
-

C Reference Manual

Dennis M. Ritchie
Bell Telephone Laboratories

Murray Hill, New Jersey 07974

1. Introduction

C is a computer language based on the earlier language B [1]. The languages and their compilers differ in two
major ways: C introduces the notion of types, and defines appropriate extra syntax and semantics; also, C on the
PDP-11 is a true compiler, producing machine code where B produced interpretive code.

Most of the software for theUNIX time-sharing system [2] is written in C, as is the operating system itself. C is
also available on theHIS 6070 computer at Murray Hill and and on theIBM System/370 at Holmdel [3]. This paper
is a manual only for the C language itself as implemented on thePDP-11. However, hints are given occasionally in
the text of implementation-dependent features.

The UNIX Programmer’s Manual [4] describes the library routines available to C programs underUNIX, and also
the procedures for compiling programs under that system. ‘‘TheGCOSC Library’’ by Lesk and Barres [5] describes
routines available under that system as well as compilation procedures. Many of these routines, particularly the ones
having to do with I/O, are also provided underUNIX. Finally, ‘‘Programming in C− A Tutorial,’’ by B. W. Ker-
nighan [6], is as useful as promised by its title and the author’s previous introductions to allegedly impenetrable sub-
jects.

2. Lexical conventions

There are six kinds of tokens: identifiers, keywords, constants, strings, expression operators, and other separators.
In general blanks, tabs, newlines, and comments as described below are ignored except as they serve to separate to-
kens. At least one of these characters is required to separate otherwise adjacent identifiers, constants, and certain
operator-pairs.

If the input stream has been parsed into tokens up to a given character, the next token is taken to include the long-
est string of characters which could possibly constitute a token.

2.1 Comments
The characters/ * introduce a comment, which terminates with the characters* / .

2.2 Identifiers (Names)
An identifier is a sequence of letters and digits; the first character must be alphabetic. The underscore ‘‘_’’ counts

as alphabetic. Upper and lower case letters are considered different. No more than the first eight characters are sig-
nificant, and only the first seven for external identifiers.

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

-

C Reference Manual - 2

int break
char continue
float if
double else
struct for
auto do
extern while
register switch
static case
goto default
return entry
sizeof

The entry keyword is not currently implemented by any compiler but is reserved for future use.

2.3 Constants
There are several kinds of constants, as follows:

2.3.1 Integer constants
An integer constant is a sequence of digits. An integer is taken to be octal if it begins with0, decimal otherwise.

The digits8 and9 have octal value 10 and 11 respectively.

2.3.2 Character constants
A character constant is 1 or 2 characters enclosed in single quotes ‘‘´ ’’. Within a character constant a single

quote must be preceded by a back-slash ‘‘\’’. Certain non-graphic characters, and ‘‘\’’ itself, may be escaped ac-
cording to the following table:

BS \b
NL \n
CR \r
HT \t
ddd \ddd
\ \\

The escape ‘‘\ddd’’ consists of the backslash followed by 1, 2, or 3 octal digits which are taken to specify the value
of the desired character. A special case of this construction is ‘‘\0’’ (not followed by a digit) which indicates a null
character.

Character constants behave exactly like integers (not, in particular, like objects of character type). In conformity
with the addressing structure of thePDP-11, a character constant of length 1 has the code for the given character in
the low-order byte and 0 in the high-order byte; a character constant of length 2 has the code for the first character in
the low byte and that for the second character in the high-order byte. Character constants with more than one char-
acter are inherently machine-dependent and should be avoided.

2.3.3 Floating constants
A floating constant consists of an integer part, a decimal point, a fraction part, ane, and an optionally signed inte-

ger exponent. The integer and fraction parts both consist of a sequence of digits. Either the integer part or the frac-
tion part (not both) may be missing; either the decimal point or thee and the exponent (not both) may be missing.
Every floating constant is taken to be double-precision.

2.4 Strings
A string is a sequence of characters surrounded by double quotes ‘‘" ’’. A string has the type array-of-characters

(see below) and refers to an area of storage initialized with the given characters. The compiler places a null byte
(\0) at the end of each string so that programs which scan the string can find its end. In a string, the character ‘‘" ’’
must be preceded by a ‘‘\’’ ; in addition, the same escapes as described for character constants may be used.

-

C Reference Manual - 3

3. Syntax notation

In the syntax notation used in this manual, syntactic categories are indicated byitalic type, and literal words and
characters ingothic. Alternatives are listed on separate lines. An optional terminal or non-terminal symbol is in-
dicated by the subscript ‘‘opt,’’ so that

{ expressionopt }

would indicate an optional expression in braces.

4. What’s in a Name?

C bases the interpretation of an identifier upon two attributes of the identifier: itsstorage classand itstype. The
storage class determines the location and lifetime of the storage associated with an identifier; the type determines the
meaning of the values found in the identifier’s storage.

There are four declarable storage classes: automatic, static, external, and register. Automatic variables are local to
each invocation of a function, and are discarded on return; static variables are local to a function, but retain their val-
ues independently of invocations of the function; external variables are independent of any function. Register vari-
ables are stored in the fast registers of the machine; like automatic variables they are local to each function and dis-
appear on return.

C supports four fundamental types of objects: characters, integers, single-, and double-precision floating-point
numbers.

Characters (declared, and hereinafter called,char) are chosen from theASCII set; they occupy the right-
most seven bits of an 8-bit byte. It is also possible to interpretchar s as signed, 2’s complement 8-bit
numbers.

Integers (int) are represented in 16-bit 2’s complement notation.

Single precision floating point (float) quantities have magnitude in the range approximately 10±38 or 0;
their precision is 24 bits or about seven decimal digits.

Double-precision floating-point (double) quantities have the same range asfloat s and a precision of 56
bits or about 17 decimal digits.

Besides the four fundamental types there is a conceptually infinite class of derived types constructed from the fun-
damental types in the following ways:

arraysof objects of most types;

functionswhich return objects of a given type;

pointersto objects of a given type;

structurescontaining objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and lvalues

An object is a manipulatable region of storage; an lvalue is an expression referring to an object. An obvious ex-
ample of an lvalue expression is an identifier. There are operators which yield lvalues: for example, if E is an ex-
pression of pointer type, then*E is an lvalue expression referring to the object to which E points. The name
‘‘lvalue’’ comes from the assignment expression ‘‘E1 = E2’’ in which the left operand E1 must be an lvalue expres-
sion. The discussion of each operator below indicates whether it expects lvalue operands and whether it yields an
lvalue.

6. Conversions

A number of operators may, depending on their operands, cause conversion of the value of an operand from one
type to another. This section explains the result to be expected from such conversions.

-

C Reference Manual - 4

6.1 Characters and integers
A char object may be used anywhere anint may be. In all cases thechar is converted to anint by propa-

gating its sign through the upper 8 bits of the resultant integer. This is consistent with the two’s complement repre-
sentation used for both characters and integers. (However, the sign-propagation feature disappears in other imple-
mentations.)

6.2 Float and double
All floating arithmetic in C is carried out in double-precision; whenever afloat appears in an expression it is

lengthened todouble by zero-padding its fraction. When adouble must be converted tofloat , for example by
an assignment, thedouble is rounded before truncation tofloat length.

6.3 Float and double; integer and character
All int s andchar s may be converted without loss of significance tofloat or double . Conversion of

float or double to int or char takes place with truncation towards 0. Erroneous results can be expected if the
magnitude of the result exceeds 32,767 (forint) or 127 (forchar).

6.4 Pointers and integers
Integers and pointers may be added and compared; in such a case theint is converted as specified in the discus-

sion of the addition operator.

Two pointers to objects of the same type may be subtracted; in this case the result is converted to an integer as
specified in the discussion of the subtraction operator.

7. Expressions

The precedence of expression operators is the same as the order of the major subsections of this section (highest
precedence first). Thus the expressions referred to as the operands of+ (§7.4) are those expressions defined in
§§7.1_7.3. Within each subsection, the operators have the same precedence. Left- or right-associativity is specified
in each subsection for the operators discussed therein. The precedence and associativity of all the expression opera-
tors is summarized in an appendix.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers itself free to
compute subexpressions in the order it believes most efficient, even if the subexpressions involve side effects.

7.1 Primary expressions
Primary expressions involving. , −>, subscripting, and function calls group left to right.

7.1.1 identifier
An identifier is a primary expression, provided it has been suitably declared as discussed below. Its type is speci-

fied by its declaration. However, if the type of the identifier is ‘‘array of . . .’’, then the value of the identifier-
expression is a pointer to the first object in the array, and the type of the expression is ‘‘pointer to . . .’’. Moreover,
an array identifier is not an lvalue expression.

Likewise, an identifier which is declared ‘‘function returning . . .’’, when used except in the function-name posi-
tion of a call, is converted to ‘‘pointer to function returning . . .’’.

7.1.2 constant
A decimal, octal, character, or floating constant is a primary expression. Its type isint in the first three cases,

double in the last.

7.1.3 string
A string is a primary expression. Its type is originally ‘‘array ofchar ’’; but following the same rule as in §7.1.1

for identifiers, this is modified to ‘‘pointer tochar ’’ and the result is a pointer to the first character in the string.

7.1.4 (expression)
A parenthesized expression is a primary expression whose type and value are identical to those of the unadorned

expression. The presence of parentheses does not affect whether the expression is an lvalue.

-

C Reference Manual - 5

7.1.5 primary-expression[expression]
A primary expression followed by an expression in square brackets is a primary expression. The intuitive mean-

ing is that of a subscript. Usually, the primary expression has type ‘‘pointer to . . .’’, the subscript expression isint ,
and the type of the result is ‘‘. . . ’’. The expression ‘‘E1[E2]’’ is identical (by definition) to ‘‘* ((E1) + (E2)) ’’.
All the clues needed to understand this notation are contained in this section together with the discussions in §§
7.1.1, 7.2.1, and 7.4.1 on identifiers,* , and+ respectively; §14.3 below summarizes the implications.

7.1.6 primary-expression(expression-listopt)

A function call is a primary expression followed by parentheses containing a possibly empty, comma-separated
list of expressions which constitute the actual arguments to the function. The primary expression must be of type
‘‘function returning . . .’’, and the result of the function call is of type ‘‘. . . ’’. As indicated below, a hitherto unseen
identifier followed immediately by a left parenthesis is contextually declared to represent a function returning an in-
teger; thus in the most common case, integer-valued functions need not be declared.

Any actual arguments of typefloat are converted todouble before the call; any of typechar are converted
to int .

In preparing for the call to a function, a copy is made of each actual parameter; thus, all argument-passing in C is
strictly by value. A function may change the values of its formal parameters, but these changes cannot possibly af-
fect the values of the actual parameters. On the other hand, it is perfectly possible to pass a pointer on the under-
standing that the function may change the value of the object to which the pointer points.

Recursive calls to any function are permissible.

7.1.7 primary-lvalue. member-of-structure
An lvalue expression followed by a dot followed by the name of a member of a structure is a primary expression.

The object referred to by the lvalue is assumed to have the same form as the structure containing the structure mem-
ber. The result of the expression is an lvalue appropriately offset from the origin of the given lvalue whose type is
that of the named structure member. The given lvalue is not required to have any particular type.

Structures are discussed in §8.5.

7.1.8 primary-expression−> member-of-structure
The primary-expression is assumed to be a pointer which points to an object of the same form as the structure of

which the member-of-structure is a part. The result is an lvalue appropriately offset from the origin of the pointed-to
structure whose type is that of the named structure member. The type of the primary-expression need not in fact be
pointer; it is sufficient that it be a pointer, character, or integer.

Except for the relaxation of the requirement that E1 be of pointer type, the expression ‘‘E1−>MOS’’ is exactly
equivalent to ‘‘(*E1).MOS’’.

7.2 Unary operators
Expressions with unary operators group right-to-left.

7.2.1 * expression
The unary* operator meansindirection: the expression must be a pointer, and the result is an lvalue referring to

the object to which the expression points. If the type of the expression is ‘‘pointer to . . .’’, the type of the result is
‘‘ . . . ’’.

7.2.2 & lvalue-expression
The result of the unary& operator is a pointer to the object referred to by the lvalue-expression. If the type of the

lvalue-expression is ‘‘. . . ’’, the type of the result is ‘‘pointer to . . .’’.

7.2.3 − expression
The result is the negative of the expression, and has the same type. The type of the expression must bechar ,

int , float , ordouble .

-

C Reference Manual - 6

7.2.4 ! expression
The result of the logical negation operator! is 1 if the value of the expression is 0, 0 if the value of the expres-

sion is non-zero. The type of the result isint . This operator is applicable only toint s orchar s.

7.2.5 ~ expression
The˜ operator yields the one’s complement of its operand. The type of the expression must beint or char , and

the result isint .

7.2.6 ++lvalue-expression
The object referred to by the lvalue expression is incremented. The value is the new value of the lvalue expres-

sion and the type is the type of the lvalue. If the expression isint or char , it is incremented by 1; if it is a pointer
to an object, it is incremented by the length of the object. ++ is applicable only to these types. (Not, for example, to
float or double .)

7.2.7 −− lvalue-expression
The object referred to by the lvalue expression is decremented analogously to the ++ operator.

7.2.8 lvalue-expression ++
The result is the value of the object referred to by the lvalue expression. After the result is noted, the object re-

ferred to by the lvalue is incremented in the same manner as for the prefix ++ operator: by 1 for anint or char , by
the length of the pointed-to object for a pointer. The type of the result is the same as the type of the lvalue-
expression.

