
COLOR PILOT

by

George Gerhold and Larry Kheriaty

Tape Version

Cat. No. 26-2709

First Edition

Color PILOT Program and Manual
Copyright MICROPI 1982

Licensed to Tandy Corporation
All Rights Reserved.

This manual was written by George Gerhold and Larry
Kheriaty and edited by Karen McGee.

Reproduction or use, without express written
permission from Tandy Corporation, of any portion
of this manual is prohibited. While reasonable
efforts have been taken to assure its accuracy,
Tandy Corporation assumes no liability resulting
from any errors or omissions in this manual, or
from the use of the information obtained herein.

Please refer to the Software License on the back
cover of this manual for limitations on use and
reproduction of this Software package.

-

•

TABLE OF CONTENTS

Introduction•.•..••...••••.••....•••••••••••.•••••• 1

Getting Started ..•...........................•.••.•.........•........ 3

Making Connect ions•..•............................•.... 5

Loading Color PILOT ••• 6

Two Ways to Proceed •.••..••••••.••..•........•.....•...•..•••••• 8

Learning Color PILOT ••••••••••••••••••••••••••••••.•••••••••••••••.•• 9

1. Typing Messages ••.••...•••...•..•..•.•••.••....•.•.•.•..•.•• 11

2. Dots, Lines and Windows •.........................•.•..•..... 15

3. Big Letters and Screen Modes••.....•......•..•..• 19

4. Simple Computations .•••.•..••••••••••••..•.••••.•••.••.••••• 23

5. Strings .••.•.•.•.••••.••....•••.....••....•.••••..........•. 27

6. Entering Programs ••••••..••••....•••.•••••••••.••..••••••••• 31

7. Color .•......•.•.•••......••••.•••...•.....•.•....•.••.••... 37

8. Accepting Answers .•.•••....•..•.•.••...••.••••••...•.•....•• 41

9. Processing Answers•..•.•....•.•.......•.........•...•.•. 45

10. Review - Multiple Choice ••••..•••...........••.....•.•...•• 49

11 • Jump in g • • . • • • . • • • • • • • . • 5 3

12. Giving Hints •••.••••..•.•••••..••••.•••.••..•••••.••.••..•• 57

13. Review - A Dialogue ..•.........•............•.........•.... 59

14. Numerical Questions •..........•.............•.............• 63

15. Frame Design ..••.•........•••..•••••.•.•.••••••.•...•..•.•• 77

16. Subroutines •••.......•.••••••..•••••....••.••..•••••..••••• 85

17. Execute Indirect.. • . 95

18. New Characters •••...•••••..•.•.•.•..•••••..•.•.•••.•...•.. 101

19. Leftovers•....................•••.... 111

20. Debugging •..•....•...••....••...•••.....•...•...•....••••. 115

21. Style and Programming Aids •••..•.•..•••••••.•.•...•....... 117

Appendix I: ASCII Code Table ••••...••••••••••.•.•.••••••••••.•••••• 121

Append ix I I: PILOT Summary •••••.•..•••••••.•••••••••....••••....••• 125

Appendix III: Program Listing from Chapter 16 139

•

•

INTRODUCTION - CAI AND PILOT

"Computer-Assisted Instruction" is a term used to include all
applications of the computer to teaching except for the teaching of
computer programming. The essential feature of CAI is the facility for
carrying on a dialogue with someone who may have absolutely no
knowledge of or interest in computers. While computers expect
precision and perfection, people seldom deliver either. Therefore, if
the computer is to carry on a dialogue with a human being, it must be
taught (programmed) to allow for flexibility, ambiguity, and errors in
responses. While the ability to handle a variety of responses is
essential in CAI, it is also extremely useful wherever there is to be
interaction between machine and unsophisticated user.

A skilled programmer usually can make the computer do anything
computers can do using almost any computer language, but any
programmer can do more in a given time using a language designed for
the application at hand. Computer languages are tools; good tools free
humans for more creative tasks. The computer languages designed for
CAI are called author languages. Of these author languages, PILOT is
the most widely used for small computers.

There is a possibility of confusion between what are called
"author languages" and "authoring systems." An author language is a
computer language which allows an author to control the computer
completely, and includes features which make the programming of
dialogues relatively easy. An authoring system is a program which
allows a teacher to generate instructional materials according to one
of a number of pre-made formats. In an authoring system the author
need have little knowledge of the computer; however, the author has
little control over the format of the instruction. Color PILOT is an
author language, not an authoring system, but it could be used to
write a variety of authoring systems.

PILOT, which stands for Programmed Inquiry, Learning, or Teaching
(which came first, the acronym or the name?), was originated by Dr.
John A. Starkweather, Dr. Marty Kamp, and associates in the medical
school at the University of California, San Francisco. Many people
worked on extensions to what is now called "Core PILOT" or "PILOT
1973." The most successful and most powerful of these extensions was
developed at Western Washington University by Mr. Larry Kheriaty and
Dr. George Gerhold. The end result of that development was a language
called "COMMON PILOT. 11 COMMON PILOT is now available on many
computers, ranging from most microcomputers to the largest mainframes,
although not all versions are marketed under the COMMON PILOT name.
Color PILOT is based on COMMON PILOT, with added features like color
and sound which are available on the TRS-80 Color Computer, and
without those features which are beyond the computer's capacity. The
end result is a powerful language suitable for the programming of
graphic and textual dialogues .

1

Remember that in CAI we have a dialogue between the computer and
the user. The computer is really a stand-in for the creator of the
program in this dialogue. We will call the creator of the program "the
author" or "the programmer" in this manual; we will call the user of
the program "the student." Using those terms, we can say that one of
the indicators of quality CAI is the extent to which the students
forget that they are interacting with a computer and think that they
are "talking" to the author. While working your way through this
manual, you will have to play two roles. When entering or editing
programs, you will be functioning as an author or programmer. While
testing the programs, you will be functioning as the student, since an
author must always play student to test CAI programs.

2
•

•

GETTING STARTED

3

MAKING CONNECTIONS

Color PILOT requires the following pieces of equipment:

®
TRS-80 Color Computer marked 16K RAM
CTR-80 Cassette Recorder (or equivalent)
Standard Color TV Receiver
Antenna Switch and Cables

You may wish to refer to the chapters on "Installation" and
"Operation" in your copy of the TRS-80 Color Computer Operation
Manual, but all you really need to do is the following:

1. Select a location where you have three power outlets
handy.

2. Connect the antenna switch (a metal box about 1 1/2 by 3
inches labeled COMPUTER) to the VHF antenna terminals
on the TV set.

3. Select the cord which has a single phono plug on each
end.Plug one end into the antenna switch (position
labeled TO GAME CONSOLE), and plug the other end into
the back of the computer (position marked TO TV).

4. Select the cord which has a five-prong connector on one
end and three separate plugs on the other end. Plug the
five-prong connector into the back of the computer
(position marked CASSETTE). Then plug the black-covered
plug into the socket marked EAR on the recorder; plug
the gray-covered plug with the larger metal center into
the socket marked AUX on the recorder, and finally plug
the remaining plug (gray-covered with the smaller metal
center) into the small diameter MIC socket on the
recorder.

5. Plug in the power cords on the TV, the computer, and the
cassette recorder.

6. Set the antenna switch to COMPUTER.

This completes the interconnection of your computer.

5

LOADING COLOR PILOT

The following steps will get your computer ready to run preprogrammed
PILOT programs and to create new PILOT programs:

1. Turn on the TV set.

2. Select channel 3 or 4 on the TV set. Then select the same
channel on the channel switch on the back of the
computer.

3. Turn on the computer. The switch is on the back and is
marked POWER. The screen should now display the
message:

EXTENDED COLOR BASIC 1.0
COPYRIGHT (C) 1980 BY TANDY
UNDER LICENSE FROM MICROSOFT

OK

-Color PILOT will not work
with Disk Color BASIC. If the
message on your screen reads
"DISK EXTENDED COLOR BASIC,"
turn the power off on the
computer and then pull out the
ROM pack at the right rear of
the computer. Begin again with
Step 3 above.

At this stage you may want to adjust the Sharpness, Brightness and
Contrast controls on your TV set to give the most legible display. You
may also wish to try the other of the two possible channels (3 or 4).
You will adjust the color controls later. Once you get the above
message, you're ready to load Color PILOT via cassette:

4. Insert the Color PILOT cassette into the recorder.

5. Set the volume control to about 5.

6. Press REWIND.

6

7. When the tape is completely rewound, press STOP.

8. Press PLAY.

9. On the computer keyboard, type @:!~~~~~ and press
IENTERI.

The cassette recorder should now start and a slowly flashing F in
reverse video followed by the name PILOT should appear in the upper
left corner of the screen.

The prompt

PILOT:

HL When the message OK appears, type @l!J ~@) and press
IENTERI •

will appear at the top of the screen.

11. When the PILOT: prompt appears, press STOP, then
REWIND, then STOP on the recorder and remove the
Color PILOT tape. If the prompt does not appear.

- Press the RESET button on the back of the keyboard;

- Adjust the volume control on the recorder a little
lower or higher;

- Continue with step 3 above.

The computer is now ready to understand Color PILOT.

7

TWO WAYS TO PROCEED

There are two ways to get your computer to run Color PILOT
instructions: In IMMEDIATE mode you enter an instruction which is
run immediately; in EDIT-RUN mode you enter a series of instructions
which can then be run as a program.

IMMEDIATE mode is useful for learning Color Pilot
and for experimenting with the effect of certain
PILOT instructions.

EDIT-RUN mode is the standard mode for the creation
of Color PILOT programs.

In the first five chapters of this manual, we will use the
IMMEDIATE mode to explore some of the Color PILOT instructions. This
is probably the easiest way for a beginner to learn to program.
However, some of the features of Color PILOT can be illustrated only
in sequences of instructions. If you get impatient and want to see how
to use Color PILOT for instruction, skip ahead to Chapter 6.

At many places in this manual we have inserted comments in the
margins where emphasis is needed or where another way of stating
something might help. W~ suggest that you add your own marginal
comments anytime that you have to stop to figure something out.
Explain it to yourself in your own words for future reference.

8

•

LEARNING COLOR PILOT

9

1. TYPING MESSAGES

After you've loaded Color Pilot onto the computer (see page 6), the
screen should display the prompt line:

COLOR PILOT copyright 1982
MicroPi, License to Tandy Corp.
All rights reserved.
PILOT:

-If something else is on the
screen, press !BREAK.I.

To enter IMMEDIATE mode, type !!J. This will produce the new
prompt:

Irrnnediate Mode:

on the screen. This indicates that the computer is in IMMEDIATE mode
and that it is ready to receive and run single Color PILOT
instructions.

Type in the following line:

T:WHEN I PRESS ENTER I WILL HAVE FINISHED MY
PILOT PROGRAM.

Don't worry about overfilling the line; in IMMEDIATE mode the
computer will cope with that automatically. If you make a mistake just
backspace by using the left arrow key (IE.J) and retype. The screen
should now contain the following:

Irrnnediate Mode:
under license to Radio Shack
T:WHEN I PRESS ENTER I WILL HAVE
FINISHED MY PILOT PROGRAM.

Press the IENTERI key. The screen will show:

Irrnnediate mode:
T:WHEN I PRESS ENTER I WILL HAVE
FINISHED MY PILOT PROGRAM.
WHEN I PRESS ENTER I WILL HAVE F
INISHED MY PILOT PROGRAM.

11

-The underline following the
period is called the "cursor."
The cursor indicates where the
next character will be typed.

Let's analyze what happened. You instructed the computer to type
a message by giving the operation code for a TYPE instruction (T).
The operation code Tis separated by the colon(:) from the actual
message which is to be typed. In running the TYPE instruction (after
you pressed !ENTER!), the computer typed everything following the
colon. The computer packed as much as it could on one line, and then
continued typing on the next line. We can control the spacing to avoid
splitting words, but that comes later. Now try instructions that type
out some other messages, for example:

HELLO

and:
NOT ALL ONE LINERS ARE FUNNY.

By now the screen is cluttered with text. Type in the instruction:

TS:LET'S MAKE A FRESH START

-In IMMEDIATE mode always
press IENTERI to run an
instruction.

After you press IENTERI the screen will display only:

LET'S MAKE A FRESH START.

Why did that happen? The instruction was a TYPE instruction as
indicated by the T op code (op code is short for operation code).
The S in the TS: is called a modifier because it modifies the way
the instruction works; here the modification is to clear the screen
before typing the message. As usual, the colon separates the op code
from the message.

No doubt you've noticed that the computer can type out in lower case.
How do we make it do that? We might want to type the instruction:

TS: Let's make a fresh start.

When you load Color PILOT the keyboard is locked in upper case. By
holding a ISHIFTI key down and typing l!J you can turn the shift
lock on and off. Turn off the shift lock.

- ISHIFTI @:! switches the
ISHIFTJ lock on and off.

As soon as we switch off the ISHIFTI lock, we have an opportunity to
make case errors. Try the following instruction:

ts:Let's make a fresh start.

12

This confuses the computer, so it sends us an error message, in this
case the message 0-ERR. The computer is trying to tell us that it did
not understand the first letter of the line as an op code. The
computer tries to assist us in figuring out what is wrong by
displaying the offending line and an error message. Notice that the
cursor is at the end of the line, not at the start of the next line.
We must press any key before we can proceed.

Of course, we see that the error is the lower case "t" in the op code,
so we try:

Ts:Let's make a fresh start.

Again we get the same error message, so we now know that all op codes
and modifiers must be upper case.

-All op codes and modifiers
must be upper case.

One last error you might try is the omission of the colon. Again the
computer gives the same error message. Remember that all op codes must
be followed by a colon!

Many beginners are unduly worried about making errors. Don't
worry about it; the computer will find the errors quickly and will
point them out to you. Let the machine do the boring work!

You've probably noticed that after the computer has completed a
TYPE instruction the cursor is at the beginning of the next line.
Suppose we want the student to fill in a blank; that is, instead of
the screen display:

2 + 3

we want:
2 + 3 = -

To get this, we suppress the automatic cursor movement to the
beginning of the next line by attaching the HANG modifier (H) to
the T op code. Try the following instruction:

TH:2 + 3 = (2 spaces at end)

One problem is that it is hard to see spaces at the end of
messages. It is easier to check spaces in EDIT-RUN mode.

To complete this exploration of the features of the TYPE
instruction , compare the effects of the following three instructions.
Pay careful attention to the position of the cursor.

13

TS:
TSH:
THS:

Notice that more than a single modifier can be included in the op code
and, further, that the order of modifiers is unimportant. You may want
to include some message on these TYPE instructions to make the
effects of the modifiers clearer.

14

2. DOTS, LINES, AND WINDOWS

In the first chapter we used the screen like an endless sheet of
paper. Now let's learn to use it as a piece of graph paper. For this
we use the GRAPH (G:) op code. To get a clean piece of graph
paper, we must erase the screen. Try typing in:

G:E

E stands for the ERASE operation.

The graphics screen has a resolution of 256 dots across (numbered
0-255) and 192 up (numbered 0-191). Like graph paper, the origin (0,0)
is in the lower left corner. Let's locate the origin on the screen by
plotting a dot there. Try:

G:D0,0

The D tells the computer to plot a dot at the position which
follows - in this case 0,0. The position of the dot is given in the
order horizontal, vertical (in standard math terms, X,Y).

The upper right corner of the screen should be at the position
255,191. Put a dot there.

G:E,D255,191

OK, now what happens if the coordinate given is too big? Try this:

G:E,D255,192

-We can put many graphic
operations in a single G
instruction.

If you watched carefully, you saw the dot disappear and reappear in
exactly the same spot. Now try:

G:E,D256,191

A bit of explanation is in order! The screen wraps around every
256 dots. Thus 256,191 is equivalent to 0,191. The screen wraps around
every 256 dots in the vertical direction as well, and positions
between 192 and 255 in the vertical direction are all placed at the
top of the screen (at 191).

15

Now that we can put a dot anywhere on the screen, we can move on
to lines. To draw a line we plot a dot at one end of the line and tell
the computer to draw a line to the other end. Thus:

G:E,Dl0,10,Ll20,120

will draw a line at about a 45 degree angle. Try it.

If we want to draw two connected lines, we can use the end of the
first line as the dot at the start of the second:

G:E,Dl0,100,L50,10,L90,100

By extension, a square:

G:E,D50,50,L200,50,1200,200,1s0,200,1s0,1s0

or a triangle:

G:E,Dl25,160,Ll85,100,L65,100,Ll25,160

or any shape bounded by straight lines can be drawn. It may be helpful
here to think in terms of a graphics cursor which remains at the
position specified by the coordinates of the last used graphics
operator. The graphics cursor is not visible on the screen, and it is
not necessarily at the same position as the text cursor (the text
cursor is visible at times).

"But," you ask, "what good is a triangle without a label?" One of
the very useful features of Color PILOT is the ability to mix text and
graphics in the same display. Redraw the triangle with one addition:

G:E,Dl25,160,Ll85,100,L65,100,Ll25,160,Wl00,80

The addition is the operation Wl00,80, which establishes a text window
with the specified position as the upper left corner and the lower
right corner of the screen as the lower right corner of the window. We
can label our triangle by writing in the window with the instruction:

TS:TRIANGLE

Notice that the TS: cleared only the text window, not the whole
screen. To erase the whole screen we could either restore the window
corner to its full screen position (0,191), or we could use the erase
operation with the G: op code.

16

Can we place the label above or inside the triangle? Yes, but not
easily in IMMEDIATE mode. We'll return to this question later.

Our example earlier used the window operator to position text.
The corner of the window is not necessarily exactly at the position
specified, but it is close - within the size of one character. That's
accurate enough for now.

The window operator is very useful for designing screen displays
called "frames." A diagram can be drawn on one part of the screen and
discussion can be positioned elsewhere. A changing text can be
combined with a fixed diagram, etc. To illustrate the effect of the
window operator, try:

G:E,W247 ,100

and then try:

T:ABCKEFGHIJKLMNOPQRSTUVWXYZ

Notice how it squeezes text towards the lower right corner and how the
scrolling works.

Before going on to the next chapter, reopen the window by running
the following instruction:

G:W0, 191

17

3. BIG LETTERS AND SCREEN MODES

There are a number of ways that the appearance of text on the
screen can be changed. We can choose these different display modes via
the mode operator on the G op code. For example,

G:M2

changes the background (and other) color. Try it. Depending on your
TV, this may make characters easier or harder to read. To change back,
type:

G:M0

So, mode 0 is the standard mode for starting Color PILOT, and M2 uses
the alternate color set.

