jump table
(JTAB)

Transfers control to an address selected from a table according to an
index. The addresses are stored in the usual 6809 format (more signifi-
cant byte first), starting at address JMPTBL. The size of the table
(number of addresses) is a constant LENSUB, which must be less than
or equal to 128. If the index is greater than or equal to LENSUB, the
program returns control immediately with the Carry flag set to 1.

Procedure The program first checks if the index is greater than or
equal to the size of the table (LENSUB). If it is, the program returns
control with the Carry flag set. If it is not, the program obtains the
starting address of the appropriate subroutine from the table and jumps
to it. The result is like an indexed JSR instruction with range checking
and automatic accounting for the 16-bit length of addresses.

Entry conditions

Index in A

Exit conditions

If (A) is greater than LENSUB, an immediate return with Carry = 1.
Otherwise, control is transferred to appropriate subroutine as if an
indexed call had been performed. The return address remains at the top
of the stack.

Example

Data: LENSUB (size of subroutine table) = 03
Table consists of addresses SUBO, SUB1, and SUB2

Index = (A) = 02
Result: Control transferred to address SUB2 (PC = SUB2)

Registers used A, CC, X

+

bg

+t + F FF FE HF HE HH HF OF + + +

— +£ £ +

+ + &€ +

TAB:

6H Jump table (JTAB) 223

Execution time 17 cycles besides the time required to execute the
actual subroutine.

Program size 13 bytes plus 2 x LENSUB bytes for the table of
starting addresses, where LENSUB is the number of subroutines.

Data memory required None

Special case Entry with an index greater than or equal to LENSUB
causes an immediate exit with the Carry flag set to 1

Title Jump Table

Name: JTAB

Purpose: Given an index, jump to the subroutine with

that index in a table

Entry: Register A is the subroutine number (0 to

LENSUB-1, the number of subroutines)

LENSUB must be less than or equal to
128.

Exit: If the routine number is valid then

execute the routine

else

Carry flag equals 1

Registers Used: A,CC,X

Time: 17 cycles plus execution time of subroutine

Size: Program 13 bytes plus size of table (2*LENSUB)

EXIT WITH CARRY SET IF ROUTINE NUMBER IS INVALID

THAT IS, IF IT IS TOO LARGE FOR TABLE (>LENSUB - 1)

CMPA #LENSUB COMPARE ROUTINE NUMBER, TABLE LENGTH

BCC EREXIT BRANCH CEXIT) IF ROUTINE NUMBER TOO

* LARGE

INDEX INTO TABLE OF WORD-LENGTH ADDRESSES

OBTAIN ROUTINE ADDRESS FROM TABLE AND TRANSFER CONTROL
TO IT

224 Assembly language subroutines for the 6809

ASLA DOUBLE INDEX FOR WORD-LENGTH ENTRIES
LDX #JMPTBL GET BASE ADDRESS OF JUMP TABLE
JMP [A,X] JUMP INDIRECTLY TO SUBROUTINE

*

* ERROR EXIT - EXIT WITH CARRY SET
*

EREXIT:
SEC INDICATE BAD ROUTINE NUMBER
RTS

LENSUB EQU 3 NUMBER OF SUBROUTINES IN TABLE

*

*JUMP TABLE
*

JMPTBL:
FDB SUBO
FDB SUB1
FDB SUB2

*

ROUTINE 0

ROUTINE 1
ROUTINE 2

*THREE TEST SUBROUTINES FOR JUMP TABLE
*

SUBO:

LDA #1

RTS

SUB1:

LDA #2

RTS

SUB2:

LDA #3

RTS

+ SAMPLE EXECUTION

*

*PROGRAM SECTION

SC6H:

CLRA
JSR JTAB

LDA #1

JSR JTAB

LDA #2

JSR J TAB

LDA #3
JSR JTAB

BRA SC6H

END

TEST ROUTINE O SETS (A) Hi —_

TEST ROUTINE 1 SETS (CA) I nN

TEST ROUTINE 2 SETS (A) It o|

EXECUTE ROUTINE 0
AFTER EXECUTION, (CA)
EXECUTE ROUTINE 1

HI a,

AFTER EXECUTION, (A) = 2
EXECUTE ROUTINE 2

AFTER EXECUTION, (A) = 3
EXECUTE ROUTINE 3

AFTER EXECUTION, CARRY = 1
*INDICATING BAD ROUTINE NUMBER
LOOP FOR MORE TESTS

Data structure
manipulation

7A Queue manager
(INITQ, INSRTQ, REMOVQ)

Manages a queue of 16-bit words on a first-in, first-out basis. The queue
may contain up to 255 word-length elements plus an 8-byte header.
Consists of the following routines:

1. INITOQ starts the queue’s head and tail pointers at the base address
of its data area, sets the queue’s length to 0, and sets its end pointer to
just beyond the end of the data area.

2. INSRTQ inserts an element at the tail of the queue if there is room
for it.

3. REMOVQ removes an element from the head of the queue if one is
available.

These routines assume a data area of fixed length. The actual queue may
occupy any part of it. If either the head or the tail reaches the physical
end of the area, the routine simply sets it back to the base address, thus
providing wraparound.

The queue header contains the following information:

1. Length of data area in words. This is a single byte specifying the
maximum number of elements the queue can hold.

2. Queue length (number of elements currently in the queue)

3. Head pointer (address of oldest element in queue)

225

226 Assembly language subroutines for the 6809

4. Tail pointer (address at which next entry will be placed)

5. End pointer (address just beyond the end of the data area).

Note that the first two items are byte-length and the last three are
word-length.

Procedures

1. INITQ sets the head and tail pointers to the base address of the data
area, establishes the length of the data area, sets the queue’s length (a
single byte) to 0, and sets the end pointer to the address just beyond the
end of the data area.

2. INSRTQ checks whether the queue already occupies the entire data
area. If so, it sets the Carry flag to indicate an overflow. If not, it inserts
the element at the tail and increases the tail pointer. If the tail pointer
has gone beyond the end of the data area, it sets it back to the base
address.

3. REMOV0O checks whether the queue is empty. If so, it sets the
Carry flag to indicate an underflow. If not, it removes the element from
the head and increases the head pointer. If the head pointer has gone
beyond the end of the data area, it sets it back to the base address.

The net result of a sequence of INSRTQs and REMOVQs is that the
head ‘chases’ the tail across the data area. The occupied part of the data
area Starts at the head and ends just before the tail.

Entry conditions

1. INITQ
Base address of queue in register X
Length of data area in words in register A

2. INSRTQ
Base address of queue in register X
Element to be inserted in register U

3. REMOVQ
Base address of queue in register X

7A Queue manager (INITQ, INSRTQ, REMOVQ) 227

Exit conditions

1. INITQ
Head pointer and tail pointer both set to base address of data area,
length of data area set to specified value, queue length set to 0, and end
pointer set to address just beyond the end of the data area.

2. INSRTQ
Element inserted into queue, queue length increased by 1, and tail
pointer adjusted if the data area is not full; otherwise, Carry = 1.

3. REMOVQ
Element removed from queue in register X, queue length decreased by
1, and head pointer adjusted if queue had an element: otherwise, Carry
= 1.

eee

Example

A typical sequence of queue operations would proceed as follows:

1. Initialize the queue. Call INITQ to set the head and tail pointers to
the data area’s base address, the queue length to 0, and the end pointer
to the address just beyond the end of the data area.

2. Insert an element into the queue. Call INSRTO to insert the ele-
ment, increase the tail pointer by 2, and increase the queue length by 1.

3. Insert another element into the queue. Call INSRTO again to insert
the element, increase the tail pointer by 2, and increase the queue
length by 1.

4. Remove an element from the queue. Call REMOVQ to remove an
element, increase the head pointer by 2, and decrease the queue length
by 1. Since the queue is organized on a first-in, first-out basis, the
element removed is the first one inserted. eee

Registers used

1. INITQ: A, CC, U, X

2. INSRTQ: A, CC, X,Y

3. REMOVOQ: A. CC,U, X,Y

228

+ +

+ ee Ot tO OF OO OHHH

Assembly language subroutines for the 6809

Execution time

1. INITQ: 65 cycles

2. INSRTQ: 65 or 70 cycles, depending on whether wraparound is

necessary

3. REMOVO: 66 or 71 cycles, depending on whether wraparound is

necessary

Program size 79 bytes

Data memory required None

Title

Name:

Purpose:

Entry:

Exit:

Queue Manager

INITQ, INSRTQ, REMOVQ

This program consists of three

subroutines that manage a queue.

INITQ initializes the empty queue.

INSRTQ inserts a 16-bit element into

the queue.
REMOVQ removes a 16-bit element from

the queue.

INITQ
Base address of queue in X

Size of data area in words in A

INSRTQ

Base address of queue in X

Element to be inserted in U

REMOVQ
Base address of queue in X

INITQ
Head pointer = Base address of data area

Tail pointer = Base address of data area

Queue length = 0
End pointer = Base address of data area +

2 * Size of data area in words

INSRTQ
If queue Length is not buffer size,

Element added to queue

Tail pointer = Tail pointer + 2

Queue length = Queue length + 1

Carry = 0

+ + + FF HF FH HF HF HF HF HF HF F HF FH HF HF HF HF HF F HF HF HF KH OK

*

7A Queue manager (INITQ, INSRTQ, REMOVQ) 229

Registers Us

Time:

Size:

else Carry = 1

REMOVQ

If queue length is not zero,
Element removed from queue in X
Head pointer = Head pointer + 2
Queue length = Queue length - 1
Carry = 0

else Carry = 1

ed: INITQ

A,B,CC,U,X
INSRTQ

A,CC,X,Y
REMOVQ

A,CC,U,X,Y

INITQ

65 cycles
INSRTQ

65 or 70 cycles, depending on whether
wraparound is necessary

REMOVQ
66 or 71 cycles, depending on whether
wraparound is necessary

Program 79 bytes

*INITIALIZE AN EMPTY QUEUE
*HEADER

* 1)

* 2)

* 3)

* 4)

* 5)
*

INITQ:

CONTAINS:

SIZE OF DATA
QUEUE LENGTH
HEAD POINTER

TAIL POINTER
END POINTER

*SET SIZE

*SET QUEUE
*

LEAU

STA

CLR
*

*INITIALIZ
*

STU

STU
*

*INITIALIZ
*

TFR

CLRA

AREA IN WORDS (1 BYTE)
(1 BYTE)

(2 BYTES)
(2 BYTES)

(2 BYTES)

OF DATA AREA TO SPECIFIED VALUE
LENGTH TO ZERO

8 ,X POINT TO START OF DATA AREA
Xt SET SIZE OF DATA AREA IN WORDS
7Xt+ QUEUE LENGTH = ZERO

E HEAD AND TAIL POINTERS TO START OF DATA AREA

2Xt++ HEAD POINTER START OF DATA AREA
eXt++ TAIL POINTER = START OF DATA AREA

E END POINTER TO ADDRESS JUST BEYOND DATA AREA

A,B EXTEND SIZE OF DATA AREA TO 16 BITS

230

*

Assembly language subroutines for the 6809

ASLB MULTIPLY SIZE OF DATA AREA TIMES 2

ROLA SINCE SIZE IS IN WORDS

LEAU D,U POINT JUST BEYOND END OF DATA AREA

STU 7X END POINTER = ADDRESS JUST BEYOND
* END OF DATA AREA

RTS

*INSERT AN ELEMENT INTO A QUEUE
*

INSRTQ:

STORTP:

EXITIS:

*

*

*EXIT WITH CARRY SET IF DATA AREA IS FULL
*

LDA 1,X GET QUEUE LENGTH
CMPA 7X COMPARE TO SIZE OF DATA AREA

SEC INDICATE DATA AREA FULL

BEQ EXITIS BRANCH CEXIT) IF DATA AREA IS FULL
*

*DATA AREA NOT FULL, SO STORE ELEMENT AT TAIL

*ADD 1 TO QUEUE LENGTH
*

LDY 4,X GET TAIL POINTER
STU rv INSERT ELEMENT AT TAIL

INC 1,X ADD 1 TO QUEUE LENGTH
*

*INCREASE TAIL POINTER BY ONE 16-BIT ELEMENT (2 BYTES)

*IF TAIL POINTER HAS REACHED END OF DATA AREA, SET IT

* BACK TO BASE ADDRESS
*

LEAY 2,Y MOVE TAIL POINTER UP ONE ELEMENT

CMPY 6,X COMPARE TO END OF DATA AREA

BNE STORTP BRANCH IF TAIL NOT AT END OF DATA
* AREA

LEAY 8 ,X OTHERWISE, MOVE TAIL POINTER BACK TO
* BASE ADDRESS OF DATA AREA

STY 4,X SAVE UPDATED TAIL POINTER
CLC CLEAR CARRY (GOOD EXIT)

RTS

*REMOVE AN ELEMENT FROM A QUEUE
*

REMOVQ:
*

*EXIT WITH CARRY SET IF QUEUE IS EMPTY
*

LDA 1,X GET QUEUE LENGTH

SEC INDICATE QUEUE EMPTY

BEQ EXITRQ@ BRANCH CEXIT) IF QUEUE IS EMPTY
*&

*QUEUE NOT EMPTY, SO SUBTRACT 1 FROM QUEUE LENGTH

*REMOVE ELEMENT FROM HEAD OF QUEUE
*

STORHP:

EXITRQ:

Om + + + + CVA:

*DATA

7A

DEC

LDU

LDY
*

Queue manager (IN/ITQ, INSRTQ, REMOVQ) 231

X
X Nm —

,

,

,U

SUBTRACT 1 FROM QUEUE LENGTH
GET HEAD POINTER

GET ELEMENT FROM HEAD OF QUEUE

*MOVE HEAD POINTER UP ONE 16-BIT ELEMENT (2 BYTES)
*IF HEAD POINTER HAS REACHED END OF DATA AREA, SET IT BACK
* TO BASE ADDRESS OF DATA AREA
*

LEAU
CMPU
BNE

LEAU

STU

TFR

CLC

RTS

2,U

6 ,X
STORHP
8 ,X

< ™ . ~ <<

SAMPLE EXECUTION

*

*INITIALIZE EMPTY QUEUE
*

LDA

LDX

JSR
*

#5

#QUEUE
INITQ

*INSERT ELEMENTS
*

LDU
LDX
JSR
LDU

LDX
JSR
*

#S$AAAA

#QUEUE

INSRTQ

#$BBBB

#QUEUE

INSRTQ

MOVE HEAD POINTER UP ONE ELEMENT

COMPARE TO END OF DATA AREA

BRANCH IF NOT AT END OF DATA AREA

OTHERWISE, MOVE HEAD POINTER BACK

* TO BASE ADDRESS OF DATA AREA

SAVE NEW HEAD POINTER

MOVE ELEMENT TO X

INDICATE QUEUE NON-EMPTY,
* ELEMENT FOUND

EXIT, CARRY INDICATES WHETHER
* ELEMENT WAS FOUND (O IF SO,
* 1 IF NOT)

DATA AREA HAS ROOM FOR 5 WORD-LENGTH
* ELEMENTS

GET BASE ADDRESS OF QUEUE BUFFER
INITIALIZE QUEUE

INTO QUEUE

ELEMENT TO BE INSERTED IS AAAA
GET BASE ADDRESS OF QUEUE

INSERT ELEMENT INTO QUEUE

ELEMENT TO BE INSERTED IS BBBB

GET BASE ADDRESS OF QUEUE

INSERT ELEMENT INTO QUEUE

*REMOVE ELEMENT FROM QUEUE
*

LDX
JSR

BRA

#QUEUE

REMOVQ

SC7A

GET BASE ADDRESS OF QUEUE

REMOVE ELEMENT FROM QUEUE

* (X) = SAAAA CFIRST ELEMENT
* INSERTED)

REPEAT TEST

232 Assembly language subroutines for the 6809

QUEUE RMB 18 QUEUE BUFFER CONSISTS OF AN 8 BYTE
* HEADER FOLLOWED BY 10 BYTES FOR
* DATA (FIVE WORD-LENGTH ELEMENTS)

7B Stack manager (INITST, PUSH, POP) 233

7B Stack manager
(INITST, PUSH, POP)

Manages a stack of 16-bit words on a first-in, last-out basis. The stack
can contain up to 32 767 elements. Consists of the following routines:

1. INITST initializes the stack header, consisting of the pointer and its
upper and lower bounds.

2. PUSH inserts an element into the stack if there is room for it.

3. POP removes an element from the stack if one is available.

Procedures

1. INITST sets the stack pointer and its lower bound to the base
address of the stack’s data area. It sets the upper bound to the address
just beyond the end of the data area.

2. PUSH checks whether increasing the stack pointer by 2 will make it
exceed its upper bound. If so, it sets the Carry flag. If not, it inserts the
element at the stack pointer, increases the stack pointer by 2, and clears
the Carry flag.

3. POP checks whether decreasing the stack pointer by 2 will make it
less than its lower bound. If so, it sets the Carry flag. If not, it decreases
the stack pointer by 2, removes the element, and clears the Carry flag.

Note that the stack grows toward higher addresses, unlike the 6809’s
hardware and user stacks, which grow toward lower addresses. Like the
6809’s own stack pointers, this pointer always contains the next avail-
able memory address, not the last occupied address.

Entry conditions

1. INITST
Base address of stack in register X
Size of stack data area in words in register D

2. PUSH
Base address of stack in register X
Element in register D

3. POP
Base address of stack in register X

234 Assembly language subroutines for the 6809

Exit conditions

1. INITST
Stack header set up with:

Stack pointer = Base address of stack’s data area
Lower bound = Base address of stack’s data area
Upper bound = Address just beyond end of stack’s data area

2. PUSH
Element inserted into stack and stack pointer increased if there is room
in the data area; otherwise, Carry = 1, indicating an overflow.

3. POP
Element removed from stack in register X and stack pointer decreased if
stack was not empty; otherwise, Carry = 1, indicating an underflow.

Example

A typical sequence of stack operations proceeds as follows:

1. Initialize the empty stack with INITST. This involves setting the
stack pointer and the lower bound to the base address of the stack’s data
area, and the upper bound to the address immediately beyond the end
of the data area.

2. Insert an element into the stack. Call PUSH to put an element at
the top of the stack and increase the stack pointer by 2.

3. Insert another element into the stack. Call PUSH to put an element
at the top of the stack and increase the stack pointer by 2.

4. Remove an element from the stack. Call POP to decrease the stack

pointer by 2 and remove an element from the top of the stack. Since the
stack is organized on a last-in, first-out basis, the element removed is the

latest one inserted.

Registers used

1. INITST: A, B, CC, U, X

2. PUSH: CC, U (D and X are unchanged)

3. POP: CC, U, xX

+ +

¢ + & FF eH HF HH HF HE HF HF HF HF HF HF HF HH HF FF HF FF HF HF HF HF HF H HN F

7B Stack manager (INITST, PUSH, POP) 235

Execution time:

1. INITST: 43 cycles

2. PUSH: 41 cycles

3. POP: 36 cycles

Program size

1. INITST: 13 bytes

2. PUSH: 19 bytes

3. POP: 14 bytes

Data memory required None

Title

Name:

Purpose:

Entry:

Exit:

Stack Manager

INITST, PUSH, POP

This program consists of three

subroutines that manage a stack.

INITST sets up the stack pointer and

its upper and Lower bounds

PUSH inserts a 16-bit element into

the stack.

POP removes a 16-bit element from
the stack.

INITST

Base address of stack in X

Size of stack data area in words in D
PUSH

Base address of stack in X

Element in D

POP

Base address of stack in X

INITST

Stack header set up with:

Stack pointer = base address of stack
data area

Lower bound = base address of stack

data area

Upper bound = address just beyond end
of stack data area

PUSH

If stack pointer is below upper bound,

236

+ + + & + HF HF HH HF HF HF HH HF HF HF HF HF HF HF HF HF HF HF HF HF HF KF

*

Assembly language subroutines for the 6809

Element added to stack

Stack pointer = Stack pointer + 2

Carry = 0

else Carry = 1

POP

If stack pointer is at or above lower bound,

Element removed from stack in X

Stack pointer = Stack pointer - 2

Carry = 0

else Carry = 1

Registers Used: INITST

A,B,CC,U,X

PUSH

CC ,U

POP
CC,U,X

Time: INITST

43 cycles

PUSH
41 cycles

POP
36 cycles

Size: Program 46 bytes

*INITIALIZE AN EMPTY STACK

*HEADER CONTAINS:

* 1)
2)

STACK POINTER (2 BYTES)
LOWER BOUND (2 BYTES) *

* 3) UPPER BOUND (2 BYTES)
*

INITST:

*

*

*STACK POINTER = BASE ADDRESS OF STACK DATA AREA

*LOWER BOUND = BASE ADDRESS OF STACK DATA AREA
*

LEAU 6 ,X GET BASE ADDRESS OF STACK DATA AREA

STU eXt++ STORE IT AS INITIAL STACK POINTER

STU eX++ STORE IT AS LOWER BOUND ALSO
*

*UPPER BOUND = ADDRESS JUST BEYOND END OF STACK DATA AREA
*

ASLB MULTIPLY SIZE OF DATA AREA BY 2
RORA SINCE SIZE IS IN WORDS
LEAU D,U FIND ADDRESS JUST BEYOND END OF

* STACK DATA AREA
STU 7X STORE IT AS UPPER BOUND
RTS

*INSERT A 16-BIT ELEMENT INTO A STACK

PUSH:

OVRFLW:

*

*REMOVE A
*

POP:

EXITSP:

7B Stack manager (INITST, PUSH, POP) 237

*

*EXIT INDICATING OVERFLOW (CARRY SET) IF STACK IS FULL
*

LDU 7X GET STACK POINTER

LEAU 2,U INCREMENT STACK POINTER BY 2
CMPU 4,X COMPARE TO UPPER BOUND

BCC OVRFLW BRANCH IF STACK POINTER AT OR

* ABOVE UPPER BOUND

NOTE: THIS COMPARISON HANDLES

SITUATIONS IN WHICH THE STACK

POINTER HAS BECOME MISALIGNED OR
GONE OUTSIDE ITS NORMAL RANGE. + + +

*

*NO OVERFLOW - INSERT ELEMENT INTO STACK
*UPDATE STACK POINTER
*

STD -2,U INSERT ELEMENT INTO STACK

STU 7X SAVE INCREMENTED STACK POINTER
CLC CLEAR CARRY TO INDICATE INSERTION

* WORKED
RTS
*

*OVERFLOW - SET CARRY AND EXIT
*

SEC SET CARRY TO INDICATE OVERFLOW
RTS

16-BIT ELEMENT FROM A STACK

*

*EXIT INDICATING UNDERFLOW (CARRY SET) IF STACK IS EMPTY
*

LDU 7X GET STACK POINTER

LEAU -2,U DECREASE STACK POINTER BY 2
CMPU 2,X COMPARE TO LOWER BOUND

BCS EXITSP BRANCH CEXIT) IF BELOW LOWER BOUND

* NOTE: THIS COMPARISON HANDLES
* SITUATIONS IN WHICH THE STACK
* POINTER HAS BECOME MISALIGNED OR

* GONE OUTSIDE ITS NORMAL RANGE.
*

*NO UNDERFLOW - REMOVE ELEMENT AND DECREASE STACK POINTER
*

STU 7X SAVE UPDATED STACK POINTER
LDX 7U REMOVE ELEMENT

RTS EXIT

* SAMPLE EXECUTION

238

SC7B:

*DATA

STACK

ELEM1
ELEM2
STKSZ

Assembly language subroutines for the 6809

*

*INITIALIZE EMPTY STACK
*

LDX #STACK
LDD #STKSZ

JSR INITST
*

*PUT ELEMENT 1
*

LDD ELEM1
LDX #STACK
JSR PUSH
*

*PUT ELEMENT 2
*

LDD ELEM2
LDX #STACK

JSR PUSH
*

*REMOVE ELEMENT FROM
*

LDX #STACK
JSR POP

BRA SC7B

RMB 16

RMB 2
RMB 2
EQU 5

END

IN STACK

IN STACK

GET BASE ADDRESS OF STACK

GET SIZE OF STACK DATA AREA IN WORDS

INITIALIZE STACK HEADER

GET ELEMENT 1
GET BASE ADDRESS OF STACK AREA
PUT ELEMENT 1 IN STACK

GET ELEMENT 2

GET BASE ADDRESS OF STACK AREA

PUT ELEMENT 2 IN STACK

STACK

GET BASE ADDRESS OF STACK

REMOVE ELEMENT FROM STACK TO X
* X NOW CONTAINS ELEMENT 2
* SINCE STACK IS ORGANIZED ON A
* LAST-IN, FIRST-OUT BASIS

LOOP FOR MORE TESTS

STACK HAS ROOM FOR 6-BYTE HEADER
* AND 10 BYTES OF DATA (5 WORD-
* LENGTH ELEMENTS)
2 BYTE ELEMENT
2 BYTE ELEMENT
SIZE OF STACK DATA AREA IN WORDS

7C Singly linked list manager (INLST, RMLST) 239

7C_ Singly linked list manager
(INLST, RMLST)

Manages a linked list of elements, each of which has the address of the
next element (or 0 if there is no next element) in its first two bytes.
Consists of the following routines:
1. INLST inserts an element into the list, given the element it follows.

2. RMLST removes an element from the list (if one exists), given the
element it follows.

Note that you can add or remove elements anywhere in the linked list.
All you need is the address of the preceding element to provide the
linkage.

Procedures

1. INLST obtains the link from the preceding element, sets that ele-
ment’s link to the new element, and sets the new element’s link to the
one from the preceding element.

2. RMLST first determines if there is a following element. If not, it
sets the Carry flag. If so, it obtains that element’s link and puts it in the
current element. This unlinks the element and removes it from the list.

Entry conditions

1. INLST
Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

More significant byte of base address of preceding element
Less significant byte of base address of preceding element

More significant byte of base address of new element
Less significant byte of base address of new element

2. RMLST
Base address of preceding element in X

240 Assembly language subroutines for the 6809

Exit conditions

1. INLST
Element inserted into list with preceding element linked to it. It is
linked to the element that had been linked to the preceding element.

2. RMLST
If there is a following element, it is removed from the list, its base
address is placed in register X, and the Carry flag is cleared.

Otherwise, register X = 0 and Carry flag = 1.