7.2.9 lvalue-expression −−
The result of the expression is the value of the object referred to by the the lvalue expression. After the result is

noted, the object referred to by the lvalue expression is decremented in a way analogous to the postfix ++ operator.

7.2.10 sizeof expression
The sizeof operator yields the size, in bytes, of its operand. When applied to an array, the result is the total

number of bytes in the array. The size is determined from the declarations of the objects in the expression. This ex-
pression is semantically an integer constant and may be used anywhere a constant is required. Its major use is in
communication with routines like storage allocators and I/O systems.

7.3 Multiplicative operators
The multiplicative operators* , / , and%group left-to-right.

7.3.1 expression* expression
The binary* operator indicates multiplication. If both operands areint or char , the result isint ; if one is

int or char and onefloat or double , the former is converted todouble , and the result isdouble ; if both
arefloat or double , the result isdouble . No other combinations are allowed.

7.3.2 expression/ expression
The binary/ operator indicates division. The same type considerations as for multiplication apply.

7.3.3 expression%expression
The binary%operator yields the remainder from the division of the first expression by the second. Both operands

must beint or char , and the result isint . In the current implementation, the remainder has the same sign as the
dividend.

7.4 Additive operators
The additive operators+ and− group left-to-right.

-

C Reference Manual - 7

7.4.1 expression+ expression
The result is the sum of the expressions. If both operands areint or char , the result isint . If both arefloat

or double , the result isdouble . If one ischar or int and one isfloat or double , the former is converted to
double and the result isdouble . If an int or char is added to a pointer, the former is converted by multiplying
it by the length of the object to which the pointer points and the result is a pointer of the same type as the original
pointer. Thus if P is a pointer to an object, the expression ‘‘P+1’’ is a pointer to another object of the same type as
the first and immediately following it in storage.

No other type combinations are allowed.

7.4.2 expression− expression
The result is the difference of the operands. If both operands areint , char , float , or double , the same type

considerations as for+ apply. If anint or char is subtracted from a pointer, the former is converted in the same
way as explained under+ above.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the length of the
object) to anint representing the number of objects separating the pointed-to objects. This conversion will in gen-
eral give unexpected results unless the pointers point to objects in the same array, since pointers, even to objects of
the same type, do not necessarily differ by a multiple of the object-length.

7.5 Shift operators
The shift operators<< and>> group left-to-right.

7.5.1 expression<< expression
7.5.2 expression>> expression

Both operands must beint or char , and the result isint . The second operand should be non-negative. The
value of ‘‘E1<<E2’’ is E1 (interpreted as a bit pattern 16 bits long) left-shifted E2 bits; vacated bits are 0-filled. The
value of ‘‘E1>>E2’’ is E1 (interpreted as a two’s complement, 16-bit quantity) arithmetically right-shifted E2 bit po-
sitions. Vacated bits are filled by a copy of the sign bit of E1. [Note: the use of arithmetic rather than logical shift
does not survive transportation between machines.]

7.6 Relational operators
The relational operators group left-to-right, but this fact is not very useful; ‘‘a<b<c’’ does not mean what it seems

to.

7.6.1 expression< expression
7.6.2 expression> expression
7.6.3 expression<= expression
7.6.4 expression>= expression

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater than or equal to) all yield 0
if the specified relation is false and 1 if it is true. Operand conversion is exactly the same as for the+ operator ex-
cept that pointers of any kind may be compared; the result in this case depends on the relative locations in storage of
the pointed-to objects. It does not seem to be very meaningful to compare pointers with integers other than 0.

7.7 Equality operators
7.7.1 expression== expression
7.7.2 expression!= expression

The== (equal to) and the!= (not equal to) operators are exactly analogous to the relational operators except for
their lower precedence. (Thus ‘‘a<b == c<d’’ is 1 whenever a<b and c<d have the same truth-value).

7.8 expression& expression
The& operator groups left-to-right. Both operands must beint or char ; the result is anint which is the bit-

wise logicaland function of the operands.

-

C Reference Manual - 8

7.9 expression̂ expression
The ^ operator groups left-to-right. The operands must beint or char ; the result is anint which is the bit-

wise exclusiveor function of its operands.

7.10 expression| expression
The | operator groups left-to-right. The operands must beint or char ; the result is anint which is the bit-wise

inclusiveor of its operands.

7.11 expression&&expression
The && operator returns 1 if both its operands are non-zero, 0 otherwise. Unlike&, && guarantees left-to-right

evaluation; moreover the second operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.

7.12 expression|| expression
The || operator returns 1 if either of its operands is non-zero, and 0 otherwise. Unlike| , || guarantees left-to-right

evaluation; moreover, the second operand is not evaluated if the value of the first operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.

7.13 expression? expression: expression
Conditional expressions group left-to-right. The first expression is evaluated and if it is non-zero, the result is the

value of the second expression, otherwise that of third expression. If the types of the second and third operand are
the same, the result has their common type; otherwise the same conversion rules as for+ apply. Only one of the sec-
ond and third expressions is evaluated.

7.14 Assignment operators
There are a number of assignment operators, all of which group right-to-left. All require an lvalue as their left

operand, and the type of an assignment expression is that of its left operand. The value is the value stored in the left
operand after the assignment has taken place.

7.14.1 lvalue= expression
The value of the expression replaces that of the object referred to by the lvalue. The operands need not have the

same type, but both must beint , char , float , double , or pointer. If neither operand is a pointer, the assign-
ment takes place as expected, possibly preceded by conversion of the expression on the right.

When both operands areint or pointers of any kind, no conversion ever takes place; the value of the expression
is simply stored into the object referred to by the lvalue. Thus it is possible to generate pointers which will cause ad-
dressing exceptions when used.

7.14.2 lvalue=+ expression
7.14.3 lvalue=− expression
7.14.4 lvalue=* expression
7.14.5 lvalue=/ expression
7.14.6 lvalue=% expression
7.14.7 lvalue=>> expression
7.14.8 lvalue=<< expression
7.14.9 lvalue=& expression
7.14.10lvalue=^ expression
7.14.11lvalue= | expression

The behavior of an expression of the form ‘‘E1 =op E2’’ may be inferred by taking it as equivalent to
‘‘E1 = E1 op E2’’; however, E1 is evaluated only once. Moreover, expressions like ‘‘i =+ p’’ in which a pointer is
added to an integer, are forbidden.

-

C Reference Manual - 9

7.15 expression, expression
A pair of expressions separated by a comma is evaluated left-to-right and the value of the left expression is dis-

carded. The type and value of the result are the type and value of the right operand. This operator groups left-to-
right. It should be avoided in situations where comma is given a special meaning, for example in actual arguments
to function calls (§7.1.6) and lists of initializers (§10.2).

8. Declarations

Declarations are used within function definitions to specify the interpretation which C gives to each identifier;
they do not necessarily reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-listopt ;

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers consist of at most
one type-specifier and at most one storage class specifier.

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register

The auto, static, and register declarations also serve as definitions in that they cause an appropriate
amount of storage to be reserved. In theextern case there must be an external definition (see below) for the given
identifiers somewhere outside the function in which they are declared.

There are some severe restrictions onregister identifiers: there can be at most 3 register identifiers in any
function, and the type of a register identifier can only beint, char, or pointer (not float, double, struc-
ture, function, or array). Also the address-of operator& cannot be applied to such identifiers. Except for these re-
strictions (in return for which one is rewarded with faster, smaller code), register identifiers behave as if they were
automatic. In fact implementations of C are free to treatregister as synonymous withauto.

If the sc-specifier is missing from a declaration, it is generally taken to beauto .

8.2 Type specifiers
The type-specifiers are

type-specifier:
int
char
float
double
struct { type-decl-list }
struct identifier { type-decl-list }
struct identifier

Thestruct specifier is discussed in §8.5. If the type-specifier is missing from a declaration, it is generally taken
to beint .

-

C Reference Manual - 10

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators.

declarator-list:
declarator
declarator, declarator-list

The specifiers in the declaration indicate the type and storage class of the objects to which the declarators refer.
Declarators have the syntax:

declarator:
identifier
* declarator
declarator()
declarator[constant-expressionopt]
(declarator)

The grouping in this definition is the same as in expressions.

8.4 Meaning of declarators
Each declarator is taken to be an assertion that when a construction of the same form as the declarator appears in

an expression, it yields an object of the indicated type and storage class. Each declarator contains exactly one identi-
fier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier heading the decla-
ration.

If a declarator has the form

* D

for D a declarator, then the contained identifier has the type ‘‘pointer to . . .’’, where ‘‘. . . ’’ is the type which the
identifier would have had if the declarator had been simply D.

If a declarator has the form

D ()

then the contained identifier has the type ‘‘function returning ...’’, where ‘‘. . . ’’ is the type which the identifier
would have had if the declarator had been simply D.

A declarator may have the form

D[constant-expression]

or

D[]

In the first case the constant expression is an expression whose value is determinable at compile time, and whose
type is int. in the second the constant 1 is used. (Constant expressions are defined precisely in §15.) Such a
declarator makes the contained identifier have type ‘‘array.’’ If the unadorned declarator D would specify a non-
array of type ‘‘. . .’’, then the declarator ‘‘D[i]’’ yields a 1-dimensional array with ranki of objects of type ‘‘. . .’’. If
the unadorned declarator D would specify ann -dimensional array with ranki1 × i2 × . . .× in, then the declarator
‘‘D[i n+1]’’ yields an (n+1) -dimensional array with ranki1 × i2 × . . .× in × in+1.

An array may be constructed from one of the basic types, from a pointer, from a structure, or from another array
(to generate a multi-dimensional array).

Finally, parentheses in declarators do not alter the type of the contained identifier except insofar as they alter the
binding of the components of the declarator.

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as follows: func-
tions may not return arrays, structures or functions, although they may return pointers to such things; there are no ar-
rays of functions, although there may be arrays of pointers to functions. Likewise a structure may not contain a
function, but it may contain a pointer to a function.

-

C Reference Manual - 11

As an example, the declaration

int i, * ip, f (), * fip(), (*pfi) ();

declares an integeri, a pointerip to an integer, a functionf returning an integer, a functionfip returning a pointer to
an integer, and a pointerpfi to a function which returns an integer. Also

float fa[17], *afp[17];

declares an array offloat numbers and an array of pointers tofloat numbers. Finally,

static int x3d[3][5][7];

declares a static three-dimensional array of integers, with rank 3×5×7. In complete detail,x3d is an array of three
items: each item is an array of five arrays; each of the latter arrays is an array of seven integers. Any of the expres-
sions ‘‘x3d’’, ‘‘x3d[i]’’, ‘‘x3d[i][j]’’, ‘‘x3d[i][j][k]’’ may reasonably appear in an expression. The first three
have type ‘‘array’’, the last has typeint .

8.5 Structure declarations
Recall that one of the forms for a structure specifier is

struct { type-decl-list }

Thetype-decl-listis a sequence of type declarations for the members of the structure:

type-decl-list:
type-declaration
type-declaration type-decl-list

A type declaration is just a declaration which does not mention a storage class (the storage class ‘‘member of struc-
ture’’ here being understood by context).

type-declaration:
type-specifier declarator-list;

Within the structure, the objects declared have addresses which increase as their declarations are read left-to-right.
Each component of a structure begins on an addressing boundary appropriate to its type. On thePDP-11 the only re-
quirement is that non-characters begin on a word boundary; therefore, there may be 1-byte, unnamed holes in a
structure, and all structures have an even length in bytes.

Another form of structure specifier is

struct identifier { type-decl-list }

This form is the same as the one just discussed, except that the identifier is remembered as thestructure tagof the
structure specified by the list. A subsequent declaration may then be given using the structure tag but without the
list, as in the third form of structure specifier:

struct identifier

Structure tags allow definition of self-referential structures; they also permit the long part of the declaration to be
given once and used several times. It is however absurd to declare a structure which contains an instance of itself, as
distinct from a pointer to an instance of itself.

A simple example of a structure declaration, taken from §16.2 where its use is illustrated more fully, is

struct tnode {
char tword[20];
int count;
struct tnode * left;
struct tnode * right;

};

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this declaration has

-

C Reference Manual - 12

been given, the following declaration makes sense:

struct tnode s, *sp;

which declaress to be a structure of the given sort andsp to be a pointer to a structure of the given sort.

The names of structure members and structure tags may be the same as ordinary variables, since a distinction can
be made by context. However, names of tags and members must be distinct. The same member name can appear in
different structures only if the two members are of the same type and if their origin with respect to their structure is
the same; thus separate structures can share a common initial segment.

9. Statements

Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form

expression;

Usually expression statements are assignments or function calls.

9.2 Compound statement
So that several statements can be used where one is expected, the compound statement is provided:

compound-statement:
{ statement-list }

statement-list:
statement
statement statement-list

9.3 Conditional statement
The two forms of the conditional statement are

if (expression) statement
if (expression) statementelse statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. In the second case
the second substatement is executed if the expression is 0. As usual the ‘‘else’’ ambiguity is resolved by connecting
anelse with the last encountered elselessif .

9.4 While statement
Thewhile statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The test takes
place before each execution of the statement.

9.5 Do statement
Thedo statement has the form

do statementwhile (expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The test takes place after
each execution of the statement.

