-TRS-80 •SYSIEM80 •VIDEOCENIE -PMC-80 •HIACHIPFACH - IRS-80 COLOUR COMPUIER

Also in this issue:

PROGRAMMING:

Automatic Graphics Packer
The Theory and Techniques of Sorting Part 6
SOFTWARE:
-HEX CONSTANTS - Level II
-DR. WHO ADVENTURE Level II

- LOWER CASE CONVERTER Level II
- VARIABLE WORKSHEET

Colour
\bullet - MILEAGE CALCULATOR Colour

*****	ABOUT MICR0-80	*****
EDITOR:		RYSZARD WIWATOWSKI
ASSOCIATE EDITORS:		
SOF TWARE		CHARLIE BARTLETT
HARDWARE		EDWIN PAAY

MICRO-80 is an international magazine devoted to the Tandy TRS-80 Model I, Model III and Colour microcomputers, the Dick Smith System 80/Video Genie and the Hitachi Peach. It is available at the following prices:

12 MONTH SUB.	SINGLE COPY
\$ 26-00	\$ 2-50
\$ 65-00	\$ 4-00 (cass. only)
\$125-00	\$10-00 (disk only)

MAGAZINE ONLY	$\$ 26-00$	$\$ 2-50$
CASSETTE PLUS MAGAZINE	$\$ 25-00$	$\$ 4-00$ (cass. only)
DISK PLUS MAGAZINE	$\$ 125-00$	$\$ 10-00$ (disk only)

MICR0-80 is available in the United Kingdom from:
U.K. SUBSCRIPTION DEPT. 24 Woodhill Park, Pembury, Tunbridge Wells, KENT TN2 4NW

MAGAZINE ONLY	£ $16-00$	$£ 1-50$
CASSETEE PLUS MAGAZINE	$£ 43-60$	$£$
DISK PLUS MAGAZINE	$£ 75-00$	N N/A

MICRO-80 is available in New Zealand from:
MICRO PROCESSOR SERVICES, 940A Columbo Street, CHRISTCHURCH 1 N.Z. Ph 62894

MAGAZINE ONLY	NZ $\$ 43-00$	NZ $\$ 4-00$
CASSETTE PLUS MAGAZINE	NZ $\$ 89-00$	NZ\$ $5-00$
DISK PLUS MAGAZINE	NZ $\$ 175-00$	NZ $\$ 15-00$

MICRO-80 is despatched from Australia by airmail to other countries at the following rates:

(12 MONTH SUB)	MAGAZINE	CASS + MAG	DISK + MAG
PAPUA NEW GUINEA	Aus \$ 40-00	Aus\$ 83-00	Aus\$ 143-00
HONG KONG/SINGAPORE	Aus\$44-00	Aus\$ 88-00	Aus\$ 148-00
INDIA/JAPAN	Aus\$49-00	Aus\$ 95-00	Aus\$ 155-00
USA/MIDDLE EAST/CANADA	Aus\$55-00	Aus\$102-00	Aus\$ 162-00

Special bulk purchase rates are also available to computer shops etc. Please use the form in this issue to order your copy or subscription.

The purpose of MICRO-80 is to publish software and other information to help you get the most from your TRS-80, System 80/Video Genie or Peach and its peripherals. MICRO80 is in no way connected with any of the Tandy, Dick Smith or Hitachi organisations.
** WE WILL PAY YOU TO PUBLISH YOUR PROGRAMS **
Most of the information we publish is provided by our readers, to whom we pay royalties. An application form containing full details of how you can use your microcomputer to earn some extra income is included in every issue.
** CONTENT **
Each month we publish at least one applications program in BASIC for each of the microcomputers we support. We also publish Utility programs in BASIC and Machine Language. We publish articles on hardware modifications, constructional articles for useful peripherals, articles on programming techniques both in Assembly Language and BASIC, new product reviews for both hardware and software and we print letters to the Editor.
** COPYRIGHT **
All the material published in this magazine is under copyright. This means that you must not copy it, except for your own use. This applies to photocopying the magazine itself or making copies of programs on tape or disk.
** LIABILITY **
The programs and other articles in MICRO-80 are published in good faith and we do our utmost to ensure that they function as described. However, no liability can be accepted for the failure of any program or other article to function satisfactorily or for any consequential damages arising from their use for any purpose whatsoever.

***** CONTENTS *****			
			PAGE
EDITORIAL			2
PEEKING (UK) (From our U.K. Correspondent)			3
InPUT/OUTPUT - LETTERS TO THE EDITOR			3
Microbugs			6
TANDY'S VERSAFILE - SOFTWARE REVIEW			7
THE THEORY AND TECHNIQUES OF SORTING - PART			8
AUTOMATIC GRAPHICS PACKER			15
SOFTWARE SECTION			
- VARIABLE WORKSHEET..		. . CC	18 \& 24
VARIABLE WORKSHEET.	 PEACH $^{\text {a }}$	18 \& 26
- MILEAGE CALCULATOR.	cС	18 \& 25
MILEAGE CALCULATOR.		. . .PEACH	18 \& 26
- CALENDAR.....		. . .L2/16K	18 \& 28
- HEX CONSTANTS.L2/16K	19 \& 29
SERIES IMPEDANCE CIRCUIT		...L2/16K	20 \& 29
- DR WHO ADVENTURE.....		. . .L2/16K	21 \& 31
* LOWER CASE CONVERTER.	L2/16K m.1.	21
MICR0-80 PRODUCTS CATALOGUE			CENTRE
NEXT MONTH'S ISSUE			35
CASSETTE/DISK EDITION INDEX			36
ORDER FORM			36

MICRO-80 is registered by Australia Post - Publication SQB 2207 Category B
AUSTRALIAN OFFICE AND EDITOR:
MICR0-80 P.0. BOX 213, GOODWOOD,
U.K. SUBSCRIPTION DEPT:

Printed by:
Published in Australia by:
Shovel \& Bull Printers, 379 South Road, MILE END 5031
MICR0-80, 433 Morphett Street, Adelaide.

*** SPECIAL OFFER TO NEW READERS AND READERS RENEWING THEIR SUBSCRIPTION *** *** SOFTWARE LIBRARY, VALUED AT OVER $\$ 10 \overline{0}$ - FREE!!! ***

MICRO-80 has developed a new Library of Software consisting of 7 programs and a comprehensive user manual. The Software Library, on cassette, will be sent FREE to every new subscriber and to every subscriber who renews his subscription for another 12 months. Disk subscribers will receive their Software Library on a diskette. The new Software Library contains the following Level II/Disk Programs. All programs will also operate on the Model III.

Level I in Level II

Convert your Level II TRS-80 or System 80 to operate as a Level I machine. Opens a whole new library of software for your use.

Copier

Copies Level II System tapes, irrespective of where they load in memory. Copes with multiple ORG programs.

Z80 MON

A low memory, machine language monitor which enables you to set break points, edit memory, punch system tapes, etc...

Cube

An ingenious representation of the popular Rubick's cube game for Disk users.

Poker

Play poker against your computer, complete with realistic graphics.

Improved Household Accounts

Version 3.0 of this useful program. One or two bugs removed and easier data entry. This program is powerful enough to be used by a small business.

80 Composer

A music-generating program which enables you to play music via your cassette recorder and to save the music data to tape. This is an improved version of the program published in Issue 17 of Micro-80.

***** EDITORIAL *****

On behalf of all the staff here at MICRO-80, may I wish you all the best in the coming year. I feel a little nervous embarking on this, my maiden editorial, and a little worried that some of you may not think me too bright considering that my decision to accept this position at this point in time was voluntary. But, I assure you that the discrepancy between the calendar and cover month has reached a maximum and that one of my main objectives is to remove this discrepancy altogether. This will, naturally enough, take some time to accomplish and I hope that you will afford me the same degree of patience you have my predecessor, (if not more, since by comparison I am but a novice!).

Perhaps I should begin by telling you a little about myself and how I acquired my interest in computing. A long time ago, or so it seems now, when I was still in high school, I became very interested in electronics and spent the next few years trying to make the perfect hi-fi amplifier. Most of my attempts (usually designs from various electronic magazines) died horrible deaths at the moment of powering them up and I eventually bought one. Nevertheless, this fascination with electronics sustained me until I came across logic circuits in third year Physics at University. At the same time I had my first taste of computing in Applied Maths but never had the faintest suspicions that the two were closely connected (computers and logic circuits). My greatest achievement was the perfection of a program, written in FORTRAN, to produce a calendar. Elsewhere in this issue, my latest attempt appears - yet another milestone, as it is the first of my programs to ever be published! I seem to recall expending a great deal more effort the first time.

As Ian mentioned last month, I was, until recently, a high school teacher, in the areas of mathematics and science. When the Education Department took an interest in computers and purchased Apple microcomputers available for use in schools, my interest in computing was rekindled. The technological revolution in the electronics industry was well under way and the price of the personal computer had fallen to the point where it was within my reach (Yes, I had thought of making the perfect computer but my past experiences quashed that idea pretty quickly). It was some time before I became proficient in BASIC and still more time before I could cope with assembly language, but shortly thereafter, I decided to buy a computer. For financial reasons, I bought a System 80 with Level II BASIC and 16 K of memory, despite the fact that the $Z 80$ was a different processor. Transferring from the 6502 to the $Z 80$ proved to be less difficult than I had imagined and it was not long before I had achieved the same level of proficiency with the System 80.

Why did I buy a computer? Well, to be perfectly honest, for the thrill of the arcade games - I figured that at 20ϕ a time, it would eventually pay for itself! But after a while the novelty wore off and I became more interested in the computer itself, in how it worked and how it did what it did. I soon found that 16 k of memory was not enough and began to hate my cassette, so I bought an expansion interface and a couple of disk drives from Dick Smith's. Needless to say, as these had only just been released, my system had teething troubles for a long time. When you add to that my disappointment in the DOS (OS-80) and the general lack of support software, I began to seriously doubt the wisdom of making such a large investment in expanding my original system. Then I had what I consider 'a lucky break' - I came across MICR0-80, right here, in my own state, no less!

I suppose there is no need to tell you the rest of the story but I found friendly help, assistance and much of the support that I was looking for elsewhere. I began to subscribe to the magazine and to learn much more about my computer, and in less time, than I would have done alone. My thirst for knowledge and understanding drove me further to the point where I undertook studies in Computing Science. At the same time, my association with Ian and this organisation grew to the stage where I am now in the position where I can offer to be of help to you through the pages of this magazine.

Lest he feel slighted in any way, I think it essential to acknowledge the tremendous effort that Ian has made. He has conceived the idea and worked hard to make it a success. The combination of his efforts and yours, the subscribers who provide most of the material and valuable input, have made this enterprise so successful that he has been very hard pressed to find the necessary time to devote to the magazine. Many thanks to you, Ian, for the work you have done - I shall endeavour to meet this challenge.

- 0000000000 -

***** NOTICE TO MAIL-ORDER CUSTOMERS *****

Very occasionally, some people send cash through the post. We would strongly advise against this procedure, and make it clear that we will not accept any responsibility for any money sent as cash. For your own protection, use Postal Notes, Money Orders, etc. but never send cash.

***** PEEKing (UK) - by Tony Edwards *****

This month I am going to talk about INPUT/OUTPUT again as there are a number of developments in this field in this country at this time. We are still promised the Mini-Disk, and the MicroDisk but except for a few prototype units which are doing the rounds I have not seen any sign of a commercially available item. However the cost of the standard Disc drives is falling all the time, so perhaps the manufacturers are expecting the cheaper smaller units soon. Even before these units have arrived the next step is arriving - a 'hard disk', or rather a programmable memory unit which is cheap enough to allow it to be used to store programmes for practically instant recall. This is now becoming available in two forms, preprogrammed and self-programmable. The potential size of the storage available is very great indeed and as the first cost of memory devices continues to fall this sort of storage becomes attractive. I hope to test one of these devices in the next month or two and will of course report to you on the results.

Still on the subject of input/output many of our older readers will remember my reports of the 1200 baud conversion program supplied by the UK software house Kansas. It worked very well on the TRS-80, but was never successful on the GENIE/SYSTEM 80 . Kansas have now produced a different program which does work on the GENIE, at least it works on mine. It is simple to use and produces tapes of both machine language and BASIC programmes which load at double speed. A good buy to load those long programmes.

- 0000000000 -
***** INPUT/OUTPUT *****
From: Mr. C. Stobert - Wellington, N.Z.
My hobby level of computer activity has been satisfied with BASIC, though perhaps a couple of games may be better if they moved a little faster. Three BASIC programmes in "TRS80Programs" (Cat No. 62-2064) from Tandy produce hypnotic graphics displays using strings PRINTed. Consequently, I have been curious of the display of "Graphix" since it was published in Issue 7 of Micro-80, but not sufficiently so to delve into assemblers etc. I recently compromised with the attached solution. It may not get top marks for originality, but may be of interest to other readers in a similar situation. 16 K Memory is reserved from 28671. I retained operation from 7000 H .

BASIC loading of memory does not take too long, but line 140 lets you see something is happening. count to 784.

Data lines were entered using two people, one reading, one typing, then checking back before entering. There are 49 lines of data entering 16 bytes per line, but it did not prove too tedious, and the result was worth the effort. We took two dumps before running, and surprise! surprise! It worked first time.

```
10 CLS:FOKE16553,255
20 DEFINTL,RR,D,F,N:DEFSTRA, B,S
30 FRINTG202, "GRAFHIX - MICRO-80 - JULY 1980"
40 PRINTE452, "PLEASE BE PATIENT WHILE I"
50 PRINTES20,"GET MY DATA INTO PLACE ...."
60 P=28672:N=1
70 FEADS:IFS="END"GOTO160
80 A=LEFTक (S,1): B=FIGHTक (S,1)
90 L=ASC(A):R=ASC(B)
100 IFL>57THENL=L-7
110 IFF\57THENR=R-7
129 L=L-48:R=R-48
130 D=16*L+F:POKEP,D
140 PRINTES96, "FOKE NO. "sN
150 F}=F=F+1:N=N+1:GOTO7
160 POKE16526,0: POKE16527,112:CLS:X=USR(0)
179 DATAF3,21, 6F,72,CD,4D,71, CD, A3,71, 21,4D,72, CD, 4D, 71
180 " (CONTINUE DATA LINES -- NOTE ND SFACE AFTER "DATA" OR BETWEEN
640 = COMMAS AND DATA EYTES)
650 DATA41,40,40,40,40,40,40,40,40,40,40,40,40,40,40,40
6 6 6 ~ D A T A E N D ~
```

(Thank you for this contribution, Mr. Stobert. The technique you use for POKEing machine language programs into memory is an interesting one and is certainly superior to the more common method of converting the machine code to Decimal manually and then entering it into the DATA statements. By converting HEXadecimal code in your BASIC Program, you save a considerable amount of work and, if the data statements are laid out in lines of 16 bytes per line, it is easy to check against a Hex dump. It is only recently that we have seen this technique used and you are to be congratulated in being amongst the first to develop it - Ed.)

From: R. Edwards - Ivanhoe, Vic.
To: M. Bauk - Kal amunda, W.A.
In response to your letter in June ' 82 MICRO-80, where you requested help to the "Other Venture" entitled "Excape from Tramm".

The first location is quite tricky and took me some hours to get past, so you're not entirely alone (I also believed it to be faulty). Nothing can be done on the ship - so enjoy the crash landing. Upon landing the command LOOK SHIP will reveal a "nylon rope" which requires GET NYLON ROPE to pick it up. Moving south with S you will come to a cliff. The command LOOK CLIFF will detect a bush growing on the cliff, although this last command is not necessary. Then type ROPE BUSH (another tricky part) and CLIMB ROPE to reach the top of the cliff.

From here you are on your own, hope you have fun figuring out the rest of the "Venture".
(I think Mr. Bauk will be eternally grateful for your assistance, Mr. Edwards - Ed.)

From: J. Wragg - Page, A.C.T.
Recently I had a small mishap with several tapes - all of the data just disappeared. The tapes were stored in a desk drawer in cassette boxes, but not all of the tapes were affected (i.e. some tapes remained intact while others were completely wiped). Can you offer any clues as to what may have caused this to happen?
(Recorded information on cassette tapes, or any magnetic media for that matter, will be damaged or erased by exposure to strong magnetic fields, which could have occurred by operating a television set or some appliance with an electric motor or transformer on the desk near the tapes. These types of appliances can generate strong magnetic fields. Eddy suggests that some of the cassettes may have been shielded from damage by the others, but the incident does seem mysterious. It would be wise to be careful in this respect in the future and store recorded magnetic media away from sources of heat and magnetic fields. - Ed).

From: J. Finlayson - Bluewater, Qld.
In your journal I notice fairly frequent references to difficulties with tape loading with the System 80. I have one of the early models and I have found no difficulties with loading either BASIC or System tapes provided that I clean and demagnetise the tapehead frequently. A number of my acquaintances with later models have also found this a certain cure for any difficulties but I cannot say the same thing for TRS-80 owners. A problem I have found with saving on computer grade tapes has been failure after re-using several times, this has apparently been due to incomplete erasure by the builtin deck and is easily overcome by erasing on a high quality tape deck if one is available.
(I must agree with Mr. Finlayson's comments, as I have found the same is true on my early model System 80. Although I've never demagnetised the heads, I understand that a strongly magnetised head can erase a tape while playing it! The motto - for reliable cassette operation, the mechanism needs to be clean and use good quality tapes - Ed.)

From: Mr. G. Bull - Balhannah, S.A.
Recently I bought an expansion interface and disk drives for my System 80. A copy of DOSPLUS was included with the purchase of the first drive from MICRO-80, but I have had problems copying my BASIC programs from cassette to disk. They CLOAD in Level 2 without any errors, but I can't get them to CLOAD correctly from DISK BASIC.
(DOSPLUS, NEWDOS and other DOS's more sophisticated than TRSDOS make the assumption that the user is already familiar with the Tandy version of DOS and DISK BASIC and therefore neglect to mention or emphasize the need to disable the interrupts during cassette I/O. All DOS's use the 25 mS interrupt to update the software real-time clock and perform other background tasks and, as the ROM routines that read and write data to cassette have critical timing loops, it is essential that interrupts be disabled during cassette I/0. If they are not disabled, information coming in during reading will be lost and CSAVEd information will be overwritten with the interrupt pulses. To disable interrupts under DISK BASIC, type:

CMD "T" (for TAPE?)
and to enable them, type:
CMD "R" (for RESTART?)
This must be done for both reading and writing to cassette while in DISK BASIC. Note that returning to DOS or re-booting the system enables the interrupts, irrespective of whether or not CMD "R" has been entered. - Ẹd.)

From: Mr.L. Montero - Bellambi, N.S.W.
I have bought a System 80 Blue Label and have been using it for quite a while with no problems.
I CLOADed the program "SOUND EFFECTS REVISITED", published in Issue 22, September, 1981, page 29. My problem is that the program turns on the internal cassette port instead of the internal speaker. Everything else seems to be working perfectly. I believe the problem is in the data in line 190 but I do not know what to do. Can you please help me?
(You are correct in suspecting the data in line 190. A number of people have contacted us concerning this problem - using the internal speaker on the Blue Label. One user, after much experimenting, informed us that the way to cure the problem is not to set bit 2 of port 255 ($\varnothing \mathrm{FFH}$) high. Inquiries to Dick Smith's yielded the same information with an explanation.