Example

A typical sequence of operations on a linked list is:

1. Initialize the empty list by setting the link in the header to zero.

2. Insert an element into the list by using the base address of the
header as the previous element.

3. Insert another element into the list by using the base address of the
element just inserted as the previous element.

4. Remove the first element from the linked list by using the base
address of the header as the previous element. Note that we can remove
either element from the list by supplying the proper previous element.

Registers used:

1. INLST: All

2. RMLST: CC, D, U, X

Execution time:

1. INLST: 29 cycles

2. RMLST: 35 cycles

+ + + t+ + FF FH Fe He HF HH HH HH HF HF HH FF FH HF HF FF HF FH HF HF FH HF HF OH HH HE HE

7C Singly linked list manager (INLST, RMLST) 241

Program size

1. INLST: 10 bytes

2. RMLST: 15 bytes

Data memory required None
eee

Title Singly Linked List Manager
Name: INLST, RMLST

Purpose: This program consists of two subroutines
that manage a singly linked List.

INLST inserts an element into the Linked
list.

RMLST removes an element from the Linked
list.

Entry: INLST

TOP OF STACK

High byte of return address
Low byte of return address
High byte of previous element's address
Low byte of previous element's address
High byte of entry address

Low byte of entry address
RMLST

Base address of preceding element in
register X |

Exit: INLST

Element added to List
RMLST

If following element exists,

its base address is in register X
Carry = 0

else

register X = 0

Carry = 1

Registers Used: INLST

ALL
RMLST

CC,D,U,X

Time: INLST

29 cycles

RMLST

35 rycles

Size: Program 25 bytes

242

INLST:

RMLST:

RMEXIT:

+ + &

Assembly language subroutines for the 6809

INSERT AN ELEMENT INTO A SINGLY LINKED LIST

*

*UPDATE LINKS TO INCLUDE NEW ELEMENT
*LINK PREVIOUS ELEMENT TO NEW ELEMENT
*LINK NEW ELEMENT TO ELEMENT FORMERLY LINKED TO

* PREVIOUS ELEMENT
*

PULS X,Y,U GET ELEMENTS, RETURN ADDRESS
LDD rv GET LINK FROM PREVIOUS ELEMENT
STD 7U STORE LINK IN NEW ELEMENT
STU rY STORE NEW ELEMENT AS LINK IN

* PREVIOUS ELEMENT
*

*NOTE: IF LINKS ARE NOT IN FIRST TWO BYTES OF ELEMENTS, PUT

* LINK OFFSET IN LAST 3 INSTRUCTIONS
*
*

*EXIT
*

JMP 7X EXIT TO RETURN ADDRESS

REMOVE AN ELEMENT FROM A SINGLY LINKED LIST

*

*EXIT INDICATING FAILURE (CARRY SET) IF NO FOLLOWING ELEMENT
*

LDU 7X GET LINK TO FOLLOWING ELEMENT
SEC INDICATE NO ELEMENT FOUND
BEQ RMEXIT BRANCH IF NO ELEMENT FOUND
*

*UNLINK REMOVED ELEMENT BY TRANSFERRING ITS LINK TO

* PREVIOUS ELEMENT
*NOTE: IF LINKS NOT IN FIRST TWO BYTES OF ELEMENTS, PUT

* LINK OFFSET IN STATEMENTS
*

LDD ,U GET LINK FROM REMOVED ELEMENT

STD 7X MOVE IT TO PREVIOUS ELEMENT
CLC INDICATE ELEMENT FOUND
*

*EXIT
*

TFR U,X EXIT WITH BASE ADDRESS OF REMOVED
* ELEMENT OR O IN X

RTS CARRY = O IF ELEMENT FOUND, 1
* IF NOT

SAMPLE EXECUTION

SC7C:

*DATA

LLHDR
ELEM1
ELEM2

7C Singly linked list manager (INLST, RMLST) 243

*

*INITIALIZE EMPTY LINKED LIST
*

LDD #0 CLEAR LINKED LIST HEADER
STD LLHDR O INDICATES NO NEXT ELEMENT
x

*INSERT AN ELEMENT INTO LINKED LIST
*

LDY #ELEM1 GET BASE ADDRESS OF ELEMENT 1
LDX #LLHDR GET PREVIOUS ELEMENT CHEADER)
PSHS X,Y SAVE PARAMETERS IN STACK
JSR INLST INSERT ELEMENT INTO LIST
*

*INSERT ANOTHER ELEMENT INTO LINKED LIST
*

LDY #ELEM2 GET BASE ADDRESS OF ELEMENT 2
LDX #ELEM1 GET PREVIOUS ELEMENT
PSHS X,Y SAVE PARAMETERS IN STACK
JSR INLST INSERT ELEMENT INTO LIST
*

*REMOVE FIRST ELEMENT FROM LINKED LIST
*

LDX #LLHDR GET PREVIOUS ELEMENT

JSR RMLST REMOVE ELEMENT FROM LIST
* END UP WITH HEADER LINKED TO
* SECOND ELEMENT

* X CONTAINS BASE ADDRESS OF
* FIRST ELEMENT
BRA SC7C REPEAT TEST

RMB 2 LINKED LIST HEADER

RMB 2 ELEMENT 1 - HEADER (LINK) ONLY
RMB 2 ELEMENT 2 - HEADER (LINK) ONLY
END

244 Assembly language subroutines for the 6809

7D Doubly linked list manager
(INDLST, RMDLST)

Manages a doubly linked list of elements. Each element contains the
address of the next element (or 0 if there is no next element) in its first
two bytes. It contains the address of the preceding element (or 0 if there
is no preceding element) in its next two bytes. Consists of the following
routines:

1. INDLST inserts an element into the list, linking it to the preceding
and following elements.

2. RMDLST first determines if there 1s a following element. If so, it
obtains its address and removes its links from the preceding and follow-
ing elements.

As with a singly linked list, you can add or remove elements from
anywhere in the list. All you need is the address of the preceding
element to provide the proper linkage.

Procedures:

1. INDLST first obtains the forward link from the preceding element
(i.e. the address of the following element). It then changes the links as
follows:

(a) The new element becomes the forward link of the preceding
element.

(b) The preceding element becomes the backward link of the new
element.

(c) The old forward link from the preceding element becomes the
forward link of the new element.

(d) The new element becomes the backward link of the following
element. |

2. RMDLST first determines if there is a following element. If not, it
sets the Carry flag. If so, it obtains that element’s forward link (the next
element) and makes it the forward link of the preceding element. It also
makes the preceding element into the backward link of the next ele-
ment. This unlinks the element, removing it from the list.

7D Doubly linked list manager (INDLST, RMDLST) 245

Entry conditions

1. INDLST
Order in stack (starting from the top)

More significant byte of return address
Less significant byte of return address

More significant byte of base address of preceding element
Less significant byte of base address of preceding element

More significant byte of base address of new element
Less significant byte of base address of new element

2. RMDLST
Base address of preceding element in register X

Exit conditions

1. INDLST
Element added to list with preceding and succeeding elements linked to
it.

2. RMDLST
If there is a following element, it is removed from the list, its base
address is placed in register X, and the Carry flag is cleared.

Otherwise, register 7x = 0 and Carry flag = 1.

Example

A typical sequence of operations on a doubly linked list is:

1. Initialize the empty list by setting both links in the header to zero.

2. Insert an element into the list by using the base address of the
header as the previous element.

3. Insert another element into the list by using the base address of the
element just added as the previous element.

4. Remove the first element from the list by using the base address of
the header as the previous element. Note that we can remove either
element from the list by supplying the proper previous element.

246

+ +

+ + HH HF HF SH H HF HF HF HF + HF HF HF F HF F HF HF KF HF F

Assembly language subroutines for the 6809

Registers used

1. INDLST: All

2. RMDLST: CC, U, X, Y

Execution time

1. INDLST: 53 cycles

2. RMDLST: 44 cycles

Program size

1. INDLST: 17 bytes

2. RMDLST: 18 bytes

Data memory required None

Title

Name:

Purpose:

Entry:

Exit:

Doubly Linked List Manager

INDLST, RMDLST

This program consists of two subroutines

that manage a doubly Linked List.

INDLST inserts an element into the doubly

Linked list.

RMDLST removes an element from the

doubly linked list.

INDLST

TOP OF STACK

High byte of return address

Low byte of return address

High byte of previous element's address

Low byte of previous element's address

High byte of entry address

Low byte of entry address

RMDLST

Base address of preceding element in

register X

INDLST

Element inserted into List

RMDLST

If following element exists,

its base address is in register X
Carry = 0

+ + + + + + + HF HF HF HF HF HF HF HK F

*

*

*

INDLST:

*

*

*

RMDLST:

7D Doubly linked list manager (INDLST, RMDLST) 247

else

register X = 0

Carry = 1

Registers Used: INDLST

ALL

RMDLST

Time: INDLST

53 cycles

RMDLST

44 cycles

Size: Program 35 bytes

INSERT AN ELEMENT INTO A DOUBLY LINKED LIST

*

*UPDATE LINKS TO INCLUDE NEW ELEMENT

*LINK PREVIOUS ELEMENT TO NEW ELEMENT

*LINK NEW ELEMENT TO PREVIOUS AND FOLLOWING ELEMENTS
*LINK FOLLOWING ELEMENT TO NEW ELEMENT
*

PULS D,X,Y GET RETURN ADDRESS, ELEMENTS
LDU 2,X GET FOLLOWING ELEMENT

STY 2,X MAKE NEW ELEMENT INTO PREVIOUS

* ELEMENT'S FORWARD LINK
STX 7X MAKE PREVIOUS ELEMENT INTO NEW

* ELEMENT'S BACKWARD LINK
STU 2,Y MAKE FOLLOWING ELEMENT INTO NEW

* ELEMENT'S FORWARD LINK
STY ,U MAKE NEW ELEMENT INTO FOLLOWING

* ELEMENT'S BACKWARD LINK

*NOTE: IF LINKS ARE NOT IN FIRST FOUR BYTES OF ELEMENTS,
* PUT LINK OFFSETS IN LAST 5 INSTRUCTIONS

*EXIT
*

PSHS D PUT RETURN ADDRESS BACK IN STACK
RTS EXIT

REMOVE AN ELEMENT FROM A DOUBLY LINKED LIST

*

*EXIT INDICATING FAILURE (CARRY SET) IF NO FOLLOWING ELEMENT
*

LDY 2,X GET LINK TO FOLLOWING ELEMENT
SEC INDICATE NO ELEMENT FOUND

248 Assembly language subroutines for the 6809

BEQ RMDXIT BRANCH IF NO ELEMENT FOUND
*

*ELEMENT EXISTS SO UNLINK IT BY TRANSFERRING ITS

* FORWARD LINK TO PREVIOUS ELEMENT AND ITS BACKWARD
* LINK TO FOLLOWING ELEMENT

*NOTE: IF LINKS ARE NOT IN THE FIRST FOUR BYTES OF THE
* ELEMENTS, PUT CORRECT LINK OFFSETS IN STATEMENTS
*

LDU 2,Y GeT FOLLOWING ELEMENT

STU 2,X MAKE FOLLOWING ELEMENT INTO FORWARD

* LINK OF PRECEDING ELEMENT

STX U MAKE PRECEDING ELEMENT INTO BACKWARD

* LINK OF FOLLOWING ELEMENT

CLC INDICATE ELEMENT FOUND
*

*EXIT
*

RMDXIT:

TFR Y,X EXIT WITH BASE ADDRESS OF REMOVED

* ELEMENT OR O IN X

RTS CARRY = 0 IF ELEMENT FOUND, 1 IF NOT

*

* SAMPLE EXECUTION
*

*

SC7D:
*

*INITIALIZE EMPTY DOUBLY LINKED LIST
*

LDD #0 CLEAR LINKED LIST HEADER
STD HDRFWD FORWARD LINK
STD HDRBCK BACKWARD LINK

* 0 INDICATES NO LINK IN THAT
* DIRECTION

*

*INSERT ELEMENT INTO DOUBLY LINKED LIST
*

LDY #ELEM1 GET BASE ADDRESS OF ELEMENT 1
LDX #HDRFWD GET PREVIOUS ELEMENT (HEADER)
PSHS X,Y SAVE PARAMETERS IN STACK
JSR INDLST INSERT ELEMENT INTO LIST
*

*INSERT ANOTHER ELEMENT INTO DOUBLY LINKED LIST
*

LDY #ELEM2 GET BASE ADDRESS OF ELEMENT 2
LDX #ELEM1 GET PREVIOUS ELEMENT

PSHS X,Y SAVE PARAMETERS IN STACK
JSR INDLST INSERT ELEMENT INTO LIST
*

*REMOVE FIRST ELEMENT FROM DOUBLY LINKED LIST
*

LDX #HDRFWD GET PREVIOUS ELEMENT

JSR RMDLST REMOVE ELEMENT FROM LIST
* END UP WITH HEADER LINKED TO

*

*DATA
*

HDRFWD
HDRBCK
ELEM1
ELEM2

7D

+ + % +

BRA

RMB
RMB
RMB
RMB
END

Doubly linked list manager (INDLST, RMDLST) 249

SC7D

NM NM PN PO

SECOND ELEMENT
X CONTAINS BASE ADDRESS

OF FIRST ELEMENT

REPEAT TEST

“HEADER - FORWARD LINK

HEADER - BACKWARD LINK

ELEMENT 1 - HEADER (LINKS) ONLY
ELEMENT 2 - HEADER CLINKS) ONLY

§ Input/output

8A Read aline from a terminal
(RDLINE)

250

Reads a line of ASCII characters ending with a carriage return and saves

it in a buffer. Defines the control characters Control H (08 hex), which

deletes the latest character, and Control X (18 hex), which deletes the

entire line. Sends a bell character (07 hex) to the terminal if the buffer

overflows. Echoes each character placed in the buffer. Echoes non-

printable characters as an up-arrow or caret (-) followed by the printable

equivalent (see Table 8-1). Sends a new line sequence (typically carriage

return, line feed) to the terminal before exiting.

RDLINE assumes the following system-dependent subroutines:

1. RDCHAR reads a character from the terminal and puts it in regis-
ter A.

2. WRCHAR sends the character in register A to the terminal.

3. WRNEWL sends a new line sequence to the terminal.
These subroutines are assumed to change all user registers.
RDLINE is an example of a terminal input handler. The control

characters and I/O subroutines in a real system will, of course, be

computer-dependent. A specific example in the listing is for a Radio
Shack Color Computer with the following pointers to BASIC routines in

ROM:

8A Read aline from a terminal (RDLINE) 251

1. A000 and A001 contain a pointer to the routine that polls the
keyboard and returns with either 0 (no key pressed) a character in
register A.

2. A002 and A003 contain a pointer to the routine that sends the
character in register A to an output device. The unit number (00 =
screen, FE = printer) is in memory location O06F.

Procedure The program starts the loop by reading a character. If it is
a Carriage return, the program sends a new line sequence to the terminal
and exits. Otherwise, it checks for the special characters Control H and
Control X. If the buffer is not empty, Control H makes the program
decrement the buffer pointer and character count by 1 and send a
backspace string (cursor left on the Color Computer) to the terminal.
Control X makes the program delete characters until the buffer is
empty.

If the character is not special, the program determines whether the
buffer is full. If it is, the program sends a bell character to the terminal.
If not, the program stores the character in the buffer, echoes it to the
terminal, and increments the character count and buffer pointer.

Table 8-1 = ASCII control characters and printable equivalents

Name Hex value Printable

equivalent

NUL 00 Control @
SOH 01 Control A
STX 02 Control B
ETX 03 Control C
EOT 04 Control D
ENQ 05 Control E
ACK 06 Control F
BEL 07 Control G
BS 08 Control H
HT 09 Control I
LF OA Control J
VT OB Control K
FF OC Control L
CR 0D Control M
SO OE Control N
SI OF Control O

252 Assembly language subroutines for the 6809

DLE 10 Control P

DC1 11 Control Q

DC2 12 Control R

DC3 13 | Control S

DC4 14 Control T

NAK 15 Control U

SYN 16 Control V

ETB 17 Control W

CAN 18 Control X

EM 19 Control Y

SUB 1A Control Z

ESC 1B Control [
FS 1C Control \
GS 1D Control |
RS 1E Control *

VS 1F Control _

Before echoing a character or deleting one from the display, the pro-
gram must determine whether it is printable. If not (i.e. it is a non-
printable ASCII control code), the program must display or delete two
characters, the control indicator (up-arrow or caret) and the printable
equivalent (see Table 8-1). Note, however, that the character is stored
in its non-printable form. On the Radio Shack Color Computer, control
characters are generated by pressing the down-arrow key, followed by
another key. For example, to enter Control X, you must press down-
arrow, then X.

Entry conditions

Base address of buffer in register X
Length (size) of buffer in bytes in register A

Exit conditions

Number of characters in the buffer in register A

Examples

1. Data: Line from keyboard is ‘ENTERcr’

8A Read aline from a terminal (RDLINE) 253

Result: Character count = 5 (line length)
Buffer contains ‘ENTER’
‘ENTER’ echoed to terminal, followed by the new line
sequence (typically either carriage return, line feed or just
carriage return)
Note that the ‘cr’ (carriage return) character does not
appear in the buffer.

2. Data: Line from keyboard is ‘DMcontrolHNcontrolIXENTET-
controlHRcr’

Result: Character count = 5 (length of final line after deletions)
Buffer contains ‘ENTER’
‘DMBackspaceStringNBackspaceStringBackspaceString
ENTETBackspaceStringR’ sent to terminal, followed by a
new line sequence. The backspace string deletes a charac-
ter from the screen and moves the cursor left one space.
The sequence of operations is as follows:

Character Initial Final Sent to
typed buffer buffer terminal

D empty ‘D’ D
M ‘(D’ ‘DM’ M
control H ‘DM’ ‘D’ backspace string
N ‘D’ ‘DN’ N
control X ‘DN’ empty 2 backspace strings
E empty ‘FE’ E
N ‘E> ‘EN’ N
T ‘EN’ ‘ENT’ T
E ‘ENT’ ‘ENTE’ E
T ‘ENTE’ ‘“ENTET’ T
control H ‘“ENTET” ‘ENTE’ backspace string
R ‘ENTE’ “ENTER’ R
cr ‘ENTER’ ‘ENTER’ New line string

What happened is the following:

(a) The operator types ‘D’, ‘M’.

(b) The operator sees that ‘M’ is wrong (it should be ‘N’), presses
Control H to delete it, and types ‘N’.

(c) The operator then sees that the initial ‘D’ is also wrong (it should

254

+

+ + + + + + F HF HF HF F F

Entry: Register

Assembly language subroutines for the 6809

be ‘E’). Since the error is not in the latest character, the operator
presses Control X to delete the entire line, and then types ‘ENTET”.

(d) The operator notes that the second “T’ is wrong (it should be ‘R’),
presses Control H to delete it, and types ‘R’.

(e) The operator types a carriage return to end the line.

Registers used All

Execution time Approximately 76 cycles to put an ordinary character
in the buffer, not considering the execution time of either RDCHAR or
WRCHAR

Program size 139 bytes

Data memory required None

Special cases

1. Typing Control H (delete one character) or Control X (delete the
entire line) when the buffer is empty has no effect.

2. The program discards an ordinary character received when the
buffer is full, and sends a bell character to the terminal (ringing the
bell).

Title Read Line

Name: RDLINE

Purpose: Read characters from an input device until

a carriage return is found. Defines the

control characters

Control H -- Delete latest character.

Control X -- Delete all characters.

Any other control character is placed in
the buffer and displayed as the equivalent

printable ASCII character preceded by an

up-~arrow or caret.

X = Base address of buffer

Register A = Length of buffer in bytes

+ +t F +e HF eH He HK

*EQUATES

BELL

BSKEY

CR

CRKEY

CSRLFT

CTLOFF
*

DLNKEY

DNARRW
*

LF

SPACE
*

STERM

UPARRW

RDLINE:

INIT:

RDLOOP:

8A Readaline from a terminal (RDLINE) 255

Exit: Register A = Number of characters in buffer

Registers Used: All

Time: Not applicable.

Size: Program 139 bytes

EQU $07 BELL CHARACTER

EQU $08 BACKSPACE KEYBOARD CHARACTER

EQU $0D CARRIAGE RETURN FOR CONSOLE

EQU $0OD CARRIAGE RETURN KEYBOARD CHARACTER

EQU $08 MOVE CURSOR LEFT FOR CONSOLE

EQU $40 OFFSET FROM CONTROL CHARACTER TO PRINTED

FORM (E.G., CONTROL-X TO X)

EQU $18 DELETE LINE KEYBOARD CHARACTER

EQU SOA DOWN-ARROW KEY CUSED AS CONTROL INDICATOR

ON KEYBOARD

EQU $OA LINE FEED FOR CONSOLE

EQU $20 SPACE CHARACTER CALSO MARKS END OF CONTROL

CHARACTERS IN ASCII SEQUENCE)

EQU $24 STRING TERMINATOR (DOLLAR SIGN)

EQU $5E UP-ARROW OR CARET USED AS CONTROL INDICATOR

*

*INITIALIZE CHARACTER COUNT TO ZERO, SAVE BUFFER LENGTH
*

CLRB CHARACTER COUNT = QO

PSHS A SAVE BUFFER LENGTH IN STACK
*

*READ LOOP

*READ CHARACTERS UNTIL A CARRIAGE RETURN IS TYPED
*

JSR RDCHAR READ CHARACTER FROM KEYBOARD

*DOES NOT ECHO CHARACTER
*

*CHECK FOR CARRIAGE RETURN,
*

CMPA

BEQ
*

*CHECK FOR BACKSPACE AND DELETE CHARACTER IF FOUND
*

EXIT IF FOUND

#CR
EXITRD

CHECK FOR CARRIAGE RETURN
END OF LINE IF CARRIAGE RETURN

CMPA #BSKEY CHECK FOR BACKSPACE KEY

BNE ROLP1 BRANCH IF NOT BACKSPACE

JSR BACKSP IF BACKSPACE, DELETE ONE CHARACTER

BRA RDLOOP THEN START READ LOOP AGAIN
*

*CHECK FOR DELETE LINE CHARACTER AND EMPTY BUFFER IF FOUND
*

256

RDLP1:

DEL1:

RDLP2:

STRCH:

PRCH:

EXITRD:

Assembly language subroutines for the 6809

CMPA #DLNKEY CHECK FOR DELETE LINE KEY
BNE RDLP2 BRANCH IF NOT DELETE LINE

JSR BACKSP DELETE A CHARACTER
TSTB CHECK IF BUFFER EMPTY

BNE DEL1 CONTINUE UNTIL BUFFER EMPTY
*THIS ACTUALLY BACKS UP OVER EACH

* CHARACTER RATHER THAN JUST MOVING
* UP A LINE

BRA RDLOOP
*

*KEYBOARD ENTRY IS NOT A SPECIAL CHARACTER
*CHECK IF BUFFER IS FULL
*IF FULL, RING BELL AND CONTINUE

*IF NOT FULL, STORE CHARACTER AND ECHO
*

CMPA 79 COMPARE COUNT AND BUFFER LENGTH
BCS STRCH JUMP IF BUFFER NOT FULL

LDA #BELL BUFFER FULL, RING THE TERMINAL'S BELL
JSR WRCHAR
BRA RDLOOP THEN CONTINUE THE READ LOOP
*

*BUFFER NOT FULL, STORE CHARACTER
*

STA Xt STORE CHARACTER IN BUFFER

INCB INCREMENT CHARACTER COUNT
*

*IF CHARACTER IS CONTROL, THEN OUTPUT
* UP-ARROW FOLLOWED BY PRINTABLE EQUIVALENT
*

CMPA #SPACE CONTROL CHARACTER IF CODE IS
BELOW SPACE (20 HEX) IN ASCII
SEQUENCE

BCC PRCH JUMP IF A PRINTABLE CHARACTER

PSHS A SAVE NONPRINTABLE CHARACTER
LDA #UPARRW WRITE UP-ARROW OR CARET
JSR WRCHAR ,

PULS A RECOVER NONPRINTABLE CHARACTER
ADDA #CTLOFF CHANGE TO PRINTABLE FORM

JSR WRCHAR ECHO CHARACTER TO TERMINAL
BRA RDLOOP THEN CONTINUE READ LOOP
*

*EXIT

*SEND NEW LINE SEQUENCE CUSUALLY CR,LF) TO TERMINAL
*LINE LENGTH = CHARACTER COUNT
*

JSR WRNEWL ECHO NEW LINE SEQUENCE

TFR B,A RETURN LINE LENGTH IN A

LEAS 1,8 REMOVE BUFFER LENGTH FROM STACK
RTS

8A Readaline from a terminal (RDLINE) 257

HHH KKK KIKI KKK IIIT KEKE RRR REIKI EEK ER
*

* THE FOLLOWING SUBROUTINES ARE TYPICAL EXAMPLES USING THE
* BASIC CALLS FOR THE RADIO SHACK TRS-80 COLOR COMPUTER
*

KEKEKKKEKKEKKEEKKKEEKKEEEEEEEKEEKERKEKKRKKEKKEKKKKKKKKKKK KKK KKK KEK

*COLOR COMPUTER EQUATES

KBDPTR EQU $A000 POINTER TO KEYBOARD INPUT ROUTINE
* CHARACTER ENDS UP IN REGISTER A
* ZERO FLAG = 1 IF NO CHARACTER,
* O IF CHARACTER
OUTPTR EQU $A002 POINTER TO OUTPUT ROUTINE
* UNIT NUMBER GOES IN LOCATION
* SOO6F (O = SCREEN)
* CHARACTER GOES IN REGISTER A

HHH KK IK III RII III II III IKKE KKK RRR RR IKEA EEE

*ROUTINE: RDCHAR

*PURPOSE: READ A CHARACTER BUT DO NOT ECHO TO OUTPUT DEVICE
*ENTRY: NONE
*EXIT: REGISTER A = CHARACTER
*REGISTERS USED: ALL
KR IK IKI III KIKI III III EKER ERIE IIIA IAAI AIK

RDCHAR:
*

*WAIT FOR CHARACTER FROM CONSOLE

*EXIT UNLESS IT IS CONTROL INDICATOR
*

JSR CKBDPTRI POLL KEYBOARD

BEQ RDCHAR LOOP UNTIL KEY PRESSED

CMPA #DNARRW CHECK IF CONTROL CHARACTER
BNE RDCHXT EXIT IF NOT CONTROL
*

*IF CONTROL CHARACTER, WAIT UNTIL NEXT KEY IS READ
*THEN CONVERT NEXT KEY TO ASCII CONTROL CHARACTER
*

CNTCHR:

JSR CKBDPTR] POLL KEYBOARD

BEQ CNTCHR LOOP UNTIL KEY PRESSED

CMPA #'A COMPARE WITH ASCII A
BLO RDCHXT EXIT IF LESS THAN A

SUBA #CTLOFF ELSE CONVERT TO CONTROL

* CHARACTER EQUIVALENT
*

*EXIT WITH CHARACTER IN REGISTER A
*

RDCHXT:

RTS RETURN ASCII CHARACTER IN REGISTER A

HHH KERRIER KKK RAK I

*ROUTINE: WRCHAR

*PURPOSE: WRITE CHARACTER TO OUTPUT DEVICE

258 Assembly language subroutines for the 6809

*ENTRY: REGISTER A = CHARACTER
*EXIT: NONE
*REGISTERS USED: ALL
KKK KKK KERR RRR ERE

WRCHAR:
*

*WRITE A CHARACTER TO OUTPUT DEVICE

*LOCATION S$QO6F MUST CONTAIN UNIT NUMBER (0 = SCREEN)
*

JSR COUTPTRI SEND CHARACTER
RTS

HH HK KKH HK RIKER KERR KKK EKER KRRKRIEKKERREKKEEREEKEEERERKE KK

*ROUTINE: WRNEWL
*PURPOSE: ISSUE NEW LINE SEQUENCE TO TERMINAL
* NORMALLY, THIS SEQUENCE IS A CARRIAGE RETURN AND

* LINE FEED, BUT SOME COMPUTERS REQUIRE ONLY

* A CARRIAGE RETURN.