-

C Reference Manual - 13

9.6 For statement
Thefor statement has the form

for (expression-1opt ; expression-2opt ; expression-3opt) statement

This statement is equivalent to

expression-1;
while (expression-2) {

statement
expression-3;

}

Thus the first expression specifies initialization for the loop; the second specifies a test, made before each iteration,
such that the loop is exited when the expression becomes 0; the third expression typically specifies an incrementa-
tion which is performed after each iteration.

Any or all of the expressions may be dropped. A missingexpression-2makes the impliedwhile clause equiva-
lent to ‘‘while(1)’’; other missing expressions are simply dropped from the expansion above.

9.7 Switch statement
Theswitch statement causes control to be transferred to one of several statements depending on the value of an

expression. It has the form

switch (expression) statement

The expression must beint or char . The statement is typically compound. Each statement within the statement
may be labelled with case prefixes as follows:

case constant-expression:

where the constant expression must beint or char . No two of the case constants in a switch may have the same
value. Constant expressions are precisely defined in §15.

There may also be at most one statement prefix of the form

default :

When theswitch statement is executed, its expression is evaluated and compared with each case constant in an un-
defined order. If one of the case constants is equal to the value of the expression, control is passed to the statement
following the matched case prefix. If no case constant matches the expression, and if there is adefault prefix,
control passes to the prefixed statement. In the absence of adefault prefix none of the statements in the switch is
executed.

Case or default prefixes in themselves do not alter the flow of control.

9.8 Break statement
The statement

break ;

causes termination of the smallest enclosingwhile , do , for , or switch statement; control passes to the state-
ment following the terminated statement.

9.9 Continue statement
The statement

continue ;

causes control to pass to the loop-continuation portion of the smallest enclosingwhile , do , or for statement; that
is to the end of the loop. More precisely, in each of the statements

-

C Reference Manual - 14

while (. . .) { do { for (. . .) {
.

contin: ; contin: ; contin: ;
} } while (. . .) ; }

acontinue is equivalent to ‘‘goto contin’’.

9.10 Return statement
A function returns to its caller by means of thereturn statement, which has one of the forms

return ;
return (expression) ;

In the first case no value is returned. In the second case, the value of the expression is returned to the caller of the
function. If required, the expression is converted, as if by assignment, to the type of the function in which it appears.
Flowing off the end of a function is equivalent to a return with no returned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement

goto expression;

The expression should be a label (§§9.12, 14.4) or an expression of type ‘‘pointer toint ’’ which evaluates to a la-
bel. It is illegal to transfer to a label not located in the current function unless some extra-language provision has
been made to adjust the stack correctly.

9.12 Labelled statement
Any statement may be preceded by label prefixes of the form

identifier :

which serve to declare the identifier as a label. More details on the semantics of labels are given in §14.4 below.

9.13 Null statement
The null statement has the form

;

A null statement is useful to carry a label just before the ‘‘}’’ of a compound statement or to supply a null body to a
looping statement such aswhile .

10. External definitions

A C program consists of a sequence of external definitions. External definitions may be given for functions, for
simple variables, and for arrays. They are used both to declare and to reserve storage for objects. An external defi-
nition declares an identifier to have storage classextern and a specified type. The type-specifier (§8.2) may be
empty, in which case the type is taken to beint .

10.1 External function definitions
Function definitions have the form

function-definition:
type-specifieropt function-declarator function-body

A function declarator is similar to a declarator for a ‘‘function returning ...’’ except that it lists the formal parameters
of the function being defined.

function-declarator:
declarator(parameter-listopt)

parameter-list:

-

C Reference Manual - 15

identifier
identifier , parameter-list

The function-body has the form

function-body:
type-decl-list function-statement

The purpose of the type-decl-list is to give the types of the formal parameters. No other identifiers should be de-
clared in this list, and formal parameters should be declared only here.

The function-statement is just a compound statement which may have declarations at the start.

function-statement:
{ declaration-listopt statement-list }

A simple example of a complete function definition is

int max (a, b, c)
int a, b, c;
{

int m;
m = (a > b)? a : b ;
retur n (m > c? m : c) ;

}

Here ‘‘int’’ is the type-specifier; ‘‘max(a, b, c)’’ is the function-declarator; ‘‘int a, b, c;’’ is the type-decl-list for the
formal parameters; ‘‘{ . . . }’’ is the function-statement.

C converts all float actual parameters todouble , so formal parameters declaredfloat have their declara-
tion adjusted to readdouble . Also, since a reference to an array in any context (in particular as an actual parame-
ter) is taken to mean a pointer to the first element of the array, declarations of formal parameters declared ‘‘array of
...’’ are adjusted to read ‘‘pointer to ...’’. Finally, because neither structures nor functions can be passed to a func-
tion, it is useless to declare a formal parameter to be a structure or function (pointers to structures or functions are of
course permitted).

A free return statement is supplied at the end of each function definition, so running off the end causes control,
but no value, to be returned to the caller.

10.2 External data definitions
An external data definition has the form

data-definition:
extern opt type-specifieropt init-declarator-listopt ;

The optional extern specifier is discussed in § 11.2. If given, the init-declarator-list is a comma-separated list of
declarators each of which may be followed by an initializer for the declarator.

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializeropt

Each initializer represents the initial value for the corresponding object being defined (and declared).

initializer:
constant
{ constant-expression-list }

-

C Reference Manual - 16

constant-expression-list:
constant-expression
constant-expression, constant-expression-list

Thus an initializer consists of a constant-valued expression, or comma-separated list of expressions, inside braces.
The braces may be dropped when the expression is just a plain constant. The exact meaning of a constant expression
is discussed in §15. The expression list is used to initialize arrays; see below.

The type of the identifier being defined should be compatible with the type of the initializer: adouble constant
may initialize afloat or double identifier; a non-floating-point expression may initialize anint , char , or
pointer.

An initializer for an array may contain a comma-separated list of compile-time expressions. The length of the ar-
ray is taken to be the maximum of the number of expressions in the list and the square-bracketed constant in the
array’s declarator. This constant may be missing, in which case 1 is used. The expressions initialize successive
members of the array starting at the origin (subscript 0) of the array. The acceptable expressions for an array of type
‘‘array of ...’’ are the same as those for type ‘‘...’’. As a special case, a single string may be given as the initializer
for an array ofchar s; in this case, the characters in the string are taken as the initializing values.

Structures can be initialized, but this operation is incompletely implemented and machine-dependent. Basically
the structure is regarded as a sequence of words and the initializers are placed into those words. Structure initializa-
tion, using a comma-separated list in braces, is safe if all the members of the structure are integers or pointers but is
otherwise ill-advised.

The initial value of any externally-defined object not explicitly initialized is guaranteed to be 0.

11. Scope rules

A complete C program need not all be compiled at the same time: the source text of the program may be kept in
several files, and precompiled routines may be loaded from libraries. Communication among the functions of a pro-
gram may be carried out both through explicit calls and through manipulation of external data.

Therefore, there are two kinds of scope to consider: first, what may be called thelexical scopeof an identifier,
which is essentially the region of a program during which it may be used without drawing ‘‘undefined identifier’’ di-
agnostics; and second, the scope associated with external identifiers, which is characterized by the rule that refer-
ences to the same external identifier are references to the same object.

11.1 Lexical scope
C is not a block-structured language; this may fairly be considered a defect. The lexical scope of names declared

in external definitions extends from their definition through the end of the file in which they appear. The lexical
scope of names declared at the head of functions (either as formal parameters or in the declarations heading the state-
ments constituting the function itself) is the body of the function.

It is an error to redeclare identifiers already declared in the current context, unless the new declaration specifies
the same type and storage class as already possessed by the identifiers.

11.2 Scope of externals
If a function declares an identifier to beextern , then somewhere among the files or libraries constituting the

complete program there must be an external definition for the identifier. All functions in a given program which re-
fer to the same external identifier refer to the same object, so care must be taken that the type and extent specified in
the definition are compatible with those specified by each function which references the data.

In PDP-11 C, it is explicitly permitted for (compatible) external definitions of the same identifier to be present in
several of the separately-compiled pieces of a complete program, or even twice within the same program file, with
the important limitation that the identifier may be initialized in at most one of the definitions. In other operating sys-
tems, however, the compiler must know in just which file the storage for the identifier is allocated, and in which file
the identifier is merely being referred to. In the implementations of C for such systems, the appearance of theex-
tern keyword before an external definition indicates that storage for the identifiers being declared will be allocated
in another file. Thus in a multi-file program, an external data definition without theextern specifier must appear
in exactly one of the files. Any other files which wish to give an external definition for the identifier must include
the extern in the definition. The identifier can be initialized only in the file where storage is allocated.

In PDP-11 C none of this nonsense is necessary and theextern specifier is ignored in external definitions.

-

C Reference Manual - 17

12. Compiler control lines

When a line of a C program begins with the character#, it is interpreted not by the compiler itself, but by a pre-
processor which is capable of replacing instances of given identifiers with arbitrary token-strings and of inserting
named files into the source program. In order to cause this preprocessor to be invoked, it is necessary that the very
first line of the program begin with#. Since null lines are ignored by the preprocessor, this line need contain no oth-
er information.

12.1 Token replacement
A compiler-control line of the form

define identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifier with the given
string of tokens (except within compiler control lines). The replacement token-string has comments removed from
it, and it is surrounded with blanks. No rescanning of the replacement string is attempted. This facility is most valu-
able for definition of ‘‘manifest constants’’, as in

define tabsize 100
. . .
int table[tabsize];

12.2 File inclusion
Large C programs often contain many external data definitions. Since the lexical scope of external definitions ex-

tends to the end of the program file, it is good practice to put all the external definitions for data at the start of the
program file, so that the functions defined within the file need not repeat tedious and error-prone declarations for
each external identifier they use. It is also useful to put a heavily used structure definition at the start and use its
structure tag to declare theauto pointers to the structure used within functions. To further exploit this technique
when a large C program consists of several files, a compiler control line of the form

include " filename"

results in the replacement of that line by the entire contents of the filefilename.

13. Implicit declarations

It is not always necessary to specify both the storage class and the type of identifiers in a declaration. Sometimes
the storage class is supplied by the context: in external definitions, and in declarations of formal parameters and
structure members. In a declaration inside a function, if a storage class but no type is given, the identifier is assumed
to beint ; if a type but no storage class is indicated, the identifier is assumed to beauto . An exception to the latter
rule is made for functions, sinceauto functions are meaningless (C being incapable of compiling code into the
stack). If the type of an identifier is ‘‘function returning ...’’, it is implicitly declared to beextern .

In an expression, an identifier followed by(and not currently declared is contextually declared to be ‘‘function
returningint ’’.

Undefined identifiers not followed by(are assumed to be labels which will be defined later in the function.
(Since a label is not an lvalue, this accounts for the ‘‘Lvalue required’’ error message sometimes noticed when an
undeclared identifier is used.) Naturally, appearance of an identifier as a label declares it as such.

For some purposes it is best to consider formal parameters as belonging to their own storage class. In practice, C
treats parameters as if they were automatic (except that, as mentioned above, formal parameter arrays andfloat s
are treated specially).

14. Types revisited

This section summarizes the operations which can be performed on objects of certain types.

-

C Reference Manual - 18

14.1 Structures
There are only two things that can be done with a structure: pick out one of its members (by means of the. or

−> operators); or take its address (by unary&). Other operations, such as assigning from or to it or passing it as a
parameter, draw an error message. In the future, it is expected that these operations, but not necessarily others, will
be allowed.

14.2 Functions
There are only two things that can be done with a function: call it, or take its address. If the name of a function

appears in an expression not in the function-name position of a call, a pointer to the function is generated. Thus, to
pass one function to another, one might say

int f();
...
g(f);

Then the definition ofg might read

g (funcp)
int (* funcp) ();
{

. . .
(* funcp) ();
. . .

}

Notice thatf was declared explicitly in the calling routine since its first appearance was not followed by(.

14.3 Arrays, pointers, and subscripting
Every time an identifier of array type appears in an expression, it is converted into a pointer to the first member of

the array. Because of this conversion, arrays are not lvalues. By definition, the subscript operator[] is interpreted
in such a way that ‘‘E1[E2]’’ is identical to ‘‘* ((E1) + (E2))’’. Because of the conversion rules which apply to+, if
E1 is an array and E2 an integer, then E1[E2] refers to the E2-th member of E1. Therefore, despite its asymmetric
appearance, subscripting is a commutative operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is ann -dimensional array of rank
i × j × . . .×k, then E appearing in an expression is converted to a pointer to an (n−1)-dimensional array with rank
j × . . .×k. If the * operator, either explicitly or implicitly as a result of subscripting, is applied to this pointer, the re-
sult is the pointed-to (n−1)-dimensional array, which itself is immediately converted into a pointer.

For example, consider

int x[3][5];

Herex is a 3×5 array of integers. Whenx appears in an expression, it is converted to a pointer to (the first of three)
5-membered arrays of integers. In the expression ‘‘x[i]’’, which is equivalent to ‘‘* (x+i)’’, x is first converted to a
pointer as described; theni is converted to the type ofx, which involves multiplyingi by the length the object to
which the pointer points, namely 5 integer objects. The results are added and indirection applied to yield an array
(of 5 integers) which in turn is converted to a pointer to the first of the integers. If there is another subscript the
same argument applies again; this time the result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest) and that the first subscript
in the declaration helps determine the amount of storage consumed by an array but plays no other part in subscript
calculations.

