
 C_PREP - Documentation Version 1.9B

 by Jim McDowell

 JML SOFTWARE DESIGN

 With 1.9 updates by

 Gene Heskett, CE@WDTV, delphi WOAY

 And 1.9A,B updates by

 Willard Goosey, goosey@sdc.org

C_PREp 1.9B fixes two more errors: Arrays of structs and struct expressions

now would break element names if the element name contained an '_', and

the Microware /d string escape is no longer flagged as an error.

C_PREP 1.9A has three more bugs fixed: __FILE__, __DATE__, and __TIME__

macros now output double-quote enclosed strings like the ANSI standard

and this file says they should, a Y2K bug in __DATE__ was worked

around (the real fix would go in clib), and __STDC__ now has the proper

value of 1 in ANSI mode.

C_PREP Version 1.9 has had two bugs fixed, and one error printout re-enabled

that the 1.8 version didn't do, and its array sizes for defines increased

from a max of 300 and 5k of string space for the defines to 400 and 6500

bytes of string space for the names.

The two bugs were:

1, An erronious asterisk in front of the variable named lpcntr in the

function "expand(ln, loop, lpcntr)" located in the file "cp4.c" which caused

it to check the value lpcntr pointed at instead of the value of lpcntr. In

the case of the first call as opposed to a recursion call, that was NULL.

Unforch, the data at *NULL wasn't always NULL too. In the event *NULL wasn't

NULL too, it wrote all over the pathlist array in the direct page, rather

effectivly crashing the program because it couldn't close its paths and exit

properly..

And 2, The "#undef"ine function didn't work due to how the function

splittok() worked compared to the way the names were stored in the string

array for defined names. In the array, it was 'HOWMANY \0". It was passed an

isolated 'HOWMANY\0' name, no spaces on either end, which was the subjected

to the splittok() function which added a space on both ends of the name, or

' HOWMANY \0' before doing the name comparisons. The compare failed of course

because of the leading space which is not stored in the name define string

array, therefore the undef was never found and done. Each defined name does

have a space on the end of it however, presumably so its spaced properly in

the output when the define is substituted by this program. The cure was to

inc the passed line pointer one byte before doing the compares thereby

skipping the leading space as far as strcmp() was concerned. I also added a

return(line[0]=\0) to the end of that function so that it didn't waste the

time looking thru the rest of a 350 name long list once it had found that

name and undefined it by removing it and its associated data from the define

arrays. Thats no real speedup as it would only count for the #undef line,

one out of maybe 120 pages of source code.

I also re-enabled an additional error printout, showing a karat under the

first character of an error after the line has been printed, after the

nature of the error has been reported. Thats not fully checked out and may

not point at the first character of the offending error under some

conditions.

These two errors are the only ones I'm aware of but that doesn't mean there

won't be more found. In the event you become aware of another problem,

please feel free to advise me of it by leaving email to WOAY here on Delphi.

For those who would use this to recompile sz3_24 again, there is a 4 line

section of code 125 lines into the sz.c file that used to be ignored and

reported as an error by c_prep18. It undefs HOWMANY and redefines it. I'm

not sure what should be done with those 4 lines of code, Paul Jerkatis

(MITHELEN) is our resident expert on that j ust yet, and the question has

been put to him. I've simply commented it out in my source, but then I don't

expect my particular copy of that source will ever be compiled on a POSIX

system for instance.

After this paragraph, the rest of this is Jim McDowells very well organized

and thought out effort. I couldn't have found the errors that were made so

easily had this code not been so concise and error free as issued by Jim

when he uploaded this as the last effort he was putting into the OS9

programmers kit. Many Thanks to you Jim McDowell.

Gene Heskett, WOAY on Delphi - end of added notes

C_PREP is an ANSI standard C preprocessor. It can completely replace

Microware's c.prep. It contains all of the features of c.prep plus some

extras. It follows the grammar set out in the ANSI C standard by the X 3J11

committee.

Version 1.8 runs 1.4 times the speed of c.prep. This should be an acceptable

speed tradeoff for the extra flexability that C_PREP offers. Preprocessing

is a small part of the compiling process. C_PREP took 55 seconds to process

a 16K source file. C.PREP took 38 seconds.

If your program uses complex # define macros you may get a STACK OVERFLOW

error. If this happens j ust specify extra memory on the command line (# 32k).

I STILL WOULD APPRECIATE INPUT ON HOW THIS PROGRAM OPERATES. IF THERE ARE

ANY BUGS PLEASE REPORT THEM TO ME SO I CAN FIX THEM.