*ENTRY: NONE
*EXIT: NONE
*REGISTERS USED: ALL
HHH KIKI RIK REET IIE REE ERE EKREREREREEEEREKE KEKE

WRNEWL:
*SEND NEW LINE STRING TO TERMINAL

LDY #NLSTRG POINT TO NEW LINE STRING
JSR WRSTRG SEND STRING TO TERMINAL
RTS

NLSTRG: FCB CR,LF,STERM NEW LINE STRING

KKK KKK KEE REE RE RRA IIIT KEE ERK KE

*ROUTINE: BACKSP
*PURPOSE: PERFORM A DESTRUCTIVE BACKSPACE
*ENTRY: A = NUMBER OF CHARACTERS IN BUFFER
* X = NEXT AVAILABLE BUFFER ADDRESS
*EXIT: IF NO CHARACTERS IN BUFFER

* zZ= 1

* ELSE
* z= 0
* CHARACTER REMOVED FROM BUFFER
*REGISTERS USED: ALL
KKK KEKE IRE EERE RIKI IIIT TITER EERE EK

BACKSP:
*

*CHECK FOR EMPTY BUFFER
*

TSTB TEST NUMBER OF CHARACTERS
BEQ EXITBS BRANCH (EXIT) IF BUFFER EMPTY
*

*OUTPUT BACKSPACE STRING
* TO REMOVE CHARACTER FROM DISPLAY
*

LEAX -1,X DECREMENT BUFFER POINTER

8A Read aline froma terminal (RDLINE) 259

LDA 7X GET CHARACTER

CMPA #SPACE IS IT A CONTROL CHARACTER?

BNE BS1 NO, BRANCH, DELETE ONLY ONE CHARACTER
LDX #BSSTRG YES, DELETE 2 CHARACTERS

* (UP-ARROW AND PRINTABLE EQUIVALENT)
JSR WRSTRG WRITE BACKSPACE STRING

BS1: LDX #BSSTRG

JSR WRSTRG WRITE BACKSPACE STRING
*DECREMENT CHARACTER COUNT BY 1

DECB ONE LESS CHARACTER IN BUFFER
EXITBS:

RTS
*

*DESTRUCTIVE BACKSPACE STRING FOR TERMINAL

*THE COLOR COMPUTER DOES NOT PROVIDE A FLASHING CURSOR WHEN

* RUNNING THIS ROUTINE, SO ONLY A BACKSPACE CHARACTER IS
* NECESSARY

*IF THE CURSOR WERE ENABLED, THE SEQUENCE BACKSPACE, SPACE,

* BACKSPACE WOULD BE NECESSARY TO MOVE THE CURSOR LEFT,

* PRINT A SPACE OVER THE CHARACTER, AND MOVE THE CURSOR LEFT
*

BSSTRG: FCB CSRLFT,STERM

KHKKKKKEKRKEKKKKE KEE REKRKEKKEEEKKKEKER

*ROUTINE:S WRSTRG
*PURPOSE: OUTPUT STRING TO CONSOLE
*ENTRY: X = BASE ADDRESS OF STRING
*EXIT: NONE
*REGISTERS USED: ALL
KHKKKKKKK KERR KKEREREEKEKKEEEKEKE

WRSTRG:

LDA 7Y¥t+ GET CHARACTER FROM STRING

CMPA #STERM CHECK IF AT END

BEQ WREXIT EXIT IF AT END

JSR COUTPTRI WRITE CHARACTER

BRA WRSTRG CHECK NEXT CHARACTER

WREXIT:

RTS

*

* SAMPLE EXECUTION:

k

*EQUATES

PROMPT EQU '9 OPERATOR PROMPT = QUESTION MARK

SC8A:
*

*READ LINE FROM TERMINAL
*

LDA #PROMPT WRITE PROMPT (?)

JSR WRCHAR

LDX #INBUFF GET INPUT BUFFER ADDRESS
LDA #LINBUF GET LENGTH OF BUFFER

JSR RDLINE READ LINE

TSTA CHECK LINE LENGTH

260 Assembly language subroutines for the 6809

BEQ
*

*ECHO LINE TO CONSOLE
*

LDX
WRBUFF:

LDA
JSR
INX

DECB
BNE
JSR
BRA

*DATA SECTION
LINBUF EQU
INBUFF RMB

END

SC8A

#INBUFF

7x
WRCHAR

WRBUFF
WRNEWL
SC8A

16
LINBUF

READ NEXT LINE IF LENGTH IS 0

POINT TO START OF BUFFER

WRITE NEXT CHARACTER

INCREMENT BUFFER POINTER

DECREMENT CHARACTER COUNT

CONTINUE UNTIL ALL CHARACTERS SENT
THEN END WITH CR,LF
READ NEXT LINE

LENGTH OF INPUT BUFFER
INPUT BUFFER

8B Write a line to an output device (WRLINE) 261

8B. Write a line to an output device
(WRLINE)

Writes characters until it empties a buffer with given length and base
address. Assumes the system-dependent subroutine WRCHAR, which
sends the character in register A to an output device.
WRLINE is an example of an output driver. The actual I/O sub-

routines will, of course, be computer-dependent. A specific example in
the listing is for a Radio Shack Color Computer with TRS-80 BASIC in
ROM.

Procedure The program exits immediately if the buffer is empty.
Otherwise, it sends characters to the output device one at a time until it
empties the buffer.

Entry conditions

Base address of buffer in register X
Number of characters in the buffer in register A

Exit conditions

None

Example

Data: Number of characters = 5

Buffer contains ‘ENTER’

Result: ‘ENTER’ sent to the output device

Registers used All

Execution time 16 cycles overhead plus 19 cycles per byte. This does
not, of course, include the execution time of WRCHAR.

Program size 14 bytes

262 Assembly language subroutines for the 6809

Data memory required None

Special case

An empty buffer results in an immediate exit with nothing sent to the
output device.

* Title Write Line

* Name: WRLINE

*

* Purpose: Write characters to output device
*

* Entry: Register X = Base address of buffer

* Register A = Number of characters in buffer
*

* Exit: None
*

* Registers Used: ALl
*

* Time: Indeterminate, depends on the speed of the

* WRCHAR routine.
*

* Size: Program 14 bytes
*

WRLINE:
*

*EXIT IMMEDIATELY IF BUFFER IS EMPTY
*

TSTA TEST NUMBER OF CHARACTERS IN BUFFER

BEQ EXITWL BRANCH CEXIT) IF BUFFER EMPTY
* X = BASE ADDRESS OF BUFFER

*

*LOOP SENDING CHARACTERS TO OUTPUT DEVICE
*

TFR A,B MOVE CHARACTER COUNT TO B

WRLLP:
LDA Xt GET NEXT CHARACTER

JSR WRCHAR SEND CHARACTER
DECB DECREMENT COUNTER

BNE WRLLP CONTINUE UNTIL ALL CHARACTERS SENT

EXITWL:
RTS EXIT

FRI III III IK III III III IIE IKKE EEE KEES AIEEE ERK REEERERKEKK

*

* THE FOLLOWING SUBROUTINES ARE TYPICAL EXAMPLES USING THE
* RADIO SHACK TRS-80 COLOR COMPUTER WITH BASIC IN ROM
*
KKK KKK KEKE REE KK KKK

8B Write a line to an output device (WRLINE) 263

KIKI KKK KKK KKK EKER EEEKKEER KKK RRA I I

*ROUTINE: WRCHAR

*PURPOSE: WRITE CHARACTER TO OUTPUT DEVICE
*ENTRY: REGISTER A = CHARACTER
*EXIT: NONE
*REGISTERS USED: ALL
FI KI I ITI IT IIT IIIT IIR IKE RRR ERR II I

* COLOR COMPUTER EQUATES

CLRSCN EQU $A928 STARTING ADDRESS FOR ROUTINE
* THAT CLEARS SCREEN

OUTPTR EQU $A002 POINTER TO OUTPUT ROUTINE
* UNIT NUMBER GOES IN LOCATION
* SOO6F (0 = SCREEN)
* CHARACTER GOES IN REGISTER A

WRCHAR:
*

* SEND CHARACTER TO OUTPUT DEVICE FROM REGISTER A
* LOCATION SOO6F SHOULD CONTAIN A UNIT NUMBER
* (DEFAULT IS SCREEN = QO)
*

JSR COUTPTRI SEND CHARACTER
RTS

*

* SAMPLE EXECUTION:
*

*CHARACTER EQUATES

CR EQU $0D CARRIAGE RETURN FOR CONSOLE

LF EQU SOA LINE FEED FOR CONSOLE

PROMPT EQU '9 OPERATOR PROMPT = QUESTION MARK

SC8B:
*

*CALL BASIC SUBROUTINE THAT CLEARS SCREEN
*

JSR CLRSCN CLEAR SCREEN
*

*READ LINE FROM CONSOLE
*

LDA #PROMPT OUTPUT PROMPT (?)
JSR WRCHAR

LDX #INBUFF POINT TO INPUT BUFFER

JSR RDLINE READ LINE FROM CONSOLE

PSHS A SAVE LINE LENGTH IN STACK
LDA #2 OUTPUT LINE FEED, CARRIAGE RETURN
LDX #CRLF

JSR WRCHAR
*®

*WRITE LINE TO CONSOLE
*

PULS A RESTORE LINE LENGTH FROM STACK
LDX #INBUFF GET BASE ADDRESS OF BUFFER
JSR WRLINE WRITE LINE

LDX #CRLF OUTPUT CARRIAGE RETURN, LINE FEED

264 Assembly language subroutines for the 6809

LDA #2
JSR WRLINE
BRA SC8B

*DATA SECTION
CRLF FCB CR,LF

LINBUF EQU $10
INBUFF: RMB LINBUF

END

LENGTH OF CRLF STRING
WRITE CRLF STRING

REPEAT CLEAR, READ, WRITE SEQUENCE

CARRIAGE RETURN, LINE FEED

LENGTH OF INPUT BUFFER
DATA BUFFER

8C Parity checking and generation (CKPRTY, GEPRTY) 265

8C_ Parity checking and generation
(CKPRTY, GEPRTY)

Generates and checks parity. GEPRTY generates even parity for a 7-bit
character and places it in bit 7. An even parity bit makes the total
number of 1 bits in the byte even. CKPRTY sets the Carry flag to 0 if a
data byte has even parity and to 1 otherwise. A byte’s parity is even if it
has an even number of 1 bits and odd otherwise.

Procedures

1. GEPRTY generates even parity by counting the number of 1s in the
seven least significant bits of register A. The least significant bit of the
count is an even parity bit. The program shifts that bit to the Carry and
then to bit 7 of the data.

2. CKPRTY counts the number of 1 bits in the data by repeatedly
shifting it left logically and testing the Carry. The program quits when
the shifted data becomes zero. The least significant bit of the count is an
even parity bit; the program concludes by shifting that bit to the Carry.

Entry conditions

1. GEPRTY
Data in register A

2. CKPRTY
Data in register A

Exit conditions

1. GEPRTY
Data with even parity in bit 7 in register A

2. CKPRTY
Carry = 0 if the data has even parity, 1 if it had odd parity

Examples

1. GEPRTY
(a) Data: (A) = 4215 = 01000010) (ASCII B)

266 Assembly language subroutines for the 6809

Result: (A) = 4216 = 010000102 (ASCII B with bit 7 cleared)
Even parity is 0, since 01000010, has an even number (2) of
1 bits

(b) Data: (A) = 4316 = 010000112 (ASCII C)
Result: (A) = C346 = 110000112 (ASCII C with bit 7 set)

Even parity is 1, since 010000112 has an odd number (3) of
1 bits

2. CKPRTY
(a) Data: (A) = 4216 = 01000010, (ASCII B)

Result: Carry = 0, since 01000010, has an even number (2) of 1 bits
(b) Data: (A) = 4316 = 010000112 (ASCII C)

Result: Carry = 1, since 01000011, has an odd number (3) of 1 bits

Registers used

1. GEPRTY: A, B,CC

2. CKPRTY: A,B, CC

Execution time

1. GEPRTY: 95 cycles maximum

2. CKPRTY: 91 cycles maximum

The execution times of both routines depend on how many 1 bits the data
contains and how rapidly the logical shifting makes it zero. Both execute
faster if many of the less significant bits are zeros.

Program size

1. GEPRTY: 15 bytes

2. CKPRTY: 10 bytes

Data memory required 1 stack byte for GEPRTY

* Title Generate and Check Parity

* Name: GEPRTY, CKPRTY
*

* Purpose: GEPRTY generates even parity in bit 7
* for a 7-bit character.

i ee ee ee.

*

*

*

GEPRTY:

CNTBIT:

SHIFT:

*
*
*

CKPRTY:

BITCNT:

8C Parity checking and generation (CKPRTY, GEPRTY) 267

CKPRTY checks the parity of a byte

Entry: GEPRTY - data in register A

CKPRTY - data in register A

Exit: GEPRTY - data with even parity in bit 7
In register A

CKPRTY - Carry = O if parity is even,

Carry = 1 1f parity is odd

Registers Used: GEPRTY - A, B, CC

CKPRTY - A, B, CC

Time: GEPRTY - 95 cycles maximum

CKPRTY - 91 cycles maximum

Size: Program 25 bytes

Data 1 stack byte

GENERATE EVEN PARITY

CLRB NUMBER OF 1 BITS = ZERO
ASLA DROP DATA BIT 7

PSHS A SAVE SHIFTED DATA IN STACK
*

*COUNT 1 BITS UNTIL DATA BECOMES ZERO
*

BPL SHIFT BRANCH IF NEXT BIT (BIT 7) IS 0
INCB ELSE INCREMENT NUMBER OF 1 BITS

ASLA SHIFT DATA LEFT

BNE CNTBIT BRANCH IF THERE ARE MORE 1 BITS LEFT
*

*MOVE EVEN PARITY TO BIT 7 OF DATA
*

LSRB MOVE EVEN PARITY TO CARRY

*NOTE EVEN PARITY IS BIT O OF COUNT
PULS A RESTORE SHIFTED DATA FROM STACK

RORA ROTATE TO FORM BYTE WITH EVEN PARITY IN BIT 7
RTS

CHECK PARITY

CLRB NUMBER OF 1 BITS = ZERO
TSTA TEST DATA BYTE
*

*COUNT 1 BITS UNTIL DATA BECOMES ZERO
*

268

SHIFT:

*

Sc8C:

GPARTS:

CPARTS:

CPEXIT:

*

*DATA SECTION
*

BUFR1

Assembly language subroutines for the 6809

BPL

INCB

ASLA
BNE
*

*MOVE PARITY TO
*

LSRB

RTS

CSHIFT

BITCNT

BRANCH IF NEXT BIT (BIT 7) IS 0

ELSE INCREMENT NUMBER OF 1 BITS

SHIFT DATA LEFT
BRANCH IF THERE ARE MORE 1 BITS LEFT

CARRY

MOVE PARITY TO CARRY

*NOTE PARITY IS BIT O OF COUNT

SAMPLE EXECUTION:

*

*GENERATE PARITY FOR VALUES FROM 0..127 AND STORE THEM

* IN BUFFER 1
*

LOX
CLRA

PSHS
JSR
PULS
STA
TFR

INCA

CMPA
BNE
*

#BUFR1 GET BASE ADDRESS OF BUFFER

START DATA AT ZERO

SAVE DATA IN STACK

GENERATE EVEN PARITY

SAVE VALUE WITH EVEN PARITY
RETURN DATA VALUE TO A

ADD 1 TO DATA VALUE

HAVE WE REACHED HIGHEST VALUE?

BRANCH IF NOT DONE

*CHECK PARITY FOR ALL BYTES IN BUFFER 1
= 1 IF ROUTINE FINDS A PARITY ERROR AND REGISTER

* X POINTS TO THE BYTE WITH THE ERROR

= 0 IF ROUTINE FINDS NO PARITY ERRORS

* CARRY

* CARRY
*

LDX
LDA

PSHS

DEC
BEQ
LDA
JSR
BCC
LEAX

LEAS
BRA

RMB

END

#BUFR1

#129
A

79
CPEXIT
7Xt+
CKPRTY

CPARTS
-1,X

1,S
S$c8c

128

GET BASE ADDRESS OF BUFFER

CHECK 128 BYTES
SAVE COUNT ON STACK

DECREMENT COUNT

EXIT IF ALL BYTES CHECKED

GET NEXT DATA BYTE

CHECK PARITY

IF NO ERROR, CONTINUE THROUGH VALUES

PARITY ERROR - MAKE X POINT TO IT

REMOVE COUNT BYTE FROM STACK

BRANCH FOR ANOTHER TEST

BUFFER FOR DATA VALUES WITH EVEN PARITY

8D CRC16 checking and generation (ICRC16,CRC16,GCRC16) 269

8D CRC16 checking and generation
(ICRC16,CRC16,GCRC16)

Generates a 16-bit cyclic redundancy check (CRC) based on the IBM
Binary Synchronous Communications protocol (BSC or Bisync). Uses
the polynomial X'° + X*° + X? + 1. Entry point ICRC16 initializes the
CRC to 0 and the polynomial to its bit pattern. Entry point CRC16
combines the previous CRC with the one generated from the current
data byte. Entry point GCRC16 returns the CRC.

Procedure Subroutine ICRC16 initializes the CRC to 0 and the poly-
nomial to a 1 in each bit position corresponding to a power of X present
in the formula. Subroutine CRC16 updates the CRC for a data byte. It
shifts both the data and the CRC left eight times; after each shift, it
exclusive-ORs the CRC with the polynomial if the exclusive-OR of the
data bit and the CRC’s most significant bit is 1. Subroutine CRC16
leaves the CRC in memory locations CRC (more significant byte) and
CRC + 1 (less significant byte). Subroutine GCRC16 loads the CRC
into register D. : eee

Entry conditions

1. For ICRC16: none

2. For CRC16: data byte in register A, previous CRC in memory
locations CRC (more significant byte) and CRC + 1 (less significant
byte), CRC polynomial in memory locations PLY (more significant
byte) and PLY + 1 (less significant byte).

3. For GCRC16: CRC in memory locations CRC (more significant
byte) and CRC + 1 (less significant byte).

Exit conditions

1. ForICRC16
0 (initial CRC value) in memory locations CRC (more significant byte)
and CRC +1 (less significant byte)
CRC polynomial in memory locations PLY (more significant byte) and
PLY +1 (less significant byte)

2. For CRC16: CRC with current data byte included in memory loca-

270 Assembly language subroutines for the 6809

tions CRC (more significant byte) and CRC + 1 (less significant byte)

3. For GCRC16: CRC in register D

Examples

1. Generating a CRC
Call ICRC16 to initialize the polynomial and start the CRC at 0
Call CRC16 repeatedly to update the CRC for each data byte
Call GCRC16 to obtain the final CRC

2. Checking a CRC
Call ICRC16 to initialize the polynomial and start the CRC at 0
Call CRC16 repeatedly to update the CRC for each data byte (including
the stored CRC) for checking
Call GCRC16 to obtain the final CRC; it will be 0 if there were no errors

Note that only ICRC16 depends on the particular CRC polynomial
used. To change the polynomial, simply change the data ICRC16 loads
into memory locations PLY (more significant byte) and PLY + 1 (less
significant byte).

Reference

J. E. McNamara, Technical Aspects of Data Communications, 3rd ed..,
Digital Press, Digital Equipment Corp., 12-A Esquire Road,
Billerica, MA, 1989. This book contains explanations of CRC and

communications protocols.

Registers used

1. ByICRC16: CC, X

2. By CRC16: none

3. By GCRC16: CC, D

Execution time

1. ForICRC16: 23 cycles

2. For CRC16: 490 cycles overhead plus an average of 34 cycles per

+ +

+ + + + & FF FF HF HF HF HF HF HF HF SF HSH HE SF HH SH He He HF HF HF HF HF

8D CRC16 checking and generation (ICRC16,CRC16,GCRC16) 271

data byte, assuming that the previous CRC and the polynomial must be
EXCLUSIVE-ORed in half of the iterations

3. For GCRC16: 11 cycles

Program size

1. For ICRC16: 13 bytes

2. For CRC16: 42 bytes

3. For GCRC16: 4 bytes

Data memory required 4 bytes anywhere in RAM for the CRC (2
bytes starting at address CRC) and the polynomial (2 bytes Starting at
address PLY). CRC16 also requires 7 stack bytes to save and restore the
user registers.

eee

Title Generate CRC-16
Name: ICRC16, CRC16, GCRC16

Purpose: Generate a 16 bit CRC based on IBM's Binary
Synchronous Communications protocol. The CRC is
based on the following polynomial:

(“ indicates "to the power")
X"16 + X°15 + X72 + 1

To generate a CRC:

1) Call ICRC16 to initialize the CRC

polynomial and clear the CRC.

2) Call CRC16 for each data byte.

3) Call GCRC16 to obtain the CRC.

It should then be appended to the data,
high byte first.

To check a CRC:

1) Call ICRC16 to initialize the CRC.

2) Call CRC16 for each data byte and

the 2 bytes of CRC previously generated.

3) Call GCRC16 to obtain the CRC. It will

be zero if no errors occurred.

Entry: ICRC16 - None

CRC16 - Register A = Data byte
GCRC16 - None

Exit: ICRC16 - CRC, PLY initialized

CRC16 - CRC updated

GCRC16 - Register D = CRC

272

+t + + +e + He SE SH HF HF HF HF HF HH FS

CRC16:

CRCLP:

CRCLP1:

Assembly language subroutines for the 6809

Registers Used: ICRC16 - CC,X

CRC16 - None

GCRC16 - CC,D

Time: ICRC16 - 23 cycles

CRC16 - 490 cycles overhead plus an average of
34 cycles per data byte. The loop timing

assumes that half the iterations require
EXCLUSIVE-ORing the CRC and the polynomial.

GCRC16 - 11 cycles

Size: Program 59 bytes

Data 4 bytes plus 7 stack bytes for CRC16

*

*SAVE ALL REGISTERS
*

PSHS CC,D,X,Y SAVE ALL REGISTERS
*

*LOOP THROUGH EACH DATA BIT, GENERATING THE CRC
*

LDB #8 8 BITS PER BYTE
LDX #PLY POINT TO POLYNOMIAL
LDY #CRC POINT TO CRC VALUE

PSHS D SAVE DATA, BIT COUNT
ANDA #%10000000 GET BIT 7 OF DATA

EORA 7X EXCLUSIVE-OR BIT 7 WITH BIT 15 OF CRC

STA ry
ASL 1,Y SHIFT 16-BIT CRC LEFT

ROL rv
BCC CRCLP1 BRANCH IF BIT 7 OF EXCLUSIVE-OR IS 0
*

*BIT 7 IS 1, SO EXCLUSIVE-OR CRC WITH POLYNOMIAL
*

LDD 7X GET POLYNOMIAL

EORA rv EXCLUSIVE-OR WITH HIGH BYTE OF CRC

EORB 1,Y EXCLUSIVE-OR WITH LOW BYTE OF CRC

STD 7Y SAVE NEW CRC VALUE
*

*SHIFT DATA LEFT AND COUNT BITS
*

PULS D GET DATA, BIT COUNT
ASLA SHIFT DATA LEFT
DECB DECREMENT BIT COUNT
BNE CRCLP JUMP IF NOT THROUGH 8 BITS
*

*RESTORE REGISTERS AND EXIT
*

PULS CC,D,X,Y RESTORE ALL REGISTERS

RTS

8D CRC16 checking and generation (ICRC16,CRC16,GCRC16) 273

RHEE KKK KEKE EKEEKKKKK ARAKI
*ROUTINE: ICRC16

*PURPOSE: INITIALIZE CRC AND PLY
*ENTRY: NONE
*EXIT: CRC AND POLYNOMIAL INITIALIZED
*REGISTERS USED: X
KKK KIRKE REE EEE KKK RK IK

ICRC16:

LDX #0 CRC = 0
STX CRC
LDX #$8005 PLY = 8005H
STX PLY

*8005 HEX REPRESENTS X~16+X~154+X~24+1
* THERE IS A 11S IN EACH BIT
* POSITION FOR WHICH A POWER APPEARS
* IN THE FORMULA (BITS 0, 2, AND 15)

RTS

HHH EKER KKK KEKE ERE KIER RR EKK EKER KKK
*ROUTINE: GCRC16
*PURPOSE: GET CRC VALUE
*ENTRY: NONE

*EXIT: REGISTER D = CRC VALUE
*REGISTERS USED: D
HHH KEKE KKK KEKEEKREKREREEKEAEEERRAK KR EK

GCRC16:

LDD CRC D = CRC

RTS

*DATA

CRC: RMB 2 CRC VALUE

PLY: RMB 2 POLYNOMIAL VALUE

*

* SAMPLE EXECUTION:
*

*

*GENERATE CRC FOR THE NUMBER 1 AND CHECK IT
*

SC8D:

JSR ICRC16 INITIALIZE CRC, POLYNOMIAL

LDA #1 GENERATE CRC FOR 1

JSR CRC16

JSR GCRC16

JSR ICRC16 INITIALIZE AGAIN

LDA #1

JSR CRC16 CHECK CRC BY GENERATING IT FOR DATA
TFR Y,D AND STORED CRC ALSO

JSR CRC16 HIGH BYTE OF CRC FIRST

TFR B,A THEN LOW BYTE OF CRC

JSR CRC16

JSR GCRC16 CRC SHOULD BE ZERO IN D

274

GENLP:

CHKLP:

Assembly language subroutines for the 6809

* .