14.4 Labels
Labels do not have a type of their own; they are treated as having type ‘‘array ofint ’’. Label variables should be

declared ‘‘pointer toint ’’; before execution of agoto referring to the variable, a label (or an expression deriving
from a label) should be assigned to the variable.

Label variables are a bad idea in general; theswitch statement makes them almost always unnecessary.

-

C Reference Manual - 19

15. Constant expressions

In several places C requires expressions which evaluate to a constant: aftercase, as array bounds, and in ini-
tializers. In the first two cases, the expression can involve only integer constants, character constants, andsizeof
expressions, possibly connected by the binary operators

+ − * / % & | ˆ << >>

or by the unary operators

− ˜
Parentheses can be used for grouping, but not for function calls.

A bit more latitude is permitted for initializers; besides constant expressions as discussed above, one can also ap-
ply the unary& operator to external scalars, and to external arrays subscripted with a constant expression. The unary
& can also be applied implicitly by appearance of unsubscripted external arrays. The rule here is that initializers
must evaluate either to a constant or to the address of an external identifier plus or minus a constant.

16. Examples.

These examples are intended to illustrate some typical C constructions as well as a serviceable style of writing C
programs.

16.1 Inner product
This function returns the inner product of its array arguments.

double inner (v1, v2, n)
double v1 [] , v2 [] ;
{

double sum ;
int i ;
sum = 0.0 ;
for (i=0 ; i<n ; i ++)

sum =+ v1 [i] * v2 [i] ;
return (sum) ;

}

The following version is somewhat more efficient, but perhaps a little less clear. It uses the facts that parameter ar-
rays are really pointers, and that all parameters are passed by value.

double inner (v1, v2, n)
double *v1, *v2 ;
{

double sum ;
sum = 0.0 ;
while (n −−)

sum =+ *v1 ++ * * v2 ++ ;
return (sum) ;

}

The declarations for the parameters are really exactly the same as in the last example. In the first case array declara-
tions ‘‘ [] ’’ were given to emphasize that the parameters would be referred to as arrays; in the second, pointer dec-
larations were given because the indirection operator and ++ were used.

16.2 Tree and character processing
Here is a complete C program (courtesy of R. Haight) which reads a document and produces an alphabetized list

of words found therein together with the number of occurrences of each word. The method keeps a binary tree of
words such that the left descendant tree for each word has all the words lexicographically smaller than the given
word, and the right descendant has all the larger words. Both the insertion and the printing routine are recursive.

The program calls the library routinesgetchar to pick up characters andexit to terminate execution.Printf is

-

C Reference Manual - 20

called to print the results according to a format string. A version ofprintf is given below (§16.3) .

Because all the external definitions for data are given at the top, noextern declarations are necessary within the
functions. To stay within the rules, a type declaration is given for each non-integer function when the function is
used before it is defined. However, since all such functions return pointers which are simply assigned to other point-
ers, no actual harm would result from leaving out the declarations; the supposedlyint function values would be as-
signed without error or complaint.

define nwords 100 / * number of different words * /
define wsize 20 / * max chars per word * /
struct tnode { / * the basic structure * /

char tword [wsize] ;
int count ;
struct tnode * left ;
struct tnode * right ;

} ;

struct tnode space [nwords] ; / * the words themselves * /
int nnodes nwords ; / * number of remaining slots * /
struct tnode *spacep space ; / * next available slot * /
struct tnode * freep ; / * free list * /
/ *

* The main routine reads words until end-of-file (´\0´ returned from "getchar")

* "tree" is called to sort each word into the tree.

* /
main ()
{

struct tnode * top, * tree () ;
char c, word [wsize] ;
int i ;

i = top = 0 ;
while (c=getchar ())

if (´a´<=c && c<=´z´ || ´A´<=c && c <=´Z´) {
if (i<wsize −1)

word [i ++] = c ;
} else

if (i) {
word [i ++] = ´\0´ ;
top = tree (top, word) ;
i = 0 ;

}
tprint (top) ;

}
/ *

* The central routine. If the subtree pointer is null, allocate a new node for it.

* If the new word and the node´s word are the same, increase the node´s count.

* Otherwise, recursively sort the word into the left or right subtree according

* as the argument word is less or greater than the node´s word.

* /
struct tnode * tree (p, word)
struct tnode *p ;
char word [] ;
{

struct tnode *alloc () ;
int cond ;

/ * Is pointer null? * /
if (p ==0) {

p = alloc () ;

-

C Reference Manual - 21

copy (word, p −>tword) ;
p−>count = 1 ;
p−>right = p −>left = 0 ;
retur n (p) ;

}
/ * Is word repeated? * /
if ((cond=compar (p −>tword, word)) == 0) {

p−>count ++ ;
retur n (p) ;

}
/ * Sort into left or right * /
if (cond<0)

p−>left = tree (p −>left, word) ;
else

p−>right = tree (p −>right, word) ;
retur n (p) ;

}
/ *

* Print the tree by printing the left subtree, the given node, and the right subtre e

* /
tprin t (p)
struct tnode *p ;
{

while (p) {
tprint (p −>left) ;
printf ("%d: %s\n", p −>count, p −>tword) ;
p = p −>right ;

}
}
/ *

* String comparison: return number (>, =, <) 0

* according as s1 (>, =, <) s2.

* /
compar (s1, s2)
char *s1, *s2 ;
{

int c1, c2 ;

while ((c1 = *s1 ++) == (c2 = *s2 ++))
if (c1 ==´\0´)

retur n (0) ;
return (c2 −c1) ;

}
/ *

* String copy: copy s1 into s2 until the null

* character appears.

* /
copy (s1, s2)
char *s1, *s2 ;
{

while (*s2 ++ = *s1 ++) ;
}
/ *

* Node allocation: return pointer to a free node.

* Bomb out when all are gone. Just for fun, there

* is a mechanism for using nodes that have been

* freed, even though no one here calls "free."

* /
struct tnode *alloc ()

-

C Reference Manual - 22

{
struct tnode * t ;

if (freep) {
t = freep ;
freep = freep −>left ;
retur n (t) ;

}
if (−−nnodes < 0) {

printf ("Out of space\n") ;
exit () ;

}
return (spacep ++) ;

}
/ *

* The uncalled routine which puts a node on the free list.

* /
free (p)
struct tnode *p ;
{

p−>left = freep ;
freep = p ;

}

To illustrate a slightly different technique of handling the same problem, we will repeat fragments of this example
with the tree nodes treated explicitly as members of an array. The fundamental change is to deal with the subscript
of the array member under discussion, instead of a pointer to it. Thestruct declaration becomes

struct tnode {
char tword [wsize] ;
int count;
int left;
int right;

};

andalloc becomes

alloc ()
{

int t;

t = −−nnodes;
if (t<=0) {

printf ("Out of space\n") ;
exit () ;

}
retur n (t) ;

}

The freestuff has disappeared because if we deal with exclusively with subscripts some sort of map has to be kept,
which is too much trouble.

Now thetreeroutine returns a subscript also, and it becomes:

tree (p, word)
char word [] ;
{

int cond;

if (p ==0) {
p = alloc () ;
copy (word, spac e [p] .tword) ;

-

C Reference Manual - 23

spac e [p] .count = 1;
spac e [p] .right = spac e [p] .left = 0;
retur n (p) ;

}
if ((cond=compar (spac e [p] .tword, word)) == 0) {

spac e [p] .count ++;
retur n (p) ;

}
if (cond<0)

spac e [p] .left = tree (spac e [p] .left, word) ;
else

spac e [p] .right = tree (spac e [p] .right, word) ;
retur n (p) ;

}

The other routines are changed similarly. It must be pointed out that this version is noticeably less efficient than the
first because of the multiplications which must be done to compute an offset inspacecorresponding to the sub-
scripts.

The observation that subscripts (like ‘‘a [i] ’’) are less efficient than pointer indirection (like ‘‘*ap’’) holds true
independently of whether or not structures are involved. There are of course many situations where subscripts are
indispensable, and others where the loss in efficiency is worth a gain in clarity.

16.3 Formatted output
Here is a simplified version of theprintf routine, which is available in the C library. It accepts a string (character

array) as first argument, and prints subsequent arguments according to specifications contained in this format string.
Most characters in the string are simply copied to the output; two-character sequences beginning with ‘‘%’’ specify
that the next argument should be printed in a style as follows:

%d decimal number
%o octal number
%c ASCII character, or 2 characters if upper character is not null
%s string (null-terminated array of characters)
%f floating-point number

The actual parameters for each function call are laid out contiguously in increasing storage locations; therefore, a
function with a variable number of arguments may take the address of (say) its first argument, and access the re-
maining arguments by use of subscripting (regarding the arguments as an array) or by indirection combined with
pointer incrementation.

If in such a situation the arguments have mixed types, or if in general one wishes to insist that an lvalue should be
treated as having a given type, thenstruct declarations like those illustrated below will be useful. It should be
evident, though, that such techniques are implementation dependent.

Printf depends as well on the fact thatchar andfloat arguments are widened respectively toint anddou-
ble , so there are effectively only two sizes of arguments to deal with.Printf calls the library routinesputchar to
write out single characters andftoa to dispose of floating-point numbers.

printf (fmt, args)
char fmt [] ;
{

char *s ;
struct { char ** charpp ; };
struct { double *doublep ; };
int *ap, x, c ;

ap = &args ; / * argument pointer * /
for (; ;) {

while ((c = * fmt ++) != ´%´) {
if (c == ´\0´)

return ;

-

C Reference Manual - 24

putcha r (c) ;
}
switch (c = * fmt ++) {
/ * decimal * /
case ´d ´:

x = *ap++ ;
if (x < 0) {

x = −x ;
if (x<0) { / * is − infinity * /

printf (" −32768") ;
continue ;

}
putchar (´ −´) ;

}
print d (x) ;
continue ;

/ * octal * /
case ´o´:

printo (*ap++) ;
continue ;

/ * float, double * /
case ´f ´:

/ * let ftoa do the real work * /
ftoa (*ap.doublep ++) ;
continue ;

/ * character * /
case ´c´:

putchar (*ap++) ;
continue ;

/ * string * /
case ´s´:

s = *ap.charpp ++ ;
while (c = *s++)

putcha r (c) ;
continue ;

}
putcha r (c) ;

}
}
/ *

* Print n in decimal ; n must be non-negative

* /
print d (n)
{

int a ;
if (a=n/10)

print d (a) ;
putchar (n%10 + ´0´) ;

}
/ *

* Print n in octal, with exactly 1 leading 0

* /
print o (n)
{

if (n)
printo ((n>>3) &017777) ;

putchar ((n&07) +´0´) ;
}

-

C Reference Manual - 25

REFERENCES

1. Johnson, S. C., and Kernighan, B. W. ‘‘The Programming Language B.’’ Comp. Sci. Tech. Rep. #8., Bell Lab-
oratories, 1972.

2. Ritchie, D. M., and Thompson, K. L. ‘‘TheUNIX Time-sharing System.’’ C. ACM7, 17, July, 1974, pp.
365-375.

3. Peterson, T. G., and Lesk, M. E. ‘‘A User’s Guide to the C Language on the IBM 370.’’ Internal Memoran-
dum, Bell Laboratories, 1974.

4. Thompson, K. L., and Ritchie, D. M.UNIX Programmer’s Manual.Bell Laboratories, 1973.

5. Lesk, M. E., and Barres, B. A. ‘‘TheGCOSC Library.’’ Internal memorandum, Bell Laboratories, 1974.

6. Kernighan, B. W. ‘‘Programming in C− A Tutorial.’’ Unpublished internal memorandum, Bell Laboratories,
1974.

-

C Reference Manual - 26

APPENDIX 1

Syntax Summary

1. Expressions.

expression:
primary
* expression
& expression
− expression
! expression

˜ expression
++ lvalue
−− lvalue
lvalue++
lvalue−−
sizeof expression
expression binop expression
expression? expression: expression
lvalue asgnop expression
expression, expression

primary:
identifier
constant
string
(expression)
primary (expression-listopt)
primary [expression]
lvalue. identifier
primary�> identifier

lvalue:
identifier
primary [expression]
lvalue. identifier
primary�> identifier
* expression
(lvalue)

The primary-expression operators

() [] . �>

have highest priority and group left-to-right. The unary operators

& − ! ~ ++ −− sizeof

have priority below the primary operators but higher than any binary operator, and group right-to-left. Bi-
nary operators and the conditional operator all group left-to-right, and have priority decreasing as indicated:

binop:
* / %
+ −
>> <<
< > <= >=
== !=
&

-

C Reference Manual - 27

^
|
&&
||
? :

Assignment operators all have the same priority, and all group right-to-left.

asgnop:
= =+ =− =* =/ =% =>> =<< =& =^ = |

The comma operator has the lowest priority, and groups left-to-right.