Now let's try some other modes. Type:

G:Ml

Nothing visible happened yet, so type:

G:Ml,E

Aha! Now we can see that the display is reversed. To see the effect on
graphics, try:

G:D5~,5~,Ll50,150

Again nothing! We just drew a black line on a black background. If we
change to a different pen color, we'll see something.

G:Pl,D5~,50,Ll50,150

We'll come back to pen colors later, but pen color 1 (Pl) will always
be visible. We can try our old friend to see how lower case text looks
in reverse video.

TS:Let's make a fresh start.

As you can see, it's a little hard to read along the edges.

Mode 1 is the reverse of mode 0 and, as you may have guessed,
mode 3 is the reverse of mode 2. Try the line and the text in mode 3.
To get there type:

19

G:M3

You must admit the letters are colorful.

The table below summarizes what we've discovered about display
modes so far.

MODE COLOR SET VIDEO
====== =========== =======

0 Normal Normal
1 Normal Reverse
2 Alternate Normal
3 Alternate Reverse

There are four more modes. Let's experiment further.

G:M4,E

Again we can try:

TS:Let's make a fresh start.

The characters are four times as big. This can be useful for small
children, titles, and special effects.

All combinations of color set, video, and characters are
possible, as is indicated by the complete display mode table below:

DISPLAY MODE COLOR SET VIDEO CHARACTER
============ =========== ======= =============

0 Normal Normal Normal
1 Normal Reverse Normal
2 Alternate Normal Normal
3 Alternate Reverse Normal
4 Normal Normal Large
5 Normal Reverse Large
6 Alternate Normal Large
7 Alternate Reverse Large

Try all the display modes. Legibility is fine for all
combinations with the large characters. Notice that the character size
does not effect the graphic operators (dot and line).

Display modes can be mixed on a single screen, but it is
difficult to illustrate that effectively in IMMEDIATE mode. Color
sets cannot be mixed; a change of color set always effects the whole
screen.

If we give a display mode operation outside of the range listed
in the table, the computer interprets the number as equal to the
excess over some multiple of 8. For example, the instruction:

G:M34

will have the same effect as:

G:M2

because 34 = 4 * 8 + 2. In computer terminology, we say that 34 is 2
modulo 8, and the display mode is calculated modulo 8.

21

4. SIMPLE COMPUTATIONS

After all, we are learning to program a computer. We'd better
learn to make the computer do arithmetic. The op code for arithmetic
1s COMPUTE (C:). A typical COMPUTE instruction is:

C:X = 2 + 3

In English this instruction 1s best translated as:

Set the variable X equal to 2 plus 3

Therefore, after the instruction has been run, the variable X will
contain the number 5.

If you are familar with the concept of a variable from algebra,
that definition for a variable will do fine here. If not, just think
of the variable X as a convenient name for a spot in memory where a
number can be stored. Color PILOT allows you to use a maximum of 26
variables, named A,B,C, .•• Y,Z.

-Variable names must be upper
case.

How can we verify t4e effect of a COMPUTE instruction in
IMMEDIATE mode? Run the instruction:

C:X = 2 + 3

How do we find out what the value of X is? We can embed any variable
in the message portion of a TYPE instruction. However, we must
somehow help the computer distinguish between the letter "X," which
might occur in any number of words, and the Variable X. We do this by
preceding the variable with the number sign (#). Thus:

T::/FX

will cause the computer to type out the current value of X, which 1s
5.

At this point, you might check the result of a number of common
errors. If you type:

T::/Fx

the computer types #x because lower case x is not a variable. If you
type the wrong variable name:

T::/fW

you get t6& initial value of the variable W, which is 0.

23

-All variables have an initial
value of 0.

We may want to use variables in longer messages. Try:

T:Well, #X is the answer.

Notice that a single space after the variable is ignored (for
agreement with the COMMON PILOT syntax), so if we want a space to
appear after the variable, we must put in two spaces.

T:Well, #X is the answer.

The four basic arithmetic operations are indicated by the symbols
+,-,*, and/. Try:

C:X 2 * 3 + 5

and to find the result try:

T:#X

Now try typing:

C: X = 5 + 2 * 3
T:#X

From these examples, we see that multiplication (and division) are
done before addition (and subtraction). Of course, we can use
parentheses to change the order of operations. Try:

C:X (5 + 2) * 3
T:#X

As you can see from this example, Color PILOT handles only
integer arithmetic. Now try this:

C: X 8/3
T:#X

The result is 2, which shows that the decimal portion of the number is
simply thrown away; the result is not rounded off. Try:

C:X = (-8) I 3
T:#X

Again notice that the decimal is discarded.

24

Now look at the order of operations with equal priority. The
following equation:

C:X = 4 * 3 I 2
T=IFX

gives 6, but:

C: X = 4 * (3/2)
T:iFX

gives 4. In general, the order that the equation is worked is from
left to right. In the second example, the parentheses force the
division to be done first; the integer result of the division is 1,
and the end result is 4.

-Any time you are not sure of
the effect of a numerical
COMPUTE instruction, try it
with simple integers.

There are a few more characteristics of integer arithmetic which
we should cover. Try:

C: X = 32,0~0

The C-ERR message appears because the computer does not like the comma
in the number. Try:

C: X 32.0

The computer doesn't know what to do with the decimal point when it is
restricted to integers.

There is a highest and a lowest integer which Color PILOT can
handle. The highest is 32767 and the lowest is -32768. The integers
wrap around. To see the result, try this series of steps:

C: X = 32767
T:#X

No surprises so far, but now try:

C: X = X + 1
T:iFX

-Remember the equal sign means
replace, so X=X+l makes
perfect sense.

Adding 1 to the highest number gives the lowest number. This is what
is meant by "wrap around."

25

5. STRINGS

A sequence of digits is called a "number"; that's not news. A
sequence of letters is called a "string"; that may be news. In this
chapter we're going to learn how to manipulate strings.

Just as with a number, we need a named place in memory to store a
string, and we name the place by using a variable name - one of the
letters from A to Z. The computer always uses the same amount of space
for all numbers, but the length of strings can vary greatly. The
longest string that Color PILOT can handle is 255 characters, but it
would be very wasteful of valuable space in the memory to make all
strings that long. Instead, we tell the computer how much space to
reserve for each string variable. Obviously this space - really a
length - should be the maximum length that the particular variable
will ever hold in the program.

-Maximum length = Maximum
number of characters

Space for a string variable is reserved by a DIMENSION
instruction. Try:

D:Y$(H0

Nothing visible appears on the screen, but the computer now has
reserved room for l~ characters in memory under the name Y$. The
variable Y$ can now hold anything from 0 to l~ characters. The
DIMENSION instruction also converted the variable Y from a numeric
variable to a string variable for the remainder of the session (later
for the remainder of the program).

Let's briefly review the implications of the way variables are
handled in Color PILOT. There is a maximum of 26 variables available
with names A .•• z. Any one variable can be either a number or a string.
Color PILOT assumes that all variables are numbers with an initial
value of 0. We tell Color PILOT that a particular variable is to be a
string instead of a number by using the DIMENSION instruction, which
also specifies the maximum length the string variable can hold. We
have been using Y$ for a string variable name instead of simply Y. In
Color PILOT, the $ in Y$ is optional. In this manual, we consistently
use the$ with string variables for three reasons: In complex
programs, the string sign helps keep variables straight; the syntax
then agrees with other versions of PILOT; and the syntax agrees with
most versions of BASIC.

We can now set the string variable to some value. Type:

c: Y$ = "ABC II

27

The right side of the assignment is called a "literal"; the computer
assigns literally what is inside the quotation marks to the string
variable. Now check the result by typing:

T: Y

Notice again that we must warn the computer that it is to substitute
for the current value of a variable; here we do this by preceding the
variable with a $.

The variable names must be upper case, but the contents of a
string variable can be either upper case, lower case, or a combination
of the two. Try:

C: Y$
T: Y

"Abed"

The contents can also be digits; try:

C: Y$ = "Abcd23y"
T: Y

If we try to load too much into a string variable (i.e., if we
try to exceed the maximum length), the variable will just take as much
as it can. Try:

C: Y$ = "ABCDEFGHIJKLMNOP"
T:Y

One common programming error is to forget to tell the computer
that a variable is to be a string variable. Try this:

C: W$ = "ABC"
T:W

The result is zero because the literal "ABC" contains no number. In
the absence of a DIMENSION instruction which would tell the computer
that the variable W is a string instead of a number, the variable is
converted to zero. But now try:

C: W$ = "ABC4"
T:W

Here the result is 4 because, as before, the computer treats W as a
numeric variable and does an automatic conversion of any numeric
characters in the string to a number. The number can occur anywhere
within the string. The computer searches for the first digit or a
minus sign and begins the conversion there.

28

The point of introducing string variables is that we can
manipulate the strings. We can "add" strings:

C: Y$
T:Y

"ABC"!! "defg"

The operator !! , called the "concatenation operator," causes the
second string - herE) "defg" - to be tacked on to the end of the first
string. Concatenation is the one place where auto-conversion between
strings and numbers does not work. The two items to be concatenated
must both be strings.

Strings can be altered in whole or in part, and parts of strings
can be extracted. These kinds of changes require that we tell the
computer where in the string the changes should occur. Let's first set
up a string:

C: Y$ = "ABCDEFGHI"

and check the current contents:

T:Y

Now let's change the characters "DEF" to "xyz." We have to te 11
the computer where to start the change and how far to go in making the
change. We do this as follows:

C: Y$(4,3) = "xyz"

and check the result by typing:

T:Y

Notice that we specified that the change should start in the
fourth posit ion (originally a "D"), and that the change should
continue for three characters.

-Specify a portion of a string
as (start, length) after the
variable name.

We use the same notation to pick out pieces from a longer string.
First create a second string variable with a maximum length of five:

D;Z$(5)

29

Then pick out a piece of Y$:

c: I Z$ = Y$ (5 '2)

and check the result:

T:Z

If we don't specify a length in the parentheses, the computer assumes
a length of one. Therefore:

C:: Z$ = Y$(5)

is legal and is equivalent to:

C:Z$ = Y$(5,l)

30

6. ENTERING PROGRAMS

So far we've l:earned quite a bit about programming computers, but
we've not really wr

1

itten any programs, other than "one-liners." Color
PILOT has a built-ip editor which can be used for writing multi-line
programs (and for oither text editing). After the program is written it
can be run. In thi~ chapter we will concentrate on learning to use the
editor by repeating

1
some of the examples from previous chapters. From

now on you don 1 t ne,ed to worry about typing carefully, as the editor
makes it easy to co!rrec t errors.

To enter EDIT mode, first press
:

jBREAKI to get the system
prompt:

p:noT:
I

'

If you've been! running in IMMEDIATE mode or if you've been
running other progJ ams, there is already a program in the program
space which we must: erase.

ro erase a program - jSHIFTI lcLEARI

That is , while ho ld
1

ing down the I SHIFT I key, press I CLEARj • To
enter EDIT mode, si'11ply type l!J. The screen will be blank except
for the text cursor in the lower left corner. The computer is now
ready to accept a pirogram from the keyboard. For our first program
using the editor, J~ 1 ll use the program which draws a triangle and
labels it. Earlier r e did this by the two instructions:

'
G:E,Dl25,160,L~85,100,L65,100,Ll25,160,Wl00,80
TS: TRIANGLE

Now that we'rei using the editor, we make a few minor changes. The
editor can handle o~ly instructions which fit on a single line.
Therefore we break 1the GRAPH instruction into two instructions on
the screen.

Type in these two l iines; press I ENTER] to end each one.

d:E,Dl25,160,Ll85,100,L65,100
G:Ll25,160,WI00,80

I

31

-The graphics cursor stays at
the end of the last line
drawn, even between
instructions.

The S modifier will not be needed on the T op code because we
don't have to erase ~he PILOT instructions from the text window as we
did when we were running in IMMEDIATE mode. So the next line should
be:

T:TRIANGLE

That completes ~ur program; now we want
editing (leave EDIT mode), press !BREAK.I. As
the system prompt. To enter RUN mode, press
closely because it is FAST!

to run it. To stop
always, this gives
@ - but watch

Did you see it? In fact, it is too fast for us to use, so we need
to make it wait. That's easy enough. At the moment, the computer is
displaying the system prompt. Enter EDIT mode by pressing ~ . The
first line of your program will appear at the bottom of the screen.
By pressing jENTERJ or ~ you can scan through your program line by
line. Press IENTERI three times, which gets you to a blank line at
the end of your program, and add the instruction:

W:200

This is a WAIT instruction. It tells the computer to wait
either until a specified amount of time has passed or until the user
presses any key. The number after the colon is the number of tenths of
seconds to wait; the instruction W:200 says to wait for 20 seconds.

Run the edited program by typing !BREAK.I, then ~ •

Now let's make some changes in your program to practice usi~
features of the editor. Press ~ to enter EDIT mode, and press~
four times to get the whole program onto the screen. We want to change
the program to the following:

G:E,Dl25,160,Ll85,100,L65,100
G:Ll25,160,WB0,135
T:A
G:Wl65, 135
T:B
G:Wl30,8QJ
T:C
W: 1200

Let's do this by altering the second line, the third line, and
the last line; and by adding four more lines before the W
instruction. Move the cursor to the indicated position on the second
line by using!!] and I 7>l keys.

G:Ll25,160,Wl00,80

32

Now type the characters 80,135.
-Overtyping replaces
characters.

Next move the cursor to the indicated position in the third line.

T:TRIANGLE

Delete the letters "TRI" by holding down the ISHIFTI key and
pressing the ~ key three times. Skip over the A by pressing the EB
key once, and delete the rest of the line using !SHIFT!~·

- ISHIFTI ~ deletes a
character.

Next we need to insert four lines before the W:200 instruction.
Move the cursor to the start of the W:200 instruction; hold down the
ISHIFTI, and type [tJ four times. You can check that this has added
four blank lines in the desired position by using the arrow keys. Type
the four lines in the blank lines.

G:Wl65,135
T:B
G:Wl30,80
T:C

- ISHIFTllf]inserts a blank
line

Finally, we want to insert the 1 1n the last line. Move the
cursor to the indicated position.

W:200

Use ISHIFTI ~ to insert a space and type in the 1. The resulting
program should draw a triangle and letter the sides. Try it by
pressing IBREAKI and then !!! .

- ISHIFTI ~inserts a space
which can then be overtyped
with any other character.

In the above exercise, we have illustrated the basic functions of
the editor: change characters, insert characters, delete characters,
and insert lines. A complete list of all the control functions in the
editor follows:

33

Move Cursor f1] [] ~ ~

Delete Character I SHIFT I ~

Insert Space ISHIFTI I±]

Insert Line I SHIFT I [I]

Move to 1st Line I CLEAR I

Auto Scroll until
111 any keystroke I SHIFT I

Once we have completed editing a program, there are a number of
things we can do with it. We already know how to run the program; we
press I BREAK! to get back to the sys tern prompt and then press ~
to ruL the program. If the program is complete and the run indicates
that there are no errors in it, we will probably want to save the
program on tape for future use. Make sure that you have a fresh
cassette in the recorder. Before you give the instructions to save the
program, you must make sure of two things:

1. Either the cassette is a leaderless tape or the tape has been run
past the leader. If that is not the case, press the RECORD and
PLAY buttons at the same time and pull the plug from the MIC jack.
This will allow the tape to advance and effectively erase whatever was
on the tape. Allow the tape to run for about five seconds and then
replace the MIC plug. This will stop the tape.

2. RECORD and PLAY buttons must be pressed at the same time.

You can now save the program by typing an ~ in reply to the
PILOT: prompt. When the save is complete, the light on the recorder
will go off and you will get another system prompt.

It is possible to record more than a single program on a tape,
but it takes planning. You must run the tape to the end of the program
already on the tape; run some blank tape to separate the programs (see
Step 1 above), and then record your program. This means that you must
position the tape before you type in the program that you plan to
save. All in all, it is much easier to save one program per tape.

You might want to get a printed listing of the program. This can
be done either before or after it is saved, as saving does not destroy
the program. To print your program, plug the printer into the back of
the computer (marked SERIAL I/O), position paper in the printer,
turn on the printer, and type ~ in reply to the system prompt. If
the printer is not hooked up or not ready, the computer will respond
with a question mark.

34

Of course, we want to be able to load programs from the tapes
after we've saved them there. Typing an ~ in reply to the prompt
will cause the computer to load the next program from the cassette.
The PLAY button on the recorder should be down before typing
[!;! • Once the computer starts reading the program, a small flashing

dot will appear above the prompt. It may take a few seconds for this
to appear if you've recorded some blank tape to lead into your
program.

These, then, are the ways in which we preserve and retrieve our
programs. The table below lists all the operations we can call from
the system prompt:

Clear Program Space

Enter EDIT Mode

Enter RUN Mode

Enter IMMEDIATE Mode

Print Program

Save Program on Tape

Load Program from Tape

I SHIFT! ICLEARI

~
!!]

!!]

!!!
@1

~
-When saving programs on tape,
press down the RECORD and
PLAY buttons before typing

~
The editor provides a simple mechanism for entering material into

the computer. The editor has no way of knowing whether what you are
entering is a Color PILOT program, a letter to Grandma, or the grocery
list . It will work equally well for all of them. Thus you can use the
editor as a simple text editor for other purposes. Once the text is
correct, you can save it on tape, and you can send it to the printer.
If you don't like 32-character lines, then type an@ as the last
character of a line. The @ at the end of the line will suppress the
carriage return. Thus a paragraph with alternate lines ending in @
will print out double width.

35

7. COLOR

Now that we know how to write a multi-line program, we can write
a program which will be useful for adjusting the color controls on the
TV set.

Your Color Computer can produce eight different colors on a
properly adjusted set. Two sets of four colors are available. When you
start up Color PILOT you are in what we will call the "normal" set. We
will refer to the other set as the "alternate" set.

We've already seen in Chapter 4 that the color set is selected by
picking a mode in a GRAPH instruction (e.g., G:M2). Within each mode
there are eight pen states which can be set. The effect of a pen state
can be seen clearly by drawing blocks of color. Enter and run the
following program:

G:P4,D0,0,B50,50
W: 100

This should produce a black box. The operation P4 specifies the pen
color (color 4 = black); D0,0 sets the graphic cursor to one of the
left corners of the block, and B50,50 specifies that a block is to be
drawn with 50,50 as the opposite right corner.

-One of the left corners of a
block must be given before the
opposite right corner.