*GENERATE CRC FOR THE SEQUENCE 0,1,2,...,255 AND CHECK IT
*

JSR ICRC16 INITIALIZE CRC, POLYNOMIAL
CLRB START DATA BYTES AT 0

JSR CRC16 UPDATE CRC
INCB ADD 1 TO PRODUCE NEXT DATA BYTE
BNE GENLP BRANCH IF NOT DONE

JSR GCRC16 GET RESULTING CRC
TFR D,Y SAVE CRC IN Y
*

*CHECK CRC BY GENERATING IT AGAIN
*

JSR ICRC16 INITIALIZE CRC, POLYNOMIAL

CLRB START DATA BYTES AT 0

JSR CRC16 UPDATE CRC

INCB ADD 1 TO PRODUCE NEXT DATA BYTE

BNE CHKLP BRANCH IF NOT DONE
*

*INCLUDE STORED CRC IN CHECK
*

TFR Y,D GET OLD CRC VALUE
JSR CRC16 INCLUDE HIGH BYTE OF CRC
TFR B,A INCLUDE LOW BYTE OF CRC

JSR CRC16

JSR GCRC16 GET RESULTING CRC
*IT SHOULD BE 0

BRA $C8D REPEAT TEST

END

8E 1//O device table handler (IOHDLR) 275

8E_ I/O device table handler
(IOHDLR)

Performs input and output in a device-independent manner using I/O
control blocks and an I/O device table. The I/O device table is a linked
list; each entry contains a link to the next entry, the device number, and
Starting addresses for routines that initialize the device, determine its
input status, read data from it, determine its output status, and write

data to it. An I/O control block is an array containing device number,
operation number, device status, and the base address and length of the
device’s buffer. The user must provide IOHDLR with the base address
of an I/O control block and the data if only one byte is to be written.
IOHDLR returns the status byte and the data (if only one byte is read).

This subroutine is an example of handling input and output in a
device-independent manner. The I/O device table must be constructed
using subroutines INITDL, which initializes the device list to empty,
and INSDL, which inserts a device into the list.

An applications program will perform input or output by obtaining or
constructing an I/O control block and then calling IOHDLR. IOHDLR
uses the I/O device table to determine how to transfer control to the I/O
driver.

Procedure The program first initializes the status byte to 0, indicating
no errors. It then searches the device table, trying to match the device
number in the I/O control block. If it does not find a match, it exits with

an error number in the status byte. If it finds a match, it checks for a
valid operation and transfers control to the appropriate routine from the
device table entry. That routine must then transfer control back to the
original caller. If the operation is invalid (the operation number is too
large or the starting address for the routine is 0), the program returns
with an error number in the status byte.

Subroutine INITDL initializes the device list, setting the initial link to
0.

Subroutine INSDL inserts an entry into the device list, making its
address the head of the list and setting its link field to the previous head
of the list.

Entry conditions

1. ForIOHDLR
Base address of input/output control block in register X

276 Assembly language subroutines for the 6809

Data byte (if the operation is to write 1 byte) in register A

2. For INITL: none

3. For INSDL: base address of a device table entry in register X

Exit conditions

1. ForIOHDLR
I/O control block status byte in register A if an error is found; other-
wise, the routine exits to the appropriate I/O driver
Data byte in register A if the operation is to read 1 byte

2. For INITL: device list header (addresses DVLST and DVLST+1)
cleared to indicate empty list

3. For INSDL: device table entry added to list

Example

The example in the listing uses the following structure:

Input/output operations

Operation Operation
number

0 Initialize device
1 Determine input status
2 Read 1 byte from input device
3 Read N bytes (usually 1 line) from input device
4 Determine output status
5 Write 1 byte to output device
6 Write N bytes (usually 1 line) to output device

Input/output control block

Index Contents

0 Device number
1 Operation number
2 Status
3 More significant byte of base address of buffer
4 Less significant byte of base address of buffer

8E //O device table handler (IOHDLR) 277

5 More significant byte of buffer length
6 Less significant byte of buffer length

Device table entry

Index Contents

0 More significant byte of link field (base address of next
element)

1 Less significant byte of link field (base address of next
element)

2 Device number
3 More significant byte of starting address of device initializ-

ation routine

4 Less significant byte of starting address of device initializ-
ation routine

5 More significant byte of starting address of input status
determination routine

6 Less significant byte of starting address of input status deter-
mination routine

7 More significant byte of starting address of input driver (read
1 byte only)

8 Less significant byte of starting address of input driver (read
1 byte only)

9 More significant byte of starting address of input driver (read
N bytes or 1 line)

10 Less significant byte of starting address of input driver (read
N bytes or 1 line)

11 More significant byte of starting address of output status
determination routine

12 Less significant byte of starting address of output status
determination routine

13 More significant byte of starting address of output driver
(write 1 byte only)

14 Less significant byte of starting address of output driver
(write 1 byte only)

15 More significant byte of starting address of output driver
(write N bytes or 1 line)

16 Less significant byte of starting address of output driver
(write N bytes or 1 line)

278 Assembly language subroutines for the 6809

If an operation is irrelevant or undefined (such as output status
determination for a keyboard or input driver for a printer), the corres-
ponding starting address in the device table is 0.

Status values

Value Description

0 No errors
1 Bad device number (no such device)
2 Bad operation number (no such operation or invalid

operation)
3 Input data available or output device ready

Registers used

1. ByIOHDLR: All

2. By INITDL: CC, X

3. By INSDL: CC, U, X

Execution time

1. For IOHDLR: 75 cycles overhead plus 23 cycles for each unsuc-
cessful match of a device number

2. For INITDL: 14 cycles

3. For INSDL: 22 cycles

Program size

1. ForIOHDLR: 62 bytes

2. For INITL: 7 bytes

3. ForINSDL: 9 bytes

Datamemory required 5 bytes anywhere in RAM for the base address
of the I/O control block (2 bytes starting at address IOCBA), the device
list header (2 bytes starting at address DVLST), and temporary storage
for data to be written without a buffer (1 byte at address BDATA).

+ +

+ +t + FF FF FF HF HF HF FHF H HF SF HF FHF HF HF HF HF HE HF H F HF HK KH HK

8E //O device table handler (IOHDLR) 279

Title

Name:

Purpose:

1/0 Device Table Handler

IOHDLR

Perform I/0 in a device independent manner.

This can be done by accessing all devices

in the same way using an I/0 Control Block

(I0CB) and a device table. The routines here
allow the following operations:

Operation number Description

0 Initialize Device

Determine input status

Read 1 byte

Read N bytes

Determine output status

Write 1 byte

Write N bytes Ou EWN

Adding operations such as Open, Close, Delete,

Rename, and Append would allow for more complex
devices such as floppy or hard disks.

A I0CB is an array consisting of elements

with the following form:

I0CB + O = Device Number

I0CB + 1 = Operation Number
IO0CB + 2 = Status

I0CB + 3 = High byte of buffer address

I0CB + 4 = Low byte of buffer address

I0CB + 5 = High byte of buffer Length
IOCB + 6 = Low byte of buffer length

The device table is implemented as a linked

List. Two routines maintain the list: INITDL,

which initializes it to empty, and INSDL,

which inserts a device into it.

A device table entry has the following form:

DVTBL + O = High byte of Link field

DVTBL + 1 = Low byte of Link field
DVTBL + 2 = Device Number

DVTBL + 3 = High byte of device initialization

DVTBL + 4 = Low byte of device initialization

DVTBL + 5 = High byte of input status routine

DVTBL + 6 = Low byte of input status routine

DVTBL + 7 = High byte of input 1 byte routine

DVTBL + 8 = Low byte of input 1 byte routine

DVTBL + 9 = High byte of input N bytes routine

DVTBL + 10= Low byte of input N bytes routine

DVTBL + 11= High byte of output status routine

DVTBL + 12= Low byte of output status routine

DVTBL + 13= High byte of output 1 byte routine

DVTBL + 14= Low byte of output 1 byte routine

DVTBL + 15= High byte of output WN bytes routine

280

+e +e ee He He HF HH HF HF HF HE HF HH HF HE HF HF HF HF HF HF FF HF HF F H HF F

Assembly language subroutines for the 6809

Entry:

Exit:

Registers Used:

Time:

Size:

DVTBL + 16= Low byte of output N bytes routine

Register X = Base address of I0CB

Register A = For write 1 byte, contains the

data (no buffer is used).

Register A = Copy of the IOCB status byte

Except contains the data for

read 1 byte (no buffer is used).

Status byte of IO0CB is 0 if the operation was
completed successfully; otherwise, it contains

the error number.

Status value Description

0 No errors

1 Bad device number

2 Bad operation number

3 Input data available or output

device ready

ALL

75 cycles overhead plus 23 cycles for each
device in the List which is not the one

requested

Program 78 bytes

Data 5 bytes

*IOCB AND DEVICE TABLE EQUATES

IOCBDN EQU
IOCBOP EQU
IOCBST EQU
IOCBBA EQU

IOCBBL EQU
DTLNK EQU
DTDN EQU
DTSR EQU
*OPERATION NUMBE
NUMOP EQU
INIT EQU
ISTAT EQU
RIBYTE EQU
RNBYTE EQU
OSTAT EQU
WIBYTE EQU
WNBYTE EQU

*STATUS VALUES
NOERR EQU
DEVERR EQU

OPERR EQU
DEVRDY EQU

IOHDLR:
*

RaVU’PWN RBA ON DWWNOUNWN = O&O

WN — ©

IOCB DEVICE NUMBER
IO0CB OPERATION NUMBER
I0CB STATUS

I0CB BUFFER BASE ADDRESS
I0CB BUFFER LENGTH
DEVICE TABLE LINK FIELD
DEVICE TABLE DEVICE NUMBER
BEGINNING OF DEVICE TABLE SUBROUTINES

NUMBER OF OPERATIONS
INITIALIZATION

INPUT STATUS
READ 1 BYTE
READ N BYTES
OUTPUT STATUS
WRITE 1 BYTE
WRITE N BYTES

NO ERRORS
BAD DEVICE NUMBER

BAD OPERATION NUMBER
INPUT DATA AVAILABLE OR OUTPUT DEVICE READY

*SAVE IOCB ADDRESS AND DATA (CIF ANY)

SRCHLP:

FOUND:

8E 1/O device table handler (IOHDLR) 281

*

STX IOCBA SAVE IOCB ADDRESS
STA BDATA SAVE DATA BYTE FOR WRITE 1 BYTE
*

*INITIALIZE STATUS BYTE TO INDICATE NO ERRORS
*

LDA #NOERR STATUS = NO ERRORS

STA IOCBST,X SAVE STATUS IN IOCB
*

*CHECK FOR VALID OPERATION NUMBER CWITHIN LIMIT)
*

LDB IOCBOP,X GET OPERATION NUMBER FROM IOCB
CMPB #NUMOP IS OPERATION NUMBER WITHIN LIMIT?
BCC BADOP JUMP IF OPERATION NUMBER TOO LARGE
*

*SEARCH DEVICE LIST FOR THIS DEVICE
*

LDA IOCBDN,X GET IOCB DEVICE NUMBER

LOX DVLST GET FIRST ENTRY IN DEVICE LIST
*

*X = POINTER TO DEVICE LIST

*B = OPERATION NUMBER

*A = REQUESTED DEVICE NUMBER
*

*CHECK IF AT END OF DEVICE LIST (LINK FIELD = 0000)

CMPX #0 TEST LINK FIELD
BEQ BADDN BRANCH IF NO MORE DEVICE ENTRIES
*

*CHECK IF CURRENT ENTRY IS DEVICE IN IOCB
*

CMPA DTDN,X COMPARE DEVICE NUMBER, REQUESTED DEVICE
BEQ FOUND BRANCH IF DEVICE FOUND
*

*DEVICE NOT FOUND, SO ADVANCE TO NEXT DEVICE

* TABLE ENTRY THROUGH LINK FIELD
* MAKE CURRENT DEVICE = LINK
*

LDX 7X CURRENT ENTRY = LINK
BRA SRCHLP CHECK NEXT ENTRY IN DEVICE TABLE
*

*FOUND DEVICE, SO VECTOR TO APPROPRIATE ROUTINE IF ANY

*B = OPERATION NUMBER IN IOCB
*

*GET ROUTINE ADDRESS (ZERO INDICATES INVALID OPERATION)
ASLB MULTIPLY OPERATION NUMBER TIMES 2 TO

* INDEX INTO TABLE OF 16~-BIT ADDRESSES

ADDB #DTSR ADD OFFSET TO START OF SUBROUTINE
* ADDRESSES

LDX B,X GET SUBROUTINE ADDRESS

BEQ BADOP JUMP IF OPERATION INVALID CADDRESS = QO)
PSHS X SAVE SUBROUTINE ADDRESS ON STACK

LDA BDATA A = DATA BYTE FOR WRITE 1 BYTE

LDX IOCBA GET BASE ADDRESS OF IOCB
RTS GOTO SUBROUTINE

282 Assembly language subroutines for the 6809

BADDN:

LDA #DEVERR ERROR CODE -- NO SUCH DEVICE
BRA EREXIT

BADOP:

LDA #OPERR ERROR CODE -- NO SUCH OPERATION

EREXIT:

LDX IOCBA POINT TO IOCB

STA IOCBST,X SET STATUS BYTE IN IOCB

RTS

RHR KKK KKREEREEKREREEEKIEKIEARIIEEEE KKK

*ROUTINE: INITDL
*PURPOSE: INITIALIZE DEVICE LIST TO EMPTY

*ENTRY: NONE
*EXIT: DEVICE LIST SET TO NO ITEMS
*REGISTERS USED: X
FoI KI I IIIT II III IIA IIIS I III III IIIA EEA ERK EE

INITDL:

*INITIALIZE DEVICE LIST HEADER TO O TO INDICATE NO DEVICES
LDX #0 HEADER = O (EMPTY LIST)
STX DVLST
RTS

HH KKK KEK IIE ERE RIKKI KERIKERI KERR

*ROUTINE: INSDL
*PURPOSE: INSERT DEVICE INTO DEVICE LIST
*ENTRY: REGISTER X = ADDRESS OF DEVICE TABLE ENTRY
*EXIT: DEVICE INSERTED INTO DEVICE LIST
*REGISTERS USED: U,X
FI I IKI KIKI III III KIS II ISIS IIIS IAEA AKER EKER

INSDL:

LDU DVLST GET CURRENT HEAD OF DEVICE LIST

STU 7X STORE CURRENT HEAD OF DEVICE LIST
STX DVLST MAKE DVLST POINT TO NEW DEVICE
RTS

*

*DATA SECTION

IOCBA: RMB 2 BASE ADDRESS OF IOCB

DVLST: RMB 2 DEVICE LIST HEADER

BDATA: RMB 1 DATA BYTE FOR WRITE 1 BYTE

*

* SAMPLE EXECUTION:
*

*CHARACTER EQUATES

CR EQU $0D CARRIAGE RETURN CHARACTER
LF EQU $OA LINE FEED CHARACTER

SC8E:

TSTLP:

8E 1//O device table handler (IOHDLR) 283

*INITIALIZE DEVICE LIST

JSR INITDL CREATE EMPTY DEVICE LIST

*SET UP CONSOLE AS DEVICE 1 AND INITIALIZE IT

LDX #CONDV POINT TO CONSOLE DEVICE ENTRY
JSR INSDL ADD CONSOLE TO DEVICE LIST
LDA #INIT INITIALIZE OPERATION
STA IOCBOP,X

LDA #1 DEVICE NUMBER = 1
STA IOCBDN,X

LDX #10CB INITIALIZE CONSOLE
JSR IOHDLR

*SET UP PRINTER AS DEVICE 2 AND INITIALIZE IT

LDX #PRTDV POINT TO PRINTER DEVICE ENTRY
JSR INSDL ADD PRINTER TO DEVICE LIST
LDA #INIT INITIALIZE OPERATION
STA IOCBOP,X

LDA #2 DEVICE NUMBER = 2
STA IOCBDN,X

LOX #I0CB INITIALIZE PRINTER
JSR IOHDLR

*

*LOOP READING LINES FROM CONSOLE, AND ECHOING THEM TO
* THE CONSOLE AND PRINTER UNTIL A BLANK LINE IS ENTERED
*

LDX #I0CB POINT TO IOCB
LDY #BUFFER POINT TO BUFFER

STY IOCBBA,X SAVE BUFFER ADDRESS IN I0CB
LDA #1 DEVICE NUMBER = 1 (CONSOLE)
STA IOCBDN,X

LDA #RNBYTE OPERATION IS READ N BYTES
STA I0CBOP,X
LDY #LENBUF

STY IOCBBL,X SET BUFFER LENGTH TO LENBUF
JSR IOHDLR READ LINE FROM CONSOLE
*

*STOP IF LINE LENGTH IS 0
*

LDX #10CB POINT TO IOCB
LDY IOCBBL,X GET LINE LENGTH

BEQ SC8END BRANCH CEXIT) IF LINE LENGTH IS 0
*

*SEND CARRIAGE RETURN TO CONSOLE
*

LDA #W1IBYTE OPERATION IS WRITE 1 BYTE
STA IOCBOP,X SAVE IN IOCB

LDA #CR CHARACTER IS CARRIAGE RETURN
JSR IOHDLR WRITE 1 BYTE (CLINE FEED)

*

*ECHO LINE TO CONSOLE
*

LDX #10CB POINT TO IOCB

284

SC8END:

*

*

*

LENBUF

BUFFER

Assembly language subroutines for the 6809

LDA

STA
LDA
STA
JSR
*

*ECHO LINE TO PRINTER
*

LDX
LDA
STA
LDA

STA
JSR
*

#WNBYTE
IOCBOP,X

#1
IOCBDN,X

IOHDLR

#I10CB

#WNBYTE

IOCBOP,X

#1
IOCBDN,X
IOHDLR

OPERATION = WRITE N BYTES

SAVE OPERATION NUMBER IN I0OCB
DEVICE NUMBER = CONSOLE
SAVE DEVICE NUMBER IN IOCB
WRITE N BYTES ON CONSOLE

POINT TO IO0CB
OPERATION = WRITE N BYTES

SAVE OPERATION NUMBER IN IOCB
DEVICE NUMBER = PRINTER

SAVE DEVICE NUMBER IN IOCB
WRITE N BYTES ON PRINTER

*SEND LINE FEED TO PRINTER
*

LDX
LDA
STA
LDA
JSR

BRA

BRA

#10CB
#WIBYTE
IOCBOP,X

#LF

IOHDLR

TSTLP

SC8E

DATA SECTION

EQU

RMB

127
LENBUF

*I0CB FOR PERFORMING I0
IOCB:

*DEVICE

CONDV:

PRTDV:

RMB
RMB
RMB
FDB

RMB

1
1
1
BUFFER
2

TABLE ENTRIES

FDB

FCB

FDB

FDB

FDB

FDB

FDB

FDB

FDB

FDB
FCB
FDB

FDB

FDB

POINT TO IOCB

OPERATION = WRITE 1 BYTE

SAVE OPERATION NUMBER IN IOCB

CHARACTER IS LINE FEED

SEND LINE FEED TO PRINTER

LOOP TO READ NEXT LINE

REPEAT TEST

I/0 BUFFER LENGTH

I/0 BUFFER

DEVICE NUMBER

OPERATION NUMBER

STATUS

BUFFER ADDRESS

BUFFER LENGTH

LINK FIELD
DEVICE 1
CONSOLE INITIALIZE

NO CONSOLE INPUT STATUS
NO CONSOLE INPUT 1 BYTE
CONSOLE INPUT N BYTES

NO CONSOLE OUTPUT STATUS
CONSOLE OUTPUT 1 BYTE

CONSOLE OUTPUT N BYTES

LINK FIELD

DEVICE 2

PRINTER INITIALIZE

NO PRINTER INPUT STATUS

NO PRINTER INPUT 1 BYTE

*
*
*

BDRATE
*

B2400
CLRSCN
*

KBDPTR
*
*
*

OUTPTR
*
*
*

PRDVNO
UNITNO
*
*

8E 1//O device table handler (IOHDLR) 285

FDB 0 NO PRINTER INPUT N BYTES
FDB 0 NO PRINTER OUTPUT STATUS
FDB OUT PRINTER OUTPUT 1 BYTE

FDB POUTN PRINTER OUTPUT N BYTES

RADIO SHACK TRS-80 COLOR COMPUTER EQUATES

EQU $0096 MEMORY LOCATION CONTAINING OUTPUT
BAUD RATE

EQU 18 VALUE CORRESPONDING TO 2400 BAUD
EQU $A928 STARTING ADDRESS FOR ROUTINE

THAT CLEARS SCREEN
EQU $A000 POINTER TO KEYBOARD INPUT ROUTINE

(CHARACTER ENDS UP IN REGIRSTER A)
ZERO FLAG = 1 IF NO CHARACTER,

O IF CHARACTER
EQU $A002 POINTER TO OUTPUT ROUTINE

UNIT NUMBER GOES IN LOCATION
SOO6F (O = SCREEN)

CHARACTER GOES IN REGISTER A
EQU SFE PRINTER DEVICE NUMBER

EQU $SOO6F MEMORY LOCATION CONTAINING UNIT

NUMBER FOR OUTPUT ROUTINE
(O = SCREEN)

KREKKKEKREKKKEEKEKEKKEKKEKKEKRKKKRKKRKKKEKKREK

*CONSOLE I/0 ROUTINES
KKK KKK KEKE KEEKKERERKKKKK

*CONSOLE INITIALIZE

CINIT:
JSR
RTS

CLRSCN CLEAR SCREEN

RETURN

*CONSOLE READ 1 BYTE
CINN:

LDU IOCBBL,X GET BUFFER LENGTH

PSHS U SAVE BUFFER LENGTH IN STACK
LDU IOCBBA,X POINT TO DATA BUFFER

LDY #0 INITIALIZE BYTE COUNTER TO QO
*

*LOOP READING BYTES UNTIL DATA BUFFER IS FULL
*

JSR CKBDPTR]I POLL KEYBOARD

BEQ CIN LOOP UNTIL A KEY IS READ

CMPA #CR CHECK FOR CARRIAGE RETURN

BEQ CREXIT BRANCH CEXIT) IF CARRIAGE RETURN
STA ,U+ SAVE BYTE IN DATA BUFFER
LEAY 1,Y INCREMENT BYTE COUNT
CMPY ,s CHECK IF BUFFER FULL
BNE CIN BRANCH (LOOP) IF BUFFER NOT FULL
*

*CLEAN STACK AND EXIT
*

286 Assembly language subroutines for the 6809

CREXIT:
STY IOCBBL,X

LEAS 2,58
RTS

*CONSOLE WRITE 1 BYTE

COUT:
CLR UNITNO
JSR COUTPTRI
RTS

*CONSOLE WRITE N BYTES
COUTN:

CLR UNITNO

OUTPUT:
LDY IOCBBL,X
LDX IOCBBA,X

CWLOOP:
LDA Xt
JSR COUTPTRI
LEAY -1,Y
BNE CWLOOP
RTS

SAVE NUMBER OF BYTES READ

CLEAN STACK
EXIT

SET UNIT NUMBER FOR CONSOLE (0)
WRITE BYTE

SET UNIT NUMBER FOR CONSOLE (0)

GET NUMBER OF BYTES TO WRITE
POINT TO DATA BUFFER

GET NEXT DATA BYTE
WRITE BYTE

DECREMENT BYTE COUNT
CONTINUE THROUGH N BYTES
RETURN

RAEKEKEKEKKEKEKRKEKKEKKKKKKKKKKKKK KKK

*PRINTER ROUTINES
REEKKKEKKKKKKKKKKKKKKKKKRK KKK KKK

*PRINTER INITIALIZE

PINIT:

LDB #B2400
STB BDRATE
RTS

*PRINTER OUTPUT 1 BYTE

POUT:
LDB #PRDVNO
STB UNITNO
JSR COUTPTRI
CLR UNITNO
RTS

*PRINTER OUTPUT N BYTES
POUTN:

LDB #PRDVNO

STB UNITNO
JSR OUTPUT
CLR UNITNO
RTS

END

SET PRINTER TO 2400 BAUD
SAVE BAUD RATE

GET PRINTER DEVICE NUMBER

SAVE AS UNIT NUMBER
WRITE 1 BYTE

RESTORE UNIT NUMBER TO CONSOLE (0)

GET PRINTER DEVICE NUMBER

SAVE AS UNIT NUMBER
WRITE LINE

RESTORE UNIT NUMBER TO CONSOLE (0)

8F Initialize 1/O ports (IPORTS) 287

8F Initialize 1/O ports
(IPORTS)

Initializes a set of I/O ports from an array of port device addresses and
data values. Examples are given of initializing the common 6809 pro-
grammable I/O devices: 6820 or 6821 Peripheral Interface Adapter
(PIA), 6840 Programmable Timer Module (PTM), and 6850 Async-
hronous Communications Interface Adapter (ACIA).

This subroutine provides a generalized method for initializing I/O
sections. The initialization may involve data ports, data direction regis-
ters that determine whether bits are inputs or outputs, control or com-
mand registers that determine the operating modes of programmable
devices, counters (in timers), priority registers, and other external regis-
ters or storage locations.

Tasks the user may perform with this routine include:

Assign bidirectional I/O lines as inputs or outputs.

Put initial values in output ports.

Enable or disable interrupts from peripheral chips.

a wpm Determine operating modes, such as whether inputs are latched,
whether strobes are produced, how priorities are assigned, whether
timers operate continuously or only on demand, etc.

5. Load starting values into timers and counters.

6. Select bit rates for communications.

7. Clear or reset devices that are not tied to the overall system reset
line.

8. Initialize priority registers or assign initial priorities to interrupts or
other operations.

9. Initialize vectors used in servicing interrupts, DMA requests, and
other inputs.

Procedure ‘The program loops through the specified number of ports,
obtaining each port’s memory address and initial value from the array
and storing the value in the address. This approach does not depend on
the number or type of devices in the I/O section. The user may add or
delete devices or change the initialization by changing the array rather
than the program.