2. Declarations.

declaration:
decl-specifiers declarator-listopt ;

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

sc-specifier:
auto
static
extern
register

type-specifier:
int
char
float
double
struct { type-decl-list }
struct identifier { type-decl-list }
struct identifier

declarator-list:
declarator
declarator, declarator-list

declarator:
identifier
* declarator
declarator()
declarator[constant-expressionopt]
(declarator)

type-decl-list:
type-declaration
type-declaration type-decl-list

type-declaration:
type-specifier declarator-list;

3. Statements.

statement:
expression;
{ statement-list }

-

C Reference Manual - 28

if (expression) statement
if (expression) statementelse statement
while (expression) statement
for (expressionopt ; expressionopt ; expressionopt) statement
switch (expression) statement
case constant-expression: statement
default : statement
break ;
continue ;
return ;
return (expression) ;
goto expression;
identifier : statement
;

statement-list:
statement
statement statement-list

4. External definitions.

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
type-specifieropt function-declarator function-body

function-declarator:
declarator(parameter-listopt)

parameter-list:
identifier
identifier , parameter-list

function-body:
type-decl-list function-statement

function-statement:
{ declaration-listopt statement-list }

data-definition:
extern opt type-specifieropt init-declarator-listopt ;

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializeropt

initializer:
constant
{ constant-expression-list }

-

C Reference Manual - 29

constant-expression-list:
constant-expression
constant-expression, constant-expression-list

constant-expression:
expression

5. Preprocessor

define identifier token-string

include " filename"

-

C Reference Manual - 30

APPENDIX 2
Implementation Peculiarities

This Appendix briefly summarizes the differences between the implementations of C on thePDP-11 underUNIX and
on theHIS 6070 underGCOS; it includes some known bugs in each implementation. Each entry is keyed by an indi-
cator as follows:

h hard to fix
g GCOSversion should probably be changed
u UNIX version should probably be changed
d Inherent difference likely to remain

This list was prepared by M. E. Lesk, S. C. Johnson, E. N. Pinson, and the author.

A. Bugs or differences from C language specifications

hg A.1) GCOSdoes not do type conversions in ‘‘?:’’.
hg A.2) GCOShas a bug inint andreal comparisons; the numbers are compared by subtraction, and

the difference must not overflow.
g A.3) Whenx is afloat , the construction ‘‘test ? −x : x’’ is illegal onGCOS.
hg A.4) ‘‘p1−>p2 =+ 2’’ causes a compiler error, where p1 and p2 are pointers.
u A.5) OnUNIX, the expression in areturn statement isnot converted to the type of the function, as

promised.
hug A.6) entry statement is not implemented at all.

B. Implementation differences

d B.1) Sizes of character constants differ;UNIX: 2, GCOS: 4.
d B.2) Table sizes in compilers differ.
d B.3) char s andint s have different sizes;char s are 8 bits onUNIX, 9 onGCOS; words are 16 bits

on UNIX and 36 onGCOS. There are corresponding differences in representations offloat s
anddouble s.

d B.4) Character arrays stored left to right in a word inGCOS, right to left inUNIX.
g B.5) Passing of floats and doubles differs;UNIX passes on stack,GCOSpasses pointer (hidden to nor-

mal user).
g B.6) Structures and strings are aligned on a word boundary inUNIX, not aligned inGCOS.
g B.7) GCOSpreprocessor supports #rename, #escape;UNIX has only #define, #include.
u B.8) Preprocessor is not invoked onUNIX unless first character of file is ‘‘#’’.
u B.9) The external definition ‘‘static int . . .’’ is legal onGCOS, but gets a diagnostic onUNIX. (On

GCOSit means an identifier global to the routines in the file but invisible to routines compiled
separately.)

g B.10) A compound statement onGCOSmust contain one ‘‘;’’ but onUNIX may be empty.
g B.11) OnGCOScase distinctions in identifiers and keywords are ignored; onUNIX case is significant

everywhere, with keywords in lower case.

C. Syntax Differences

g C.1) UNIX allows broader classes of initialization; onGCOSan initializer must be a constant, name,
or string. Similarly,GCOSis much stickier about wanting braces around initializers and in par-
ticular they must be present for array initialization.

g C.2) ‘‘int extern’’ illegal onGCOS; must have ‘‘extern int’’ (storage class before type).
g C.3) Externals onGCOSmust have a type (not defaulted toint).
u C.4) GCOSallows initialization of internalstatic (same syntax as for external definitions).
g C.5) integer−>... is not allowed onGCOS.
g C.6) Some operators on pointers are illegal onGCOS(<, >).

-

C Reference Manual - 31

g C.7) register storage class means something onUNIX, but is not accepted onGCOS.
g C.8) Scope holes: ‘‘int x; f () {int x;}’’ is illegal onUNIX but defines two variables onGCOS.
g C.9) When function names are used as arguments onUNIX, either ‘‘fname’’ or ‘‘&fname’’ may be

used to get a pointer to the function; onGCOS‘‘&fname’’ generates a doubly-indirect pointer.
(Note that both are wrong since the ‘‘&’’ is supposed to be supplied for free.)

D. Operating System Dependencies

d D.1) GCOSallocates external scalars by SYMREF;UNIX allocates external scalars as labelled com-
mon; as a result there may be many uninitialized external definitions of the same variable on
UNIX but only one onGCOS.

d D.2) External names differ in allowable length and character set; onUNIX, 7 characters and both
cases; onGCOS6 characters and only one case.

E. Semantic Differences

hg E.1) ‘‘int i, *p; p=i; i=p;’’ does nothing onUNIX, does something onGCOS(destroys right half of i) .
d E.2) ‘‘>>’’ means arithmetic shift onUNIX, logical onGCOS.
d E.3) When achar is converted to integer, the result is always positive onGCOSbut can be negative

on UNIX.
d E.4) Arguments of subroutines are evaluated left-to-right onGCOS, right-to-left onUNIX.

Recent Changes to C

November 15, 1978

A few extensions have been made to the C language beyond what is described in the reference docu-
ment (‘‘The C Programming Language,’’ Prentice-Hall, 1978).

1. Structure assignment

Structures may be assigned, passed as arguments to functions, and returned by functions. The types
of the operands taking part must be the same. Other plausible operators, such as equality comparison, have
not been implemented.

There is a defect in the PDP-11 implementation of functions that return structures: if an interrupt
occurs during the return sequence, and the same function is called reentrantly during the interrupt, the value
returned from the first call may be corrupted. The problem can occur only in the presence of true interrupts,
as in an operating system or a user program that makes significant use of signals; ordinary recursive calls
are quite safe.

2. Enumeration type

There is a new data type analogous to the scalar types of Pascal. To the type-specifiers in the syntax
on p. 193 of the C book add

enum-specifier

with syntax

enum-specifier:
enum { enum-list}
enum identifier W { enum-listW}
enum identifier

enum-list:
enumerator
enum-list, enumerator

enumerator:
identifier
identifier = constant-expression

The role of the identifier in the enum-specifier is entirely analogous to that of the structure tag on a struct-
specifier; it names a particular enumeration. For example,

enum color { chartreuse, burgundy, claret, winedark };
. . .
enum color *cp, col;

makescolor the enumeration-tag of a type describing various colors, and then declarescp as a pointer to
an object of that type, andcol as an object of that type.

The identifiers in the enum-list are declared as constants, and may appear wherever constants are
required. If no enumerators with= appear, then the values of the constants begin at 0 and increase by 1 as
the declaration is read from left to right. An enumerator with= gives the associated identifier the value
indicated; subsequent identifiers continue the progression from the assigned value.

Enumeration tags and constants must all be distinct, and unlike structure tags and members, are
drawn from the same set as ordinary identifiers.

Objects of a given enumeration type are regarded as having a type distinct from objects of all other
types, andlint flags type mismatches. In the PDP-11 implementation all enumeration variables are treated
as if they wereint .

Programming in C � A Tutorial

Brian W. Kernighan

Bell Laboratories, Murray Hill, N. J.

1. Introduction

C is a computer language available on theGCOSandUNIX operating systems at Murray Hill and (in
preliminary form) on OS/360 at Holmdel. C lets you write your programs clearly and simply_ it has de-
cent control flow facilities so your code can be read straight down the page, without labels or GOTO’s; it
lets you write code that is compact without being too cryptic; it encourages modularity and good program
organization; and it provides good data-structuring facilities.

This memorandum is a tutorial to make learning C as painless as possible. The first part concentrates
on the central features of C; the second part discusses those parts of the language which are useful (usually
for getting more efficient and smaller code) but which are not necessary for the new user. This isnot a ref-
erence manual. Details and special cases will be skipped ruthlessly, and no attempt will be made to cover
every language feature. The order of presentation is hopefully pedagogical instead of logical. Users who
would like the full story should consult theC Reference Manualby D. M. Ritchie [1], which should be read
for details anyway. Runtime support is described in [2] and [3]; you will have to read one of these to learn
how to compile and run a C program.

We will assume that you are familiar with the mysteries of creating files, text editing, and the like in
the operating system you run on, and that you have programmed in some language before.

2. A Simple C Program

main() {
printf("hello, world");

}

A C program consists of one or morefunctions,which are similar to the functions and subroutines of
a Fortran program or the procedures of PL/I, and perhaps some external data definitions.main is such a
function, and in fact all C programs must have amain. Execution of the program begins at the first state-
ment ofmain. main will usually invoke other functions to perform its job, some coming from the same
program, and others from libraries.

One method of communicating data between functions is by arguments. The parentheses following
the function name surround the argument list; heremain is a function of no arguments, indicated by ().
The {} enclose the statements of the function. Individual statements end with a semicolon but are other-
wise free-format.

printf is a library function which will format and print output on the terminal (unless some other des-
tination is specified). In this case it prints

C Tutorial - 2 -

hello, world

A function is invoked by naming it, followed by a list of arguments in parentheses. There is noCALL state-
ment as in Fortran orPL/I.

3. A Working C Program; Variables; Types and Type Declarations

Here’s a bigger program that adds three integers and prints their sum.

main() {
int a, b, c, sum;
a = 1; b = 2; c = 3;
sum = a + b + c;
printf("sum is %d", sum);

}

Arithmetic and the assignment statements are much the same as in Fortran (except for the semi-
colons) orPL/I. The format of C programs is quite free. We can put several statements on a line if we want,
or we can split a statement among several lines if it seems desirable. The split may be between any of the
operators or variables, butnot in the middle of a name or operator. As a matter of style, spaces, tabs, and
newlines should be used freely to enhance readability.

C has four fundamentaltypesof variables:

int integer (PDP-11: 16 bits; H6070: 36 bits; IBM360: 32 bits)
char one byte character (PDP-11, IBM360: 8 bits; H6070: 9 bits)
float single-precision floating point
double double-precision floating point

There are alsoarrays andstructuresof these basic types,pointersto them andfunctionsthat return them,
all of which we will meet shortly.

All variables in a C program must be declared, although this can sometimes be done implicitly by
context. Declarations must precede executable statements. The declaration

int a, b, c, sum;

declaresa, b, c, andsum to be integers.

Variable names have one to eight characters, chosen from A-Z, a-z, 0-9, and_, and start with a non-
digit. Stylistically, it’s much better to use only a single case and give functions and external variables
names that are unique in the first six characters. (Function and external variable names are used by various
assemblers, some of which are limited in the size and case of identifiers they can handle.) Furthermore,
keywords and library functions may only be recognized in one case.

4. Constants

We have already seen decimal integer constants in the previous example_ 1, 2, and 3. Since C is of-
ten used for system programming and bit-manipulation, octal numbers are an important part of the lan-
guage. In C, any number that begins with 0 (zero!) is an octal integer (and hence can’t have any 8’s or 9’s
in it). Thus 0777 is an octal constant, with decimal value 511.

A ‘‘character’’ is one byte (an inherently machine-dependent concept). Most often this is expressed
as acharacter constant,which is one character enclosed in single quotes. However, it may be any quantity
that fits in a byte, as inflags below:

char quest, newline, flags;
quest = ′?′;
newline = ′\n′;
flags = 077;

C Tutorial - 3 -

The sequence ‘\n’ is C notation for ‘‘newline character’’, which, when printed, skips the terminal to
the beginning of the next line. Notice that ‘\n’ represents only a single character. There are several other
‘‘escapes’’ like ‘\n’ for representing hard-to-get or invisible characters, such as ‘\t’ for tab, ‘\b’ for back-
space, ‘\0’ for end of file, and ‘\\’ for the backslash itself.

float anddouble constants are discussed in section 26.

5. Simple I/O _ getchar, putchar, printf

main() {
char c;
c = getchar();
putchar(c);

}

getchar and putchar are the basic I/O library functions in C.getchar fetches one character from
the standard input (usually the terminal) each time it is called, and returns that character as the value of the
function. When it reaches the end of whatever file it is reading, thereafter it returns the character repre-
sented by ‘\0’ (asciiNUL, which has value zero). We will see how to use this very shortly.

putchar puts one character out on the standard output (usually the terminal) each time it is called. So
the program above reads one character and writes it back out. By itself, this isn’t very interesting, but ob-
serve that if we put a loop around this, and add a test for end of file, we have a complete program for copy-
ing one file to another.

printf is a more complicated function for producing formatted output. We will talk about only the
simplest use of it. Basically,printf uses its first argument as formatting information, and any successive ar-
guments as variables to be output. Thus

printf ("hello, world\n");

is the simplest use_ the string ‘‘hello, world\n’’ is printed out. No formatting information, no variables, so
the string is dumped out verbatim. The newline is necessary to put this out on a line by itself. (The con-
struction

"hello, world\n"

is really an array ofchars. More about this shortly.)

More complicated, ifsum is 6,

printf ("sum is %d\n", sum);

prints

sum is 6

Within the first argument ofprintf, the characters ‘‘%d’’ signify that the next argument in the argument list
is to be printed as a base 10 number.