Let's look at all the colors in the normal set. Enter and run the
program:

G:E,P4,D0,0,B50,50
G:P5,Bl00,100
G:P6,Bl50,150
W:200

You should get three blocks of distinct color; the fourth color is the
background color. The exact colors will depend on the color settings
on your TV set. Before touching those settings, look at the alternate
set. Change the first line to:

G:E,M2,P4,D0,0,B50,50

Again we should get three colored blocks; the background is the fourth
color.

37

Now let's make this into a program useful for adjusting the color
controls. All we need to do is to change the color set back and forth
once the blocks are drawn. We'll have the program show each color set
twice to give us a chance to adjust the color controls.

G:E,M01P4,D0,0,B50,50
G:P5,Bl00,100
G:P6,Bl50,150
W: 200
G:M2
W:200
G:M0
W:200
G:M2
W:200

Run this program several times and adjust the TV to give the best
colors. Then complete the following table according to your adjustment
of your TV set:

Pen Color
===========

4
5
6
7

Normal

Black

Alternate
===========

Black

It would be useful to have this program handy whenever you want
to readjust your TV set. Simply place a blank tape in the cassette
recorder (not the Color PILOT tape), press down the RECORD and
PLAY buttons simultaneously, and then type @I in response to the
system prompt. If you are using tape with a leader, then pull the plug
in the MIC connection and let the tape run long enough to bypass the
leader before typing ~ . You can then reload this program at any
time the computer is displaying the system prompt by rewinding the
tape and typing !!] .

The two colors given by pen states 5 and 6 have one rather
unfortunate characteristic: They occasionally switch, but never in the
middle of a program. This switch in colors is a consequence of the way
in which Color PILOT generates color on this computer. It is
unavoidable, so use color for emphasis, but don't count on the shade.

There are four more pen states available. Pen state 0 has no effect;
it is not used. Pen state 1 reverses whatever color it is drawing
over. Try typing in these instructions:

38

G:E,M0,P4,D30,30,B80,80
G:P5,Bl30,130
G:P6,Bl80,180
G:Pl,D0,0,Ll90,190
W:200
G:M2
W:200

Pen states 2 and 3 are used for drawing lines. Pen state 2 is the
same color as pen state 4, the normal foreground color. Pen state 2
will give a sharper line than pen state 4. Try:

G:E,M0,P2,D0,0,L50,50,Ll50,90
G:P4,Dl0,0,L60,50,Ll60,90
W:200

Notice that the lines on the right are thicker. Pen state 3 bears the
same relationship to pen state 7 as pen state 2 does to pen state 4.
Pen state 3 is used to draw sharp lines on a reverse video screen. Of
course, pen states 4-7 can be used to draw lines, if the extra
thickness is desirable or color is needed.

Numbers greater than 7 for pen states are treated modulo 8.

Color TV sets do not all interpret microcomputer color signals in
the same way. Therefore ~e have to avoid describing colors and effects
in too much detail. We recommend that you try all combinations of
color sets, pen colors, and normal and reverse video to find what
works best on your TV. Remember that colors on a TV set are never
truly accurate. Use different colors for variety and emphasis, but do
not assume that everyone will see the same colors you see on your set.

39

8. ACCEPTING ANSWERS

Up to this point we have been concentrating on those Color PILOT
instructions which can be tested on their own or in combination with
one other instruction. We now introduce instructions which only make
sense in longer combinations.

Color PILOT is a language designed for programming dialogues.
Therefore we need an instruction which allows the user of the program
to respond. The instruction with this capacity is the ACCEPT (A:)
instruction. The ACCEPT instruction tells the computer to accept
input from the keyboard and to store it for future reference. The
keyboard input must end with a press of the IENTERI key.

The user's response is stored in a special string variable named
"%B." %B can be used in the same way as other string variables (it is
already dimensioned to length 80). Try the following program fragment:

TS:What shall I call you?
A:
T:OK, $%B, press ENTER to start.
A:
T:The first. •••
W:20

Try it several times using different names.

Notice that the second A: is used as a user-controlled pause,
similar but not identical to the WAIT instruction. A WAIT
instruction will pause for a specified maximum time, but an ACCEPT
instruction will pause forever until ENTER is pressed.

You may have noticed that the name typed back in the message is
always in upper case, regardless of how it was typed in. The ACCEPT
instruction automatically converts the user response to upper case for
reasons which will become clear later. If we don't want that
conversion to occur, we add the HOLD (H) modifier to the ACCEPT
code. Try this version of the program fragment:

TS:What should I call you?
AH:
T:OK, $%B, press ENTER to start.
A:
T:The first. ••••
W:20

41

Now we move on to a more complex example. Type in this program:

TS:The box below is 100 units
TH:high.
G:P2,Dl~0,0,Ll50,0,Ll50,100
G:Ll00,100,Ll00,0
W:20
T: To make the box half
T:full, how many units
T:high should you fill it?
A:
G:P5,Dl01,l,Bl49,%B
T:Is that half full?
A:

There are a number of things worth noting in this program. The second
line (TH:high.) leaves the text cursor hanging. The following two G:
instructions draw a box without moving the text cursor so that the
next TYPE instruction continues typing on the same line. That is why
there is a space at the start of the second message (T: If •••). After
the response, the user's value is inserted into the last G:
instruction using a variable, here %B. Although %B is a string
variable, the computer knows that a number is needed here, and the
conversion is automatic. Note also that the auto-conversion to upper
case with the ACCEPT instruction has no effect on numbers.

-Variables can be used to
specify graphic coordinates.

With a 32-character limit on a line, it is not unusual to see
several TYPE instructions in a row. For convenience, Color PILOT
allows you to omit the op code on all but the first of a series of
TYPE instructions. The following program will do the same thing as
the first version:

TS:The box below is 100 units
TH:high.
G:P2,Dl00,0,Ll50,0,Ll50,100
G:Ll00,100,Ll00,0
W:20
T: To make the box half
:full, how many units
:high should you fill it?
A:
G:P5,Dl01,l,Bl49,%B
T:Is that half full?
A:

42

•

The instructions with just the colon are called "continuation
instructions" or "continuation lines." We could not use a continuation
line for the second instruction because we wanted to change modifiers
on the second line. The continuation line assumes that everything
before the colon on the last TYPE instruction applies to the
continuation as well. The exception is the S modifier; it would make
no sense to reuse it in successive lines.

Remember that the computer is only a machine; it is not
intelligent and it does not really understand English. Try running the
program again, but respond "fifty" instead of "5~". The computer does
not know that the five letters f-i-f-t-y mean the same thing as some
digits. Because the computer finds no digits, it assumes the answer
is zero in the conversion.

There is another modifier which can be attached to the ACCEPT
instruction: the SINGLE (S) modifier. The ACCEPT SINGLE
instruction makes the computer wait until any one key is pressed. The
response is stored in %B with no case editing. The AS: instruction
is useful in multiple choice programs such as the following:

TS:The space shuttle is named

A. Mercury
B. Columbia
C. Gemini

:Answer A, B, or C.

AS:

Note the use of blank continuation lines to space out the text on the
screen.

Students usually find it confusing when A: and AS:
instructions are mixed in a single program ("Do I press ENTER now,
or is the computer computing?"). It is best to decide whether all your
answers are going to be single keystroke answers before you begin
using AS: .

43

9. PROCESSING ANSWERS

Once we have a student answer, we want to be able to analyze and
take various actions based on that answer. The instruction most
frequently used for this purpose is the MATCH (M:) instruction.

If we give the computer the instruction:

M:MINUS

the computer compares the portion of the MATCH instruction following
the colon with the current contents of the answer buffer (%B) and
determines whether or not the answer buffer contains the text of the
M: instruction. An example will help illustrate the process. Assume
that at the last ACCEPT the student answered "It's minus this time."
Therefore the answer buffer contains (remember the internal
conversion to upper case):

IT'S MINUS THIS TIME.

The MATCH instruction establishes a window five spaces wide
containing the letters M I N U S. The comparison proceeds in steps.

STEP 1
IT'S MINUS THIS TIME.
MINUS Result - no match

STEP 2

IT'S MINUS THIS TIME.
MINUS Result - no match

STEP 3
IT'S MINUS THIS TIME.

MINUS Result - no match

etc.

STEP 6
IT'S MINUS THIS TIME.

MINUS Result - match

If the window reaches the end of the answer buffer without finding a
match, the match has failed. The process is called a "window string
match." Notice that the computer ignores the rest of the student
answer in the search. Thus the technique of processing answers is
basically a search for key words.

45

In making the comparisons, the computer considers upper- and
lower-case letters as different. The auto-conversion to upper case by
the standard A: instruction eliminates this difficulty. Whatever the
student types, the computer can make comparisons with upper case. Of
course, if we are writing a lesson in proper capitalization of words,
then we use the AH: instruction and adjust the field of the MATCH
instruction accordingly.

-Most examples assume use of
the A: instruction, so the
fields of the MATCH
instructions will be in upper
case.

Naturally the students are going to make spelling errors and typing
errors. There are a number of features which can be used with the
MATCH instruction to help the computer recognize misspelled words.
The easiest to use is the SPELLING modifier MS:. The instruction:

MS :MINUS

will count a match as successful if it finds a window position where
all but one of the characters match or where all the characters are
present but any two of them are reversed. Thus:

MS :MINUS

will match
============

MINAS
MENUS
MUNIS

will not match
=================

MENAS
MUMIS

The ability to handle character reversals covers many common spelling
errors, for example handle-handel and their-thier. One-character
errors also cover many spelling and typing errors.

Another way to handle some spelling errors is to use the wild
card character (*) in the field of the MATCH instruction. The *
matches any one character in the answer buffer. Thus:

M:M*NUS

will match

MINUS
MENUS
MANUS
MXNUS

M3NUS

46

will not match
================

MINAS
MENES

Any number of *'scan be used in the field of a MATCH instruction,
and *'scan be used in the fields of MATCH instructions with the
spelling modifier.

Often there are equivalent suitable answers for a question. We can
allow for alternate answers by means of the OR operator(!). If we
wished to treat the answers "minus" and "negative" as equivalent, we
could use the MATCH instruction:

M:MINUS!NEGATIVE

or with some provisions for spelling errors:

M:M*N*S!N*G*TIV

or perhaps:

MS:M*NUS!NEG*TIV

If the match using the window for "minus" fails, then the computer
tries again with a second window for "negative." The match fails only
if neither window string match succeeds.

Now that we know how to process student answers by key word
searches, we need to learn how to do something with information. That
is, we need to learn how to tell the computer to take alternate
actions depending on whether the match succeeds or fails. The MATCH
instruction sets a Y flag (in the computer's memory) if the match
succeeds and an N flag if the match fails. These two symbols, Y
and N, can be attached to op codes as the conditioners. Likewise,
any instruction whose op code includes a Y conditioner will run if
and only if the Y flag is set; that is, if the last match attempted
was successful. If the last match failed, then the instruction will be
skipped. Any instruction whose op code includes an N conditioner
will run if and only if the N flag is set;that is, if the last match
attempted failed. If the last match succeeded, the instruction will be
skipped.

To see this effect enter the following program.

TS:Have you read Chapter 3?
A:
M:YES !YEA
TY:Fine, we'll go ahead.
TN:I guess you'd better do that.
W: 10

Now run the program and answer "yes." Then run it again and answer
"no." Notice that the TY: runs when the match succeeds, and the
TN: runs when the match fails.

47

The conditioners can be combined with the MATCH op code in a
sequence of instructions to give the effect of an AND operator. Say
we had asked the following question:

TS:What are the colors in the
:Canadian flag?
A:

We want the answer to contain the two words "red" and "white". We
check for this by the following sequence.

M:RED
MY:WHITE

If the student's answer contains "red" ("RED" after auto-conversion),
then and only then is the second MATCH instruction attempted. A
usable program based on this example follows.

TS:What are the colors in the
: Canadian flag?
A:
M:RED
MY:WHITE
TY:Good.
TN:No, they are red and white.
W: l~

The MATCH instruction is an essential tool for the writing of
dialogue. It is very difficult to do all the equivalent things in
languages intended for computation, like BASIC. Mastery of the
features of the MATCH instruction will allow you to introduce real
flexibility into your programs. Don't hesitate to experiment, and
don't hesitate to watch over the shoulders of students who are trying
out your programs. You'll often get ideas as to how your MATCH
instructions could be changed to improve your programs.

48

10. REVIEW - MULTIPLE CHOICE

We've been learning many new things in the previous chapters, and
we have more to learn. Let's pause to review what we've learned by
writing a short multiple choice test. This will show how some of the
instructions can be combined into instructional sequences.

The test will be a check on the ability of students to correctly
name simple polygons. Of course, you could substitute your own
questions on any other subject in this format. We will introduce one
new instruction, the REMARK instruction (R:). The computer ignores
REMARK instructions; they are included in programs to provide
information for the progrannner.

We have now reached the stage where the sample programs will be
rather long. We will interweave instructions with explanations of what
the instructions are doing. To try out the programs, enter all the
instructions; obviously the explanations are not to be entered.

Enter the following program:

D:N$(20)
TS:What name shall I call you
:today?
AH:
C:N$=%B

We use an AH: instruction so that the student name will not be all
upper case. We must move the name to another variable (N$) because %B
will be overwritten by the next ACCEPT.

T:
:Today I'm going to give you a
:short quiz on naming shapes.

:Press ENTER when you are ready
:to start.
A:
R:Draw a triangle
G:E,P5,Dl25,185,Ll85,110,L65,110
G:Ll25,185,W0,85
T:This is a

A. Square
B. Triangle
C. Pentagon

:Pick A, B, or C.

AS:
M:B!b

49

Remember that AS: does not cause auto-conversion to upper case.

TY:Good.
TN:No, it's a triangle.
CY:R=R+l

The variable R is used to count correct answers. The next instruction
gives the student time to read the response.

W:30
R:Draw a square
G:E,P6,D0,75,L0,115,L40,115
G:L40,75,L0,75,W90,130
T:This is a

A. Square
B. Pentagon
C. Hexagon

Pick A, B, or C.

AS:
M:A!a
TY: Right.
TN: It's a square.
CY:R=R+l
W:30
R:Draw a hexagon
G:E,P2,D0,75,L0,115,L34,135
G:L68,115,L68,75,L34,55,L0,75
G:Wll0,130
T:This is a

A.
B.
c.

:Pick A,

AS:
M:C!c
TY:Good.

Pentagon
Trapezoid
Hexagon

B, or c.

TN:It's a hexagon.
CY:R=R+l
W:30
G:W0,191,E
C:P = R*l00/3

50

The variable P represents the percent correct.

T:You got #R out of 3 right,
:N. That is #P%.

There must be two spaces after the variable R so that there will
be one in the message as typed.

W:3(.l
G:E,M4,P6,D5(.l,5(.l,B225,140
G:P7,D70,70,B205,120,W90,90
T:THE END
W:20
G:M6
W:50

The last few lines provide an eye-catching ending and review the ideas
of pen colors and screen modes.

The program given above is functional and could be extended to include
many more questions and more choices per question. If we were going to
make this much longer, we could save ourselves some typing and save
some program space by loading the prompting message "Pick A, B, or
C." into a string variable. For example,

D:M$ (16)
C:M$="Pic.k A, B, or C."

should appear early in the program, before the first test item. Then
instead of:

:Pick A, B, or C.

we use:

:M

The saving in routine typing and in program space becomes worthwhile
as the test becomes longer.

51

11. JUMPING

While a simple test can be run directly from start to finish,
true instruction requires a more complex path through a program. If a
student makes an error, you may want to point out the nature of the
error and then jump back to give the student one or more additional
chances.

The Color PILOT instruction for jumping around in the program
is the JUMP instruction (J:). The JUMP instruction has the
general form:

J:destination

There are two kinds of destinations: the last A: run and a label.
Jump to the last A: run (including, of course, the modified
ACCEPTs AS: and AH:) is specified by:

J:@A

This frequently is used to give the student another try at answering a
question.

Enter and run the following program:

TS:What is the most heavily used
:language on microcomputers?
A:
M:PILOT
TY:Not yet, but maybe soon. Try
:again.
n:~
M:BAS*C
TY:That's right.
TN: I'm not sure what you typed,
:but it isn't the answer to
:this question. Try again.
JN:@A
W:20

There are three points worth noting in this example. We can attach Y
and N conditioners to J op codes. Continuation lines operate under
the conditioners attached to the preceding TYPE instruction.
Finally, it is not necessary or even desirable to match for the
correct answer first,

53

The other type of destination for a JUMP instruction is a
label. Labels consist of from one to six characters. The characters
must be upper-case letters or digits, but the first character must be
an upper-case letter. We use the JUMP-to-label to transfer control
to some specific line in the program. We indicate the target line by
starting it with a label. The computer assumes that each line starts
with an op code. We don't want a language which does not allow labels
to start with letters used for op codes, and we don't want to confuse
the computer. So we warn the computer that what follows is a label by
starting the line with an asterisk:

J:PART2

*PART2

-The asterisk is not part of
the label; it must not be
included in the destination
portion of the JUMP
instruction.

The label may stand alone on the line, or it may share a line with an
instruction. If it shares a line, the label must be separated from the
op code by at least one space. The two examples below are equivalent:

*PART2 *PART2 T: Next we will ...
T: Next we will •.•

Now that we have the JUMP and MATCH instructions, we can make our
examples teach something. Enter the following:

TS:Let's use some information
:from track and field meets to
:compare the English and metric
:measures of length.

*Ql
T:In North America the shortest
:sprint event is the 100 yd
:dash; in Europe it is the 100
:meter dash. If the same runner
:ran both events under equiva
: lent conditions, would the
:time in the 100 meters be
:longer or shorter than the
:time in the 100 yd dash?

54

A:
T:
M:L*NG
TY:Of course, because 100 meters
:is the longer distance.
WY:30
JY:Q2

The pause is to give time to read the response to a correct answer
before jumping ahead to the next question (Q2).

M: SH*RT
TN:It must be either longer or
:shorter. Type one or the
:other.
JN:@A

This section is included to help the student who is unaware of how to
respond, or the student who makes numerous typing errors or is trying
to outsmart the computer. If the computer gets to the next
instruction, the student must have typed a shorter answer (or some
misspelling thereof).

TS:We're comparing meters with
:yards. Which one is longer?

A:
T:
M:MET
TY:Right, and if 1 meter is
:longer than 1 yard, then
:100 meters is longer than
:100 yards. When you press
:ENTER I'll let you try the
:original question again.
AY:
TSHY:
JY:Ql

Combinations of modifiers and conditioners are legal. The JY: makes
any N conditioner on following instructions redundant (if the
MATCH for "meter" had not failed, the JUMP to Ql would have
occurred).