Each array entry consists of the following:

288 Assembly language subroutines for the 6809

1. More significant byte of port’s memory address.

2. Less significant byte of port’s memory address.

3. Initial value to be sent to port.

Entry conditions

Base address of array of port addresses and initial values in register X
Number of entries in array (number of ports to initialize) in register A

Exit conditions

All data values sent to port addresses

Example

Data: Number of ports to initialize = 3
Array elements are:

More significant byte of port 1’s memory address
Less significant byte of port 1’s memory address
Initial value for port 1
More significant byte of port 2’s memory address
Less significant byte of port 2’s memory address
Initial value for port 2
More significant byte of port 3’s memory address
Less significant byte of port 3’s memory address
Initial value for port 3

Result: Initial value for port 1 stored in port 1 address
Initial value for port 2 stored in port 2 address
Initial value for port 3 stored in port 3 address

Note that each element consists of 3 bytes containing:

More significant byte of port’s memory address
Less significant byte of port’s memory address
Initial value for port

Registers used A,B,CC, U, X

+ + + + & He HH HF HF HF HF HK HF HF HF HF HF F HF HF HF HF HF HF H F

*

IPORTS:

INITPT:

8F Initialize I/O ports (IPORTS) 289

Execution time 10 cycles overhead plus 23 x N cycles for each port
entry. If, for example, NUMBER OF PORT ENTRIES = 10, execu-
tion time is

10 + 10 X 23 = 10 + 230 = 240 cycles

Program size 13 bytes plus the size of the table (3 bytes per port)

Data memory required None

Title Initialize I/0 Ports

Name: IPORTS

Purpose: Initialize I/0 ports from an array of port
addresses and values.

Entry: Register X = Base address of array

The array consists of 3 byte elements

array+0O = High byte of port 1 address

array+1 = Low byte of port 1 address

arrayt+2 Value to store in port 1 address
array+3 High byte of port 2 address

array+4 = Low byte of port 2 address
array+5 = Value to store in port 2 address

Exit: None

Registers Used: A,B,CC,U,X

Time: 10 cycles overhead plus 23 * N cycles for

each port, where N is the number of bytes.

Size: Program 13 bytes

*

*EXIT IMMEDIATELY IF NUMBER OF PORTS IS ZERO
*

TSTA TEST NUMBER OF PORTS

BEQ EXITIP BRANCH IF NO PORTS TO INITIALIZE
x

*LOOP INITIALIZING PORTS
*

LDU 7X+4+ GET NEXT PORT ADDRESS

290 Assembly language subroutines for the 6809

LDB Xt GET VALUE TO SEND THERE

STB ,U SEND VALUE TO PORT ADDRESS
DECA COUNT PORTS

BNE INITPT CONTINUE UNTIL ALL PORTS INITIALIZED
*

*EXIT
*

EXITIP:
RTS

*

* SAMPLE EXECUTION:
*

*

*INITIALIZE

* 6820/6821 PIA (PERIPHERAL INTERFACE ADAPTER)

* 6850 ACIA CASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER)
* 6840 PTM (PROGRAMMABLE TIMER MODULE)
*

*ARBITRARY DEVICE MEMORY ADDRESSES
*

* 6820/6821 PIA ADDRESSES
*

PIADRA EQU $A400 6821 PIA DATA REGISTER A

PIACRA EQU $A401 6821 PIA CONTROL REGISTER A
PIADRB EQU $A402 6821 PIA DATA REGISTER B
PIACRB EQU $A403 6821 PIA CONTROL REGISTER B
*

* 6840 PTM ADDRESSES
*

PTMC13 EQU $A100 6840 PTM CONTROL REGISTERS 1,3
PTMCR2 EQU $A101 6840 PTM CONTROL REGISTER 2
PTM1MS EQU $A102 6840 PTM TIMER 1 MSB
PTMILS EQU $A103 6840 PTM TIMER 1 LSB
PTM2MS EQU $A104 6840 PTM TIMER 2 MSB

PTM2LS EQU $A105 6840 PTM TIMER 2 LSB.
PTM3MS EQU $A106 6840 PTM TIMER 3 MSB
PTM3LS EQU $A107 6840 PTM TIMER 3 LSB
*

* 6850 ACIA ADDRESSES
*

ACIADR’ EQU $A200 6850 ACIA DATA REGISTER
ACIACR EQU $A201 6850 ACIA CONTROL REGISTER

ACIASR' EQU $A201 6850 ACIA STATUS REGISTER

SC8F:

LDX BEGPIN GET BASE ADDRESS OF INITIALIZATION
* ARRAY

LDA SZINIT GET SIZE OF ARRAY IN BYTES
JSR IPORTS INITIALIZE PORTS
BRA SC8F REPEAT TEST

PINIT:
*

*INITIALIZE 6820 OR 6821 PERIPHERAL INTERFACE ADAPTER (PIA)

8F Initialize l/O ports (IPORTS) 291

*

* PORT A = INPUT
* CA1 = DATA AVAILABLE, SET ON LOW TO HIGH TRANSITION,
* NO INTERRUPTS

* CA2 = DATA ACKNOWLEDGE HANDSHAKE
*

FDB PIACRA PIA CONTROL REGISTER A ADDRESS
FCB 200000000 INDICATE NEXT ACCESS TO DATA

* DIRECTION REGISTER (SAME ADDRESS
* AS DATA REGISTER)

FDB PIADRA PIA DATA DIRECTION REGISTER A ADDRESS
FCB 200000000 ALL BITS INPUT
FDB PIACRA PIA CONTROL REGISTER A ADDRESS
FCB 200100110 * BITS 7,6 NOT USED

* BIT 5 = 1 TO MAKE CA2 OUTPUT
* BIT 4 = 0 TO MAKE CA2 A PULSE

* BIT 3 = 0 TO MAKE CA2 INDICATE
* DATA REGISTER FULL

* BIT 2 = 1 TO ADDRESS DATA REGISTER
* BIT 1 = 1 TO MAKE CA1 ACTIVE
* LOW-TO-HIGH

* BIT 0 = O TO DISABLE CA1 INTERRUPTS
*

* PORT B = OUTPUT
* CB1 = DATA ACKNOWLEDGE, SET ON HIGH TO LOW TRANSITION,
* NO INTERRUPTS

* CB2 = DATA AVAILABLE, CLEARED BY WRITING TO DATA
* REGISTER B, SET TO 1 BY HIGH TO LOW TRANSITION ON CB1
*

FDB PIACRB PIA CONTROL REGISTER B ADDRESS
FCB 200000000 INDICATE NEXT ACCESS TO DATA

* DIRECTION REGISTER (SAME ADDRESS
* AS DATA REGISTER

FDB PIADRB PIA DATA DIRECTION REGISTER B ADDRESS
FCB 411111111 ALL BITS OUTPUT
FDB PIACRB PIA CONTROL REGISTER B ADDRESS
FCB 400100100 * BITS 7,6 NOT USED

BIT 5 = 1 TO MAKE CB2 OUTPUT

BIT 4 = Q TO MAKE CB2 A PULSE
BIT 3 0 TO MAKE CB2 INDICATE

DATA REGISTER FULL

BIT 2 = 1 TO ADDRESS DATA REGISTER
BIT 1 = 0 TO MAKE CB2 ACTIVE

HIGH-TO-LOW

BIT 0 = 0 TO DISABLE CB1 INTERRUPTS + € £€ + +e + HF

*

*INITIALIZE 6850 ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER
* CACIA OR UART)
*

* 8 BIT DATA, NO PARITY
* 1 STOP BIT

* DIVIDE MASTER CLOCK BY 16

* NO INTERRUPTS
*

292 Assembly language subroutines for the 6809

FDB ACIACR ACIA CONTROL REGISTER ADDRESS

FCB %00000011 PERFORM MASTER RESET
* 6850 HAS NO RESET INPUT

FDB ACIACR ACIA CONTROL REGISTER ADDRESS
FCB 400010101 * BIT 7 = 0 TO DISABLE

RECEIVE INTERRUPTS

BIT 6 = 0 TO MAKE RTS LOW
BIT 5 = 0 TO DISABLE

TRANSMIT INTERRUPTS
BIT 4 = 1 TO SELECT 8-BIT DATA
BIT 3 = 0 FOR NO PARITY
BIT 2 = 1 FOR 1 STOP BIT

BIT 1 = 0, BIT 0 = 1 TO

DIVIDE MASTER CLOCK BY 16 + + + + + &€ + +

*

*INITIALIZE 6840 PROGRAMMABLE TIMER MODULE (PTM)
*

k CLEAR ALL TIMER COUNTERS
* RESET TIMERS |
k OPERATE TIMER 2 IN CONTINUOUS MODE, DECREMENTING COUNTER
* AFTER EACH CLOCK CYCLE
* SET TIME CONSTANT TO 12 CLOCK CYCLES
* THIS GENERATES A SQUARE WAVE WITH PERIOD 2 * (12 + 1)
* = 26 CYCLES
*

* THIS INITIALIZATION PRODUCES A 2400 HZ CLOCK FOR USE
* IN DIVIDE BY 16 DATA TRANSMISSION
* IT ASSUMES A 1 MHZ SYSTEM CLOCK, SO A PERIOD OF
x (1,000,000)/(16*2400) = 26 CYCLES WILL GENERATE
* A 38,400 (16%*2400) HZ SQUARE WAVE
*

FDB PTM1MS PTM TIMER 1 MS BYTE
FCB 0 CLEAR TIMER 1 MS BYTE
FDB PTM1ILS PTM TIMER 1 LS BYTE
FCB 0 CLEAR TIMER 1 LS BYTE
FDB PTM2MS PTM TIMER 2 MS BYTE
FCB 0 CLEAR TIMER 2 MS BYTE
FDB PTM2LS PTM TIMER 2 LS BYTE
FCB 0 CLEAR TIMER 2 LS BYTE
FDB PTM3MS PTM TIMER 3 MS BYTE
FCB 0 CLEAR TIMER 3 MS BYTE
FDB PTM3LS PTM TIMER 3 LS BYTE
FCB 0 CLEAR TIMER 3 LS BYTE
FDB PTMCR2 PTM TIMER 2 CONTROL REGISTER
FCB %00000001 ADDRESS TIMER 1 CONTROL REGISTER
FDB PTMC13 PTM TIMER 1,3 CONTROL REGISTER
FCB %00000001 RESET TIMERS
FDB PTMC13 PTM TIMER 1,3 CONTROL REGISTER
FCB 0 REMOVE RESET
FDB PTMCR2 PTM TIMER 2 CONTROL REGISTER
FCB %~10000010 * BIT 7 = 1 TO PUT SQUARE

* WAVE OUTPUT ON 02
* BIT 6 = 0 TO DISABLE INTERRUPT
* BIT 5 = 0 FOR PULSE MODE
* BIT 4 = 0 TO INITIALIZE COUNTER
* ON WRITE TO LATCHES

ENDPIN:

BEGPIN:

SZINIT:

8F Initialize I/O ports (IPORTS) 293

FCB
FDB

FCB
FDB

FDB

FCB

PTM2MS
0
PTM2LS
12

PINIT

CENDPIN-PINIT)/3

* BIT 3 O FOR CONTINUOUS OPERATION
* BIT 2 0 FOR 16-BIT OPERATION
* BIT 1 = 1 TO USE CPU CLOCK
* BIT 0 = O TO ADDRESS CONTROL
* REGISTER 3

PTM TIMER 2 MS BYTE
MS BYTE OF COUNT

PTM TIMER 2 LS BYTE
LS BYTE OF COUNT
END OF ARRAY

BASE ADDRESS OF ARRAY
NUMBER OF PORTS TO INITIALIZE

294 Assembly language subroutines for the 6809

8G Delay milliseconds
(DELAY)

Provides a delay of between 1 and 256 ms, depending on the parameter
supplied. A parameter value of 0 is interpreted as 256) The user must
calculate the value CPMS (cycles per millisecond) ‘to fit a particular
computer. Typical values are 1000 for a 1 MHz clock“and 2000 for a 2
MHz clock.

Procedure The program simply counts down register X for the appro-
priate amount of time as determined by the user-supplied constant.
Extra instructions account for the call (JSR) instruction, return instruc-
tion, and routine overhead without changing anything.

Entry conditions

Number of milliseconds to delay (1 — 256) in register A

Exit conditions

Returns after the specified number of milliseconds with all registers
except the condition code register unchanged

Example

Data: (A) = number of milliseconds = 2Ai6 = 4210
Result: Software delay of 2Ai6 (4210) milliseconds, assuming that

user supplies the proper value of CPMS

Registers used CC

Execution time 1 ms xX (A)

Program size 31 bytes

8G Delay milliseconds (DELAY) 295

Data memory required None

Special case (A) = Ocauses a delay of 256 ms.

* Title

* Name:
*

* Purpose:
*

* Entry:
*

*

* Exit:
*

*

* Registers Used:
*

* Time:
*

* Size:

*

*EQUATES

*CYCLES PER MILLISECOND
*

CPMS EQU 1000

MFAC EQU CPMS/20

MFACM EQU MFAC-4

*

*METHOD:

Delay Milliseconds
DELAY

Delay from 1 to 256 milliseconds

Register A = number of milliseconds to delay.
A 0 equals 256 milliseconds

Returns to calling routine after the
specified delay.

cc

1 millisecond * Register A

Program 54 bytes

- USER-SUPPLIED

*1000 = 1 MHZ CLOCK
*2000 2 MHZ CLOCK
*
*

MULTIPLYING FACTOR FOR ALL
* EXCEPT LAST MILLISECOND

MULTIPLYING FACTOR FOR LAST
* MILLISECOND

THE ROUTINE IS DIVIDED INTO 2 PARTS. THE CALL TO
THE "DLY' ROUTINE DELAYS EXACTLY 1 LESS THAN THE
NUMBER OF REQUIRED MILLISECONDS. THE LAST ITERATION

"DLY'. THIS OVERHEAD

ELAY: *

*DO ALL BUT THE
*

PSHS D,X

LDB #MFAC
DECA
MUL

TFR D,X
JSR DLY

IS 78 CYCLES.

*

*

*

* TAKES INTO ACCOUNT THE OVERHEAD TO CALL "DELAY" AND
*

*

D

LAST MILLISECOND

SAVE REGISTERS
GET MULTIPLYING FACTOR
REDUCE NUMBER OF MS BY 1
MULTIPLY FACTOR TIMESCMS - 1)
TRANSFER LOOP COUNT TO X

296 Assembly language subroutines for the 6809

*

*ACCOUNT FOR 80 MS OVERHEAD DELAY BY REDUCING
* LAST MILLISECOND'S COUNT
*

LDX #MFAC1 GET REDUCED COUNT
JSR DLY DELAY LAST MILLISECOND

PULS D,X RESTORE REGISTERS

RTS

KHKKKKEKREKKEREKRKEKEREKREERKAK RK

*ROUTINE: DLY
*PURPOSE: DELAY ROUTINE
*ENTRY: REGISTER X = COUNT
*EXIT: REGISTER X = OQ
*REGISTERS USED: X
KHEKKKKKKKKKKKKEEREREKKKARRRAKKE

DLY: BRA DLY1
DLY1: BRA DLY2
DLY2: BRA DLY3
DLY3: BRA DLY4
DLY4: LEAX -1,X

BNE DLY
RTS

+ SAMPLE EXECUTION:

SC8G:
*

*DELAY 10 SECONDS
* CALL DELAY 40 TIMES AT 250 MILLISECONDS EACH
*

LDB #40 40 TIMES (28 HEX)

QTRSCD:
LDA #250 250 MILLISECONDS (FA HEX) -

JSR DELAY
DECB
BNE QTRSCD CONTINUE UNTIL DONE

BRA SC8G REPEAT OPERATION

END PROGRAM

g Interrupts

9A Unbuffered interrupt-driven input/output
using a 6850 ACIA
(SINTIO)

Performs interrupt-driven input and output using a 6850 ACIA (Asynch-
ronous Communications Interface Adapter) and single-character input
and output buffers. Consists of the following subroutines:

INCH reads a character from the input buffer.

INST determines whether the input buffer is empty.

1.

2.

3. OUTCH writes a character into the output buffer.

4. OUTST determines whether the output buffer is full.

5. INIT initializes the 6850 ACIA, the interrupt vectors, and the
software flags. The flags indicate when data can be transferred between
the main program and the interrupt service routines.

6. IOSRVC determines which interrupt occurred and provides the
proper input or output service. In response to the input interrupt, it
reads a character from the ACIA into the input buffer. In response to
the output interrupt, it writes a character from the output buffer into the
ACIA.

297

298 Assembly language subroutines for the 6809

Procedures

1. INCH waits for a character to become available, clears the Data
Ready flag (RECDF), and loads the character into register A.

2. INST sets the Carry flag from the Data Ready flag (RECDF).

3. OUTCH waits for the output buffer to empty, stores the character
in the buffer, and sets the Character Available flag (TRNDF).

4. OUTST sets the Carry flag from the Character Available flag
(TRNDF).

5. INIT clears the software flags, resets the ACIA (a master reset,
since the device has no reset input), and determines the ACIA’s operat-
ing mode by placing the appropriate value in its control register. INIT
starts the ACIA with input interrupts enabled and output interrupts
disabled. See Subroutine 8E for more details about 6850 ACIA
initialization.

6. IOSRVC determines whether the interrupt was an input interrupt
(bit 0 of the ACIA status register = 1), an output interrupt (bit 1 of the
ACIA status register = 1), or the product of some other device. If the
input interrupt occurred, the program reads the data, saves it in mem-
ory, and sets the Data Ready flag (RECDF). The lack of buffering
results in the loss of any unread data at this point.

If the output interrupt occurred, the program determines whether
data is available. If not, the program simply disables the output inter-
rupt. If data is available, the program sends it to the ACIA, clears the
Character Available flag (TRNDF), and enables both the input and the
output interrupts.

The special problem with the output interrupt is that it may occur
when no data is available. We cannot ignore it or it will assert itself
indefinitely, creating an endless loop. Nor can we clear an ACIA output
interrupt without sending data to the device. The solution is to disable
output interrupts. But this creates a new problem when data is ready to
be sent. That is, if output interrupts are disabled, the system cannot
learn from an interrupt that the ACIA is ready to transmit. The solution
to this is to create an additional, non-interrupt-driven entry to the
routine that sends a character to the ACIA. Since this entry is not
caused by an interrupt, it must check whether the ACIA’s output
register is empty before sending it a character. The special sequence
of operations is the following:

1. Output interrupt occurs before new data is available (i.e. the ACIA

9A Unbuffered interrupt-driven input/output (SINTIO) 299

becomes ready for data). The response is to disable the output inter-
rupt, since there is no data to be sent. Note that this sequence will not
occur initially, since INIT disables the output interrupt. Otherwise, the
output interrupt would occur immediately, since the ACIA surely starts
out empty and therefore ready to transmit data.

2. Output data becomes available. That is, the system now has data to
transmit. But there is no use waiting for the output interrupt, since it
has been disabled.

3. The main program calls the routine (OUTDAT), which sends data
to the ACIA. Checking the ACIA’s status shows that it is, in fact, ready
to transmit a character (it told us it was by causing the output interrupt).
The routine then sends the character and re-enables the interrupts.

Unserviceable interrupts occur only with output devices, since input
devices always have data ready to transfer when they request service.
Thus output devices cause more initialization and sequencing problems
in interrupt-driven systems than do input devices.

The solution shown here may, however, result in an odd situation.
Assume that the system has output data but the ACIA is not ready for
it. The system must then wait with interrupts disabled for the ACIA to
become ready. That is, an interrupt-driven system must disable its
interrupts and wait idly, polling the output device. We could solve this
problem with an extra software flag (output interrupt expected). The
service routine would change this flag if the output interrupt occurred
when no data was available. The system could then check the flag and
determine whether the output interrupt had already occurred (see Sub-
routine 9C).

ae

Entry conditions

1. INCH: none

INST: none

OUTST: none

2

3. OUTCH: character to transmit in register A

4

5. INIT: none

300 Assembly language subroutines for the 6809

Exit conditions

1. INCH: character in register A

2. INST: Carry = Oif input buffer is empty, 1 if itis full —

3. OUTCH: none

4. OUTST: Carry = 0if output buffer is empty, 1 if it is full

5. INIT: none

Registers used

1. INCH: A, CC

INST: A, CC

OUTCH: A, CC

OUTST: A, CC

INIT: A wr YS BF

Execution time

1. INCH: 40 cycles if a character is available

2. INST: 12 cycles

3. OUTCH: 87 cycles if the output buffer is empty and the ACIA is
ready to transmit

4. OUTST: 12 cycles

5. INIT: 76 cycles

6. IOSRVC: 63 cycles to service an input interrupt, 99 cycles to service
an output interrupt, 42 cycles to determine interrupt is from another
device. Note that it takes the processor 21 cycles to respond to an
interrupt, since it must save all user registers. The execution times given
include these cycles.

Program size 144 bytes

Data memory required 6 bytes anywhere in RAM for the received

+ + +

+ +t + + + + + FF + HF FF FH HF FH HF KH HF H OF HF OH HF HN HN SK

9A Unbuffered interrupt-driven input/output (SINTIO) 301

data (address RECDAT), receive data flag (address RECDF), transmit
data (address TRNDAT), transmit data flag (address TRNDF), and the
address of the next interrupt service routine (2 bytes starting at address
NEXTSR).

eee

Title Simple interrupt input and output using a 6850
ACIA and single character buffers.

Name: SINTIO

Purpose: This program consists of 5 subroutines that
perform interrupt driven input and output using
a 6850 ACIA.

INCH

Read a character.
INST

Determine input status (whether input
buffer is empty).

OUTCH

Write a character.
OUTST

Determine output status (whether output
buffer is full).

INIT

Initialize.

Entry: INCH

No parameters.

INST

No parameters.

OUTCH

Register A = character to transmit
OUTST

No parameters.

INIT

No parameters.

Exit: INCH

Register A = character.
INST

Carry = 0 if input buffer is empty,

1 if character is available.
OUTCH

No parameters

OUTST

Carry = 0 if output buffer is empty,
1 if it is full.

INIT

No parameters.

Registers used: INCH

A,CC
INST

A,CC
OUTCH

302 Assembly language subroutines for the 6809

A,CC
OUTST

A,CC
INIT

A

Time: INCH
40 cycles if a character is available

INST
12 cycles

OUTCH

87 cycles if output buffer is empty and

the ACIA is ready to transmit

OUTST
12 cycles

INIT

76 cycles

IOSRVC
42 cycles minimum if the interrupt is not ours

63 cycles to service an input interrupt

99 cycles to service an output interrupt
These include the time required for the

processor to respond to an interrupt

(21 cycles).

Size: Program 144 bytes

Data 6 bytes
+ + + + He FH HF HF HF EH HF HF HF HF HF FH HH HF FF HF FF HF F HF HF KF

*ARBITRARY 6850 ACIA MEMORY ADDRESSES
ACIADR' EQU $A000 ACIA DATA REGISTER
ACIACR’ EQU $A001 ACIA CONTROL REGISTER

ACIASR- EQU $A001 ACIA STATUS REGISTER

*TRS-80 COLOR COMPUTER INTERRUPT VECTOR
INTVEC EQU $010D VECTOR TO INTERRUPT SERVICE ROUTINE

*

* READ A CHARACTER FROM INPUT BUFFER
*

INCH:
JSR INST GET INPUT STATUS
BCC INCH WAIT IF NO CHARACTER AVAILABLE
CLR RECDF INDICATE INPUT BUFFER EMPTY
LDA RECDAT GET CHARACTER FROM INPUT BUFFER

RTS
*

* DETERMINE INPUT STATUS (CARRY = 1 IF DATA AVAILABLE)
*

INST:
LDA RECDF GET DATA READY FLAG
LSRA SET CARRY FROM DATA READY FLAG

* CARRY = 1 IF CHARACTER AVAILABLE

RTS

* WRITE A CHARACTER INTO OUTPUT BUFFER AND THEN ON TO ACIA

9A Unbuffered interrupt-driven input/output (SINTIO) 303

OUTCH:

PSHS A SAVE CHARACTER TO WRITE

*WAIT FOR OUTPUT BUFFER TO EMPTY, STORE NEXT CHARACTER
WAITOC:

JSR OUTST GET OUTPUT STATUS

BCS WAITOC WAIT IF OUTPUT BUFFER FULL
PULS A GET CHARACTER

STA TRNDAT STORE CHARACTER IN BUFFER

LDA #SFF INDICATE BUFFER FULL
STA TRNDF

JSR OUTDAT SEND CHARACTER TO PORT
RTS

* DETERMINE OUTPUT STATUS (CARRY = 1 IF OUTPUT BUFFER FULL)
*

OUTST:

LDA TRNDF GET TRANSMIT FLAG

LSRA SET CARRY FROM TRANSMIT FLAG
RTS CARRY = 1 IF BUFFER FULL

*

*INITIALIZE INTERRUPT SYSTEM AND 6850 ACIA
*

INIT:
*

*DISABLE INTERRUPTS DURING INITIALIZATION BUT SAVE
* PREVIOUS STATE OF INTERRUPT FLAG
*

PSHS CC SAVE CURRENT FLAGS (PARTICULARLY I FLAG)
SEI DISABLE INTERRUPTS DURING

* INITIALIZATION
*

*INITIALIZE TRS-80 COLOR COMPUTER INTERRUPT VECTOR
*

LDX INTVEC GET CURRENT INTERRUPT VECTOR
STX NEXTSR SAVE IT AS ADDRESS OF NEXT SERVICE

* ROUTINE
LDX #IOSRVC GET ADDRESS OF OUR SERVICE ROUTINE
STX INTVEC SAVE IT AS INTERRUPT VECTOR
*

*INITIALIZE SOFTWARE FLAGS
*

CLR RECDF NO INPUT DATA AVAILABLE
CLR TRNDF OUTPUT BUFFER EMPTY
CLR OIE INDICATE NO OUTPUT INTERRUPT NEEDED

* 6850 READY TO TRANSMIT INITIALLY
*

*INITIALIZE 6850 ACIA CUART)
*

LDA #%00000011 MASTER RESET ACIA (IT HAS NO RESET INPUT).
STA ACIACR

LDA #%10010001 INITIALIZE ACIA MODE

*BIT 7 = 1 TO ENABLE INPUT INTERRUPTS

304 Assembly language subroutines for the 6809

*BITS 6,5 = 0 TO DISABLE OUTPUT INTERRUPTS

*BITS 4,3,2 = 100 FOR 8 DATA BITS, 2 STOP

* BITS
*BITS 1,0 = 01 FOR DIVIDE BY 16 CLOCK

STA ACIACR
PULS CC RESTORE FLAGS (THIS REENABLES INTERRUPTS

* IF THEY WERE ENABLED WHEN INIT WAS

* CALLED)

RTS

*

*GENERAL INTERRUPT HANDLER
*

IOSRVC:
*

*GET ACIA STATUS: BIT 0 = 1 IF AN INPUT INTERRUPT,

* BIT 1 = 1 IF AN OUTPUT INTERRUPT
*

LDA ACIASR GET ACIA STATUS
LSRA EXAMINE BIT 0
BCS RDHDLR BRANCH IF AN INPUT INTERRUPT

LSRA EXAMINE BIT 1
BCS WRHDLR BRANCH IF AN OUTPUT INTERRUPT
JMP CNEXTSR] NOT THIS ACIA, EXAMINE NEXT INTERRUPT

*

*INPUT CREAD) INTERRUPT HANDLER
*

RDHDLR:
LDA ACIADR LOAD DATA FROM 6850 ACIA
STA RECDAT SAVE DATA IN INPUT BUFFER

LDA #SFF
STA RECDF INDICATE INPUT DATA AVAILABLE

RTI

*

*OUTPUT (WRITE) INTERRUPT HANDLER
*

WRHDLR:
LDA TRNDF TEST DATA AVAILABLE FLAG
BEQ NODATA JUMP IF NO DATA TO TRANSMIT
JSR OUTDT1 ELSE SEND DATA TO 6850 ACIA
BRA WRDONE (NO NEED TO TEST STATUS)

*

*IF AN OUTPUT INTERRUPT OCCURS WHEN NO DATA IS AVAILABLE,
* WE MUST DISABLE IT CIN THE 6850) TO AVOID AN ENDLESS LOOP. LATER,

* WHEN A CHARACTER BECOMES AVAILABLE, WE CALL THE OUTPUT ROUTINE

* QUTDAT WHICH MUST TEST ACIA STATUS BEFORE SENDING THE DATA.
* THE OUTPUT ROUTINE MUST ALSO REENABLE THE OUTPUT INTERRUPT AFTER

* SENDING THE DATA. THIS PROCEDURE OVERCOMES THE PROBLEM OF AN
* UNSERVICED OUTPUT INTERRUPT ASSERTING ITSELF REPEATEDLY, WHILE

* STILL ENSURING THAT OUTPUT INTERRUPTS ARE RECOGNIZED AND THAT
* DATA IS NEVER SENT TO AN ACIA THAT IS NOT READY FOR IT.
*THE PROBLEM IS THAT AN OUTPUT DEVICE MAY REQUEST SERVICE BEFORE
* THE COMPUTER HAS ANYTHING TO SEND CUNLIKE AN INPUT DEVICE THAT
* HAS DATA WHEN IT REQUESTS SERVICE).