Other useful formatting commands are ‘‘%c’’ to print out a single character, ‘‘%s’’ to print out an en-
tire string, and ‘‘%o’’ to print a number as octal instead of decimal (no leading zero). For example,

n = 511;
printf ("What is the value of %d in octal?", n);
printf (" %s! %d decimal is %o octal\n", "Right", n, n);

prints

What is the value of 511 in octal? Right! 511 decimal is 777 octal

Notice that there is no newline at the end of the first output line. Successive calls toprintf (and/orputchar,
for that matter) simply put out characters. No newlines are printed unless you ask for them. Similarly, on
input, characters are read one at a time as you ask for them. Each line is generally terminated by a newline
(\n), but there is otherwise no concept of record.

C Tutorial - 4 -

6. If; relational operators; compound statements

The basic conditional-testing statement in C is theif statement:

c = getchar();
if(c == ′?′)

printf("why did you type a question mark?\n");

The simplest form ofif is

if (expression) statement

The condition to be tested is any expression enclosed in parentheses. It is followed by a statement.
The expression is evaluated, and if its value is non-zero, the statement is executed. There’s an optional
else clause, to be described soon.

The character sequence ‘==’ is one of the relational operators in C; here is the complete set:

== equal to (.EQ. to Fortraners)
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to

The value of‘‘expression relation expression’’ is 1 if the relation is true, and 0 if false. Don’t for-
get that the equality test is ‘==’; a single ‘=’ causes an assignment, not a test, and invariably leads to disas-
ter.

Tests can be combined with the operators‘&&’ (AND), ‘| |’ (OR), and‘!’ (NOT). For example, we can test
whether a character is blank or tab or newline with

if(c==′ ′ | | c==′\t′ | | c==′\n′) ...
C guarantees that‘&&’ and‘| |’ are evaluated left to right _ we shall soon see cases where this matters.

One of the nice things about C is that thestatement part of anif can be made arbitrarily complicated
by enclosing a set of statements in {}. As a simple example, suppose we want to ensure thata is bigger
thanb, as part of a sort routine. The interchange ofa andb takes three statements in C, grouped together
by {}:

if (a < b) {
t = a;
a = b;
b = t;

}

As a general rule in C, anywhere you can use a simple statement, you can use any compound state-
ment, which is just a number of simple or compound ones enclosed in {}. There is no semicolon after the }
of a compound statement, but thereis a semicolon after the last non-compound statement inside the {}.

The ability to replace single statements by complex ones at will is one feature that makes C much
more pleasant to use than Fortran. Logic (like the exchange in the previous example) which would require
several GOTO’s and labels in Fortran can and should be done in C without any, using compound state-
ments.

7. While Statement; Assignment within an Expression; Null Statement

The basic looping mechanism in C is thewhile statement. Here’s a program that copies its input to
its output a character at a time. Remember that ‘\0’ marks the end of file.

main() {
char c;
while((c=getchar()) != ′\0′)

C Tutorial − 5 −

putchar(c);
}

Thewhile statement is a loop, whose general form is

while (expression) statement

Its meaning is

(a) evaluate the expression
(b) if its value is true (i.e., not zero)

do the statement, and go back to (a)

Because the expression is tested before the statement is executed, the statement part can be executed zero
times, which is often desirable. As in theif statement, the expression and the statement can both be arbi-
trarily complicated, although we haven’t seen that yet. Our example gets the character, assigns it toc, and
then tests if it’s a ‘\0’’. If it is not a ‘\0’, the statement part of thewhile is executed, printing the character.
Thewhile then repeats. When the input character is finally a ‘\0’, thewhile terminates, and so doesmain.

Notice that we used an assignment statement

c = getchar()

within an expression. This is a handy notational shortcut which often produces clearer code. (In fact it is
often the only way to write the code cleanly. As an exercise, re-write the file-copy without using an assign-
ment inside an expression.) It works because an assignment statement has a value, just as any other expres-
sion does. Its value is the value of the right hand side. This also implies that we can use multiple assign-
ments like

x = y = z = 0;

Evaluation goes from right to left.

By the way, the extra parentheses in the assignment statement within the conditional were really nec-
essary: if we had said

c = getchar() != ′\0′

c would be set to 0 or 1 depending on whether the character fetched was an end of file or not. This is be-
cause in the absence of parentheses the assignment operator ‘=’ is evaluated after the relational operator
‘!=’. When in doubt, or even if not, parenthesize.

Sinceputchar(c) returnsc as its function value, we could also copy the input to the output by nest-
ing the calls togetchar andputchar:

main() {
while(putchar(getchar()) != ′\0′) ;

}

What statement is being repeated? None, or technically, thenull statement, because all the work is really
done within the test part of thewhile. This version is slightly different from the previous one, because the
final ‘\0’ is copied to the output before we decide to stop.

8. Arithmetic

The arithmetic operators are the usual ‘+’, ‘−’, ‘*’, and ‘/’ (truncating integer division if the operands
are bothint), and the remainder or mod operator ‘%’:

x = a%b;

setsx to the remainder aftera is divided byb (i.e., a mod b). The results are machine dependent unlessa
andb are both positive.

In arithmetic,char variables can usually be treated likeint variables. Arithmetic on characters is
quite legal, and often makes sense:

c = c + ′A′ − ′a′;

C Tutorial − 6 −

converts a single lower case ascii character stored inc to upper case, making use of the fact that corre-
sponding ascii letters are a fixed distance apart. The rule governing this arithmetic is that allchars are con-
verted toint before the arithmetic is done. Beware that conversion may involve sign-extension_ if the left-
most bit of a character is 1, the resulting integer might be negative. (This doesn’t happen with genuine
characters on any current machine.)

So to convert a file into lower case:

main() {
char c;
while((c=getchar()) != ′\0′)

if(′A′<=c && c<=′Z′)
putchar(c+′a′−′A′);

else
putchar(c);

}

Characters have different sizes on different machines. Further, this code won’t work on an IBM machine,
because the letters in the ebcdic alphabet are not contiguous.

9. Else Clause; Conditional Expressions

We just used anelse after anif. The most general form ofif is

if (expression) statement1 else statement2

theelse part is optional, but often useful. The canonical example setsx to the minimum ofa andb:

if (a < b)
x = a;

else
x = b;

Observe that there’s a semicolon afterx=a.
C provides an alternate form of conditional which is often more concise. It is called the ‘‘conditional

expression’’ because it is a conditional which actually has a value and can be used anywhere an expression
can. The value of

a<b ? a : b;

is a if a is less thanb; it is b otherwise. In general, the form

expr1 ? expr2 : expr3

means ‘‘evaluateexpr1. If it is not zero, the value of the whole thing isexpr2; otherwise the value is
expr3.’’

To setx to the minimum ofa andb, then:

x = (a<b ? a : b);

The parentheses aren’t necessary because‘?:’ is evaluated before ‘=’, but safety first.

Going a step further, we could write the loop in the lower-case program as

while((c=getchar()) != ′\0′)
putchar((′A′<=c && c<=′Z′) ? c−′A′+′a′ : c);

If’s andelse’s can be used to construct logic that branches one of several ways and then rejoins, a
common programming structure, in this way:

if(...)
{...}

else if(...)
{...}

C Tutorial − 7 −

else if(...)
{...}

else
{...}

The conditions are tested in order, and exactly one block is executed_ either the first one whoseif is satis-
fied, or the one for the lastelse. When this block is finished, the next statement executed is the one after
the lastelse. If no action is to be taken for the ‘‘default’’ case, omit the lastelse.

For example, to count letters, digits and others in a file, we could write

main() {
int let, dig, other, c;
let = dig = other = 0;
while((c=getchar()) != ′\0′)

if((′A′<=c && c<=′Z′) | | (′a′<=c && c<=′z′)) ++let;
else if(′0′<=c && c<=′9′) ++dig;
else ++other;

printf("%d letters, %d digits, %d others\n", let, dig, other);
}

The ‘++’ operator means ‘‘increment by 1’’; we will get to it in the next section.

10. Increment and Decrement Operators

In addition to the usual ‘−’, C also has two other interesting unary operators, ‘++’ (increment) and
‘−−’ (decrement). Suppose we want to count the lines in a file.

main() {
int c,n;
n = 0;
while((c=getchar()) != ′\0′)

if(c == ′\n′)
++n;

printf("%d lines\n", n);
}

++n is equivalent ton=n+1 but clearer, particularly whenn is a complicated expression. ‘++’ and ‘−−’ can
be applied only toint’s andchar’s (andpointers which we haven’t got to yet).

The unusual feature of ‘++’ and ‘−−’ is that they can be used either before or after a variable. The
value of ++k is the value ofk after it has been incremented. The value ofk++ is k beforeit is incremented.
Supposek is 5. Then

x = ++k;

incrementsk to 6 and then setsx to the resulting value, i.e., to 6. But

x = k++;

first setsx to to 5, andthen incrementsk to 6. The incrementing effect of ++k and k++ is the same, but
their values are respectively 5 and 6. We shall soon see examples where both of these uses are important.

11. Arrays

In C, as in Fortran or PL/I, it is possible to make arrays whose elements are basic types. Thus we can
make an array of 10 integers with the declaration

int x[10];

The square brackets meansubscripting;parentheses are used only for function references. Array indexes
begin atzero,so the elements ofx are

x[0], x[1], x[2], ..., x[9]

C Tutorial − 8 −

If an array hasn elements, the largest subscript isn−1.
Multiple-dimension arrays are provided, though not much used above two dimensions. The declara-

tion and use look like

int name[10] [20];
n = name[i+j] [1] + name[k] [2];

Subscripts can be arbitrary integer expressions. Multi-dimension arrays are stored by row (opposite to For-
tran), so the rightmost subscript varies fastest;name has 10 rows and 20 columns.

Here is a program which reads a line, stores it in a buffer, and prints its length (excluding the newline
at the end).

main() {
int n, c;
char line[100];
n = 0;
while((c=getchar()) != ′\n′) {

if(n < 100)
line[n] = c;

n++;
}
printf("length = %d\n", n);

}

As a more complicated problem, suppose we want to print the count for each line in the input, still
storing the first 100 characters of each line. Try it as an exercise before looking at the solution:

main() {
int n, c; char line[100];
n = 0;
while((c=getchar()) != ′\0′)

if(c == ′\n′) {
printf("%d0, n);
n = 0;

}
else {

if(n < 100) line[n] = c;
n++;

}
}

12. Character Arrays; Strings

Text is usually kept as an array of characters, as we did withline[] in the example above. By con-
vention in C, the last character in a character array should be a ‘\0’ because most programs that manipulate
character arrays expect it. For example,printf uses the ‘\0’ to detect the end of a character array when
printing it out with a ‘%s’.

We can copy a character arrays into anothert like this:

i = 0;
while((t[i]=s[i]) != ′\0′)

i++;

Most of the time we have to put in our own ‘\0’ at the end of a string; if we want to print the line with
printf, it’s necessary. This code prints the character count before the line:

main() {
int n;

C Tutorial − 9 −

char line[100];
n = 0;
while((line[n++]=getchar()) != ′\n′);
line[n] = ′\0′;
printf("%d:\t%s", n, line);

}

Here we incrementn in the subscript itself, but only after the previous value has been used. The character
is read, placed inline[n], and only thenn is incremented.

There is one place and one place only where C puts in the ‘\0’ at the end of a character array for you,
and that is in the construction

"stuff between double quotes"

The compiler puts a ‘\0’ at the end automatically. Text enclosed in double quotes is called astring; its
properties are precisely those of an (initialized) array of characters.

13. For Statement

The for statement is a somewhat generalizedwhile that lets us put the initialization and increment
parts of a loop into a single statement along with the test. The general form of thefor is

for(initialization; expression; increment)
statement

The meaning is exactly

initialization;
while(expression) {

statement
increment;

}

Thus, the following code does the same array copy as the example in the previous section:

for(i=0; (t[i]=s[i]) != ′\0′; i++);

This slightly more ornate example adds up the elements of an array:

sum = 0;
for(i=0; i<n; i++)

sum = sum + array[i];

In the for statement, the initialization can be left out if you want, but the semicolon has to be there.
The increment is also optional. It isnot followed by a semicolon. The second clause, the test, works the
same way as in thewhile: if the expression is true (not zero) do another loop, otherwise get on with the next
statement. As with thewhile, the for loop may be done zero times. If the expression is left out, it is taken
to be always true, so

for(; ;) ...
and

while(1) ...
are both infinite loops.

You might ask why we use afor since it’s so much like awhile. (You might also ask why we use a
while because...) Thefor is usually preferable because it keeps the code where it’s used and sometimes
eliminates the need for compound statements, as in this code that zeros a two-dimensional array:

for(i=0; i<n; i++)
for(j=0; j<m; j++)

array[i][j] = 0;

C Tutorial - 10 -

14. Functions; Comments

Suppose we want, as part of a larger program, to count the occurrences of the ascii characters in some
input text. Let us also map illegal characters (those with value>127 or <0) into one pile. Since this is pre-
sumably an isolated part of the program, good practice dictates making it a separate function. Here is one
way:

main() {
int hist[129]; /* 128 legal chars + 1 illegal group */
...
count(hist, 128); /* count the letters into hist */
printf(...); /* comments look like this; use them */
... /* anywhere blanks, tabs or newlines could appear */

}

count(buf, size)
int size, buf[]; {

int i, c;
for(i=0; i<=size; i++)

buf[i] = 0; /* set buf to zero */
while((c=getchar()) != ′\0′) { /* read til eof */

if(c > size | | c < 0)
c = size; /* fix illegal input */

buf[c]++;
}
return;

}

We have already seen many examples of calling a function, so let us concentrate on how todefineone.
Sincecount has two arguments, we need to declare them, as shown, giving their types, and in the case of
buf, the fact that it is an array. The declarations of arguments gobetweenthe argument list and the opening
‘{’. There is no need to specify the size of the arraybuf, for it is defined outside ofcount.