T:Look

1 meter =
1 yard

55

39.4 inches
36.0 inches

:Now try again.
J:@A

The JUMP is to the last A run, which is the A:, not the AY:.
Although the AY: is closer, if the AY: runs, then the JY:Ql will
run too, and we will never reach this part of the program:

*Q2 TS:OK, now the metric mile
:is contested at 1500 meters.

etc.
W:200

Once you have entered the program, run it several times with
various answers to make sure you try out all the JUMPs. For example,

Run 1
Run 2

Answer - nonsense, longer
Answer - shorter, nonsense, yards,
meters

56

12. GIVING HINTS

One way to help a student who is having difficulty is to give a
series of hints, each one coming a bit closer to the answer. Color
PILOT includes a conditioner which makes hints easy to program.

The computer automatically counts the number of times in a row it
uses the same ACCEPT instruction. Every time the computer comes to
an ACCEPT intruction it asks itself, "Is this the same ACCEPT as
the last ACCEPT I ran?" If it is not the same ACCEPT instruction,
the last A counter is reset to one. If it is the same one, the last
A counter is increased by one. Then if we attach a digit as a
conditioner to the op code of any instruction, that instruction will
run only if the digit is the same as the value of the last A
counter.

TS:Who was the first President
:of the United States?
A:
MS:W*SHINGT*N
TY:Right.
JY:NEXT
Tl:No, his first name was
:George.
T2:No, his picture is on
:the dollar bill.
T3:No, a western state is
:named after him.
T4:Still wrong, the state
:is the location of the city
:of Seattle.
T: Try again.
J:@A
*NEXT
W:2~

Run this program giving a sequence of at least five wrong answers.
Notice first that the only way to reach any of the instructions with
digit conditioners is to bypass the JY:NEXT instruction - that is, to
give a wrong answer. Also notice that the last message in the sequence
does not have a digit conditioner on the op code. Without this line, a
fifth or subsequent wrong answer would produce no message. The
computer would be expecting a response, and so would the student. The
usual student reaction would eventually be to press the ENTER key a
few times (which would lead to no visible effect), and then to give
up. Always make sure that the student is furnished with enough hints
to continue with the program.

57

-When using digit
conditioners, make provision
for a number of tries greater
than the largest conditioner.

13. REVIEW - A DIALOGUE

It's time to pull together what we've covered so far. We'll write
a one-question dialogue to illustrate the integration of the features:

TS:What is the adjective which
:describes this triangle?
G:M0
G:PS,Dl00,112,Ll25,160,Ll50,112
G:P2,LI00,112,W0,96

Draw a triangle using color to emphasize the critical feature:

T:The two colored sides are the
:same length.
G:W0,80
A:
M:ISO
MY :C*LES

The sequence of two MATCH instructions is used instead of
M: ISO*C*LES to cover misspellings like "isoce les ". Remember that this
sequence looks for ISO and C*LES, but ignores anything (or the fact
that there is nothing) b~tween.

TY:That's it.
WY:30
EY:

In a longer program this END would be a JUMP to the next section:

M:RIG
TY:No, a right triangle includes
: a right angle.
GY:P5,Dl30,0,LI00,0,Ll00,40
GY:P2,Ll30,0

Draw a right triangle using color to emphasize the right angle.

WY:40
TYS:
JY:@A

59

Clear the answer and the hint; then return for another chance:

M:EQUI
MY :LATER
TY:The bottom is shorter than
:the other sides. Equilateral
:means all sides equal.
WY:40
TYS:
JY:@A
M:SCAL
TY:A scalene triangle has no
:equal sides.
WY:40
TYS:
JY:@A
M:OBT*S
TY:I'll draw an obtuse triangle
:to show you the difference.
GY:P5,Dl30,0,Ll00,0,L80,40
GY :P2 ,1130, 0
WY:40
TYS:
JY:@A
M:AC*T
TY:That's true, but it does not
:describe the triangle as having
:two sides of the same length.
WY:40
TYS:
JY:@A

The preceding instructions check for possible predictable errors and
give an appropriate message. Now we take care of unanticipated errors:

Tl:I didn't understand that. The
:adjectives used to describe
:triangles in my dictionary are
:acute, equilateral, isosceles,
:obtuse, right, and scalene.

:Try one of those.
Wl:20

This response is longer than the others, so we give more time.

T2:Two prefixes mean equal
:equi- and isos-.
T3:The answer is isosceles. Type
:it so you'll remember it.
T4:You're asleep; I quit.
W:20
E4:

W:30

Response 4 will get a two-second wait; response 2 and 3 will get
five-second waits, and response 1 will get seven seconds.

TS:
J:@A

Enter this program and try running it. Try more complex answers than
simple one-word replies. The result should be a dialogue somewhat like
a conversation between a student and a teacher.

61

14. NUMERICAL QUESTIONS

In the last few chapters we have concentrated on processing
textual answers. Now we turn to numerical answers which are different
in one important respect. A number has a value which can be different
from the correct answer but still close enough, and greater than or
less than the correct answer. If the correct answer to a question is
99, the answer 100 may be acceptable even though the characters typed
are completely different. For this reason, we often want to handle
numbers in a way which makes judgements of "close", "greater", and
"less" easy to program. To make these kinds of judgements, we use
relational conditioners.

The following are examples of relations:

x = 3
x + y > 5 (read > as "is greater than")
y < 10 (read < as "is less than")
z >= 3 (read >= as "is greater than or equal to")
y + z <= 15 (read <= as "is less than or equal to")
p < > 10 (read < > as "is not equal to")

A relation has a truth value; it is either true or false. For example,
the first relation on the list is true if the current value of X is 3,
and it is false otherwise.

Relations can involve strings too:

X$ = "ABC"
X$ <> "xy z"

Relations can be compound:

X > 5 & M$ = "ABC"
X = 6 M$ = D$

where & means AND and means OR.

A relation can be attached to any op code as a conditioner. The
instruction will run if the relational conditioner is true, and it
will be skipped if the relational conditioner is false. The syntax for
a typical relational conditioner is:

T(X=3):That's correct.

63

Relational conditioners can be combined with modifiers and other
conditioners (e.g., Y and N). The only syntax rules are that spaces
are allowed only within the parentheses, and that the relational
conditioner must come last.

It's time for an example. We'll do a simple arithmetic drill;
large characters are probably best for potential students at this
level.

G:M4,P2
TS:Simple Addition

5
+ 3

G:D30,130,L80,130
TH: (four spaces)

This TH: instruction should contain enough spaces to align the
cursor under the 5 and 3. Space at the ends of lines are not visible
in printouts.

A:
C:X=%B
T(X=8):Good.
J(X=8):NEXT
T(X>B):Too high; try
T(X<B):Too low; try
T:again.
J:@A
*NEXT W:20

As usual, we urge you to enter this program and run it trying all
reasonable errors. The use of the relational conditioners is
straightforward here; the only step that is not obvious is the
COMPUTE instruction. The instruction C:X=%B forces the conversion of
the answer into numerical form for future reference in the other
relational conditioners. In fact, this instruction is unnecessary
because the conversions in the relations are automatic. Because of the
automatic conversion from string to number, the following program will
do exactly what the previous one does:

G:M4,P2
TS:Simple Addition

5
+ 3

G:D30,130,L80,130
TH: (four spaces)
A:

64

•

T(8=%B): Good
J(8=%B) :NEXT
T(8<%B):Too high; try
T(8>%B):Too low; try
T:again.
J:@A
*NEXT W:2~

There is one subtle point here: Notice that we reversed the order from
X=B to 8=%B. There is no difference between X=8 and 8=X, because the
quantities on both sides of each relation are numbers; however, there
may be a difference between 8=%B and %B=8, because there is a
conversion between string and number implied. Which way will the
computer convert? The computer converts to the form on the left. Thus
if we use the form 8=%B, the computer converts %B to a number. This
relation will then be true if the answer is 11 8 11 or "It's 8." If we use
the form %B=8, the computer will convert the string, which will be the
same as the answer 118 11 but different from the answer "It's 8."

Which of our two ways of programming the problem is better, the
one using X in the relational conditioners or the one using %B in the
relational conditioners? It depends on your definition of "better."
The first version will run a little faster, but so little as to be
undetectable. The second version requires a bit less typing, but again
so little as to be insignificant. The best definition of "better" -
here and almost everywhere in computer programming - is the way which
is clearest to the programmer.

-When there are two or more
ways to program the same
effect, pick the one which
will be the easiest to
understand a month from now.

There is one change we can make in the program which is clearly
an improvement; the program will run faster, take less typing, and be
easier to understand. The two instructions which handle the correct
answer,

T(8=%B): Good.
J(8=%B) :NEXT

tell the computer to check the truth of the same relation twice in a
row, obviously getting the same result both times. The computer
remembers the truth value of the last relational conditioner
evaluated, and by using the C conditioner this truth value can be
reused again and again without reevaluation. The above two
instructions can be replaced with:

T(8=%B) :Good.
JC:NEXT

65

This can save typing, space, and computation in a complex program.
More important, it can clarify the structure of a program by grouping
together those instructions which all depend on a single relational
conditioner.

Arithmetic drill is an obvious educational application for
the computer, and Color PILOT makes programming of such drill very
easy. The rest of this chapter is mainly concerned with showing how
the simple program above can be extended into a general addition
program, similar to those arithmetic drill programs costing hundreds
of dollars.

The key to the extension is the use of the random number
generator to generate many problems. We can ask the computer to
generate random numbers between 0 and some largest integer by using
the RND function.

If we use the COMPUTE instruction:

C: X = RND(4)

-A single die (from a pair of
dice) is an example of a
random number generator for
the integers between 1 and 6.

then, after the instruction is run, X will have one of the four
values, 0, 1, 2, or 3. If we use the COMPUTE instruction:

C: X = RND(8)

then, after the instruction is run, X will have one of the eight
values, 0, 1, 2, 3, 4, 5, 6, or 7. So the function RND causes the
computer to choose at random one of the integers from a list starting
with 0 and ending at the "number in parentheses minus l". It's time
for an example; enter and run the following program:

TS:Look at random numbers.
*MORE C: X = RND(l0)
TH: 1FX
C: Y = Y+l
J(Y<20) :MORE
W:200

Notice that the numbers produced are always less than 10, and are
always 0 or greater.

We can make use of this random number generator to generate the
two addends. To present a problem for one-digit addition, we might
proceed as follows:

66
•

TS:Simple Addition

C: Y = RND(l0)
T: {FY
C: Z = RND(l0)
T: +itz

Here Y will be a number between 0 and 9, perhaps 8, and Z will also be
a number between 0 and 9, perhaps 7. So the sum could come out to be a
number greater than 9, which will introduce the complication of
carrying and two-digit answers. Carrying might not be appropriate for
the students in question. There are at least two ways to avoid this
complication. One is to reject any set of numbers which leads to a sum
that is too large:

TS:Simple Addition

*ANOTH C: Y = RND(l0)
C : Z = RND (10)
J (Y+Z>9) :ANOTH
T: {fy

+itz
etc.

A second way is to choose one addend and the sum, and to compute the
second addend:

TS:Simple Addition

*ANOTH C: Y = RND(l0)
C : S = RND (10)
C: Z = S - Y
J (X<0) :ANOTH
T: {fy

+itz
etc.

There is little basis for choice between the two methods here. (In
long division problems without remainders, it makes sense to pick the
divisor and the answer instead of the dividend.) We'll stick with the
first method.

67

Now we complete the program for one problem:

G:M4,P2
*PROB TS:Simple Addition

*ANOTH C: Y = RND(l0)
C: Z = RND(l0)
J (Y+Z>9): ANOTH
T: 4FY

+ftz
G:D30,130,L80,130
TH: (four spaces)
A:
T(Y+Z=%B):Good.
JC:NEXT
T(Y+z<%B):Too high; try
T(Y+z>%B):Too low; try
T:again
W:20
J:@A
*NEXT W:20

Notice that the randomly generated variables, Y and Z, are used 1n
relational conditioners and on the left side to force proper
conversion.

The payoff for using the random number generator is reached when
we use this code in a program which generates a number of problems.
Let's say we want the student to complete twenty problems. We can do
this by the following addition:

*NEXT W: 213
C: P = P+l
J (P<20): PROB
T:You've completed
: ifp problems
W:20

In this manual, we are mainly concerned with the mechanics of
programming in Color PILOT, not with instructional design. But this is
a good place for an aside on design. We must always be careful that
the messages on the screen do not overreach the likely reading ability
of the typical student who might use the program. In creating this
program, we should ask if a student who needs drill on one-digit
addition will be able to read messages like "Too high; try again." If
we decide that they may not be able to read these kinds of messages,
we will have to find some other way to communicate the message: for
example, with up- and down-arrows. In our example we'll stick with the
textual messages because they are easier for the beginning programmer
to keep in mind than a series of GRAPH instructions. If we were
preparing this for use with children, we would replace the text
messages with graphics.

68

•

We now have an arithmetic drill, but the format is not ideal. If
the student makes an error, the new answer does not go into the right
position. We can fix this by erasing the incorrect answer and
positioning the cursor for the new answer. Replace the sequence:

with:

G:D30,130,L80,130
TH: (four spaces)
A:

J:@A

G:D30,130,L80,130
*ERR G:W20,120
THS: (four spaces)
A:

J:ERR

Here we use the G:W20,120 to position the text cursor, and the
following THS: to erase the previous answer by overtyping with spaces.

Before going further, let's pull this together into a useful
drill for one-digit addition:

G:M4,P2
*PROB GW0, 191
TS:Simple Addition

*ANOTH C: Y = RND(l0)
C : Z = RND (10)
J (Y+Z)9) :ANOTH
T: :/IY

+:/lz
G:D30,130,L80,130
*ERR G:W20,120
THS: (four spaces)
A:
T(Y+Z=%B):Good.
JC:NEXT
T(Y+Z<%B):Too high; try
T(Y+Z>%B):Too low; try
T:again.
W:20
J:ERR
*NEXT W:20
C: P = P+l
G :W0, 144
J (P<20): PROB
TS:You've completed
: :/IP problems •
W:30

69

There are many elaborations we could add to this program, most of
which raise questions of teaching strategy. We will limit ourselves to
two possibilities for the purpose of illustration. In the first
extension we will allow for problems with carrying.

Enter the following program but, as usual, not the comments:

G:M4,P2
TS:Simple Addition

W:20

The window position will be shifted between the units column, the tens
column, and the message space. These two instructions restore the
window position and clear it for a new problem:

*ANOTH G:W0,191
TS:

We make no provision for the case Y + Z > 9 because we're going to
allow problems with carries here.

C: y
C: Z

RND(l0)
RND(l0)

Erase the possible error - a two-digit response - by typing over with
blanks. This time we moved the line under the addends up a bit to
avoid the erase:

T: #Y
: +#z
G:D20,140,L70,140
*ERR G:Wl2,120
THS: (four spaces)

Position the cursor to accept the units digit first:

G:W50,120

Transfer the units digit to the variable U so that there is room in %B
for the tens digit. The variable T, which will hold the tens digit, is
given a value of 0 in case there is no carry. (Otherwise it would keep
some value left over from a previous problem with a carry.)

AS:
C: U %B
C: T 0

Get and convert the tens digit, if appropriate. The teaching strategy
here is open to debate. Are we giving too much away by not allowing
the student to report a false carry? Should the student have to fill
in a 0 or a blank if there is no carry?

70
•

When we are beginning to worry about teaching strategy instead of
programming details, we are indeed making progress!

G(Y+Z>9):W35,120
ACS:
CC: T = %B

Move to the message space below the problem:

G:W0,90

Here at last is an example of a student error we can diagnose and
give a remedy for:

T(Y+Z=l0*T+U):Good
JC: NEXT
T((Y+Z>9)&(T<>l)):Good grief,
TC: you forgot the
:carry; try again.

We use the HANG modifier on the first line because the length of the
relational conditioner prevents us from putting much text on the line.
Time to read the message, then clear it:

WC:20
TCS:

The rest of the program provides for other types of student errors and
calculates the student's score:

JC:ERR
T(Y+Z<l0*T+U):Too high; try
T(Y+Z>l0*T+U):Too low; try
T:again.
W:20
J:ERR
TS:
*NEXT W:20
C: P = P+l
J(P<20):ANOTH
T:You have done
:#P problems.
W:30

As we increase the number of times the student uses this program,
we may begin to worry about repetitions of the same problems. One
strategy is to make a list of problems, and to remove problems from
the list when the student gets them right. There are 10 possible
values for Y (0-9) and 10 possible for z. Thus there are:

10 * 10 or 100

possible different problems of this type (counting 4 + 5 and 5 + 4 as
different problems).

71

There are many different ways we could handle the record keeping
in this part of the program. One thing we don't want to do is to
actually keep the problems themselves in the list because this would
make the list very long. In fact, in order to make sure that each
problem is only used once, all we need is one character space which
can hold one of the symbols to represent each possible problem, one
symbol for USE and another for DON'T USE. We'll make a list of 100 U's
(for use) and turn them into 0's when that particular combination is
used. We start by setting up the string of 100 U's in the string
variable R$:

D:R$ (100)
C:R$="UUUUUUUUUUUUUUUUUUUUUUUUU" (25 U's)
C : R$=R$! ! R$
C:R$=R$! !R$

The second COMPUTE instruction doubles the length of the list to 50,
and the third COMPUTE instruction doubles it again to 100.

Most of the program is the same as our previous program, but
we'll use small characters so we can display the list on the screen
for testing:

TS:Simple Additions

W: 10
*ANOTH G:M0,P2,W0,191
TS:
C : Y = RND (10)
C: Z = RND(l0)

We must check whether this combination has been used before we write
it on the screen. We assign each combination of Y and Z a unique
position in the list of 100 entries by the formula:

position = 10 * Y + Z + 1

We arrive at this formula by noting first that there are 10 possible
values for Z, which gives the factor of 10 in 10 * Y (for every value
of Y there must be room for 10 different values of Z). Second, we note
that the list starts at position 1 and that the lowest set of Y and Z
are the values 0,0. Therefore we must add 1 to start at position 1 for
the lowest set.

J (R$ (10*Y +Z+l)<> "U"): ANOTH

If the combination has been used before, then go get another
combination.