9A Unbuffered interrupt-driven input/output (SINTIO) 305

*

NODATA:
LDA #%410010001 ESTABLISH ACIA OPERATING MODE

* WITH OUTPUT INTERRUPTS DISABLED
STA ACIACR

WRDONE:
RTI

KHKKKRKEKRKKKKEKKEEKEKEEERRAAKK KKK KKK KK

*ROUTINE: OUTDAT, OUTDT1 COUTDAT IS NON-INTERRUPT DRIVEN ENTRY POINT)
*PURPOSE: SEND A CHARACTER TO THE ACIA
*ENTRY: TRNDAT = CHARACTER TO SEND
*EXIT: NONE

*REGISTERS USED: A,CC
HH KKK KE REE EEE IKI KKK KR KR RR

OUTDAT:
LDA ACIASR CAME HERE WITH INTERRUPTS DISABLED
AND #%00000010 TEST WHETHER ACIA OUTPUT REGISTER EMPTY
BEQ OUTDAT BRANCH (WAIT) IF IT IS NOT EMPTY

OUTDT1:

LDA TRNDAT GET THE CHARACTER
STA ACIADR SEND CHARACTER TO ACIA
CLR TRNDF INDICATE OUTPUT BUFFER EMPTY
LDA #%10110001 ESTABLISH ACIA OPERATING MODE WITH
STA ACIACR OUTPUT INTERRUPTS ENABLED
RTS

*

*DATA SECTION
*

RECDAT RMB 1 RECEIVE DATA
RECDF RMB 1 RECEIVE DATA FLAG

* (0 = NO DATA, FF = DATA AVAILABLE)
TRNDAT RMB 1 TRANSMIT DATA
TRNDF RMB 1 TRANSMIT DATA FLAG

* (0 = BUFFER EMPTY, FF = BUFFER FULL)
NEXTSR RMB 2 ADDRESS OF NEXT INTERRUPT SERVICE

* ROUTINE

x

* SAMPLE EXECUTION:
*

*CHARACTER EQUATES
ESCAPE EQU $1B ASCII ESCAPE CHARACTER
TESTCH EQU "A TEST CHARACTER = A

SC9A:

JSR INIT INITIALIZE 6850 ACIA, INTERRUPT SYSTEM
CLI ENABLE INTERRUPTS
*

*SIMPLE EXAMPLE - READ AND ECHO CHARACTERS
* UNTIL AN ESC IS RECEIVED
*

LOOP:

JSR INCH READ CHARACTER

306

ASYNLP:

DONE:

Assembly language subroutines for the 6809

PSHS A
JSR OUTCH ECHO CHARACTER

PULS A
CMPA #ESCAPE IS CHARACTER AN ESCAPE?
BNE LOOP STAY IN LOOP IF NOT
*

*AN ASYNCHRONOUS EXAMPLE
* OUTPUT "A" TO CONSOLE CONTINUOUSLY BUT ALSO LOOK AT
* INPUT SIDE, READING AND ECHOING ANY INPUT CHARACTERS.
*

*

*OUTPUT AN "A" IF OUTPUT IS NOT BUSY
* .

JSR OUTST IS OUTPUT BUSY?
BCS ASYNLP JUMP IF IT IS

LDA #TESTCH
JSR OUTCH OUTPUT TEST CHARACTER
*

*CHECK INPUT PORT
*ECHO CHARACTER IF ONE IS AVAILABLE

*EXIT ON ESCAPE CHARACTER
*

JSR INST IS INPUT DATA AVAILABLE?

BCS ASYNLP JUMP IF NOT (SEND ANOTHER "A")
JSR INCH GET CHARACTER
CMPA #ESCAPE IS IT AN ESCAPE?
BEQ DONE BRANCH IF IT IS
JSR OUTCH ELSE ECHO CHARACTER

BRA ASYNLP AND CONTINUE

BRA SC9A REPEAT TEST

END

9B Unbuffered interrupt-driven input/output (PINTIO) 307

9B Unbuffered interrupt-driven input/output using a 6821 PIA
(PINTIO)

Performs interrupt-driven input and output using a 6821 PIA and single-
character input and output buffers. Consists of the following sub-
routines:

INCH reads a character from the input buffer.

INST determines whether the input buffer is empty.

1

2

3. OUTCH writes a character into the output buffer.

4. OUTST determines whether the output buffer is full.

5 . INIT initializes the 6820 PIA and the software flags. The flags
indicate when data can be transferred between the main program and
the interrupt service routines.

6. IOSRVC determines which interrupt occurred and provides the
proper input or output service. That is, it reads a character from the PIA
into the input buffer in response to the input interrupt, and it writes a
character from the output buffer into the PIA in response to the output
interrupt.

Procedure

1. INCH waits for a character to become available, clears the Data
Ready flag (RECDF), and loads the character into register A.

2. INST sets the Carry flag from the Data Ready flag (RECDF).

3. OUTCH waits for the output buffer to empty, places the character
from register A in the buffer, and sets the character available flag
(TRNDF). If an unserviced output interrupt has occurred (i.e. the
Output device has requested service when no data was available),
OUTCH actually sends the data to the PIA.

4. OUTST sets Carry from the Character Available flag (TRNDF).

5. INIT clears the software flags and initializes the 6821 PIA by
loading its control and data direction registers. It makes port A an input
port, port B an output port, control lines CA1 and CB1 active low-to-
high, control line CA2 a brief output pulse indicating input acknowledge
(active-low briefly after the CPU reads the data) and control line CB2 a
write strobe (active-low after the CPU writes the data and lasting until
the peripheral becomes ready again). INIT also enables the input inter-

308 Assembly language subroutines for the 6809

rupt on CA1 and the output interrupt on CB1. See Appendix 2 and
Subroutine 8E for more details about initializing 6821 PIAs.

6. IOSRVC determines whether the interrupt was an input interrupt
(bit 7 of PIA control register A = 1), an output interrupt (bit 7 of PIA
‘control register B = 1), or the product of some other device. If an input
interrupt occurred, the program reads the data, saves it in the input
buffer, and sets the Data Ready flag (RECDF). The lack of buffering
results in the loss of any unread data at this point.

If an output interrupt occurred, the program determines whether any
data is available. If not, the program simply clears the interrupt and
clears the flag (OIE) that indicates the output device is actually ready
(i.e. an output interrupt has occurred at a time when no data was
available). If data is available, the program sends it from the output
buffer to the PIA, clears the Character Available flag (TRNDF), sets
the Output Interrupt Expected flag (OIE), and enables both the input
and the output interrupts.

The special problem with the output interrupt is that it may occur
when no data is available to send. We cannot ignore it or it will assert
itself indefinitely, causing an endless loop. The solution is simply to
clear the 6821 interrupt by reading the data register in port B.

But now we have a new problem when output data becomes avail-
able. That is, since the interrupt has been cleared, it obviously cannot

inform the system that the output device is ready for data. The solution
is to have a flag that indicates (with a 0 value) that the output interrupt
has occurred without being serviced. We call this flag OIE (Output
Interrupt Expected).

The initialization routine clears OIE (since the output device starts
out ready for data). The output service routine clears it when an output
interrupt occurs that cannot be serviced (no data is available) and sets it
after sending data to the 6821 PIA (in case it might have been cleared).
Now the output routine OUTCH can check OIE to determine whether
an output interrupt is expected. If not, OUTCH simply sends the data
immediately.

Note that we can clear a PIA interrupt without actually sending any
data. We cannot do this with a 6850 ACIA (see Subroutines 9A and
9C), so the procedures there are somewhat different.

Unserviceable interrupts occur only with output devices, since input
devices always have data ready to transfer when they request service.
Thus output devices cause more initialization and sequencing problems
in interrupt-driven systems than do input devices.

9B Unbuffered interrupt-driven input/output (PINTIO) 309

Entry conditions

1.

2

3.

4

5

INCH : none

INST: none

OUTCH: character to transmit in register A

OUTST: none

INIT: none

Exit conditions

1.

2

3.

4

5

INCH: character in register A

INST: Carry = 0 if input buffer is empty, 1 if it is full

OUTCH: none

OUTST: Carry = 0 if output buffer is empty, 1 if it is full

INIT: none

Registers used

1.

2

3.

4.

5

INCH: A, CC

INST: A, CC

OUTCH: A, CC

OUTST: A, CC

INIT: A

Execution time

A
2.
3.

INCH: 40 cycles if a character is available

INST: 12 cycles

OUTCH: 98 cycles if the output buffer is not full and the PIA is
ready for data; 37 additional cycles to send the data to the 6821 PIA if
no output interrupt is expected.

4.

5.

OUTST: 12 cycles

INIT: 99 cycles

310

+ + + +

+ + + © HF H+ HH HH HF HF HH He SF HF HF HF FH HF FF HF H+ HF FF HF HF HF HF F FF F

Assembly language subroutines for the 6809

6. IOSRVC: 61 cycles to service an input interrupt, 97 cycles to service
an output interrupt, 45 cycles to determine that an interrupt is from
another device. These times all include the 21 cycles required by the
CPU to respond to an interrupt.

Program size 158 bytes

Data memory required 7 bytes anywhere in RAM for the received
data (address RECDAT), receive data flag (address RECDF), transmit
data (address TRNDAT), transmit data flag (address TRNDF), output
interrupt expected flag (address OIE), and the address of the next
interrupt service routine (2 bytes starting at address NEXTSR).

Title

Name:

Purpose:

Entry:

Exit:

Simple interrupt input and output using a 6821

Peripheral Interface Adapter and single

character buffers.

PINTIO

This program consists of 5 subroutines that

perform interrupt driven input and output using

a 6821 PIA.

INCH

Read a character.

INST

Determine input status (whether input

buffer is empty).

OUTCH
Write a character.

OUTST

Determine output status (whether output

buffer is full).

INIT

Initialize 6821 PIA and interrupt system.

INCH

No parameters.

INST

No parameters.

OUTCH

Register A = character to transmit

OUTST

No parameters.

INIT

No parameters.

INCH
Register A = character.

+ + + + +e FH HF FE HF FF HF FH HF HF HF HF HF HF HF HF HF He H FF

+ + + + &€ + + HF £ HF FF HF HH HF HH HF YF

*

9B Unbuffered interrupt-driven input/output (PIN TIO}

Registers Used:

Time:

Size:

*6821 PIA EQUATES

*ARBITRARY 6821 PIA MEMORY ADDRESSES
*

PIADRA
PIADDA

PIACRA

PIADRB

PIADDB

PIACRB
*

*TRS-80

EQU
EQU
EQU
EQU
EQu
EQU

$A400
$A400
$A401
$A402
$A402
$A403

INST

Carry = 0 if input buffer is empty,

1 if character is available.
OUTCH

No parameters

OUTST

Carry = O if output buffer is

empty, 1 if it is full.
INIT

No parameters.

INCH

A,CC
INST

A,CC
OUTCH

A,CC
OUTST

A,CC
INIT

A

INCH

40 cycles if a character is available
INST

12 cycles
OUTCH

98 cycles if output buffer is not full and
output interrupt is expected

OUTST

12 cycles

INIT

99 cycles

IOSRVC

45 cycles minimum if the interrupt is not ours

61 cycles to service an input interrupt
97 cycles to service an output interrupt

These include the 21 cycles required for the

processor to respond to an interrupt.

Program 158 bytes

Data ? bytes

PIA DATA REGISTER A

PIA DATA DIRECTION REGISTER A

PIA CONTROL REGISTER A

PIA DATA REGISTER B

PIA DATA DIRECTION REGISTER B
PIA CONTROL REGISTER B

COLOR COMPUTER INTERRUPT VECTOR

311

312 Assembly language subroutines for the 6809

*

INTVEC EQU $0100 VECTOR TO INTERRUPT SERVICE ROUTINE

*

*READ A CHARACTER FROM INPUT BUFFER
*

INCH:
JSR INST GET INPUT STATUS

BCC INCH WAIT IF NO CHARACTER AVAILABLE

CLR RECDF INDICATE INPUT BUFFER EMPTY

LDA RECDAT GET CHARACTER FROM INPUT BUFFER

RTS

*

*DETERMINE INPUT STATUS (CARRY = 1 IF DATA AVAILABLE)
*

INST:
LDA RECDF GET DATA READY FLAG
LSRA SET CARRY FROM DATA READY FLAG

* CARRY = 1 IF CHARACTER AVAILABLE

RTS

*

*WRITE A CHARACTER INTO OUTPUT BUFFER
*

OUTCH:
PSHS A SAVE CHARACTER TO WRITE

*WAIT FOR OUTPUT BUFFER TO EMPTY, STORE NEXT CHARACTER

WAITOC:
JSR OUTST GET OUTPUT STATUS
BCS WAITOC WAIT IF OUTPUT BUFFER FULL
PULS A GET CHARACTER
STA TRNDAT STORE CHARACTER IN OUTPUT BUFFER
LDA #S$F F INDICATE OUTPUT BUFFER FULL

STA TRNDF
TST OIE TEST OUTPUT INTERRUPT EXPECTED FLAG
BNE EXITOT EXIT IF OUTPUT INTERRUPT EXPECTED
JSR OUTDAT SEND CHARACTER IMMEDIATELY IF

* NO OUTPUT INTERRUPT EXPECTED

EXITOT:
RTS

*

*DETERMINE OUTPUT STATUS (CARRY = 1 IF OUTPUT BUFFER FULL)
*

OUTST:
LDA TRNDF GET TRANSMIT FLAG
LSRA SET CARRY FROM TRANSMIT FLAG
RTS CARRY = 1 IF BUFFER FULL

*

*INITIALIZE INTERRUPT SYSTEM AND 6821 PIA
*

INIT:

9B Unbuffered interrupt-driven input/output (PINTIO) 313

*

*DISABLE INTERRUPTS DURING INITIALIZATION BUT SAVE
* PREVIOUS STATE OF INTERRUPT FLAG
*

PSHS CC SAVE CURRENT FLAGS (PARTICULARLY I FLAG)
SEI DISABLE INTERRUPTS DURING

* INITIALIZATION
*

*INITIALIZE TRS-80 COLOR COMPUTER INTERRUPT VECTOR
*

LDX INTVEC GET CURRENT INTERRUPT VECTOR
STX NEXTSR SAVE IT AS ADDRESS OF NEXT SERVICE

* ROUTINE
LDX #IOSRVC GET ADDRESS OF OUR SERVICE ROUTINE
STX INTVEC SAVE IT AS INTERRUPT VECTOR
*

*INITIALIZE SOFTWARE FLAGS
*

CLRA

STA RECDF NO INPUT DATA AVAILABLE

STA TRNDF OUTPUT BUFFER EMPTY

STA OIE INDICATE NO OUTPUT INTERRUPT NEEDED

* 6821 READY TO TRANSMIT INITIALLY

*

*INITIALIZE 6821 PIA (PARALLEL INTERFACE)
*

CLR PIACRA ADDRESS DATA DIRECTION REGISTERS
CLR PIACRB

CLR PIADDA MAKE PORT A INPUT

LDA #SFF MAKE PORT B OUTPUT
STA PIADDB

LDA #%400101111

STA PIACRA SET PORT A AS FOLLOWS:

*BITS 7,6 NOT USED

*BIT 5 = 1 TO MAKE CA2 OUTPUT
*BIT 4 = 0 TO MAKE CA2 A PULSE

*BIT 3 = 1 TO MAKE CA2 A BRIEF INPUT
* ACKNOWLEDGE

*BIT 2 = 1 TO ADDRESS DATA REGISTER
*BIT 1 = 1 TO MAKE CA1 ACTIVE LOW-TO-
* HIGH

*BIT 0 = 1 TO ENABLE CA1 INTERRUPTS
LDA #%00100111

STA PIACRB SET PORT B AS FOLLOWS:

*BITS 7, 6 NOT USED

*BIT 5 = 1 TO MAKE CB2 OUTPUT
*BIT 4 = 0 TO MAKE CB2 A PULSE

*BIT 3 = 0 TO MAKE CB2 A LONG OUTPUT
* BUFFER FULL

*BIT 2 = 1 TO ADDRESS DATA REGISTER

*BIT 1 = 1 TO MAKE CB1 ACTIVE LOW-TO-
* HIGH

*BIT 0 = 1 TO ENABLE CB1 INTERRUPTS
PULS cc RESTORE FLAGS (THIS REENABLES INTERRUPTS

* IF THEY WERE ENABLED WHEN INIT WAS

314 Assembly language subroutines for the 6809

* CALLED)

RTS

*

*INTERRUPT MANAGER

*DETERMINES WHETHER INPUT OR OUTPUT INTERRUPT OCCURRED
*

IOSRVC:
*

*INPUT INTERRUPT FLAG IS BIT 7 OF CONTROL REGISTER A

*OUTPUT INTERRUPT FLAG IS BIT 7 OF CONTROL REGISTER B
*

LDA PIACRA CHECK FOR INPUT INTERRUPT

BMI RDHDLR > BRANCH IF INPUT INTERRUPT

LDA PIACRB CHECK FOR OUTPUT INTERRUPT

BMI WRHDLR BRANCH IF OUTPUT INTERRUPT

JMP CNEXTSR] INTERRUPT IS FROM ANOTHER SOURCE

*

*INPUT CREAD) INTERRUPT HANDLER
*

RDHDLR:
LDA PIADRA READ DATA FROM 6821 PIA
STA RECDAT SAVE DATA IN INPUT BUFFER
LDA #$F F
STA RECDF INDICATE CHARACTER AVAILABLE
RTI

*

*OUTPUT CWRITE) INTERRUPT HANDLER
*

WRHDLR:

LDA TRNDF TEST DATA AVAILABLE FLAG

BEQ NODATA JUMP IF NO DATA TO TRANSMIT
JSR OUTDAT SEND DATA TO 6821 PIA
RTI

*

*IF AN OUTPUT INTERRUPT OCCURS WHEN NO DATA IS AVAILABLE,

* WE MUST CLEAR IT CIN THE 6821) TO AVOID AN ENDLESS LOOP. LATER,

WHEN A CHARACTER BECOMES AVAILABLE, WE NEED TO KNOW THAT AN

OUTPUT INTERRUPT HAS OCCURRED WITHOUT BEING SERVICED. THE KEY

TO DOING THIS IS THE OUTPUT INTERRUPT EXPECTED FLAG OIE. THIS FLAG IS

CLEARED WHEN AN OUTPUT INTERRUPT HAS OCCURRED BUT HAS NOT BEEN

SERVICED. IT IS ALSO CLEARED INITIALLY SINCE THE 6821 PIA STARTS
OUT READY. OIE IS SET WHENEVER DATA IS ACTUALLY SENT TO THE PIA.

THUS THE OUTPUT ROUTINE OUTCH CAN CHECK OIE TO DETERMINE WHETHER

TO SEND THE DATA IMMEDIATELY OR WAIT FOR AN OUTPUT INTERRUPT.

*THE PROBLEM IS THAT AN OUTPUT DEVICE MAY REQUEST SERVICE BEFORE

THE COMPUTER HAS ANYTHING TO SEND CUNLIKE AN INPUT DEVICE THAT

HAS DATA WHEN IT REQUESTS SERVICE). THE OIE FLAG SOLVES THE

PROBLEM OF AN UNSERVICED OUTPUT INTERRUPT ASSERTING ITSELF

REPEATEDLY, WHILE STILL ENSURING THE RECOGNITION OF OUTPUT
INTERRUPTS.

+ + + + HF HH HF F

+ + + He KH

NODATA:

LDA PIADRB READ PORT B DATA REGISTER TO CLEAR

9B Unbuffered interrupt-driven input/output (PINTIO)

* INTERRUPT

CLR OIE DO NOT EXPECT AN INTERRUPT

WRDONE:
RTI

KKK IKI III KR IKKRKRKIIKKKEEREKE EKER KEK

*ROUTINE: OUTDAT
*PURPOSE: SEND CHARACTER TO 6821 PIA
xENTRY: TRNDAT = CHARACTER TO SEND

*EXIT: NONE
*REGISTERS USED: A,CC
HHH IKK IK IRI III IRIE EKER KES

OUTDAT:
LDA TRNDAT GET DATA FROM OUTPUT BUFFER

STA PIADRB SEND DATA TO 6821 PIA

CLR TRNDF INDICATE OUTPUT BUFFER EMPTY

LDA #SF F INDICATE OUTPUT INTERRUPT EXPECTED

STA OIE OIE = FF HEX

RTS

*DATA SECTION

RECDAT RMB 1 RECEIVE DATA

RECDF RMB 1 RECEIVE DATA FLAG (0 = NO DATA,

x FF = DATA)

TRNDAT RMB 1 TRANSMIT DATA

TRNDF RMB 1 TRANSMIT DATA FLAG
x (0 = BUFFER EMPTY, FF = BUFFER FULL)

OIE RMB 1 OUTPUT INTERRUPT EXPECTED

* (0 = INTERRUPT OCCURRED WITHOUT

* BEING SERVICED, FF = INTERRUPT

x SERVICED)

NEXTSR RMB 2 ADDRESS OF NEXT INTERRUPT SERVICE

* ROUTINE

*

* SAMPLE EXECUTION:
*

*CHARACTER EQUATES
*

ESCAPE EQU $1B ASCII ESCAPE CHARACTER

TESTCH EQU "A TEST CHARACTER = A

SC9B:

JSR INIT INITIALIZE 6821 PIA, INTERRUPT SYSTEM

CLI ENABLE INTERRUPTS

*

*SIMPLE EXAMPLE - READ AND ECHO CHARACTERS

* UNTIL AN ESC IS RECEIVED

*

LOOP:

JSR INCH READ CHARACTER

PSHS A

315

316

ASYNLP:

DONE:

Assembly language subroutines for the 6809

JSR OUTCH ECHO CHARACTER
PULS A

CMPA #ESCAPE IS CHARACTER AN ESCAPE?
BNE LOOP STAY IN LOOP IF NOT
*

*AN ASYNCHRONOUS EXAMPLE

* OUTPUT "A" TO CONSOLE CONTINUOUSLY BUT ALSO LOOK AT
* INPUT SIDE, READING AND ECHOING INPUT CHARACTERS.
*

*OUTPUT AN "A" IF OUTPUT IS NOT BUSY
JSR OUTST IS OUTPUT BUSY?

BCS ASYNLP BRANCH (WAIT) IF IT IS
LDA #TESTCH

JSR OUTCH OUTPUT TEST CHARACTER
*

*CHECK INPUT PORT

*ECHO CHARACTER IF ONE IS AVAILABLE
*EXIT ON ESCAPE CHARACTER
*

JSR INST IS INPUT DATA AVAILABLE?
BCS ASYNLP BRANCH IF NOT (SEND ANOTHER "A"')
JSR INCH GET CHARACTER
CMPA #ESCAPE IS IT AN ESCAPE?
BEQ DONE BRANCH IF IT IS

JSR OUTCH ELSE ECHO CHARACTER
BRA ASYNLP AND CONTINUE

BRA SC9B REPEAT TEST

END

9C_ Buffered interrupt-driven input/output (SINTB) 317

9C_ Buffered interrupt-driven input/output using a 6850 ACIA
(SINTB)

Performs interrupt-driven input and output using a 6850 ACIA and

multiple-character buffers. Consists of the following subroutines:

INCH reads a character from the input buffer.

INST determines whether the input buffer is empty.

OUTCH writes a character into the output buffer. —

Fv Pm OUTST determines whether the output buffer is full.

5. INIT initializes the buffers, the interrupt system, and the 6850

ACIA.

6. IOSRVC determines which interrupt occurred and services ACIA

input or output interrupts.