The return statement simply says to go back to the calling routine. In fact, we could have omitted it,
since a return is implied at the end of a function.

What if we wantedcount to return a value, say the number of characters read? Thereturn statement
allows for this too:

int i, c, nchar;
nchar = 0;
...
while((c=getchar()) != ′\0′) {

if(c > size | | c < 0)
c = size;

buf[c]++;
nchar++;

}
return(nchar);

Any expression can appear within the parentheses. Here is a function to compute the minimum of two inte-
gers:

min(a, b)
int a, b; {

return(a < b ? a : b);
}

C Tutorial - 11 -

To copy a character array, we could write the function

strcopy(s1, s2) /* copies s1 to s2 */
char s1[], s2[]; {

int i;
for(i = 0; (s2[i] = s1[i]) != ′\0′; i++);

}

As is often the case, all the work is done by the assignment statement embedded in the test part of thefor.
Again, the declarations of the argumentss1 ands2 omit the sizes, because they don’t matter tostrcopy.
(In the section on pointers, we will see a more efficient way to do a string copy.)

There is a subtlety in function usage which can trap the unsuspecting Fortran programmer. Simple
variables (not arrays) are passed in C by ‘‘call by value’’, which means that the called function is given a
copy of its arguments, and doesn’t know their addresses. This makes it impossible to change the value of
one of the actual input arguments.

There are two ways out of this dilemma. One is to make special arrangements to pass to the function
the address of a variable instead of its value. The other is to make the variable a global or external variable,
which is known to each function by its name. We will discuss both possibilities in the next few sections.

15. Local and External Variables

If we say

f() {
int x;
...

}
g() {

int x;
...

}

eachx is local to its own routine _ thex in f is unrelated to thex in g. (Local variables are also called ‘‘au-
tomatic’’.) Furthermore each local variable in a routine appears only when the function is called, anddis-
appearswhen the function is exited. Local variables have no memory from one call to the next and must
be explicitly initialized upon each entry. (There is astatic storage class for making local variables with
memory; we won’t discuss it.)

As opposed to local variables,external variablesare defined external to all functions, and are (poten-
tially) available to all functions. External storage always remains in existence. To make variables external
we have todefinethem external to all functions, and, wherever we want to use them, make adeclaration.

main() {
extern int nchar, hist[];
...
count();
...

}

count() {
extern int nchar, hist[];
int i, c;
...

}

int hist[129]; /* space for histogram */
int nchar; /* character count */

Roughly speaking, any function that wishes to access an external variable must contain anextern declara-

C Tutorial - 12 -

tion for it. The declaration is the same as others, except for the added keywordextern. Furthermore, there
must somewhere be adefinitionof the external variables external to all functions.

External variables can be initialized; they are set to zero if not explicitly initialized. In its simplest
form, initialization is done by putting the value (which must be a constant) after the definition:

int nchar 0;
char flag ′f′;

etc.
This is discussed further in a later section.

This ends our discussion of what might be called the central core of C. You now have enough to
write quite substantial C programs, and it would probably be a good idea if you paused long enough to do
so. The rest of this tutorial will describe some more ornate constructions, useful but not essential.

16. Pointers

A pointer in C is the address of something. It is a rare case indeed when we care what the specific
address itself is, but pointers are a quite common way to get at the contents of something. The unary opera-
tor ‘&’ is used to produce the address of an object, if it has one. Thus

int a, b;
b = &a;

puts the address ofa into b. We can’t do much with it except print it or pass it to some other routine, be-
cause we haven’t givenb the right kind of declaration. But if we declare thatb is indeed apointer to an in-
teger, we’re in good shape:

int a, *b, c;
b = &a;
c = *b;

b contains the address ofa and‘c = *b’ means to use the value inb as an address, i.e., as a pointer. The ef-
fect is that we get back the contents ofa, albeit rather indirectly. (It’s always the case that‘*&x’ is the
same asx if x has an address.)

The most frequent use of pointers in C is for walking efficiently along arrays. In fact, in the imple-
mentation of an array, the array name represents the address of the zeroth element of the array, so you can’t
use it on the left side of an expression. (You can’t change the address of something by assigning to it.) If
we say

char *y;
char x[100];

y is of type pointer to character (although it doesn’t yet point anywhere). We can makey point to an ele-
ment ofx by either of

y = &x[0];
y = x;

Sincex is the address ofx[0] this is legal and consistent.

Now ‘*y’ givesx[0]. More importantly,

*(y+1) gives x[1]

*(y+i) gives x[i]

and the sequence

y = &x[0];
y++;

C Tutorial - 13 -

leavesy pointing atx[1].
Let’s use pointers in a functionlength that computes how long a character array is. Remember that

by convention all character arrays are terminated with a ‘\0’. (And if they aren’t, this program will blow up
inevitably.) The old way:

length(s)
char s[]; {

int n;
for(n=0; s[n] != ′\0′;)

n++;
return(n);

}

Rewriting with pointers gives

length(s)
char *s; {

int n;
for(n=0; *s != ′\0′; s++)

n++;
return(n);

}

You can now see why we have to say what kind of things points to_ if we’re to increment it withs++ we
have to increment it by the right amount.

The pointer version is more efficient (this is almost always true) but even more compact is

for(n=0; *s++ != ′\0′; n++);

The ‘*s’ returns a character; the‘++’ increments the pointer so we’ll get the next character next time around.
As you can see, as we make things more efficient, we also make them less clear. But‘*s++’ is an idiom so
common that you have to know it.

Going a step further, here’s our functionstrcopy that copies a character arrays to anothert.
strcopy(s,t)

char *s, *t; {
while(*t++ = *s++);

}

We have omitted the test against ‘\0’, because ‘\0’ is identically zero; you will often see the code this way.
(You musthave a space after the ‘=’: see section 25.)

For arguments to a function, and there only, the declarations

char s[];
char *s;

are equivalent _ a pointer to a type, or an array of unspecified size of that type, are the same thing.

If this all seems mysterious, copy these forms until they become second nature. You don’t often need
anything more complicated.

17. Function Arguments

Look back at the functionstrcopy in the previous section. We passed it two string names as argu-
ments, then proceeded to clobber both of them by incrementation. So how come we don’t lose the original
strings in the function that calledstrcopy?

As we said before, C is a ‘‘call by value’’ language: when you make a function call likef(x), the
valueof x is passed, not its address. So there’s no way toalter x from inside f. If x is an array(char
x[10]) this isn’t a problem, becausex is an address anyway, and you’re not trying to change it, just what it
addresses. This is whystrcopy works as it does. And it’s convenient not to have to worry about making

C Tutorial - 14 -

temporary copies of the input arguments.

But what ifx is a scalar and you do want to change it? In that case, you have to pass theaddressof x
to f, and then use it as a pointer. Thus for example, to interchange two integers, we must write

flip(x, y)
int *x, *y; {

int temp;
temp = *x;

*x = *y;

*y = temp;
}

and to callflip, we have to pass the addresses of the variables:

flip (&a, &b);

18. Multiple Levels of Pointers; Program Arguments

When a C program is called, the arguments on the command line are made available to the main pro-
gram as an argument countargc and an array of character stringsargv containing the arguments. Manipu-
lating these arguments is one of the most common uses of multiple levels of pointers (‘‘pointer to pointer to
...’’). By convention,argc is greater than zero; the first argument (inargv[0]) is the command name itself.

Here is a program that simply echoes its arguments.

main(argc, argv)
int argc;
char **argv; {

int i;
for(i=1; i < argc; i++)

printf("%s ", argv[i]);
putchar(′\n′);

}

Step by step:main is called with two arguments, the argument count and the array of arguments.argv is a
pointer to an array, whose individual elements are pointers to arrays of characters. The zeroth argument is
the name of the command itself, so we start to print with the first argument, until we’ve printed them all.
Eachargv[i] is a character array, so we use a‘%s’ in theprintf.

You will sometimes see the declaration ofargv written as

char *argv[];

which is equivalent. But we can’t usechar argv[][], because both dimensions are variable and there
would be no way to figure out how big the array is.

Here’s a bigger example usingargc andargv. A common convention in C programs is that if the
first argument is ‘−’, it indicates a flag of some sort. For example, suppose we want a program to be call-
able as

prog −abc arg1 arg2 ...
where the ‘−’ argument is optional; if it is present, it may be followed by any combination of a, b, and c.

main(argc, argv)
int argc;
char **argv; {

...
aflag = bflag = cflag = 0;
if(argc > 1 && argv[1][0] == ′−′) {

for(i=1; (c=argv[1][i]) != ′\0′; i++)
if(c==′a′)

C Tutorial − 15 −

aflag++;
else if(c==′b′)

bflag++;
else if(c==′c′)

cflag++;
else

printf("%c?\n", c);
−−argc;
++argv;

}
...

There are several things worth noticing about this code. First, there is a real need for the left-to-right
evaluation that && provides; we don’t want to look atargv[1] unless we know it’s there. Second, the
statements

−−argc;
++argv;

let us march along the argument list by one position, so we can skip over the flag argument as if it had nev-
er existed_ the rest of the program is independent of whether or not there was a flag argument. This only
works becauseargv is a pointer which can be incremented.

19. The Switch Statement; Break; Continue

The switch statement can be used to replace the multi-way test we used in the last example. When
the tests are like this:

if(c == ′a′) ...
else if(c == ′b′) ...
else if(c == ′c′) ...
else ...

testing a value against a series ofconstants,the switch statement is often clearer and usually gives better
code. Use it like this:

switch(c) {

case ′a′:
aflag++;
break;

case ′b′:
bflag++;
break;

case ′c′:
cflag++;
break;

default:
printf("%c?\n", c);
break;

}

Thecase statements label the various actions we want;default gets done if none of the other cases are sat-
isfied. (A default is optional; if it isn’t there, and none of the cases match, you just fall out the bottom.)

The break statement in this example is new. It is there because the cases are just labels, and after
you do one of them, youfall through to the next unless you take some explicit action to escape. This is a
mixed blessing. On the positive side, you can have multiple cases on a single statement; we might want to
allow both upper and lower case letters in our flag field, so we could say

C Tutorial - 16 -

case ′a′: case ′A′: ...
case ′b′: case ′B′: ...
etc.

But what if we just want to get out after doingcase ‘a’ ? We could get out of acase of theswitch with a
label and agoto, but this is really ugly. Thebreak statement lets us exit without eithergoto or label.

switch(c) {

case ′a′:
aflag++;
break;

case ′b′:
bflag++;
break;

...
}
/* the break statements get us here directly */

Thebreak statement also works infor andwhile statements _ it causes an immediate exit from the loop.

The continue statement worksonly inside for’s andwhile’s; it causes the next iteration of the loop
to be started. This means it goes to the increment part of thefor and the test part of thewhile. We could
have used acontinue in our example to get on with the next iteration of thefor, but it seems clearer to use
break instead.

20. Structures

The main use of structures is to lump together collections of disparate variable types, so they can
conveniently be treated as a unit. For example, if we were writing a compiler or assembler, we might need
for each identifier information like its name (a character array), its source line number (an integer), some
type information (a character, perhaps), and probably a usage count (another integer).

char id[10];
int line;
char type;
int usage;

We can make a structure out of this quite easily. We first tell C what the structure will look like, that
is, what kinds of things it contains; after that we can actually reserve storage for it, either in the same state-
ment or separately. The simplest thing is to define it and allocate storage all at once:

struct {
char id[10];
int line;
char type;
int usage;

} sym;

This definessym to be a structure with the specified shape;id, line, type andusage aremembersof
the structure. The way we refer to any particular member of the structure is

structure-name . member

as in

sym.type = 077;
if(sym.usage == 0) ...
while(sym.id[j++]) ...

etc.

C Tutorial - 17 -

Although the names of structure members never stand alone, they still have to be unique_ there can’t be
anotherid or usage in some other structure.

So far we haven’t gained much. The advantages of structures start to come when we have arrays of
structures, or when we want to pass complicated data layouts between functions. Suppose we wanted to
make a symbol table for up to 100 identifiers. We could extend our definitions like

char id[100][10];
int line[100];
char type[100];
int usage[100];

but a structure lets us rearrange this spread-out information so all the data about a single identifer is col-
lected into one lump:

struct {
char id[10];
int line;
char type;
int usage;

} sym[100];

This makessym an array of structures; each array element has the specified shape. Now we can refer to
members as

sym[i].usage++; /* increment usage of i-th identifier */
for(j=0; sym[i].id[j++] != ′\0′;) ...

etc.
Thus to print a list of all identifiers that haven’t been used, together with their line number,

for(i=0; i<nsym; i++)
if(sym[i].usage == 0)

printf("%d\t%s\n", sym[i].line, sym[i].id);

Suppose we now want to write a functionlookup(name) which will tell us if name already exists in
sym, by giving its index, or that it doesn’t, by returning a−1. We can’t pass a structure to a function di-
rectly _ we have to either define it externally, or pass a pointer to it. Let’s try the first way first.

int nsym 0; /* current length of symbol table */

struct {
char id[10];
int line;
char type;
int usage;

} sym[100]; /* symbol table */

main() {
...
if((index = lookup(newname)) >= 0)

sym[index].usage++; /* already there ... */
else

install(newname, newline, newtype);
...