 *

 * * * * C_PREP COMMANDS * * * *

 *

Version 1.8 supports the following preprocessor commands:

(Braces { } enclose required information, Brackets [] optional information.)

 #asm /* If in MicroWare mode */

 #endasm /* else it uses #pragma */

 #define { identifier} { token sequence}

 #define { identifier} ({ identifier-list}) { token sequence}

 #undef { identifier} /* Nope, not till 1.9 folks */

 #include < { filename} >

 #include " { filename} "

 #include { token-sequence}

 #if { constant-expression}

 #ifdef { identifier}

 #ifndef { identifier}

 #elif { constant-expression}

 #else

 #endif

 #error { token-sequence}

 #line { constant} [" { filename} "]

 #line { token-sequence}

 #pragma { token-sequence}

 #

 defined [(] { identifier} [)]

Version 1.8 also supports the predefined names:

 __LINE__ (Returns current line number)

 __FILE__ (Returns current file name)

 __DATE__ (Returns compile date: Mmm dd yyyy)

 __TIME__ (Returns compile time: hh:mm:ss)

 __STDC__ (Returns 1 if in ANSI mode; otherwise it is

 undefined)

This version also has the following ANSI compatible features:

 * Optional trigraph expansion (engaged with -t switch)

 * Concatenation of any line ending with a \ and newline character

 * Lines are split into tokens separated by spaces

 * Each comment is replaced by a single space

 * Handles macro usage of # (places " around following argument)

 * Handles macro usage of ## (concatenates preceding and following tokens)

 * Concatenates adjactent string literals

The following features are included also:

 * When c_prep is run as a filter the root source file is given a default

 name of "stdin.c"

 * In the ANSI (-c) mode, instead of #asm and #endasm the following

 pragma will be generated: #pragma asm < assembly code>

 * Microware c.prep emulation:

 - supports Microware's oddball line codes (default)

 - supports -e switch to set edition number

 - supports -l switch to copy source code to the compiler for including

 comments in the assembly language output.

 - allows #asm and #endasm to include assembly code in the C source

 * The e and l switches generate the following pragma commands:

 #pragma edn < edition #>

 #pragma src < C source line>

 * Error handling. The filename and line number are returned. The line

 number counts from 0-... (compatible with sled). The source line is

 reprinted to aid in debugging. Sometimes the source line printed will

 not be the same as in the source file. This is because the preprocessor

 alters the line as it goes. So when an error is encountered the line

 printed with the error code may reflect preprocessor changes.

Version 1.8 has the following limitations:

 * Maximum line length is 250 characters. This is less than the ANSI

 recommendation but cuts in half the needed memory. It should suit

 most programmer's needs, but can be changed by changing the variable

 LINEMAX in cp.h and then recompiling.

 * Maximum memory allocated for definition data is 6500 bytes. This

 can be changed by STRNG_TBL_MAX in cp.h.

 * Maximum number of arguments allowed in a macro (# define) is 4. The

 maximum length of each argument is 120 characters. This is less than

 the ANSI recommmendation but should suit most needs. These limits can

 be adj usted by changing MAX _ARGS and MAX _LENGTH in cp.h.

 * Maximum number of nested # if statements is 8. This is the ANSI

 standard. It can be changed by MAX _NEST_IF in cp.h.

 * Maximum number of nested # include statements is 8 levels beyond the

 root file. This can be changed by MAX _INCLUDE in cp.h.

 * Maximum number of definitions allowed is 400. This can be changed by

 MAX _DEFS in cp.h.

 * # include < > statements look for files in /DD/DEFS directory.

C_PREP's usage syntax is as follows:

 c_prep [< -opt1> < -opt2> < ...>] [< filename>] [< -opt1> < -opt2> < ...>]

The program outputs to the standard output path. It can be run as a filter:

 list file.c ! c_prep

 list test.c ! c_prep > test.prep

or it can read the input file from the command line:

 c_prep file.c

other options include:

 c_prep -h (will produce help screen)

 c_prep -t test.c (will perform trigraph substitution step)

 c_prep -dMAIN test.c (will define MAIN as 1 before preprocessing)

 c_prep -dTWO=1+ 1 test.c (will define TWO as 1+ 1 before preprocessing)

 c_prep file.c -c (process file with ANSI line codes)

 c_prep -c file.c -e=5 (process with ANSI line codes & set edition

 equal to 5)

 c_prep -c file.c -l (process with ANSI line codes & copy source lines to

 output for inclusion in the assembly listing)

 *** ***

 ****** COMMAND SUMMARY ******

 *** ***

All preprocessor commands are prefixed with a # character. C_PREP allows

the # to be preceded and followed by whitespace characters. Thus the

following is valid:

 # ifdef MAIN

The following is a detailed description of the new preprocessor commands

found in C_PREP Version 1.8:

(Braces { } enclose required information, Brackets [] optional information.)