72

We continue for a while as in our earlier program:

T: /FY
+ftz

G:D2,160,L30,160
*ERR G:Wl2,150
THS: (four spaces)
G:W24,150
AS:
C: U = %B
C: T = 0
G(Y+Z>9):Wl6,150
ACS:
CC:T = %B
G:W0,90
T(Y+Z=l0*T+U):Good
CC: R$ (10*Y+Z+l)="O"

If the student got the problem right, then remove it from the list. We
use the character 110 11 instead of the number zero because a number
occupies two character positions. Next we put in two instructions
which would not be in the final program but which will allow us to see
what is happening to the list as we go :

TC: R
WC:20

From here on we continue as before:

JC:NEXT
T((Y+Z>9)&(T<> l):
TC:You forgot the
:carry, try again.
WC:20
TCS:
JC:ERR
T(Y+Z<l0*T+U):Too high; try
T(Y+Z>l0*T+U):Too low; try
T:again.
W:20
TS:
J:ERR
*NEXT W:20
C: P = P+l
J (P <SfJ)*ANOTH

We could use this for more problems, but if we get too close to 100
(say over 90), it may take the computer a while to stumble randomly
onto the unused combinations.

73

T:You've completed
: 4FP problems.
W:30

Within the examples in this chapter, we have made a number of
assumptions about teaching strategies, some of which already have been
pointed out. In addition to those assumptions, we must consider how
many problems of a particular type should be given to a student at a
sitting, and whether a problem should be removed from the list if the
student doesn't answer it correctly on the first try. Our purpose here
is to show how the Color PILOT language can be used by example. If you
prefer other strategies, it's easy to alter the programs to match
them. Try it.

Throughout the chapter we stuck with simple addition problems.
However, contained within the examples are all the techniques you
would need to develop a complete set of programs for integer
arithmetic. For example, the addition program could be extended to
cover multi-digit addition or subtraction. Multiplication and division
require only different expressions in the relation conditioners and
more elaborate cursor movement for multi-digit problems. In these
kinds of applications, it is easy to get carried away and write THE
all-purpose program. Remember that at the level these basic arithmetic
programs will be used for, the students will probably have a very
limited attention span. They will not be able to cover everything from
simple addition to long division with remainders in just one sitting.

By restricting our examples to integer addition, we have
illustrated "greater than" and "less than," but not "close enough."
Let's finish with a short example which covers this concept. Suppose
we were asking the student to estimate the number of yards in a mile,
and we would accept any answer between 1600 and 1800 as close enough.
We could do the following:

TS:Guess how many yards in
:a mile.

A:
C: X = %B
T(X>l600 & X<l800):Close enough.
JC:NEXT
T(X<l60l):Too low.
T(X>l799):Too high.
T:Try again.
J:@A
*NEXT W:20

Notice the use of the AND operator (&) in the relational
conditioner.

74

Another and perhaps preferable way to handle "close enough" is to
use the ABS function. The ABS function takes the absolute value of
whatever is inside the parentheses. The instruction:

C: X =ABS (3 - 5)

sets X equal to 2. Another way to think of ABS is that it throws
away the minus sign on a negative number. Using the ABS function, we
can change the above program to:

TS:Guess how many yards in
:a mile.

A:
C: X = %B
T(ABS(X-1700)<100):Close enough.
JC:NEXT
etc.

The relational conditioner looks for a number within 100 of 1700; the
ABS function is used to say that we don't care if the variable is
above or below. In most cases, use of the ABS function is more
easily understood by the programmer than relational conditioners.

75

15. FRAME DESIGN

We have introduced most of the features of the GRAPH
instruction in Color PILOT. We can use these features to manage the
screen display in a variety of ways - as an endless scroll, as a
series of frames, or as a single frame with changing entries. In this
chapter we will work through an example of a single frame with
changing entries, as this will illustrate the various techniques we
have for screen management.

Our example will be a sample check register drill. At the top of
the screen we will have a check record page, and we will split the
rest of the screen into a question-answer space and a response-message
space.

This application will make heavy use of the window operation to
position text. We could proceed as before by trial and error, but
instead let's be systematic. The screen holds 24 lines of text. Each
character on a line occupies a block eight dots high. (Notice that 8 *
24 = 192, the vertical dimension of the screen). A window coordinate
which lies within a block is treated as being at the lower left corner
of the block. From that information, or by trial and error, we can
build the following table:

LINES LINES
UP DOWN POSIT ION LARGE CHARACTER

====== ==========-== ======-=========::
24 1 184-255
23 2 176-183 176-255
22 3 168-175
21 4 160-167 160-175
20 5 152-159

9 6 144-151 144-159
18 7 136-143
17 8 128-135 128-143
16 9 120-127
15 10 112-119 112-127
14 11 104-111
13 12 96-103 96-111
12 13 88-95
11 14 80-87 80-95
10 15 72-79

9 16 64-71 64-79
8 17 56-63
7 18 48-55 48-63
6 19 40-47
5 20 32-39 32-47
4 21 24-31
3 22 16-23 16-31
2 23 8-15
1 24 0-7 0-15

77

Large characters occupy double-sized blocks. You may prefer to
remember the formula instead of consulting the table. Using the
numbers from the bottom up, you can see that the formula is:

corner position= (line number - 1) * 8

A similar table for the 32 columns will be useful late at night
when your brain has turned to putty and your eyes will no longer
focus:

Column Position
=====-===== ==========

1 r/J - 7
2 8 - 15
3 16 - 23
4 24 - 31
5 32 - 39
6 40 - 47
7 48 - 55
8 56 - 63
9 64 - 71

10 72 - 79
11 80 - 87
12 88 - 95
13 96 - HB
14 104 - 111
15 112 - 119
16 120 - 127
17 128 - 135
18 136 - 143
19 144 - 151
20 152 - 159
21 160 - 16 7
22 168 - 175
23 176 - 183
24 184 - 191
25 192 - 199
26 200 - 207
27 208 - 215
28 216 - 223
29 224 - 231
30 232 - 239
31 240 - 247
32 248 - 255

78

Again, the formula is:

corner position = (line number - 1) * 8

and large characters occupy double blocks (l,3,5,etc).

The program starts with a title page that says "CHECKBOOK" in
large letters and gives the author's name in small letters. We'll put
it all in a colored box. Type:

G:M7,E,P5,D20,20,B235,l71
G:P7,D30,30,B225,161
W:200

We also could draw a frame as a series of four blocks, but the time
this would save 1s not really worth doing the extra prograunning.

Next, we insert the title slightly above the center of the frame.
Remove the WAIT instruction (it was just there to give us time for
admiration) and add:

G:M4,W48,96
T:CHECKBOOK
G:M0 ,Wll2, 80
T:by
G:W88,64
T:Your name
W:30

Coordinates for the window were selected from the tables so that "by"
appears in line 11, column 15 and "Your name" appears in line 9,
column 12. You may want to adjust the horizontal coordinate of the
last window if your name has a different length than the phrase "Your
name."

The rest of the program will use a single frame. First we design the
frame by picking lines and columns. The frame design we'll use is on
the next page.

79

24
23

1 3
--------------c

: # : D a t e

8 16
h e c k R

: I t e

20 24 28 32
e g l s t e r---------------
m : - $: D e p : B a 1:

22 ---
21
20 ---
19
18 ---
17
16 ---
15
14 ---
13
12 ---
11
10 ---
9
8
7
6
5
4
3
2
1

Question-Answer
Space

Response Space

We have to live with the limitations of the display and the computer;
we have to abbreviate column headings, and we have to use only dollars
(no cents). Once the form is designed, we can write the program to
display it.

First we outline the check register, using a double line to give
more color:

G:E,P6,D4,92,L4,188,L251,188
G:L251,92,L2,92,L2,189,L253,189
G:L253,91,L2,91

The coordinates are selected so as to put horizontal lines in the
centers of lines 24 and 12 and vertical lines in the centers of
columns 1 and 32.

The next section draws horizontal lines in the centers of lines
14, 16, 18, 20, and 22 and writes the title:

G:P2,DS,108,L251,108,D5,124
G:L251,124,D5,140,L251,140
G:D5,156,L251,156,D5,172
G:L251,172,W64,184
T: Check Register

Vertical lines are drawn in columns 3, 8, 20, 24, and 28. For example,
to draw a vertical line in the center of column 20, the X coordinate
must be at:

(20 - 1) * 8 + 4 = 156

G:D20,187,L20,92,D60,187,L60,92
G:Dl56,187,Ll56,92,Dl88,l87
G:Ll88,92,D216,187,L216,92

A series of window-type operations supply the column headings. The
coordinates are taken from the table using line 23 as the vertical
position:

G:W8,176
T: if
G:W24,176
T:Oate
G:W88,176
T: Item
G:Wl68,176
T:-$
G:Wl92,176
T:Dep
G:W224,176
T: Bal

An alternative to this approach would be to insert the headings with a
single TYPE instruction, using appropriate spacing in the message
space. This would have to be done before the vertical lines were
drawn; otherwise, the spaces would erase the tops of the lines. In
this example we are not trying for the most compact program; if we
were, we might use the variable Y=l76 in each of the preceding window
instructions.

The last step in creating the form is to block off two areas at
the bottom of the screen:

G:P5,D4,76,L251,76,Dl24,76
G:Ll24,0

This draws a horizontal line in text line 10, so the window
coordinates for these two spaces will be:

0' 64
Left

81

128,64
Right

Now we're ready to begin using the form:

G:W0,64
T:Your paycheck
: is for $ 900,
:and you keep
:$ 100 cash. How
:much are you
:starting the
:account with?

Notice that we keep the lines short enough to fit in the left area. We
will describe the reason for the space after the $ in Chapter 18.

A:
M:800
GN:Wl28,64

Move to the response (right) area:

TN:Now wait.
: 900 - 100
:is not $%B.
:Try again.
WN:30
TSN:
GN:P7,D0,0,Bll8,15,W0,8
JN:@A

The last GRAPH instruction shows a way to erase selectively; draw a
block over the text to be removed using the background color. The
following code erases the original question in the left area:

G:Wl28,64
T:Good.
*BACK
G:P7,D0,0,Bll8,75,W0,64
T: In which
:column should
:we put this?

G:Wl28,64
TS:

This erases the "Good." from the response space:

G:W0,24
A:
G:Wl28,64

82

Move to the response space:

M:DEP
TY : Right ' I I 11
:put it there.
*ENT GY:Wl92,160
TY:800
JY:ON
M:BAL
TY:You're rushing
:things. It's a
:deposit.
WY:2~
JY:ENT
M:ITEM!#!DATE!-$
TN:That's not a
:colulllll.
WN:20
TNS:
JN:BACK
T:No, this is
:a sum of money
:you're putting

W:2~
TS:

in.

J:BACK
*ON W: 20

This completes one question. We clean up both spaces and continue.

G:D0,0,Bl23,75,Wl28,64
TS:
G:W0,64
T:This makes the balance what?

A:

This is obviously just the start of a program which could be
greatly expanded. We will not do so here. The most important
techniques to absorb from this example are the uses of windows for
positioning text and selective clear, and the use of blocks of
background color for selective erase. While we have not used variables
or expressions in this example, remember that they can be used in
place of numbers in GRAPH instructions.

83

16. SUBROUTINES

In some applications, we may want to repeat the same series of
computer steps a number of places within a program. One approach would
be to repeat the series of instructions at each place in the program
that they are needed, but this is wasteful of memory and programmer
time. Color PILOT, like most computer languages, has an instruction
which handles this kind of repetition easily. It is the USE
subroutine (U:) instruction.

Before we get into the details of subroutines, let's choose an
application where they might be useful. We're going to develop a
map-reading exercise in which the student has to direct an object
through the streets of a city by giving directions. To have the
largest possible map on the screen, we'll have to alternate displays
of the instructions and the map. The following instructions will draw
a map:

G:M4,W0,150
T:A Map Reading

W:20
TS:

Exercise

G:M0,Wl00,180
T:North
G:W0,105
T:W
T:e
T:s
T:t
G:Wl00,0
TH:South

E (maximum length
a lines are here)
s
t

-An easy way to get maximum
length lines is to enter the
start and end, and then to
insert spaces in the middle.

The HANG modifier is needed to keep "South" on the bottom line; a
T: instruction would produce a carriage return which would push
"South" up a line. The last three instructions below draw a horizontal
row of blocks across the screen:

C: X = 15
C: Y = 15
*BLOCK G:P5,DX,Y,BX+20,Y+20
C: X = X+35
J(X<220): BLOCK

85

These two instructions reset X at the start of another row and move Y
up one vertical row:

C: X 15
C: Y = Y+35

Enter the following code; add a long WAIT instruction on the end,
and try it out.

J(Y<l 7</J): BLOCK

That's a pretty good display for a relatively small number of
instructions, but that doesn't mean that we want to retype them over
and over. So let's plan what we want to happen and learn to use the
USE instruction. We organize the program in the following way:

1. Tit le Page
2. Tell about map.
3. Draw map.
4. Tell about start position.
5. Draw map with position.
6. Tell about destination.
7. Draw map with position and destination.
8. Explain how to move.
9. Show map and allow moves.

Notice that we are going to have to draw the map at least four times.

We separate out those instructions which actually draw the
map and give them the label MAP.

*MAP G:M0,Wl</J</J,18</J
T:North
G:W0,l</J5
T:W
T:e
T:s
T:t
G:Wl</J</J,0
TH: South
C:X=l5
C:Y=l5

E

a
s
t

*BLOCK G:P5,DX,Y,BX+2</J,Y+2</J
C:X=X+35
J (X<22</J): BLOCK
C:X=l5
C:Y=Y+35
J (Y<l 70): BLOCK
E:

86

This set of instructions was included in what we had before, but there
are two important additions: the subroutine has a beginning - a label
(in this case MAP), and the subroutine has an end - the END (E:)
ins true t ion.

-A label to begin and an END
instruction to end must be
present in every subroutine.

To see how the subroutine is used, we must write a portion of the main
program:

G:M4, W0, 150
T:A Map Reading

W:20
TS:

Exercise

G: M0, W0, 100
T:When you push ENTER, I'll
:show you a simple map of the
:center of a city.
A:
TS:
U:MAP
W:30
G:E,W0, 100
TS:Your current position is
:marked with an X.
W:20
TS:
U:MAP
G:W40,40
T:X
W:30

The map-drawing subroutine is used twice in this part of the
program. The form of the USE instruction is:

U: la be 1

in this case:

U:MAP

87

This instruction tells the computer to jump to the label MAP, but to
remember where it was in the program before the jump. The computer
runs the instructions starting at the label MAP until it finds an
END (E:) instruction. Then the computer jumps back to the
instruction following the USE instruction. In our sample program,
the sequence for the first USE instruction is:

TS:
U:MAP
W:30

-Clear screen
-Go draw the map and then return
-Pause three seconds

and the sequence for the second USE instruction is:

TS:
U:MAP
G:W40,40

-Clear screen
-Go draw the map and then return
-Set the window

Before we can try this out, we have to have both the main program and
the subroutine in the memory. Where should we put the subroutine?
While we can put it anywhere in the program, the performance will be
better if we put it close to the beginning. But there is a
complication related to the END instruction; the END instruction
also is used to end a program. If the computer finds an END
instruction when it is not under the influence of a USE instruction
(i,e., when it does not have a return point stored), then the computer
stops running the program. Therefore, if the computer were to get into
a subroutine by simply working its way down a list of instructions,
instead of jumping in via a USE instruction, it would quit when it
hit the END instruction of the subroutine.

The problem is easily avoided. Probably the best arrangement is
the following:

J:PAST
*MAP G:M0,Wl00,180

J(Y<l70):BLOCK
E:
*PAST
G:M4,W0,150
etc.

The first instruction and the label PAST are needed to prevent
accidental entry into the subroutine.

One other change will be needed to make the program run smoothly.
We want to be able to move the X to any intersection, but we can type
the letter X only at one of the 32 character positions on each of the
24 lines. Instead of typing a letter, we'll draw an X using the
variable U and V for positions (we set the values of U and V before
this instruction is run):

G:DU,V,LU+8,V+8,DU,V+8,LU+8,V

88

Because we are learning about subroutines, let's make this a short
subroutine as well. Put it up at the front, all subroutines together:

J:PAST
*MAP G:M0,Wl00,180

J (Y<l 70): BLOCK
E:
*X
G:P2,DU,V,LU+8,V+8,DU,V+8,LU+8,V
E:
*PAST

and alter the last few lines of the program:

T:Your current position is
:marked with an X.
W:20
TS:
U:MAP
C: U=37
C:V=39
U:X
W:30

Now continue with the main program:

G:E,W0,100
T:Your destination is marked
:with a box.
W:20
TS:
U:MAP
U:X
G:P6,Dl77,142,Bl85,150
W:30
G:E,W0,100
T:You can move by typing one
of the four directions.

:To move - type N, S, E, or W.

:Press ENTER to begin.
A:
TS:
*RE U:MAP
U:X
G:P6,Dl78,144,Bl86,l52,Wl50,0

89

This really completes the illustration of subroutines, but we may
as well turn the program into something useable. First, add
instructions to set the position for the new X:

*MOVE TH:N , S,E, or W?
AS:
M:N!n
CY :V=V+35
M:S!s
CY:V=V-35
M:E!e
CY :U=U+35
M:W'w
CY: U=U-35

Then restart if the last move puts us off the edge:

G(V<0!V) l90!u<0!U) 23QJ):E,M4
GC :W6QJ, lQJQJ
TC: Lost

:Off the map!
WC: SQJ
TSC:
CC:U=37
CC:V=39
JC:RE

Type X in the new position:

U:X

Quit if we reached the destination:

G(V=l44&U=l77):E,M4,W3QJ,1QJ0
TC:Congratulations

:You made it.
WC:SQJ
EC:

And go back for another move:

J:MOVE

90

•

As it stands, this program is complete and functional. However,
improvements to programs are usually possible, especially when
graphics are involved. One improvement would be to display only one X
for current position, but to leave a track showing where we've been.
This can be done by making the following changes. First, add the
ERASE: subroutine to the subroutines:

*ERASE
G:P3,DM,N,LM+8,N+8,DM,N+8,LM+8,N
G:P2,DM+4,N+4,LU+4,V+4
E:

This draws over the X with the background color, thus erasing it. It
then draws a track. We must alter the latter part of the main program,
starting after the label MOVE:

*MOVE TH:N,S,E, or W?
AS:
M:N!n!S!s!E!e!W!w!
JN:MOVE
C:M=U
C:N=V

The variables M and N keep track of the old position so that U and V
can get the new position. Notice that nonsense answers are rejected
first, as before:

M:N!n
CY:V=V+35
etc.