In order to make the System 80 more compatible with the Tandy, so that it could use existing Tandy software that has sound without any patches, the Blue Label requires that bit 2 of port 255 be set low to enable the internal speaker. What this means is that there now exists an incompatibility between the Blue Label= aid earlier System 80's in this respect.
Line 190, as originally published is shown as:

> 190 DATA $25,127,10,229,221,225,221,78,6,121,183,200,221,76,1,62$, $5,211,255,16,254,221,70,1,62,6,211,255,16,254,13,32,235,221,35,2$ $2,1,35,1,255,255,33,48,6,9,56,253,24,214$

To enable sound on the Blue Label change it to:

$$
\begin{aligned}
& 190 \text { DATA } 205,127,19,229,221,225,221,78,0,121,183,200,221,70,1,62, \\
& 1,211,255,16,254,221,76,1,62,2,211,255,16,254,13,32,235,221,35,2 \\
& 2,1,35,1,255,255,33,48,6,9,56,253,24,214
\end{aligned}
$$

Note that the only changes occur in the second line where a 5 becomes a 1 and a 6 becomes a 2. This will set bit 2 low and should fix the problem according to the above advice.

Unfortunately, Mr. Montero, your letter omitted to include your full address and I am unable to reply in writing. I hope this reply will suffice. - Ed.)

From: Mr. S. Goodhead - London, England.
I have just spent a major portion of my Christmas Holiday trying to type in a program from MICRO80 No 6 Vol 3 (May 82) SKYDIVER.

I was not surprised when after hours of typing and editing out errors it did not work. It is a normal occurrence for me; however this time it destroyed itself - "UL ERROR 810". An attempt to LIST gave what I think you call garbage. LIST $10=10:+-$ Line 20 gives $T T=26810 \mathrm{TA}=26869$ \& $M=26820$.

It seems any attempt to poke a value into this area creates havoc.
I have tried under LDOS, NEWDOS, and also under BASIC 2 (without disk) Poking the USR (0) Address it still corrupted the short program - the values were now 17129, 17188, 17139.

I am wondering if there is something wrong with my computer, I would appreciate your observations. I also suspect that data statements may contain errors. Has any other reader had trouble or am I the only one? I have TRS-80 Mod 1 Lev II. Lowe electronic interface to Genie +32 K expansion unit, 2 disk EPSON MX 80. It is unstable - disk unit starts up for no reason and everything locks up - I think cable connections are unreliable.
(Your last statement suggests very strongly that there is indeed something very wrong with your computer. The undefined Line error tends to make me suspect that the memory, or some parts of it, are defective. When a situation such as this arises it is virtually impossible to debug any programs in the machine - I once had a similar problem with a defective 16K block of memory in my machine. Very short, simple machine language programs would work for a moment and then fill the screen with junk, turn on the disk drives and I would have to reset the machine. It was only by accident that I suspected a hardware fault, when after altering memory contents from a monitor, I found that they had changed after examining them a few moments later, without ever running the program!

Although line 10 lists as garbage, this is, in fact, correct, but the garbage should start just after the REM, not where you have indicated. The reason for this is that the first part of the program finds where in memory the BASIC program starts and positions to the memory location immediately after the REM token. The machine language routine is then POKEd into the memory taken up by the title and explains why the warning regarding this line was necessary in the text accompanying the program. If you refer to the reply to Mr. Montero's letter you will notice that the DATA lines are the same, and there are no errors here.

What I would suggest is that you load the program into memory but do not run it. Examine line 810 after a short time (say, $10-20$ seconds) and if the line lists differently then you most probably are having trouble with the memory itself. -Ed).

- 0000000000 -
***** MICR0-BUGS *****
Inevitably, no matter how careful one tries to be, there will be errors, mistakes and omissions in articles and programs. Here's where we make corrections.
***** Addendum to Mr. Coleman's SAVING AND LOADING M/L PROGRAMS ON ESF WAFER *****
One very important point that was missing from my original article on SAVING AND LOADING M/L PROGRAMS ON ESF WAFER was how to save the utilities SAVER and LOADER onto wafer themselves! Hopefully these few paragraphs will clarify everything.

First, you will need to enter the machine language utilities into memory. There are a number of methods of doing this - most of them have been explained in this magazine before. Probably the quickest and easist method would be to use any monitor (such as BMON or the ESF monitor) to load the bytes directly into memory. Neither utility is lengthy so this shouldn't take too long. Start off with SAVER and load the bytes shown in the second column of the listing into the locations shown in the first column. Do the same thing with LOADER, then exit the monitor and return to BASIC.
Now get out the wafer that you want these two utilities to reside on and put it into the drive. It doesn't matter which one you save first, so now save them using these parameters:
@SAVEX,16450,31,693 and
@SAVEX, 16500,12,693
The reason for having an auto-start address of 693 is that this is the entry-point for the SYSTEM command.

Here is a list of some parameters that I have discovered so far (why don't you write in with some otherṣ):

PROGRAM	START	LENGTH	ENTRY
Adventure \#3	17152	15616	17232
Air Traffic Controller	17152	2618	17152
Asylum *	17139	15620	17326
Back-40 (Advent. Inter.)	17408	6145	17408
BMON	29248	3263	31641
Disassembler (Instant Soft.)	28672	3012	28672
Edtasm-Plus (Microsoft)	17280	12035	17280
Eliza (Tandy)	20480	10241	20480
Penetrator	17408	15360	17408
Penetrator Editor	17408	15360	17409
S.Key	17216	1298	17216
Invaders (Tandy)	17174	3245	17717
Starfighter	17116	15652	17116
Starfighter Trainer	17116	15652	17116
Zbug stand alone	17280	6070	17280

* Note that these are the correct parameters for ASYLUM: last month's were incorrect.

LOTTO PREDICTOR - Issue 10, Sept. '80 (pp. 29-32).
This program has two errors and some potential dangers that need clarification.
(a) The copy of this program as supplied on cassette has several control characters between the OPEN statement and the comment in line 690 that list as spaces. These produce a SYNTAX ERROR during the execution of line 690 and the $O N$ ERROR trap sends the program to line 790 ,
resulting in an endless loop. Re-type line 690 as it appears in the magazine listing to remove these characters.

690 OPEN " 0 ", 1, "LOTTO/TXT": 'FOR CASSETTE USE CHANGE TO 690 INPUT "READY CASSETTE"; D\$
(b) The program should be terminated in line 780 and not allowed to proceed to line 790 . Change line 780 to:

780 PRINT "RUN ENDED": CLOSE:END

With these changes the program will function as described in the accompanying text. However, during the investigation of this program, a number of interesting observations were made about the ON ERROR GOTO/RESUME statements.
(1) The ERROR GOTO statement establishes an error trap and any subsequent errors that occur during program execution (or after!) will be processed by the program line referenced. The fact that an error at BASIC "READY" prompt causes resumed execution of the program in the error handler can be disatrous!
(2) An error trap can be reset using the statement ON ERROR GOTO \emptyset.
***** WARNING - JOYSTICKS AND INPUT/OUTPUT PORTS FOR YOUR '80 *****
There is no actual bug in this hardware project but there is a potential source of trouble for the unwary. Mr. Tilley, from Victoria, had assembled the interface and connected it to his Model I only to find the system locked at power up. He made every effort to try and determine the cause himself, but to no avail, so he contacted us for help. I couldn't image what the trouble could be either and, in turn, contacted Allan Dent, the author. He informed me that the Tandy edge connector on the Model I has non-standard numbering in that the odd-numbered pins are on the top and not the bottom. Although there should be no problems if you follow the instructions in the article, Mr. Tilley soldered the other end of the rainbow cable to an IC plug. In this case, you must be very careful indeed, because the leftmost strand of the cable will be connected to pin 2 on the edge and not pin 1! Mr. Tilley found that after rectifying this, (and the rest of the wiring on the IC plug) the interface functioned as intended.

$$
\text { - } 0000000000-
$$

***** SOFTWARE REVIEW - TANDY'S VERSAFILE - by J. Dowdall *****
In my occupation as a software consultant, I have occasion to evaluate many 'off-the-shelf' programs and packages for clients. Once in a while, I find one which becomes a useful tool in my business VERSAFILE is one of these.
My client's requirement was for an easy-to-use Data Base which would enable him to store and retrieve brief details on formulae used in his Plastics manufacturing. Formulae were to be stored by product category, and data entry and retrieval had to be simple enough that relatively untrained operators could learn to handle it in a few minutes.
As it turned out, even I can be lucky! The first program I looked at was Versafile. At first it seemed too simple, and I went on to look at some more. After two or three others, though, I was back to look again.

The Command language is straight English - Versafile figures out what you mean. Data entry and retrieval are done the same way - by forming statements or questions. Close your statements with a period, and the statement is stored in a 'keyword file'. Close with a '?', and the program searches the appropriate keyword file for entries which match, and displays or prints them. The program has a total of only seven 'commands', all of which are one or two letters or symbols which fit neatly into an 'almost English' syntax.

Records can be of random lengths from one to 240 bytes and no prior formatting is needed - although the output is in the form of lines (no formatted screen). This could be a disadvantage, especially if your records are near maximum length, as words get chopped off as the line wraps around the screen. Another disadvantage is that the records aren't numbered on the display or in printouts. Considering the price of this program, however, these are minor annoyances.

The manual is supplied in a gold-leaf on brown vinyl ring-binder, with the disk in a plastic pocket at the front. Eighteen pages (about one third of them blank) with sample runs and pictures of the video are sufficient to get you up and away in less than twenty minutes.

Versafile is written in BASIC, and the manual gives a few hints on changes you can make to tailor the program to your own needs. One change not mentioned is altering the number of keyword files to be used. As supplied, eight keyword files are used. My client needed twenty, and the changes turned out to be quite simple.

To increase the number of keywords, only six lines need be EDITed. these are:

Line	1000	change the 8 to 20
Line	1200	change the 45 to 57
Line	1670	change the 8 to 20
Line	2000	change the 8 to 20
Line 6025	change the 8 to 20	
Line 10000	add an extra 12 keywords (DATA items)	

and that's the lot! With more keyword files, Versafile's searches are faster (except global) and you can store items under relevant headings. There is only one other change I would recommend: after you have entered two or three hundred lines, print out the entire set of files with P *? and count the number of entries under each keyword. Then EDIT line 10000 again and change the order of the keywords in it to reflect the frequency of use. This gives you another boost of speed - not much, but enough to notice on long searches.

Since obtaining Versafile, I've finally found a way to store magazine article references, and retrieve them in a few minutes without having to leaf through the whole collection for the reviews I need. And a way to list all of my clients along with phone numbers, computer systems, programs used, and possible future requirements.

My rating for Versafile is: EXCELLENT ***

- 0000000000 -
***** THE THEORY AND TECHNIQUES OF SORTING - PART 6 - by B. Simson *****
In the first article of this series, a simple method of sorting using exchange techniques was shown, which is the "Bubble Sort". Although it is one of the simplest algorithms around for handling more than 2 or 3 values, it is not one of the most efficient, far from it. This is easily verified by performing a test on a fixed list of numbers and comparing the time taken to execute with some of the other algorithms shown in later articles. However, don't write off techniques of sorting by exchange as being too inefficient yet, without examining at least one other exchange technique.

PARTITION-EXCHANGE SORT (QUICKSORT)

This sorting algorithm is a much more efficient method of exchange sorting than "Bubble", as its alias imples, "Quick"! Its use of specialized data structures is not as extensive as the list insertion sort or the tree sort. It just uses a stack as an auxiliary structure to the main array holding the data. The algorithm is defined in figure 1. It involves placing a particular item in its final position in the list. In so doing all items which precede this item are equal to or smaller in value, and all items that follow it are equal to or greater than this item in value. This process splits or partitions a list into two sublists, with the item between the sublists placed in the correct and final position in the list, hence the name "Partition -Exchange" - a process of partitioning a list and exchanging items. The key to understanding this algorithm is that the same process as was applied to the list before it was partitioned is applied to each sublist, and that's all. This will eventually place all items in the correct position in the list as more sublists are created by partitioning sublists, with a correctly positioned item between the sublists. This algorithm can also be implemented recursively, as can be seen by its definition, but the approach in figure 1 is by iterative means. The stack, provided implicitly by recursion, is used in the iterative approach to store the bounds (positions of first and last item) of the sublists as they are created.

THE ALGORITHM IN DETAIL

The process starts by pushing the lower and upper bounds of the current sublist on the stack. Then, as the flowchart shows, this list is partitioned until the stack is empty. The partition module first gets the bounds of the sublist to be partitioned from the stack. On the first time that this module is executed, the sublist bounds popped from the stack are the bounds of the entire list, as pushed in the initialization phase, but as far as the partition module is concerned, it is just another sublist to be partitioned. The sublist bounds are used toinitialize two indices into the list. Items are then compared using these two indices, which will initially point to the first and last item in the sublist. During the comparison phase, the indices are brought closer together by either incrementing the lower index, or decrementing the higher index, depending on which one was changed last. The decision on whether to increment the lower or decrement the upper depends on the status of a toggle flag. If it is off, the lower index is incremented, otherwise the upper index is decremented. The toggle flag is only toggled when an item exchange is necessary, that is, when item pointed to by lower index is greater than item pointed to by upper index. The comparison phase is complete when the lower and upper indices point to the same item, being the item placed in the correct position in the final list. It also now separates two sublists. The larger sublist bounds are stacked, and the process repeated on the smaller sublist. Stacking the larger sublist ensures minimum stack growth. The partition module in the flowchart shows that the larger sublist is processed first, then the smaller, but since the smaller sublist bounds are stacked last, they are also popped first for processing in the partition phase when it is repeated.

ILLUSTRATING
Consider the following list: $\begin{array}{lllllll}39 & 24 & 68 & 45 & 37 & 57\end{array}$ be examined. An asterisk before an item indicates the current item being compared using the two indices.

					TOGGLE FLAG		
*39	24	68	45	37	*57	ON	
*37	24	68	45	*39	57		(1 \& 5 SWAPPED)
37	*24	68	45	*39	57	OFF	
37	24	*39	45	*68	57	ON	(3 \& 5 SWAPPED)
37	24	*39	*45	68	57	ON	
37	24	**39	45	68	57	ON	

Both indices point to the third item on pass completion. This item has been placed in the correct final position in the list, and separates two sublists. The process has also guaranteed that all items in the left sublist have equal or smaller values, and all items in the right sublist have equal or greater values. Sublist 37,24 is then processed in the same manner, while sublist $45,68,57$ is stored. It will eventually be processed when its bounds are popped from the stack at the start of a partition phase. When a sublist of only one item is reached, its bounds are no longer stacked, and it is considered fully processed. A variation to this algorithm involves using this method to create sublists of some critical minimum size. When that size is reached, another sorting algorithm is employed to sort the sublist by passing its bounds to the auxiliary sort. This reduces the stack size in quicksort, and fewer sublists are created, but I have found that this variation is still slower, because of the less efficient sorting algorithm used to sort a particular sublist (Bubble, Selection or Insertion). The method shown here processes sublists down to their absolute minimum size (one).

DEMONSTRATION IN BASIC

Following is a BASIC program demonstrating the algorithm. You will find a great improvement in execution time when compared to Bubble, Selection or Insertion sort, particularly when the list size is large (for BASIC, say over 20). Variables used are:

I,J	INDICES INTO LIST
L,U	LOWER, UPPER SUBLIST BOUNDS
S	STACK
SP	STACK POINTER
FL	TOGGLE FLAG
L ()	LIST OF ITEMS BEING SORTED
SL,SR	SIZE OF LEFT/RIGHT SUBLIST