#define { identifier} ({ identifier-list}) { token sequence}

 Example: #define dprint(expr) printf(#expr " = % g\n",expr)

 dprint(x/y);

 Result: printf("x/y" " = % g\n",x/y);

 Notice the phrase #expr in the definition. This tells the

 preprocessor to place quotation marks (") around expr.

 In actual processing the two string literals in the result would

 be concatenated.

 Example: #define paste(front,back) front ## back

 paste(get,char());

 Result : getchar();

 This absurd example shows the function of the ## operator. It

 concatenates the preceding and following token.

#undef { identifier}

 Example: #undef SYS

 Result : If SYS has been defined its definition is erased, otherwise

 the commands is ignored.

 This is the ONLY allowable way to change a defined value. It must be

 undefined and then redefined with a new value.

#include < { filename} >

 This command searches the LIB directory on the default drive for

 the inclusion file.

#include " { filename} "

 This command searches the current data directory for the inclusion

 file.

include { token-sequence}

 Example: # define CTYP < ctype.h>

 # include CTYP

 This command after macro expansion must be in one of the above two

 forms.

if { constant-expression}

elif { constant-expression}

 Example: # if SYS= = 1

 puts("SYS= 1");

 # elif SYS= = 2

 puts("SYS= 2");

 # endif

 This command evaluates the constant-expression if it is TRUE then

 the following lines are processed until an # elif (else-if), # else,

 or # endif is encountered. The constant-expression must always

 evaluate to TRUE (non-zero) or FALSE (zero).

 The constant-expression may contain any unsigned integer or token-

 sequence that macro expands into an unsigned integer. Parentheses

 are allowed and the following operators are allowed:

 Unary operators:

 ! ~ + -

 Binary operators:

 * / % + - < < > > < < = > > = = = ! = & ^ | & & | |

error { token-sequence}

 Example: # error File Error!

 Result : User error ... File Error!

 This command can be used to flag portions of your program. It will

 not stop the preprocessor but will write the warning message to the

 standard error output path.

line { constant} [" { filename} "]

 Example: # line 0 "stdin.c"

 This command is supplied by the preprocessor to allow the compiler

 to remember the original source line numbers.

 If running C_PREP in Microware emulation mode the Microware format

 of this command will be used instead.

 You can use this command to override the compiler settings.

line { token-sequence}

 Example: # define LINE 256

 # define FILE "myname.c"

 # line LINE FILE

 This is a variation on the above command. In this instance the

 arguments are expanded to produce a # line command of the format

 previously shown. This form is never produced by the compiler.

 It is only for the programmer's convenience.

pragma { token-sequence}

 Example: # pragma asm < assembly code>

 # pragma edn < edition number>

 # pragma src < source code>

 The pragma commands is designed to allow implementation defined

 commands.

 ASM replaces the Microware # asm/# endasm commands. Just prefix each

 assembly code line with "# pragma asm".

 EDN and SRC are generated by CPREP automatically. EDN is controlled

 by the -e switch. SRC is controlled by the -l switch.

#

 Example: #

 This is the NULL directive. It is ignored by the preprocessor.

defined [(] { identifier} [)]

 Example: # if defined(SYS)

 # if ! defined SYS

 The defined command tests the identifier to see if it has been

 defined. If it has it returns TRUE, otherwise FALSE. Parentheses

 are optional. In the second example the test returns TRUE if SYS

 is not defined.

__LINE__

 Example: printf("Current line number = % d\ n",__LINE__);

 Result : Current line number = 450

 This is a decimal constant containing the current line number.

__FILE__

 Example: printf("Current file name is: % s\ n",__FILE__);

 Result : Current file name is: solve.c

 This is a string literal containing the name of the file being

 compiled.

__DATE__

 Example: printf("Compile date is: % s\ n",__DATE__);

 Result : Compile date is: Jan 25 1993

 This is a string literal containing the date of compilation. It is

 in the form: Mmm dd yyy

__TIME__

 Example: printf("Compile time: % s\ n",__TIME__);

 Result : Compile time: 12:59:59

 This is a string literal containing the time of compilation. It is

 in the form of: hh:mm:ss

__STDC__ (Indicates whether compiler is ANSI compatible)

 Example: # if __STDC__ = = 1

 puts("This is an ANSI preprocessor");

 # else

 puts("This is not ANSI! ! ");

 __STDC__ will return a constant 1 if in ANSI mode. Otherwise

 it will leave __STDC__ undefined.