Also insert the instruction:

U:ERASE

immediately before the U:X instruction.

-By now you may be having
trouble keeping track of all
the changes. There is a
listing of the final version
of this program in Appendix
III.

A different extension of the program would be to add another level of
use, one in which the student gives a complete set of moves at one
time. The computer then runs the moves in the sequence given. Instead
of ending the program (the EC: instruction), use a JUMP
instruction (JC:PART2) .

91

We continue, starting at PART2:

*PART2 G:E,M0,W0,100
T:Now you tell me all the
:moves with one line of letters.

:Example, 4 Norths and 1 East
by

:NNNNE

A:
*RE2 TS:
U:MAP
C:U=l42
C:V=74
U:X

Push ENTER.

D: B$ (20)
G:P6,D2,39,Bl0,47,Wl50,0
TH:List moves:
*AA C:C=KEY(0)
J(C=0) :AA
C: B$=CHR(C)
TH: B
A:
C : B$ = B$! ! % B

These lines require a bit of explanation. The message "List
moves:" comes right at the end of the screen. The next key pressed
will trigger a carriage return; it will not appear on the screen,
although it would be in the answer buffer. Therefore, to get a
complete list displayed after the carriage return, we use the KEY
function.

The KEY function asks whether or not a key has been pressed.
The zero after the word KEY has no particular significance but must
always be included in the KEY statement. The COMPUTE statement
above sets the variable X to 0 if no key has been pressed. Or, if a
key has been pressed, X is given the ASCII value of the key: For
instance, the "A" key gives a value of 65 (see Appendix I). Unlike the
ACCEPT statement, which always waits for the user to enter a
response, the KEY function just returns a value based on the present
state of the keys and then continues immediately with the next
statement, whether or not a key has been pressed. The KEY function
can be used to check the keyboard occasionally without stopping the
progress of the program. In the example above, the KEY instruction
simply holds the program in a loop until a key is pressed, but there
are many other ways to use this function. For example, the KEY
function can be used with another statement to interrupt the program
once a key is pressed. Or the KEY function could work as a timer
which would count down until the student responded and give the number
of seconds that the student took to respond to a particular question.

92

Copy the list of moves into B$; find out how long the list is
(the LEN function gives the current length of the string mentioned
in parantheses), and use A as a position marker in the list:

C:L=LEN(B$)
C:A=l

These instructions pick one character off the list and treat it as the
current move:

*MOVE2 C:%B=B$(A)
C:A=A+l

At this point, copy in all the instructions from the instruction
M:N!n!S!s!E!e!W!w to the last instruction (J:MOVE). Make the following
replacements:

JC:RE ------------> JC:RE2
G(V=l44 & U=l77)-- > G(V=39 & U=2)
CC:U=37 ----------> CC:U=l42
CC:V=39 --------- - > CC:V=74
J:MOVE------------> J(A<=L):MOVE2

And add the following new line at the bottom of this list:

J:AA

Notice that we have had to retype a number of lines of code in
this last addition. Could we make this a subroutine? Not in Color
PILOT because there are USE instructions included in the code in
question. In the cassette version, it is not possible to call
subroutines from within other subroutines.

We will close this chapter by suggesting, but not completely
documenting, another extension. Both the starting position and the
destination could be selected at random. The starting position can be
picked from the following values of U and V which correspond to
intersections within the map:

u v
--- ---

37 39
72 74

107 109
142 144
177

For U, we want to pick one of five values:

C: U = RND(5) * 35 + 37

and:

C: V = RND(4) * 35 + 39

93

The position of the destination can be picked in similar fashion. The
one other change needed is to make the relational conditioner which
detects arrival at the destination depend on the variables selected
for the position of the destination.

Finally, we should ask, which version of the program is the best?
The answer is not necessarily the most general or the most elaborate.
Here, and in every instructional program, we should answer a number of
questions:

1. Who is the program for?
2. What is the program supposed to help the student

accomplish?
3. How long should the student work at this task?
4. Is it reasonable to ex~ect a student who is

stimulated by the simplest level in the program
to also be able to handle the most complex level?

94

•

17. EXECUTE INDIRECT

Perhaps the most unusual instruction in the Color PILOT language
is the EXECUTE INDIRECT (X:) instruction. This instruction
executes the contents of a string variable as a Color PILOT
instruction. The advantage of this is that the contents of a string
variable can be changed while the student is running a program. The
EXECUTE INDIRECT allows us to actually change parts of a program
while it is running, and to base those changes on student input.

The EXECUTE INDIRECT instruction is useful in many situations;
we'll illustrate a few. We might write a program which contained ten
questions, and we might want to give the student a choice of which
question to try. One way to do this is:

TS:Which question do you want?
A:
J(l=%B) :QUESl
J(2=%B) :QUES2
J (3=%B): QUES3

J(l0=%B) :QUES10

A more elegant way to handle the same task is:

D:S$(8)
TS:Which question do you want?
A:
C: S$ = "J:QUES"! ! %B
X:S$

The COMPUTE instruction tacks the number given onto the end of the
JUMP instruction in S$, and the EXECUTE INDIRECT actually does the
jump.

Another example is provjded by the IMMEDIATE mode of Color
PILOT. IMMEDIATE mode is really just the following short program, as
you can see if you enter IMMEDIATE mode and them enter EDIT mode
without clearing the program.

AH:
X:%B
J:@A

You might want to include this program at the beginning of a program
you're developing. It will give you a quick way of trying out graphics
without erasing your program (entering IMMEDIATE mode will erase
your program). If you have a long program, it may take time to run
through to where you're trying something new .

95

To use it at the start of a program, begin:

AH:
X: %B
J:@A
*START

• the real program

For regular trials of the program, you would first type J:START to
bypass the IMMEDIATE section. Of course, you would remove the first
four lines when the program was finished.

With the EXECUTE INDIRECT instruction we can write programs
which use random selection of verbal parameters in much the same way
that we used random selection of numbers in our addition example. Our
example here is fairly complex, so let's first make it clear what we
want the program to do.

We are going to write a program which will drill the student on
subject-verb agreement. We want to randomly select subjects from a
list, and we want to randomly select the rest of the sentence to
provide some variety. We also want to use MATCH instructions to
allow for spelling errors.

The following table lists the possibilities. The variable A will
be used in the program to index the subjects and the verb forms.

A Subject Carree t Verb
========= ===============

l I am
2 He lS

3 She lS

4 You are
5 They are

We begin the program by creating the needed string variables:

D:S$(2~)
D:T$(4)
D: D$ (69)
D :E$ (23)
D: R$ (20)
D: F$ (20)
D:W$(25)
D:M$(6)
D:N$(6)
D:0$(7)

Now we make a number of lists - first, a list of subjects:

C:S$="I He She You They"

96

We make each entry on the list the same length as the longest entry
("They") by adding spaces. In the same way, we make a list of
destinations for variety in completing the sentences:

C:D$="going to the circus.
C:D=D!!"coming through the
C:D=D!!"getting saturated.

II

rye."
II

We deviated from our usual practice of using the $ on string variables
so that we could fit each entry on a single line. Each of the three
entries in D$ is 23 characters long. We make all entries in a list the
same length for ease in choosing single entries (see below).

-If all entries in a list are
the same length, it is easy to
predict where a new one
starts.

We're going to have a number of MATCH instructions to cover
correct answers and various errors. In the following table we list the
fields of the MATCH instructions we'll use:

A Subject

--- ==========
1 I
2 He
3 She
4 You
5 They

Correct

=========
am
is
is
*re
*re

Singular-Plural
Error

=================
*re
*re
*re

am! is
am! is

Person
Error

======-=
is
am
am

Next we make lists of these fields, using exactly the same order
as we used for the list of subjects. However, we avoid using spaces
for fillers because a space in the field of a MATCH instruction
requires that there be a space in the same position in the student
answer. We could use any of a number of other filler characters; we'll
use *:

G:R$="AM**IS**IS***RE**RE*"
C:W$="*RE***RE***RE**AM! ISAM! IS"
C:F$="IS**AM**AM**xxxxxxxx"

That looks confusing, but if you count carefully you' 11 see that we
have just listed the entries in the table using * as a filler. The one
exception is the last two entries in F$. The forms of English verbs
are such that it is impossible to make a person error with a plural
subject. We never want a message about a person error to appear with a
plural subject, so we make the field of the MATCH instruction into
something which will never match - in this instance, lower case (we'll
be using an A:) .

97

We want the program to randomly select subjects from the list in
8$ and entries from the list in D$. To avoid double use of
combinations, we make a list for record keeping, just as we did in
Chapter 13. There are five subjects and three destinations, so there
are 15 combinations:

D:L$(15)
c: 1$="111111111111111"

-Although we're using 1 and 0
as symbols for record keeping,
we use them as characters
instead of numbers because a
character occupies only half
as much memory as a number.

That completes the setup. Now pick the index A and one for
destination (B). We reject combinations which have been used already.
I is the index for the list of combinations.

*PICK C: A = RND(5)
C: B = RND(3)
C: I = 3*A + B + 1
J(L$ (I)="0") :PICK
C: 1$ (I)="0"

From these index numbers, we can compute the starting positions for
entries in the lists, 8$, D$, R$, W$ and F$:

C: X = 4*A + 1
C: Y = S*A + 1
C: Z 23*B + 1

(for 8$, R$, and F$)
(for W$)
(for D$)

In every case the starting point is calculated by the formula:

(entry length) * (random number) + starting position

Now pick out the entries from the five lists:

C:T$
C:E$
C:M$
C:N$
C:O$

= S$(X,4)
= D$(Z,23)

"M:"!!R$(X,4)
"M: II! ! F$ (x' 4)
"M:"!!W$(Y,5)

98

After all that, the rest of the program is very short and simple:

TS:Give the missing verb.

:T E
A:
M: AINT ! AIN*T
TY:Very funny, but not very
:correct. Now be serious.
JY : @A

Someone is sure to try "ain't" as an answer. Next we check for the
right answer:

R:Check for correct
X:M$
TY: Right!
WY:21)
CY: P=P+l
JY (P<llP): PICK
EY:

Use l~ of the 15 possibilities, and then quit.

R:Check for person error
X:N$
TY:The subject is singular, but
:you need the other singular
:form of the verb. Try again.
JY:@A
R:Check singular-plural error
X:O$
TY:Think about the number of
:people that are
:E
:Try again.
JY:@A

These instructions provide for the standard errors. Finally, we take
care of unpredictable errors:

T:The verb must be one
of these:

are am is

:Try again
J:@A

As usual, there are many elaborations and extensions we could add
to this program. But our purpose here is to illustrate the EXECUTE
INDIRECT instruction, so we'll resist the temptation to continue.
This example is typical; the EXECUTE INDIRECT is used infrequently,
but the whole program is based on its use.

Instead of continuing, we'll give as a parting present a minor
extension of the IMMEDIATE mode program, which will turn the
computer into a calculator:

TS:Type your expression.
D: Z$ (3(.0
A:
C:Z$ = 11 C:H= 11 !!%B
X:Z$
T: Result = 11H
J:@A

18. NEW CHARACTERS

In many applications, we will have to use special characters if
we are going to use the standard notations of those fields. Geometry
programs might need symbols like ~,e,cxand B. Physics programs might
need vectors, advanced math programs might need integration signs, and
English programs might need special phonetics symbols. Foreign
languages might need a whole new alphabet. The list is endless. Color
PILOT enables the programmer to add characters and redefine existing
characters by means of the NEWCHAR (N:) instruction.

To master the NEWCHAR instruction, we must know something about
binary numbers and the internal computer representation of characters.
A binary number is simply a list of 0's and l's. (A decimal number is
a list of digits taken from the larger group 0-9). Binary numbers are
important here because 0 and 1 can represent a dot off and a dot on,
and the computer makes characters by turning some dots off and other
dots on. To begin, let's get comfortable with the first 16 numbers in
three number systems--decimal (base 10), binary (base 2), and
hexadecimal (base 16). The following table should help:

Decimal Binary Hexadecimal Dot Pattern
========= ======== ============= =============

0 0000 0
1 0001 1 x
2 0010 2 . . x
3 0011 3 . . x x
4 0100 4 . x
5 0101 5 x . x
6 0110 6 x x .
7 0111 7 . x x x
8 1000 8 x .
9 1001 9 x . x

10 1010 A x x .
11 1011 B x . x x
12 1100 c x x .
13 1101 D x x x
14 1110 E x x x
15 1111 F x x x x

Each character occupies an 8 x 8 block of dots. We define a
character by telling the computer which dots should be off (background
color) and which dots should be on (foreground color). The patterns of
0's (off) and l's (on) in a horizontal row of eight dots is
transmitted to the computer as two hexadecimal digits. A list of
sixteen hexadecimal digits gives the computer all eight rows.

101

If we wanted to define a character to be a small box, we would
first fill out the 8 x 8 grid of dots and translate the pattern into
hexadecimal digits:

Pattern Hexadecimal Digits
============

x x x x x x x
x
x .
x
x
x
x .
x x x x x x x

x
x
x
x
x
x
x
x

FF
81
81
81
81
81
81
FF

This pattern is transmitted to the computer by the list of 16
hexadecimal digits:

FF818181818181FF

The other thing the computer needs is a key or character
designated as the box. Your Color Computer, like almost every
computer, uses the ASCII convention. In the ASCII convention, eight
binary digits (called collectively a "byte") are used to represent
each character. Only seven of the eight digits are actually used; the
eighth is ignored, in effect. This means that there is room for:

2
7 = 128

different characters. The first 32 (numbers 0 - 31) are reserved for
unprintable display functions (like carriage returns, line feeds, and
backspaces), so that leaves us with 96 characters (numbers 32 to 127)
to play with.

The NEWCHAR instruction uses the format:

N:ASCII number,hexadecimal list

The ASCII number can be a value between 32 and 127. Before we define
the box, we'd better make sure we know what character we're replacing.
Our regular text messages will look strange if we replace upper case
"A" or lower case "e" with a box! The ASCII convention for characters
is listed in Appendix I; from the list we find that upper case "A" is
number 65 (decimal), and lower case "e" is number HH (decimal).

Now let's actually replace a character. This will work fine 1n
IMMEDIATE mode (remember to press IBREAKI [!!). Let's replace the
% with a box. The % character is character 37:

N:37,FF818181818181FF

To see the result try typing:

T:%%%%

Surprised? Remember that we've changed% to a box, so that when we
push the key marked %, we get a box.

What if we want to get the % sign back? Either we give another
N: instruction with the original dot pattern, or we reload Color
PILOT from the tape.

-A NEWCHAR instruction
changes the character until
the computer is turned off.

The large characters work with new characters in the expected
way. Try:

G:M4

then:

T:%%%%

Reverse video also works; try:

G:Ml,E

and then:

T:%%%%

This also shows another potential use of the special characters; they
can be used to create elements of more complex graphic displays. We'll
return to that later.

If you count the gray keys on the keyboard of your computer,
you'll find that there are 44 keys. All but three - the@, space, and
0 keys - give different characters with the shift key, so there are:

44 * 2 - 3 = 85

characters which can be entered from the keyboard. What about the
remaining 96 - 85 = 11 characters? They can be defined by an N:
instruction, but how do we get them into our programs and onto the
screen? We embed the character number in the message portion of a
TYPE instruction, but we must precede the number with the number
sign. Try:

T:#37

103

We get the box again. This is obviously an inefficient way to get
something for which there is a key on the keyboard, but it is a useful
way to get something for which there is no key.

Enter the following program:

D:T$(2~)
*START TS:Character check
TH: N =
A:
C: T$ = "T: if"! ! %B

This instruction, which will look strange on the screen because of
what we've previously done to the % symbol, is necessary because if we
just progranuned T:#%B, the computer would type out the number (the
current contents of the variable %B). We must force the contents of
the variable into the TYPE instruction.

X:T$
W:6~
J:START

We can use this program to find out what the current characters
are, especially those 11 which do not correspond to keys on the
keyboard. Run the program for the numbers between 32 and 127, and note
especially those which do not appear on the keyboard. Caution: the
first character is a space, so don't think the program isn't working
when nothing appears on the first try.

This experiment gives the following table for Color PILOT:

Non-keyboard Characters
Decimal Character

91
92
93
94
95
96
123
124
125
126
127

============
[
\
]

D
{

}

@

These characters will be especially useful for special characters, as
they do not interfere with any characters accessible from the
keyboard. Therefore the student will never enter them accidently.

104

-Characters numbered 91 - 96
and 123 - 127 cannot be
entered from the keyboard.

Parallel vertical lines can give some surprising effects. In
IMMEDIATE mode try:

N:91,5555555555555555

followed by:

T: /t91

That's probably not what you expected! Instead of parallel vertical
lines, you got a colored block. Now you have some idea of how Color
PILOT fools the computer into mixing color with text. The effect
requires that the vertical lines be on alternate columns of dots. Try:

G:M4

to double the character size, and then:

T: lt9l

That's probably what you expected the first time.

and:

To get the other color, we switch the l's and 0's:

G:M0
N:92,AAAAAAAAAAAAAAAA

T: lt92

Horizontal lines give no surprises. Try this:

N:93,FF00FF00FF00FF00

and then:

T:#93

Where could we make use of the color effect? Think of the
patterns as colored blanks. One application could be for emphasizing
blanks in fill-in-the-blank questions. Try the following program:

N:91,5555555555555555
G:W0,120
THS:The spoon goes on the #91
T: lt9 l lt9 l :/t9 l lt9 l
:side of the plate.

TH:What word belongs in #91
T : 1f 9lif9 U9 lif9 l ?
G:Wl80,120
A:
W: 100

The NEWCHAR instruction can be used to create elements which
may be used in complex diagrams. The following pattern will make a
decent circle on the screen:

•• xxxx •
. x x .
x x
x x N:91,3C4281818181423C
x • x
x • • x
• x • x •
• • x x x x

Try this pattern in both normal and large character size. The
advantage of this is that it replaces drawing lines (in this case
eight). It is also much faster, requiring much less typing.