Procedures

1. INCH waits for a character to become available, gets the character

from the head of the input buffer, moves the head of the buffer up one

position, and decreases the input buffer counter by 1.

2. INST clears Carry if the input buffer counter is 0 and sets it other-

wise.

3. OUTCH waits until there is space in the output buffer (i.e. until the

output buffer is not full), stores the character at the tail of the buffer,

moves the tail up one position, and increases the output buffer counter

by 1.

4. OUTST sets Carry if the output buffer counter is equal to the

buffer’s length (i.e. if the output buffer is full) and clears Carry

otherwise.

5, INIT clears the buffer counters and sets all buffer pointers to the

buffers’ base addresses. It then resets the 6850 ACIA and sets its

operating mode by storing the appropriate value in its control register.

It initializes the ACIA with input interrupts enabled and output inter-

rupts disabled. See Subroutine 8E for more details about initializing

6850 ACIAs. INIT also clears the OIE flag, indicating that the ACIA is

ready to transmit data, although it cannot cause an output interrupt.

6. IOSRVC determines whether the interrupt was an input interrupt

318 Assembly language subroutines for the 6809

(bit 0 of the ACIA status register = 1), an output interrupt (bit 1 of the
ACIA status register = 1), or the product of some other device. If the
input interrupt occurred, the program reads a character from the 6850
ACIA. If there is room in the input buffer, it stores the character at the
tail of the buffer, moves the tail up one position, and increases the input
buffer counter by 1. If the buffer is full, it simply discards the character.

If the output interrupt occurred, the program determines whether
output data is available. If not, it simply disables the output interrupt
(so it will not interrupt repeatedly) and clears the OIE flag that indicates
the ACIA is actually ready. The flag tells the main program that the
ACIA is ready even though it cannot force an interrupt. If there is data
in the output buffer, the program obtains a character from the buffer’s
head, sends it to the ACIA, moves the head up One position, and
decreases the output buffer counter by 1. It then enables both input and
output interrupts and sets the OIE flag (in case the flag had been cleared
earlier).

The new problem with multiple-character buffers is the management
of queues. The main program must read the data in the order in which
the input interrupt service routine receives it. Similarly, the output
interrupt service routine must send the data in the order in which the
main program stores it. Thus we have the following requirements for
handling input:

1. The main program must know whether the input buffer is empty.

2. Ifthe input buffer is not empty, the main program must know where
the oldest character is (i.e. the one that was received first).

3. The input interrupt service routine must know whether the input
buffer is full.

4. If the input buffer is not full, the input interrupt service routine
must know where the next empty place is (i.e. where it should store the
new character).

The output interrupt service routine and the main program have
similar requirements for the output buffer, although the roles of sender
and receiver are reversed.
We meet requirements 1 and 3 by maintaining a counter ICNT. INIT

initializes ICNT to 0, the interrupt service routine adds 1 to it whenever
it receives a character (assuming the buffer is not full), and the main
program subtracts 1 from it whenever it removes a character from the
buffer. Thus the main program can determine whether the input buffer
is empty by checking if ICNT is 0. Similarly, the interrupt service

9C Buffered interrupt-driven input/output (SINTB) 319

routine can determine whether the input buffer is full by checking if
ICNT is equal to the size of the buffer.
We meet requirements 2 and 4 by maintaining two pointers, IHEAD

and ITAIL, defined as follows:

1. ITAIL is the address of the next empty location in the input buffer.

2. THEAD is the address of the oldest character in the input buffer.

INIT initializes IHEAD and ITAIL to the base address of the input
buffer. Whenever the interrupt service routine receives a character, it
places it in the buffer at ITAIL and moves ITAIL up one position
(assuming that the buffer is not full). Whenever the main program reads
a character, it removes it from the buffer at [HEAD and moves IHEAD

up one position. Thus IHEAD ‘chases’ ITAIL across the buffer with the
service routine entering characters at one end (the tail) while the main
program removes them from the other end (the head).

The occupied part of the buffer thus could start and end anywhere. If
either IHEAD or ITAIL reaches the physical end of the buffer, we
simply set it back to the base address. Thus we allow wraparound on the
buffer; i.e. the occupied part of the buffer could start near the end (say,
at byte #195 of a 200-byte buffer) and continue back past the beginning
(say, to byte #10). Then IHEAD would be BASE + 194, ITAIL would
be BASE + 9, and the buffer would contain 15 characters occupying
addresses BASE + 194 through BASE + 199 and BASE through BASE
+ 8.

Entry conditions

1. INCH: none

2. INST: none

3. OUTCH: character to transmit in register A

4. OUTST: none

5. INIT: none

Exit conditions

1. INCH: character in register A

2. INST: Carry = 0 if input buffer is empty, 1 if a character is available

320 Assembly language subroutines for the 6809

3. OUTCH: none

4. OUTST: Carry = 0 if output buffer is not full, 1 if it is full

5. INIT: none

Registers used

1. INCH: A, CC, X

2. INST: A, CC

3. OUTCH: A, CC, X

4. OUTST: A, CC

5. INIT: A

Execution time

1. INCH: approximately 86 cycles if a character is available

2. INST: 21 cycles

3. OUTCH: approximately 115 cycles if the output buffer is not full
and an output interrupt is expected. Approximately an additional 79
cycles if no output interrupt is expected.

4. OUTST: 26 cycles

5. INIT: 106 cycles

6. IOSRVC: 112 cycles to service an input interrupt, 148 cycles to
service an Output interrupt, 44 cycles to determine the interrupt is from
another device. These times all include the 21 cycles required by the
CPU to respond to an interrupt.

Note The approximations here are the result of the variable amount
of time required to update the buffer pointers with wraparound.

Program size 235 bytes

Data memory required 11 bytes anywhere in RAM for the heads and

t+ + + + FF FH HF HF HF HF HF $F HF HF HF HF HF HF FH HF HF HF HF F HF F HF HF HF HF HF HF HF HF HF HF HF FH H HF HF HF HF HR K€ OF

9C Buffered interrupt-driven input/output (SINTB) 321

tails of the input and output buffers (2 bytes starting at addresses
IHEAD, ITAIL, OHEAD, and OTAIL, respectively), the number of
characters in the buffers (2 bytes at addresses ICNT and OCNT), and
the OIE flag (address OIE). This does not include the actual input and
output buffers. The input buffer starts at address IBUF and its size is
IBSZ; the output buffer starts at address OBUF and its size is OBSZ.

Title Interrupt input and output using a 6850 ACIA

and multiple character buffers.
Name: SINTB

Purpose: This program consists of 5 subroutines which

perform interrupt driven input and output using
a 6850 ACIA.

INCH

Read a character.
INST

Determine input status (whether input

buffer is empty).
OUTCH

Write a character.
OUTST

Determine output status (whether output
buffer is full).

INIT

Initialize 6850 ACIA and interrupt system.

Entry: INCH

No parameters.

INST

No parameters.

OUTCH

Register A = character to transmit
OUTST

No parameters.

INIT

No parameters.

Exit: INCH

Register A = character.
INST

Carry = 0 if input buffer is empty,
1 if character is available.

OUTCH

No parameters

OUTST

Carry = 0 if output buffer is not
full, 1 if it is full.

INIT

No parameters.

Registers Used: INCH

A,CC,X

322 Assembly language subroutines for the 6809

INST
A,CC

OUTCH

A,CC,X
OUTST

A,CC
INIT

A,X

Time: INCH

Approximately 86 cycles if a character is
available

INST

21 cycles

OUTCH

Approximately 115 cycles if output buffer is

not full and output interrupt is expected.
OUTST

26 cycles
INIT

106 cycles

IOSRVC

44 cycles minimum if the interrupt is not ours

112 cycles to service an input interrupt

148 cycles to service an output interrupt

These include the 21 cycles required for the

processor to respond to an interrupt.

Size: Program 235 bytes

Data 11 bytes plus size of buffers

Buffers: The routines assume two buffers starting at
address IBUF and OBUF. The length of the

buffers in bytes are IBSZ and OBSZ. For the

input buffer, IHEAD is the address of the

oldest character (the next one the main
program should read), ITAIL is the address of
the next empty element (the next one the service
routine should fill), and ICNT is the number of
bytes currently filled with characters. For the
output buffer, OHEAD is the address of the

character (the next one the service routine
should send), OTAIL is the address of the next
empty element (the next one the main program
should fill), and OCNT is the number of bytes
currently filled with characters.

Note: Wraparound is provided on both buffers, so that
the currently filled area may start anywhere
and extend through the end of the buffer and
back to the beginning. For example, if the

output buffer is 40 hex bytes long, the section

filled with characters could extend from OBUF

+32H COHEAD) through OBUF+10H C(OTAIL-1). That
is, there are 19H filled bytes occupying
addresses OBUF+32H through OBUF+10H. The buffer

+ + + + FF FF HF HF HF HF F HF HF HF HF HF HF + HF HF FF HB HR HF H HF HF F HF HF HF OF HF HF HF OF HF FF OF F HF OF H FF HF HH H

9C Buffered interrupt-driven input/output (SINTB) 323

thus looks like a television picture with the

vertical hold skewed, so that the frame starts

above the bottom of the screen, leaves off at

the top, and continues at the bottom. + + & +

*

*6850 ACIA CUART) EQUATES
*ARBITRARY 6850 ACIA MEMORY ADDRESSES
*

ACIADR' EQU $A400 ACIA DATA REGISTER

ACIASR EQU $A401 ACIA STATUS REGISTER
ACIACR EQU $A401 ACIA CONTROL REGISTER
*

*TRS-80 COLOR COMPUTER INTERRUPT VECTOR
*

INTVEC EQU $010D VECTOR TO INTERRUPT SERVICE ROUTINE

*

*READ CHARACTER FROM INPUT BUFFER
*

INCH:

JSR INST GET INPUT STATUS

BCC INCH BRANCH (WAIT) IF NO CHARACTER AVAILABLE

DEC ICNT REDUCE INPUT BUFFER COUNT BY 1

LDX IHEAD GET CHARACTER FROM HEAD OF INPUT BUFFER

LDA x

JSR INCIPTR MOVE HEAD POINTER UP 1 WITH WRAPAROUND

STX IHEAD

RTS

*

*RETURN INPUT STATUS (CARRY = 1 IF INPUT DATA AVAILABLE)
*

INST:

CLC CLEAR CARRY, INDICATING BUFFER EMPTY

TST ICNT TEST INPUT BUFFER COUNT

BEQ EXINST BRANCH CEXIT) IF BUFFER EMPTY

SEC SET CARRY TO INDICATE DATA AVAILABLE

EXINST:
RTS RETURN, CARRY INDICATES WHETHER DATA

* IS AVAILABLE
*

*WRITE A CHARACTER INTO OUTPUT BUFFER
*

OUTCH:
PSHS A SAVE CHARACTER TO WRITE

*WAIT UNTIL OUTPUT BUFFER NOT FULL, STORE NEXT CHARACTER

WAITOC:
JSR OUTST GET OUTPUT STATUS
BCS WAITOC BRANCH (WAIT) IF OUTPUT BUFFER FULL

INC OCNT INCREASE OUTPUT BUFFER COUNT BY 1
LDX OTAIL POINT AT NEXT EMPTY BYTE IN BUFFER

PULS A GET CHARACTER
STA 7X STORE CHARACTER AT TAIL OF BUFFER

JSR INCOPTR MOVE TAIL POINTER UP 1

324

EXWAIT:

*

*OUTPUT
*

OUTST:

EXOUTS:

*

Assembly language subroutines for the 6809

STX OTAIL

TST OIE TEST OUTPUT INTERRUPT EXPECTED FLAG
BNE EXWAIT

JSR OUTDAT OUTPUT CHARACTER IMMEDIATELY IF

* OUTPUT INTERRUPT NOT EXPECTED

RTS

STATUS (CARRY = 1 IF OUTPUT BUFFER FULL)

LDA OCNT GET OUTPUT BUFFER COUNT
CMPA #S ZOBUF IS OUTPUT BUFFER FULL?
SEC SET CARRY, INDICATING OUTPUT BUFFER

* FULL
BEQ EXOUTS BRANCH CEXIT) IF OUTPUT BUFFER FULL
CLC INDICATE OUTPUT BUFFER NOT FULL

RTS CARRY = 1 IF BUFFER FULL, O IF NOT

*INITIALIZE 6850 ACIA, INTERRUPT SYSTEM
*

INIT:

*

*DISABLE INTERRUPTS DURING INITIALIZATION BUT SAVE
* PREVIOUS STATE OF INTERRUPT FLAG
*

PSHS CC SAVE CURRENT FLAGS (PARTICULARLY I FLAG)
SEI DISABLE INTERRUPTS DURING

* INITIALIZATION
*

*INITIALIZE TRS-80 COLOR COMPUTER INTERRUPT VECTOR
*

LDX INTVEC GET CURRENT INTERRUPT VECTOR
STX NEXTSR SAVE IT AS ADDRESS OF NEXT SERVICE

* ROUTINE
LDX #IOSRVC GET ADDRESS OF OUR SERVICE ROUTINE
STX INTVEC SAVE IT AS INTERRUPT VECTOR
*

*INITIALIZE BUFFER COUNTERS AND POINTERS, INTERRUPT FLAG
*

CLR ICNT INPUT BUFFER EMPTY
CLR OCNT OUTPUT BUFFER EMPTY
CLR OIE INDICATE NO OUTPUT INTERRUPT EXPECTED
LDX #IBUF INPUT HEAD/TAIL POINT TO BASE
STX IHEAD ADDRESS OF INPUT BUFFER
STX ITAIL
LDX #0BUF OUTPUT HEAD/TAIL POINT TO BASE
STX OHEAD ADDRESS OF OUTPUT BUFFER
STX OTAIL
*

*INITIALIZE 6850 ACIA
*

*

9C_ Buffered interrupt-driven input/output (SINTB) 325

LDA #/400000011 MASTER RESET 6850 ACIA (NOTE IT
STA ACIACR HAS NO RESET INPUT)
LDA #%10010001
STA ACIACR SET ACIA OPERATING MODE

*BIT 7 = 1 TO ENABLE INPUT INTERRUPTS
*BITS 6,5 = 0 TO DISABLE OUTPUT
* INTERRUPTS

*BITS 4,3,2 = 100 FOR 8 DATA BITS,
* 2 STOP BITS

*BITS 1,0 = 01 FOR DIVIDE BY 16 CLOCK
* MODE

PULS CC RESTORE FLAGS (THIS REENABLES INTERRUPTS
* IF THEY WERE ENABLED WHEN INIT WAS
* CALLED)

RTS

*INPUT/OUTPUT INTERRUPT SERVICE ROUTINE
*

IOSRVC:

*

*

*GET ACIA STATUS: BIT 0 = 1 IF AN INPUT INTERRUPT,
* BIT 1 = 1 IF AN OUTPUT INTERRUPT
*

LDA ACIASR

LSRA MOVE BIT O TO CARRY
BCS RDHDLR BRANCH IF AN INPUT INTERRUPT
LSRA MOVE BIT 1 TO CARRY

BCS WRHDLR BRANCH IF AN OUTPUT INTERRUPT
*

*INTERRUPT WAS NOT OURS, TRY NEXT SOURCE
*

JMP CNEXTSRI INTERRUPT IS FROM ANOTHER SOURCE

*SERVICE INPUT INTERRUPTS
*

RDHDLR:

EXITRH:

*

*OUTPUT
*

WRHDLR:

LDA ACIADR READ DATA FROM ACIA

LDB ICNT ANY ROOM IN INPUT BUFFER?
CMPB #SZIBUF

BEQ EXITRH BRANCH CEXIT) IF NO ROOM IN INPUT BUFFER
INC ICNT INCREMENT INPUT BUFFER COUNT

LDX ITAIL STORE CHARACTER AT TAIL OF INPUT BUFFER
STA 7X

JSR INCIPTR INCREMENT TAIL POINTER WITH WRAPAROUND
STX ITAIL

RTI

(WRITE) INTERRUPT HANDLER

TST OCNT TEST OUTPUT BUFFER COUNT

BEQ NODATA BRANCH IF NO DATA TO TRANSMIT

326 Assembly language subroutines for the 6809

JSR OUTDAT ELSE OUTPUT DATA TO 6850 ACIA
RTI

*

*IF AN OUTPUT INTERRUPT OCCURS WHEN NO DATA IS AVAILABLE,

* WE MUST DISABLE IT TO AVOID AN ENDLESS LOOP. WHEN THE NEXT CHARACTER
* IS READY, IT MUST BE SENT IMMEDIATELY SINCE NO INTERRUPT WILL

* OCCUR. THIS STATE IN WHICH AN OUTPUT INTERRUPT HAS OCCURRED

* BUT HAS NOT BEEN SERVICED IS INDICATED BY CLEARING OIE (OUTPUT
* INTERRUPT EXPECTED FLAG).
*

NODATA:

CLR OIE DO NOT EXPECT AN INTERRUPT
RTI

FH KI II II III IKI KIKI E

*ROUTINE: OUTDAT

*PURPOSE: SEND CHARACTER TO 6850 ACIA FROM THE OUTPUT BUFFER
*ENTRY: X CONTAINS THE ADDRESS OF THE CHARACTER TO SEND
*EXIT: NONE
*REGISTERS USED: A,X,CC
KKK III IK IIIT III III III IISA TARA ERR IK

OUTDAT:

LDA ACIASR
AND #%00000010 IS ACIA OUTPUT REGISTER EMPTY?
BEQ OUTDAT BRANCH (WAIT) IF REGISTER NOT EMPTY
LDX OHEAD GET HEAD OF OUTPUT BUFFER
LDA 7X GET CHARACTER FROM HEAD OF BUFFER
STA ACIADR SEND DATA TO ACIA
JSR INCOPTR INCREMENT POINTER WITH WRAPAROUND
DEC OCNT DECREMENT OUTPUT BUFFER COUNTER
LDA #%410110001
STA ACIACR ENABLE 6850 INPUT AND OUTPUT INTERRUPTS

* 8 DATA BITS, 2 STOP BITS, DIVIDE BY
* 16 CLOCK

LDA #3 F F
STA OIE INDICATE OUTPUT INTERRUPTS ENABLED
RTS

FR KK IKK IKI KIRKE KEKE

*ROUTINE: INCIPTR
*PURPOSE: INCREMENT POINTER INTO INPUT
* BUFFER WITH WRAPAROUND
*ENTRY: X = POINTER
*EXIT: X = POINTER INCREMENTED WITH WRAPAROUND
*REGISTERS USED: CC
FRI III II III IIIT ITI IIIS IITA TEER EERE

INCIPTR:

LEAX 1,X INCREMENT POINTER BY 1
CMPX #EIBUF COMPARE POINTER, END OF BUFFER
BNE RETINC BRANCH IF NOT EQUAL
LDX #IBUF IF EQUAL, SET POINTER BACK TO BASE OF

* BUFFER
RETINC:

9C Buffered interrupt-driven input/output (SINTB)

RTS

KKK KKK IIT IIIA EER RRR I

*ROUTINE: INCOPTR

*PURPOSE: INCREMENT POINTER INTO OUTPUT
* BUFFER WITH WRAPAROUND
*ENTRY: X = POINTER

*EXIT: X = POINTER INCREMENTED WITH WRAPAROUND
*REGISTERS USED: CC
KHKRKKKKKKKK KKK EKRKEKKREEEEERERKRK RRR AKI

327

INCOPTR:

LEAX 1,X INCREMENT POINTER BY 1

CMPX #EOBUF COMPARE POINTER, END OF BUFFER
BNE RETONC BRANCH IF NOT EQUAL

LDX #0BUF IF EQUAL, SET POINTER BACK TO BASE OF
* BUFFER

RETONC:
RTS

*DATA SECTION

IHEAD: RMB 2 POINTER TO OLDEST CHARACTER IN INPUT

* BUFFER (NEXT CHARACTER TO READ)
ITAIL: RMB 2 POINTER TO NEWEST CHARACTER IN INPUT

* BUFFER (LAST CHARACTER READ)

ICNT: RMB 1 NUMBER OF CHARACTERS IN INPUT BUFFER
OHEAD: RMB 2 POINTER TO OLDEST CHARACTER IN OUTPUT

* BUFFER (LAST CHARACTER WRITTEN)
OTAIL: RMB 2 POINTER TO NEWEST CHARACTER IN OUTPUT

* BUFFER (NEXT CHARACTER TO SEND)
OCNT: RMB 1 NUMBER OF CHARACTERS IN OUTPUT BUFFER
SZIBUF EQU 10 SIZE OF INPUT BUFFER
IBUF: RMB SZIBUF INPUT BUFFER

EIBUF EQU $ END OF INPUT BUFFER
SZOBUF EQU 10 SIZE OF OUTPUT BUFFER

OBUF: RMB SZOBUF OUTPUT BUFFER
EQBUF EQU $ END OF OUTPUT BUFFER

OIE: RMB 1 OUTPUT INTERRUPT EXPECTED

* (0 = NO INTERRUPT EXPECTED,
* FF = INTERRUPT EXPECTED)

NEXTSR: RMB 2 ADDRESS OF NEXT INTERRUPT SERVICE

*

*

*

SAMPLE EXECUTION:

*CHARACTER EQUATES

* ROUTINE

ESCAPE EQU $1B ASCII ESCAPE CHARACTER
TESTCH EQU "A TEST CHARACTER = A

SC9C:

JSR INIT INITIALIZE 6850 ACIA, INTERRUPT SYSTEM
*

*SIMPLE EXAMPLE ~- READ AND ECHO CHARACTERS
* UNTIL AN ESC IS RECEIVED

328

LOOP:

ASYNLP:

DONE:

Assembly language subroutines for the 6809

JSR INCH READ CHARACTER

PSHS A
JSR OUTCH ECHO CHARACTER
PULS A

CMPA #ESCAPE IS CHARACTER AN ESCAPE?
BNE LOOP STAY IN LOOP IF NOT
*

*AN ASYNCHRONOUS EXAMPLE

* OUTPUT "A" TO CONSOLE CONTINUOUSLY BUT ALSO LOOK AT

* INPUT SIDE, READING AND ECHOING ANY INPUT CHARACTERS.

*OUTPUT AN "A" IF OUTPUT IS NOT BUSY

JSR OUTST IS OUTPUT BUSY?
BCC ASYNLP JUMP IF IT IS
LDA #TESTCH

JSR OUTCH OUTPUT CHARACTER
*

*CHECK INPUT PORT

*ECHO CHARACTER IF ONE IS AVAILABLE
*EXIT ON ESCAPE CHARACTER
*

JSR INST IS INPUT DATA AVAILABLE?

BCS ASYNLP JUMP IF NOT (SEND ANOTHER "A")
JSR INCH GET CHARACTER

CMPA #ESCAPE IS IT AN ESCAPE CHARACTER?
BEQ DONE BRANCH IF IT IS
JSR OUTCH ELSE ECHO CHARACTER
BRA ASYNLP AND CONTINUE

BRA SC9C REPEAT TEST

END

9D Real-time clock and calendar (CLOCK) 329

9D _ Real-time clock and calendar
(CLOCK)

Maintains a time-of-day 24-hour clock and a calendar based on a real-
time clock interrupt generated from a 6840 Programmable Timer Module
(PTM). Consists of the following subroutines:

1. CLOCK returns the base address of the clock variables.

2. ICLK initializes the clock interrupt and the clock variables.

3. CLKINT updates the clock after each interrupt (assumed to be
spaced one tick apart).

Procedure

1. CLOCK loads the base address of the clock variables into register X.
The clock variables are stored in the following order (lowest address
first): ticks, seconds, minutes, hours, days, months, less significant byte
of year, more significant byte of year.

2. ICLK initializes the 6840 PIT, the interrupt system, and the clock

variables. The arbitrary starting time is 00:00.00 (12 a.m.) 1 January
1980. A real application would clearly require outside intervention to
load or change the clock.

3. CLKINT decrements the remaining tick count by 1 and updates the
rest of the clock variables if necessary. Of course, the number of seconds
and minutes must be less than 60 and the number of hours must be less
than 24. The day of the month must be less than or equal to the last day for
the current month; an array of the last days of each month begins at
address LASTDY.

If the month is February (i.e. month 2), the program checks if the
current year is a leap year. This involves determining whether the two
least significant bits of memory location YEAR are both Os. If the current
year is a leap year, the last day of February is the 29th, not the 28th.

The month number may not exceed 12 (December) or a Carry to the
year number is necessary. The program must reinitialize the variables
properly when carries occur; i.e. to DTICK; seconds, minutes, and hours

to 0; day and month to 1 (meaning the first day and January, respec-
tively).

G. J. Lipovski has described an alternative approach using a 60 Hz
clock input and all three 6840 timers. See pp. 340-341 of his book titled
Microcomputer Interfacing (Lexington Books, Lexington, MA, 1980).

330 Assembly language subroutines for the 6809

Entry conditions

1. CLOCK: none

2. ICLK: none

3. CLKINT: none

Exit conditions

1. CLOCK: base address of clock variables in register X

2. ICLK: none

3. CLKINT: none

Examples

These examples assume that the tick rate is DTICK Hz (less than 256
Hz—typical values would be 60 Hz or 100 Hz) and that the clock and
calendar are saved in memory locations

TICK number of ticks remaining before a carry occurs, counted
down from DTICK

SEC seconds (0 — 59)
MIN minutes (0 — 59)
HOUR hour of day (0-23)
DAY day of month (1 — 28, 29, 30, or 31, depending on month)
MONTH ~ month of year (1-12 for January through December)
YEAR and
YEAR+1_ current year

1. Starting values are 7 March 1986, 11:59.59 p.m. and 1 tick left. That
1S:

(TICK) = 1
(SEC) = 59
(MIN) = 59
(HOUR) = 23
(DAY) = 07
(MONTH) = 03
(YEAR and YEAR +1) = 1986

Result (after the tick): 8 March 1986, 12:00.00 a.m. and DTICK ticks.
That 1s:

9D _ Real-time clock and calendar (CLOCK) 331

(TICK) = DTICK
(SEC) =0
(MIN) = 0
(HOUR) = 0
(DAY) = 08
(MONTH) = 03
(YEAR and YEAR + 1) = 1986
2. Starting values are 31 December 1986, 11:59.59 p.m. and 1 tick left.
That is:

(TICK) = 1
(SEC) = 59
(MIN) = 59
(HOUR) = 23
(DAY) = 31
(MONTH) = 12
(YEAR and YEAR+1) = 1986

Result (after the tick): 1 January 1987, 12:00.00 a.m. and DTICK
ticks. That is:

(TICK) = DTICK
(SEC) =0
(MIN) = 0
(HOUR) = 0
(DAY) =1
(MONTH) = 1
(YEAR and YEAR + 1) = 1987

Registers used

1. CLOCK: CC, X

2. ICLK: A,B, CC, X, Y

3. CLKINT: none

Execution time

1. CLOCK: 8 cycles

2. ICLK: 115 cycles

3. CLKINT: 59 cycles if only TICK must be decremented, 244 cycles

332

+ +

+ + F HH HF HF OH HF FH HF HF HF H HF HF FH HF HF HF HF HF HF FF FF HF F HF HF HF HF F F FF

6840 PROGRAMMABLE

Assembly language subroutines for the 6809

maximum if changing to a new year. These times include the 21 cycles
required by the CPU to respond to an interrupt.