}

lookup(s)
char *s; {

int i;
extern struct {

char id[10];

C Tutorial − 18 −

int line;
char type;
int usage;

} sym[];

for(i=0; i<nsym; i++)
if(compar(s, sym[i].id) > 0)

return(i);
return(−1);

}

compar(s1,s2) /* return 1 if s1==s2, 0 otherwise */
char *s1, *s2; {

while(*s1++ == *s2)
if(*s2++ == ′\0′)

return(1);
return(0);

}

The declaration of the structure inlookup isn’t needed if the external definition precedes its use in the same
source file, as we shall see in a moment.

Now what if we want to use pointers?

struct symtag {
char id[10];
int line;
char type;
int usage;

} sym[100], *psym;

psym = &sym[0]; /* or p = sym; */

This makespsym a pointer to our kind of structure (the symbol table), then initializes it to point to the first
element ofsym.

Notice that we added something after the wordstruct: a ‘‘tag’’ called symtag. This puts a name on
our structure definition so we can refer to it later without repeating the definition. It’s not necessary but
useful. In fact we could have said

struct symtag {
... structure definition

};

which wouldn’t have assigned any storage at all, and then said

struct symtag sym[100];
struct symtag *psym;

which would define the array and the pointer. This could be condensed further, to

struct symtag sym[100], *psym;

The way we actually refer to an member of a structure by a pointer is like this:

ptr −> structure-member

The symbol ‘−>’ means we’re pointing at a member of a structure; ‘−>’ is only used in that context.ptr is
a pointer to the (base of) a structure that contains the structure member. The expression
ptr−>structure-member refers to the indicated member of the pointed-to structure. Thus we have con-
structions like:

psym−>type = 1;

C Tutorial − 19 −

psym−>id[0] = ′a′;

and so on.

For more complicated pointer expressions, it’s wise to use parentheses to make it clear who goes with
what. For example,

struct { int x, *y; } *p;
p−>x++ increments x
++p−>x so does this!
(++p)−>x increments p before getting x

*p−>y++ uses y as a pointer, then increments it

*(p−>y)++ so does this

*(p++)−>y uses y as a pointer, then increments p

The way to remember these is that−>, . (dot), () and[] bind very tightly. An expression involving one of
these is treated as a unit.p−>x, a[i], y.x andf(b) are names exactly asabc is.

If p is a pointer to a structure, any arithmetic onp takes into account the acutal size of the structure.
For instance,p++ incrementsp by the correct amount to get the next element of the array of structures. But
don’t assume that the size of a structure is the sum of the sizes of its members_ because of alignments of
different sized objects, there may be ‘‘holes’’ in a structure.

Enough theory. Here is the lookup example, this time with pointers.

struct symtag {
char id[10];
int line;
char type;
int usage;

} sym[100];

main() {
struct symtag *lookup();
struct symtag *psym;
...
if((psym = lookup(newname))) /* non−zero pointer */

psym −> usage++; /* means already there */
else

install(newname, newline, newtype);
...

}

struct symtag *lookup(s)
char *s; {

struct symtag *p;
for(p=sym; p < &sym[nsym]; p++)

if(compar(s, p−>id) > 0)
return(p);

return(0);
}

The functioncompar doesn’t change:‘p−>id’ refers to a string.

In main we test the pointer returned bylookup against zero, relying on the fact that a pointer is by
definition never zero when it really points at something. The other pointer manipulations are trivial.

The only complexity is the set of lines like

struct symtag *lookup();

This brings us to an area that we will treat only hurriedly_ the question of function types. So far, all of our
functions have returned integers (or characters, which are much the same). What do we do when the func-

C Tutorial - 20 -

tion returns something else, like a pointer to a structure? The rule is that any function that doesn’t return an
int has to say explicitly what it does return. The type information goes before the function name (which
can make the name hard to see). Examples:

char f(a)
int a; {

...
}

int *g() { ... }

struct symtag *lookup(s) char *s; { ... }

The functionf returns a character,g returns a pointer to an integer, andlookup returns a pointer to a struc-
ture that looks likesymtag. And if we’re going to use one of these functions, we have to make a declara-
tion where we use it, as we did inmain above.

Notice th parallelism between the declarations

struct symtag *lookup();
struct symtag *psym;

In effect, this says thatlookup() andpsym are both used the same way_ as a pointer to a strcture_ even
though one is a variable and the other is a function.

21. Initialization of Variables

An external variable may be initialized at compile time by following its name with an initializing
value when it is defined. The initializing value has to be something whose value is known at compile time,
like a constant.

int x 0; /* "0" could be any constant */
int a ′a′;
char flag 0177;
int *p &y[1]; /* p now points to y[1] */

An external array can be initialized by following its name with a list of initializations enclosed in braces:

int x[4] {0,1,2,3}; /* makes x[i] = i */
int y[] {0,1,2,3}; /* makes y big enough for 4 values */
char *msg "syntax error\n"; /* braces unnecessary here */
char *keyword[]{

"if",
"else",
"for",
"while",
"break",
"continue",
0

};

This last one is very useful_ it makeskeyword an array of pointers to character strings, with a zero at the
end so we can identify the last element easily. A simple lookup routine could scan this until it either finds a
match or encounters a zero keyword pointer:

lookup(str) /* search for str in keyword[] */
char *str; {

int i,j,r;
for(i=0; keyword[i] != 0; i++) {

for(j=0; (r=keyword[i][j]) == str[j] && r != ′\0′; j++);
if(r == str[j])

C Tutorial − 21 −

return(i);
}
return(−1);

}

Sorry _ neither local variables nor structures can be initialized.

22. Scope Rules: Who Knows About What

A complete C program need not be compiled all at once; the source text of the program may be kept
in several files, and previously compiled routines may be loaded from libraries. How do we arrange that
data gets passed from one routine to another? We have already seen how to use function arguments and
values, so let us talk about external data. Warning: the wordsdeclarationanddefinitionare used precisely
in this section; don’t treat them as the same thing.

A major shortcut exists for makingextern declarations. If the definition of a variable appearsbefore
its use in some function, noextern declaration is needed within the function. Thus, if a file contains

f1() { ... }

int foo;

f2() { ... foo = 1; ... }

f3() { ... if (foo) ... }

no declaration offoo is needed in eitherf2 or or f3, because the external definition offoo appears before
them. But iff1 wants to usefoo, it has to contain the declaration

f1() {
extern int foo;
...

}

This is true also of any function that exists on another file_ if it wants foo it has to use anextern
declaration for it. (If somewhere there is anextern declaration for something, there must also eventually
be an external definition of it, or you’ll get an ‘‘undefined symbol’’ message.)

There are some hidden pitfalls in external declarations and definitions if you use multiple source
files. To avoid them, first, define and initialize each external variable only once in the entire set of files:

int foo 0;

You can get away with multiple external definitions onUNIX, but not onGCOS, so don’t ask for trouble.
Multiple initializations are illegal everywhere. Second, at the beginning of any file that contains functions
needing a variable whose definition is in some other file, put in anextern declaration, outside of any func-
tion:

extern int foo;

f1() { ... }
etc.

The#include compiler control line, to be discussed shortly, lets you make a single copy of the exter-
nal declarations for a program and then stick them into each of the source files making up the program.

23. #define, #include

C provides a very limited macro facility. You can say

#define name something

and thereafter anywhere ‘‘name’’ appears as a token, ‘‘something’’ will be substituted. This is particularly
useful in parametering the sizes of arrays:

#define ARRAYSIZE 100

C Tutorial − 22 −

int arr[ARRAYSIZE];
...

while(i++ < ARRAYSIZE)...
(now we can alter the entire program by changing only thedefine) or in setting up mysterious constants:

#define SET 01
#define INTERRUPT 02 /* interrupt bit */
#define ENABLED 04
...

if(x & (SET  INTERRUPT  ENABLED)) ...
Now we have meaningful words instead of mysterious constants. (The mysterious operators ‘&’ (AND)
and ‘|’ (OR) will be covered in the next section.) It’s an excellent practice to write programs without any
literal constants except in#define statements.

There are several warnings about#define. First, there’s no semicolon at the end of a#define; all
the text from the name to the end of the line (except for comments) is taken to be the ‘‘something’’. When
it’s put into the text, blanks are placed around it. Good style typically makes the name in the#define up-
per case_ this makes parameters more visible. Definitions affect things only after they occur, and only
within the file in which they occur. Defines can’t be nested. Last, if there is a#define in a file, then the
first character of the filemustbe a ‘#’, to signal the preprocessor that definitions exist.

The other control word known to C is#include. To include one file in your source at compilation
time, say

#include "filename"

This is useful for putting a lot of heavily used data definitions and#define statements at the beginning of a
file to be compiled. As with#define, the first line of a file containing a#include has to begin with a ‘#’.
And #include can’t be nested _ an included file can’t contain another#include.

24. Bit Operators

C has several operators for logical bit-operations. For example,

x = x & 0177;

forms the bit-wiseAND of x and 0177, effectively retaining only the last seven bits ofx. Other operators
are

| inclusive OR
ˆ (circumflex) exclusive OR
˜ (tilde) 1′s complement
! logical NOT
<< left shift (as in x<<2)
>> right shift (arithmetic on PDP-11; logical on H6070, IBM360)

25. Assignment Operators

An unusual feature of C is that the normal binary operators like ‘+’, ‘−’, etc. can be combined with
the assignment operator ‘=’ to form new assignment operators. For example,

x =− 10;

uses the assignment operator ‘=−’ to decrementx by 10, and

x =& 0177

forms theAND of x and 0177. This convention is a useful notational shortcut, particularly ifx is a compli-
cated expression. The classic example is summing an array:

for(sum=i=0; i<n; i++)

C Tutorial − 23 −

sum =+ array[i];

But the spaces around the operator are critical! For instance,

x = −10;

setsx to −10, while

x =− 10;

subtracts 10 fromx. When no space is present,

x=−10;

also decreasesx by 10. This is quite contrary to the experience of most programmers. In particular, watch
out for things like

c=*s++;
y=&x[0];

both of which are almost certainly not what you wanted. Newer versions of various compilers are courte-
ous enough to warn you about the ambiguity.

Because all other operators in an expression are evaluated before the assignment operator, the order
of evaluation should be watched carefully:

x = x<<y  z;

means ‘‘shiftx left y places, thenOR with z, and store inx.’’ But

x =<< y  z;

means ‘‘shiftx left by yz places’’, which is rather different.

26. Floating Point

We’ve skipped over floating point so far, and the treatment here will be hasty. C has single and dou-
ble precision numbers (where the precision depends on the machine at hand). For example,

double sum;
float avg, y[10];
sum = 0.0;
for(i=0; i<n; i++)

sum =+ y[i];
avg = sum/n;

forms the sum and average of the arrayy.
All floating arithmetic is done in double precision. Mixed mode arithmetic is legal; if an arithmetic

operator in an expression has both operandsint or char, the arithmetic done is integer, but if one operand is
int or char and the other isfloat or double, both operands are converted todouble. Thus if i and j are int
andx is float,

(x+i)/j converts i and j to float
x + i/j does i/j integer, then converts

Type conversion may be made by assignment; for instance,

int m, n;
float x, y;
m = x;
y = n;

convertsx to integer (truncating toward zero), andn to floating point.

Floating constants are just like those in Fortran or PL/I, except that the exponent letter is ‘e’ instead
of ‘E’. Thus:

pi = 3.14159;

C Tutorial − 24 −

large = 1.23456789e10;

printf will format floating point numbers:‘‘%w.df’’ in the format string will print the corresponding
variable in a fieldw digits wide, withd decimal places. Ane instead of anf will produce exponential nota-
tion.

27. Horrors! goto’s and labels

C has agoto statement and labels, so you can branch about the way you used to. But most of the
time goto’s aren’t needed. (How many have we used up to this point?) The code can almost always be
more clearly expressed byfor/while, if/else, and compound statements.

One use ofgoto’s with some legitimacy is in a program which contains a long loop, where a
while(1) would be too extended. Then you might write

mainloop:
...
goto mainloop;

Another use is to implement abreak out of more than one level offor or while. goto’s can only branch to
labels within the same function.

28. Acknowledgements

I am indebted to a veritable host of readers who made valuable criticisms on several drafts of this tu-
torial. They ranged in experience from complete beginners through several implementors of C compilers to
the C language designer himself. Needless to say, this is a wide enough spectrum of opinion that no one is
satisfied (including me); comments and suggestions are still welcome, so that some future version might be
improved.

References

C is an extension of B, which was designed by D. M. Ritchie and K. L. Thompson [4]. The C lan-
guage design andUNIX implementation are the work of D. M. Ritchie. TheGCOSversion was begun by A.
Snyder and B. A. Barres, and completed by S. C. Johnson and M. E. Lesk. TheIBM version is primarily
due to T. G. Peterson, with the assistance of M. E. Lesk.

[1] D. M. Ritchie,C Reference Manual.Bell Labs, Jan. 1974.

[2] M. E. Lesk & B. A. Barres,The GCOS C Library.Bell Labs, Jan. 1974.

[3] D. M. Ritchie & K. Thompson,UNIX Programmer’s Manual.5th Edition, Bell Labs, 1974.

[4] S. C. Johnson & B. W. Kernighan,The Programming Language B.Computer Science Technical Re-
port 8, Bell Labs, 1972.