[^0]```
5080 X=EL/4:IFX<10X=EL
5090 DIML (EL), S(X)
5100 FORM=1 TOEL
5110 L(M)=FND (1000)-500
5120 NEXT
5140 GOSUB5210
5150 PRINT: INFUT"HIT ENTER TO START THE SORT":X
5160 PRINT" SORTING.. =":GOSUE5260
5170 PRINT"LIST AFTER SORT: "
5180 GOSUB5210
5 1 9 0 ~ E N D
5200 * PRINT L LIST
5210 FORM=1 TOEL
5220 FRINTL (M):
5 2 3 0 ~ N E X T ~
5 2 4 0 ~ R E T U R N
5250 * QUICK-SORT ROUTINE.
5260 L=1:U=EL
5270 SP=SP+1:S(SP)=L:SP=SP+1:S(SP)=U
5280 IFSP=OTHEN5300
5290 GOSUB5320: GOTO5280
5300 RETURN
5310 * PARTITIDN LIST
5320 U=5(SP):SP=SP-1:L=S(SP):SP=SP-1
5330 I=L:J=U:FL=1
5340 IFI=JTHEN5400
5350 IFL (I)<=L (J)THEN5380
5360 T=L(I):L(I)=L(J):L(J)=T
5370 IFFL=1FL=0 ELSEFL=1
5380 IFFL=1J=J-1 ELSEI=I+1
5390 GOTO5340
5400 SR=U-I:SL=I-L
5410 IFSR>SLGOSUB5440:GOSUB5480 ELSEGOSUB5480:GOSUB5440
5420 RETURN
5430% PROCESS RIGHT SUBLIST
5440 IFSR<=1THEN5460
5450 SP=SP+1:S(SP)=I+1:SP=SP+1:S(SP)=U
5460 RETURN
5470 * PROCESS LEFT SUBLIST
5480 IFSL<=1 THEN5500
5490 SP=SP+1:S(SP)=L:SP=SP+1:S(SP)=1-1
5500 RETURN
```

The processing overheads of Microsoft BASIC running on a 1.7 or 4 MHz machine does not do justice to this algorithm. For my own interest, I developed an assembly language version to see just how fast it would be in machine language, and I was surprised. BASIC really does seem to take an eternity! I also developed a BASIC driver to display the numbers on the screen as they were being sorted by the machine language routine.

## QUICKSORT IN $Z 80$ ASSEMBLY

This routine will sort integers only, allowing for negative values. The following points may help to further clarify the assembly language program. The start address and length of the array to be sorted are passed to the routine to the storage area labelled "STADD" and "LENGTH". This is all that the routine needs to work on the data. The Basic stack is saved on initialization, because Quicksort will use the stack for its own operations to store sublist bounds. Then the lower and upper bound addresses are found and pushed onto the stack. Consideration is given to the fact that each item occupies 2 bytes (integers). "PARTN" involves checking if the stack is empty by comparing original stack address with current value of stack pointer. If empty, then the sort is complete. If not, the next sublist bounds are popped and stored in locations labelled "LOWER" and "UPPER". J-FLAG refers to the toggle flag, being the $C$ register. The indices are check for equality. If not equal, then "CMPARE" is called to compare the items pointed to by HL and DE (indices). This particular version does not check which sublist is greater, but processes the right sublist before the left. This involves checking to see if they contain more than 1 integer, and if so, their bounds are stacked, else processing returns to "PARTN" to partition the next sublist. "CMPARE" involves getting the actual integers (items being compared) pointed to by HL and DE, into HL and DE for easy comparison. Then the sign status is checked for both integers using logical operation "XOR". If they have the same signs, then their signs are irrelevant in their ordering. Because negative integers are stored in two's complement form. If their signs are not the same, then a further check is made in "UNEQU" to check the sign in HL. Swapping two items is done most efficiently by using the EX DE, HL instruction. The task of placing the items in the HL and DE registers back into the sort array is the reverse of the process found in "CMPARE". Since a swap was done, the flag in the C register is toggled. "TESTJ" involves testing the status of the toggle flag to determine which index to update for the next comparison process.


| 7F78 | C3217F | 07900 | CMPARE | JP | PARTN | ; SAVE ADDRESS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7F7B | D5 | 08006 |  | PUSH | DE |  |
| 7F7C | E5 | 08100 |  | PUSH | HL | POINTERS |
| 7F7D | 7E | 08200 |  | LD | A, (HL) | ; GET LEFT INT |
| 7F7E | 23 | 08300 |  | INC | HL | ; BY LD HL, (HL) |
| 7F7F | 66 | 68400 |  | LD | H, (HL) |  |
| 7FB0 | 6F | 98500 |  | LD | L, A |  |
| 7F81 | EB | 98600 |  | EX | DE, HL | BLEFT INT IN DE |
| 7F82 | 7E | 08700 |  | LD | A, (HL) | ;GET RIGHT INT |
| 7 FGS | 23 | 08890 |  | INC. | HL |  |
| 7F84 | 66 | 08900 |  | LD | H, (HL) |  |
| 7F85 | 6F | 69090 |  | LD | L, A |  |
| 7F86 | EB | 09100 |  | EX | DE, HL | ; HL=LEFT, DE=Fight |
| 7 F 87 | 7C | 09209 |  | LD | A, H | 3 CHECK SIGNS |
| $7 \mathrm{F88}$ | AA | 09300 |  | XOR | D | ; HWITH D |
| $7 \mathrm{F89}$ | FAAB7F | 09400 |  | JP | M, UNEQU | :M IF SIGNS NOT EQ |
| 7F8C | ES | 09500 |  | PUSH | HL | ; SAVE LEFT |
| 7FBD | B7 | 09600 |  | OR | A | ; COMPARE INTEGERS |
| 7FBE | ED52 | 99790 |  | SBC | HL, DE |  |
| $7 \mathrm{F90}$ | E1 | 09800 |  | POP | HL | ${ }_{3}$ RESTORE |
| 7F91 | 381E | 99700 |  | JR | C, OK | \% NO |
| 7F93 | 281C | 19000 |  | JR | Z, OK | - SWAP |
| 7595 | EB | 10100 | SWAP | EX | DE,HL | SWAP INT |
| 7596 | 7C | 16200 |  | LD | A, H | ; PUT LEFT BACK |
| 7597 | 45 | 10300 |  | LD | B, L |  |
| 7F98 | E1 | 10400 |  | POF | HL | \% ADDR OF DEST |
| $7 \mathrm{F97}$ | 23 | 10500 |  | INC | HL |  |
| 7F9A | 77 | 10600 |  | LD | (HL), $A$ | MSB |
| 7F9B | 2B | 16700 |  | DEC | HL |  |
| 7F9C | 70 | 10800 |  | LD | (HL), B | ; LSB |
| 7F9D | 7A | 10900 |  | LD | A, D | ; FUT RIGHT BACK |
| 7F9E | 43 | 11600 |  | LD | B, E |  |
| 7F9F | D1 | 11100 |  | POF | DE | ; ADDR OF DEST |
| 7FA9 | 13 | 11206 |  | INC | DE |  |
| 7FA1 | 12 | 11300 |  | LD | (DE), A | ; MSB |
| 7FA2 | 1 B | 11400 |  | DEC | DE |  |
| 7FAS | 78 | 11500 |  | LD | A, B | ; GET LSB |
| 7FA4 | 12 | 11600 |  | LD | (DE), A | 5LSB |
|  |  | 11700 | ; TOG | E FLA |  |  |
| 7FAS | 3 E 91 | 11800 |  | LD | A, 1 |  |
| 7FA7 | A9 | 11900 |  | XOR | C | ; J-FLAG |
| 7FAB | 4F | 12000 |  | LD | C, A |  |
| 7FA9 | 1808 | 12100 |  | JR | TESTJ |  |
| 7 FAB | 7C | 12200 | UNEQU | LD | A, H | CHECK HL SIGN |
| 7FAC | E680 | 12300 |  | AND | 80 H |  |
| 7FAE | F2957F | 12400 |  | JP | P, SWAF | P P IF HL ( + ) (HIGHER) |
| 7FB1 | E1 | 12500 | OK | POP | HL | ; NO SWAP |
| 7FB2 | D1 | 12606 |  | POF | DE |  |
| 7FE3 | 79 | 12700 | TESTJ | LD | A, C | ; TEST J-FLAG |
| $7 \mathrm{FB4}$ | B7 | 12800 |  | OFi | A |  |
| 7FBS | 2003 | 12909 |  | JR | NZ, DECR | ; NZ IF SET |
| 7FB7 | 23 | 13600 |  | INC | HL | : NEXT INT |
| 7 FBE | 23 | 13100 |  | INC | HL | ; FOR LOWER |
| 7FB9 | C9 | 13200 |  | RET |  |  |
| 7 FBA | 1 B | 13300 | DECR | DEC | DE | FPREV INT |
| 7 FBB | 1B | 13406 |  | DEC | DE | 3 FOR UPPER |
| 7FBC | C9 | 13500 |  | RET |  |  |
| 7F6A |  | 13600 |  | END | START |  |

## BASIC DRIVER

The following BASIC program will drive the sort routine. Of course, before calling the sort, the necessary parameters must be passed to it. These are the start address of the unsorted array, and the number of integers it contains for sorting. this is done in lines 1220-1250. Line 1210 pokes the entry point for the USR ( 0 ) function, which is used to invoke the machine language program. The destination of the parameters is known by the assembly program, and these are poked into their correct locations, least significant byte first. It is important at this point to mention that once the start address of the array is found by the VARPTR function, no other variables should be defined before calling the sort, since defining further scalar variables will generate an entry in the simple variable table, thereby shifting up the array, which will then have a different starting address. An option is provided for a visual presentation, with optional graphic characters to be included. If a delay is built in the machine language program, you may be able to see the workings of the algorithm as execution proceeds. To get the program running you should first protect memory at 32500 at the MEMORY SIZE question. Then load in the machine language routine using SYSTEM if a tape has been made, or by direct load with a
monitor．Then load in the BASIC driver and run．

```
1000 % PARTITION-EXCHANGE SORT DRIVER (QUICKSORT)
1010% AUTHOR: B SIMSON, COPYRIGHT (C) 1980.
1020: THE SORT FROGRAM IS WRITTEN IN Z-80 ASSEMBLY
1030, AND IS CALLED FROM THIS DRIVER BY A USR (O) CALL
1040 : AFTER START ADDR & LENGTH OF DATA PARAMETERS PASSED.
1050 % SORT: ASCENDING
1060, DATA TYPE: SIGNED INTEGER ARRAY
1070, SUITABLE FOR: LEV2, 16K.
1090 DEFINTA-Y:RANDOM: Z =="":R=0:D=0
1100 PRINTTAB (2O); "QUICKSORT ROUTINE"
1110 INPUT"VISUAL DEMO (Y/N)";V年:IFV㓞Y"THEN1360
1120 INPUT"SIZE OF DATA LIST":L
1130 DIM A(L)
1140 FRINTTAB(10);"GENERATING RANDOM INTEGERS..."
1150 FORI=1TOL
1160 A (I)=RND (1000)-200 * GENERATE TYPICAL SIGNED DATA
1170 NEXT
1180 PRINT"BEFDRE SORT":GOSUB1320
1190 S=VARPTR(A(1))
1200 GOSUB1210:GOTO1260
1210 FOKE 16526, 10:FOKE 16527,127 , ENTRY=7FOAH
1220 POKE32512,5 AND 255 , START i) 7FOOH
1230 POKE32513, (5/256) AND 255
1240 POKE32514,L AND 255 , LENGTH iD 7FO2H
1250 POKE32515, (L/256) AND 255:RETURN
1260 PRINT:INPUT"HIT ENTER TO START THE SORT";S
1270 PRINT:PRINTTAB(10);"SORTING..."
1280 S=USR(O) , SORT ROUTINE
1290 FRINT"AFTER SORT:"
1300 gosub1320
1310 END
1320 FORI=1 TOL
1330 PRINTA(I);
1340 NEXT
1350 RETURN
1360 , VISUAL DEMO DATA
1370 V$="":INPUT"GRAPHIC & SPL CHARS INCL";V湾
1380 IFV$="Y"THENR=159:D=32 ELSE R=26:D=64
1390 CLS:PFINTCHR$(23):FORI=15360TD16382STEP2
1400 POKEI,RND (R) +D:POKEI +1,32
1410 NEXT
1420 S=15360:L=512
1430 GOSUB1210
1440 Z$="":Z$=INKEYक:IFZ$=""THEN1440
1450 S=USR(O)
1460 Z$="":Z$=INKEY$:IFZ$=""THEN146O
1470 END
```


## EFFICIENCY

Quicksort performs well on large lists sizes．It does not have the same property as Bubble， etc．，where sort times increase dramatically as the list size increases linearly．Its efficiency is similar to diminishing－increment and tree sort－of the order of $n \log _{2} n$ ．This algorithm is one of the fastest that $I$ have come across for average random data．There are algorithms around which will outperform this one，but only for special forms of data，e．g．the Radix sort is extremely fast on numbers which have a limited number of digits．Also，Quicksort does not perform very well on semi－ordered lists，because of uneven sublist sizes generated in the partition－ ing process，but for general cases of random data，it is one of the fastest．I performed some timing tests and compared them with those for the SupersnappX Sort published by Snapp Software， which compares their sort with Racet GSF．These are the results for 10,000 integers：

| Racet GSF | 59 seconds |
| :--- | :--- |
| Supersnapp X | 39 seconds |
| Quicksort | 31 seconds |

Snapp claim that SupersnappXis guaranteed to be the fastest in－memory sort on the market，which may be true since this version of Quicksort isn＇t on the market，but this comparison gives you an idea of its efficiency．Timing figures for some other list sizes for Quicksort are：

| 1,000 integers | 2.2 seconds |
| :--- | ---: |
| 2,000 integers | 5.4 seconds |
| 3,000 integers | 8.1 seconds |
| 4,000 integers | 11.3 seconds |

These were obtained on a Level 2 TRS-80 running at 1.7 MHz . In "The Art of Computer Programming, Volume 3 - Sorting and Searching", by D.E. Knuth, he compares Quicksort's efficiency with that of the diminishing increment sort, or "Shellsort" (discussed in the fourth article in this series). He shows that in the average case, Shellsort will take $15 * n .25$ time units, and Quicksort $11.67 * n * \log _{e} n-1.74 n$ time units, where $n$ is the number of items being sorted. He also indicates that the maximum time for Shellsort is less than for Quicksort, a point which was referred to above. For comparison, the formalae for the average case were applied to give the following figures:
LIST SIZE
200
500
1000
2000
4000
10000
SHELLSORT
11281 Time Units
35465
84351
200621
477162
1500000

QUICKSORT
12018 Time Units
35392
78873
173925
380206
1057000

You can see from this table that Quicksort is more efficient in the average case as the list size increases.

## TO SUMMARIZE

A method of sorting by exchange techniques known as the Partition-Exchange sort is very efficient for the average case. Items are sorted by placing them in their correct final position in the list, producing sublists on either side of it, which contain values that belong in that sublist. One sublist is stored while the other is processed in the same manner. A stack is used to store the bounds of the stored sublist.

This endsmydiscussion of different internal sorting algorithms, although it is not an exhaustive list of algorithms available. It should be understood that no one algorithm is the best, since different algorithms suit different applications, and some present trade-offs in memory usage that would not be acceptable in other applications.

The next article will discuss record sorting and external sorting techniques.

- 0000000000 -


## ***** AUTOMATIC GRAPHICS PACKER - by Ken B. Smith *****

Those of you who struggled through my article on STRING\$ \& THING\$ will by now have had enough practice at string packing to appreciate the time that even a simple graphic shape can consume. Even so the savings in memory and the increase in speed makes it all worthwhile. This program will enable you to draw a graphics design on the screen and automatically pack it into a string for you. This and other features make it well worth the effort to type in. What follows are simple instructions. The program itself is well REMed and those who wish will be able to decipher its logic without much effort. The REM's may be omitted for speed and ease when typing in.

Once the program is loaded and RUN the screen will request information on 'STRING NUMBER AND LENGTH TO PACK'. If the buffer contains information then answer this question with the string to pack and number of bytes to transfer but if you are starting afresh, either with a new design or a whole new run, then just press ENTER.

Once this question has been answered the screen will clear and a graphics pixel will be flashing in the centre of the screen. This single flashing pixel indicates the CURSOR Mode and all commands are available from this section. You may move this cursor around using the arrow keys, holding down the SPACE BAR will erase or leave a blank. The following commands are available from this mode using the appropriate key. (Be sure to have upper-case selected).
(P) - Pack the design on the screen to the buffer for subsequent transfer to a string. The buffer has a maximum capacity of 250 bytes so do not try too big a design to start with or problems will result from the buffer eating the program.
(C) - Clears the screen and leaves the cursor in the last position.
$(R)$ - Repeat the contents of the buffer onto the screen. Useful for progressive animation sequences.
(A) - Enters the ASCII mode. This will show a large cursor which will respond to arrow keys to move without altering the existing graphics, or will place any selected keyboard characters onto the screen. Pressing ENTER returns control to the CURSOR mode. Auto repeat is available after about a third of a second.
(J) - If you have a printer with graphics capability this will dump the screen to paper. Initialising your printer to the correct mode is your problem. The dump is straight ASCII and emulates the JKL features of NEWDOS. As this information is taken straight from the screen, no lower case is acceptable and this is the reason the LC is not available in the ASCII mode.

Once the pack command has been given，the contents of the screen will be transferred to the buffer．when this is completed you will be informed of the number of bytes transferred．Edit the string array to which you wish this design to be copied to the exact number of bytes required． （You won＇t be able to later ！！！！）．The line number equals the string number +10 ．To aid with this chore the target strings are set to 100 bytes．Delete or add enough characters to suit your design and RUN．This time answer the question about target and length with this information． The buffer will be transferred to the target string．When this is completed，you will be back to BASIC．ReRUN the program without an entry for the first question and you will be ready to make your second design．

Once you have completed your designs，merely delete all those lines not required and write your program on top of the packed strings．DO NOT ATTEMPT TO EDIT THE PACKED LINES．

This program is a fully functioning utility，but there are many other extras that could be added． Please feel free to add anything you wish，I would be pleased to see anything extra you might add．For myself I have completely automated this program，it even edits its own line numbers， but how to manage that is altogether another story．．．．．．
－ 0000000000 －

```
0 "****** Automatic Graphics Packer *********
******* Written for Micro go **********
******* by **********
******** Ken E Smith *********
CLEAR500 : *** 500 Eytes for String$
CLS :"** Clear Le Screen
DEFINTA-K,M-Z : "** Set up the integers
A=15S60 : ** Start of Screen Memory in A
C=191 :"** Whole graphic in C
DIMAक(10) : "** Set up the array for A$
*** The Variables A(1) to A(9) all have 100 blanks
A疌(1)="
A串(2)="
A生(\Xi)='
A串(4)="
A串(5)="
A$(6)='
A$(7)='
A車(B)="
A本(9)="
** A$ has 250 blanks and is the Eliffer
Aま="
```

```
Z9&=" " :*** A dummy string used in the screen print
```

Z9\&=" " :*** A dummy string used in the screen print
INFUT"STRING NUMEEF AND LENGTH TO FACK ";ZZ,Z1
INFUT"STRING NUMEEF AND LENGTH TO FACK ";ZZ,Z1
CLS
CLS
X=6S:Y=2S : ** Start positions for cursor
X=6S:Y=2S : ** Start positions for cursor
Fक=INKEY\& :"** Strobe keyboard and result to F\$
Fक=INKEY\& :"** Strobe keyboard and result to F\$
IFFक="A"THEN4S : "** Was it an "A" for ASCII mode ?

```
IFFक="A"THEN4S : "** Was it an "A" for ASCII mode ?
```




```
IFFक="F"THENG7 : "** or a "F" for PACK
```

```
IFFक="F"THENG7 : "** or a "F" for PACK
```






```
E=FEEK(14590) : "** Load B with cursor arrow PEEK
```

E=FEEK(14590) : "** Load B with cursor arrow PEEK
** If E=O then Flash Cursor and back to get next job
** If E=O then Flash Cursor and back to get next job
IFE=OTHENRESET (X,Y):FORX1=1TO10:NEXT:SET (X,Y):GOTO26
IFE=OTHENRESET (X,Y):FORX1=1TO10:NEXT:SET (X,Y):GOTO26
** Check for 00001000= Up arrow and dec Y but not \& O
** Check for 00001000= Up arrow and dec Y but not \& O
IFEAND8THENY=Y-1: IFY<OTHENY=0
IFEAND8THENY=Y-1: IFY<OTHENY=0
** Check for 00010000 = Down arrow and inc Y but not }>4
** Check for 00010000 = Down arrow and inc Y but not }>4
IFGAND 16THENY =Y +1:IFY>47THENY =47
IFGAND 16THENY =Y +1:IFY>47THENY =47
** Check for 0010000 = Left arrow and dec X but not < O
** Check for 0010000 = Left arrow and dec X but not < O
IFEANDS2THENX = X-1: IFX<OTHENX =0
IFEANDS2THENX = X-1: IFX<OTHENX =0
** Check for 0100000 = Fight arrow and inc X but not > 127
** Check for 0100000 = Fight arrow and inc X but not > 127
IFEAND64THENX = X +1:IFX>127THENX =127

```
IFEAND64THENX = X +1:IFX>127THENX =127
```

```
4J SET (X,Y) : ** SET the new value for }X\mathrm{ & Y
44 "** Check for 1000000 = Space Ear then RESET pixel and pause
45 IFEAND 128THENRESET (X,Y):FORX1=1TOS:NEXT
46 GOTO26 : *** Emck for more inputs
47 *** The ASCII input section
48 D=FEEK (A) : ** Feek the Screen location in As result in D
4 9 \text { FOKEEA,C : ** Foke the Graphic Eyte 191 into Screen Location}
```



```
51 "** If there is nothing from the keyboard, Flash cursor
52 TFEक=""THENFOKEA, 32:FOFI=1TO1O:NEXT:FOKEA; D:GOTO4B
5S E=ASC(B&):"** There was an entry. ASCII code to E
54 IFE=13THENFOKEA,D:GOTO26:"** Was it an ENTER, then back
55 %* If entry a valid character. FOKE it in and inc A
56 IFE\S1ANDE<91THENPOKEA,E:A=A+1:IFA>16S83THENA=1638S
57 *** The following are cursor controls. FOKEA,D = Skip
58 ** If entry was Left arrow then dec A and check A>15S59
IFE=8THENFOKEEA,D:A=A-1:IFA<15S60THENA=15S60
** If entry was Right arrow then inc A and check A<16S84
IFE=OTHENFOKEA,D:A=A+1:IFA>1SS8STHENA=1638S
** If entry was Down arrow then inc A+64 (1 1ine) and chect:
IFE=10THENFOKEA:D:A=A+64:IFA`16S8STHENA=A-64
*** If entry was Up arrow then dec A-64 and check
IFE=91THENFOKEA,D:A=A-64:IFA:15S6OTHENA =A+64
g0T048 : *** Gack again
IFZZ<OOTHEN1OO:*** IS there a String Number from the entry
LO=VARPTR(Aま):"** There wasn"t 50 address of buffer to LD
LO=FEEK(LO+1)+25S*FEEK゙(LO+2): ** Now the address of A $
IFLO\3276日THENLO=LO-65SS6:"** Check for INT limits
L1=1_0:"** Transfer to spare L1
FORX=15360TO16S日SSTEFG4 : ** The whole screen, in lines
FORZ=X+SSTOXSTEF-1 : ** now the lines, one byte at a time
IFFEEK: (Z)=\Xi2ORFEEK}(Z)=128THENNEXT:NEXT:GOTO94 : ** Elanks?
CI=Z :"系* First non blank character. Position to Ci
FOFZ=XTOC1:"** Now forwards along the line
IFFEEK(Z)=32OFPEEK(Z)=128THENNEXT : ** to check for blanks
C=Z : "** First entry on line non-blank to C
FORZ=CTOC1 :'** Characters in the range C to Ci on this line
FOKELO,FEEK(Z): ** Foke them to the buffer string (A|)
LO=LO+1 :*** Increment the buffer string pointer
NEXT : *** Continue till that line completed
xx=x+64:"** Go down one line
FORZ=XXTOXX+6S:"** And chect it
```