Program size 190 bytes

Data memory required 8 bytes anywhere in RAM for the clock
variables (starting at address CLKVAR)

Title

Name:

Purpose:

Entry:

Exit:

Registers Used:

Time:

Size:

Real time clock and calendar

CLOCK

This program maintains a time of day 24 hour

clock and a calendar based on a real time clock

interrupt from a 6840 programmable timer.

CLOCK
Returns base address of clock variables

ICLK
Initializes 6840 timer and clock interrupt

CLOCK

None

ICLK

None

CLOCK
Register X = Base address of time variables

ICLK
None

A,B,CC,X,Y

CLOCK

8 cycles

ICLCK

115 cycles

CLKINT
If decrementing tick only, 59 cycles

Maximum if changing to a new year, 244

cycles

These include the 21 cycles required for the

processor to respond to an interrupt.

Program 190 bytes

Data 8 bytes

TIMER MODULE (PTM)

INITIALIZE TIMER 2 OF 6840 PTM AS 50 HZ SQUARE WAVE

GENERATOR FOR USE IN TIME-OF-DAY CLOCK.

9D Real-time clock and calendar (CLOCK) 333

TIMER GENERATES INTERRUPT AT END OF EACH 10 MS
INTERVAL CEVERY HALF-CYCLE)

WE ASSUME A 1 MHZ CLOCK INTO THE 6840, SO THAT A COUNTER VALUE
OF 1,000,000/100-1 = 9,999 (270F HEX) IS NEEDED TO GENERATE
A 50 HZ SQUARE WAVE + + &€ +

*ARBITRARY MEMORY ADDRESSES FOR 6840 PTM

PTMC13 EQU $A800 CONTROL REGISTERS 1 AND 3

PTMCR2 EQU $A801 CONTROL REGISTER 2
PTMT1H EQU $A802 TIMER 1, MORE SIGNIFICANT BYTE
PTMT1L EQU $A803 TIMER 1, LESS SIGNIFICANT BYTE
PTMT2H EQU $A804 TIMER 2, MORE SIGNIFICANT BYTE
PTMT2L EQU $A805 TIMER 2, LESS SIGNIFICANT BYTE
PTMT3H EQU $A806 TIMER 3, MORE SIGNIFICANT BYTE
PTMT3L EQU $A807 TIMER 3, LESS SIGNIFICANT BYTE
PTMSR EQU $A801 STATUS REGISTER
PTMT2C EQU $A804 TIMER 2 COUNTER

*6840 PTM MODE BYTE, COUNTER VALUE

PTMMOD EQU 401000000 *BIT 0 = O TO ACCESS CR3

*BIT 1 O TO USE ENABLE CLOCK
*BIT 2 = 0 FOR 16-BIT COUNT MODE

*BITS 3,5 = 00 FOR CONTINUOUS COUNTING
*BIT 4 = O FOR ACTIVATE WHEN LATCHES
* WRITTEN

*BIT 6 = 1 TO ENABLE INTERRUPT
*BIT 7 = 0 TO DISABLE OUTPUT

PTMCNT EQU 9999 COUNTER VALUE = 9999

*

*DEFAULT TICK VALUE (100 HZ REAL-TIME CLOCK)
*

DTICK EQU 100 DEFAULT TICK VALUE

*RETURN BASE ADDRESS OF CLOCK VARIABLES
CLOCK:

LDX #CLKVAR GET BASE ADDRESS OF CLOCK VARIABLES
RTS

*

*INITIALIZE 6840 PTM TO PRODUCE REGULAR CLOCK INTERRUPTS
*OPERATE TIMER 2 CONTINUOUSLY, PRODUCING AN INTERRUPT EVERY
* 100 MS
*

ICLK:

LDA #%00000001

STA PTMCR2 ADDRESS CONTROL REGISTER 1
STA PTMC13 RESET TIMERS

CLR PTMC13 ALLOW TIMERS TO OPERATE
LDD #0 CLEAR COUNTERS 1,3
STD PTMT1H

STD PTMT3H

LDA #PTMMOD SET TIMER 2'S OPERATING MODE
STA PTMCR2

LDD #PTMCNT PUT COUNT IN TIMER 2

334 Assembly language subroutines for the 6809

STD
*

PTMT2H START TIMER 2

*INITIALIZE CLOCK VARIABLES TO ARBITRARY VALUE
*JANUARY 1, 1980 00:00.00 (12 A.M.)
*A REAL CLOCK WOULD NEED OUTSIDE INTERVENTION
* TO SET OR CHANGE VALUES
*

LDX
LDA
STA
CLRA
STA
STA
STA
LDA
STA
STA
LDY
STY

CLI

RTS

#TICK
#DTICK
7X

aH UR HW =

*SERVICE CLOCK INTERRUPT
CLKINT:

LDA
LDA
LDX
DEC
BNE

LDA

STA

PTMSR
PTMT2C

#CLKVAR
TICKIDX,X
EXITCLK

#DTICK
TICKIDX,X

INITIALIZE TICKS

SECOND = 0
MINUTE = 0

HOUR = 0
A= 1
DAY = 1 (FIRST)

MONTH = 1 (JANUARY)

YEAR = 1980

ENABLE INTERRUPTS

CLEAR INTERRUPT BY READING STATUS
AND THEN COUNTER

SUBTRACT 1 FROM TICK COUNT

JUMP IF TICK COUNT NOT ZERO

SET TICK COUNT BACK TO DEFAULT

*SAVE REMAINING REGISTERS

CLRA

*INCREMENT SECONDS
INC
LDA

CMPA
BCS
CLR

SECIDX,X
SECIDX,X

#60
EXITCLK
SECIDX,X

*INCREMENT MINUTES
INC
LDA
CMPA
BCS
CLR

MINIDX,X

MINIDX,X

#60
EXITCLK

MINIDX,X

*INCREMENT HOUR

INC

LDA
CMPA
BCS

CLR

HRIDX,X

HRIDX,X
#24
EXITCLK
HRIDX,X

O = DEFAULT FOR SECONDS, MINUTES, HOURS

INCREMENT TO NEXT SECOND

SECONDS = 60?

EXIT IF LESS THAN 60 SECONDS

ELSE SECONDS = 0

INCREMENT TO NEXT MINUTE

MINUTES = 60?

EXIT IF LESS THAN 60 MINUTES
ELSE MINUTES = 0

INCREMENT TO NEXT HOUR

HOURS = 24?

EXIT IF LESS THAN 24 HOURS

ELSE HOUR = Q

INCMTH:

EXITCLK:

9D Real-time clock and calendar (CLOCK) 335

*INCREMENT DAY

LDA
LDY
LDA
INC

CMPA
BCS
*

MTHIDX,X

#LASTDY
A,Y

DAYIDX,X

DAYIDX,X

EXITCLK

GET CURRENT MONTH

GET LAST DAY OF CURRENT MONTH
INCREMENT DAY

IS IT LAST DAY?

EXIT IF NOT AT END OF MONTH

*DETERMINE IF THIS IS END OF FEBRUARY IN A LEAP
* YEAR (YEAR DIVISIBLE BY 4)
*

LDA

CMPA

BNE

LDA

ANDA

BNE
*

MTHIDX,X

#2
INCMTH
YRIDX+1,X
#400000011
INCMTH

GET MONTH

IS THIS FEBRUARY?

JUMP IF NOT, INCREMENT MONTH
IS IT A LEAP YEAR?

JUMP IF NOT

*FEBRUARY OF A LEAP YEAR HAS 29 DAYS, NOT 28 DAYS
*

LDA

CMPA

BCS

DAYIDX,X

#29

EXITCLK

*INCREMENT MONTH

LDA

STA

LDA
INC

CMPA
BCS

LDA

STA

#1

DAYIDX,X

MTHIDX,X
MTHIDX,X

#12

EXITCLK

#1

MTHIDX,X

*INCREMENT YEAR

LDD

ADDD

STD

YRIDX,X

#1
YEAR

GET DAY

EXIT IF NOT 1ST OF MARCH

DEFAULT IS 1 FOR DAY AND MONTH
DAY = 1

INCREMENT MONTH

WAS OLD MONTH DECEMBER?
EXIT IF NOT
ELSE

* CHANGE MONTH TO 1 (JANUARY)

GET YEAR

ADD 1 TO YEAR

STORE NEW YEAR

*RESTORE REGISTERS AND EXIT
RTI RETURN

*ARRAY OF LAST DAYS OF EACH MONTH
LASTDY:

FCB

FCB

FCB

FCB

FCB

FCB

FCB

FCB

FCB

31
28
31
30
31
30
31
31
30

JANUARY

FEBRUARY (EXCEPT LEAP YEARS)
MARCH

APRIL

MAY

JUNE

JULY

AUGUST

SEPTEMBER

336 Assembly language subroutines for the 6809

FCB 31 OCTOBER

FCB 30 NOVEMBER
FCB 31 DECEMBER

*CLOCK VARIABLES

CLKVAR:

TICK:

SEC:

MIN:

HOUR:

DAY:

MONTH:

YEAR:

*

*

*

RMB 1 TICKS LEFT IN CURRENT SECOND
RMB 1 SECONDS
RMB 1 MINUTES

RMB 1 HOURS
RMB 1 DAY (1 TO NUMBER OF DAYS IN A MONTH)
RMB 1 MONTH 1=JANUARY .. 12=DECEMBER
RMB 2 YEAR

SAMPLE EXECUTION

*CLOCK VARIABLE INDEXES

TCKIDX

SECIDX

MINIDX

HRIDX

DAYIDX

MTHIDX

YRIDX

SCID:

WAITYR:

EQU 0 INDEX TO TICK
EQU 1 INDEX TO SECOND
EQU 2 INDEX TO MINUTE
EQU 3 INDEX TO HOUR

EQU 4 INDEX TO DAY
EQU 5 INDEX TO MONTH

EQU 6 INDEX TO YEAR

JSR ICLK INITIALIZE CLOCK

*INITIALIZE CLOCK TO 2/7/86 14:00:00 (2 PM, FEB. 7, 1986)
JSR CLOCK X = ADDRESS OF CLOCK VARIABLES
CLR SEC SECONDS = 0
CLR MIN MINUTES = 0
LDA #14 HOUR = 14 (2 PM)
STA HOUR
LDA #7 DAY = 7
STA DAY
LDA #2 MONTH = 2 (FEBRUARY)

STA MONTH

LDX #1986
STX YEAR
*

*WAIT FOR CLOCK TO BE 2/7/86 14:01:20 (2:01.20 PM, FEB. 7, 1986)
*

*NOTE: MUST BE CAREFUL TO EXIT IF CLOCK IS ACCIDENTALLY
* SET AHEAD. IF WE CHECK ONLY FOR EQUALITY, WE MIGHT NEVER
* FIND IT. THUS WE HAVE >= IN TESTS BELOW, NOT JUST =.
*

*WAIT FOR YEAR >= TARGET YEAR

JSR CLOCK X = BASE ADDRESS OF CLOCK VARIABLES
LDY TYEAR Y YEAR TO WAIT FOR

*COMPARE CURRENT YEAR AND TARGET YEAR
CMPY YEAR
BHI WAITYR BRANCH IF YEAR NOT >= TARGET YEAR
*

WITIM:

WTUNIT:

HERE:

x

* TARGET
*

TYEAR:

NTUNIT:

TARGET:

9D Real-time clock and calendar (CLOCK) 337

*WAIT FOR REST OF TIME UNITS TO BE GREATER THAN OR EQUAL
* TO TARGET VALUES
*

LDY #TARGET POINT TO TARGET VALUES

LEAX MTHIDX,X POINT TO END OF TIME VALUES

LDB NTUNIT NUMBER OF TIME UNITS IN COMPARISON
*

*GET NEXT TARGET VALUE
*

LDA 7Yt+ GET NEXT TARGET VALUE
*

*WAIT FOR TIME TO BE GREATER THAN OR EQUAL TO TARGET
*

CMPA 7X

BHI WTUNIT BRANCH IF UNIT NOT >= TARGET VALUE
LEAX -1,X PROCEED TO NEXT UNIT

DECB DECREMENT NUMBER OF TIME UNITS

BNE WITIM CONTINUE UNTIL ALL UNITS CHECKED
*

*DONE
*

BRA HERE IT IS NOW TIME OR LATER

TIME - 2/7/87, 14:01:20 (2:01.20 PM, FEB. 7, 1987)

FDB 1987 TARGET YEAR

FCB 5 NUMBER OF TIME UNITS IN COMPARISON
FCB 2,7,14,1,20 TARGET TIME (MONTH,DAY,HR,MIN,SEC)

END

6809 Instruction set
summary

X — Index Register

Y — Index Register |
Pointer Registers

U — User Stack Pointer

S — Hardware Stack Pointer

PA
D

7 0

Direct Page Register

7 0

ePFLH{ i pNiz| vic) Condition Code Register

Program Counter

Accumulators

Figure A-1 6809 programming model.

338

6809 Instruction set summary 339

7 6 5 43 2 #1

aEonouG .
arry

Overfiow

Zero
Negative

IRQ Mask

Half Carry

FIRQ Mask

Entire Flag

Figure A-2 6809 condition code register.

340 Table A-1 6809 instruction set.

Addressing Modes elatolrto

ee Extended
| Opy ~f #{ Op] ~| F] On| - pF Set te Description PHIN {Z| V iC)

LSLA
A ___—

LSLB
LSL 6+| 2+] 78

LSRA
LSRB — y COLL LL RE eae “fe fifeTs

ee
NEGB

oP as = =

Nop Lt = La = =

ORB DA EA| +] 2+] FA
ORCC CC V IMM —=CC

Peter PLE eee itt PSHU Push Registers on U Stack

aa ie Bie Pull Registers from S Stack ° °|°

ae ir = 5+ Pull AST from U Stack °

ROLA 2 1

ROLB 211 al
ROL 6+! 2+]

RORA

RORB
at 6+! 2+ 3

| +} Pp | [38 fet 1 [Return From Interrupt acm From imemupt tite
ff [| 39] 5 | 1 [Return f [Return from Subroutine | [Return from Subroutine |

tate at Late Ls 4+| 2+] B2 3 A-M-C-—A

SBCB C2 D2 = a 4 = 3 B-M-C-—B

ee pepe p saree omee

~

~

an

~

~~

non

~

2 5
2 2’ 5
5 | 2 6
6 | 3 7

5} 2 6
5] 2 6

SUBA 5
SUBB. C0 | ele: 5
SUBD 83 93 is 7

Software Interrupt 1

Software Interrupt 2
SWI?

Swi26

SWwi36

Psync_ [|

TST TSTA

TSTB
TST 6+] 2+) 70

Notes:

1. This column gives a base cycle and byte count. To obtain total count, add the values obtained from the INDEXED ADDRESSING MODE table,

in Appendix F.
2. Rl and R2 may be any pair of 8 bit or any pair of 16 bit registers.

The 8 bit registers are: A, B, CC, DP.
The 16 bit registers are: X, Y, U, S$, D, PC

EA is the effective address.

The PSH and PUL instructions require 5 cycles plus 1 cycle for each byte pushed or pulled.

5(6) means: 5 cycles if branch not taken, 6 cycles if taken (Branch instructions}.

SWI sets | and F bits. SWI2 and SWI3 do not affect | and F.

Conditions Codes set as a direct result of the instruction.

Value of half-carry flag is undefined.

Special Case — Carry set if b7 is SET. OON AAS W&

Table A-1 6809 instruction set (continued). 341

Addressing Modes stalolilo
Immediate | Direct Indexed Inherent

Op) Description HIN] Z} V{ Cl P~ | #

A+M+C—A

, B+M+C—B

48] 2| 1

ee} 2) 1) Ss[h{UTT TTT
6+] 2+] 781 7] 3 M }

47/ 2] 17 A >
67} 2] 1 8}

2+] 77{ 7} 3 M 7 8
+| B5/ 5 | 3 Bit Test A(M A A)
+1] F5] 5] 3 Bit Test B (M A Bi

BI
F4

4 a
ADC ADCA 89 | 2 2 4+} 2+] B9

ADCB c9 12 2 4+] 2+] F9
ADD ADDA 8B | 2 9B 2] ABI 4+/ 2+] BB] 5] 3 A+M—A

ADDB CB | 2 DB 2 €B/ 444 2+] FB] 5-| 3
AODDD C3 | 4 D3 2} €3/6+] 2+] 3] 7 | 3

AND ANDA 84 | 2 2] A4]4+] 2+] Bal 5 [1 3 AAM—A QO} ¢ ANDB C4 | 2 2) E4144] 2+] F4] 5] 3 BAM—6 Oj e ANOCC | 1C | 3 CC A IMM—CC 7
ASL ASLA |e

Oto
sealaoe

PS
no |

2
~

pin

+

a

4F] 2 1;/O-—A
SF} 2 1{0-B

O-M F 7 3

5 3 Compare M from A

5 3 Compare M from B

10] 8 4 Compare M:M+ 1 from D
B3

Compare M:M+1 from §

Compare M:M +1 from U

Compare M:M +1 from X

Compare M:M +1 from Y

oO oO =
a oO

Oo m oO Oo Mm D >

| | ds
Saas

oO es

D oO a + nN + ~ oO ~

WN DN

NR

RO

Ww

M Complement of M $ Test and set if true, cleared otherwise
OP Operation Code (Hexadecimal) — Transfer Into e => Not Affected
~ Number of MPU Cycles H Half-carry (from bit 3) CC Condition Code Register
Number of Program Bytes N Negative (sign bit) : Concatenation
+ Arithmetic Plus Z Zero (Reset) V Logical or
- Arithmetic Minus V_ Overflow, 2's complement A Logical and
e = Multiply C Carry from ALU ~- Logical Exclusive or

[CNonindirect™ =| sndirect’ =|
Assembler Postbyte x} + | Assembler Postbyte +) + =

Form OP Code | ~| # Form OP Code | ~|#]| >

Constant Offset From R No Offset PRE tRRoo10O [ojo | rR) | 1RR10100 | 3/0] &
(twos complement offset) 5 Bit Offset | son, RR [-OORRnnnnn | 1[0 | defaults to 8-bit | oO

8 Bit Offset 1RRO1OOO | 1/1] [n,R) | 1RR11000 | 4|1] &
16 Bit Offset 1RRO1001 | 4] 2] [n,R] | 1RR11001 6

Accumulator Offset From R A — Register Offset 1RROO110 {1{0 | [AR] 1RR10110 | 4/0. =
(twos complement offset) B — Register Offset | ==B,R | 1RROO1O1 | 1{0] [B,R]) | 1RR10101 | 4[0 | @

D — Register Offset | D,R | 1RRO1011 [4]0 | [D.R] 1RR11011_ | 7[0 | @
Cu

Auto Increment/Decrement R Increment By 1 iR+ 1RROOOOO /210 | ~———snotallowea ~=—sd|ssdT Cd ©
Increment By 2 1R++ TRROOOOT [3[0 |] [Rt] 1RR10001 | 6/0 | &

1RROOOIO [210 |. not allowed | | loa
Decrement By 2 1RROOO11 |3}0] [--R] 1RR10011 | 610 | &.

Constant Offset From PC 8 Bit Offset 1xx01100 [111 | [n, PCR 1xx11100 | 4|1]| dz
(twos complement offset) 16 Bit Offset 1XX01101 [n, PCR] 1XX11101 | 8]2] 8

Extended Indirect 16 Bit Address rT O-PS 10011111 J 5]2] &
R=X,Y,UorS X=00 Y=O01 o
X = Don't Care U=10 S=11

+ and * Indicate the number of additional cycles and bytes for the particular variation.

CVE

6089 9y] 40j sauljnoigns abenbue Ajquiassy

6809 Instruction set summary 343

Table A-3 6809 interrupt vector locations.

Description

Reset (RESET)
Non-Maskable Interrupt (NMI)

Software Interrupt (SWI)

Interrupt Request (IRQ)

Fast Interrupt Request (FIRQ)

Software Interrupt 2 (SWI2)

Software Interrupt 3 (SWI3)

Reserved

MS Byte | LS Byte

Programming
reference for the
6821 PIA device

IROA 345

Control Interrupt CAI
é Register A Status
! (CRA) Control A CA2
|

Data B : ata Bus
Buffers [PT TTT TTT De
(DBB) | Irection

| Output Bus Register A
(DDRA)

|
|

|
|
| Output PAO
i Register A fF—-74-

| (ORA) PAI
|
| PA2

Bus Input |
Register 4 Peripheral PA3
(BIR) | Interface

| A <—> PA4

: PAS

| PA6
|

| PA7
|
|

CSO | Output PBO
r Register B -—

CS! | (ORB) PBI
CS2 l

Chip
PB2

RSO Select | Peripheral PB3
and | Interface

RS1 R/W | B PB4

Control |
R/W | PBS

Enable ! PB6

Reset | PB7

|
|
l Input Bus

Z Data

| Direction

; Control NDDRB 1
Register B ORB) |

Interrupt CBI
— Status

IROB Control B CB2

Figure B-1_ Expanded block diagram of the 6821 Peripheral Interface
Adapter (PIA).

346 Assembly language subroutines for the 6809

Table B-1_ Internal addressing for the 6821 PIA.

Control
Register Bit

Location Selected

| 0 | o | 1 |X _ | Peripheral Register A
0 | o | 0 | Xx _[Betabirection Register A

po ft |X |X | ControtRegistera
1 | 0 | X | 1 | Peripherat Register 8
pt fo} x Data Direction Register B

Control Register B

X = Don’t Care

Table B-2 6821 control —— formats.

DDRB

Access

CB1 Control

Programming reference for the 6821 PIA device 347

Table B-3 Control of interrupt inputs CA1 and CB1.

MPU interrupt
CRA-1 | CRA-0 | _ Interrupt Input interrupt Flag Request.

CA1 (CB1) CRA-7 (CRB-7) IRQA (IROQB)

| Active Set high on | of CA1 | Disabled—IRO
(CB1) remains high

| Active Set high on | of CA1 | Goes low when the

(CB1) interrupt flag bit CRA-7
(CRB-7) goes high

* Active Set high on ¢ of CA1 | Disabled-IRO
(CB1) remains high

* Active Set high on ¢ of CA1 | Goes low when the
(CB1) interrupt flag bit CRA-7

(CRB-7) goes high

Notes: 1. f indicates positive transition (low to high)
2. | indicates negative transition (high to low)
3. The interrupt flag bit CRA-7 is cleared by an MPU Read of the A Data Register,

and CRB-7 is cleared by an MPU Read of the B Data Register.
4. If CRA-0 (CRB-0) is low when an interrupt occurs (interrupt disabled) and is

later brought high, IROA (IROB) occurs after CRA-O (CRB-0) is written to a
“a “

one

348 Assembly language subroutines for the 6809

Table B-4 Control of CA2 and CB2 as interrupt inputs. CRA-5
(CRB-5) is LOW.

Request CRA-5 | CRA-4 | CRA-3 | Interrupt Input interrupt Flag

(CRB-5) |(CRB-4) {CRA-3) CRA-6 (CRB-6) IRQA (IRQB)

| Active |Sethighon | of CA2 | Disabled—IRO
(CB1) remains high

| Active Set high on | of CA2 | Goes low when the
interrupt flag bit CRA-6

(CRB-6) goes high

t Active | Sethigh on ¢ of CA2 | Disabled —IRO
(CB2) remains high

* Active Set high on * of CA2 | Goes low when the
interrupt flag bit CRA-6
(CRB-6) goes high

Notes: 1. + indicates positive transition (low to high)
2. | indicates negative transition (high to low)

3. The interrupt flag bit CRA-6 is cleared by an MPU Read of the A Data Register,
and CRB-6 is cleared by an MPU Read of the B Data Register.

4. If CRA-3 (CRB-3) is low when an interrupt occurs (interrupt disabled) and is
later brought high, IROQA (IRQB) occurs after CRA-3 (CRB-3) is written to a

MPU Interrupt

Low on negative transition of
E after an MPU Read “A” Data
operation.

Low on negative transition of

E after an MPU Read “A” Data

operation.

Low when CRA-3 goes low as

a result of an MPU Write to
Control Register “A”.

Always high as long as
CRA-3 is high. Will be cleared

on an MPU Write to Control
Register “A” that clears
CRA-3 to a “zero”.

High when the interrupt flag
bit CRA-7 is set by an active
transition of the CA1 signal.

High on the negative edge of
the first “E” pulse which

occurs during a deselect.

Always low as long as CRA-3
is low. Will go high on an
MPU Write to Control
Register “A” that changes
CRA-3 to “one”.

High when CRA-3 goes high
as a result of an MPU Write to
Control Register “A”.

Programming reference for the 6821 PIA device 349

Table B-6 Control of CB2 as an output. CRB-5 is HIGH.

CB2

Cleared Set

Low on positive transition of | High when the interrupt flag
the first E pulse following and | bit CRB-7 is set by an active
MPU Write “B” Data Register | transition of the CB1 signal.
operation.

Low on the positive transition
of the first E pulse after an

MPU Write “B” Data Register
operation.

High on the positive edge of
the first “E” pulse following
an “E” pulse which occured
while the part was
deselected.

Low when CRB-3 goes low as
a result of an MPU Write in
Control Register “B”.

Always low as long as CRB-3
is low. Will go high on an
MPU Write in Control
Register “B” that changes
CRB-3 to “one”.

High when CRB-3 goes high
as a result of an MPU Write
into Control Register “B”.

Always high as long as
CRB-3 is high. Will be cleared
on an MPU Write Control
Register “B” results in
clearing CRB-3 to “zero”.

C ASCII character set

son cane ong] Be wexedlouamosse

> ed "”

tri
GO ane INe eR EK

re

350