A related set of characters can be typed in sequence to supply a
form of simple animation. First we design two characters based on the
above circle:

x x x x •
. x .. x.x.
x . x
x x x x x

x
x

x •• xxxxx
x . . x . . . x

x . x . x
• • x x x x

x x x x
• x •
x x x •

• x x

x x .
x x

x x
x x x •• x
x.x •• xxx

x x • x •
• .xxxx ••

N:91,3C4A89F99F91523C N:92,3C46E59999A7623C

Our program is:

G:E,M4
N:91,3C4A89F99F91523C
N:92,3C46E59999A7623C
C: I=0
*LOOP G:Wll0, 90
T: 1f9l
W: 1
G:Wll0, 90
T:1t92
W:l
C: I=I+l
J(I<HHO:LOOP

106

•

If that isn't smooth enough, try adding:

N:93,3C62939DB9C9463C

making the program:

G:E,M4
N:91,3C4A89F99F91523C
N:92,3C46E59999A7623C
N:93,3C62939DB9C9463C
C:I=0
*LOOP G:Wll0, 90
T:4fr91
W: 1
G:Wll0,90
T:4fr92
W: 1
G:Wll0, 90
T: ft93
W: 1
C:I=I+l
J (I<l00): LOOP

(To speed it up, remove the W:l instructions.)

Here, as with the use of ~olor, it is wise to keep the limitations of
the computer in mind. This is not a suitable device for creating
Saturday morning cartoons, but some limited animation can provide
visual stimulation and emphasis.

Before leaving the topic of user-defined characters, we should
list some of the results of using numbers outside the range of 32 -
127. Numbers over 127 will cause an error message to be displayed.
Numbers less than 32 are ignored, except for 12 (Carriage return) and
13 (Clear screen).

The following program can be a great help in designing new
characters. The program allows you to experiment with the dots in a
large grid, displaying the current design in both large and regular
sizes. It also gives the proper sequence of hexadecimal characters for
the current design. Make a copy of this program on tape for future
use:

D:D$(4)
D:E$(4)
D:P$ (64)
D:H$(16)
D:N$(16)
TS:
C:I=l2
G:P2
*BOXl

107

G:Dl2,192-l,Ll40,192-l
G:Dl,180,Ll,52
c: 1=1+16
J (1<=140): BOXl
N:94,003C7E7E7E7E3C00
N:95,FFBDFFFFFFFFBDFF
N:96,FF818181818181FF
C:D$(1)=""
C: D$ (2)=CHR(94)
C: D$ (3)=CHR(96)
C: D$ (4)=CHR(95)
C:H$="0123456789ABCDEF"
C:N$ = H$
C: l=l
*CLl
C:P$(1)=0
C:l=I+l
J (1<65): CLl
G:Wl44,175
C: E$=CHR(l 27)
N:l27,1038541010100000
TH: E
T: Move up
N:l27,1010105438100000
TH: E
T: Move down
N:l27,002040FC0200000
TH: E
T: Move left
N:l27,001008FC08100000
TH: E
T: Move right
T: SPACE BAR
T: CHANGES DOT
G:Wl6,32
T:Code for char:
C:C=3
C:X=0
C:Y=0
U:MOV
C:C=l
U:CPAT
G:W0,0
AS:
U:MOV
C:A=ASC(%B)
C (A=9): X=X+ (X<7)
C(A=8):X=X-(X>0)

The logical operation X<7 is either true, which gives a value of
1 to the expression, or it is false, which gives a value of 0 to the
expression.

108

C(A=l0):Y=Y+(Y<7)
C(A=94):Y=Y-(Y>0)
C:Z=Y*8+X+l
C(A=32):P$(Z)=l-P$(Z)
U(A=32): CCEL
C:C=P$(Z)+3
U:MOV
C:C=C-2
G:W0,0
J:@A
*MOV
G:WX*l6+16,175-Y*l6,M0
C:E$=D$(C,l)
TH: E
E:
*CPAT C:I=l
*CPl
C:K=P$(1)*8+P$(1+1)*4+P$(1+2)*2
C:K=K+P$(I+3)
C:I=I+4
C:N$(I/4)=H$(K+l)
J (I < 65) : CP 1
*CP2
G:W0, 16
T: N
x: "N: 12 7 ' II! ! N$
G:Wl44,96,M4
T: #127 #127 #127
T: #127 #127 #127
T: #127 #127 #127
E:
*CCEL
C:I=(Z-1)/4*4+1
C:K=P$(I)*8+P$(1+1)*4+P$(1+2)*2
C:K=K+P$(I+3)
C:N$(I/4+l)=H$(K+l)
J:CP2

19. LEFTOVERS

There are a number of features of the Color PILOT language which
we have not illustrated. We will now cover them briefly.

The SOUND instruction (S:) can be used only with one of the
two modifiers - SS: for SOUND START and SH: for SOUND HALT.
These two instructions start and stop the cassette recorder; whatever
comes off the recorder between an SS: instruction and an SH:
instruction is passed through the computer to the speaker in the TV
set. Of course, the PLAY button on the recorder must be down for this
to work. You can make a normal audio sound track to go with the PILOT
program, and the sound can be any combination of voice, music or sound
effects.

The SOUND instruction is of limited utility because of two
characteristics of tape recorders. There is no synchronization between
the computer and the recorders. If you want to play a 20-second
message, you might program:

SS:
W:200
SH:

The computer could be doing something besides waiting during the
interval; timing would have to be set by trial and error. If the
timing is off (it can vary slightly from recorder to recorder), there
is nothing you can do. The timing errors can accumulate if you're
trying to play a series of, for example, ten 20-second messages.
Starting and stopping are particularly troublesome because the times
vary between recorders. The second limitation is that we have no way
of reversing tape. Our PILOT programs are likely to have many jumps,
both forward and backward , but the tape can only run forward. We would
be discarding much of the power of the computer if we make all our
programs correspond to the limitations of the cassette recorder.

For the above-mentioned reasons, the major application of the
SOUND instruction is at the beginning of a program. Most programs
begin with some instructions to the students as to how they are to
proceed. Often these instructions are text heavy. Perhaps it would be
better to present them aurally instead of visually. This would be one
solution to the problem of explaining what is to be done to a weak
reader or a young child.

We have made use of a number of the functions included in Color
PILOT in earlier chapters. In particular, we have used and discussed
ABS (absolute value), RND (random number), LEN (current length
of a string), and KEY (check keyboard for input).

111

Color PILOT offers a number of additional functions, including the
fol lowing two:

CHR (number) - This converts the number into the corresponding
character using the ASCII convention (Appendix
I). It can be used to load a character not on
the keyboard into a string.

ASC (string) - This is the inverse of the CHR function; it
gives the number which corresponds to the
position of the first character of the string
using the ASCII convention (Appendix I).

The following program illustrates the use of these two functions:

TS:I have a way to turn messages
:into a secret code. Your task
:is to discover the code.

:You give me a word, and I'll
:change it into the code and
:give it back. When you think
:you have it, type DONE in code.
:If the message you get back
:makes no sense, then you
:don't have it yet.

Press ENTER when ready.
A:
C: X = RND(5)
D: A$ (20)
*WORD TS:Give me your word.

A:
C :A$=""

This instruction gets rid of the previous contents of A$:

C:I=l
C:L = LEN(%B)

Set up for conversion of the word into the code (offset by X in the
alphabet):

*DONE J(L<>4):CON
C:Y=ASC(%B(I)) - X

Convert any four-letter response backwards from offset to see if it is
correctly coded "DONE":

C(Y<65): Y = Y+26

112

This wraps around the alphabet (A= character 65):

C: A$ =A$! !CHR(Y)

Build translated letter onto the string:

C: I = I+l
J (I<5): DONE
J(A$= 11 DONE 11

) :END

Successful solution, so quit:

C: I=l
C: A$ = 1111

Unsuccessful, so reset for encoding:

*CON C:Y=ASC(%B(I)) + X
C(Y>90): Y = Y-26
C: A$ =A$! !CHR(Y)
C: I=I+l
J(I<=L):CON

This sequence converts into code by offset of X:

T:
: $%B A

Press ENTER to try another.
A:
J:WORD
*END TS:You got it!
W: 3(3
E:

The functions STR and FLO form a pair similiar to the
CHR and ASC functions:

STR (number) - This converts a sequence of digits into a string
of characters.

FLO (string) - This finds the first digit or minus sign (-) in
a string and converts that and all following
digits into a number. Conversion stops when a
non-numeric character is encountered.

113

There is one operator which we have not discussed. This is the
negation operator (NOT). This operator reverses the truth value of
any expression and is primarily a convenience for advanced
programmers.

The op code which we have not discussed is the VIDEO op code
(V:). This op code is used in the following format:

V:string variable

The program control is transferred to the contents of the string
variable, which must contain the compiled version of an assembly
language subroutine. Use of the V: instruction is beyond the scope
of this manual. The instruction is included so that control of video
disk players and/or video tape players is possible from Color PILOT,
but the instruction could be used for many other purposes.

114

20. DEBUGGING

Occasionally programmers make mistakes. You've probably already
discovered that. In this chapter we'll try to give you some hints on
tracking down errors in your programs, a process often called
"debugging."

The computer will give you quite a bit of help in locating
"bugs." You've already seen that the computer will detect and flag
many syntax errors. A list of error codes is given in Appendix II,
Section 9. These are the messages which the computer prints out while
running a program. The computer prints the error code and the
offending line and then pauses. The instruction is not run; the
program can be continued by pressing any key but BREAK . Appendix
II, Section 9 gives additional information as to what the error codes
actually represent.

A more difficult type of error is one which is not flagged by the
computer. In this case the program runs without stopping; there are no
syntax errors. The problem is that the program doesn't do what we want
it to. There are two basic techniques that we use in these situations;
both involve temporary insertion of instructions into the program. For
example, does the computer take or ignore a particular conditional
JUMP instruction? A test like the following might be useful:

JY (X>4): PART2
T:No jump

*PART2 T:Jump

where the two TYPE instruction are the temporary additions.

A similar approach is to add WAIT instructions (or to increase
the time on existing WAITs). This is particularly useful in cleaning
up complex screen displays when you may have to search through and
make notes on listings before the display disappears or changes.

Usually these kinds of problems are traceable by examining the
current values of variables. When a variable has a value other than
what we expect, we usually can work backward to find where things went
wrong. Again the technique is to insert temporary TYPE instructions ,
but now the TYPE instructions should cause variables to be printed.
If several variables are needed, then it is a good idea to have them
labeled.

T:X = #X, Y = #Y, A$ = A

This may not seem to be a very impressive list of things to try,
but it's usually enough. In difficult cases or in long programs, you
may want to solve the problem by writing a short test program. That's
a very good way to test the effect of various fields in MATCH
instructions.

115

21. STYLE AND PROGRAMMING AIDS

In this final chapter, we want to pass along a few suggestions
which will help you write efficient and clear programs with a minimum
of drudgery. Some of these suggestions have been mentioned earlier,
but we'll collect them all here.

Every time the computer jumps to a label or uses a subroutine, it
begins the search for the label at the start of the program space.
Therefore labels at the start of the program will be found more
quickly than labels towards the end of the program. For this reason,
frequently-used subroutines should be placed as close as possible to
the start of the program. Loops, which of course must involve a jump
to a label, will also run faster if close to the start. (A "loop" is a
series of instructions used repeatedly within a program.) In extreme
cases you might put a loop into a subroutine which is called only
once, just to move the loop to the start of the program.

DIMENSION instructions should be run only once. Otherwise they
will reserve additional sections of memory, thus wasting earlier
sections. The program will run, but memory used by DIMENSION
instructions comes out of the program space. Since the program space
is limited to just over 4000 characters, there is no room to waste.

In general, it is a good idea to collect all the DIMENSION
instructions for the whole program into one section of the program.
Then if you need a string variable, you'll be able to check which
variable names have been used easily and reliably. If the DIMENSION
instructions are scattered throughout the program, it is easy to miss
one. Among the hardest errors to find are those where the same
variable name has been used unwittingly for two different purposes .
Collecting the DIMENSION instructions together will minimize
occurrence of such errors. Of course, it is often a good idea to use
the same variable name for different purposes, as this saves space.
(We did not do this in our examples because we were building the
programs in very small steps.) Just be sure that you've finished with
the variable for the first purpose before you use it for the second.

Naming variables is a troublesome point. When working on a large
computer with unlimited memory, programmers use long and meaningful
variable names (e.g., pressure and temperature). When using small
computers, many authors choose to use variable names which are at
least suggestive of the quantity in question (for example, P for
pressure). This does make programming some expressions easier and this
is the system we have used in the examples in the manual. The trouble
is that too many quantities start with the same letter (e.g., time and
temperature). If you are going to need many variables, then you may
prefer to start with A and work through the alphabet. That will at
least force you to keep some documentation of which variable stands
for which quantity. Whatever approach you use, it is helpful to be
systematic and to keep track of what has been used, and for what
purpose.

117

This leads to the topic of documentation. It is usually obvious
what the purposes of TYPE and MATCH instructions are; the contents
of the field portions of these two instructions are informative. It is
less obvious what the purpose of most COMPUTE instructions is
(especially with the short variable names), and it is always difficult
to figure out what GRAPH instructions do (except window setting).
One way to avoid confusion would be to insert REMARK instructions to
document what is going on every time there is a GRAPH instruction or
a sequence of COMPUTE instructions. The trouble is that the REMARK
instructions also use up valuable program space. Perhaps the best
solution is to write a separate "program" using the text editor. This
program should document the Color PILOT program and should be stored
on the same cassette after the real program so that it can be printed
when the real program is printed. The exact form of the documentation
is a matter of personal style and preference; it is a text file and
will never be run as a program. If you want some ideas on ways to do
this, consult any programming text which covers Program Development
Languages (PDL). A PDL is one efficient way to outline the sequences
and logic of a program.

Use of a PDL, or some other way of outlining the sequence and
logic of a program, is a great aid to programming. To get maximum
benefit, complete the documentation before starting to ~rogram. You' 11
find that as time goes by, the design of the program takes much more
thought and effort than the actual programming. That's what good
computer languages are all about!

In addition to a programming text, we suggest that you get two
other items to facilitate some of the more routine programming tasks.
Graph paper with an 8 x 8 grid is available; this will make designing
and programming new characters much easier. And if you are going to do
much programming, a sheet of plastic which corresponds to the size of
the graphic grid on the screen of your TV will be very useful. To make
one, tape a piece of Mylar to the front of your TV and run the
following program:

G:E,M(i:l,Pl
*LOOP G:DX,0,LX,191
C: X == X+l(i:l
J(X(260):LOOP
W:20000

Mark the end points of the lines on the plastic sheet. Then run the
program:

G:E,M(i:l,Pl
*LOOP G:D(i:l,Y,1255,Y
C: Y == Y+l0
J(Y<200):LOOP
W:20000

118

Again mark the end points of the lines on the plastic sheet. Then draw
the grid of lines with permanent ink on the plastic. If you can print
numbers backwards, label the grid lines.

You can draw on the reverse side of the plastic with marker pens
intended for use with overhead transparencies (available from most
bookstores). Then, on the plastic, design a frame, transfer the
coordinates into your program, and erase the plastic for reuse with a
damp cloth.

You have now completed the introduction to Color PILOT. We hope
that you had fun reading it and experimenting with Color PILOT. More
to the point, we hope that you find Color PILOT to be as useful a tool
in the creation of worthwhile programs as we have found it to be.

119

APPENDIX I

121

ASCII Code Table

CHARACTER NUMBER DISPLAY
32 (Blank)
33
34 II

35 1fa
36 $
37 %
38 &
39
40 (

41)

42 *
43 +
44
45
46
47 I
48 0
49 1
50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58
59 ;
60 <
61 =
62 >
63 ?
64 @

65 A
66 B

67 c
68 D
69 E
70 F
71 G
72 H
73 I
74 J
75 K
76 L

77 M

123

78 r-~

79 0
80 p

81 Q
82 R
83 s
84 T

85 u
86 v
87 w
88 x
89 y

90 z
91 [

92 \
93]

94
95
96 0

97 a
98 b
99 c

100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 1
109 m
110 n
111 0

112 p
113 q
114 r

115 s
116 t

117 u
118 v
119 w
120 x
121 y
122 z
123 {

124
125 }

126
127 @

124

APPENDIX II

125

• 1. GENERAL

SUMMARY OF CASSETTE COLOR PILOT FOR
THE TRS-80 COLOR COMPUTER

Upward compatible with COMMON PILOT.

Allows high resolution graphics (256 x 191) in four colors and
text on the screen simultaneously.

Allows normal size text (24 lines of 32 characters) and double
size text (12 lines of 16 characters) under program control. Has
full upper- and lower-case text (96 printable ASCII characters).
All character patterns may be re-defined under program control.

Allows text to be anywhere on the screen or only within a user
defined text window.

Allows use of two color sets, normal or reverse video characters,
and four co lo rs.

Draws points, lines, boxes and filled areas.

Contains a complete screen-oriented editor for program entry.

Versatile expressions, string processing, and automatic 41t type conversions.

•

2. PILOT MODES

PILOT is loaded from cassette by entering @!~@]~@]~ . Once loaded,
type~~~@].

PILOT displays both upper and lower case. Holding down the !SHIFT! key
and then pressing ~ (zero) turns the shift lock on or off (same as
BASIC).

COMMAND MODE is signified by the prompt:

PILOT:

on the screen. At this point any of the following keys may be pressed:

Load a PILOT program from cassette (or from disk).

Save a PILOT program on cassette (or on disk).

Start running the current program.

ERter the text EDIT mode •

127

Print the current program on the serial printer.

Enter IMMEDIATE mode.

!SHIFT I I CLEAR I

IBREAKI

Clears the program area.

Causes the COMMAND mode to be entered from RUN,
EDIT or IMMEDIATE mode.

IMMEDIATE mode enables the user to type in any PILOT statement which will b
executed immediately. This is useful in trying out features of, among other
things, the GRAPHICS statement. To return to command mode, the IBREAKj key
is pressed.

RUN MODE is the mode in which a PILOT program is executed. To cancel the
execution of a program, the IBREAKI key is pressed.

EDIT MODE 1s described below.

3. PILOT STATEMENTS

REMARK

TYPE

R:any text

T: text
TH: text
TS:text

CONTINUE Text

MATCH M:pattern
MS:pattern

Statement is ignored by PILOT.

Types text to screen; text may contain
variables as "$V" or "4faV", or special
characters may be typed by "$number" or
by "4tnumber". The H (hang) modifier (TH:)
will suppress the automatic new line
after the type. The S (screen) modifier
(TS:) clears the text window before the
text is displayed.

A TYPE statement can be followed by one or
more continuation lines. A continuation line
is just a colon followed by more text in the
same format as on the TYPE statement.

Pattern may contain "*" as a wild card
character or "!" to separate multiple
possible answers. The student answer
is matched against the pattern and the
"Y" or "N" flag is set. The "S"
(spelling) modifier (MS:) may be used
to allow for arbitrary spelling errors
on the part of the student.