```
FOKELIO,26:?** Put in a Iine feed
LQ=LO+1 :"出* And don"t forget the buffer counter
C2=Z : "* Hold present position in C2
FOFZ=C2TOC1+64 :** End of top line to start of next
FOKELD,24 : *** Poke in backspace characters
LO=LO+1 :"** And increment the pointer each time
NEXT : ** until enough back spaces are entered
IFX<16SBOTHENNEXT : ** End of Screen - Nog another line
X=LO-L1:"** Number of characters into X
CLS:*** Must I do that again
FRINT"THEFE ARE ":X: "STATEMENTS IN THAT DFAWING
FRINT"EDIT THE FEQ. LINE AND ENTER STRING NUMEER AND EYTES NEXT RUN
END : *** End of packing. Easy heh!!!!
** Transfer from buffer (A$) to selected string A⿻\人(ZZ)
LO=VARFTR(A$(ZZ)):"** VLT address for selected string
LO=FEEK(LO+1)+25b*FEEK`(LO+2):"** Actual address to LO
FORX=1TOZ1 : "** Number of Eytes to transfer
```



```
LO=LO+1 :"** Increment the counter
NEXT : *** Until finished Z1 bytes
END: "为* End of transfer from buffer to target string
** The Screen Frint Subroutine. Emulates JkL feature
Z9%=VARPTR(Z9%) : "** VLT address of dummy string Z9$
FOKEZ9%,64 : "放* Tell the interpreter it"s 64 bytes long
FOFZ8%=15360 TO 16\Xi8S STEF 64:*** Screen in lines to Z8%
Z7%=Z8%/256: *** Extract MSE of Z8% to Z7%
Z6%=28%-27%%256:* ** And the LSE of Z8% to Z6%
POKEZC%+1,Z6% : "糗* Transfer LSB of screen line to ULT
POKEZ7%+2, Z7%:"主* Transfer MSB of Screen line to VLT
LPRINTZ9$:"**Now print that screen line as Z9$
NEXT : "** And continue till end of screen
RETURN :"玺玺 Then go back to caller
118 END:"䋆* This really is the end
```


## SOFTWARE SECTION *

## ***** VARIABLE WORKSHEET Peach and CC *****

It is good programming practice to document programs as an aid to understanding how they work. At the time of writing a program, this procedure seems totally unnecessary because you are thoroughly familiar with the program, with its variable usage, and with how it functions. However, if your memory is like mine, when you come back to it after a month or so to tidy it up or improve it, you find that familiarity is gone and that you waste a lot of time trying to recover it. With this program, first published in the April ' 81 issue, you can record much of this precious information systematically to serve as documentation for future reference (a printer is required).

## - 00000000000 -

***** MILEAGE CALCULATOR Peach and CC *****
With the aid of this program, originally published in the July ' 81 issue, you can use your computer to keep a record of your car's fuel consumption. The program originally used cassette tape to store the information for a particular month and these modified versions do the same. The program allows you to enter the data, make projections about fuel requirements, etc. and to produce summaries.

| (1) month number | (4) | litres |
| :--- | :--- | :--- | :--- |
| (2) km at start | (5) | cost |
| (3) km at end |  |  |

The program then works out:

| (1) kms travelled | (4) m.p.g. |  |
| :--- | :--- | :--- |
| (2) miles travelled | (5) | litres per 100 km |
| (3) $\mathrm{km} / \mathrm{litre}$ |  |  |

After this is done the user is asked if the data is to be saved to cassette. When completed, the program returns to the menu.

The second function projects the number of litres of fuel required for a given trip, given the average $\mathrm{km} /$ litre and the distance.

The summary mode allows you to summarise a particular month, or the full year. Given the month, the program will search the data tape (provided one has been created) and when it finds the specified month it will load the data and summarise under these headings:

TOTAL COST TOTAL KM(TRAVELLED) AVG KM/LITRE TOTAL LITRES
When asked to do a summary for the year, the data for all the months is read and summarised. Note that in this mode, the last month read must be a 12 or an error will result.

- 0000000000 -
***** CALENDAR - LEVEL II *****
A program that produces a calendar seems appropriate at this time of year and this one follows the same sort of logic that a person would if the exercise were to be done by hand. In order to produce any calendar you need two pieces of information:

1) the day of the week when the year begins
2) if the year is a leap year or not.

Given the year for which you want the calendar, there is an algorithm called Zeller's algorithm that generates a unique day number for any day this century starting from March 1st., 1900 (hence the restriction on the year). With that it is a relatively simple task to find the first piece of information. Knowing the year allows you to quite easily get the second. Although I have not tested this program for all the 99 years this century, my confidence in Zeller and modulo arithmetic leads me to believe the code in lines $650-670$ is correct and it does produce an accurate calendar for 1983.

The remainder of the program is concerned with formatting the layout of the calendar and is reasonably self-explanatory. The subroutine at 220 generates the calendar in a numeric array YR and that at 440 converts this array to character strings for printing one line at a time. The title is printed by the subroutine at 290. Line 200 puts my EPSON into double-strike mode and line 750 restores it to normal, followed by a hard form feed (the System 80 does not pass

## MICR0-80 PRODUCTS CATALOGUE

This catalogue contains a selection from the wide range of peripherals, interfaces, computers and software carried by MICRO-80 for your computer. If you don't see the item you want, contact us, we probably have it anyway!
MICR0-80 has been supplying customers throughout Australia and the Pacific region by mail-order for $2 \frac{1}{2}$ years. Our customers find this a simple and efficient way to do business. You may place your order by telephone or by mailing the order form from any issue of MICRO-80 magazine. Generally, it takes about one week from receipt of order until despatch. You should allow 2-3 days for your letter to reach us and 7-10 days for the parcel to reach you, making a total turnaround time of $21 / 2-3$ weeks.

## WARRANTY AND SERVICE

All hardware products carry a 90 day parts and labour warranty either from the manufacturer/distributor or from MICRO-80 Pty Ltd. In many cases, warranty servicing can be arranged in your own city, otherwise goods will be repaired by our own team of technicians in our Adelaide workshops.

## TRADE-INS AND TERMS

MICRO-80 can accept your existing equipment as a trade-in on new equipment. We can also arrange consumer mortgage financing or leasing on larger hardware purchases. Contact us for details.

## B00KS



## LEARNING LEVEL II

by David A. Lien
Written by the author of the Level I Users Manual, Learning Level II covers all Level II BASIC beyond level I, plus much more. It shows you how to use the Editor, explains what the many error messages are really saying, and leads you through conversions of Level I programs to Level II.
Dual cassettes, printers, the Expansion Interface with clock and other features are explained in the same easy-tolearn style that made the Level I Manual famous. Learning Level II is an invaluable supplement to the TRS-80 Level II and System 80 manuals and is now only $\$ 7.95$ (plus $\$ 1.20 \mathrm{p} \$ \mathrm{p}$ ).


## THE CUSTOM TRS-80 AND OTHER MYSTERIES

by Dennis Bathory Kitsz Ever wanted to do things to your TRS-80 that Radio Shack said couldn't be done? How about reverse video, high resolution graphics, and audible keystrokes?
Now enough? How about turning an 8 -track into a mass storage device, making music, controlling a synthesiser, individual reverse characters, and a real-time clock just to name a few?
The Custom TRS-80 and Other Mysteries is packed with more than 290 pages of practical information and can be yours for only $\$ 32.50$ (plus $\$ 1.20$ p\&p).

## BASIC FASTER AND BETTER AND OTHER MYSTERIES

 by Lewis Rosenfelder Basic is not nearly as slow as most programmers think. Basic Faster and Better shows you how to super charge your BASIC with almost 300 pages of fast, functions and subroutines. You won't find any trivial poorly designed "check-book balancing" programs in this book - it's packed with useful programs.Tutorial for the beginner, instructive for the advanced, and invaluable for the professional, this book doesn't just talk . . . it shows how! Basic Faster and Better is $\$ 32.50$ (plus \$1.20 p\&p).


## TRS-80 DISK

 AND OTHER MYSTERIESby H.C. Pennington TRS-80 Disk and Other Mysteries is the definitive fix-it book for disk users. More than 130 pages of easy to read, entertaining and immensely useful information. Find out how to recover disk files, the layout of information on disks, memory maps, problem solutions . . . the list goes on! Many readers have saved days of work by recreating disk files that were unreadable. TRS-80 Disk and Other Mysteries, which has received favorable reviews in several magazines, is yours for only $\$ 27.00$ (plus $\$ 1.20$ p\&p).

## THE

## LNW80 MkII MICROCOMPUTER



Manufactured in America by LNW Research Corporation, the LNW80 II has the following outstanding features:

- Completely software and hardware COMPATIBLE with the TRS-80 Model 1.
- HIGH RESOLUTION COLOUR GRAPHICS - 4 MODES:
- B/W LO-RES $128 \times 48$
- B/W HI-RES $480 \times 192$
- COLOUR LO-RES $128 \times 192$ in 8 COLOURS
- COLOUR HI-RES $480 \times 192$ in 8 COLOURS
- CP/M Disk Operating System.
- Single and Double Density Disk Operation.
- Supports $51 / 4$ inch or 8 inch Floppy Disk Drives.
- 48K RAM in TRS-80 mode plus 16 K High Resolution graphics RAM.
- 64 K RAM in CP/M mode plus 32 K Banked in, usable in BASIC, plus the 16 K High Resolution Graphics RAM.
- 4 MHz Z80A microprocessor - over twice the operating speed of the Model 1.

The LNW80 II is the ideal computer for the serious hobbyist or businessman who is seeking a higher performance, more reliable computer to replace his TRS-80 Model 1 without sacrificing his investment in software or his programming experience. The LNW80 II uses standard Tandy or Tandy compatible disk drives. If you already have a disk TRS-80 system you may continue to use your existing disk drives on the LNW80 II.

LNW80 II Computer - complete except for disk drives and monitor Includes:

- CP/M Disk Operating System Dosplus 3.4 Double Density Disk Operating System
- LNW Extended Colour Basic Interpreter . . . . . . . . . . . . . . . . . . . . . . . $\$ 2750$ INC.S.T.

HI-RES Green Phosphor Monitor .
. $\mathbf{2 6 5}$ INC.S.T.
Super HI-RES Hitachi RGB Colour Monitor . 1250 INC.S.T.
Two Singlesided 40 Track Double Density Disk
in cabinet with power supply and cable
\$825 INC.S.T.


SCARFMAN
This incredibly popular game craze now runs on your TRS-80! It's eat or be eaten You run Scrarfman around the maze, gobbling up everything in your path Try to eat it all before nasty monsters devour you. Excellent high speed machine language action game from the Cornsoft Group. With sound

Price: \$17.95


SEA DRAGON
Your submarine, the US S. Sea Dragon, penetrates a mined enemy channel. Armed with missiles and torpedos, you engage the enemy while navigating unknown waters Succeed or come to a salty end in this game 29 screens of horizontally scrolling seascrape and sound from Adventure International Price: \$26.50


LUNAR LANDER
As a vast panoramic moonscape scrolls by, select one of many landing sights. The more perilous the spot, the more points scored -. if you land sately. You control LEM main engines and side thrusters. One of the best uses of TRS-80 graphics we have ever seen From Adventure International. With sound

Price: \$26.50


METEOR MISSION II
As you look down on your view. astronauts cry out for rescue You must maneuver through the asteroids and meteors. (Can you get back to the space station?) Fire lasers to destroy could be an but watch out there could be an alien Flagship lurking
Includes sound effects!

Price: \$20.50


ARMORED PATROL
A realistic tank battle simulation. Your view is a 3-D perspective of an alien landscape Maneuver your T-36 tank to locate and destroy enemy tanks and robots that lay hidden, ready to assault you Clever graphics
create the illusion of movement and dimension From Adventure International With sound. Price $\mathbf{\$ 3 2 . 0 0}$


GOUVERT YOUR GOWPUIER LITO AI ARGADE GAMES MIGIITE CICHO-80's STIEXERDO FEITURES:
OThe famous Atair Joystick oSaves your keyboard from abuse compatible with programs from leading U.S. software houses: Big Elve Cornsot, Melbourne House, Adventure International owill be supported in MIGRO 80 chan be used with you own BASIC or MI R Pograms comes complete teady to plug in and use qAbsolutely no modifications required to your computer
 +1501 Pingimu LiLM




GALAXY INVASION
The sound of the klaxon is calling you! Invaders have been spotted warping toward Earth You shift right and left as you fire your lasers. A few break formation and fly straight at you! You place your finger on the fire button knowing that this shot must connect! With sound effects!

Price: \$26.50

## PENETRATOR

Soar swiftly over jagged landscape swooping high and low to avoid obstacles and enemy missiles attacks With miles of wild terrain and tunnels to penetrate, you're well armed with bombs and multiple forward missile capability. From Melbourne House Features sound, trainer mode and customizing program.

Price: \$36.50


DEFENSE COMMAND
The invaders are back! Alone, you defend the all important nuclear fuel canisters from the repeated attacks of thieving aliens, repeatedly. An alien passes your guard, snatches a canister and flys straight off Quick You have one last chance to blast him from the sky! With sound and voice


STRIKE FORCE
As the primary defender of a world of cities under deadly alien attack, your weaponry is the latest rapid fire missiles, long range radar, and ncendiary "star sheils." Your force field can absorb only a limited number of impacts A complex game of strategy. skill and reflexes from Melbourne House. Price: $\mathbf{\$ 2 6 . 5 0}$


Asteroids float ominously around the screen. You must destroy the asteroids before they destroy you! (Big asteroids break into little ones). Your ship will respond to thrust, rotate, hyperspace and fire Watch out for that saucer with the laser! As reviewed in May 1981 Byte Magazine.

Price: \$26.50


## ROBOT ATTACK

Talks without a voice synthesizer, through the cassette port. With just a hand laser in -a remote space station you encounter armed robots. Some march towards you, more wait around corners. Careful, the walls are electrified Zap as many robots as you dare before escaping to a new section. More robots await you

Price: \$26.50


STELLAR ESCORT
The latest super action game from Big Five As the Federation's top space fighter you've been chosen to escort what is possibly the most important shipment in Federation history. The enemy will send many squadrons o their best fighters to intercept. With sound

## THE BEST IN ENTERTAINMENT FROM AMERICA'S TOP SOFTWARE HOUSES

MICRO-80 now has in stock some of the best games and adventures written for the ' 80 s. These programs are supplied on cassette for the Level III16K TRS-80 Model I (or III). They are also suitable for the System 80 but sound may not be available unless a hardware modification has been fitted to reverse the roles of recorders \#1 and \#2. Limited stock is available at these prices.

## FROM BIG FIVE

## COSMIC FIGHTER

\$20.95
Your ship comes out of hyperspace under a convoy of aliens, you destroy every one but another set appears, these seem more intelligent. You eliminate them too. Your fuel supply is diminishing. You must destroy 2 more sets before you can dock - includes sound effects.

ATTACK FORCE
$\$ 26.50$
In this fast paced, $\mathrm{m} / \mathrm{I}$ game 8 alien ramships are warping towards your ship. You must dodge them and fire your missiles before they destroy you - but watch out for the flagship and its death beam!! - complete with sound effects.

## FROM ADVENTURE INTERNATIONAL

## ELIMINATOR <br> $\$ 26.50$

Your mission is to prevent the marauding alien hoards from recovering your energizers from the planet surface. There are several types of alien ships - each with different weapons to destroy you!! - with sound effects.

## PLANETOIDS

$\$ 26.50$
It's your ship against a swarm of killer planetoids, as you try to destroy them before they destroy you - with sharp graphics and sound effects.

## ADVENTURELAND

$\$ 26.50$
Wander through an enchanted world trying to recover 13 lost treasures. You'll encounter wild animals, magical beings, and many other perils and puzzles. Can you rescue the Blue Ox from the quicksand? Or find your way out of the maze of pits?

PIRATE'S ADVENTURE
$\$ 26.50$
"Yo ho ho and a bottle of rum . . ." Meet the pirate and his daffy bird along with many strange sights as you attempt to get out of your London flat and get to Treasure Island. Can you recover Long John Silver's lost treasures?

## MISSION IMPOSSIBLE

$\$ 26.50$
Good morning, your mission is to . . . and so it begins. Will you be able to complete your mission in time? Or is the world's first automated nuclear reactor doomed? This is hard. There's no magic and no help this time, but plenty of suspense. Good luck!

## VOODOO CASTLE

$\$ 26.50$
Count Cristo has had a fiendish curse put on him by his enemies. There he lies, with you as his only hope. Will you be able to rescue him or is he forever doomed? Beware the Voodoo Man

## THECOUNT

$\$ 26.50$
You wake up in a large brass bed in a castle, somewhere in Transylvania. Who are you, what are you doing here, and WHY did the postman deliver a bottle of blood? You'll love this adventure, in fact you might say it's Love at First Byte.

## STRANGEODYSSEY

$\$ 26.50$
Marooned at the edge of the galaxy, you've stumbled on the ruins of an ancient alien civilization complete with fabulous treasures and unearthly technologies. Can you collect the treasures and return home or will you be marooned forever?
missile attack
$\$ 20.50$
This is a real-time game with sound effects. You must protect your cities against enemy missiles, as your skill increases, so does the level of difficulty making accuracy a must.

## SPACEINTRUDERS

$\$ 26.50$
A very fast game with the deluxe version of Space Invaders, complete with "spitting" invaders and the SOS of escaping aliens - with sound effects.

## MYSTERY FUN HOUSE

$\$ 26.50$
Can you even find your way in to the Strangest Fund House in existence let alone find your way completely through it or will you get kicked out when the park closes?

PYRAMID OF DOOM
$\$ 26.50$
An Egyptian Treasure Hunt leads you into the dark recesses of a recently uncovered Pyramid. Will you recover all the treasures or more likely will you join its denizens for that long eternal sleep?

## GHOSTTOWN

$\$ 26.50$
Explore a deserted western mining town in search of 13 treasures. From rattlesnakes to runaway horses, this Adventure's got 'em all! (Also includes new bonus scoring system).

## SAVAGEISLAND

\$26.50
Part 1 - A small island in a remote ocean holds an awesome secret. Will you be the first to uncover it? HOTE: This is the first part of a larger adventure. It will be necessary to buy further tapes to complete the entire Adventure. WARNING: FOR EXPERIENCED ADVENTURERS ONLY!

SAVAGEISLAND
\$26.50
Part2 - After struggling through Part 1, you have the consolation of knowing it's half over. This concludes the two part Adventure. It requires you have completed Part 1 and received the password to start Part 2.

## GOLDEN VOYAGE

\$26.50
WARNING: For Experienced Adventurers Only! The King lies near death in the royal palace-you have only three days to bring back the elixir to cure him. Journey through the lands of magic fountains and sacred temples, stormy seas and gold, gold, GOLD!

## BUY YOUR MODEL 3 FROM MICRO-80 AND SAVE \$00's



MICRO-80 fits reliable MPI disk drives to the TRS-80 Model 3 to give system capacities and capabilities far in excess of those available elsewhere. All our conversions utilise low dissipation, switching-mode supplies to avoid screen jitter and overheating. The disk controller boards used incorporate special compensation circuitary for 80 track disk drives and may also be used to run 8 inch disk drives with an appropriate cable and DOS.
MODEL 340
$\$ 3130$
240 TRACK SINGLE-HEAD DISK DRIVES GIVING 350K FORMATTED STORAGE, 48K RAM
MODEL 340+
$\$ 3350$
240 TRACK DUAL-HEAD DRIVES GIVING 700K FORMATTED STORAGE, 48K RAM
MODEL 500-5 + MEGABYTE MODEL 3
$\$ 5895$
140 TRACK DUAL-HEAD DRIVE GIVING 350 K OF FLOPPY DISK STORAGE FOR TRANSFERRING PROGRAMS AND BACKUP, 48K RAM, EXTERNAL 5 MEGABYTE WINCHESTER SUB-SYSTEM, DOSPLUS 4.0 DISK OPERATIMG SYSTEM The MODEL 500 offers the high speed, mass storage capacity and reliability of a Winchester drive for thousands of dollars less than you would pay for any comparable system. Model 500 is a serious business computer able to tackle the most demanding tasks.

## WINCHESTER DISK DRIVE SUB-SYSTEM

5MByte \$2995
10MByte \$3750
This Winchester Disk Drive sub-system provides either 5 or 10 Megabyte of reliable, high speed storage. It connects to any standard Model 3 equipped with one or more floppy disk drives and does not void the Tandy warranty. Complete with DOSPLUS 4.0 Disk Operating system.

[^1]
## THE SMITH-CORONA TP-1 DAISY WHEEL PRIITER A low-priced letter quality printer



Ideally suited for small businesses or the home user, the TP-1 is a microprocessor controlled, correspondence quality printer that prints fully formed characters at an average print speed of 12 characters per second. This simple to operate, compact printer is compatible with most microcomputers and comes with the standard Centronics parallel interface (an optional serial data interface is available) and features:

- 128 ASCII Character Set (88 printable)
- 10 CPI or 12 CPI character spacing
- 105 characters per line (or 126 in 12 pitch)
- Handles letter and legal sized paper (up to $13^{\prime \prime}$ wide)
- Variable line spacing and impression control
- Prints original plus up to three copies

Tractor Feed Mechanism for Daisy Writer (ET121) \$380

[^2]
## DISK OPERATING SYSTEMS \& DEVELOPMENT SOFTWARE

You can increase your programming productivity, the execution speed and 'user friendliness' of your programs by using an enhanced Disk Operating System (DOS). Together with the other utility software, you can get the most from your disk drives.

DOSPLUS 3.3
$\$ 99.95$
(Specify Model I single or double density or Model III) An economic DOS intended for the first-time user and requiring single-sided disk drives. (The TRSDOS \& DISK BASIC MANUAL is required to supplement the DOSPLUS manual).

## DOSPLUS 3.4

\$\$149.95
(Specify Model I single or double density or Model III) With a high degree of compatibility with TRSDOS, DOSPLUS 3.4 supports single- or double-sided, single or double density, $5^{\prime \prime}$ or $8^{\prime \prime}$ disk drives with any track count (up to 96). Suitable for the first-time or experienced user wanting a fuss-free, bug-free, easy to understand but very powerful DOS which supports variable length records up to 255 bytes long. Comes with a stand alone manual.

## ENHBAS

$\$ 52.95$
ENHBAS adds over 30 new commands and functions to your BASIC interpreter including high speed SORT, labels in BASIC, RESTORE to any line number, WHILE-WEND for structured programming, SCROLL, LEFT, INVERT, DRAW and PLOT to give you ease of control over graphics, SOUND and PLAY to add realistic sound effects and many more. Makes programming a breeze! Available for Model I or III, disk or cassette - specify which when ordering.

## NEWDOS 80 VERSION 2.0

$\$ 169.00$
(Specify Model I or Model III)
Newdos 80 suits the experienced user who has already used TRSDOS, understands the manual and is prepared to learn the somewhat complicated syntax of one of the most powerful DOS's available. With the correct hardware, Newdos 80 supports any mix of single- or double-sided, single or double density, 5 " or $8^{\prime \prime}$ disk drives with track counts up to 96 . It provides powerful, flexible file handling in BASIC including variable length records up to 4096 bytes. Definitely not for the beginner.

## MASTER DISK DIRECTORY

\$20.95
FIND THE PROGRAM FAST!! PAYS FOR ITSELF BY RELEASING REDUDANT DISK SPACE!! MASTER DIRECTORY records the directories of all your individual disks onto one directory disk. Then itallows you examine them, find an individual file quickly, list files alphabetically, weed out redundant files, identify disks with free space, list files by extension, etc., etc. This program is invaluable for the serious disk user and will pay for itself many times over.

## THE FLOPPY DOCTOR/MEMORY DIAGNOSTIC

 ModelI Disk\$36.50Model III Disk \$43.50
THE MICRO CLINIC offers two programs designed to thoroughly check out the two most trouble-prone sections of the TRS-80 the disk system (controller and drives) and the memory arrays. Both programs are written in Z80 machine code and are supplied together on diskette for aminimum 32K, one disk system. Specify Model I or Model III.

# MORE <br> ENTERTAINMENT SOFTWARE 

## ADVENTUREHINTBOOK

$\$ 10.95$
If you can not go any further this will give you clues that may help - written by Scott Adams for Adventures 1-9.

## LABYRINTH

$\$ 26.50$
Labyrinth - you move through a gigantic labyrinth and scattered through this nightmare are a multitude of objects and obstacles. A minotaur prowls the corridors - you must kill it before it kills you, Labyrinth has over 550 locations - be patient.

## ASYLUM

\$26.50
Asylum places you in a cell, you have to escape. It's harder than it sounds, lots of hazards will be encountered.

## DEATHMAZE 5000

$\$ 26.50$
Deathmaze 5000 is another 3-D adventure. You move through a 5 storey building - your goal is to leave the deathmaze alive.

## New SEIKOSHA GP-100A GRAPHICS PRINTER



## Other features:

- Automatic Printing avoiding data loss when the maximum line length is exceeded.
If you have delayed buying a Printer, then now is the time to reconsider. The Seikosha has been designed for simple operation and puts full dot addressable graphics at your command. You can repeat a column of data as many times as you like with just one command. Double-width character and dot addressable positioning are software
- Allows mixing graphics, regular and double width characters on the same line.
- Up to 50 characters per second.
- Standard Centronics type Parallel interface.
- Self-test mode
- Optional RS-232-C Serial Interface.

PRINTERS GALORE AT UNBEATABLE PRICES
MICRO-80 has a range of printers to suit every requirement from dot-matrix to correspondence quality daisywheel. Choose from the table below:

| BRAND | MODEL | TYPE | SPECIFICATIONS |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | COL | $\begin{gathered} \text { SPEED } \\ \text { CPS } \end{gathered}$ | BI-DIR | LOWER <br> CASE | PAPER FEED | GRAPHICS | $\begin{aligned} & \text { INTER } \\ & \text { FACES } \end{aligned}$ | FREIGHT | PRICE | $\begin{aligned} & \text { WEEKLY } \\ & \text { PAY- } \\ & \text { MENTS* } \end{aligned}$ |
| EPSON | MX-80III | DM | 80 | 80 | Y | FULL | F/T | HI-RES | P | 1. | \$ 999 | \$ 8.35 |
| EPSON | MX-100III | DM | 132 | 100 | Y | FULL | F/T | HI-RES | P | 1 | \$1500 | \$12.55 |
| MICROLINE | 83A | DM | 132 | 120 | Y | FULL | F/T | BLOCK | P/S | 1. | \$1599 | \$13.37 |
| MICROLINE | 84 | DM | 132 | 200 | Y | FULL | F/T | HI-RES | P | 1 | \$2220 | \$18.57 |
| MICROLINE | 84 | DM | 132 | 200 | Y | FULL. | F/T | HI-RES | S | 1 | \$2340 | \$19.57 |
| C ITOH | 8510 | DM | 80 | 112 | Y | FULL | F/T | HI-RES | P | 1 | \$ 999 | \$ 9.19 |
| C ITOH | M1550 | DM | 132 | 120 | Y | FULL | F/T | HI-RES | P | 1 | \$1499 | \$12.54 |
| OLIVETTI | PRAXIS35 | DW | 100 | 6 | N | FULL | F | NO | P | 1 | \$ 895 | \$ 8.33 |
| OLIVETTI | ET121 | DW | 132 | 12 | N | FULL | F | NO | P | 2 | \$1500 | \$12.55 |
| OLIVETTI | ET221 | DW | 132 | 16 | N | FULL | F | NO | P | 2 | \$2650 | \$22.17 |
| ITOH | F10 40P | DW | 132 | 40 | Y | FULL | F | NO | P | 2 | \$1950 | \$16.31 |
| ITOH | F10 40S | DW | 132 | 40 | Y | FULL | F | NO | S | 2 | \$2190 | \$18.32 |

NOTE: The following symbols are used:
TYPE $+\quad$ DM $=$ DOT MATRIX
DW = DAISYWHEEL
BI DIRECTIONAL Y = YES $\mathrm{N}=\mathrm{NO}$
LOWER CASE FULL - means Lowercase descenders to
below line
PAPER FEED $\quad \mathrm{F}$ - means Friction Feed
T - means Tractor Feed
F/T - means both Friction and Tractor
Feed included in price
INTERFACES
$\mathrm{P}=$ PARALLEL (Centronics)
S = SERIAL (RS232)
FREIGHT $\quad 1$ - Add $\$ 10$ for road freight anywhere in
Australia
2 - Add $\$ 20$ for road freight anywhere in Australia
Note: Prices subject to change without notice. Prices quoted include Sales Tax at the $17.5 \%$ rate. Call or write for more details.
the Form Feed character ( $O C H$ ) through the printer driver). Both of these lines may need to be changed depending on your computer and printer. In the double-strike mode the routine at 440 does not slow the process down, but in normal mode the printer waits for a time as each new line is constructed. The alternative would be to produce the calendar in a string array, which would use much more string space and need more memory than the 4 K used by this method.

## - 0000000000 -

## ***** EXTENDING THE BASIC INTERPRETER: HEX CONSTANTS by Roger Bowler *****

As a Level II user, you may occasionally have grown tired of converting hex RAM addresses to decimal before you can use them in BASIC; or you may find programs difficult to understand because they refer to RAM addresses in decimal. Maybe you have even looked enviously at the Disk Basic manual and wished you could write statements such as:

FOR I=\&H3C40 TO \&H3CBF: POKE I,\&H86:NEXT
Well, in the world of software nothing is impossible, and after running this short program, you will be able to write and run programs containing hex constants as in the above example. First power up the 80 with a MEMORY SIZE of 20416 ( 4 K RAM) or 32704 (16K RAM), then CLOAD and RUN this program. All the program does is to POKE some machine code into the 60 bytes of RAM immediately above the MEMORY SIZE limit, then it executes a couple of sample statements containing hex constants, just to demonstrate that the machine code works. Now you no longer need to keep the BASIC program resident, so you can type NEW and your ' 80 will quite happily accept programs with hex constants in them. Incidentally, if you are typing this program in from a listing, you would be well advised to CSAVE it before running it. Of course, this program will have to be CLOADed and RUN again every time you power on.

Now how does it work? We are fortunate that the BASIC interpreter used by the ' 80 was designed to allow extensions such as this. There are about 2 dozen strategically located points during interpretation where the ROM code will jump out into the RAM to see whether the user wishes to do any additional processing. This is called an "exit" from the ROM, and in a normal cassette system all these exits are unused. The exit we are using is taken by the interpreter whenever it finds an expression in your program which starts with a "\&"; it consists of a call out to RAM location 4162H. Now unless you have Disk Basic loaded, location 4152H contains a jump back into the ROM to a piece of code which prints the "L3 ERROR" message. What we have done is to replace this jump by a jump to our own machine code in high RAM; our code will function as an extension of the BASIC interpreter by packing the hex characters following \&H into their binary equivalent, and passing the result back to the ROM.

When we come in to our code, the ROM gives us the address of the " $\&$ " character in the HL register pair. In return for this generosity, we have to update the HL register pair to point past the hex characters, and we store the result (i.e. their packed value) as a 16 bit integer with LSB at location 4121 H and MSB at 4122 H . We also have to set location 40 AFH equal to 02 to tell the ROM that the value we're sending him back is an integer (as opposed to single precision or string etc.). Then we can do a simple RET to continue interpretation.

So now you can run programs with \&H constants in them, and what's more, the syntax is compatible with Disk Basic!

Although the BASIC program shows the machine code being stored in high memory, this is only an example, since the machine code is completely relocatable. This means it doesn't contain any references to addresses within itself; all jumps are relative using the "JR" or "DJNZ" instructions. So you may well prefer to save the machine code somewhere else in RAM, to avoid having to protect high memory. One way of doing this is to shift the "start of basic" pointer at 40A4 to point to 4325 instead of 42E9. This is done by:

POKE 16548,37:POKE 16549,67:NEW
(The NEW forces BASIC to recompute its pointers to account for the new start address). Ignore the SN ERROR. Now you have freed up locations 17129-17188 (42E9-4324) into which you can store the machine code. Happy hexing!

I always build USR routines using dynamic string packing. This technique (described in Appendix H of the Level II Basic manual) involves packing the machine code into a string variable from DATA statements during program initialisation. It has a number of drawbacks, not the least of which being that it is rather S-L-0-W. But these I can live with. What I do draw the line at is writing machine code in DECIMAL; that is something I cannot do! Hasn't this crazy computer heard of HEX?

Well, mine has; I write my machine code like this:
200 DATA CD7FOA,5E23,56,EB,C39A0A,*
and I include a little basic subroutine at the end of each program to pack these DATA statements into strings.

The subroutine reads each＂instruction＂from the data as a string，then decodes and packs each pair of hex digits into a byte which it appends to string $\mathrm{P} \$$ ．The subroutine continues to build up the string until it reads an asterisk．Then by means of a quick

POKE 16526，PEEK（VARPTR（P\＄＋1）＝POKE 16527，PEEK（VARPTR（P\＄）＋2）
we are all ready to do a USR call．
It is quite easy to set up several independent USR routines in this way；I just make sure each set of DATA statements ends with an asterisk，and save the routine in another string variable before calling the hex pack subroutine again．

One thing to watch when using dynamic string packing－BASIC tends to move strings around in RAM（to reclaim unused string space），so set the VARPTRs immediately before making the USR call．
－ 0000000000 －

## ＊＊＊＊＊SERIES IMPEDANCE CALCULATIONS L2／16K－by W．G．Heath＊＊＊＊＊

This program illustrates one of the fundamental formulae connected with electrical problems and may be of interest to electrical engineering students and amateur radio enthusiasts．

As explained on the first two displays on the video screen，a wide variety of problems are solvable and not confined to the general form of series resistance，inductance and capacitance alone． Some of these elements need not be present but the program is still adaptable，it will also operate the OHM＇s law solutions of current，resistance and voltage（ $I=E / R$ ）

Following an indication of the scope of the program，a display list of all the variables involved is shown．Then follows the request for input of known and unknown values related to the problem in question．

The calculations are then made and the individual variables are displayed together with their measured or calculated values．

A graphical display of the general series circuit only，follows，plus an outline of the various vector relationships and the impedance diagram．

$$
\text { - } 0000000000 \text { - }
$$

Shown below are views of the screen：

## ＂）＞SERIES Impedance circuit 《＜＜

a hide variety of electrical circuit problens of this category are solveable depehding upon the hhoan and umknoun var－ iABLES AVailable．

THE PROgRa月me hill calculate all the variables shohn in the follohing schedule subject to appropriate input valueg．

IT HILL HANDLE THO UAKHDONS SIMULTAMEOUSLY PROUIDING ONE UHKNOHN IS EITHER I，E，OR R，AND THE SECOND IS EITHER $L$ ，$C$ OR X．MAKE NO ENTRY FOR THE UNKNOHM YALUES，I．E．PRESS 〈ENTER〉 ONLY GHEN INPUT？FOR THESE VARIABLES IS CALLED FOR．

〈ENTER 》？

THE PROGRAMAE CAN BE USED FOR PROBLEHS HHERE NO CAPAC－ ITANCE DR，ALTERNATIVELY，ND IHDUCTANCE IS PREsent，

Inductance can be calculated for an inductive circuit hithout capacitance if I，E，and r，are knonn values．

Finally the programme hill also operate a sihple ohn＇s LAK SOLUTION（I＝E／R）BY INPUTTING O（ IERO）FOR BOTH C （ CAPACITANCE ）AND L（ inductance）sihulitaneously．
after all calculations have been completed a further THO SCROLLS OF THE SCREEN CAM BE MADE GHICH HILL DISPLAY A CIR－ CUIT DIAGRAM GF THE GERERAL SERIES CIRCUIT FOLLOHED BY A VECTOR diagram and inpedance diagram

〈 EATER＞？


This adventure will just run in a Level 2 16K machine provided the following instructions are followed. It will run also with Disk BASIC (with at least 32K of memory).

For the disk version, lines 720 and 730 are replaced by the two lines listed separately, the program supplied on the distribution disk has already been converted for you.

This is an unusual adventure, using a data file in a manner similar to the Epyx games. The data file is the file called DRWHO/DAT on the distribution disk. This was created using the initialization program listed. If you are entering this program from the magazine you will have to run this program to create a data file either on disk or cassette.

The program uses a full 16 K which is why it needs the data file.
For a cassette based system, use the following procedure:
(1) Type in the initializer, check it, and SAVE it to tape.
(2) Type in the adventure, check it, and SAVE it to tape (a different one...leave this positioned to just after the program).
(3) Reload the initializer and swap back to the tape the adventure is on (it should be positioned just after the program).
(4) Run the initializer and answer the question with $T$ for tape.
(5) Rewind the tape, reload the adventure, and run it.
(6) Disk users type in both programs and SAVE them to disk. Add the lines provided to make the cassette version work on disks. Run the initializer and answer D. Then run the adventure.

NOTE: People with more than 16 K and disk users may find it advantageous to merge the data in the initializer with the main program. Although no explanation of how to do this is given here, it should not be too difficult.

INSTRUCTIONS.
After Dr. Who collected the Key to Time and defeated the Black Guardian, he received many praises and went on to greater things. The Key itself was again broken into its component pieces and scattered throughout the universe.

But the dark forces threaten, and in order to save the universe, the Timelords again need the Key. You have been chosen to go forth and locate it for them. You will be given a TARDIS (rather old and unreliable, but the best available) that has the coordinates of the planets on which the six parts are located pre-programmed into it. By RESETing its controls you can travel between the six planets and Galafry. As usual, the six parts are disguised as other things, and you will have to use your intuition to figure out which is which. (There is a way to tell...)

All the planets are inhabited, and most inhabitants tend to be antisocial. Whether you TALK to them, HIDE from them, kill them, OFFER them gifts of appeasement, or simply ignore them is up to you. Most objects are obvious, but some are hidden and have to be SEARCHed for. Only one key part is on any one planet. Beware the maze on Peladon...

You can use commands of up to 64 characters. The program will ignore any words it doesn't understand. Commands can be one, two or three words long.

When you find all the parts (or think you have), take them back to the throne room on Galafry to win.

The program only needs to read in data once. You will only need to rewind the data tape if you type BREAK or answer no to the "Another game?" question.

- 0000000000 -
***** LOWER CASE CONVERTER FOR BASIC PROGRAMS by D.M. Wright *****
After you have fitted a lower case conversion kit to your TRS-80/System 80 and have a Driver routine operating to your satisfaction, you will no doubt look back at all those BASIC programs you have produced with only capital letters displayed. While many programs have only a few statements in the way of instructions to modify, the thought of virtually retyping some of the long Adventure type programs is most daunting.

The following Assembly language program goes a long way to solving the problem as it converts the characters inside PRINT statements into lower case with the exceptions of the first letter in the quotation and the first letter after a period and two spaces which is assumed to be a new sentence. It only alters characters within the PRINT statement and does not convert program commands and statements.

It will be necessary to finally edit the program to capitalise people's names or titles which occur in PRINT statemments such as ..... system $80 / \operatorname{trs}-80 \ldots$ or ... commander smith ...

Conditional statements may also need editing as follows:

```
IF A$ = "Yes" THEN 100 would need to be altered back to,
IF A$ = "YES" THEN 100 or perhaps better stil1,
IF A$ = "YES" OR A$ = "yes" THEN 100
```

So with a little care in final editing you too can have small letters in abundance throughout your programs and across your screen.

The program can be assembled with an Editor/Assembler and can be relocated by altering the ORG
 Alternatively, the HEX dump (for 16 k system) that follows the source listing can be entered with a low memory monitor.

For this program to work you must have lowercase installed in your machine and a lower case driver active.

To load from tape:

1. Answer MEMORY SIZE? (READY?) with: 32272.
2. Load the machine language using SYSTEM.
3. Type: / 32272 (ENTER/NEWLINE) to start.

To load from distribution disk:

1. BASIC, 65040 (ENTER/NEWLINE)
2. CMD "CONVERT"
3. Type: / 65040 (ENTER/NEWLINE) to start.

The program will initialize and display a copyright message. Then load the BASIC program you want converted and when ready, type:

SYSTEM (ENTER/NEWL INE)
/32272 (ENTER/NEWLINE)
You can use the converter as many times as you like. The CMD file and EDTASM file supplied on the distribution DOS are for a 48 k system. For a 32 k system and suitably assembled machine language program, use 48656 as the memory size and entry address.

- 0000000000 -



|  |  |  |  |  |  |  |  |  | 3 C |  |  | 00 | ED |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7E20 | 7 F | 11 | OO | 3D | 01 | 40 | 00 | ED | Bo | 21 | 80 | 3 D | 22 | 20 | 0 | 40 |  |
| 7E30 | 58 | A4 | 40 | 2A | F9 | 40 | B7 | ED | 52 | 7 D | FE | 02 | 20 | 05 | 57 | C |  |
| 7E40 |  | 28 | 5 D | EB | 23 | 23 | 23 | CD | 99 | 7E | FE | 22 | 20 | F9 | 9 CD |  |  |
| 7E50 |  | FE | 22 | 28 | F2 | FE | 41 | 38 | Fs | FE | 5B | 30 | F1 | CD | D |  |  |
| 60 |  | 22 | 28 | E3 | FE | 2 E | 28 | OD | FE | 41 | 38 | F1 | FE | 5 B | B |  |  |
| 7E70 |  | 20 | 77 | 18 | E日 | CD | 99 | 7 F |  | 22 | 28 | CB |  | 20 |  |  |  |
| 7EB0 |  | 99 | 7 | FE | 22 | 28 |  |  |  | 20 | D | 8 | c1 | ci |  |  |  |
| $7 \mathrm{F90}$ |  | FE | OO | 28 |  | 23 |  | 8 |  | 23 | E | F | O | 2 |  |  |  |
| 7EAO | 21 | 7 C | 7 F | 11 | Oo | 3 D |  | 40 |  | E | 80 |  | CC |  |  |  |  |
| 7EBO |  | 11 | 00 | 3D | 01 | 40 |  | D |  |  | C |  | 20 |  |  |  |  |
| 7ECO | 20 | 20 | 20 | 4 C | 4F | 57 | 45 | 52 | 20 |  | 41 | 5 | 45 | 20 |  |  |  |
| 7ED | 4 E | 56 | 45 | 52 | 54 | 45 | 52 | 20 | 46 | 4 | 52 |  | 42 | 42 |  |  |  |
| 7EEO | 43 | 20 | 50 | 52 | 4 F | 47 | 52 | 41 | 4D | 53 | 20 |  | 20 | 5 |  |  |  |
| 7EFO： | 53 | 49 | 4 F | 4E | 20 | 32 | 2E | 30 | 20 | 20 | 20 |  | 20 | 20 |  |  |  |
| 7FOO： | 20 | 20 | 20 | 43 | 52 | 45 | 41 | 54 | 45 | 44 | 20 |  | 59 |  |  |  |  |
| 7F10： | 4 E | 4 E | 49 | 53 | 20 | 57 | 52 | 99 | 47 | 48 | 54 |  | 20 |  |  |  |  |
| 7F20： | 20 | 20 | 20 | 20 | 20 | 20 | 28 | 43 | 29 | 20 | 20 |  | 31 |  |  |  |  |
| 7F30： | 55 | 4 E | 45 | 20 | 31 | 39 | 38 | 32 | 20 | 20 | 20 |  | 2 |  |  |  |  |
| 7F40： | 20 | 20 | 20 | 50 | 52 | 4F | 47 | 52 | ， | 4D | 20 |  | 43 |  |  |  |  |
| 7F50： | 45 | 52 | 54 | 49 | 4E | 47 | 20 | 52 | 45 | 53 | 49 | 44 | 445 |  |  |  |  |
| 7F60： | 42 | 41 | 53 | 4 | 43 | 20 | 50 | 52 | 4F | 47 | 52 | 21 | 14 D | D 20 | 0 |  |  |
|  |  | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |  |  |  |  |
|  |  | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |  |
|  |  | 4 E | 4 F | 20 | 42 | 41 | 53 | 49 | 43 | 20 | 50 | 52 | 4 |  |  | 52 |  |
|  |  | 20 | 4 C | 4 F | 41 | 44 | 45 | 44 | 20 | 20 | 20 | 20 | 20 | 020 | 20 | 20 |  |
|  |  | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |  |  |  |
|  |  | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |  | 20 | － |  |  |  |
|  | 2 | 20 | 20 | 20 | 43 | 4F | 4 E | 56 | 45 | 52 | 53 | 49 | 9 4F | 4E | E | 20 |  |
|  |  | 4D | 50 | 4 C | 45 | 54 | 45 | 20 | 20 | 20 | 20 | 20 |  |  |  |  |  |
| 7FFO： |  | 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## ＊＊＊＊VAFIABLE WOFKSHEET＊＊＊＊

COLOUR COMPUTER

```
10 ****VAFI ABLE WORKSHEET***
```



```
30 ORIGINALLY BY 5%F MILLER
40 FFOF THE TFSBO
50 Cl_EAF 1000
60 CLS
79 FRINT IE 71, "VAFIABLE WORKSHEE
T"
80 FRINT TAB(15) "EY
90 FRINT"BY S% F MILLEF FOR THE
 TRS8GCC
100 FRINT
110 FRINT
120 INFUT"MAX. NUMEER OF ARRAYS"
:A
139 INFUT"MAX. NUMBER OF SUBROUT
INE LINES FEQUIRED";E
149 INPUT"MAX. NUMBER OF VARIABL
E LINES REQUIRED":C
150 INFUT"NUMBER OF COFIES REQUT
RED ";Y
166 FOR J=1 TO Y
170 FRIINT#-2, CHR覀(27)CHR韦(14)"V
AFIABLE WOFKSHEET"
189 FRRINT#-2, "FROGRAM : ",","PROG
FAMMER :","DATE : / /19 ="
190 FRINT#-2," "
209 PFINT#-2, "MEMOFY CLEARED -
 MEMORY FROTECTION AT -
*
219 FFINT#-2;" "
220 FFINT#-2," "
230 FRINT得-2" "
249 FRINT#-2,"LIST OF DIMENSIONE
D ARFAYS :-"
250 FOR }X=1 TO A
260 FRINT#-2," DIM () : N
AME :"
```

270 NEXT X
280 PRINT\＃－2，＂＂
296 FFINT\＃－2，＂SUBROUTINE INFORMA TION：－＂
300 FRINT\＃－2，＂＂
319 PRINT\＃－2，＂START \＃：END \＃： COMMENTS＂
320 FRTNT\＃－2，＂＂
330 FOR $X=1$ TO B
340 PRINT\＃－2，＂－－－－－－－＂；＂：＂＂
－－－－＂；＂：＂；
350 FRINT\＃－2，STFING ${ }^{(41, ~ "-") ~}$
360 NEXT $X$
379 FRINT\＃－2，＂＂
SBO PRINT\＃－2，＂VARIABLE LIST ：－＂
399 FRINT\＃－2，＂＂
400 FFIINT\＃－2，＂NAME
LABEL／USE
419 FRINT\＃－2，＂＂
420 FOR $X=1$ TO C
430 PRFINT\＃－2，＂ $\qquad$ ＂，
449 FRINT\＃－2，STRING串（44，＂－＂）
450 NEXT X
460 PRINT\＃－2，＂＂
470 FRINT\＃－2，＂PERIPHERALS REQUIR
ED：－＂
4日の PRINT\＃－2，＂＂
490 FRINT\＃－2，＂CASSETTE（ ）：PRI NTER（ ）：DISKS（）NUMBER REQUI
FED－－＂
509 PRINT\＃－2；＂NOTES：－＂
516 PRINT\＃－2，＂＂
520 FRINT\＃－2，＂＂
530 FRINT\＃－2，＂＂
549 NEXT J
550 CLEAR 50
569 ＊VARIABLE LIST：－
570 ～A：ND．DF ARRAY LINES
589 ＊$B:$ ND．OF SUBROUTINE LINES
599 ＊Ca ND．OF VARIABLE LINES 600 ． $\mathrm{Y}=\mathrm{NO}$ ．DF COFIES REQUIRED
610＊J：LOOF COUNTER FOR COPIES
629 － $\mathrm{X}:$ LOOP COUNTER FOR $A, B, C$

| 720 | PRINT＂3－SL |
| :---: | :---: |
| 30 | FRINT＂ 4 －END＂ |
| 740 SOUND290， 1 |  |
| $759 \mathrm{~A} \ddagger=4 " \mathrm{~A}$ ¢ $=1$ |  |
| EN 750 |  |
| $\mathrm{B}=\operatorname{VAL}(\mathrm{A} \pm):$ ON E GOTO 190 |  |
| 776 | ，880 ， 1350 |
| 770 CLS：PRINT＠40，＂FROJECT |  |
|  |  |
| 786 | FRINT：FRINT＂ON THE AVERAG |
| OW MANY KM／LITRE DOES YOUR CAR D |  |
|  |  |
| 790 | INFUT |
| 800 PRINT：FRINT＂HOW MANY KM DO $Y$ |  |
|  | WANT IT FROJECTED |
| ＂； |  |
| 816 INFUT FP |  |
| $820 \mathrm{XX}=\mathrm{PP} / \mathrm{F}$ |  |
| 939 PRINT：FRINT＂ON＂；PP；＂KM YOU W |  |
| OULD NEED＂INT（XX）＂LITRES OF FUEL |  |
| 40 | FRINT：PRINT：PRINT＂PRESS AN |
| KEY TO RETURN TO MENU＂ |  |
| 56 SOUND200，1 |  |
| $860 \mathrm{D}=\mathrm{INKEY}=$ <br> ELSE 876 |  |
| 870 goto b80 |  |
| 986 CLS：PRINTE44，＂SUMMARY＂ |  |
| 890 PRINT：PRINT：FRINT |  |
| 90 | PRINT＂MONTHLY OR YEA |
| M OR Y）？＂ |  |
| 910 SOUND200， 1 |  |
| $920 \mathrm{E}=0 \times \mathrm{C}=\mathrm{E}=$ |  |
| EN 920 |  |
| 936 IF E E＝＂M＂THEN950 ELSE1740 STOP |  |
|  |  |
| C9 CLS：PRINTE44，＂MONTHLY＂ |  |
| 960 SOUND200， 1 |  |
|  | PRINT：PRINT：PRINT：INPUT＂MO |
| TH NUMEER $=$＂：MM |  |
| $980 \mathrm{M}=0$ |  |
| 796 CLS：FRINT＠230，＂READING－－MO NTH＂：M＋1 |  |
|  |  |
| 1000 AUDIO ON |  |
| 1010－1030，1170－1190 |  |
| 1620 INFUT \＃－1，M，CC，A |  |
| C，FF |  |
| 1030 CLOSE \＃－1 |  |
| 1040 IF M＜MM THEN 990 |  |
| 1050 CLS：PRINTE49，＂MONTH NUMEER＂ ：M：PRINT：FRINT |  |
|  |  |
| 1060 GOSUB1360 |  |
| 076 | CLS：PRINTE479，＂－－－ANY MOR |

REM＊PETROL CONS＊＊
－FRINT＂DISTANCE TRAVELLED IS＂

© C ＂KMS．＂＂
；＂MILES．＂
430 FRINT：FRINT＂PETROL CONS FOR＂
：Es：FRINT＂KMS／LITRE．＂
449 FRINT：FRINT＂－ABOUT＂INT（H）＂MI
450 FRINT：PRINT＂THAT IS＂：：FRINT
450 FRINT：PRINT＂THAT IS＂：：FRINT
USING＂\＃\＃．\＃＂：FF：FRINT＂LITRES
FER 196 KM．＂
460 FRINT：FRINT＂WANT TO SAVE IT
ON TAFE？＜Y／N〉＂；
ON TAFE？＜Y／N〉＂：
470 GOSUB 60
496 SOUND200， 1
509 FRINTE 162 ，＂MAKE FREFARATION
5 FOR DUMPING＂u：INFUT＂HIT ENTE
F WHEN READY＂；A
520 CLS：PRINTE266，＂DUMPING DATA＂ z
吕
日
3
吕
0
0
550 FFINT\＃－1，M，CC，A，B，F，D，E，H，C，
560 CLOSE \＃－1
576 CLS：PRINTE226，＂MAKE ANOTHER
COFY ？「Y／N
590 GOTOS20
600 SOUND260， 1 C\＆＝＂＂THENG 19
626 IF C $\ddagger=" Y$＂THEN RETURN ELSE I
F C $\$=$＂N＂THEN CLS
$6 \Xi 9$ CLS：FRINT：FRINT＂ANY MORE DATA？〈Y／N〉＂：


669 IF G\＄＝＂Y＂THEN 190
680 CLS：FRINTG44，＂M E N U＂
690 PRINT：PRINT
709 FRINT＂ 1 －INPUT DATA ROUTI
NE＂
710 FRINT＂ 2 －FROJECTION CHAR
T＂
> ：＊＊＊MILEAGE CALCULATOR＊＊＊
$* * * * F O R ~ T H E ~ T R S B O C C * * * * * ~$ ＊＊＊＊FOR THE TRSBQCC＊＊＊＊＊
ORIGINALLY BY FRANK GRECO
FOR THE TRSBe
bo＇disk users change ：－ 70 ，\＃－1 TO \＃1 IN LINES $540-560$ ，


TO．LEAVE OUT THE＇AUDIO ON＇S
100 ＇CHANGE＇TAFE＇S TO＇DISK＇S
120 ， MIIES PER GALLON

140 PRINT＂WRITTEN By FRANK GREC
150 print＂maribyrnang victoria， AUSTRALIA TO $3000:$ NEXTX 170 GOTO 680

189 SOUND209， 1 INPUT＂MONTH NUMBER 190 CLS：PRINT

200 IF MK 1 OR M＞12 THEN 190 226 INPUT＂KILOMETERS AT THE END＂
iB 36 INFUT＂HOW MANY LITFES HAVE $Y$ OU PUT IN THE TANK＂； 246 INFUT＂COST＂；CC
250 C＝E－A
260 FRINT：FRINT
270 FRINT＂YOU TRAVELLED＂； $\mathrm{C} ;$＂KIL OMETERS．：＂
289 FEM＊CONV KM TO MILES＊
$290 \mathrm{D}=\mathrm{C} * * .62$
390 FRINT＂THAT＇S ABOUT＂；INT（D）；$; ~$
＂MILES．＂＂PRINT＂NOW I AM WORKING
OUT YOUR FETKOL CONSUMFTION．＂
320 SOUND200， 1
330 FORX $=1$ TO $1000:$ NEXTX

| 346 PRINT\#1," " |  |
| :---: | :---: |
| 350 | FOR $X=1$ TO B |
| $\begin{array}{r} 360 \\ 1: \end{array}$ | FRINT\#1," ------ ";":";" ------ ";": |
| 376 | PRINT\#1, STRING\$ (41, "--") |
| 380 | NEXT X |
| 390 | PRINT\#1, " |
| 400 | PRINT\#1, "VARIABLE LIST :-" |
| 410 | PRINT\#1," " |
| 420 | PRINT\#1," NAME LABEL/ |
| USE" |  |
| 430 | PRINT\#1," " |
| 440 | FOR X=1 TO C |
| 450 | PRINT\#1, " ---", |
| 460 | PRINT\#1, STRING\$ (44, "-") |
| 476 | NEXT X |
| 480 | PRINT\#1, " " |
| 496 | PRINT\#1, "PERIPHERALS REQUIRED : -" |
| 500 | PRINT\#1, " |
| 519 | FFINT\#1," CASSETTE \# 1 ( ) CASSETTE |
| \# 2 | ( ) :PRINTER ( ) : DISCS ( ) NUMBER RE |
| QUIRED -- " |  |
| 520 | PRINT\#1, "NOTES:- |
| 530 | FRINT\#1," " |
| 549 | PRINT\#1," " |
| 550 | FRINT\#1," |
| 560 | NEXT J |
| 565 | Close |
| 570 | Clear 50 |
| 586 | VARIABLE LIST:- |
| 590 | A : NUMBER OF ARRAY LINES |
| 609 | B = " " SUBROUTINE LINES |
| 610 | C : " " VARIABLE LINES |
| 620 | Y : " " COPIES FEQUIRED |
| 630 | $J$ : LOOP COUNTER FOR COPIES |
| 646 |  |



* VARIABLE WORKSHEET - FOR THE TRS-
* $5 \&$ \& MILLER $\quad$ P.O. BOX 37-1
$*$ STOKES VALLEY ; NEW ZEALAND "* * * * * **** 10 AR 1000 20 CLS 30 LOCATE13, 4:FRINT"VARIABLE WORKSHEET " 35 FRINT 40 PRINT TAB (38) "BY $S$ \& P MILLER - FOR T HE TKS-80"
$6 \emptyset$ FRINT TAB(38)" - MODIFIED FOR HITACH I $\mathrm{MB}-6890^{\circ}$ I MB-6890"
65 FRIINT
70 PRINT
80 INFUT"ENTER MAX. NUMBER OF ARRAYS "; 80 INFUT"ENTER MAX. NUMBER OF ARRAYS ";
A
90 INFUT "ENTER MAX. NUMBER OF SUBROUT INE 90 INFUT"ENTER MAX. NUMBER OF SUBROUTINE
LINES REQUIRED ";B 169 INFUT"ENTER MAX. NUMBER DF VARIABLE 119 INFUT"ENTER NUMBER OF COPIES REQUIRE D "; Y 120 FOF $J=1$ TO Y
130 FRINT\# 1 , VARIABLE WORKSHEET"
 ","DATE : 150 FRINT\#1," " 19 " 160 FRINT\#1, "MEMORY CLEARED --: SNOILINI $\ddagger \exists a$ ヨd人1 10 1SI7." "T\#LNIYd 981
PRINT\#1," START \#: END \# : COMMENTS



756 A＝0：PRINT：PRINT TAB（23）＂PRESS RETURN
WHEN READY＂
757 G $\$="$ ：$G \$=I N K E Y \$: I F$ G $\$="$ THEN 757
757 G\＄＝＂＂：G\＄＝INKEY\＄：IF G\＄＝＂＂THEN 757
$760 \mathrm{M}=0: \mathrm{CLS} \mathrm{LOCATE} 29,10:$ PRINT＂SEARCHING 760 M＝0：CLS：LOCATE29，10：PRINT＂SEARCHING
FOR MONTH－－\＃＂；MM FOR MONTH－－\＃＂；MM
770 OPEN＂I＂，\＃1，＂CAS0：DATA＂
780 INPUT \＃1，M，CC，A，B，F，D，
786 INPUT \＃1，M，CC，A，B，F，D，E，H，C，FF
790 CLOSE：LOCATE29，12：PRINT＂JUST REA
MONTH－－\＃＂；M：IF M＝MM THENB 06 ELSE IF M $\backslash$ MM THEN 770
800 CLS：LOCATE $31,3: P R I N T " M O N T H ~ N U M B E R ": M ~$ ：PRINT ：PRINT：PRINT
810 GOSUB1086 ONTHS ？〈Y／N〉 836 GOSUB 440 840 GOTO 740
850 CLS：LOCATE31，3：PRINT＂YEARLY＂
860 LOCATE26，7：PRINT＂MAKE PREPARATIONS＂
870 A＝ $0:$ PRINT：PRINT TAB（23）＂PRESS RETURN

880 CLS：LOCATE29，1 ：PRINT＂READING－－YEAR LY＂：PRINT：PRINT
$890 \mathrm{M}=0: \mathrm{Z}=6: \mathrm{Y}=0: \mathrm{QQ}=0: \mathrm{RR}=0:$ PRINT TAB（5）＂M ONTH＂，＂KM＂，＂LITRES＂，＂COST＂，＂KM／LITRE＂ 900 OPEN＂I＂，\＃1，＂CAS0：DATA＂
910 INPUT \＃1，M，CC，A，B，F，D，E，H，C，FF $920 \mathrm{Z}=\mathrm{Z}+\mathrm{CC}$
$930 \quad \mathrm{Y}=\mathrm{Y}+\mathrm{F}$
$946 \mathrm{QQ}=\mathrm{QQ}+\mathrm{C}$
$950 \mathrm{RR}=\mathrm{RR}+\mathrm{E}$
$950 \mathrm{RR}=\mathrm{RR}+\mathrm{E}$
$955 \mathrm{CLOSE}: \mathrm{PRINT}$ TAB（6）M，C，F，CC，E
960 IF M＝12 THEN 970 ELSE 900
970 PRINT TAB（S）＂TOTAL＂，QQ，Y，Z，QQ／Y
980 PRINT：PRINT 99 PRINT TAB（20）＂TOTAL LITRES＂，＂TOTAL C
会
OST＂
1000 PRINT TAB（26）Y，＂$\$ " ; Z$
1010 PRINT，＂TOTAL KMS＂，, ＂AVG KM／L＂
1030 PRINT，QQ，QQ／Y
䢙
1060 RETURN
1070 CLS：LDCATE29， $10:$ PRINT＂－－－THE END－
1甘101：＂Sコyil


1100 PRINT，＂TOTAL KMS＂，，＂＂AVG KM／L＂
 RETURN TO MENU＂

 THEN CLS
 480 IF G $\$=" Y$＂THEN 70 490 IF G $=$＝＂N＂THEN CLS：GOTO 500

 INE＂PRINTTAB（23）：＂2－PROJECTION CHART＂ 530 PRINTTAB（23）；＂2－PROJECTION CHART＂
540 PRINTTAB（23）；＂3－SUMMARY
 $089^{*} 085^{*} 0 \angle 0109$ a NO：（\＄ 0 ） $7 \forall \Lambda=90 \angle S$ 580 CLS：LOCATES1，3：PRINT＂PROJECTION CHAR 590 PRINT：PRINT＂ON THE AVERAGE HDW MANY KM／LITRE DOES YOUR CAR DO＂； 609 INPUT P 610 PRINT HOW MANY KM DO YOU WANT IT PRO JECTED FOR
$630 \mathrm{XX}=\mathrm{PF} / \mathrm{F}$ ED＂；XX；＂LITRES OF FUEL＂ 650 LOCATE17，17：PRINT＂PRESS ANY KEY TO

670 G0TO 506
680 CLS：LOCATE 1 1，3：PRINT＂SUMMARY＂
690 PRINT：PRINTTAB（6）＂READS FRERECORDED DATA TAPE CREATED BY INPUT DATA ROUTINE＂ ：P90 LOCATE21，7：PRINT＂MONTHLY OR YEARLY－ －－M OR Y＂ 716 E\＄＝＂＂：E\＄＝INKEY\＄：IF E\＄＝＂＂THEN 710 720 IF E $\$=" M$＂THEN740 ELSE850
730 STOP 746 CLS：LOCATES1，3：PRINT＂MONTHLY＂
 755 LOCATE26，9：PRINT＂MAKE PREPARATIONS＂
40 LOCATE20，14：PRINT＂MARIBYRNONG VICTORI ，AUSTRAL IA， $3032^{\prime \prime}$

（1 TO 12））＂；M TART＂；A END＂：B END＂：B
100 INPL OU HAVE PUT IN THE TANK＂；F
110 INPUT＂PLEASE INPUT COST＂：CC
$120 \mathrm{C}=\mathrm{B}-\mathrm{A}$
130 PRINT：PRINT
 150 PRINT：PRINT
160 REM＊CON
180 PRINT＂THAT＇S ABCUT＂；D；＂MILES．＂ กOA ITO ENIDYOM WH I MON．．INIBd：INIHd 065 R PETROL CONSUMPTION．
200 FORX $=1$ TO 1000：NEXTX 210 CLS 220 REM＊＊
$230 \mathrm{E}=\mathrm{C} / \mathrm{F}$ $230 \mathrm{E}=\mathrm{C} / F$
$246 \mathrm{G}=\mathrm{E} * .62$
$250 \mathrm{H}=\mathrm{G} * 4.5$
260 REM＊LITRES PER $100 \mathrm{KM} *$
280 PRINT＂－－－TOTAL DISTANCE TRAVELLED I
280 PRINTMS．＂
290 PRINT：PRINT＂－－WHICH IS ABOUT＂；D；＂ MILES．＂
300 PRINT
300 PRINT：PRINT＂－－＿PETROL CONS FOR＂；C； 310 PRINT：PRINT＂－－－THAT＇S ABOUT＂；H；＂M ILES PER GALLON．＂
330 LOCATE19，14：PRINT＂－－－WANT TO SAVE I T ON TAPE？〈Y／N〉－－－＂； 340 GOSUB 440 350 CLS
360 LOCATE25，7：PRINT＂MAKE PREPARATIONS F
OR DUMPING＂ 370 LOCATE29，10：PRINT＂＂；：PRINT＂HIT ENTER 375 G\＄＝＂＂：G\＄＝INKEYक：IF G\＄＝＂＂THEN 375 380 CLS：LOCATE29，10：PRINT＂DUMPING DATA＂ 390 FORX＝1 TO $1000:$ NEXT：PRINT\＃ $1, M, C C, A, B$ ，$F, D, E, H, C, F F$

CALENDAR
LEVEL II
$\begin{array}{lll}" & 44 & 44 \\ " \\ " 5555555 & ",\end{array}$
＂6666666＂，＂ 889888 ＂＂ ＂99999999＂， ＂ $99999999^{\prime \prime}$

00＂，＂00
 190 FORI＝ $1=\emptyset T 09:$ FORJ $=\emptyset T 09: \operatorname{READX} \$(I, J): N E X T J: N E X T I$








$10^{\circ}{ }^{* * * *}$ CALENDAR＊＊＊＊
$20^{\prime}$ WRITTEN BY R．J．WIWATOWSKI
50 DEFINTD，$I-N, W, Y$
50 DEFINTD，I－N，$W, Y$
60 DIML $(11), \operatorname{YR}(11,6,4), X(9,9)$
70 DATA $31,28,31,30,31,30,31,31$,
80 DATA＂ 000000 ＂＂＂ $00000000 ", " 000,31,30,3100 ", " 00$
9 DOTA＂，
90 DATA＂${ }^{11}$＂， 11
100 DATA＂ 222222

120 DATA＂ 4 ＂＂＂ 44 ＂ $\begin{array}{lll}44 & 44 \quad ", " 44444444 ", " 44444444 " \\ 1 \text { З0 DATA＂S5555555＂，＂S5555555＂，}\end{array}$ 55555555＂，＂55＂，＂55 55＂ 140 DATA＂ 666666 ＂，＂66666666＂，＂66 150 DATA＂ $77777777^{\prime \prime}$ ，＂ 77777777 ＂，
 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 888888 ＂， 989 888888＂，＂88 88＂，＂88 170 DATA＂ 99799 99＂，＂ 180 FORI＝OTO11－READI＇（I）＝NEXTI



FINALLY THE PROGRAMME WILL ALSO OPERATE A SI
MPLE PRINT" RINT
110 PRINT"
FURTHER TWO SCROLLS OF THE SCREEN CAN BE MADE WHICH WILL DISPLA

120 gosub 980
40 PRINTa15;">>> INPUT OF KNOWN VALUES <<<"
50 INPUT"CURRENT"; I
60 INPUT "VOLTAGE
INPUT"CAPACITANCE";
90 INPUT "INDUCTANCE";
200 INPUT "FREQUENCY"; $F$,
210 INPUT"ERUIV REACT"; $x$
230 IF $X=0$ 2ND. $1416 * F$ AND $I=0$ GOTO 840
330 IF $X=0$ AND $C=0$ AND $L=0$ AND $I=0$ GOTO 840
250 IF $x=0$ AND $C=0$ AND $L=0$ AND $R=0$ GOTO 880 260 IF $X=0$ AND $C=0$ AND $L=0$ GOTO 810
270 IF $\mathrm{L}=0$ AND $\mathrm{x}=0$ GOTO 790
$280 \mathrm{IF} \mathrm{C}=0$
AND
280 IF $\mathrm{C}=0$ AND X=O
290 IF $\mathrm{C}=\mathrm{O}$ GOTO 340
300 IF L=O GOSUB 730
310 LET $W=2$ *3.1416*F
$20 \mathrm{x}=(\mathrm{W} * \mathrm{~L})-1 /(\mathrm{W} \% \mathrm{C})$


**** HEX CONSTANTS ****
LEVEL II


[^3]10 CLS: PRINT TAB(16)">>> SERIES IMPEDANCE CIRCUIT <<<"
20 PRINTQ(84), STRING\# (24, 131); : PRINT: PRINT
30 PRINT" $\quad$ AIDE VARIETY OF ELECTRICAL CIRCUIT PROBLEMS
 OF THIS CATEGORY ARE SOLVEABLE DEPENDING UPON THE KNOWN AND UNKN 40 'PREPARED BY W.G. HEATH is OXLEY ROAD. WARATAH
50 PRINT" THE PROGRAMME WILL CALCULATE ALL THE VARIABLE S SHOWN IN THE FOLLOWING SCHEDULE SUBJECT TO APPROPRIATE INPUT
60 PRINT" IT WILL HANDLE TWO UNKNOWNS SIMULTANEOUSLY PR OUIDING ONE UNKNOWN IS EITHER I, E, OR R, AND THE SECOND IS EITH
ER $L$, $C$ OR $X$. MAKE NO ENTRY FOR THE UNKNOWN VALUES. I.E. PRESS < ER L, C OR X. MAKE NO ENTRY FOR THE UNKNNON VALLES. I.E. PRESS <
ENTER X ONLY WHEN INPUT? FOR THESE VARIABLES IS CALLED FOR:"