128

ACCEPT

JUMP

USE

END

WAIT

EXECUTE

A:
AS:
AH:

J:label
J:@A

U:label

E:

W: expression

X:V$

Allows the student to enter an answer
into the answer buffer (%B). Unless
otherwise specified, all input is
automatically converted to
uppercase before being stored in
the buffer. The H (hold case)
modifier specifies that input is
not to be automatically converted
to upper case. The S (single)
modifier specifies that only one
character is to be typed by the
student. The one character can be
any printable or non-printable
character on the keyboard and it
is not capitalized or otherwise
modified.

Causes a program jump to the
specified label or the last
ACCEPT executed.

Causes a subroutine call to be
made to the specified label. Only
one level of call is allowed.

If a USE has been executed,
then a return is made to the
statement after the USE. If
there is not an unended USE in
effect, the PILOT program is
ended.

The expression specifies the
number of tenths of seconds to
pause.If a key is depressed
before the time expires, the
WAIT is terminated.

The string variable "V$" is
executed as the next statement.
It may be any PILOT statement
except another "X".

129

NEWCHAR N: number,XXX

0=
4=
8=
c=

COMPUTE C:target=expression

* .
*

The number selects a character
number from 32 to 127 to be
redefined. "XXX" represents 16
hexadecimal characters which
define the 64 bits that make up
the new character pattern. The
character pattern is made up of 8
rows of 8 bits each. Each pair of
hex characters specifies the bit
pattern for one row of the
character cell. The rows are
specified top to bottom. The bit
values for the hex characters
are:

l= * 2= .. * . 3= ** .. 5= * * 6= . . * . 7= ***
9= * . . * A= * * B= *·**

** D= ** * E= *** F= **** .
For example,
N:65,3C42427E42424200 defines
character 65 (upper case "A") to
look like this:

* * * * (3C)

* * (42)

* * (42)

* * * * * * (7E)

* * (42)

* * (42)

* * (42)
(00)

The expression is evaluated and
assigned to the target. The
target may be a variable or a
subscripted variable of the form
V$ (position) or V$
(position, length). If the
expression type (numeric or
string) does not match the target
type, then it is automatically
converted to the correct type.

130

DIM D: V$ (length)

SOUND SS:
SH:

VIDEO V:variable

GRAPHICS G:G-list

Reserves string space for the
variable specified. The maximum
length is 255. Once dimensioned,
the string variable may contain
any length, from 0 to the maximum
allocated.

SOUND START (SS:) turns on
the cassette tape and plays the
recorded sound through the TV
set. This assume s that the PLAY
button is down on the recorder
and that it is connected for
computer control of the motor.
SOUND HALT (SH:) turns off
the cassette tape. It is up to
the program to use the Wait
statement or other means to time
the starting and halting of the
tape recorder.

This statement is for the
advanced programer only. Improper
use can crash the program. "V" is
used to control video tape, video
disk and various other
specialized interfaces. The
variable should be a string which
contains 6809 machine language
codes. The "V" statement executes
a jump to subroutine to the first
byte of the string. The X-reg
will point to the start of the
string. The A,B,X and Y registers
may be used without saving. The
subroutine should end with an RTS
op code.

Executes the graphics commands in
the "G-list". The commands in the
G-list may be separated by comma
or semi-colon. The possible
'commands follow:

131

4. GRAPHICS COMMANDS

ERASE E Erase the entire screen.

MODE M expression Sets the screen mode as shown:

MODE COLOR-SET CHAR-SIZE CHAR-TYPE

0
1
2
3
4
5
6
7

PENSTATE P expression

DOT D

LINE L

PEN STATE

0
1
2
3
4
5
6
7

X-EXP,Y-EXP

X-EXP,Y-EXP

0
0
1
1
0
0
1
1

sing le dark on light
single light on dark
sing le dark on light
sing le light on dark
double dark on light
double light on dark
double dark on light
double light on dark

Sets the type of dots, lines and
boxes drawn per the following
chart:

EFFECT

NO CHANGE is made on the screen
pixels are COMPLEMENTED on screen
a one-bit wide DARK mark is made
a one-bit wide LIGHT mark lS made
a two-bit wide BLACK mark lS made
a two-bit wide RED mark 1S made
a
a

two-bit wide GREEN mark 1S made
two-bit wide LIGHT mark 1S made

The exact colors made by these
commands vary according to the
color set selected and the
particular TV in use.

A dot is made at the
specified location and the beam
is moved to that location.

A line is made from the beam
location to the specified
location and the beam is moved to
that location.

132

•

BOX B X-EXP,Y-EXP

OFFSET 0 X-EXP,Y-EXP

WINDOW W X-EXP,Y-EXP

A box is filled in with one
corner at the beam location and
the opposite corner at the
specified location. The beam is
moved to that location. Boxes
must be drawn from left to right
only.

A screen offset is set which will
be added to all (X,Y) locations
given in D,L,B commands.

The upper left corner of the text
window is set to the character
cell which contains the specified
point, and the text cursor is
moved to that point. Once a text
window is defined all text output
from the program will be confined
to that window. The window can be
moved at any time.

The spaces shown after each command above are optional and may be omitted.

All coordinates are given as 0-255 for X and 0-191 for Y. (0,0) is the lower
left corner of the screen; (255,191) is the upper right. Any value over 255
is treated as modulo 256. Any Y value between 191 and 255 is treated as 191.

The BEAM location is initially at (0,0). Each D, L, B moves the beam to a new
location.

The initial conditions in PILOT are MODE 0, PENSTATE 1, WINDOW (0,191),
and OFFSET (0,0) .

133

5. STATEMENT LABELS

Any PILOT statement may be preceded by a label of the form:

*label

The label may be on a separate line, or may precede a statement on a line. In
the latter case, the label must be followed by a space. The label may be any
length but may contain no spaces.

6. STATEMENT MODIFIERS AND CONDITIONALS

H-modifier

S-modifier

Y-conditioner

N-conditioner

digit-conditioner

(relational-exp)

C-conditioner

TH: . TYPE HANG
AH: . ACCEPT HOLD
SH: . SOUND HALT

TS: • TYPE WITH SCREEN CLEAR
MS: . MATCH WITH SPELLING CORRECTION
AS: ..• ACCEPT SINGLE
SS: . SOUND START

May follow any op code (example:
TY:Correct). Statement is executed only
if last MATCH was "YES".

May follow any op code (example:
TN:Wrong). Statement is executed only if
last MATCH was "NO".

A digit from 1 to 9 may follow any op
code (example:T3:Let me give you a
hint.). Statement is executed only
if the digit matches the ACCEPT
COUNTER. The ACCEPT COUNTER is the
number of times in a row the last
ACCEPT statement has been executed.

A relational expression may follow any
op code (and optional modifiers and
conditioners). Statement is
executed only if the expression has a
non-zero (true) value. For example:
T(X + l=Y):text

May follow any op code (example:
JC:Xl23). Statement is executed
only if the last relational expression
was true.

134

The above modifiers, conditioners and relational expressions may be used in
any combination. Normally, modifiers follow the op code, followed by
conditioners, followed by relationals. For example:

TSY3(X<l):Very good.

In the above, the op code is T. The TYPE will clear the screen and output
"Very good." only if the last MATCH was "YES," it is the third time through
this accept, and the variable "X" is less than 1.

7. EXPRESSIONS

PILOT allows variables from A to z. "%B" is also treated as a string variable
of length 80. %B is the student answer buffer and will contain the student
response after each ACCEPT.

The variables A to Z may each be treated as a number or as a string. To be
treated as a string, a variable must be dimensioned by a D statement. When
using a variable as a string, a "$" may be coded after the variable name. The
"$" is optional. The variable is a string if and only if it has been
dimensioned; otherwise, it is a number.

In Cassette PILOT, all arithmetic is in 16-bit integer form. Numbers may be
from -32768 to 32767.

If any value within an expression .is of the wrong type (string or number) for
the context, then it is automatically converted to fit the context. This
allows, for example, the storing of numbers within a string, thus using the
string as a numeric array. If the two arguments of a relational operator differ
in type, then the second argument is converted to the type of the first, and
then the comparison is made.

Subscripting may occur on dimensioned variables only. There are two forms of
subscript, and either may be used within an expression or as the target of a
COMPUTE. The two forms are:

V$ (pas it ion) and V$(position,length)

The first form designates a string of length 1 at the given position. The first
position of a string is position 1. When an unsubscripted string variable is
the target of a COMPUTE, the variable takes on the length of the expression
unless the expression is longer than the maximum allocated length of the
string. If the expression value is too long, it is truncated. When a
subscripted string is the target of a COMPUTE, the expression value is padded
with spaces or truncated on the right to the specified substring length.

PILOT evaluates expressions in the same manner as BASIC with respect to
parentheses and operator precedence. In addition, PILOT allows the use of
logical and relational operators anywhere within expressions. These operators
always produce 0 for false or 1 for true.

135

ARITHMETIC OPERATORS: + * I

RELATIONAL OPERATORS: < > = <= >= <>

LOGICAL OPERATORS: & (and) (or) NOT (negation)

STRING CONCATENATION:

FUNCTIONS: ABS
KEY

RND
CHR

ASC

LEN
STR
FLO

STRING LITERAL:

8. EDIT MODE

(X)
(0)

(X)
(X)

(X$)

(X$)
(X)
(X$)

absolute value of X
0 if no key down, otherwise gives key
value as a number
gives random number for 0 to X-1
gives a one-character string with
given value from 0-255
gives number from 1-255, value of
first character of X$
gives current length of string X$
gives string representation of number X
gives numeric representation of string X$

"any text"

The PILOT EDIT mode is entered by pressing ~ from COMMAND mode. This
allows editing of the currently loaded program. To start with a blank program
area, press [@ltf] I CLEAR I in COMMAND mode before pressing ~ .

The editor is very easy to use. It works on the principle that "what you see is
what you get." The first line of text (if there is one) is displayed on the
bottom line. To enter lines of text, just type them on the screen. The cursor
will always appear on the bottom line, but the text may be moved up or down the
screen at will. The following keys cause special actions to take place:

!ENTER!

uP ARROW

OOWN ARROW

LEFT ARROW

RIGHT ARROW

Moves the text up one line on the screen, or if it's already on
the last line, then a new line is added to the text end.

Moves the text up one line unless it's already on the last line.

Moves the text down one line unless it's already on the first
line.

Moves the cursor left one character unless it's already in
column 1.

Moves the cursor right one character unless at the line end.

136

I SHIFT I
UP ARROW

I SHIFT I
RIGHT ARROW

ICLEARI

I SHIFT I
DOWN ARROW

I SHIFT I
LEFT ARROW

IBREAKI

Scrolls text up until a key is pressed or the last program line
is reached.

Adds a space before the character which the cursor underlines.

Moves to the top line of the text.

If the cursor is in column 1, a blank line is inserted in
front of the current line (the current line will bump down,
off the screen). If the cursor is not in column 1, the
current line is split at the cursor location into two lines.

Deletes the character under the cursor and moves the
remainder of the line left to close the gap. If the line has
no characters then the blank line is removed.

Exits the EDIT mode and returns to the COMMAND mode.

In general, to enter new lines just type each line followed by an IENTERI
key. To modify a line, move the cursor into place with the arrow keys and then
modify text by typing the new text over the old, or by inserting or deleting
characters as shown above.

Note: If the editor quits accepting new text, it 1s because the program area 1s
full.

The editor is general enough to be used not only for wr1t1ng PILOT proagrams
but also for simple word processing applications. After editing a text file, it
may be printed or saved on cassette for later use. One such use would be
writing documentation for lessons written in PILOT. Since the editor has a
maximum line length of 32 characters, a facility is provided to allow for
printing of longer text lines on the printer. If a line is ended with an "@"
character, then no RETURN is output at the end of the line. The result will be
that the following line on the screen will be printed on the same printer line.

9. ERROR CODES IN PILOT

When loading a module from cassette, these errors may occur:

l?? Tape checksum error
2?? Memory error
3?? Improper type of module
4?? Module too long for program area

When executing a PILOT program, these errors may occur:

C-ERR
D-ERR

Invalid syntax on COMPUTE statement
Invalid syntax of D statement or insufficient
memory for string

137

E-ERR
G-ERR
J-ERR
K-ERR
N-ERR

0-ERR
P-ERR
Q-ERR
R-ERR
S-ERR
U-ERR

X-ERR

Invalid expression syntax
Invalid syntax on GRAPHICS statement
Jump or Use of a non-existent label
Internal stack overflow, expression too complex
Attempt to redefine character less than 32 or
greater than 127, or not 16 hex digits on "N" OP
code
Invalid PILOT op code or modifiers
Unbalanced parentheses
Unmatched quotes
Ran out of memory space for expression processing
Subscripts out of bounds
Attempt to execute a USE when one is already in
effect
Invalid value on "X" statement, or another "X"
statement attempted from an "X"

When an error occurs, PILOT will display one of the above error messages and
then the line in error. Processing will then pause until any key is pressed. If
!BREAK.I is pressed, the program is cancelled and command mode is entered. If
any other key is pressed, PILOT will resume execution of the program on the
statement after the one in error.

138

APPENDIX III

139

Program Listing From Chapter 16

J:PAST
*MAP G:MO,Wl00,180
T:North
G:W0,105
T:W E
T:e
T:s
T: t
G:l00,0
TH:South
C:X=l5
C:Y=l5

a
s
t

*BLOCK G:P5,DX,Y,BX+20,Y+20
C:X=X+35
J (X<220): BLOCK
C:X=l5
C:Y=Y+35
J (Y<l 70): BLOCK
E:
*X
G:P2,DU,V,LU+8,V+8,DU,V+8,LU+8,V
E:
*ERASE
G:P3,DM,N,LM+8,LM+8,N
G:P2,DM+4,N+4,LU+4,V+4
E:
*PAST
G:M4,W0,150
T:A Map Reading

Exercise
W:20
TS:
G: M0, W0 , 100
T:When you push ENTER, I'll
:show you a simple map to the
:center of a city.
A:
TS:
U:MAP
W:30
G:E,W0,100
TS:Your current position
:is marked with an X.
W:20

141

TS:
U:MAP
C:U=37
C:V=39
U:X
W:3QJ
G:E,WQJ, ;lQJQJ
T:Your destination 1s marked
:with a box.
W:20
TS:
U:MAP
U:X
G:P6,Dl77,142,Bl85 , 15QJ
W:30
G:E,W0,100
T:You can move by typing one.
:To move - type N,S,E,or W.

:Press ENTER to begin.
A:
TS:
*RE U:MAP
U:X
G:P6A,Dl78,144,Bl86,152,Wl50,0
*MOVE TH:N,S,E, or W?
AS:
M:N!n!S!s!E!e!W!w!
JN:MOVE
C:M=U
C:N=V
M:N!n
CY:V=V+35
M:S!s
CY:U=U-35
M:E!e
CY:U=U+35
M:W!w
CY: U=U-35
G(V<0!V>l9QJ!U<0!U>23QJ):E,M4
GC :W60, H~0
TC: Lost

:Off the map!
WC:SQJ
TSC:
CC: U=37
CC: V=39

142

JC:RE
U:ERASE
U:X
G(V=l44&U=l77):E,M4,W3Ql,1QIQI
TC:Congratulations

:You made it.
WC:SQI
J C:PART2
J:MOVE
*PART2 G:E,M0,W0,1QIQI
T:Now you tell me all the
:moves with one line of letters.

:Example, 4 Norths and 1 East
by

:NNNNE

A:
*RE2 TS:
U:MAP
C:U=l42
C:V=74
U:X

Push ENTER

D: B$ (20)
G:P6,D2,39,Bl0,47,Wl5Ql,0
TH: List moves:
*AA C:C=KEY(0)
J(C=0) :AA
C:B$=CHR(C)
TH: B
A:
C:B$=B$! !%B
C: L=LEN(B$)
C:A=l
*MOVE2 C:%B=B$(A)
C:A=A+l
M:N!n!S!s!E!e!W!w!
JN:MOVE2
C:M=U
C:N=V
M:N!n
CY:V=V+35
M:S!S
CY:V=V-35
M:E!e
CY:U=U+35
M:W!w
CY:U=U-35

143

G(V<0!V>l90!U<0!U>230):E,M4
GC :W60, 100
TC:Lost

:Off the map!
WC:50
TSC:
CC:U=l42
CC:V=74
JC: RE2
U:ERASE
U:X
G(V=39&U=2):E,M4,W30,100
TC:Congratulations

:You made it.
WC:30
EC:
J(A<=L) :MOVE2
J:AA

144

IMPORTANT NOTICE
ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN
"AS IS" BASIS WITHOUT WARRANTY

Radio Shack shall have no l1ab11lty or respons1b1llty to customer or any
other person or entity with respect to any l1ab1l 1ty, loss or damage caused
or alleged to be caused directly or indirectly by computer equipment or
programs sold by Radio Shack, including but not l1m1ted to any 1nterrup
t1on of service, loss of business or ant1c1patory profits or consequential
damages resulting from the use or operation of such computer or
computer programs
NOTE Good data processing procedure dictates that the user test the

program, run and test sample sets of data, and run the system 1n
parallel with the system previously 1n use for a period of time
adequate to insure that results of operation of the computer or
program are satisfactory

RADIO SHACK SOFTWARE LICENSE
A Radio Shack grants to CUSTOMER a non-exclusive, paid up license to
use on CUSTOMER'S computer the Radio Shack computer software
received Title to the media on which the software 1s recorded (cassette
and/or disk) or stored (ROM) 1s transferred to the CUSTOMER, but not
title to the software

B In cons1derat1on for this license, CUSTOMER shall not reproduce
copies of Radio Shack software except to reproduce the number of copies
required for use on CUSTOMER'S computer (1f the software allows a
backup copy to be made} , and shall include Radio Shack's copyright
notice on all copies of software reproduced in whole or in part

C CUSTOMER may resell Radio Shack's system and applications soft
ware (mod1f1ed or not, in whole or 1n part} , provided CUSTOMER has
purchased one copy of the software for each one resold The prov1s1ons
of this software License (paragraphs A, B, and C) shall also be applicable
to third parties purchasing such software from CUSTOMER

ITI
RADIO SHACK fctA DIVISION OF TANDY CORPORATION -

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA
280-316 VICTORIA ROAD
RYDALMERE. N.S.W. 2116

TANDY CORPORATION

BELGIUM
PARC INDUSTRIEL DE NANINNE

5140 NANINNE

U.K.
BILSTON ROAD WEDNESBURV
WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