BO PRINT:PRINT:PRINT" THE PROGRAMME CAN BE USED FOR PRO BLEMS WHERE NO CAPAC-ITANCE OR, ALTERNATIVELY, NO INDUCTANCE IS P RESENT.": PRINT OWN VAR-IABLES AVAILABLE $": ~ P R I N T$
40 "PREPARED BY W.G. HEATH 18 OXLE
\[

$$
\begin{aligned}
& \text { NEWCASTLE. N.S.W. } 2298
\end{aligned}
$$
\]

THE PRORRAMEWSTLE . N.S.W. 2298
430 I= E/SQR((RT2) +(XL2))
440 PRINT"CURRENT
450 E= I*SQR((RT2) $+(X[2))$


$490 \mathrm{~T}=\mathrm{ATN}(\mathrm{X} / \mathrm{R}) * 57.29578$
500 PRINT"PHASE ANGLE

总
540 PRINT "POWER (WATTS)
$550 \mathrm{Z}=\mathrm{SQR}$ (RER)


560 PRINT＂IMPEDANCE
G＝W＊L＂ $G=W * L$
PRINT
$\mathrm{L}=\mathrm{I} * G$
RINT＂I $F C=0$ GOTO 660

$\mathrm{C}=\mathrm{I} * \mathrm{~J}$
PRINT＂CAPACITIVE VOLT
VR＝I＊R
PRINT＂RESIST VOLT DROF
PRINT＂CAPACITIVE VOLT
VR＝I＊R
PRINT＂RESIST VOLT DROF
PRINT＂RESIST VOLT DROF
IF $C=0$ GOTO 720
$0 己 \angle 01090=7$ JI

$700 \mathrm{M}=1 /(2 * 3.1416 * \operatorname{SQR}(L * \mathrm{C}))$
710 PRINT＂RESONANT FREQ．
720 GOTO 910 （W C））（w）
$730 \mathrm{~L}=(\mathrm{X}+(1 /(W * \mathrm{C}))) /(W)$
740 FRINT＂INDUCTANCE $=$
740 FRINT＂INDUCTANCE $=",: 5$
750 RETURN
$760 \mathrm{C}=(1 /$（
770 PRINT＂CAPACITANCE $=",: 9 \mathrm{C}$
780 RETURN
$790 \mathrm{X}=1 /(W * C):$ GOTO 390
770 PRINTN $X=W * L$
$Z=E / I$
$X=50 R$

## $x=1 /(W * C): G O T O$ $X=W * L: G O T O \quad 390$

800
（Z2－R［2）
$820 \mathrm{X}=\mathrm{SQR}(\mathrm{ZL2-RL2)}$
$\mathrm{B} 30 \mathrm{~L}=\mathrm{X} / \mathrm{W}:$ PRINT＂INDUCTANCE $=", \mathrm{~L}:$ GOTO 390
$8-L=E /$
B40 $1=E / R$
850 PRINT＂CURRENT $=",: I$
860 E＝I
870 PRINT＂VOLTAGE $=" *: 5$
850 PRINT＂CURRENT $=",: I$
860 E＝I
870 PRINT＂VOLTAGE $=" *: 5$
＂RESISTANCE $="$, ；R
＂INDUCTANCE $=":$ ：
$\stackrel{8}{9}$




980 PRINT TAB（18）＂》＞LIST OF VARIAELES USED＜＜＜＂ 990 PRINT 9 （86），STRING事（ 22,131 ）；＂PRINT ：PRINT 1010 FRINT＂E＝VOLTAGE＂；＂：FRINT＂C＝CAPACITANCE＂ 1010 FFINT＂E＝VOLTAGE＂，＂FRINT＂C＝CAFACITANCE＂
1020 PRINT＂R $=$ RESISTANCE＂：F FRINT＂F＝FREQUENCY＂ 10 SO PRINT＂$Z=$ IMFEDANCE＂，＂：PRINT＂$X=$ EQUIVALENT REACTANCE＂ 1040 PRINT $Q=$ FOWER FACTOR＂： $\mathrm{G}=$ INDUCTIVE REACTANCE＂：PFINT＂VL $=$ INDUCTIVE VOLT DROP＂
名皆告


 60 DATA255, $159,159,255,47,243,145,255,255,31,84,255,159,246,243$,
$247,111,65,100,102,97,86,255,255,255,255,241,66,255,240,104,152,1$ , 111,63, 100, 102, 87, 86, 255,255,255,255, 241,68;255,240,104,152, $150,152,137,112,96,7,240,118,112$
DATA147, 105,255,63,255,243,248,2
DATA147,105,255,63,255,243,248,255,255, 1,96,248,136,136,159,2

 80 17 $253,120,112,79,105,86,253,96,146,253,23,128,253,62,228,254,4$ $1,120,255,113,54,111,231,226,242,126,9,247,142,158,249,232,46,248$
DATA153, 15X, 153, $66,84,255,20,51,255,120,99,255,33,81,255,120$,



 $120 S=" \sim$ FORI $=1$ TO16: FORI $=1$ TO4: READK: $S=S+C H R \neq(K): N E X T J, I: I F D<>-1 T$






 180 PRINT"Initiallisation finished. ": IFD<-1CLOSED
 ROTO $40^{\circ}$ Dr
PRINTS7"small chamber-": RETURN
PRINTSY"following a trail around a steep cliff.": RETURN PRINTSB"top"; :GOTOS90
PRINTSB"base"; : GOTOS90
PRINTSY"lost in the maze.": RETURN
PRINT"The path widens for a bit.":RETURN
PRINTST"passage near some stairs.": RETURN
110 PRINTSA"junction of four underground passages.":RETURN
130 PRINTS7"big valley. To the south stands a vast. black monolith. "S9"a thick haze to the north. "RETURN , DIG HERE, $\quad$ - RE 140 GDSURS70:PRINT"A message scrawled on it says: "DIG HERE" ":RE
TURN 150 PRINTST"small cave of broken rocks.":RETURN 160 PRINTS8"base of 190 PRINTSB"top of a hill looking down upon a domed city." =RETUR 200 PRINTSY"in the city*s drains. Tunnels lead off in all 210 PRINTSB"gates of the city. At your feet is a manhole cover.""RETURN
22O PRINTSY"in the Dalek master strategy room. Red lights are
flashing and sirens screaming. I would leave." RETUFN 2Ko PRINTSY"in an alcove that had been hidden behind a deactivated Dalek.": RETURN
250 PRINTSG"Bubbling Beakers, Burning Bunsens, Filter Funnels, Colourful Chemicals, etc.":RETURN 260 FRINTSY"inside the Dalek experimentation room. I wouldn't 270 PRINTSB"bottom of a deep dust-filled hole.":RETURN 280 PRINTSY"just inside a vast crater. "S9"a ship to your steps leading up the crater wall near a cave entrance.": RETURN 290 PRINTSY"inside the ship near the airlock.":RETURN slowly and they might not see you. Be carefull!": RETURN §10 PRINTSB"base of the Cybership.":RETURN

> 820 FRINTS7"cave in the cliff face:":RETURN

> 340 PRINTSE"top of a cliff overlooking a spaceship.": RETURN 350 PRINTSG"heavy machinery. ": RETURN
different areas. For example, one shows a white crystal lying beside a mountain path. ": RETURN
S70 PRINTSY"lost in the slime.

[^4]3gO FRINTSY"standing at the high point on a vast plain of slime.
"Ş"a lone tree to your north." RETMTS日"top of a tall tree. The tardis can be seen to
400 PRINTSY"at a clearing in the $51 \mathrm{ime}$. "Sq"a tall tree here.""
RETURN
410 FRINTSY"following a narrow path along the edge of the cliff.
": RETURN
420 PRINTSY"in the midst of a thick fog.":RETURN
430 PRINTG7"valley between two mountains. A thick fog is
rolling in from the north. ": RETURN
440 GOSUBA 10 :PRINT"upon a vast.
expanse of ocean.": RETURN
 $70 \mathrm{D}(14,0)=13: \mathrm{D}(39,0)=34: \mathrm{D}(63,3)=2: \mathrm{D}(63,4)=2: 0(1,1)=0: 0(1,2)=1$
$\mathrm{D}(0,0)=0: 0(1,3)=0: \mathrm{D}(69,1)=0: \mathrm{D}(69,2)=0: \mathrm{D}(69,3)=0: \mathrm{D}(69,4)=0: 60 T 0107$

IFPO $=99 \mathrm{P}=99 \mathrm{ELSEP}=\mathrm{L} * 10+\mathrm{PO}$
$\mathrm{IFP}=60 \mathrm{RP}=80 \mathrm{RP}=250 \mathrm{RP}=440 \mathrm{RP}=990 \mathrm{RL}=4 \mathrm{ANDO9}$ THENB40 IFP $\mathrm{F}>0 \mathrm{C}=\mathrm{C}+\mathrm{RND}(0)$呂呙呙
76
77
0
78
79
800
810

you．＂：GOTO1420 YBO IFC＝1PRINT

 $860 \mathrm{~J}=0: \mathrm{K}=-1:$ FORI $=1$ TOLEN $\mathrm{NK}=0: \mathrm{J}=\mathrm{J}+1: \mathrm{SW}(\mathrm{J})=\mathrm{X} \ddagger$ ：NEXTI


 1） 890 IFRND $(0) \geqslant .998 A N D W T A N D P S<>99 P R I N T S Y$＂hit over the back of the head and everything goes black You awake to find that everything you were holding is gone．＂： FORI $=2$ TO16：IFO $(I, 1)=90 T H E N O(I, 1)=6:$ NEXTI $:$ GOTOB4EELSENEXTI $=$ GOTOB40 22）PRINT＂Please be more specific．＂：G0T0840 $910 \operatorname{IFV}(0)=33 \operatorname{ANDV}(1)=46 \operatorname{THENIFO}(3,1)=90 A N D O(16,1)=900(16,1)=91:$ PR INTSH＂desionated the cumquat into＂；： 920 ONV（o）G0TO1110， $1110,1110,1110,1110,1110,1190,1170,1020,1200$ ，




3） 940 WT $0(\times 1,1)=90: W T=W T+O(X 1,3): O(X 1,4)=(0(\times 1,4)$ OR1 $)-1:$ G0T0600 950 IFV（1）＜310RV（1）＞46THEN1 450ELSEX $1=V(1)-30:$ IFO $(\times 1,1)<>90$ THENIF $960 \mathrm{WT}=\mathrm{WT}-\mathrm{O}(\mathrm{X} 1,3): 0(\mathrm{X} 1,1)=\mathrm{P}:$ GOTOSOO 20 ＝66GOSUR1OOO：IFNO＜STHEN1750ELSE 1430
980 ONL $+1 G 0 T 01580,1520,1590,1600,161$

990 ONRND（ 3 ）GOTO1650， $1660,1670(1,4)$ AND2 $)$ ANDO $(I, 1)=9 O N O=N O+1: 0 C=0$ 1000 OC＝O：NO＝O：FORI $=$
$C+(0(1,4)$ AND240）／16

1010 NEXTI：RETURN
 T，SOK NEXTI：IFNO＝OPRINT，＂nothing＂：GOTOTBOELSE780 1040 IFL＝6ORC＝OPRINTS9＂no need to hide！＂：GOTO7日OELSEIFP＝19ANDD（ 1
$9,1)=15 T H E N 1450 E L S E I F R N D(0)>.95 P R I N T "$ The creature that you bumped $9,1)=15$ THEN 1450 ELSEIFRND（ 0 ）$)$ ． 95 PRINT＂The creature that You bumped and killed you＂＂：GOTO142OELSEC＝0
1050 IFL＝5PO＝1：P＝51ELSEIFL＝4PD＝4：$P=44 E L S E P D=6: P=L * 10+P O$

$$
=\text { GOTO1090 }
$$

$110,120,130,140,3$
 $, 160,170,180,190,200,310,260,390,400,410,420,430,440,450,460,47$ $10,480,490,500,510,520,530,540,550,560,570,580,590,600$
1080 FROMR 1：IFNO＝1THENPRINT＂Around you you see：＂：PRINT，SO（ $0(1,2)$ ）ELSEPRINT， SOCOM，

 LSEPRINT＂They have＂；：GOTO1690 $1130 \mathrm{IFP}=36$ ANDRND $(0)>$ ．उPRINT were underneath it at the
time，＂SY＂now slightly incinerated．＂：Gotol420
1140 IFP＝62ANDRND（ 0 ）$>$ ．SPRINTSH＂been hit by a low flying tardis．＂
：GOTO1420
$1150 \quad \mathrm{PO}=\mathrm{Y}: \mathrm{P}=\mathrm{L} * 10+\mathrm{PO}: \mathrm{C}=-(\mathrm{P}=200 \mathrm{RP}=330 \mathrm{RP}=66):$ GOTO1060
 $1: P=1+L * 10$
1180 PRINTSY；$S "$ the tardis．＂：IFFTHEN1060ELSE780
$1190 \mathrm{~F}=0: \mathrm{C=}=\mathrm{O}:$ IFPD＝99S＝＂already inside＂：G0T01180EL
$1190 \mathrm{~F}=0: \mathrm{C}=0: \mathrm{IFPD}=99 \mathrm{~S}=$＂already inside＂：GOT01180ELSEIFPO＜＞1THEN15
1200 IFPO＜＞99THEN1540ELSETI＝TI＋1：IFTI＞TLTHENPRINT＂Your tardis ha
1200 IFPO＜$>99$ THEN1540ELSETITTIT1：IFTIPTLTHENPRINT Your
5 run out of PEV（ $\bar{i}=L$（I）$D=I E I$ SENEXTI：$D=$ RND（ 7 ）-1
1210 FORI＝OTOG： $\operatorname{IFV}(1)=\mathrm{L}(1) \mathrm{D}=\mathrm{IELSENEXTI:D=RND}(7)-1$
1220 IFRND $(2)=1 \mathrm{D}=\mathrm{RND}(10)-1:$ IFD $>$ GPRINTSH＂materialised in space．
I will reset the tardis for you．＂：D＝RND（7）－1

1240 PRINTSH＂found：＂：$F=0$ ：IFP＝GANDRND（ 0 ）$>$ ． $30 R L=4 A N D P O<>6 A N D P O<>4 A$ NDP，SO（O $(1,2)): 0(1 ; 4)=(0(I, 4) O R 5)-1$
1250 NEXTI：IFP $=26 F=F+1:$ PRINT＂ a secret passage hidden behind a deactivated Dalek．＂：D $(26,3)=5$
1260 IFFTHEN7BOELSEPRINT，noth $1270 \operatorname{IFV}(1)=360 R V(1)=420 R V(1)=46 \mathrm{IFO}(V(1)-30,1)=90$ THENO（V（1）－30， 1
 $\mathrm{P}=12 \operatorname{ANDD}(12,4)=15 \operatorname{THEND}(12,4)=6: \mathrm{D}(12,0)=54: \operatorname{GOTO1} \operatorname{30} 0 \mathrm{ELSEIFP}=13$ ANDD $13,3)=15$ THEND $(13,3)=4: D(13,0)=54:$ GOTO1300
1290 PRINT＂You haven＇t dug up anything useful．＂：GOTO780
$1 \leqslant 00$ PRINTSH＂broken a hole in the wall with your pick．You can see
a vague chamber behind it．＂：GOTO780
1310 IFV $(1)<>55 A N D V(2)<>5 S T H E N 1450 E L S E I F L<>10 R P O<50 R P O>6 T H E N 1480$ ELSEIFO $(4,1)<>90$ THEN1450ELSEIFV $(0)=20$ THEN 1330
$1320 \quad D(15,6)=6: D(16,5)=5: G 0 T 0600$
$1330 \quad D(15,6)=13: D(16,5)=13: G 0 T 0600$

1340 IFV $(1)=381 F O(8,1)=90$ THENPRINT＂This does nothing for me，you ：GOSUE 1000 ：FRINTABS（NO＋RND（ 3 ）-2 ＋FND（ 0 ））：GOTO78OELSE $1500 E L S E 1450$ 1350 IFV $(1)=35 A N D V(2)=45$ ANDD $(15,1)=90 A N D P=19$ ANDD $(19,1)=15 C=0: D(1$ $1 \leqslant 60 \operatorname{IFV}(1)<310 R V(1)>460 R V(2)<490 R V(2)>56 T H E N 1450 E L S E Y=P I(V(2)-4$ 9）：IFY＝990RYく＞LORC＝OORO $(V(1)-30,1)<>9 O T H E N 145 O E L S E Y=V A L(M I D \$(S F$, 1370 IFV（1）＜＞ 37 THEN $1450 E L S E I F O(7,1)<ソ 90 T H E N 1$ SOOELSEIFC＝OPRINTS9＂
 Just whose side are you on？That＇s it for you，buster！＂：g0T0142 1390 IFP＝19D $(19,1)=7: 0(5,1)=91$ yourself looking at＂；：IFL＝409＝1
1410 PRINT＂a small pile of grey powder
1400 FRINTSタ＂a loud explosion and a brilliant flashy and you fin
1410 PRINT＂a small pile of grey p
which slowly dissipates．$:$ GOTO780
1420 FRINTSH＂failed ．．．the universe will be destroyed ．．．and a
the blame lies on your shoulders ．．．＂：gotol440
1430 PRINTSH＂found all six parts！！We are saved！！




1460 PRINT＂You＇re already carrying it．＂：GOTO780
1470 PRINT＂You can＂t do that！＂：GOTO780
1480 PRINT＂I can＇t see that here．＂：GOTO780
1490 PRINT＂You can＇t carry all this and that
something first．＂：gotoz8o
1500 PRINT＂You aren＇t carrying it．＂：GOTO780＂ 6070780
1520 PRINTS9＂nobody else here who can talk．＂：G0T0780
1530 PRINTS＂no way to go in that direction．＂：Goro7eo
1540 PRINTSH＂to be in the tardis to $u$ en
1550 PRINTS9＂no tardis here．＂：G0To7eo
 rst．＂：GOTOTBO

Curt in
1580 PRINT＂One of them poked you with a spear，but you were not
killed，

slowly evaporating pile of grey powder．＂：zotol420 you．
1600 PRINT＂＇Have you got a spot of oil on you？＂：$:$ goto78o
1610 PRINT＂＂Creature hungry ．．．can creature eat you？＂＂GOTO7so
1620 FRINT＂ 1 I say，these sweeties are simply spiffing．Father．
all like those bananas．Crunchy bananas are just simply not
on，what？＂＂： $\mathrm{C}=.01:$ g0T0780

720 OPEN＂I＂，1，＂DRWHO／DAT
730 INPUT\＃1，SP：INPUT\＃1，5

GOSUB1640：GOTO78O
1640 PRINT＂，REWARE OF LOW FLYING TARDISES＇，：RETURN
1650 FRINT＂Eeeneeeeeeeee．．．．．．．．．．．．．．．．．＂（Unintelligable）＂：G0
TO780
1660 PRINT＂The fog muffles your voice so that he can＇t hear you．
＂：
1670 PRINT＂He has spoken of a strange crystal on a mountain many miles＂，

1680 PRINT＂As you approached the spider，it turned red and start ed spittingyellow poison．I wouldn＇t try that again！＂：Gotopao 1690 PRINT＂taken an intense dislike to you and torn 1700 PRINTSH＂to 0 ORen the grate first．＂：$=$ g0T0780

1710 PRINTSH＂been strangled by a Cyberman．＂：GOTO1420 Yロu：＂：GOTO1420

1730 FRINTSH＂jumped to your doom．＂：GOTO1420
1740 PRINTSH＂taken a mouth full of slime．
ght！’＂：GOTO780 1760 PR1N and freak．

1810 PRINT＂The creature has calmed down a little and looks frien
dly（ugly，
but friendly）．．．even talkative！＂：$C=-1:$ Gotorgo
but friendly）．．．even talkative！＂：$C=-1:$ GOTO780
1820 IFP＝99RETURNELSEPRINT＂You can go＂；：FORI＝
 1830 NEXT：PRINTCHRक（B）＂－＂：RETURN
$1840 \operatorname{IFV}(0)>V(1) \mathrm{ORV}(0)>V(2) \mathrm{T}=-(\mathrm{V}(1)<=V(2)) * 1+(V(1) \geqslant V(2)) * 2): T 1=$
$V(0): V(0)=V(T) \cup V(T)=T 1$ $V(O): V(O)=V(T): V(T)=T 1$
1950 IF $V(1)>V(2) T=V(2)=$

1850 IFV（1）$\vee V(2) T=V(2): V(2)=V(1): V(1)=T:$ RETURNELSERETURN
1860 SAVE＂DRWHO／TES＂
＊＊＊＊DF．WHO－LEVEL II＊＊＊＊

## DISK CHANGES

## ***** NEXT MONTH'S ISSUE *****

Next month's issue will contain at least the following programs plus the usual features and articles. An (80) after a program title indicates that the program will be for TRS-80 Model $1 / 3$ or System 80/Video Genie computers. (Colour) indicates that the program will be for the TRS-80 Colour Computer and the Hitachi Peach.

```
** JUMP THE RAPIDS LII/16K (80) **
```

This game makes use of the graphic utility (MOVIE) published in MICRO - 80 issue 22. In this game you have to cross a river by jumping from $\log$ to log, but with the graphic utility Movie driving the graphics, it's not easy.

## ** MORSE CODE TRANSMITTER LII/4K-16K **

This morse code program will transmit morse code out to the cassette port. The code can be random or can be supplied by you. As actual morse code is transmitted by this program it is conceivable that the computer output could be hooked up to a transmitter for live transmission.
** CHEQUE BOOK DATA FILE (COLOUR) **
This program enables you to save all your cheque book transactions on a cassette data file and retrieve them at will. A better way to check queries than to search through the stubs!


#### Abstract

** FAULT FINDER LII/16K (80) ** This program is a problem in deductive logic. The scenario is of a machine (for- tunately fictitious), which is subject to three particularly undesirable faults when combinations of actions are taken. The computer will act as your agent in performing the actions that you order and reporting the results. You are required to determine what the common features of combinations of actions which produce the faults are and, hence, by trial and error, how to avoid the faults. (Huh! - Ed.) ** CHEQUE ACCOUNT MANAGER LII/16K (80) ** This program will store up to 50 transactions of your cheque account. It maintains a balance of the account. Being fully inter- active, it will check bank statements, edit records, sort records and run record searches. ** PAYROLL (COLOUR) ** A simple payroll program originally designed to operate on a Level II, 16K cassette system. This program will allow you to manage the payroll for a small staff on your Colour Computer.


## If it's a dual-drive system you need, then take advantage of our dual-drive package and SAVE a further $\$ 40$ on the price of two single-drive packages.

| DRIVE TYPE | No. of <br> Tracks | No. of <br> Heads | Capacity | Dosplus <br> Version | Price |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $2 \times$ MPI B51 | 40 ea | 1 ea | $2 \times 100 \mathrm{~K}$ | 3.3 | $\$ 874$ |
| $2 \times$ MPI B52 | 40 ea | 2 ea | $2 \times 200 \mathrm{~K}$ | 3.4 | $\$ 1125$ |
| $2 \times$ MPI B92 | 80 ea | 2 ea | $2 \times 400 \mathrm{~K}$ | 3.4 | $\$ 1454$ |

Dual-drive package includes two bare disk drives, self-contained dualdrive cabinet/power supply as illustrated, two drive cables and the version of Dosplus indicated.

All disk drive components are still available separately:
BARE DRIVES - MPI drives offer the fastest track-to-track access time ( 5 milliseconds) available. All drives are capable of operating in double density for $80 \%$ greater storage capacity.

|  |  |  | Price |  | Price |
| :--- | :--- | :---: | :--- | :---: | :---: |
| Freight |  | Freight |  |  |  |
| MPI B51 40 track, single-head, 100K | $\$ 399$ | Reduced Price | $\$ 5.00$ | Self-contained, single drive cabinet/power supply | $\$ 99$ |
| $\$ 5.00$ |  |  |  |  |  |
| MPI B52 40 track, dual-head, 200K | $\$ 449$ | $\$ 5.00$ | Self-contained, dual-drive cabinet/power supply | $\$ 135$ | $\$ 5.00$ |
| MPI B92 80 track, dual-head, 400K | $\$ 619$ | $\$ 5.00$ | Two drive cable | $\$ 39$ | $\$ 2.00$ |
| Simple, wrap-around cabinet | $\$ 12$ | $\$ 2.00$ | Fan drive cable | $\$ 49$ | $\$ 2.00$ |
| Separate, dual-drive power supply | $\$ 85$ | $\$ 8.00$ | DOSPLUS 3.3 | DOSPLUS 3.4 | $\$ 99.95$ |
|  |  |  | $\$ 2.00$ |  |  |
|  |  |  |  |  | $\$ 149.95$ |

Prices are FOB Adelaide. Add $\mathbf{\$ 5 . 0 0}$ freight for single drive package, $\mathbf{\$ 1 0 . 0 0}$ for dual-drive package. Prices are in Australian dollars. Freight is road freight anywhere in Australia.
All items carry a 90 -day parts and labour warranty. Repairs to be carried out in our Adelaide workshops.

# ASSEMBLY LANGUAGE TOOLKIT 

## by Edwin Paay <br> FOR TRS-80 MODEL 1, MODEL 3 AND SYSTEM 80/VIDEO GENIE

This is a new package consisting of two invaluable components:

- A ROM REFERENCE Manual which catalogues, describes and cross-references the useful and usable ROM routines which you can incorporate into your own machine language or BASIC programs.
-DBUG, a machine language disassembling debugging program to speed up the development of your own machine language programs. DBUG is distributed on a cassette and may used from disk or cassette.
Part 1 of the ROM REFERENCE manual gives detailed explanations of the processes used for arithmetical calculations, logical operations, data movements etc. It also describes the various formats used for BASIC, System and Editor/Assembly tapes. There is a special section devoted to those additional routines in the TRS-80 Model 3 ROM. This is the first time this information has been made available, anywhere. Differences between the System 80/Video Genie are also described. Part 1 is organised into subject specific tables so that you can quickly locate all the routines to carry out a given function and then choose the one which meets your requirements.
Part 2 gives detailed information about each of the routines in the order in which they appear in the ROM. It describes their functions, explains how to use them in your own machine language programs and notes the effect of each on the various Z 80 registers.
Part 2 also details the contents of system RAM and shows you how to intercept BASIC routines. With this knowledge, you can add your own commands to BASIC, for instance, or position BASIC programs in high memory - the only restriction is your own imaginationl
The Appendices contain sample programmes which show you how you can use the ROM routines to speed up your machine language programs and reduce the amount of code you need to write.
DBUG: Eddy Paay was not satisfied with any of the commercially available debugging programs, so he developed his own. DBUG: allows you to single-step through your program; has a disassembler which disassembles the next instruction before executing it or allows you to bypass execution and pass on through the program, disassembling as you go; displays/edits memory in Hex or ASCII; allows Register editing; has the ability to read and write System tapes and all this on the bottom 3 lines of your screen, thus freeing the rest of the screen for program displays. Four versions of DBUG are included in the package to cope with different memory sizes.
The best news of all is the price. The complete Level 2 ROM ASSEMBLY LANGUAGE TOOLKIT Is only:

$$
\begin{aligned}
& \text { - Aus. } \$ 29.95+\$ 2.00 \text { p\&p } \\
& \text { - UK } £ 18.00+£ 1.00 \text { p\&p }
\end{aligned}
$$

## SPECIAL OFFER TO OWNERS OF THE LEVEL II ROM REFERENCE MANUAL ...

 UPGRADE TO THIS ASSEMBLY LANGUAGE TOOKIT FOR ONLY \$19.95I Send back your origlnal Level II ROM Reference Manual plus a cheque, money order or Bankcard authorisation for $\$ 19.95$ plus $\$ 2.00$ p\&p and we will send you the new ASSEMBLY LANGUAGE TOOLKIT
[^0]:    5000 , PARTITION-EXCHANGE SORT (QUICKSORT)
    5010 : EY B. SIMSUN.
    5030 DEFINTA-Z: $I=0: J=0: S P=0: T=0: F L=0$
    5040 CLS:PRINTA13, "PARTITION-EXCHANGE SORT (QUICKSORT)."
    5050 INPUT"SIZE OF LIST TO BE SORTED" $E E L$

[^1]:    Prices include Sales Tax and are subject to change without notice. Prices are FOB Adelaide. Add $\$ 20$ road freight anywhere in Australia. All computers and peripherals carry MICRO-80's Australia-wide. 90-day warranty covering parts and labour.

[^2]:    Now your Daisywriter 2 can handle continuous stationery. Ideal for invoices and statements, etc.
    Prices include Sales Tax and are subject to change without notice. Prices are FOB Adelaide. Add \$20 road freight anywhere in Australia. All equipment carries MICRO-80's Australia-wide 90 -day warranty covering parts and labour.

[^3]:    ## *HH* SERIES IMPEDANCE CIRCUIT **** <br> LEVEL II

[^4]:    క7O PRINTSY"lost in the slime. "S9"a tree in the distance."sRET

